
Chapter 8
Basic Pricing Theory

8.1 Introduction

This chapter provides an introduction to multi-product monopoly pricing when the
variable costs are linear. Profit maximization problems with linear variable costs
arise from capacity constraints, where the firm maximizes the expected profit net of
the opportunity costs of the capacities used. We argue that under mild assumptions,
both the optimal profit function and the expected consumer surplus are convex
functions of the variable costs. Consequently, when variable costs are random,
both the firm and the representative consumer benefit from prices that dynamically
respond to changes in variable costs. Randomness in variable cost is often driven by
randomness in demand in conjunction with capacity constraints, and this accounts
for some of the benefits of dynamic pricing. We explore conditions for the existence
and uniqueness of maximizers of the expected profit and analyze in detail problems
with capacity constraints both when prices are set for the entire sales horizon a
priori, and when prices are allowed to change during the sales horizon. The firm’s
problem is discussed in Sect. 8.2, while the representative consumer’s problem
is presented in Sect. 8.3. The case with finite capacity is discussed in Sect. 8.4.
Details about existence and uniqueness for single product problems are discussed in
Sect. 8.5. This section also includes applications to priority pricing, social planning,
multiple market segments, and peak-load pricing. Multi-product pricing problems
are discussed in Sect. 8.6.
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8.2 The Firm’s Problem

Consider a firm with variable cost vector z = (z1, . . . , zn) for n products. The firm’s
profit function is given by

R(p, z) := (p − z)′d(p) =
n∑

i=1

(pi − zi) di(p1, . . . , pn), (8.1)

where p and d(p) are the vector of prices and expected demands as a function
of prices, all of dimension n ≥ 1. The goal is to find a prices, say p(z), that
maximizes R(p, z). The profit function (8.1) models situations with linear variable
costs. Linear costs arise as dual variables of capacity constraints, and this is our
primary motivation for the study of this model. The maximum profit, as a function
of z, is given by

R(z) := max
p∈X

R(p, z), (8.2)

where X is the set of allowable prices.
The set of allowable prices X = X1 × . . . Xn defines different type of

optimization problems. The assortment optimization problem arises when Xi =
{ri, r̄i}, where ri is the regular price of product i and r̄i is the choke-off price,
also known as the null-price for product i, so demand for product i is zero
whenever it is priced at or above r̄i . The choke price r̄i may be finite or infinity.
On occasions, we will find it convenient to write ∞ instead of r̄i , and this
should be interpreted as not offering product i. The joint assortment and pricing
problem can be modeled by setting Xi = {ri1, . . . , rini

, r̄i}, where there is a finite
price menu that includes the option of not offering product i. As an example, a
product may be offered at the regular price, at a discounted price, or not offered
at all. When the set X is finite, a maximizer p(z) is guaranteed to exist. These
are combinatorial problems and even relatively simple versions can be NP-hard.
Fortunately, as we have seen in the chapter on assortment optimization, there are
instances of practical importance that can be solved efficiently, sometimes by linear
programming.

In this chapter, we are mainly concerned with the continuous pricing problem
where Xi = �+ = [0,∞) for all i = 1, . . . , n. For this problem, we should more
formally write R(z) = supp∈X R(p, z) as the maximum may not be attained. We
will later investigate conditions that guarantee the existence and uniqueness of a
finite maximizer p(z), as well as comparative statics that inform us of how p(z)

changes with z. To facilitate the exposition, we would use max instead of sup, but
all the arguments except where noted would continue to hold for sup. Regardless of
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whether an optimizer exists or is unique, we can show that the profit function R(z)

is a decreasing convex function of the cost vector z.1

Theorem 8.1 R(z) is decreasing convex in z.

8.2.1 Random Costs

We now investigate the impact of randomness in the variable cost vector. The
motivation for this is that in dynamic pricing, the variable cost vector depends on
the remaining capacity and time-to-go, and since the remaining capacity depends
on random realizations of arrivals and sales, it follows that the variable costs change
randomly over time. Let Z denote a vector of random unit costs. Then, by Jensen’s
inequality E[R(Z)] ≥ R(E[Z]). The difference between E[R(Z)] and R(E[Z])
can be interpreted as the difference between a dynamic pricing policy p(Z) that
responds to changes in Z and a static pricing policy p(E[Z]) that does not. The
following proposition allows us to assess the difference between E[R(Z)] and
R(E[Z]).
Proposition 8.2 If the function R : �n → � is twice continuously differentiable,
and H is the Hessian of R(z) evaluated at E[Z], then

E[R(Z)] − R(E[Z]) � 1

2
E[(Z − E[Z])′H(Z − E[Z])] ≥ 0.

This suggests that the difference between static and dynamic pricing is large
when the variance of Z is large and R has significant curvature at E[Z]. On the
other hand, in situations where there is little variance in Z or little curvature in R
around E[Z], we expect dynamic pricing to be of little help in improving profits.
Proposition 8.2 follows by taking a second-order Taylor expansion of R(z) and
using convexity.

Example 8.3 Suppose d(p) = 100(1 − p) for p ∈ [0, 1] and d(p) = 0 for
p > 1. Then R(p, z) = 100(p − z)(1 − p) is maximized at p(z) = 0.5(1 + z)

for z ∈ [0, 1), z ≤ p(z) ≤ 1, and R(z) = 25(1 − z)2. If Z is random, with
P(Z = 1/3) = P(Z = 2/3) = 0.5, then by Jensen’s inequality $6.94 =
E[R(Z)] ≥ R(E[Z]) = R(p(E[Z]),E[Z]) = E[R(p(E[Z]), Z)] = $6.25, so a
firm that responds to changes in Z makes 11.1% more profits than one who prices
based on E[Z]. Furthermore, a firm who can respond to changes in variable costs
benefits from randomness in costs.

1We use the terms increasing, decreasing, concave and convex in the weak sense unless stated
otherwise.
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The following corollary pushes the idea a bit further.

Corollary 8.4 If g(z) : �m → �n+ is increasing in z, then R(g(z)) is decreasing
in z. If g(z) is also concave, then R(g(z)) is convex in z. Moreover, if Z ∈ �m is
random, then E[R(g(Z))] ≥ R(g(E[Z])).

We can interpret g(z) as the vector of unit costs for the products and z as the
vector of unit costs of the resources that are used to build the products. As an
example, if g(z) = A′z and A ≥ 0 is an m × n matrix, with Aij the number
of units of resource i required for product j , then R(A′z) is convex in z. This
shows that a risk-neutral firm is better off with random component costs Z than
with deterministic component costs equal to E[Z], provided it can charge prices
p(A′Z). The case A = I represents the case where product i only uses component
i, and results in the price vector p(Z).

8.3 The Representative Consumer’s Problem

While the firm is better off using dynamic pricing p(Z), the reader may wonder
whether consumers are better off with p(Z) or with p(E[Z]). In other words, do
consumers prefer dynamic or static prices?

To answer this question, we will use the framework of utility theory, where we
frame the question in terms of the surplus of the representative consumer. Suppose
that a representative consumer derives utility U(q) from purchasing a non-negative
vector q = (q1, . . . , qn) of products. It is typically assumed that U(q) is an
increasing concave function of q. The net utility or consumers’ surplus at (q, p)

is given by

S(q, p) := U(q) − q ′p,

which is simply the utility U(q) minus the cost of purchasing the bundle q at prices
p = (p1, . . . , pn). The optimal surplus, also known as the net indirect utility, in the
absence of a budget constraint is given by

S(p) := max
q≥0

S(q, p).

The solution, say q = d(p), if it exists, gives us the bundle demanded at p. The first-
order condition for optimality (ignoring the non-negativity constraints) is ∇U(q) −
p = 0, which is also sufficient given the assumed concavity. If there exists an inverse
function, say ∇−1U(p), then d(p) = ∇−1U(p) for all p in the set P = {p :
∇−1U(p) ≥ 0}. The demand function d(p) can be extended to a set larger than
P , but then at least one of the non-negativity constraints on q will be binding, so
the problem needs to be projected into a subspace of non-negative demands. The
following theorem shows that S(p) is decreasing convex in p and how S(p) changes
with p ∈ P .
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Theorem 8.5 S(p) is decreasing convex in p. Moreover, if d(p) is differentiable in
p ∈ P , then ∇S(p) = −d(p) ≤ 0 for all p in the interior of the set P .

One implication from Theorem 8.5 is that if p is one dimensional, then S(p) =∫ ∞
p

d(x)dx. In particular, if Ω is a random variable with finite mean, and d(p) =
P(Ω ≥ p) then

S(p) =
∫ ∞

p

P (Ω ≥ x)dx = E[(Ω − p)+],

so the expected surplus for a consumer with willingness to pay Ω is the expectation
of the gain, (Ω − p)+, from the transaction if it happens.

Returning to the n-dimensional case, Jensen’s inequality and the convexity of
S(p) imply that if the price vector P is random with finite expectation E[P ], then
E[S(P )] ≥ S(E[P ]), so consumers prefer random prices P over expected prices
E[P ]. Notice that this result does not assume that the representative consumer is
risk-neutral, as we have already taken into account risk preference through the utility
function. This result gives us hope that customers may prefer dynamic prices p(Z)

over static prices p(E[Z]). The next result gives sufficient conditions for this to be
true.

Corollary 8.6 If p(z) : �n → �n+ is increasing in z, then S(p(z)) is decreasing
in z. If p(z) is increasing concave in z, then S(p(z)) is decreasing convex in z.
Moreover, if Z ∈ �m is random and S(p(z)) is convex in z, then

E[S(p(Z))] ≥ S(p(E[Z])).

This result follows directly from Corollary 8.4. Intuitively, if p(Z) is increasing
concave, then E[p(Z)] ≤ p(E[Z]), so prices are lower on average under dynamic
pricing. If we combine this with the fact that consumers prefer random prices,
we obtain a weaker sufficient condition, namely that E[p(Z)] ≤ p(E[Z]) implies
E[S(p(Z)) ≥ S(p(E[Z]))]. To verify this, notice that

E[S(p(Z))] ≥ S(E[p(Z)]) ≥ S(p(E[Z])),

where the first inequality follows from the convexity of S(p), and the second from
the assumption that E[p(Z)] ≤ p(E[Z]), and the fact that S(p) is decreasing in p.

We will now argue that S(p(z)) is convex up to a quadratic approximation of an
increasing concave utility function.

Theorem 8.7 The function S(p(z)) is convex in z up to a quadratic approximation
of any increasing concave utility function.

For the single product case, it is possible to show that p(z) is linear if and only
if the demand function belongs to one of the following three classes:

• d(p) = λ exp(−p/θ) for λ, θ > 0: the exponential demand.
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• d(p) = ((a − bp)+)c for a, b, c > 0: root-linear demand (linear for c = 1).
• d(p) = (a+bp)−c for a, b > 0, c > 1: constant elasticity of substitution demand

(a = 0).

The class of single product demand functions for which p(z) is linear contains
many of the demand functions that appear commonly in the literature. For any of
these demand functions, S(p(z)) is convex in z, and consequently E[S(p(Z))] ≥
S(p(E[Z])). There are cases, where p(z) is increasing convex and yet S(p(z)) is
still convex in z provided that p(z) is not “too” convex.

Example 8.8 Suppose that n = 1, and U(q) = q−q2/200, then d(p) = 100(1−p)

over p ∈ [0, 1], p(z) = 0.5(1 + z) for z ∈ [0, 1] and S(p(z)) = 12.5(1 − z)2.
Assume again, as in Example 8.3, that P(Z = 1/3) = P(Z = 2/3) = 1/2.
By Jensen’s inequality, we have $3.47 = E[S(p(z))] ≥ S(p(E[Z])) = $3.125,
so consumers are better off by 11.1% when prices are dynamic and driven by Z

compared to static prices p(E[Z]). From Example 8.3, we see that the firm is also
11.1% better off using dynamic pricing, resulting in a win-win situation.

