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It is exciting and profound that mathematical
physics can be used to calculate quantities of
practical interest, that have a real impact on
society in the context of inspections of
aircraft, vehicles, bridges, nuclear power
plants and other structures whose integrity is
critical to human and environmental safety.

Excerpt from Chap. 5.
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Preface

This book is intended for senior undergraduate and graduate engineers and scien-
tists, who need a deeper understanding of eddy-current nondestructive evaluation
(EC NDE) that can be found in a guide for practitioners. It is written from the
standpoint that despite powerful advances in computational electromagnetics, it is
important to comprehend the physical principles at work in order to fully master
methods of NDE. This book accompanies a course of the same name that has been
developed at Iowa State University through support from the Center for
Nondestructive Evaluation, and it is also intended to provide a reference and
learning aid for nondestructive testing (NDT) engineers in industry and government
laboratories.

Theoretical concepts from electricity and magnetism are used freely throughout
this text and I am conscious of the fact that many professional test engineers have
not taken senior-level courses in electromagnetics or may need to be reminded
of the principles. When concepts, laws, and relationships are introduced in the text,
I have tried to provide sufficient supporting explanation to aid those of you who
may be meeting these for the first time.

The practice of eddy-current nondestructive testing grew, from the middle part
of the twentieth century, following the vital impetus and pioneering achievements
of Friedrich Förster and his colleagues. Förster laid foundations on which others
have built. In the early years, eddy-current methods were used for metal sorting,
hardness measurements, and the evaluation of heat treatments, detected through
sensing electrical resistivity variations in the samples. These applications were
followed quickly by the detection of cracks and corrosion. From the very beginning
of these developments, it has been recognized that the introduction of new tech-
niques, the improvement of existing methods, and the interpretation of measure-
ments can benefit greatly from an understanding of the fundamental behavior of the
electromagnetic fields. The aim of this book is to bring a knowledge of these
fundamentals to new generations of engineers and scientists.

Eddy-current nondestructive evaluation is a commonly practiced method of
electromagnetic NDT. The method has been a workhorse of metals characterization
and defect detection for many decades, operating at frequencies typically ranging
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from a few kiloHertz to a few megaHertz. One survey estimated that the method is
used in 10% of all NDT inspections. Other electromagnetic approaches, in partic-
ular, those that employ higher operating frequencies, are growing in usage in
accordance with the expanding use of nonmetallic structural materials such as
fiber-based composites. In this text, the discussion is limited to operating fre-
quencies of the order of megaHertz and below, which means that microwave and
teraHertz NDT, and magneto-optic imaging, remain outside the scope of this book.

My writing has been guided by four concepts. The work is intended to be
visually appealing, with plenty of diagrams to aid comprehension (thanks go to:
John Bowler, Adam Cich, Danielle Kimler, Ryan Williams, John Graham, Yi Lu,
and Amin Gorji who have all contributed illustrations to this work). I have
attempted to place the reported developments in the field of electromagnetic NDT
in historical context, and I have tried to maintain a high level of clarity and
transparency in the work by including many supporting references. A number of
“back-of-the-envelope” example calculations and exercises are included. These are
simple calculations that can be done by hand and impart a working knowledge
of the connection between electromagnetic theory and the practical measurements
described.

The text begins with a brief history of the development of eddy-current NDT,
followed by introductions to electromagnetic induction and the basic process of
eddy-current NDT, Chap. 1. In Chap. 2, the concept of the electromagnetic field is
introduced, and the relationship between electric current and the magnetic field is
described qualitatively in the context of an air-cored eddy-current coil near an
unflawed metal test-piece. The skin effect and material parameters which affect it
are discussed.

The influence of ferromagnetism on eddy-current inspection is profound. For the
successful inspection of most steels or other types of ferromagnetic conductor, an
understanding of the magnetization (and demagnetization) process is important.
Chapter 3 provides an introduction to the process of magnetization in ferromagnetic
materials and the meaning of permeability is explained.

The observed quantity in eddy-current NDT is the electrical impedance of the
probe coil. Proper interpretation of the impedance allows the inspector to infer
material property information, and to detect and characterize defects. Chapter 4
provides an introductory description of circuit theory that is relevant to EC NDE.
Different contributions to the probe coil impedance are discussed. Continuing to
build the background knowledge needed to more completely describe the electro-
magnetic behavior of a probe coil, and to become equipped to interpret the mea-
sured impedance, Chap. 5 describes the formation and various expressions of
Maxwell’s equations, from which the equations governing the electromagnetic
fields can be formed. Further, expressions of interface conditions on the electro-
magnetic field are provided. The interface conditions are needed, along with the
governing equations, to solve for the fields generated by eddy-current probe coils.
They also provide the mathematical tools by which the influence on the impedance
of the test-piece can be accounted for.
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In Chap. 6, the many background elements considered in earlier chapters come
together to allow a detailed illumination of the ways in which various factors affect
the measured impedance of an eddy-current probe coil. This chapter embodies the
core knowledge of eddy-current NDE insofar as detailing the response of an
eddy-current probe to an unflawed test-piece of relatively simple shape. The effect
of probe factors such as coil dimensions, construction with or without a ferrite core,
and frequency of excitation current are considered. Test-piece factors conductivity,
permeability, shape, and position relative to the coil are discussed. In particular,
Chap. 6 initially conveys how to compute and interpret the impedance of a coil that
is isolated from any test-piece and then introduces the effect of certain canonical
test-piece geometries: e.g., the case of a surface coil positioned above a half-space
conductor (i.e., a thick, flat conductor) and of a coil encircling a solid, circular–
cylindrical rod. For the surface coil, the role of the ferrite core in enhancing
inspections is described, along with sources of uncertainty in inspections due to, for
example, unknown variations in the coil windings or accidental tilt of the probe
during an inspection. The impedance plane diagram is introduced in absolute and
normalized forms.

The inspection of test-pieces with more complex geometry, such as layered
plates or tubes, is discussed in Chap. 7. The discussion includes the description of
impedance plane diagrams for surface coils, encircling coils, and bobbin coils in
relation to these test-pieces. The effect of the test-piece edge on the measured probe
coil impedance is also described.

In Chap. 8, various probe configurations are discussed in the context of par-
ticular applications for which they are well suited. Common and more exotic
configurations are included. Practically speaking, probes are often composed of
more than one coil either for differential operation that is particularly effective in
defect detection or so that each coil may be individually optimized for its role as
drive or pick up coil. Some probes are of hybrid design, in which a drive coil
induces eddy currents in the test-piece yet the signal is measured by another type of
sensor, e.g., a Hall device or a giant magnetoresistive (GMR) sensor. Thin, flexible
coils designed for in situ structural health monitoring, and array probes designed for
rapid wide-area inspection, are also presented.

Having laid groundwork giving a detailed description of impedance signals due
to unflawed test-pieces in prior chapters, attention is turned to the effect of defects
on the impedance of an eddy-current probe coil, in Chap. 9. In keeping with the
approach of this text, simple flaw shapes are considered with the intent of imparting
comprehension of how the various characteristics of a defect (its size, shape,
location, filler material, etc) influence the observed change in impedance of the
eddy-current coil as it approaches the defect. Two regimes are considered: the
“small flaw” regime, when the flaw is significantly smaller than the electromagnetic
skin depth in the material, and the “thin-skin” regime, when a surface crack is
significantly deeper than the electromagnetic skin depth. In these regimes, analyt-
ical solutions for the impedance change due to the defect can be derived and give a
clear insight into the way in which the coil impedance changes in the presence
of these and similar flaws.
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Reflecting on a decade of university-based teaching in the field of NDE, and on
decades-long conversations with industrial engineers responsible for NDT opera-
tions in aerospace, energy, and infrastructure engineering sectors, it is my view that
the industrial need for well-educated NDT engineers remains strong. I offer this text
to the NDT community in the hope that it will be useful in educating many NDT
professionals now and for years to come. I extend my gratitude to Steve Burke and
Buzz Wincheski for their comments on various parts of this text.

Ames, IA, USA Nicola Bowler
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Chapter 1
Introduction

Abstract This opening chapter begins with a brief history of the development of
the field of eddy-current (EC) nondestructive evaluation (NDE), beginning with
Faraday’s discovery of the law of electromagnetic induction and including contribu-
tions of Henry, Hughes, and Förster. The role of the law of electromagnetic induction
in EC NDE is described qualitatively and the principles via which a material defect
may be detected are discussed. Finally, the parameters by which a simple EC surface
coil may be described are introduced.

1.1 Introduction

A study conducted by the Institute of Metals [1] discovered that eddy-current non-
destructive evaluation (EC NDE) accounts for approximately ten percent of NDE
inspections. Other methods in common usage include inherently “visual” inspection
methods such as liquid penetrant andmagnetic particle testing (50%), ultrasonic, and
X-ray methods (approximately 35%). The optimum method for a particular inspec-
tion depends on the nature of the specimen under test, and also on the information
that is sought. Overviews of some of these methods can be found in [1, 2], but the
primary focus of this text is eddy-current NDE.

Eddy-current NDE relies on the induction of electrical current in the part being
tested. For this reason, it is used for the inspection of metals. Eddy-current NDE is
useful for the determination of certain material properties and detection and charac-
terization of inhomogeneities in metals. The method is fundamentally related to the
electromagnetic properties of a test-piece. For this reason, it is commonly applied
in metal sorting and identification, based on measurement of the metal conductivity,
and in detection and characterization of defects in metal parts. These defects may be
cracks, pits, dents, scratches, corrosion, heat-affected zones, and others. They may
appear at the surface or below the surface. They are found in aerospace structures,
nuclear power plant components, railroad tracks, pipelines, sheet metal, rods, and
bars, to name a few.

Much early work in the field was done by Friedrich Förster [3], who developed
practical eddy-current NDE techniques for many different test geometries, and also
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2 1 Introduction

developed the theory and physics of the practice. The company he founded (Foerster
Instruments, Inc.) is still a leading producer of eddy-current test instruments.

1.2 Historical Background

1.2.1 Michael Faraday

Michael Faraday (1791–1867, Fig. 1.1) was an English physicist and chemist. He
came from a poor background and was largely self-educated. In 1821, he discovered
the phenomenon of electromagnetic induction, which is one of the most far-reaching
scientific discoveries of all time [5]. Likemanyother scholars of his time, Faradaywas
fascinated by the experiment of Hans Oersted in 1819 in which it was demonstrated
that a compass needle could be deflected if brought near to a wire through which
electric current was passing. Faraday set out to show, conversely, that electric current
could be produced by a magnetic field. Faraday wound a coil of wire, connected to a
battery, around one segment of an iron ring (circuit A in Fig. 1.2). An electric current
could be made to pass through the wire by closing a switch. Another coil of wire was
wound around a different segment of the iron ring (circuit B). On closing the switch in
circuit A, amagnetic fieldwas set up by the current flowing in coil A,magnetizing the
iron ring. The magnetic field was concentrated in the high permeability iron, which
acts as a magnetic circuit conveying the magnetic field to circuit B. The magnetic
field created in the iron ring by coil A then coupled with coil B and induced a current
to flow in circuit B. This secondary induced current was detected by deflection of
the galvanometer. In this experiment, Faraday had invented the first transformer. His
original ring is shown in Fig. 1.3.

Fig. 1.1 Michael Faraday,
English physicist and
chemist, 1791–1867 [4]
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Fig. 1.2 Schematic diagram of Faraday’s transformer

Fig. 1.3 Faraday’s transformer [6]

One aspect of his experiment took Faraday by surprise. Rather than a steady flow
of current in circuit B, as Faraday had expected, there was a transient current in
response to the closing of the switch in circuit A, and another transient current in the
opposite direction when the circuit was broken. In between, while the current was
flowing steadily in circuit A, no current flowed in circuit B. To explain this, Faraday
visualized magnetic field lines that sprang outward from coil A when the switch was
closed and collapsed again as the circuit was broken. He hypothesized that electric
current was induced in a conductor only when magnetic field lines moved across
it. We now know that magnetic fields that vary in time and/or space are capable of
inducing electric current flow in a nearby conductor.

Faraday continued to carry out significant experiments in electricity, inventing
the first electric generator in 1831, probably the single greatest electrical discovery
in history. He was also a tremendously popular lecturer in science for the general
public, his lecturers being attended even by royalty and novelists of the time. Faraday
lends his name to a unit measuring the quantity of electricity (1 Faraday≡ 96,500C)
and to the unit of electrostatic capacitance, the Farad (F), named in his honor.
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Fig. 1.4 Joseph Henry,
American physicist,
1797–1878 [7]

1.2.2 Joseph Henry

A contemporary of Faraday, Joseph Henry (1797–1878, Fig. 1.4) was an American
physicist who discovered the phenomenon of electromagnetic induction in 1820,
before Faraday, but was unable to complete his experiments and publish his results
in advance of Faraday due to a heavy teaching load. For this reason, Faraday receives
the credit for the discovery [5]. In Henry’s paper, however, he explained that the elec-
tric current in a coil can induce another current not only in another coil but in itself—
the first description of the phenomenon of self-induction. The current observed in
any coil is, therefore, a combination of the original current and the induced current.
Joseph Henry made many further significant contributions to scientific and engi-
neering advancement, especially in his role as the first secretary of the Smithsonian
Institution, through which he encouraged worldwide communication of scientific
discoveries. Upon his death, it was agreed that the unit of inductance should be
named the Henry, in his honor.

1.2.3 David Hughes

Following the discovery of electromagnetic induction, nearly 50 years elapsed before
further experiments suggested a path toward practical application of the phenomenon
in materials testing. David Edward Hughes (1831–1900) was a Welsh experimental
scientist and accomplished musician. He conducted some important experiments of
relevance to EC NDE in 1879, when he showed that the properties of a current-
carrying coil changed when the coil was placed in contact with metals of different
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conductivity and permeability. Here, lies the foundation for identification of metals
and alloys by eddy-current testing, to be discussed in Chaps. 6 and 8.

1.2.4 Friedrich Förster

Following the work of Hughes, another 54 years passed before eddy-current technol-
ogy was developed for industrial application. While working for the Kaiser Wilhelm
Institute in Germany, 1933, Prof. Friedrich Förster played a very important role in
adapting eddy-current technology for industrial use. He developed instruments for
measuring conductivity and for sortingmixed ferrous components, amongothers, and
contributed significantly to the understanding and interpretation of eddy-current sig-
nals, introducing the so-called “Förster diagram”, which is related to the impedance-
plane plots that will be described in this work. As mentioned above, Förster founded
his own company (Foerster Instruments, Inc.) in 1948, a company whose business is
based on eddy-current testing.

Many advances in the development of ECNDEweremade in the 1950s and 1960s,
in particular in the context of aviation and nuclear power industries. ECNDE is now a
widely used and well-understood inspection technique for flaw detection and charac-
terization as well as for materials property characterization. The development of EC
NDE continues to be an active area of research in the present era. Research encom-
passes the design and realization of specialized probes for ever-more-challenging
inspections, often assisted by computational modeling of the probe and its environ-
ment. Present-day research also focuses upon improving the interpretation of noisy
signals, often with the goal of increasing inspection speed. Generally speaking, EC
NDE plays an important role in improving safety, quality, and efficiency in aviation,
transportation, infrastructure, and energy sectors.

1.3 Electromagnetic Induction

What happens when a time-varying electric current passes through a simple loop
of wire held near a conductor such as a metal plate? As shown schematically in
Fig. 1.5, the time-varying current flowing in the wire loop has the effect (somehow)
of producing (actually, inducing) an electric current which flows in the metal plate.
The current in the plate in some sense mirrors the applied current flowing in the wire
loop, but flows in the opposite direction. These induced currents are known as eddy
currents. The term “eddy current” was coined due to the analogy between vortex
currents (eddies) in laminar fluid flow and the flow of these induced, circulating,
electrical currents. In practice, eddy currents always flow in closed paths.

How are eddy currents induced? The answer lies in the phenomenon of electro-
magnetic induction, first observed experimentally by Faraday, who hypothesized the
existence of the electric and magnetic fields in order to explain his observations.
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Fig. 1.5 Eddy currents
induced in a metal part by a
time-varying current loop in
air. The eddy-current density
in the conductor, J(t), is a
vector field that is described
in detail in Sect. 2.2

Fig. 1.6 Magnetic field
associated with a
time-varying current loop in
air

The fact that the applied current is varying means that a magnetic field, denoted
H with units Ampères per meter (A/m), is produced in the vicinity of the current
loop, Fig. 1.6. This magnetic field is much like that in the vicinity of a stationary bar
magnet, although hereH varies with time whereas that associated with a bar magnet
is static. The time-varying magnetic field couples with a nearby metal test-piece and,
in turn, induces electric current in the metal. This phenomenon of electromagnetic
induction forms the foundation of eddy-current nondestructive evaluation. The eddy
currents that flow in the metal are themselves time-varying and produce their own
associated magnetic field, Hec. In an eddy current inspection, Hec couples with a
sensor—sometimes the induction coil itself—and the signal is interpreted to obtain
physical information about the test-piece.

The fact that EC NDEworks on the principle of electromagnetic induction means
that it is inherently a noncontact inspection method. One advantage of this is that a
test-piece may be inspected for damage even when covered by a protective layer of
paint or some other type of cladding, for example.
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Fig. 1.7 Eddy currents
disrupted by a surface defect.
The eddy-current density
J(t) is a vector field that is
described in detail in
Sect. 2.2

1.4 Eddy-Current Nondestructive Evaluation

Figure1.5 shows eddy currents induced in an unflawed conductor. The existence of
a defect such as a crack, some corrosion, a heat-affected zone or other inhomogene-
ity disrupts the flow of eddy currents, Fig. 1.7. In consequence, the magnetic field
(Sect. 2.6) associated with the induced eddy currents, Hec, is also disrupted. The
total magnetic field can be written as the sum of that from the drive coil,H0, and that
“scattered” by the defect, Hs:

Hec(t) = H0(t) + Hs(t). (1.1)

This disruption of the magnetic field may be detected by the inducing coil, or by
another sensing or pick up coil specifically dedicated to measuring the flaw signal.
A variety of defects can be detected in this way.

Note also that electromagnetic nondestructive evaluation methods can be used not
only for flaw detection but also for the characterization of materials. With model-
based or calibrationmethods it is possible tomeasure the electrical conductivity σ (or
equivalently the resistivity ρ = 1/σ ) of a metal, which is useful in identifying metal
alloys. Thickness measurements can also be made under certain circumstances—
useful when wall thinning due to corrosion is suspected. The distance between the
coil and the metal part can be measured, which is useful for measuring the thickness
of paint, for example.

1.5 Air-Cored Coil

The most basic eddy-current probe consists of a coil of wire wound on a nonconduc-
tive, nonmagnetic former, such as Delrin®. Such a coil is termed “air-cored” because
the conductivity and permeability of the former are the same as those of air, to a
close approximation. An image of such a coil, passing over a cracked test-piece, is
shown in Fig. 1.8. Important parameters of the coil are its inner and outer radii, ri
and ro, respectively, its length l, and number of turns (the number of loops of wire
wound on the former) N . The minimum distance between the lower surface of the
coil and the metal test-piece is determined by the thickness of the probe casing and
is termed the probe “stand-off”, s. A similar quantity is the coil “lift-off”, h, usually
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Fig. 1.8 Eddy-current coil passing over a test-piece with a surface crack
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Fig. 1.9 Cross section through the axis of a circular, air-cored, eddy-current coil, positioned hori-
zontally above a metal plate

defined to be the vertical distance between the lower surface of the coil windings
and the metal test-piece. With this definition, h ≥ s. A cross-sectional view of such a
coil is shown schematically in Fig. 1.9. The coil parameters all affect the value of the
coil impedance, Z , which is the quantity measured in a nondestructive eddy-current
inspection and is generally a complex quantity. It is discussed in detail in Sect. 4.9.
Z changes, for example, when a probe is placed on a metal sample from some dis-
tance away, and again when the probe moves near to a flaw in the metal. When the
probe coil is sufficiently far from any metals that eddy currents are not induced by it,
in practice, around 10 or 20cm away depending on the coil, it is said to be isolated
and its impedance has the symbol Z0. For a sinusoidal (alternating current) excita-
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tion with angular frequency ω (Sect. 2.3), the component of Z0 that is “in phase”
with the variation of the exciting current is resistive, and the component that is “in
quadrature” is inductive. This is represented in the following relationship:

Z0 = R0 + jωL0 (1.2)

where R0 and L0 are the d.c. resistance (Sect. 2.4) and inductance (Sect. 4.7) of the
coil, respectively, and j = √−1. A theoretically “ideal” coil has R0 = 0; it is a pure
inductor:

Z ideal = jωL0. (1.3)

In practice, the coil is usually made from a standard metal such as copper with finite
resistance and, as the coil operating frequency increases, capacitance between the
wires connecting the probe to any instrumentation, capacitance between thewindings
of the coil itself, and eddy currents in the wires themselves also exist. These effects,
and a scheme by which corrections can be made for nonideal coil behavior, are
discussed in detail in Chap. 8.

1.6 Summary

In this chapter, an introductory glance at the scope and history of EC NDE has been
taken. In the next chapter, attention turns to visual representations and mathematical
descriptions of the electromagnetic fields that Faraday conceptualized.

1.7 Exercises

1. On the same axes, sketch electric current (vertical) versus time (horizontal) for
the currents flowing in circuits A and B of Faraday’s transformer (Fig. 1.2) as the
switch is first closed at time tc and then opened at time to. Indicate the time points
tc and to on your plot. Remember that the current flowing in a circuit of this kind
does not change instantaneously from “off” to “on” or vice versa, but has a finite
transition time associated with its rise or fall.

2. Describe in your own words the phenomena observed, and the reasons for their
occurrence, at each step of Faraday’s experiment.
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Chapter 2
Fields

Abstract In this chapter, the concept of the electromagnetic field is introduced in
the context of current-carrying, possibly ferromagnetic, conductors. The electric cur-
rent density, itself a vector field, is defined and related to electric current. Phasors
are introduced and their usefulness for treating electrical systems whose current is
alternating sinusoidally is described. The related material parameters, conductivity,
and resistivity, are defined and discussed. The relationships between electric cur-
rent, electric field, and magnetic field are introduced in relation to a line current.
The relation of electromagnetic fields to power transfer is introduced. Magnetiza-
tion field, the field of magnetic induction, and the permeability of a material are
defined. The definition of the electromagnetic skin depth is provided, highlighting
the material parameters that influence it. The consequences of the skin effect for EC
NDE are discussed, utilizing the example of an air-cored eddy-current coil adjacent
to an unflawed metal test-piece. For completeness, the electric displacement and
polarization fields are also defined.

2.1 Introduction

What do wemean by an electric or magnetic “field”? A field is a way of referring to a
spatial distribution of a certain quantity. Knowledge of field distributions is useful for
predicting the behavior of physical systems. Faraday was the first to propose thinking
of the universe as consisting of fields of various kinds. For example, knowledge of
the form of the earth’s gravitational field enables us to predict that an object will
fall when dropped, and indeed what its velocity will be on impact with the ground.
Similarly, knowledge of the forms of electric and magnetic fields allow us to predict
the behavior of electric charges and currents when they interact with those fields.

In the previous chapter, it was mentioned that a time-varying current, flowing in
a loop of wire, produces an associated magnetic field that is spatially similar to the
field in the vicinity of a small bar magnet. A significant difference between them,
however, is that the magnetic field associated with the time-varying current flow also
fluctuates in time, whereas that associated with a bar magnet does not. On the other
hand, a constant magnetic field similar to that produced by a bar magnet is produced
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12 2 Fields

by direct current flowing in a circular loop. In this chapter the relationship between
the electric current flowing in the coil of an eddy-current probe, the magnetic field it
produces, and the eddy currents induced in the conductive test-piecewill be explored.

One characteristic ofmetals is the existence of conduction electronswhich are free
tomovewhen an electro-motive force is present. The electro-motive force can be pro-
vided by a battery orAC power supply, for example. The conduction electrons are the
carriers of electric current although, by historical accident, the conventional current
I flows in the opposite direction to the flow of the negatively charged electrons. The
unit of electric current is the Ampère (A), named after the French mathematician and
physicist André Ampère (1775–1836). Within one week of the report of Oersted’s
experiment (Sect. 1.2.1), Ampère had formulated the right-hand rule (Sect. 2.6), in
which the direction of deflection of a small bar magnet (e.g., a compass needle) in the
vicinity of a current-carrying wire is specified [1]. In fact, it was in the formulation
of the right-hand rule that it was incorrectly assumed that current flows from positive
to negative poles, that is, that the charge carriers were positively charged.

2.2 Current Density

For the purpose of describing eddy currents in a conductor, it is more convenient to
use the current density, J, a vector field whose unit is Ampères per meter squared
(Am−2), rather than the current I . This is because eddy currents in a test-piece follow
a pathwhich offers the least electrical resistance to their flow. Their direction changes
to accommodate the presence of resistive obstacles in the conductor, in the same way
that smoothly flowing water separates to flow around a rock in a stream. This means
that the direction as well as the magnitude of the eddy currents needs to be described,
and this is best accomplished by the vector field J. Examples of resistive obstacles
in a conductor are cracks, pores, and regions of corrosion.

To begin to understand the relationship between I and J, consider current flowing
in a wire with cross-sectional area S, Fig. 2.1. In the case of direct current (DC),
which does not vary with time, the current density in the wire is spatially uniform
and the total current flowing in the wire is given by the product of the current density
and the cross-sectional area of the wire:

I = J S. (2.1)

Fig. 2.1 Current I flowing
in a wire with cross-sectional
area S
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In the case of time-varying current, however, the current density in the wire is gener-
ally not spatially uniform, and the current flowing in the wire is obtained by means
of a surface integral.

I =
∫
S
J · dS, (2.2)

where dS is an element of surface area. The dot product ensures that the component
of J that is normal to the surface S is the one that contributes to I . For refreshment
on vector analysis, see Appendix 10.3.

Example: Uniform current density in a wire Determine the total current in a wire
of radius 1 mm, placed along the z-axis, if J = (500/π)ẑ Am−2.

Solution From (2.1), I = J S = Jπα2 where α is the wire radius. Hence,

I = 500

π
π(10−3)2 = 500 × 10−6 = 0.5 mA.

Example:Nonuniformcurrentdensity inawireThecurrent density in a cylindrical
conductor of radius α placed along the z-axis is J = 10 exp[−(1 − ρ/α)]ẑ Am−2.
Evaluate the current through the cross section of the conductor.

Solution From (2.2),

I =
∫

J · dS

=
∫ 2π

0

∫ α

0
10 e−(1−ρ/α) ẑ · (ρdρdφẑ)

= 10
∫ 2π

0
dφ

∫ α

0
ρ e−(1−ρ/α)dρ

= 20π

e

∫ α

0
ρ eρ/αdρ

Use of the standard integral [2, relation 4.2.55]

∫
xeβxdx = eβx

β2
(βx − 1)

then gives I = (20π/e)α2 = 23.11α2 A.

2.3 Alternating Current and Phasor Representation

Direct current, produced by a battery, for example, flows steadily. The magnitude of
the current, I , is constant as a function of time, as shown in Fig. 2.2. Alternating cur-
rent is one form of time-varying current and often has a simple-harmonic waveform,
as shown in Fig. 2.3.The current at any instant in time is given by
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Fig. 2.2 Direct current
I (t) = I0

�

�

t

I

I0 I(t) = I0

0

Fig. 2.3 Sinusoidal
alternating current
I (t) = I0 cos(ωt + φ)

I (t) = I0 cos(ωt + φ) (2.3)

where I0 is the amplitude of the current, ω = 2π f is the angular frequency, t is time
elapsed and φ is the phase of I (t). It is popular to work in terms of the angular
frequency ω (unit radian−1 or rad−1) rather than the frequency f (unit Hertz, written
Hz, or second−1, written s−1) because the period of the cosine function is 2π. In
other words

cosα = cos(α + 2nπ) (2.4)

where n is an integer . . . 2, 1, 0, 1, 2, . . .. Hence,

cos(2π f t) = cos[2π( f t + n)] (2.5)

and the length of one cycle is defined by f t = 1 which means that the period of the
oscillation τ (measured in seconds, s) is simply

τ = 1

f
. (2.6)
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Fig. 2.4 Complex-plane
representation of phasor
I = I0 exp( jφ)

������������

�

�

eR0 {I}

Im{I}

I0

φ

�

Note that sinusoidal alternating current, given in terms of the cosine function in (2.3),
may equivalently be expressed in terms of the sine function I (t) = I0 sin(ωt + φ +
π/2). In this text, another representation will be used, in which

I (t) = Re{I exp( jωt)} (2.7)

= Re{I0 exp[ j (ωt + φ)]}
= I0Re[cos(ωt + φ) + j sin(ωt + φ)]
= I0 cos(ωt + φ).

In these equations, j = √−1, Re{Z} denotes the real part of Z ,

exp( jα) = cosα + j sinα

is Euler’s relationship and
I = I0 exp( jφ) (2.8)

is the phasor representation of I (t). I is a complex number representing a time-
harmonic physical quantity. Note that, whereas, I (t) is a real quantity that is a func-
tion of t , I is a complex quantity that does not depend on t . Phasor I is plotted in the
complex-plane in Fig. 2.4. In this text, the complex time dependence exp( jωt) is used
throughout rather than exp(−iωt), i = √−1, which is another convention. For revi-
sion of the complex-plane representation of a complex number, see Appendix 10.1.

The phasor notation of (2.7) is especially convenient because when the derivative
with respect to time is taken, the factor jω is brought down but the exponential term
itself is unchanged and can often be subsequently canceled, simplifying the analysis.
In other words, the conversion between the time derivative of I (t) and its phasor
form I is

∂

∂t
I (t) ⇔ jωI. (2.9)

Example: Phasor addition Prove that the addition of two time-harmonic functions
with the same frequency, I (t) = I0 cos(ωt + φ) and K (t) = K0 cos(ωt + ψ) can be
represented in phasor form by the sum I + K.
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Solution

I (t) = Re
{Ie jωt

}
K (t) = Re

{Ke jωt
}

and
I (t) + K (t) = Re

{
(I + K)e jωt

}
.

Hence,
I (t) + K (t) ⇔ I + K.

Note that two phasors that represent time-harmonic functions with different frequen-
cies cannot be summed in this way.

Example: Phasormultiplication Show that the product of two time-harmonic func-
tions with the same frequency, I (t) = I0 cos(ωt + φ) and K (t) = K0 cos(ωt + ψ)

cannot be represented in phasor form by the product IK.

Solution

I (t)K (t) = I0K0 cos(ωt + φ) cos(ωt + ψ)

= 1

2
I0K0 [cos(2ωt + φ + ψ) + cos(φ − ψ)]

from identity (10.13). This is the sum of two oscillations with different frequencies
(2ω and 0), which means that the product I (t)K (t) cannot be represented by a single
phasor of any form.

Example: Phasor differentiation Prove relation (2.9).

Solution

∂

∂t
I (t) = ∂

∂t
[I0 cos(ωt + φ)]

= −ω I0 sin(ωt + φ)

= −ω I0 cos(ωt + φ − π/2)

= Re
{−ω I0e

jωt e jφe− jπ/2
}

= Re
{
jω I0e

jωt e jφ
}

= Re
{
jωIe jωt

}

2.4 Conductivity and Resistivity

Different metals vary in their current-carrying ability. A measure of the ability of a
material to convey electric current is its electrical conductivity, a parameter which
is intrinsic to each material and arises in a metal from interactions between the
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conduction electrons and the crystal lattice. Also commonly used is the electrical
resistivity of the material, which is its ability to impede (or resist) the passage of
electric current. The resistivity is simply the reciprocal of the conductivity. In terms
of current flowing in a wire, the DC resistance of the wire, R measured in Ohms
(�), is proportional to the length of the wire, l, and inversely proportional to its
cross-sectional area S, so that

R = ρ
l

S
. (2.10)

The constant of proportionality, ρ, is the resistivity of the material out of which the
wire is made. The units of ρ are Ohmmeter (�m). Equivalently (2.10) can be written
in terms of the material conductivity σ, measured in Siemens per meter (Sm−1).

R = l

σS
, (2.11)

where, evidently,

σ = 1

ρ
. (2.12)

A higher value of conductivity is associated with better conductors than with poorer
conductors. The conductivity of commonmetals varies by around two orders of mag-
nitude. Copper is highly conductive and lends its name to the International Annealed
Copper Standard (IACS), a measure of conductivity used to compare electrical con-
ductors to a traditional copper-wire standard, in which 100% IACS represents con-
ductivity 58 MSm−1. Titanium, for example, has conductivity 1% IACS. The con-
ductivities of selected metals are given in Table 2.1.

Electrical conductivity σ is essentially constant as a function of frequency for
the electromagnetic inspection techniques discussed in this book, that operate up
to frequencies of a few MHz. Conductivity is very sensitive, on the other hand, to
variations in the temperature of a conductor [9]. Increasing the temperature of a con-
ductor reduces its conductivity due to increased vibrations of the crystal lattice that
impede the motion of the conduction electrons. Extensive tables of resistivity values
at various temperatures are given in [6, 10]. Since conductivity values are commonly
stated at 20 ◦C (degrees Celsius), measurements made at other temperatures must be
corrected in order to properly analyze and sort metals, for example. The following
formula for correcting for the effect of small temperature changes on the conductivity
is given in [9, 11]:

σ(T1) = σ(T2)

[1 + α(T1 − T2)] . (2.13)

In (2.13), σ(Ti ) is conductivity in MS/m at temperature Ti in ◦C and α is the tem-
perature coefficient of the material in ◦C−1. The temperature coefficient for selected
metallic elements is listed in Table 2.2 [11]. A detailed discussion on how to improve
the accuracy of conductivity measurements made using EC NDE is provided in [9].
Two complementary methods of conductivity measurement, by EC NDE and by the
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Table 2.1 Electrical conductivity of selected metals at 20 ◦C
Metal Alloy Conductivity, σ Reference

(MSm−1) (% IACS)

Aluminum, pure 35.38 61.00 [3]

Aluminum 2024 17.6 30.3 [4]

Brass C26000 16.42 28.31 [5]

Bronze, commercial annealed 25.52 44.00 [3]

Chromium 5.10 8.80 [3]

Cobalt 16.01 27.60 [3]

Copper 58.00 100.00 [3]

Gold 40.60 70.00 [3]

Iron, pure 10.44 18.00 [3]

Nickel 14.62 25.20 [3]

Silver 68.03 117.3 [6]

Steel, Carbon 1018 5.18 8.93 [7]

Steel, Stainless 316 1.379 2.378 [5]

Steel, Spring C1074/75 5.50 9.48 [5]

Titanium Ti-6Al-4V 0.58 1.00 [8]

Tungsten 18.21 31.40 [3]

Zinc, commercial rolled 16.24 28.00 [3]

Table 2.2 Temperature
coefficient for selected
metallic elements at 20 ◦C
[11]

Metal Temperature coefficient
(×10−3 ◦C−1)

Aluminum 4.3

Copper 4.0

Gold 3.7

Iron 6.0

Nickel 5.9

Silver 3.8

Tungsten 4.4

Zinc 3.8

four-point potential drop method, are compared in [7]. The latter method is par-
ticularly useful for measuring the conductivity of ferromagnetic metals, where the
eddy-current method commonly fails due to its inability to separate the effects of
conductivity and permeability on the probe impedance except at frequencies typi-
cally lower than the operating range of most probes. Permeability is the parameter
that describes the way in which a ferromagnetic material responds to an applied
magnetic field and is described in Sect. 2.8.
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Example: Temperature dependence of conductivity The aluminum alloy whose
temperature coefficient is listed in Table 2.2 has conductivity 63.6% IACS at 25 ◦C.
Evaluate the conductivity of this alloy at 20 ◦C.
Solution

σ(20 ◦C) = σ(25 ◦C)

[1 + α × (−5)]
= 63.6

[1 − (0.0043 × 5)]
= 65.0 %IACS.

2.5 Electric Field

The fundamental source of an electrostatic field, or stationary electric field E, is a
stationary electric charge. E has unit Volt per meter (V/m). Electric charges may be
either positive, as in the case of a proton which resides in the atomic nucleus for
example, or negative, as in the case of an electron. Static fields are not the concern
of this text since EC NDE is founded on inherently dynamic processes, i.e., fields
and their sources that vary with time.

When an electric current flows in a wire, or eddy currents are induced in a metal
test-piece, there is an electric field associated with the moving electrons. The current
I and current density J both exist only in the conductor because there are no con-
duction electrons in the region beyond the metal test-piece or coil. By contrast, the
electric field is not spatially restricted to the region of the conductor alone, but exists
everywhere. For example, the electric field in air due to an infinitesimally thin, long,
straight wire (mathematically, the wire radius → 0) carrying phasor current I in the
z-direction is given by

E = ẑ
I
2π

jωμ0 ln ρ, ρ > 0, (2.14)

where the wire coincides with the z-directed axis of a cylindrical coordinate system
of which ρ is the radial coordinate and μ0 is the permeability of free space (Sect. 2.8).
To discover how (2.14) is obtained, see Exercise 2 at the end of this chapter. This is
just one example of the electric field external to a current-carrying body. In fact, it is
also an example of the working of Faraday’s Law of electromagnetic induction. The
field expressed in (2.14) does not exist unless the current in the wire is time-varying.
As you can see in (2.14), E → 0 if ω → 0. This is a consequence of the fact that the
current flowing in the wire is the source of a magnetic field external to the wire, and
it is actually the time variation in the magnetic field that in turn induces the electric
field expressed in (2.14).

Inside the conductor, things are much simpler. There is a linear relationship
between J and E, known as a constitutive relation. This particular constitutive rela-
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tion is the “point form” of Ohm’s Law, which will be discussed in more detail in
Chap. 4. In an isotropic conductor, the conductivity is scalar which means that the
electric field and the current density have the same direction at every point in the
conductor. Ohm’s Law is then stated as follows, with the magnitudes of J and E
being proportional to one another and the constant of proportionality being σ:

J = σE. (2.15)

In the case of anisotropic conductivity such as exists in a carbon–fiber composite
material it is necessary to express Ohms’ Law as follows, wherein the conductivity
σ is a second-rank tensor:

J = σ · E and σ =
⎛
⎝σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞
⎠ . (2.16)

In this text, it is generally assumed that material properties are isotropic rather than
changingwith the direction of the appliedfield,which is true formostmetals routinely
inspected by EC NDE.

2.6 Magnetic Field

The fundamental source of a magnetic fieldH is charge in motion. A current flowing
in a wire always has a magnetic field associated with it, regardless of whether the
current is time-varying or flowing steadily. H has unit Ampère per meter (A/m).
Continuing the discussion surrounding (2.14), the magnetic field in air due to an
infinitesimally thin, long, straight wire carrying current I in the z-direction is given
by

H = φ̂
I

2πρ
, ρ > 0, (2.17)

whereφ is the azimuthal coordinate of the cylindrical system. (This is a demonstration
of the right-hand rule of Ampère: If the right hand is wrapped around a conductor
such that the thumb indicates the direction of current flow, here ẑ, then the direction
in which the curling fingers point is the direction of the associated magnetic field,
here φ̂.) To discover how expression (2.17) is obtained, see Exercise 2 at the end of
this chapter. Unlike in the case of the electric field associated with this same wire,
given in (2.14), note that there is no explicit frequency dependence (ω) in (2.17). In
fact, a similar expression holds for direct current I = I0 flowing in the same wire:

H = φ̂
I0
2πρ

, ρ > 0 (2.18)
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whereas, as explained above, E expressed in (2.14) tends to zero when direct current
flows in the wire. This is not to say, however, that there is no electric field external to a
long straightwire carrying direct current I0. In fact, the component of the electric field
tangential to the wire surface must be continuous (see Sect. 5.6), which means that
external to a DC current-carrying wire with axis parallel to the ẑ-direction, E = ẑE0

is also ẑ-directed and is constant everywhere in space. Unlike the form expressed in
(2.14), this constant term has no connection with the magnetic field.

The source of permanent magnetization in a ferromagnetic material lies in the
orbital- and spin angular momentum of atomic electrons as described by quantum
mechanics. So one can say, loosely, that the magnetic field due to a permanent
magnet also originates with charge in motion. Ferromagnetism cannot, however, be
fully explained in terms of classical physics. This type of magnetism is discussed in
Sect. 2.8 and also in Chap. 3.

The existence of electric and magnetic fields external to a conductor is at the
very heart of EC NDE. These are the fields that account for “action-at-a-distance”
phenomena such as the attraction between two electric charges of opposite sign or
the attraction between opposite poles of two permanent magnets. The fields store
electromagnetic energy which is converted to kinetic energy (energy of motion)
when such oppositely charged objects move toward each other. In the context of
EC NDE, an EC drive coil is the source of an external electromagnetic field, which
then couples into the metal test-piece and induces eddy currents there, whose current
density can be determined from the electric field by means of (2.15).

2.7 Poynting Vector

It will be useful later on, Chap. 9, to have introduced the Poynting vector. The instan-
taneous power density, or Poynting’s vector P , has unit Watt-per-meter-squared
(Wm−2) and is given by

P = E × H. (2.19)

When the fields vary sinusoidally, the average power per unit areaP can be computed
as

P = 1

2
Re

(
E × H∗) (2.20)

where E and H are now phasor representations of the time-harmonic fields in terms
of their amplitudes and the superscript “∗” indicates the complex conjugate. The
average power P through a surface S is then

P =
∫
S
P · dS = 1

2
Re

∫
S

(
E × H∗) · dS (2.21)

where the direction of the elemental surface dS gives the direction of power flow.
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2.8 Permeability and Magnetic Induction

Ferromagnetic materials such as iron or iron-based alloys respond to the application
of a magnetic field, such as that produced by alternating electric current flowing in
an eddy-current coil, by becoming strongly magnetized. Such materials, especially
steels, are commonly used in various structures and are routinely inspected using
NDE methods. The ferromagnetism exhibited by these materials means that they
interact with eddy currents in a way that is somewhat different from the interaction
with non-ferromagnetic materials such as copper or aluminum. For this reason, fer-
romagnetic materials deserve special attention and will be dealt with in more detail
in Chap. 3. Here, the concept of permeability is briefly introduced since it is needed
in the discussion of the electromagnetic skin effect which follows.

When an applied magnetic field H interacts with a ferromagnetic material, H is
augmented by the magnetization of the material,M, which also has units A/m in SI.
In fact, M is related to H via the susceptibility χ, a material-dependent dimension-
less parameter which embodies the strength of magnetization of the ferromagnet in
response to the applied magnetic field,

M = χH. (2.22)

Hence, the total magnetic field in the presence of a ferromagnet can be written

H + χH = (1 + χ)H = μrH

where μr = 1 + χ is a material-dependent dimensionless parameter known as the
relative permeability. Typically, χ is a function of H which means that μr is not
constant for any particular ferromagnet but changes as the value of H changes. The
relationship between M and H is inherently nonlinear.

When working with ferromagnetic materials, it is convenient to work in terms of
the field of magnetic induction, B, whose unit is the Tesla (T), since B represents the
combined effect of H and M. In the absence of magnetic material, there is a simple
linear relationship between B and H;

B = μ0H, (2.23)

in which the parameter μ0 is the permeability of free space with unit Henry per meter
(H/m) and value μ0 = 4π × 10−7 H/m. In the presence of a ferromagnet,

B = μ0(H + M). (2.24)

By manipulating the above definitions, the following relationship can be obtained:

B = μH (2.25)
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where μ is the permeability of the material, unit H/m, and μ = μ0μr. For the reasons
described in the discussion following (2.22), the relationship between B and H is
also inherently nonlinear although, if the magnitude of the applied H field is not
very large, B is approximately proportional to H. Relation (2.25) holds in the case
that the material permeability is isotropic, as discussed in relation to conductivity,
(2.15). In the case of a material that exhibits anisotropic permeability, a tensor form
for permeability is required.

2.9 Electromagnetic Skin Effect

Asmentioned in the discussion around (2.1), the current density inside awire carrying
DC current is spatially uniform. As the frequency increases, however, a phenomenon
known as the electromagnetic skin effect comes into play. This phenomenon has the
effect of confining the current to a thin skin near the surface of the conductor. The
effect is observed in every conductor carrying AC current, whether it be the wires
in the windings of the eddy-current coil, or the metal test-piece in which the eddy
currents are induced. As the frequency of the alternating current flowing in the probe
coil increases, the eddy-current density induced in the test-piece is confined to an
increasingly thin layer (or “skin”) near its surface. In other words, the depth of
penetration of the eddy currents into the test-piece can be controlled by adjusting the
frequency of the inspection. The fact that the depth of penetration can be varied in
this way provides a tool for optimizing an electromagnetic inspection to a particular
depth in the test-piece. For surface-breaking defects, it is best to work at higher
frequencies for which the induced eddy currents are concentrated near the surface of
the specimen. Inspection sensitivity is increased by concentrating the eddy currents
in the vicinity of the flaw. For deep-lying flaws, lower frequencies are needed so that
the eddy currents penetrate sufficiently far into the specimen to interact with the flaw.

An approximate guide to the depth of penetration of electric current flowing in a
conductor is known as the electromagnetic skin depth, δ (m), given by the following
formula:

δ =
√

2

ωσμ
(2.26)

which can also be expressed

δ = 1√
π f σμ

. (2.27)

In the definition of (2.26) and (2.27), δ is inversely proportional to the square root of
the frequency of the alternating current exciting the eddy-current coil f , the electrical
conductivity of the test-piece σ, and its magnetic permeability μ. This definition
emerges from the analysis of a two-dimensional system in which eddy currents are
excited in a half-space conductor (an infinitely deep conductor with a flat surface)
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Fig. 2.5 Conductive half-space excited by a current sheet J = J (z)x̂

Fig. 2.6 Exponential decay of induced current density as a function of depth in a half-space
conductor

by currents flowing in a thin sheet above the surface of the conductor, and parallel
to it, as shown in Fig. 2.5. In this case, the magnitude of the eddy-current density in
the test-piece falls off exponentially with depth from the surface:

J (z) = J0 exp(z/δ), z < 0, (2.28)

where J0 = J (0), as shown in Fig. 2.6. The value of electromagnetic skin depth
versus frequency is plotted in Fig. 2.7 for various metals [12]. The derivation of
(2.26)–(2.28) is presented in Sect. 6.3.1.

The value of δ is easy to compute for any given metal and serves as a useful
guide to the depth of penetration of the electromagnetic field. In a real eddy-current
measurement, however, the cylindrical geometry of a typical coil usually leads to
lesser field strength, for a given depth in the test-piece, than a uniformfield excitation,
especially for a small probe. In Fig. 2.8 [3], eddy-current contours produced by a
surface coil of the type shown in Figs. 1.8 and 1.9 are compared at three distinct
frequencies. It is obvious that the depth of penetration of the eddy-current density
decreases as the frequency increases.

Example: Electromagnetic skin effect What thickness of copper sheet, conductiv-
ity 58 MS/m, is needed to block 99% of incoming cellphone signal at 800MHz?
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Fig. 2.7 Electromagnetic skin depth δ versus frequency for various metals at 20 ◦C, whose con-
ductivities are given in Table 2.1. Relative permeability of 316 stainless steel is here taken to be
μr = 1.02 [5] and that of ingot iron to be a representative value μr = 1,000, Table 3.2

Solution The electromagnetic wave carrying the cellphone signal also obeys a law
of exponential decay in a metal similar to (2.28),

A(z) = A0e
−|z/δ|.

