
Chapter 3
Overbooking

3.1 Introduction

Early on, many airlines adopted the policy of not penalizing booked customers for
canceling reservations at any time before departure. Some would not even penalize
those that did not show up for booked flights. In essence, an airline ticket was “like
money” since it could be used at full face value for a future flight or redeemed
for cash at any future date. In the 1960s, no-shows were becoming a problem for
airlines who found that flights that were fully booked were departing with many
empty seats. In response, the airlines began to overbook as a means of hedging
against no-shows. If a flight had more passengers show up than there were seats
available, then the airlines would bump some passengers. The bumped passengers
would be re-booked on a later flight. In addition, bumped passengers would be given
other compensation, often a meal at the airport and a discount certificate applicable
to future travel. The cost to the airline of bumping a passenger is called the denied
boarding cost. The denied boarding cost would include the cost of putting a bumped
passenger on another flight to her destination, the cost of any direct compensation
to the bumped passenger, the cost of the meals or lodging that the airline provides to
each bumped passenger, and the cost of “ill will” incurred by bumping the passenger.
These costs can be different for each flight. For example, a passenger bumped from
the last flight of the day will be provided with a hotel room at the airline’s expense.

While unpopular with passengers, overbooking was effective at increasing load
factors and revenues. This raised the issue of determining the right booking limit for
a flight. When overbooking is allowed, the booking limit can exceed the capacity
on the flight, allowing the airline to book more passengers than the capacity. If
the booking limit is set too low, there will be lots of empty seats. On the other
hand, if the booking limit is set too high, the benefits of filling the aircraft would
be overwhelmed by the denied board costs paid. Determining the optimal booking

© Springer Science+Business Media, LLC, part of Springer Nature 2019
G. Gallego, H. Topaloglu, Revenue Management and Pricing Analytics,
International Series in Operations Research & Management Science 279,
https://doi.org/10.1007/978-1-4939-9606-3_3

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9606-3_3&domain=pdf
https://doi.org/10.1007/978-1-4939-9606-3_3

84 3 Overbooking

limit was one of the first revenue management problem to be successfully analyzed
utilizing the methods of operations research.

Airlines significantly changed their overbooking policies over the years. For
example, airlines instituted auctions as a mechanism for identifying people who
would be willing to forego their seat on a flight in return for compensation in the
form of a future flight discount. This practice proved to be popular with passengers
and dramatically reduced the number of involuntary denied boardings. Airlines
now also sell non-refundable or partially refundable tickets, particularly at lower
costs. Both of these developments have implications for the analysis of overbooking
policies.

In this chapter, we study a variety of overbooking models. These models can
be viewed as the extensions of the models considered throughout the book to deal
with overbooking. In Sect. 3.2, we begin with a static, overbooking model with a
single fare class. We characterize the optimal booking limit. In Sect. 3.3, we move
on to an overbooking model with multiple fare classes over a single flight leg and
characterize the structure of the optimal policy. In Sect. 3.4, we conclude the chapter
with overbooking models over a network of flight legs.

3.2 Overbooking for a Single Fare Class

Suppose that a flight has capacity c, the unconstrained demand at a single fare p >

0 is D. We assume that passengers who do not show up are given a full refund,
and that the unit cost for denied boarding is θ . Let b be the booking limit. Then
N := min(D, b) is the number of bookings. The goal is to find a booking limit
that maximizes the expected profit, which is given by the difference between the
expected revenue from sold seats and the expected cost of denied boardings.

Let Z(N) := Z(min(D, b)) denote the number of passengers that show up for
the flight. We assume that each passenger shows up for the flight with probability
q independent of everyone else, so Z(N) is a conditional binomial random variable
with parameters (N, q). We can express the expected profit as a function of the
booking limit as

R(b) := pE[Z(min(D, b))] − θ E[Z(min(D, b)) − c]+]. (3.1)

An optimal booking limit, say b∗, is the largest maximizer of R(b). The next
proposition provides a formula for R(b + 1) − R(b) that shows that this quantity
is always non-negative when θ < p, and in this case, there is no need to impose a
booking limit. When θ > p, the quantity can change only from positive to negative,
so b∗ is the smallest b such that R(b + 1) − R(b) < 0.

3.3 Overbooking for Multiple Fare Classes 85

Proposition 3.1

R(b + 1) − R(b) = P{D ≥ b + 1} q (p − θ P{Z(b) ≥ c}).

b∗ = min
{
b ≥ 0 : P{Z(b) ≥ c} >

p

θ

}
. (3.2)

Formula (3.2) has some resemblance to Littlewood’s rule derived in Chap. 1.
The optimal booking limit given above may yield high booking limits and result

in large numbers of denied boardings. In fact, assuming that the demand quantities
are large enough that we always have min{D, b∗} = b∗, the formula for the optimal
booking limit given above implies that the fraction of flights with shows exceeding
capacity is roughly p/θ . When θ = 2 p, roughly half of the flights will have denied
boardings. This observation motivates the adoption of frequency-based policies by
many airlines, where airlines set a target frequency, say f , for the fraction of booked
passengers that would be denied boarding. Under this policy, the airlines would set
a booking limit as the largest integer b such that

E{[Z(min(D, b)) − c]+}
E{Z(min(D, b))} ≤ f.

In many cases, airlines use hybrid policies, where they calculate the booking limit
that maximizes the expected profit and the booking limit that limits the fraction of
passengers that are denied boarding, and use the smallest of the two booking limits.

3.3 Overbooking for Multiple Fare Classes

In this section, we present a model for a single flight with multiple fare classes
and overbooking. There are n fare classes indexed by 1, . . . , n. We assume that the
fare classes are ordered such that p1 ≥ p2 ≥ . . . ≥ pn and the demand from
different fare classes arrive sequentially in the low-before-high order. Throughout
this section, we make a number of simplifying assumptions to obtain a tractable
model. First, we ignore the cancellations and assume that there are only no-
shows. Furthermore, the no-show probability for all customers is the same and the
no-show decisions of the different customers are independent of each other. The
probability that a customer shows up for the flight does not depend on when she
booked the ticket. Finally, the refunds and the denied-service costs are the same for
all customers. These assumptions imply that the number of no-shows and the cost
of no-shows are only a function of the total number of reservations on hand. As
a result, we need to retain only a single state variable that keeps track of the total
number of reservations, which helps keep the dynamic programming formulation
tractable.

86 3 Overbooking

Among our assumptions, the most restrictive ones are perhaps the assumptions
that the no-show probability, the refunds, and the denied-service costs are the
same for all customers. In practice, cancellation options and penalties are often
linked to a particular class, so no-show rates and costs can vary significantly from
one class to the next. In certain cases, reservations from groups may be canceled
simultaneously, which makes the assumption of independent show-up decisions
somewhat unrealistic. There seems to be reasonable empirical evidence to support
the assumption that the show-up probabilities of the customers do not depend on
when they made their reservations.