8.4 Finite Capacity

Finite capacity is a central theme for both revenue management and dynamic
pricing. We will assume that d(p) : �n+ → �n+ is continuous function in p and
that variable costs are zero. Let c be an m-dimensional vector of resources available
for the n products. Let A be an m × n matrix where the j -th column, say Aj , is the
vector of resources consumed by each unit of product j . For X = �n+, the optimal
revenue as a function of c is given by

V̄ (c) := max
p∈X

R(p, 0) subject to Ad(p) ≤ c. (8.3)

The interpretation is that there is a sunk investment in capacity c, the firm wants
to maximize the revenue that can be obtained from this capacity, and no variable
costs are incurred. The objective function of problem (8.3) may not be concave and
the constraint set may not be convex, which makes solving problem (8.3) potentially
difficult. There are two techniques that we can use to try to solve problem (8.3).
First, we can work with the inverse demand function p(q) assuming it exists. In this
case, problem (8.3) can be written as maximizing p(q)′q subject to Aq ≤ c, q ≥ 0.
Now the constraint set is convex and if the objective function is concave, or quasi-
concave, then standard techniques such as the KKT conditions and its extensions
can be used to solve the problem. The second technique is based on Lagrangian
relaxation, as outlined next.
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8.4.1 Lagrangian Relaxation

We will explore the Lagrangian relaxation approach on problem (8.3) under the
assumption that R(p,w) := (p − w)′d(p) has a finite maximizer p(w) for all w ∈
�n+ with d(p(w)) continuous in w. Although these are strong conditions, they turn
out to hold for many important applications. A sufficient condition for the existence
of a finite maximizer is that R(p,w) is upper semi-continuous (USC)2 in p, and that
for some α(w) ∈ �+, the upper contour set {p : R(p,w) ≥ α(w)} is non-empty and
compact. In this case, by the extreme value theorem (EVT),3 the function R(p,w)

achieves its maximum over the compact upper contour set. Sharper conditions for
the existence of p(w) will be presented later.

Let

L(p, z) := R(p, 0) + z′(c − Ad(p)) = R(p,A′z) + z′c

be the Lagrangian corresponding to the dual vector z ∈ �m+. The Lagrangian
program is minz≥0 maxp≥0 L(p, z). The inner optimization yields

L(z) := max
p≥0

L(p, z) = R(A′z) + z′c,

where we have taken advantage of the assumption that there exists a price, say
p(A′z), that maximizes R(p,A′z), and R(A′z) = R(p(A′z), A′z).

By weak duality L(z) ≥ V̄ (c) for all z ≥ 0. The Lagrangian dual problem is

Γ (c) := min
z≥0

L(z) = min
z≥0

[R(A′z) + z′c
] ≥ V̄ (c),

which is a convex minimization problem in z subject to non-negativity constraints
z ∈ �m+.

If c ≥ Ad(p(0)), then z(c) = 0 ∈ �m is optimal. This follows because p(0) is
feasible and maximizes R(p, 0). Otherwise z(c) has at least one positive component.
We next investigate conditions under which there is no duality gap and we can
assert that V̄ (c) = Γ (c). If p(A′z(c)) satisfies the capacity constraint, and the
complementary slackness condition z(c)′(c−Ad(p(A′z(c)))) = 0 holds, then there
is no duality gap, since then L(z(c)) = R(p(A′z(c)), 0) = V̄ (c), and consequently
p(A′z(c)) is an optimal solution to problem (8.3). We summarize this result in the
following proposition.

2A function f : X → [−∞,∞] is upper semi-continuous if and only if {x ∈ X : f (x) ≥ a} is
closed for every a ∈ �.
3The EVT is also known as the Bolzano-Weierstrass theorem.
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Proposition 8.9 Assume that R(p,A′z) has a solution p(A′z) for any z ≥ 0,
and let z(c) ≥ 0 solve the convex optimization problem minz≥0[R(A′z) + z′c].
If Ad(p(A′z(c))) ≤ c and z(c)′[c − Ad(p(A′z(c)))] = 0, then p(A′z(c)) is a
solution to problem (8.3).

8.4.2 Finite Capacity and Finite Sales Horizon

Another central theme for dynamic pricing and revenue management is the existence
of a finite sales horizon over which the products can be sold. Let t be the time-to-
go, and assume a sales horizon of length T . At the end of the sales horizon, no
further sales are possible. Let c be the initial inventory, and assume that inventory
replenishments are not possible. This situation is typical in fashion retailing and
in revenue management applications. We will assume that the demand rate dt (p)

at price p at time-to-go t is continuous in p for all t ∈ [0, T ]. The profit
contribution over the sales horizon from using price path pt , t ∈ [0, T ] is given
by

∫ T

0 Rt(pt , 0)dt := ∫ T

0 p′
t dt (pt )dt. The optimal revenue as a function of T and c

is given by

V̄ (T , c) :=
∫ T

0
max
pt∈X

Rt(pt , 0)dt (8.4)

s.t.
∫ T

0
Adt (pt )dt ≤ c,

where as before X = �n+ and A ≥ 0 is an m×n matrix representing the consumption
of resources by products.

The Lagrangian penalizes component shortfalls at rate z ∈ �m+. We will assume
that there exists a price pt (A

′z) that maximizes Rt(p,A′z) for every t ∈ [0, T ]. The
inner optimization of the Lagrangian function yields

∫ T

0 Rt (A
′z) + z′c, so the outer

optimization is given by

Γ (T , c) := min
z≥0

[∫ T

0
Rt (A

′z)dt + z′c
]

≥ V̄ (T , c) (8.5)

whose objective function is convex in z. Let z(T , c) be the optimal solution to this
convex optimization problem. If the price path pt (z(T , c)), t ∈ [0, T ] is feasible
and the complementary slackness condition

z(T , c)′
[
c − A

∫ T

0
dt (A

′pt (z(T , c))dt

]
= 0

holds, then there is no duality gap and the price path pt (z(T , c)), t ∈ [0, T ] is an
optimal solution to problem (8.4), turning the inequality in (8.5) into an equality.
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It is instructive to compare formulation (8.4) to a formulation based on aggregate
demand D(p) = ∫ T

0 dt (p)dt that yields

V̄f (T , c) := max
p∈X

p′D(p) (8.6)

s.t. AD(p) ≤ c,

Notice that in formulation (8.6) we seek a single vector of prices that maximizes
revenue over the entire horizon subject to an aggregate capacity constraint. Clearly
V̄ (T , c) ≥ V̄f (T , c), as the ability to respond to changes in demand dt (p) over the
sales horizon t ∈ [0, T ] gives formulation (8.4) an important advantage over (8.6).
Of course, this advantage can materialize only if consumers that arrive at time-to-
go t either purchase at pt (z(T , c)) or leave the system. This model assumes that
the firm can do price discrimination over time. The model may break down when
consumers are strategic and they face no disutility from waiting for a lower price,
except when prices pt (z(T , c)) are monotone so there is no incentive for waiting.
In retailing, for example, some consumers are strategic and prefer to wait for lower
prices, but they are exposed to rationing risks and the disutility of waiting.

8.5 Single Product Pricing Problems

In this section, we investigate issues of existence and uniqueness for single product
pricing problems. We next study real options and bargaining as mechanisms to
improve profits and reduce the dead weight loss. We end this section with a look
at multiple market segments and direct price discrimination.

8.5.1 Existence and Uniqueness

For the single product case with n = 1, d(p) is the demand for the single product at
price p ≥ 0. We seek sufficient conditions for the existence of a finite maximizer of
R(p, z) = (p−z) d(p) over p ∈ �+. Let d̄(p) := supp̃≥p d(p̃). Notice that d̄(p) ≥
d(p) is a decreasing function even if d(p) is not. Let R̄(p, z) := (p − z) d̄(p). We
next show that if d(p) is USC and pd̄(p) → 0 as p → ∞ (so d̄(p) = o(1/p)),
then R̄(p, z) has a finite maximizer p(z) that also maximizes R(p, z).

Theorem 8.10 If d(p) is USC in p ≥ 0, and d̄(p) = o(1/p), then there exists a
finite maximizer p(z), increasing in z ≥ 0, that simultaneously maximizes R(p, z)

and R̄(p, z), so R(z) = R̄(z).
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A formal proof of Theorem 8.10 is in the appendix. Notice that Theorem 8.10
does not require d(p) to be decreasing or eventually decreasing in p. While the
conditions of Theorem 8.10 may seem technical, they imply the existence of finite
maximizers for pricing problems that are typically encountered in practice. For
example, if we have a finite population of λ potential consumers with independent
and identically distributed (IID) willingness to pay Ω , then the expected demand
at price p is d(p) = λP (Ω ≥ p). Then d(p) is USC, and if E[Ω+] < ∞,
then d(p) = o(1/p), so there exist a maximizers p(z) of R(p, z). As an example,
assume that Ω is exponential with mean θ . Then d(p) = λe−p/θ , and p(z) = z + θ

maximizes R(p, z), so R(z) = θλe−1−z/θ .
We now turn to conditions on the demand function d(p) that guarantee that

R(p, z) does not have local, non-global, maximizers or more succinctly that R(p, z)

is unimodal in p ≥ z. This is equivalent to R(p, z) being quasi-concave in p ≥ z

and to R(p, z) having convex upper level sets: {p ≥ z : R(p, z) ≥ α} for all α ≥ 0.
If d(p) is continuous and differentiable, then we define the hazard rate at p to be
h(p) := −d ′(p)/d(p) where d ′(p) is the derivative of d(p) at p. The hazard rate
function h(p) is defined for all p < r̄ , where r̄ is the choke-off price. The hazard
rate is the event rate at price p, conditional on Ω ≥ p. Taking the derivative of
R(p, z) with respect to p leads to first-order condition for optimality:

f (p, z) = 1 − (p − z)h(p) = 0.

Let p(z) be a root of f (p, z) = 0. Then, p(z) is a maximizer of R(p, z), and
R(p, z) is quasi-concave if f (p, z) is non-negative for all p < p(z) and non-
positive for all p > p(z). The following result provides conditions on the hazard
rate that guarantee the existence and uniqueness of a finite maximizer p(z), as well
as some results about the optimal mark-up Δ(z) := p(z) − z.

Theorem 8.11

(a) If h(p) is continuous and increasing in p and h(z) > 0, then there is a unique
optimal price p(z), strictly increasing in z, satisfying z < p(z) ≤ z + 1/h(z),
with Δ(z) = p(z) − z decreasing in z. The upper bound is attained by the
exponential demand function.

(b) If ph(p) is continuous and strictly increasing in p and there exists a finite
z̃ ≥ z > 0 such that 1 < z̃h(z̃), then there is a unique optimal price p(z),
strictly increasing in z, satisfying z < p(z) ≤ z/(1 − 1/z̃h(z̃)). The upper
bound is attained by the constant elasticity of demand function. Moreover, if
1/h(z) is concave in z, then p(z) is concave in z.

(c) If d̃(p) is a demand function with hazard rate h̃(p) and h̃(p) ≥ h(p) for all p,
then p̃(z) ≤ p(z).

The condition ph(p) increasing in p is weaker than h(p) increasing in p, and
leads to weaker results as we cannot claim that Δ(z) is decreasing in z. As an
example, for the constant elasticity of demand model, d(p) = λp−b, b > 1, we
have Δ(z) = z/(b − 1), which is increasing in z.
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Economists often write the solution to the first-order condition f (p, z) = 0 in
terms of the (absolute) price elasticity of demand e(p) := −pd ′(p)/d(p) = ph(p)

resulting in

p(z) = e(p(z))

e(p(z)) − 1
z.

