
Chapter 6
Single Resource Revenue Management
with Dependent Demands

6.1 Introduction

Revenue managers struggled for decades with the problem of finding optimal
control mechanisms for fare class structures with dependent demands. In this
context, a resource, such as seats on a plane, can be offered at different fares with
potentially different restrictions and ancillary services, and the demand for those
fares is interdependent. The question is what subset of the fares (or assortment of
products) to offer for sale at any given time. Practitioners often use the term open,
or open for sale, for a fare that is part of the offered assortment, and the term closed
for fares that are not part of the offered assortment. For many years, practitioners
preferred to model time implicitly by seeking extensions of Littlewood’s rule and
EMSR type heuristics to the case of dependent demands. Finding the right way to
extend Littlewood’s rule proved to be more difficult than anticipated. An alternative
approach, favored by academics and gaining traction in industry, is to model time
explicitly. In this chapter, we will explore both formulations but most of our
attention is devoted to the more tractable model where time is treated explicitly.

In Sect. 6.2, we give a dynamic programming formulation for the revenue
management problem with a single resource with dependent demands. In Sect. 6.2.2,
we use a linear program to give an upper bound on the optimal total expected
revenue and extract a bid-price heuristic from the linear program. In Sect. 6.2.3,
we discuss a model where fares cannot be made available once they are closed.
In Sect. 6.3, we focus on models that handle time implicitly. As we will see, these
models are complicated by the fact that changing the protection level also changes
the number of potential customers for higher fare classes. Nevertheless, we develop
a heuristic that performs reasonably well.
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6.2 Explicit Time Models

In this section, we consider models where time is considered explicitly. Modeling
time explicitly allows for time-varying arrival rates and time-varying discrete choice
models. Customers arrive according to a time heterogeneous Poisson process with
intensity {λt : 0 ≤ t ≤ T }, where T is the length of the sales horizon, and t

represents the time-to-go. Thus, time T is the beginning of the sales horizon and
time 0 is the end. The total expected number of customers that arrive during the last
t units of time is Λt := ∫ t

0 λsds.
The set of products is N := {1, . . . , n}. We obtain a revenue of pj from the

sale of product j . There is a single resource with limited capacity. The sale of each
product consumes one unit of the resource. A consumer arriving at time-to-go t

selects from the offered assortment based on a discrete choice model, say {πtj (·) :
j ∈ N}. More precisely, if we offer the subset S of products, then the customer
arriving at time t selects product j ∈ S with probability πtj (S). Let V (t, x) denote
the maximum total expected revenue that can be attained over the last t units of
the sale horizon with x units of capacity. Assume that at time-to-go t , we offer set
S ⊆ N and keep this set of fares open for δt units of time. If λtδt � 1, then the
probability that a customer arrives and requests product j ∈ S is λt πtj (S)δt +
o(δt), so

V (t, x) = max
S⊆N

{∑

j∈S

λt δt πtj (S) [pj + V (t − δt, x − 1)]

+
(

1 − λt δt
∑

k∈S

πtj (S)

)

V (t − δt, x)

}

+ o(δt)

=V (t − δt, x) + λt δt max
S⊆N

∑

j∈S

(pj − ΔV (t − δt, x)) πtj (S) + o(δt)

=V (t − δt, x) + λt δt max
S⊆N

Rt(S,ΔV (t − δt, x)) + o(δt) (6.1)

for x ≥ 1, where Rt(S, z) := ∑
j∈S(pj − z) πtj (S) and ΔV (t − δt, x) := V (t −

δt, x) − V (t − δt, x − 1) for x ≥ 1.
We can subtract V (t − δt, x) from both sides of Eq. (6.1), divide by δt and take

limits as δt ↓ 0 to obtain the Hamilton–Jacobi–Bellman (HJB) equation

∂V (t, x)

∂t
= λt Rt (ΔV (t, x)) (6.2)

with boundary conditions that V (t, 0) = 0 and V (0, x) = 0, where Rt (z) :=
maxS⊆N Rt(S, z).
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The value function V (t, x) is often computed approximately by solving a
discrete-time dynamic program based on (6.1). This involves rescaling time and the
arrival rates, using δt = 1, and dropping the o(δt) term. Time can be rescaled by a
positive real number, say a, such that T ← aT is an integer by setting λt ← 1

a
λt/a ,

πtj (S) ← πt/a,j (S). The resulting dynamic program is given by

V (t, x) = V (t − 1, x) + λt Rt (ΔV (t − 1, x)), (6.3)

with the same boundary conditions.
The generic optimization problem in formulations (6.2) and (6.3) is of the form

Rt (z) := maxS⊆N Rt(S, z), where z ∈ 	+ is a non-negative scalar representing the
marginal value of capacity. Since there are 2n subsets S ⊆ N , solving the assortment
optimization problem could require the evaluation of the objective function for an
exponential number of subsets. Moreover, the problem has to be solved for different
values of z = ΔV (t, x) as the marginal value of capacity changes with the state of
the system (t, x).

As discussed at the end of chapter on assortment optimization, for any choice
model there is a collection E = {Ej : j ∈ K}, K = {0, 1, . . . , k} of efficient
sets that can be ordered so that Πj := ∑

i∈Ej
πi(Ej ) is increasing in j ∈ K , and

E0 = ∅. Letting Rj := R(Ej ) := ∑
k∈Ej

pk πk(Ej ) we can define the slopes
uj := (Rj − Rj−1)/(Πj − Πj−1) for j = 1, . . . , k. Then u0 > u1 > . . . > uk >

uk+1 = 0, where for convenience we set u0 = ∞ and uk+1 = 0. Then, the efficient
set Ej is optimal to offer for all z ∈ [uj+1, uj ] for j = 0, 1, . . . , k. At boundary
points uj , both Ej and Ej−1 are optimal. This implies that the index that maximizes
Rj − zΠj over j ∈ K is given by a(z) := max{j : uj > z}.