When 99% of the signal is blocked,

A(z)

A0
= 0.01 = e−|z/δ|

and
− z

δ
= ln(0.01) = −4.61

or z = 4.61δ. Now, in copper at 800 MHz,

δ = 1√
π × 800 × 106 × 58 × 106 × 4π × 10−7

= 2.34 µm,

using (2.27). Finally, the depth of copper that blocks 99% of incoming cellphone
signal at 800 MHz is

z = 4.61 × 2.34 = 10.8 µm.

The copper does not need to be very thick at all!
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Fig. 2.8 Contours of eddy-current density |Jφ| induced by a surface coil at frequencies 1 kHz
(a), 10 kHz (b) and 100 kHz (c). The probe parameters are ri = 2 mm, ro = 4 mm, l = 1 mm,
N = 800 and s = 1 mm. The test-piece is a half-space (T → ∞) with σ = 35.4MS/m and μr = 1.
The electromagnetic skin depth takes values δ = 2.7, 0.85 and 0.27 mm in a, b and c, respectively.
Reprinted with permission from the NDTHandbook: Electromagnetic Testing. Copyright c© 2004,
ASNT, Columbus, Ohio [3]
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2.10 Polarization and Electric Displacement

We have now met three of the four electromagnetic fields, namely the electric field,
E, the magnetic field, H, and the field of magnetic induction, B. The fourth is the
electric displacement,D, measured in Coulombs per meter squared (C/m2).D is also
known as electric flux density because electric flux �e can be defined in terms of D
as follows:

�e =
∫
S
D · dS (2.29)

(compare with (4.16) that relates magnetic flux � with magnetic induction B). For a
dielectric material, D is related to E in a way that parallels the relationship between
B and H for a magnetic material.

In ECNDE,we are dealingwithmetals, forwhich conductivityσ 	 1 and relative
permittivity εr = 1, rather than dielectrics (insulators) for which σ 
 1 and εr > 1.
This means that we do not rely heavily on the use of D in EC NDE. Nonetheless,
occasionally we shall need to be aware of the meaning of D and for this reason the
relations between D, E and the polarization P of a dielectric are summarized briefly
here.

As we already know, there are free electrons available in a conducting material
to conduct electricity when a force is applied. A dielectric material has no such free
charges. Instead, at an atomic level in a dielectric, the negatively charged electron
cloud is balanced by the positively charged atomic nuclei. On application of an
external force, the charge clouds are not free to move in a macroscopic sense, but
they do exhibit some degree of displacement from one another, so that an electric
dipole is created. The displaced charges give rise to local dipoles whose moment is
expressed

p = Qd (2.30)

where d is the distance vector from −Q to +Q of the dipole.
On a macroscopic scale, over a collection of many atoms, it is useful to introduce

the polarization vector field of a material, Pmeasured in C/m2, where P is the dipole
moment per unit volume of the dielectric and is a measure of the intensity of polar-
ization in the material. The electric displacement inside a material of polarization P
is then

D = ε0E + P. (2.31)

For some dielectrics, P is proportional to the applied electric field and

P = χeε0E (2.32)

where χe is the (dimensionless) electric susceptibility of the material. If (2.32) is
combined with (2.31), the constitutive relation

D = εE (2.33)
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is obtained, in which ε = ε0(1 + χe) = ε0εr . Relation (2.33) implies that the material
permittivity is isotropic, as discussed in relation to conductivity, (2.15). In the case
of a material that exhibits anisotropic permittivity, a tensor form for permittivity is
required.

2.11 Summary

In this chapter, the electromagnetic fields and the constitutive relations by which they
are related to material properties have been introduced. The relative importance of
these fields and material properties to the EC NDEmethod have been described. The
conductivity of a material is of primary importance in EC NDE. The permeability
of a ferromagnetic test-piece also strongly influences the signals measured in an EC
inspection, as will be seen in Chap. 6. In the next chapter, a description of ferromag-
netic phenomena is given that attempts to explain the origins of ferromagnetism and
the mechanisms that underly it, which gives insight into the fact that the magnetic
history of a test-piece can strongly affect the measured EC signals obtained from it.

2.12 Exercises

1. Obtain the phasor notation of the following time-harmonic functions, if possible.

(i) A(t) = 2 sin(ωt) − 3 cos(ωt),
(ii) C(t) = 4 cos(80πt − π/4),
(iii) D(t) = 2 − cos(2ωt),
(iv) I (t) = −7 sin(ωt),
(v) U (t) = sin(ωt + π/4) sin(ωt + π/8),
(vi) V (t) = 5 cos(ωt + π/3).

2. Obtain C(t) in terms of ω from the following phasors.

(i) C = 1 + 3 j ,
(ii) C = 3 e j0.9,
(iii) C = 2 e jπ/2 + 3 e j0.7.

3. A coil is made of 150 turns of silver wire wound on a circular cylindrical core and
carries current 0.1 A. If the mean radius of the turns is 6.5 mm and the diameter
of the wire is 0.4 mm, (i) calculate the DC resistance of the coil (you may make
the approximation that all the turns on the coil (windings) have the same radius
as the mean radius) and (ii) calculate the current density in the wire.

4. Determine the total current in a wire of radius 1.6 mm placed along the z-axis if

J = 500

ρ
ẑ Am−2.
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5. Given that the electrical conductivity of nickel is 14.62 MS/m at 20 ◦C, evaluate
the electrical conductivity of nickel at 25 ◦C.

6. According to (2.13), sketch the dependence of conductivity on temperature.
Rewrite (2.13) in terms of resistivity ρ and now sketch the dependence of ρ
on temperature. Explain the features of your two sketches.

7. Using the data shown in Fig. 2.7, estimate the conductivities of graphite, titanium,
and copper. Give your answers in terms of (a) MS/m and (b) % IACS. What
additional piece of information do you need to determine the conductivity of
ingot iron from this data? Conduct a little research to find this information and
use it to (c) estimate the conductivity of ingot iron from the data shown in Fig. 2.7.
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Chapter 3
Ferromagnetic Materials

Abstract Ferromagnetic properties of materials exert a profound influence upon
EC NDE. Successful interpretation of EC measurements on many steels or other
types of ferromagnetic conductor requires an understanding of the magnetization
(and demagnetization) processes that occur in ferromagnetic materials. This chapter
builds upon the role of electric current as the fundamental source of the magnetic
field to explain the phenomenon ofmagnetization, to describe hysteresis, and to show
the nonlinear character of permeability. Energy arguments are invoked to explain the
existence of ferromagnetic domains and domain processes are described. Methods
of demagnetizing test-pieces to regularize them for EC inspection are suggested.
Description of the role of low-conductivity ferromagnetic ceramics (ferrite cores) in
EC coil construction is described in Chap. 6, Signals and Coils.

3.1 Introduction

Ferromagnets are materials that become strongly magnetized in response to an
applied magnetic field, even retaining some magnetization when the applied mag-
netic field is removed. A naturally occurring ferromagnetic material is magnetite
or lodestone, Fe3O4. Early records speak of a spoon-shaped compass formed from
magnetite being used in Chinese ceremonies of the second century BCE. By the time
of the seventh and eighth centuries CE, magnetized iron needles were being used by
Chinese navigators; either floating in water in the form of a “wet” compass, placed
on a pointed shaft as a “dry” compass, or suspended from a silk thread.

Elements of the periodic table that are ferromagnetic at room temperature are iron
(Fe), nickel (Ni), and cobalt (Co). Their alloys and compounds are also often ferro-
magnetic. Some compounds, known as ferrites, are low-conductivity ferromagnetic
materials. MnZn ferrite and its practical role in the construction of EC probe cores
is discussed in Sect. 6.3.5 of this text.

In the context of EC NDE, ferromagnetic materials constitute a distinct material
class because the EC probe impedance signal due to a ferromagnetic test-piece may
be very different from that due to a non-ferromagnetic test-piece with the same con-
ductivity. Recalling the normalized impedance-plane plot of Fig. 6.3, the reactance
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of the coil is reduced as it is brought near to the surface of a non-ferromagnetic
test-piece (dashed lines). If the test-piece is ferromagnetic, however, the coil reac-
tance may increase, as shown by the dotted lines. Most commonly, the ferromagnetic
test-pieces encountered in EC NDE are steels, which are alloys of iron.

This chapter expands greatly on the brief introduction to permeability and mag-
netic induction given in Sect. 2.8 of this text. Nonetheless, even here I shall skim
lightly over the deep and complicated topic of ferromagnetism. For a more detailed
treatment, the interested reader is referred to Jiles’ comprehensive yet accessible text
[1] or to Cullity’s classical work [2].

3.2 Fundamental Source of the Magnetic Field

Consider the schematic diagram of a bar magnet shown in Fig. 3.1. Such a magnet
could be made from any ferromagnetic material. It is common knowledge that two
suchmagnets, if their ends are brought together, will either repel or attract each other.
Whether or not the force between themagnets is repulsive or attractive depends on the
polarity of the magnets or the relative orientation of their magnetic dipole moments.

The magnetic dipole momentm of a bar magnet like the one depicted in Fig. 3.1
can be expressed

m = P d (3.1)

where P is the pole strength andd is the vector length between the poles.m is directed
from S toward N. This definition is analogous to that of the electrostatic dipole given
in (2.30). By analogy with electrostatics, the definition in (3.1) suggests the existence
of a magnetic monopole as the fundamental source of the magnetic field and leads
to speculation that the magnetic monopole might play a role in magnetostatics that
is similar to that of the electric charge in electrostatics. In fact, expression (3.1) is
of limited use. The notion of magnetic poles remains popular in everyday thinking,
and may be used to describe the interactions of long, thin bar magnets whose poles

Fig. 3.1 By convention, the
lines of magnetic field H
originate at the north pole
(N) and terminate at the
south pole (S) of a simple
bar magnet
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Fig. 3.2 Magnetic dipole
moment m of a loop formed
by current I

are well separated, but scientifically it is held that magnetic monopoles do not exist.
One simple experiment that immediately shows a difficulty with the notion of the
magnetic monopole is the following. If you try to isolate one pole of a bar magnet
by, say, dividing the magnet in half, then immediately new poles are formed at the
surface of division. Each half of the original magnet forms a new magnetic dipole
with its own N and S poles.

What, then, is the fundamental source of the magnetic field? During the course of
Ampère’s experiments on electricity andmagnetism, he discovered that the magnetic
field of a small current loop is identical to that of a small barmagnet. This observation
led Ampère to hypothesize that allmagnetic effects are due to current loops, and that
the magnetic effects in ferromagnetic materials such as iron are due to so-called
molecular currents. These currents are now known to be quantum mechanical in
origin, due to the orbital and spin angular momenta of atomic electrons. Ampère’s
insight was especially remarkable because it predated the discovery of the electron
by about 100 years!

We are led to deduce, therefore, that the fundamental source of the magnetic field
is not a magnetic monopole, but the motion of electrical charge or, equivalently,
electric current. The magnetic dipole moment of a current loop, m, is defined to be
the product of the current flowing in the loop, I , and the vector area of the loop, S;

m = IS. (3.2)

This is shown schematically in Fig. 3.2. The units of m are Ampère-meter-squared
(Am2).

3.3 Magnetization

The application of a magnetic field H to a ferromagnetic material results in mag-
netization M (with SI unit A/m) of that material. Magnetization was introduced in
Sect. 2.8 of this text. In fact, the application of a magnetic field to any material gives
rise to a magnetization

M = χH, (3.3)

where χ is the magnetic susceptibility of the material (dimensionless). There are
several classes of magnetic material, but in ferromagnets (e.g., iron, cobalt, nickel,
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Fig. 3.3 Initial
magnetization curves for
several ferromagnetic metals.
Note that the units of M
differ between Fig. 3.3 and
Table 3.1 by the factor μ0

and their alloys) χ is positive, relatively large, and nonlinear, so that

M(H) = χ(H)H. (3.4)

One of the puzzles of ferromagnetism, eventually explained by domain theory
(Sect. 3.6), was the very large magnetization that can occur on the application of
a relatively small magnetic field. In fact, the resulting M can be of the order of a
thousand times larger than the field of H applied to produce it!

The initial magnetization curve is the nonlinear response of a ferromagnetic mate-
rial, initially in the demagnetized state, to an applied magnetic field. The demagne-
tized state is one in which the ferromagnet exhibits zero magnetization in the absence
of an appliedH, corresponding to the origin of Fig. 3.3. The demagnetized state, and
methods for achieving it, will be discussed in more detail in Sects. 3.6 and 3.7 of this
text. Initial magnetization curves for the ferromagnetic elements Fe, Co, and Ni are
shown in Fig. 3.3. It can be seen that each element has a different value of saturation
magnetization, M0. The saturation magnetization is the maximum achievable value
of M for a specific material, and is an intrinsic property of the material. Values of
saturation magnetization for various ferromagnets are listed in Table 3.1. Note that
the units of M differ between Fig. 3.3 and Table 3.1 by the factor μ0. From the
tabulated values of M0 it can be seen that an alloy of two ferromagnetic elements
often, but not always (as in the case of Permendur), yields a value of M0 that lies
between those of the individual elements.

Another feature of the magnetization curves shown in Fig. 3.3 is that the slope
of the curve is different for each element. In consequence, Co requires significantly
higher applied H to reach saturation than Fe and Ni. This feature is a consequence
of the crystal structure of the material and, indeed, varies according to magnetization
direction in the case of a single crystal material.
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Table 3.1 Saturation
magnetization (M0) values
for various ferromagnets [1]

Material M0 (×106 A/m)

Iron 1.71

Cobalt 1.42

Nickel 0.48

78 Permalloy (78% Ni, 22% Fe) 0.86

Supermalloy (80% Ni, 15% Fe, 5% Mo) 0.63

Permendur (50% Co, 50% Fe) 1.91

3.3.1 Rayleigh Law

In the region of the initial magnetization curve in which H is low, μ can be expressed

μ(H) = μ(0) + νH, (3.5)

where ν is a nonzero constant. This leads to dependence of B on H given by

B(H) = μ(0)H + νH 2. (3.6)

These relationships were first noted by Lord Rayleigh. They permit construction of
hysteresis loops and expressions for hysteresis loss and remanence in terms of ν and
H [1]. The low-field region of the magnetization curve, for which these relationships
hold, is highlighted in Fig. 3.4.

In EC NDE theory, often a linear relation between B and H in terms of the initial
permeability is assumed. This relationship may be expressed as

B = μ(0)H. (3.7)

Comparison of (3.6) and (3.7) quickly reveals that the assumed relation (3.7) is
only true in the asymptotic limit as H → 0! On the other hand, incorporation of

Fig. 3.4 Rayleigh region of
the initial magnetization
curve, indicated by the
shaded region
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full, nonlinear, ferromagnetic behavior into eddy current theory quickly leads to
great complexity. The relationship (3.7) is straightforward to incorporate and gives
reasonable results for many purposes. One consequence of neglecting the nonlinear
magnetic behavior in ECmodeling is some loss of accuracy in computing Z and�Z
for ferromagnetic test-pieces. For example, results shown in [3] comparing computed
and measured �Z for artificial rectangular defects in a flat test-piece show very
good agreement for aluminum (within ≈5%), but poorer agreement for steel (within
≈20%).

3.4 Hysteresis

A magnetic hysteresis loop is the path traced by B as H is first reduced from its
value at saturation, through zero, to a saturating value in the opposite direction, and
then increased again through zero to saturation. A sketch of a typical hysteresis loop
is shown in Fig. 3.5. The fact that the loop is not closed indicates that there is an
energetically irreversible process occurring. The area of the loop is the work done
by the magnetic field in magnetizing the material. The hysteresis loop is a common
means of representing the bulk magnetic properties of a ferromagnetic material.
It has certain characteristics that vary from material to material. One of these is
the coercivity, Hc (A/m). Coercivity, or coercive field, is the reverse magnetic field
needed to reduce the magnetization of a ferromagnetic sample to zero, once it has
beenmagnetized to saturation. Remanence, Br (T orWb/m2), is the field of magnetic

Fig. 3.5 Typical major hysteresis loop of a ferromagnetic material. The dashed line indicates the
initial magnetization curve
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induction exhibited by a ferromagnet on removal of the applied magnetizing field
H , after the ferromagnet has been magnetized to saturation. It is important to note
that the definitions of Hc and Br involve the major hysteresis loop of a material,
in which the material is magnetized to saturation. Smaller (minor) hysteresis loops
may be obtained by cycling the applied magnetic field H to lower strengths, but the
definitions of Hc and Br relate only to the major hysteresis loop.

Various applications in which ferromagnets are used require different character-
istics of the material, that may be deduced from the hysteresis loop. For example,
the core of an electromagnet should exhibit low Hc and Br so that the strength of
the magnetization can be easily controlled. Materials for permanent magnets should
have high Br , so that they exhibit strong magnetization, and high Hc so that they are
not easily demagnetized by stray fields. Ferromagnets for transformer cores must
exhibit minimal losses in order to convert energy efficiently. Low loss in a ferromag-
net is observable as a narrow hysteresis loop with relatively small area. Explanation
of the processes that underly the hysteresis loop are given in Sect. 3.6 of this text.

3.5 Permeability

Magnetic permeability, μ measured in Henrys per meter (H/m), provides a measure
of the ability of a material to augment the applied magnetizing field by its own
magnetization. It relates the field of magnetic induction to H and M as follows

B(H) = μ(H)H (3.8)

= μ0[H + M(H)] (3.9)

= μ0[1 + χ(H)]H, (3.10)

from which it is evident that
μ = μ0(1 + χ). (3.11)

This leads to the definition of relative permeability, μr (dimensionless), which is the
ratio of the permeability of a specific material to that of free space,

μr = μ

μ0
= 1 + χ. (3.12)

Consider the initial magnetization curve of B versus H shown in Fig. 3.6, solid
line. The permeability as a function of H , dashed line, can be obtained from the
initial magnetization curve using the relation μ = B/H . Other quantities that are in
common usage are the differential permeability, defined
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Fig. 3.6 Initial magnetization curve for B and associated permeability μ for a representative soft
ferromagnetic material, e.g., annealed iron

Table 3.2 Relative initial permeability μr,in, relative permeability at 2 T magnetic induction μr,2T,
and maximum relative permeability μr,max for various ferromagnets [1, 4]. Relative permeability
is dimensionless

Material μr,in μr,2T μr,max

Iron (purified) 5,000 180,000

Armco iron 250 7,000

Nickel (wrought) 250 2,000

78 Permalloy (78%
Ni, 22% Fe)

8,000 100,000

Supermalloy (80% Ni,
15% Fe, 5% Mo)

100,000 800,000

Permendur (50% Co,
50% Fe)

800 5,000

μ′ = dB

dH
(3.13)

and the initial permeability, defined as the slope B/H of the tangent to the initial
magnetization curve as H → 0

μin = dB

dH

∣
∣
∣
∣
B=0,H=0

= B

H

∣
∣
∣
∣
B→0,H→0

. (3.14)

Some typical values of μr,in are given in Table 3.2, together with values of maximum
relative permeability μr,max and relative permeability at 2 T magnetic induction field
μr,2T. Note that μ varies as a function of H whereas μin and μmax do not.
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Comparing (3.8) and (3.4) it is clear thatμ is toBwhatχ is toM. Correspondingly,
the following definitions of differential and initial susceptibility mirror those for μ:

χ′ = dM

dH
, (3.15)

χin = dM

dH

∣
∣
∣
∣
M=0,H=0

= M

H

∣
∣
∣
∣
M→0,H→0

. (3.16)

3.6 Ferromagnetic Domains

In ferromagnets, permanent magnetic moments exist on the atomic scale. They do
not rely on the presence of an external magnetic field for their existence, but rather
their existence is explained by quantum-mechanical descriptions of spin and orbit
of atomic electrons. Another definition of magnetization relates M to the magnetic
dipole moment per unit volume in the material:

M = m
V

. (3.17)

Themacroscopic properties of ferromagnets can be explained if long-rangemagnetic
order (over many atoms) exists within thematerial. Such a region of long-range order
is known as a domain. The dimensions of a typical domain are on the order of tens
of microns. A domain in a ferromagnetic material is a region in which the indi-
vidual atomic magnetic dipole moments are aligned parallel with one another. This
means that themagnetization within a particular domain is essentially saturated, with
M = M0. The direction of magnetization generally varies from one domain to
another, accounting for the fact that a ferromagnet may exhibit no remanent magne-
tization despite the fact that each domain is magnetized to saturation. In the demag-
netized state, the vector sum of the magnetization over all domains is zero. Magneti-
zation is then the process of rearranging the domains so that their magnetic moments
are in alignment with each other and, ultimately, with the direction of applied H.
The existence of domains within a bulk ferromagnetic sample explains the fact that
a large magnetization M may be achieved by application of a relatively small H to
a sample. The applied H does not create order throughout the sample but, rather,
overcomes energy barriers to align domain magnetization vectors that already exist.

3.6.1 Why do Domains Form?

Materials in equilibriumoccupy a state inwhich their free energy isminimized. If not,
a change of some kind will occur until a local energy minimum is reached. A phase
transition, such as from the solid to the liquid state, requires input of energy to effect
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the transformation. In a solid ferromagnet, minimization of quantum mechanical
exchange energy occurs when neighboring atomic magnetic moments are aligned
parallel with one another. So, minimization of exchange energy drives the magnetic
ordering that occurs in ferromagnets. A ferromagnet does not just spontaneously
magnetize throughout its entire volume, however, because although exchange energy
is reduced, a fully ordered sample has large magnetostatic energy associated with
it. In other words, there is a large external magnetic field associated with a fully
ordered sample. We know this because the purpose of a simple bar magnet, which
is normally magnetized to saturation and therefore fully ordered, is to have a large
external magnetic field associated with it in order to interact strongly with other
bodies. A schematic diagram of the external magnetic field due to a bar magnet is
shown in Fig. 3.1. Domains, then, form in order to reduce the magnetostatic energy
of the sample. Simply speaking, the magnetic state of the ferromagnet is determined
by a balance between the exchange energy, the magnetostatic energy, and the energy
cost associated with creating domain walls.

3.6.2 Domain Walls

The boundary between two domains consists of a region inwhich neighboring atomic
magneticmoments cannot be perfectly alignedwith one another but rotate, overmany
atoms, from the magnetization direction of one domain to that of its neighbor. An
example of one type of domain wall is shown schematically in Fig. 3.7. Domain
wall thickness varies according to material type, but is typically of the order of
100 nm, occurring on the scale of many atomic moments. In iron,M in neighboring
domains switches direction by either 90◦ or 180◦, due to the cubic crystal structure
of iron. The walls that separate these domains are hence known as 90◦ (Néel) or
180◦ (Bloch) walls, respectively. Other ferromagnetic materials exhibit different
characteristic arrangements of their domain structure, that are related to their crystal
structure.

Fig. 3.7 Rotation of
magnetic moments across a
180◦ Bloch wall
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3.6.3 Domain Processes During Magnetization

When a magnetic field is applied to a ferromagnetic material, work is done by the
magnetic field to reorient the domain magnetization directions to a direction more
closely aligned with that of the applied field. There are several processes by which
this occurs.

At low applied H -field strengths magnetic domains whose magnetization vector
is directed in a direction similar to that of the applied field grow at the expense of
domains whose magnetization direction is not similar to that of the applied field.
The growth of one domain at the expense of another takes place by movement of the
domainwall between them. Strictly, the atomicmagneticmoments that are at the edge
of a domain whoseM vector is directed similarly toH rotate into alignment withM.
This process gives the appearance of domain wall movement. The process of domain
wall movement is shown schematically in the first two insets of Fig. 3.8. At higher
strengths of applied H , the restructuring of the domains continues until only a single
domain exists, with magnetization direction similar to that of the applied field. This
situation is shown in the third inset of Fig. 3.8. Themagnetization of the single domain
does not at first lie parallel to the direction of applied H, because all ferromagnetic
materials have one or more easy axes along which the magnetization vector will
preferentially align and the directions of the easy axes are determined by the crystal
structure of the particular material. For example, iron has body-centered cubic crystal
structure and the six equivalent easy axes are in the directions of the cube edges 〈100〉
and similar. Cobalt, on the other hand, has a hexagonal close-packed crystal structure
and there is only one easy axis, in the 〈0001〉 direction. For very high applied H ,
the magnetization direction rotates away from the easy axis to align fully with the
direction of H, as shown in the fourth inset in Fig. 3.8. This latter magnetization
stage, in which M rotates, is reversible (anhysteretic), which means that when H is
reduced from its saturating value the reorientation ofM to realign with the easy axis

Fig. 3.8 Schematic showing
domain rearrangement
during magnetization
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follows the same M-H curve as it did when H was increasing. On the other hand,
motion of the domain walls is a hysteretic process because, simply speaking, domain
walls are “pinned” at positions in which their local energy is minimized. Pinning
sites are associated with inhomogeneities in the material such as impurities (small
quantities of other elements dispersed in the crystal structure) and discontinuities in
the crystal lattice (such as might occur at a grain boundary). Hysteresis loops such
as the one shown in Fig. 3.5 are observed because it is necessary to supply energy to
overcome domain wall pinning regardless of their direction of motion.

3.6.4 Hard and Soft Ferromagnets

Hard ferromagnetic materials, such as the permanent magnet material samarium-
cobalt, are those with a high density of pinning sites. These materials require rela-
tively high applied H to become magnetized; to provide sufficient energy to move
the domain walls across multiple pinning sites. Hard ferromagnetic materials have
relatively high Hc. Soft ferromagnetic materials such as iron, on the other hand,
contain relatively few impurities and exhibit correspondingly low Hc. The motion
of the domain walls is not smooth but occurs as a series of jumps from one pinning
site to the next. In other words, as H is increased smoothly, B or M respond in a
step-like manner because the increase in H produces no change in B or M while the
domain wall is pinned, but then a sudden change is observed when the domain wall
snaps away from one pinning site and moves to the next. This discontinuous motion
is evidenced by looking closely at the hysteresis curve, which turns out to be made
up of a sequence of steps rather than being a smooth curve, Fig. 3.9.

3.6.5 Evidence for the Existence of Domains

The existence of domains was first observed indirectly by Heinrich Barkhausen in
1919 in the form of audible clicks produced by a loudspeaker attached to a voltage

Fig. 3.9 Discontinuous
changes in B as a function of
H
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Fig. 3.10 One hysteresis cycle shown in terms of magnetic induction B. The Barkhausen effect
(BE) signal overlays part of the hysteresis cycle [5, Fig. 8, used with permission]. Note, 1 Oersted
(Oe) =1000/(4π) ≈ 79.58 A/m and 1 Gauss (G) =10−4 T

pick up loop wrapped around a ferromagnetic sample, as the sample was being mag-
netized. The discrete movements of the domain walls as they jump from one pinning
site to another cause small, rapid changes in B that induce voltage pulses in the pick
up coil, by Faraday’s Law of induction. The loudspeaker in Barkhausen’s experiment
made it possible to observe these discrete changes in B. Today, Barkhausen “noise”
can be recorded and analyzed digitally and is useful in some near-surface magnetic
NDE applications. Figure 3.10 shows the increase in Barkhausen noise in a region
of steepest slope of the hysteresis loop, which corresponds to a maximum in μ′.

Today, magnetic force microscopy (an adaptation of atomic force microscopy)
permits direct imaging of ferromagnetic domains, with lateral resolution around 40
nm, but is limited to surface observations.

3.6.6 The Curie Temperature, TC

Ferromagnetic ordering disappears at temperatures higher than the so-called Curie
temperature TC, at which a phase transition occurs. This is a temperature abovewhich
thermal agitation of the crystal lattice overcomes ferromagnetic ordering. Curie tem-
peratures for some ferromagnetic materials are listed in Table 3.3. The fourth fer-
romagnetic element, Gadolinium, has not been mentioned until now because TC for
Ga is below room temperature and consequently, its applications are not widespread
in the context of EC NDE.
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Table 3.3 Curie
temperatures for various
ferromagnets [1]

Material TC (◦C)
Iron 770

Cobalt 1130

Nickel 358

Gadolinium 20

Hard ferrites 400–700

3.7 Demagnetization

In the context of ECNDE, the process of demagnetization is important for controlled
EC experiments on ferromagnetic samples. As mentioned in Sect. 3.3 of this text,
the theory of EC NDE commonly assumes a linear relationship between B and H
with the form of (3.7), which is most closely true in the asymptotic limit as H → 0.
For this reason, better agreement between EC theory and experimental data can be
obtained by demagnetizing any magnetic sample that is to be the subject of an EC
benchmark experiment. Or, if comparative electromagnetic measurements are to be
made on ferromagnetic samples, it is better to remove the influence of magnetic
history by demagnetizing them first.

In many cases, magnetization and demagnetization are performed by inserting
the test-piece into a solenoid and appropriately adjusting the magnetic field that the
solenoid produces. A solenoid is a long, air-cored coil whose axial magnetic field
is given by Hz = nI where n is the number of turns per unit length and I is the
current flowing in the coil. Hz is approximately uniform over the cross section of
the solenoid, when its length is much greater than its diameter. (A solenoid is the
subject of Exercise 3 at the end of Chap. 6) For samples that are too large to fit
inside a solenoid, a C-core magnetic can be moved over the surface of the sample,
demagnetizing it at each location. To demagnetize a sample, the current flowing in
the solenoid or other electromagnets is gradually reduced in amplitude while being
cycled at a frequency sufficiently low to permit domain reordering to occur under
the influence of the magnetic field that the electromagnet produces. As the applied
H is reduced in amplitude, B also reduces as shown in Fig. 3.11 until, ultimately,
the material reaches the demagnetized state characterized by B = 0.

Figure 3.12 shows the emergence ofmultiple domains as a sample of iron, initially
saturated, is demagnetized. Notice how the magnetostatic field external to the iron
is reduced as domains form during demagnetization. The triangular domains formed
with 90◦ domain walls are known as closure domains. They act to eliminate the
external magnetostatic field by “closing the loop” of M within the material.
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Fig. 3.11 The variation in applied current I in a solenoid enclosing a ferromagnetic sample as the
sample is demagnetized. B cycles to zero as I and H (produced by I ) cycle to zero

Fig. 3.12 Schematic diagram showing the emergence of domains as a saturated sample (a) is
demagnetized (e). Iron forms domains of this kind since the cubic crystal structure support 90◦ and
180◦ domain walls
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3.8 Summary

In this chapter, an introduction to ferromagnetic materials and their properties has
been given. Ferromagnetic materials are important in EC NDE for both enhancing
probe performance (Sect. 6.3.5) and because some test-pieces exhibit ferromagnetic
behavior that influences the EC signal (Chaps. 6 and 9). A basic understanding of this
topic is one of the building blocks that contributes to a complete understanding of EC
NDE, that we are working toward. Similarly, the topic of the next chapter—electrical
circuits—gives us a building block that helps us to understand the function of an EC
coil and probe.

3.9 Exercises

1. Several devices exist for making quantitative measurements of magnetic field
strength. These are known as magnetometers. Conduct a little research to find
four examples of magnetometer and, in two sentences for each one, describe how
they work.

2. Explain what is meant by the initial magnetization curve, mentioning the domain
processes that occur along with it.

3. Discuss the reasons why magnetic ordering occurs in ferromagnets, explaining
why a material does not usually spontaneously magnetize uniformly throughout
its volume.

4. Give two pieces of evidence for the existence of ferromagnetic domains.
5. Explain the meaning of coercivity and remanence, and give their SI units.
6. For a typical hysteresis loop of B versus H , sketch the form of μ as a function of

H . Where is μ maximum?
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Chapter 4
Circuits

Abstract The observed quantity in eddy-current nondestructive evaluation is the
electrical impedance of the probe coil. Proper interpretation of the impedance allows
the inspector to infer material property information, and to detect and characterize
defects. This chapter provides an introductory description of circuit theory that is
relevant to eddy-current nondestructive evaluation, describing resistors, capacitors,
and inductors and the impedance of circuits in which they are combined. The concept
of an equivalent electrical circuit for an eddy-current probe is introduced and the
equivalent circuit is given in its simplest form.

4.1 Introduction

The process of induction of eddy currents in a metal test-piece, due to a time-varying
electric current flowing in an eddy-current coil, is most clearly understood in terms of
the electric and magnetic fields introduced in Chap. 2. It is helpful, on the other hand,
to describe certain characteristics of an eddy-current coil in terms of electrical circuit
theory. In this chapter, the circuit quantities resistance, capacitance, and inductance
are introduced and the quantity that is actually measured in an eddy- current inspec-
tion, the impedance of the coil, is defined. Some simple circuit configurations are
analyzed in order to prepare the way for discussion of a method of correcting for
“non-ideal” coil behavior, to be given in Sect. 6.3.6. A fairly brief overview is given
here. More detail can be found in [1].

4.2 Electromotance and Potential Difference

Electromotance (commonly but misleadingly known as “electromotive force” [2])
must be applied to a conductor to compel the conduction electrons tomove. A battery,
for example, provides a DC source of electromotance. Another way of expressing
this is that the battery terminalsmaintain a difference in electrical potential, V , which
has the unit Volt (V). When connected to an electrical circuit, the potential difference

© Springer Science+Business Media, LLC, part of Springer Nature 2019
N. Bowler, Eddy-Current Nondestructive Evaluation,
Springer Series in Measurement Science and Technology,
https://doi.org/10.1007/978-1-4939-9629-2_4

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9629-2_4&domain=pdf
https://doi.org/10.1007/978-1-4939-9629-2_4


48 4 Circuits

provided by the battery compels the conduction electrons to move. The electrons
move because an electric field exists between two points of different potential and a
charge Q, with unit Coulomb (C), in an electric field experiences force F given by
the product of the charge and the electric field:

F = QE. (4.1)

The potential energy W required to move the charge Q from point A to point B is

W = −
∫ B

A
F · dl = −Q

∫ B

A
E · dl. (4.2)

The potential difference between these two points, VBA, is the potential energy per
unit charge:

VBA = −
∫ B

A
E · dl. (4.3)

4.3 Resistance

As described in Sect. 1.5, a simple eddy-current coil is formed by winding multiple
turns of wire on a nonconductive former. One intrinsic parameter of any coil is its DC
resistance. Consider a conductor whose ends are maintained at a potential difference
V , as shown in Fig. 4.1. The resistance R of the conductor is defined as the potential
difference per unit current:

R = V

I
. (4.4)

From the point form of Ohm’s Law, (2.15), the resistance of the conductor can be
derived. The applied electric field of Fig. 4.1 is uniform, since the fields are not
varying with time, and its magnitude is given by

Fig. 4.1 A conductor with
uniform cross section S
under an applied electric
field E due to the
electromotance or potential
difference V supplied to the
circuit
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E = V

l
. (4.5)

Since the conductor has uniform cross section and the current is DC, (2.1) holds.
Combining (2.1), (2.15) and (4.5) gives

I

S
= σE = σV

l
.

From (4.4) it is now easy to see that (2.11) follows.

4.4 Capacitance

An eddy-current probe exhibits two forms of capacitance. One is inter-winding
capacitancewhich arises from the fact that the windings of the coil are in close prox-
imity to one another and separated by an insulating layer. The other is capacitance in
the leads that connect the coil to the voltage source. Both of these sources of capac-
itance interfere with the operation of the probe, because their presence gives rise to
an unwanted resonance in the probe circuit. This phenomenon will be described, and
a method for correcting measured data to remove the effect of the probe resonance
will be given, in Sect. 6.3.6.

A capacitor is formed by two conductors that carry equal and opposite charge,
separated by an insulator (dielectric material). Broadly speaking, materials can be
classified in terms of their conductivity σ and relative permittivity εr as either con-
ductors (with σ � 1 and εr = 1) or dielectrics (with σ � 1 and εr � 1).

Consider a simple capacitor formed by two parallel conductive plates as shown
in Fig. 4.2. The conductors are maintained at potential difference V given by

V = V1 − V2 = −
∫ 1

2
E · dl (4.6)

where E is the electric field between the capacitor plates. The capacitance, C , of the
capacitor is defined as the ratio of the magnitude of the charge on one of the plates
to the potential difference between them,

C = Q

V
. (4.7)

Capacitance can be regarded as a measure of how much electrical energy is stored
by the capacitor. Equation (4.7) is useful for determining the capacitance of an ideal
parallel-plate capacitor in which the plate separation d is much smaller than the
dimensions of the plate. In this case, it is assumed that E is uniform in the gap
between the capacitor plates, Fig. 4.2, and that the fringing field which leaks out at
the edge of the capacitor plates is negligible. Then,
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Fig. 4.2 A parallel-plate
capacitor with plate area S,
filled with a dielectric
material with relative
permittivity εr

C ≈ εS

d
(4.8)

where ε is the permittivity of the dielectric filling the capacitor and S is the area
of one of the identical plates. In fact, the ratio of the capacitance of an air-filled
capacitor, C0, compared with that of the same capacitor filled with dielectric, C ,
gives the relative permittivity of the dielectric:

C

C0
= ε

ε0
= ε0εr

ε0
= εr (4.9)

where ε0 = 8.854 × 10−12 Farads per meter (F/m) is the permittivity of free space.

4.5 Discharge of a Capacitor Through a Resistor

Having defined resistance and capacitance, we are now in a position to consider
a simple circuit formed by connecting a capacitor and resistor in series, as shown
in Fig. 4.3. If the capacitor is given charge Q0 at time t = 0, a potential difference
V = Q0/C appears across the plates. In the absence of an electromotance, the capac-
itor discharges and current I = dQ/dt flows through the circuit. At any time t > 0
therefore, the potential difference across the resistor is R × dQ/dt . One of Kirch-
hoff’s Laws of circuit theory (Kirchhoff’s Voltage Law) states “The directed sum of
the potential differences (voltages) around any closed loop is zero.” Applying this
law to the series RC circuit gives

R
dQ(t)

dt
+ Q(t)

C
= 0. (4.10)

The solution of this equation shows that there is an exponential decay of charge with
time,



4.5 Discharge of a Capacitor Through a Resistor 51

Fig. 4.3 Capacitor C and
resistor R connected in a
series circuit

Q(t) = Q0 exp

(
− t

RC

)
(4.11)

where τ = RC is known as the relaxation time of the RC circuit.

4.6 Forced Oscillation of an RC Circuit by Alternating
Electromotance

If an electromotance of the form V0 cos(ωt + φ) is now introduced into the circuit,
as shown in Fig. 4.4, applying Kirchhoff’s Law (stated in the previous section) gives

R
dQ(t)

dt
+ Q(t)

C
= V0 cos(ωt + φ). (4.12)

The solution of this equation, characteristic of alternating currents, is easily obtained
by writing the equation in phasor form:

jωRQ + Q
C

= V (4.13)

whereQ represents phasor charge, related to Q by Q = Re
{Qe jωt

}
as discussed in

Sect. 2.3 and V represents phasor voltage, similarly. Then

Fig. 4.4 Capacitor C and
resistor R connected in a
series circuit with
time-harmonic
electromotance
V0 cos(ωt + φ)
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Q = V
jωR + 1/C

(4.14)

and the phasor current I = jωQ is given by

I = V
R + 1/( jωC)

. (4.15)

Next we will define another circuit component, inductance, and see the interesting
effect of introducing an inductance into the circuit—a resonance is created in the
circuit at a particular frequency.

4.7 Inductance

The inductance of an eddy- current coil is its most important circuit property because
it is the property that allows the coil to detect changes in its local magnetic field that
arise due to perturbations of the eddy currents induced in the test-piece due to the
presence of defects or inhomogeneities. To understand inductance, it is necessary to
definemagnetic flux. By analogy with the relationship between electric current I and
current density J, (2.2), magnetic flux � is related to the field of magnetic induction
B as

� =
∫
S
B · dS. (4.16)

The unit of magnetic flux is theWeber (Wb) and, while the unit ofB is the Tesla,B is
also commonly quoted in Wb/m2. One can conceive of a magnetic circuit in which
� is constrained to flowwithin a high-permeability material (e.g., a ferromagnet), by
analogywith theway inwhich electrical current is confinedwithin a high conductivity
material (a conductor). Indeed, Faraday’s transformer experiment relied upon this
phenomenon to some extent (Sect. 1.2.1). The analogy has its limitations, however,
because B easily “leaks” out of a material if μr is not especially large, unlike Jwhich
is confined strictly to the conductor.

In Chap. 2, the nature of the magnetic field produced by current flowing in a
long, straight wire was discussed. If now a closed conducting path is considered, the
current I produces a magnetic induction B that causes flux � as defined in (4.16)
to pass through the closed path. Further, if the circuit has N identical turns, the flux
linkage λ can be defined as

λ = N�. (4.17)

If the relationship between I andB in themedium surrounding the circuit is linear, the
flux linkage is proportional to the current producing it and λ ∝ I . (The relationship
between I and B is not linear in the case of a ferromagnetic material, as discussed
in Chap. 3.) A constant of proportionality is introduced such that
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λ = L I (4.18)

where L is the inductance of the circuit. Inductance is measured in the unit Henry
(H), after Joseph Henry (Sect. 1.2.2). From (4.17) and (4.18) the inductance of an
inductor is defined as the ratio of the magnetic flux linkage to the current through
the inductor:

L = λ

I
= N�

I
. (4.19)

Inductance can be regarded as a measure of how much magnetic energy is stored in
an inductor.

Strictly, L is the self-inductance of an inductor since the flux linking the circuit
is produced by the inductor itself. It is also possible to define mutual inductance,
in which the flux linking the inductor is produced by a separate circuit. See, for
example, [3].

An eddy-current coil with large self-inductance is desirable because the coil then
responds more strongly to changes in the magnetic field in the vicinity of the coil.
The probe is thus more sensitive to magnetic field variations caused by perturbations
of the induced eddy-current density in a test-piece and, therefore, more sensitive
to a defect or other feature that causes the perturbation. The self-inductance of an
eddy-current coil is commonly increased in practice by winding the coil around a
high-permeability ferrite core. This is discussed further in Sect. 6.3.5.

4.8 Forced Oscillation of an LRC Circuit by Alternating
Electromotance

If an inductor is now introduced into the circuit, as shown in Fig. 4.5, a potential
difference of −L × d I/dt appears across the inductor at any time t > 0. This can
be shown by taking the derivative with respect to time of rearranged (4.19):

L
d I

dt
= d�

dt
= −V (4.20)

where the final identity comes from Faraday’s Law, given later in (5.1), Sect. 5.2. In
this case, applying Kirchhoff’s Law gives

Fig. 4.5 Capacitor C ,
resistor R and inductor L
connected in a series circuit
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L
d2Q(t)

dt2
+ R

dQ(t)

dt
+ Q(t)

C
= 0 (4.21)

and, if an alternating electromotance V (t) = V0 cos(ωt + φ) is applied to the circuit,

L
d2Q(t)

dt2
+ R

dQ(t)

dt
+ Q(t)

C
= V0 cos(ωt + φ). (4.22)

The solution of this equation, in phasor form, is

Q = V
−ω2L + jωR + 1/C

(4.23)

and the corresponding current is

I = V
R + j[ωL − 1/(ωC)] . (4.24)

4.9 Impedance

Now we define Z to be the complex impedance of the circuit, given by

Z = V
I . (4.25)

The symbol “Z” was first introduced by Sir Oliver Heaviside (1850-1925,
Fig. 4.6), an English physicist and electrical engineer who, despite being formally
educated only to elementary level, made important advances in the application of
mathematics to electrical circuits. His choice of mathematical notations and methods
were often not celebrated by his peers, however, and for this reason, he was forced
to publish his papers at his own expense [4]!

Returning to consideration of the series LRC circuit, the following expression for
Z can now be obtained from (4.24) and (4.25);

Z = R + jωL + 1

jωC
. (4.26)

In general, the real and imaginary parts of Z are given the symbols R and X and are
known as the resistance and reactance of the circuit, respectively;

Z = R + j X. (4.27)

In the specific example of the series LRC circuit, X = ωL − 1/(ωC).
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Fig. 4.6 Oliver Heaviside,
English physicist and
electrical engineer,
1850–1925 [5]

Impedance is a very important quantity in EC NDE! In most eddy- current
inspections, the complex impedance of the probe is viewed by the inspector on
an “impedance-plane plot” [1, 6], in which R is plotted on the horizontal (real) axis
and X is plotted on the vertical (imaginary) axis. Variations in the impedance as a
probe moves across a defective region in a test-piece, or from one material type to
another, are manifested as movement in the impedance point on the complex plane.

Impedances connected in series or in parallel in a circuit can be manipulated in
the same way as pure resistances;

Z = Z1 + Z2 + Z3 + . . . , series, (4.28)
1

Z
= 1

Z1
+ 1

Z2
+ 1

Z3
+ . . . , parallel. (4.29)

In the case of parallel impedances, it is more convenient to work in terms of the
admittance, Y = 1/Z . Then

Y = Y1 + Y2 + Y3 + . . . , parallel. (4.30)

4.10 Frequency Response of an LRC Circuit

Consideration of (4.24) shows that the current amplitude varies as a function of
frequency. If the alternating electromotance is maintained at constant amplitude for
all frequencies, the current amplitude peaks when ωL = 1/(ωC), for which
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Fig. 4.7 Magnitude of current as a function of angular frequency, ω, for a series LRC circuit
energized by an alternating electromotance whose amplitude is constant as a function of ω. The
effects of varying R are shown on (a) linear and (b) logarithmic frequency scales

ω = ω0 = 1√
LC

(4.31)

and ω0 is known as the resonance frequency of the circuit. If R increases, the curve
becomes shallower and the peak height is reduced, as shown in Fig. 4.7.

The breadth of the peak is controlled by the quality, or Q-factor

Q = ω0L

R
= 1

ω0CR
. (4.32)

Another type of resonant circuit is the subject of Exercise 3, at the end of this chapter.

4.11 Equivalent Electrical Circuit for an Eddy-Current
Probe

An equivalent electrical circuit that accounts for the various contributions to the
impedance of a real eddy-current probe is examined in Sect. 6.3.6 and is shown
schematically in Fig. 6.15. It can be seen that the circuit representation is more com-
plicated than any of those considered above. Nonetheless, under many circumstances
it is reasonable to consider the impedance of an eddy-current probe to be described,
to a first approximation, by the resistive and inductive contributions only. In other
words, for a coil operating at a frequency well below its resonance frequency,

Z ≈ R + jωL . (4.33)
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4.12 Summary

In this chapter, the three circuit quantities resistance, inductance, and capacitance
have been introduced and their combination in various simple circuits has been
developed to the point of defining impedance the quantity, that is measured in an EC
inspection. The way in which the circuit components feature in the make-up of an
EC probe has been outlined; resistance originates primarily in the resistivity of the
wire of the coil windings, self-inductance arises from the coil’s own time-varying
magnetic flux changing in the vicinity of the coil’s own windings, and capacitance
arises from inter-winding effects. Acknowledging that in most cases an eddy-current
coil impedance is given, to a good approximation, by the sum of resistive and
inductive contributions only, (4.33), we turn in the next chapter to a discussion of the
physical andmathematical framework that is needed to compute the probe impedance
under various circumstances of practical significance. The framework that we need
is provided by the field known as electromagnetism.