This formula suggests that the mark-up on marginal cost should be equal to
e(p(z))/(e(p(z)) − 1). Notice that both the left and the right hand sides depend on
p(z) except for the constant elasticity demand model, so the mark-up interpretation
needs to be taken with a grain of salt. Nevertheless, this mark-up formula provides
some guidelines that link elasticities to prices via the mark-up on marginal costs.

The solution to the first-order condition is sometimes written as

Δ(z)

p(z)
= 1

e(p(z))
,

with the left hand side known as the Lerner index, so the Lerner index is equal to
one over the elasticity of demand. If z = 0, then Δ(z) = p(z), so e(p(0)) = 1. The
last equation is often written as

p(z) = z + 1/h(p(z)).

It can be shown that if 1/h(p) is concave (respectively, convex) in p then p(z) is
increasing concave (respectively, convex) in z.

The problem of maximizing R(p, z) can sometimes be transformed so that
demand rather than price is the decision variable. This can be done if there is an
inverse demand function, say p̃(q), that yields demand q ≤ d(0) at price p̃(q). The
problem is to maximize (p̃(q) − z)q over q ≥ 0. It can be shown that the concavity
of p̃(q)q in q is equivalent to the convexity of 1/d(p) in p, so from this we surmise
that another sufficient condition for R(p, z) to be quasi-concave in p is that 1/d(p)

is convex. A weaker condition for the quasi-concavity of (p̃(q)− z)q is that p̃(q) is
log-concave in q. It is interesting to note that there are demand functions for which
R(p, z) is concave in p without (p̃(q) − z)q being concave in q.

8.5.2 Priority Pricing

Consider the finite capacity problem for the single product case. We will assume
that there is a unique solution, say p(z(c)), to the problem of maximizing R(p, 0)

subject to d(p) ≤ c, where z(c) is the dual variable associated with the capacity
constraint and that d(p) is continuous in p. Let c̄ be the smallest integer at which
the dual variable is zero. Then p(z(c)) = p(0) for all c ≥ c̄.
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Suppose that capacity is a random variable, say C, and that the firm prices at
p(z(C)). Since the price is the same for all C ≥ c̄, it is convenient to redefine C

to be min(C, c̄), so its support is in {0, 1, . . . , c̄}. With this notation, the expected
profit to the firm is equal to

E[Cp(z(C))] =
c̄∑

c=1

cp(z(c))P(C = c).

Changing the order of summation, we see that the average price paid for the cth
unit of capacity is equal to E[p(z(C))|C ≥ c]. This pricing policy applies to
situations where yields are random, and the firm can pass the price signal p(z(C))

to consumers who select whether or not they want to buy at that price. The policy is
somewhat controversial as it calls for the disposal of capacity when yields are high
and can be perceived as price gouging when yields are low. In some instances, such
as the consumption of power, consumers cannot react to the changes in capacity in
real time. Therefore, the application of this scheme requires a priority matching to
consumers who value the service the most, and this is why this is called a priority
pricing schedule.

8.5.3 Social Planning and Dead Weight Loss

A social planner is interested in selecting p to maximize the sum of the consumers’
surplus S(p) and the firm’s profit R(p, z). The sum of these two quantities is known
as the social welfare function, given by

W(p, z) := S(p) + R(p, z).

Optimizing over p, we obtain the optimal welfare function

W(z) := max
p≥z

W(p, z).

Proposition 8.12 If d(p) is differentiable and decreasing in p, then W(z) = S(z)

is decreasing convex in z.

The result follows because under the stated conditions ∂W(p,z)
∂p

= (p−z)d ′(p) ≤
0, so social welfare is decreasing in p and its maximum is attained at p = z.

The difference W(z) − W(p(z), z) is known as the dead weight loss. It reflects
the difference between the optimal social welfare and the social welfare that results
when the firm maximizes its profits. As an example, if d(p) = λe−p/θ , then p(z) =
z + θ , W(z) = S(z) = λθe−z/θ , while W(p(z), z) = 2λθe−1e−z/θ , so the dead
weight loss is equal to [1 − 2e−1]W(z) or 26% of the maximum social welfare.

Trying to reduce the dead weight loss is difficult because the optimal solution to
the social planner’s problem is to set p = z and this results in zero profits for the firm
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with all of the benefits going to the consumers. We will next explore two cases where
the dead weight loss can either be eliminated or reduced. The first case requires the
use of real options on services when the booking and the consumption of the service
are separated by time and consumers are uncertain about their valuations at the time
of booking. The second case corresponds to the situation where the consumers and
the firm negotiate instead of using a take it or leave it price.

Call Options on Capacity

Consider first the case of a homogeneous group of consumers booking capacity in
advance of consumption. Suppose there are λ consumers, each with independent
and identically distributed random willingness-to-pay for the service at the time
of consumption. We assume that the distribution H(p) = P(Ω ≥ p) is common
knowledge to consumers and the firm, so the aggregate demand function is d(p) =
λP(Ω ≥ p). For this model, the surplus function is S(p) = λE[(Ω − p)+]. We
further assume that consumers do not learn the realization of demand until the time
of consumption. Under these conditions, the firm can benefit from offering call
options to consumers. A call option requires an upfront, non-refundable, payment x

that gives the customer the non-transferable right to buy one unit of the service at
price p at the time of consumption. The special case where p = 0 is called advanced
selling, and the case x = 0 is called spot selling.

Consumers evaluate call options by the surplus they provide. A customer who
buys an (x, p) option will exercise his right to purchase one unit of the service at
the time of consumption if and only if Ω ≥ p. By doing this, an individual consumer
obtains expected surplus s(p) = E[(Ω − p)+] = S(p)/λ. Since consumers pay x

for this right, the consumer receives expected surplus s(p) − x and would find the
(x, p) option attractive only if s(p) − x ≥ 0.

Consider the problem of maximizing the expected profit from selling (x, p)

options subject to the participating constraint s(p) − x ≥ s̃, where s̃ ≥ 0 is a lower
bound on the individual surplus that needs to be given to consumers to induce them
to buy the option. In practice, the firm may set s̃ = 0 to extract as much surplus from
consumers. Here we will analyze the problem for other values of s̃ to show that it
is possible to eliminate the dead weight loss and use s̃ as a mechanism to distribute
profits and surplus between the firm and the consumers.

Since the expected profit from selling (x, p) options that satisfy the participating
constraint is x + (p − z)P(Ω ≥ p) and there are λ consumers, the expected profits
are equal to λx + (p − z)λP(Ω ≥ p) = λx + R(p, z). This is a function of x, and
it is optimal to set x∗ = s(p) − s̃. This reduces the problem to that of maximizing
λ(s(p) − s̃) + R(p, z) = S(p) + R(p, z) − λs̃ = W(p, z) − λs̃ with respect to
p. We already know that W(p, z) is maximized at p = z. Thus, the solution to the
provider’s problem is to set p = z and x = s(z) − s̃, so the provider obtains profits
equal to λx∗ = λ(s(z) − s̃), while consumers receive surplus λs̃. Since the sum of
these two quantities is S(z) = λs(z), the selling of call options eliminates the dead
weight loss and s̃ can be used as a mechanism to distribute the dead weight loss.
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We now explore the range of values of s̃ that guarantees that both the firm and
the consumers are at least as well off as the solution (x, p) = (0, p(z)), where price
p(z) is offered to consumers after they know their valuations. Under this scheme,
the firm makes R(z) and consumers receive surplus S(p(z)) = λs(p(z)). As a
result, consumers are better off whenever λs̃ ≥ S(p(z)), while the firm is better off
whenever S(z) − λs̃ ≥ R(z), so a win-win is achieved for any value of s̃ such that
S(p(z)) ≤ λs̃ ≤ S(z) − R(z). Since S(z) ≥ R(z) + S(p(z)), the win-win interval
is non-empty. In practice, absent competition or an external regulator, the provider
may simply select s̃ = 0, to improve his profits from R(z) to W(z) extracting
all consumer surplus while also capturing the dead weight loss. The improvement
in profits from options can be very significant. Indeed, in the exponential case,
(W(z) − R(z))/R(z) = (e − 1) = 172%.

The idea of using call options can be extended to the case where the variable cost
Z of providing the service at the time of consumption is random. In this case, the
option is designed by setting x = E[s(Z)] − s̃ and p = Z, so that by paying x

in advance the option bearer has the right to purchase one unit of the service at the
random variable cost Z.

Bargaining Power

Assume again that demand comes from λ homogeneous consumers with willingness
to pay Ω , so d(p) = λP(Ω ≥ p). Without negotiation, the firm sets the price at
p(z) and consumers make a purchase if Ω ≥ p(z) and leave the system otherwise.
In this section, we will show that the dead weight loss can be reduced if the firm
and the consumers negotiate instead of using non-negotiable prices. Suppose that
consumers know the realization of their willingness to pay, but the firm knows only
the distribution of Ω . We will assume that the firm has a reservation price, say p,
under which it is not willing to sell. We will assume the firm or an agent for the firm
negotiates with each customer. If Ω < p, then no sale takes place, but if Ω ≥ p, we
will assume that a sale takes place at the Bargaining Nash Equilibrium (BNE) price
βΩ + (1 − β)p, where β ∈ [0, 1] is the negotiating power of the firm and 1 − β

is the negotiating power of the buyers. Notice that if Ω ≥ p, then transaction takes
place at the reservation price p, when β = 0, and at Ω , when β = 1.

The problem for the firm is to select the reservation price, say pβ(z), to maximize
expected profits taking into account both the unit cost z and the negotiating power
β. Let δ(Ω −p) be a random variable taking value 1 if Ω ≥ p and 0 otherwise. The
firm wants to select the reservation price p to maximize

Rβ(p, z) := λE[(βΩ + (1 − β)p − z)δ(Ω − p)]
= λE[β(Ω − p) δ(Ω − p)] + λ(p − z)d(p)

= βλE[(Ω − p)+] + R(p, z)

= βS(p) + R(p, z). (8.7)
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Let

Rβ(z) := max
p

Rβ(p, z).

Let h(p) be the hazard rate of d(p) = λP(Ω ≥ p). If ph(p) is increasing in
p, then the maximizer of Rβ(p, z), say pβ(z), is the unique root of the equation
(p − z)h(p) = 1 − β. It is easy to see that pβ(z) is decreasing in β and increasing
in z, while Rβ(z) is increasing in β and decreasing in z. By substituting pβ(z) into
the formula for Rβ(p, z), we obtain

Rβ(z) = βS(pβ(z)) + R(pβ(z), z).

At β = 0, we have p0(z) = p(z) and R0(z) = R(z). Consequently, pricing at p(z)

is tantamount to assuming that the firm has no negotiating power, or equivalently
relinquishing the negotiating power. This may be done for expediency for relatively
inexpensive goods that are sold in high volumes. At β = 1, p1(z) = z, so R1(z) =
W(z), eliminating all of the dead weight loss, with the firm extracting all of the
consumers’ surplus. In most cases, β ∈ (0, 1), so it makes sense for the firm to
negotiate with consumers for goods that are expensive and sold in relatively low
volumes. Indeed, prices for real estate, cars, art, and high-end services are often
negotiated, while those of groceries are typically not except in economies where
people have more time than money.

The consumers’ expected surplus is given by

Sβ(pβ(z)) = λE[(Ω − βΩ − (1 − β)pβ(z)) δ(Ω − pβ(z))]
= λ(1 − β)E[(Ω − pβ(z))+]
= (1 − β)S(pβ(z)). (8.8)

It is easy to see that the consumers’ surplus is decreasing in β, so some of the
benefits that the firm derives from negotiation comes from smaller surplus for
consumers.

If we now add (8.7) and (8.8), and evaluate it at pβ(z), we see that the social
welfare that results from negotiation is equal to

Wβ(pβ(z), z) := Sβ(pβ(z)) + Rβ(z) = S(pβ(z)) + R(pβ(z), z).