If we apply the idea of efficient sets in the context of (6.2) where different choice
models may apply at different values of t , we let z = ΔV (t, x), and {utj : j ∈ Kt }
be the slopes corresponding to the efficient sets in Et = {Etj : j ∈ Kt }. In this case,

a(t, x) := max{j ∈ Kt : utj > ΔV (t, x)}

is the index of the efficient set in Et that maximizes Rtj − ΔV (t, x)Πtj .1 Conse-
quently, it is optimal to offer assortment Et,a(t,x) at state (t, x), corresponding to
efficient set Etj with index j = a(t, x). For formulation (6.3), the definition of
a(t, x) is the same except that we use ΔV (t −1, x) instead of ΔV (t, x) on the right
side. The following result is valid for both formulations (6.2) and (6.3).

Theorem 6.1 The index a(t, x) is decreasing in t and increasing in x over every
time interval where the choice model is time invariant.

Sometimes it is convenient to refer to action j as shorthand for offering efficient
set Etj . Thus, it is optimal to offer action a(t, x) at state (t, x). As t increases,
ΔV (t, x) increases and the optimal solution shifts to efficient sets with a smaller

1Strictly speaking we should say an index, but the index is unique except at boundary points.
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probability of a sale. In contrast, as x increases, ΔV (t, x) decreases, and the optimal
solution shifts to efficient sets with larger sale probability. In general, we cannot say
that we close lower fares when t is large (or open lower fares when x is large)
because the efficient sets need not be nested-by-fare. For choice models for which
the efficient sets enjoy the nested-by-fare property, we can talk of opening and
closing fares as the state dynamics change with the understanding that if a fare is
open, then all higher fares will be open at the same time.

6.2.1 Formulation as an Independent Demand Model

Consider formulation (6.2) for the dependent demand model. Is it possible to
transform this into an independent demand model? The answer is yes, provided
that the efficient sets have been properly identified. The transformation into an
independent demand model requires creating artificial products that have artificial,
but independent demands. Given λt , and (Πtj , Rtj ), j ∈ Kt for the dependent
demand model, the transformation is obtained by setting λ̃tj := λt [Πtj − Πt,j−1]
and p̃tj := utj for j ∈ Kt . The set of p̃tj are known as transformed fares, and are
equal to the slopes between efficient fares.

Then, the independent demand formulation

∂V (t, x)

∂t
=

∑

j∈Kt

λ̃tj [p̃tj − ΔV (t, x)]+ (6.4)

generates the correct value function. The proof of equivalence for the formula-
tion (6.4) is left as an exercise.

The transformation is part of folklore and has appeared in many papers. The fact
that the transformation works for the dynamic program has led some practitioners
to conclude that the transformed data can be used as an input to Littlewood’s rule
or to heuristics such as the EMSR, as the transformed demands are independent.
There are two problems with this approach. First, the transformation is often used
without first identifying the efficient sets. More serious, perhaps, is the fact that
Littlewood’s rule and its variants require the low-before-high demand arrival pattern.
This is tantamount to assuming that Poisson demands with parameters λ̃tj will
arrive low-before-high, but these are artificial demands from customers willing to
buy under action j but not under action j − 1. When capacity is allocated to this
marginal customer, we cannot prevent some degree of demand cannibalization from
customers willing to buy under action j − 1 into some of the fares in action j . We
will return to this issue in Sect. 6.3.
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6.2.2 Upper Bound and Bid-Price Heuristic

We will now present an upper bound on the value functions (6.2) for the case where
the choice models are time invariant and later explain how to deal with the time
variant case. The upper bound is based on approximate dynamic programming with
affine value function approximations.

It is well known that a dynamic program can be solved as a mathematical
program by making the value function at each state a decision variable. This leads
to the formulation V (T , c) = min F(T , c) subject to the constraints ∂F (t, x)/∂t ≥
λt [Rj − ΔF(t, x)Πj ] ∀(t, x) for all j ∈ K , where the decision variables are
the class of non-negative functions F(t, x) that are differential in x with boundary
conditions F(t, 0) = F(0, x) = 0 for all t ∈ [0, T ] and all x ∈ {0, 1, . . . , c}. At
optimality F(t, x) = V (t, x) for all t ∈ [0, T ] and all x ∈ {0, 1, . . . , c}.

While this formulation is daunting, it becomes easier once we restrict the
functions to be of the affine form

F̃ (t, x) =
∫ t

0
βs(x)ds + xzt and zt ≥ 0.

We will further restrict ourselves to the invariant case: βs(x) = βs for x > 0,
βs(0) = 0, zt = z for t > 0 and z0 = 0. With this restriction, the partial derivative
and marginal value of capacity have simple forms and the boundary conditions are
satisfied. More precisely,

∂F̃ (t, x)/∂t = βt and ΔF̃ (t, x) = z ∀t > 0, x > 0,

with F̃ (t, 0) = F̃ (0, t) = 0.
This reduces the program to Ṽ (T , c) = min F̃ (T , c) = min

∫ T

0 βtdt+cz, subject
to βt ≥ λt [Rj − zΠj ] ∀j ∈ K . Since we have restricted the set of functions F(t, x)

to be affine we obtain an upper bound V̄ (T , c) ≥ V (T , c).
Since this is a minimization problem, the optimal choice for βt is βt =

λt maxj∈K [Rj − zΠj ] = λtR(z), where R(z) := maxj∈K [Rj − zΠj ] is a
decreasing, convex, non-negative and piecewise linear function of z. Consequently,
the overall problem reduces to

V̄ (T , c) = min
z≥0

[∫ T

0
λtR(z)dt + cz

]

= min
z≥0

[ΛR(z) + cz], (6.5)

where Λ := ∫ T

0 λtdt is the aggregate arrival rate over the sales horizon [0, T ].
Notice that ΛR(z) + cz is convex in z.

