
Chapter 7
Network Revenue Management
with Dependent Demands

7.1 Introduction

Network revenue management models have traditionally been developed under the
independent demand assumption. In the independent demand setting, customers
arrive into the system with the intention to purchase a particular product. If this
product is available, they purchase it. Otherwise, they leave the system. This
model is reasonable when products are well differentiated so that customers do not
substitute between products. The independent demand model is harder to justify
when there are few differences, other than price, between fares. Indeed, a more
general setting is needed when the demand for each product depends heavily on
whether or not other products are available for sale. This setting gives the firms the
opportunity to shape the demand for each product by adjusting the offer set made
available to the customer.

In this chapter, we start by giving a dynamic programming formulation of the net-
work revenue management problem under dependent demands. Similar to the other
dynamic programming formulations that we give for network revenue management
problems, the state variable in this dynamic program is high dimensional. Thus,
solving the dynamic programming formulation is intractable for realistic networks.
We show that a large scale deterministic linear program provides an upper bound
on the value function. This linear program has one decision variable for each subset
of origin-destination-fares (ODF’s) that can be offered to customers. Therefore, the
number of decision variables can get large and it is common to solve the linear
program by using column generation. We show how to extend some of the heuristics
from the independent demand to the dependent demand setting. In particular, we
show how to extract heuristic control policies from the solution to the linear program
that are similar in spirit to those derived for the independent demand model. As
an example, we can use the dual variables to approximate the displacement costs
to drive a bid-price heuristic. However, unlike the independent demand model, an
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assortment problem needs to be solved to determine which ODF’s to offer at any
state of the system. As in the independent demand model, we can obtain more
refined heuristics by solving single-resource dynamic programs either by netting
the fares using the dual variables of the capacity constraint or by allocating the fares
among the resources. These refined heuristics often result in tighter upper bounds
and better performance. For the basic attraction model (BAM) and the Markov chain
(MC) choice model, we show that it is actually possible to reduce the size of the
deterministic linear program to roughly the same size as the independent demand
model.

In Sect. 7.2, we give a dynamic programming formulation of the network revenue
management problem with dependent demands. In Sect. 7.3, we give a deterministic
linear program that provides an upper bound on the optimal total expected revenue.
In Sect. 7.4, we discuss how to obtain approximate solutions to the dynamic
programming formulation by decomposing the formulation by the resources. In
Sect. 7.3.2, we show that if the customer choices are governed by the BAM or the
MC choice model, then the size of the deterministic linear program can be reduced
to the size of the linear program in the independent demand case.

7.2 Formulations

There are m resources in the network, and the capacities of the resources are given
by c = (c1, . . . , cm). We let M := {1, . . . , m} denote the set of resources. As in our
work for network revenue management with independent demands, we will use the
single index model to capture the ODF’s and the set of ODF’s is N := {1, . . . , n}.
For each ODF j ∈ N , we associate a fare pj and a resource consumption vector
Aj := (a1j , . . . , amj ). We let A be the m × n matrix whose j -th column is Aj . The
length of the sales horizon is T . Time is measured backwards, so the time-to-go is
t = T at the beginning of the sales horizon and t = 0 at the end. Customers arrive
over the sales horizon according to a Poisson process with rate {λt : 0 ≤ t ≤ T }.
For economy of notation, we will assume that the choice model is time invariant.
However, most of the results are easily extended to the case of time-variant choice
models.

To capture our decisions at any time point, we use {uj : j ∈ N} ∈ {0, 1}n, where
uj = 1 if ODF j is offered and uj = 0 otherwise. Given u = (u1, . . . , un), an
arriving customer purchases ODF j with probability πj (u). The choice probability
πj (u) may be governed by any choice model, including the ones that are discussed
in the chapter on introduction to choice modeling.

For any time-to-go t , we let (t, x) to represent the state of the system, where
x = (x1, . . . , xm) denotes the vector of remaining capacities. The set of feasible
decisions are given by U(x) := {u ∈ {0, 1}n : Aj uj ≤ x}, indicating that we
cannot offer ODF’s for which we do not have sufficient capacity.

Let V (t, x) be the maximum total expected revenue that can be collected starting
from state (t, x). To compute V (t, x), consider a time increment δt that is small
enough so that we can approximate the probability of a customer arrival over this
time increment by λt δt . If the ODF offer decisions are given by u, then a customer
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arrives with probability λt δt and is interested in ODF j ∈ N with probability πj (u).
For a customer who selects product j , with uj = 1 we collect pj in revenues
and provide them Aj in resources. With probability 1 − ∑

j∈N πj (u), the arriving
customer leaves without purchasing any of the ODF’s. Finally, with probability 1 −
λt δt there are no arrivals. Following this argument, we have the dynamic program

V (t, x) = max
u∈U(x)

{ ∑

j∈N

λt δt πj (u)
[
pj + V (t − δt, x − Aj)

]

+
(

1 − λt δt + λt δt
(

1 −
∑

j∈N

πj (u)
))

V (t − δt, x)

}

+ o(δt)

= V (t − δt, x)

+ max
u∈U(x)

{ ∑

j∈N

λt δt πj (u)
[
pj + V (t − δt, x − Aj) − V (t − δt, x)

]}

+ o(δt),

where the equality follows by arranging the terms. Subtracting V (t−δt, x), dividing
by δt , and taking the limit as δt → 0, we obtain the Hamilton–Jacobi–Bellman
(HJB) equation

∂V (t, x)

∂t
= max

u∈U(x)

∑

j∈N

λt πj (u) (pj − ΔjV (t, x))

with the boundary conditions V (t, 0) = V (0, x) = 0 or all t ≥ 0 and x ≥ 0. Similar
to our notation in the chapter on network revenue management with independent
demands, ΔjV (t, x) denotes the displacement cost V (t, x) − V (t, x − Aj) when
x ≥ Aj , and we set ΔjV (t, x) = ∞ otherwise.

The right side of the HJB equation is an assortment problem of the type studied
in the chapter on assortment optimization. Notice that we can write any assortment
either as a subset, say S ⊆ N , or as the incidence vector u ∈ {0, 1}n. Thus, when
necessary, it is reasonable to abuse the notation and write πj (S) as the probability
of selecting j when the set S is offered.

For any vector θ ∈ �n+, let

Rt(S, θ) := λt

∑

j∈S

(pj − θj ) πj (S),

and

Rt (θ) := max
S⊆N

Rt(S, θ).

We can write the HJB equation as

∂V (t, x)

∂t
= Rt (ΔV (t, x)) (7.1)
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with boundary conditions V (t, 0) = V (0, x) = 0, where we let ΔV (t, x) =
(Δ1V (t, x), . . . , ΔnV (t, x)). Notice that if S∗ is an optimal assortment to offer at
state (t, x) and j ∈ S∗, then x ≥ Aj , because otherwise j /∈ U(x). We can also
handle this by defining ΔjV (t, x) = ∞ whenever j /∈ U(x) as this avoids the
inclusion of j in the assortment.

