
Chapter 4
Introduction to Choice Modeling

4.1 Introduction

Revenue management models were originally developed under the assumption of
stochastically independent demands. This assumption is untenable when products
are close substitutes. In this case, the demand for a particular product may depend
on the set of competing products that are available in the market. For example,
when a product is removed from an assortment, its demand may be recaptured by
another product in the assortment, or it may spill to competitors or the no-purchase
alternative. Conversely, adding a product to the assortment may cannibalize the
demand for other products in the assortment or may induce new demand. In
this chapter, we study discrete choice models that help capture demand as a
function of the offered products. In later chapters, we will use these discrete choice
models to formulate optimization problems to choose profit or revenue maximizing
assortments when the prices of the products are fixed, or to find the profit or
revenue maximizing prices to charge for the offered products. Consequently, when
discussing discrete choice models in this chapter, we pay particular attention to those
discrete choice models that are rich enough to capture substitution effects and for
which the corresponding optimization problems are computationally tractable.

In Sect. 4.2, we describe what we mean by a discrete choice model and formulate
assortment and price optimization problems at a high level, but we defer the solution
of such problems to later chapters. In Sect. 4.3, we discuss the maximum utility
model, which provides a flexible framework to construct various choice models.
In Sect. 4.4, we discuss the basic attraction model, of which the well-known
multinomial logit model is a special case. In Sect. 4.5, we generalize this model
to allow the attraction of the no-purchase alternative to depend on the products
excluded from the assortment. A special case of this general attraction model is
the independent demand model, where demand for each product is independent
of other products offered. In this section, we also discuss the independence of
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irrelevant alternatives property, which is a shortcoming of the last two choice models
mentioned. In Sect. 4.6, we explain the nested logit model, which alleviates this
property, at least to a certain extent. In Sect. 4.7, we demonstrate how we can mix
basic attraction models to generate richer choice models. In Sect. 4.8 we present
the exponomial model based on reflected exponential utilities, while in Sect. 4.9 we
study random consideration set models, where the preference order of the products
is the same for all consumers, but different consumers drop different products
from consideration. Finally, in Sect. 4.10 we discuss a general approach for choice
modeling, where each consumer arrives with a particular ordering of products in
mind, and she purchases the highest ranking available product. We then present
the Markov chain, where consumers purchase their preferred product if available,
and otherwise navigate according to a Markov chain until they find an available
alternative, which may be the no-purchase alternative. Bounds and approximations
are presented in Sect. 4.11 with an interpretation that may fit retail settings better
than traditional choice models.

4.2 Discrete Choice Models

We will assume that the set of potential products that could be offered is N :=
{1, . . . , n}. For any subset S ⊆ N , denote by πj (S) the probability that a consumer
will select product j ∈ S, with πj (S) = 0 if j �∈ S. Let Π(S) := ∑

j∈S πj (S)

denote the probability of a sale when subset S is offered. The complement π0(S) :=
1 − Π(S) denotes the probability that the consumer selects an outside alternative.
An outside alternative may mean either that the consumer does not purchase or
that she purchases from another vendor. The outside alternative is always implicitly
available. For this reason, it would be more appropriate to write πj (S+) for j ∈
S+ := S ∪ {0}. However, we follow here the convention of writing πj (S) instead
of the more cumbersome πj (S+). Notice that under a discrete choice model a
consumer will select exactly one product from the set S+ when assortment S is
offered. This is appropriate for transportation and lodging choices. Later we describe
models that relax this assumption that may be more appropriate in a retail setting
where consumers may buy more than one product.

A tedious way to describe any choice model is to list πj (S) for each j ∈ S and
for each S ⊆ N . This approach would require specifying n 2n−1 scalars which are
far too many parameters to list or estimate. This is primarily why researchers have
focused on parsimonious choice models that are based on a few parameters typically
of the order O(n) or O(n2). Most of the parametric choice models described in this
chapter are parsimonious in nature.

In addition to our interest in finding realistic choice models to describe demand,
we are also interested in finding a subset of products, say S ⊆ N , to offer to
consumers with the objective of maximizing expected profits or revenues. Let pj

and zj be, respectively, the price and the unit cost of product j ∈ N , and define
the vectors p := (p1, . . . , pn) and z := (z1, . . . , zn). Then the expected profit



4.3 Maximum and Random Utility Models 111

obtained by offering the subset S is given by R(S, z) := ∑
j∈S(pj −zj ) πj (S). The

assortment optimization problem is that of finding a subset S ⊆ N that maximizes
R(S, z), yielding

R(z) := max
S⊆N

R(S, z). (4.1)

The assortment optimization problem is combinatorial in nature and arises fre-
quently in retailing and revenue management. We take on the question of formu-
lating and solving such problems in the next chapter on assortment optimization.

If the prices are also decision variables, then the choice model needs to be price
aware. Let πi(N, p) be the probability of selecting product i when the set N is
offered. We are interested in maximizing R(p, z) := ∑

j∈N(pj −zj )πj (N, p) over
all vectors p ≥ z, yielding

R(z) := max
p≥0

R(p, z).

For many choice models, if pj = ∞, then πj (N, p) = 0. Thus, setting pj = ∞
is equivalent to not offering product j , indicating that optimizing over prices could
implicitly select an assortment of products to offer. Problems of the form above
are nonlinear optimization problems that arise in dynamic pricing and will also be
encountered in a later chapter.

4.3 Maximum and Random Utility Models

Suppose there is a full preference ordering among the products. We assume without
loss of generality that the products are labeled so the preferences are 1 ≺ 2 ≺ . . . ≺
n. The maximum utility model (MUM) assigns πi(S) = 1 for i ∈ S, if and only if
j ∈ S, j �= i implies j ≺ i. In other words, consumers select the highest ranked
product in S, which corresponds to the product with the highest utility in the set S.
The MUM is often presented by assigning cardinal utilities, say {ui : i ∈ N} to the
products. If the ui’s are all different, then we can order them u1 < u2 < . . . < un,
and for any S ⊆ N the maximum utility maxi∈S ui is attained by the highest ranked
product in S. If instead u1 ≤ u2 ≤ . . . ≤ un, then there may be more than one
product in S attaining maxi∈S ui , in which case choice probabilities are assigned
uniformly among such products.

