
Chapter 2
Fields

Abstract In this chapter, the concept of the electromagnetic field is introduced in
the context of current-carrying, possibly ferromagnetic, conductors. The electric cur-
rent density, itself a vector field, is defined and related to electric current. Phasors
are introduced and their usefulness for treating electrical systems whose current is
alternating sinusoidally is described. The related material parameters, conductivity,
and resistivity, are defined and discussed. The relationships between electric cur-
rent, electric field, and magnetic field are introduced in relation to a line current.
The relation of electromagnetic fields to power transfer is introduced. Magnetiza-
tion field, the field of magnetic induction, and the permeability of a material are
defined. The definition of the electromagnetic skin depth is provided, highlighting
the material parameters that influence it. The consequences of the skin effect for EC
NDE are discussed, utilizing the example of an air-cored eddy-current coil adjacent
to an unflawed metal test-piece. For completeness, the electric displacement and
polarization fields are also defined.

2.1 Introduction

What do wemean by an electric or magnetic “field”? A field is a way of referring to a
spatial distribution of a certain quantity. Knowledge of field distributions is useful for
predicting the behavior of physical systems. Faraday was the first to propose thinking
of the universe as consisting of fields of various kinds. For example, knowledge of
the form of the earth’s gravitational field enables us to predict that an object will
fall when dropped, and indeed what its velocity will be on impact with the ground.
Similarly, knowledge of the forms of electric and magnetic fields allow us to predict
the behavior of electric charges and currents when they interact with those fields.

In the previous chapter, it was mentioned that a time-varying current, flowing in
a loop of wire, produces an associated magnetic field that is spatially similar to the
field in the vicinity of a small bar magnet. A significant difference between them,
however, is that the magnetic field associated with the time-varying current flow also
fluctuates in time, whereas that associated with a bar magnet does not. On the other
hand, a constant magnetic field similar to that produced by a bar magnet is produced
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12 2 Fields

by direct current flowing in a circular loop. In this chapter the relationship between
the electric current flowing in the coil of an eddy-current probe, the magnetic field it
produces, and the eddy currents induced in the conductive test-piecewill be explored.

One characteristic ofmetals is the existence of conduction electronswhich are free
tomovewhen an electro-motive force is present. The electro-motive force can be pro-
vided by a battery orAC power supply, for example. The conduction electrons are the
carriers of electric current although, by historical accident, the conventional current
I flows in the opposite direction to the flow of the negatively charged electrons. The
unit of electric current is the Ampère (A), named after the French mathematician and
physicist André Ampère (1775–1836). Within one week of the report of Oersted’s
experiment (Sect. 1.2.1), Ampère had formulated the right-hand rule (Sect. 2.6), in
which the direction of deflection of a small bar magnet (e.g., a compass needle) in the
vicinity of a current-carrying wire is specified [1]. In fact, it was in the formulation
of the right-hand rule that it was incorrectly assumed that current flows from positive
to negative poles, that is, that the charge carriers were positively charged.

2.2 Current Density

For the purpose of describing eddy currents in a conductor, it is more convenient to
use the current density, J, a vector field whose unit is Ampères per meter squared
(Am−2), rather than the current I . This is because eddy currents in a test-piece follow
a pathwhich offers the least electrical resistance to their flow. Their direction changes
to accommodate the presence of resistive obstacles in the conductor, in the same way
that smoothly flowing water separates to flow around a rock in a stream. This means
that the direction as well as the magnitude of the eddy currents needs to be described,
and this is best accomplished by the vector field J. Examples of resistive obstacles
in a conductor are cracks, pores, and regions of corrosion.

To begin to understand the relationship between I and J, consider current flowing
in a wire with cross-sectional area S, Fig. 2.1. In the case of direct current (DC),
which does not vary with time, the current density in the wire is spatially uniform
and the total current flowing in the wire is given by the product of the current density
and the cross-sectional area of the wire:

I = J S. (2.1)

Fig. 2.1 Current I flowing
in a wire with cross-sectional
area S
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In the case of time-varying current, however, the current density in the wire is gener-
ally not spatially uniform, and the current flowing in the wire is obtained by means
of a surface integral.