This quantity is increasing in β. This follows because W(p, z) is decreasing in p

and pβ(z) is decreasing in β. This implies that the firm makes more than the loss to
the consumers when it has negotiating power.
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8.5.4 Multiple Market Segments

Suppose that there are multiple market segments with independent demands
dm(p),m ∈ M := {1, . . . ,M} for p ∈ �+ for a product. We will assume
throughout this section that dm(p) satisfies the conditions of Theorem 8.10 for every
m ∈ M. This guarantees that there exists a pm(z) increasing in z that maximizes
Rm(p, z) := (p − z)dm(p). If the firm can use direct price discrimination (also
known as third degree price discrimination or personalized pricing), then it would
use price pm(z) for market segment m ∈ M. The possibility to use direct price
discrimination arises when it is possible to vary price by time, location, or customer
attributes. This is often true for services and less so for physical products as there
may be a gray market which creates demand dependencies.

In some cases, we may need to offer the same price for a subset S ⊂ M of
market segments. This may be due to regulations or if the markets are not sufficiently
different. Let dS(p) := ∑

m∈S dm(p) denote the aggregate demand over market
segments in S at price p ∈ �+, and let RS(p, z) := (p − z)dS(p) denote the profit
function for market segments in S when the variable cost is z. We seek conditions
for the existence of a maximizer pS(z) of RS(p, z) that is in the convex hull of the
set {pm(z) : m ∈ S}.

The following result shows that dS(p) inherits some desirable properties from
the individual market demand functions dm(p),m ∈ S.

Proposition 8.13 If dm(p) satisfies the conditions of Theorem 8.10 for every m ∈
M, then so does dS(p). Moreover, there exists a finite price pS(z), increasing in z,
such that RS(z) = RS(pS(z), z) is decreasing convex in z.

It may be tempting to conclude that, under the conditions of Proposition 8.13,
pS(z) would lie in the convex hull of {pm(z),m ∈ S}. Example 8.14 shows that this
is not true.

Example 8.14 Suppose that d1(p) = 1 for p ≤ 10 and d1(p) = 0 for p > 10. Then
R1(p, 0) is maximized at p1(0) = 10 and R1(0) = 10. Suppose that d2(p) = 1
for p ≤ 9, d2(p) = 0.1 for 9 < p ≤ 99 and d2(p) = 0 for p > 99. Then
R2(p, 0) is maximized at p2(0) = 99 resulting in R2(0) = 9.9. The total profit is
equal to 19.9 if each segment is allowed to be priced separately. Let S = {1, 2},
then RS(p, 0) = R1(p, 0) + R2(p, 0) is maximized at pS(0) = 9 < mini∈S pi(0)

resulting in RS(0) = 18.

Since the sum of quasi-concave functions is not, in general, quasi-concave, it
should not be surprising that properties of dm(p) that imply quasi-concavity of
Rm(p, z), for each m ∈ M are not, in general, inherited by dS(p) = ∑

m∈S dm(p).
Example 8.15 illustrates this.

Example 8.15

(a) Suppose that dm(p) = exp(−p/bm) for m = 1, 2 with b1 < b2. Then the
hazard rate hm(p) = 1/bm, is constant, and there is a unique price pm(z) =
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z + bm that maximizes Rm(p, z) for m = 1, 2. Let S = {1, 2}. The hazard rate
hS(p) of dS(p) is decreasing in p.

(b) Suppose that dm(p) = 1/pbm for some bm > 1, then phm(p) = bm and there is
a unique price pm(z) = bmz/(bm − 1) that maximizes Rm(p, z) for m = 1, 2.
Let S = {1, 2}. The proportional hazard rate phS(p) of dS(p) is decreasing
in p.

In both cases in Example 8.15, the profit function RS(p, z) is actually quasi-
concave, even if the aggregate demand function dS(p) has decreasing hazard rate
(Part a) or decreasing proportional hazard rate (Part b). The next result provides
sufficient conditions to bound the maximizer of RS(p, z) to be within the convex
hull of pm(z),m ∈ S.

Proposition 8.16 Assume that dm(p) satisfies the conditions of Theorem 8.10 for
each m ∈ M , that the hazard rate hm(p) is continuous in p, and that phm(p) is
increasing in p for each m ∈ M . Then, RS(p, z) has a maximizer in the convex hull
of {pm(z),m ∈ S} for all S ⊂ M.

Corollary 8.17 Proposition 8.16 holds if hm(p) is increasing in p for all m ∈ S.

We next consider the problem where we are allowed a price menu that consist of
at most J ≤ M different prices. The limitation to J prices may be managerial in
nature, or it may be due to the lack of precise knowledge of the demand parameters
for some of the market segments. The extreme cases are J = 1, where a single price
is used for all the segments (so there is no price discrimination) and J = M , where
each segment is priced independently (full direct price discrimination). Let QJ (z)

be the maximum profit from using J distinct prices for the M market segments when
the marginal cost is z. For J = 1, we have Q1(z) = RM(z), and for J = M , we
have QM(z) = ∑

m∈MRm(z). Clearly QJ (z) is increasing in J . For 1 < J < M ,
the problem is combinatorial in nature, as we need to assign M market segments
into J market clusters, with all market segments in a cluster using the same price.

Our aim in this section is to develop a heuristic and a lower bound on the
profitability of using J prices. More precisely, we will develop a heuristic with
profit Qh

J (z) such that

QJ (z)

QM(z)
≥ Qh

J (z)

QM(z)
≥ γJ (z),

for some function γJ (z) for situations where all of the demand functions dm(p),m ∈
M belong to the same family. As we shall see, it is often possible to obtain most
of the potential profits with a relatively small J even if we do not have detailed
knowledge of the demand functions.

We will assume that the demand functions dm(p),m ∈ M belong to the
same family. By this we mean that dm(p) = λmHm(p),m ∈ M and the tail
distributions Hm(p) = P(Ωm ≥ p),m ∈ M differ only on their parameters.
Examples of families of demand functions include linear, log-linear, CES, logit,
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among others. We will assume that the profit function Rm(p, z) = (p − z)dm(p)

is quasi-concave for each m and that there is a unique finite maximizer pm(z)

for each m ∈ M. We will assume that the market segments are ordered so
that p1(z) ≤ . . . ≤ pM(z). Finally, we will assume that for any S ⊂ M,
the profit function RS(p, z) = ∑

m∈S Rm(p, z) has a finite maximizer pS(z) in
the interval [minm∈S pm(z), maxm∈S pm(z)], as guaranteed under the conditions of
Proposition 8.16.

Since we will be using heuristic prices, it is convenient to have a measure of how
efficient it is to use price p instead of pm(z) for market segment m. This motivates
defining the relative efficiency of using price p instead of price pm(z) for market
segment m as the ratio

em(p, pm(z), z) := Rm(p, z)

Rm(z)
≤ 1. (8.9)

Notice that em(p, pm(z), z) reaches maximum efficiency at p = pm(z) and
decays on both directions as a result of our quasi-concavity assumption. We
will be particularly interested in families of demands for which em(p, pm(z), z)

is independent of m. This is true for the linear, the log-linear, and the logit
demand functions, among others. It is possible to find closed-form formulas for
e(p, pm(z), z) for many families of demand functions including linear, log-linear,
and CES. However, there are distributions that do not admit closed-form expressions
for e(p, pm(z), z) but the results that we will derive here can also be applied,
numerically, to distributions that do not admit closed-form expressions. The relative
efficiencies of prices will help us deal with situations where we may not know the
exact parameters of some of the market segments. On occasions, we will write
e(q, s, z) to mean the efficiency of price q 
= s for a (possibly fictitious) market
segment for which price s is optimal for z.

We now show how to construct a heuristic that uses 1 < J < M prices. The
idea is to break down the interval [p1(z), pM(z)] into J sub-intervals, which in
turn determine market clusters and then to use a common price for all the market
segments within a cluster. The precise price used within a cluster will depend
on the detailed knowledge of the market segments in a cluster. If only limited
information is known, then a robust price that maximizes the minimum efficiency
will be used, otherwise an optimal price all market segments in the cluster will be
used.

We start by describing the procedure by showing how to select the break-points
and robust prices and later explain how the heuristic can be improved with optimal
prices in each cluster.

Consider arbitrary break-points p1(z) = s0 < s1 < s2 . . . < sJ−1 <

sJ = pM(z) and define market clusters Mj = {m : pm(z) ∈ [sj−1, sj )} for
j = 1, . . . , J − 1 and MJ = {m : pm(z) ∈ [sJ−1, sJ ]}. Let qj ∈ (sj−1, sj )

be a common price to be used for all markets in cluster Mj, j = 1, . . . , J . The
break-points s1, . . . , sJ−1 and the prices qj are designed to maximize the minimum
efficiency among all of the market segments. More precisely, the sj ’s and qj ’s are
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selected so that

e(qj , sj−1, z) = e(qj , sj , z) for all j = 1, . . . , J (8.10)

and

e(q1, s1, z) = e(q2, s2, z) = . . . = e(qJ , sJ , z). (8.11)

Equation (8.10) guarantees that price qj is just as efficient for sj−1 as it is for
sj . Equation (8.11) guarantees that the efficiency of qj relative to sj is the same
for each market segment. This implies that for any market segment m ∈ Mj ,
e(qj , pm(z), z) ≥ e(qj , sj , z) for all j = 1, . . . , J .

It is often possible to find the sj ’s and the qj ’s with very limited information
about the market prices pm(z). Usually, it is sufficient to know the smallest p1(z)

and the largest pM(z) prices.
Let Qh

J (z) be the profit obtained by pricing market all market segments in Mj at
qj for all j = 1, . . . , J . Notice that we assign market m to price qj if j maximizes
e(qj , pm(z), z), or equivalently pm(z) is in the interval defined by sj−1 and sj . Thus,
relatively little knowledge about the markets is need to implement the heuristic.
However, if detailed knowledge is available, then we can improve on the heuristic
by using optimal prices pMj

(z) for each market segment m in cluster Mj, j =
1, . . . , J .

By the choice of the break-points sj and prices qj , we have

γJ (S) := e(q1, s1, z) = e(q2, s2, z) = . . . = e(qJ , sJ , z) ≤ 1.

The next result shows that Qh
J (z)/QM(z) ≥ γJ (z). As we shall see γJ (z) can

be quite close to one for relatively small values of J . This indicates that we do not
need full price discrimination (J = M) to obtain most of the potential profits from
price discrimination. Put another way, there may be no need to dice the market into
tiny segments if the optimal prices for the different segments are not too far apart.

Theorem 8.18 Assume that the functions Rm(p, z) are quasi-concave and each
has a unique finite maximizer pm(z). Suppose that the market segments are indexed
so that pm(z) is increasing in m ∈ M. Assume that em(p, pm(z), z),m ∈ M is
independent of m ∈ M. Then offering price qj to all market segment in Mj for
j = 1, . . . , J results in

QJ (z)

QM(z)
≥ Qh

J (z)

QM(z)
≥ γJ (z).

We now illustrate the lower bounds for a variety of demand functions leaving the
proofs as exercises. It is important to recall for this purpose that the market segments
are ordered so that pm(z) is increasing in m ∈ M, so p1(z) is the lowest price and
pM(z) is the largest price. Let Δm(z) := pm(z)−z represent the mark-up for market
segment m. Clearly Δ1(z) ≤ Δm(z) ≤ ΔM(z).
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Proposition 8.19 Consider linear demand functions dm(p) = (am − bmp), m ∈
M. Then

e(p, pm(z), z) = p − z

Δm(z)

(
2 − p − z

Δm(z)

)
∀ m ∈ M,

and

γJ (z) = 4Δ1(z)
1/J ΔM(z)1/J

(
Δ1(z)1/J + ΔM(z)1/J

)2 . (8.12)

To get a feel for this result, suppose that there are M market segments, and the
mark-up for market segment M is 4 times the optimal mark-up of segment 1, so
ΔM(z) = 4Δ1(z). Then γ1(z) = 64.00%, γ2(z) = 88.89%, and γ4(z) = 97.06%.
These results are independent of the number of market segments. Recall that these
are lower bounds assuming a robust price qj is used for every cluster, so even better
results attain if we use optimal prices within each market segment.