4.13 Exercises

1. If the ends of a cylindrical bar of carbon (σ = 3 × 104 S/m) of radius 5 mm and
length 8 cm are maintained at a potential difference of 9 V, find (a) the resistance
of the bar, (b) the current through the bar.

2. The resistance per unit length of a long wire with a circular cross section and
diameter 2 mm is 5.488 m�/m (milli-Ohm per meter). If a direct current of 40
mA flows through the wire, (a) find the conductivity of the wire; (b) identify the
material of the wire: and (c) find the electric current density in the wire.

3. For the parallel resonance circuit shown in Fig. 4.8, in which L and R are in series
with each other but in parallel withC , that is driven by alternating electromotance
V = V0 cos(ωt + φ), (a) express the impedance of the circuit, Z , in the form
R + j X , (b) determine the resonance frequency ω0 in terms of R, L and C , and
(c) show that the current amplitude isminimum at resonance, rather thanmaximum
as in the case of the series LRC circuit.

Fig. 4.8 Parallel resonance
circuit in which L and R are
connected in series with each
other but in parallel with C ,
driven by alternating
electromotance
V = V0 cos(ωt + φ)
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Chapter 5
Maxwell’s Equations

Abstract To describe the electromagnetic behavior of an eddy-current probe coil,
and with the goal of becoming equipped to interpret the measured impedance of an
eddy-current coil, this chapter describes expressions of Maxwell’s equations in full
and under the quasi-static regime that is of direct relevance to eddy-current NDE.
From Maxwell’s equations, equations governing the electromagnetic fields can be
expressed in various ways. Interface conditions on the electromagnetic field is also
provided. The interface conditions are needed, along with the governing equations,
to set up a bounded system of equations that can be solved for the fields generated
by eddy-current probe coils. Similarly, suitable governing equations and appropriate
interface conditions provide the mathematical framework by which the influence of
a test-piece—with or without a defect—on the probe impedance can be described.

5.1 Introduction

JamesClerkMaxwell (1831–1879, Fig. 5.1) was a Scottishmathematician and physi-
cist [1]. Early in life, he showed signs of mathematical talent, contributing an original
research article to the Royal Society of Edinburgh at the age of only fifteen years.
When he was reluctantly appointed as professor of experimental physics at the Uni-
versity of Cambridge (UK) later in life, however, he was not a great success as a
lecturer. His lectures were too difficult for most students to understand and typically
attracted an audience of only three or four. In research, hewas brilliant.Maxwellmade
significant contributions to the understanding and theoretical descriptions of several
important physical phenomena, including the kinetic theory of gases. His crowning
achievement was in the field of electromagnetics, in which he expressed in mathe-
matical form Faraday’s speculations on the existence and effects of magnetic lines of
force (Faraday had very little mathematical knowledge, remember). Maxwell gath-
ered a few relatively simple equations that described the various known phenomena
of electricity and magnetism, and coupled them together. He revealed that electricity
and magnetism could not exist separately from one another but, if one was found,
then the other existed as well. The field of electromagnetism was born.

© Springer Science+Business Media, LLC, part of Springer Nature 2019
N. Bowler, Eddy-Current Nondestructive Evaluation,
Springer Series in Measurement Science and Technology,
https://doi.org/10.1007/978-1-4939-9629-2_5

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9629-2_5&domain=pdf
https://doi.org/10.1007/978-1-4939-9629-2_5


60 5 Maxwell’s Equations

Fig. 5.1 James Clerk
Maxwell, Scottish
mathematician and physicist,
1831–1879 [2]

Maxwell showed that the oscillation of an electric charge produced an electro-
magnetic field that radiated outwards from its source at constant speed. This constant
speed turned out to be the speed of light so Maxwell suggested that light itself was
electromagnetic radiation! In addition, since charges could oscillate at any frequency,
it seemed to Maxwell that an entire spectrum of electromagnetic radiation should
exist, of which visible light constituted only a small part. As time went on, the exis-
tence of various other parts of the electromagnetic spectrum has been verified. All
of today’s wireless technology, and myriad other practical devices and theoretical
endeavors, are founded on the work of Maxwell.

In the context of EC NDE, Maxwell’s equations can be used to describe math-
ematically the interactions of a probe field with a test-piece, even to the point of
being able to predict the change in coil impedance due to various types of defect in
a structure. This mathematics is the only way to accurately determine these kinds
of interactions. It is exciting and profound that mathematical physics can be used
to calculate quantities of practical interest, that have a real impact on society in the
context of inspections of aircraft, vehicles, bridges, nuclear power plants, and other
structures whose integrity is critical to human and environmental safety.

5.2 Faraday’s Law

Faraday’s law is the first of Maxwell’s equations that we shall examine. Faraday
discovered that the induced electromotance in a closed circuit is equal to the time
rate of change of the magnetic flux linkage in the circuit:

V = −dλ

dt
= −N

d�

dt
(5.1)



5.2 Faraday’s Law 61

whereλ = N� is the flux linkage, N is the number of turns in the circuit, and� is the
magnetic flux through each turn. The negative sign is due to Lenz’s Law, and shows
that the induced voltage acts in such a way as to oppose the flux change producing it.
This means that the direction of current flow in the circuit is such that the magnetic
field produced by the induced current opposes the change in the original magnetic
field. One consequence of Lenz’s Law in EC NDE is that the direction of circulation
of the induced eddy currents is opposite to that of the current flowing in the inducing
coil.

From (5.1) a point form of Faraday’s Law can be derived. First, express the right-
hand-side of (5.1) in terms of the magnetic induction field B, by replacing � with
the surface integral given in (4.16). For N = 1,

V = − d

dt

∫
S

B · dS, (5.2)

where S is an open surface bounded by path C that describes the circuit of interest,
such as the circular path made by a loop of wire. The path is closed but permits a
discontinuity in E integrated around that path. The discontinuity is mathematically
necessary, to represent the practical incorporation of a voltage source into a drive
circuit, or to allow for the measurement of a potential drop induced in a pick up
circuit. Imagine a closed loop of wire whose ends are connected via a twisted pair
to the termini of a variable voltage source, or to a voltmeter. The loop is closed, but
a voltage drop exists across the ends of the wire. Expressing the voltage in terms of
the line integral of E, just mentioned, gives

∮
C

E · dl = − d

dt

∫
S

B · dS (5.3)

Noting that it is the magnetic induction field B that is varying with time, rather than
the loop area, we obtain ∮

C
E · dl = −

∫
S

∂B
∂t

· dS. (5.4)

Next apply Stokes’ Theorem, Sect. 10.3.6, to the left-hand-side of (5.4). Stokes’
Theorem requires that E has continuous derivatives on S but this condition does not
exclude the possibility that its line integral (V = ∫

E · dl) is discontinuous—a point
whose necessity was just described. The application of Stokes’ Theorem yields

∫
S
∇ × E · dS = −

∫
S

∂B
∂t

· dS. (5.5)

For these two integrals to be equal, their integrands must be equal and, consequently,

∇ × E = −∂B
∂t

. (5.6)
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Expression (5.6) is Faraday’s Law in point form, and is also one of Maxwell’s equa-
tions. This relation is at the heart of EC NDE, describing the fact that a time-varying
field of magnetic induction, produced by an eddy- current coil, produces an electric
field (and hence induces eddy currents) in a metal test-piece nearby.

5.3 Maxwell–Ampère Law

The second of Maxwell’s equations that we shall examine is the Maxwell–Ampère
Law. This relation was born out of a deficiency that Maxwell perceived in Ampère’s
circuital theorem. Beginning with the latter, Ampère’s circuital theorem states that
the line integral of the magnetostatic field H around a closed path is equal to the net
current I enclosed by the path,

∮
H · dl = I. (5.7)

To obtain Ampère’s circuital theorem in point form, apply Stokes’ Theorem to the
left-hand-side of (5.7) and relate I to the current density as in (2.2). Then

∫
S
∇ × H · dS =

∫
S

J · dS (5.8)

and hence
∇ × H = J. (5.9)

This relation is known as Ampère’s law and tells us that the magnetostatic field H
is not conservative, but that J is its source. (The curl, ∇×, of a conservative field is
identically zero.)

Maxwell recognized that Ampère’s Law is incomplete for time-varying fields,
because it violates the requirement that current be continuous. For more detail, see
[3]. Adding displacement current density Jd = ∂D/∂t to the conduction current
density J already present in (5.9) gives

∇ × H = J + ∂D
∂t

, (5.10)

which is Maxwell’s equation (based on Ampère’s circuital theorem) for a time-
varying field. Displacement current

Id =
∫
S

∂D
∂t

· dS

is the “current” that flows in a dielectric (between the plates of a capacitor, for
example).
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The main relevance of the Maxwell–Ampère law to EC NDE is that it enables
description of the magnetic fields associated with (i) the electric current flowing in
an eddy-current coil and (ii) the eddy currents flowing in a test-piece.

5.3.1 Quasi-static Regime

Despite the fact that eddy currents must be induced by a time-varying field associated
with the current flowing in an eddy-current drive coil, it turns out that the displace-
ment current can be neglected in most EC NDE analyses. The following argument
shows why this is the case.

The total current density in any conductor is the sum of the conduction current
density and the displacement current density, given by

J + Jd =
(

σ + ε
∂

∂t

)
E

where Ohm’s Law (2.15) and constitutive relation (2.33) have been used to form
the above expression. In phasor form, for sinusoidal time variation of the fields, the
above sum can be expressed as (σ + jωε)E. For typical metals tested by EC NDE, σ
is on the order of 10MS/m and themaximum frequency employed is around 10MHz.
Therefore,

|J| ∼ 107|E|

and
|Jd | ∼ 2π × 107 × 8.85 × 10−12|E| ∼ 10−3|E|

This means that |J| � |Jd | and displacement current can be neglected even for the
highest frequencies most commonly employed in EC NDE, to a very good approx-
imation. Under these circumstances, EC NDE operates in a quasi-static regime in
which

∇ × H ≈ J. (5.11)

This relation is obviously equivalent to Ampère’s Law, although we should keep
in mind that strictly Ampère’s Law applies only to magnetostatic fields. The field
produced by an EC coil is necessarily time-varying in order for eddy currents to be
induced in a test-piece at all and the term “quasi-static” is used to remind us of this
fact.

As a related point of interest, radio-frequency EC technology that operates up
to 100MHz has been developed in recent years for inspection of lower conductivity
materials such as carbon–fiber-based composites [4] and ceramic–matrix composites.
As inspection frequency increases and conductivity of the test-piece decreases it is
clear from the above discussion that the quasi-static approximation becomes less
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accurate and, for very low conductivity materials (insulators) it is the displacement
current that dominates [5].

5.4 Gauss’ Law

The third of Maxwell’s equations that we shall consider is Gauss’ Law. Gauss’ Law
states that the total electric flux �e through any closed surface is equal to the total
charge enclosed by that surface, Qenc.

�e =
∮
S

D · dS = Qenc (5.12)

Further,

Q =
∫
V

ρvdV

where ρv is volume charge density (electric charge per unit volume at a point) mea-
sured in Coulombs per meter cubed (C/m3) and V is the volume enclosed by surface
S. Hence, ∮

S
D · dS =

∫
V

ρvdV (5.13)

and, applying the divergence theorem (also of Gauss, (10.48)) to the left-hand side
of (5.13) yields ∫

V
∇ · D dV =

∫
V

ρvdV (5.14)

from which the point form of Gauss’ Law is obtained:

∇ · D = ρv. (5.15)

In other words, the strength of divergence of D from a point is determined by the
electric charge per unit volume at that point. Relation (5.15) allows D, or E by (2.33),
to be determined easily for many symmetric distributions of charge, but note that the
relation always holds irrespective of the particular shape of the charge distribution.

5.5 Gauss’ Law for Magnetic Fields

The fourth and final equation of Maxwell that we shall consider is Gauss’ Law for
magnetic fields; the counterpart of the equation examined in the previous section
(Sect. 5.4) for electric fields. Unlike for D, the magnetic induction field B has no
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sources or sinks. This is a consequence of the fact that the fundamental source of
the magnetic field is charge in motion, which always gives rise to a magnetic dipole
rather than individual “magnetic charges”. To derive Gauss’ Law for magnetic fields,
we can follow a development similar to that in the previous section, but now there is
no “charge” enclosed in surface S and

� =
∮
S

B · dS =
∫
V

∇ · B dV = 0. (5.16)

At a point,
∇ · B = 0 (5.17)

and we see that B is solenoidal (divergenceless). This means that the lines of B are
always closed loops.

5.5.1 Magnetic Vector Potential

The form of Gauss’ Law as written in (5.17) invites the definition of the magnetic
vector potential A such that

B = ∇ × A (5.18)

since, according to identity (10.44), the divergence of the curl of any vector is zero.
One reason for defining the magnetic vector potential is that it is easier, for some
configurations, to solve a problem in terms of the magnetic vector potential than
in terms of the magnetic induction field itself. In this text, A is employed in the
derivation of the analytical expression for B at all points in space due to a current
loop in free space, Sect. 6.3.2.

5.6 Interface Conditions on the Electromagnetic Field

In later sections of this text, we shall see how Maxwell’s equations may be manipu-
lated to provide governing equations for the electromagnetic field in the vicinity of
an eddy-current coil. When an eddy-current coil is brought near to a metal test-piece,
the electromagnetic field due to the coil penetrates the conductor, and the field exists
in more than one material (air and metal) at the same time. The conductor surface is
a boundary or interface between the two dissimilar media, and the electromagnetic
field obeys certain conditions there. These conditions are known as boundary condi-
tions or interface conditions. In order to solve the governing equations and obtain a
mathematical description of the electromagnetic field in a region of space occupied
by more than one medium, we need to know the interface conditions that the fields
must obey. The conditions on the four field quantities E, D, H and B, and on the
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Fig. 5.2 A vector field a at
the interface between two
media with different
dielectric and magnetic
properties. The unit vectors
normal (n̂) and tangential (t̂)
to the interface are shown,
along with the normal and
tangential components of a

current density J, are presented in this section but not derived. For a derivation, see
[3] or any standard undergraduate textbook on electricity and magnetism.

Consider a vector field that is oriented arbitrarily with respect to a boundary
between two media, as shown in Fig. 5.2.

Electric Field It can be shown that the tangential component of E is continuous at the
boundary. This means that the tangential component of E does not change as the
boundary is traversed. Expressing this mathematically,

(E1 − E2) × n̂ = 0 or E1t − E2t = 0. (5.19)

In (5.19), the subscripts 1 and 2 refer to the twomedia and the subscripts n and t refer
to the normal and tangential components of the vector at the interface, respectively.

Electric Displacement If ρs is the surface density of free charge placed deliberately
on the interface, then it can be shown that the jump (discontinuity) in the normal
component of D at the boundary is equal to the free surface charge density on the
boundary:

(D1 − D2) · n̂ = ρs or D1n − D2n = ρs . (5.20)

Magnetic Field If K = K t̂ is a surface current measured in A/m that flows on the
boundary, then the jump in the tangential component of H at the boundary is equal
to the surface current:

(H1 − H2) × n̂ = K or H1t − H2t = K . (5.21)

Magnetic Induction The normal component of B is always continuous across a
boundary:

(B1 − B2) · n̂ = 0 or B1n − B2n = 0. (5.22)

Current Density From (5.19) with Ohm’s law (2.15) the following boundary con-
dition on the tangential component of the current density can be obtained:
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Table 5.1 Interface conditions on the electromagnetic field and current density. The density of
free surface charge at the boundary is represented by ρs (C/m2). The surface current density at the
boundary is K (A/m). In most cases of relevance to EC NDE, ρs and K are zero

Vector field Tangential component Normal component

Electric field, E E1t − E2t = 0 ε1E1n − ε2E2n = ρs

Electric displacement, D D1t/ε1 − D2t/ε2 = 0 D1n − D2n = ρs

Magnetic field, H H1t − H2t = K μ1H1n − μ2H2n = 0

Magnetic induction, B B1t/μ1 − B2t/μ2 = K B1n − B2n = 0

Current density, J J1t/σ1 − J2t/σ2 = 0 J1n − J2n = 0

J1t/σ1 − J2t/σ2 = 0. (5.23)

The normal component of the current density is continuous at the boundary:

J1n − J2n = 0. (5.24)

Looking at continuity conditions (5.20) and (5.21), a parallel with Maxwell’s
equations (5.15) and (5.9) can be seen. In volumetric space, the volume charge
density ρv gives rise to divergence in D as expressed in (5.9), whereas surface charge
density ρs at an interface gives rise to a jump in Dn across the interface, (5.20). The
behavior stems from the fact that ρv and ρs are sources of D. Similarly, the existence
of a surface current K at a boundary gives rise to a jump in Ht across the boundary as
expressed in (5.21), whereas the volume current density J gives rise to a circulating
magnetic field, (5.9). Currents J and K are sources of H.

The constitutive relations (2.25) and (2.33) can be used with the above interface
conditions (5.19)–(5.22) to obtain a full set of conditions on both the normal and
tangential components of all four vector fields. These are given, alongwith conditions
on the normal and tangential components of the current density J, in Table5.1.
Commonly, no surface charge density exists at a boundary and ρs = 0 in the above
relations. Then, Dn is continuous at the boundary. Similarly, there is often no surface
current at a boundary and K = 0. Then, Ht is continuous at the boundary.

Example: Interface conditions on the electric field The electric field just outside
a cylindrical rod whose axis lies along the z-axis is given by E2 = 60ẑV/m. The
conductivity of the rod is 46MS/m. Find the current density in region 1, just inside
the rod.

Solution: In a cylindrical coordinate system, the tangential component of the electric
field at the rod surface is Et = Eφφ̂ + Ez ẑ. Hence, E1z = E2z and Jz = σE1z =
σE2z = 46 × 106 × 60 = 2.76 × 109 A/m2.

Example: Interface conditions on the magnetic field Two extensive homogeneous
isotropic ferrites (which can support no surface currents) meet on the plane z = 0.
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For z > 0, μr1 = 100 and for z < 0, μr2 = 20. A uniform magnetic field H1 = 5x̂ −
2 ŷ + 3ẑ A/m exists for z ≥ 0. Find H2 for z ≤ 0.

Solution: H2 is also uniform. Considering first the component of the field normal to
the boundary, in the z-direction, μ1H1z = μ2H2z which means that

H2z = μr1

μr2
H1z = 100

20
× 3 = 15 A/m.

Tangential to the boundary, in the absence of free surface currents, H1t = H2t . Hence

H1t = 5x̂ − 2 ŷ = H2t .

Putting the tangential and normal components of the field together gives the solution

H2 = 5x̂ − 2 ŷ + 15ẑ A/m.

5.7 Summary

In this chapter, the equations of Maxwell have been described and their relation to
EC NDE has been discussed. For ease of reference, Maxwell’s equations in both
differential and integral form are collected together in Table5.2. It should be noted
that, in most cases of relevance to EC NDE, the quasi-static approximation can be
assumed, which means that |J| � |∂D/∂t | and ∇ × H ≈ J. In conductors, it is also
generally the case that ρv = 0. In this way, two of the four Maxwell’s equations are
simplified in their application to EC NDE.

The boundary conditions that govern the behavior of the electromagnetic fields
and the current density at the interface between twomedia have also been described in
this chapter and are summarized in Table5.1. Again, some simplification is generally
possible in problems of relevance to EC NDE. In particular, it is usually the case that
ρs and K are zero in the treatment of EC boundary-value problems.

The stage is now set for proceeding to develop governing equations and boundary
conditions which can be solved to compute quantities of relevance to EC NDE. This
is the task to which we turn in the next chapter.

Table 5.2 Maxwell’s equations in differential and integral form. ρv is volume density of free charge
(C/m3). J is current density (A/m2). In most cases of relevance to EC NDE,∇ × H ≈ J and ρv = 0

Law Differential form Integral form

Faraday’s law ∇ × E = − ∂B
∂t

∮
C E · dl = − d

dt

∫
S B · dS

Maxwell–Ampère law ∇ × H = J + ∂D
∂t

∮
C H · dl = ∫

S

(
J + ∂D

∂t

)
· dS

Gauss’ law ∇ · D = ρv

∮
S D · dS = ∫

V ρvdV

Gauss’ law for magnetic fields ∇ · B = 0
∮
S B · dS = 0
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5.8 Exercises

1. A long, cylindrical conductor has radius a and carries current I uniformly dis-
tributed over its cross section. Use Ampère’s law to show that, inside the con-
ductor, Hφ = Iρ/(2πa2), ρ < a, where ρ and φ are coordinates of a cylindrical
system whose axis coincides with the axis of the conductor.

2. Beginning with Maxwell’s equations, derive

(a) the magnetic field in air due to an infinitesimally thin, long, straight wire
carrying current I in the z-direction

H = φ̂
I

2πρ
, ρ > 0,

where ρ and φ are coordinates of the cylindrical system and
(b) the electric field in air due to the same infinitesimally thin wire

E = ẑ
I
2π

jωμ0 ln ρ, ρ > 0,

previously given in (2.17) and (2.14), respectively.
3. Explain what is meant by the quasi-static regime in the context of EC NDE.

At frequencies used in EC NDE, for what class of materials is this (a) a good
approximation and (b) a poor approximation?

4. If a B-field is specified everywhere by Bx = ky, By = −kx , Bz = 0, k being
constant, find an expression for the current density J which would give rise to it.

5. The electric field just outside a cylindrical rod whose axis lies along the z-axis is
given by E = 15ẑV/m. The conductivity of the rod is 43MS/m. Find the current
density just inside the rod.

6. Two extensive homogeneous isotropic ferrites (which can support no surface
currents) meet on the plane z = 0. For z > 0, μr1 = 50 in medium 1 and for
z < 0, μr2 = 5 in medium 2. A uniform magnetic field H1 = 3x̂ − 4ŷ + 2ẑ A/m
exists for z ≥ 0. Find H2 for z ≤ 0.
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Chapter 6
Signals and Coils

Abstract This is a pivotal chapter in which the many background elements intro-
duced in earlier chapters are drawn together to show how various factors affect the
observed impedance of an eddy current probe coil. This chapter focuses on fun-
damental knowledge in eddy-current NDE, detailing the response of eddy-current
probes to unflawed test-pieces of relatively simple shape. The analysis begins with
the simplified case of a current sheet and half-space conductor, from which the defi-
nition of the electromagnetic skin depth emerges. Semi-analytic calculations of coil
impedance are given for a coil in free space and in the vicinity of a conductor, includ-
ing cases of surface and tangent coils in the vicinity of a conductive half-space and
encircling or bobbin coils in the vicinity of cylindrical conductors or bore holes,
respectively. The effect of important probe factors—coil dimensions, construction
with or without a ferrite core, and frequency of excitation current—are discussed.
Test-piece factors—conductivity, permeability, shape, and position relative to the
coil—are also discussed. Sources of uncertainty in inspections due to, for example,
unknown variations in the coil windings or accidental tilt of the probe during an
inspection are described. The impedance-plane diagram is introduced in absolute
and normalized forms.

6.1 Introduction

The purpose of this chapter is the presentation of electromagnetic theory that under-
lies the observed impedance of an eddy-current coil. Two important configurations
are considered, from which the impedance of most eddy current probe types can be
obtained. These are (i) the configuration in which a coil is oriented such that its axis
is perpendicular to the surface of the test-piece (a “surface” or “normal” coil) and (ii)
that in which the coil axis is ideally aligned with the axis of the test-piece, as in the
case of an encircling coil or bobbin probe. In both configurations, a simple current
loop is considered first and the impedance of a coil with N turns is obtained later by
superposition. This chapter presents, therefore, the theoretical building blocks from
which the impedance of multi-coil probes such as differential, driver pick up, plus-
point, array and hybrid probes can be calculated. These are discussed in Chap.8.
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The test-pieces described in this chapter are also limited to the simplest possible; the
homogeneous half-space and the long rod or bore hole. A half-space is an idealized
shape with a flat surface that is, in practice, sufficiently large that the coil fields are
not measurably perturbed by the edges or back surface of the sample. Similarly, the
long rod and bore hole are sufficiently long that end effects are not observed by
the coil. Eddy-current coil response to a spherical conductor has been examined
by a few authors [1–3] but the spherical test piece geometry appears to be of lower
practical relevance than flat and rod-like geometries, and is not discussed explicitly
in this text. More complex test-piece geometrical configurations, in particular those
involving layered and truncated media, are considered in Chap.7.

Prior to considering two-dimensional problems of circular coils interacting with
various test-pieces, the one-dimensional configuration of a half-space conductor
excited by a uniform current sheet is treated in Sect. 6.3.1. The solution for this
one-dimensional configuration is important because it reveals the definition of the
electromagnetic skin depth, introduced in Sect. 2.9. It is also helpful for the reader to
understand the solution for the electromagnetic field in the one-dimensional config-
uration before moving to that for the more complex two-dimensional configurations.

In Sect. 6.3.2, two methods for calculating the magnetic field due to a circular
current loop in air is described. These are interesting but not essential to the devel-
opment of probe interactions with a test-piece given in Sect. 6.3.3. From the solution
for the circular current loop, a solution for a multi-turn coil may be obtained in a
straightforward way by superposing N such loops, as shown in Sect. 6.3.4. Building
on the discussion of the multi-turn coil, the improvement in coupling to the test-piece
that can be obtained by use of a ferrite core is considered in Sect. 6.3.5. The treatment
of the surface coil concludes with a discussion of significant sources of noise, such as
coil tilt and nonideal coil behavior due to inter-winding capacitance and finite resis-
tance of the windings, Sect. 6.3.6. A method for correcting for nonideal behavior of
an absolute probe coil is presented that is particularly useful for reducing uncertainty
in benchmark experiments.

Section 6.4 provides a discussion of the impedance due to a tangent coil, whose
axis is tangential to the surface of the test-piece. Tangent coils find special application
as plus-point probes, inwhich two tangent coils are combined (Sect. 8.5). The solution
by which the impedance of a tangent coil can be calculated is a limiting case of the
solution for a tilted coil, Sect. 6.3.6.

In Sects. 6.5 and 6.6, the theoretical description of other commonly employed
configurations, in which the coil axis is parallel to the axis of the test-piece, are
presented. Again, from the solution for the circular current loop, that for a multi-
turn coil may be obtained by superposition. The configuration is relevant to test
scenarios such as a coil encircling a cylindrical rod and a bobbin coil inspecting
the interior of a bore hole or tube. In these systems of cylindrical symmetry, two
sources of geometrical uncertainty exist; coil tilt and wobble. As in the case of the
surface coil, tilt occurs when the coil axis tilts through a finite angle with respect to
the axis of the test-piece—here either a rod or a bore hole. Wobble occurs when the
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coil axis is laterally displaced from the axis of the test-piece. Both of these effects
are important to understand because they lead to signal noise that might obscure a
genuine indication from a defect or other feature.

6.2 Coil Impedance

The impedance of an eddy current coil, Z , defined in Sect. 4.9, is the quantity mea-
sured in an EC NDE inspection. In Chaps. 2 and 4, we have discussed the fact that
the impedance of an eddy current coil is determined by the value of its resistance,
capacitance, and inductance. For the purposes of ECNDE, the inductance is the most
important of these since it is the circuit quantity that represents the presence of the
magnetic field in the coil, and in EC NDE it is this magnetic field that couples with
the part under test and induces eddy currents in it. An ideal eddy-current coil would
be a pure inductor with inductance L and impedance

Z ideal = jωL . (6.1)

A real coil, however, exhibits resistance R and capacitance C in addition to induc-
tance. Resistance of a real coil arises due to the finite resistivity of the wire used in
the coil windings and cables. Coil capacitance makes a significant contribution to
the probe impedance when the frequency of operation of the probe is increased to
a value that depends upon the particular construction of the coil, i.e., its number of
turns and geometrical parameters. The source of C is the close proximity (to each
other) of the coil windings and connecting wires. Thus, while L is the quantity of
real interest in EC NDE, R and C cannot be eliminated in a real probe and contribute
to its impedance.

6.2.1 Isolated Coil Impedance, Z0

The impedance of an isolated coil, Z0, is the value of impedance of a coil when it is
remote from the test-piece or any other metal. It is also referred to as the impedance
of the coil in air. In general, Z0 = R0 + j X0, where R0 and X0 are the resistance
and reactance of the isolated coil, (4.27). The value of Z0 is primarily determined by
the number of turns on the coil, its shape and dimensions.

If R0 and stray capacitances associated with the probe are considered to be neg-
ligible, which is often approximately true for frequencies well below the resonant
frequency of the coil, then Z0 ≈ jωL0 = j X0 where L0 is the DC inductance of the
coil. This is an “ideal” case for EC NDE because the useful interaction between an
EC probe and a test-piece is mediated by inductance, as mentioned above.

Other measurements of coil impedance, when the coil field interacts with a test-
piece, are often normalized with respect to Im{Z0} = X0.
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6.2.2 Coil Impedance in the presence of a Conductor, Z,
and the Impedance-Plane Plot

When a coil is moved from “air” (its isolated position) to the surface of a conductor,
its impedance changes from Z0 to Z . The precise value of Z depends on geometrical
effects such as the proximity and orientation of the coil with respect to the test-piece,
and the test-piece parameters conductivity and permeability.

In a typical EC inspection, impedance data are displayed in the form of a two-
dimensional plot in which the real and imaginary parts of the coil impedance are
displayed on orthogonal axes. An inspector observes the locus of points traced on
the instrument display as the probe is moved in relation to the test-piece.

The impedance-plane plot sketched in Fig. 6.1 shows several possibilities for the
change in coil impedance Z = R + j X as the coil is moved from air to either a non-
ferromagnetic or a ferromagnetic metal test-piece. These curves may be explained
qualitatively as follows. When a probe is moved from isolation (air) to the surface of
a non-ferromagnetic metal test-piece, its resistance increases whereas its reactance
decreases, as indicated by the symbol Zn− f in Fig. 6.1. The effective coil resistance
increases in response to the fact that eddy currents are now flowing in the nearby
test-piece, extracting energy from the probe and effectively increasing its resistance.
The coil reactance decreases, on the other hand, due to the fact that the eddy currents
induced in the test-piece circulate in a direction opposite to the direction of current
flow in the coil, byLenz’s Law.Consequently, themagnetic induction field associated
with the coil current is effectively reduced by the opposing magnetic induction field
associated with the eddy currents, resulting in an overall reduction of the inductance
of the coil. Example lift-off curves that are generated as an isolated coil is moved to
the surface of a slab of bronze, at three different frequencies, are shown as broken
lines in Fig. 6.2. Similar curves could be plotted as the probe moves from the air

Fig. 6.1 Possible changes in
coil impedance as the coil is
moved from the air point,
where it is isolated from any
conductive material and
exhibits impedance Z0, to
ferromagnetic and
non-ferromagnetic
conductors where its
impedance becomes Z f and
Zn− f , respectively
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Fig. 6.2 Impedance-plane diagram for a surface coil, showing the air point at which the coil is
remote from any test-piece, and impedance values (•) obtained when the coil is in contact with the
surface of various metals. The coil operates at 20 kHz except where indicated. Broken lines (- - -)
represent the impedance as a function of lift-off from the surface of a bronze test-piece, at three
different frequencies

point to the surface of other types of metal, some of which are indicated in the figure.
For any particular coil, the path of the lift-off curve that is observed depends on
the test-piece conductivity and permeability and on the frequency of the inspection.
Note that one practical use of lift-off curves are for determining the thickness of
nonconductive, non-ferromagnetic, surface coatings on a metal substrate. Examples
of such coatings are paints and lacquers.

Considering now the case of a probe moving from isolation to the surface of a
ferromagnetic metal test-piece, indicated by point Z f in Fig. 6.1, the increase in coil
resistance is explained in the same way as for the case of the non-ferromagnetic test-
piece, discussed above. The observed increase in inductance is, however, opposite
in sign to the change observed in the case of non-ferromagnetic test material. This
observation is explained by the fact that the strength of the magnetic induction field
associated with the coil itself now increases when the coil nears the test-piece, due
to the fact that the coil field is strengthened by the ferromagnetism of the test-piece
(Chap. 3). The magnetic induction field associated with the induced eddy currents
still opposes that of the coil, but the increased strength of the coil field dominates,
resulting in an overall increase in the inductance of the coil.

Quite commonly, especially in the case of calculated impedance, values of resis-
tance and reactance are plotted that are normalized with respect to the reactance of
the isolated coil. In other words, the horizontal and vertical axes display the real and
imaginary parts, respectively, of

Z

X0
= R − R0

X0
+ j

X

X0
. (6.2)

It is useful to be familiar with this form of data presentation because in several
aspects it appears different to the impedance-plane plots of Figs. 6.1 and 6.2. Notice
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also that the real part of the isolated coil impedance, R0, is subtracted from R prior
to normalization with respect to X0. This means that, as the lift-off increases, the
curves tend toward the value of the probe impedance in air which is indicated by
Z0/X0 = 0 + j1, Fig. 6.3. This point is the air point, on the normalized Z -plane
plot. If we were to extrapolate the solid lines in Fig. 6.3 to higher frequencies, they

Fig. 6.3 Normalized
impedance-plane diagram for
a surface coil. Normalized
inductive reactance = X/X0
and normalized resistance
= (R − R0)/X0. Solid lines
(—–) represent the complex
impedance of the probe as a
function of frequency.
Broken lines (- - -) represent
the impedance as a function
of lift-off. Dotted lines
(· · ·) indicate the influence
of permeability of the
specimen on the probe
impedance. The point given
by the coordinates (0, 1) is
the air point. For the
particular impedance values
shown in this plot, the probe
parameters are ri = 2 mm,
ro = 4 mm, l = 1 mm and
N = 800, and the test-piece
is a half-space (T → ∞)
with σ = 35.4 MS/m and
μr = 1. Reprinted with
permission from the NDT
Handbook: Electromagnetic
Testing. Copyright ©2004,
ASNT, Columbus, Ohio [4]
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would approach the vertical axis at different points. In fact, in the high- frequency
regime, the curves can be described asymptotically by the relation

X

X0
= R − R0

X0
+ c, (6.3)

which is the equation of a straight line with unit slope and intercept c on the axis of
X/X0. The value of c is given by the ratio X/X0 in the asymptotic (high-frequency)
limit and provides an indication of the strength of coupling between the probe coil
and the test-piece. The larger the value of |c|, the stronger the coupling between the
probe and the test-piece.

6.2.3 Coil Impedance Change Due to a Flaw, �Z

When a coil is moved from a position on an unflawed region of a test-piece, to a
region where the presence of a defect perturbs the induced eddy currents, there is a
change in the impedance of the coil; �Z . This impedance change is defined as

�Z = Z − Zflaw, (6.4)

where Z is the impedance when the coil is on the test-piece but far from a flaw, and
Zflaw is the impedance of the coil in the vicinity of a flaw.

An example of the magnitude of impedance change obtained as a coil scans over
a slot in a metal plate is shown in Fig. 6.4 [5].

Fig. 6.4 Magnitude of the impedance change, |�Z |, obtained by two-dimensional scanning of an
eddy current probe over a through-slot in a metal plate. The physical and geometrical parameters of
the probe, plate, anddefect are given inTable 6.1. Reprinted fromBadics, Z.,Kojima, S.,Matsumoto,
Y., Aoki, K., Nakayasu, F.: Comparison of different “Matrix Multisensor” ECT probe designs by
three-dimensional electromagnetic modeling. In: Collins, R., Dover, W.D., Bowler, J.R., Miya, K.
(eds.) Nondestructive Testing of Materials. Studies in Applied Electromagnetics and Mechanics,
vol. 8, pp. 13–20. IOS Press, Amsterdam (1995), p. 18, Fig. 2 [5], with permission from IOS Press
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Table 6.1 Probe, plate, and defect parameters for the impedance change plotted in Fig. 6.4 [5]. The
probe is formed from two square, printed-circuit coils—one driver and one pick up—separated by
a 0.2-mm-thick substrate. The pick up coil contacts the test-piece. The test-piece is nuclear power
plant steam generator tube material, of type and thickness not specified in the original paper. The
flaw is an electro discharge machined (EDM) notch

Coil parameters Value Flaw parameters Value

do Outer dimension (mm) 2.00 l Length (mm) 3.0

di Inner dimension (mm) 0.72 w Width (mm) 0.2

s Coil stand-off (mm) 0.0 d Depth Through-wall

h Probe lift-off (mm) 0.1

n Number of turns 40

f Inspection frequency (kHz) 200

Many more examples, and techniques for calculating �Z due to various types
of defect, are given in Chap.9. The primary objective of the present chapter is to
describe how Z is computed for various probe types when the probe interacts with
an unflawed specimen.

6.3 Surface Coil

A surface coil is defined as one whose axis is parallel with the direction of the unit
vector normal to the surface being inspected. An air-cored surface probe is shown
schematically in Fig. 1.9. Surface coils can also be used to evaluate test-pieces with
more complicated geometry, such as the interior of a borehole or tube, as shown in
Fig. 6.5. Note that the axis of the coil in this configuration is still perpendicular to
the surface under test. Many different designs of surface probes exist, for different
inspection needs. Surface probes often operate in absolute mode, Sect. 8.2, meaning
that the signal obtained in a measurement is simply the value of the coil impedance
itself. Differential and driver pick up surface probes are also common, described in
Sects. 8.3 and 8.4, respectively.

Anormalized impedance-plane diagramobtained for a surface coil located above a
conductive half-space is shown in Fig. 6.3. In practice, a small part of the impedance-
plane plot is displayed by an oscilloscope (or eddyscope). It is common practice, in
an eddy-current inspection, to “rotate” the display so that the change in Z due to
lift-off variation appears horizontally on the eddyscope display. Then, indications
due to flaws and other features can be easily distinguished from noise due to lift-off
variations or tilt angle of the probe, as it scans the test-piece.
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Fig. 6.5 Sectional view of
the interior of a bore hole or
tube inspected by a rotary
surface coil. Note that the
coil axis is parallel with the
direction of the unit vector
normal to the surface being
inspected, here the
ρ̂-direction. In practice, the
coil would be mounted in a
rotary probe (not shown
here) in order to inspect the
entire interior surface of the
borehole via a helical path

Considering the impedance-plane plot of Fig. 6.3, the solid curves represent the
complex impedance of the probe as a function of frequency. Each solid curve is for a
different value of the probe lift-off, as marked. The broken lines show the impedance
as a function of lift-off from the conductor surface. In Fig. 6.3 the coupling (see
discussion in Sect. 6.2.2) is clearly the strongest for the case in which the coil is
nearest to the test-piece (the lift-off is the smallest) - a result that happily agrees with
common sense! Impedance-plane plots such as this one can be computed or obtained
by experimentation for various coil and test-piece configurations. Looking ahead to
two other examples; it is shown in Fig. 6.14 that coupling increases when a coil is
filled with a ferrite core and, for a coil encircling a rod, Fig. 6.23, coupling increases
as the space between the coil and rod decreases, i.e., as the fill factor increases.

In Fig. 6.2, as well as the effect of lift-off discussed earlier, the effect on the
Z -plane plot of changes in conductivity of the test-piece is shown. Note, the
impedance change due to a change in probe lift-off, and the impedance change due
to a change in conductivity, are more clearly distinguished at the higher frequencies
shown because there is a greater angle between their effects in the Z -plane than
at lower frequencies. At lower frequencies (such as 100 Hz in Fig. 6.3) it is very
difficult to differentiate between lift-off and conductivity changes in Z . This kind
of observation shows how impedance-plane plots can be used to guide the choice
of inspection parameters, such as the frequency of coil operation, to optimize the
sensitivity of an inspection for its particular purpose.
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6.3.1 Excitation of a Half-Space Conductor by a Uniform
Current Sheet

Having examined Maxwell’s equations and the interface conditions on the electro-
magnetic field in Chap.5, we are in a position to solve a problem—our first—in
which an exciting current flowing near to a metal test-piece induces currents in the
metal. The geometry that we shall consider is the simplest one possible; a uniform
current sheet parallel to an infinitely deep (so-called half-space) conductor, as shown
in Fig. 2.5. In this case the properties of the half-space conductor are assumed linear,
isotropic and homogeneous, i.e., σ and μr are everywhere scalar and constant. This is
a one-dimensional problem because the fields vary only in the direction perpendicu-
lar to the conductor surface, the z-direction. The solution of Maxwell’s equations for
this system will reveal the definition and meaning of the electromagnetic penetration
depth introduced in Sect. 2.9. This problem is also a useful introduction to the more
complex, two-dimensional, problem of the excitation of a half-space conductor by a
circular coil, which will be considered in Sects. 6.3.3 and 6.3.4.

This is an artificial problem in the sense that no real coil is an infinite current
sheet, but the solution obtained here may be applicable to real systems under certain
circumstances. For example, parallel windings of a coil around a wide, thick plate
give rise to an approximately uniform current sheet in regions sufficiently far from
the edges. Second, a surface coil wound on a cylindrical former produces a current
density that appears uniform on a scale somewhat less than the coil diameter, as
shown in Fig. 6.6. Further, some coils are purposely designed to induce an eddy
current density that is approximately uniform over a prescribed region of the surface
of a test-piece [6].

Fig. 6.6 A large-diameter
coil shows a region of
approximately uniform
current density J on a scale
somewhat smaller than the
coil diameter
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Governing Equation

We will begin by manipulating Maxwell’s equations to obtain an equation which
governs the behavior of the electric field in the system shown in Fig. 2.5. First, write
down the phasor forms of Faraday’s Law and the quasi-static Maxwell–Ampère Law
as follows:

∇ × E = − jωB, (6.5)

∇ × H = J. (6.6)

Nowwrite J as a sum of the current density in the source coil, Js, and the eddy-current
density induced in the test-piece, Jec. Then,

∇ × H = Js + Jec. (6.7)

Take the curl of Faraday’s Law, (6.5), substitute for B by means of constitutive
relation (2.25) for isotropic permeability and then use (6.7) to obtain

∇ × ∇ × E = − jωμ (Js + Jec) . (6.8)

Make the substitution Jec = σE, (2.15), and employ vector identity (10.46) to obtain

∇∇ · E − ∇2E = − jωμ (Js + σE) . (6.9)

In the case of zero free volume charge, ρv = 0 and ∇ · D = ε∇ · E = 0. That is,
∇ · E = 0 and (∇2 − jωμσ

)
E = jωμJs. (6.10)

This is the governing equation for the electric field. In actual fact it is valid for any
geometrical configuration of current source Js and conductive test-piece, not only
for the one-dimensional system that we are considering at the moment, Fig. 2.5. By
similar steps it can be shown that the magnetic field obeys the governing equation

(∇2 − jωμσ
)
H = −∇ × Js. (6.11)

(The derivation of this equation is the subject of Exercise 1 at the end of this chapter.)
Focusing now on the one-dimensional system shown in Fig. 2.5, in which a uni-

form current sheet in the plane z = h excites a half-space conductor that occupies
z < 0, identify

Js = Iδ(z − h)x̂ (6.12)

where I is the phasor amplitude of the alternating current being carried in the sheet at
z = h. The delta function, δ(x), can be viewed as the derivative of the Heaviside step
function H(x). The delta function displays the following fundamental properties:
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∫ ∞

−∞
f (x)δ(x − x0)dx = f (x0), (6.13)

∫ x0+ε

x0−ε

f (x)δ(x − x0)dx = f (x0), ε > 0, (6.14)

δ(x − x0) = 0, x �= x0. (6.15)

In the context of (6.12), the delta function indicates that the current is confined to an
infinitesimally thin sheet at z = h. Noting that the only variation in the fields is as a
function of z, and that E = Ex x̂ must be x-directed as is the source Js, allows us to
write a simplified form of (6.10) as follows:

(
d2

dz2
− k2

)
Ex (z) = jωμIδ(z − h), (6.16)

where we have identified
k2 = jωμσ (6.17)

and k will turn out to be a complex wavenumber which controls the propagation and
absorption, or loss, of the electromagnetic field in the test-piece. By convention, we
require that k is obtained by taking the root of k2 that has positive real part. That is,

k =
√

ωμσ

2
(1 + j). (6.18)

Equation (6.16) is a simple one-dimensional differential equation. Solve it by
writing down separate equations for the current source region, z > 0, and the con-
ductor region, z < 0. These equations recognize the current source at z = h, located
in a region that is otherwise nonconductive (air), and the conductive nature of the
test-piece in the negative half-space.

d2Ex (z)

dz2
= jωμIδ(z − h), z > 0, (6.19)

(
d2

dz2
− k2

)
Ex (z) = 0, z < 0. (6.20)

Solution

In the conductor, the general solution for Ex (z) is of the form

Ex (z) = E0[e jkz + Ce− jkz] (6.21)

where E0 is the magnitude of the electric field at the conductor surface. Physically,
the field cannot grow as distance from the source current increases (as z → −∞),
so C = 0 and

Ex (z) = E0e
jkz . (6.22)
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This solution reveals that the eddy-current density in this setup decays exponentially
as a function of depth into the conductor. Substituting for k from (6.18) into (6.22)
gives

Ex (z) = E0e
(1+ j)z/δ (6.23)

where the electromagnetic skin depth, or penetration depth, is defined as

δ =
√

2

ωμσ
. (6.24)

This quantity was introduced in Sect. 2.9. The current density in the metal obeys the
same form as the electric field since they are related linearly by the conductivity of
the conductor via Ohm’s law (2.15), so

Jx (z) = J0e
(1+ j)z/δ, (6.25)

where J0 is the magnitude of the current density at the conductor surface. It was
noted in Sect. 2.9, and shown in Fig. 2.6, that the amplitude of the current density
declines exponentially as a function of distance into the conductor. From (6.25), we
see now that there is a linear phase change in Jx as a function of z. For example, at
z = −δ, arg(Jx ) is −1 radian so the phase of Jx at the surface is 1 radian in advance
of that at z = −δ.

6.3.2 Circular Current Loop in Air

Analysis of the electromagnetic behavior of a circular current loop can form the basis
of treatment of a finite eddy current “pancake” coil with multiple windings. In this
section, two derivations of the field of magnetic induction,B, due to a circular current
loop in air are given. These are interesting, and onemethod (that uses the Biot–Savart
Law) can be applied to solve other similar problems. Both methods rely, however, on
symmetry about the plane of the loop and consequently are not useful for deriving an
expression for the electric field due to an eddy-current surface coil interacting with
a test-piece. This more important configuration is treated in Sect. 6.3.3.

Biot–Savart Law

The Biot–Savart Law relates magnetic induction field B to the electric current which
is the source of B. For current I flowing in a conductor as shown in Fig. 6.7,

dB = μ0 I

4π

dl × ı̂r
r2

(6.26)

in differential form, or,
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Fig. 6.7 Schematic diagram
showing one configuration
for application of the
Biot–Savart Law

Fig. 6.8 Schematic diagram
showing configuration for
derivation of B at the center
of a current loop, using the
Biot–Savart Law

B = μ0 I

4π

∫
dl × ı̂r
r2

. (6.27)

In these equations, I dl represents an infinitesimal current element. Each element
makes a contribution dB to B at a field point P located at distance r from the current
element. The element of magnetic induction field dB is directed perpendicular to
the directions of both the current element I dl and that of the radius vector ı̂r , in
accordance with the vector product between them. In order to express B due to
a wire made up of many elements dl, the contribution of the individual elements
is summed, which amounts to integrating over the length of the current wire, as
expressed in (6.27). The direction of the magnetic induction field follows the right-
hand rule and arises from the vector product contained within (6.26) and (6.27).

