
Chapter 4
Circuits

Abstract The observed quantity in eddy-current nondestructive evaluation is the
electrical impedance of the probe coil. Proper interpretation of the impedance allows
the inspector to infer material property information, and to detect and characterize
defects. This chapter provides an introductory description of circuit theory that is
relevant to eddy-current nondestructive evaluation, describing resistors, capacitors,
and inductors and the impedance of circuits in which they are combined. The concept
of an equivalent electrical circuit for an eddy-current probe is introduced and the
equivalent circuit is given in its simplest form.

4.1 Introduction

The process of induction of eddy currents in a metal test-piece, due to a time-varying
electric current flowing in an eddy-current coil, is most clearly understood in terms of
the electric and magnetic fields introduced in Chap. 2. It is helpful, on the other hand,
to describe certain characteristics of an eddy-current coil in terms of electrical circuit
theory. In this chapter, the circuit quantities resistance, capacitance, and inductance
are introduced and the quantity that is actually measured in an eddy- current inspec-
tion, the impedance of the coil, is defined. Some simple circuit configurations are
analyzed in order to prepare the way for discussion of a method of correcting for
“non-ideal” coil behavior, to be given in Sect. 6.3.6. A fairly brief overview is given
here. More detail can be found in [1].

4.2 Electromotance and Potential Difference

Electromotance (commonly but misleadingly known as “electromotive force” [2])
must be applied to a conductor to compel the conduction electrons tomove. A battery,
for example, provides a DC source of electromotance. Another way of expressing
this is that the battery terminalsmaintain a difference in electrical potential, V , which
has the unit Volt (V). When connected to an electrical circuit, the potential difference
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provided by the battery compels the conduction electrons to move. The electrons
move because an electric field exists between two points of different potential and a
charge Q, with unit Coulomb (C), in an electric field experiences force F given by
the product of the charge and the electric field:

F = QE. (4.1)

The potential energy W required to move the charge Q from point A to point B is

W = −
∫ B

A
F · dl = −Q

∫ B

A
E · dl. (4.2)

The potential difference between these two points, VBA, is the potential energy per
unit charge:

VBA = −
∫ B

A
E · dl. (4.3)

4.3 Resistance

As described in Sect. 1.5, a simple eddy-current coil is formed by winding multiple
turns of wire on a nonconductive former. One intrinsic parameter of any coil is its DC
resistance. Consider a conductor whose ends are maintained at a potential difference
V , as shown in Fig. 4.1. The resistance R of the conductor is defined as the potential
difference per unit current:

R = V

I
. (4.4)

From the point form of Ohm’s Law, (2.15), the resistance of the conductor can be
derived. The applied electric field of Fig. 4.1 is uniform, since the fields are not
varying with time, and its magnitude is given by

Fig. 4.1 A conductor with
uniform cross section S
under an applied electric
field E due to the
electromotance or potential
difference V supplied to the
circuit
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E = V

l
. (4.5)

Since the conductor has uniform cross section and the current is DC, (2.1) holds.
Combining (2.1), (2.15) and (4.5) gives

I

S
= σE = σV

l
.

From (4.4) it is now easy to see that (2.11) follows.

4.4 Capacitance

An eddy-current probe exhibits two forms of capacitance. One is inter-winding
capacitancewhich arises from the fact that the windings of the coil are in close prox-
imity to one another and separated by an insulating layer. The other is capacitance in
the leads that connect the coil to the voltage source. Both of these sources of capac-
itance interfere with the operation of the probe, because their presence gives rise to
an unwanted resonance in the probe circuit. This phenomenon will be described, and
a method for correcting measured data to remove the effect of the probe resonance
will be given, in Sect. 6.3.6.

A capacitor is formed by two conductors that carry equal and opposite charge,
separated by an insulator (dielectric material). Broadly speaking, materials can be
classified in terms of their conductivity σ and relative permittivity εr as either con-
ductors (with σ � 1 and εr = 1) or dielectrics (with σ � 1 and εr � 1).