As in previous section, the capacity on the flight is c. Each reservation shows
up with probability q. We use the random variable Z(y) to capture the number
of passengers that show up for the flight given that we have y reservations just
before the departure time. Thus, Z(y) is binomially distributed with parameters
(y, q). We ignore cancellations and assume that we do not give any refunds to the
passengers who do not show up, but we will shortly discuss how to relax both of
these assumptions. The cost of denying boarding to a reservation is θ . We use the
random variable Dj to capture the demand from fare class j . Our goal is to find a
policy to decide how much demand to accept from each class to maximize the total
expected profit, where the total expected profit is given by the difference between the
revenue from the accepted bookings and the penalty cost from the denied boardings.

For any j , we let Vj (y) to denote the optimal total expected revenue that can
be obtained from classes j, . . . , 1, given that we have y reservations on hand at
the beginning of stage j . Notice that instead of remaining capacity, we use the
number of reservations on hand as the state variable. At the beginning of stage j ,
we observe the demand from fare class j . Knowing the number of reservations, we
decide how many new requests to accept. After all of the n stages, a portion of the
reservations show up. If the number of reservations that show up exceed the capacity
available, then we incur the denied boarding cost. The sequence of events that we
use here is different from the one in Chap. 1, where we first choose the booking
limit, then accept as much demand as the booking limit allows. It turns out that
both of these sequence of events give rise to the same policy, and our goal is to
demonstrate an alternative dynamic programming formulation for the multiple class
revenue management problems. Using u to denote the portion of the demand that we
accept from a fare class and following the sequence of events that we just described,
the dynamic programming formulation of the problem is given by

Vj (y) = E

{
max

0≤u≤Dj

pj u + Vj−1(y + u)

}
, (3.3)

where we charge the denied boarding cost of the reservations that we cannot
accommodate on the flight through the boundary condition

V0(y) = −θ E{[Z(y) − c]+}. (3.4)

3.3 Overbooking for Multiple Fare Classes 87

In this section, we will show that the optimal policy has the following structure.
At each stage j , there exists a booking limit b∗

j such that it is optimal to bring
the total number of accepted reservations as close as possible to b∗

j after making
the decisions for class j . In the sequence of events for our dynamic program, we
observe the demand from fare class j first, then decide what portion of this demand
to accept. However, the structure of the optimal policy is such that we bring the
total number of accepted reservations as close as possible to some fixed number b∗

j

after making the decisions for fare class j . Thus, at the beginning of fare class j , we
can set the booking limit to b∗

j before we even observe the demand from fare class
j . This implies that assuming that we observe the demand before we decide what
portion to accept or setting a booking limit before we observe the demand result in
identical policies.

3.3.1 Optimal Booking Limits

Assume that the value functions {Vj (·) : j = 1, . . . , n} computed through the
dynamic program in (3.3) are concave. This implies that ΔVj (z) := Vj (z)−Vj (z−
1) is decreasing in z for all j .

Under this assumption, we show that the optimal policy can be characterized by a
booking limit b∗

j for each stage j , such that it is optimal to bring the total number of
reservations as close as possible to b∗

j after making the decisions for class j . Once
we show this result, we will verify that concavity of the value function.

Theorem 3.2 Assume that Vj−1(·) is concave, and let b∗
j be the maximizer of the

concave function pj z + Vj−1(z) over [0,∞]. Then,

b∗
j = min{z ≥ 0 : pj + ΔVj−1(z + 1) < 0}.

In this case, setting

u∗(y) =

⎧⎪⎪⎨
⎪⎪⎩

0 if b∗
j < y

b∗
j − y if y ≤ b∗

j ≤ y + Dj

Dj if b∗
j > y + Dj .

(3.5)

solves problem (3.3).

The next result confirms the concavity of the value functions.

Theorem 3.3 The value functions {Vj (·) : j = 1, . . . , n} computed through the
dynamic program in (3.3) are concave.

88 3 Overbooking

3.3.2 Class-Dependent No-Show Refunds

In the dynamic program in (3.3), we assume that if a passenger does not show up,
then we do not give any refund and the probability of showing up for all passengers
is the same. In practice, there are different restrictions that come along with different
classes. As a result, passengers with tickets for different classes get different refunds
when they do not show up and the probability of showing up is different for
different classes. Allowing different show-up probabilities for different fare classes
is difficult, because this extension requires using a high-dimensional state variable
that keeps track of the reservations for each fare class separately. However, we can
incorporate no-show refunds without too much difficulty and these no-show refunds
could be different for different classes.

Assume that customers of class j who do not show up at the departure time of the
flight are given a refund of hj that is strictly less than the revenue pj . We continue
using all of the assumptions in our earlier model. Since whether a customer does not
show up is completely independent of all other decisions and events in the system,
we can charge the expected refund at the time the reservation is accepted, instead of
the time of service. Thus, if we accept a reservation from a customer of class j , it
yields an expected revenue of pj −(1−q) hj . In this case, we can use pj −(1−q) hj

in place of pj in our earlier dynamic program.

3.3.3 Incorporating Cancellations

We can incorporate cancellations into our model, as long as the cancellation
probabilities for the different fare classes are the same. We use ρ to denote the
probability that a customer cancels her reservations at any stage. Given that we have
y reservations on hand, we use Z′(y) to denote the number of reservations that
we still have on hand after observing the cancellations at the current stage. Thus,
Z′(y) is binomially distributed with parameters (y, 1−ρ). In this case, the dynamic
programming formulation of the problem is given by

Vj (y) = E

{
max

0≤u≤Dj

pj u + Vj−1(Z
′(y + u))

}
,

with the same boundary condition as in (3.4).
Using an induction argument that is very similar to the one used earlier in this

section, we can show that the value functions {Vj (·) : j = 1, . . . , n} are concave. In
this case, the optimal policy can be characterized by one booking limit b∗

j for each
class j such that it is optimal to bring the number of reservations on hand as close
as possible to b∗

j after making the decisions for fare class j . The optimal booking
limit b∗

j for class j is the maximizer of the function pj y + Vj−1(Z
′(y)) over the

interval [0,∞]. Therefore, b∗
j can be computed as

b∗
j = min{y ≥ 0 : pj + ΔVj−1(Z

′(y + 1)) < 0}.