I =
∫
S
J · dS, (2.2)

where dS is an element of surface area. The dot product ensures that the component
of J that is normal to the surface S is the one that contributes to I . For refreshment
on vector analysis, see Appendix 10.3.

Example: Uniform current density in a wire Determine the total current in a wire
of radius 1 mm, placed along the z-axis, if J = (500/π)ẑ Am−2.

Solution From (2.1), I = J S = Jπα2 where α is the wire radius. Hence,

I = 500

π
π(10−3)2 = 500 × 10−6 = 0.5 mA.

Example:Nonuniformcurrentdensity inawireThecurrent density in a cylindrical
conductor of radius α placed along the z-axis is J = 10 exp[−(1 − ρ/α)]ẑ Am−2.
Evaluate the current through the cross section of the conductor.

Solution From (2.2),

I =
∫

J · dS

=
∫ 2π

0

∫ α

0
10 e−(1−ρ/α) ẑ · (ρdρdφẑ)

= 10
∫ 2π

0
dφ

∫ α

0
ρ e−(1−ρ/α)dρ

= 20π

e

∫ α

0
ρ eρ/αdρ

Use of the standard integral [2, relation 4.2.55]

∫
xeβxdx = eβx

β2
(βx − 1)

then gives I = (20π/e)α2 = 23.11α2 A.

2.3 Alternating Current and Phasor Representation

Direct current, produced by a battery, for example, flows steadily. The magnitude of
the current, I , is constant as a function of time, as shown in Fig. 2.2. Alternating cur-
rent is one form of time-varying current and often has a simple-harmonic waveform,
as shown in Fig. 2.3.The current at any instant in time is given by
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Fig. 2.2 Direct current
I (t) = I0

�

�
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I0 I(t) = I0
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Fig. 2.3 Sinusoidal
alternating current
I (t) = I0 cos(ωt + φ)

I (t) = I0 cos(ωt + φ) (2.3)

where I0 is the amplitude of the current, ω = 2π f is the angular frequency, t is time
elapsed and φ is the phase of I (t). It is popular to work in terms of the angular
frequency ω (unit radian−1 or rad−1) rather than the frequency f (unit Hertz, written
Hz, or second−1, written s−1) because the period of the cosine function is 2π. In
other words

cosα = cos(α + 2nπ) (2.4)

where n is an integer . . . 2, 1, 0, 1, 2, . . .. Hence,

cos(2π f t) = cos[2π( f t + n)] (2.5)

and the length of one cycle is defined by f t = 1 which means that the period of the
oscillation τ (measured in seconds, s) is simply

τ = 1

f
. (2.6)
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Fig. 2.4 Complex-plane
representation of phasor
I = I0 exp( jφ)
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Note that sinusoidal alternating current, given in terms of the cosine function in (2.3),
may equivalently be expressed in terms of the sine function I (t) = I0 sin(ωt + φ +
π/2). In this text, another representation will be used, in which

I (t) = Re{I exp( jωt)} (2.7)

= Re{I0 exp[ j (ωt + φ)]}
= I0Re[cos(ωt + φ) + j sin(ωt + φ)]
= I0 cos(ωt + φ).

In these equations, j = √−1, Re{Z} denotes the real part of Z ,

exp( jα) = cosα + j sinα

is Euler’s relationship and
I = I0 exp( jφ) (2.8)

is the phasor representation of I (t). I is a complex number representing a time-
harmonic physical quantity. Note that, whereas, I (t) is a real quantity that is a func-
tion of t , I is a complex quantity that does not depend on t . Phasor I is plotted in the
complex-plane in Fig. 2.4. In this text, the complex time dependence exp( jωt) is used
throughout rather than exp(−iωt), i = √−1, which is another convention. For revi-
sion of the complex-plane representation of a complex number, see Appendix 10.1.