Random utility models (RUM) add a random noise component to the utilities of
the products, Ui = ui +εi, i ∈ N , where the εi’s are mean zero, possibly dependent
random variables. Another way to introduce randomness into the MUM is to assume
a distribution of consumer types, each with a certain preference ordering. So,
product i ∈ S is selected by types of consumers for whom i is the highest ranked
product in S.
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All RUM’s satisfy the regularity property that the probability of choosing a
product does not increase as other products are added to the assortment. There are
known cases where the regularity property does not hold, and readers are cautioned
that in such cases there is a cost of approximating the choice model by a RUM.
Nevertheless, RUM’s are an important class to which we devote most of the chapter.
We provide references to more general discrete choice models at the end of the
chapter.

4.4 Basic Attraction and Multinomial Logit Models

The basic attraction model (BAM) is a discrete choice model where each product
j ∈ N has an attraction value vj > 0, capturing the attractiveness of product j to a
consumer. Similarly, the attraction value v0 > 0 represents the attractiveness of the
no-purchase alternative. The choice model is given by

πj (S) = vj

v0 + V (S)
∀j ∈ S, (4.2)

where V (S) := ∑
j∈S vj . Consequently, products with higher attraction values are

more likely to be selected.
The introduction of BAM is based on postulating two choice axioms and

demonstrating that a discrete choice model satisfies the axioms if and only if it
is of the BAM form. To describe these axioms, we need additional notation. For any
S ⊆ T , let πS(T ) := ∑

j∈S πj (T ) denote the probability that a consumer selects
a product in S when the set T is offered. Also, πS+(T ) := πS(T ) + π0(T ) =
1 − πT \S(T ), where T \ S is the set difference of T from S. The Luce axioms can
be written as follows:

• Axiom 1: If πi({i}) ∈ (0, 1) for all i ∈ T , then for any Q ⊆ S+, S ⊆ T

πQ(T ) = πQ(S) πS+(T ).

• Axiom 2: If πi({i}) = 0 for some i ∈ T , then for any S ⊆ T such that i ∈ S

πS(T ) = πS\{i}(T \ {i}).

Axiom 1 implies that the probability of selecting any set Q ⊆ S+, when set
T is offered, is equal to the probability of selecting Q when S is offered times
the probability of selecting S+ when T is offered assuming that S ⊆ T . Axiom 2
implies that if alternative i has no probability of being chosen, then it can be deleted
without affecting the choice probabilities.

The celebrated multinomial logit (MNL) model is a special case of the BAM
that arises from a RUM. Under a RUM, each product j has a random utility Uj =
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uj + εj for j ∈ N+ and the probability that product j ∈ S is selected is given by
πj (S) = P{Uj ≥ Ui ∀ i ∈ S+}. We can think of εj as an idiosyncratic variation on
the mean utility or as errors in measuring the utility.

If εj is a normal random variable, then the resulting choice model is known
as the Probit model. Unfortunately, there is no closed-form expression for the
selection probabilities under the Probit model and that has discouraged its use to
a certain extent. However, a closed-form expression for the selection probabilities
can be obtained if {εj : j ∈ N+} are modeled as independent and identically
distributed Gumbel random variables all having the same scale parameter. The
cumulative distribution function of a Gumbel random variable X with location and
scale parameters ν and φ is given by

F(x : ν, φ) = exp(− exp(−φ (x − ν))). (4.3)

The mode of this distribution is ν, while the median is ν − ln(ln 2)/φ. The mean is
E[X] = ν + γ /φ, where γ is the Euler constant. The variance is given by Var[X] =
π2/6φ2, where π is the ratio of a circle’s circumference to its diameter. To obtain a
mean zero random variable, we set ν = −γ /φ. Notice that the variance is inversely
proportional to φ2. If {εj : j ∈ N+} are mean zero Gumbel random variables all
with scale parameter φ and independent across the products, then

πj (S) = eφ uj

1 + ∑
k∈S eφ uk

∀j ∈ S,

and this is known as the MNL model, and a special case of the BAM.
As φ becomes large, the variance of εj becomes small and the choice

probabilities concentrate on the product or products with the largest mean utility.
Thus, only the products with the largest mean utilities are purchased resulting in the
MUM. On the other hand, when φ becomes small, the probability of selecting any
offered product converges to a uniform distribution, where each product is equally
likely to be selected. This behavior arises because when the variance is much larger
than the mean, the consumer loses the ability to reliably select products with higher
mean utility.

4.5 Generalized Attraction Model

One of the shortcomings of the BAM is that the attraction value v0 of the
no-purchase option is a fixed parameter and does not depend on the subset of
offered products. There is considerable empirical evidence that the BAM may be
too optimistic in estimating demand recapture probabilities when the first choice of
a consumer is not part of the offer set S. In particular, the BAM assumes that even if
a consumer prefers some product j ∈ S̄ := N \ S, she must select a product in S+.
This approach ignores the possibility that the consumer may look for the products
in S̄ elsewhere or at a later time.
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As an example, suppose that a consumer prefers a certain wine, and the store
does not have it. The consumer may then either buy one of the wines in the store, go
home without purchasing, or drive to another store and look for the specific wine she
wants. The BAM precludes the last possibility; it implicitly assumes that the search
cost for an alternative source of product j ∈ S̄ is infinity, or equivalently that there is
no competition. As an illustration, suppose that the consideration set is N = {1, 2}
and that v0 = v1 = v2 = 1, so πj ({1, 2}) = 33.3% for j = 0, 1, 2. Under the BAM,
eliminating choice 2 results in πj ({1}) = 50% for j = 0, 1. Suppose, however, that
product 2 is available across town and the attraction value for product 2 from the
alternative source is w2 = 0.5. Then the choice set of a consumer, when product 2
is not offered, is in reality {1, 2′} with 2′ representing product 2 in the alternative
location with shadow attraction w2. Under this model,

π0({1}) = 1.5

2.5
= 60%, π1({1}) = 1

2.5
= 40%.