We next consider the exponential demand family.

Proposition 8.20 Consider the exponential demand functions dm(p) =
am exp(−p/bm), m ∈ M. Then

e(p, pm(z), z) = p − z

Δm(z)
exp

(
1 − p − z

Δm(z)

)
∀ m ∈ M.

Let u = bM/b1, and let UJ = ln(u)

J (u1/J −1)
. Then

γJ (z) = UJ e1−UJ .

To get a feel for this result, suppose that there are M market segments and u =
bM/b1 = 4, then γ1(z) = 79.13%, γ2(z) = 94.21%, and γ4(z) = 98.51%. Again,
these numbers are independent of the number of market segments. Recall that these
are lower bounds assuming a robust price qj is used for every cluster, so even better
results attain if we use optimal prices within each market segment.

In addition to the linear and log-linear demand functions, efficiency functions can
be computed for the CES model and for the multinomial logit model. Consequently,
pricing heuristics can be computed for those demand functions as well.

So far we have avoided the issue of consumer surplus and total welfare under
direct price discrimination. Most of the insights can be obtained from studying what
happens with two market segments. As we move from a common optimal price, say
p(z), to two prices, say p1(z) < p2(z), we typically have p(z) ∈ (p1(z), p2(z))

under mild conditions (Example 8.14 shows that this is not always true). In this
case, there is a Robin Hood effect that favors the firm and market segment 1 at the
expense of market segment 2. The change in total welfare can be either positive
or negative. A necessary condition for an increase in total welfare is that the total
output increases under direct price discrimination.
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8.5.5 Peak Load Pricing

Suppose that a product with variable cost α > 0 is sold in different markets or time
periods m ∈ M. We will assume that dm(p) is continuous in p, and there is a unique
price pm(α + zm) that maximizes Rm(p, α + zm) for all zm ≥ 0.

Consider the problem of selecting prices to maximize

∑

m∈M
Rm(pm, α) − β max

m∈M
dm(p).

We can think of β as the unit cost of serving the peak demand. To tackle this
problem, we will assume that the firm will select the prices pm,m ∈ M as well
as the installed capacity, say c. The goal is to maximize

∑

m∈M
Rm(pm, α) − βc

subject to dm(p) ≤ c for all m ∈ M.
Let zm be the dual variable associated with the constraint dm(p) ≤ c. Then the

Lagrangian problem for fixed c is given by

L(p, z) :=
∑

m∈M
Rm(pm, α + zm) +

[
∑

m∈M
zm − β

]
c.

Maximizing over pm,m ∈ M yields

L(z) := max
p

L(p, z) =
∑

m∈M
Rm(α + zm) +

[
∑

m∈M
zm − β

]
c.

Next we consider the convex problem of minimizing L(z) over z ≥ 0. The
solution is to set zm = 0 if dm(pm(α)) ≤ c. If dm(pm(α)) > c, we select zm > 0 so
dm(pm(α + zm)) = c. In summary, for fixed c, the solution is given by zm(c) and
pm(α + zm(c)) for all m ∈ M such that dm(pm(α + zm(c))) ≤ c is complementary
slack with zm(c) ≥ 0.

Let

L(z(c)) =
∑

m∈M
Rm(α + zm(c)) +

[
∑

m∈M
zm(c) − β

]
c.

At optimality c∗ must be selected so that
∑

m∈M zm(c∗) = β, as otherwise the
objective can be improved by either increasing or decreasing c. Since β > 0, at least
one period has demand equal to capacity. The variable capacity cost β is allocated
to the markets in the set {m ∈ M : zm(c∗) > 0} with other markets not contributing
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to the cost of capacity. Peak load pricing has generated its share of controversy, as it
is difficult to understand why two markets consuming the peak capacity should pay
different prices, and why those consuming less should get a free ride.

8.6 Multi-Product Pricing Problems

For the multiple product cases with n > 1, the known conditions for the existence
of a finite maximizer p(z) of R(p, z) = (p − z)′d(p) are seldom useful, as they
typically require R(p, z) to be concave or quasi-concave over a compact set. The
problem is that for n > 1, we need to worry about the possibility that at optimality
one or more products are priced at infinity. This is equivalent to not offering all
of the products, and this makes it is difficult to reduce the domain to a compact set
without loss of optimality. Here, we provide some results for substitute products that
sometimes allow for the reduction of the optimization problem to a compact set. Let
d(p) = (d1(p), . . . , dn(p)). We assume that di(p) is increasing in pj , j 
= i to
capture the substitution effect (the demand for chicken goes up as the price for beef
increases). For convenience, we will write p = (pi, p−i ), where p−i represents the
price vector of products other than i. By (pi,∞) we imply that products j 
= i

are not offered. This allows us to define di(pi) := di(pi,∞), Ri(pi, zi) := (pi −
zi) di(pi), and Ri (zi) := maxpi

Ri(pi, zi), corresponding to the demand, profit,
and optimal profit for product i ∈ N := {1, . . . , n} that prevail when only product i

is offered.
A lower bound on R(z) can be obtained by selecting the product i ∈ N with the

largest Ri (zi), and by setting other prices to infinity. For an upper bound, we have

R(p, z) =
n∑

i=1

(pi − zi) di(p) ≤
n∑

i=1

(pi − zi) di(pi) =
n∑

i=1

Ri(pi, zi),

so

max
i∈N

Ri (zi) ≤ R(z) ≤
∑

i∈N

Ri (zi). (8.13)

We are interested in situations where p(z) is bounded when the optimal
individual prices pi(zi), i ∈ N are themselves bounded. For this, we will need
the concept of super-modularity. We say that R(p, z) is super-modular in p ∈ �n+,
p ≥ z, for fixed z, if for any two price vectors p ≥ z and p̃ ≥ z

R(max(p, p̃), z) + R(min(p, p̃), z) ≥ R(p, z) + R(p̃, z).
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If R(p, z) is twice continuously differentiable in p for fixed z, then R is super-
modular in p if and only if

∂2R(p, z)

∂pi∂pj

≥ 0 ∀ i 
= j.

One well-known consequence of super-modularity is that if R(pi, p−i , z) admits
a finite maximizer, say pi(z | p−i ) ≥ 0, for fixed p−i and z, then pi(z | p−i ) can be
selected so that it is increasing in pj for all j 
= i. We are now ready to state our
next result.

Theorem 8.21 If di(p) is increasing in pj , j 
= i, then (8.13) holds. Moreover, if
p(z) is a maximizer of R(p, z) and R(p, z) is super-modular in p for all z ≥ 0, and
pi(zi) is finite for all i ∈ N , then p(z) is finite and

pi(z) ≤ pi(zi) ∀ i ∈ N. (8.14)

We now provide sufficient conditions for pi(zi), i ∈ N to be finite and for
R(p, z) to be super-modular in p for fixed z.

Corollary 8.22 A sufficient condition for pi(zi) < ∞ for all i ∈ N is that di(pi)

is USC and d̄i (pi) is o(1/pi) for all i ∈ N . A sufficient condition for the super-
modularity of R(p, z) is that for all i ∈ N , di(p + z) is increasing in pj for all
j 
= i and super-modular in p for all z ≥ 0.

If di(p) is decreasing in pi and increasing in pj , j 
= i, then R(p, z) is super-
modular in (pi, zi) for fixed p−i and z−i , and sub-modular in (pj , zi) for fixed p−j

and z−i . As a result, an optimizer pi(z | p−i ) of R(pi, p−i , z) can be selected so that
pi(z | p−i ) is increasing in zi and an optimizer pj (z | p−j ) of R(pj , p−j , z) can be
selected so that pj (z | p−j ) is decreasing in zi . That pi(z | p−i ) is increasing in zi

is intuitive as some of the higher costs are passed on to consumers. Less intuitive is
that pj (z | p−j ) is decreasing in zi . The explanation is that an increase in zi reduces
the profits of product i, and an effort is made to shift demand to other products by
reducing their prices.

When an inverse demand function exists, it is possible to write the profit function
in terms of sales instead of price. In some cases, the profit function is sub-modular
as a function of sales for fixed z. Consequently, an increase in sales of one product
leads to a decrease in the optimal sales for other products. This makes intuitive
sense as products are substitutes. The sub-modularity of the profit function in terms
of sales, together with the super-modularity of the profit function in terms of prices,
implies that an increase in the price of one product leads to an increase in optimal
prices and optimal sales of all other products. Similarly, a decrease in the price of a
product leads to a decrease in optimal prices and optimal sales of all other products.
This suggests that a change in price in one product should result in a price change
of other products in the same direction, but not to the extent that a change in sales
goes in the opposite direction of the change in prices.
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8.6.1 Linear Demand Model

Demand functions for substitute products are often justified by looking at consumers
who are utility maximizers. Given a vector of prices p, consumers purchase the
quantity q ≥ 0 that maximizes U(q) − q ′p. It is well known that the quadratic
utility U(q) = w′q − 1

2 q ′Qq, with w ∈ �n++, Q symmetric and positive
definite, leads to linear demand function d(p) = a − Bp over the polyhedral
set P = {p ≥ 0 : Bp ≤ a}, where a := Bw, and B := Q−1; see the proof of
Theorem 8.7 for details.

We are interested in finding conditions on a and B that guarantee the existence
of a unique, non-negative, profit maximizing price vector p(z) such that R(z) =
R(p(z), z) for all z ≥ 0 such that d(z) ≥ 0. This last condition limits the costs z

to the polyhedral set where demands are non-negative at z. If one or more products
have costs so high that d(z) is negative for one or more products, then these products
can be eliminated from consideration and it is necessary to work on the projection
of the demand model into the space where demand for all products at cost z is non-
negative. Given B, we denote the transpose by B ′ and form the symmetric matrix
S = B + B ′.

Theorem 8.23 If S is positive definite, Sij ≤ 0 for all i 
= j , and a ∈ �n++, then

p(z) = S−1(a + B ′z) ≥ 0, (8.15)

maximizes R(p, z) = (p − z)′d(p) for all z such that d(z) ≥ 0. Moreover,

R(z) = R(p(z), z) = d(z)′Nd(z) (8.16)

where N = S−1BS−1.

Notice that the requirements of Theorem 8.23 are very mild. The theorem does
not even require that Bij ≤ 0 for all i 
= j , but rather the more mild assumption that
Sij = Bij + Bji ≤ 0 for all i 
= j . Notice also that R(p, z) is super-modular if and
only if Sij ≤ 0 for all i 
= j . The requirement that S is positive definite is also very
natural in this setting.

The solution d(p) presented above was the solution to the problem of maximiz-
ing U(q) − q ′p without any constraints on q. The solution q = d(p) satisfies the
non-negativity constraint if p ∈ P . We now address the problem for cases where
p ≥ 0, but p /∈ P , so the demand d(p) is negative for at least one product, so
q = d(p) is not a feasible solution to the problem of maximizing U(q)−q ′p subject
to q ≥ 0. Considering the non-negativity constraints explicitly in the optimization
problem can be shown to be equivalent to solving the linear complementarity
problem where some of the prices are reduced resulting in an optimal solution to the
constrained problem of the form q = d(p−y) ≥ 0 where y ≥ 0 and y′d(p−y) = 0,
so prices are adjusted downward for products with negative demands.
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Suppose for some p ∈ P , the unconstrained solution q = d(p) does not satisfy
a capacity constraint of the form q ≤ c. The problem of maximizing U(q) − q ′p
subject to q ≤ c can be shown to be equivalent to solving a linear complementarity
problem where prices are adjusted upwards by y, so that q = d(p + y) ≤ c is an
optimal solution with y ≥ 0 and y′ (c − d(p + y)) = 0.