We close this section by providing a discrete-time dynamic programming
formulation that will be useful in numerous places in this chapter. The approach
that we use to obtain this discrete-time dynamic programming formulation closely
mirrors the one in the chapter with independent demands. In particular, the discrete-
time formulation is given by

V (t, x) = V (t − 1, x) + Rt (ΔV (t − 1, x)), (7.2)

with the boundary conditions V (t, 0) = V (0, x) = 0 for all t ≥ 0 and all x ≥ 0.
As before, the discrete-time formulation requires rescaling the arrival rates and the
sales horizon so that the probability that two or more customers arrive in a single
period is negligible.

Both in the continuous and discrete-time formulations, the state variable (t, x)

is a high-dimensional vector and it is difficult to compute the value functions, so
we focus on building tractable approximations. For any approximation, say Ṽ (t, x)

of V (t, x), there is a natural heuristic, which consists of solving the assortment
problem

Rt (ΔṼ (t, x)) = max
S⊆N

Rt(S,ΔṼ (t, x)), (7.3)

for the continuous time formulation (7.1), or solving the assortment problem

Rt−1(ΔṼ (t − 1, x)) = max
S⊆N

Rt(S,ΔṼ (t − 1, x)), (7.4)

for the discrete-time formulation (7.2). Thus, for any approximation Ṽ (t, x), solving
problem (7.3) or (7.4) yields heuristic policies for the continuous or discrete-time
formulation. As a rule of thumb, tighter approximations lead to better heuristics.
Thus, we will seek for progressively tighter upper bounds on V (t, x) in our quest
for heuristics.

7.3 Linear Programming-Based Upper Bound on V (T, c)

In this section, we give a linear program to obtain an upper bound V̄ (T , c) on
V (T , c). The upper bound is similar in spirit to that obtained for the independent
demand model, but requires an exponential number of variables. We show how
column generation can be used to solve the linear program for general choice
models. The column generation step requires solving an assortment problem. Later
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in this section, we will present some formulations for discrete choice models that do
not require an exponential number of variables.

To formulate the linear program, we let Λ := ∫ T

0 λt dt denote the expected
number of customer arrivals over the sales horizon. We will also use the notation

R(S) :=
∑

j∈S

pjπj (S) and A(S) :=
∑

j∈S

Ajπj (S) ∀ S ⊆ N.

These quantities represent the gross revenue and the expected consumption rate
associated with offering set S.

Let τ(S) be the proportion of customers offered assortment S over the sales
horizon. We consider the linear program

V̄ (T , c) := max Λ
∑

S⊆N

R(S) τ(S) (7.5)

s.t. Λ
∑

S⊆N

A(S) τ(S) ≤ c

∑

S⊆N

τ(S) = 1

τ(S) ≥ 0 ∀ S ⊆ N.

The linear program above is commonly known as the choice-based deterministic
linear program. The objective function accumulates the total expected revenue over
all customers and over all assortments. The first set of constraints ensures that the
expected consumptions of the resources do not exceed the capacities. The second
constraint ensures that a subset is offered to each customer. In the next theorem, we
show that the optimal objective value of the linear program above is an upper bound
on the optimal total expected revenue V (T , c).

Theorem 7.1 V (T , c) ≤ V̄ (T , c).

The proof of the theorem above is based on constructing a feasible solution to
the linear program in (7.5) by using the decisions of the optimal policy.

7.3.1 Column Generation Procedure

There are 2n decision variables in problem (7.5). Solving this problem directly by
using linear programming software can be difficult or impossible if n is large. In
practice, problem (7.5) is commonly solved by using column generation. The idea
behind column generation is to iteratively solve a master problem that has the same
objective function and constraints as problem (7.5), but the master problem includes
only a small fraction of the decision variables {τ(S) : S ⊆ N}. Let {ẑi : i ∈ M} and
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β̂ denote, respectively, the optimal dual variables associated with the first and second
set of constraints in the master problem. The reduced cost of the decision variable
τ(S) is given by Rt(S,A′ẑ) − β̂. Suppose we can efficiently solve the assortment
optimization problem

Rt (A
′ẑ) = max

S⊆N
Rt(S,A′ẑ) = max

S⊆N

∑

j∈N

πj (S)

(

pj −
∑

i∈N

aij ẑi

)

If Rt (A
′ẑ) ≤ β̂, then all the reduced costs are non-positive, so there are no decision

variables {τ(S) : S ⊆ N} that can improve the current solution to the master
problem. Consequently, the optimal solution to the master problem is optimal for
problem (7.5) and we can stop. On the other hand, if there is a subset Ŝ such
that Rt(Ŝ, A′ẑ) − β̂ > 0, then adding the column associated with Ŝ will improve
the objective value of the master problem. We add this decision variable to the
master problem and resolve the master problem. Consequently, a critical step in
the column generation idea is to check whether there is some subset S such that the
corresponding reduced cost above is strictly positive.

7.3.2 Sales-Based Linear Program

The linear program (7.5) involves one decision variable for each subset of ODF’s,
corresponding to the frequency of offering each subset of ODF’s. As a result, the
number of decision variables can be large and we propose solving the linear program
by using column generation. We now show that if the customers choose under the
BAM or the MC choice model, then the linear program (7.5) can be reduced to an
equivalent linear program with a manageable number of decision variables. This
result eliminates the need for using column generation when the customers choose
according to the BAM or the MC choice model.

Basic Attraction Model

Under the BAM, a customer associates the attraction value vj with ODF j and the
attraction value v0 with the no-purchase alternative. A customer then selects ODF
j ∈ S with probability

πj (S) = vj

v0 + V (S)
,

where V (S) = ∑
j∈S vj . Naturally, we have πj (S) = 0 when j �∈ S. Here, we

show that if the customers choose according to the BAM model, then problem (7.5)
is equivalent to the linear program
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Ṽ (T , c) = max Λ
∑

j∈N

pj xj (7.6)

s.t. Λ
∑

j∈N

aij xj ≤ ci ∀ i ∈ M

∑

j∈N

xj + x0 = 1

xj

vj

≤ x0

v0
∀ j ∈ N

xj , x0 ≥ 0 ∀ j ∈ N.

In the problem above, we interpret the decision variable xj as the fraction of
customers that purchase ODF j , whereas we interpret the decision variable x0
as the fraction of customers that leave without making a purchase. The objective
function accumulates the total expected revenue over the sales horizon. The first set
of constraints ensures that the expected capacity consumption of each resource does
not violate the capacity available of the resource. The second constraint ensures
that each customer either purchases an ODF or leaves without a purchase. The third
set of constraints scales the purchase probability of each ODF and the no-purchase
probability to ensure that they are consistent with the BAM. Note that the parameters
of the BAM only appear in these constraints.

We emphasize that the decision variables in problem (7.6) are the fractions of
customers that purchase different ODF’s, rather than the probabilities of offering
different subsets of ODF’s. In other words, the sales for different ODF’s are decision
variables in problem (7.6). For this reason, problem (7.6) is sometimes referred to
as the sales-based linear program. The appealing aspect of problem (7.6) is that
this problem has n + 1 decision variables, whereas problem (7.5) has 2n decision
variables. Thus, problem (7.6) can be solved directly through linear programming
software without using column generation, even for relatively large-scale airline
networks.