The current elements that feature in the Biot–Savart Law are assumed to be con-
strained, as if the current was flowing in a wire. This means that the Biot–Savart
Law does not lend itself to calculation of the secondary magnetic induction field
associated with the eddy currents themselves, Bec, because the eddy currents are
distributed and best represented by a spatially varying current density Jec. To express
Bec for a particular test geometry, which may also include a defect of some kind, it is
necessary to solve governing equations of the electromagnetic field for the particular
setup, which can be derived from Maxwell’s equations.

Example: Derivation of B at the center of a current loop, using the Biot–Savart
LawConsider a circular current loop radius a carrying current I , as shown in Fig. 6.8.
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In a cylindrical systemwith coordinates (ρ,φ, z) and axis coinciding with the axis
of the current loop, ı̂r ≡ −ρ̂ and dl ≡ ρ dφ φ̂. Consequently,

B = μ0 I

4π

∫ 2π

0

ρ dφ φ̂ × (−ρ̂)

ρ2

= ẑ
μ0 I

4π

∫ 2π

0
dφ

= ẑ
μ0 I

2a
. (6.28)

This result may be generalized readily to obtain an expression for B along the entire
axis of the wire—see Exercise 2 at the end of this chapter. The limitations of the
Biot–Savart Law may quickly be seen by considering a field point off the axis,
however. In this case, the distance between the current element and field point,
r , varies as contributions from the various current elements around the loop are
considered and we observe that the Biot–Savart Law is useful for obtaining simple
analytical expressions for B only in a limited set of geometrical configurations. It
may be used to evaluate B numerically in more complex configurations, however.

Magnetic Vector Potential

In [7], there is a beautiful derivation of the analytical expression for B at all points
in space due to a current loop in free space. The derivation is reproduced in this
section but, first, the theoretical reasoning that defines the magnetic vector potential
A according to the Coulomb gauge is presented. The potential A was introduced in
Sect. 5.5.1. It is employed in the derivation given in [7] and also in the seminal works
of C. V. Dodd and W. E. Deeds that consider the response of a pancake coil near a
conductive test-piece [8, 9], to be presented in Sects. 6.5 and 6.6 of this text. Despite
the fact that the original solutions were written in terms of Aφ, the solutions are given
in Sects. 6.5 and 6.6 in terms of Eφ directly, via (6.44).

In the absence of magnetic materials, the Maxwell–Ampère Law may be written

∇ × B = μ0J (6.29)

and, as usual,
∇ · B = 0. (6.30)

These governing equations will be solved by introducing the magnetic vector poten-
tial A such that

∇2A = −μ0J (6.31)

with the condition that A is regular at ∞. (A function is said to be regular in a
particular region if it is analytic and single-valued in that region. A complex function
is analytic in a particular region if it is differentiable at every point in that region.)
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Fig. 6.9 Configuration used
in solving for the vector
potential, A, due to a current
loop following path C

Equation (6.31) is obtained by choosing the gauge condition ∇ · A = 0, which is
known as the Coulomb gauge. Equation (6.31) has solution

A(r) = μ0

4π

∫

all space

J(r′)
|r − r′|dV

′ (6.32)

where the prime denotes the source coordinates. Next, replace the volume integral
in (6.32) with a line integral over path C as follows.

A(r) = μ0 I

4π

∫

C

dl′

|r − r′| (6.33)

If C is the loop shown in Fig. 6.9, then dl′ = a ı̂t dφ′ = a φ̂ dφ′, D2 = |r − r′|2 =
a2 + ρ2 + z2 − 2aρ cosφ′ and, noting that A is independent of φ,

A(ρ, z) = φ̂
μ0 I

4π

∫

C

a

D
dφ′. (6.34)

Symmetry shows that the contributions of two current elements positioned symmet-
rically with respect to φ = 0 sum to give a vector whose direction is perpendicular to
the plane, since the parallel components sum to zero. The same argument applies for
all planes of φ = constant which means that (i)A is φ̂-directed (as already written in
the previous equation) and (ii) the magnitude of A, denoted A, can be obtained by
projecting components from two symmetric elements onto their plane of symmetry
and integrating around half the loop C :

Aφ(ρ, z) = μ0 I

4π

∫ π

0

2a cosφ′

(a2 + ρ2 + z2 − 2aρ cosφ′)1/2
dφ′. (6.35)

This expression may be rewritten by introducing the elliptic modulus, k, defined
below. Note, the elliptic modulus is not the same as the complex wavenumber intro-
duced in (6.16)–(6.18) although it shares the same symbol.
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k =
[

4aρ

(a + ρ)2 + z2

]1/2

giving

Aφ(ρ, z) = μ0 I

kπ

(
a

ρ

)1/2 [(
1 − k2

2

)
K − E

]
. (6.36)

In (6.36), K and E are complete elliptic integrals of the first and second kinds defined
by

K (k) =
∫ π/2

0

dθ

(1 − k2 sin2 θ)1/2
(6.37)

E(k) =
∫ π/2

0
(1 − k2 sin2 θ)1/2dθ. (6.38)

Magnetic Induction

In [7, Sect. 6.1], it is shown that B = ∇ × A, as given in (5.18), making it possible
to calculate B via the auxiliary quantity A. Taking the curl of (6.32) gives

B(r) = μ0

4π

∫

all space
∇ × J(r′)

|r − r′| dV
′ (6.39)

= μ0

4π

∫

all space

[
∇ 1

|r − r′| × J(r′)
]
dV ′ (6.40)

= − μ0

4π

∫

all space

(r − r′) × J(r′)
|r − r′|3 dV ′ (6.41)

where identity (10.45), Sect. 10.3, has been used and it has been observed that the
curl of |r − r′|−1 is identically zero. Equation (6.41), unlike the Biot–Savart Law, is
a mathematical expression of Ampère’s Law.

From this expression, the components of the magnetic induction field B can be
calculated and are given as follows—see Exercise 4 at the end of this chapter:

Br (ρ, z) = μ0 I

2π

z

ρ[(a + ρ)2 + z2]1/2
[
−K + a2 + ρ2 + z2

(a − ρ)2 + z2
E

]
(6.42)

Bz(ρ, z) = μ0 I

2π

1

[(a + ρ)2 + z2]1/2
[
+K + a2 − ρ2 − z2

(a − ρ)2 + z2
E

]
(6.43)

Electric Field

Finally, for a time-harmonic current excitation of the form e jωt , Faraday’s Law may
be written as in (6.5). Then, using (5.18), it is found that

E = − jωA. (6.44)
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Equation (6.44) indicates a simple linear relationship between the magnetic vector
potential and the electric field. From this relationshipwe see that, for a time-harmonic
excitation, the solution for the electromagnetic field due to a circular current loop
presented in this section could be equally well formulated in terms of E.

6.3.3 Circular Current Loop above a Half-Space Conductor

In their seminal work published in 1968, C. V. Dodd and W. E. Deeds derived
an analytical solution for the impedance of a surface coil located above a planar
conductor with its axis perpendicular to the conductor surface [8]. Initially, a current
loop with infinitesimal cross section was considered. Ultimately, a semi-analytical
expression for the impedance of a coil with finite cross section was obtained, for the
coil located above a two-layer planar conductor, and for a similar coil encircling a two-
layer conductive rod. Later, a similar solution was published for a coil coaxial with
an arbitrary number of cylindrical conductors [9]. The latter solution can represent
the response of a coil encircling a layered rod, or within a borehole, or a combination
of these.

These different cases are treated in this text as follows. In this section the case of
the current loop and half-space conductor is considered. In Sects. 6.3.4, 6.5.1 and
6.5.2, the coil and half-space conductor, the current loop and cylindrical conductor,
and the coil and cylindrical conductor are considered. Layered conductors are treated
in Chap.7.

Dodd and Deeds’ original solution was formulated in terms ofA although relation
(6.44) prompts formulation in terms of E, which is what we will do here. Once the
solution forE has been obtained, the voltage in the coil can be obtained by integrating
the electric field around the coil windings. The impedance can then be obtained by
means of relation (4.25).

Governing Equation for E

Consider a filamentary circular current loop, radiusa, height h above a planar conduc-
tor with conductivity σ, Fig. 6.10. The conductor in this case is non-ferromagnetic.
As in Sect. 6.3.2, the system is axially symmetric so that the current density in the
loop may be expressed

Js = Jsφφ̂ (6.45)

which immediately implies that
E = Eφφ̂. (6.46)

In this derivation it is also assumed that the conductor is linear, isotropic and homo-
geneous such that constitutive relations (2.25) and (2.33) hold. The consequence
of this assumption in the case of a ferromagnetic conductor is that the relations to
be developed are strictly accurate only for low applied H, due to the assumption
of a linear relationship between B and H. The restriction of low applied H is not
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Fig. 6.10 Cross section through the axis of a circular, infinitesimal current loop, positioned hori-
zontally above a metal half-space

required in the case of non-ferromagnetic conductors. A more detailed discussion of
the nonlinear behavior of ferromagnetic materials is given in Chap.3.

As noted above, the solution can be formulated in terms of the electric field. In
fact, since the system is cylindrically symmetric, only the φ̂-component of the field
is needed, as noted in (6.46). From Maxwell’s equations, the governing equation for
E is as given in (6.10) but here E has only an azimuthal component and

∇2E =
(

∇2 − 1

ρ2

)
Eφφ̂. (6.47)

To obtain (6.47), (10.29) has been applied, noting that derivatives with respect to φ
vanish due to axial symmetry. Expanding ∇2Eφ by use of (10.28) and inserting into
(6.10) gives (

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
+ ∂2

∂z2
− k2

)
Eφ = jωμJsφ (6.48)

where k2 = jωμσ. For phasor current I flowing in an infinitesimal coil that may
be described mathematically by delta functions at ρ = a and z = h, as depicted in
Fig. 6.10, Jsφ = Iδ(ρ − a)δ(z − h) and

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
+ ∂2

∂z2
− k2

)
Eφ = jωμIδ(ρ − a)δ(z − h). (6.49)

This is the equation governing the electric field due to a circular current loop with
axis perpendicular to a half-space conductor, in the quasi-static regime.
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Solution for E

The solution of (6.49) will be found by the method of separation of variables. Every-
where off the current loop, (6.49) may be written as

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
+ ∂2

∂z2
− k2i

)
Ei

φ = 0, (6.50)

where k2i = jωμiσi . The sub- or superscript i may take values 1, 2, and 3, and
refers to regions above the loop (z > h), below the loop but above the conductor
(0 < z < h), and inside the conductor (z ≤ 0), respectively, as labeled in Fig. 6.10.

Suppose the solution is variable-separable, of the form Ei
φ(ρ, z) = R(ρ)Zi (z).

The form of (6.50) indicates that the radial part of the solution does not change from
one region to another, so R(ρ) needs no subscript. Substitute this form into (6.50)
and divide by R(ρ)Zi (z) to obtain

1

R(ρ)

∂2R(ρ)

∂ρ2
+ 1

ρR(ρ)

∂R(ρ)

∂ρ
− 1

ρ2
+ 1

Zi (z)

∂2Zi (z)

∂z2
− k2i = 0. (6.51)

Variables have now been separated; terms in (6.51) depend either on ρ or on z. This
means that (6.51) can be separated into two equations by introducing a variable of
separation, κ, in the following way:

1

R(ρ)

∂2R(ρ)

∂ρ2
+ 1

ρR(ρ)

∂R(ρ)

∂ρ
− 1

ρ2
= −κ2 (6.52)

1

Zi (z)

∂2Zi (z)

∂z2
− k2i = κ2. (6.53)

Equation (6.52) is a first-order Bessel equation with general solution

R(ρ) =
∫ ∞

0
α(κ)J1(κρ)dκ, (6.54)

where J1(u) is the Bessel function of the first kind, of order 1, and α(κ) is a function
of the continuous variable κ whose form is determined according to the boundary
conditions of the system. A term containing Y1(u), the Bessel function of the second
kind, of order 1, is not needed because there is no source at ρ = 0. A discussion of
the properties of Bessel functions is given in the Appendix, Sect. 10.4. Since κ is a
continuous variable, the electric field is obtained by integrating over the range of κ.
Write (6.53) as

∂2Zi (z)

∂z2
− γ2

i Z(z) = 0 (6.55)
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where γi =
√

κ2 + k2i and the root with positive real part is taken. The general solu-

tion of (6.55) contains terms of the form eγi z and e−γi z . Hence, combiningwith (6.54),
the general solution of (6.51) may be written as

Ei
φ(ρ, z) = R(ρ)Zi (z) =

∫ ∞

0

[
Ai (κ)eγi z + Bi (κ)e−γi z

]
J1(κρ)dκ (6.56)

where α(κ) has been incorporated into Ai (κ) and Bi (κ). Consider in turn each of
the three regions labeled in Fig. 6.10. In region 1, above the current loop,

E1
φ(ρ, z) =

∫ ∞

0
B1(κ)e−κz J1(κρ)dκ. (6.57)

In region 2, below the current loop but above the half-space,

E2
φ(ρ, z) =

∫ ∞

0

[
A2(κ)eκz + B2(κ)e−κz

]
J1(κρ)dκ, (6.58)

and in region 3, the conductor,

E3
φ(ρ, z) =

∫ ∞

0
A3(κ)eγ3z J1(κρ)dκ. (6.59)

The coefficients are now determined by applying interface conditions (5.19) and
(5.21) between regions 1, 2, and 3 (see Exercise 5 at the end of this chapter). Note
that imposing continuity of the tangential component of the electric field (Eφ) is
straightforward at both interfaces, whereas the presence of the coil filament comes
into play in application of the condition on the tangential component of the magnetic
field (Hφ). In fact, the resulting interface conditions on Eφ are

E1
φ(ρ, h) = E2

φ(ρ, h), (6.60)

∂

∂z
E1

φ(ρ, z)

∣∣
∣∣
z=h

= ∂

∂z
E2

φ(ρ, z)

∣∣
∣∣
z=h

+ jωμIδ(ρ − a), (6.61)

E2
φ(ρ, 0) = E3

φ(ρ, 0), (6.62)

∂

∂z
E2

φ(ρ, z)

∣∣∣∣
z=0

= ∂

∂z
E3

φ(ρ, z)

∣∣∣∣
z=0

. (6.63)

Finally, the following expressions for Ei
φ are obtained:

E1
φ(ρ, z) = −1

2
jωμ0Ia

∫ ∞

0
J1(κa)J1(κρ)e−κ(h+z)

[
e2κh + (κ − γ)

(κ + γ)

]
dκ,

(6.64)
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E2
φ(ρ, z) = −1

2
jωμ0Ia

∫ ∞

0
J1(κa)J1(κρ)e−κh

[
eκz + (κ − γ)

(κ + γ)
e−κz

]
dκ,

(6.65)

E3
φ(ρ, z) = − jωμ0Ia

∫ ∞

0
J1(κa)J1(κρ)e−κh+γz κ

(κ + γ)
dκ. (6.66)

In these equations, γ3 = √
κ2 + jωμ3σ3 is replaced by γ = √

κ2 + jωμ0σ for sim-
plicity, where the root with positive real part is taken and, as before, ω is angular
frequency, μ0 = 4π × 10−7 H/m is the permeability of free space and σ is the con-
ductivity of the test-piece.

An efficient way of evaluating the integrals in the above equations for Eφ is to
truncate the domain of the electric field at a particular value of r, far from the loop,
where it has decayed to approximately zero. Truncating at approximately ten times
the coil radius usually gives sufficient accuracy. Then, the integral can be written in
terms of a summation based on the set of zeros of the function J1(u). This technique
is used extensively in [10] and references therein.

Calculation of Z

Now that the solution forE has been obtained, (6.64)–(6.66), the self-induced voltage
in the current filament can be obtained by integrating E around the filament. The
impedance can then be obtained by means of relation (4.25); Z = V/I. In general,
the voltage induced by field E in a current filament is, in phasor form,

V = −
∫

E · dl, (6.67)

where the path of the integral follows the current loop. In the case of the axially
symmetric single loop shown in Fig. 6.10,

V = −a
∫ 2π

0
Eφ(a, h)dφ = −2πaEφ(a, h) (6.68)

and V can be obtained immediately by inserting Eφ(a, h) from either (6.64) or (6.65)
into (6.68). Dividing by I then gives the self-induced impedance of the current
filament, Z δ ,

Z δ = jωμ0πa
2
∫ ∞

0
[J1(κa)]2

[
1 + (κ − γ)

(κ + γ)
e−2κh

]
dκ. (6.69)

Examining (6.69) it is seen that Z δ depends on the frequency of operation ω, the
coil cross-sectional area πa2, its position with reference to the sample, h, and the
sample conductivity σ. The above relation has been derived on the assumption of a
non-ferromagnetic test-piece, but if the conductor is ferromagnetic then
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Z δ = jωμ0πa
2
∫ ∞

0
[J1(κa)]2

[
1 + (μrκ − γ)

(μrκ + γ)
e−2κh

]
dκ, (6.70)

with γ = √
κ2 + jωμ0μrσ, and Z δ depends also on the relative permeability μr of

the test-piece. By letting h → ∞ the impedance of an isolated current filament, Z δ
0,

can be obtained readily:

Z δ
0 = jωμ0πa

2
∫ ∞

0
[J1(κa)]2dκ. (6.71)

From (6.70), the self-inductance L of the coil can be obtained via (6.1). Similarly,
the inductance L0 of the isolated coil can be obtained from (6.71).

Comparing (6.71) with (6.70) allows the contribution to Z δ from the test-piece to
be identified, as follows:

Z δ = Z δ
0 + jωμ0πa

2
∫ ∞

0
[J1(κa)]2 (μrκ − γ)

(μrκ + γ)
e−2κhdκ. (6.72)

6.3.4 Coil above a Half-Space Conductor

The impedance of a coil with finite cross section, shown in Fig. 6.11, is of more
practical importance than that for the current loop obtained in the previous section,
but can be obtained from it by the following process of superposition.

Electric Field

By the process of linear superposition, the fields due to n filamentary loops may be
summed to obtain the total field due to a coil with n turns, ET , assuming that the
current in each loop has the same phase and amplitude;

Fig. 6.11 Cross section
through the axis of a circular,
air-cored, eddy-current coil,
positioned horizontally
above a conductive
half-space
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ET (ρ, z) =
n∑

i=1

E(ρ, z|ai , hi ) (6.73)

where E(ρ, z|ai , hi ) is the electric field produced by the i th filamentary loop at
(as, hs). It is convenient to write this summation as an integral over the cross section
of the coil. Todo this, the superpositionof then δ-function coilsmust be approximated
by a continuous current density Js(as, hs) over the coil cross section and

ET (ρ, z) =
∫

coil cross section
E(ρ, z|as, hs)dS, (6.74)

where E(ρ, z|as, hs) is the electric field produced by the equivalent current density
Js in the coil and the subscript s indicates that this is the source current density. The
variables as and hs are, then, continuous variables in the radial and vertical directions,
respectively. For a coil with rectangular cross section and parameters as shown in
Fig. 6.11,

ET (ρ, z) =
∫ s+l

s

∫ ro

ri

E(ρ, z|as, hs)dasdhs. (6.75)

As an example of applying the process of linear superposition consider the electric
field in the region above the coil. This corresponds to region 1 in the case of the
circular current loop treated in Sect. 6.3.3 and shown in Fig. 6.10. Taking the result
for E1

φ(ρ, z) in the case of the δ-function coil, (6.64), and inserting that into integral
(6.75) gives

ET,1
φ (ρ, z) = −1

2
jωμ0I

∫ ∞

0
J1(κρ)

{∫ ro

ri

as J1(κas)das ×
∫ s+l

s
e−κ(hs+z)

[
e2κhs + (κ − γ)

(κ + γ)

]
dhs

}
dκ, (6.76)

where the order of integration has been reversed. Consider first the integral over as.

∫ ro

ri

as J1(κas)das = 1

κ2
J (κri,κro) (6.77)

where

J (x1, x2) =
∫ x2

x1

x J1(x)dx = π

2
x [J0(x)H1(x) − J1(x)H0(x)]

x2
x1 (6.78)

and Hn denotes the Struve function of order n. Guidance on computing J (x1, x2)
efficiently has been provided in [10]. Now consider terms in (6.76) that depend on
hs:
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∫ s+l

s
e−κ(hs+z)

[
e2κhs + (κ − γ)

(κ + γ)

]
dhs. (6.79)

Integrating over this variable is easily accomplished analytically such that, finally,

ET,1
φ (ρ, z) = −1

2
jωμ0I

∫ ∞

0

1

κ3
J (κri,κro)J1(κρ)e−κz

[
eκs(eκl − 1) − e−κs (κ − γ)

(κ + γ)
(e−κl − 1)

]
dκ. (6.80)

Expressions for ET,i
φ , in other regions, may be obtained in a similar manner.

Voltage in a Surface Coil near a Half-Space Conductor

The total voltage induced in a coil of n turns is

V = −2π
n∑

i=1

ai Eφ(ai , hi ), (6.81)

in which 2πai is the circumferential length and hi is the height above the half-space
of the i th current loop, and Eφ(ai , hi ) is the electric field of that loop. It is convenient
to approximate this summation by an integral over a turn density of N turns per unit
cross-sectional area of the coil. To do this it will be assumed that there is a constant
number of turns per unit cross-sectional area of the coil, such that

N = n

l(ro − ri)
(6.82)

where the notation of Fig. 6.11 is employed. Then,

V = − 2πn

l(ro − ri)

∫ s+l

s

∫ ro

ri

asEφ(as, hs)dasdhs. (6.83)

Z for Surface Coil near a Half-Space Conductor

An expression for the impedance of the surface coil near a half-space conductor is
now calculated using relation (4.25); Z = V/I, with V given by (6.83). Note, the
current density of the source in the case of the finite coil is Js = n I/[l(ro − ri)], not
to be confused with Js = Iδ(ρ − a)δ(z − h) as for the infinitesimal current loop.
This must be reflected in the expression for Eφ since E and J are related according
to the point form of Ohm’s Law, relation (2.15). Effectively, I in Eφ as expressed in
(6.64) or (6.65) should be replaced by n I/[l(ro − ri)] in the case of the finite coil
so that

Z = − 2πn2

l2(ro − ri)2

∫ s+l

s

∫ ro

ri

asEφ(as, hs)dasdhs. (6.84)



96 6 Signals and Coils

Now the integrals with respect to as and hs may be evaluated by inserting Eφ(as, hs)
into (6.84). To do this, the integral over hs is split into regions within the coil below
and above hs. In the region above hs the expression for E1

φ(ρ, z) is inserted whereas
in the region below hs the expression for E2

φ(ρ, z) is used. Explicitly,

Z = − 2πn2

l2(ro − ri)2

∫ ro

ri

as

[∫ hs

s
E2

φ(as, hs)dhs +
∫ s+l

hs

E1
φ(as, hs)dhs

]
das.

(6.85)
Inserting expressions for E1

φ(ρ, z) and E2
φ(ρ, z), the following integrals with respect

to as and hs emerge:

Z = jωμ0πn2

l2(ro − ri)2

∫ ∞

0

∫ ro

ri

[as J1(κas)]
2 das

∫ s+l

s

[
1 + (κ − γ)

(κ + γ)
e−2κhs

]
dhsdκ,

(6.86)
assuming that the current in each loop has the same phase and amplitude.

Treating the integrals in (6.86) as outlined in (6.77)–(6.79) gives the following
expression for the impedance of an air-cored surface coil of finite cross section near
a conductive half-space:

Z = jωμ0πn2

l2(ro − ri)2

∫ ∞

0

J 2(κri,κro)

κ5

(
2l + 1

κ

{
2e−κl − 2

+[e−2κ(l+s) + e−2κs − 2e−κ(l+2s)]
(

γ − κ

γ + κ

)})
dκ. (6.87)

Note, Z depends on the frequency of operation of the probe, ω, the coil dimensions,
ri, ro and l, the square of the number of turns, n2 (as in the case of the long solenoid,
Exercise 3 at the end of this chapter), the coil position with reference to the sample,
s, and the sample conductivity, σ. If the conductive half-space is also ferromagnetic,
with relative permeability μr, then γ = √

κ2 + jωμ0μrσ and the last term in (6.87)
is (γ − μrκ)/(γ + μrκ).

By letting s → ∞ in (6.87), the following expression for the impedance of an
isolated coil is obtained,

Z0 = 2 jωμ0πn2

l2(ro − ri)2

∫ ∞

0

J 2(κri,κro)

κ5

(
l + e−κl − 1

κ

)
dκ. (6.88)

From relation (6.87), the self-inductance of the loop L can be deduced via relation
(6.1). Similarly, from (6.88) the inductance of the isolated loop L0 can be obtained.
Taking (6.87) and (6.88) together, the contribution to the coil impedance of the test-
piece can be isolated.

Z = Z0 + jωμ0πn
2

l2(ro − ri)2

∫ ∞
0

J2(κri, κro)

κ6
[e−2κ(l+s) + e−2κs − 2e−κ(l+2s)]

(
γ − κ

γ + κ

)
dκ.

(6.89)



6.3 Surface Coil 97

Evaluation of (6.87), or of (6.89) with (6.88), for particular coil parameters ri, ro, l
and n2 allows calculation of impedance values such as those plotted as an impedance-
plane plot in Fig. 6.2, in which the effect of different material conductivities, and
of coil frequency, are illustrated. The impedance-plane plot of Fig. 6.3 illustrates
the effect of varying frequency, lift-off and permeability although for this figure the
impedance is plotted in normalized form, as Z/X0.

6.3.5 Ferrite Core

The strength of coupling between an eddy-current surface probe and the test-piece
can be increased by winding the coil around a ferrite core, rather than a purely
dielectric material such as machinable plastic. Ferrite cores are commonly used for
increasing the signal-to-noise ratio of a particular coil configuration. A schematic
diagram of a coil wound around a ferrite core is shown in Fig. 6.12. The ferrite
strengthens themagnetic flux density within the coil in proportion to the permeability
of the ferrite, (2.25) and (4.16), and consequently strengthens the electromagnetic
coupling between the probe coil and the test-piece. Ferrites are low conductivity but
high-permeability ferromagnetic materials. It is important that the core material has
low conductivity because, if it were conductive, eddy currents would be induced
by the coil in the core, as well as in the test-piece. The eddy currents induced in a
conductive corewould have the counterproductive effect of reducing the eddy-current
density in the test-piece, which must be avoided.

Manganese zinc (MnZn) ferrite is commonly used in eddy-current probe cores
and in transformer cores, where it is also desirable to minimize energy losses that
would reduce the efficiency of the transformer. The initial relative permeability of
MnZn ferrite is on the order of 1,000. The resistivity of MnZn ferrite is a function
of temperature and frequency. Resistivity is reduced as temperature increases, and
as frequency increases. Example values of the resistivity of MnZn ferrite are given
in Table 6.2.

Fig. 6.12 Cross section
through the axis of a circular,
ferrite-cored, eddy-current
coil
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Table 6.2 Resistivity as a
function of frequency for
MnZn ferrites [11]

Frequency (MHz) Resistivity (�m)

0.1 ≈2

1 ≈0.5

10 ≈0.1

100 ≈0.01

Fig. 6.13 Self-inductance of
an isolated ferrite-cored coil
as a function of μr of the
core, for core lengths
lc = l, 2l, 4l and for a
semi-infinite core

Fig. 6.14 Normalized
impedance-plane diagram
comparing Z for an air-cored
and a ferrite-cored coil above
a conductive half-space,
where �X = X − X0 and
�R = R − R0

Theodoulidis [12] and Lu et al. [13] have analyzed the impedance of a ferrite-
cored coil utilizing the truncated region eigenfuction expansion (TREE) method,
Sect. 7.3.1. Using this approach, the curves presented in Figs. 6.13 and 6.14 have
been calculated. Parameters of the coil, core and conductive half-space used to obtain
the calculated data plotted in Figs. 6.13 and 6.14 are given in Table 6.3. In Fig. 6.13
the self-inductance of an isolated ferrite-cored coil is plotted as a function of the
relative permeability of the ferrite, and for various core lengths. It can be seen that
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Table 6.3 Parameters for the numerical calculations whose data are presented in Fig. 6.13 and Fig.
6.14. Note that the core length and test-piece parameters are relevant only to Fig. 6.14

Coil parameters Value Ferrite core parameters Value

ro Outer radius (mm) 10.275 rc Core radius (mm) 3.880

ri Inner radius (mm) 5.025 lc Core length (mm) 29.95

l Length (mm) 18.180

s Coil stand-off (mm) 2.650 Test-piece parameters

h Probe lift-off (mm) 0.590 σ Conductivity
(MSm−1)

20.40

n Number of turns 776 μr Relative
permeability

1

L0 increases rapidly at first, as μr,core increases, but the improvement is only slight as
μr,core increases above about 100. Similarly, there is a rapid increase in L0 as the core
length is doubled with respect to the coil length, but lesser improvement is obtained
as the core length is doubled again and then made semi-infinite.

Figure 6.14 reveals the enhancement in Z and coupling parameter c, (6.3), when
a ferrite core with μr = 250 is inserted into the coil. One way of thinking about the
effect of the ferrite core on the coupling between the coil and the test-piece is that
the introduction of a ferrite core into a surface coil has an effect similar to that of
moving the coil windings closer to the test-piece.

6.3.6 Sources of Uncertainty

Nonideal Coil Behavior

It has been discussed in previous sections that an ideal eddy-current coil would be
a pure inductor. The inductance of the coil is the important circuit property as far
as inducing current in a test-piece is concerned, and in detecting perturbations in
the magnetic field associated with the induced eddy currents, due to the presence
of defects. The behavior of a real coil is not that of a pure inductor, due in part to
the fact that the current flowing in an eddy-current coil is not uniformly distributed
over the cross section of the coil. The current is restricted to flow within the coil
windings and, in fact, near the surface of thewindings for higher frequency excitations
(a consequence of the skin effect). These geometrical restrictions on the current
density causes the coil to exhibit inter-winding capacitance. In addition, a real eddy-
current coil exhibits finiteDC resistance due to the resistivity of themetal constituting
the coil windings, usually copper. Additional perturbations to the current density in
the coil arise from irregularity in the windings. Capacitance in the leads connecting
the probe to the power source also makes a significant contribution to the probe
impedance at higher frequencies.
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Fig. 6.15 Equivalent electrical circuit for an eddy current probe coil. R0 and L0 represent the
DC resistance and inductance of the probe coil, respectively. ZC is the impedance due to coupling
with an external conductor (the test-piece). RS and CS represent stray resistance and capacitance,
respectively, in the coil windings. CL accounts for capacitance in the leads connecting the probe
with the power source. Any other unspecified contributions to the impedance of the electrical circuit
are represented by RC . In the right-hand figure, all parallel circuit components are lumped together
in one parallel impedance, ZP [14]

An equivalent circuit that takes into account these various contributions to the
impedance of a real eddy current probe is shown schematically in Fig. 6.15 [14].
This circuit is more complicated than those considered in Chap. 4 but one familiar
feature is that due to the presence of capacitive elements in parallel with series
inductance and resistance, the probe resonates at a certain frequency f0. Resonance
manifesting in measured R and L is shown in Fig. 6.16 for one particular coil [14].
The value of f0 depends on the values of the different circuit components in each
individual coil, but f0 on the order of hundreds of kHz is typical for an eddy-current
coil. In order to avoid large uncertainties in precision eddy current measurements, a
rule of thumb is that the operating frequency of a probe should be less than one-third
of the resonance frequency.

In a routine EC inspection, the nonideal behavior of an EC coil is assumed to be
negligible provided that it is operated at a frequency sufficiently far below f0. For
benchmark experiments in EC research, however, whose purpose is to provide data
that validates a new theoretical treatment of a particular EC inspection, agreement
between theory and experiment is sought to within a few percent. Under these cir-
cumstances it is essential to correct for the nonideal behavior of the coil. A procedure
by which corrections for the nonideal coil behavior can be made was published by
Harrison, Jones, and Burke in 1996 [14]. To follow this procedure for an eddy-current
coil is in fact to characterize that coil since, during the correction procedure, effective
values for the coil’s outer radius and stand-off are determined. Essential steps in the
correction procedure are explained in the following two paragraphs for an air-cored
surface coil above a metal plate. The procedure is not restricted to this probe and
test-piece configuration, however, but may be adapted to work for other canonical
configurations for which impedance formulas are available [10].
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Fig. 6.16 Resistance and inductance of a coil, normalized with respect to the DC values, are shown
as a function of operating frequency. Resonance is observed at 142 kHz for this particular coil [14].
With kind permission from Springer Science and Business Media: J. Nondestr. Eval., vol. 15, 1996,
p. 26, Benchmark problems for defect size and shape determination in eddy-current nondestructive
evaluation, D. J. Harrison, L. D. Jones, and S. K. Burke, Fig. 4. Original caption: Isolated coil
inductance and resistance as a function of frequency. Deviations from the DC values are due to
nonideal coil behavior. The isolated coil resonant frequency is indicated by an arrow

Correction for DC Coil Resistance and Stray Capacitance Following the method
described in [14], the first step in making corrections for nonideal coil behavior is
to adjust experimental impedance measurements to eliminate the effects of stray
capacitance and DC resistance of the coil. The ideal admittance, obtained from the
DC values of coil resistance and inductance, R0 and L0 respectively, is

Yideal = 1

Z ideal
= 1

R0 + jωL0
. (6.90)

Writing Y0 as the experimentally measured admittance in air, where

Y exp
0 = 1

Z exp
0

, (6.91)

and subtracting Yideal gives the admittance of the equivalent parallel network, YP,
where

YP = Y exp
0 − Yideal. (6.92)
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Denoting the uncorrected impedance of the coil, measured with the coil over the
conductive plate, by Z exp

U (with associated admittance Y exp
U ), the corrected impedance

Z exp
C is obtained by subtracting the effect of the parallel circuit,

Z exp
C = 1

Y exp
U − YP

. (6.93)

The corrected impedance change in the coil due to the plate, �Z exp
C , is therefore

�Z exp
C = Z exp

C − Z ideal. (6.94)

In the case that this correction procedure is not followed, the impedance change in
the coil due to the plate is given by

�Z exp
U = Z exp

U − Z ideal. (6.95)

Effective Coil Parameters and Determination of Plate Conductivity Calculating
the self-inductance of an isolated EC coil using (6.88) and (6.1), with macroscop-
ically measured coil dimensions ri, ro and l as inputs, yields a value for L0 that is
typically a few percent higher than the value measured using an impedance analyzer
or other instruments [15]. The discrepancy can be explained by arguing that the
measured value of ro overestimates the equivalent value for an ideal coil, since it
represents the outermost extent of the windings of a nonuniform current distribution.
An equivalent but uniform current distribution would occupy a smaller volume than
the real, nonuniform current distribution in the coil. Perfect agreement between the
calculated and measured values of L0 can be obtained by introducing an effective
value for the coil outer radius, r effo < ro. In the correction procedure, the value of r effo
is determined by varying its value in the calculation of L0 until agreement with the
measured value is achieved.

Again due to nonuniformity of the current density in the coil, it is anticipated
that the measured stand-off of the coil will be smaller than that of an ideal coil for
which other parameters are identical. The coil impedance Z depends strongly on
s which means that this subtle effect is important if precise results are sought. An
effective value of the coil stand-off may be determined by minimizing the root mean
square (RMS) error between the experimentally measured impedance of the coil on
a metal plate, and values calculated using (6.87). The RMS error, ε, is computed
from the following relation, in which the superscript “exp” denotes experimentally
measured values, and “thry” denotes theoretically calculated values. N is the number
of frequency points.

ε2 = 1

N

N∑

j=1

⎧
⎨

⎩

[
�Rexp

j ( f j ) − �Rthry
j ( f j )

�Rexp
j ( f j )

]2

+
[

�Lexp
j ( f j ) − �L thry

j ( f j )

�Lexp
j ( f j )

]2
⎫
⎬

⎭

(6.96)
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Fig. 6.17 Change in coil impedance due to a brass plate, normalized to the ideal isolated coil
reactance X0 = ωL0. Circles (o) represent experimental data corrected for nonideal coil behavior.
Dots (·) represent uncorrected experimental data. Solid lines (—) represent theory with effective
parameters. Broken lines (- - -) represent theory with measured parameters [15]. From: Bowler,
N., Huang, Y.: Electrical conductivity measurement of metal plates using broadband eddy-current
and four-point methods. Meas. Sci. Technol. 16, 2193-2200 (2005), Fig. 2. ©IOP Publishing.
Reproduced with permission. All rights reserved

At the same time, the conductivity of the plate is permitted to varyuntil ε isminimized.
The probe stand-off and plate conductivity may be found simultaneously since ε
shows well-defined minima with respect to variations in both of these parameters
[14], especially at higher frequencies, Fig. 6.2.

In Fig. 6.17, the corrected experimental data, �Z exp
C of (6.94), and uncorrected

experimental data,�Z exp
U of (6.95), are shown for normalized coil impedance change

of a surface coil on a brass plate. For full details of this study see [15]. Also shown
in Fig. 6.17 are curves calculated using (6.87) with measured and effective param-
eters. The improvement in agreement between theory and experiment after making
corrections for DC coil resistance and stray capacitance, and refining coil parameters
ro and s, is dramatic. In Table 6.4, effective parameters obtained by this procedure
for measurements on brass and stainless steel plates are compared with dimensions
measured using digital calipers and conductivities measured using a Zetec MIZ-21A
eddy-current instrument [15]. Notice that the effective outer radius is slightly smaller,
and the effective stand-off is slightly greater, than valuesmeasuredwith calipers. This
is in keeping with the initial hypothesis that an equivalent but uniform current dis-
tribution occupies a smaller volume than the real, nonuniform current distribution
in the coil. The uncertainties in the effective value of s and in the fitted value of σ,
quoted in Table 6.4, were assumed to be given by the RMS error ε, as defined in
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Table 6.4 Measured and effective (or fitted) parameters. Lengths were measured using digital
calipers at appropriate stages during fabrication of the coil. Conductivity σ was measured using a
Zetec MIZ-21A eddy-current instrument

Parameter Measured Effective (geometric)
and fitted (material)

ro Outer radius (mm) 11.84 ± 0.01 11.43 ± 0.06

s Stand-off (mm)

Brass 1.00 ± 0.04 1.06 ± 0.03

Stainless steel 1.00 ± 0.04 1.01 ± 0.02

σ Conductivity (MSm−1)

Brass 16.2 ± 0.3 16.6 ± 0.4

Stainless steel 0.7 ± 0.3 1.31 ± 0.02

(6.96), for each plate. Regarding the significant difference between the measured and
fitted values of σ in stainless steel, given in Table 6.4, an independent measurement
of conductivity by a four-point alternating current potential drop method on the same
sample gave result 1.369 ± 0.007 MSm−1 [15].

Geometrical Sources of Uncertainty

Probably the most significant source of uncertainty in impedance measurements
made using an EC probe operating in absolute mode is the variation in distance
between the probe coil and the test-piece that may occur as the probe scans the
object surface. For a flat test-piece, this variation in probe and part separation may
be described as a variation in the probe lift-off and is often termed lift-off noise. Such
impedance changes are indicated in the impedance-plane plot of Fig. 6.3 which may
be calculated using the theory of Dodd and Deeds [8], Sect. 6.3.4.

Fig. 6.18 Schematic
diagram of surface EC coil
whose axis is tilted at angle
ϕ with respect to the
direction normal to the
test-piece surface



6.3 Surface Coil 105

Fig. 6.19 Normalized impedance-plane plot as a function of coil tilt angle ϕ. Coil and test-piece
parameters for the calculation are listed inTable 6.5.Note that in the axis labels�X here is equivalent
to X and �R here is equivalent to R − R0 as defined in (6.2). Reproduced with permission from
IEEE: IEEE Trans. Magn., vol. 41, 2005, p. 2453, Analytical model for tilted coils in eddy-current
nondestructive inspection, T. Theodoulidis, Fig. 8. Original caption: Impedance change display
showing tilt (•) and lift-off curves (
) in steps of 10◦ and 0.1 mm, respectively. The arc-shaped
curve is produced by varying excitation frequency at zero lift-off and zero tilt angle
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Table 6.5 Parameters for the numerical calculations whose data are presented in Figs. 6.19 and
6.20

Coil parameters Value

ro Outer radius (mm) 4

ri Inner radius (mm) 2

l Length (mm) 2

h Lift-off (mm) 1

n Number of turns 400

Test-piece parameters

σ Conductivity (MSm−1) 18.72

μr Relative permeability 1

A similar source of noise in the signal of an absolute surface probe is tilt of the
probe axis through an angle ϕ with respect to the direction normal to the surface
of the test-piece, as shown schematically in Fig. 6.18. Tilt commonly occurs when
a probe is scanned in contact with the test-piece because the friction between the
probe and test-piece drags upon the probe base, causing the probe to tilt toward the
direction of motion. In the context of Fig. 6.18 this would mean that the probe is
being moved to the right. Theodoulidis analyzed the impedance of a tilted probe [16]
and produced the impedance-plane plot shown in Fig. 6.19 for a coil and test-piece
whose parameters are listed in Table 6.5. From the figure, it can be seen that the
frequency response of Z at a particular angle of tilt gives rise to the same kind of
curve that we are familiar with from the impedance-plane plot for the normal coil,
Fig. 6.3. In Fig. 6.19, increasing the angle of tilt has a very similar effect on Z as
increasing lift-off, which is also plotted.

In Fig. 6.20, eddy current amplitude and streamlines are plotted for a coil tilted at
0, 30, 60 and 90◦ with respect to the normal to the test-piece surface. It can be seen
that the induced eddy currents become concentrated in the region directly below the
coil edge for ϕ = 90◦. This is the tangent coil configuration, which will be discussed
further in Sect. 6.4.

Another source of uncertainty in impedance measurements is the presence of
geometrical features in the test-piece, close to the inspection region. Examples of
these are edges, joints, rivets, metal support structures and rapid changes in geometry
such as corners. At worst, signals from these features completely mask the signal
from the sought defect, rendering it undetectable. Often it is necessary to adjust
the inspection frequency and choice of probe in order to minimize the signal from
geometrical features that may mask the presence of defects. Coil impedance changes
due to certain geometrical features are discussed in detail in Sect. 7.3.
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�Fig. 6.20 Eddy-current amplitude (left) and streamlines (right) by a coil tilted clockwise at 0 (top),
30, 60 and 90◦ (bottom) to the test-piece surface. Coil and test-piece parameters for the calculation
are listed in Table 6.5. Reproduced with permission from IEEE: IEEE Trans. Magn., vol. 41, 2005,
p. 2451, Analyticalmodel for tilted coils in eddy-current nondestructive inspection, T. Theodoulidis,
Fig. 6. Original caption: Amplitude contours (left) and streamlines (right) of eddy currents induced
on the surface of a conductive half-space by a cylindrical coil at various tilt angles. Coil rotation is
clockwise

6.4 Tangent Coil

The tangent coil is oriented such that its axis lies parallel with the surface of the
test-piece, as shown in Fig. 6.21. This is equivalent to tilting the axis of a surface
coil through ϕ = 90◦, Fig. 6.18. Referring to Fig. 6.20 it can be seen that the current
density in the test-piece below a single tangent coil is concentrated below the coil
windings, and is largely unidirectional in that region. Tangent coils are much less
widely used than surface coils due to their significantly poorer coupling with the
test-piece, but they find special application in plus-point probes, which combine two
tangent coils. The plus-point probe is discussed in Sect. 8.5.

The solution by which the impedance of a tangent coil can be calculated is a lim-
iting case of the solution for a tilted coil, which has been analyzed by Theodoulidis
as mentioned in Sect. 6.3.6. Due to the lesser practical importance of the tangent coil
configuration, when compared with the surface- and encircling-coil configurations,
the full theoretical details of the impedance calculation for the tangent coil are not
provided here. It can be observed from Fig. 6.19, however, that the calculated nor-
malized impedance change is reduced by a factor of approximately 10 when a coil is
tilted through 90◦ from the surface- to the tangent coil configuration. The interested
reader is referred to [10] and [16] for further information.
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Fig. 6.21 Cross section through the axis of a circular, air-cored, eddy-current tangent coil, posi-
tioned above a conductive half-space
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6.5 Encircling Coil

Encircling coils couple strongly with rod-like specimens, inducing eddy currents
that flow in an azimuthal direction (circularly) around the rod. The probe is designed
such that the test-piece may be passed through the middle of the coil, as shown in
Fig. 6.22.

The cylindrical test-piece geometry was studied extensively by Friedrich Förster
during the 1940s and beyond. Förster was a visionary who, during a study of ferro-
magnetic properties of metals in 1937, observed the influence of the earth’s magnetic
field on a test coil. This led Förster to develop highly sensitive measuring equipment
for magnetic fields, the scientific basis for which was put into place in the 1950s
and earned him the Victor de Forest Award in 1957. A summary of Förster’s work
relevant to the encircling coil is given in [17, Sect. 5: Analysis of encircling coil tests
of wire, rods and bars].

In contrast with the surface coil and test-piece geometry, there is no lift-off asso-
ciated with the encircling coil. Instead, the fill factor, η, indicates the fraction of the
cross-sectional area of the coil that is occupied by the test object:

η =
(

ρ1

ri

)2

, (6.97)

where ρ1 is the radius of the cylindrical test-piece and ri is the inner radius of the
encircling coil. If the encircling coil is concentric with the test-piece, then the fill
factor is an indicator of the strength of coupling between the coil and the test-piece.
In Fig. 6.23, an example impedance-plane plot for a coil encircling a long, non-
ferromagnetic, cylindrical rod is shown. Note that this impedance-plane diagram is

Fig. 6.22 Cross section
through the axis of a circular
coil with finite cross section,
coaxial with a solid metal
circular cylinder (test-piece)
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ro
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z

ρ1

z = h + l

z = h

region 1 2 1′
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Fig. 6.23 Normalized
impedance-plane plot for a
coil with inner radius ri
encircling a cylindrical,
non-ferromagnetic test-piece
with radius ρ1. Solid lines
(—–) represent the complex
impedance of the probe as a
function of rod conductivity,
σ, or frequency, f . Broken
lines (- - -) represent the
effect of increasing the
radius of the encircling coil
ri. Dotted lines (· · · ) indicate
the effect of changing the
sample radius ρ1

presented in a form in which the data is normalized with respect to the reactance
of the isolated coil, X0. Comments made around (6.2) on the general shape of the
normalized impedance-plane plot for a surface coil above a half-space conductor,
Fig. 6.3, are applicable here. Figure 6.23 allows us to predict the way in which the
coil impedance changes if either the sample diameter varies or a coil with different
diameter is used. The outer curved solid line shows the locus of impedance values of
a coil when it is tight to the test-piece (when the test-piece fills the coil and η = 1).
The arrow indicates the way in which the impedance changes as either the test-piece
conductivity or the frequency of the test are increased. From any fixed point on the
outer solid curve, defined by particular values of frequency and conductivity, the
dashed lines show how the impedance of the coil changes (|Z | decreases) as the coil
diameter increases, and the dotted lines show how |Z | decreases as the diameter of
the test-piece decreases.