We next link the upper bound to the function Q(ρ) that was used in the previous
chapter to define efficient sets. We reproduce the definition of Q(ρ) here for
convenience. Let Π(S) := ∑

i∈S πi(S) be the probability of a sale when assortment
S ⊂ N is offered, and let
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Q(ρ) := max
∑

S⊆N

R(S)t (S)

subject to
∑

S⊆N

Π(S)t (S) ≤ ρ

∑

S⊆N

t(S) = 1

t (S) ≥ 0 ∀S ⊆ N,

denote the maximum expected revenue from selecting a convex combination of
assortments whose sale rate is bounded by the scalar ρ ≥ 0. We are now ready
to link V̄ (T , c) and Q(ρ).

Proposition 6.2

V̄ (T , c) = ΛQ(c/Λ).

Having established the upper bound, we now turn to finding an optimal solution
to problem (6.5), which we will denote by z(T , c). We will show that z(T , c) is one
of the slopes uj := (Rj − Rj−1)/(Πj − Πj−1) between consecutive efficient sets
E = {Ej , j ∈ K}, K = {0, 1, . . . , k}. Let ρ := c/Λ and define

a(T , c) := min{j ≤ k : Πj > ρ},

and set a(T , c) := k + 1 if ρ ≥ Πk .
If a(T , c) = k + 1, then the marginal value of capacity is z(T , c) = uk+1 := 0,

and it is optimal to offer the efficient set Ek . If a(T , c) = j ≤ k, then Πj−1 ≤ ρ <

Πj , and the marginal value of capacity is z(T , c) = ua(T ,c) = uj , with the primal
solution offering a convex combination of Ej−1 and Ej , where the weight on set
Ej positive unless ρ = Πj−1 in which case it is optimal to offer set Ej−1 all the
time. In summary, z(T , c) = ua(T ,c). If z(T , c) = uk+1 = 0, it is optimal to offer
set A(T , c) = Ek . Otherwise, it is optimal to offer a convex combination of sets
Ea(T ,c)−1 and Ea(T ,c).

We now define a bid-price heuristic that offers set Ej = k if a(T , c) = k + 1 and
offers set Ea(T ,c) otherwise. This heuristic offers the efficient set with the highest
sales probability that is part of the optimal solution to the primal problem. We can
express this heuristic more succinctly by offering at state (T , c) the set

A(T , c) = Emin(a(T ,c),k)

while capacity is positive, and switching to E0 = ∅ when capacity is exhausted.
When z(T , c) > 0, we have ΛΠa(T ,c) ≥ c, so the bid-price heuristic is likely to
exhaust capacity before the end of the horizon. An obvious refinement is to compute
a(tj , xj ) at reading dates T = t1 > t2 > . . . > tJ > tJ+1 = 0 and to offer the set

Emin(a(tj ,xj ),k) ∀ xj > 0,
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Table 6.1 Efficient sets in
Example 6.3

Index Efficient set Πi Ri ui

0 ∅ 0 0

1 {1} 0.50 500.00 1000

2 {1, 2} 0.66̄ 533.33̄ 200

Table 6.2 Upper bound and optimal actions in Example 6.3

c ρ V̄ (T , c) Z(T , c) t1 t2 Sales E1 Sales E2 Fare 1 sales Fare 2 sales

12 0.30 12,000 1000 0.6 0.0 12 0 12 0

16 0.40 16,000 1000 0.8 0.0 16 0 16 0

20 0.50 20,000 1000 1.0 0.0 20 0 20 0

22 0.55 20,400 200 0.7 0.3 14 8 18 4

24 0.60 20,800 200 0.4 0.6 8 16 16 8

26 0.65 21,200 200 0.1 0.9 2 24 14 12

28 0.70 21,333 0 0.0 1.0 0 26.6 13.3 13.3

32 0.80 21,333 0 0.0 1.0 0 26.6 13.3 13.3

over time interval (tj+1, tj ], where ρj := xj /Λtj , and

a(tj , xj ) := min{i ∈ K : Πi > ρj },

and a(tj , xj ) := k + 1 if ρj > Πk . This refinement helps curb sales at marginal
fares.

Example 6.3 Suppose that p1 = 1000, p2 = 600, and a BAM with v0 = v1 =
v2 = e1. Table 6.1 shows the efficient sets, together with the sale and revenue
rates, and the slopes between efficient sets. We will assume that the aggregate arrival
rate over the sales horizon [0, T ] = [0, 1] is λ = 40, so the expected number of
customers to arrive over [0, T ] is Λ = 40. Table 6.2 provides the upper bound
V̄ (T , c) for different values of c. The table also provides z(T , c) and the solution to
the problem Q(ρ) in terms of the proportion of time sets t1 and t2 that the efficient
sets E1 = {1} and E2 = {1, 2} are offered. Notice that sales under action E1 first
increase and then decrease as c increases. While this may not be intuitive, the logical
explanation is that when we have sufficient capacity we exclusively use E2 because
this is the efficient set that maximizes the revenue rate (since R2 > R1). When
ρ = c/Λ < Π2, we have insufficient capacity to sustain sales at E2 and that is why
we have t1 > 0 for c ≤ 26 < ΛΠ2.

If the discrete choice model is time varying, then we have Rt (z) =
maxj∈Kt [Rtj − zΠtj ], resulting in

V̄ (T , c) = min
z≥0

[∫ T

0
λtRt (z)dt + cz

]

,
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where the objective function is also convex in z. For this model, it is also possible
to find a bid-price heuristic but it is important to update the dual variable at least as
frequently as the changes in the underlying choice model.

6.2.3 Monotone Fares

Formulations (6.2) and (6.3) implicitly assume that the capacity provider can offer
any subset of fares at any state (t, x). This flexibility works well if customers are
not strategic. Otherwise, customers may anticipate the possibility of lower fares
and postpone their purchases in the hope of being offered lower fares at a later
time. If customers act strategically, the capacity provider may counter by imposing
restrictions that do not allow lower fares to reopen once they are closed. Actions to
limit strategic customer behavior are commonly employed by revenue management
practitioners, although competitive pressures sometimes force them to deviate from
this goal.