In the next theorem, we establish that problem (7.6) is equivalent to prob-
lem (7.5). Note that Ṽ (T , c) corresponds to the optimal objective value of prob-
lem (7.6).

Theorem 7.2 Ṽ (T , c) = V̄ (T , c).

One of the useful aspects of the proof of Theorem 7.2 is that it shows how
to recover an optimal solution to problem (7.5) by using an optimal solution to
problem (7.6). This is helpful if primal-based heuristics are to be used. As will
be discussed later in this chapter, the dual variables z∗ = {z∗

i : i ∈ M} of the
capacity constraints can be used to develop bid-price heuristics. The dual variables
of the capacity constraints in the sales-based linear program and in the original linear
program match.
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Markov Chain Choice Model

We now provide a compact formulation of problem (7.5) for the MC choice model.
Under the MC choice model, a customer arriving into the system is interested in
ODF j with probability γj . If this ODF is available, then the customer purchases
it. Otherwise, the customer transitions from ODF j to ODF k with probability ρjk .
In this way, the customer transitions between the ODF’s, until she reaches an ODF
that is offered or she reaches the no-purchase option. In this section, we show that
if the customers choose according to the MC choice model, then problem (7.5) is
equivalent to the linear program

Ṽ (T , c) = max Λ
∑

j∈N

pj xj (7.7)

s.t. Λ
∑

j∈N

aij xj ≤ ci ∀ i ∈ M

xj + yj = γj +
∑

k∈N

ρkj yk ∀ j ∈ N

xj , yj ≥ 0 ∀ j ∈ N.

In the problem above, we interpret the decision variable xj as the fraction of
customers that consider purchasing product j during the course of their choice
process and purchase this product. On the other hand, we interpret the decision
variable yj as the fraction of customers that consider purchase product j during
the course of their choice process but do not purchase this product because of the
unavailability of this product. The objective function accounts for the total expected
revenue over the sales horizon. The first set of constraints ensures that the expected
capacity consumption of each resource does not violate the capacity of the resource.
The second set of constraints can be interpreted as a balance constraint. Noting the
definitions of the decision variables xj and yj , xj + yj corresponds to the fraction
of customers that consider product j during the course of their choice process.
For a customer to consider product j , either she should arrive with the intention
of purchasing product j or she should consider purchasing some product i, not
purchase this product and transition from product i to product j .

In the next theorem, we establish that problem (7.7) is equivalent to problem (7.5)
when customers choose according to the MC choice model.

Theorem 7.3 Ṽ (T , c) = V̄ (T , c).

By Theorem 7.3, problems (7.5) and (7.7) have the same optimal objective value.
It is straightforward to show that the optimal values of the dual variables associated
with the first set of constraints in the two problems are the same. Thus, letting z∗ =
{z∗

i : i ∈ M} be the optimal values of the dual variables associated with the first
set of constraints in problem (7.7), we can use these dual variables as input to the
heuristics we will discuss next.
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7.3.3 Heuristics Based on the Linear Program

We can use the solution to the linear program (7.5) to obtain heuristic control
policies. One approach for doing this is to use the primal solution to problem (7.5).
In this heuristic, letting {τ ∗(S) : S ⊆ N} be an optimal solution to problem (7.5),
we offer assortment S to a random fraction τ ∗(S) of customers, subject to capacity
availability. Another approach is to use the dual solution to problem (7.5). In
particular, letting z∗ = (z∗

1, . . . , z
∗
m) be the optimal values of the dual variables

associated with the first set of constraints, the idea is to use z∗
i as an opportunity

cost of resource i. This is equivalent to using the approximate value function
Ṽ (t, x) = x′z∗ and results in Ṽ (t, x) − Ṽ (t, x − Aj) = A′

j z
∗. Consequently,

the continuous time heuristic (7.3) solves the assortment problem Rt (A
′z∗) =

maxS⊆N Rt(S,A′z∗), and the discrete-time heuristic (7.4) solves the assortment
problem Rt−1(A

′z∗) = maxS⊆N Rt−1(S,A′z∗). Notice that unlike the independent
demand model, it is not necessarily optimal to offer all ODF’s j with non-negative
net contributions pj − A′

j z
∗.

Example 7.4 Consider a network with two connecting resources and assume that
two fares are available for each origin-destination pair. Thus, there are six ODF’s
with capacity consumption vectors

A1 = A2 =
(

1
0

)

A3 = A4 =
(

0
1

)

A5 = A6 =
(

1
1

)

.

The fares for the different ODF’s are given by

(p1, . . . , p6) = (30, 150, 60, 120, 100, 200).

The length of the sales horizon is T = 100. The customer arrival rate is constant
at λt = 1 for 0 ≤ t ≤ T . The capacities on the resources are c = (30, 30). To
specify the choice process of the customers, we assume that there are three classes
of customers. Customers of class 1 are interested in ODF’s 1 and 2, customers of
class 2 are interested in ODF’s 3 and 4, and customers of class 3 are interested
in ODF’s 5 and 6. An arriving customer is of class 1, 2, and 3, respectively, with
probabilities 0.3, 0.3, and 0.4. The probability that a customer of each class chooses
a particular ODF as a function of the subset of ODF’s offered to this customer is
given in Table 7.1. For example, if both ODF’s 1 and 2 are available, then a customer
of class 1 chooses ODF 1 with probability 0.64 and ODF 2 with probability 0.03.
With probability 0.33, this customer leaves without a purchase. For this problem
instance, the optimal objective value of problem (7.5) is $5740. Thus, the total
expected revenue obtained by the optimal policy is upper bounded by $5740. The
dual solution is given by z∗ = (18, 120).

Given this vector of dual variables, we can solve the assortment problem for each
of the three customer classes. For example, the net fares for customer class one are
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Table 7.1 Choice probabilities for the three customer classes

Class 1 Class 2 Class 3

Offer Set Choice Prob. Offer Set Choice Prob. Offer Set Choice Prob.

ODF 1 ODF 2 ODF 3 ODF 4 ODF 5 ODF 6

{1} 0.66 0 {3} 0.75 0 {5} 0.75 0

{2} 0 0.09 {4} 0 0.5 {6} 0 0.5

{1, 2} 0.64 0.03 {3, 4} 0.6 0.2 {5, 6} 0.6 0.2

p1 − z∗
1 = 12 and p2 − z∗

1 = 132. Given this net fares, it is optimal to offer only
ODF 2 to this customer class. For customer class two, all ODF’s have non-positive
contribution, so it is not optimal to offer ODF 3 or 4. Finally, for customer class
three, the net fares are p5 − z∗

1 − z∗
2 = −38 and p6 − z∗

1 − z∗
2 = 62, so it is optimal

to offer only ODF 6. In summary, the bid-price heuristic offers ODF’s 2 and 6 only,
even if ODF 1 has a positive net contribution.

In practice, the performance of the policy obtained from problem (7.5) tends to
improve if this problem is periodically resolved over the sales horizon. In particular,
we can resolve the linear program (7.5) at state (t, x) after replacing Λ with

∫ t

0 λsds

and ci with xi for all i ∈ M . If we want to use the policy from the primal solution,
then letting {τ ∗(S) : S ⊆ N} be the optimal solution, we offer the subset S of
ODF’s with probability τ ∗(S), subject to capacity availability. If, on the other hand,
we want to use the policy from the dual solution, then letting z∗ = (z∗

1, . . . , z
∗
m) be

the optimal values of the dual variables associated with the capacity constraints, we
offer the assortment that maximizes Rt(S,A′z∗).