A natural extension to the linear demand model is D(p) = A − Bp, where
the potential demand A is random with E[A] = a. Are profits higher when A is
random? The answer is yes if we can observe A before deciding the price p(z|A) =
S−1(A + B ′z) to offer. From (8.16), we can write the optimal profit function as
R(z) = (A−Bz)′N(A−Bz) which is a convex function of A given that N is positive
definitive. By Jensen’s inequality EA(A−Bz)′N(A−Bz) ≥ (a − Bz)′N(a − Bz),
which is the revenue if we price at p(z) = S−1(a + B ′z). The implication here is
that dynamic pricing can also be driven by randomness in the potential demand A

even if the variable value of capacity is unchanged.
The inverse demand function is given by p = d−1(q) = B−1(a − q), so the

profit function as a function of q is given by q ′(B−1a − B−1q − z). This function
is sub-modular in q if and only if B−1

ij ≥ 0 for all i 
= j . A sufficient condition for
this is that B is an m-matrix, i.e., if Bii > 0 for all i, Bij ≤ 0 for all i 
= j , and
either

∑
i∈N Bij > 0 for every j ∈ N or

∑
j∈N Bij > 0 for every i ∈ N . If B is

an m-matrix, then the profit function is sub-modular in q, and if a finite maximizer
exits, then it can be selected so that qi(z|q−i ) is decreasing in qj for all j 
= i. This
is intuitively consistent with the idea of product substitution. If we want to sell more
of product j then it is optimal to sell less of product i.

8.6.2 The Multinomial Logit Model

The multinomial logit (MNL) demand function is normally derived, as we do in an
earlier chapter, from a discrete choice model. Here, we show that the MNL function
also arises as a special case of the linear random utility model, where the indirect
utility function4 V (p, y) obtained from price vector p and income level y is given by

V (p, y) := E[max
i∈N

(y − pi + ai + εi)],

where ai is a measure of the quality of product i and the εi’s are mean-zero
random variables. In this model, it is typically assumed that y ≥ pi , so if product
i is purchased, then y − pi is the utility derived from the remaining budget
and ai + εi is the utility associated with product i. In this case, V (p, y) =
y + Emaxi∈N(ai − pi + εi). A direct application of the Williams-Daly-Zachary
theorem, assuming λ statistically identical consumers, results in

di(p) = −λ
∂V/∂pi

∂V/∂y
= λP(ai − pi + εi = max

j
(aj − pj + εj )),

4The consumer’s maximal attainable utility when faced with a vector of prices and income.
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so the demand for product i is the expected number of customers that prefer product
i over all other alternatives. Notice that the demand is independent of the income
level as long as y ≥ pi for all i. The so-called Profit demand function arises if the
εi’s are IID normal random variables. The MNL model arises if the εi’s are IID
Gumbel random variables. The MNL model results in

di(p) = λ
eαi−βpi

1 + ∑
j∈N eαj −βpj

∀ i ∈ N, and d0(p) = λ
1

1 + ∑
j∈N eαj −βpj

for some constants αj , j ∈ N and β > 0, after normalizing the attraction of the
no-purchase alternative to 1. One can think of αi as the quality of product i and β

as the sensitivity to price.
For convenience, let πi(p) = di(p)/λ denote the market share of product i ∈ N .

Then

∂di(p)

∂pi

= −βdi(p)(1 − πi(p)) ≤ 0 and
∂dk(p)

∂pi

= βdi(p)πk(p) ≥ 0 ∀ k 
= i.

Consequently, the (absolute) elasticity of demand for product i is given by
βpi(1 − πi(p)) and is proportional to the complement of the market share πi(p)

of product i. The cross elasticities of the demand for product k relative to the price
of product i are given by βpiπk(p), and it is proportional to the market share of
product k. The next theorem characterizes the optimal prices under the MNL model.

Theorem 8.24 There exists a function θ(z) independent of i such that

pi(z) = zi + 1

β
+ θ(z) ∀ i ∈ N

and

R(z) = λθ(z),

where θ(z) is the root of the Lambert equation

βθeβθ =
∑

j∈N

eαj −βzj −1.

It is worth noting that Theorem 8.24 implies that all products should be offered
with the same mark-up pi(z) − zi = 1/β + θ(z). It is easy to see that the optimal
mark-up 1/β + θ(z) is equal to the reciprocal of βπ0(p(z)), so

pi(z) − zi = 1

βπ0(p(z))
∀ i ∈ N.
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The implication in a competitive setting is that the optimal mark-up is the reciprocal
of the product of the price sensitivity and the complement of the market share.
Consequently, optimal mark-ups are small if customers are price sensitive and the
firm has a small market share.

Let pi(zi) = zi + 1/β + θi be the optimal price for the set when the set of finite
prices is F = {i}, corresponding to the case pj = ∞ for all j 
= i. Then, from the
proof of Theorem 8.24, we see that

pi(zi) = zi + 1

β
+ θi ≤ zi + 1

β
+ θ = pi(z).

This inequality goes in the opposite direction to that of the linear demand model.
This may suggest to the reader that R(p, z) may be sub-modular, but this is not the
case.

The analysis can be extended to the case where the demand function is of the
form

di(p) = λ
eαi−βipi

1 + ∑
j∈N eαj −βj pj

∀ i ∈ N,

with d0(p) = 1 − ∑
i∈N di(p), so that the sensitivity to price is now product

dependent. In this case, it is also optimal to offer all products, and there is a function
θ(z), independent of i, such that

pi(z) = zi + 1

βi

+ θ(z) ∀ i ∈ N,

and R(z) = λθ(z). However, θ is no longer the root of a Lambert equation, but the
root of a slightly more complicated function.

8.6.3 The Nested Logit Model

In this section, we consider pricing under the nested logit (NL) model, which
is a popular generalization of the standard MNL model. For a certain range of
parameters, the NL model is an example of a random utility model where the random
component of the utilities of products within a nest are positively correlated and
independent of the utilities of products outside the nest. The probability of selecting
a product with the largest utility can then be viewed as a sequential decision: At
the upper level, customers select a nest of products; at the lower level, they select
a product within the nest. Suppose that the substitutable products constitute n nests
and nest i has mi products. Let pi = (pi1, pi2, . . . , pi,mi

) be the price vector
corresponding to nest i = 1, . . . , n, and let p = (p1, . . . , pn) be the price vector
for all the products in all the nests. Let Qi(p1, . . . , pn) be the probability that a
customer selects nest i at the upper level; and let qk|i (pi) denote the probability that
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product k of nest i is selected at the lower level, given that the customer selects nest
i. Under the NL model, the quantities Qi(p1, . . . , pn) and qk|i (pi) are given by

Qi(p1, . . . , pn) = eγiIi

1 + ∑n
l=1 eγlIl

qj |i (pi) = eαij −βij pij

∑mi

s=1 eαis−βispis
,

where αis can be interpreted as the “quality” of product s in nest i, βis ≥ 0 is
the product-specific price sensitivity for that product, Il = log

∑ml

s=1 eαls−βlspls

represents the attractiveness of nest l, which is the expected value of the maximum
of the utilities of all the products in nest l, and nest coefficient γi can be viewed as
the degree of inter-nest heterogeneity and is a measure of the correlation among the
utilities of the products in nest i. When γi = 1 for all i, the model reduces to the
MNL model. The case γi ∈ (0, 1] is consistent with random utility theory.

The probability that a customer will select product j of nest i, which can also be
considered as the market share of that product, is

πij (p1, . . . , pn) = Qi(p1, . . . , pn)qj |i (pi). (8.17)

The monopolist’s problem is to determine the price vectors (p1, . . . , pn) to maxi-
mize the total expected profit

R(p, z) :=
n∑

i=1

mi∑

j=1

λ(pij − zij ) πij (p1, . . . , pn), (8.18)

where z = (z1, . . . , zn), and zi is the vector of unit costs for nest i, and λ is the
market size. Let R(z) := max(p1,...,pn) R(p, z). The objective function R(p, z) fails
to be quasi-concave in prices. When the objective function is rewritten with market
shares as decision variables, then the objective function can be shown to be concave
if the price sensitivity parameters βij = βi are product independent in each nest and
γi ∈ (0, 1] for all i. However, the objective function fails to be concave in the market
shares in the more general case where the price sensitivities are product dependent
or some of the parameters γi are allowed to exceed one.

The results of Theorem 8.24 extend to the NL model, where the optimal price
pij (z) for product j in nest i as a function of the vector of unit costs z is of the form
pij (z) = zij + 1/βij + θi . Also, the nest dependent constants θi, i = 1, . . . , n are
linked to a single parameter as explained in the following theorem.

Theorem 8.25 If γi ≥ 1 or maxs βis

mins βis
≤ 1

1−γi
, then there exists a unique constant φ

such that

θi +
(

1 − 1

γi

)
wi(θi) = φ,
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and

pij (z) = zij + 1

βij

+ θi,

where wi(θ) = ∑mi

k=1
1

βik
· qk|i (θi) and qk|i (θi) = eα̃ik−βikθi∑mi

s=1 eα̃is−βis θi
, and α̃is = αis −

βiszis − 1 for all i and all s. Moreover,

R(z) = λφ.

Theorem 8.25 is interesting because a non-concave optimization problem over∑n
i=1 mi variables can be reduced, under mild conditions, to a root finding problem

over the single variable φ. Notice that each value of φ gives a set of θi’s dictated by
the first equation in the theorem. For these θi’s, the second equality in the theorem
gives the prices. If γi ≥ 1 or maxs βis

mins βis
≤ 1

1−γi
fails to hold, then the problem reduces

to a single variable maximization problem of a continuous function over a bounded
interval, so the problem can be easily solved numerically. Also, if different firms
control different nests, then the pricing problem under competition is strictly log-
super-modular in the nest mark-up constants, so the equilibrium set is nonempty
with the largest equilibrium preferred by all the firms.

8.7 End of Chapter Problems

1. Show that if d(p) = 1 for p ∈ [0, 10) and d(p) = 0 for p ≥ 10, then R(z) =
(10 − z)+ but the maximum is not attained.

2. Show that Theorem 8.10 applies to the demand function d(p) =
a exp(−bp) sin2(p) by showing that d̄(p) ≤ a exp(−bp) and pd̄(p) → 0
as p → ∞. Find a formula for p(z).

3. Determine the form of p(z) for d(p) = λ exp(−p/θ) for λ, θ > 0.
4. Determine the form of p(z) for d(p) = ((a − bp)+)c for a, b, c > 0.
5. Determine the form of p(z) for d(p) = (a + bp)−c for a, b > 0, c > 1.
6. Show that if 1/h(p) is concave in p, then p(z) is increasing concave in z.
7. Consider a single product where c units are available for sale. Let dc(p) =

min(d(p), c) and consider the following two formulations: (i) maxp p dc(p),
and (ii) max p d(p) subject to d(p) ≤ c. Solve each problem for c = 2, if
d(p) = 3 for p ≤ 10 and d(p) = 0 for p > 10. What happens if d(p) is
continuous?

8. Consider a single product problem with a strictly decreasing demand function
q = d(p). Let p̃(q) be the inverse demand function. Assume that r̃(q) =
q p̃(q) is concave with a bounded maximizer, say q∗. Suppose c < q∗. Show
that q = c solves the problem of maximizing r̃(q) subject to q ≤ c and that
there is a z ≥ 0 such that q = c maximizes r̃(q) − qz. Is z unique? What
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if r̃(q) is differentiable? Is the concavity of r̃(q) a sufficient condition for the
existence of a unique maximizer p(z) of R(p, z)? What else may you need?
Consider the problem Γ (c) = minz≥0[R(z) + cz]. Is the concavity of r̃(q) a
sufficient condition for Γ (c) = r̃(c)?