Let VS(t, x) be the optimal expected revenue when the state is (t, x), and we are
restricted to use only assortments that are subsets of S. The system starts at state
(T , c) and S = N . If a strict subset U of S is used then all fares in U ′ := {j ∈ N :
j /∈ U} are permanently closed and cannot be offered at a later state regardless of
the evolution of sales. To obtain a discrete-time counterpart to (6.3), let

WU(t, x) := VU(t − 1, x) + λt [Rt(U) − πt (U)ΔVU(t − 1, x)].

Then the dynamic program is given by

VS(t, x) := max
U⊆S

WU(t, x) (6.6)

with boundary conditions VS(t, 0) = VS(0, x) = 0 for all t ≥ 0, x ≥ 1 and
S ⊆ N . The goal of this formulation is to find VN(T , c) and the corresponding
optimal control policy.

Notice that formally the state of the system has been expanded to (S, t, x) where
S is the last offered set and (t, x) are, as usual, the time-to-go and the remaining
inventory. Formulation (6.3) requires optimizing over all subsets S ⊆ N , while
formulation (6.6) requires an optimization over all subsets U ⊆ S for any given
S ⊆ N . Obviously the complexity of these formulations is large if the number of
fares is more than a handful. Airlines typically have over twenty different fares so
the number of possible subsets gets large very quickly. Fortunately, in many cases,
we do not need to do the optimization over all possible subsets. As we have seen,
the optimization can be reduced to the set of efficient fares. For the p-GAM, we
know that the collection of efficient sets is contained by the nested-by-fare sets
{E0, E1, . . . , En} where E0 = ∅ and Ej := {1, . . . , j} for j = 1, . . . , n. For the
p-GAM, and any other model for which the nested-by-fare property holds, the state
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Table 6.3 Value functions
for dynamic allocation
policies in Example 6.5

c ρ = c/Λ V3(T , c) V (T , c) V̄ (T , c)

4 0.16 3769 3871 4000

6 0.24 5356 5534 6000

8 0.32 6897 7013 7477

10 0.40 8259 8335 8950

12 0.48 9304 9382 10,423

14 0.56 9976 10,111 10,846

16 0.64 10,418 10,583 11,146

18 0.72 10,803 10,908 11,447

20 0.80 11,099 11,154 11,504

22 0.88 11,296 11,322 11,504

24 0.96 11,409 11,420 11,504

26 1.04 11,466 11,470 11,504

28 1.12 11,490 11,492 11,504

30 1.20 11,498 11,500 11,504

32 1.27 11,502 11,503 11,504

of the system reduces to (j, t, x) where Ej is the last offered set at (t, x). For such
models, the formulation (6.6) reduces to

Vj (t, x) = max
k≤j

Wk(t, x) (6.7)

where Vj (t, x) := VEj
(t, x) and

Wk(t, x) = Vk(t − 1, x) + λt [Rkt − ΠktΔVk(t − 1, x)],

Rkt := ∑
l∈Sk

plπlt (Ek) and Πkt := ∑
l∈Sk

πlt (Ek). Let

aj (t, x) := max{k ≤ j : Wk(t, x) = Vj (t, x)}. (6.8)

Theorem 6.4 At state (j, t, x), it is optimal to offer efficient set

Eaj (t,x) := {1, . . . , aj (t, x)},

where aj (t, x) given by (6.8) is decreasing in t and increasing in x over time
intervals where the choice model is time invariant.

The proof of this result follows the sample path arguments of the corresponding
proof in the independent demand chapter. Clearly V1(t, x) ≤ V2(t, x) ≤ Vn(t, x) ≤
V (t, x) ≤ V̄ (t, x).

Example 6.5 Table 6.3 presents the value functions V (T , c) that results from
solving the dynamic program (6.3), the upper bound V̄ (T , c) = ΛQ(c/Λ), as well
as the performance V3(T , c) corresponding to the dynamic program (6.7). All of
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these quantities are computed for the MNL model with fares p1 = $1000, p2 =
$800, p3 = $500 with price sensitivity βp = −0.0035, schedule quality si = 200
for i = 1, 2, 3 with quality sensitivity βs = 0.005, and an outside alternative with
p0 = $1100 and schedule quality s0 = 500, Gumbel parameter φ = 1, arrival rate
λ = 25 and T = 1. Recall that for the MNL model, the attractiveness vi = eφμi

where μi is the mean utility. In this case μi = βppi + βssi . The computations were
done with time rescaled by a factor a = 10,000. Not surprisingly V3(T , c) ≤ V (T , c)

as V3(T , c) constrains fares to remain closed once they are closed for the first time.
However, the difference in revenues is relatively small except for small values of c.

6.3 Implicit Time Models

We now turn to models where the notion of time is implicit. The effort is mostly
directed to finding extensions of Littlewood’s rule to the case of dependent demands.
We will assume that we are working with a choice model with efficient sets that are
nested: E0 ⊆ E1 . . . ⊆ Ek , even if they are not nested-by-fare. We continue using
the notation Πj := ∑

k∈Ej
πk(Ej ) and Rj := ∑

k∈Ej
pkπk(Ej ), so the slopes

uj := (Rj − Rj−1)/(Πj − Πj−1), j = 1, . . . , k are positive and decreasing. We
will denote by qj := Rj/Πj the average fare, conditioned on a sale, under efficient
set Ej (action j ) for j ≥ 1 and define q0 = 0.

Suppose that the total number of potential customers over the selling horizon is
a random variable D. For example, D can be Poisson with parameter Λ. Let Dj be
the total demand if only set Ej is offered. Then Dj is conditionally binomial with
parameters D and Πj , so if D is Poisson with parameter Λ, then Dj is Poisson with
parameter ΛΠj .

We will present an exact solution for the two-fare class problem and a heuristic
for the multi-fare case. The solution to the two-fare class problem is, in effect,
an extension of Littlewood’s rule for discrete choice models. The heuristic for the
multi-fare problem applies the two-fare result to each pair of consecutive actions,
say j and j + 1, and selects the best j .

