
Chapter 10
Online Learning

10.1 Introduction

In the models that we have studied so far, we have assumed that the demand model
and its parameters are all known. In practice, demand models need to be estimated
before dynamic pricing, assortment optimization, and revenue management can be
effectively done. In some instances, there is enough data over a long period of time
to calibrate different demand models, do model selection, and update parameter
estimates. At the other extreme, we may be pricing for products for which we
have little or no information. In this case, demand learning needs to be done on
the fly. This is particularly true for online retailing of new products. In this chapter,
we address the problem of online demand learning. We study the expected loss in
revenue of a learning-and-earning policy relative to an optimal clairvoyant policy
that knows the expected demand function. We consider both the case of ample and
constrained capacity and measure how the regret grows as the length of the sales
horizon increases. We present only the strongest available results for both the case
of ample and the case of constrained capacity. In Sect. 10.2, we consider the case
with ample capacity, whereas in Sect. 10.3, we consider the case with constrained
capacity.

10.2 Ample Inventory Model

Let Dt(p) ∈ {0, 1} be the random demand in period t at price p. We will assume
that Dt(p), t ∈ {1, . . . , T } are independent and identically distributed Bernoulli
random variables with mean d(p) = E[Dt(p)] for all p ∈ [l, u] where l and u are
non-negative constants. Without loss of generality we rescale prices if necessary so
that [l, u] = [0, 1]. We assume that the d(p) is unknown and that the goal of the

© Springer Science+Business Media, LLC, part of Springer Nature 2019
G. Gallego, H. Topaloglu, Revenue Management and Pricing Analytics,
International Series in Operations Research & Management Science 279,
https://doi.org/10.1007/978-1-4939-9606-3_10

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9606-3_10&domain=pdf
https://doi.org/10.1007/978-1-4939-9606-3_10

276 10 Online Learning

seller is to maximize revenues over the selling horizon via a learning and earning
algorithm. We assume that capacity c is ample. In the context of the Bernoulli model
just described, this means that c ≥ T , because there is at most one unit of sale at
each period.

We will study both parametric and non-parametric models. In parametric models,
the seller knows the form of the expected demand, say d(p) = λe−p/θ , but needs
to estimate the unknown parameters (in this case λ and θ). The non-parametric
case makes no assumptions about the form of d(p). In the parametric case, the
parameters may be updated over time by following several techniques including
the Bayesian approach, maximum likelihood, or least squares. For non-parametric
models, the exploration does not attempt to estimate the demand function itself as
its main concern is to obtain prices that work well empirically.

Let R(p) = pd(p) be the revenue at price p. We assume there exist a unique
maximizer of R(p), say p∗ ∈ [0, 1]. Over the selling horizon, the expected revenue
obtained by the clairvoyant policy is T R(p∗). The objective is to design a non-
anticipating pricing policy πt to maximize the total reward

∑T
t=1 E[R(πt)]. The

information structure of πt requires that the decision for period t , πt , only relies on
the history of the process until time t − 1. This is similar to the multi-armed bandit
problem, but here the decision variable is continuous rather than a finite set.

10.2.1 Regret

A standard measure used in the literature for the performance of a policy is the regret
incurred compared to the clairvoyant policy. More formally, we define the regret of
a policy πt to be the expected gap in revenue from the clairvoyant policy, given by

rπ (T) :=
T∑

t=1

E
[
R(p∗) − R(πt)

]
.

This is a learning and earning problem where the demand is learned on the fly
with a tradeoff between exploration and exploitation, whose goal is to design a
policy πt for which rπ (T) scaling gracefully as T → ∞. Since rπ (T) depends
on the unknown function d(p), we require the designed policy to perform well for a
wide class C of functions, i.e., we seek for optimal policies in terms of the minimax
regret

inf
πt

sup
d∈C

rπ (T).

Although it is usually impossible to find the exact policy that achieves the minimax
regret, most authors focus on policies whose regret is at least comparable to (of
the same order as) the minimax regret as T → ∞. To state this more formally,

10.2 Ample Inventory Model 277

we will use the big O notation. We say that f (T) = O(g(T)) as T → ∞ if
there are constants C and t0 such that f (t) ≤ Cg(t) for all t ≥ t0. We say that
f (T) = Ω(g(T)) as T → ∞ if there are constants C and t0 such that f (t) ≥ Cg(t)

for all t ≥ t0. We say that f (T) = O∗(g(T)) if there constants C and t0 such that
f (t) ≤ Cg(t)p(t) for all t ≥ t0 for some poly-logarithmic factor p(t) of order
lower than g(t), so the big O∗ notation neglects multiplicative terms of lower order.

