
Chapter 11
Competitive Assortment and Price
Optimization

11.1 Introduction

In the models that we studied thus far, we considered the decisions made by a
single firm. The implicit assumption in our development was that the other firms
do not react to the decisions of each other. Naturally, this is almost never the
case. When a firm decreases its prices, fearing loss of customers, its competi-
tors may also decrease its prices. Both online and brick-and-mortar retail stores
consider the assortments offered by the other stores when making planning their
assortments. There is vast literature on modeling competition. Nevertheless, despite
the fact that competition is the rule rather than an exception and there is vast
literature on modeling competition, the development of operational models that
can drive real-time decision making under competition is in its infancy. In most
operational models, it is often the case that the competition is ignored or modeled
rather simplistically. Perhaps, the most important reason for this is that explicitly
modeling competition often times results in intractable models. Thus, for the sake of
computational tractability, the reactions of the other firms are ignored. Furthermore,
the data that drive the operational models are often collected in a competitive
environment, and one usually naively hopes that building a noncompetitive model
driven by data collected in a competitive environment will take care of the
competition itself, but of course, this hope is not based on any scientific evidence.

Competition is a critical area for improvement for operational revenue manage-
ment models, and we are starting to see more and more models in the literature that
explicitly try to incorporate competition. In this chapter, we give a glimpse of two
models. In Sect. 11.2, multiple firms compete in an environment where they choose
the assortments they offer to their customers. The model here is static in the sense
that there is no time dimension. In Sect. 11.3, multiple firms compete in their pricing
decisions, there is limited inventory and the sales take place over time.
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11.2 Competitive Assortment Optimization

In this section, we consider a competitive assortment optimization problem between
two firms, when the customers choose among the products offered by the firms
according to the multinomial logit (MNL) model.

11.2.1 Problem Formulation

Consider two firms each of which has access to different sets of products. Among the
set of products that a firm has access to, the firm chooses a subset, or an assortment,
of products to offer to the customers. Considering all the products offered by both
firms, a customer chooses among the products according to the MNL model. The
goal of each firm is to choose an assortment of products to offer to maximize the
expected revenue that it obtains from a customer. We index the firms by {1,−1}.
For i ∈ {1,−1}, we use Ni to denote the set of products that firm i has access to.
In other words, firm i offers an assortment within the set of products Ni . The set
of all products is given by N = N1 ∪ N−1. Let vj > 0 be the attraction value
of product j ∈ N , and v0 be the attraction value of the no-purchase option. Let
V (S) := ∑

j∈S vj denote the total attraction value of the products in set S. If the
two firms offer subsets (S1, S−1) with S1 ⊆ N1 and S−1 ⊆ N−1, then a customer
chooses product j ∈ S1 ∪ S−1 with probability

πj (S1, S−1) := vj

v0 + V (S1) + V (S−1)
.

For i ∈ {1,−1}, we use Fi to denote the set of feasible assortments that can
be offered by firm i. For example, each firm may be constrained by the number of
products that they can display to their customers. Alternatively, each product may
occupy a certain amount of space and the total space consumption of the products
offered by a firm may have to be below a certain space limit. The revenue associated
with product j ∈ N is pj > 0. Given that the two firms offer the assortments of
products (S1, S−1) ∈ F1 × F−1, the expected revenue that firm i obtains from a
customer is

Ri(Si, S−i ) :=
∑

j∈Si

pj πj (Si, S−i ) =
∑

j∈Si
pj vj

v0 + V (Si) + V (S−i )
. (11.1)

Therefore, if firm −i offers the subset S−i of products, then firm i maximizes its
expected revenue by solving the problem

max
Si∈Fi

Ri(Si, S−i ). (11.2)
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An optimal solution to the problem above is a best response of firm i to the
assortment S−i offered by firm −i. We say that the assortments (S∗

1 , S∗−1) ∈ F1 ×
F−1 are a Nash equilibrium, if S∗

i is a best response to S∗−i for all i ∈ {1,−1}. In the
rest of our discussion, we show that a Nash equilibrium for competitive assortment
optimization exists. We characterize a Pareto-dominating equilibrium in the sense
that the expected revenue for each firm in the Pareto-dominating equilibrium is at
least as large as its corresponding expected revenue in any other equilibria. Lastly,
we compare the assortments in a Nash equilibrium with those chosen by a central
planner to maximize the total expected revenue obtained by the two firms.

11.2.2 Existence of Equilibrium

Let z∗
i (S−i ) denote the optimal objective value of problem (11.2). In other words,

z∗
i (S−i ) is the best expected revenue that firm i can achieve when firm −i offers the

assortment S−i . Noting the expected revenue expression in (11.1), we have

z∗
i (S−i ) ≥

∑
j∈Si

pj vj

v0 + V (Si) + V (S−i )
∀ Si ∈ Fi ,

and the inequality above holds as equality at an optimal solution to problem (11.2).
Since V (Si) = ∑

j∈Si
vj , this inequality is equivalent to

[v0 + V (S−i )] z∗
i (S−i ) ≥

∑

j∈Si

(pj − z∗
i (S−i )) vj ∀ Si ∈ Fi ,

with equality holding at an optimal solution to (11.2), so

[v0 + V (S−i )] z∗
i (S−i ) = max

Si∈Fi

{ ∑

j∈Si

(pj − z∗
i (S−i )) vj

}

.

Therefore, an optimal solution to problem (11.2) can be obtained by solving the
problem:

max
Si∈Fi

{ ∑

j∈Si

(pj − z∗
i (S−i )) vj

}

. (11.3)

Throughout, we assume that if problem (11.2) or (11.3) has multiple optimal
solutions, then we choose a solution Si that has the largest total attraction value
V (Si). Note that problem (11.3) is not immediately useful to solve problem (11.2)
because solving problem (11.3) requires knowing z∗

i (S−i ) and we do not know
z∗
i (S−i ) before solving problem (11.2)! Nevertheless, we will use problem (11.3)

to show the existence of Nash equilibria and to characterize the properties of such
equilibria.
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Consider two assortments Ŝ−i and S̃−i that could be offered by firm −i. Let Ŝi

be a best response of firm i to the assortment Ŝ−i and S̃i be a best response of firm
i to the assortment S̃−i . In the next lemma, we present a key monotonicity result.