3.4 Overbooking over a Flight Network 89

3.4 Overbooking over a Flight Network

In this section, we give a dynamic programming formulation for the network
model with overbooking. Following this formulation, we provide a deterministic
linear programming approximation that is an upper bound on the optimal total
expected revenue. Furthermore, this linear program can be used to extract control
policies. Throughout this section, we use the independent demand model and adopt
a discrete time formulation. There are m resources in the network indexed by
M := {1, . . . , m}. We denote the vector of initial capacities by c = (c1, . . . , cm) ∈
Zm. There are T time periods in the selling horizon. We count the time periods
backwards. In particular, time period T corresponds to the beginning of the selling
horizon, whereas time period 1 is the last time period in the selling horizon. Time
period 0 corresponds to the departure time of the flights. We use a single index to
capture the ODF’s. The set of ODF’s in N := {1, . . . , n}. At time period t , we have
a request for ODF j with probability λtj . The fare for ODF j is pj . If we deny
boarding to customer with a ticket for ODF j , then we incur a penalty of θj . Let
aij = 1 if ODF j uses resource i, and aij = 0 if ODF j does not use resource
i. We allow both cancellations and no-shows. The probability that a reservation for
ODF j is retained from time period t to t − 1 is qtj . In other words, if we have a
reservation for ODF j at time period t , this reservation cancels by time period t − 1
with probability 1−qtj . Notice that qt1 is the probability that a reservation for ODF
j is retained from period 1 to period 0, which corresponds to the show probability of
a customer with a reservation for ODF j . The cancellation and no-show behavior of
each customer is independent of the others. Furthermore, the cancellation decisions
at different time periods are independent. Given that we have xj reservations for
itinerary j at time period t , we use Stj (xj) to denote the number of reservations that
we retain from time period t to t −1. Due to our assumptions, Stj (xj) has a binomial
distribution with parameters (xj , qtj). We use the vector St (x) = (Stj (xj))j∈N to
capture the vector of retained reservations.

For any time to go t , we use (t, x) to represent the state of the system, where
x = (x1, . . . , xn) captures the number of reservations on hand for each ODF. To
capture the decisions at any time period, we use the vector u = (u1, . . . , un), where
uj = 1 if accept a request for ODF j , and uj = 0 otherwise. In this case, using
ej ∈ �n+ to denote the unit vector with a one in the j -th component, the dynamic
programming formulation of the overbooking problem over a network is given by

V (t, x) = max
u∈{0,1}n

{ ∑
j∈N

λtj uj

{
pj + E{V (t − 1, St (x + ej))}

}

+
{

1 −
∑
j∈N

λtj uj

}
E{V (t, St (x))}

}
,

where the expectations involve the random variables St (x + ej) and St (x). Notice
that the capacities of the resources do not play a role in the dynamic program

90 3 Overbooking

above. Since we are allowed to overbook, the number of accepted reservations can
exceed the available capacities on the resources. Thus, the capacities come into play
when we compute the cost of denying boarding to the passengers that cannot be
accommodated on the flights in the boundary condition of the dynamic program. For
the boundary condition, we assume that the airline solves an optimization problem
to decide which passengers should be allowed boarding so that the total penalty of
denied boardings is minimized. (Our boundary condition is perhaps a bit optimistic
in the sense that it would be difficult to solve a centralized optimization problem to
decide which customers should be denied boarding.) Using the decision variable yj

to capture the number of reservations for ODF j that we deny booking, the boundary
condition of our dynamic program is given by

V (0, x) = − min
∑
j∈N

θj yj (3.6)

s.t.
∑
j∈N

aij [xj − yj] ≤ ci ∀ i ∈ M

yj ≤ xj ∀ j ∈ N

yj ∈ Z+ ∀ j ∈ N.

The objective function above minimizes the total cost of denied reservations. The
first constraint ensures that the reservations that remain after denied boardings can
be accommodated on the flights. The second constraint ensures that the number of
denied bookings cannot exceed the number of reservations for each ODF.

Solving the dynamic program above is difficult because the state variable is a
high-dimensional vector. Next, we give a tractable linear programming approxima-
tion that can be used to obtain an upper bound on the optimal total expected profit.

3.4.1 Linear Programming-Based Upper Bound on V (T, 0)

Since we start with no reservations on hand, the optimal total expected profit in
our overbooking problem is given by V (T , 0). We give a linear programming
approximation that can be used to obtain an upper bound on V (T , 0). We observe
that a reservation booked at time period t is retained until the departure time with
probability Qtj := qtj × qt−1,j × . . . × q1,j . Using the decision variable wtj to
capture the expected number of accepted reservations for ODF j at time period t

and yj to capture the number of reservations for ODF j that we deny boarding, we
consider the linear program

3.4 Overbooking over a Flight Network 91

V̄ (T , 0) := max
T∑

t=1

∑
j∈N

pj wtj −
∑
j∈N

θj yj (3.7)

s.t.
T∑

t=1

∑
j∈N

aij Qtj wtj −
∑
j∈N

aij yj ≤ ci ∀ i ∈ M

T∑
t=1

Qtj wtj − yj ≥ 0 ∀ j ∈ N

wtj ≤ λtj ∀ t = 1, . . . , T , j ∈ N

wtj , yj ≥ 0 ∀ t = 1, . . . , T , j ∈ N.

The objective function above accounts for the total expected profit, which is the
difference between the revenue from the accepted reservations and the penalty cost
of denied boardings. The expected number of accepted reservations for ODF j at
time period t is wtj . These reservations are retained until the end of the selling
horizon with probability Qtj . Therefore,

∑T
t=1 Qtj wtj is the total expected number

of reservations for ODF j retained until the departure time, which implies that∑T
t=1

∑
j∈N aij Qtj wtj corresponds to the total expected capacity consumption

of resource i by all the reservations that have been accepted over the selling
horizon. On the other hand,

∑
j∈N aij yj gives the capacity of resource i released

by the denied boardings. So, the first constraint ensures that the expected capacity
consumption for each resource, after considering the capacity released by denied
boardings, cannot exceed the capacity of the resource. The second constraint ensures
that the number of denied boardings for passengers with a ticket for ODF j does
not exceed the expected number of accepted reservations for ODF j . The third
constraint is a demand constraint, ensuring that the expected number accepted
reservations for ODF j at time period t does not exceed the expected demand for
the same ODF at the same time period.

In the next theorem, we show that the optimal objective value of problem (3.7)
is an upper bound on the optimal total expected profit. In contrast to our earlier
linear programming-based upper bounds, our proof technique here does not use
the Jensen’s inequality, because owing to cancellations and no-shows, the random
quantities would not appear on the right-hand side of a similar perfect hindsight
linear program.

Theorem 3.4 V (T , 0) ≤ V̄ (T , 0).