Similar to our analysis for network revenue management problems with indepen-
dent demands, it is possible to show that several policies extracted from the linear
program (7.5) are asymptotically optimal.

7.4 Dynamic Programming Decomposition

In this section, we describe two approaches for obtaining tractable approximations
to the value functions in the dynamic programming formulation of the network
revenue management problem. These approaches are based on decomposing the
network revenue management problem by resources. To make our exposition
simpler, we work with the discrete-time dynamic program given in (7.2).

7.4.1 Exploiting the Deterministic Linear Program

In the chapter on network revenue management with independent demands, we
showed how we can leverage the linear programming approximation to decompose
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the dynamic programming formulation of the network revenue management prob-
lem by the resources. In this section, we extend the idea to the dependent demand
setting. Assume that we solve problem (7.5) and let (z∗

1, . . . , z
∗
m) be the optimal

values of the dual variables associated with the first set of constraints. We choose
an arbitrary resource i and relax the first set of constraints for all other resources by
associating the dual multipliers z∗

k, k �= i with them. Thus, the objective function of
problem (7.5) reads

Λ
∑

S⊆N

∑

j∈N

pj πj (S) τ(S) +
∑

k �=i

z∗
k

[
ck − Λ

∑

S⊆N

∑

j∈N

akj πj (S) τ (S)
]

= Λ
∑

S⊆N

∑

j∈N

[
pj −

∑

k �=i

akj z∗
k

]
πj (S) τ(S) +

∑

k �=i

ck z∗
k .

Since we relax the first set of constraints by using the optimal values of the dual
variables associated with these constraints as multipliers, problem (7.5) has the same
optimal objective value as the problem

V̄ (T , c) = max Λ
∑

S⊆N

∑

j∈N

[
pj −

∑

k �=i

akj z∗
k

]
πj (S) τ(S) +

∑

k �=i

ck z∗
k

s.t. Λ
∑

S⊆N

∑

j∈N

aij πj (S) τ (S) ≤ ci

∑

S⊆N

τ(S) = 1

τ(S) ≥ 0 ∀ S ⊆ N.

If we ignore for the moment the constant term
∑

k �=i ck z∗
k in the objective

function, then the problem above is the linear programming approximation for
a single-resource revenue management problem that takes place over resource i

only. In this single-resource problem, product j generates net revenue pj (z
∗) =

pj − ∑
k �=i akj z∗

k . By Theorem 7.1, the optimal objective value of the linear
programming approximation provides an upper bound on the optimal total expected
revenue. Therefore, V̄ (T , c) − ∑

k �=i ck z∗
k is an upper bound on the optimal total

expected revenue in the single-resource revenue management problem that takes
place over resource i.

We can solve a dynamic program to compute the optimal total expected revenue
in the single-resource revenue management problem that takes place over resource
i with revenues pj (z

∗) for each ODF j ∈ N . Let vi(t, xi) denote the optimal
expected revenue for this dynamic program for resource i when the time-to-go is
t and the remaining inventory of resource i is xi . Then, the discrete time version of
the dynamic program is given by
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vi(t, xi) = vi(t −1, xi)+λt max
S∈Ui (xi )

∑

j∈N

πj (S) (pj (z
∗)−Δjvi(t −1, xi)) (7.8)

with boundary condition vi(0, xi) = vi(t, 0) = 0, where Δjvi(t, xi) = vi(t, xi) −
vi(t, xi − aij ) if xi ≥ aij and Δjvi(t, xi) = ∞ otherwise. In the dynamic
program (7.8), Ui (xi) = {u ∈ {0, 1}n : aijuj ≤ xi ∀ j ∈ N} corresponds to
the set of feasible subsets of ODF’s to offer given that the remaining capacity on
resource i is xi . By the discussion at the end of the previous paragraph, vi(T , ci) ≤
V̄ (T , c) − ∑

k �=i ck z∗
k .

On the other hand, by using induction over time, it is possible to show that
vi(t, xi)+∑

k �=i z∗
k xk provides an upper bound on the exact value function V (t, x).

The proof of this result is identical to the corresponding result under independent
demands. Computing this upper bound at the beginning of the sales horizon with
the initial capacities, we obtain

V (T , c) ≤ min
i∈M

{
vi(T , ci) +

∑

k �=i

z∗
k ck

}
≤ V̄ (T , c).

By solving the single-resource dynamic program for all choices of i ∈ M , we
can approximate V (t, x) by v(t, x) = ∑

i∈M vi(t, xi). This allow us to approximate
ΔjV (t, x) by Δjv(t, x) = ∑

i∈M [vi(t, xi)−vi(t, xi−aij )] on the right side of (7.8).
This is equivalent to solving the assortment problem maxS⊆N Rt(S,Δv(t, x))

corresponding to the continuous time heuristic (7.3) with a similar counterpart for
the discrete-time heuristic (7.4).

Example 7.5 For the problem instance in Example 7.4, we compute the value
functions {vi(t, ·) : t = 1, . . . , T } by using the dynamic program in (7.8). Thus,
we can obtain an upper bound on the optimal total expected revenue by using
mini∈M{vi(T , ci)+∑

k �=i z∗
k ck} = $5622, which tightens the upper bound of $5740

provided by the linear program in (7.5).

7.4.2 Decomposition by Fare Allocation

In this section, we provide an alternative approach for obtaining approximate solu-
tions to the dynamic programming formulation of the network revenue management
problem. The main idea behind this approach is to allocate the fare of an ODF
over the different resources. Once we allocate the fare of each ODF over the
different resources, we solve a single-resource revenue management problem for
each resource in the network with the allocated fares. We show that the sum of
the value functions over all of the resources is an upper bound on the optimal total
expected revenue. We convert the bound into a heuristic by using the bound as an
approximation to the value function. The approach that we develop in this section
can be viewed as an analogue of Lagrangian relaxation under independent demands.
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We use αij to denote the fare allocation of ODF j over resource i. We do not yet
specify how the fare allocations are chosen. For the moment, we only assume that∑

i∈M αij = pj , so that the total fare allocation of ODF j over all resources is equal
to the original fare for ODF j . Using the fare allocations α = {αij : i ∈ M, j ∈ N},
we solve a single-resource revenue management problem for each resource i ∈ M .
The dynamic programming formulation of the single-resource revenue management
problem that takes place over resource i is given by

vα
i (t, xi) = vα

i (t − 1, xi) + λt max
u∈Ui (xi )

∑

j∈N

πj (u) (αij − Δjv
α
i (t − 1, xi)), (7.9)

where Δjv
α(t, xi) = vα

i (t, xi) − vα
i (t, xi − aij ) if xi ≥ aij and Δjv

α
i (t, xi) =

∞ otherwise. The superscript α in the value functions emphasizes that the value
functions obtained from this dynamic program depends on our choice of the fare
allocations. In the single-resource revenue management problem above, which takes
place over resource i, if we sell ODF j , then the revenue that we obtain is αij . In the
next theorem, we show that we can obtain upper bounds on the exact value functions
by solving the dynamic program above for all resources.