Lemma 11.1 If V (Ŝ−i ) ≤ V (S̃−i ), then V (Ŝi) ≤ V (S̃i).

The lemma above establishes a monotonicity property for the best response of
each firm, where if firm −i offers an assortment with a larger total attraction value,
then firm i, in its best response, also offers an assortment with a larger total attraction
value. By using this lemma, we will be able to show that a tatonnement process
converges to a Nash equilibrium. In the process, we will also establish the existence
of Nash equilibria. To describe the tatonnement process, we define the sequence of
assortments {(Ŝt

1, Ŝ
t
−1) : t = 0, 1, . . .} offered by the two firms as follows. We start

with Ŝ0
1 = ∅ and Ŝ0

−1 = ∅. Using (Ŝt
1, Ŝ

t
−1), we compute (Ŝt+1

1 , Ŝt+1
−1 ) as

Ŝt+1
1 ∈ arg max

S1∈F1

R1(S1, Ŝ
t
−1) and Ŝt+1

−1 ∈ arg max
S−1∈F−1

R−1(S−1, Ŝ
t+1
1 ).

Thus, Ŝt+1
1 is a best response of firm 1 to the assortment Ŝt

−1 offered by firm −1,

whereas Ŝt+1
−1 is a best response of firm −1 to the assortment Ŝt+1

1 offered by firm
1. In the next theorem, we use this tatonnement process to show that there exists a
Nash equilibrium. In the proof, using Lemma 11.1, we argue that the sequence of
the total attraction values in the assortments generated by the tatonnement process
converges, in which case, we are able to construct a Nash equilibrium by using the
limit of this sequence.

Theorem 11.2 There exists a Nash equilibrium.

In the proof of Theorem 11.2, we use Lemma 11.1 to argue that the sequence of
assortments {(Ŝt

1, Ŝ
t
−1) : t = 0, 1, . . .} generated in the tatonnement process satisfies

V (Ŝt+1
i ) ≥ V (Ŝt

i ) for all i ∈ {1,−1}. Thus, there exists an iteration counter t0 ≥ 0

in the tatonnement process such that V (Ŝ
t0
1 ) = V (Ŝ

t0+1
1 ) = V (Ŝ

t0+2
1 ) = . . . and

V (Ŝ
t0−1) = V (Ŝ

t0+1
−1 ) = V (Ŝ

t0+2
−1 ) = . . .. In this case, we are able to show that

(Ŝ
t0+1
1 , Ŝ

t0−1) is a Nash equilibrium. We refer to (Ŝ
t0+1
1 , Ŝ

t0−1) as a Nash equilibrium
generated by the tatonnement process. In the tatonnement process, we started with
the assortments Ŝ0

1 = Ŝ0
−1 = ∅, but the choice of Ŝ0

1 is irrelevant because we

compute Ŝ1
1 as a best response to Ŝ0

−1 and we compute Ŝ1−1 as a best response to Ŝ1
1 .

Thus, Ŝ0
1 does not play any role in the tatonnement process. Also, by using the same

argument in the proof of Theorem 11.2, we can show that the tatonnement process
would yield a Nash equilibrium even if we choose Ŝ0

1 and Ŝ0
−1 arbitrarily, but as we

show in the next section, an equilibrium that we reach by choosing Ŝ0
1 = Ŝ0

−1 =
∅ Pareto dominates any equilibria. Therefore, when we say a Nash equilibrium
generated by the tatonnement process, we will mean the one obtained by starting
with Ŝ0

1 = Ŝ0
−1 = ∅.
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11.2.3 Properties of Equilibrium

There can be multiple Nash equilibria in general, but it turns out that a Nash
equilibrium generated by the tatonnement process will always Pareto dominate the
others. In other words, the expected revenue of each firm in a Nash equilibrium
generated by the tatonnement process is at least as large as its corresponding
expected revenue in any other Nash equilibrium. We show this result in the next
theorem.

Theorem 11.3 A Nash equilibrium generated by the tatonnement process is Pareto
dominant.

The key to the result above is to show that the total attraction value of each
assortment in a Nash equilibrium generated by the tatonnement process is no larger
than its corresponding total attraction value in another Nash equilibria. Next, we
compare the assortments offered in the absence of competition and the assortments
offered by a central planner with the assortments offered in a Nash equilibrium.

In the absence of competition, firm i finds an assortment to offer by solving
the problem maxSi∈Fi

Ri(Si,∅). Let (SNC
1 , SNC

−1 ) be the assortments offered by
the two firms in the absence of competition, where the superscript NC stands for
no competition. Also, if there were a central planner that chooses the assortments
offered by the two firms to maximize the total expected revenue obtained by the two
firms, then she would solve the problem

max
(S1,S−1)∈F1×F−1

{
R1(S1, S−1) + R−1(S−1, S1)

}
. (11.4)

Let (SCP
1 , SCP

−1) be the assortments offered by the central planner, where the
superscript CP stands for central planner. In the next theorem, we show that the total
attraction value of the products offered by each firm in any equilibrium is at least as
large as the total attraction value of the products offered by the corresponding firm
in the absence of competition. Furthermore, the total attraction value of the products
offered by each firm in any equilibrium is also at least as large as the total attraction
value of the products offered by the corresponding firm under the solution of the
central planner. These results indicate that competition has the tendency to increase
the total attraction values of the products offered by each firm. In other words, to
deal with competition, the firms enlarge their assortments by offering assortments
with larger total attraction values.

Theorem 11.4 Let (S∗
1 , S∗−1) be any Nash equilibrium, (SNC

1 , SNC
−1 ) be the assort-

ments offered by the two firms in the absence of competition, and (SCP
1 , SCP

−1)

be the assortments offered by the central planner. Then, V (SNC
i ) ≤ V (S∗

i ) and
V (SCP

i ) ≤ V (S∗
i ) for all i ∈ {1,−1}.