To formally define the generalized attraction model (GAM), we assume that in
addition to the attraction values {vj : j ∈ N}, there are shadow attraction values
{wj : j ∈ N} with wj ∈ [0, vj ] for all j ∈ N . Under the GAM, for any subset
S ⊆ N , the selection probabilities are given by

πj (S) = vj

v0 + W(S̄) + V (S)
∀ j ∈ S, (4.4)

where W(R) := ∑
j∈R wj for any R ⊆ N . Thus, the GAM can be viewed as

a version of the BAM, where the attractiveness of the no-purchase alternative is
inflated to v0 + ∑

j∈S̄ wj as a function of the shadow attraction values of the
alternatives that are not offered. The no-purchase probability is given by

π0(S) = v0 + W(S̄)

v0 + W(S̄) + V (S)
.

The GAM can be obtained axiomatically by modifying one of the Luce axioms. The
special case of the GAM with wj = 0 for all j ∈ N recovers the BAM. As with the
BAM, it is possible to normalize the parameters so that v0 = 1 when v0 > 0.

The parsimonious GAM (p-GAM) is given by wj = θ vj for all j ∈ N for some
θ ∈ [0, 1]. In this model, the shadow attraction values are a constant factor of the
original attraction values. The special case θ = 0 recovers the BAM.

At the other extreme, the case θ = 1 results in the independent demand model
(IDM). Under the IDM, the probability πj (S) of selecting product j ∈ S is
independent of the offer set S, as long as S includes product j . If product j is
removed, then all of its demand is lost to the no-purchase alternative. This implies
that there are nonnegative constants, say v0 and {vj : j ∈ N}, such that

πj (S) = vj ∀ j ∈ S,
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and v0 + V (N) = 1. The IDM model may reflect what happens in very competitive
situations where consumers can readily find another vendor offering products not in
S. In most practical situations, however, it is reasonable to expect that some of the
demand for product j �∈ S may be recaptured by other products in S.

The p-GAM can serve to test the competitiveness of the market, by testing the
hypothesis H0 : θ = 0 or H0 : θ = 1, to see whether the BAM applies or the
independent demand model applies. To test these hypotheses, we can use offer sets
St and realized sales st over a certain period of time t = 1, . . . , T and obtain the
likelihood functions L(v, θ). We would reject H0 : θ = 0 in favor of H1 : θ = θ1 >

0 if maxv L(v, 0)/ maxv L(v, θ1) is sufficiently small. Likewise, we would reject
H0 : θ = 1 against H1 : θ = θ1 < 1 if maxv L(v, 1)/ maxv L(v, θ1) is sufficiently
small. If these tests fail, then a GAM maybe a better fit to the data.

There is an alternative, perhaps simpler, way of presenting the GAM by using the
following transformation. For all j ∈ N , we let ṽj = vj −wj and ṽ0 = v0 +W(N).
For S ⊆ N , let Ṽ (S) = ∑

j∈S ṽj . With this notation, the selection probabilities
under the GAM given in (4.4) can equivalently be written as

πj (S) = vj

ṽ0 + Ṽ (S)
∀ j ∈ S and π0(S) = 1 −

∑

j∈S

πj (S).

The form of the selection probability above is similar to the one under the
BAM given in (4.2). This similarity becomes useful when extending assortment
optimization results for the BAM to the GAM.

4.5.1 Independence of Irrelevant Alternatives

A close inspection of the selection probabilities under the BAM and GAM reveals
that if we add a new product to an offered subset, then the purchase probability of
all offered products decreases by the same relative amount. In particular, for any set
S ⊆ N and product j, i ∈ S and k ∈ S̄, the selection probabilities under the BAM
and GAM satisfy

πj (S)

πj (S ∪ {k}) = πi(S)

πi(S ∪ {k}) .

The expression on the left can be interpreted as the relative decrease in the
purchase probability of product j when we add product k to the offered set, whereas
the expression on the right can be interpreted as the relative decrease in the purchase
probability of product i when we add product k to the offered set. This situation
is referred to as the independence of irrelevant alternatives (IIA) property. It can
equivalently be stated as the ratio πi(S)/πj (S) is independent of the set S containing
both products i and j . For the BAM and the GAM, this ratio is vi/vj .

Intuitively, the IIA property should not hold when k cannibalizes the demand
for products j and i to different extents. To see the negative consequences that the
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IIA can have on the BAM, we use the well-known red bus, blue bus paradox. In
this paradox, a person has a choice between driving a car and taking either a red
or a blue bus. It is implicitly assumed that both buses have ample capacity and
depart at the same time. Let vc represent the attraction value of driving a car and
let vb represent the attraction value of riding the red bus. Under the BAM with
v0 = 0, the probability of driving, when the choice set is between driving and riding
the red bus, is vc/(vc + vb). Adding a blue bus with attraction value v′

b drops the
probability of driving to vc/(vc + vb + v′

b). This drop has been widely criticized
because the addition of an equally attractive blue bus in addition to the red bus
should not influence the probability of driving to the extent it does under the BAM.

While the GAM also suffers from the IIA property, it can better handle the blue
bus, red bus paradox. Indeed, by setting wb = v′

b, the probability of driving remains
unchanged by the introduction of the blue bus under the GAM as long as v′

b ≤ vb.
More generally, the probability of driving can be modeled as vc/(vc + max(vb, v

′
b))

as driving competes with the more attractive of the two buses. We can fit this into
the GAM framework by setting vb ← max(vb, v

′
b) and wb ← min(vb, v

′
b). A

more common fix for the IIA property is to use the nested logit model, which we
describe next.