Theorem 7.6 If the fare allocations α = {αij : i ∈ M , j ∈ N} satisfy
∑

i∈M αij =
pj for all j ∈ N , then V (t, x) ≤ ∑

i∈M vα
i (t, xi).

By Theorem 7.6, for any fare allocations α = {αij : i ∈ M, j ∈ N} that satisfy∑
i∈M αij = pj for all j ∈ N ,

∑
i∈M vα

i (t, xi) provides an upper bound on the
exact value function V (t, x). Computing this upper bound with the initial capacity
at the beginning of the sales horizon, it follows that

∑
i∈M vα

i (T , ci) provides an
upper bound on the optimal total expected revenue. To obtain the tightest possible
upper bound on the optimal total expected revenue, we can solve the problem

min
∑

i∈M

vα
i (T , ci) (7.10)

s.t.
∑

i∈M

αij = pj ∀ j ∈ N,

where the decision variables are the fare allocations α = {αij : i ∈ M, j ∈ N}. It is
possible to show that vα

i (T , ci) is a convex function of α. Thus, the problem above
has a convex objective function and linear constraints, so we can solve this problem
using standard convex optimization methods. We can use problem (7.10) not only to
obtain the tightest possible upper bound on the optimal expected revenue, but also
to choose the fare allocations. Let α∗ be the optimal solution to problem (7.10), and
assume we solve the dynamic program (7.9) by using these fare allocations. Then,
we can replace ΔjV (t, x) with Δjv

α∗
(t, x) = ∑

i∈M [vα∗
i (t, xi)−vα∗

i (t, xi−aij )] to
solve the assortment problem (7.3) or (7.4) to pick the assortment of ODF’s to offer.

Example 7.7 Consider the problem instance in Example 7.4. We solve prob-
lem (7.10) to obtain the optimal solution α∗. Then,

∑
i∈M vα∗

i (T , ci) provides an
upper bound on the optimal total expected revenue. This upper bound comes out to
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be $5606. This is the tightest upper bound among the upper bounds provided by the
different solution methods in this chapter.

We described two approaches to obtain approximate solutions to the dynamic
programming formulation. Both approaches are based on solving a sequence of
single-resource revenue management problems. The first approach exploits the
linear program, whereas the second approach is based on allocating the fare
of an ODF over different resources. Both approaches can benefit from periodic
resolving. For the first approach, if we are at time t with remaining capacities x,
then we can solve the linear program in (7.5) after replacing Λ with

∫ t

0 λs ds and ci

with xi . Let z∗ = (z∗
1, . . . , z

∗
m) be the optimal values of the dual variables associated

with the first set of constraints. Using these dual variables in (7.8), we can obtain
a heuristic solution to the dynamic programming formulation by approximating
V (t, x) by

∑
i∈M vi(t, xi) until the time point where we carry out the next periodic

resolve. For the second approach, if we are at time t with remaining capacities
x, then we solve a variant of problem (7.10), where we minimize

∑
i∈M vα

i (t, x)

subject to the constraint that
∑

i∈M αij = pj for all j ∈ N . Letting α∗ be the
optimal solution to this problem, we solve the dynamic program in (7.9) with these
fare allocations. We then use

∑
i∈M vα∗

i (t, xi) as an approximation to V (t, x) until
the time point where we carry out the next periodic resolve.

Example 7.8 Table 7.2 provides the total expected revenues obtained by the
different solution strategies discussed in this chapter, namely the bid-price heuristic
based on linear programming and the two decomposition methods: (a) by netting
fares via the dual of the linear program and (b) by selecting a fare allocation. We
use 1, 4, and 10 resolves over the sales horizon. The first line corresponds to the
bid-price policy obtained from the dual solution to the linear program in (7.5).
The second line corresponds to the value function approximation approach that
exploits the linear program. The third line corresponds to decomposition by fare
allocation. The performance of the bid-price policy improves significantly when
we resolve the linear program. On the other hand, the value function approximation
methods can provide good revenues without resolving too many times. Furthermore,
Example 7.7 shows that the optimal total expected revenue is no larger than $5606.
The largest total expected revenue in Table 7.2 is quite close to $5606, indicating
that the performance of the best policy is near-optimal.

As mentioned at the beginning of this chapter, almost every revenue management
model built under independent demands has an analogue under dependent demands.
So far, we focused our attention on the linear programming formulation and two
approaches that approximate the value functions by decomposing the dynamic
programming formulation by the resources. There are other solution approaches

Table 7.2 Performance of
the solution methods
considered in this chapter

Control 1 4 10

Linear program $4416 $5226 $5329

Decomposition (a) $5584 $5583 $5584

Decomposition (b) $5545 $5548 $5532
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under dependent demands. For example, we can generalize the extended linear pro-
gramming formulation under independent demands to cover dependent demands. To
see how this works, we discretize time so that there is at most one customer arrival
at each time period. Assuming that there are T time periods in the selling horizon,
we use the decision variable αt (S) to capture the probability of offering the subset
S of ODF’s at time period t . Assuming there is a customer arrival at time period
t with probability λt , it is possible to show that the optimal objective value of the
linear program

max
T∑

t=1

∑

S⊆N

∑

j∈N

pj λt πj (S) αt (S) (7.11)

s.t. xT i = ci ∀ i ∈ M

xt−1,i = xti −
∑

S⊆N

∑

j∈N

aij λt πj (S) αt (S) ∀ i ∈ M, t = 2, . . . , T

∑

S⊆N

Θi(S) αt (S) ≤ xti ∀ i ∈ M, t = 1, . . . , T

∑

S⊆N

αt (S) = 1 ∀ t = 1, . . . , T

αt (S), xti ≥ 0 ∀ i ∈ M, S ⊆ N, t = 1, . . . , T

provides an upper bound on the optimal total expected revenue. In the linear
program above, we have Θi(S) = max{aij : i ∈ M, j ∈ S}, corresponding to
the maximum capacity consumption on resource i by one of the ODF’s in the subset
S. In addition to obtaining upper bounds on the optimal total expected revenue, if
we let z∗

t = {z∗
it : i ∈ M, t = 1, . . . , T } be the optimal values of the dual variables

associated with the first two sets of constraints, then we can use
∑

i∈M z∗
it xi as an

approximation to the value function V (t, x). In this case, we can replace ΔV (t, x)

with A′z∗
t to decide which subset of ODF’s to make available at state (t, x).

Last, it is possible to show that a heuristics solution based on the primal solution
where assortment S is offered with probability τ(S) is asymptotically optimal.
However, all of the heuristics presented here have better performance particularly
when the number of times the heuristic is updated during the sales horizon is large.