Note that the result above holds for any Nash equilibrium.
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11.3 Dynamic Pricing Under Competition

In this section, we consider dynamic pricing in an oligopolistic market with a
mix of substitutable and complementary perishable products. Each firm has a
fixed initial stock of items and competes in setting prices to sell them over a
finite sales horizon. Customers sequentially arrive at the market, make a choice
that includes the no-purchase alternative, and then leave the system. Assuming
deterministic customer arrival rates, we show that any equilibrium strategy has a
simple structure involving a finite set of time-invariant shadow prices measuring
capacity externalities that firms exert on each other. This simple structure sheds
light on dynamic revenue management problems under competition and demand
uncertainty. Indeed, it turns out that the equilibrium solutions from the deterministic
game provide precommitted and contingent heuristic policies that are asymptotic
equilibria for the stochastic game when demand and supply are sufficiently large.

11.3.1 Problem Formulation

We consider a market of m competing firms selling differentiated perishable
products over a finite horizon [0, T ]. At time t = 0, each firm i has an initial
inventory of ci units of a unique product. We count the time forwards and use t

for the elapsed time and s = T − t for the remaining time. Let p(t) be the vector
of prices at time t , and let d(t, p(t)) be the vector of product demands at time t

at prices p(t), and let ri(t, p) = pi di(t, p) be the revenue rate for firm i at time
t when the price vector is p = (pi, p−i ), where pi is the priced offered by firm i

and p−i is the vector of prices from firms other than firm i. We make the following
assumptions.

1. (a) The demand for firm i, di(t, p) is continuously differentiable in p for all i

and all t .
(b) The aggregate demand

∫ T

0 di(t, p(t))dt for firm i is pseudo-convex in its
price path pi(t), t ∈ [0, T ].

2. (a) The aggregate revenue
∫ T

0 ri(t, p(t))dt for firm i is pseudo-concave in its
price path pi(t), t ∈ [0, T ].

(b) There exist a function Ri(t) such that ri(t, p) ≤ Ri(t) and
∫ T

0 Ri(t)dt < ∞.

3. (a) There exist a choke price pi(t, p−i ) such that

lim
pi→pi(t,p−i )

di(t, p) = 0 and lim
pi→pi(t,p−i )

ri(t, p) = 0.

Moreover, the choke price is always an available option for each firm.
(b) Other than the choke price, firm i chooses prices from a compact and convex

subset Pi (t, p−i ) of {pi ∈ �+ : di(t, pi, p−i ) ≥ 0}.
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(c) The salvage value of the products at the end of the horizon is zero, and all
other costs are sunk.

4. All firms have perfect knowledge about the inventory levels of other firms at any
time.

As examples of possible demand functions for the firms, consider the MNL
demand function

di(t, p) = λ(t)
βi(t) exp(−αi(t)pi)

a0(t) + ∑
j βj (t) exp(−αj (t)pj )

,

where λ(t), a0(t), αi(t), βi(t) > 0 for all i and t . As a second example, consider
now the linear demand function

di(t, p) = ai(t) − bi(t)pi +
∑

j �=i

cij (t) pj ,

where ai(t), bi(t) > 0 for all i. These linear demand functions can arise from a rep-
resentative consumer maximizing a quadratic utility function and can accommodate
substitute and complementary products depending on whether cij (t) is positive or
negative. It can be shown that Assumptions 1 and 2 are satisfied both by the MNL
model and the linear demand model.

Assumption 3(a) ensures that a firm immediately exits the market on a stockout.
In this case, customers who originally prefer the stockout firm will spill over to the
remaining firms that still have positive inventory. The spillover is endogenized from
the demand model according to customers’ preferences and product substitutability.
Moreover, in view of Assumption 3(b), firms can use the choke price before it
runs out of stock. The compactness assumption of Pi (t, p−i ) fails to hold for some
models, like the MNL. Fortunately, for the MNL model there are ways around that
avoid compactness.

Assumption 3(c) is without loss of generality. Assumption 4 is standard in game
theory and it is realistic in an airline setting as major airlines offer a feature of
previewing seat availability from their websites.

Let x(t) ∈ [0, c] be the joint inventory at time t . A joint open-loop strategy p(t)

depends only on time t and the initial inventory x(0) = c. In contrast, a feedback
strategy p(t, x(t)) depends on t and the current inventory x(t). The set of all open-
loop strategies is denoted by P0, and the set of all feedback strategies is denoted
by PF .

Let D[0, T ] denote the set of all right-continuous real-valued functions with left
limits defined on [0, T ], where the left discontinuities allow for price jumps after a
sale. Given a price control path p ∈ D[0, T ]m, we denote the total profit for firm
i by

Ji[p] =
∫ T

0
ri(t, pi(t))dt.
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Moreover, under p ∈ D[0, T ]m, the inventory of product i evolves according to

ẋi (t) = −di(t, p(t)) 0 ≤ t ≤ T

starting from xi(0) = ci .
The objective of each firm is to maximize its own total revenue over the sales

horizon subject to all capacity constraints over the entire sales horizon. Thus, firm’s
i problem is

max
pi(t),t∈[0,T ]

∫ T

0
ri(t, p(t))dt

subject to

xj (t) = cj −
∫ t

0
dj (v, p(v))dv ≥ 0 ∀ t ∈ [0, T ], j = 1, . . . , m.

Firms simultaneously solve their own revenue maximization problems subject
to a joint set of constraints, giving rise to a game with coupled strategy constraints
for all firms. These are known as generalized Nash games with coupled constraints.
If some pricing policy results in negative inventory at some time, then it will be
eliminated from the joint feasible strategy space. In other words, all firms face a
joint set of constraints, x(t) ≥ 0 for all t ∈ [0, T ] in selecting feasible strategies.

A generalized open-loop Nash equilibrium (OLNE) is an open-loop control path
p ∈ P0 such that p ∈ D[0, T ]m, and pi(t), 0 ≤ t ∈ T solves firm i’s problem for
all i. Likewise, a feedback loop Nash Equilibrium (FNE) is a feedback control path
p ∈ PF such that p ∈ D[0, T ]m, and pi(t, x(t)) solves firm i’s problem for all i.