For the ample capacity case, it is possible to show under mild conditions that
there is a pricing policy for parametric models based on the maximum likelihood
framework that achieves regret O(

√
T). For the non-parametric case, it is possible

to show that there is a policy that achieves regret O(log(T)1/2
√

T), and for both
cases, the regret is at least Ω(

√
T). In summary, under mild assumptions, there are

policies that have regret O∗(
√

T) for both the parametric and non-parametric cases.
These regret bounds are for models that ignore customer characteristics that are
crucial for personalized pricing.

In this section, we describe a non-parametric model that allows for personalized
pricing. In this framework, each consumer arrives with a vector x of covariates in
a bounded d-dimensional hypercube which we take without loss of generality to be
[0, 1)d . The expected demand function E[D(p, x)] = d(p, x) depends both on the
price p and on the covariate vector x. A clairvoyant policy would observe x and
return p(x) = arg max R(p, x), where R(p, x) = pd(p, x) is the revenue at price
p when the covariate vector is x.

The main result of this section is that under mild assumptions there is an
algorithm that returns a policy with regret at most O(log(T)2T (2+d)/(4+d)) where
d is the dimension of the covariate vector. We also show that all policies have
regret at least Ω(T (2+d)/(4+d)), so there exist a policy that is O∗(T (2+d)/(4+d).
Without covariates, d = 0, the regret is O∗(

√
T), matching the performance of

earlier algorithms. As d increases the lower bound deteriorates and becomes nearly
linear in T . This suggests that only the most salient covariates should be included in
personalized pricing, perhaps after applying a dimension-reduction algorithm. Thus,
there is a tradeoff between trying to exploit covariate information and minimizing
the regret, particularly as d gets large.

10.2.2 Assumptions

For any convex subset B ⊂ [0, 1)d , let RB(p) := E [r(X, p)|X ∈ B], where the
expectation is taken over the distribution of the covariate space.

Assumption 1 D(p, x) is a Bernoulli random variable with mean d(p, x) :=
E[D(p, x)] ∈ [0, 1] for all p ∈ [0, 1] and all x ∈ [0, 1)d .

Assumption 2 The expected revenue function R(p, x) = pd(p, x) is Lipschitz
continuous, i.e., there exists M1 > 0 such that |R(x1, p1) − R(x2, p2)| ≤
M1(‖x1 − x2‖2 + |p1 − p2|) for all xi ∈ [0, 1)d and pi ∈ [0, 1] with i = 1, 2.

278 10 Online Learning

Assumption 3

3.1 The function RB(p) has a unique maximizer p∗(B) ∈ [0, 1]. Moreover, there
exist uniform constants M2,M3 > 0 such that for all p ∈ [0, 1], M2(p

∗(B) −
p)2 > RB(p∗(B)) − RB(p) > M3(p

∗(B) − p)2.
3.2 The maximizer p∗(B) of RB(p) is inside the interval

[inf{p∗(x) : x ∈ B}, sup{p∗(x) : x ∈ B}].

3.3 Let δB be the diameter of B. Then there exists a uniform constant M4 > 0 such
that sup{p∗(x) : x ∈ B} − inf{p∗(x) : x ∈ B} ≤ M4δB .

Assumption 1 is very mild. Lipchitz continuity or similar smoothness conditions
are common in the literature and are needed for past experiments to be informative.
The intuition behind the third assumption is to consider a learning problem
associated with B without covariates. Indeed, if we only know that X ∈ B, the
learning objective would be RB(p), so the clairvoyant policy would set price p∗(B)

in each period where X ∈ B. Assumption 3 is satisfied by many of the parametric
families studied in the literature. For example, in the linear case, we have d(p, x) =
α′x − βp, so RB(p) = p(α′

E[X|X ∈ B] − βp) and p∗(B) = α′
E[X|X ∈ B]/2β.

10.2.3 Preliminary Concepts

We start by defining a bin and its children.

Definition 10.1 A bin is a hyper-rectangle in the covariate space. More precisely, a
bin is of the form

B = {x : ai ≤ xi < bi, i = 1, . . . , d}

for 0 ≤ ai < bi ≤ 1, i = 1, . . . , d.