The phasor notation of (2.7) is especially convenient because when the derivative
with respect to time is taken, the factor jω is brought down but the exponential term
itself is unchanged and can often be subsequently canceled, simplifying the analysis.
In other words, the conversion between the time derivative of I (t) and its phasor
form I is

∂

∂t
I (t) ⇔ jωI. (2.9)

Example: Phasor addition Prove that the addition of two time-harmonic functions
with the same frequency, I (t) = I0 cos(ωt + φ) and K (t) = K0 cos(ωt + ψ) can be
represented in phasor form by the sum I + K.
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Solution

I (t) = Re
{Ie jωt

}
K (t) = Re

{Ke jωt
}

and
I (t) + K (t) = Re

{
(I + K)e jωt

}
.

Hence,
I (t) + K (t) ⇔ I + K.

Note that two phasors that represent time-harmonic functions with different frequen-
cies cannot be summed in this way.

Example: Phasormultiplication Show that the product of two time-harmonic func-
tions with the same frequency, I (t) = I0 cos(ωt + φ) and K (t) = K0 cos(ωt + ψ)

cannot be represented in phasor form by the product IK.

Solution

I (t)K (t) = I0K0 cos(ωt + φ) cos(ωt + ψ)

= 1

2
I0K0 [cos(2ωt + φ + ψ) + cos(φ − ψ)]

from identity (10.13). This is the sum of two oscillations with different frequencies
(2ω and 0), which means that the product I (t)K (t) cannot be represented by a single
phasor of any form.

Example: Phasor differentiation Prove relation (2.9).

Solution

∂

∂t
I (t) = ∂

∂t
[I0 cos(ωt + φ)]

= −ω I0 sin(ωt + φ)

= −ω I0 cos(ωt + φ − π/2)

= Re
{−ω I0e

jωt e jφe− jπ/2
}

= Re
{
jω I0e

jωt e jφ
}

= Re
{
jωIe jωt

}

2.4 Conductivity and Resistivity

Different metals vary in their current-carrying ability. A measure of the ability of a
material to convey electric current is its electrical conductivity, a parameter which
is intrinsic to each material and arises in a metal from interactions between the
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conduction electrons and the crystal lattice. Also commonly used is the electrical
resistivity of the material, which is its ability to impede (or resist) the passage of
electric current. The resistivity is simply the reciprocal of the conductivity. In terms
of current flowing in a wire, the DC resistance of the wire, R measured in Ohms
(�), is proportional to the length of the wire, l, and inversely proportional to its
cross-sectional area S, so that

R = ρ
l

S
. (2.10)

The constant of proportionality, ρ, is the resistivity of the material out of which the
wire is made. The units of ρ are Ohmmeter (�m). Equivalently (2.10) can be written
in terms of the material conductivity σ, measured in Siemens per meter (Sm−1).

R = l

σS
, (2.11)

where, evidently,

σ = 1

ρ
. (2.12)

A higher value of conductivity is associated with better conductors than with poorer
conductors. The conductivity of commonmetals varies by around two orders of mag-
nitude. Copper is highly conductive and lends its name to the International Annealed
Copper Standard (IACS), a measure of conductivity used to compare electrical con-
ductors to a traditional copper-wire standard, in which 100% IACS represents con-
ductivity 58 MSm−1. Titanium, for example, has conductivity 1% IACS. The con-
ductivities of selected metals are given in Table 2.1.

Electrical conductivity σ is essentially constant as a function of frequency for
the electromagnetic inspection techniques discussed in this book, that operate up
to frequencies of a few MHz. Conductivity is very sensitive, on the other hand, to
variations in the temperature of a conductor [9]. Increasing the temperature of a con-
ductor reduces its conductivity due to increased vibrations of the crystal lattice that
impede the motion of the conduction electrons. Extensive tables of resistivity values
at various temperatures are given in [6, 10]. Since conductivity values are commonly
stated at 20 ◦C (degrees Celsius), measurements made at other temperatures must be
corrected in order to properly analyze and sort metals, for example. The following
formula for correcting for the effect of small temperature changes on the conductivity
is given in [9, 11]:

σ(T1) = σ(T2)

[1 + α(T1 − T2)] . (2.13)