In a nonzero-sum differential game, open-loop and feedback strategies are gen-
erally different. However, re-solving the OLNE with the current time and inventory
level continuously over time results in an FNE, which generates the same price path
and inventory trajectory as those of the OLNE with the same initial time and inven-
tory level. Because of this relationship, we call an OLNE, an equilibrium strategy.

11.3.2 Equilibrium Results

The following theorem gives important existence results.

Theorem 11.5 If the choke price p∞
i (t, p−i ) is in the convex and compact set

Pi (t, p−i ) for each i, then an equilibrium exists. For the MNL model, an equilibrium
exists where firms never use the choke price.

The first part of Theorem 11.5 applies to the linear demand model, but it does not
apply to the MNL model, because for the MNL model, the sets Pi (t, p−i ) are not
compact. Nevertheless, the second part guarantees the existence of an equilibrium
that does not involve the choke price for any of the firms.
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Necessary Conditions
From Pontryagin’s maximum principle for constrained set space, the following are
necessary conditions for an OLNE.

Theorem 11.6 If an open-loop pricing policy p∗ is an OLNE, then there exists a
non-negative, m × m matrix of non-negative shadow prices μij , such that for any t

such that x∗
i (t) > 0, the open-loop policy maximizes

ri(t, pi, p
∗−i (t)) −

∑

j

μij dj (t, pi, p
∗−i (t)).

Moreover, μij x
∗
j (T ) = 0 for all j . Let Ei = {t ∈ [0, T ] : x∗

i (t) = 0}, and if Ei

is non-empty, define ti = inf Ei . For all t ∈ [ti , T ], firm i uses the choke price
p∞(t, p∗−i (t)). There exists a decreasing shadow price process μij (t) ∈ [0, μij ] for
all j and t ∈ [ti , T ] such that the choke price p∞

i (t) maximizes

ri(t, pi, p
∗−i (t)) −

∑

j

μij (t)dj (t, pi, p
∗−i (t)).

As a result, the OLNE has a simple structure. First, there exist an m × m matrix
of finite, non-negative, time invariant, shadow prices μij . At time t , let S(t) =
{i : x∗

i (t) > 0} be the set of firms with positive inventories. Then every firm in S(t)

simultaneously solves the problem

max
pi

{

ri(t, pi, p−i ) −
∑

j∈S(t)

μij dj (t, pi, p−i )

}

,

where pi ∈ Pi (t, p−i ) ∪ p∞
i (t, p−i ) and all firms i /∈ S(t) use their choke price.

Notice that the set of allowable prices for firms in S(t) include the choke price, thus
a firm may use its choke price even if it has positive inventory.

We now illustrate how capacity externalities influence the equilibrium pricing.
Fix an arbitrary time t . If firms i and j offer substitutable products, then firm j ’s
scarce capacity exerts an externality on firm i by pushing up firm i’s price: Since
firm j has limited capacity, it has a tendency to increase its own price due to the
self-inflicted capacity externality. Because of the substitutability between products
from firms i and j , the price competition between the two firms will be alleviated
so that firm i can also post a higher price. On the other hand, if firms i and j offer
complementary products, then firm j ’s scarce capacity exerts an externality on firm
i by pushing down firm i’s price: While firm j has a tendency to increase its own
price, due to the complementarity between products from firms i and j , firm i has
to undercut its price to compensate for the price increase of firm j . By a similar
reasoning, on stockout, a product’s market exit by posting choke prices will be a
boon for its substitutable products and a bane for its complementary products.



300 11 Competitive Assortment and Price Optimization

An important special case is that of time invariant demands d(t, p) = d(p).
In this case, the price trajectories and the available products in the market remain
constant before the first stockout event, between any two consecutive stockout
events, and after the final stockout event until the end of the sales horizon.

Sufficient Conditions
Consider now a bounded rational OLNE where the matrix of shadow prices is
diagonal, so μii ≥ 0 and μij = 0 for all i �= j . Such a bounded rational equilibrium
may arise if firms only care about their own capacity constraint. This bounded
rational equilibrium may also arise if firms do not have inventory information for
their competitors, and equilibrium outcomes emerge from repeated best responses.
Moreover, it can also arise when firms proceed under the assumption that the
competitors have sufficiently large capacities as if they would never stock out.

Theorem 11.7 If ri(t, p) is concave in pi and di(t, p) is convex in pj for all i, j, t ,

then the necessary conditions are also sufficient. Moreover, if
∫ T

0 [ri(t, p(t)) −
μ(t)di(t, p(t))]dt is pseudo-concave in pi(t), 0 ≤ t ≤ T for all μ(t) ≥ 0,
0 ≤ t ≤ T , then the necessary conditions together with μij (t) = 0 for all i �= j

and t are also sufficient for a bounded rational OLNE.

The first part of Theorem 11.7 applies to the linear demand model, but fails for
the MNL model. On the other hand, second set of sufficient conditions apply to the
MNL model.

11.3.3 Comparative Statics

If all products are substitutable such that the price competition is (log-)supermodular,
then a decrease in the initial capacity level of any firm leads to higher equilibrium
prices at any time for all firms in a bounded rational OLNE. Consider now a duopoly
selling complementary products. If the price competition is (log-)submodular, then
a decrease in the initial capacity level of one firm leads to higher equilibrium prices
at any time for the firm itself and lower equilibrium prices at any time for the other
firm in a bounded rational OLNE.

Uniqueness
A normalized OLNE has a matrix of constant shadow prices where all the rows
are the same, so μij = μj independent of i for all i, j . In essence, all firms use
the same set of shadow prices for a firm’s capacity constraint in their best-response
problems. Suppose that di(t, p) is twice continuously differentiable in p for all i

and t . If di(t, p) is convex in pj for all i, j, t , and

∂2ri(t, p)

∂p2
i

+
∑

j �=i

∣
∣
∣
∣
∂2ri(t, p)

∂pi∂pj

∣
∣
∣
∣ < 0

for all i, t , then there exist a unique normalized OLNE.
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Unfortunately, this result does not apply to the MNL model as the demand
function is not convex in p. For this reason, we present alternative conditions for
uniqueness that apply to the MNL model. Assume that di(t, p) is twice continuously
differentiable in p for all i and t . If ∂di(t, p)/∂pi < 0 for all i, t , and the Jacobian
and Hessian matrix of the demand function d(t, p) with respect to p are negative
semidefinitive for all p ∈ P , then there exist at most one bounded rational OLNE
for any vector of diagonal shadow prices. Moreover, there exists a unique bounded
rational OLNE for some vector of diagonal shadow prices. It is possible to verify
that the MNL model satisfies these latter set of conditions.