We can split a bin B by bisecting it in all the d dimensions to obtain 2d child bins
of B, all of equal size. For a bin B with boundaries ai and bi for i = 1, . . . , d, its
children are indexed by the 2d vectors in {0, 1}d . Indeed, for any w ∈ {0, 1}d , we
have the child

Bw =
{

x : ai ≤ xi <
ai + bi

2
if wi = 0,

ai + bi

2
≤ xi < bi if wi = 1, i = 1, . . . , d

}

that choses the first half of the range of component i if wi = 0 and the second half
if wi = 1 for each i = 1, . . . , d.

10.2 Ample Inventory Model 279

Denote the set of all child bins of B by C(B) = {Bw : w ∈ {0, 1}d}. Notice
that C(B) is a mutually exclusive and collectively exhaustive partition of B into 2d

child bins. For any B ′ ∈ C(B), we refer to B as the parent bin of B ′, denoted by
P(B ′) = B.

The adaptive binning and exploration (ABE) algorithm given below starts with
bin B∅ = [0, 1)d and successively splits it as data is collected. Any bin B produced
during the process is the offspring of B∅. Therefore, one can use a sequence
of vectors in {0, 1}d , w1, w2, . . . , wk to represent a bin that is build during the
algorithm. The bin Bw1,w2,...,wk refers to a bin that is obtained by k split operations
of B∅. After the first split, we obtain Bw1 from B∅. When Bw1 is split, we obtain its
child Bw1w2 and so on. In the last operation, when Bw1...wk−1 is split, we obtain its
child Bw1...wk . For such a bin, we define its level to be k, denoted by l(B) = k, with
l(B∅) = 0.

At the end of the ABE algorithm, there is a partition, say P , of the covariate
space, and for each B ∈ P , the function RB(p) is estimated from data for values
of p in a grid partition of an interval [pl

B, ph
B] ⊂ [0, 1] produced by the algorithm.

The algorithm then selects the price in this grid that maximizes the approximation
of RB(p), which should be close to p∗(B), and in turn close to p(x) for x ∈ B given
the Lipchitz continuity assumptions. The intuition is that for large T , we should be
able to get reliable estimates for fairly small bins, and the approximation should
be very accurate. The algorithm tries to do this learning efficiently by judiciously
deciding when to split bins. This is done by a set of discrete decisions (referred to
as the decision set hereafter) for each bin in the partition.

The algorithm keeps a dynamic partition Pt of the covariate space consisting of
offspring of B∅ in each period t , starting with P0 = {B∅}. Each bin in Pt+1 has
an ancestor (or itself) in Pt . Each time a bin is partitioned, that bin is removed and
replaced by all of its children. The process can also be interpreted as the sequential
splitting of a branching process and relates to decision trees in statistical learning.

The decision set consists of equally spaced grid points of an interval associated
with the bin. When a covariate Xt is generated inside a bin B, a price is chosen
successively in a grid and is applied to Xt . The realized reward for this decision is
recorded. When sufficient covariates are observed in B, the average reward for each
price in the grid is recorded as an estimate of RB(p). The best price in the grid is
the empirically-optimal decision and is close to p∗(B) with high confidence.

Adaptive Binning and Exploration (ABE)

Step 1. Initialization
(A) Input: T , d

(B) Constants: M1, M2, M3, M4, σ

(C) Parameters: K and Δk , nk , Nk for k = 0, . . . , K

(D) Set partition: P ← {B∅}, p
B∅
l ← 0, p

B∅
u ← 1, δB∅ ← 1/(N0 − 1),

ȲB,j , NB∅,j ← 0 for j = 0, . . . , N0 − 1, N(B0) = 0, l(B0) = 0

280 10 Online Learning

Step 2. Learning and Earning
(A) For t = 1 to T do
(B) Observe Xt

(C) B ← {B ∈ P : Xt ∈ B}
(D) k ← l(B), N(B) ← N(B) + 1
(E) If k < K then

(a) If N(B) < nk then
(b) j ← N(B) − 1 (mod Nk)

(c) πt ← pB
l + jδB ; apply πt and observe revenue Zt

(d) ȲB,j ← 1
NB,j +1 (NB,j ȲB,j + Zt), NB,j ← NB,j + 1

(e) Else
(f) j∗ ∈ arg maxj∈{0,1,...,Nk−1}{ȲB,j }, p∗ ← pB

l + j∗δB

(g) P ← (P \ B) ∪ C(B)