9. Consider a single product, single resource formulation (8.4) with sales horizon
[0, T ], T = 1, dt (p) = a1 − bp for t ∈ (0, 1/2], and dt (p) = a2 − bp for
t ∈ (1/2, 1]. Find the solution pt (0) for t ∈ [0, T ]. For what values of c is this
solution optimal? Show that for such values of c, V̄ (T , c) = (a2

1 +a2
2)/8b. Now

solve formulation (8.6) and show that V̄f (T , c) = (a1 + a2)
2/16b. Show that

the optimal profits are 25% higher under dynamic pricing when a1 = 50 and
a2 = 150.

10. Consider the demand function d(p) = λP (Ω ≥ p) and assume that Ω has a
gamma distribution with parameters α and β, so μ = E[Ω] = αβ and σ 2 =
Var[Ω] = αβ2. We can fit any mean μ and variance σ 2 by setting the parameter
β = σ 2/μ and α = μ2/σ 2. One may wonder how p(z) and R(z) behave
as a function of σ 2 for fixed μ. Does more variance lead to higher or lower
prices and profits? Construct a table of p(z) and R(z) for z = 400, λ = 1 and
E[Ω] = 500 for values of σ/μ ∈ {k/8 : k = 0, 1, . . . , 16}. What happens to
p(z) as σ increases? What happens to R(z) as σ increases?

11. Consider the problem of maximizing R(p, z) = (p − z)d(p) when d(p) =
λe−p/μ subject to the constraint d(p) ≤ c. Let L(p, z) = R(p, z) −
γ (d(p) − c) = R(p, z + γ ) + γ c. Argue that minγ≥0 L(p, z) is equivalent
to minγ≥0 [R(z + γ ) + γ c]. Show that this is a convex program in γ and that
if γc is an unconstrained minimizer of R(p + γ ) + γ c, then γ ∗

c = max(γc, 0)

solves the Lagrangian problem, and that p(z + γ ∗
c ) = max(p(z), pmin(c)) is

the optimal price, where pmin(c) is the root of d(p) = c.
12. Consider the multiple market segment problem and show that the total welfare

can go up when we move from an optimal common price to direct price
discrimination only if the total output goes up. Hint: Use the fact that the surplus
function is convex.

13. For the linear function d(p) = a − Bp and for p ∈ P = {p ≥ 0 : d(p) ≥ 0},
q = d(p) is the solution to the problem maxq≥0[U(q) − p′q] as presented
in Sect. 8.6.1. Suppose that p ≥ 0, but p /∈ P and a − Bp has both
positive and negative components. To find the demand at p, we need to
solve maxq≥0[U(q) − p′q] without ignoring the non-negativity constraints.
Let y ≥ 0 be the vector of dual variables to the constraint q ≥ 0. Show that
the optimal solution is given by q = d(p) + By, where y ≥ 0 minimizes
y′[d(p) + By]. Notice that this is a linear complementarity problem. Solve the
linear complementarity problem for the case of n = 2, when d1(p) > 0 and
d2(p) < 0 to see how the demand for product one is reduced by b12 y2.

14. Consider again the linear demand model d(p) = a − Bp, but assume now that
there are n firms with firm i selecting the price of product i = 1, . . . , n. More
precisely, assume that firm i maximizes Ri(p, z) = (pi−zi)di(p) over pi ≥ zi .
This results in the best response price pi(p−i ) for each firm i, and what we seek
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is the equilibrium price vector, so that the prices constitute a Nash Equilibrium.
Show that first-order conditions can be written in matrix form as

a + diag(B)z − (B + diag(B))p = 0.

Assume that M = B + diag(B) is an m-matrix, so that the inverse of M exists
and is non-negative and show that the equilibrium prices are given by

p̃(z) = M−1(a + diag(B)z) = z + M−1d(z).

Show also, that d(p̃(z)) = diag(B)M−1d(z) and that

n∑

i=1

Ri(p̃(z), z) = d(z)′M ′−1diag(B)M−1d(z)

= (p̃(z) − z)′diag(B)(p̃(z) − z)),

and that the monopolist formulas (8.15) and (8.16) coincide with the com-
petition formulas if diag(B) = B, i.e. if there are no cross elasticities.
Otherwise, we expect competitive prices to be lower, demand to be higher and
aggregate profits to be lower under competition, with more surplus going to
the consumers. The results can be extended to the case where each competitor
controls the prices of a subset of the products.

8.8 Bibliographical Remarks

Theorems 8.1, 8.5, and 8.7 show that the firm prefers randomness in z, the
consumer’s prefer randomness in p, and under mild conditions both the firm and
the representative consumer prefer prices that respond to randomness in variable
costs. Theorem 8.10 allows for demand functions that are not necessarily decreasing
or eventually decreasing. Theorem 8.11 provides bounds on optimal prices. The
analysis of consumer surplus is due to Chen and Gallego (2019). The reader
is directed to van den Berg (2007) and references therein for earlier efforts to
characterize the existence or uniqueness of global maximizers. The reader is also
referred to Larriviere and Porteus (2001) for an equivalent assumption where
the absolute value of the price elasticity of demand |e(p)| = ph(p) is called
the generalized hazard rate. Caplin and Nalebuff (1991) have some interesting
conditions on the inverse demand function for an optimal price p(z) to exist. Ziya
et al. (2004) discuss the relationship between several assumptions used to ensure
that the expected revenue function is well behaved. The results on options are due to
Gallego and Sahin (2010), Png (1989), Shugan and Xie (2000), and Xie and Shugan
(2001). The section on priority pricing is based on the work of McAfee (2004),
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where he considers the social benefit of coarse matching. See Johnson (1970) for a
discussion of positive definite matrices. The pricing results for the NL model can be
found in Li and Huh (2011), Gallego and Wang (2014), and Rayfield et al. (2015).
The development and discussion of the NL model can be found in McFadden (1974)
and Carrasco and de Ortuzar (2002). The MNL and NL models are special cases of a
broader class of choice models, called the generalized extreme value models. Zhang
et al. (2018) work on pricing problems under generalized extreme value models.

Keller et al. (2014) give mathematical programming formulations for pricing
problems under generalizations of the MNL model. Du et al. (2016), Wang and
Wang (2017) and Du et al. (2018) study pricing problems under a variant of
the MNL model, where the attraction value of a product depends on the market
size it garners. Yan et al. (2017) study a joint parameter estimation and pricing
problem when the marginal distribution information is available on the utilities.
Wang (2018b) studies a pricing problem under the MNL model, where customers
form a reference price by using the prices of the offered products and adjust their
reactions accordingly. Cui et al. (2018) and Wang et al. (2019) study multi-product
pricing problems when products are sold as ancillary to others. Amornpetchkul et al.
(2018) examine promotion models, when the amount of promotion depends on the
quantity purchased by a customer.

Maglaras and Zeevi (2005) study pricing problems when the firm offers services
with different levels of quality using a common pool of capacity. Besbes et al.
(2010) design tests to check the validity of a fitted price-demand curve not from
the perspective of statistical goodness of fit but from the perspective of operational
performance. Eren and Maglaras (2010) consider pricing problems when the price-
demand curve is unknown to the firm. Cachon and Feldman (2011) study pricing
models to understand the tradeoff between charging on a per-use basis or selling
subscriptions. Kostami et al. (2017) give a pricing model when the utility of a
customer depends on the presence of the other customers in the system. Cohen
et al. (2017b) give performance bounds when only partial information about the
price-demand relationship is available. Similarly, Chen et al. (2017a) study pricing
problems with only limited information about the price-demand relationship.
Cachon et al. (2017) study a stylized pricing model for a two-sided platform where
the demand and the supply are both endogenous. Hu and Nasiry (2018) demonstrate
that a price-demand model that is obtained by aggregating the behavior of individual
customers may not reflect the individual customers anymore. Elmachtoub et al.
(2018) bound the relative expected revenue gain when a firm knows the exact
willingness to pay of a customer rather than the distribution of willingness to pay,
providing insights on the effectiveness of personalized pricing. Boyaci and Akcay
(2018) study pricing models when customers cannot fully evaluate the quality of
a product. Ho et al. (1998) study a model to understand the reaction of consumers
to different pricing strategies. Petruzzi and Dada (1999) and Lu and Simchi-Levi
(2013) study incorporating pricing decisions into the newsvendor problem. Tang
et al. (2004) analyze the benefits from providing advance booking discounts to
reduce demand uncertainty. Tang and Yin (2007) develop a joint procurement and
pricing model under deterministic demand.
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Rusmevichientong et al. (2006) work on a nonparametric pricing problem, where
each customer is represented by a budget and a preference list of products. Caldentey
and Wein (2006) give fluid approximations for a joint pricing and admission control
problem. Hu et al. (2013a) study a pricing problem with a gray market, which
acts as an authorized channel to sell the authentic products of a supplier. Phillips
(2013) describes a host of practical issues in pricing credit and gives a mathematical
model. In an opaque product, a feature of a product, such as color for a piece of
apparel or departure time for a flight, is hidden from the customer until the purchase
occurs. Elmachtoub and Wei (2015) and Elmachtoub and Hamilton (2017) study
pricing problems for opaque products. Belkaid and Martinez-de-Albeniz (2017)
estimate the effect of weather conditions on demand and study the effectiveness of
weather-dependent pricing strategies. Courty and Nasiry (2018) observe that certain
products with different observable qualities are sold at uniform price and develop a
model to resolve this paradox. Ma and Simchi-Levi (2018) develop a model that
exploits the information extracted from bundled products to estimate individual
price sensitivities.

The reader is referred to Anderson et al. (1992) for more on discrete choice
theory of product differentiation and Vives (2001) for comparative static tools and
oligopoly pricing.

Appendix

Proof of Theorem 8.1 It is clear that R(p, z) is decreasing in z and that this implies
that R(z) is decreasing in z. To verify convexity, let α ∈ (0, 1). Then for any z, z̃,

R(αz + (1 − α)z̃) = max
p∈X

R(p, αz + (1 − α)z̃)

= max
p∈X

R(αp + (1 − α)p, αz + (1 − α)z̃))

= max
p∈X

[
α(p − z)′ + (1 − α)(p − z̃)′

]
d(p)

= max
p∈X

[
αR(p, z) + (1 − α)R(p, z̃)

]

≤ α max
p∈X

R(p, z) + (1 − α) max
p∈X

R(p, z̃)

= αR(z) + (1 − α)R(z̃).

��
Proof of Proposition 8.2 This follows from a direct application of the Taylor’s
expansion around R(E[Z]). ��
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Proof of Corollary 8.4 The proof of the first part is left as an exercise. From
the concavity of g we have g(αz + (1 − α)z̃) ≥ αg(z) + (1 − α)g(z̃) for
any z, z̃ ∈ �m and any α ∈ [0, 1]. Since R is decreasing, it follows that
R(g(αz + (1 − α)z̃) ≤ R(αg(z) + (1 − α)g(z̃)). From the convexity of R, we
have R(αg(z) + (1 − α)g(z̃)) ≤ αR(g(z)) + (1 − α)R(g(z̃)). Consequently,
R(g(αz + (1 − α)z̃)) ≤ αR(g(z)) + (1 − α)R(g(z̃)), showing that R(g(z)) is
convex in z. From Jensen’s inequality, it follows that E[R(g(Z))] ≥ R(g(E[Z])).

��
Proof of Theorem 8.5 That S(p) is decreasing follows directly from the fact that
S(q, p) is decreasing in p. To verify convexity, let α ∈ (0, 1). Then for any p, p̃

S(αp + (1 − α)p̃) = max
q≥0

S(αp + (1 − α)p̂, q)

= max
q≥0

[
U(q) − (αp + (1 − α)p̂)′q

]

= max
q≥0

[
α(U(q) − p′q) + (1 − α)(U(q) − p̃′q)

]

≤ α max
q≥0

S(p, q) + (1 − α) max
q≥0

S(p̃, q)

= αS(p) + (1 − α)S(p̃).