Coupled with the existence results, we know that there exists at least one bounded
rational OLNE, and that there exists at least one vector of diagonal shadow prices
such that its corresponding bounded rational OLNE is unique.

Applications
In dynamic Bertrand–Edgeworth models, firms may avoid head-to-head competition
and take turns acting as monopolists. This can also happen in our model depending
on the inter-temporal demand structure; however, it is possible to show that this can
never happen under the MNL model. On the other hand, examples exist where firms
run out of stock before the end of the sales horizon in equilibrium even if demands
are stationary. However, among all such equilibria, the one using the whole sales
horizon Pareto dominates all others and it is the unique bounded rational OLNE.

11.3.4 Asymptotic Optimality for the Stochastic Case

We extend the differential game to account for demand uncertainty by considering
its stochastic-game counterpart in continuous time. We show that the solutions
suggested by the differential game capture the essence and provide a good approx-
imation to the stochastic game. Given a feasible pricing policy u, we denote the
revenue for firm i as Gi(u). A policy u∗ is a Markovian equilibrium if G(ui, u

∗−i ) ≤
G(u∗

i , u
∗−i ) for all i. An equilibrium can be found, in theory, by simultaneously

solving the corresponding Hamilton–Jacobi–Bellman equations for all the firms. It
can be shown that using an affine functional approximation for the value functions
of all the firms coincides with the differential game we have studied earlier.

Using k as an index, we consider a sequence of problems with demand rate
dk(t, p) = kd(t, p) and capacity ck = kc. Let Ḡk

i (u) = Gk(u)/k be the revenue
form firm i. In a stochastic game, a feasible policy u∗ is called an asymptotic Nash
equilibrium in the limiting regime of the sequence of scaled stochastic games, if for
any ε > 0 and all i, there exists an l such that for all k > l, Ḡl

i (ui, u
∗−i ) ≤ Ḡl(u∗)+ε

for all feasible policies (ui, u
∗−i ).

Theorem 11.8 Any OLNE heuristic corresponding to an OLNE of the differential
game is an asymptotic Nash equilibrium in the limiting regime of the sequence of
scaled stochastic games.
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Under the stochastic regime, firms may prefer to use a re-solving feedback
strategy that updates prices continuously based on the state of the system as a
potentially better heuristic. The following theorem tells us that this feedback policy
is also asymptotically optimal.

Theorem 11.9 The re-solving feedback heuristic is an asymptotic Nash equilibrium
in the limiting regime of the sequence of scaled stochastic games.

The last two results are of practical value to capacity providers that can be assured
that heuristics based on the differential game have good asymptotic properties.

11.4 End of Chapter Problems

1. Consider a version of the Markov chain (MC) choice model that we studied
in the chapters on choice modeling and assortment optimization, but we make
pricing decisions, instead of assortment offer decisions. With probability λi , a
consumer arriving into the system is primarily interested in product i and checks
its price pi . The consumer makes a purchase with e−αi pi and leaves the system
generating a revenue equal to pi . Otherwise, the consumer rejects product i, and
transitions to product j with probability ρij and checks its price pj . Assume
that

∑
j∈N ρij < 1 for all i ∈ N so that a customer visiting product i and

not purchasing this product transitions to the no-purchase option and leaves
the system with probability 1 − ∑

j∈N ρij . The customer transitions among the
products until she makes a purchase decision or she decides to leave without a
purchase.

(a) Given that we charge the prices p = {pi : i ∈ N}, write a system of
equations that we can solve to compute the purchase probability of each
product.

(b) Let gi be the optimal expected revenue from a customer currently visiting
product i. Write a dynamic program that can be used to compute {gi : i ∈
N}.

2. We continue with the MC choice model setup discussed in the previous problem.
Assume that the set of products N are partitioned into the sets N1 and N−1. There
are two firms, firm 1 and firm −1. Firm i owns and sets the prices of products
in the set Ni . The customers make a choice over the whole set of products N

according to the MC choice model. If a customer purchases a product owned by
firm i, then firm i generates a revenue. Each firm is interested in maximizing its
own expected revenue.

(a) Assume that firm −1 charges the prices {p−1
i : i ∈ N−1} for the products that

it owns. Let g1
i be the optimal expected revenue of firm 1 from a customer

that is currently visiting product i. Write a dynamic program that can be
used to compute {g1

i : i ∈ N1 ∪ N−1}. Note that g1
i is nonzero for i ∈ N−1.



11.4 End of Chapter Problems 303

In particular, firm 1 can generate nonzero revenue from a customer visiting a
product owned by firm −1 because this customer may decide not to purchase
the product and subsequently transition to a product owned by firm 1.

(b) What is the optimal price that firm 1 should charge for product i ∈ N1 as a
function of {g1

j : j ∈ N1 ∪ N−1}?
3. In the second part of the previous problem, we derived how to compute the best

response of firm 1 to the prices {p−1
i : i ∈ N−1} charged by firm −1. Let p̂1 =

{p̂1
i : i ∈ N1} be the best response of firm 1 to the prices p̂−1 = {p̂−1

i : i ∈ N−1}
charged by firm −1. Let p̃1 = {p̃1

i : i ∈ N1} be the best response of firm 1 to the
prices p̃−1 = {p̃−1

i : i ∈ N−1} charged by firm −1.

(a) Show that if p̂−1
i ≥ p̃−1

i for all i ∈ N−1, then p̂1
i ≥ p̃1

i for all i ∈ N1.
(b) Using the previous part, show that there exists a Nash equilibrium for the

two firms.