7.4.3 Overbooking

Here, we consider a sales-based network revenue management model that allows
for overbooking under the MC choice model. We assume a discrete-time model
over T time periods, where λt is the probability of a customer arrival at time period
t . A customer that arrives at time-to-go t makes a choice among the offered ODF’s
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according to the MC choice model with first choice probabilities {γtj : j ∈ N} and
transition probabilities {ρt

ij : i, j ∈ N}. If we make a sale for ODF j at time-to-go
t , then this sale is not canceled by the departure time, i.e. retained, with probability
Qtj . The net expected revenue obtained for each booking of ODF j at time-to-go t is
ptj . As an example, if a refund of c with 0 ≤ c ≤ pj is given to bookings that do not
survive until the departure time, then we have pjt = pj −c(1−Qjt ). Finally, we let
θj to be the overbooking cost for each unit of ODF j that we cannot accommodate
at the departure time. We use the decision variable xtj to capture the probability that
a customer arriving at time period t visits ODF j during the course of her choice
process and purchases this ODF, whereas we use the decision variable ytj to capture
the probability that a customer arriving at time period t visits ODF j during the
course of her choice process and does not purchases this ODF due to unavailability.
Also, we use the decision variable zj to capture the number of ODF j bookings
that are denied during boarding. In this case, we can obtain an upper bound on
the optimal total expected profit by using the optimal objective value of the linear
program

Ṽ (T , c) = max
T∑

t=1

λt

∑

j∈N

ptj xtj −
∑

j∈N

θj zj

s.t.
∑

j∈N

aij

T∑

t=1

Qtj λt xtj −
∑

j∈N

aij zj ≤ ci ∀ i ∈ M

xtj + ytj = γtj +
∑

k∈N

ρt
kj ytk ∀ j ∈ N, t = 1, . . . , T

zj ≤
T∑

t=1

Qtj λt xtj ∀ j ∈ N

xtj , ytj , zj ≥ 0 ∀ j ∈ N, t = 1, . . . , T .

7.5 End of Chapter Problems

1. An airline operates a flight network among three locations A, B, and C. There are
two flights. The first flight is from A to B, and the second flight is from B to C.
There are six ODF’s. The fares associated with the ODF’s are given in Table 7.3.
A customer interested in flying between a certain origin-destination pair chooses
among the two ODF’s that serve that destination pair according to the basic
attraction model. The attraction values of the six ODF’s are, respectively, 5, 3,
1, 0.5, 6, and 2. The attraction value of the no-purchase option is always 1. For
example, a customer interested in going from location A to B chooses among the
first two ODF’s according to the basic attraction model with the attraction values
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Table 7.3 ODF’s and fares ODF Fare

A–B, direct, cheap 400

A–B, direct, expensive 700

B–C, direct, cheap 300

B–C, direct, expensive 600

A–C, through B, cheap 900

A–C, through B, expensive 1600

Table 7.4 Value function at
the next time period

(Cap. 1, Cap. 2) V (t + 1, (Cap. 1, Cap. 2))

(1,1) 1500

(1,0) 1400

(0,1) 1250

(0,0) 0

5 and 3, with the attraction value of the no-purchase option being 1. Assume that
we are at time period t and the remaining capacities on the flights are (1, 1). The
value function at the next time period is given in Table 7.4. For example, if the
remaining capacities at the next time period are given by (1, 0), then the value
function takes value 25.

(a) For each ODF, decide whether it is optimal to open or close it.
(b) At time period t , it is equally likely to observe a customer wanting to go

from each origin to each destination, with each probability being 1/3. If the
capacities at time period t are given by x = (1, 1), then compute the value
function at time period t at the current capacities. That is, compute V (t, x)

at x = (1, 1).

2. In this problem, you will show that a policy obtained from problem (7.5) is
asymptotically optimal. Consider the revenue management problem discussed in
Sect. 7.2 but under the assumption that there is a single resource so c is a scalar
and the arrival rates of the customers are stationary so λt = λ for all t ∈ [0, T ]
for some fixed λ. Let {τ ∗(S) : S ⊆ N} be an optimal solution to problem (7.5).
Consider a heuristic policy where we offer subset S with probability τ ∗(S) at
each time point, as long as we have capacity on the resource. As soon as we run
out of capacity of the resource, we stop offering any products.
Let Hk be the total expected revenue obtained by the heuristic policy above when
the capacity of the resource is kc and the length of the selling horizon is kT .
Similarly, let V k be the total expected revenue obtained by the optimal policy.
Show that

lim
k→∞

Hk

V k
= 1.

(Hint: Follow an approach similar to the one that we used in the asymptotic
optimality result under the independent demand model.)
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3. Show that the optimal objective value of problem (7.11) is an upper bound on the
optimal total expected revenue.

4. Consider the random consideration set model discussed in Chap. 2.

(a) Show that this choice model is a special case of the Markov chain choice
model. In other words, assume that we are given a random consideration set
model with n products, where the products are labeled such that 1 ≺ 2 ≺
. . . ≺ n and the attention probabilities are {βi : i = 1, . . . , n}. Show that
we can construct a single Markov chain choice model such that the choice
probability for each product out of each assortment is the same under the two
choice models.

(b) Building on Part a gives a sales-based linear programming formulation under
the random consideration set model.

5. We want to solve an assortment optimization problem when customers choose
according to the basic attraction model, each product occupies a certain amount
of space and we want to ensure that the total amount of space occupied by the
offered assortment does not violate the space availability in the store. There are n

products indexed by 1, . . . , n. The revenue and the attraction value associated
with product j are, respectively, rj and vj . The attraction value of the no-
purchase option is normalized to 1. Product j occupies cj units of space. The
total space consumed by the offered assortment cannot exceed C. Show that we
can obtain an upper bound on the optimal expected revenue from a customer by
using the optimal objective value of the linear program

max
n∑

j=1

rj xj

s.t.
n∑

j=1

xj + x0 = 1

xj

vj

≤ x0 ∀ j = 1, . . . , n

n∑

j=1

cj

xj

vj

≤ C x0

xj ≥ 0, x0 ≥ 0 ∀ j = 1, . . . , n.
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7.6 Bibliographical Remarks

The linear program in (7.5) is from Gallego et al. (2004). The authors show that
the optimal objective value of this linear program provides an upper bound on the
optimal total expected revenue. Liu and van Ryzin (2008a) show that a heuristic
resulting from the linear program is asymptotically optimal. Balseiro et al. (2010)
use the linear program for pricing tickets in tournaments, where the tickets are sold
before knowing which teams will advance to the final. Jasin and Kumar (2012)
show that resolving the linear program yields bounded revenue loss. Bront et al.
(2009) study the same linear program when there are multiple customer segments
choosing according to the BAM with different parameters and show that the column
generation subproblem is NP-hard. Meissner et al. (2013), Talluri (2014) and Strauss
and Talluri (2017) give tractable relaxations of the same linear program that avoids
an NP-hard column generation subproblem.

Zhang and Adelman (2009) extend the approximate dynamic programming
approach described for independent demands to the dependent demand case. The
authors of that paper use linear value function approximations. Kunnumkal and
Talluri (2015b) also construct linear approximations to the value functions. Zhang
(2011) gives an approach to obtain nonseparable approximations to the value
functions. Kunnumkal and Topaloglu (2011a) and Kunnumkal (2014) give variants
of the linear programming formulation that are directed towards capturing the
randomness in customer choice process more accurately. Kunnumkal and Topaloglu
(2008) and Zhang and Vossen (2015) generalize the extended linear programming
formulation that we discussed for the independent demands to cover the case with
dependent demands.