In the description of the dynamic program and the upper bound (3.7), we kept the
fare pj as time invariant. This was convenient to keep the exposition manageable. In
practice, however, consumers who book in period t and either cancel or do not show
may get a partial or full refund. Thus, it is more convenient to model the term pjwtj

as ptjwtj where ptj is the net revenue per booking after discounting refunds. As an
example, if a consumer obtains a refund rtj < pj if he cancels a time t booking

92 3 Overbooking

for product j , then the average revenue per booking is ptj = pj − rtj (1 − Qtj). If
rtj = pj , then ptj = pjQtj models the case of full refunds, while the case rtj = 0,
results in ptj = pj for the case with no refunds. We wrote the dynamic program
and the upper bound as if rtj = 0, but it is possible to modify both formulations to
account for partial refunds so the upper bound remains valid. If we further set ptj ←
ptj /Qtj for all t and all j , then we can modify the objective function in (3.7) to read

T∑
t=1

∑
j∈N

ptj Qtj wtj −
∑
j∈N

θj yj .

This will be the objective function for (3.7) we will work from now on. In this
version, the quantity ptj is the net revenue per surviving booking, whereas ptjQtj

is the net revenue per booking.

3.4.2 Book-and-Bump Strategy

A book-and-bump strategy occurs when an airline books passengers at a fare, say
ptj , and later bump them if needed by compensating them at level θj < ptj . To
see how this may happen, suppose first that θj is sufficiently high so that y∗

j = 0 is
optimal in (3.7), and suppose there is a period, say t , such that w∗

tj < λtj . Suppose
now that we reduce θj so that now θj < ptj . We claim that it is now optimal
to accept all requests in period t for product j . Indeed, suppose that we accept
δ = λtj − w∗

tj additional requests of product j in period t , this brings additional
profits ptjQtj δ, but we have to pay θj for each one of the Qtj δ units we expect to
survive. Thus, the change in profits is equal to [ptj − θj]Qtj δ > 0, showing that
if θj < ptj , then it is optimal to set w∗

tj = λtj , and that this may involve booking
some consumers with the idea of later bumping them later at a profit. On the other
hand, if ptj < θj for all t , then we claim that it is optimal to set y∗

j = 0. To see
this, suppose for a contradiction that y∗

j > 0, so there must be a period t such that
w∗

tj > 0. Reducing w∗
tj by ε and decreasing y∗

j by ε reduces revenues by ptjQtj ε

and costs by θjQtj ε for a net savings of −[ptj − θj]Qtj ε > 0, contradicting the
optimality of y∗

j > 0.

3.4.3 Upper Bound for High Overbooking Penalties

A book-and-bump strategy is unfair, unpopular, and illegal. Consequently, most
airlines would plan their overbooking models by setting unit overbooking cost
θj > ptj for all t and for all j . In this case, y∗

j = 0 for all j . This means
that in solving the linear program (3.7), we do not overbook beyond adjusting
for the expected number of cancellations and no-shows. This implies that we can
reformulate the problem ignoring the yj variables keeping in mind that in the

3.4 Overbooking over a Flight Network 93

stochastic version of the problem we pay an overbooking cost θj for each unit of
product j that is overbooked. The updated LP is

V̄ (T , 0) := max
T∑

t=1

∑
j∈N

ptj Qtj wtj (3.8)

s.t.
T∑

t=1

∑
j∈N

aij Qtj wtj ≤ ci ∀ i ∈ M

0 ≤ wtj ≤ λtj ∀ t = 1, . . . , T , j ∈ N

This LP is essentially of the same form as the one for the model without
cancellations, so there should be hope for heuristics based on its solution. Indeed, if
we make the transformation xtj = Qtjwtj , the LP (3.8) is as a time-variant version
of the model without cancellations except that xtj ≤ λtjQtj . Notice that λtjQtj

represents the net demand for product j at time t after filtering the demand that
cancels or does not show.

3.4.4 Heuristics Based on the Linear Program

We can derive the probabilistic acceptance control (PAC) heuristic from the linear
programming upper bound (3.8) exactly as we did in the previous chapter. Let {w∗

tj :
t = 1, . . . , T , j ∈ N} be the optimal solution to problem (3.8). In period t , a
request for product j arrives with probability λtj , and the PAC heuristic accepts it
with w∗

tj /λtj and rejects it with probability 1 − w∗
tj /λtj . Consider now a system

where the capacities and the arrival rates λtj are scaled by an integer factor b, so
now the number of arrivals for product j in period t is a binomial with parameters
b and λtj . The PAC heuristic would filter the arrivals by the factor w∗

tj /λtj so in
the scaled model, the number of requests accepted by the PAC heuristic is binomial
with parameter b and w∗

tj . For the upper bound, the expected demand is bλtj , and

the solution is bw∗
tj . Let V̄ b(T , 0), V b(T , 0), and V b

h (T , 0) denote the upper bound,
the optimal expected revenue, and the expected revenue of the PAC heuristic for the
scaled system. Clearly, V b(T , 0) = bV̄ (T , 0) as bw∗

tj is an optimal solution to the
scaled LP. We will now show that the PAC heuristic is asymptotically optimal.

Theorem 3.5

lim
b→∞

V b
h (T , 0)

V b(T , 0)
≥ lim

b→∞
V b

h (T , 0)

V̄ b(T , 0)
→ 1,

We can also use a bid-price heuristic based on the solution to the dual problem:

94 3 Overbooking

min
z≥0

⎧⎨
⎩c′z +

T∑
t=1

∑
j∈N

λtjQtj (ptj −
∑
i∈M

aij zi)
+
⎫⎬
⎭ .

The heuristic accepts a request at time t if ptj ≥ ∑
i∈M aij z

∗
i . The heuristic is not

asymptotically optimal, but as in the case without cancellations and no-shows, it
performs very well if the system is resolved frequently during the sales horizon for
moderately large problems as those found in practice.