6.3.1 Two Fare Classes

For the two-fare case, while capacity is available, provider will offer either action 2
(associated with efficient set E2 = {1, 2}) or action 1 (associated with efficient set
E1 = {1}). If the provider runs out of inventory, he offers action 0, corresponding
to E0 = ∅. Action 2 is optimal for ample capacity, while action 1 is optimal when
capacity is scarce. Our task is to find an optimal number, say y(c) ∈ {0, . . . , c} of
units to protect for sale under action 1.
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To find y(c), we start with an arbitrary protection level y ∈ {0, . . . , c}. The
expected revenue under action 2 is q2 E[min(D2, c − y)] where q2 is the average
fare per unit sold under action 2. Of the (D2 − c + y)+ customers denied bookings,
a fraction β := Π1/Π2 will be willing to purchase under action 1. Thus, the demand
under action 1 will be a conditionally binomial random variable, say U(y), with a
random number (D2 − c + y)+ of trials and success probability β. The expected
revenue that results from allowing up to c − y bookings under action 2 is given by

W2(y, c) := q1 E[min(U(y), max(y, c − D2))] + q2 E[min(D2, c − y)],

where the first term corresponds to the revenue under action 1. Conditioning the first
term on the event D2 > c − y, allows us to write

W2(y, c) = q1 E[min(U(y), y)|D2 > c−y)]P(D2 > c−y)+q2 E[min(D2, c−y)].

The reader may be tempted to follow the marginal analysis idea presented in Chap. 1
for the independent demand case. In the independent demand case, the marginal
value of protecting one more unit of capacity is realized only if the marginal unit
is sold. The counterpart here would be P(U(y) ≥ y|D2 > c − y), and a naive
application of marginal analysis would protect the y-th unit whenever q1 P(U(y) ≥
y|D2 > c − y) > q2.

However, with dependent demands, protecting one more unit of capacity also
increases the potential demand under action 1 by one unit. This is because an
additional customer is denied capacity under action 2 (when D2 > c − y) and this
customer may end up buying a unit of capacity under action 1 even when not all the
y units are sold. Ignoring this can lead to very different results in terms of protection
levels. The correct analysis is to acknowledge that an extra unit of capacity is sold
to the marginal customer with probability β P(U(y − 1) < y − 1|D2 > c −y). This
suggests protecting the y-th unit whenever

q1 [P(U(y) ≥ y|D2 > c − y) + β P(U(y − 1) < y − 1|D2 > c − y)] > q2.

To simplify the left-hand side, notice that conditioning on the decision of the
marginal customer results in

P(U(y) ≥ y|D2 > c − y) = β P(U(y − 1) ≥ y − 1|D2 > c − y)

+ (1 − β)P(U(y − 1) ≥ y|D2 > c − y).

Combining terms leads to protecting the y-th unit whenever

q1 [β + (1 − β)P(U(y − 1) ≥ y|D2 > c − y)] > q2.

Let

r := u2/q1 = q2 − βq1

(1 − β)q1
, (6.9)
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denote the critical fare ratio. In industry, the ratio r given by (6.9) is known as fare
adjusted ratio, in contrast to the unadjusted ratio q2/q1 that results when β = 0.

The arguments above suggest that the optimal protection level can be obtained
by selecting the largest y ∈ {1, . . . , c} such that P(U(y − 1) ≥ y|D2 > c − y) > r

provided that P(U(0) ≥ 1|D2 ≥ c) > r and to set y = 0 otherwise.
To summarize, an optimal protection level can be obtained by setting y(c) = 0 if

P(U(0) ≥ 1|D2 > c) ≤ r; otherwise setting

y(c) = max{y ∈ {1, . . . , c} : P(U(y − 1) ≥ y|D2 > c − y) > r}. (6.10)

One important observation is that for dependent demands the optimal protection
level y(c) is first increasing and then decreasing in c. The reason is that for low
capacity it is optimal to protect all the inventory for sale under action 1. However,
for high capacity, it is optimal to allocate all the capacity to action 2. The intuition
is that action 2 has a higher revenue rate, so with high capacity we give up trying
to sell under action 1. This is clearly seen in Table 6.2 of Example 6.3. Heuristic
solutions that propose protection levels of the form min(yh, c), which are based on
independent demand logic, are bound to do poorly when c is close to ΛΠ2.

One can derive Littlewood’s rule for discrete choice models (6.10) formally by
analyzing ΔW2(y, c) := W2(y, c) − W2(y − 1, c), the marginal value of protecting
the y-th unit of capacity for sale under action 1.

Proposition 6.6

ΔW2(y, c) = [q1(β + (1 − β)P(U(y − 1) ≥ y|D2 > c − y) − q2]P(D2 > c − y).

(6.11)
Moreover, the expression in brackets is decreasing in y ∈ {1, . . . , c}.

Consequently, ΔW2(y, c) has at most one sign change. If it does, then it must
be from positive to negative. W2(y, c) is then maximized by the largest integer
y ∈ {1, . . . , c}, say y(c), such that ΔW2(y, c) is positive, and by y(c) = 0 if
ΔW2(1, c) < 0. This confirms Littlewood’s rule for discrete choice models (6.10).