The idea behind the dynamic programming decomposition method described in
Sect. 7.4.1 rests on Liu and van Ryzin (2008a). Zhang and Adelman (2009) establish
that this idea provides upper bounds on the exact value functions. The dynamic
programming decomposition approach in Sect. 7.4.2 is based on Kunnumkal and
Topaloglu (2010a). Kunnumkal and Talluri (2015a) give a dynamic programming
decomposition approach that provides tighter upper bounds on the optimal total
expected revenue. The sales-based linear program under the BAM appears in
Gallego et al. (2015), whereas the sales-based linear program under the MC choice
model appears in Feldman and Topaloglu (2017). The papers by van Ryzin and
Vulcano (2008b) and Chaneton and Vulcano (2011) use stochastic approximation
methods to tune bid-price and protection-level policies under customer choice
behavior. Vulcano et al. (2010) and Dai et al. (2015) discuss applications of choice-
based network revenue management in practice.

There are several other models for network revenue management problems
with dependent demands. Zhang and Cooper (2005) consider the case where
customers choose among single-resource ODF’s that operate between the same
origin-destination pair. They show how to obtain upper bounds on the value
functions in the dynamic programming formulation of the problem. Golrezaei et al.
(2014), Bernstein et al. (2015), Gallego et al. (2016b) and Chen et al. (2016d)
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consider related problems arising in the retail and resource allocation settings, where
the firm dynamically adjusts the assortment of products or resources offered to its
customers.

Another related class of problems occur when the firm chooses the assortment of
products to offer to the customers, along with their initial inventory levels and the
customers arriving over time make a choice among the offered products. For this
stream of literature, we point the reader to van Ryzin and Mahajan (1999), Mahajan
and van Ryzin (2001), Gaur and Honhon (2006), Honhon et al. (2010), Topaloglu
(2013), Honhon and Seshadri (2013), Goyal et al. (2016), Aouad et al. (2018c),
Segev (2019) and Aouad et al. (2019).

Appendix

Proof of Theorem 7.1 Under the optimal policy, let T (S) be the set of time points
over the sales horizon during which set S is offered, and for each j ∈ S, let Xj(S)

denote the number of sales for ODF j during the time that the set S is offered. Note
that Xj(S) is a thinned Poisson random variable with mean πj (S)

∫
T (S)

λt dt , so
E[Xj(S)] is equal to Λπj (S)E[∫T (S)

λt dt/Λ] = Λπj (S) τ ∗(S), where τ ∗(S) :=
E[∫T (S)

λt dt/Λ] is the expected proportion of customers offered set S during the
sales horizon by the optimal policy. By construction τ ∗(S) ≥ 0 and

∑
S⊆N τ ∗(S) =

1. The total expected revenue obtained by the optimal policy is given by

V (T , c)=
∑

S⊆N

∑

j∈N

pj E[Xj(S)] = Λ
∑

S⊆N

∑

j∈N

pjπj (S)τ ∗(S) = Λ
∑

S⊆N

R(S)τ ∗(S).

Since the optimal policy has to obey the capacity constraints, we have∑
S⊆N

∑
j∈N Aj Xj (S) ≤ c. Taking expectations, it follows that

∑

S⊆N

∑

j∈N

Aj E[Xj(S)] = Λ
∑

S⊆N

∑

j∈N

Ajπj (S)τ ∗(S) = Λ
∑

S⊆N

A(S)τ ∗(S) ≤ c.

It follows that {τ ∗(S) : S ⊆ N} is a feasible solution to problem (7.5) providing
the objective value V (T , c) for this problem. This implies that the optimal objective
value of problem (7.5) is at least V (T , c). ��
Proof of Theorem 7.6 We show the result by using induction. One can check that
the result holds at time period 1, which is the time period in the discrete-time
dynamic programming formulation right before the departure time. Assuming that
the result holds at time period t − 1, we show that the result holds at time period t

as well. We let S∗ be the optimal subset of ODF’s to offer in state (t, x) in the exact
dynamic programming formulation of the network revenue management problem.
In this case, noting the dynamic program in (7.2), it follows that
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V (t, x) =
∑

j∈N

λt πj (S
∗) [pj − ΔjV (t − 1, x)] + V (t − 1, x)

=
∑

j∈N

λt πj (S
∗)

[ ∑

i∈M

αij + V (t − 1, x − Aj)
]

+
[
1 −

∑

j∈N

λt πj (S
∗)

]
V (t − 1, x)

≤
∑

j∈N

λt πj (S
∗)

[ ∑

i∈M

αij +
∑

i∈M

vα
i (t − 1, xi − aij )

]

+
[
1 −

∑

j∈N

λt πj (S
∗)

] ∑

i∈M

vα
i (t − 1, xi),

where the second equality follows from the fact that
∑

i∈M αij = pj for all j ∈ N

and arranging the terms, whereas the inequality is by the induction assumption.
Rearranging the terms on the right side of the chain of inequalities above, the right
side of the chain of inequalities is given by

∑

i∈M

{ ∑

j∈N

λt πj (S
∗)

[
αij + vα(t − 1, xi − aij ) − vα

i (t − 1, xi)
]

+ vα
i (t − 1, xi)

}

≤
∑

i∈M

max
S∈Ui (xi )

{ ∑

j∈N

λt πj (S)
[
αij + vα(t − 1, xi − aij ) − vα

i (t − 1, xi)
]

+ vα
i (t − 1, xi)

}

=
∑

i∈M

vα
i (t, xi).

Thus, we have V (t, x) ≤ ∑
i∈M vα

i (t, xi), completing the induction argument. ��
Proof of Theorem 7.2 Let τ ∗ = {τ ∗(S) : S ⊆ N} be an optimal solution to
problem (7.5). We consider the solution x̂ = {x̂j : j = 0, 1, . . . , n} for
problem (7.6), where x̂j is defined as x̂j = ∑

S⊆N πj (S) τ ∗(S) for all j =
0, 1, . . . , n. First, we will now show that x̂ is a feasible solution to problem (7.6)
and provides an objective value of V̄ (T , c) for this problem, which implies that
Ṽ (T , c) ≥ V̄ (T , c).