3.4.5 Other Approximation Strategies

We demonstrated that the linear programming approach that we had developed for
network revenue management without overbooking naturally extends to the case
where overbooking is allowed. Unfortunately, other approaches that we developed
for network revenue management without overbooking do not easily extend to the
case where overbooking is allowed. In the chapter on network revenue management
problems with independent demand, we discussed two ways of decomposing the
dynamic programming formulation of the network revenue management problem
by the resources. The first approach exploited the deterministic linear program,
and the second approach used Lagrangian relaxation. Under overbooking, even if
we can decompose the problem by the resources, the problem that takes place
over each resource is intractable because solving the single-resource revenue
management problem requires a high-dimensional state variable that keeps track
of the numbers of reservations for each ODF. There is some work that is based on
decomposing the network overbooking problem by the resources and approximating
the single-resource revenue management problems. This work is discussed in the
bibliographical remarks at the chapter. In Table 3.1, we compare the bid-price policy
derived from the linear program in (3.7) with such a decomposition approach. There
are four test problems in this table, encoded by the pair (q, ρ), where q is the proba-
bility that an accepted request shows up and ρ is the ratio between the total expected
demand for the capacities and the total capacity. In particular, we have Qtj = q for
all t = 1, . . . , T and j ∈ N and ρ = q

∑
i∈M

∑T
t=1

∑
j∈N aij λtj /

∑
i∈M ci . In all

of the test problems, the airline network has a hub and spoke structure. There is one
hub and four spokes. There is a flight leg from each spoke to the hub and a flight
leg from the hub to each spoke. There is a high-fare and a low-fare ODF connecting
each origin-destination pair. The fare of a high-fare ODF is eight times the fare of
the corresponding low-fare ODF. The arrival process for the requests is set up such
that the requests for the low-fare ODF’s tend to arrive earlier, whereas the requests
for the high-fare ODF’s tend to arrive later. The first column in the table shows the
upper bound on the optimal total expected profit given by the optimal objective value
of problem (3.7), whereas the second and third columns show the total expected
revenues obtained by the bid-price heuristic and the decomposition approach. The

3.5 End of Chapter Problems 95

Table 3.1 Performance of the bid-price heuristic and the decomposition approach

Problem Upper Bid-price Decomp. Gaps

(q, ρ) bound heuristic approach Bid-price Decomp.

(0.9, 1.2) $30,754 $29,286 $29,514 4.77% 4.03%

(0.9, 1.6) $31,744 $30,324 $30,841 4.47% 2.84%

(0.95, 1.2) $28,983 $27,386 $27,676 5.51% 4.51%

(0.95, 1.6) $23,995 $22,720 $22,983 5.31% 4.22%

last two columns show the percent gap between the total expected revenues of
the policies and the upper bound on the optimal total expected profit. The results
indicate that the decomposition approach yields noticeable improvements over the
bid-price heuristic, especially when the capacities are tight.

In the same chapter, we also discussed approximate dynamic programming
methods to approximate the value functions. These approaches do not readily extend
to the overbooking setting either. In particular, if overbooking is allowed, then
the linear program that we used to calibrate the value function approximations
includes one constraint for each possible state of the system and the right side of
this constraint involves the bumping cost associated with each state. The presence
of this constraint makes overbooking problems intractable.

3.5 End of Chapter Problems

1. Consider a flight with 100 seats and a passenger fare of $130. The denied
boarding cost is $390 per denied boarding, and the no-show rate is 0.16
(assuming a binomial no-show model). Demand for this flight is extremely high;
in fact, for any booking limit b < 200, bookings will always hit the booking
limit.

(a) Assume that only the passengers who show up for the flight pay the fare of
$130; others are fully refunded. What is the optimal booking limit in this
case? What is the corresponding expected net profit? How much does the
airline gain from overbooking in this case? (That is, compute the expected
revenue under the assumption that the airline does not overbook at all and
compare to the overbooking case.)

(b) For this part, assume that all passengers pay the fare of $130 at the time
of the reservation, regardless of whether or not they show up for the flight.
Determine the optimal booking limit, the corresponding expected profit, and
the gain from overbooking. (Hint: For this problem, you will need to modify
the profit function to account for the fact everyone pays the fare and derive
an expression that needs to be satisfied by the optimal booking limit.)

96 3 Overbooking

Table 3.2 Complementary
cumulative distribution
function of Y (n)

n P {Y (n) ≥ 50}
50 0.0002957647

51 0.0025139996

52 0.0109987484

53 0.0330590953

54 0.0769040347

55 0.1479328364

56 0.2455974389

57 0.3627949618

58 0.4880498145

59 0.6091295054

60 0.7162850318

2. Consider the following overbooking problem. We first choose a booking limit b.
After this, a random demand D occurs. For each unit of demand that we accept,
we generate a revenue of $p. Assume that every accepted booking request will
show up for the flight. The capacity of the plane is c.

If the number of customers that show up at the departure time exceeds the
capacity of the plane, then we offer every customer a voucher worth $f for use
on future flights. The customers who accept the vouchers will voluntarily give
up their reservations. We assume that each customer independently declines the
voucher, and thus keeps his/her existing reservation with probability β ∈ (0, 1).

After offering the vouchers, if the number of remaining customers still
exceeds the capacity c of the plane, then we begin an involuntary denied boarding
process. For each booking that cannot be accommodated on the plane, we incur
a penalty cost of $θ .

(a) Let R(b) denote the expected profit under the booking limit b. Provide an
expression for R(b).

(b) Assuming that p − f (1 − β) < θβ, determine the integer-valued optimal
booking limit. Your answer should only involve probabilities that can be
computed by simple table lookups and the problem parameters given above.

(c) Suppose that c = 50, p = 100, f = 200, θ = 300, and β = 0.85. Let Y (n)

denote a binomial random variable with parameters n and 0.85. Table 3.2
gives the value of P {Y (n) ≥ 50} for different values of n. Using this table
and the formula from Part (b), determine the optimal booking limit in this
case.

3. Consider the model in Sect. 3.3. Assume that the fares satisfy p1 ≤ p2 ≤ . . . ≤
pn. Show that the optimal booking limits b∗

1, . . . , b∗
n satisfy b∗

1 ≤ b∗
2 ≤ . . . ≤ b∗

n.
4. We are purchasing a certain product over the time periods 1, 2, . . . , T . The

demand for the product occurs at the end of these T time periods, say time
period T + 1. The price of the product fluctuates randomly over the time periods
1, 2, . . . , T and we need to decide how many units of product we should purchase
at each time period.

3.5 End of Chapter Problems 97

We use the random variable Pt to denote the price of the product at time period
t . We use the random variable D to denote the demand for the product, which
occurs at time period T + 1. For each unit of demand that we cannot satisfy, we
incur a shortage cost of $θ . We are interested in minimizing the total expected
cost, which is the sum of the product purchasing cost and the shortage cost.

(a) Formulate the problem as a dynamic program. Clearly give your state and
decision variables, and write down the boundary condition at the end of T

time periods.
(b) By using backward induction over the time periods, show that the value

function is convex.
(c) Assume that the price can take only three different values, a high, a medium,

and a low value. Show that in order to be able to make the optimal purchasing
decision at each time period, we only need to store 3 T values. That is, we
only need to store three values for each time period. Clearly indicate how
each one of these 3 T values should be computed.