In Fig. 6.24, an example impedance-plane plot for a coil encircling a long, ferro-
magnetic, cylindrical rod is shown. As for Fig. 6.23, this impedance-plane diagram
is presented in a form in which the data is normalized with respect to the reactance
of the isolated coil, X0. Again, the arrow indicates the way in which the impedance
changes as either the test-piece conductivity or the frequency of the test is increased.



6.5 Encircling Coil 111

Fig. 6.24 Normalized
impedance-plane plot for a
coil with inner radius ri
encircling a cylindrical,
ferromagnetic test-piece with
radius ρ1. Solid lines (—–)
represent the complex
impedance of the probe as a
function of rod conductivity,
σ, or frequency of the test, f .
Arrows (→) represent the
effect of increasing the
radius of the test-piece ρ1, or
the test-piece relative
permeability [17]

Amajor difference between these curves and those for the case of non-ferromagnetic
rods is that the magnitudes of both the real and imaginary components of the coil
impedance, for ferromagnetic rods, are increased in proportion to μr � 1. Note
that the air point, corresponding to the absence of any test-piece, is still found at
(0, 1) as in Fig. 6.23 but the scale of the impedance change due to the ferromag-
netic test-piece is much larger than for the non-ferromagnetic case for the reasons
just mentioned. When the fill factor is reduced, the real and imaginary components
of the coil impedance are reduced in direct proportion to the reduction in the fill
factor. This means that a change in impedance due to reduction in fill factor cannot
be separated from a change due to reduction in test-piece permeability. Fortunately,
however, this common direction is usually at a large phase angle compared with
changes due to cracks and other longitudinal discontinuities, allowing the latter to
be detected. Finally, when the fill factor η = 1 the intercept of the impedance locus
with the vertical axis gives an approximate value for the relative permeability μr of
the rod.

In a similar manner to the developments presented in Sects. 6.3.3 and 6.3.4, for
the circular current filament and the coil above a half-space conductor, electromag-
netic analysis of a circular current filament and a coil encircling a solid cylindri-
cal conductor are presented in the following sections. Formulas are developed by
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which the value of coil impedance can be calculated using relevant input parame-
ters. Impedance-plane diagrams such as that shown in Fig. 6.23 can be plotted by
evaluating the formulas obtained.

6.5.1 Circular Current Loop Encircling a Solid Cylindrical
Conductor

Governing Equation for E

Consider a filamentary circular current loop, radius a, exterior to a cylindrical con-
ductor with radius ρ1 and conductivity σ, Fig. 6.25. The conductor in this case is
non-ferromagnetic. As in Sect. 6.3.3, the system is axially symmetric so that the cur-
rent density in the loop is entirely azimuthal, (6.45), immediately implying that the
electric field is also purely azimuthal, (6.46). Again, it is assumed that the conduc-
tor is linear, isotropic and homogeneous such that constitutive relations (2.25) and
(2.33) hold. Formulating the solution in terms of the electric field, (6.48) is obtained
as before. Arbitrarily assigning the plane of the current loop to be z = h, the follow-
ing governing equation for the electric field due to a circular current loop coaxial
with a circular conductive cylinder is obtained in the quasi-static regime;

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
+ ∂2

∂z2
− k2

)
Eφ = jωμIδ(ρ − a)δ(z − h). (6.98)

Solution for E

The solution of (6.98) will be found by the method of separation of variables. Every-
where off the current loop, (6.98) may be written

Fig. 6.25 Cross section
through the axis of a circular,
infinitesimal current loop,
coaxial with a solid metal
cylinder

�

� �

� �

� ��

air

current loop

cylinder

a

z

× z = h

ρ1

region 1 2 1′



6.5 Encircling Coil 113

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
+ ∂2

∂z2
− k2i

)
Ei

φ = 0, (6.99)

where k2i = jωμiσi . The sub- or superscript i may take values 1, 2 and 1′, and refers to
regions within themetal cylinder (ρ < ρ1), outside the cylinder but within the current
filament (ρ1 < ρ < a), and exterior to the current filament (ρ ≥ a), respectively, as
labeled in Fig. 6.25.

Suppose the solution is of the form Ei
φ(ρ, z) = Ri (ρ)Z(z). The longitudinal part of

the solution, Z(z), does not change from one region to another so needs no subscript.
(Note that this case is complementary to the case of the planar conductor, Sect. 6.3.3,
in which the subscript attaches to the longitudinal part of the solution.) Substitute
this form into (6.99) and divide by Ri (ρ)Z(z) to obtain

1

Ri (ρ)

∂2Ri (ρ)

∂ρ2
+ 1

ρRi (ρ)

∂Ri (ρ)

∂ρ
− 1

ρ2
+ 1

Z(z)

∂2Z(z)

∂z2
− k2i = 0. (6.100)

Variables have been separated, i.e., terms in (6.100) depend either on ρ or on z. This
means that (6.100) can be separated into two equations by introducing a variable of
separation, κ, in the following way:

1

Ri (ρ)

∂2Ri (ρ)

∂ρ2
+ 1

ρRi (ρ)

∂Ri (ρ)

∂ρ
−

(
1

ρ2
+ k2i

)
= κ2 (6.101)

1

Z(z)

∂2Z(z)

∂z2
= −κ2. (6.102)

The general solution for (6.102) is conveniently written

Z(z) = A(κ) sin κ(z − h) + B(κ) cosκ(z − h) = B(κ) cosκ(z − h) (6.103)

where A(κ) and B(κ) are functions of the continuous variable κ. I have immediately
put A(κ) = 0 due to the symmetry of the system about the plane of the current
filament, z = h. The form of B(κ) will be determined by other boundary conditions.
The differential equation (6.101) governing the radial term has the following general
solution,

Ri (ρ) = Ci (κ)I1(γiρ) + Di (κ)K1(γiρ) (6.104)

where I1(u) and K1(u) are the modified Bessel functions of the first and second

kinds of order 1, respectively (see Sect. 10.4), and γi =
√

κ2 + k2i where the root

with positive real part is taken. Note, the sign of κ2 has been switched in (6.101)
and (6.102), compared with (6.52) and (6.53), to preserve the definition of γi . One
important consequence of this is that the general solution (6.103) is written in terms
of the sine and cosine dependence on the spatial variable z, rather than in terms of an
exponential dependence on z as in the equivalent general solution for the current loop
above a half-space conductor, (6.56). For similar reasons the general solution (6.104)
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is written in terms of modified Bessel functions rather than Bessel functions as in
(6.54). Since κ is a continuous variable, the electric field is obtained by integrating
over the range of κ. Hence, combining (6.103) with (6.104), the general solution of
(6.100) may be written

Ei
φ(ρ, z) = Ri (ρ)Z(z) =

∫ ∞

0
[Ci (κ)I1(γiρ) + Di (κ)K1(γiρ)] cosκ(z − h) dκ,

(6.105)
where B(κ) has been incorporated into Ci (κ) and Di (κ). Considering in turn each
of the three regions labeled in Fig. 6.25, in region 1—the conductor,

E1
φ(ρ, z) =

∫ ∞

0
C1(κ)I1(γ1ρ) cosκ(z − h) dκ. (6.106)

In region 2, between the current loop and the conductor,

E2
φ(ρ, z) =

∫ ∞

0
[C2(κ)I1(κρ) + D2(κ)K1(κρ)] cosκ(z − h) dκ, (6.107)

and in region 1′, beyond the current loop,

E1′
φ (ρ, z) =

∫ ∞

0
D1′(κ)K1(κρ) cosκ(z − h) dκ. (6.108)

The coefficients are now determined by applying interface conditions between
regions 1, 2 and 1′ in a process analogous to that resulting in (6.60)–(6.63) in
Sect. 6.3.3. In particular,

E1
φ(ρ1, z) = E2

φ(ρ1, z), (6.109)

∂

∂ρ
E1

φ(ρ, z)

∣
∣∣∣
ρ=ρ1

= ∂

∂ρ
E2

φ(ρ, z)

∣
∣∣∣
ρ=ρ1

, (6.110)

E2
φ(a, z) = E1′

φ (a, z), (6.111)

∂

∂ρ
E2

φ(ρ, z)

∣∣∣∣
ρ=a

= ∂

∂ρ
E1′

φ (ρ, z)

∣∣∣∣
ρ=a

+ jωμIδ(z − h). (6.112)

Finally, the following expressions for Ei
φ are obtained:

E1
φ(ρ, z) = − jωμ0Ia

π

∫ ∞

0
K1(κa)I1(γ1ρ)

1

ρ21D
cosκ(z − h) dκ, (6.113)

E2
φ(ρ, z) = − jωμ0Ia

π

∫ ∞

0
K1(κa) {I1(κρ)+

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]
K1(κρ)

K1(κρ1)

}
cosκ(z − h) dκ, (6.114)
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E1′
φ (ρ, z) = − jωμ0Ia

π

∫ ∞

0
K1(κa)K1(κρ)

{
1

K1(κρ1)
×

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]
+ I1(κa)

K1(κa)

}
cosκ(z − h) dκ, (6.115)

in which

D = 1

ρ1
[κI1(γ1ρ1)K0(κρ1) + γ1 I0(γ1ρ1)K1(κρ1)] . (6.116)

One method for evaluating the integrals in the above equation is mentioned in this
text following (6.66).

Calculation of Z

As developed in Sect. 6.3.3 for a current filament above a half-space conductor, the
self-induced voltage in the current filament coaxial with a cylindrical rod can be com-
puted by integrating E, (6.114) or (6.115), around the current loop. By analogy with
(6.68), and dividing by phasor current I to give impedance, (4.25), the impedance
is then obtained by means of

Z δ = −2πa

I Eφ(a, h). (6.117)

Inserting Eφ(a, h), determined from either (6.114) or (6.115) into (6.117) yields the
self-induced impedance of the current filament, Z δ:

Z δ = 2 jωμ0a
2
∫ ∞

0
[K1(κa)]2

{
1

K1(κρ1)

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]
+ I1(κa)

K1(κa)

}
dκ.

(6.118)
We see that Z δ depends on the frequency of operation ω, the coil cross-sectional
area a2, its position with reference to the sample, ρ1, and the sample conductivity
σ. The above relation has been derived on the assumption of a non-ferromagnetic
test-piece, but if the conductor is in fact ferromagnetic then γ1 should be replaced by
γ′
1/μr1 = √

κ2 + jωμ0μr1σ1/μr1, and Z δ depends also on the relative permeability
of the test-piece, μr1. From relation (6.118) the self-inductance L of the filament
can be easily obtained via relation (6.1). Lastly, the impedance of the completely
isolated current filament (in the absence of a test-piece), Z δ

0, can be obtained by
letting σ1 → 0 in (6.118), i.e., γ1 → κ, to obtain

Z δ
0 = 2 jωμ0a

2
∫ ∞

0
K1(κa)I1(κa) dκ. (6.119)

Comparing (6.119) with (6.118) allows us to separate out the contribution to Z δ from
the test-piece, as follows.
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Z δ = Z δ
0 + 2 jωμ0a

2
∫ ∞

0

[K1(κa)]2
K1(κρ1)

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]
dκ. (6.120)

Lastly, as a point of interest, by comparing result (6.119)with (6.71) it can be deduced
that ∫ ∞

0
K1(x)I1(x)dx = π

2

∫ ∞

0
[J1(x)]2dx .

6.5.2 Coil Encircling a Solid Cylindrical Conductor

Following a process of superposition, the results for the current loop encircling a
solid cylindrical conductor, obtained in the previous section, can be extended to
obtain the impedance of a coil with finite cross section, shown in Fig. 6.22. Much of
this development is similar to that given in Sect. 6.3.4, for a surface coil with finite
cross section positioned above a half-space conductor.

Electric Field

Assuming as before that the current in each loop has the same phase and amplitude,
the electric field due to a coil encircling a solid cylindrical conductor can be written,
similarly to (6.75);

ET (ρ, z) =
∫ h+l

h

∫ ro

ri

E(ρ, z|as, hs)dasdhs (6.121)

wherein as and hs are continuous variables in the radial and vertical directions within
the coil cross section.

Voltage in a Coil Encircling a Cylindrical Rod

The total voltage induced in a coil of n turns is given by (6.81) in which 2πai is
the circumferential length and hi is, in this case, the height of the i th current loop
above the plane z = 0, Fig. 6.22. Eφ(ai , hi ) is the electric field of the i th current
loop. Replacing the summation by an integral over the cross section of the coil, an
equation similar to (6.83) is obtained wherein the notation of Fig. 6.22 is employed:

V = − 2πn

l(ro − ri)

∫ h+l

h

∫ ro

ri

asEφ(as, hs)dasdhs. (6.122)

Z for a Coil Encircling a Cylindrical Rod

Following a development similar to that for (6.84), the following equation for
impedance of a coil encircling a cylindrical rod is obtained:

Z = − 2πn2

l2(ro − ri)2

∫ h+l

h

∫ ro

ri

asEφ(as, hs)dasdhs. (6.123)
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Now the integrals with respect to as and hs may be evaluated by inserting
Eφ(as, hs) into (6.123). To do this, the integral over as is divided into two, cov-
ering coil regions within and beyond as. In the region within as the expression for
E2

φ(ρ, z) is inserted whereas in the region beyond as the expression for E1′
φ (ρ, z) is

used. Explicitly,

Z = − 2πn2

l2(ro − ri)2

∫ h+l

h

[∫ as

ri

asE
2
φ(as, hs)das +

∫ ro

as

asE
1′
φ (as, hs)das

]
dhs.

(6.124)
Inserting expressions for E2

φ(ρ, z) and E1′
φ (ρ, z) into (6.124) and changing the

order of integration, the following integrals with respect to as and hs emerge:

Z = 2 jωμ0n2

l2(ro − ri)2

∫ ∞

0

∫ h+l

h

∫ ro

ri
a2s {K1(κas)I1(κas)

+ [K1(κas)]2
K1(κρ1)

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]}

cosκ(hs − h) dasdhsdκ, (6.125)

assuming that the current in each loop has the same phase and amplitude. Integration
with respect to hs is straightforward and yields the following.

Z = 2 jωμ0n2

l2(ro − ri)2

∫ ∞

0

∫ ro

ri

a2s
κ

{K1(κas)I1(κas)

+ [K1(κas)]2
K1(κρ1)

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]}
sin κl dasdκ. (6.126)

Recognizing that (6.126) can be written as the sum of the impedance of the isolated
coil, Z0, and a term representing the effect of the conductor, the following is obtained.

Z = Z0 + 2 jωμ0n2

l2(ro − ri)2

∫ ∞

0

∫ ro

ri

a2s
κ

[K1(κas)]2
K1(κρ1)

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]
sin κl dasdκ,

(6.127)
where

Z0 = 2 jωμ0n2

l2(ro − ri)2

∫ ∞

0

∫ ro

ri

a2s
κ
K1(κas)I1(κas) sin κl dasdκ. (6.128)

Finally, the expression for Z can be simplified by expressing the integral with respect
to as as follows. ∫ ro

ri

[asK1(κas)]2das = 1

κ4
K 2(κri,κro) (6.129)

where

K 2(x1, x2) =
∫ x2

x1

[xK1(x)]2dx . (6.130)
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This integral must be evaluated numerically but allows us to write the following
expression for the impedance of a coil of finite cross section coaxial with and encir-
cling a solid cylindrical conductor.

Z = Z0 + 2 jωμ0n2

l2(ro − ri)2

∫ ∞

0

K 2(κri,κro)

κ5

1

K1(κρ1)

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]
sin κl dκ.

(6.131)
As already noted in Sect. 6.3.4, Z depends on the probe’s frequency of operation,

ω, the coil dimensions, ri, ro and l, the square of the number of turns, n2, the coil
position with reference to the sample—here specified by ri and ro, and the sample
conductivity, σ. Evaluation of (6.131) for particular coil and sample parameters
allows impedance-plane diagrams such as that shown in Fig. 6.23 to be developed.
The frequency-dependent curves shown in Fig. 6.23 are obtained by varying ω and
the fill factor-dependent curves by varying ri or ρ1 in (6.131).

6.5.3 Sources of Uncertainty

In a system of cylindrical symmetry, such as a coil encircling a cylindrical conductor,
two sources of geometrical uncertainty exist; coil tilt and wobble. Tilt occurs when
the coil axis tilts through a finite angle with respect to the axis of the test-piece
and has been analyzed in detail by Theodoulidis and Skarlatos [18]. Wobble occurs
when the coil axis is laterally displaced from the axis of the test-piece and has been
analyzed by Theodoulidis [19] in the case of a bobbin coil (Sect. 6.6.1).

6.6 Bobbin Coil

Bobbin coils offer effective coupling with the interior of tube-like specimens. A
bobbin coil is oriented with its axis parallel to the axis of the cylindrical cavity
(e.g., a tube interior or a bore hole) in a test-piece and is designed to be threaded
through it. Bobbin probes are very commonly used in differential mode for optimum
defect detection, as discussed in Sect. 8.3. One application in which bobbin probes
are commonly used is in the inspection of nuclear power plant steam generator
tubes. Threading a bobbin probe through a tube offers shorter inspection time than
using a rotating surface probe, which is common in borehole inspection, Fig. 6.5. A
schematic diagram of a bobbin coil coaxial with a borehole is shown in Fig. 6.26.

In a definition analogous to that given in (6.97) for the encircling coil geometry,
the fill factor of the bobbin coil, ηb, is defined as follows, with reference to the
notation of Fig. 6.26.

ηb =
(
ro
ρ1

)2

. (6.132)
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Fig. 6.26 Cross section through the axis of a circular bobbin coil coaxial with the bore of the
test-piece

Since the bobbin coil is primarily applied in tube inspection, rather than in borehole
inspection, a detailed discussion of the impedance calculation for the bobbin coil is
deferred to Sect. 7.2.6 where test-pieces with more than one interface (in this case the
interior and exterior surfaces of the tube) are considered. Example impedance-plane
plots for a bobbin coil internal to a tube are given in Fig. 7.6 for a tube with fixed
ratio of wall thickness to outer diameter, and in Fig. 7.7 for a bobbin coil internal to
a tube with varying ratio of wall thickness to outer diameter. The curves plotted in
those figures are also applicable to coils encircling tube-like test samples.

6.6.1 Sources of Uncertainty

For the configuration of a bobbin probe inserted into a tube or a borehole, a source
of noise in the measurement may be probe “wobble”. This is a type of geometrical
noise, caused by the movement of the probe. Ideally, the coil is coaxial with the tube,
but wobble of the probe may cause the coil axis to shift a finite distance from the tube
axis, as shown in Fig. 6.27. Some of the effects of probe wobble on the impedance-
plane plot are shown in Fig. 6.28, at three distinct frequencies. For comparison, the
effects of 10% inner diameter (ID) or outer diameter (OD) wall thinning of the
tubular test-piece are also shown. Noting that the “ f90” frequency is defined as the
frequency that provides approximately 90◦ phase separation between shallow ID and
OD defects, the three frequencies for which comparisons are plotted in Fig. 6.28 are
f90/2, f90 and 2 f90. The frequency f90 and may be computed using the empirical
expression

f90 = 516σ

T 2
(6.133)
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Fig. 6.27 Cross section through the axis of a circular bobbin coil that is offset by distance d from
the axis of the test-piece bore

where σ is in %IACS, T is the tube wall thickness in mm and the result is in kHz.
Also shown in Fig. 6.28 is the sum of the ID and OD signals with the signal due to

wobble at maximum axis offset. It can be seen that the phase angle between ID and
OD thinning increases as frequency increases and that the amplitude of the OD signal
decreases with increasing frequency due to the skin effect. For OD wall thinning the
deleterious effect of wobble on the flaw signal can be seen clearly at frequency 2 f90,
for which the signal due to probe wobble overwhelms that due to the flaw.

6.7 Summary

This chapter has dealt with classical solutions to canonical problems in the theory of
eddy-current nondestructive evaluation and has examined sources of uncertainty in
ECNDE. The impedance of an EC coil was expressed for test-pieces with half-space
(Cartesian) and rod or borehole (cylindrical) geometries. Upon this foundation, the
effect of introducing additional boundaries to the test-piece is considered in Chap. 7.
Following this approach, the EC inspection of plates, tubes, surface coatings or
material under surface coatings can be modeled. A method for modeling the effect
of test-piece edges on the EC signal is also introduced. The ability to model the effect
of such geometrical features on the EC signal provides a pathway for separating such
effects from a flaw signal.



6.8 Exercises 121

Fig. 6.28 �Z due to 10% inner diameter (ID) and 10% outer diameter (OD) uniform thinning,
wobble (WB), and their superposition for maximum offset, at three frequencies: a f90/2, f90 and
2 f90 [19]. With kind permission from Springer Science and Business Media: Res. Nondestruct.
Eval., vol. 4, 2002, p. 120, Analytical modeling of wobble in eddy-current tube testing with bobbin
coils, T. P. Theodoulidis, Fig. 2. Original caption: Impedance changes due to 10%ID and 10%OD
uniform thinning, wobble, and their superposition for maximum offset, at three frequencies: (a)
f90/2; (b) f90; (c) 2 f90

6.8 Exercises

1. Show that the magnetic field in a region of space that contains a phasor current
source Js (varying as the real part of e jωt ) and a conductor carrying induced
eddy-current density Jec = σE, where σ is the conductivity of the metal, obeys
the following governing equation

(∇2 − jωμσ
)
H = −∇ × Js.

Hint: Follow a method similar to that used to determine (6.10), but now begin by
taking the curl of (6.6) rather than of (6.5).
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2. Apply theBiot–Savart Law toobtain the following expression for Bz along the axis
of a circular current loop with radius a carrying current I , whose axis coincides
with that of a cylindrical coordinate system.

Bz = μ0 I

2

a2

(a2 + z2)3/2
(6.134)

3. A long solenoid consists ofn similar loops ofwire, per unit length, eachwith radius
a. The axis of the solenoid coincides with the z-axis of a cylindrical co-ordinate
system. The magnetic field inside the solenoid is uniform over its cross-sectional
area and is given by

Hz = nI, (6.135)

where I is the magnitude of the current flowing in the wire. Show that the induc-
tance per unit length of a solenoid filled with a ferromagnet whose permeability
is μ is given by

L = μπ(na)2 (6.136)

and that the normalized impedance of the coil per unit length is given by

Z

X0
= R0

ωμ0π(na)2
+ jμr (6.137)

where R0 is the DC resistance of the coil. Plot Z/X0 on an impedance-plane plot.
4. Take the curl of the vector potential given in (6.36) to obtain the expressions for

Br and Bz given in (6.42) and (6.43).1 Show that, on the axis, the result for Bz of
(6.43) reduces to that obtained by the Biot–Savart Law, Exercise 2.

5. We know from interface conditions (Sect. 5.6) that the tangential component of
the electric field must be continuous at a boundary. Show that Eφ(r, z) for the
filamentary coil above a half-space conductor in (6.64)–(6.66) is continuous at
z = h and z = 0.

6. Suppose the conductive half-space interrogated by a filamentary current loop, as
in Sect. 6.3.3, now has a surface layer with depth d and conductivity σ3 (region
3, −d ≤ z ≤ 0). The substrate conductivity is now σ4 (region 4, z ≤ −d). Hence
γi = √

κ2 + jωμ0σi with i = 3, 4. In this case,

1Hint: In definitions (6.37) and (6.38), k is known as the modulus of these integrals. The following
functional relations between elliptic integrals are given in Eqs. 8.123.2 and 8.123.4 of [20].

dK (k)

dk
= E(k)

kk′2 − K (k)

k
dE(k)

dk
= E(k) − K (k)

k

In these relations, k′ is known as the complementary modulus and k′ = √
1 − k2; k2 < 1.
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E1
φ(ρ, z) = −1

2
jωμ0 I a

∫ ∞

0
J1(κa)J1(κr)e

−κ(h+z)

×
{
e2κh + (κ + γ3)(γ3 − γ4) + (κ − γ3)(γ3 + γ4)e2γ3d

(κ − γ3)(γ3 − γ4) + (κ + γ3)(γ3 + γ4)e2γ3d

}
dκ.

(6.138)

Identify two limits in which this result should reduce to the result for the half-
space conductor and show that (6.138) does indeed reduce to (6.64) in these limits.

7. Show how the factor μr appears in relation (6.70), in the case of a ferromagnetic
test-piece.
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Chapter 7
Layered and Truncated Conductors

Abstract The subject of this chapter is the eddy-current inspection of test-pieces
that are coated, layered, or truncated. It is presumed that various surfaces of the
test-piece significantly perturb the induced eddy currents and that the effect of those
surfaces must be taken into account to properly interpret the observed eddy-current
probe coil impedance. The discussion includes a description of impedance-plane
diagrams for surface coils, encircling coils, and bobbin coils in relation to coated,
layered, or truncated test-pieces with planar or cylindrical surfaces. The effect of the
test-piece edge on the observed probe coil impedance is also described.

7.1 Introduction

In this chapter, the effect on the impedance of the eddy-current coil of a test-piecewith
multiple physical boundaries or interfaces is discussed. In Chap. 6, the discussion
was limited to fundamental cases described by one physical boundary—either flat or
cylindrical—at the surface of a homogeneous conductor. Generally, coil impedance
can be expressed for an arbitrary number of layers in the sample, each with its
particularmaterial propertiesσi andμi . Such expressions of impedance are presented
here for a multilayered test-piece, whose interfaces are all (i) parallel planes and (ii)
concentric cylinders. Impedance expressions are also presented for cases that are
important in practical terms, i.e., for simplified geometries in which the test-piece
has two layers. One of these cases is that of the coated conductor; a half-space or
cylinder with a coating which may or may not be conductive, and the other case is
that of the plate or tube; a conductor of finite thickness. It is worth acknowledging
that no conductor is truly a half-space, i.e., infinitely thick, but in the context of
EC NDE a half-space is a conductor with a planar inspection surface, whose other
surfaces (sides and back-plane) are sufficiently remote that they do not disturb the
eddy currents significantly. As in Chap.6, the spherical test-piece geometry is not
discussed explicitly here. Readers interested in a treatment of eddy-current probe
response to layered spheres are directed to [1, 2].

In Sect. 7.2, expressions are provided for the impedance of coils that exhibit
cylindrical symmetry in relation to these test-pieces. In Sect. 7.3, a description is

© Springer Science+Business Media, LLC, part of Springer Nature 2019
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provided of methods that can be applied to analyze inspection scenarios in which
the conductors are truncated in some manner; a plate edge or the end of a tube, for
example. Impedance-plane plots are presented in several cases.

For geometries yet more complex than these, such as a coil interacting with a rivet
in a layered aircraft skin, full numerical modeling in the form of finite- or boundary-
element approaches are applicable. Numerous approaches to computational electro-
magnetics in the context of EC NDE are discussed by Sabbagh et al. [3].

7.2 Layered Conductors

The important work of Dodd and Deeds published in 1968 [4] involves analyses of
the impedance of a surface coil positioned above a half-space conductor, discussed in
Sect. 6.3.4, and of a coil encircling a rod conductor, discussed in Sect. 6.5.2. In both
configurations, the treatment presented in [4] accommodates a single surface layer
of a different material coating the test-piece. In fact, since the material properties
assigned to the surface layer or substrate are entirely arbitrary in the analysis, the
impedance of a surface coil positioned above a plate or of a coil encircling a tube
conductor can also be computed by assigning the conductivity of the substrate to
be zero. Extending this work to test-pieces with an arbitrary number of layers, co-
author Cheng joined Dodd and Deeds and published analyses in 1971 and 1974
concerning the impedance of an eddy current surface coil above a planar conductor
composed of an arbitrary number of layers [5] and of an eddy current coil coaxial
with an arbitrary number of cylindrical conductors [6]. The former, [5], is useful
not only for studying the impedance of a surface coil in the vicinity of a layered
planar conductor, discussed in Sect. 7.2.1, but also of a plate sufficiently thin for its
back surface to influence the value of measured coil impedance, which itself might
be composed of multiple layers. The latter, [6], is applicable to a coil encircling a
solid circular cylindrical conductor, discussed in Sect. 6.5.2, and to a coil internal
to and coaxial with a borehole in a conductor. The fact that an arbitrary number of
cylindrical conductors is treated, Sect. 7.2.4, allows the analysis to be applied also
to a coil external to a layered cylindrical rod, Sect. 7.2.5, to a coil coaxial with a tube
(either internal or external), Sect. 7.2.6, and to a coil internal to a layered borehole,
not discussed explicitly in this text.

7.2.1 Planar Conductor with an Arbitrary Number of Layers

The impedance of a surface coil positioned above a planar conductorwith an arbitrary
number of layers, shown schematically in Fig. 7.1, is given by



7.2 Layered Conductors 127

�
�

�

�
�

�

� �

� �

�

�

�

�

�

air
1

layers

m

m + 1

layers

L

coil
ri

ro

l

s

...

...

z

z = 0
z = −t1

z = −tm−1

z = −tm
z = −tm+1

z = −tL−1

Fig. 7.1 Cross-section through the axis of a circular, air-cored, eddy-current surface coil, positioned
above a layered half-space

Z = jωμ0πn2

l2(ro − ri)2

∫ ∞

0

J 2(κri,κro)

κ6

{
2κl + 2e−κl − 2 + [

e−κs − e−κ(s+l)
]2

×
[
(κμr(m+1) − γ1)V11(1) + (κμr(m+1) + γ1)V21(1)

(κμr(m+1) + γ1)V11(1) + (κμr(m+1) − γ1)V21(1)

]}
dκ (7.1)

whereγi = √
κ2 + jωμ0μriσi andμri is the relative permeability of the i th layer. The

first three terms in curly brackets 2κl + 2e−κl − 2, in (7.1) give the impedance of the
isolated coil (6.88). The remainder of the expression represents the additional effect
of the conductor on the coil impedance. In (7.1), the function J (κri,κro) defined in
(6.78) is related to the coil dimensions. The matrix elements Vkl(k, l = 1, 2) have
argument m, where m is an integer denoting the position of the layer relative to the
coil. Then,

V (m) = T (m,m + 1)T (m + 1,m + 2) . . . T (L − 2, L − 1)T (L − 1, L) (7.2)

where the T (m,m + 1) are 2 × 2 transformation matrices

T (m,m + 1) =
[
T11(m,m + 1) T12(m,m + 1)
T21(m,m + 1) T22(m,m + 1)

]
(7.3)

whose elements are

T11(m,m + 1) = 1

2
e(−γm+1+γm )tm

[
1 + μrm

μr(m+1)

γm+1

γm

]

T12(m,m + 1) = 1

2
e(γm+1+γm )tm

[
1 − μrm

μr(m+1)

γm+1

γm

]
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T21(m,m + 1) = 1

2
e(−γm+1−γm )tm

[
1 − μrm

μr(m+1)

γm+1

γm

]

T22(m,m + 1) = 1

2
e(γm+1−γm )tm

[
1 + μrm

μr(m+1)

γm+1

γm

]
. (7.4)

7.2.2 Coated Half-Space Conductor

The case of the half-space conductor with a surface coating of another material, or
with a surface that has been modified by a particular treatment process (e.g., surface
hardening), is commonly encountered in practice. Such a test-piece can often be
considered as having a step-function change in material properties at the interface
between the twomedia. The impedance change of an air-cored surface coil positioned
above a coated half-space can be deduced from (7.1) by putting L = 2:

Z = 2 jωμ0πn2

l2(ro − ri)2

∫ ∞

0

J 2(κri,κro)

κ6

{
κl + e−κl − 1 + [

e−κs − e−κ(s+l)
]2 ×

[
(γ1μr2 + γ2μr1)(κμr1 − γ1) + e−2γ1t1(γ1μr2 − γ2μr1)(κμr1 + γ1)

(γ1μr2 + γ2μr1)(κμr1 + γ1) + e−2γ1t1(γ1μr2 − γ2μr1)(κμr1 − γ1)

]}
dκ

(7.5)

The normalized impedance plane diagram Fig. 7.2 illustrates how the impedance of
an air-cored coil changes as a function of the thickness of a conductive coating on a
half-space substrate of different conductivity.

Fig. 7.2 Normalized
impedance plane diagram for
an air-cored surface coil
positioned above a coated
half-space. The normalized
impedance depends upon the
coating thickness, its
conductivity, and the
conductivity of the
half-space substrate. Both
the substrate and coating are
non-ferromagnetic in this
example
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7.2.3 Plate Conductor

The impedance of an air-cored surface coil positioned above a layered plate can
be deduced from (7.1) by putting σL = 0 and μr L = 1. With these parameters, the
second-line term in (7.1) in square brackets becomes simply [V21(1)/V11(1)].

The impedance of a coil in the presence of a homogeneous plate is a special case
that combines the conditions L = 2, σL = σ2 = 0 and μr L = μr2 = 1. Imposing
these values in (7.1) or (7.5) gives

Z = 2 jωμ0πn2

l2(ro − ri)2

∫ ∞

0

J 2(κro,κri)

κ6

{
κl + e−κl − 1 + [

e−κs − e−κ(s+l)
]2 ×

[
(γ1 + κμr1)(κμr1 − γ1) + e−2γ1t1(γ1 − κμr1)(κμr1 + γ1)

(γ1 + κμr1)(κμr1 + γ1) + e−2γ1t1(γ1 − κμr1)(κμr1 − γ1)

]}
dκ. (7.6)

An impedance plane plot showing the effect of changing the thickness of various
metal plates on the impedance of a surface coil is given in Fig. 7.3. It is noticeable
that the resistance of the coil passes through a maximum value as the thickness of the
test-piece increases, whereas the coil reactance passes through a minimum, before
the coil impedance converges to a constant complex value equal to its impedance
in the presence of a half-space conductor. Convergence occurs as the conductor
becomes sufficiently thick that its back wall no longer disturbs the eddy-current
distribution significantly. The way in which increasing conductivity or lift-off affects
the impedance is marked in Fig. 7.3 and has already been discussed in the context
of Fig. 6.2.

7.2.4 Cylindrical Conductor with an Arbitrary Number
of Layers

The impedance of a coil coaxial with an arbitrary number of conductive layers that
may be located exterior and/or interior to it, shown schematically in Fig. 7.4, is
given by

Z = Z0 + 2 jωμ0n
2

l2(ro − ri)2

∫ ∞
0

2(1 − cosκl)

κ6
×

[
U12V11 I

2(κri,κro) +U22V21K
2(κri,κro) + 2U12V21 I (κri,κro)K (κri,κro)

U22V11 −U12V21

]
dκ

(7.7)

where Z0 represents the impedance of the isolated coil, (6.88), and the second term
represents the effect of the conductor on the coil impedance. The function K 2(x1, x2)
is defined in (6.130) and I 2(x1, x2) can be obtained from it by substituting I for K .
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Fig. 7.3 Z for several different non-ferromagnetic metals as a function of plate thickness [7]

The matrix elements Vi j and Ui j have arguments m and m ′, respectively, where
m and m ′ are integers denoting the layers adjacent to the coil, on the interior and
exterior, respectively. Then,

V (m) = T (m,m − 1)T (m − 1,m − 2) . . . T (3, 2)T (2, 1) (7.8)

U (m ′) = T (m ′,m ′ − 1)T (m ′ − 1,m ′ − 2) . . . T (3′, 2′)T (2′, 1′), (7.9)

where the T (i, j) are 2 × 2 transformation matrices

T (m + 1,m) =
[
T11(m + 1,m) T12(m + 1,m)

T21(m + 1,m) T22(m + 1,m)

]
, (7.10)

whose elements are

T11(m + 1,m) = γm+1ρm[K0(γm+1ρm)I1(γmρm)

+(γm/γm+1)I0(γmρm)K1(γm+1ρm)]
T12(m + 1,m) = γm+1ρm[K0(γm+1ρm)K1(γmρm)

+(γm/γm+1)K0(γmρm)K1(γm+1ρm)]
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Fig. 7.4 Cross-section through the axis of a circular coil with finite cross-section, coaxial with
a cylindrical conductor with an arbitrary number of layers, that may be interior (m layers) and/or
exterior (m′ layers) to the coil. Note that the system is circularly symmetric about the z-axis although
the m′ exterior layers are shown only on the right in this diagram, for clarity. · · · indicate multiple
layers. Further, ri ≡ ρm and ro ≡ ρm′

T21(m + 1,m) = γm+1ρm[I0(γm+1ρm)I1(γmρm)

+(γm/γm+1)I0(γmρm)I1(γm+1ρm)]
T22(m + 1,m) = γm+1ρm[I0(γm+1ρm)K1(γmρm)

+(γm/γm+1)K0(γmρm)I1(γm+1ρm)]. (7.11)

Note that V (2) = T (2, 1) so that V11(2) is simply T11(2, 1) and V21(2) is T21(2, 1),
etc.

7.2.5 Coated Cylindrical Conductor

The case of the coated cylindrical conductor is useful for analyzing several con-
figurations of practical importance such as case-hardened steel shafts, for which
the surface-hardened layer has a different conductivity and permeability than the
unhardened core, and metal coatings applied to rods of other metal types, for various
purposes. Note that a nonconductive (and non-ferromagnetic) coating on a cylin-
drical metal test-piece behaves, from the point of view of eddy-current inspection,
merely as nonresponsive filler between the coil and the metal. Assuming that the
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outer diameter of the test-piece can be measured, the thickness of the nonconductive
coating can be determined by measuring the impedance of an encircling coil and
establishing the fill-factor (and therefore radius) of the conductive core within the
coil, from an impedance-plane plot such as that shown in Fig. 6.23.

For a coil encircling a coated cylinder such as that shown schematically in Fig.
7.5, the impedance is given by setting m = 3 and m ′ = 1 in (7.7). Noting that the
following hold, in the special case of no conductive layers exterior to the coil,

U = 1, i.e. U12 = 0 and U22 = 1, (7.12)

then

Z = Z0 + 2 jωμ0n2

l2(ro − ri)2

∫ ∞

0

2(1 − cosκl)

κ6

V21(3)

V11(3)
K 2(κri,κro)dκ (7.13)

in which, explicitly,

V11(3) = T11(3, 2)T11(2, 1) + T12(3, 2)T21(2, 1)

V12(3) = T21(3, 2)T11(2, 1) + T22(3, 2)T21(2, 1)

and expressions for the Ti j (m + 1,m) are given in (7.11). Note, some simplification
occurs for the case shown in Fig. 7.5 due to the fact that γ3 = κ.

Fig. 7.5 Cross-section
through the axis of a circular
coil with finite cross-section,
coaxial with a coated
cylindrical conductor
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7.2.6 Tube Conductor

Encircling Coil

For an introductory discussion on the role of the encircling coil, the reader is referred
to Sect. 6.5. There, the impedance of a coil encircling a solid cylindrical rod is
discussed. Here, the discussion is extended to the coil encircling a hollow cylindrical
rod (cylindrical tube). As with the rod, the tube test-piece geometry was studied
extensively by Friedrich Förster and a summary of his work relevant to the encircling
coil and tube is given in [8, Sect. 4: Theory of Encircling Coil and Internal Axial
Coil Tests of Tubes]. The definition of fill-factor given in (6.97) for the solid rod
conveys the same meaning in the case of the tube but is modified according to the
nomenclature of Fig. 7.5, by replacing ρ1 in (6.97) with ρ2, which is the outer radius
of the tube indicated in Fig. 7.5:

η =
(

ρ2

ri

)2

. (7.14)

The tube inspected by an encircling coil is a special case of the coated cylindrical
conductor shown in Fig. 7.5, in which the core, region 1, takes the parameter values
of air; σ1 = 0 and μr1 = 1 so that γ1 = γ3 = κ in the equations of Sect. 7.2.5.

The normalized impedance plane diagram shown in Fig. 7.6 illustrates the effect
of changing fill-factor, frequency of inspection, and test-piece conductivity for the
encircling coil inspection of a conductive, non-ferromagnetic tube assuming that the
coil and tube are coaxial with one another [8]. Figure 7.7 illustrates the effect on the
impedance-plane plot of changing the tube wall thickness.

Bobbin Coil

For discussions on the role of the bobbin probe, the reader is referred to Sects.
6.6 and 8.3 of this text and again to the detailed work of Friedrich Förster [8, Sect. 4:
Theory of Encircling Coil and Internal Axial Coil Tests of Tubes]. The definition of
fill-factor given in (6.132) is modified for this case by replacing ρ1 in (6.132) with
ρm ′−1 that denotes the inner radius of the tube shown in Fig. 7.4:

ηb =
(

ro
ρm ′−1

)2

. (7.15)

The tube inspected by a bobbin coil is a special case of the coated cylindrical
conductor shown in Fig. 7.4, in which there is no conductor interior to the coil and,
exterior to the coil, m ′ = 3, σ1′ = σ3′ = 0 and μr1′ = μr3′ = 1 so that γ1′ = γ3′ = κ
in the equations of Sect. 7.2.5.

The normalized impedance-plane diagram shown in Fig. 7.6 illustrates the effect
of changing fill-factor, frequency of inspection, and test-piece conductivity for the
bobbin coil inspection of a conductive, non-ferromagnetic tube assuming that the
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Fig. 7.6 Normalized
impedance-plane plot for a
coil with inner radius ri
encircling a tubular,
non-ferromagnetic,
test-piece with outer radius
ρ2 and constant ratio of wall
thickness to ρ2, i.e.,
(ρ2 − ρ1)/ρ2 = constant,
Fig. 7.5. Solid lines (—–)
represent the complex
impedance of the probe as a
function of rod conductivity,
σ, or frequency of coil
operation, f . Broken lines
(- - -) represent the effect of
changing η, (7.14). The same
curves are obtained for a
bobbin coil with outer radius
ro internal to and coaxial
with a tube with inner
diameter ρm′−1, Fig. 7.4 and
(7.15) [8]

coil and tube are coaxial with one another [8]. Figure 7.7 illustrates the effect on the
impedance-plane plot of changing the tube wall thickness.

7.3 Truncated Conductors

An eddy current probe may be viewed as ‘small’ relative to the dimensions of a
test-piece if the eddy current density induced by the coil is negligible in the vicinity
of any sharp geometrical changes in the test-piece. This condition may be satisfied
if the geometrical variations of the test-piece take place over a length scale much
larger than the dimensions of the probe coil, but the distribution of the eddy-current
density also depends on the frequency at which the coil is operating. Looking back
at Fig. 2.8 it can be seen that not only does the depth of penetration of the eddy
currents decline as the frequency increases, by the skin effect, but the lateral spread
of the eddy-current density declines as the probe frequency increases, as well. This
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Fig. 7.7 Normalized
impedance-plane plot for a
coil with inner radius ri
encircling a cylindrical
test-piece with varying outer
radius ρ2, constant
conductivity, and constant
inner diameter, for various
ratios of wall thickness to
outside tube radius
(ρ2 − ρ1)/ρ2, Fig. 7.5. Solid
lines (—–) represent the
complex impedance of the
probe as a function of
frequency, f . Broken lines
(- - -) represent the effect of
changing (ρ2 − ρ1)/ρ2. The
outermost solid curve applies
for η = 1 and the innermost
curve for η = 0.9, (7.14).
Similar curves are obtained
for a bobbin coil internal to a
tube, Fig. 7.4 and (7.15) [8]

means that geometrical variations in a test-piece will be less noticeable to a probe
operating at higher frequency, if all other parameters are equal.

Eddy-current inspection commonly needs to be done in regionswhere the geomet-
rical variation of the test-piece is noticeable, however. Examples of such variations
include edge effects. As a surface probe approaches the edge of a plate, as a bobbin
probe emerges from a tube, or as a rotary probe emerges from a borehole, for exam-
ple, there is a sharp transition in the eddy current density in the vicinity of the coil
due to the truncation of the test-piece. The impedance changes in the eddy-current
probe that result from changes in local test-piece geometry are often larger than
impedance changes due to defects in those regions. The inspector therefore faces the
problem of needing to separate a defect signal from a potentially masking signal due
to geometrical variations of the test-piece.

This section offers a review of quasi-analytical solutions to problems that have
been solved in relation to EC NDE of conductors with relatively sharp geometrical
variations. Many of the solutions employ the truncated region eigenfunction expan-
sion (TREE) method, introduced by Theodoulidis [9] and mentioned in Sect. 6.3.5
with reference to modeling the effect of a ferrite probe core on the probe impedance.
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7.3.1 Truncated Region Eigenfunction Expansion Method

The TREEmethod is a quasi-analytical method of solving the electromagnetic equa-
tions governing probe coil behavior in the environs of conductive test-pieces of
various geometries. The homogeneous and layered flat and cylindrical test-pieces
treated in Chap. 6 and Sect. 7.2 were tractable by the traditional method of sep-
aration of variables, as employed by Dodd, Deeds, and Cheng [4–6]. The TREE
method also relies upon separation of variables to express a general solution for
the electromagnetic field in analytic form but, additionally, employs truncation of
the solution domain in one or more coordinates. Truncation of the solution domain
allows expression of the solution in the truncated coordinate as a series summation
rather than as an integral of infinite extent. The primary advantage of this approach is
that the interface conditions on the electromagnetic fields can be satisfied at several
interfaces simultaneously, allowing analytical treatment of the eddy-current inspec-
tion of truncated conductors such as the ends of tubes or rods, and the edges of plates.
The development of the TREE method and its application to several problems in EC
NDE that were previously intractable analytically was a significant breakthrough in
the field, carrying the additional benefit of highly efficient numerical solvers with
easier error control than afforded by the numerical evaluation of integrals [10].

7.3.2 Wedge and Plate Edge

In a series of articles published in 2005 [11], 2010 [12], and 2014 [13], the problem
of EC inspection of a thick conductor with an abrupt edge has been examined in
different aspects. This test-piece geometry is also termed a wedge conductor or, in
the case of a wedge with a right-angled vertex, a quarter-space conductor. The first
of these articles was concerned with calculating the impedance of an eddy-current
surface coil, whose axis is perpendicular to one of the faces of a conductive quarter
space [11], Fig. 7.8. The second solved a similar problem but for a surface coil
whose axis may adopt any of the three orthogonal directions relative to the faces of
the quarter-space [12]. In a new departure, the focus of [13] was computation of the
impedance of an EC coil in the vicinity of a conductive wedge of arbitrary angle.
The assumptions adopted were that the wedge is perfectly conducting and that the
coil axis is parallel to the line defining the vertex of the wedge. For this arrangement,
the problem reduces to that of a tangent coil (Sect. 6.4) above a half-space conductor
as the wedge angle tends to 180◦.

In 2006, the TREE method calculation of eddy-current coil impedance for a coil
with axis perpendicular to the surface of a truncated platewas published [14], Fig. 7.9.
This result is particularly useful for understanding the contribution made by the edge
of a plate to the EC coil impedance. Figure 7.10 shows a normalized impedance
plane plot calculated as the coil is moved from the surface of a plate, over its edge,
and to a point remote from it. The normalized impedance is plotted as a difference



7.3 Truncated Conductors 137

Fig. 7.8 Cross-section
through the axis of a circular,
air-cored, eddy-current coil,
positioned horizontally
above a conductive
quarter-space
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Fig. 7.9 Cross-section
through the axis of a circular,
air-cored, eddy-current coil,
positioned horizontally
above a conductive plate
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relative to the free-space (isolated coil) value, with the maximum difference revealed
when the coil is over the plate, at the lower end of each curve in the figure. Five plate
thicknesses are considered in Fig. 7.10 and parameters of the calculation are given
in Table 7.1.