(h) For B ′ ∈ C(B)

• N(B ′) ← 0
• pB ′

l ← max{0, p∗ − Δk+1/2}; pB ′
u ← min{1, p∗ + Δk+1/2}

• δB ′ ← (pB ′
u − pB ′

l)/(Nk+1 − 1)

• NB ′,j , ȲB ′,j ← 0, for j = 0, . . . , Nk+1 − 1
• End For

(i) End If

(F) Else πt ← (pB
l + pB

u)/2
(G) End If
(H) End For

The parameters for the algorithm include K , the maximal level of the bins, Δk

the length of the interval for level-k bins, nk the maximum number of covariates
observed in a level-k bin, Nk the number of decisions to explore in the decision set of
level-k bins (consisting in Nk evenly spaced points in the interval [pB

l , pB
u] specified

by the algorithm). We initialize with the root bin P0 = {B∅}. Its decision set
spans the whole interval [0, 1] with N0 equally spaced grid points. That is, the j -th
decision is jδB∅ := j/(N0−1) for j = 0, . . . , N0−1. The initial average reward and
the number of explorations already applied to the j -th decision are set to ȲB∅,j =
NB∅,j = 0. We set K = � log(T)

(d+4) log(2)
�, Δk = 2−k log(T), Nk = �log(T)�, and

nk = max

{

0,

⌈
24k+18σ

M2
2 log3(T)

(log(T) + log(log(T)) − (d + 2)k log(2))

⌉}

.

To give a sense of their magnitudes, the maximal level of bins is K ≈
log(T)/(d + 4). The range of the decision set (Δk) is proportional to the edge
length of the bin (2−k). The number of decisions in a decision set is approximately
log(T). Therefore, the grid size δB ≈ 2−k for a level-k bin B. The number of
covariates to collect in a level-k bin B is roughly nk ≈ 24k/ log(T)2. When k

10.2 Ample Inventory Model 281

is small, nk can be zero according to the expression. In this case, the algorithm
immediately splits the bin without collecting any covariate in it.

Suppose the partition is Pt at t and a covariate Xt is generated (Step B). The
algorithm determines the bin B ∈ Pt which the covariate falls into. The counter
N(B) records the number of covariates already observed in B up to t when B is
in the partition (Step C). If the level of B is l(B) = k < K (i.e., B is not at the
maximal level) and the number of covariates observed in B is not sufficient, then
the algorithm further explores and test prices in the decision set {pB

l + jδB} for
j = 0, . . . , Nk − 1. There are Nk decisions in the set and they are equally spaced in
the interval [pB

l , pB
u]. They are explored sequentially as new covariates are observed

in B. The algorithm applies decision πt = pB
l +jδB where j = N(B)−1 (mod Nk)

to the N(B)-th covariate observed in B (Step b). Step d updates the average reward
and the number of explorations for the j -th decision.

If the level of B is l(B) = k < K and we have observed sufficient covariates
in B (Step e), then the algorithm splits B and replaces it by its 2d child bins in the
partition (Step g). For each child bin, Step h initializes the counter, the interval
that encloses the decision set, the grid size of the decision set, and the average
reward/number of explorations that have been conducted for each decision in the
decision set. In particular, to construct the decision set of a child bin, the algorithm
first computes the empirically optimal decision in the decision set of the parent bin
B; that is, j∗ ∈ arg maxj∈{0,1,...,Nk−1}{ȲB,j } in Step f. Then, the algorithm creates
an interval centered at this optimal decision with width Δk+1, properly cut off by
the boundaries [0, 1]. The decision set is then an equally spaced grid of the above
interval. If the level of B is already K , then the algorithm simply applies a single
decision inherited from its parent (Step F) repeatedly without further exploration.
For such a bin, its size is sufficiently small and the algorithm has narrowed the
range of the decision set K times. The applied decision, which is the middle point
of the interval, is close enough to all p∗(x), x ∈ B, with high probability.

The following result provides upper and lower bounds on the regret.

Theorem 10.2 For any function R(p, x) satisfying Assumptions 1–3, the regret
incurred by the ABE algorithm is bounded by

rπABE
(T) ≤ KT

2+d
4+d log(T)2

for a constant K > 0 that is independent of T . For all non-anticipating polices, we
have

inf
π

sup
f ∈C

Rπ ≥ kT
2+d
4+d

for a constant k > 0 that is independent of T .