Consider a simple capacitor formed by two parallel conductive plates as shown
in Fig. 4.2. The conductors are maintained at potential difference V given by

V = V1 − V2 = −
∫ 1

2
E · dl (4.6)

where E is the electric field between the capacitor plates. The capacitance, C , of the
capacitor is defined as the ratio of the magnitude of the charge on one of the plates
to the potential difference between them,

C = Q

V
. (4.7)

Capacitance can be regarded as a measure of how much electrical energy is stored
by the capacitor. Equation (4.7) is useful for determining the capacitance of an ideal
parallel-plate capacitor in which the plate separation d is much smaller than the
dimensions of the plate. In this case, it is assumed that E is uniform in the gap
between the capacitor plates, Fig. 4.2, and that the fringing field which leaks out at
the edge of the capacitor plates is negligible. Then,
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Fig. 4.2 A parallel-plate
capacitor with plate area S,
filled with a dielectric
material with relative
permittivity εr

C ≈ εS

d
(4.8)

where ε is the permittivity of the dielectric filling the capacitor and S is the area
of one of the identical plates. In fact, the ratio of the capacitance of an air-filled
capacitor, C0, compared with that of the same capacitor filled with dielectric, C ,
gives the relative permittivity of the dielectric:

C

C0
= ε

ε0
= ε0εr

ε0
= εr (4.9)

where ε0 = 8.854 × 10−12 Farads per meter (F/m) is the permittivity of free space.

4.5 Discharge of a Capacitor Through a Resistor

Having defined resistance and capacitance, we are now in a position to consider
a simple circuit formed by connecting a capacitor and resistor in series, as shown
in Fig. 4.3. If the capacitor is given charge Q0 at time t = 0, a potential difference
V = Q0/C appears across the plates. In the absence of an electromotance, the capac-
itor discharges and current I = dQ/dt flows through the circuit. At any time t > 0
therefore, the potential difference across the resistor is R × dQ/dt . One of Kirch-
hoff’s Laws of circuit theory (Kirchhoff’s Voltage Law) states “The directed sum of
the potential differences (voltages) around any closed loop is zero.” Applying this
law to the series RC circuit gives

R
dQ(t)

dt
+ Q(t)

C
= 0. (4.10)

The solution of this equation shows that there is an exponential decay of charge with
time,
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Fig. 4.3 Capacitor C and
resistor R connected in a
series circuit

Q(t) = Q0 exp

(
− t

RC

)
(4.11)

where τ = RC is known as the relaxation time of the RC circuit.

4.6 Forced Oscillation of an RC Circuit by Alternating
Electromotance

If an electromotance of the form V0 cos(ωt + φ) is now introduced into the circuit,
as shown in Fig. 4.4, applying Kirchhoff’s Law (stated in the previous section) gives

R
dQ(t)

dt
+ Q(t)

C
= V0 cos(ωt + φ). (4.12)

The solution of this equation, characteristic of alternating currents, is easily obtained
by writing the equation in phasor form:

jωRQ + Q
C

= V (4.13)

whereQ represents phasor charge, related to Q by Q = Re
{Qe jωt

}
as discussed in

Sect. 2.3 and V represents phasor voltage, similarly. Then

Fig. 4.4 Capacitor C and
resistor R connected in a
series circuit with
time-harmonic
electromotance
V0 cos(ωt + φ)
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Q = V
jωR + 1/C

(4.14)

and the phasor current I = jωQ is given by

I = V
R + 1/( jωC)

. (4.15)

Next we will define another circuit component, inductance, and see the interesting
effect of introducing an inductance into the circuit—a resonance is created in the
circuit at a particular frequency.

4.7 Inductance

The inductance of an eddy- current coil is its most important circuit property because
it is the property that allows the coil to detect changes in its local magnetic field that
arise due to perturbations of the eddy currents induced in the test-piece due to the
presence of defects or inhomogeneities. To understand inductance, it is necessary to
definemagnetic flux. By analogy with the relationship between electric current I and
current density J, (2.2), magnetic flux � is related to the field of magnetic induction
B as

� =
∫
S
B · dS. (4.16)

The unit of magnetic flux is theWeber (Wb) and, while the unit ofB is the Tesla,B is
also commonly quoted in Wb/m2. One can conceive of a magnetic circuit in which
� is constrained to flowwithin a high-permeability material (e.g., a ferromagnet), by
analogywith theway inwhich electrical current is confinedwithin a high conductivity
material (a conductor). Indeed, Faraday’s transformer experiment relied upon this
phenomenon to some extent (Sect. 1.2.1). The analogy has its limitations, however,
because B easily “leaks” out of a material if μr is not especially large, unlike Jwhich
is confined strictly to the conductor.