Together, these solutions for EC coil interaction with wedge and plate-edge
geometries represent a significant advance in the analysis of EC coil impedance
due to sharp geometrical features for the reasons mentioned in Sec. 7.3.1.

7.3.3 End Effects and Cylindrical Conductors

The earliest application of the TREE method in the context of EC NDE was to the
analysis of impedance of a surface coil with a ferrite core in the vicinity of a layered
conductive half-space, Sect. 6.3.5, published in 2003 [9]. The core was treated as a
truncated ferromagnetic cylinder. Building on this approach, a series of publications
have treated a variety of test-pieces with truncated circular cylindrical geometry.

A quasi-analytical solution for the impedance of a bobbin coil emerging from
the end of a tube, and coaxial with it, was published in 2004 [15]. The effects of
wall-thinning near the tube end and the difficulty of detecting a small defect close
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Fig. 7.10 Normalized impedance-plane plot for a coil with axis perpendicular to the surface of
a plate, thickness T , as the coil scans from the plate to free space, over the plate edge (Fig. 7.9).
Normalized impedance is plotted as a difference relative to the free-space (isolated coil) value, with
the maximum difference revealed when the coil is over the plate, at the lower end of each curve
[14]

Table 7.1 Parameters for the numerical calculations whose data are presented in Fig. 7.10 [14]

Coil parameters Value

ro Outer radius (mm) 11.43

ri Inner radius (mm) 4.04

l Length (mm) 8.02

s Stand-off (mm) 1.08

n Number of turns 1,858

Test-piece parameters Value

σ Conductivity (MSm−1) 17.5

μr Relative permeability 1

to the tube end were demonstrated in this paper. The complementary problem, of an
encircling coil coaxial with a truncated circular conducting rod, layered rod or tube,
was treated in 2005 [16, 17].

A solution published in 2008 accommodated a greater degree of uncertainty in
the position of the coil in relation to a borehole [18], modeling the impedance of
both a rotary coil interior to the borehole, Fig. 6.5, and of a bobbin coil whose axis
is offset from the axis of the borehole, Fig. 6.27.

The interested reader is invited to pursue these solutions through the original
literature cited here.
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7.4 Summary

This chapter has collected together analytical expressions for the impedance of a coil
in the presence of layered, coated, or thin flat and cylindrical test-pieces. Impedance
plane plots that show how the impedance varies as a function of various geometrical,
physical, and probe parameters have been presented. Further, the Truncated Region
Eigenfunction Expansion method has been mentioned as having been successfully
applied to model the impedance of EC coils in the vicinity of test-pieces with sharp
geometrical discontinuities.

Building upon the discussion of signals, coils, and the impedance responses to
various types of test piece, covered in Chap. 6 and this chapter, the next chapter
considers the ways in which coils and other sensors are put together in various
configurations to form probes that are optimized for different inspection needs.

7.5 Examples

1. Identify two limiting cases in which the expression for the impedance of an EC
surface coil positioned above a coated half-space conductor (7.5) should reduce
to the result for the half-space conductor (given in (6.87) and reproduced below
for convenience):

Z = jωμ0πn2

l2(ro − ri)2

∫ ∞

0

J 2(κri,κro)

κ5

(
2l + 1

κ

{
2e−κl − 2

+[e−2κ(l+s) + e−2κs − 2e−κ(l+2s)]
(

γ − κ

γ + κ

)})
dκ

and show that (7.5) does indeed reduce correctly in those limits.
2. Identify one limiting case in which the expression for the impedance of an EC

surface coil positioned above a plate conductor (7.6) should reduce to the result
for the half-space conductor given above, and show that (7.6) does indeed reduce
correctly in that limit.
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Chapter 8
Probes

Abstract In this chapter, various probe configurations are discussed in the context
of particular applications for which they are well suited. Common and more exotic
configurations are included. Practically speaking, probes are often composed ofmore
than one coil either for differential operation that is particularly effective in defect
detection or so that each coil may be individually optimized for its role as drive or
pick up coil. Some probes are of hybrid design, in which a drive coil induces eddy
currents in the test-piece yet the signal is measured by another type of sensor, e.g., a
Hall device or a giant magnetoresistive (GMR) sensor. Thin, flexible coils designed
for in situ structural healthmonitoring, and array probes designed for rapid wide-area
inspection, are also presented.

8.1 Introduction

Eddy-current inspection can be optimized, to achieve the best sensitivity to a certain
defect in a certain test-piece, by the correct choice of probe and operating frequency.
In this chapter, common and emerging types of eddy-current probe are introduced
and their uses are discussed. The simplest configuration is that of the absolute probe
in which the probe is formedwith a single coil that acts as both the driver and the pick
up. Current flowing in a drive coil induces eddy currents in the test-piece, whereas a
pick up coil senses the magnetic field produced by the eddy currents. In the absolute
probe, one coil performs both of these functions. An absolute surface coil has axis
perpendicular to the test-piece, whereas an absolute encircling coil is wound on a
hollow former through which the test-piece is passed, during an inspection. In some
probe configurations (driver pick up or reflection probes), the driver and pick up roles
are performed by separate coils, Sect. 8.4.

Differential probes, which employ two similar coils wound oppositely to each
other, form another important class of probe, Sect. 8.3. They are particularly useful
for defect detection because they are designed to reduce noise in the signal that may
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arise due to a number of factors such as probe lift-off variations, large-scale variations
in material properties, or temperature variations of the part under test. Contributions
to the impedance of multi-coil probes may be deduced from theoretical results for
the single coil by the principle of linear superposition. This means that multi-coil
probe fields, in the presence of materials with linear electromagnetic properties, may
be obtained by the vector sum of fields due to the individual coils that constitute the
multi-coil probe. The impedance of a differential probe has a null value in the absence
of a defect because the fields of the two oppositely wound coils that constitute the
differential probe cancel each other out unless a defect is present.

A coil oriented such that its axis lies tangential to the surface of the test-piece
is known as a tangent coil. Two tangent coils operating in differential mode and
combined in such a way that their axes are perpendicular to each other, while being
tangential to the surface of the test-piece as well, form the plus-point probe. Plus-
point probes find application in detection of surface cracks in ferromagneticmaterials
because they are less sensitive to permeability variation than a surface coil with axis
perpendicular to the surface of the test-piece. Plus-point probes are discussed in
Sect. 8.5.

Probes formed from arrays of coils are discussed in Sect. 8.6. Such probes have
the advantage of covering a wide inspection area in a single pass, serving to reduce
inspection time when compared with multiple passes required of a single coil to
cover the same area.

Flexible coils, whose copper windings are traced on flexible polymer substrate
materials by printed circuit technology, offer the advantage of conformability to
curved surfaces, improving the coupling between the probe and the test-piece. A
summary of the developments in theory and experiment of flexible spiral coils is
given in Sect. 8.7.

Discussion of a hybrid driver pick up probe, that employs a Hall sensor instead of
a pick up coil, is given in Sect. 8.8. The Hall sensor measures the magnetic induction
field directly, rather than impedance asmeasured by a conventional pick up coil. Their
small size permits Hall sensors to be formed into arrays, offering measurements with
fine spatial resolution. The chapter concludes with discussion of a similar hybrid
probe, that employs a giantmagnetoresistive sensor as the pick up device, in Sect. 8.9.

8.2 Absolute Probe

Surface probes often operate in absolute mode, meaning that the signal obtained in
a measurement is simply the value of the coil impedance itself. The configuration
of a typical surface probe is shown in Fig. 8.1. A pencil probe is shown in Fig. 8.2
with an absolute coil configuration detailed in the tip enlargement at left. The tip
enlargement at right shows a differential coil configuration, described in Sect. 8.3.
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Fig. 8.1 An eddy-current surface probe scanning a cracked metal test-piece. This type of probe
would typically be held by hand. In the figure, part of the probe casing is cut away to reveal the coil

Fig. 8.2 A pencil probe. Enlargements of the tip area show either an absolute coil configuration
(left) or a differential coil configuration (right)
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Fig. 8.3 An eddy-current
probe encircling a metal rod
test-piece. The coil is wound
on a plastic former and
housed in protective plastic
casing which has been cut
away in the image, to show
the coil

Pencil probes may be either straight or with a bend near the tip as shown in Fig. 8.2.
The probe configuration can be chosen to provide the best access to the inspection
surface, subject to any geometrical constraints of the region to be inspected.

An absolute probe with encircling geometry is shown in Fig. 8.3. An encircling
coil is wound on a hollow former so that the test-piece can pass through it. This probe
is sometimes known as an outside diameter (OD) probe.

Absolute probes are useful for material property measurements as well as for
defect detection. Their sensitivity to material properties can be a disadvantage when
being used for defect detection, however, since any changes in material properties
then act as noise sources that interfere with the defect signal. Absolute probes also
suffer from noise due to probe lift-off variations and tilt, in the case of the surface
coil, or due to wobble and tilt in the case of an encircling coil. These problems have
been discussed in Sect. 6.3.6.

8.3 Differential Probe

A differential probe is one in which two nominally identical coils are connected in
series in the same probe, but are wound in opposition to one another, so that the
sum of their impedances is zero when no defect is present. A differential surface
probe is shown in Fig. 8.2 (tip enlargement at right). The differential coil in that
figure is known as a “split-D” coil, also shown in Fig. 8.4. Another example of a
differential probe is shown in Fig. 8.5, in which two coils that are nominally the
same are wound as opposing encircling coils for inspecting a cylindrical specimen.
An example of a differential bobbin probe is shown in Fig. 8.6. This type of probe is
commonly used for the detection of defects in tubes, such as steam-generator tubes
in nuclear power plants.



8.3 Differential Probe 145

Fig. 8.4 Adifferential surface probe is commonly formed from twonominally identical “D”-shaped
coils, which are formed from multiple figure-of-eight loops like the one illustrated. The resulting
coil is known as a “split-D” coil

Fig. 8.5 A differential encircling probe may be formed from two nominally identical encircling
coils connected in “tandem” and in electrical opposition, indicated schematically in this diagram

Fig. 8.6 Differential bobbin
probe formed from two
nominally identical but
oppositely wound coils
connected in series

The impedance of a differential probe is obtained by summing the impedance
of the two individual coils, according to the principle of linear superposition. One
statement of this principal is that the total electromagnetic field due to multiple
sources, in a regionwherematerial properties are linear,maybeobtainedby the vector
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sum of the fields due to the individual sources. Hence, the impedance of a differential
probe, Zdiff , formed from two nominally identical coils wound in opposition and
distinguished by the labels 1 and 2, gives

Zdiff = Z1 + Z2 = Z1 + (−Z1) = 0 (8.1)

when both coils are near an unflawed region of the test-piece. When the two probe
coils are not symmetrically placedwith respect to a defect, a change in the impedance
of the probe �Zdiff is obtained. Then,

�Zdiff = �Z1 + �Z2 (8.2)

and �Zdiff can be calculated by calculating �Z1 and �Z2 due to a particular flaw,
perhaps according to the theoretical methods outlined in Chap.6.

The major advantage of the differential probe configuration is that an impedance
change in the probe is produced only when the impedances of the two individual
coils are different. This means that noise due to lift-off, in the differential config-
uration of Fig. 8.2, or due to wobble, in the configurations of Figs. 8.5 and 8.6, is
largely eliminated. The probe is also insensitive to slow changes in the geometry of
the test-piece (changes on a length scale somewhat greater than the dimensions of
the probe). This means, however, that a differential probe is not suitable for mea-
surements of specimen properties such as thickness and conductivity. Differential
probes are ideally suited to defect detection.

A typical signal due to a differential surface coil as it scans over a surface crack
is illustrated in Fig. 8.7. The point in the center of the impedance-plane plot is the
null point, representing the signal measured by the probe as it rests on an unflawed
region of the test-piece. As the probe is moved toward the flaw (to the right in
this figure), first only one of the coils senses the presence of the defect (coil 2,
Fig. 8.7(a)) and the total impedance of the probe changes because Z1 �= Z2. Approx-
imately, �Z1 ≈ 0 and �Zdiff ≈ �Z2. When the probe moves farther to the right,
symmetry is recovered when the crack is positioned centrally between the two coils,
Fig. 8.7(b). Here, both coils are influenced by the presence of the crack to an equal
but opposite extent so that �Zdiff = �Z1 + �Z2 = �Z1 − �Z1 = 0. As the probe
moves yet farther to the right, only coil 1 senses the defect. Since coil 1 is wound
oppositely to coil 2, the impedance change resulting at Fig. 8.7(c) is opposite to that
shown in Fig. 8.7(a). Finally, as the probe moves away from the defect altogether the
“figure-of-eight” impedance-plane response that is characteristic of the differential
probe comes to completion.

Example signals due to a differential bobbin probe as it is pulled through a tube
with exterior defects of different depth is shown in Fig. 8.8. Note that the double
loops forming the signal from each of the three example defects are similar to that
illustrated in the case of the differential surface coil, Fig. 8.7. Further points of note
are (i) qualitatively, the size of the signal increases as the defect size increases, and
(ii) the phase angle of the signal increases as the ligand thickness increases. The
ligand is the unflawed material that exists between the tube bore and the bottom of
the defect. The ligand thickness decreases as the defect becomes deeper.
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Fig. 8.7 A differential surface probe formed from two nominally identical but oppositely wound
coils connected in series, above, and the impedance-plane (Z -plane) response of the probe, below,
as the probe moves over a surface defect

Fig. 8.8 (a) A differential bobbin probe is pulled through a tube with an exterior defect, and (b)
the Z -plane response as a differential bobbin probe encounters three exterior defects, of the type
shown in (a), of different depth

Signals from differential probes are difficult to interpret for more complex defects
or rapid changes in surrounding structure. For example, steam-generator tubes in
nuclear power plants are threaded through metal plates for support. In a tube inspec-
tion, the support plates may give rise to a strong signal in an eddy current bobbin
coil and, in order to identify defects in the support-plate region, the signal from the
support plate itself must be understood. The theoretical analysis of the influence of
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the tube support-plate on the eddy current bobbin coil impedance has been presented
in [1, Chap. 5], and the interested reader is referred to that publication for further
information.

8.4 Driver Pick Up Probe

A driver pick up probe is one in which the current is induced in the test-piece by one
of a pair of coils that are electrically separate from one another. The inducing coil is
known as the driver coil. Impedance changes are recorded by the other coil, which
is known as the pick up coil. Such a configuration is shown schematically in Fig. 8.9
for a surface probe. A driver pick up probe is sometimes known as a reflection probe.
The major advantage of this arrangement is that both the driver and pick up coils
can be separately optimized for the inspection at hand. In crack detection work this
may mean, for example, that the pick up coil is much smaller than the driver coil, to
improve spatial resolution in the measurements, and the pick up coil is positioned
very near to the test-piece, to increase the magnitude of the measured signal. In a
driver pick up encircling probe, the pick up coil may be wound inside the driver coil
using many turns of fine wire, to increase its sensitivity.

If a driver pick up probe is used in absolute mode, the impedance measured by
the pick up coil can be calculated by dividing the voltage across the pick up coil (coil
2) by the current flowing in the driver coil (coil 1):

Z2,1 = V2

I1 . (8.3)

Compare with definition (4.25).

Fig. 8.9 Cross-section
through the axis of a driver
pick up (reflection)
eddy-current probe,
positioned horizontally
above a conductive
half-space �
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driver coil (coil 1)

pick-up coil (coil 2)
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8.5 Plus-Point Probe

The plus-point probe consists of two orthogonally wound tangent coils operating in
differential mode (the tangent coil was discussed in Sect. 6.4 and is shown in the
schematic diagram of Fig. 6.21). The plus-point probe is so named for the reason
that the two coils are oriented at 90◦ to one another, forming a plus sign (+) when
viewed from certain angles. The coil windings in a plus-point probe may have square
or circular cross-section, the latter being illustrated in Fig. 8.10.

The plus-point probe offers the same advantages as any differential probe, dis-
cussed in Sect. 8.3; suppressing noise due to lift-off variations or gradual changes in
material conductivity or permeability. In addition to these advantages, the plus-point
probe offers bidirectional sensitivity. Recalling that the eddy-current density induced
in a test-piece by a tangent coil does not display circular symmetry but displays direc-
tionality, as shown by the lowest pair of images in Fig. 6.20, it can be inferred by
superposition of the two plus-point coil fields that the probe displays bidirectional
sensitivity. Remember, however, that the coupling between a surface coil (whose axis
is perpendicular to the surface of the test-piece) is much stronger than that between
a tangent coil and the test-piece so, overall, the signal strength is lower in the case of
a plus-point (or tangent) coil compared with what it would be if the same coils were
oriented with their axes perpendicular to the test-piece surface. This latter point is
illustrated in Fig. 6.19, where we see more than 90% reduction in �X/X0 as the coil
axis tilt angle increases from 0◦ (surface coil) to 90◦ (tangent coil).

The plus-point probe was developed first for detection of surface-breaking cracks
“in the weldment region of steel components while effectively reducing signal
responses generated by variations in conductivity or permeability” [2, p. 4.2]. It

Fig. 8.10 Two tangent coils
wound orthogonally to form
a plus-point probe
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has also been employed for the inspection of welds in structural steels for bridges
[3]. In a report of the United States Nuclear Regulatory Commission [2, p. 4.2], the
plus-point probe was evaluated for its effectiveness for the inspection of the inner
surface of cast stainless steel piping; for detecting, localizing and sizing surface
cracks. Some variation in background noise was observed, relating to orientation of
the grain distribution and microstructure of the material, but the background noise
level was not significantly changed by reorienting the probe. On the other hand, it
was noted that the probe is more sensitive to cracks that align with either of the coil
planes but less sensitive to off-angle cracks especially those that may be oriented at
45◦ to the coil planes.

8.6 Array Probes

Array probes comprise several sensing coils in one probe head. Examples are shown
in Figs. 8.11 and 8.12. Their primary benefit is the ability to cover a larger test-piece
area in one pass of the probe than is possible with a single-coil probe. The array of

Fig. 8.11 A surface probe
formed from a spatial array
of multiple eddy-current
surface coils, for wide-area
surface inspection. Note that
the two rows of coils are
offset from one another to
provide full coverage

Fig. 8.12 A bobbin probe
incorporating a spatial array
of multiple eddy-current
surface coils, for full
inspection of a tube interior
without rotation the probe
head. Note that the two rows
of coils are offset from one
another, azimuthally, to
provide full surface coverage
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surface coils designed for wide-area surface inspection shown in Fig. 8.11 illustrates
the principle of using a double row of coils, offset from one another, to achieve full
coverage of the test-piece without any blind spots that might be evident if only a
single row of coils were used. Similarly, the bobbin array-probe designed for tube
or borehole inspection shown in Fig. 8.12 provides for full-angle inspection of the
tube or borehole by the array of surface coils, removing the need to rotate the probe
head as in the case of a rotating probe head in which a single surface coil is mounted,
Fig. 6.5.

8.7 Flexible Probes

Flexible coils offer the advantage of being able to conform to a curved inspection sur-
face, which is helpful for improving the coupling between the coil and the test-piece.
If a coil is thin as well as flexible, it could be mounted permanently on a structure,
e.g., under paint, to provide in situ inspection for structural health monitoring [4]. An
example of a ten-turn spiral coil etched on 25-micron-thick polyimide film is shown
in Fig. 8.13. A challenge arising in the practical application of a thin probe with only
one layer of windings relates to the fact that only a relatively small number of turns
is possible. The achievable signal is, therefore, weaker than for a coil with a larger
number of turns. In the case of the coil pictured in Fig. 8.13, the DC resistance and
inductance of the coil are merely 2.32 � and 0.28µH, respectively.

The theory of spiral coils has been studied byBurke, Ditchburn, and Theodoulidis,
appearing in the literature since 2003. Theoretical calculations of impedance and
benchmark experiments are compared in [4] for flat circular–spiral coils such as
the one shown in Fig. 8.13 and others like it, with up to 100 turns. The mutual
impedance of a pair of such coils is presented in [5]. Closed-form expressions for
the impedance of flat rectangular-spiral coils were developed in [6], 2005, wherein

Fig. 8.13 Photomicrograph
of a ten-turn circular spiral
coil ©Commonwealth of
Australia [4]
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the impedance change in response to a surface crack as a function of coil aspect ratio
and orientation were investigated. The rectangular–spiral coil was studied further
in a 2008 publication that focused on the curved rectangular coil, conformed to
the surface of a conductive cylinder [7]. The rectangular coil in this configuration
has the theoretical advantage that its windings align with either the φ- or the z-
direction. Both self-impedance of a single coil and mutual impedance of a pair
of coils were studied and theoretical impedance calculations were compared with
experimental data measured on aluminum alloy samples. Most recently, closed-form
expressions for the impedance of a curved circular–spiral coil have been developed
[8], addressing the challenge of mixing coordinate systems by a second-order vector
potential formalism.

8.8 Hall Sensor Probes

Hall devices are solid-state magnetic field sensors that offer numerous advantages:
they exhibit linear response to the magnetic induction field B, they are compact,
highly sensitive, and can operate over a wide range of frequency, temperature, and
field amplitude.

Hall devices have been explored as pick up sensors for transient or pulsed eddy-
current NDE [9–12] and as arrays of pick up sensors to accompany eddy-current
drive coils [10, 13–16]. Such probes can be termed hybrid probes because the field
excitation is provided by eddy-current induction, whereas the sensing technology
relies upon the Hall effect measurement of the magnetic induction field.

A brief overview of the Hall effect is given in Sect. 8.8.1 followed by a descrip-
tion of ways in which Hall sensor technology can enhance eddy-current NDE in
Sects. 8.8.2–8.8.5.

8.8.1 The Hall Effect

If a conductor such as the one illustrated in Fig. 4.1 is placed into amagnetic induction
field, there is a resulting force on the moving charge carriers that is expressed as

F = Qv × B. (8.4)

This force is known as the Lorentz force and v is the velocity of the charge carriers.
The Lorentz force acts to push the charge carriers toward one side of the conductor.
As the charge carriers accumulate, equilibrium is reached when the Lorentz force is
balanced by the force due to the electric field, expressed in (4.1), that results from the
separation of charge across the conductor, in a direction perpendicular to both v and
B. The separation of moving charge carriers across a conductor under the influence
of an external perpendicular B-field is known as the Hall effect after Edwin Herbert
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Fig. 8.14 Edwin Herbert
Hall, American physicist,
1855–1938 [17]

Hall who discovered it in 1879. The Hall effect gives rise to a measurable voltage
across the conductor, named the Hall voltage.

Hall (1855–1938, Fig. 8.14) was an American physicist who conducted thermo-
electric research at Harvard University. He did his undergraduate work at Bowdoin
College, Brunswick, and obtained a Ph.D. from Johns Hopkins University, Balti-
more, in 1880. His seminal experiments were performed during the course of his
graduate studies and were published, eventually, in his doctoral thesis. Hall passed
an electric current through thin gold leaf supported on a glass plate and measured a
potential difference (now known as the Hall voltage) across the sheet when it was
placed in a magnetic field perpendicular to it. Hall’s success in measuring the effect
was related to the fact that the Hall voltage is inversely proportional to the thickness
of the conductor and Hall’s gold leaf samples were sufficiently thin. The Hall effect
can be observed in all conductors and the Hall voltage and current are material- and
geometry-dependent, as follows.

Consider a Hall device as shown schematically in Fig. 8.15. Charge carriers that
are positively charged flow in the direction of conventional current I shown in the
figure. With B = Bz ẑ, (8.4) leads to

F = Q vx x̂ × Bz ẑ = −Qvx Bz ŷ. (8.5)

In other words, the Lorentz force acts on the moving positive charge carriers to push
them in the negative y-direction. Perhaps unexpectedly, negative charge carriers
(electrons) flowing in the direction opposite to that of conventional current I are also
forced in the negative y-direction by Bz ẑ:
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Fig. 8.15 Schematic diagram illustrating the Hall effect. The magnetic induction field B gives rise
to the Lorentz force F that acts on the moving charge carriers I in the Hall device, pushing them
in the negative y-direction and creating a potential difference known as the Hall voltage, VH . Note
that VH is measured in the direction perpendicular to both B and the flow of I

F = −|e| (−vx )x̂ × Bz ẑ = −|e|vx Bz ŷ, (8.6)

where e = 1.602 × 10−19 C is the charge on an electron. At equilibrium, the electric
field resulting from positive charge accumulation at the nearest face in Fig. 8.15 is
y-directed. Hence

− Qvx Bz ŷ + QEy ŷ = 0 (8.7)

and

vx Bz = VH

w
(8.8)

since VH = Eyw. Noting that vx = I/(QwTn)where n is the charge carrier density,
an expression for the Hall voltage is obtained:

VH = I Bz

QTn
. (8.9)

The Hall voltage is proportional to the control current I and the magnetic induction
field Bz , and is inversely proportional to the device thickness T , as mentioned before.
One great advantage of the Hall device as a magnetic field sensor is this simple rela-
tionship between the Hall voltage, which can be easily measured, and the magnetic
induction field component perpendicular to it. In the case of negative charge carriers,
the electric field whose force balances the Lorentz force is now oppositely directed.
Consequently, the Hall voltage changes sign:

VH = − I Bz

|e|Tn . (8.10)
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Table 8.1 Charge carrier
mobility in typical Hall
device materials [13]

Material Mobility (cm2V−1S−1)

GaAs 8.50 × 103

InAs 2.26 × 104

InSb 7.50 × 104

Practically speaking, both VH and the sensitivity of a Hall sensor are proportional to
the mobility of the charge carriers, which is material dependent. Electron mobilities
in some typical Hall device materials are listed in Table8.1 [13]. Sensitivity of a Hall
sensor is also inversely proportional to the thickness of the Hall element, T , but there
is a design trade-off between sensitivity and resistance of a Hall device, resistance
increasing as T decreases. High resistance leads to undesirable device characteristics
such as increased power consumption and self-heating so, practically speaking, the
extent to which T may be reduced to increase VH and sensitivity is constrained by
corresponding increase in device resistance. Further details are available in [13].

8.8.2 Defect Detection with the Hall Sensor

To understand the signal measured by a Hall Sensor in the vicinity of a defective
conductor excited by eddy currents, it is necessary to understand the distribution
of the vector magnetic induction field at the surface of the conductor. Let’s adapt
Fig. 1.7 to indicate B in the vicinity of a surface crack. Using the right-hand rule,
we can discover that the magnetic induction field associated with the perturbation of
the eddy-current density J as it flows around a surface crack, Fig. 8.16, is directed
up at one end of the crack mouth and down at the other. There is a null point in the
center of the crack where Bz ≈ 0, with z being the direction normal to the conductor
surface. A Hall sensor that is set up to detect Bz in the region just above the surface
of the test-piece will therefore give a signal that changes sign as the sensor scans
along the crack.

Fig. 8.16 Eddy currents J disrupted by a surface defect and the associated magnetic induction field
B. A Hall sensor can be set up to detect the vertical (z) component of the magnetic induction field,
for example
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8.8.3 Hall Sensors and Transient EC NDE

Hall sensor technology has been applied in the context of transient eddy current NDE
by several different groups inworks published in [9–12, 18]. Transient ECNDE (also
known as pulsed EC NDE) is a method, whereby the eddy currents are induced in
the test-piece by a step-like change in the current in the exciting coil, rather than
by a sinusoidal current excitation. The method offers enhanced performance in the
detection and characterization of flaws significantly below the surface of the test-
piece, in principle allowing a continuum of frequency information to be captured
from a single transient measurement [9, 10]. More information on this method is
available in [19, Chap. 2]. The works of [9, 12] employ a single Hall sensor pick
up centered within a single exciting coil, Fig. 8.17, whereas dual Hall sensor pick
up elements operated differentially are employed in [11], Fig. 8.18. By employing
time-gate methods of image reconstruction, Harrison developed some impressive
images of multilayered, riveted aircraft structures [9]. Lebrun et al. detected artificial

Fig. 8.17 A surface probe
employing a single Hall pick
up sensor [9, 12]

Fig. 8.18 A differential
surface probe employing
dual Hall pick up sensors
[11]
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cracks only 1mm in radial extent, adjacent to fasteners, and under 5mm of material,
by using a pulsed excitation and four Hall sensors arranged around the fastener head.

The method proposed in [10] is discussed in Sect. 8.8.4 in the context of Hall
sensor arrays.

8.8.4 Hall Sensor Arrays

At least as early as 2004, Hall sensor arrays were proposed as pick up arrays for
eddy current NDE. In [10, 13], linear arrays of Hall sensors were demonstrated
with rectangular and “race-track” exciting coils, respectively. A sparse array of nine
Hall sensor elements, separation 4mm, presented in [10] allowed rapid scanning
of relatively large test-piece areas. Local image resolution was enhanced by “over-
scanning” areas of interest at finer resolution. A calibration procedure was developed
to correct for variation in the precise position of each Hall sensor within its encap-
sulated integrated circuit. The race-track exciting coil with a linear array of Hall
sensors is depicted in Fig. 8.19.

In 2007, an 8 × 8 planar array of Hall sensors, coupled with an eddy current
excitation, was demonstrated to determine the dimensions of machined notches of
various sizes in austenitic stainless steel [14]. The arraywasmounted on a rigid circuit
board substrate and occupied an area of approximately 28× 28mm2 corresponding to
a linear spatial resolution of approximately 3.5mm.Building on this concept, flexible
substrate technology was employed in a paper published in 2013 that demonstrated
the combination of a Hall sensor array and an eddy current bobbin coil for inspection
of piping, Fig. 8.20 [15]. This technology also overcomes difficulties with knowing
the precise position of encapsulatedHall devices, encountered in [10]. The best linear
spatial resolution achieved in [15] was 0.52mm. Taking this concept even further, a
flexible array of Hall sensors based on graphene as the Hall element was proposed
in [16].

Fig. 8.19 A ‘race-track’
surface probe employing
multiple Hall pick up sensors
[13]
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Fig. 8.20 Multiple Hall
sensors arranged on a
flexible substrate form the
array of pick up sensors for
this bobbin coil designed for
inspecting the interior of
holes or tubes

8.8.5 Conclusion

It is appropriate to make some concluding remarks concerning the relative merits
of Hall devices and induction coils for magnetic field sensing. A review article
published in [20] mentions the important advantages of induction coils: “simplicity
of operation and design, wide frequency bandwidth and large dynamics.” Further, a
pick up coil contains no magnetic elements or excitation currents and the magnetic
field is not disturbed, therefore, by the measurement of it. On the other hand, the
output signal of an induction coil depends not simply on B but on ∂B/∂t , which
means that it is frequency dependent and less simple to handle than the Hall sensor
in this regard. As mentioned above, linear spatial resolution achievable with an array
of Hall sensors is 0.52mm or better whereas micro-coils prepared through the use of
thin-film techniques offer dimensions of approximately 1mm. Considering dynamic
range, Tumanski [20] points out that the measurable field range of the induction coil
is the largest of any magnetic sensor—from less than 1nT to greater than 1T—but it
must be borne in mind that this is true only if sensor size is not limited. By contrast,
the Hall effect sensor is effective for measuring fields over less than one-third of this
range; fromaround 1mT to 1T.Considering the limit of resolution betweenmeasured
values of the magnetic induction field, the practical limit of resolution yielded by
most sensors is dependent on achieving the noise floor. This has been estimated to
be 100 fT Hz−1/2 for the induction coil and much worse (≈10nT Hz−1/2, 105 times
larger!) for Hall sensors [21].

A more narrowly focused comparative study was published in [22] in which
the performance of a ferrite-cored eddy current two-coil probe was compared with
that of a hybrid probe with eddy current exciting coil and Hall sensor pick up. All
three coils employed in the study comprised 100 turns of 0.08-mm-diameter wire
wrapped on 1.6-mm-diameter ferrite core material. The two-coil probe comprised
one exciting coil and one compensating coil held at fixed position in relation to the
surface of the test-piece and wound in opposition to the primary coil, for the purpose
of increasing the dynamic range of the probe. The Hall sensor was a Honeywell
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Sensing and Control SS94A1 device with area approximately 7 × 15mm2. A series
of experiments was constructed in which, firstly, the signal-to-noise ratio (SNR) of
the two probes was compared in the task of detecting through-holes with diameter
1, 1.5, 2, and 2.5mm in 1-mm-thick aluminum plate. It was concluded that, in these
tests, the differential eddy current probe achieved higher SNR than the hybrid eddy
current–Hall probe. Second, it was shown that the signal amplitude is linear as a
function of probe lift-off, for the hybrid probe, whereas the rate of change of signal
amplitude as a function of probe lift-off decreases with increasing lift-off in the case
of the two-coil probe. Hence, the hybrid eddy current-Hall probe showed greater
sensitivity in measuring lift-off values greater than 1.5mm whereas the two-coil
eddy current probe was more sensitivity for such measurements smaller than 1mm.
This result is applicable tomeasurement accuracy of the thickness of a nonconductive
layer coating the metal test-piece, for example.

From this brief survey, it could be concluded that Hall sensor technology has yet
to find its niche in hybrid eddy-current probes since pick up coils remain competitive
for most applications. A niche may be emerging for arrays of miniaturized Hall
devices on flexible substrates because of the high-resolution imaging capability that
they can offer, but the cost and complexity of such a device may keep the uptake by
industry slow in the short term.

8.9 Giant Magnetoresistor (GMR) Probes

The magnetoresistive (MR) effect is a phenomenon, whereby the resistance of a
material changes in response to its magnetization. TheMR phenomenon is described
in standard texts on magnetism by Jiles, by Cullity, and by O’Handley [23–25] for
example. Of these, O’Handley [25] gives the most thorough treatment of this topic.
The so-called giant magnetoresistive (GMR) effect relies upon a magnetoresistive
mechanism that occurs in certainmultilayer materials and gives larger signal strength
and sensitivity than the ordinaryMReffect. The signal strength and sensitivity offered
by a GMR sensor suggests construction of a hybrid probe that utilizes a GMR pick
up in conjunction with an eddy-current excitation coil. In the context of NDE, GMR
sensors have been explored primarily for detection of deep-lying flaws in aerospace
structures.

Research articles and presentations on the use of GMR sensors for enhanced
eddy-current flaw detection started to appear in the mid-1990s. The key improve-
ment offered by GMR sensing in relation to eddy-current testing is the ability of the
GMR sensor to respond to low-magnetic induction field amplitudes at low frequency.
While a suitably designed search coil can measure smaller magnetic induction field
amplitudes with better resolution than a GMR sensor, the fact that the Faraday effect
relies upon time-variation of the induction fieldwhereas theGMR sensormeasures B
directly is what gives the GMR sensor the advantage at low frequencies. An EC coil
operating at low frequency or excited by a transient current induces eddy currents that
penetrate deeply into the test material according to the skin effect (penetration depth



160 8 Probes

δ ∝ f −1/2, Sect. 2.9) and the GMR sensor is capable of detecting the low-magnitude
field perturbations associated with deep-lying flaws. As with the Hall sensor, rel-
atively small physical dimensions of the GMR sensor also offer the possibility of
fabricating sensor arrays to reduce inspection times.

In the following sections, a brief overviewof theGMReffect is given in Sect. 8.9.1.
The theme of deep-flaw detection will be discussed with reference to several key
publications utilizing low-frequency time-harmonic and transient EC excitations, in
Sects. 8.9.2 and8.9.3, respectively.GMRarray probes and a few specialist application
areas are also mentioned.

8.9.1 The Giant Magnetoresistive Effect

Magnetoresistance is often quoted as fractional change in resistance and is typically
a few percent in magnitude, for the ordinary and anisotropic MR effects that are
observed in ferromagnetic materials at low temperatures. Details of these mecha-
nisms are discussed in [25, pp. 573–584], for example. By contrast, the GMR effect
relies upon antiferromagnetic coupling in a multilayer material that can result in
MR ratios an order of magnitude larger than those observed for the ordinary and
anisotropic MR effects.

The so-called giantmagnetoresistive effect was first observed in 1988 in amaterial
comprising FeCr multilayers, when an MR ratio of 50% was reported for measure-
ments made at 4.2K [26]. In this type of magnetoresistor, the Fe layers are coupled
antiferromagnetically through the Cr layers and the application of an external mag-
netic field acts to align the magnetic dipole moments in the different Fe layers. As
those moments become more closely aligned, there are fewer scattering events for
conduction electrons and the resistivity declines.

Measuring the GMR effect for varying thicknesses of Cr, it was observed that the
“magnetoresistance maxima occur at Cr layer thicknesses for which the magnetic
layers are coupled antiferromagnetically” [27]. Experiments were performed in 1992
whose results suggest that the interfaces between the layers are predominant in con-
trolling the electron scattering that leads to the alteration of resistance in response to
the magnetic field applied to the material [28].

Two conventions exist for the definition of the GMR ratio. These refer the change
in resistance �R either to its high-field value or to its low-field value. The former
has the advantage of being bounded by 100% but the state for which there is zero
applied external magnetic field (H = 0) may not always correspond to complete anti-
ferromagnetic coupling, for whichM = 0. This definition is often used in describing
experimental data. The latter, where

GMR ratio = �R

R0
(8.11)

and R0 is the resistance in the absence of an applied magnetic field, is more often
used in calculations.
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8.9.2 Defect Detection with the GMR Sensor

The primary advantages of the GMR sensor—its high sensitivity as a pick up
device for measurement of subtle magnetic field perturbations at low magnitude—
are emphasized in its role in the field of EC NDE. It appears in conjunction with an
EC exciting coil as a hybrid EC-GMR probe often operating at low frequency for
the detection of deep-lying flaws. The GMR sensor makes possible the detection of
flaws situated beneathmultiple layers ofmaterial, that were previously not detectable
using conventional EC methods.

Several researchers have considered the inspection limits of EC-GMR probes
in multilayered structures of relevance to aviation; in generic aluminum test-pieces
[29–32], in particular wing-splice structures [33], and in the vicinity of fasteners or
fastener holes [34, 35]. Others have considered various specialist applications such
as for mechanical stress measurement of steel reinforcing bars in concrete [36], the
detection of disconnects or short-circuits in printed circuit boards [37], the detection
of conductive microbeads with radius ranging from 125 to 300 µm [38], and for
real-time shrapnel detection in the medical context of key-hole surgery [39].

In a sequence of two papers, Wincheski and Namkung examined the detection
capabilities of a commercially available GMR sensor incorporated into a self-nulling
probe [29, 30]. The incorporation of the GMR sensor showed good performance
but a limiting factor was increasing background noise with decreasing frequency
for flaws deeper than approximately 5 mm [29]. Subsequently, active feedback was
incorporated into the probe design in order to reduce the background field levels in the
interior of the probe, in the vicinity of the GMR sensor [30]. With this modification,
an EDM through-notch 14 mm long and 0.127 mm wide in an aluminum plate
1 mm thick was clearly detected beneath a stack of nine other 1-mm-thick aluminum
plates, by the EC-GMR self-nulling probe operating at 185 Hz.

In 2001, Dogaru and Smith published work in which a GMR sensor was used as
the pick up device in a hybrid EC-GMR probe. The paper demonstrated that GMR-
based probes are capable of accurately sizing surface cracks, due in part to the fact
that in this particular probe design the signal detected by the sensor was not heavily
influenced by the applied field. The GMR sensor detected components of magnetic
induction field tangential to the inspection surface.

Nair et al. presented work in 2006 that investigated the capability of EC-GMR
probes for rapid, real-time inspection of aircraft structures [32]. The probe exhibited
inspection rates comparable withmagneto-optic imaging systemswith the advantage
of providing quantitative information about the magnetic induction field.

In the context of a particular aviation concern, Avrin developed a hybrid EC-GMR
probe for crack and corrosion detection in wing-splice structures [33]. A narrow slot
of length 6.3 mmwas detected in the lowest of three aluminum plates, total thickness
25 mm, the slot being buried under 19 mm of aluminum. The probe was designed
with a differential configuration to minimize background errors due to lift-off, edge
effects, and the presence of steel fasteners in the structure. It was operated at 35 Hz.
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Several authors have approached the difficult problem of detecting cracks in the
immediate vicinity of fasteners in aircraft structures by using GMR sensors. Cracks
under fasteners can grow in any of the metal layers—often three or more—that the
fasteners hold together. The inspection scenario is complex geometrically, because it
includes multiple layers and fasteners holding those layers together, and materially,
because fasteners are made from various metals and may be ferromagnetic.

In work published in 2004, EC-GMR probes with specially shaped excitation
coils, and judicious positioning and orientation of the GMR sensors, were shown
capable of detecting 2.5-mm-long corner cracks in a two-layer aluminum structure
with 13 mm of overlying material [34]. The probe was operated at 100 Hz. In 2010,
feature extraction and image classification schemes were applied to response signals
collected by GMR sensors, for the automatic detection of third-layer cracks at rivet
sites in aircraft [35]. A 1-mm-long crack adjacent to the fastener in the lowest of
three aluminum layers was detected under 10 mm of overlying material. In this case,
a 100 Hz square waveform excitation current was used.

8.9.3 GMR Sensors and Transient EC NDE

It has already been mentioned that the ability of the GMR sensor to detect subtle
perturbations in the magnetic induction field make it attractive for detecting deep-
lying flaws. Similarly, transient EC NDE, in which eddy currents are excited by a
near step-function change in current in the exciting coil, is suitable for detection of
deep-lying flaws due to its exciting a quasi-continuum of frequencies in the induced
eddy currents, meaning that their long-time response conveys information from deep
within the test-piece. Putting transient EC excitation together with GMR sensing
makes sense, therefore, for enhancing deep-lying flaw detection.

In 2010, a transient EC-GMR system was developed as an approach to detecting
deep cracks at the sites of fasteners in multilayered aircraft structures [35]. This
work was mentioned in the previous section in the context of automatic detection of
third-layer cracks at rivet sites. Here, it is noted that the EC excitation was in the form
of a square waveform, and that the method exploited the advantages of a transient
current excitation as well as the ability of the GMR sensor to measure the magnetic
flux density directly.

8.9.4 GMR Arrays

Developing the 2010 work of Kim et al. [35], Postolache et al. [40] in 2013 formed
a probe from two planar exciting coils, a rectangular magnetic field biasing coil, and
a linear array of five GMR sensors for speeding up the process of defect detection.
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8.9.5 Conclusion

The relative merits of the induction coil and the Hall device as magnetic field sensors
were discussed in Sect. 8.8.5. Considering similar characteristics of GMR sensors
[20], it is found that the range of the magnetic induction field measurable using
GMR sensors is from around 10nT to well over 1 T. This range is outperformed
by the induction coil if its design parameters are unconstrained (<1 nT to >1 T),
but not by the Hall sensor (≈1 mT to 1 T). In terms of induction field resolution,
magnetoresistive sensors perform at around 100 pT Hz−1/2, again poorer than the
induction coil (≈100 fT Hz−1/2) but better than the Hall sensor (≈10 nT Hz−1/2).

8.10 Summary

In this chapter, many different kinds of probes have been discussed that optimize the
EC measurement of material properties or the detection of defects of various types.
The absolute coil, which acts as both driver and pick up, is the foundational unit from
which probes can be formed by adding further coils or solid state magnetometers. In
the next and final chapter of this book, the physics and mathematics describing the
interaction between the coil’s excitation field (or induced eddy currents) and defects
of various kinds are considered. Analytic expressions are derived that describe the
impedance change in the probe that occurs when the induced eddy currents encounter
a crack or other defect.

8.11 Exercises

1. List five sources of error, uncertainty, or noise in EC impedance measurements
made with an absolute probe.

2. List three reasons why the current density is not uniform over the cross-section
of a real (non-ideal) EC coil.

3. Which of the following probe types—absolute probe, differential probe, single
encircling coil, differential bobbin probe, reflection surface probe—would be best
for each application listed? Justify your claims.

i. Conductivity measurement of a metal rod;
ii. detection of a surface crack much smaller than the probe drive coil;
iii. detection of a metal support structure on the outside of a metal tube;
iv. thickness measurement of an insulating layer on a flat metal sheet;
v. reflection surface probe.

4. On the same impedance-plane plot, sketch lift-off curves produced by a surface
coil as it is moved from air to (i) the surface of an aluminum plate and (ii) the
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surface of a ferromagnetic steel plate. Explain the physics underlying the differ-
ence between the two curves, with reference to Faraday’s Law of electromagnetic
induction.

5. Edwin Hall’s experimental demonstration of what became known as the Hall
effect wasmade on gold leaf. Given that the charge carrier density in gold at 20 ◦C
is 5.90 × 1028 electrons/m3 and that the charge on an electron is 1.60 × 10−19 C,
evaluate theHall voltage generated across a gold film10µmthick carrying current
0.01 A in the presence of a normal B-field of magnitude 10 T.

6. List four advantages of using a giant magnetoresistor pick up, rather than a pick
up coil, in conjunction with an eddy-current excitation coil. Are there any disad-
vantages?
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Chapter 9
Flaw Models

Abstract The focus of this chapter is the effect of defects on the impedance of an
eddy-current probe coil. Simple flaw shapes are considered, initially, for the purpose
of showing how the various characteristics of a defect (its size, shape, location,
and filler material, etc.) influence the observed change in impedance of the eddy-
current coil. Two regimes are considered: the “small flaw” regime, when the flaw is
significantly smaller than the electromagnetic skin depth of the eddy currents in the
material, and the “thin-skin’ regime, when a surface crack is significantly deeper than
the electromagnetic skin depth. In these regimes, analytic solutions for the impedance
change due to the defect can be derived. The analytic solutions give clear insight into
the way in which the coil impedance changes due to these and similar flaws.

9.1 Introduction

The first part of this chapter is dedicated to Michael Leonard Burrows, who laid
out so beautifully in his Ph.D. thesis of 1964 [1] the theory in which the response
of a small flaw, due to eddy currents incident on it, is approximated as that of a
Hertzian dipole. Indeed, the development in Sect. 9.4 of this chapter closely follows
that of Burrows [1]. This chapter begins with a presentation of a theorem that is very
useful in the calculation of impedance changes in EC NDE, the reciprocity theorem
originally proposed by Rumsey [2]. Following that is a discussion of electric dipoles,
current dipoles, and magnetic dipoles, their scalar potentials and associated electric
or magnetic fields. In the following section it is revealed, by following Burrows, how
a small inclusion in a test-piece may behave as a current–dipole source that perturbs
the applied electric field, or as a magnetic–dipole source that perturbs the applied
magnetic field. A “small” flaw is defined as one which is somewhat smaller than
the electromagnetic skin depth in the test-piece, δ. The impedance change due to
the presence of these defects and various other small, surface defects is expressed
analytically.

Following the treatment of the small flaw, it is shown how the impedance change
in an eddy-current coil may be calculated from an integral of the complex Poynting
vector over the surface of the flaw. This approach is then used to derive expressions
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for �Z due to various surface cracks in the high-frequency (thin-skin) regime, in
which the defect size is assumed much larger than δ.

The chapter concludes with a short discussion of the way in which �Z in an EC
coil due to a crack may be modeled in general by populating the crack with a surface
distribution of current dipoles whose strength varies over the surface of the crack
according to certain boundary conditions.