4. Consider a symmetric duopoly market with firms 1 and 2 each selling one product
by setting prices p1 and p2, respectively. The two products are substitutable. The
demand system that governs the market has a linear form:

d1(p1, p2) = a − p1 + γp2,

d2(p1, p2) = a − p2 + γp1,

where a > 0 and γ ∈ [0, 1). Both firms have the identical marginal cost of z to
procure, produce, and distribute their products. Note that though the two firms
are symmetric, nothing prevents them from adopting asymmetric decisions.

(a) As γ increases, how does the total sales d1(p1, p2) + d2(p1, p2) change
for a given price vector (p1, p2)? Is there any issue with this monotonicity
property?

(b) If both firms simultaneously set prices to maximize their profit, what is the
price equilibrium?

(c) If both firms simultaneously make decisions on the sales quantity to
maximize their profit, what is the market equilibrium outcome in terms of
prices?

(d) Compare the equilibrium outcomes in parts (b) and (c). Provide an intuitive
explanation why the comparison you observe hold.

(e) Consider a two-stage sequential game in which firms maximize their profit.
In the first stage, both firms simultaneously decide on the capacity of their
production and distribution. As a result, how many each can sell will be
capped by the capacity level determined by themselves. In the second stage,
given the capacity level they build in the first stage, both firms simultaneously
set prices to maximize their profit. For this two-stage game, what is the price
equilibrium in the second stage given the equilibrium capacity level set in
the first stage?
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(f) Compare the equilibrium outcomes in parts (c) and (e). Provide an intuitive
explanation why the comparison you observe hold.

(g) On top of the two-stage sequential game of part (e), suppose in the second
stage, firms can produce, distribute, and sell more than the capacity level
each sets in the first stage. The downside is the additional quantity produced,
distributed, and sold beyond the capacity level incurs an additional cost z′
per unit beyond z. What is the equilibrium market outcome you expect to see
from this modified two-stage sequential game?

11.5 Bibliographical Remarks

The competitive assortment optimization model that we discuss in this chapter is
based on Besbes and Saure (2016). The authors extend the results that we discuss in
this chapter to the case where there are common products that can be offered by both
firms. If a customer chooses such a common product, then she makes the purchase
decision from either of the firms with equal probabilities. Also, the authors analyze
the setting where the firms choose the assortment of products to offer, as well as
the prices of the products in the offered assortment. The competitive pricing model
presented in this chapter is due to Gallego and Hu (2014). We refer the reader to that
paper for the details of the analysis. Related models also appear in Federgruen and
Hu (2015) and Federgruen and Hu (2018).

Hopp and Xu (2008) study a dynamic price and assortment optimization problem
under competition. The authors adopt a fluid approximation framework, where
the demand takes on its expected value. They establish the existence of a Nash
equilibrium and provide conditions for uniqueness. Gallego et al. (2006a) study
competitive pricing problems under the MNL model. Chen and Chen (2017)
incorporate the network effects into the problem in a duopoly setting. Anderson and
de Palma (1992) and Li and Huh (2011) study competitive pricing problems under
the nested logit (NL) model. In the first paper, the authors assume that all products
have the same price sensitivity, whereas in the second paper, the authors assume
that the products in the same nest have the same price sensitivity. Gallego and Wang
(2014) extend these results to the case where the products can have arbitrary price
sensitivities. Cachon and Kok (2007b) use the NL model to analyze the decisions
made by category managers, who focus on the expected revenue obtained from
a customer purchasing a product in their own category. The authors characterize
the potential revenue loss and provide remedies to attain expected revenues close
to those that can be obtained by a central planner. Kok and Xu (2011) study the
structural properties of the best-response dynamics when the customers choose
according to the NL model. Cooper et al. (2015) develop a model to understand the
consequences of ignoring the competition while estimating the customer demand.
Feng and Hu (2017) study a competitive product investment model to understand
the customer herding behavior.



Appendix 305

There is a large and still growing body of literature on competitive models in
network revenue management. There is work focusing on dynamic pricing models
with competition; see Perakis and Sood (2006), Gallego et al. (2006b), Xu and
Hopp (2006), Kachani et al. (2007), Levin et al. (2009), Adida and Perakis (2010a),
Martinez-de-Albeniz and Talluri (2011), Caro and Martinez-de-Albeniz (2012) and
Kirshner et al. (2018). There is also work on competitive assortment models; see
Heese and Martinez-de-Albeniz (2018). Lastly, there is work on studying price or
quantity competition in static problems that include either a single or two time
periods; see Farahat and Perakis (2009), Nalca et al. (2010, 2013), Farahat and
Perakis (2010), Martinez-de-Albeniz and Roels (2011), Afeche et al. (2014), Wang
and Hu (2014), Cho and Tang (2014), Bazhanov et al. (2015), Nazerzadeh and
Perakis (2016), Aviv et al. (2017, 2018) and Cachon and Feldman (2017).

Appendix

Proof of Lemma 11.1 If V (Ŝ−i ) = V (S̃−i ), then since the objective function of
problem (11.2) depends on S−i only through V (S−i ), a best response of firm i to the
assortment Ŝ−i is also a best response of firm i to the assortment S̃−i . In this case,
the result follows immediately. Assume without loss of generality that V (Ŝ−i ) <

V (S̃−i ), and assume for a contradiction that V (Ŝi) > V (S̃i). From (11.1), for any
Si ∈ Fi and Si �= ∅, Ri(Si, Ŝ−i ) > Ri(Si, S̃−i ). Consequently,

z∗
i (Ŝ−i ) = max

Si∈Fi

Ri(Si, Ŝ−i ) > max
Si∈Fi

Ri(Si, S̃−i ) = z∗
i (S̃−i ),

so that z∗
i (Ŝ−i ) > z∗

i (S̃−i ), where we implicitly assume that there exists a nonempty
feasible solution to the two maximization problems above; otherwise, Ŝi = S̃i = ∅

and the result trivially holds. On the other hand, by the discussion before the lemma,
a best response of firm i to the assortment S−i is given by an optimal solution
to problem (11.3). Therefore, Ŝi is an optimal solution to problem (11.3) after
replacing z∗

i (S−i ) with z∗
i (Ŝ−i ). In other words, Ŝi is an optimal solution to the

problem

max
Si∈Fi

{ ∑

j∈Si

(pj − z∗
i (Ŝ−i )) vj

}

.