4.6 Nested Logit Model

In the nested logit (NL) model, the products are organized into nests such that the
products in the same nest are regarded as closer substitutes of each other relative
to the products in different nests. Under the NL model, the selection process of a
consumer proceeds in two stages. First, the consumer selects either one of the nests
or decides to leave without making a purchase. Second, if the consumer selects
one of the nests, then the consumer chooses one of the products offered in this
nest. To formulate the NL model, we use M := {1, . . . , m} to denote the set of
nests. For notational brevity, we assume that the number of products in each nest
is the same and we use N to denote the set of products available in each nest. It
is straightforward to generalize our formulation to the case where different nests
have different numbers of products. We use Si ⊆ N to denote the set of products
offered in nest i. Therefore, the sets of products offered over all nests are given by
{S1, . . . , Sm}. The attraction value of product j in nest i is given by vij . Under the
NL model, if a consumer has already decided to make a purchase in nest i and the
set Si ⊆ N of products is offered in this nest, then the consumer selects product
j ∈ Si with probability

qj |i (Si) := vij

Vi(Si)
,

where Vi(Si) := ∑
j∈Si

vij . On the other hand, each nest i has a dissimilarity
parameter γi ∈ [0, 1]. The parameter γi is a measure of how easily the products
in nest i substitute for each other. In this case, if the sets of products offered over all
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nests are given by {S1, . . . , Sm}, then a consumer chooses nest i with probability

Qi(S1, . . . , Sm) := Vi(Si)
γi

v0 + ∑
l∈M Vl(Sl)γl

,

where v0 denotes the attraction value of the no-purchase alternative. Thus, if we
offer the sets of products {S1, . . . , Sm}, then the selection probability of product j

in nest i is given by

Qi(S1, . . . , Sm) qj |i (Si) = Vi(Si)
γi

v0 + ∑
l∈M Vl(Sl)γl

vij

Vi(Si)
.

In Sect. 4.4, we discuss that the MNL model can be interpreted as a RUM, where
a consumer associates random utilities with the options and chooses the option
providing the largest utility. The NL model has the same kind of a random utility
interpretation. In particular, assume that a consumer associates the utility Uij =
uij +εij with product j in nest i, where uij and εij are respectively the deterministic
and random utility components. We assume that ε = {εij : i ∈ M, j ∈ N} has a
type of generalized extreme value distribution and the joint distribution function for
ε is given by

F(x; γ ) = exp

⎛

⎝−
∑

i∈M

⎛

⎝
∑

j∈N

exp(−xij /γi)

⎞

⎠

γi
⎞

⎠ ,

where we use x and γ to denote the vectors {xij : i ∈ M, j ∈ N} and {γi : i ∈ M}.
With the generalized extreme value distribution above, the marginal distribution of
εij is Gumbel and has the form (4.3). For two distinct nests l, k ∈ M , the random
utilities εij and εlk are independent of each other, but for a given nest i, the random
utilities εij and εik are positively correlated. The parameter 1 − γi measures the
degree of correlation between the utilities in nest i. If the random utilities have this
form of correlated generalized extreme value distribution and consumers choose
the product that provides the largest utility, then the selection probabilities under
the corresponding RUM have the same form as the selection probabilities under the
nested logit model, when the attraction values are vij = euij /γi for all i ∈ M , j ∈ N .

The RUM interpretation of the NL model explains why products in the same
nest are closer substitutes of each other. If two products are in the same nest, then
their utilities are positively correlated. Thus, if a consumer associates a high utility
with product j in nest i, then this consumer is also likely to associate a high utility
with product k in nest i. In this case, if product j is not available but product k

is available, then the consumer is likely to substitute product k for product j . As
γi approaches to zero, the utilities of the products in the same nest become more
positively correlated, so they become closer substitutes. When γi = 1 for all i ∈ M ,
the utilities of the products are uncorrelated and the NL model reduces to the MNL
model. In some settings, the NL model has been used with dissimilarity parameters
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{γi : i ∈ M} exceeding one. This form of the NL model does not necessarily
have a random utility interpretation. However, when one estimates the parameters
of the NL model from the data, it is conceivable to end up with estimates of the
dissimilarity parameters exceeding one that perform well both with training and
testing data. Consequently, models with γi > 1 are often fit in practice even if they
lose their RUM interpretation.

One of the attractive features of the BAM, GAM, and NL model is that the
assortment optimization problem formulated in (4.1) is tractable when consumers
choose according to one of these choice models. In the later chapters, we show how
to solve problem (4.1) under these choice models.

4.7 Mixtures of Basic Attraction Models

One option to add richness to the BAM is to consider a version of BAM with
multiple consumer segments. This adds heterogeneity in tastes. In particular, we
assume that there are multiple consumer types and we use G to denote the set of all
possible consumer types. Customers of type g associate the attraction value v

g
j with

product j and the attraction value v
g

0 with the option of not making a purchase. An
arriving consumer is of type g with probability αg . In this case, if we offer the set S

of products, then the selection probability for product j ∈ S is

πj (S) =
∑

g∈G

αg
v

g
j

v
g

0 + ∑
i∈S v

g
i

∀ j ∈ S.

The choice model above is referred to as a mixture of BAMs. It can be shown that
any discrete choice model that arises from a RUM can be approximated to any
degree of accuracy by a mixture of BAM’s. This result indicates that the mixture
of BAM’s can be quite flexible in modeling a variety of consumer choice patterns.
However, as we will see in the next chapter, the mixture of BAMs leads to difficulties
in assortment optimization when we try to find a revenue maximizing set of products
to offer to consumers. In Sect. 4.10 we describe an alternative choice model that
can provide a good approximation to the mixture of BAM’s, while keeping the
corresponding assortment optimization problem tractable.

4.8 The Exponomial Model

In the exponomial model, the utility of alternative i is Ui = ui + εi for i ∈ N+,
where the εi’s are independent, mean zero random variables of the form εi = θ − τi

and τi is an exponential random variable with mean θ . Suppose that a subset S ⊆ N

is offered, the cardinality of S+ is m, and that the products in S+ are sorted in
increasing order of ui . Let {1, . . . , m} be the label of the products in S+ under this
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sorting. Let G(0) = 0, and

G(i) := exp(−∑m
j=i (uj − ui)/θ)

m − i + 1
for i ∈ {1, . . . , m}.