In (2.13), σ(Ti ) is conductivity in MS/m at temperature Ti in ◦C and α is the tem-
perature coefficient of the material in ◦C−1. The temperature coefficient for selected
metallic elements is listed in Table 2.2 [11]. A detailed discussion on how to improve
the accuracy of conductivity measurements made using EC NDE is provided in [9].
Two complementary methods of conductivity measurement, by EC NDE and by the
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Table 2.1 Electrical conductivity of selected metals at 20 ◦C
Metal Alloy Conductivity, σ Reference

(MSm−1) (% IACS)

Aluminum, pure 35.38 61.00 [3]

Aluminum 2024 17.6 30.3 [4]

Brass C26000 16.42 28.31 [5]

Bronze, commercial annealed 25.52 44.00 [3]

Chromium 5.10 8.80 [3]

Cobalt 16.01 27.60 [3]

Copper 58.00 100.00 [3]

Gold 40.60 70.00 [3]

Iron, pure 10.44 18.00 [3]

Nickel 14.62 25.20 [3]

Silver 68.03 117.3 [6]

Steel, Carbon 1018 5.18 8.93 [7]

Steel, Stainless 316 1.379 2.378 [5]

Steel, Spring C1074/75 5.50 9.48 [5]

Titanium Ti-6Al-4V 0.58 1.00 [8]

Tungsten 18.21 31.40 [3]

Zinc, commercial rolled 16.24 28.00 [3]

Table 2.2 Temperature
coefficient for selected
metallic elements at 20 ◦C
[11]

Metal Temperature coefficient
(×10−3 ◦C−1)

Aluminum 4.3

Copper 4.0

Gold 3.7

Iron 6.0

Nickel 5.9

Silver 3.8

Tungsten 4.4

Zinc 3.8

four-point potential drop method, are compared in [7]. The latter method is par-
ticularly useful for measuring the conductivity of ferromagnetic metals, where the
eddy-current method commonly fails due to its inability to separate the effects of
conductivity and permeability on the probe impedance except at frequencies typi-
cally lower than the operating range of most probes. Permeability is the parameter
that describes the way in which a ferromagnetic material responds to an applied
magnetic field and is described in Sect. 2.8.
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Example: Temperature dependence of conductivity The aluminum alloy whose
temperature coefficient is listed in Table 2.2 has conductivity 63.6% IACS at 25 ◦C.
Evaluate the conductivity of this alloy at 20 ◦C.
Solution

σ(20 ◦C) = σ(25 ◦C)

[1 + α × (−5)]
= 63.6

[1 − (0.0043 × 5)]
= 65.0 %IACS.

2.5 Electric Field

The fundamental source of an electrostatic field, or stationary electric field E, is a
stationary electric charge. E has unit Volt per meter (V/m). Electric charges may be
either positive, as in the case of a proton which resides in the atomic nucleus for
example, or negative, as in the case of an electron. Static fields are not the concern
of this text since EC NDE is founded on inherently dynamic processes, i.e., fields
and their sources that vary with time.

When an electric current flows in a wire, or eddy currents are induced in a metal
test-piece, there is an electric field associated with the moving electrons. The current
I and current density J both exist only in the conductor because there are no con-
duction electrons in the region beyond the metal test-piece or coil. By contrast, the
electric field is not spatially restricted to the region of the conductor alone, but exists
everywhere. For example, the electric field in air due to an infinitesimally thin, long,
straight wire (mathematically, the wire radius → 0) carrying phasor current I in the
z-direction is given by

E = ẑ
I
2π

jωμ0 ln ρ, ρ > 0, (2.14)

where the wire coincides with the z-directed axis of a cylindrical coordinate system
of which ρ is the radial coordinate and μ0 is the permeability of free space (Sect. 2.8).
To discover how (2.14) is obtained, see Exercise 2 at the end of this chapter. This is
just one example of the electric field external to a current-carrying body. In fact, it is
also an example of the working of Faraday’s Law of electromagnetic induction. The
field expressed in (2.14) does not exist unless the current in the wire is time-varying.
As you can see in (2.14), E → 0 if ω → 0. This is a consequence of the fact that the
current flowing in the wire is the source of a magnetic field external to the wire, and
it is actually the time variation in the magnetic field that in turn induces the electric
field expressed in (2.14).