5. Consider a single-flight overbooking problem without any cancellations, but with
no-shows. The customers arrive over the time periods 1, 2, . . . , T . There are n

possible price levels indexed by 1, 2, . . . , n. If we sell a ticket at price level
j , then we generate a revenue of $pj . With probability λjt , a customer that is
interested in price level j arrives into the system at time period t . We need to
decide whether to accept or reject each customer request. For simplicity, assume
that

∑n
j=1 λjt = 1 so that there is always one customer arrival at each time

period.
At the departure time of the flight, which we assume to happen at time period

T +1, each reservation shows up with probability q. A no-show with a reservation
at price level j is given a refund of $hj . The capacity of the flight is c and for
each customer that we cannot board on the flight, we incur a cost of $θ .

(a) Let xjt be the number of accepted reservations that we have on hand for price
level j at the beginning of time period t . Using the n-dimensional vector
xt = (x1t , x2t , . . . , xnt) as the state variable, formulate a dynamic program
that maximizes the expected profit. In your dynamic program, make sure to
charge the no-show refunds at the departure time of the flight. (Hint: Let ej

be the j -th unit vector in �n. If you accept a request for price level j at time
period t , then your state changes from xt to xt + ej .)

(b) We can charge the expected refund cost at the time of accepting a customer
request. This amounts to assuming that the revenue associated with price
level j is pj − (1 − q) hj . Since we charge the expected refund cost at the
time of accepting a customer request and each reservation shows up with the
same probability q, we now need to keep track of only the total number of
accepted requests.

Let zt be the total number of accepted reservations that we have on hand
at the beginning of time period t . Using the scalar zt as your state variable,
formulate a dynamic program that maximizes the total expected profit.

98 3 Overbooking

(c) Denote the value function in Part a as Vt (xt) and the value function in Part
b as Jt (zt). Use backward induction over the time periods to show that
Vt (xt) = Jt (

∑n
j=1 xjt)−∑n

j=1(1−q) hj xjt . (Hint: Recall that if B1(n1, q)

is a binomial random variable with parameters n1 and q, and B2(n2, q) is a
binomial random variable with parameters n2 and q that is independent of
B1(n1, q), then B1(n1, q) + B2(n2, q) is a binomial random variable with
parameters n1 + n2 and q.)

6. Is the PAC heuristic asymptotically optimal if the condition θj > ptj for all t and
for all j fails to hold?

3.6 Bibliographical Notes

Simon (1968) proposes auctions as a possible way to handle involuntary denied
boardings. Rothstein (1971) gives one of the first systematic treatments of the over-
booking problem, where dynamic programming is used to develop an overbooking
policy for American Airlines. Chatwin (1998, 1999) give a dynamic programming
formulation of the overbooking problem with a single class and characterize the
structure of the optimal policy. Lautenbacher and Stidham (1999) study overbooking
problems with multiple fare classes over a single resource. The cancellation model
in this paper assumes that there can be at most one cancellation at each time period,
and the probability of having a cancellation increases as the number of reservations
on hand increases. In contrast, we use a binomial cancellation model, which allows
multiple cancellations at each time period.

Kleywegt (2001) and Dai et al. (2019) give deterministic approximations to
overbooking problems to extract heuristic control policies, some of which have
asymptotic optimality guarantees. Karaesmen and van Ryzin (2004a) consider an
overbooking model with substitutable flights, where the passengers bumped from
one flight can be accommodated on the next one. Karaesmen and van Ryzin
(2004b) study various decomposition strategies for the overbooking problem over
a flight network. Erdelyi and Topaloglu (2010) leverage the linear programming
approximation given in this chapter to decompose the network overbooking problem
by the resources. Solving the single-resource overbooking problems is still difficult
when the cancellation and no-show probabilities are class-specific. The authors
use approximations to the single-resource overbooking problems. The numerical
example in Sect. 3.4.5 is taken from this paper. Erdelyi and Topaloglu (2009)
use a separable approximation to the bumping cost. In this case, they show
that the dynamic programming formulation of the network overbooking problem
decomposes by the ODFs, and the single-ODF overbooking problem turns out to be
completely tractable. Aydin et al. (2013) present an overbooking model over a single
resource. Their cancellation model is similar to the one in our network overbooking
model in this chapter, in the sense that the number of cancellations at each time
period is binomially distributed. Kunnumkal and Topaloglu (2011b) use stochastic

Appendix 99

approximation methods to compute bid prices for overbooking over a network of
flight legs. Kunnumkal et al. (2012) give a randomized version of the linear program
in (3.7) to capture the randomness in the show-up decisions more accurately.

Appendix

Proof of Proposition 3.1 We can write Z(N) as Z(N) = ∑N
i=1 Xi , where the

Xi’s are independent Bernoulli random variables with probability q. Clearly
Z(min(D, b + 1)) − Z(min(D, b)) = Xb+1 × 1(D ≥ b + 1), where 1(·) is the
indicator function. Consequently, we get

E{Z(min(D, b + 1)) − Z(min(D, b))} = q P{D ≥ b + 1}, (3.9)

Similarly, note that we always have Z(min(D, b + 1)) ≥ Z(min(D, b)). Fur-
thermore, Z(min(D, b + 1)) and Z(min(D, b)) can differ by at most 1. Thus, if
Z(min(D, b)) < c, then we have Z(min{b + 1,D}) ≤ c. On the other hand, if
Z(min(D, b)) ≥ c, then Z(min{b + 1,D}) ≥ c. In this case, we obtain

[Z(min(D, b + 1)) − c]+ − [Z(min(D, b)) − c]+

=
⎧
⎨
⎩

Z(min(D, b + 1)) − Z(min(D, b)) if Z(min(D, b)) ≥ c

0 otherwise

=
⎧
⎨
⎩

Xb+1 if D ≥ b + 1 and Z(min(D, b)) ≥ c

0 otherwise

=
⎧
⎨
⎩

Xb+1 if D ≥ b + 1 and Z(b) ≥ c

0 otherwise.

Using the chain of equalities above, we get

E{[Z(min(D, b + 1)) − c]+ − [Z(min(D, b)) − c]+}
= q P{D ≥ b + 1}P{Z(b) ≥ c}. (3.10)

Using (3.9) and (3.10) in (3.1), we obtain

R(b + 1) − R(b) = P{D ≥ b + 1} q (p − θ P{Z(b) ≥ c}),

from which the formula for b∗ follows. �

100 3 Overbooking

Proof of Theorem 3.2 In (3.3), we need to solve the problem

max
0≤u≤Dj

{
pj u + Vj−1(y + u)

}
.