We illustrate the key steps of the algorithm by an example with d = 2.
Figure 10.1 illustrates a possible outcome of the algorithm in periods t1 < t2 < t3
(top panel, mid panel, and bottom panel, respectively). Up until period t1, there is

282 10 Online Learning

0 1
0

1

x1

x1

x1

x
2

x
2

x
2

0 0.2 0.4 0.6 0.8 1
p

Ȳ
B
,j

Ȳ
B
,j

Ȳ
B
,j

0 1
0

1

0 0.2 0.4 0.6 0.8 1
p

BL
BR
TL
TR

0 1
0

1

0 0.2 0.4 0.6 0.8 1
p

BL-BL
BL-BR
BL-TL
BL-TR

Fig. 10.1 A schematic illustration of the ABE algorithm

10.3 Constrained Inventory Model 283

a single bin and the observed values Xt for t ≤ t1 are illustrated in the top left
panel. The algorithm has explored the objective in the decision set, in this case
p ∈ {0.1, 0.2, . . . , 0.9}, and recorded the average reward ȲB,j , illustrated by the top
right panel. At t1 + 1, sufficient observations are collected and Step e is triggered in
the algorithm. Therefore, the bin is split into four child bins.

From period t1 + 1 to t2, new covariates are observed in each child bin (mid left
panel). Note that the covariates generated before t1 in the parent bin are no longer
used and colored in gray. For each child bin (the bottom-left bin is abbreviated as
BL and similarly for others), the average reward for the decision set is demonstrated
in the mid right panel. The decision sets are centered at the empirically optimal
decision of their parent bin, in this case p∗ = 0.6 from the top right panel. They
have narrower ranges and finer grids than that of the parent bin. At t2 + 1, sufficient
observations are collected for BL, and it is split into four child bins.

From period t2 + 1 to t3, the partition consists of seven bins, as shown in the
bottom left panel. The BR, TL, and TR bins keep collecting covariates and updating
the average reward, because they have not collected sufficient data. Their status
at t3 is shown in the bottom panels. In the four newly created child bins of BL
(the bottom-left bin of BL is abbreviated as BL-BL and similarly for others), the
decisions in the decision sets are applied successively and their average rewards are
illustrated in the bottom right panel.

10.3 Constrained Inventory Model

Constrained inventory models require a slightly more careful analysis. Most of the
models assume that the demand is either a Bernoulli or a Poisson process. In the
Bernoulli process case, the inventory is ample whenever c ≥ T since in this case
capacity exceeds potential demand. In the Poisson case, things are more subtle as
the demand over the sales horizon at price is T d(p) where d(p) is the sales rate
at price p, and d(p) may be larger than one. If d(p) is bounded above, a change
of variables T ← aT and d(p) ← d(p)/a for a sufficiently large a results in
d(p) � 1 for all p. In this case, the Poisson process can be closely approximated
by a Bernoulli process. With this scaling, the ample inventory model corresponds to
the case ρ := c/T ≥ 1, and the constrained inventory model to the case ρ < 1. For
a fixed ρ, we are interested in the learning and earning problem as T → ∞, which
means that initial inventory c = ρT < T also grows at the same rate. If we want
to keep c integer (and this is important for the formulation of the dynamic pricing
problem with finite capacity), we can restrict T to be of the form T = nc/ρ, where
n is an integer so ρT = nc. In the literature, we often see a different but equivalent
scaling mechanism for the Poisson case, where T is held fixed (often normalized to
one) and c and d(p) are scaled up by a factor n, so the initial inventory is nc and
the demand rate is nd(p). Most authors use the second scaling method (nc, nd(p)),
but it should be clear to the reader that an algorithm with regret O∗(

√
n) has regret

O(
√

T) under the first scaling method. In this section, we follow the literature and
report the regret relative to the scaling (n, nd(p)) and report the regret in terms of n.

284 10 Online Learning

Early work on the constrained inventory model divided the horizon into a
learning phase and an earning phase. Under these regime, it was possible to show
that all policies have regret at least Ω(

√
n), and that there exist a policy with regret

O(
√

log(n)n2/3) for the parametric case, and regret O(
√

log(n)n3/4) for the non-
parametric case. In this section, we review recent work that intertwines learning and
earning and improves the regret to O(log(n)4.5√n) for both the parametric and non-
parametric case, thus also achieving an O∗(

√
n) policy, which is equivalent to the

results for the ample inventory model stated in terms of T .
The analysis is based on slightly different assumptions from the case with ample

capacity. The most salient difference is that demand is assumed to be a Poisson
process with rate λt = d(pt), where d(p) is the expected demand rate that is strictly
decreasing in p. This in contrast to the ample capacity case where the analysis is
based on a binomial approximation to the Poisson. There is an inverse demand
function given by p = γ (λ), and a corresponding revenue rate R(λ) = λγ (λ)

function written in terms of the sales rate instead of the price.
The analysis allows for both parametric and non-parametric models with con-

strained capacity and requires the following assumptions on the class C of admissi-
ble demand functions.