Inside the conductor, things are much simpler. There is a linear relationship
between J and E, known as a constitutive relation. This particular constitutive rela-
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tion is the “point form” of Ohm’s Law, which will be discussed in more detail in
Chap. 4. In an isotropic conductor, the conductivity is scalar which means that the
electric field and the current density have the same direction at every point in the
conductor. Ohm’s Law is then stated as follows, with the magnitudes of J and E
being proportional to one another and the constant of proportionality being σ:

J = σE. (2.15)

In the case of anisotropic conductivity such as exists in a carbon–fiber composite
material it is necessary to express Ohms’ Law as follows, wherein the conductivity
σ is a second-rank tensor:

J = σ · E and σ =
⎛
⎝σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞
⎠ . (2.16)

In this text, it is generally assumed that material properties are isotropic rather than
changingwith the direction of the appliedfield,which is true formostmetals routinely
inspected by EC NDE.

2.6 Magnetic Field

The fundamental source of a magnetic fieldH is charge in motion. A current flowing
in a wire always has a magnetic field associated with it, regardless of whether the
current is time-varying or flowing steadily. H has unit Ampère per meter (A/m).
Continuing the discussion surrounding (2.14), the magnetic field in air due to an
infinitesimally thin, long, straight wire carrying current I in the z-direction is given
by

H = φ̂
I

2πρ
, ρ > 0, (2.17)

whereφ is the azimuthal coordinate of the cylindrical system. (This is a demonstration
of the right-hand rule of Ampère: If the right hand is wrapped around a conductor
such that the thumb indicates the direction of current flow, here ẑ, then the direction
in which the curling fingers point is the direction of the associated magnetic field,
here φ̂.) To discover how expression (2.17) is obtained, see Exercise 2 at the end of
this chapter. Unlike in the case of the electric field associated with this same wire,
given in (2.14), note that there is no explicit frequency dependence (ω) in (2.17). In
fact, a similar expression holds for direct current I = I0 flowing in the same wire:

H = φ̂
I0
2πρ

, ρ > 0 (2.18)
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whereas, as explained above, E expressed in (2.14) tends to zero when direct current
flows in the wire. This is not to say, however, that there is no electric field external to a
long straightwire carrying direct current I0. In fact, the component of the electric field
tangential to the wire surface must be continuous (see Sect. 5.6), which means that
external to a DC current-carrying wire with axis parallel to the ẑ-direction, E = ẑE0

is also ẑ-directed and is constant everywhere in space. Unlike the form expressed in
(2.14), this constant term has no connection with the magnetic field.

The source of permanent magnetization in a ferromagnetic material lies in the
orbital- and spin angular momentum of atomic electrons as described by quantum
mechanics. So one can say, loosely, that the magnetic field due to a permanent
magnet also originates with charge in motion. Ferromagnetism cannot, however, be
fully explained in terms of classical physics. This type of magnetism is discussed in
Sect. 2.8 and also in Chap. 3.

The existence of electric and magnetic fields external to a conductor is at the
very heart of EC NDE. These are the fields that account for “action-at-a-distance”
phenomena such as the attraction between two electric charges of opposite sign or
the attraction between opposite poles of two permanent magnets. The fields store
electromagnetic energy which is converted to kinetic energy (energy of motion)
when such oppositely charged objects move toward each other. In the context of
EC NDE, an EC drive coil is the source of an external electromagnetic field, which
then couples into the metal test-piece and induces eddy currents there, whose current
density can be determined from the electric field by means of (2.15).