Then, the choice probabilities are given as follows:

πi(S+) = G(i) −
i−1∑

j=1

G(j)

m − i
i ∈ {1, . . . , m},

where sums over empty sets are assumed to be zero. Notice that in this model,
the no-purchase alternative is one of the elements in {1, . . . , m}. On the surface,
the exponomial model seems difficult to work with, but on the positive side the
parameters are easy to estimate.

4.9 Random Consideration Set Model

The random consideration set (RCS) model is characterized by a strict preference
order ≺ on N , and by a vector λ of positive attention probabilities. We assume
without loss of generality that the products are labeled so that 1 ≺ 2 ≺ . . . ≺ n.
Then for any subset S ⊆ N , the choice probability of product i is

πi(S) = λi

∏

j>i,j∈S

(1 − λj ) ∀ i ∈ S, (4.5)

with πi(S) = 0 if i /∈ S. The interpretation of the choice probability above is that a
consumer forms a consideration set C(S) by independently including each product
i in her consideration set with probability λi . She then selects the most preferable
available product in her consideration set. Thus, for a consumer to purchase product
i, product i should be in her consideration set and all offered products that are
preferred to product i should not be in her consideration set. In other words, i ∈ S

is chosen if and only if i is the highest ranked product in the random consideration
set C(S). The extreme case λj = 1 for all j ∈ N corresponds to the MUM under
a strict preference order. This case corresponds to having πi(S) = 1 if and only if
i > j for all j ∈ S.

The RCS model assumes implicitly that λ0 = 1 and that consumers pay
no attention to products that are ranked below the no-purchase alternative, so
consumers select the no-purchase alternative among assortments S ⊆ N only from
inattention to the alternatives in the assortment. Indeed,

π0(S) = λ0

∏

j∈S

(1 − λj ) =
∏

j∈S

(1 − λj ) > 0,

if and only if all the products j ∈ S have inattention probabilities 1 − λj > 0.
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Product cannibalization is asymmetric in this model, as the introduction of
product i to an assortment S cannibalizes the demand of products j ∈ S only if
j < i. This can be seeing by noting that πj (S ∪ {i}) = πj (S) if i < j , while
πj (S ∪ {i}) = πj (S)(1 − λi) if i > j . In words, demand for a product can only be
cannibalized by a product higher up in the preference ordering. The cannibalization
asymmetry exhibited by the RCS model is an important feature that is difficult to
capture by other choice models. Thus, the RCS model is particularly useful when
there is evidence of cannibalization asymmetry. It turns out that the RCS model is a
special case of the Markov chain choice model presented next.

4.10 Markov Chain Choice Model

A random utility model can be viewed as a probability distribution over all
preference lists, or permutations, over N+ = N ∪{0}. A permutation σ is a bijection
from N+ → N+ resulting in the preference ordering σ(1) > σ(2) > . . . >

σ(n + 1). Each permutation σ of N+ has a certain probability, say P(σ ) ≥ 0, with∑
σ P(σ ) = 1. The probability that consumers prefer product i when the full set of

options N is offered is given by

λi := πi(N) =
∑

σ

P{σ(1) = i}, ∀ i ∈ N+, (4.6)

where σ() is the product with rank  in the permutation σ . In words, the choice
probability πi(N) is obtained by adding over all of those permutations that have
product i in the first position. We refer to the λi as the first choice probability of
product i ∈ N , as it is the probability of selecting product i when the entire set of
products N is offered. Clearly,

∑
i∈N+ λi = 1.

If product i is not available, then consumers whose first choice is i substitute to
product j �= i with probability

ρij =
∑

σ

P{σ(2) = j | σ(1) = i} ∀ i �= j, i ∈ N, j ∈ N+.

In words, ρij is the conditional probability that a consumer whose first choice is
i ∈ N will have j ∈ N+ as its second choice. Because the no-purchase alternative
is always available, we set ρ0,j = 0 for all j ∈ N , and ρ0,0 = 1. Notice that∑

j∈N+ ρij = 1 for all i ∈ N+.
Assuming that we know λi = πi(N) and πi(N \ {j}) for all i, j ∈ N , we can

compute the substitution probabilities using the formula

ρij = πj (N \ {i}) − πj (N)

πi(N)
∀ i �= j, i ∈ N, j ∈ N+.
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If we knew the distribution P(σ ) over all permutations, we could compute πi(S)

by modifying (4.6) so that the sum includes all permutations where i appears before
any other element in S+ = S∪{0}. This is a lot of work, even if we knew P(σ ) for all
σ . Suppose instead, that we try to approximate πi(S) based only on the information
contained in λ = {λi : i ∈ N} and ρ = {ρij : i, j ∈ N}. To do this we need
to make an assumption about what happens if a consumer does not find her first
choice, say i /∈ S, and transitions to some j ∈ N+. If the transition is to 0, then
the consumer will leave the system without purchase. If the transition is to j ∈ S,
then the consumer will purchase product j as this is her second choice after i. When
j ∈ S̄ we make the Markovian assumption that the consumer will continue evolving
according to a Markov chain as if her first choice was product j . She would then
transition to product k with probability ρjk until she either transitions to a product
in S or to the no-purchase alternative. This choice process corresponds to the one
under the Markov chain (MC) choice model. Thus, the MC choice model can be
interpreted as a permutation-based choice model, but once a consumer considers a
particular product in her preference list, she loses track of the earlier products in the
preference list.

Example 4.1 If n = 2, then there are six permutations of N+ = {0, 1, 2}.
If the probabilities of observing these permutations are given by P(0, 1, 2) =
0.2,P(0, 2, 1) = 0.15, P(1, 2, 0) = 0.2, P(1, 0, 2) = 0.1, P(2, 1, 0) = 0.15, and
P(2, 0, 1) = 0.2, then λ1 = P(1, 2, 0) + P(1, 0, 2) = 0.3, λ2 = P(2, 1, 0) +
P(2, 0, 1) = 0.35, and λ0 = P(0, 1, 2) + P(0, 2, 1) = 0.35. Moreover, we
have ρ1,2 = P{σ(2) = 2|σ(1) = 1} = P(σ (1, 2, 0))/P{σ(1) = 1} = 2/3
and consequently ρ1,0 = 1/3. Similarly, ρ2,1 = P{σ(2) = 1|σ(1) = 2} =
P(σ (2, 1, 0))/P{σ(1) = 2} = 0.15/0.3 = 1/2, so ρ2,0 = 1/2. The full specification
of the MC choice model is given by λ = (0.3, 0.35, 0.35) and

ρ =
⎛

⎝
1 0 0

1/3 0 2/3
1/2 1/2 0

⎞

⎠ .