In Chap. 2, the nature of the magnetic field produced by current flowing in a
long, straight wire was discussed. If now a closed conducting path is considered, the
current I produces a magnetic induction B that causes flux � as defined in (4.16)
to pass through the closed path. Further, if the circuit has N identical turns, the flux
linkage λ can be defined as

λ = N�. (4.17)

If the relationship between I andB in themedium surrounding the circuit is linear, the
flux linkage is proportional to the current producing it and λ ∝ I . (The relationship
between I and B is not linear in the case of a ferromagnetic material, as discussed
in Chap. 3.) A constant of proportionality is introduced such that
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λ = L I (4.18)

where L is the inductance of the circuit. Inductance is measured in the unit Henry
(H), after Joseph Henry (Sect. 1.2.2). From (4.17) and (4.18) the inductance of an
inductor is defined as the ratio of the magnetic flux linkage to the current through
the inductor:

L = λ

I
= N�

I
. (4.19)

Inductance can be regarded as a measure of how much magnetic energy is stored in
an inductor.

Strictly, L is the self-inductance of an inductor since the flux linking the circuit
is produced by the inductor itself. It is also possible to define mutual inductance,
in which the flux linking the inductor is produced by a separate circuit. See, for
example, [3].

An eddy-current coil with large self-inductance is desirable because the coil then
responds more strongly to changes in the magnetic field in the vicinity of the coil.
The probe is thus more sensitive to magnetic field variations caused by perturbations
of the induced eddy-current density in a test-piece and, therefore, more sensitive
to a defect or other feature that causes the perturbation. The self-inductance of an
eddy-current coil is commonly increased in practice by winding the coil around a
high-permeability ferrite core. This is discussed further in Sect. 6.3.5.

4.8 Forced Oscillation of an LRC Circuit by Alternating
Electromotance

If an inductor is now introduced into the circuit, as shown in Fig. 4.5, a potential
difference of −L × d I/dt appears across the inductor at any time t > 0. This can
be shown by taking the derivative with respect to time of rearranged (4.19):

L
d I

dt
= d�

dt
= −V (4.20)

where the final identity comes from Faraday’s Law, given later in (5.1), Sect. 5.2. In
this case, applying Kirchhoff’s Law gives

Fig. 4.5 Capacitor C ,
resistor R and inductor L
connected in a series circuit
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L
d2Q(t)

dt2
+ R

dQ(t)

dt
+ Q(t)

C
= 0 (4.21)

and, if an alternating electromotance V (t) = V0 cos(ωt + φ) is applied to the circuit,

L
d2Q(t)

dt2
+ R

dQ(t)

dt
+ Q(t)

C
= V0 cos(ωt + φ). (4.22)

The solution of this equation, in phasor form, is

Q = V
−ω2L + jωR + 1/C

(4.23)

and the corresponding current is

I = V
R + j[ωL − 1/(ωC)] . (4.24)

4.9 Impedance

Now we define Z to be the complex impedance of the circuit, given by

Z = V
I . (4.25)

The symbol “Z” was first introduced by Sir Oliver Heaviside (1850-1925,
Fig. 4.6), an English physicist and electrical engineer who, despite being formally
educated only to elementary level, made important advances in the application of
mathematics to electrical circuits. His choice of mathematical notations and methods
were often not celebrated by his peers, however, and for this reason, he was forced
to publish his papers at his own expense [4]!

Returning to consideration of the series LRC circuit, the following expression for
Z can now be obtained from (4.24) and (4.25);

Z = R + jωL + 1

jωC
. (4.26)

In general, the real and imaginary parts of Z are given the symbols R and X and are
known as the resistance and reactance of the circuit, respectively;

Z = R + j X. (4.27)

In the specific example of the series LRC circuit, X = ωL − 1/(ωC).
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Fig. 4.6 Oliver Heaviside,
English physicist and
electrical engineer,
1850–1925 [5]

Impedance is a very important quantity in EC NDE! In most eddy- current
inspections, the complex impedance of the probe is viewed by the inspector on
an “impedance-plane plot” [1, 6], in which R is plotted on the horizontal (real) axis
and X is plotted on the vertical (imaginary) axis. Variations in the impedance as a
probe moves across a defective region in a test-piece, or from one material type to
another, are manifested as movement in the impedance point on the complex plane.