9.2 Reciprocity Theorem and �Z

The reciprocity theorem shows that, in a probe formed from two coils, it does not
matter which of the coils plays the role of the energizing coil, and which the role of
the pick up coil. In either case, the measured impedance is the same. In addition, the
reciprocity theorem may be used to derive an expression for the impedance change
in a coil due to the presence of a defect, in cases where the defect may be represented
as the source of a perturbation to the induced eddy-current density. In some cases,
such a source is appropriately represented by a current dipole.

An expression of the reciprocity theoremwill be derived by starting with the time-
harmonic forms of Faraday’s Law and Ampère’s Law, (6.5) and (6.7), respectively,
reproduced here for convenience;

∇ × E = − jωB, (9.1)

∇ × H = Js + Jec, (9.2)

where Js is the current density in the source coil and Jec the eddy-current density
induced in the test-piece. Note that Js and Jec are spatially confined—within the
windings of the source coil and within the test-piece, respectively—whereasH exists
in all space. Now consider two distinct sets of externally-imposed current densities,
J(i)
s , i = 1, 2, and their corresponding induced eddy current densities, J(i)

ec . Then,

∇ × E(1) = − jωB(1), ∇ × H(1) = J(1)
s + J(1)

ec (9.3)

∇ × E(2) = − jωB(2), ∇ × H(2) = J(2)
s + J(2)

ec (9.4)

Take the scalar products of (9.3a) (the left-hand equation) with H(2), and of (9.3b)
(the right-hand equation) with E(2). Similarly, take the scalar product of (9.4a) with
−H(1) and of (9.4b) with −E(1), respectively. Summing all four resulting equations
gives

[
H(2) · ∇ × E(1) − E(1) · ∇ × H(2)

] − [
H(1) · ∇ × E(2) − E(2) · ∇ × H(1)

] =
− jω

[
H(2) · B(1) − H(1) · B(2)

] + [
E(2) · J(1)

ec − E(1) · J(2)
ec

]

+E(2) · J(1)
s − E(1) · J(2)

s (9.5)
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Due to the relations B(i) = μH(i) and J(i) = σE(i), the two bracketed terms on the
second line of (9.5) are each zero. Applying the vector identity (10.47) to the terms
in the first line of (9.5) then gives

∇ · [
E(1) × H(2) − E(2) × H(1)] = E(2) · J(1)

s − E(1) · J(2)
s . (9.6)

Now integrate over all space (volume V ) and apply the divergence theorem (10.48)
to the term arising from the left-hand side of (9.6) to obtain

∫

S

[
E(1) × H(2) − E(2) × H(1)

] · dS =
∫

V
E(2) · J(1)

s dV −
∫

V
E(1) · J(2)

s dV . (9.7)

If the sources J(i)
s are bounded in space, then the integral on the left-hand side of

(9.7) can be made zero by taking the surface S to be infinitely remote. The null result
emerges because the electric and magnetic fields decay at least as fast as r−2 for
quasi-static, bounded sources. Further, the integrals on the right-hand side of (9.7)
can be written more particularly by specifying the volume over which they yield a
nonzero result, V (i), to be the volume of the i th source J(i)

s . At last, the following
statement of the reciprocity theorem is obtained:

∫

V (1)
E(2) · J(1)

s dV =
∫

V (2)
E(1) · J(2)

s dV . (9.8)

Clearly, this expression is invariant under the transformation 1 ↔ 2, hence the term
“reciprocity”.

9.2.1 Coil and Flaw

Now consider the reciprocity relation in the context of impedance change in an eddy
current coil due to a defect. First, make J(1)

s in (9.8) the source due to current flowing
in the energizing coil. Next, note that in the quasi-static regime Js = Idl for a time-
harmonic current, so that the left-hand side of (9.8) may be written in terms of a line
integral over the coil windings. The left-hand side of (9.8) then becomes

∫

V (1)
E(2) · J(1)

s dV = I(1)
∫

C (1)
E(2) · dl(1), (9.9)

for a coil whose current I(1) flows along path C (1).
It is necessary to make a conceptual jump at this point, to consider a flaw as a

source of eddy-current density. How can a flaw be a source of eddy currents? It is
certainly true that a defect does not, in and of itself, generate eddy currents. The
concept is more subtle. A flaw perturbs the eddy currents that are induced in a test-
piece by the exciting coil, and it can be conceived that the perturbed part of the eddy
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currents are the source of impedance change in the pick-up coil. In this conception,
the perturbed eddy currents can be regarded as a secondary current source that can
be handled by (9.8).

Allowing this to be the case, the mathematics proceeds by letting J(2)
s represent

the part of the eddy current density perturbed by the presence of a defect. This means
that J(2)

s represents that part of the eddy current density that is due to the presence of
the defect only, not including the eddy-current density that is induced in the absence
of the defect.

Applying this reasoning to the right-hand side of (9.8) and replacing the left-hand
side of (9.8) according to (9.9), the following re-expression of (9.8) is obtained.

I(1)
∫

C (1)
E(2) · dl(1) =

∫

V (2)
E(1) · J(2)

s dV . (9.10)

The left-hand side of (9.10) is the product of the current in the energizing coil I(1)

and the voltage induced in that same coil due to perturbation of the current density in
the vicinity of the flaw, represented by the integral overC (1). To obtain the impedance
change in the coil due to the perturbation of the current density by the flaw, (4.25) is
applied to obtain

�Z = 1
[I(1)

]2

∫

V (2)
E(1) · J(2)

s dV . (9.11)

In (9.11), it is clear that �Z may be computed by representing the defect as a source
of current density, J(2)

s .
Sometimes, adopting terminology used to describe light scattering due to objects

with dimension similar to the wavelength of the light, J(2)
s has been termed the

“scattered” eddy current density. In this chapter, the term “perturbed” is used to refer
to that part of the eddy-current density (or other field) that arises due to the presence
of the flaw. Further discussion of this point is given around (9.27).

9.2.2 Two Coils

The reciprocity relation is also illuminating on the interaction of two coils. Consider
the case in which the current sources in (9.8) are both coils of wire. Then, in the
quasi-static regime, Js = I dl and (9.8) becomes

I(1)
∫

C (1)
E(2) · dl(1) = I(2)

∫

C (2)
E(1) · dl(2), (9.12)

where theC (i), i = 1, 2, indicate the path of integration around thewire loops forming
the coils. With reference to (4.3), it can be seen that the integral terms represent the
electromotance V (i, j) induced in coil i due to the current flowing in coil j or vice
versa. Hence, (9.12) may be written as
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I(1)V (1,2) = I(2)V (2,1) (9.13)

and these terms represent electrical power. Writing the electromotance in terms of
impedance via the relation

V (i, j) = I( j)Z (i, j) (9.14)

gives
I(1)I(2)Z (1,2) = I(2)I(1)Z (2,1)

and hence
Z (1,2) = Z (2,1). (9.15)

In (9.15) the Z (i, j) represent transimpedance, the impedance of the i th coil due
to the source current in the j th coil. Equation (9.15) is another expression of the
reciprocity relation, showing that “it is immaterial which of two coils plays the part
of the energizing coil and which the pick-up coil” [1].

9.3 The Dipole

As mentioned at the beginning of this chapter, Burrows showed in his Ph.D. thesis of
1964 [1] that the perturbation of eddy currents incident upon a small volumetric flaw
can often be modeled as a current dipole of appropriate strength. Other flaws can be
modeled as a distribution of current dipoles, Sect. 9.4.2. For this reason, it is useful
to review the electric and magnetic field distributions associated with the electric
and magnetic dipoles. I begin with the classic derivation of the electric field due to
an electric dipole and then show how the current density distribution associated with
a current dipole may be deduced from it. Similarly, the form of the magnetic field
distribution due to a magnetic dipole is given.

9.3.1 Electric Dipole

An electric dipole consists of two equal and opposite charges separated by vector
l. The vector is directed from the negative to the positive of the two charges. The
electrostatic potential VP due to the dipole at an arbitrary point P in space can be
determined by summing potentials due to the two charges. Considering the config-
uration shown in Fig. 9.1, the potential at P is given by

VP = Q

4πε r2
− Q

4πε r1
= Q(r1 − r2)

4πε r1r2
(9.16)

where ε is the permittivity of the medium. But, from trigonometry,
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Fig. 9.1 Configuration for
calculating the potential due
to the electrostatic dipole at
arbitrary field point
P(r, θ,φ), at left, and
showing the components of
the electric field due to a
dipole directed along the
z-axis, at right

r21 = r22 + l2 + 2r2l cos θ′

which can be rearranged to show that

r1 − r2 = l(l + 2r2 cos θ′)
r1 + r2

.

When this relation is substituted into (9.16), VP becomes

VP = Ql(l + 2r2 cos θ′)
4πε r1r2(r1 + r2)

. (9.17)

This is an exact expression, but it can be simplified in the case of an ideal dipole for
which l � r . Under these circumstances, r1 → r , r2 → r and θ′ → θ. Taking these
limits, (9.17) becomes

VP = Ql cos θ

4πε r2
= pQ cos θ

4πε r2
(9.18)

where pQ = Ql is the electric dipole moment with unit Coulomb meter (Cm). From
(9.18), the electric field of the dipole can be obtained from the relation E = −∇V ,
yielding

E(r, θ) = pQ

4πε r3
(2 cos θ r̂ + sin θ θ̂) (9.19)

and then

D(r, θ) = εE(r, θ) = pQ

4πr3
(2 cos θ r̂ + sin θ θ̂) (9.20)

for a dipole at the origin of coordinates, directed in the z-direction (p = pz ẑ). Note,
there is no φ̂-component of E for a z-directed dipole, due to symmetry, and E is
independent of φ, because the dipole field is invariant with respect to rotation about
the z-axis.
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9.3.2 Current Dipole

Thewell-knowndevelopment leading to (9.19) and (9.20) is for an electrostatic dipole
embedded in a dielectric material of permittivity ε [3]. A similar field distribution,
for the current density J, arises from the dipole-like behavior of a small defect in a
conductorwith conductivityσ. In the latter case, the current density J in the conductor
is identified with the electric displacement D in (9.20), and σ identified with ε, so
that the current density distribution due to current dipole pJ is given by

J(r, θ) = σE(r, θ) = pJ

4πr3
(2 cos θ r̂ + sin θ θ̂). (9.21)

In (9.21), pJ = I l now represents a current dipole and has unit Ampère-meter (Am).
As before, (9.21) holds for a dipole at the origin of coordinates, directed in the z-
direction.

9.3.3 Magnetic Dipole

The magnetic dipole moment of a current loop,m, is defined to be the product of the
current flowing in the loop, I , and the vector area of the loop, S, such that m = IS
as discussed in Sect. 3.2 and shown schematically in Fig. 3.2. The units of m are
Ampère-meter-squared (Am2). Note that the magnetic dipole moment of a long bar
magnet can also be defined in terms of the product of the pole strength and the length
of the magnet, see (3.1) [4], which is analogous with the definition of the electric
dipole moment pQ = Ql but is not useful in general. The definition given in (3.2)
connects the magnetic dipole with its fundamental source—charge in motion.

By analogy with the derivation of the current density J associated with the current
dipole in a conductor, it can be shown that the magnetic field H associated with a
magnetic dipole m = mzẑ is given by

H(r, θ) = m

4πr3
(2 cos θ r̂ + sin θ θ̂). (9.22)

9.4 Small Flaws

Certain simple calculations of the impedance change due to a flaw �Z can be made
under the “small flaw” approximation. A small flaw is defined as one whose dimen-
sion � is

1. Small compared with the electromagnetic skin depth, δ = [2/(ωμσ)]1/2, in both
the flaw and the surrounding metal;
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2. Sufficiently small that the incident field is approximately uniform over the flaw—
this means that the magnitude and direction of the eddy-current density incident
upon a volume similar to that occupied by the flaw does not change appreciably
in magnitude or direction from point to point within that volume;

3. Small compared with the distance between the flaw and the nearest discontinuity
in the specimen. A discontinuity may be another flaw, a joint with another piece
of material or the surface of the test-piece, etc.

The first and second of these “small flaw” conditions may be connected. One way
of satisfying both of them is to impose the condition that the flaw dimension �

must be less than, say, one-tenth of the electromagnetic skin depth, i.e., δ/� > 10.
This condition usually gives good accuracy in applying solutions obtained under the
approximation of a small flaw. If the flaw is as large as one-third of the skin depth,
or δ/� > 3, accuracy will likely still be tolerable. For smaller δ/�, the full solution
to Maxwell’s equations needs to be determined. Similar conditions can be stated in
relation to the third item listed above.

If δ is assumed large with respect to the flaw size, it is implied that the frequency is
low. In fact, within the small flaw approximation it is assumed that the static form of
Maxwell’s equations may be applied. Taking the limit ω → 0 in the set of equations
given in Table5.2 gives the relations shown in Table9.1. This means that, unlike at
arbitrary frequency, E and H are decoupled in the static regime. Taking Gauss’ Law
for both electric and magnetic fields, it is clear that E and H may both be written as
the gradient of different scalar potentials;

E = −∇V (9.23)

H = −∇�. (9.24)

From the mathematical point of view, this formulation is beneficial because then
the governing equations for the system are simply Laplace equations of the scalar
potentials:

∇2V = 0 (9.25)

∇2� = 0, (9.26)

Table 9.1 The static form ofMaxwell’s equations. The general form is given in the central column.
The form obtained by applying constitutive relations (2.25) and (2.33), and noting that there is no
volume charge distribution in a metal, is given in the right-hand column

Law Differential form In a metal

Faraday’s law ∇ × E = 0 ∇ × E = 0

Maxwell–Ampère law ∇ × H = J ∇ × H = J

Gauss’ law ∇ · D = ρv ∇ · E = 0

Gauss’ law for magnetic fields ∇ · B = 0 ∇ · H = 0



9.4 Small Flaws 175

obtained by inserting (9.25) and (9.26) into the static form of Gauss’ Law and Gauss’
Law for magnetic fields, Table9.1, respectively. When appropriate boundary condi-
tions are specified, (9.25) and (9.26) can be solved and then the electric and magnetic
fields determined through relations (9.23) and (9.24).

I now introduce terminology that shall be used in the solution of (9.25) and (9.26).
Consider a flaw or inclusion of conductivity σf in a metal of conductivity σ so that
the flaw is defined by a discontinuity in the conductivity of the test-piece. The eddy
current density induced by the coil is assumed to be uniform at the flaw, according
to assumption 2 in the small flaw approximation. The incident current density will
be denoted J(i). When J(i) encounters the flaw, it is perturbed. The perturbed field
will be denoted J(s). The total field is the sum of both the incident and the perturbed
fields so that

J(t) = J(i) + J(s). (9.27)

Note, J(s) has associated with it a perturbed magnetic field due to Ampère’s Law. In
the case of a discontinuity in the conductivity of the test-piece, this is the magnetic
field whose changing flux is detected by the EC pick up coil.

Now consider the case in which a flaw or inclusion in a metal test-piece also has
permeability μf that is different from that of the host, so that μf �= μ. In this case,
there is an additional component to the perturbed magnetic field that satisfies

∇ × H′ = 0, ∇ · H′ = 0, B′ = μH′. (9.28)

There is no current source of H′ because it arises due to contrast in permeability
between the inclusion and the host, rather than due to a perturbation of the current.

So we see that there are two mechanisms by which field perturbations by a flaw
or inclusion may occur. Both give rise to a perturbation in the magnetic field that
can be detected by an EC coil. The first is due to conductivity contrast, and the
second due to permeability contrast, between the inclusion and host. Note that these
mechanisms can exist independently of one another but in practice it is common that
either the first (σf �= σ) exists alone, as in the case of nonmagnetic metals, or that
both mechanisms exist together, as in the case of ferromagnetic metals.

9.4.1 Subsurface Sphere

Current Dipole In accordance with assumption 2 in Sect. 9.4, consider a uniform
current density directed along the z-axis, J(i) = J (i)

z ẑ = σE (i)
z ẑ, incident on a sphere

with conductivity σf and radius a, centered on the origin of a system of spherical-
polar coordinates, Fig. 9.2. Assume that there is good electrical contact between
the spherical inclusion and the test-piece so that, if the inclusion is conductive and
σf �= 0, current can freely enter the inclusion.
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Fig. 9.2 Uniform electric
field E(i) = E (i)

z ẑ in a metal
test-piece with conductivity
σ, incident on a small
spherical inclusion with
conductivity σf

BoundaryConditionsTodetermine the perturbed part of the electric field, that arises
due to the presence of the flaw, and eventually the impedance measured in an eddy
current coil due to the flaw, Laplace equation (9.25) will be solved subject to certain
boundary conditions on the surface of the sphere. The first of these is obtained from
(5.19) which states that the tangential component of the electric field at an interface
is continuous. In this case, write

[(E(i) + E(s) − E( f )) × r̂ ]r=a = 0 (9.29)

where the superscripts (i), (s), and ( f ) represent the incident field in the metal
external to the inclusion, the perturbed part of the field external to the inclusion due
to the presence of the flaw, and the total field within the flaw, respectively. In this
spherical geometry,

[E (i)
θ + E (s)

θ − E ( f )
θ ]r=a = 0. (9.30)

Writing condition (9.30) in terms of the scalar potential V now gives

[V (i) + V (s) − V ( f )]r=a = 0. (9.31)

Normal to the surface of the sphere, the current density is continuous:

[(J(i) + J(s) − J( f )) · r̂ ]r=a = 0 (9.32)

and, equivalently,
[J (i)

r + J (s)
r − J ( f )

r ]r=a = 0. (9.33)

In terms of the scalar potential V ,

[
σ

(∇V (i) + ∇V (s)
) − σf∇V ( f )

]
r=a

· r̂ = 0. (9.34)

Solution The incident field defined above is z-directed, which means that the system
is rotationally invariant in the azimuthal (φ) direction. In spherical-polar coordinates,
E(i) = E (i)

z ẑ which means that

V (i) = −E (i)
z z = −E (i)

z r cos θ.



9.4 Small Flaws 177

Under this circumstance, the general solution of the Laplace equation is given by

V =
∞∑

n=0

( an
rn+1

+ bnr
n
)
Pn(cos θ), (9.35)

where Pn(x) is the Legendre polynomial of order n. In the case of the embedded
sphere, no source of the electromagnetic field exists in the interior of the sphere. This
means that the an vanish inside the sphere and the bn vanish outside the sphere.

V (s) =
∞∑

n=0

an
rn+1

Pn(cos θ), r ≥ a (9.36)

V ( f ) =
∞∑

n=0

bn Pn(cos θ)rn, r ≤ a (9.37)

To this general solution the boundary conditions (9.31) and (9.34) are applied, in order
to determine the values of the coefficients an and bn . It is found that all coefficients
vanish apart from a1 and b1, which have the following forms,

a1 = −
(

σ − σf

2σ + σf

)
a3E (i)

b1 = −
(

3σ

2σ + σf

)
E (i).

In order to eventually obtain an expression for the impedance change due to the flaw,
the perturbed field external to the flaw is needed. Substituting a1 into (9.36) and
taking the negative gradient according to (9.23) gives

J(s) = −J (i)

(
σ − σf

2σ + σf

)
a3

r3

(
2 cos θ r̂ + sin θ θ̂

)
. (9.38)

Comparing this expression with that of the field of an electrostatic dipole, (9.20), it
can be seen that J(s) may be written

J(s) = p

4πr3

(
2 cos θ r̂ + sin θ θ̂

)
(9.39)

where we identify a current dipole p with

p = −4πa3
(

σ − σf

2σ + σf

)
J(i). (9.40)

It should be emphasized that p is not an electrostatic dipole formed by separation of
electrostatic charge. Rather, p is a current dipole, whose field resembles that of the
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electrostatic dipole. The current dipole p has unit Ampère-meter (Am) rather than
Coulomb meter (Cm) as in the case of the electrostatic dipole.

Following Burrows [1], I now write p in terms of the volume of the sphere,
v = 4πa3/3, and a dimensionless current-scattering parameter α, defined

α = 2

(
σ − σf

2σ + σf

)
. (9.41)

Then the following compact expression for p pertains,

p = −3

2
vαJ(i). (9.42)

There are several points that should be noted regarding the form of p.

1. Dipole strength p is proportional to the volume of the sphere, v;
2. p is proportional to the magnitude of the incident current density J (i), but has the

opposite direction (see Fig. 9.3);
3. p is strongest for greatest contrast between σ and σf , that is, for σf = 0; in this

case, the defect is a void and p = −(3/2)v J(i);
4. as σf → σ, the dipole strength weakens because α → 0 and p → 0.

Note, these expressions were derived under the assumption of good electrical contact
between the test-piece and the inclusion. In the case that an insulating oxide layer,
for example, exists at the interface between the inclusion and the test-piece, then

Fig. 9.3 Current density
vector field J( f ) inside and
J(s) exterior to a spherical
inclusion with conductivity
σf �= 0. The incident current
density J(i) is uniform over
the dimension of the sphere
and is directed from left to
right
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current is not able to enter the material of the inclusion and it will appear as a void,
even if σf �= 0.

Current Dipole Contribution to �Z due to a Subsurface Spherical Inclusion
The computation of �Z due to an inclusion that can be represented as a current
dipole-like source of perturbed current density can be simplified by invoking the
“small flaw” approximation. Under this approximation, the incident electric field
associated with the current density induced by the energizing coil, superscript (1), is
assumed uniform over the flaw, superscript (2). Under this circumstance, (9.11) can
be written as

[I(1)
]2

�Z = E(1) ·
[∫

V (2)
J(2)
s dV

]
= E(1) · p = E(i) · p, (9.43)

where the current dipole p has been identified with
∫
V (2) J(2)

s dV . This is the scalar
product of the current dipole moment p with the incident electric field produced by
the energizing coil at the position of the dipole. Substituting the form of p given in
(9.42) into (9.43) gives

[I(i)
]2

�Z = 3

2
vασ

[
E(i) · E(i)

]
r=rp

= 3

2
vασ

[
E(i)

]2
r=rp

, (9.44)

where the superscript (i) denotes the current in the energizing coil or the field orig-
inating from it and rp denotes the position of the current dipole associated with the
flaw response.

For a spherical inclusionwhose center is at depth D below the surface of a conduc-
tive half-space that is excited by a uniform current sheet such as shown in Fig. 2.5,
the magnetic and electric fields at the surface z = 0 are given by H = H0 ŷ and
E = E0 x̂ = (− jkH0/σ)x̂ respectively. Inserting these expressions into (9.44), the
following equation for the impedance change due to the defect can be found;

�Zs = −2πα

σ

[
H0

I(i)

]2

k2a3e−2 jkD. (9.45)

Note that there is a phase shift in �Zs as a function of flaw depth D. The term

exp(−2 jkD) = exp[−2 j (1 − j)D/δ] = exp(−2 j D/δ) exp(−2D/δ)

shows that
arg(�Zs) = −2D/δ.

In other words, the phase of �Zs is proportional to D/δ. The phase change as a
function of depth is illustrated in Fig. 8.8.

Note, while the field perturbed by the flaw is obtained under the small flaw
approximation, that is effectively a quasi-static approximation leading to govern-
ing Laplace equations (9.25) and (9.26), the frequency reappears in the impedance
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change expression (9.45)—embedded in k—due to the fact that the incident field,
which is frequency dependent, is inserted into the impedance formula (9.44) in order
to obtain (9.45). There is no conflict in the fact that frequency variation is dropped
when determining the equivalent dipole response of the flaw but then reinstated to
calculate the impedance change, because the small flaw approximation describes the
negligible variation of the field with respect to the flaw dimensions; an assumption
that can hold even while the field varies in time, as it must for there to be induction
of eddy currents at all according to Faraday’s Law.

Magnetic Dipole A parallel development to that given in (9.29)–(9.42), wherein the
perturbation of J(i) by a flaw was recognized as equivalent to a perturbation due
to the presence of an equivalent current dipole p, can be followed to show that the
perturbation of B(i) by a flaw can be expressed as that due to the presence of an
equivalent magnetic dipole m, where

m = −3

2
vβH(i) (9.46)

and

β = 2

(
μ − μf

2μ + μf

)
. (9.47)

As with p, there are several points that should be noted regarding the form ofm.

1. Dipole strength m is proportional to the volume of the sphere, v;
2. m is proportional to the magnitude of the incident magnetic field H (i), but has

the opposite direction;
3. m is strongest for greatest contrast betweenμ andμf although, unlikeσf ,μf cannot

be zero but in the case of a void or nonmagnetic inclusion in a ferromagnetic
material μ � μf which implies that β → 1 and m = −(3/2)vH(i);

4. as μf → μ, the dipole strength weakens because β → 0 and m → 0;
5. themagnetic dipole strength isweak (usually negligible) in anynon-ferromagnetic

test-piece.

Magnetic Dipole Contribution to �Z due to a Subsurface Spherical Inclusion
To account for a magnetic dipole contribution to the impedance change of an EC
coil that arises due to permeability contrast between a subsurface spherical inclusion
and its surrounding material, an additional term �Zm is needed that originates in
the electromotance induced in a pick-up loop by a magnetic dipole. A suitable form
for �Zm can be obtained by manipulating (9.11) in the following way. First taking
J(2)
s = I(2)dl where current I(2) flows along circular path C (2), (9.11) becomes

�Z = I(2)

[I(1)
]2

∫

C (2)
E(1) · dl (9.48)

to which Stokes’ theorem (10.49) may be applied to give
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�Z = I(2)

[I(1)
]2

∫

S(2)
[∇ × E(1)] · dS (9.49)

where S(2) is an open surface bounded by C (2) that we can take to be a circular
disk. By Faraday’s Law and remembering from (3.2) thatm = IS in general, (9.49)
becomes

�Z = jω
I(2)

[I(1)
]2

∫

S(2)
B(1) · dS = jω

[I(1)
]2B

(1) · m(2). (9.50)

The last step can be taken under the small flaw approximation where B(1) due to the
energizing coil does not vary significantly over the volume of the flaw. Then, in the
case of a small flaw,

�Z = �Zp + �Zm = 1
[I(1)

]2
[
E(1) · p(2) + jωB(1) · m(2)

]
(9.51)

where the subscripts p and m represent current dipole and magnetic dipole contri-
butions to �Z , respectively. Substituting the forms of p and m given in (9.42) and
(9.46), respectively, into (9.51) gives, for the impedance change in a coil due to a
small flaw that behaves as a current dipole and magnetic dipole source,

[I(i)
]2

�Z = 3

2
v

{
ασ[E (i)]2r=rp − jωβμ[H (i)]2r=rm

}
(9.52)

where the superscript (i)denotes the current in the energizing coil or fields originating
from it, and rp and rm indicate the positions of the current and magnetic dipoles
associated with the flaw response, respectively, which would usually be the same.

Note that the first term on the right-hand side of (9.52) is the same as that studied
in Sect. 9.4.1. It is the contribution to�Zs due to the equivalent electric current dipole
representation of the flaw.

For a spherical inclusionwhose center is at depth D below the surface of a conduc-
tive half-space that is excited by a uniform current sheet such as shown in Fig. 2.5,
the magnetic and electric fields at the surface z = 0 are given by H = H0 ŷ and
E = E0 x̂ = (− jkH0/σ)x̂ , respectively. Inserting these expressions into (9.52), it is
found that

�Zp = −2πα

σ

[
H0

I(i)

]2

k2a3e−2 jkD, (9.53)

which is the same as (9.45), and

�Zm = 2πβ

σ

[
H0

I(i)

]2

k2a3e−2 jkD. (9.54)

Combining these according to (9.51) yields
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�Zs = �Zp

(
1 − β

α

)
(9.55)

which shows, interestingly, that �Zs → 0 as β → α.

Nonspherical Subsurface Flaws More generally, inclusions of other shapes may
also be modeled under the approximation of being “small flaws”. Canonical shapes
such as an ellipsoid or spheroids may be modeled as a single-dipole source of per-
turbed current density, as exemplified here in the limiting case of the sphere. Expres-
sions for p due to oblate and prolate spheroids are given by Burrows [1]. Oblate
spheroids may be used to approximate disc-like defects, whereas prolate spheroids
may approximate needle-like inclusions. In these cases the scattering parameters α
or β must include the semi-axes lengths of the spheroid, as well as the conductivity or
permeability values of the test-piece and the inclusion. Inclusions of arbitrary shape
can in principle be modeled by including higher order multipoles to represent the
perturbed current density.

9.4.2 Surface Defects

Representation of Surface Defects as a Current Dipole Distribution The pertur-
bation of eddy currents by surface defects may also be described theoretically by
representing the defect in terms of equivalent current dipoles. This representation can
be adopted regardless of the relative size of the crack and the skin depth but, in the
low-frequency regime, simple asymptotic expressions are available for the current
dipole distribution that represents various defects. In the high-frequency, or “thin-
skin” regime, othermethodsmay be applied as discussed in Sect. 9.5. At intermediate
frequencies or flaw sizes, for which the defect size is similar to the value of δ, it is
possible to determine a two-dimensional dipole density distribution over the crack
surface by numerical means [5], from which �Z can be computed. Similar com-
ments apply for the perturbation of the incident magnetic field by magnetic dipoles
whose effect is equivalent to that of a surface flaw. The remaining examples given
in this Sect. 9.4.2, give explicit forms for the contribution to the impedance change
due to the conductivity contrast between the flaw and the test-piece, i.e., due to the
current dipole contribution, whereas any contribution due to permeability contrast is
left to the interested reader to determine.

Hemispherical Indentation The impedance change �Zh due to a hemispherical
surface indentation with radius a in a uniform incident field can be obtained from
�Zs for a subsurface sphere by setting σf = 0 and taking the limit D → 0 (which
means that α → 1), and halving the dipole strength because the flaw now has only
half of the volume of a sphere. Applying these operations to (9.45) yields

�Zh = −π
1

σ

[
H0

I(i)

]2

k2a3. (9.56)
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Consideration of this expression reveals that �Zh is purely inductive (because k2 =
− jωμσ). This is in contrast with �Zs for the subsurface spherical inclusion, for
which the phase of �Zs changes as a function of the depth of the inclusion below
the conductor surface, as discussed in Sect. 9.4.1.

Semicircular Crack In 1996, Harfield, Yoshida, and Bowler [6] published low-
frequency perturbation theory solutions for the impedance change in an EC coil due
to (i) a semicircular surface crack and (ii) a long, surface crack with uniform depth.
The cracks occupy a plane normal to the plane of the conductor surface and normal
to the direction of the uniform incident current density. Several terms in a series
expansion for �Z in these cases were obtained analytically, the first of which are
reproduced here.

In the case of a semicircular surface crack, radius a, the current dipole contribution
to the impedance change is given by

�Zs−c = − 4

3σ

[
H0

I(i)

]2

k2a3. (9.57)

As in the case of the hemispherical indentation, the impedance change due to this
surface defect is purely imaginary (inductive).

Long Crack For a long, surface crack with depth d that occupies a plane normal to
the plane of the conductor surface and normal to the direction of the uniform incident
current density [6],

�Z∞ = − π

2σ

[
H0

I(i)

]2

(kd)2. (9.58)

As in the cases of the hemispherical indentation and the semicircular surface crack,
the impedance change due to the long surface crack is purely imaginary (inductive).

9.5 High-Frequency “Thin-Skin” Treatment of Surface
Cracks

The “small flaw” regime, dealt with in Sect. 9.4, arises naturally when low-frequency
excitations are used, because then the electromagnetic skin depth, δ, is often signif-
icantly larger than the defect that is sought. The opposite regime arises naturally
when a higher frequency excitation is used for the interrogation of surface defects.
This regime is known as the “thin-skin” regime because at higher frequencies the
induced eddy-current density can be thought of as occupying a relatively thin layer
(skin) near the surface of the metal test-piece. Then, it is often the case that δ � �,
where � is a relevant dimension of the surface defect.

In this discussion of thin-skin theory, a new method of calculating �Z will be
introduced, Sect. 9.5.1, and a detailed solution given for a two-dimensional system in
which a long, surface crack with depth d � δ is interrogated by a uniform incident
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current density, Sect. 9.5.4. This simplified geometry permits solution in the context
of this textbook. Other thin-skin solutions for the impedance change in an eddy-
current coil due to surface cracks with finite length and several different profiles are
summarized in Sects. 9.5.6–9.5.9. For details of these solutions the reader is referred
to the series of articles [7–9] in whichHarfield and Bowler published a theory of thin-
skin eddy current interactionwith surface cracks that has the ability to describe�Z in
various coils due to various cracks. The impedance calculation relies on evaluation of
an integral along the line of the crack mouth, with the incident magnetic field due to
the eddy-current coil being an input of the integrand. Calculated and experimentally
measured values of �Z were compared for an eddy current surface coil interacting
with long [7], rectangular [8], semielliptical [9] and epicyclic [9] artificial defects
that were fabricated by electro-discharge machining.

9.5.1 Poynting Vector and Z

We are now familiar with the circuit-theory approach by which Z or �Z may be
calculated in an eddy-current coil as the ratio of phasor voltage to phasor current,
via (4.25). Here, it will be shown that Z or �Z may be calculated in an alternative
way, that relies on knowledge of the electric and magnetic fields in the vicinity of
the metal or defect. In the context of thin-skin theory, this latter approach is more
convenient for determination of the impedance.

Recall the definition of the Poynting vector (2.19) and the average power that
can be calculated from it when fields are time-harmonic (2.21). From circuit theory,
power is also given by the product VI = I2Z which allows us to identify

I2Z =
∫

S
P · dS = 1

2
Re

∫

S

(
E × H∗) · dS. (9.59)

Hence, the impedance of an eddy-current coil may be determined by integrating
E × H∗ over a relevant surface:

Z = 1

2[I(i)]2 Re
∫

S

(
E × H∗) · dS. (9.60)

9.5.2 Current-Sheet Excitation of an Unflawed Half-Space

As an example of the application of (9.60), first consider the impedance due to
current-sheet excitation of an unflawed half-space conductor, Fig. 9.4.

The current sheet excitation gives rise to an x-directed electric field E = Ex x̂ and
a y-directed magnetic field H = Hy ŷ, which both decay in the conductor according
to e jkz , (6.22). Denote the magnetic field at the conductor surface by H0. Then,
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Fig. 9.4 Conductive
half-space excited by a
uniform current sheet J. The
surface of integration S is
depicted as the dashed line,
with dS = n̂dS
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z

x
z = 0

z = h

n̂

H∗
y (z = 0) = Hy(z = 0) = H0 and Ex (z = 0) = − jkH0

σ
, (9.61)

where the expression for Ex (z = 0) can be obtained by applying Faraday’s Law.
Therefore, over a square with side length L at the conductor surface, the impedance
of the conductor is given by

Z = 1

2[I(i)]2
∫ L/2

−L/2

∫ L/2

−L/2
(Ex x̂ × H∗

y ŷ) · (−ẑ)dxdy = jkL2

2σ

[
H0

I(i)

]2

, (9.62)

and the impedance per unit surface area is

Z ′ = jk

2σ

[
H0

I(i)

]2

. (9.63)

This method of calculating the impedance will be employed, in the next section, in
determining �Z due to a long, surface crack.

9.5.3 Definition of an Ideal Crack

An ideal crack is a mathematical construct in which a crack is represented as a closed
surface (this means that the crack has infinitesimal width) which nonetheless forms
a perfect barrier to the flow of electrical current across it. This second condition may
be expressed as

J(r) · n̂ = 0, r ∈ Sc (9.64)

in which Sc is the crack surface and n̂ is the unit vector normal to that surface.

9.5.4 Long Crack in a Uniform Field

Add a surface crack with depth d to the conductor shown in Fig. 9.4, to give the
configuration shown in Fig. 9.5. This problem was tackled by Kahn, Spal, and Feld-
man in [10] by breaking it down into three distinct parts. The impedance change
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Fig. 9.5 Conductive half-space excited by a uniform current sheet J, containing a long surface
crack with depth d. The surface of integration S is depicted as the dashed line, with dS = n̂dS

Fig. 9.6 Current path in the
conductive corner at one side
of the mouth of a long,
surface crack (left) and
flowing around its buried
edge (right)

due to the crack was constructed as primarily a contribution from the crack faces,
with correction terms due to the shortened current path at the crack mouth, where
essentially the current may “cut the corners”, Fig. 9.6 (left), and due to the flow of
the current density around the buried crack tip or edge, Fig. 9.6 (right). At the faces
of a crack located in the plane x = 0, the electromagnetic field has the form e− jk|x |
in the thin-skin regime, much like its form at the air–conductor interface, where it
depends upon e jkz . This essentially defines the thin-skin regime; the crack is suf-
ficiently deep that the current flow over its surface is mostly like a thin-skin, as it
is at the air–conductor interface. Corrections to �Z were then made to account for
the departure of the current path from its thin-skin behavior, at the crack edge and
mouth. A similar approach was adopted by Harfield and Bowler [11] in 1994, and
in this paper all terms were evaluated analytically, whereas the correction terms in
[10] had been evaluated numerically. Note that Harfield and Bowler erroneously
integrated over the instantaneous power density—Poynting’s vector—(2.19) rather
than the average power per unit area (2.20) in their calculation of impedance [11],
leading to the omission of a factor of 1

2 in their result. The lowest order contribution
to �Z , from the crack faces, will be derived here and results for the correction terms
will be stated.

Integrating the average power per unit area over the surface shown in Fig. 9.5,
that has been extended to include the surfaces of the crack, now yields Zflaw, the
impedance of the conductor and crack. The impedance change due to the crack,�Z ,
can be obtained by integrating the average power per unit area over a surface that
encloses the crack alone. Comparing Figs. 9.4 and 9.5 we can see that application of
(6.4) gives rise to the surface shown in Fig. 9.7. Hence,
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Fig. 9.7 Conductive half-space excited by a uniform current sheet J, containing a long surface
crack with depth d. The surface of integration Sc, depicted as the dashed line, now tightly encloses
the crack, with dS = n̂dS

�Z = 1

2[I(i)]2 Re
∫

Sc

(
E × H∗) · dS. (9.65)

Lowest Order Solution for�Z The lowest order solution for�Z due to a long, sur-
face crack excited by a uniform field may be obtained by making the approximation
that the magnetic and electric fields in the vicinity of the crack decay exponentially
as a function of distance from the crack. In other words, it is assumed that the func-
tional form of the fields near the ideal (nonconducting) crack is the same as that near
the air–conductor interface. This means that, close to a crack in the plane x = 0, the
fields decay as e− jk|x |. By analogy with expressions (9.61),

H∗
y (x = 0) = Hy(x = 0) = H0 and Ez(x = 0) = − jkH0

σ
. (9.66)

These expressions allow us to perform the integration of (9.65). Replace Sc by inte-
grating twice over the crack face at x = 0+. This gives

�Z = 1

[I(i)]2
∫ 0

−d

∫ L/2

−L/2
(Ez ẑ × Hy ŷ) · (−x̂)dydz = − jkdL

σ

[
H0

I(i)

]2

, (9.67)

or, per unit length of the crack,

�Z = Zf = − jkd

σ

[
H0

I(i)

]2

. (9.68)

This result differs in sign from that of [11] due to the different definition of �Z
adopted in (6.4) of this text and by a factor of 1

2 which was erroneously omitted from
[11]. In (9.68), the notation Zf is introduced, representing the impedance due to the
current flowing uniformly over the crack faces. Comparing this result with that for
the unflawed conductor, it can be seen that the effect of the crack is to change the
impedance in proportion with the length of the current path around the defect, which
is 2d, to lowest order. For (9.68) to be accurate to within about 10% of a measured
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value, the condition d > 8δ must hold. For 1% accuracy, d > 80δ must hold! In the
derivation of Zf the perturbing effects of the crack edge and corners on the path of the
eddy-current density, Fig. 9.6, have been neglected. If these perturbations are taken
into account, as described in the next section, then a simple modification to (9.68)
achieves good accuracy even for d ≈ 3δ.

Higher Order Solution for �Z An analytic form for the electromagnetic field in
the vicinity of the crack edge, Fig. 9.6, may be deduced from that for electromagnetic
scattering at an insulating half-plane in a conductive medium. A famous solution of
this problemwas derived originally bySommerfeld in the context of optical scattering
[12, Sect. 38] and its adaptation for this context of EC NDE is described in [11].
Analysis of the electromagnetic field near the crack edge, and computation of the
resulting contribution to impedance from it, gives

Zf + Ze = − 1

2σ

[
H0

I(i)

]2

(2 jkd + 1) , (9.69)

where Ze is the impedance contribution due to the field perturbation at the crack edge.
The impedance contribution due to the form of the field in the conductive corners
near the crack mouth, Fig. 9.6, was determined in [10, 11] by using the method of
images [13, Chap. 7]. The analysis gives rise to

Zc = 4

πσ

[
H0

I(i)

]2

. (9.70)

Combining (9.69) and (9.70) yields the impedance change due to a long, surface
crack excited by a uniform field, in the thin-skin regime:

�Z = − 1

2σ

[
H0

I(i)

]2 (
2 jkd + 1 − 8

π

)
. (9.71)

In the analysis of [11] it was shown that this result is accurate for configurations in
which d ≥ 3δ.

Considering these results, it is clear that Ze and Zc are both real (resistive) terms,
whereas Zf has real and imaginary parts with equal magnitude. Explicitly,

Re(�Z) = − 1

σ

[
H0

I(i)

]2 (
d

δ
+ 1

2
− 4

π

)
(9.72)

Im(�Z) = − 1

σ

[
H0

I(i)

]2 d

δ
(9.73)

This means that the perturbations to the current flow at the crack edge and corners
effectively reduce the crack depth in Re(�Z ) by 0.77δ:



9.5 High-Frequency “Thin-Skin” Treatment of Surface Cracks 189

d ′ = d +
(
1

2
− 4

π

)
δ = d − 0.77δ. (9.74)

Hence, the correction terms aremore significant as d decreases, butmay be negligible
for d � δ.

9.5.5 Semicircular Crack in a Uniform Field

Asa limiting case of themore complex problemof determining the impedance change
in an EC coil due to a semicircular surface crack, the following elegant solution was
obtained for the impedance change due to a semicircular surface crack excited by a
uniform field, in the thin-skin regime [9]. The crack occupies the plane normal to
both the conductor surface and the current sheet excitation, similar to the geometry
shown in Fig. 9.7, with d replaced by a, the crack radius.

�Z = −2 jk

σ

[
H0

I(i)

]2

a2
(

π

2
− 2

π

)
. (9.75)

Fig. 9.8 Calculated impedance and experimental data taken using coil C9, Table9.2, centered
over long slot L1, Table9.3, in aluminum [7]. The broken lines represent calculations made using
Auld’s prior assumption that the tangential magnetic field at the conductor surface is undisturbed
by a surface defect [14]. Reproduced with permission from American Institute of Physics: J. Appl.
Phys., vol. 82, 1997, p. 4599, Theory of thin-skin eddy-current interaction with surface cracks, N.
Harfield and J. R. Bowler, Fig. 7. Original caption: Impedance predictions and experimental data
for a coil centered over a long slot in aluminum. The broken lines represent predictions made using
Auld’s assumption that the tangential magnetic field at the conductor surface is undisturbed by a
surface defect



190 9 Flaw Models

9.5.6 Long Crack in a Coil Field

The impedance change in an EC coil due to thin-skin eddy-current interaction with
a surface crack can be calculated by evaluation of an integral along the line of the
crack mouth, wherein the magnetic field generated by the EC coil is an input of
the integrand [7]. In Fig. 9.8, calculated impedance is compared with experimental
data from frequency scans for a coil centered over a long slot in aluminum [7]. The
experimental parameters are given in Tables9.2 and 9.3.

9.5.7 Rectangular Crack in a Coil Field

In Figs. 9.9, 9.10 and 9.12, impedance calculations are compared with experimental
data as a coil is scanned along the mouth of rectangular slots in aluminum [8]. Two
cracks are studied. Crack R1 is similar in length to the diameter of the interrogating
coil, C7, whereas crack R2 is much longer than the coil diameter. The signals exhibit
various characteristic features. In Figs. 9.9 and 9.10, “shoulders” are clearly visible at
coil positions approximately±22mm. These occur when the current density induced

Table 9.2 Coil parameters for the data shown in Figs. 9.8 to 9.16, with reference to the dimensional
parameters defined in Fig. 1.9; n is the number of wire turns on the coil, L0 its DC inductance and
f0 its resonance frequency, Sect. 4.10

Coil C7 C9 C11

ri (mm) 6.95 3.015 2.51

ro (mm) 9.35 5.46 7.50

l (mm) 6.70 2.94 4.99

h (mm) 2.07 1.32 0.10

n 335 900 4,000

L0 (mH) 1.752 6.027

f0 (kHz) 850

References [8] [7] [9]

Table 9.3 Material and defect parameters for the data shown in Figs. 9.8 to 9.16. Note that the
conductivity of aluminum varies considerably, according to the alloy

Defect L1 R1 R2 D1 D2

Depth (mm), maximum 12.0 5.0 2.9 8.6 8.9

Length (mm), maximum n/a 12.6 47.1 22.1 49.8

Gape (mm), maximum 0.41 0.28 0.64 0.33 0.37

Aluminum σ (MS/m) 16.7 30.6 16.7 22.5 22.4

References [7] [8] [8] [9] [9]
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Fig. 9.9 Calculated real impedance Re(�Z ) and experimental data taken using coil C7, Table9.2,
as it is scanned along the mouth of rectangular slot R2, Table9.3, in aluminum [8]. Reproduced with
permission from IEEE: IEEE Trans. Magn., vol. 34, 1998, p. 521, Evaluation of Probe Impedance
Due to Thin-Skin Eddy-Current Interaction with Surface Cracks, J. R. Bowler and N. Harfield,
Fig. 5. Original caption: The real part of the impedance change in coil C7 as it is scanned along the
mouth of rectangular slot 2 (aluminum)

by one side of the coil is fully engaged with the crack. The distance between the
shoulders provides an estimate of the surface length of the crack. The central peak
in �Z appears when the current density induced by both sides of the coil interacts
with the crack. Note that the peak �Z is approximately twice the magnitude of the
shoulder signal. The signal shape shown in Figs. 9.9 and 9.10 is typical for a coil with
diameter somewhat less than themaximumcrack length. Figure9.11 displays the data
of Figs. 9.9 and 9.10 in the form of a Z -plane plot. While Z -plane plots give a ready
view of the complex impedance signal, note that the position information cannot be
seen explicitly in the Z -plane plot, as it can be in Figs. 9.9 and 9.10. In contrast,
Re(�Z ) is shown in Fig. 9.12 for a crack with maximum length somewhat shorter
than the coil diameter. In this case, the separation of the peaks in the signal provides
nothing more than an indication of the coil diameter, although the width of each peak
gives an indication of the flaw size. The signal exhibits a minimum when the coil
is centered over the crack because there is a minimum in the eddy-current density
below the center of a coil with large aperture, as can be seen in Fig. 6.18. Comparing
Figs. 9.12 and 9.9, one can deduce that in order to size a crack by observing �Z , a
coil with diameter somewhat smaller than the crack is preferable.
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Fig. 9.10 Calculated imaginary impedance Im(�Z ) and experimental data taken using coil C7,
Table9.2, as it is scanned along the mouth of rectangular slot R2, Table9.3, in aluminum [8].
Reproduced with permission from IEEE: IEEE Trans. Magn., vol. 34, 1998, p. 521, Evaluation of
Probe Impedance Due to Thin-Skin Eddy-Current Interaction with Surface Cracks, J. R. Bowler
and N. Harfield, Fig. 6. Original caption: The imaginary part of the impedance change in coil C7
as it is scanned along the mouth of rectangular slot 2 (aluminum)

Fig. 9.11 Impedance-plane plot constructed from experimental data shown in Figs. 9.9 and 9.10
taken using coil C7, Table9.2, as it is scanned along the mouth of rectangular slot R2, Table9.3, in
aluminum [8]. The solid and dotted lines are, in this case, fourth-order polynomial fits to the data
and serve as a guide to the eye, rather than theoretical curves as shown in Figs. 9.9 and 9.10
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Fig. 9.12 Calculated real impedance Re(�Z ) and experimental data taken using coil C7, Table9.2,
as it is scanned along the mouth of rectangular slot R1, Table9.3, in aluminum [8]. Reproduced with
permission from IEEE: IEEE Trans. Magn., vol. 34, 1998, p. 520, Evaluation of Probe Impedance
Due to Thin-Skin Eddy-Current Interaction with Surface Cracks, J. R. Bowler and N. Harfield,
Fig. 3. Original caption: The real part of the impedance change in coil C7 as it is scanned along the
mouth of rectangular slot 1 (aluminum)

9.5.8 Semielliptical Crack in a Coil Field

Real surface cracks do not grow with a rectangular profile (of course!) but often
grow with a semi-elliptical profile. Following an approach in which the thin-skin
field at the surface of a crack is represented as a transverse-magnetic (TM) potential
that satisfies the Laplace equation on the crack, solutions of the Laplace problem for
semi-elliptical cracks were obtained by conformal mapping to a rectangular region
[9]. A semi-elliptical defect with depth profile shown in Fig. 9.13 was fabricated and
experiments conducted in order to verify calculated impedance values. Calculated
and measured values of �Z are shown in Fig. 9.14 and good agreement between
them is observed. The impedance signal resembles that of Figs. 9.9 and 9.10 but is
smoother, reflecting the absence of sharp corners in the defect profile.