6.3.2 Heuristic Protection Levels

While the computation of y(c) and V2(c) = W2(y(c), c) is not numerically difficult,
the conditional probabilities involved may be difficult to understand conceptually.
Moreover, the formulas do not provide intuition and do not generalize easily
to multiple fares. In this section, we develop a simple heuristic to find near-
optimal protection levels that provides some of the intuition that is lacking in the
computation of optimal protection levels y(c). In addition, the heuristic can easily
be extended to multiple fares.
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The heuristic consists of approximating the conditional binomial random variable
U(y − 1) with parameters (D2 − c + y − 1)+ and β by its conditional expectation,
namely by (Bin(D2, β) − β(c + 1 − y))+. Since Bin(D2, β) is just D1, the
approximation yields (D1 − β(c + 1 − y))+. We expect this approximation to be
reasonable if E[D1] ≥ β(c + 1 − y). This is equivalent to the condition

c < yp + E[D2 − D1] = yp + Λπ2(1 − β),

where we have yp = max{y ∈ N : P(D1 ≥ y) > r)}. In this case, P(U(y − 1) ≥
y|D2 > c−y) can be approximated by the expression P(D1 ≥ (1−β)y+β(c+1)).
We think of yp = (1 − β)y + β(c + 1) as a pseudo-protection level that will be
modified to obtain a heuristic protection level when the approximation is reasonable,
e.g., when c < yp + E[D2 − D1], by setting

yh(c) = max

{

y ∈ N : y ≤ yp − β(c + 1)

(1 − β)

}

∧ c.

If c > yp + E[D2 − D1], we set yh(c) = 0. Thus, the heuristic will stop protecting
capacity for action 1 when c is sufficiently large! This makes sense since action 2
maximizes the expected revenue per customer and this is optimal when capacity is
sufficiently abundant.

Notice that the heuristic involves three modifications to Littlewood’s rule for
independent demands. First, instead of using the first choice demand for fare 1,
when both fares are open, we use the stochastically larger demand D1 for fare 1,
when it is the only open fare. Second, instead of using the ratio of the fares p2/p1
we use the modified fare ratio r = u2/q1 based on sell-up adjusted fare values. From
this we obtain a pseudo-protection level yp that is then modified to obtain yh(c).
Finally, we keep yh(c) if capacity is scarce, e.g., if c < yp + E[D2 − D1] and set
yh(c) = 0 otherwise. In summary, the heuristic involves a different distribution, a
fare adjustment, and a modification to the pseudo-protection level. The following
example illustrates the performance of the heuristic.

Example 6.7 Suppose that p1 = 1000, p2 = 600, and a BAM with v0 = v1 = v2 =
e1 and that Λ = 40 as in Example 6.3. We report the optimal protection level y(c),
the heuristic protection level yh(c), the upper bound V̄ (c), the optimal expected
revenue V (c) of the uni-directional formulation (6.6), the performance V2(c) of
y(c) and the performance V h

2 (c) = W2(y
h(c), c) of yh(c), and the percentage gap

between (V2(c) − V h
2 (c))/V2(c) in Table 6.4. Notice that the performance of the

static heuristic, V h
2 (c), is almost as good as the performance V2(c) of the optimal

policy under formulation (6.6).
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Table 6.4 Performance of the heuristic for two-fare problem in Example 6.7

c y(c) yh(c) V̄ (c) V (c) V2(c) V h
2 (c) Gap (%)

12 12 12 12,000 11,961 11,960 11,960 0.00

16 16 16 16,000 15,610 15,593 15,593 0.00

20 20 20 20,000 18,324 18,223 18,223 0.00

24 21 24 20,800 19,848 19,526 19,512 0.07

28 9 12 21,333 20,668 20,414 20,391 0.11

32 4 0 21,333 21,116 21,036 20,982 0.26

36 3 0 21,333 21,283 21,267 21,258 0.05

40 2 0 21,333 21,325 21,333 21,322 0.01

6.3.3 Theft Versus Standard Nesting and Arrival Patterns

The types of inventory controls used in the airline’s reservation system along with
the demand order of arrival are additional factors that must be considered in revenue
management optimization. If y(c) < c, we allow up to c − y(c) bookings under
action 2 with all sales counting against the booking limit c − y(c). In essence, the
booking limit is imposed on action 2 (rather than on fare 2). This is known as theft
nesting. Implementing theft nesting controls may be tricky if a capacity provider
needs to exert controls through the use of standard nesting, i.e., when booking
limits are only imposed on the lowest open fare. This modification may be required
either because the system is built on the philosophy of standard nesting or because
users are accustomed to thinking of imposing booking limits on the lowest open
fare. Here we explore how one can adapt protection levels and booking limits for
the dependent demand model to situations where controls must be exerted through
standard nesting.

A fraction of sales under action 2 corresponds to sales under fare p2. This fraction
is given by ω := π2(E2)/Π2. So if booking controls need to be exerted directly on
the sales at fare p2, we can set booking limit ω(c − y(c)) on sales at fare p2. This
is equivalent to using the larger protection level

ŷ(c) := (1 − ω)c + ωy(c) (6.12)

for sales at fare 1. This modification makes implementation easier for systems
designed for standard nesting controls, and it performs very well under a variety
of demand arrival patterns.

It is possible to combine demand choice models with fare arrival patterns by
sorting customers through their first choice demand and then assuming a low-before-
high demand arrival pattern. For the two-fare case, the first choice demands for fare 1
and fare 2 are Poisson random variables with rates Λπ1(E2) and Λπ2(E2). Assume
now that customers whose first choice demand is for fare 2 arrive first, perhaps
because of purchasing restrictions associated with this fare. customers whose first
choice is fare 2 will purchase this fare if available. They will consider upgrading to
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fare 1 if fare 2 is not available. One may wonder what kind of control is effective
to deal with this arrival pattern. It turns out that setting protection level ŷ(c) given
by (6.12) for fare 1, with standard nesting, is optimal for this arrival pattern and is
very robust to other (mixed) arrival patterns.