Since S̃i is a feasible but not necessarily an optimal solution to the problem above,
it follows that

∑

j∈Ŝi

(pj − z∗
i (Ŝ−i )) vj ≥

∑

j∈S̃i

(pj − z∗
i (Ŝ−i )) vj .
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Interchanging the roles of Ŝ−i and S̃−i and following the same argument, we see
that

∑

j∈S̃i

(pj − z∗
i (S̃−i )) vj ≥

∑

j∈Ŝi

(pj − z∗
i (S̃−i )) vj .

Adding the two inequalities yields, it follows that z∗
i (Ŝ−i ) [V (S̃i) − V (Ŝi)] ≥

z∗
i (S̃−i ) [V (S̃i) − V (Ŝi)]. The last inequality contradicts the fact that z∗

i (Ŝ−i ) >

z∗
i (S̃−i ) and V (Ŝi) > V (S̃i). ��

Proof of Theorem 11.2 We use induction over the iterations to show that V (Ŝt
1) ≥

V (Ŝt−1
1 ) and V (Ŝt

−1) ≥ V (Ŝt−1
−1 ) for all t = 1, 2, . . .. The result trivially holds for

t = 1, since we have Ŝ0
1 = Ŝ0

−1 = ∅ so that V (Ŝ0
1) = V (Ŝ0

−1) = 0. Assuming that

V (Ŝt
1) ≥ V (Ŝt−1

1 ) and V (Ŝt
−1) ≥ V (Ŝt−1

−1 ), we proceed to showing that V (Ŝt+1
1 ) ≥

V (Ŝt
1) and V (Ŝt+1

−1 ) ≥ V (Ŝt
−1). By definition Ŝt

1 is a best response of firm 1 to the

assortment Ŝt−1
−1 , whereas Ŝt+1

1 is a best response of firm 1 to the assortment Ŝt
−1.

Since V (Ŝt−1
−1 ) ≤ V (Ŝt

−1) by the induction hypothesis, by Lemma 11.1, it follows

that V (Ŝt
1) ≤ V (Ŝt+1

1 ). Similarly, by definition, Ŝt
−1 is a best response of firm −1

to the assortment Ŝt
1, whereas Ŝt+1

−1 is a best response of firm −1 to the assortment

Ŝt+1
1 . We just established that V (Ŝt

1) ≤ V (Ŝt+1
1 ), so by Lemma 11.1, we obtain

V (Ŝt
−1) ≤ V (Ŝt+1

−1 ). This discussion completes the induction argument, so that we

have V (Ŝt
1) ≥ V (Ŝt−1

1 ) and V (Ŝt
−1) ≥ V (Ŝt−1

−1 ) for all t = 1, 2, . . .. Since the

number of possible assortments is finite and the sequences {V (Ŝt
1) : t = 0, 1, . . .}

and {V (Ŝt
−1) : t = 0, 1, . . .} are increasing, these sequences converge. Therefore,

there exists t0 ≥ 0 such that V (Ŝ
t0
1 ) = V (Ŝ

t0+1
1 ) = V (Ŝ

t0+2
1 ) = . . . and V (Ŝ

t0−1) =
V (Ŝ

t0+1
−1 ) = V (Ŝ

t0+2
−1 ) = . . ..

We claim that (Ŝ
t0+1
1 , Ŝ

t0−1) is a Nash equilibrium. By definition of the taton-

nement process, Ŝ
t0+1
1 is a best response of firm 1 to the assortment Ŝ

t0−1 offered

by firm −1. It only remains to argue that Ŝ
t0−1 is a best response of firm −1

to the assortment Ŝ
t0+1
1 offered by firm 1. By the definition of the tatonnement

process, note that Ŝ
t0−1 is a best response of firm −1 to the assortment Ŝ

t0
1 . The

best response of firm −1 to the assortment Ŝ
t0
1 is computed by solving the problem

maxS−1∈F−1 R−1(S−1, Ŝ
t0
1 ). By (11.1), R−1(S−1, Ŝ

t0
1 ) depends on Ŝ

t0
1 only through

V (Ŝ
t0
1 ). Since V (Ŝ

t0
1 ) = V (Ŝ

t0+1
1 ), it follows that Ŝ

t0−1 is also a best response of firm

−1 to the assortment Ŝ
t0+1
1 , establishing the claim. ��

Proof of Theorem 11.3 Let (S∗
1 , S∗−1) be any Nash equilibrium. Assume that the

sequence of assortments {(Ŝt
1, Ŝ

t
−1) : t = 0, 1, . . .} is generated by the tatonnement

process. We use induction over the iterations of the tatonnement process to show
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that V (Ŝt
1) ≤ V (S∗

1 ) and V (Ŝt
−1) ≤ V (S∗−1) for all t = 0, 1, . . .. The result

trivially holds for t = 0, since we have Ŝ0
1 = Ŝ0

−1 = ∅. Assuming that V (Ŝt
1) ≤

V (S∗
1 ) and V (Ŝt

−1) ≤ V (S∗−1), we proceed to showing that V (Ŝt+1
1 ) ≤ V (S∗

1 )

and V (Ŝt+1
−1 ) ≤ V (S∗−1). By definition of the tatonnement process, Ŝt+1

1 is a

best response of firm 1 to the assortment Ŝt
−1. Also, by the definition of a Nash

equilibrium, S∗
1 is a best response of firm 1 to the assortment S∗−1. In this case,

since we have V (Ŝt
−1) ≤ V (S∗−1), by Lemma 11.1, we obtain V (Ŝt+1

1 ) ≤ V (S∗
1 ).