We define a new decision variable z such that z = y + u. Since y is the number
of reservations just before making the decisions for class j and u is the number of
reservations we accept from class j , the decision variable z can be interpreted as the
number of reservations after making the decisions for fare class j . After the change
of variables, the problem is equivalent to

max
y≤z≤y+Dj

{
pj z + Vj−1(z)

}
− pj y. (3.11)

Since the last term pj y does not affect the optimal solution, we can concentrate on
the following problem

max
y≤z≤y+Dj

{
pj z + Vj−1(z)

}
. (3.12)

Since Vj−1(·) is concave, the objective function of problem (3.12) above is concave.
Thus, the problem above maximizes a concave function subject to the constraint that
the decision variable lies in the interval [y, y + Dj].

Let b∗
j be the maximizer of the concave function pj z+Vj−1(z) over [0,∞]. The

maximizer can be computed as

b∗
j = min{z ≥ 0 : pj (z + 1) + Vj−1(z + 1) ≤ pj z + Vj−1(z)}.

which yields the desired result.
We can characterize the optimal solution to the constrained problem above

depending on whether b∗
j is in the interval [y, y + Dj] or lies to the left or the right

side of this interval. In particular, using z∗ to denote the solution to problem (3.12),
we have

z∗ =

⎧
⎪⎪⎨
⎪⎪⎩

y if b∗
j < y

b∗
j if y ≤ b∗

j ≤ y + Dj

y + Dj if b∗
j > y + Dj .

(3.13)

We show the three cases above, along with the maximizer b∗
j of the function pj z +

Vj−1(z) and the interval [y, y + Dj] in Fig. 3.1. If b∗
j < y, then the number of

reservations we have y is already larger than the optimal booking limit b∗
j . Thus,

the only way to get as close as possible to b∗
j after making the decisions for class j

is not to accept any reservations from class j . In other words, we keep the number
of reservations on hand at y. This situation corresponds to the first case above. If
b∗
j < y, then it is optimal to set z∗ = y. If y ≤ b∗

j ≤ y +Dj , then b∗
j − y ≤ Dj . So,

we can accept b∗
j −y reservations from class j to bring the number of reservations on

Appendix 101

bj
*

y y+Dj

bj
*

pj z+Vj-1(z)

z

y y+Dj

bj
*

y y+Dj

Fig. 3.1 Optimal decision for class j

hand to exactly b∗
j after making the decisions for class j . This situation corresponds

to the second case above. If y ≤ b∗
j ≤ y + Dj , then it is optimal to set z∗ = b∗

j .
Lastly, if b∗

j > y + Dj , then Dj < b∗
j − y. Thus, the only way to get as close as

possible to b∗
j after making the decisions for class j is to accept all of the demand

from class j , in which case, the number of reservations that we have after making
the decisions for class j goes up to y + Dj . This situation corresponds to the third
case above. If b∗

j > y +Dj , then it is optimal to set z∗ = y +Dj . Noting the change
of variables z = y + u and using (3.13), as a function of y, an optimal solution to
problem (3.3) is given by the expression in the theorem. �

Proof of Theorem 3.3 We show the result by using induction over the classes in
reverse order. Since Z(y) is a binomial random variable with parameters (y, q), we
can write Z(y) = ∑y

i=1 Xi , where X1, X2, . . . are independent Bernoulli random
variables with parameter q. In this case, we have

[Z(y + 1) − c]+ − [Z(y) − c]+ =
{

Z(y + 1) − Z(y) if Z(y) ≥ c

0 otherwise

=
{

Xy+1 if Z(y) ≥ c

0 otherwise,

102 3 Overbooking

which implies that E{[Z(y +1)−c]+ −[Z(y)−c]+} = q P{Z(y) ≥ c}. Since Z(y)

is a binomial random variable with parameters (y, q), P{Z(y) ≥ c} is increasing in
y. Therefore, E{[Z(y + 1) − c]+ − [Z(y) − c]+} is increasing in y. In this case,
E{[Z(y) − c]+} is convex in y, which implies that V0(y) = −θ E{[Z(y) − c]+} is
concave in y, as desired. This discussion establishes the base case for the induction
argument. Next, we assume that the value function Vj−1(·) is concave and show that
Vj (·) is also concave.

Assume that Vj−1(·) is concave. By using the same change of variables used to
obtain problem (3.11), we can write the dynamic program in (3.3) as

Vj (y) = E

{
max

y≤z≤y+Dj

[pj z + Vj−1(z)]
}

− pj y.

We define

Wj(y,Dj) = max
y≤z≤y+Dj

[pj z + Vj−1(z)], (3.14)

so that Vj (y) = E{Wj(y,Dj)} − pj y. If we can show that Wj(y,Dj) is concave
in y, then E{Wj(y,Dj)} is concave in y as well, in which case, it follows that
Vj (y) = E{Wj(y,Dj)} − pj y is concave, which is the result we are after. Thus,
we proceed to showing that Wj(y,Dj) is concave in y.

By the induction assumption Vj−1(·) is concave. We let b∗
j be the maximizer

of the concave function pj z + Vj−1(z) over the interval [0,∞]. Since Vj−1(·) is
concave, the discussion that we used to obtain the three cases in (3.13) still holds. In
this case, letting z∗ be the optimal solution to problem (3.14), z∗ is still given by the
three cases in (3.13). Noting that the optimal objective function of problem (3.14) is
Wj(y,Dj), we have

Wj(y,Dj) =

⎧⎪⎪⎨
⎪⎪⎩

pj y + Vj−1(y) if b∗
j < y

pj b∗
j + Vj−1(bj) if y ≤ b∗

j ≤ y + Dj

pj (y + Dj) + Vj−1(y + Dj) if b∗
j > y + Dj

=

⎧⎪⎪⎨
⎪⎪⎩

pj y + Vj−1(y) if b∗
j < y

pj b∗
j + Vj−1(b

∗
j) if b∗

j − Dj ≤ y ≤ b∗
j

pj (y + Dj) + Vj−1(y + Dj) if y < b∗
j − Dj .