2.7 Poynting Vector

It will be useful later on, Chap. 9, to have introduced the Poynting vector. The instan-
taneous power density, or Poynting’s vector P , has unit Watt-per-meter-squared
(Wm−2) and is given by

P = E × H. (2.19)

When the fields vary sinusoidally, the average power per unit areaP can be computed
as

P = 1

2
Re

(
E × H∗) (2.20)

where E and H are now phasor representations of the time-harmonic fields in terms
of their amplitudes and the superscript “∗” indicates the complex conjugate. The
average power P through a surface S is then

P =
∫
S
P · dS = 1

2
Re

∫
S

(
E × H∗) · dS (2.21)

where the direction of the elemental surface dS gives the direction of power flow.
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2.8 Permeability and Magnetic Induction

Ferromagnetic materials such as iron or iron-based alloys respond to the application
of a magnetic field, such as that produced by alternating electric current flowing in
an eddy-current coil, by becoming strongly magnetized. Such materials, especially
steels, are commonly used in various structures and are routinely inspected using
NDE methods. The ferromagnetism exhibited by these materials means that they
interact with eddy currents in a way that is somewhat different from the interaction
with non-ferromagnetic materials such as copper or aluminum. For this reason, fer-
romagnetic materials deserve special attention and will be dealt with in more detail
in Chap. 3. Here, the concept of permeability is briefly introduced since it is needed
in the discussion of the electromagnetic skin effect which follows.

When an applied magnetic field H interacts with a ferromagnetic material, H is
augmented by the magnetization of the material,M, which also has units A/m in SI.
In fact, M is related to H via the susceptibility χ, a material-dependent dimension-
less parameter which embodies the strength of magnetization of the ferromagnet in
response to the applied magnetic field,

M = χH. (2.22)

Hence, the total magnetic field in the presence of a ferromagnet can be written

H + χH = (1 + χ)H = μrH

where μr = 1 + χ is a material-dependent dimensionless parameter known as the
relative permeability. Typically, χ is a function of H which means that μr is not
constant for any particular ferromagnet but changes as the value of H changes. The
relationship between M and H is inherently nonlinear.

When working with ferromagnetic materials, it is convenient to work in terms of
the field of magnetic induction, B, whose unit is the Tesla (T), since B represents the
combined effect of H and M. In the absence of magnetic material, there is a simple
linear relationship between B and H;

B = μ0H, (2.23)

in which the parameter μ0 is the permeability of free space with unit Henry per meter
(H/m) and value μ0 = 4π × 10−7 H/m. In the presence of a ferromagnet,

B = μ0(H + M). (2.24)

By manipulating the above definitions, the following relationship can be obtained:

B = μH (2.25)
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where μ is the permeability of the material, unit H/m, and μ = μ0μr. For the reasons
described in the discussion following (2.22), the relationship between B and H is
also inherently nonlinear although, if the magnitude of the applied H field is not
very large, B is approximately proportional to H. Relation (2.25) holds in the case
that the material permeability is isotropic, as discussed in relation to conductivity,
(2.15). In the case of a material that exhibits anisotropic permeability, a tensor form
for permeability is required.

2.9 Electromagnetic Skin Effect

Asmentioned in the discussion around (2.1), the current density inside awire carrying
DC current is spatially uniform. As the frequency increases, however, a phenomenon
known as the electromagnetic skin effect comes into play. This phenomenon has the
effect of confining the current to a thin skin near the surface of the conductor. The
effect is observed in every conductor carrying AC current, whether it be the wires
in the windings of the eddy-current coil, or the metal test-piece in which the eddy
currents are induced. As the frequency of the alternating current flowing in the probe
coil increases, the eddy-current density induced in the test-piece is confined to an
increasingly thin layer (or “skin”) near its surface. In other words, the depth of
penetration of the eddy currents into the test-piece can be controlled by adjusting the
frequency of the inspection. The fact that the depth of penetration can be varied in
this way provides a tool for optimizing an electromagnetic inspection to a particular
depth in the test-piece. For surface-breaking defects, it is best to work at higher
frequencies for which the induced eddy currents are concentrated near the surface of
the specimen. Inspection sensitivity is increased by concentrating the eddy currents
in the vicinity of the flaw. For deep-lying flaws, lower frequencies are needed so that
the eddy currents penetrate sufficiently far into the specimen to interact with the flaw.