Notice that S(p) = U(d(p))−p′d(p), so ∇S(p) = ∇d(p)∇U(d(p))−d(p)−
∇d(p)p = −d(p) on account of ∇U(d(p)) = p for all p ∈ P .5

��
Proof of Theorem 8.7 Let w′q − 1

2 q ′Qq be the quadratic approximation to an
increasing concave utility function U , where w is a vector of positive components,
and Q is symmetric positive definite matrix.6 Let B = Q−1 and write d(p) =
B(w − p) over the set P = {p : p ≥ 0, B(w − p) ≥ 0}. Then

S(p) = U(d(p)) − d(p)′p = 1

2
(w − p)′B(w − p) over p ∈ P,

which is decreasing convex in p ∈ P since B is positive definite. The firm’s problem
is to find p = p(z) that maximizes

R(p, z) = (p − z)′B(w − p).

The optimizer is given by p(z) = (w + z)/2, which is an increasing linear function
of z ∈ P . The composite function S(p(z)) is therefore convex. ��

5Notice here that ∇d(p) is the Jacobian of d(p), i.e., the matrix of partial derivatives ∂di(p)/∂pj .
6If Q is not symmetric we can transform Q ← (Q+Q′)/2 to make it symmetric without changing
the utility function.
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Proof of Theorem 8.10 Since d(p) is USC and the product of non-negative USC
functions is also USC, it follows that R(p, z) is USC. The USC of d(p) implies
the USC of d̄(p) for if d̄(p) is not USC at p0, then there exist a p1 > p0 at which
d(p1) = d̄(po) fails to be USC. As a result R̄(p, z) is also USC in p ∈ [z,∞).
If d(p) = 0 for all p ≥ z, then p(z) = z and R(z) = R(z, z) = 0 and there is
nothing to prove. Otherwise there exists a price p̂ > z such that 0 < d̄(p̂) < ∞,
for if d̄(p) = ∞ for all p > z, then d̄(p) is not o(1/p). Let ε = R̄(p̂, z) > 0. We
will show that there is a price p̃ > p̂ such that R̄(p, z) ≤ ε for all p > p̃, for if not,
then for any p̃ > z, we can find a p > p̃ such that R̄(p, z) > ε, or equivalently,
pd̄(p) > pε/(p − z), contradicting the fact that pd̄(p) → 0 as p → ∞. Given
that R̄(p, z) ≤ ε for all p ≥ p̃, we can restrict the optimization of R̄(p, z) without
loss of optimality to the compact set [z, p̃]. The extreme value theorem guarantees
the existence of a finite price, say p̄(z) ∈ [z, p̃], that maximizes R̄(p, z). We will
now show that p(z) = p̄(z) also maximizes R(p, z) so R(z) = R̄(z). Assume for
a contradiction that p̄(z) is not a maximizer of R(p, z). Then

(p̄(z) − z)d̄(p̄(z)) = R̄(z) ≥ R(z) > (p̄(z) − z)d(p̄(z))

implies that d(p̄(z)) < d̄(p̄(z)) = supp≥p̄(z) d(p). Then there exists a p′ > p̄(z)

such that d(p′) = d̄(p(z)), but then R̄(p′, z) > R̄(p̄(z), z) = R̄(z) contradicting
the optimality of p̄(z). ��
Proof of Theorem 8.11 First, we show Part a. If h(p) is continuous and increasing
in p, then f (p) is continuous and strictly decreasing in p ≥ z. Equivalently, (p −
z)h(p) is continuous and strictly increasing in p. Now f (z) = 1 > 0 implies that
p(z) > z, while f (z + 1/h(z)) = 1 − h(z + 1/h(z))/h(z) ≤ 0 on account of
h(z + 1/h(z)) ≥ h(z) > 0 implies that p(z) ≤ z + 1/h(z). Because (p − z)h(p) is
continuous and strictly increasing in p, there exist a unique p(z) satisfying p(z) =
sup{p : f (p) ≥ 0} that is bounded below by z and above by z + 1/h(z). Suppose
that z′ > z, then (p(z) − z′)h(p(z)) < 1, so p(z′) > p(z) showing that p(z)

is strictly increasing in z. To show that Δ(z) = p(z) − z is decreasing in z, let
p′ = z′ + Δ(z) and notice that (p′ − z′)h(p′) = Δ(z)h(p′) ≥ Δ(z)h(p(z)) = 1,
so p(z′) = z′ + q(z′) ≤ p′ = z′ + Δ(z) implying that Δ(z′) ≤ Δ(z). For the
exponential demand function d(p) = λe−p/θ , we have h(z) = 1/θ and p(z) =
z + θ = z + 1/h(z), so the upper bound is attained.

Next, we show Part b. If ph(p) is continuous and strictly increasing in p and
z̃h(z̃) > 1, then f (p) is continuous in p > z and the equation f (p) = 0 can
be written as ph(p) = p/(p − z) with the left hand side increasing in p and the
right hand side strictly decreasing to one for p > z. Since zh(z) < ∞ it follows
that p(z) > z. Notice that z/(1 − z̃h(z̃)) is the root of z̃h(z̃) = p/(p − z). Since
ph(p) ≥ z̃h(z̃) ≥ p/(p − z) for all p ≥ z/(1 − z̃h(z̃)), it follows that p(z) is
unique and bounded above by z/(1 − 1/z̃h(z̃)). Suppose that z′ > z, then p(z′) >

z′, so if z′ ≥ p(z) it follows immediately that p(z′) ≥ p(z). Suppose now that
z < z′ < p(z), then at p = p(z) we have ph(p) < p/(p − z′) implying that
p(z′) > p(z). For d(p) = λp−b, with b > 1, we have ph(p) = b for all p, and
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p(z) = bz/(b−1) = z/(1−1/b) = z/(1−1/z̃h(z̃)), so the upper bound is attained.
Let m(z) := 1/h(z). Then, using the implicit function theorem on f (p, z) = 0, we
can find the first and second derivatives of p(z) in terms of m(z). It is easy to see
that the first derivative is given by p′(z) = (1−m′(p(z))−1, so the second derivative
is given by

p′′(z) = m′′(p(z)p′(z))
(1 − m′(p(z)))2 ≤ 0,

since m′′(z) ≤ 0 and p′(z) > 0.
Finally, we show Part c. Clearly f̃ (p) ≤ f (p) so p̃(z) ≤ p(z). ��

Proof of Proposition 8.13 Since the sum of USC is USC it follows that dS(p) is
USC. Moreover d̄m(p) = o(1/p) for all m ∈ M implies that d̄S(p) = o(1/p).
As a result dS(p) satisfies the conditions of Theorem 8.10 so there exists a finite
price pS(z), increasing in z, such that RS(z) = RS(pS(z), z) is decreasing convex
in z. ��
Proof of Proposition 8.16 It is easy to see that pm(z) > z is the root of p/(p−z) =
phm(p). Since the left hand side is decreasing in p and phm(p) is increasing in p, it
follows that there is a unique root p > z. This observation implies that fm(p) > 0
on p < pm(z) and fm(p) < 0 on p > pm(z). Let fS(p) = 1 − (p − z)hS(p)

where hS(p) is the hazard rate of dS(p). Since fS(p) is a convex combination of
fm(p) = 1 − (p − z)hm(p) with weights θm(p) = dm(p)/dS(p), it follows that
fS(p) > 0 for all p < minm∈S pm(z) because over that interval fm(p) > 0 for
all m ∈ S. Also fS(p) < 0 for all p > maxm∈S pm(z) because over that interval
fm(p) < 0 for all m ∈ S. Since the derivative of RS(p, z) is proportional to fS(p)

it follows that RS(p, z) is increasing over p < minm∈S pm(z) and decreasing over
p > maxm∈S pm(z). Moreover, since RS(p, z) is continuous over the closed and
bounded interval [minm∈S pm(z), maxm∈S pm(z)], appealing to the EVT yields the
existence of a global maximizer pS(z) of RS(p, z). ��
Proof of Theorem 8.18 Clearly

QJ (z)

QM(z)
≥ Qh

J (z)

QM(z)
=

∑J
j=1

∑
m∈Mj

Rm(qj , z)

QM(z)

=
J∑

j=1

∑

m∈Mj

e(qj , pm(z), z)
Rm(z)

QM(z)

≥ γJ (z)

∑
m∈MRm(z)

QM(z)

= γJ (z).

��
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Proof of Theorem 8.21 We have already shown that inequalities in (8.13). To
show (8.14), notice that the super-modularity of R(p, z) in p for fixed z, allows
us to select pi(z|p−i ) so that it is increasing in p−i . Consequently, pi(z|p−i ) ≤
pi(zi |∞) = pi(zi) for all i. In particular, pi(z) = pi(z|p−i (z)) ≤ pi(zi) for all
i ∈ N . ��
Proof of Theorem 8.23 Maximizing R(p, z) = (p − z)′d(p) with respect to p is
equivalent to minimizing 1

2p′Sp − (a + B ′z)′p + a′z which is quadratic function.
A sufficient condition for this function to be convex is that S is positive definitive.
It is known that S is positive definitive, if and only if B is, see Johnson (1970). If
B is positive definitive then S is invertible and since S is symmetric, so it is inverse
S−1. If B is positive definitive then the maximizer of R(p, z) is given by (8.15). A
sufficient condition for p(0) = S−1a ≥ 0 is for S−1 ≥ 0, since a > 0. However, this
is true because S is an s-matrix, i.e. a real symmetric, positive definitive matrix with
non-positive off-diagonal elements. It is known that an s-matrix has a non-negative
inverse implying that S−1 ≥ 0, and consequently that p(0) = S−1a ≥ 0. Since
p(z) is non-decreasing in z by Theorem 8.1, it follows that p(z) ≥ p(0) ≥ 0 for all
z ≥ 0 such that d(z) ≥ 0.

By adding and subtracting Bz to the expression in parenthesis on the right hand
side of (8.15) we can write p(z)−z = S−1d(z), where d(z) is the demand at p = z.
It is also possible to write d(p(z)) = a −Bp(z) = a −B(p(z)+ z− z) = a −Bz−
B(p(z) − z) = (I − BS−1)d(z) and then use the fact that I − BS−1 = B ′S−1 to
obtain d(p(z)) = B ′S−1d(z). This allows us to write R(z) = (p(z)− z)′d(p(z)) =
d(z)′S−1B ′S−1d(z) = d(z)′S−1B ′S−1d(z) resulting in (8.16). ��
Proof of Theorem 8.24 The first-order conditions are of the form

∂R(p, z)

∂pi

= di(p)[1 + βR(p, z)/λ − β(pi − zi)] = 0 ∀ i ∈ N.

For every subset F ⊆ N , let pF (z) be the solution to the first-order conditions
obtained by setting the expression in brackets equal to zero for all i ∈ F and by
setting di(p) = 0 for all i /∈ F . Then,

pi = zi + 1/β + R(p, z)/λ ∀ i ∈ F and pi = ∞ ∀ i /∈ F.

For each F ⊆ N , there exists a constant, θF = R(pF (z), z)/λ, given by the root of
the Lambert type equation

βθeβθ =
∑

j∈F

eαj −βzj −1,

such that pF
i (z) = zi + 1/β + θF for all i ∈ F , and R(pF (z), z) = λθF , so

θF represents the optimal profit per customer when we are allowed to offer only
products in F . Since the root θF is increasing in F , it follows that among all the 2n
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solutions to the first-order conditions, the one with the highest profit corresponds to
F = N . Thus, at optimality, we have

pi(z) = zi + 1

β
+ θ,

where θ is the root of the Lambert equation for F = N . Moreover, R(z) = λθ is
the optimal profit. ��
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