Assumption 1 Boundedness: |d(p)| < M for all p ∈ [0, 1] ∪ {p∞} with
d(p∞) = 0.

Assumption 2 Lipschitz continuity: d(p) and R(d(p)) = pd(p) are Lipschitz
continuous functions with respect to p with constant K . The inverse demand
function γ (λ) is also Lipschitz continuous with constant K .

Assumption 3 Strict concavity and differentiability: The function R(λ) = λγ (λ)

has a second derivative for all λ, and there are positive constants such that −mL ≤
R′′(λ) ≤ −mU < 0 for all p ∈ [0, 1].

The assumptions are all reasonable in light of our previous discussion of the case
of ample capacity. The most significant difference here is the existence of a cutoff
price p∞ such that d(p∞) = 0. This is a modeling artifact that provides us a price
to use when the system runs out of inventory.

For any d satisfying Assumptions 1–3, let Vπ(T , c; d) denote the expected
revenue that can be obtained from c units of inventory over the selling horizon [0, T]
by applying an non-anticipating policy π . From our analysis of dynamic pricing, we
know that for every demand function d,

Vπ(T , c; d) ≤ V (T , c; d) ≤ V̄ (T , c : d),

where V (T , c : d) is the maximum expected revenue under any non-anticipating
policy and V̄ (T , c; d) is the upper bound based on replacing demand by its
expectations. Rather than measuring the regret of a policy π by V (T , c; d) −
Vπ(T , c; d), in this section we measure the regret relative to the deterministic upper
bound, resulting in

rπ (T , c; d) = V̄ (T , c; d) − Vπ(T , c; d).

10.3 Constrained Inventory Model 285

Normalizing T = 1, the regret is

rπ (c; d) = V̄ (c; d) − Vπ(c; d),

where T = 1 is omitted for convenience. The goal is to minimize the worst-case
regret, which is given by

inf
π

sup
d∈C

rπ (nc; nd)

as n increases, where the infimum is taken over any non-anticipating policy and any
demand function d satisfying Assumptions 1–3.

Learning and Dynamic Pricing (LDP)

Step 1. Initialization
(a) Consider a sequence of τu

i , κu
i , i = 1, 2, . . . , Nu and τ c

i , κc
i , i = 1, 2, . . . , Nc

Define pu
1

= pc
1

= 0 and pu
1 = pc

1 = 1. Define tui = ∑i
j=1 τu

j , for i = 1 to Nu

and tci = ∑i
j=1 τ c

j , for i = 1 to Nc;

Step 2. Learn pu or Determine pc > pu

For i = 1 to Nu do

(a) Divide [pu
i
, pu

i] into κu
i equally spaced intervals and let {pu

i,j , j = 1, 2, . . . , κu
i }

be the left endpoints of these intervals;
(b) Divide the time interval [tui−1, t

u
i] into κu

i equal parts and define

Δu
i = τu

i

κu
i

, tui,j = tui−1 + jΔu
i , j = 0, 1, . . . , κu

i ;

(c) For j from 1 to κu
i , apply pu

i,j from time tui,j−1 to tui,j . If inventory runs out, then
apply p∞ until time T and STOP;

(d) Compute

d̂(pu
i,j) = total demand over [tui,j−1, t

u
i,j)

Δu
i

, j = 1, . . . , κu
i ;

(e) Compute

p̂u
i = arg max

1≤j≤κu
i

{pu
i,j d̂(pu

i,j)} and p̂c
i = arg min

1≤j≤κu
i

∣
∣
∣d̂(pu

i,j) − x/T

∣
∣
∣ ;

(f) If

p̂c
i > p̂u

i + 2
√

log n · pu
i − pu

i

κu
i

then break from Step 2, enter Step 3 and set i0 = i;

286 10 Online Learning

Otherwise, set p̂i = max{p̂c
i , p̂

u
i }. The price range for the next iteration is

given by

Iu
i+1 = [pu

i+1
, pu

i+1],

where

pu

i+1
= p̂i − log n

3
· pu

i − pu
i

κu
i

and pu
i+1 = p̂i + 2 log n

3
· pu

i − pu
i

κu
i

.