6.3.4 Multiple Fare Classes

For multiple fare classes, finding optimal protection levels can be very complex.
However, if we limit our search to the best two consecutive efficient sets we can
easily adapt the results from the two-fare class to deal with the multiple-fare class
problem. For any j ∈ {1, . . . , n − 1}, consider the problem of allocating capacity
between action j (corresponding to efficient set Ej ) and action j +1 (corresponding
to efficient set Ej+1) where action j + 1 is offered first. In particular, suppose we
want to protect y ≤ c units of capacity for action j against action j + 1. We will
then sell min(Dj+1, c−y) units under action j +1 at an average fare qj+1. We will
then move to action j with max(y, c−Dj+1) units of capacity and residual demand
Uj (y), where Uj(y) is conditionally binomial with parameters (Dj+1 −c+y)+ and
βj := Πj/Πj+1. Assuming we do not restrict sales under action j , the expected
revenue under actions j + 1 and j will be given by

Wj+1(y, c) := qj Emin(Uj (y), max(y, c − Dj+1))

+ qj+1 Emin(Dj+1, c − y). (6.13)

Notice that under action j we will either run out of capacity or will run out of
customers. Indeed, if Uj (y) ≥ y then we run out of capacity, and if Uj (y) < y then
we run out of customers. Let Wj+1(c) := maxy≤c Wj+1(y, c) and set W1(c) :=
q1 Emin(D1, c). Clearly,

Vn(c) ≥ max
1≤j≤n

Wj (c), (6.14)

so a simple heuristic is to compute Wj(c) for each j ∈ {1, . . . , n} and select j to
maximize Wj(c). To find an optimal protection level for Ej against Ej+1, we need
to compute ΔWj+1(y, c) = Wj+1(y, c) − Wj+1(y − 1, c). For this we can repeat
the analysis of the two-fare case to show that an optimal protection level for action
Ej against action Ej+1 is given by yj (c) = 0 if ΔWj+1(1, c) < 0 and by

yj (c) = max{y ∈ {1, . . . , c} : P(Uj (y − 1) ≥ y|Dj+1 > c − y) > rj }, (6.15)
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where

rj := uj+1

qj

= qj+1 − βjqj

(1 − βj )qj

.

Alternatively, we can use the heuristic described in the two-fare section to
approximate Uj (y − 1) by Dj − βj (c + 1 − y) and use this in turn to approximate
the conditional probability in (6.15) by P(Dj ≥ y + β(c − y + 1)). This involves
finding the pseudo-protection level

y
p
j = max{y ∈ N : P(Dj ≥ y) > rj }.

If c < y
p
j + dj+1, then

yh
j (c) = max

{

y ∈ N+ : y ≤ y
p
j − βj (c + 1)

1 − βj

}

∧ c, (6.16)

and set yh(c) = 0 if c ≥ y
p
j + dj+1.

We will let V h
n (c) be the expected revenues resulting from applying the protection

levels.

Example 6.8 Consider now a three fare example with fares p1 = 1000, p2 =
800, p3 = 500, schedule quality si = 200, i = 1, 2, 3, βp = −0.0035, βs = 0.005,
φ = 1. Then v1 = 0.082, v2 = 0.165, v3 = 0.472. Assume that the outside
alternative is a product with price p0 = 1100 and schedule quality s0 = 500 and
that the expected number of potential customers is Poisson with parameter Λ = 25.
Table 6.5 reports the protection levels yj (c) and yh

j (c) as well as V3(c) and V h
3 (c)

for c ∈ {4, 6, . . . , 26, 28}. As shown in table, the heuristic performs very well with
a maximum gap of 0.14% relative to V3(c) which was computed through exhaustive
search. It is also instructive to see that V h

3 (c) is not far from V3(c, T ), as reported in
Table 6.3, for the dynamic model. In fact, the average gap is less than 0.5% while
the largest gap is 1.0% for c = 18.

Example 6.8 suggests that the heuristic for the static model works almost as well
as the optimal dynamic program Vn(T , c) for the case where efficient sets are nested-
by-fare and fares cannot be opened once they are closed for the first time. Thus,
the multi-fare heuristic described in this section works well to prevent strategic
customers from gaming the system provided that the efficient fares are nested-by-
fare as they are in a number of important applications. While the heuristic for the
static model gives up a bit in terms of performance relative to the dynamic model,
it has several advantages. First, the static model does not need the overall demand
to be Poisson. Second, the static model does not need as much detail in terms of the
arrival rates. These advantages are part of the reason why people in industry have a
preference for static models, even though dynamic models are easier to understand,
easier to solve to optimality, and just as easy to implement.
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Table 6.5 Performance of Heuristic for three-fare problem in Example 6.8

c ρ y1(c) y2(c) yh
1 (c) yh

2 (c) V3(c) V h
3 (c) Gap (%)

4 0.16 4 4 4 4 3769 3769 0.00

6 0.24 3 6 3 6 5310 5310 0.00

8 0.32 1 8 1 8 6845 6845 0.00

10 0.40 0 10 0 10 8217 8217 0.00

12 0.48 0 12 0 12 9288 9288 0.00

14 0.56 0 14 0 14 9971 9971 0.00

16 0.64 0 13 0 14 10,357 10,354 0.02

18 0.72 0 9 0 10 10,700 10,694 0.05

20 0.80 0 5 0 6 11,019 11,019 0.00

22 0.88 0 4 0 2 11,254 11,238 0.14

24 0.96 0 3 0 0 11,391 11,388 0.03

26 1.04 0 2 0 0 11,458 11,450 0.08

28 1.12 0 2 0 0 11,488 11,485 0.03

6.4 End of Chapter Problems

1. For the MNL model, let Πj = ∑
k∈Sj

πk(Sj ) and Rj = ∑
k∈Sj

pkπk(Sj ) for
j = 0, . . . , n. Consider the dynamic program

V (t, x) = V (t − 1, x) + λt max
j∈K

[
Rj − ΠjΔV (t − 1, x)

]
,

with boundary condition V (t, 0) = V (0, x) = 0 for t ≥ 0 and x ∈ N , where
M = {0, 1, . . . , n}. Let

uj = Rj − Rj−1

Πj − Πj−1
.

(a) Show that uj = (pj − rj−1)/(1 − πj−1) and in particular that u1 = p1.
(b) Show that it is optimal to offer set Sa(t,x) at state (t, x) where

a(t, x) = max{j : uj ≥ ΔV (t, x)}.