Similarly, by the definition of the tatonnement process, Ŝt+1
−1 is a best response of

firm −1 to the assortment Ŝt+1
1 . By the definition of a Nash equilibrium, S∗−1 is

a best response of firm −1 to the assortment S∗
1 . Since we have just shown that

V (Ŝt+1
1 ) ≤ V (S∗

1 ), by Lemma 11.1, we obtain V (Ŝt+1
−1 ) ≤ V (S∗−1), completing the

induction argument.
By the preceding discussion, the sequence {(Ŝt

1, Ŝ
t
−1) : t = 0, 1, . . .} of

assortments generated by the tatonnement process satisfies V (Ŝt
1) ≤ V (S∗

1 ) and

V (Ŝt
−1) ≤ V (S∗−1) for all t = 0, 1, . . .. In this case, letting (Ŝ

t0+1
1 , Ŝ

t0−1) be a

Nash equilibrium generated by the tatonnement process, we have V (Ŝ
t0+1
1 ) ≤

V (S∗
1 ) and V (Ŝ

t0−1) ≤ V (S∗−1). By (11.1), Ri(Si, S−i ) is decreasing in V (S−i ).

Therefore, since V (Ŝ
t0−1) ≤ V (S∗−1), we get R1(S1, Ŝ

t0−1) ≥ R1(S1, S
∗−1) for all

S1 ∈ F1. Also, since (Ŝ
t0+1
1 , Ŝ

t0−1) and (S∗
1 , S∗−1) are Nash equilibria, we have

Ŝ
t0+1
1 ∈ arg maxS1∈F1 R1(S1, Ŝ

t0−1) and S∗
1 ∈ arg maxS1∈F1 R1(S1, S

∗−1), because
the assortments offered by firm 1 must be a best response to the assortments offered
by firm −1 in any Nash equilibrium. In this case, we obtain

R1(Ŝ
t0+1
1 , Ŝ

t0−1) = max
S1∈F1

R1(S1, Ŝ
t0−1) ≥ max

S1∈F1

R1(S1, S
∗−1) = R1(S

∗
1 , S∗−1),

where the inequality uses the fact that R1(S1, Ŝ
t0−1) ≥ R1(S1, S

∗−1) for all S1 ∈ F1.
The chain of inequalities above shows that the expected revenue of firm 1 in the
equilibrium (Ŝ

t0+1
1 , Ŝ

t0−1) is at least as large as its expected revenue in the equilibrium
(S∗

1 , S∗−1). We can use a similar argument to show that the same statement holds for
firm −1 as well. ��
Proof of Theorem 11.4 By its definition, SNC

i is a best response of firm i to the
empty assortment. Also, by the definition of a Nash equilibrium, S∗

i is a best
response of firm i to the assortment S∗−i . Since V (∅) = 0 ≤ V (S∗−i ), by
Lemma 11.1, we obtain V (SNC

i ) ≤ Vi(S
∗
i ), establishing the first inequality in

the theorem. To show the second inequality in the theorem, let z∗ be the optimal
objective value of problem (11.4) and z∗

i (S
∗−i ) be the optimal objective value of

problem (11.2) after replacing S−i with S∗−i . Because (S∗
1 , S∗−1) is a feasible but not

necessarily an optimal solution to problem (11.4), we have
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z∗ = R1(S
CP
1 , SCP

−1) + R−1(S
CP
−1, S

CP
1 )

≥ R1(S
∗
1 , S∗−1) + R−1(S

∗−1, S
∗
1 ) = z∗

1(S
∗−1) + z∗−1(S

∗
1 ),

where the last equality follows from the fact that S∗
i is a best response of firm i to the

assortment S∗−i . In problem (11.2), each firm can trivially obtain a strictly positive
expected revenue by offering any product. Therefore, z∗

1(S
∗−1) > 0 and z∗−1(S

∗
1 ) >

0, in which case, the chain of inequalities above implies that z∗ > z∗
1(S

∗−1) and
z∗ > z∗−1(S

∗
1 ).

Note that in problem (11.4), if we fix the assortment S−1 at its optimal value SCP
−1

and optimize only over the assortment S1, then setting S1 = SCP
1 would still yield

an optimal solution. Therefore, SCP
1 is an optimal solution to the problem

max
S1∈F1

{
R1(S1, S

CP
−1) + R−1(S

CP
−1, S1)

}
= max

S1∈F1

∑
j∈S1

pj vj + ∑
j∈SCP−1

pj vj

v0 + V (S1) + V (SCP
−1)

yielding the optimal objective value z∗. In this case, we have

z∗ ≥
∑

j∈S1
pj vj + ∑

j∈SCP−1
pj vj

v0 + V (S1) + V (SCP
−1)

∀ S1 ∈ F1,

and the inequality above holds as equality at the optimal solution SCP
1 . Following

the same sequence of steps that we used to obtain problem (11.3), it follows that

[v0 + V (SCP
−1)] z∗ ≥

∑

j∈S1

(pj − z∗) vj +
∑

j∈SCP−1

pj vj ∀ S1 ∈ F1,

and the inequality holds as equality at the optimal solution SCP
1 . Therefore, SCP

1 is
an optimal solution to the problem

max
S1∈F1

{ ∑

j∈S1

(pj − z∗) vj

}

,

but since S∗
1 is a feasible but not necessarily an optimal solution to the problem

above, we obtain

∑

j∈SCP
1

(pj − z∗) vj ≥
∑

j∈S∗
1

(pj − z∗) vj .

Also, since S∗
1 is a best response of firm 1 to the assortment S∗−1, S∗

1 is an optimal
solution to problem (11.3) with i = 1 and S−i = S∗−i . However, since SCP

1 is a
feasible but not necessarily an optimal solution to this problem, we get
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∑

j∈S∗
1

(pj − z∗
1(S

∗−1)) vj ≥
∑

j∈SCP
1

(pj − z∗
1(S

∗−1)) vj .

Adding the last two inequalities, we obtain

z∗ [V (S∗
1 ) − V (SCP

1 )] ≥ z∗
1(S

∗−1) [V (S∗
1 ) − V (SCP

1 )].

If V (S∗
1 ) < V (SCP

1 ), then the last inequality implies that z∗ ≤ z∗
1(S

∗−1), which
contradicts the fact that z∗ > z∗

1(S
∗−1). Therefore, we must have V (S∗

1 ) ≥ V (SCP
1 ).

A symmetric argument also shows that V (S∗−1) ≥ V (SCP
−1), establishing the second

inequality in the theorem. ��
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