We truncate the interval if it does not lie inside the feasible set [0, 1];
(g) If i = Nu, then enter Step 4(a);

Step 3. Learn pc When pc > pu

For i = i0 to Nc do

(a) Divide [pc
i
, pc

i] into κc
i equally spaced intervals and let {pc

i,j , j = 1, 2, . . . , κc
i }

be the left endpoints of these intervals;
(b) Define

Δc
i = τ c

i

κc
i

, tci,j = tci−1 + jΔc
i + tui0, j = 0, 1, . . . , κc

i ;

(c) For j from 1 to κc
i , apply pc

i,j from time tci,j−1 to tci,j . If inventory runs out, then
apply p∞ until time T and STOP;

(d) Compute

d̂(pc
i,j) = total demand over [tci,j−1, t

c
i,j)

Δc
i

, j = 1, . . . , κc
i ;

(e) Compute

q̂i = arg min
1≤j≤κc

i

∣
∣
∣d̂(pc

i,j) − x/T

∣
∣
∣ .

The price range for the next iteration is given by

I c
i+1 = [pc

i+1
, pc

i+1],

where

pc

i+1
= q̂i − log n

2
· pc

i − pc
i

κc
i

and pc
i+1 = q̂i + log n

2
· pc

i − pc
i

κc
i

,

and we truncate the interval if it doesn’t lie inside the feasible set of [0, 1];
(f) If i = Nc, then enter Step 4(b);

10.3 Constrained Inventory Model 287

Step 4. Apply the Learned Price

(a) Define p̃ = p̂Nu + 2
√

log n · pu
Nu−pu

Nu

κu
Nu

. Use p̃ for the rest of the selling season

until the inventory runs out;
(b) Define q̃ = q̂Nc . Use q̃ for the rest of the selling season until the inventory runs

out.

A few comments about the LDP algorithm are in order. The selling season is
divided into a set of time periods. In each time period, a set of a grid prices is tested
within the current price interval. The intervals are then updated based on empirical
observations at the end of each time interval, so the price intervals contain the
optimal price with high probability. The process is repeated until the price interval
is small enough so that the desired accuracy is achieved.

The optimal price is the largest between the unconstrained optimal price, say p∗,
and the market clearing price, say pmc. Finding these two prices require different
shrinking strategies for the cases when p∗ > pmc (Step 2) and pmc > p∗ (Step 3).
At the end of the algorithm, a fixed price is used for the remaining selling season
(Step 4) until the inventory runs out.

The definitions of τu
i , κu

i , Nu, τ c
i , κc

i , and Nc now follow, where T = 1 without
loss of generality:

(
pu

i − pu
i

κu
i

)2

∼
√

κu
i

nτu
i

, ∀i = 2, . . . , Nu,

pu
i+1 − pu

i+1
∼ log n · pu

i − pu
i

κu
i

, ∀i = 1, . . . , Nu − 1,

τu
i+1 ·

(
pu

i − pu
i

κu
i

)2

· √
log n ∼ τu

1 , ∀i = 1, . . . , Nu − 1,

Nu = min
l

⎧
⎨

⎩
l :

(
pu

l − pu
l

κu
l

)2
√

log n < τu
1

⎫
⎬

⎭
.

The main results for this section is the following.

Theorem 10.3 For any function demand d(p) satisfying Assumptions 1–3, the
regret incurred by the LDP algorithm is bounded by

sup
d∈C

rπDPA
(nc, nd) ≤ K

√
n log(n)4.5

for a constant K > 0 that is independent of n for both the parametric and the
non-parametric cases. For all non-anticipating polices, we have

inf
π

sup
f ∈C

rπ (nc, nd) ≥ k
√

n

for a constant k > 0 that is independent of n.

288 10 Online Learning

Under mild assumptions, the results in this section can be extended to multiple
market segments dm(p),m = 1, . . . , M using a primal-dual approach.