Hint: You may want to use the following two facts: 1) ΔV (t, x) ≤ p1 and
2) uj is decreasing in j for the MNL model.

2. Code the following dynamic program:

V (t, x) = V (t − 1, x) + λt max
j

[
Rj − ΠjΔV (t − 1, x)

]
(6.17)

with boundary condition V (t, 0) = V (0, x) = 0 for t ≥ 0 and x ∈ N .
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Run the code for a flight with 3 fares p1 = 1150, p2 = 950, p3 = 650, quality
attributes q1 = 1000, q2 = 850, q3 = 750, price sensitivity βp = −1 and quality
sensitivity βq = 1.25. Suppose that the utility of fare i is Ui = μi + εi where
μi = βppi + βqqi, i = 1, 2, 3 and the εis are independent Gumbel random
variables with parameter φ = 0.01. Assume λt = λ = 0.01, T = 10,000. Find
V (T , c) for c ∈ {35, 40, 55, 60, 65, 70, 75, 80, 85, 90}.

3. Prove that the transformation that leads to the independent demand formula-
tion (6.4) provides the correct value function.

4. Show that an alternative formulation is given by

∂V (t, x)

∂t
= max

j∈Mt

λtΠtj [qtj − ΔV (t, x)]

where qtj = Rtj /Πtj , and for convenience we define q0t = 0. We can think
of λtΠtj as the demand rate associated with average fare qtj , which reduces
the dynamic revenue management model with dependent demands to a dynamic
pricing model with a finite price menu.

5. Consider a two-fare problem with dependent demands governed by a BAM with
parameters v0 = 1, v1 = 1.1, v2 = 1.2. Suppose that the fares are p1 = 1000
and p2 = 720 and that the total number of potential customers is Poisson with
parameter Λ = 55.

(a) Determine the sale rate Πi and the revenue rate Ri per arriving customer under
action i = 1, 2, where E1 = {1} and E2 = {1, 2}.

(b) For capacity values c ∈ {16, 17, . . . , 35} solve the linear problem

ΛR(c/Λ) = max Λ[R1t1 + R2t2]
s.t. Λ[Π1t1 + Π2t2] ≤ c

t1 + t2 + t0 = 1

ti ≥ 0, ∀ i = 0, 1, 2,

and determine the expected number of units ΛΠiti sold under action i = 1, 2.
(c) From your answer to part b, determine the optimal number of units sold for

each fare i = 1, 2 for each value of c ∈ {16, . . . , 35}. What happens to optimal
number of sales for each fare 1 = 1, 2 as c increases?

(d) Find the largest integer, say yp, such that P(D1 ≥ y) > r where D1 is
Poisson with parameter Λ1 = ΛΠ1, r = u2/q1, u2 = (R2 − R1)/(Π2 − Π1)

and q1 = R1/Π1 = p1.
(e) Let Λ2 = ΛΠ2 and β = Λ1/Λ2. For each c ∈ {16, 11, . . . , 35}, check if

c < yp + Λ(Π2 − Π1) and if so, let

yh(c) = max

{

y ∈ N : y ≤ yp − β(c + 1)

1 − β

}

∧ c,

and set yh(c) = 0 otherwise.
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(f) For each c ∈ {16, 11, . . . , 36}, use simulation to compute the expected
revenue using protection level yh(c) for action 1 against action 2. Compare
the expected revenues to the upper bound ΛR(c/Λ). For what value of c do
you find the largest gap?

6.5 Bibliographical Remarks

Formulation in (6.3) and Theorem 6.1 are due to Talluri and van Ryzin (2004a). The
formulation in that paper reduces to the one in Lee and Hersh (1993) when
demands are independent. The fare and demand transformations that map λt and
(Πtj , Rtj ), j ∈ Kt into (p̂tj , λ̂tj ), j ∈ Kt as discussed in Sect. 6.2.1 appeared
first in Kincaid and Darling (1963), as documented by Walczak et al. (2010). Fiig
et al. (2010) and Walczak et al. (2010) proposed feeding the transformed data into
a static model and using the EMSR-b heuristic to compute protection levels. Sierag
et al. (2015) and Ge and Pan (2010) extend the work of Talluri and van Ryzin
(2004a) to incorporate cancellations and overbooking into a single-resource revenue
management problem.

The protection level formula in (6.10) is due to Gallego et al. (2009a). This
formula is a reinterpretation of the main result in Brumelle et al. (1990). Efforts
to transform the problem into an independent demand model include Belobaba and
Weatherford (1996), and more recently by Fiig et al. (2010) and Walczak et al.
(2010). Gallego et al. (2009b) show that setting protection level ŷ(c) given by (6.12)
with standard nesting is optimal and quite robust to other arrival patterns.

Cooper et al. (2006) and Cooper and Li (2012) develop models to study the
consequences of specifying a simple customer behavior for choosing among the
fare classes, when, in fact, the customer behavior is more complicated.

Appendix

Proof of Proposition 6.2 We can linearize (6.5) by introducing a new variable, say
y, such that y ≥ Rj − zΠj for all j ∈ K and z ≥ 0, which results in the linear
program:

V̄ (T , c) = min
z≥0

[Λy + cz],
subject to Λy + ΛΠjz ≥ ΛRj j ∈ K

z ≥ 0,

where for convenience we have multiplied the constraints y +Πjz ≥ Rj , j ∈ K by
Λ > 0. The dual of this problem is given by
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V̄ (T , c) = Λ max
∑

j∈K

Rj tj

subject to Λ
∑

j∈K

Πj tj ≤ c

∑

j∈K

tj = 1

tj ≥ 0 ∀j ∈ K.

This linear program decides the proportion of time, tj ∈ [0, 1], that each efficient set
Ej is offered to maximize the revenue subject to the capacity constraint. Dividing
the constraint by Λ and defining ρ = c/Λ we see that V̄ (T , c)/Λ = Q(ρ), or
equivalently V̄ (T , c) = ΛQ(c/Λ). ��
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