Clearly π2({2}) = P(1, 2, 0)+P(2, 1, 0)+P(2, 0, 1) = 0.2+0.15+0.2 = 0.55 as
these are the three permutations where 2 is preferred to 0. However, this calculation
requires the knowledge of the distribution among permutations. We can estimate
π2({2}) from λ and ρ as follows. With probability λ1 = 0.3 consumers prefer
product 1 and among those 2/3 will transition to product 2. In addition, there
is a λ2 = 0.35 probability that consumers directly prefer product 2. Then, our
estimate of π2({2}) is given by π̂2({2}) = 0.3 × (2/3) + 0.35 = 0.55 which is
exactly π2({2}). Similarly, we can compute π1({1}) = P(1, 2, 0) + P(1, 0, 2) +
P(2, 1, 0) = 0.2 + 0.1 + 0.15 = 0.45, while the MC approximation results in
π̂1({1}) = 0.3 + 0.35 × (1/2) = 0.475.

It is possible to write a system of equations to describe the selection probabilities
under the MC choice model. We will denote by φj (S) the probability that a
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consumer considers product j �∈ S during the course of her choice process but does
not purchase because j /∈ S. By definition, φj (S) = 0 for all j ∈ S. The quantities
πj (S) for j ∈ S and φj (S) for j ∈ S̄ are related by the system of equations

πj (S) = λj +
∑

i∈S̄

φi(S) ρij ∀ j ∈ S (4.7)

φj (S) = λj +
∑

i∈S̄

φi(S) ρij ∀ j ∈ S̄. (4.8)

The system of equations in (4.7) and (4.8) above can be interpreted as balance equa-
tions and are simply a reinterpretation of the steady-state probabilities. Considering
the first set of equations, a consumer ends up purchasing product j ∈ S either as
a first choice with probability λj , or by visiting some product i ∈ S̄ during the
course of her choice process, not purchasing this product because it is not available,
and by transitioning to product j . Similarly, for j /∈ S, a consumer may consider
product j as she enters the system, with probability λj , or after transitioning to j

from other product i ∈ S̄. The sets of equations in (4.7) and (4.8) consist of |N |
equations, which we can solve to obtain the |N | probabilities {πj (S) : j ∈ S} and
{φj (S) : j ∈ S̄}, with π0(S) = 1 − ∑

j∈S πj (S).
Consider the BAM with parameters v0, v1, . . . , vn, normalized so that∑
i∈N+ vi = 1, then

λi = vi, ∀i ∈ N+, and ρij = vj /(1 − vi) ∀j �= i, i ∈ N, j ∈ N+. (4.9)

In this case, the solution of the system of equations in (4.7)–(4.8) is πi(S) =
vi/(v0 + V (S)) for all i ∈ S and φi(S) = vi(1 − vi)/(v0 + V (S)) for all i /∈ S.
This solution for πi(S) is exactly what the BAM would predict. Consequently, in
the case of the BAM, all of the information about the choice model is contained in
(λ, ρ). It can be shown that the GAM is also a special case of a MC choice model
with a rank-one transition matrix, and the RCS model is a special case of the MC
choice model with a rank-one triangular transition matrix. In a later chapter we will
argue that the linear demand model d(p) = a − Bp, with d(p) ≥ 0 can also be
viewed as MC choice model when only products in S are allowed.

The MC choice model can also be used to approximate the mixture of BAM’s,
where consumers of type g ∈ G choose according to a BAM with nonnegative
attraction values {vg

j : j ∈ N+} normalized so v
g

0 + ∑
j∈N v

g
j = 1 for all g ∈ G.

Consequently, the first choice and substitution probabilities λ
g
i and ρ

g
ij for type

g consumers are of the form (4.9). Assume that a consumer is of type g with
probability αg > 0, where we have

∑
g∈G αg = 1. The formulas for the first choice

and substitution probabilities λi and ρij for the mixed model are given by

λi =
∑

g∈G

αg v
g
i , i ∈ N+ and ρij =

∑

g∈G

αg|iρg
ij j �= i, i ∈ N, j ∈ N+,
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where

αg|i := αgv
g
i∑

c∈G αc vc
i

∀ g ∈ G, ∀ i ∈ N

is the conditional probability that a consumer whose first choice is i is of type g.
On the surface, the MC choice model seems difficult to work with because even

computing the selection probabilities requires solving a system of equations. In the
next chapter, we will demonstrate that the revenue-maximizing set of products to
offer to consumers under this choice model can actually be computed in an efficient
manner. Moreover, the MC choice model can be used to approximate any discrete
choice model. For example, the model can be fitted by obtaining unbiased guess-
timates of the transition probabilities {ρij : i, j ∈ N} from a group of managers,
with those estimates perhaps averaged with weights that reflect experience in
doing such estimations. Alternatively, if there is a metric for the distance between
products, then the transition probabilities can be fitted as a decaying function of that
metric. More precisely, if δij is the distance between products i and j , then ρij can
be modeled as ρij = e−β δij for some β > 0, which can be calibrated by making
sure that 1 − ∑

j∈N\{i} e−β δij matches the probability of losing the consumer to the
no-purchase alternative. The flexibility of the MC choice model together with the
ease with which it is possible to find a revenue- or profit-maximizing assortment
makes it a useful tool both as a choice model and as a mechanism to find optimal or
near-optimal assortments.

Empirical evidence suggests that different choice models can be effective in
fitting data. A parsimonious model such as the BAM can be too inflexible to capture
choice behavior accurately, while a mixture of BAM’s may be too flexible and may
suffer from large errors on test data. The MC choice model, particularly the rank-
one versions like the GAM, and triangular versions such as the RCS model have a
good mixture of flexibility while still being fairly parsimonious.