We plot the function pj y + Vj−1(y) as a function of y on the left side of Fig. 3.2.
Notice that the maximizer of this function over [0,∞] is b∗

j . We plot the function
Wj(y,Dj) on the right side of Fig. 3.2. Notice that the functions pj y + Vj−1(y)

and Wj(y,Dj) are identical for y in [b∗
j ,∞]. For y in the interval [b∗

j − Dj, b
∗
j],

the function Wj(y,Dj) takes the constant value b∗
j + Vj−1(b

∗
j), which is the

maximum value of pj y + Vj−1(y). Lastly, for y in the interval [0, b∗
j − Dj], the

Appendix 103

bj
*

pj y+Vj-1(y)

y
bj

*

Wj(y, Dj)

y
bj

* Dj

Fig. 3.2 Concavity of the value function for class j

function Wj(y,Dj) takes the value of pj (y +Dj)+Vj−1(y +Dj). In other words,
over the last interval, the function Wj(y,Dj) is a shifted version of the function
pj (y + Dj) + Vj−1(y + Dj). Thus, intuitively speaking, the function Wj(y,Dj)

is obtained by “cutting” the function pj y + Vj−1(y) in half at the point y = b∗
j ,

“shifting” the left portion of the function Dj units to the left, and “filling in” the
middle with the constant value b∗

j +Vj−1(b
∗
j). Since b∗

j +Vj−1(b
∗
j) is the maximum

value of the function pj y + Vj−1(y), it follows that Wj(y,Dj) is concave, which
is the desired result. �

Proof of Theorem 3.4 We let Dtj = 1 if there is a demand for ODF j at time
period t , otherwise Dtj = 0. In this case, Dtj is a Bernoulli random variable with
parameter λtj so that E{Dtj } = λtj . We let the random variable W ∗

tj be the number
of accepted bookings for ODF j at time period t under the optimal policy and the
random variable X∗

tj be the number of bookings for ODF j accepted at time period
t that survive until the departure time. Thus, X∗

tj is a binomial random variable with
parameters (W ∗

tj ,Qtj). Thus, we have E{X∗
tj } = Qtj E{W ∗

tj }. Lastly, we let the
random variable Y ∗

j be the number of denied bookings for ODF j under the optimal
policy. Under the optimal policy, we have the inequalities

T∑
t=1

∑
j∈N

aij X∗
tj −

∑
j∈N

aij Y ∗
j ≤ ci ∀ i ∈ M

Y ∗
j ≤

T∑
t=1

∑
j∈N

X∗
j t ∀ j ∈ N

W ∗
tj ≤ Dtj ∀ t = 1, . . . , T , j ∈ N.

The first inequality states that the capacity consumption of each resource, after
accounting for the denied boardings, does not exceed the available capacity of
the resource. The second inequality states that the number of denied boardings for
each ODF cannot exceed the accepted bookings for the ODF. The third inequality
states that the number of accepted bookings for each ODF at each time period
cannot exceed the demand for the ODF. Taking expectations on both sides of the

104 3 Overbooking

inequalities above and noting that E{X∗
tj } = Qtj E{W ∗

tj }, the inequalities above
imply that setting wtj = E{W ∗

tj } and zj = E{Y ∗
j } for all t = 1, . . . , T , j ∈ N

provides a feasible solution to problem (3.7). The total profit from the optimal policy
is

∑
t∈T

∑
j∈N pj W ∗

tj − ∑
j∈N θj Y ∗

j , in which case, taking expectations, the total
expected profit from the optimal policy is V (T , 0) = ∑

t∈T

∑
j∈N pj E{W ∗

tj } −∑
j∈N θj E{Y ∗

j }. Thus, setting wtj = E{W ∗
tj } and yj = E{Y ∗

j } for all t = 1, . . . , T ,
j ∈ N provides a feasible solution to problem (3.7) and the objective value provided
by this solution is equal to V (T , 0). In this case, it follows that the optimal objective
value of problem (3.7) is at least V (T , 0), so we obtain V̄ (T , 0) ≥ V (T , 0).

�
Proof of Theorem 3.5 Since the number of requests that arrive for product j in
period t is a Bernoulli random variable with success probability λtj , the number
admitted by the PAC heuristic is a thinned Bernoulli with probability w∗

tj . From
this number, a fraction Qtj will survive, so the number of bookings for period t

that survive is also thinned Bernoulli with probability Qtjw
∗
tj . This shows that the

expected revenues associated with the PAC heuristic, aggregating over all products,
is equal to

∑T
t=1

∑
j∈N ptjQtjw

∗
tj = V̄ (T , 0), where the equality uses the fact that

{w∗
tj : t = 1, . . . , T , j ∈ N} is an optimal solution to problem (3.8).
Now, we consider the expected cost E[V (0, X)], where X is the vector of

reservations on hand at the end of the horizon and V (0, x) is the optimal objective
value of problem (3.6). Clearly Xj = ∑T

t=1 Xtj , where Xtj is Bernoulli random
variable with mean Qtjwtj . Since the Xtj ’s are independent over t , it follows that Xj

has mean
∑T

t=1 Qtjw
∗
tj and variance

∑T
t=1 Qtjw

∗
tj (1 − Qtjw

∗
tj) ≤ ∑T

t=1 Qtjw
∗
tj .

A feasible solution to program V (0, X) in (3.6) is to pay the overbooking fee
θj for each unit of product j booking in excess of the mean, yielding the feasible
solution y = {yj : j ∈ N} with yj = (Xj −E[Xj])+. Consequently, it follows that

E[V (0, X)] ≥ −
∑
j∈N

θj E(Xj − E[Xj))
+ ≥ −1

2

∑
j∈N

θj

√√√√ T∑
t=1

Qtjw
∗
tj ,

where we have used the fact that for any random variable with finite second moment
E[(X−E[X])+] ≤ 0.5

√
Var[X]. Thus, a lower bound on the expected revenue from

the PAC heuristic is given by

Vh(T , 0) = V̄ (T , 0) + E[V (0, X)] ≥ V̄ (T , 0) − 1

2

∑
j∈N

θj

√√√√ T∑
t=1

Qtjw
∗
tj .

Clearly bw∗
tj is the solution to the linear program scaled by a factor b, so

V̄ b(T , 0) = bV̄ (T , 0) ≥ V b(T , 0) ≥ V b
h (T , 0). From the bound on E[V (0, X)]

we see that

Appendix 105

V b
h (T , 0) = V̄ b(T , 0) − E[V b(0, X)] ≥ V̄ b(T , 0) − 1

2

∑
j∈N

θj

√√√√b

T∑
t=1

Qtjw
∗
tj .

Dividing by V̄ b(T , 0) and letting b → ∞, we find that

lim
b→∞

V b
h (T , 0)

V b(T , 0)
≥ lim

b→∞
V b

h (T , 0)

V̄ b(T , 0)
→ 1,

completing the proof. �

	3 Overbooking
	3.1 Introduction
	3.2 Overbooking for a Single Fare Class
	3.3 Overbooking for Multiple Fare Classes
	3.3.1 Optimal Booking Limits
	3.3.2 Class-Dependent No-Show Refunds
	3.3.3 Incorporating Cancellations

	3.4 Overbooking over a Flight Network
	3.4.1 Linear Programming-Based Upper Bound on V(T,0)
	3.4.2 Book-and-Bump Strategy
	3.4.3 Upper Bound for High Overbooking Penalties
	3.4.4 Heuristics Based on the Linear Program
	3.4.5 Other Approximation Strategies

	3.5 End of Chapter Problems
	3.6 Bibliographical Notes
	Appendix
	Appendix