Impedances connected in series or in parallel in a circuit can be manipulated in
the same way as pure resistances;

Z = Z1 + Z2 + Z3 + . . . , series, (4.28)
1

Z
= 1

Z1
+ 1

Z2
+ 1

Z3
+ . . . , parallel. (4.29)

In the case of parallel impedances, it is more convenient to work in terms of the
admittance, Y = 1/Z . Then

Y = Y1 + Y2 + Y3 + . . . , parallel. (4.30)

4.10 Frequency Response of an LRC Circuit

Consideration of (4.24) shows that the current amplitude varies as a function of
frequency. If the alternating electromotance is maintained at constant amplitude for
all frequencies, the current amplitude peaks when ωL = 1/(ωC), for which
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Fig. 4.7 Magnitude of current as a function of angular frequency, ω, for a series LRC circuit
energized by an alternating electromotance whose amplitude is constant as a function of ω. The
effects of varying R are shown on (a) linear and (b) logarithmic frequency scales

ω = ω0 = 1√
LC

(4.31)

and ω0 is known as the resonance frequency of the circuit. If R increases, the curve
becomes shallower and the peak height is reduced, as shown in Fig. 4.7.

The breadth of the peak is controlled by the quality, or Q-factor

Q = ω0L

R
= 1

ω0CR
. (4.32)

Another type of resonant circuit is the subject of Exercise 3, at the end of this chapter.

4.11 Equivalent Electrical Circuit for an Eddy-Current
Probe

An equivalent electrical circuit that accounts for the various contributions to the
impedance of a real eddy-current probe is examined in Sect. 6.3.6 and is shown
schematically in Fig. 6.15. It can be seen that the circuit representation is more com-
plicated than any of those considered above. Nonetheless, under many circumstances
it is reasonable to consider the impedance of an eddy-current probe to be described,
to a first approximation, by the resistive and inductive contributions only. In other
words, for a coil operating at a frequency well below its resonance frequency,

Z ≈ R + jωL . (4.33)
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4.12 Summary

In this chapter, the three circuit quantities resistance, inductance, and capacitance
have been introduced and their combination in various simple circuits has been
developed to the point of defining impedance the quantity, that is measured in an EC
inspection. The way in which the circuit components feature in the make-up of an
EC probe has been outlined; resistance originates primarily in the resistivity of the
wire of the coil windings, self-inductance arises from the coil’s own time-varying
magnetic flux changing in the vicinity of the coil’s own windings, and capacitance
arises from inter-winding effects. Acknowledging that in most cases an eddy-current
coil impedance is given, to a good approximation, by the sum of resistive and
inductive contributions only, (4.33), we turn in the next chapter to a discussion of the
physical andmathematical framework that is needed to compute the probe impedance
under various circumstances of practical significance. The framework that we need
is provided by the field known as electromagnetism.

4.13 Exercises

1. If the ends of a cylindrical bar of carbon (σ = 3 × 104 S/m) of radius 5 mm and
length 8 cm are maintained at a potential difference of 9 V, find (a) the resistance
of the bar, (b) the current through the bar.

2. The resistance per unit length of a long wire with a circular cross section and
diameter 2 mm is 5.488 m�/m (milli-Ohm per meter). If a direct current of 40
mA flows through the wire, (a) find the conductivity of the wire; (b) identify the
material of the wire: and (c) find the electric current density in the wire.

3. For the parallel resonance circuit shown in Fig. 4.8, in which L and R are in series
with each other but in parallel withC , that is driven by alternating electromotance
V = V0 cos(ωt + φ), (a) express the impedance of the circuit, Z , in the form
R + j X , (b) determine the resonance frequency ω0 in terms of R, L and C , and
(c) show that the current amplitude isminimum at resonance, rather thanmaximum
as in the case of the series LRC circuit.

Fig. 4.8 Parallel resonance
circuit in which L and R are
connected in series with each
other but in parallel with C ,
driven by alternating
electromotance
V = V0 cos(ωt + φ)
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