By the definition of x̂, Λ
∑

j∈N aij x̂j = Λ
∑

j∈N

∑
S⊆N aij πj (S) τ ∗(S) ≤ ci

for all i ∈ M , where the inequality uses the fact that τ ∗ is a feasible solution
to problem (7.5). Thus, the solution x̂ satisfies the first set of constraints in
problem (7.6). Similarly, using the fact that

∑
j∈N πj (S)+π0(S) = 1 for all S ⊆ N

and
∑

S⊆N τ ∗(S) = 1, we obtain
∑

j∈N x̂j + x0 = ∑
j∈N

∑
S⊆N πj (S) τ ∗(S) +∑

S⊆N π0(S) τ ∗(S) = ∑
S⊆N(

∑
j∈N πj (S) + π0(S)) τ ∗(S) = 1, which implies
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that the solution x̂ satisfies the second constraint in problem (7.6). Finally, if
j ∈ S, then πj (S)/vj = 1/(v0 + V (S)) = π0(S)/v0, whereas if j �∈ S, then
πj (S)/vj = 0. Thus, we obtain x̂j /vj = ∑

S⊆N πj (S) τ ∗(S)/vj = ∑
S⊆N 1(j ∈

S) π0(S) τ ∗(S)/v0 ≤ ∑
S⊆N π0(S) τ ∗(S)/v0 = x̂0/v0 for all j = 1, . . . , n, which

shows that the solution x̂ satisfies the third set of constraints in problem (7.6). The
discussion so far implies that x̂ is a feasible solution to problem (7.6). Furthermore,
we have Λ

∑
j∈N pj x̂j = Λ

∑
j∈N

∑
S⊆N pj πj (S) τ ∗(S) = V̄ (T , c), where the

last equality uses the fact that τ ∗ is an optimal solution to problem (7.5).
Second, let x∗ = {x∗

j : j = 0, 1, . . . , n} be an optimal solution to problem (7.6).
We reindex the products such that x∗

1/v1 ≥ x∗
2/v2 ≥ . . . ≥ x∗

n/vn. Noting the third
set of constraints in problem (7.6), we also have x∗

0/v0 ≥ x∗
1/v1 ≥ x∗

2/v2 ≥ . . . ≥
x∗
n/vn. Label the sets S0 = ∅ and Sj = {1, 2, . . . , j} for all j = 1, . . . , n. Construct

a solution τ̂ = {τ̂ (S) : S ⊆ N} to problem (7.5) by setting

τ̂ (Sj ) =
[x∗

j

vj

− x∗
j+1

vj+1

]
V (Sj )

for all j = 0, 1, . . . , n with the convention that τ̂ (Sn) = [x∗
n/vn] V (Sn). Set

τ̂ (S) = 0 for all S �∈ {S0, S1, . . . , Sn}. We will show that τ̂ is a feasible solution to
problem (7.5) and provides an objective value of Ṽ (T , c) for this problem, in which
case, we obtain V̄ (T , c) ≥ Ṽ (T , c).

Using the definition of τ̂ (S) and noting that ODF j is in the sets Sj , Sj+1, . . . , Sn

but not in S0, S1, . . . , Sj−1, we have

∑

S⊆N

πj (S) τ̂ (S) = πj (Sj ) τ̂ (Sj ) + πj (Sj+1) τ̂ (Sj+1) + . . . + πj (Sn) τ̂ (Sn)

= vj

[x∗
j

vj

− x∗
j+1

vj+1

]
+ vj

[x∗
j+1

vj+1
− x∗

j+2

vj+2

]
+ . . . + vj

[x∗
n

vn

]
= x∗

j , (7.12)

where use the definition of πj (S) in the second equality above. In this case,
we have Λ

∑
S⊆N

∑
j∈N aij πj (S) τ̂ (S) = Λ

∑
j∈N aij (

∑
S⊆N πj (S) τ̂ (S)) =

Λ
∑

j∈N aij x∗
j ≤ ci , where the last inequality uses the fact that x∗ is a feasible

solution to problem (7.6). So, the solution τ̂ satisfies the first set of constraints in
problem (7.5). On the other hand, we have

∑

S⊆N

τ̂ (S) = τ̂ (S0) + τ̂ (S1) + . . . + τ̂ (Sn)

= V (S0)
[x∗

0

v0
− x∗

1

v1

]
+ V (S1)

[x∗
1

v1
− x∗

2

v2

]
+ . . . + V (Sn)

[x∗
n

vn

]

= x∗
0

v0
V (S0) + x∗

1

v∗
1

(V (S1) − V (S0)) + x∗
2

v∗
2

(V (S2) − V (S1)) + . . .
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+ x∗
n

vn

(V (Sn) − V (Sn−1)) = x∗
0 + x∗

1 + x∗
2 + . . . + x∗

n = 1,

where the third equality follows by arranging the terms, the fourth equality is by the
fact that V (Sj ) − V (Sj−1) = vj , and the fifth equality uses the fact that x∗ satisfies
the second constraint in problem (7.6). Thus, the solution τ̂ satisfies the second
constraint in problem (7.5). So, τ̂ is a feasible solution to problem (7.5). Finally,
we have Λ

∑
S⊆N

∑
j∈N pj πj (S) τ̂ (S) = Λ

∑
j∈N pj x∗

j = Ṽ (T , c), where the
first equality uses (7.12) and the second equality uses the fact that x∗ is an optimal
solution to problem (7.6). ��
Proof of Theorem 7.3 Letting z = {zi : i ∈ M} and β, respectively, be the dual
variables associated with the first and second sets of constraints in problem (7.5)
and expanding the values of R(S) and A(S) by using their definitions, the dual of
problem (7.5) is

V̄ (T , c) = min
∑

i∈M

ci zi + β (7.13)

s.t. Λ
∑

i∈M

∑

j∈N

aij πj (S) zi + β ≥ Λ
∑

j∈N

pj πj (S) ∀ S ⊆ N

zi ≥ 0, β is free ∀ i ∈ M.

Arranging the terms, we can write the first set of constraints above succinctly as

β ≥ Λ max
S⊆N

R(S,A′z)

whereas before, R(S,A′z) = ∑
j∈S(pj − ∑

i∈M aij zi) πj (S).
Because problem (7.13) is a minimization problem and the objective function

coefficient of the decision variable β is positive, the decision variable β takes the
value ΛR(A′z). Thus, problem (7.13) is equivalent to

V̄ (T , c) = min
z∈�m+

{

c′z + Λ max
S⊆N

R(S,A′z)
}

. (7.14)

The maximization problem above is an assortment optimization problem, where
the revenue associated with ODF j is pj − ∑

i∈M aij zi and the customers make
their choices according to the MC choice model. Using the discussion in assortment
optimization problems under the MC choice model, we know that the optimal
objective value of this assortment optimization problem can be obtained by solving
the linear program
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Λ max
S⊆N

R(S,A′z)

= min
v∈�n

{

Λ
∑

j∈N

γj vj : vj ≥ pj −
∑

i∈M

aij zi ∀ j ∈ N, vj ≥
n∑

k=1

ρjk vk ∀ j ∈ N

}

,

where the second problem above is a linear program involving the decision variables
v = {vj : j ∈ N}. Thus, problem (7.14) can be written as a two-level problem,
where minimize at both levels, the decision variables at the outer level are z and the
decision variables at the inner level are v. Since we minimize at both levels, we can
solve this problem as a single-level problem, simultaneously minimizing over the
decision variables z and v to obtain the problem

V̄ (T , c) = min
∑

i∈M

ci zi + Λ
∑

j∈N

γj vj

s.t. vj ≥ pj −
∑

i∈M

aij zi ∀ j ∈ N

vj ≥
n∑

k=1

ρjk vk ∀ j ∈ N

zi ≥ 0, vj is free ∀ i ∈ M, j ∈ N

Letting {Λxj : j ∈ N} and {Λyj : j ∈ M}, respectively, be the dual variables
associated with the two sets of constraints above and writing down the dual of this
problem, we immediately obtain problem (7.7). Therefore, the optimal objective
value of problem (7.7) is equal to the optimal objective value of the problem above,
as desired. ��
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