9.5.9 Epicyclic Crack in a Coil Field

A more elaborate example, designed to simulate two conjoined surface cracks of
different size, is shown in Fig. 9.15 [9]. The impedance change due to this defect was
calculated in a manner similar to that for the semi-ellipse; by exploiting a conformal
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Fig. 9.13 Semi-elliptical profile of slot D1, Table9.2 [9]. Reproduced with permission from IEEE:
IEEE Trans. Magn., vol. 36, 2000, p. 287, Thin-Skin Eddy-Current Interaction with Semielliptical
and Epicyclic Cracks, J. R. Bowler and N. Harfield, Fig. 5a. Original caption: Comparison of crack
edge coordinates with the profile representation used for mapping. (a) Slot D1 is approximated in
the calculation as a semiellipse

Fig. 9.14 Comparison of calculated probe impedance with experimental data for coil C11,
Table9.2, and slot D1, Table9.3, approximated as a semi-ellipse [9]. Reproduced with permis-
sion from IEEE: IEEE Trans. Magn., vol. 36, 2000, p. 289, Thin-Skin Eddy-Current Interaction
with Semielliptical and Epicyclic Cracks, J. R. Bowler and N. Harfield, Fig. 7. Original caption:
Comparison of probe impedance predictions with experimental measurements for slot D1, approx-
imated as a semiellipse
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Fig. 9.15 Epicyclic profile of slot D2, Table9.2 [9]. Reproduced with permission from IEEE: IEEE
Trans. Magn., vol. 36, 2000, p. 287, Thin-Skin Eddy-Current Interaction with Semielliptical and
Epicyclic Cracks, J. R. Bowler and N. Harfield, Fig. 5b. Original caption: Comparison of crack
edge coordinates with the profile representation used for mapping. (b) Slot D2 is approximated as
a fifth-order elliptical epi-cycle

Fig. 9.16 Comparison of calculated probe impedance with experimental data for coil C11,
Table9.2, and slot D2, Table9.3 [9]. Reproduced with permission from IEEE: IEEE Trans. Magn.,
vol. 36, 2000, p. 289, Thin-Skin Eddy-Current Interaction with Semielliptical and Epicyclic Cracks,
J. R. Bowler and N. Harfield, Fig. 8. Original caption: Comparison of probe impedance predictions
with experimental measurements for slot D2

mapping from the crack domain shown to a rectangular domain. To do this, the
crack profile was approximated by a series of nested elliptical epicycles. Despite the
relative complexity of the profile of this defect, the impedance measurements still
match the calculated values quite well, Fig. 9.16.
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9.6 Other Regimes

For inspections whose frequencies fall between the “small flaw” and “thin-skin”
regimes examined in this chapter, more generalized computer modeling approaches
can be employed to model the coil impedance change due to various types of defect.
For a detailed exposition of computational electromagnetics with specific application
to the field of EC NDE, the reader is referred to [15].

9.7 Summary

In this chapter, some analytical forms for leading terms in the impedance change
that would be observed due to various defects in a metal have been presented. The
discussion has been divided into two regimes that can be treated analytically: a “low-
frequency” regime and a “thin-skin” regime. For purposes of comparison, some
results that have been presented are gathered in Table9.4. From the table, it can
be seen that leading terms in the impedance change due to these defects in the low-
frequency regime are of order k2, purely inductive. In the thin-skin regime the leading
terms in the impedance change are of order k, contributing to real and imaginary parts
of �Z in equal magnitude. It is important to note that the leading terms are of order
k in the thin-skin regime only when the crack is closed, i.e., ‘ideal’ according to
the definition presented in Sect. 9.5.3. A discussion of the way in which the leading
contribution to �Z becomes purely inductive, of the form k2dg where d is the depth
and g the gape or opening of the crack, is given in [16]. An algorithm for determining
the depth and opening of a long crack in the thin-skin regime, that recognizes this
term, is given in [17] and references therein.

This chapter concluded with a review of articles and results comparing thin-skin
theoretical calculations of coil impedance with experimental data taken on narrow
cracks with rectangular, semi-elliptical, and epicyclic profiles.

Table 9.4 Leading terms in impedance change due to various defects, in low-frequency and thin-

skin regimes. Multiply by − 1
σ

[
H0
I(i)

]2
to obtain �Z

Defect Low-frequency regime Thin-skin regime

Hemispherical
indentation

πk2a3 (9.56) –

Semicircular
crack

4
3 k

2a3 (9.57) 2 jka2
(

π
2 − 2

π

)
(9.75)

Long crack π
2 (kd)2 (9.58) jkd + 1

2 − 4
π (9.71)
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9.8 Exercises

1. Sketch the magnitude of the radial and polar components of J due to a dipole p,
given by

J(r, θ) = p

4πr3
(2 cos θ r̂ + sin θ θ̂),

as a function of polar angle θ, for r = a. At what value of θ is |J|
(i) weakest?
(ii) strongest?

2. Sketch the form of the dimensionless scattering parameter α that appears in the
dipole representation of a small flaw

α = 2

(
σ − σf

2σ + σf

)

as a function of σf for 0 ≤ σf ≤ σ. Comment on the meaning of α and it’s maxi-
mum and minimum values.

3. Evaluate �Z for an ideal, semicircular, surface crack in chromium with radius
a = 1mm. At the surface of the test-piece the magnitude of the magnetic field
is given by H0 = 104 A/m. It is produced by a horizontal current sheet carrying
current 0.1A and located above the test-piece, oscillating at 1kHz. Justify the use
of the formula that you choose and explain the role of the metal conductivity in
your calculation.

4. The center of a spherical void, radius 1mm, is located 2mmbelow the surface of a
steel test-piece. In the steel, σ = 10% IACS and μr = 80. The uniform magnetic
field at the surface of the test-piece is H = H0 ŷ = 106 ŷA/m, the electric field at
the surface is E = − jkH0 x̂/σ, the exciting current is 0.1A, and the excitation
frequency is 1kHz.

(i) Evaluate �Z due to the defect.
(ii) What are the relative contributions of the current dipole term and the mag-

netic dipole term to �Z in terms of their magnitude and phase?

5. (i) Plot |Re(�Z)| for a long, surface breaking crack excited by a uniform inci-
dent field, as a function of d/δ where d is the crack depth and δ the electro-
magnetic skin depth, according to (9.72).

(ii) For what value of d/δ are the higher order correction terms <1% of
|Re(�Z)|?

(iii) Hence, evaluate the frequencies at which the higher order terms are negli-
gible (<1%) in aluminum with σ = 43MS/m for surface cracks (i) 2mm
deep (ii) 2µm deep.

(iv) Are the frequencies you have found in part (iii) commonly used in ECNDE?
6. Consider a spherical void, radiusa = 0.1mm,whose center is located 2mmbelow

the surface of a titanium specimen, for which σ = 0.58MS/m. The test-piece is
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excited by a current sheet excitation, with I = 0.1A and the value of themagnetic
field at the conductor surface is H0 = 106 A/m.

(i) Evaluate the frequency f for which δ = 10a, where δ is the electromagnetic
skin depth.

(ii) For an excitation at 1kHz, evaluate �Z due to the void, expressing your
answer in the form |�Z |e jφ.

(iii) Nowconsider a different defect, a hemispherical indentation at the conductor
surface. The signal due to this defect has |�Z | the same as that you obtained
for the subsurface defect in part (ii). With all other quantities being equal,
what is the radius of the hemispherical indentation? Does this defect satisfy
the criterion defining a “small flaw”?

(iv) Given that the subsurface sphere of part (ii) and the hemispherical inden-
tation of part (iii) have the same |�Z |, how could you distinguish between
them in an eddy-current inspection?
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Chapter 10
Appendices

Abstract This Appendix introduces and defines mathematical tools that are of par-
ticular usefulness in the analysis of eddy-current impedance signals. Complex num-
bers, certain trigonometric functions, important operators, and identities of vector
analysis in Cartesian, cylindrical, and spherical coordinate systems are presented.
Due to their importance in analysis of eddy-current probe coil fields, Bessel func-
tions are defined and described in some detail.

10.1 Complex Numbers

A complex number z has the Cartesian form

z = x + j y (10.1)

where x and y are real numbers and j = √−1. x is known as the real part of z,
Re{z}, and y the imaginary part of z, Im{z}. A complex-plane plot of z is shown in
Fig. 10.1. Be careful about the fact that, although y is known as the imaginary part
of z, y itself is a real number. The complex conjugate of c is c∗ where

c∗ = x − j y. (10.2)

In polar coordinates x = |z| cosφ and y = |z| sin φ from which it follows that

z = |z|(cosφ + j sin φ) (10.3)

where |z| = √
x2 + y2 is the modulus of z and φ = arctan(y/x) is its argument or

phase. From the following relation (Euler’s Formula),

e jφ = cosφ + j sin φ, (10.4)

z can be written in polar form as follows, also shown in Fig. 10.1,

z = |z|e jφ. (10.5)
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Fig. 10.1 Complex-plane
representation of complex
number
z = x + j y = |z|e jφ
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10.2 Trigonometry

The following useful relations are extracted from [1]. Noting that j = √−1,

e± j x = cos x ± j sin x, Euler’s theorem (10.6)

cos x = e jx + e− j x

2
, sin x = e jx − e− j x

2 j
(10.7)

cos2 x + sin2 x = 1 (10.8)

sin(A ± B) = sin A cos B ± cos A sin B (10.9)

cos(A ± B) = cos A cos B ∓ sin A sin B (10.10)

sin A + sin B = 2 sin

(
A + B

2

)
cos

(
A − B

2

)
(10.11)

sin A − sin B = 2 cos

(
A + B

2

)
sin

(
A − B

2

)
(10.12)

cos A + cos B = 2 cos

(
A + B

2

)
cos

(
A − B

2

)
(10.13)

cos A − cos B = −2 sin

(
A + B

2

)
sin

(
A − B

2

)
(10.14)

10.3 Vector Analysis

The relationships in this section are extracted from [2, Appendix 1], [3, Chaps. 4 and
6] and [4, Part 1].
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10.3.1 Continuity and Differentiability

First note the following definition of continuity of a scalar function. A scalar function
f (x) is continuous at x if

lim
�x→0

f (x + �x) = f (x).

Equivalently, f (x) is continuous at x if for each positive number ε we can find some
positive number η such that

| f (x + �x) − f (x)| < ε whenever |�x | < η.

Equivalent definitions can be formulated for a vector field a(x) and for scalar and
vector fields in three dimensions; f (x, y, z) and a(x, y, z).

A scalar or vector function of x is differentiable of order n if its nth derivative
exists. A function which is differentiable is necessarily continuous (but a continuous
function is not necessarily differentiable).

10.3.2 Differential Operators

The vector differential operator del, written ∇ and also known as nabla, is defined
by

∇ ≡ ∂

∂x
x̂ + ∂

∂y
ŷ + ∂

∂z
ẑ ≡ x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (10.15)

This vector operator is useful in defining three quantities which arise in analysis of
three-dimensional field quantities, including the electromagnetic field. These are the
gradient, divergence and curl.

The Gradient

Let f (x, y, z) be defined and differentiable at each point (x, y, z) in a certain region
of space (this means that f is a differentiable scalar field). The gradient of f is then

∇ f = ∂ f

∂x
x̂ + ∂ f

∂y
ŷ + ∂ f

∂z
ẑ. (10.16)

Note that ∇ f defines a vector field.
The component of ∇ f in the direction of a unit vector û is given by ∇ f · û and

is known as the directional derivative of f in the direction û. Physically, this is the
rate of change of f at (x, y, z) in the direction û.
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The Divergence

Let a(x, y, z) = ax x̂ + ay ŷ + az ẑ be defined and differentiable at each point (x, y, z)
in a certain region of space (this means that a is a differentiable vector field). The
divergence of a is then

∇ · a =
(

∂

∂x
x̂ + ∂

∂y
ŷ + ∂

∂z
ẑ

)
· (ax x̂ + ay ŷ + az ẑ)

= ∂ax
∂x

+ ∂ay
∂y

+ ∂az
∂z

. (10.17)

Note that ∇ · a defines a scalar field. Note also that ∇ · a �= a · ∇. A vector field a
is said to be divergenceless or solenoidal if ∇ · a = 0.

The Curl

If a is a differentiable vector field, then the curl (or rotation) of a is defined by

∇ × a =
(

∂

∂x
x̂ + ∂

∂y
ŷ + ∂

∂z
ẑ

)
× (ax x̂ + ay ŷ + az ẑ)

=
∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

ax ay az

∣∣∣∣∣∣

=
(

∂az
∂y

− ∂ay
∂z

)
x̂ +

(
∂ax
∂z

− ∂az
∂x

)
ŷ +

(
∂ay
∂x

− ∂ax
∂y

)
ẑ. (10.18)

A vector field a is said to be irrotational or conservative if ∇ × a = 0.

The Laplacian

If f is a differentiable scalar field, then the Laplacian of f is the divergence of the
gradient of f ;

∇2 f = ∇ · ∇ f

=
(

∂

∂x
x̂ + ∂

∂y
ŷ + ∂

∂z
ẑ

)
·
(

∂ f

∂x
x̂ + ∂ f

∂y
ŷ + ∂ f

∂z
ẑ

)

= ∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2

The Laplacian of a scalar field is a scalar field. A scalar field f is said to be harmonic
in a given region if its Laplacian vanishes in that region (∇2 f = 0). On the other
hand, the Laplacian of a vector field a results in a vector field.

∇2a = ∇(∇ · a) − ∇ × ∇ × a

= (∇2ax )x̂ + (∇2ay)ŷ + (∇2az)ẑ.
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Fig. 10.2 Relationship
between rectangular
coordinates (x, y, z) and
circular–cylindrical
coordinates (ρ,φ, z)

10.3.3 Circular–Cylindrical Coordinates

The relationship between rectangular coordinates (x, y, z) and circular–cylindrical
coordinates (ρ,φ, z) is written as follows and shown in Fig. 10.2.

x = x(ρ,φ, z) = ρ cosφ (10.19)

y = y(ρ,φ, z) = ρ sin φ (10.20)

z = z(ρ,φ, z) = z (10.21)

ρ = ρ(x, y, z) =
√
x2 + y2, 0 ≤ ρ < ∞ (10.22)

φ = φ(x, y, z) = arctan(y/x), 0 ≤ φ < 2π (10.23)

The differential operators in circular cylindrical coordinates are reproduced below.
f and a are differentiable scalar and vector fields, respectively.

∇ ≡ ∂

∂ρ
ρ̂ + 1

ρ

∂

∂φ
φ̂ + ∂

∂z
ẑ (10.24)

∇ f = ∂ f

∂ρ
ρ̂ + 1

ρ

∂ f

∂φ
φ̂ + ∂ f

∂z
ẑ (10.25)

∇ · a = 1

ρ

∂

∂ρ
(ρ aρ) + 1

ρ

∂aφ

∂φ
+ ∂az

∂z
(10.26)

∇ × a =
(
1

ρ

∂az
∂φ

− ∂aφ

∂z

)
ρ̂ +

(
∂aρ

∂z
− ∂az

∂ρ

)
φ̂ +

(
1

ρ

∂

∂ρ
(ρ aφ) − 1

ρ

∂aρ

∂φ

)
ẑ

(10.27)
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∇2 f = 1

ρ

∂

∂ρ

(
ρ
∂ f

∂ρ

)
+ 1

ρ2
∂2 f

∂φ2
+ ∂2 f

∂z2
(10.28)

∇2a =
(

∇2aρ − aρ

ρ2
− 2

ρ2
∂aφ

∂φ

)
ρ̂ +

(
∇2aφ − aφ

ρ2
+ 2

ρ2
∂aρ

∂φ

)
φ̂ + ∇2az ẑ

(10.29)

10.3.4 Spherical-Polar Coordinates

The relationship between rectangular coordinates (x, y, z) and spherical-polar coor-
dinates (r, θ,φ) is written as follows and shown in Fig. 10.3.

x = x(r, θ,φ) = r sin θ cosφ (10.30)

y = y(r, θ,φ) = r sin θ sin φ (10.31)

z = z(r, θ,φ) = r cos θ (10.32)

r = r(x, y, z) =
√
x2 + y2 + z2, 0 ≤ r < ∞ (10.33)

θ = θ(x, y, z) = arccos(z/r), 0 ≤ θ ≤ π (10.34)

φ = φ(x, y, z) = arctan(y/x), 0 ≤ φ < 2π (10.35)

The differential operators in spherical-polar coordinates are reproduced below. f
and a are differentiable scalar and vector fields, respectively.

∇ ≡ ∂

∂r
r̂ + 1

r

∂

∂θ
θ̂ + 1

r sin θ

∂

∂φ
φ̂ (10.36)

∇ f = ∂ f

∂r
r̂ + 1

r

∂ f

∂θ
θ̂ + 1

r sin θ

∂ f

∂φ
φ̂ (10.37)

Fig. 10.3 Relationship
between rectangular
coordinates (x, y, z) and
spherical-polar coordinates
(ρ, θ,φ)
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∇ · a = 1

r2
∂

∂r
(r2ar ) + 1

r sin θ

∂

∂θ
(sin θ aθ) + 1

r sin θ

∂aφ

∂φ
(10.38)

= ∂ar
∂r

+ 2ar
r

+ 1

r

∂aθ

∂θ
+ aθ

r tan θ
+ 1

r sin θ

∂aφ

∂φ
(10.39)

∇ × a = 1

r sin θ

[
∂

∂θ
(sin θ aφ) − ∂aθ

∂φ

]
r̂ + 1

r

[
1

sin θ

∂ar
∂φ

− ∂

∂r
(raφ)

]
θ̂

+1

r

[
∂

∂r
(raθ) − ∂ar

∂θ

]
φ̂ (10.40)

∇2 f = 1

r2
∂

∂r

(
r2

∂ f

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ f

∂θ

)
+ 1

r2 sin2 θ

∂2 f

∂φ2
(10.41)

∇2a =
(

∇2ar − 2ar
r2

− 2 cot θ

r2
aθ − 2

r2
∂aθ

∂θ
− 2

r2 sin θ

∂aφ

∂φ

)
r̂

+
(

∇2aθ + 2

r2
∂ar
∂θ

− aθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂aφ

∂φ

)
θ̂

+
(

∇2aφ + 2

r2 sin θ

∂ar
∂φ

− aφ

r2 sin2 θ
+ 2 cos θ

r2 sin2 θ

∂aθ

∂φ

)
φ̂ (10.42)

10.3.5 Differential Relationships

These general relationships, or identities, hold true in all coordinate systems. Let f ,
a and b be defined and differentiable at each point in a certain region of space. Then,

∇ × ∇ f = 0 (10.43)

∇ · ∇ × a = 0 (10.44)

∇ × (ab) = (∇ × a)b − a × ∇b (10.45)

∇ × ∇ × a = ∇∇ · a − ∇2a (10.46)

∇ · (a × b) = b · ∇ × a − a · ∇ × b (10.47)

10.3.6 Integral Theorems

Gauss’ Divergence Theorem may be stated as follows. If V is the volume bounded
by a closed surface S anda is a vector functionof positionwith continuous derivatives,
then the divergence of a integrated over the volume V is equivalent to the integral of
a over closed surface S. Mathematically,
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∫

V
∇ · a dV =

∮

S
a · n̂ dS =

∮

S
a · dS, (10.48)

where n̂ is the positive (outward drawn) normal to S.
Note, in rectangular coordinates the elemental volume dV is dxdydz. The range

of each of the coordinates x , y, and z is from −∞ to ∞. In circular cylindrical
coordinates, dV = dρ × ρdφ × dz = ρ dρ dφ dz. The range of ρ is from 0 to ∞,
that of φ is from 0 to 2π and that of z is again from −∞ to ∞.

Stokes’ Theorem states that if S is an open, two-sided surface bounded by a closed,
nonintersecting curve C (simple closed curve) and if a has continuous derivatives,
then the integral of a around the closed loop C is equivalent to the integral of the
curl of a over surface S. Mathematically,

∮

C
a · dl =

∫

S
(∇ × a) · n̂ dS =

∫

S
(∇ × a) · dS, (10.49)

where C is traversed in the positive direction. The direction of C is called positive if
an observer, walking on the boundary of S in this direction, with their head pointing
in the direction of the positive normal to S, has the surface on their left.

10.4 Bessel Functions

Bessel functions arise in the analysis of systems with cylindrical geometry. In Carte-
sian coordinates, solutions are expressed in terms of sine, cosine, sinh, cosh, and
exponential functions. To describe the radial dependence of a field or potential in
cylindrical-polar coordinates, on the other hand, Bessel functions are used.

The properties of Bessel functions were not discovered by mathematicians but
by scientists who became famous for solving basic practical problems. Examples
of these are Bernoulli’s solutions for the motion of heavy hanging chains, Fourier’s
description of the flow of heat in cylinders and Bessel’s theory describing the motion
of the planets. Solutions of these problems are all expressed in terms of Bessel
functions.

In this section, Bessel functions are introduced by solving the Laplace equation for
an axially symmetric system. This is closely related to the solution for the electric
field due to a circular current loop developed in Sect. 6.3.2, which involves the
solution of the Helmholtz equation, but is also axially symmetric. Next, higher order
Bessel functions are introduced via solution of the general three-dimensional Laplace
equation in which azimuthal variation is accounted for.
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10.4.1 Separation of Variables

The Laplace equation for an axially symmetric, two-dimensional scalar field � is

∇2� = ∂2�

∂ρ2
+ 1

ρ

∂�

∂ρ
+ ∂2�

∂z2
= 0. (10.50)

Axial symmetry implies that there is no variation of � with azimuthal variable φ.
This means that derivatives with respect to φ vanish and terms in (10.50) depend
only on ρ and z. Proceeding to solve the Laplace equation of (10.50) by the method
of separation of variables, a solution in the form of a product of functions that each
depend on only one variable is sought: �(ρ, z) = R(ρ)Z(z). Inserting this product
into (10.50) and dividing throughout by the same product gives

[
1

R(ρ)

∂2R(ρ)

∂ρ2
+ 1

ρR(ρ)

∂R(ρ)

∂ρ

]
+

[
1

Z(z)

∂2Z(z)

∂z2

]
= 0 (10.51)

Now, the bracketed terms [ ] each depend on only one variable. The first bracketed
term depends on ρ and the second on z. Note that the first term cannot change as
ρ changes because there is no other term in (10.51) that can balance the effect of a
change in the first term. This means that the first bracketed term must be constant
even when ρ changes. Similarly, the second bracketed term must remain constant
even when z changes.

Let the constant with respect to changes in z be written β2 where β is a positive
real number. (In general, β may be a complex number.) Then

∂2Z(z)

∂z2
− β2Z(z) = 0 (10.52)

with solution
A(β) exp(βz) + B(β) exp(−βz). (10.53)

Consequently, substituting (10.52) into (10.51) yields

∂2R(ρ)

∂ρ2
+ 1

ρ

∂R(ρ)

∂ρ
+ β2R(ρ) = 0. (10.54)

Equation (10.54) is Bessel’s equation of zero order. It is a second-order differential
equation with two independent solutions. One of these solutions is regular at the
origin (has a value) and the other is singular (infinite) as ρ → 0. The solution that
is regular can be expressed as a power series in ρ. Starting with a power series
expansion with arbitrary coefficients, one can insert the series into Bessel’s equation
and equate terms of the same power in the variable to determine the coefficients. This
procedure then defines one of the solutions of (10.54); J0(βρ), the Bessel function
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of the first kind of order zero.1 The singular solution, Y0(βρ), is also a zero-order
Bessel function, but contains a logarithmic singularity log ρ as well as power series
terms.2 Including both Bessel functions forms a general solution of (10.54) [1]:

C(β)J0(βρ) + D(β)Y0(βρ).

Y0(βρ) is the zero-order Bessel function of the second kind.
In an alternative development, the second bracketed term in (10.51) is written as,

say, −κ2. This is particularly convenient where κ is a real number. In this case,

∂2Z(z)

∂z2
+ κ2Z(z) = 0, (10.55)

the solution of which is

A(κ) cos(κz) + B(κ) sin(κz), (10.56)

in contrast with (10.53). Then,

∂2R(ρ)

∂ρ2
+ 1

ρ

∂R(ρ)

∂ρ
− κ2R(ρ) = 0 (10.57)

and the part of the solution representing the radial dependence is

C(κ)I0(κρ) + D(κ)K0(κρ) (10.58)

where I0(κρ) is the modified Bessel function of the first kind of order zero, and
K0(κρ) is the modified Bessel function of the second kind of order zero. Note that
I0(κρ), like J0(βρ), is regular whereas K0(κρ), like Y0(βρ), exhibits a logarithmic
singularity as ρ → 0.

1The Bessel function of the first kind of order zero is regular, with the power series form

J0(z) = 1 − x2

22
+ x4

2242
− ... =

∞∑

m=0

(− 1
4 z

2
)m

(m!)2 .

2It can be shown that

Y0(z) = 2

π

{

J0(z)[log
( z

2

)
+ γ] +

∞∑

k=1

(−1)k+1Hk

( 1
4 z

2
)k

(k!)2
}

where γ ≈ 0.577215665 is Euler’s constant and

Hk = 1 + 1

2
+ 1

3
+ ...

1

k

is a harmonic number.
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10.4.2 Higher Order Bessel Functions

In a systemwithout axial symmetry, the three-dimensional Laplace equation accounts
for an azimuthal dependence;

∇2� = ∂2�

∂ρ2
+ 1

ρ

∂�

∂ρ
+ 1

ρ2
∂2�

∂φ2
+ ∂2�

∂z2
= 0. (10.59)

In this case, solution via separation of variables begins by writing �(ρ,φ, z) =
R(ρ)P(φ)Z(z). Inserting this product into (10.59) and dividing throughout by the
same product yields

[
1

R(ρ)

∂2R(ρ)

∂ρ2
+ 1

ρR(ρ)

∂R(ρ)

∂ρ

]
+

[
1

ρ2P(φ)

∂2P(φ)

∂φ2

]
+

[
1

Z(z)

∂2Z(z)

∂z2

]
= 0.

(10.60)
As in the previous treatment of (10.52), equate the z-dependent term in (10.60) with
β2. This gives rise to a general solution with exponential z-dependence as expressed
in (10.53). Next proceed by acknowledging that the φ-dependence of � is periodic.
This means that the second bracketed term in (10.60) can be equated with −n2/ρ2

to give
∂2P(φ)

∂φ2
+ n2P(φ) = 0. (10.61)

This ensures azimuthal dependence of the form

P(φ) = Ln cos(nφ) + Mn sin(nφ), (10.62)

which allows a general azimuthal dependence to be written as a Fourier series.
Consequently, for arbitrary order, the radial dependence of � is governed by

∂2R(ρ)

∂ρ2
+ 1

ρ

∂R(ρ)

∂ρ
+ (β2 − n2)R(ρ) = 0, (10.63)

whose solutions are
C(β)Jn(βρ) + D(β)Yn(βρ) (10.64)

Figures 10.4 and 10.5 show, respectively, the variation of Jn(x) and Yn(x) for orders
from zero to 5.

Proceeding in the same way but now using −κ2 in place of β2 does not change
the Fourier expansion for the azimuthal dependence (10.62), but it does mean that
the z-dependence is trigonometric as in (10.56) and the radial function satisfies

∂2R(ρ)

∂ρ2
+ 1

ρ

∂R(ρ)

∂ρ
− (κ2 + n2)R(ρ) = 0 (10.65)
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Fig. 10.4 Bessel functions
of the first kind of order n,
Jn

Fig. 10.5 Bessel functions
of the second kind of order
n, Yn . The Yn(x) exhibit a
logarithmic singularity as
x → 0

with solution
C(κ)In(κρ) + D(κ)Kn(κρ). (10.66)

Figures 10.6 and 10.7 show, respectively, the variation of In(x) and Kn(x) for orders
from 0 to 5.

10.5 Exercises

1. A complex number c is defined c = 6 + j13. Evaluate

(i) the real part of c,
(ii) the imaginary part of c,
(iii) the magnitude of c,
(iv) the phase of c.



10.5 Exercises 211

Fig. 10.6 Modified Bessel
functions of the first kind of
order n, In

Fig. 10.7 Modified Bessel
functions of the second kind
of order n, Kn . The Kn(x)
exhibit a logarithmic
singularity as x → 0

If c∗ is the complex conjugate of c, evaluate the following. You may give your
answers in either the form z = a + jb or z = |z|e jφ.

(v) c + c∗,
(vi) c − c∗,
(vii) c c∗, and
(viii) c/c∗.

2. Find the two values of z that satisfy the equation z2 = 3 − 2 j . Draw your results
on a diagram where the real axis is horizontal and the imaginary axis is vertical.

3. Given a = x2yx̂ − yz ŷ + yz2 ẑ, evaluate

(i) the magnitude of vector a at point T , (2,−1, 3);
(ii) the distance vector from point T to point S if S is 5.6 units away from T in

the same direction as vector a at T ;
(iii) the position vector of S.
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4. E and F are vector fields given by E = 2x x̂ + ŷ + yzẑ and F = xyx̂ − y2 ŷ +
xyzẑ. Determine

(i) the magnitude of E at (1, 2, 3);
(ii) the component of E along F at (1, 2, 3);
(iii) a vector perpendicular to both E and F at (0, 1,−3) whose magnitude is

unity.

5. Find the gradient of these scalar fields.
(a) U = 4xz2 + 3yz
(b) W = 2ρ(z2 + 1) cosφ

6. Determine the divergence of the following vector fields.
(a) a = xyx̂ + y2 ŷ − xzẑ
(b) b = ρz2ρ̂ + ρ sin2 φ φ̂ + 2ρz sin2 φẑ

7. Show that ∇ ln ρ = ∇ × φẑ.
8. For a differentiable vector field a show that ∇ · ∇ × a = 0.
9. If F = 2ρzρ̂ + 3z sin φ φ̂ − 4ρ cosφ ẑ, verify Stokes’ Theorem for the open sur-

face defined by z = 1, 0 < ρ < 2, 0 < φ < 45◦.
10. (i) From a suitable reference find an expression for K0(z) and deduce a first

approximation for K0(z) when z is very small.
(ii) What is the electrostatic potential due to a line charge varying as q cos(az)?
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A
Admittance, 55, 101, 102
Air point, 74–76
Ampère

André, 12
law, 62, 63, 81, 85

Amplitude, 14, 21, 44, 55–57, 81, 83, 93, 96,
106, 108, 116, 117, 120, 152, 159

B
Bessel functions, 90, 113, 114, 199, 206–

208, 210, 211
Biot–Savart law, 83–85, 87, 122
Boundary conditions, 65, 90, 113, 168, 175–

177, see also Interface conditions
Burrows, 167, 171, 178, 182

C
Capacitance

inter-winding, 49, 57, 72, 99
stray, 73, 100, 101, 103

Capacitor, 47, 49–51, 53, 62
Charge, 12, 19–21, 27, 32, 33, 48–51, 60,

64–68, 81, 152–155, 164, 171, 173,
174, 177, 212

Cheng, 126, 136
Circuit

forced, 51
LRC, 53, 55–57
parallel, 55, 57, 100, 102
series, 50, 51, 53, 55–57, 100

Coating, 75, 120, 125, 126, 128, 131, 132,
159

Coercivity, 36, 46

Coil
air-cored, 7, 8, 11, 44, 78, 93, 96, 98, 100,
108, 127–129, 137

bobbin, 71, 72, 118–121, 125, 133–135,
137, 138, 147, 148, 150, 151, 157, 158,
163

circular, 8, 72, 80, 83, 93, 94, 97, 108,
109, 111, 131, 132, 137, 138, 149, 151,
152

driver, 141, 142, 148, 163
encircling, 71, 72, 79, 88, 108–111, 116,
118, 119, 125, 126, 132–135, 138, 141,
144, 145, 163

ferrite-cored, 97, 98, 158
finite, 9, 72, 73, 83, 88, 93, 95, 96, 116,
118, 119, 132, 184

former, 7, 80, 126, 141
frequency, 9, 23, 55, 56, 73, 75, 79, 92,
97, 99–101, 110, 115, 118–120, 133–
135, 190

ideal, 9, 73, 99, 101–103
impedance, 8, 47, 57, 59, 60, 71–78,
88, 93, 95–98, 100–103, 106, 108–112,
116–122, 125–129, 132, 133, 136–139,
142, 145, 146, 148, 151, 152, 167–171,
176, 189, 190, 192–196

inductance, 9, 52, 73–75, 93, 99–101,
151

isolated, 73–76, 93, 96, 98, 101–103,
110, 117, 127, 129, 137, 138

lift-off, 7, 74–76, 79, 106, 109, 129, 144,
146, 149, 159, 163

multi-turn, 72
nonideal, 9, 47, 72, 100, 101, 103, 163
normal, 71, 78, 79, 106
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radius, 28, 92, 100, 102, 103, 109, 110,
132–135

reactance, 32, 55, 73–75, 103, 110, 129
rectangular, 94, 151, 152, 157, 162, 190–
193

resistance, 9, 28, 73–76, 99–101, 103,
122, 129, 151

spiral, 142, 151, 152
split-D, 144, 145
stand-off, 7, 78, 99, 100, 102–104, 138
surface, 1, 24, 26, 72, 75, 76, 78–80, 83,
88, 95, 96, 99, 100, 103, 108–110, 116,
126–129, 136, 137, 139, 141, 142, 144,
146, 149–151, 163, 184

tangent, 71, 72, 106, 108, 136, 142, 149
tilt, 71, 72, 105, 106, 108, 118, 144, 149
wobble, 72, 118–121, 144, 146

Complex plane, 15, 55
Conductivity

determination, 102
temperature dependence, 19

Conductor
half-space, 23, 24, 71, 78, 80, 81, 88, 89,
98, 110, 111, 113, 115, 116, 122, 123,
125, 126, 128, 129, 139, 148

layered, 88, 126
linear, isotropic and homogenous, 20, 80,
88, 112

truncated, 125, 126, 134, 136
Continuity

conditions, see Interface conditions
Coordinates

circular cylindrical, 203, 206
spherical polar, 175, 204

Crack
edge, 126, 186, 188, 194, 195
epicyclic, 184, 193
face, 187
ideal, 185, 187, 196, 197
long, 162, 183, 185–188, 190, 196, 197
mouth, 155, 184, 186, 188, 190
rectangular, 184, 190, 196
semicircular, 183
semi-elliptical, 184, 193, 194, 196
semicircular, 183, 189, 196, 197
subsurface, 180, 182, 183, 198
surface, 142, 146, 150, 152, 155, 161,
163, 167, 168, 183–190, 193, 197

theory, thin-skin, 167, 168, 183, 184,
186, 193, 195, 196

Curie temperature, 43, 44
Curl, 61–63, 65, 68, 81, 87, 121, 122, 168,

174, 175, 201, 202, 205, 206, 212

Current
alternating, 8, 13–15, 23, 51, 81, 104
circulation, 61
conduction, 62, 63
density, 6, 7, 11–13, 19–21, 23, 24, 26,
28, 52, 53, 57, 62, 63, 66–69, 80, 81,
83, 84, 88, 94, 95, 97, 99, 102, 108, 112,
121, 134, 135, 149, 155, 163, 168–170,
173–176, 178, 179, 182–184, 186, 188,
190, 191

dipole
density, 171, 173, 182
distribution, 171, 173, 182

direct, 12–14, 20, 21, 57
displacement, 62–64
eddy, 1, 2, 5–9, 11, 12, 18, 19, 21–24, 26,
36, 47, 49, 52, 53, 55––57, 59, 61–63,
65, 71–75, 77, 78, 80, 81, 83, 84, 97, 99,
100, 106, 108, 109, 120, 121, 125, 126,
129, 131, 134–136, 141, 143, 144, 147–
150, 152, 155–159, 162–164, 167–171,
174–176, 180, 182–184, 188, 191, 199

filament, 92, 93, 111, 113, 115
loop, 6, 33, 65, 71, 72, 83–86, 88–95,
112–116, 122, 173, 206

sheet, 24, 71, 80–82, 153, 179, 181, 184–
187, 189, 197, 198

sinusoidal, 8, 15, 63, 156
source, 21, 49, 61, 67, 82, 83, 95, 121,
167–171, 175, 177, 179, 181, 182

uniform, 12, 13, 48, 68, 72, 80, 81, 102,
103, 121, 174, 175, 178, 179, 181, 183,
185–187

D
Deeds, 85, 88, 104, 126, 136
Defect, see Flaw
Demagnetization, 31, 34, 44
Dielectric, 27, 49, 50, 62, 66, 97, 173
Differentiability, 201
Differential operators, 201, 203, 204
Differential relationships, 205
Dipole

current, see Current dipole
electric, 27, 167, 171–173
Hertzian, 167
magnetic, 32, 33, 39, 65, 160, 167, 171,
173, 180–182, 197

strength, 178, 180, 182
Displacement

current, 62–64
electric, 11, 27, 66, 67, 173
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Divergence, 64, 65, 67, 169, 201, 202, 205,
212

Dodd, 85, 88, 104, 126, 136
Domain

arrangement, 40
evidence for, 42, 46
structure, 40
wall, 40–45

E
Electromotance, 47, 48, 50, 51, 53, 55–57,

60, 170, 171, 180
Energy

electric, 49
magnetic, 21, 53

F
Faraday, 1–5, 9, 11, 19, 43, 52, 53, 59–62,

68, 81, 87, 159, 164, 168, 174, 180,
181, 185

Faraday’s
law of induction, 19, 43, 164
transformer, 2, 3, 9, 52

Ferrite, 31, 44, 53, 67, 69, 71, 72, 79, 97–99,
135, 137, 158

Ferromagnet
hard, 42
soft, 38, 42

Field
applied, 20, 41, 161
electric, 11, 19–21, 27, 48, 49, 62, 64, 66,
67, 69, 81–83, 87–95, 112, 114, 116,
122, 152, 154, 167, 171, 172, 176, 179,
181, 184, 187, 197, 206

electric displacement, 27, 67
fringing, 49
magnetic, 2, 3, 5–7, 11, 12, 18–22, 27,
31–34, 36, 37, 39–41, 44, 46, 47, 52,
53, 61, 63–69, 72, 73, 81, 91, 99, 109,
121, 122, 141, 152–154, 158, 160–163,
167, 169, 171, 173–175, 180, 182, 184,
189, 190, 197, 198

magnetic induction, 5, 11, 22, 27, 37, 38,
52, 61, 62, 64, 65, 74, 75, 83, 84, 87,
142, 152, 154, 155, 158, 159, 161–163

uniform, 24, 185, 187–189
Fill factor, 111, 118
Flaw, see also Crack

signal, 7, 120, 135, 191
subsurface

nonspherical, 182
spherical, 179, 180

surface
hemispherical, 182, 183, 196, 198

void, 179, 180, 197, 198
Flux

linkage, 52, 60, 61
magnetic, 27, 52, 57, 60, 97, 162

FÃ¶rster
diagram, 5
Friedrich, 1, 5, 109, 133

G
Gauss’

divergence theorem, 64, 205
Law

for Magnetic fields, 64, 65, 68, 109,
174, 175

Gauss’ divergence theorem, 169
Giant magnetoresistive effect, 160
Giant magnetoresistor

array, 141, 142
Gradient, 174, 177, 201, 202

H
Half-space, see Conductor, half-space
Hall

current, 153, 159
device, 141, 152–155, 157–159, 163
Edwin Herbert, 153
effect, 152–154, 158, 164
element, 155, 157
sensor

arrays, 142, 152, 155–160, 163
voltage, 153, 154, 164

Heaviside, 54, 81
Henry

Joseph, 4, 52
unit, 4, 22, 52

Hughes, 1, 5
Hysteresis, 31, 35–37, 42, 43, 46

I
Identities, see Differential relationships
Impedance

normalized, 31, 71, 73, 75, 76, 78, 97, 98,
101, 103, 105, 108, 110, 111, 122, 128,
133, 134, 136, 138

Impedance-plane plot, 5, 55, 74, 79, 104,
106, 109, 110, 134, 135, 138, 146,
163, 192

Inclusion
spherical, see Flaw, subsurface, spherical
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Indentation
hemispherical, see Flaw, surface, hemi-
spherical

Inductance
mutual, 53, 151, 152
self, 4, 53, 57, 93, 96, 98, 102, 115, 152

Induction
coil, 6, 158, 163
electromagnetic, 1, 2, 4–6, 19, 164
law, see Faraday’s law of induction

Interface, 59, 65, 66–68, 80, 91, 114, 119,
122, 125, 128, 136, 176, 178, 186,
187, see also Surface

Interface conditions, 65
International Annealed Copper Standard

(IACS), 17, 19, 29, 120, 197

K
Kirchhoff’s voltage law, 50, 51, 53

L
Laplacian, 202
Layered

Conductor, 88, 125, 126
Lenz’s Law, 61, 74
Lift-off, 78, 79, 97, 99, 104–106, 129, 142,

149, 159
Ligand, 146

M
Magnetite, 31
Magnetization

initial, 34, 35, 37, 38, 46
saturation, 34–37, 39, 40

Magnetometer, 46, 163
Maxwell, 59, 60, 62, 64, 65, 67–69, 80, 81,

84, 89, 174
Maxwell–Ampère Law, 62, 63, 68, 81, 85,

174
Maxwell’s equations, 59
Mobility, 155

N
Noise, 43, 72, 73, 79, 104, 119, 141, 144,

146, 149, 150, 158, 161, 163
Null point, 146, 155

O
Oersted, 2, 12, 43
Ohm’s law, 20, 48, 63, 66, 83, 95

P
Permeability

2T, 38
differential, 37
free space, 19, 22, 37, 50, 92
initial, 35, 38
maximum, 38
relative, 22, 37, 38, 93, 96–99, 106, 111,
115, 127, 138

Permittivity
relative, 27, 49, 50

Phase
angle, 111, 120, 146

Phasor
addition, 15
current, 11, 19, 51, 89, 92, 115, 121, 184
differentiation with respect to time, 16,
21, 28

multiplication, 16
voltage, 51, 184

Plate, see Test-piece, plate
Polarization, 11, 27
Potential

difference, 47–50, 53, 57, 153, 154, 174
drop, 18, 61, 104
electric, 171
energy, 48
magnetic vector, 65, 85, 86, 88, 122, 152,
167

Power, 1, 5, 11, 12, 21, 60, 78, 99, 100, 118,
144, 147, 155, 171, 184, 186, 207,
208

Poynting vector, 21, 167, 184
Probe, see also Coil

absolute, 72, 141–144, 163
array, 150, 160
bobbin, 118, 135, 144–147
differential, 141, 142, 144–147, 149, 163
driver pick up, 71, 78, 148
flexible, 141, 142, 151
giant-magnetoresistor, 141
hybrid, 142, 158, 159
pencil, 142–144
plus-point, 72, 108, 142, 149, 150
race-track, 157
tangent, 72, 106, 108, 136, 142, 149
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Q
Quasi-static

approximation, 63, 68, 179
regime, 59, 63, 69, 89, 112, 169, 170

R
Rayleigh, 35
Reactance

normalized, 31, 32, 75, 76, 103, 110
Reciprocity theorem, 167–169
Remanence, 35, 36, 46
Resistance

normalized, 76
Resistivity

temperature-dependence, 19
Resistor, 47, 50, 51, 53
Right-hand rule, 84

S
Saturation, 36, 37
Skin depth, 11, 23–26, 71, 72, 83, 167, 173,

174, 182, 183, 197, 198
Skin effect, 11, 22, 23, 99, 120, 134, 159
Stand-off, 7, 102, 103
Stokes’ theorem, 61, 62, 180, 206, 212
Superposition, 71, 72, 93, 94, 116, 121, 142,

145, 149
Surface

coating, 75, 120, 128
cylindrical, 125
planar, 125, 126

Susceptibility
dielectric, 27
magnetic, 33

T
Test-piece, see also Conductor

borehole, 126
ferromagnetic, 11, 31, 32, 36, 74, 88, 92,
96, 97, 109, 111, 115, 123, 180

half-space, 23, 24, 78, 80, 81, 88, 89, 98,
110, 113, 115, 116, 122, 123, 125, 126,
128, 129, 139, 148

layered, 88, 125, 126 , see also Coating,
surface coating

non-ferromagnetic, 32, 74, 75, 88, 89, 92,
109, 110, 115, 133, 134, 180

plate, 129, 139
thickness, 130, 137

quarter-space, 136, 137
rod, 126, 144
sphere, 175
truncated, 125, 126, 134, 136
tube, 121, 126, 133
wedge, 136

Theodoulidis, 98, 105, 106, 108, 118, 121,
135, 151

Thin-skin regime, 188, 189, 196
Tilt, 71, 72, 79, 104–106, 108, 118, 144, 149
Transformer, 37, 97
Transient, 3, 152, 156, 159, 160, 162
Truncated Region Eigenfunction Expansion

(TREE) method, 135–137, 139

U
Uncertainty, 71, 72, 99, 104, 106, 118–120,

138, 163

W
Wobble, 72, 118–121, 144, 146
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