An approximate guide to the depth of penetration of electric current flowing in a
conductor is known as the electromagnetic skin depth, δ (m), given by the following
formula:

δ =
√

2

ωσμ
(2.26)

which can also be expressed

δ = 1√
π f σμ

. (2.27)

In the definition of (2.26) and (2.27), δ is inversely proportional to the square root of
the frequency of the alternating current exciting the eddy-current coil f , the electrical
conductivity of the test-piece σ, and its magnetic permeability μ. This definition
emerges from the analysis of a two-dimensional system in which eddy currents are
excited in a half-space conductor (an infinitely deep conductor with a flat surface)
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Fig. 2.5 Conductive half-space excited by a current sheet J = J (z)x̂

Fig. 2.6 Exponential decay of induced current density as a function of depth in a half-space
conductor

by currents flowing in a thin sheet above the surface of the conductor, and parallel
to it, as shown in Fig. 2.5. In this case, the magnitude of the eddy-current density in
the test-piece falls off exponentially with depth from the surface:

J (z) = J0 exp(z/δ), z < 0, (2.28)

where J0 = J (0), as shown in Fig. 2.6. The value of electromagnetic skin depth
versus frequency is plotted in Fig. 2.7 for various metals [12]. The derivation of
(2.26)–(2.28) is presented in Sect. 6.3.1.

The value of δ is easy to compute for any given metal and serves as a useful
guide to the depth of penetration of the electromagnetic field. In a real eddy-current
measurement, however, the cylindrical geometry of a typical coil usually leads to
lesser field strength, for a given depth in the test-piece, than a uniformfield excitation,
especially for a small probe. In Fig. 2.8 [3], eddy-current contours produced by a
surface coil of the type shown in Figs. 1.8 and 1.9 are compared at three distinct
frequencies. It is obvious that the depth of penetration of the eddy-current density
decreases as the frequency increases.

Example: Electromagnetic skin effect What thickness of copper sheet, conductiv-
ity 58 MS/m, is needed to block 99% of incoming cellphone signal at 800MHz?
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Fig. 2.7 Electromagnetic skin depth δ versus frequency for various metals at 20 ◦C, whose con-
ductivities are given in Table 2.1. Relative permeability of 316 stainless steel is here taken to be
μr = 1.02 [5] and that of ingot iron to be a representative value μr = 1,000, Table 3.2

Solution The electromagnetic wave carrying the cellphone signal also obeys a law
of exponential decay in a metal similar to (2.28),

A(z) = A0e
−|z/δ|.

When 99% of the signal is blocked,

A(z)

A0
= 0.01 = e−|z/δ|

and
− z

δ
= ln(0.01) = −4.61

or z = 4.61δ. Now, in copper at 800 MHz,

δ = 1√
π × 800 × 106 × 58 × 106 × 4π × 10−7

= 2.34 µm,

using (2.27). Finally, the depth of copper that blocks 99% of incoming cellphone
signal at 800 MHz is

z = 4.61 × 2.34 = 10.8 µm.

The copper does not need to be very thick at all!
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Fig. 2.8 Contours of eddy-current density |Jφ| induced by a surface coil at frequencies 1 kHz
(a), 10 kHz (b) and 100 kHz (c). The probe parameters are ri = 2 mm, ro = 4 mm, l = 1 mm,
N = 800 and s = 1 mm. The test-piece is a half-space (T → ∞) with σ = 35.4MS/m and μr = 1.
The electromagnetic skin depth takes values δ = 2.7, 0.85 and 0.27 mm in a, b and c, respectively.
Reprinted with permission from the NDTHandbook: Electromagnetic Testing. Copyright c© 2004,
ASNT, Columbus, Ohio [3]
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2.10 Polarization and Electric Displacement

We have now met three of the four electromagnetic fields, namely the electric field,
E, the magnetic field, H, and the field of magnetic induction, B. The fourth is the
electric displacement,D, measured in Coulombs per meter squared (C/m2).D is also
known as electric flux density because electric flux �e can be defined in terms of D
as follows:

�e =
∫
S
D · dS (2.29)

(compare with (4.16) that relates magnetic flux � with magnetic induction B). For a
dielectric material, D is related to E in a way that parallels the relationship between
B and H for a magnetic material.