4.11 Bounds and Approximate Choice Probabilities

Consider a random utility model where Ui = ui +εi for all i ∈ N+, E[εi] = 0 for all
i ∈ N+, and ε = (ε0, ε1, . . . , εn) follows an absolutely continuous joint distribution
that is independent of ui’s. For any S ⊆ N , let

G(u, S) := E[max
i∈S+

Ui]

be the expected surplus for the consumer when the offered assortment is S. The
Williams-Daly-Zachary theorem

πi(S) = ∂G(u, S)

∂ui

= P(Ui ≥ Uj ,∀j �= i, j ∈ S+)

gives the choice probabilities for al i ∈ S+.
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With the exception of a few models like the ones discussed in this chapter, com-
puting G(u, S) and πi(S) i ∈ S+ can be quite difficult. In what follows, we obtain a
bound on G(u, S) and an approximation to πi(S) that is easy to compute even if the
εi’s are not independent. These approximations are fairly accurate and quite useful
for cases where there are no closed-form solutions. The approximations themselves
can be considered bona fide choice models as the examples below will show.

Let z be any constant and define

G(u, z, S) := z +
∑

i∈S+
E[(Ui − z)+].

It is easy to see that G(u, z, S) is an upper bound on G(u, S) for all z. Let

Ḡ(u, S) := min
z

G(u, z, S).

Since G(u, z, S) is convex in z, the first order optimality condition is also sufficient
and is given by:

∑

i∈S+
P(Ui ≥ z) = 1.

The root of this equation, say z∗(S), exists given our continuity assumptions.
Consequently, Ḡ(u, S) = G(u, z∗(S), S).

We can approximate πi(S) by the gradient of Ḡ(u, S), which we denote by π̄ .
Clearly

π̄i(S) = ∂Ḡ(u, S)

∂ui

= P(Ui ≥ z∗(S)) i ∈ S+.

Notice that π̄i(S) depends only on the marginal distribution of εi and z∗(S), which
makes π̄i(S) much easier to compute than πi(S).

Example 4.2 Suppose Ui = ui + εi and that εi = τi − θ for all i ∈ N+, where
the τi’s are exponential random variables with mean θ . Let vi := exp(ui/θ) for all
i ∈ N+. It is easy to see that in this setting,

π̄i(S) = vi

v0 + V (S)
∀ i ∈ S+,

resulting in a BAM. Notice that the independence of the εi’s was not required.

Example 4.3 Let Ui := ui + εi and εi := θ − τi , where the τi’s are exponential
with mean θ . Let vi := exp(−ui/θ) for all i ∈ N+ (notice the negative sign in the
exponent). Suppose S ⊆ N has the following property

|S| max
i∈S+

vi ≤ v0 + V (S) ∀ i ∈ S+, (4.10)
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then a closed-form approximation for the exponomial model described in Sect. 4.8
is given by:

π̄i(S) = v0 + ∑
j∈S(vj − vi)

v0 + V (S)
∀ i ∈ S+, (4.11)

where again the independence of the εis was not required.
Condition (4.10) guarantees that all of the probabilities are non-negative. Oth-

erwise the product with the largest vi, i ∈ S+ needs to be dropped. By repeatedly
removing the product with the largest vi from S+, we eventually obtain a new set
S satisfying condition (4.10) so that (4.11) is a closed-form approximation to the
exponomial model. Notice that in the process of removing products, it is possible
that product 0 is removed and in this case the term v0 must be dropped from (4.11).

4.12 Choice Models and Retailing

Most of the applications of discrete choice models are to situations where the con-
sumer would normally select a single alternative. Examples include transportation
and lodging. As choice modeling and assortment optimization are finding their
way into the retailing and e-commerce, the assumption of purchasing at most
one product needs to be revisited as people may end up buying more than one
pair of shoes even they go shopping with the expectation of buying a single pair.
A reasonable model in the retail setting may be such that a customer selects
non-negative thresholds zi, i ∈ S, with the idea of buying all products whose
utilities exceed their corresponding thresholds. Under this setting, the consumer
may wish to maximize

∑
i∈S E[Ui |Ui ≥ zi]P(Ui ≥ zi) subject to a bound, say∑

i∈S P(Ui ≥ zi) ≤ κ , on the expected number of products to be purchased. We call
this the threshold utility model (TUM). The upper bound Ḡ(u, S) on the consumer
surplus G(u, S), corresponds to the optimal selection of a uniform threshold (zi = z

for all i ∈ S) for the case κ = 1 when the non-negativity of the thresholds is
relaxed.

We can interpret the model in two different ways. First, after the consumer
observes the utilities of the products, the consumer purchases all the products
whose utility exceeds z∗(S). The number of purchased products is random, and
its expectation is κ . In this case Ḡ(u, S) measures directly the expected surplus.
Alternatively, we can view the TUM as a consideration set model, where the
consumer first observes the products i ∈ S with Ui ≥ z∗(S), and then selects
the one with the largest utility. If the set is empty, then the consumer selects the
no-purchase alternative. It can be shown that under mild conditions the expected
consumer surplus under this consideration set model is at least e−κ of G(u, S).
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4.13 End of Chapter Questions

1. Show that the IDM is a RUM by modeling it as a mixture of BAM’s.
2. Show that the BAM and the GAM can be represented as rank-one MC choice

models.
3. Give an interpretation of the general rank-one MC choice model.
4. Show that the random consideration set model can be represented as a MC choice

model with a rank-one triangular transition matrix.
5. Consider a nested logit model with two nests. The assortment for nest 1, say S1,

must be selected from the set N1 = {1, 2} and the assortment for nest two, say S2,
must be selected from the set N2 = {3, 4}. Suppose that dissimilarity parameters
of the nests are γ1 = 0.8 and γ2 = 0.5. Finally, assume that v0 = 1, v1 =
0.5, v2 = 1.2, v3 = 0.8, and v4 = 0.5.