10.4 Bibliographical Remarks

There is a large and growing literature for parametric models that follows a dynamic
programming formulation with Bayesian updating. Some examples in this stream
of literature include the work by Aviv and Pazgal (2005), Bertsimas and Mersereau
(2007), Araman and Caldentey (2009), Sen and Zhang (2009), Farias and Van Roy
(2010), and Harrison et al. (2012). Bayesian methods require the specification of
a prior distribution that belongs to a conjugate family, and the method is mostly
use for the case of a single unknown parameter with a few notable exceptions.
Alternatives to the Bayesian approach that are capable of dealing with a large
number of parameters involve maximum likelihood methods and least squares as
in Bertsimas and Perakis (2006) and Bertsimas and Misic (2019). Araman and
Caldentey (2011) go over both Bayesian and non-parametric models. The survey
paper by den Boer (2015) provides a comprehensive overview of this area.

There is an alternative stream of literature, closer to the results described in this
chapter, that focus on the learning and earning problem to minimize the worst-
case regret. This literature can be divided into the case of ample or constrained
inventory. Some of the contributors to this literature come from the computer
science literature, including Kleinberg and Leighton (2003), who provide analysis
for an online posted-price auction for the case of ample capacity obtaining a
regret of O(log T

√
T) for a non-parametric model. The paper by Broder and

Rusmevichientong (2012) provides an algorithm with regret O(log T
√

T) for a
parametric model based on maximum likelihood. They also show that the regret
can be improved to O(log T) for situations where the demand functions can be
separated. Cheung and Simchi-Levi (2017) also look into an infinite inventory
model but restrict the class of demand functions to a finite set and allow a maximum
of m price changes. They achieve a regret of O((log T)m) under the assumption
that exploration is done with informative prices. Besbes and Zeevi (2015) show that
even if the demand is misspecified as linear, a regret of O((log T)2

√
T) can be

surprisingly achieved under mild restrictions. None of the models mentioned allow
for covariates.

The results presented in this chapter for the ample capacity case are due to
Chen and Gallego (2018a). For the constrained capacity case, an important early
reference is Besbes and Zeevi (2009), where learning and earning are separated into
two phases. The section on constrained inventory is based on Wang et al. (2014),
where more refined results are obtained by intertwining learning and earning. The
extension of the constrained model to multiple market segments is due to Chen
and Gallego (2018b). A related model that is applicable to multi-resource revenue
management problems is given in Agrawal et al. (2014). Chen et al. (2019b, 2016a)
discuss models for joint inventory and pricing decisions, when the price-demand

10.4 Bibliographical Remarks 289

relationship is unknown. There is also work on learning the customer preferences
in assortment optimization problems, as exemplified by Saure and Zeevi (2013),
Agrawal et al. (2018), Chen and Wang (2018), and Chen et al. (2018b,c).

Other works that focus on learning the price-demand relationship while making
pricing decisions and earning revenues include Levina et al. (2009b), Besbes and
Zeevi (2011), Kwon et al. (2012), Besbes and Saure (2014), Keskin and Zeevi
(2014), and Nambiar et al. (2019). Ciocan and Farias (2012a) give bounds on the
performance of a policy that is based on re-solving a mathematical program and
updating the demand forecast. Ciocan and Farias (2014), Ban and Keskin (2017),
Javanmard and Nazerzadeh (2018), and Cohen et al. (2018a) learn parameterized
relationships for the demand for a product that are based on features. Keskin and
Zeevi (2017) consider learning the price-demand relationship when this relationship
is changing over time. A related model also appears in Besbes et al. (2015). The
paper by den Boer and Keskin (2017a) focus on learning a discontinuous price-
demand relationship, whereas den Boer and Keskin (2017b) study the case where
there is an observable kink in the price-demand relationship. Keskin and Birge
(2019) study a model where the firm learns the quality sensitivity of its customers
and demonstrate that myopic policies can display near-optimal performance. A
Bayesian approach based on Thompson sampling is given in Ferreira et al. (2018).
Chen et al. (2019a) characterize the revenue loss of a policy that learns the multi-
product demand function while making decisions. Afeche and Ata (2013) study a
Bayesian learning model for a pricing problem in the queueing setting, where the
proportion of patient customers needs to be learned. Lastly, Acemoglu et al. (2011),
Crapis et al. (2017), and Ifrach et al. (2018) focus on learning problems within
social networks.

	10 Online Learning
	10.1 Introduction
	10.2 Ample Inventory Model
	10.2.1 Regret
	10.2.2 Assumptions
	10.2.3 Preliminary Concepts

	10.3 Constrained Inventory Model
	10.4 Bibliographical Remarks