In ECNDE,we are dealingwithmetals, forwhich conductivityσ 	 1 and relative
permittivity εr = 1, rather than dielectrics (insulators) for which σ 
 1 and εr > 1.
This means that we do not rely heavily on the use of D in EC NDE. Nonetheless,
occasionally we shall need to be aware of the meaning of D and for this reason the
relations between D, E and the polarization P of a dielectric are summarized briefly
here.

As we already know, there are free electrons available in a conducting material
to conduct electricity when a force is applied. A dielectric material has no such free
charges. Instead, at an atomic level in a dielectric, the negatively charged electron
cloud is balanced by the positively charged atomic nuclei. On application of an
external force, the charge clouds are not free to move in a macroscopic sense, but
they do exhibit some degree of displacement from one another, so that an electric
dipole is created. The displaced charges give rise to local dipoles whose moment is
expressed

p = Qd (2.30)

where d is the distance vector from −Q to +Q of the dipole.
On a macroscopic scale, over a collection of many atoms, it is useful to introduce

the polarization vector field of a material, Pmeasured in C/m2, where P is the dipole
moment per unit volume of the dielectric and is a measure of the intensity of polar-
ization in the material. The electric displacement inside a material of polarization P
is then

D = ε0E + P. (2.31)

For some dielectrics, P is proportional to the applied electric field and

P = χeε0E (2.32)

where χe is the (dimensionless) electric susceptibility of the material. If (2.32) is
combined with (2.31), the constitutive relation

D = εE (2.33)
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is obtained, in which ε = ε0(1 + χe) = ε0εr . Relation (2.33) implies that the material
permittivity is isotropic, as discussed in relation to conductivity, (2.15). In the case
of a material that exhibits anisotropic permittivity, a tensor form for permittivity is
required.

2.11 Summary

In this chapter, the electromagnetic fields and the constitutive relations by which they
are related to material properties have been introduced. The relative importance of
these fields and material properties to the EC NDEmethod have been described. The
conductivity of a material is of primary importance in EC NDE. The permeability
of a ferromagnetic test-piece also strongly influences the signals measured in an EC
inspection, as will be seen in Chap. 6. In the next chapter, a description of ferromag-
netic phenomena is given that attempts to explain the origins of ferromagnetism and
the mechanisms that underly it, which gives insight into the fact that the magnetic
history of a test-piece can strongly affect the measured EC signals obtained from it.

2.12 Exercises

1. Obtain the phasor notation of the following time-harmonic functions, if possible.

(i) A(t) = 2 sin(ωt) − 3 cos(ωt),
(ii) C(t) = 4 cos(80πt − π/4),
(iii) D(t) = 2 − cos(2ωt),
(iv) I (t) = −7 sin(ωt),
(v) U (t) = sin(ωt + π/4) sin(ωt + π/8),
(vi) V (t) = 5 cos(ωt + π/3).

2. Obtain C(t) in terms of ω from the following phasors.

(i) C = 1 + 3 j ,
(ii) C = 3 e j0.9,
(iii) C = 2 e jπ/2 + 3 e j0.7.

3. A coil is made of 150 turns of silver wire wound on a circular cylindrical core and
carries current 0.1 A. If the mean radius of the turns is 6.5 mm and the diameter
of the wire is 0.4 mm, (i) calculate the DC resistance of the coil (you may make
the approximation that all the turns on the coil (windings) have the same radius
as the mean radius) and (ii) calculate the current density in the wire.

4. Determine the total current in a wire of radius 1.6 mm placed along the z-axis if

J = 500

ρ
ẑ Am−2.
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5. Given that the electrical conductivity of nickel is 14.62 MS/m at 20 ◦C, evaluate
the electrical conductivity of nickel at 25 ◦C.

6. According to (2.13), sketch the dependence of conductivity on temperature.
Rewrite (2.13) in terms of resistivity ρ and now sketch the dependence of ρ
on temperature. Explain the features of your two sketches.

7. Using the data shown in Fig. 2.7, estimate the conductivities of graphite, titanium,
and copper. Give your answers in terms of (a) MS/m and (b) % IACS. What
additional piece of information do you need to determine the conductivity of
ingot iron from this data? Conduct a little research to find this information and
use it to (c) estimate the conductivity of ingot iron from the data shown in Fig. 2.7.
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