(a) Compute the first choice probabilities for all j = 0, 1 . . . , 4.
(b) Compute the transition probabilities ρij for all i �= j , i ∈ N = N1 ∪ N2 and

j ∈ N+ = N ∪ {0}.
(c) Use the MC choice model to compute the probability that product 1 is

selected if S1 = {1} and S2 = {3, 4} and compare this to the actual
probabilities from the nested logit model.

(d) Repeat Part c for S2 = {3} and for S2 = {4}.
6. Compute G(u, S) for the MNL model and verify that π(S) is the gradient of

G(u, S) with respect to u.
7. Consider a Probit model where Ui = ui + εi where the εi’s are independent,

mean zero normal random variables. Suppose that N = {1, 2}, u = (0, 1) and
the εi’s have standard deviation equal to 2. Use simulation to compute πi(N)

for i ∈ N+ and then use the approximation of Sect. 4.11 to compute π̄i(N) for
i ∈ N+. Compare your results.

8. Let Ui = ui + εi for all i ∈ N+. Suppose there is a partition of the products
N = ∪j∈MNj so that for each i ∈ Nj , εi is an independent exponential with
parameter θj . In addition, suppose that ε0 is exponential with parameter 1. Let
vi = exp(ui/θj ) for all i ∈ Nj , and v0 = exp(u0). Suppose that an assortment
S = ∪j∈MSj is offered where Sj ⊆ Nj for each j . Show that there is a z∗ such
that

∑

j∈M

Vj (Sj ) exp(−z/θj ) + v0 exp(−z) = 1

where Vj (Sj ) = ∑
i∈Sj

vi . Let γj = exp(1 − z∗/θj ), and show that

π̄i(S) = vi

Vi(Sj )

γjVi(Sj )

v0 + ∑
k∈M γjVk(Sk)

∀ i ∈ Sj , ∀ j ∈ M.
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9. Consider the choice model (4.11) under assumption (4.10). Assume that the v’s
are normalized so that v0 +V (N) = 1. Show that the MC approximation is given
by λi = πi(N) = 1 − nvi for all i ∈ N+ and ρij = vj /(1 − vi) for all i ∈ N ,
j ∈ N+, with ρ0,0 = 1. Show that the approximation is exact and therefore (4.11)
is a special case of the MC choice model.

4.14 Bibliographic Remarks

The BAM was first proposed by Luce (1959), where the author postulated the two
choice axioms discussed in this chapter. Luce (1977) also provides a discussion
of the same axioms. The classical reference for the MNL model is McFadden
(1980). The equivalence between random utility models and choice models that
result from probability distributions over preference lists is due to Block (1974).
The GAM was introduced by Gallego et al. (2015) by slightly modifying the Luce
axioms. Early references on the NL model date back to Domencich and McFadden
(1975) and McFadden (1978). Huh and Li (2015) study a multi-stage version of
the NL model, where the products are divided into nests, the nests are divided into
subsets and so on. Koppelman and Wen (2000) examine the properties of the paired
combinatorial logit (PCL) model, which is a version of the NL model. In the PCL
model, each nest has at most two products, but a product can occur in multiple
nests. Wen and Koppelman (2001) study the generalized NL model, which includes
the NL and PCL models. McFadden and Train (2000) show that any RUM model
can be approximated to any degree of accuracy by using a mixture of BAM’s. The
generalized NL model is a special case of a substantially broader class of choice
models, called the generalized extreme value models, which are discussed in Train
(2002). Wang (2018a) studies a variant of the BAM, where the attraction value of a
product can depend on the size of the market it garners.

Manzini and Mariotti (2014) discuss maximum random consideration set models.
Blanchet et al. (2016) introduce the MC choice model. The MC choice model has
been shown to be a special case of the RUM by Berbeglia (2016). The exponomial
model was first introduced by Daganzo (1979) and further analyzed by Alptekinoglu
and Semple (2016). Economists have been active developing rational inattention
models, where consumers have a prior on the utility of each product and can reduce
their uncertainty at a cost that is proportional to the reduction in entropy between the
prior and the posterior. The resulting model has some semblance to the mixture of
BAM’s. The reader is referred to Caplin and Dean (2014) and Matejka and McKay
(2015) for further information about rational inattention models. Ben-Akiva and
Lerman (1985) give a thorough discussion of classical discrete choice models. The
paper by van Ryzin (2005) discusses how discrete choice models can replace relying
on the assumption that each consumer arrives with a fixed product in mind.

Huettner et al. (2018) study choice models where the consumers make a rational
choice on which products to focus. Jagabathula and Rusmevichientong (2019)
develop approaches to understand to what extent the choices of the consumers in the
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data can be explained by using the random utility maximization principle. Natarajan
et al. (2009), Mishra et al. (2012, 2014), and Ahipasaoglu et al. (2019) build choice
models by assuming that moment or marginal distribution information about the
utilities are available and they estimate the joint utility distribution as the one that
maximizes the expected utility of the consumer from her most preferred option.
The authors show that this estimation problem can be solved efficiently. Feng et al.
(2017, 2018) show that other arguments can be used to construct choice models
and some of these arguments can yield broader classes of choice models. Berbeglia
(2018) presents the generalized stochastic preference model that contains interesting
examples of discrete choice models that are not RUMs. The upper bound Ḡ(u, S) is
based on the well-known Lai and Robbins (1976) bound for maximally dependent
random variables, while the interpretation of the bound in the retail setting is due to
Gallego and Wang (2019).

While estimation is not covered in detailed in this book, it is of crucial importance
to the implementation of good revenue management solutions. Important papers
on estimation of choice models include Berbeglia et al. (2018), Farias et al.
(2013), Jagabathula and Vulcano (2018), Jagabathula et al. (2018), Kok and Fisher
(2007), Martinez-de-Albeniz and Saez-de-Tejada (2014), Phillips et al. (2015,
2016), Simsek and Topaloglu (2018), van Ryzin and Vulcano (2015), and Vulcano
and van Ryzin (2012). Some of these papers are based on adaptations of the EM
method for parametric models, while others attempt to fit non-parametric models
which have important advantages in capturing complex behavior that may be at
odds with the parametric models covered in this book.
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