
Chapter 1
Single Resource Revenue Management
with Independent Demands

1.1 Introduction

In this chapter, we consider the single resource, independent demand revenue
management problem with multiple fare classes. This problem arises in the airline
industry where different fares for the same cabin are designed to cater to different
market segments. As an example, a low fare may have advance purchase and length
of stay restrictions and exclude ancillary services such as advance seat selection,
luggage handling, and priority boarding. This low fare may target price-conscious
consumers who travel for leisure on restricted budgets. On the other hand, a high fare
designed for business consumers may be unrestricted, include ancillary services and
be designed to be frequently available for late bookings. If requests for the low fare
arrive first, the airline risks selling all of its capacity before seeing requests for the
high fare. A key decision in revenue management is how much capacity to reserve
for higher fare classes, or equivalently how much capacity to make available for
lower fare classes. Throughout the chapter, we will refer to airline applications, but
the reader should keep in mind that the models apply more generally.

We assume that the set of fare classes is given. This set of fare classes corresponds
to a menu of prices, restrictions, and ancillary services. Demands for the different
fare classes are assumed to be independent random variables. In particular, we
assume that if a consumer finds that her preferred fare class is unavailable, then
she will leave the system without purchasing anything. This assumption holds
approximately when the difference in fares is large enough that demands for the
different fare classes are decoupled or when consumers can find alternative sources
of capacity for their preferred fare class, perhaps on a different flight or with a
different carrier. In some cases, the demand for a fare class that is closed may be
recaptured by other open fare classes. Demand recapture makes the independent
assumption untenable. We will address this issue in a separate chapter on dependent
demands based on discrete choice models.
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4 1 Single Resource Revenue Management with Independent Demands

We will also assume that the capacity available for sale is fixed and cannot be
modified or replenished during the selling horizon. Later in the chapter, we will
discuss how to optimally select the initial capacity in situations where it can be
purchased at an increasing convex cost. Unsold capacity is assumed to have a zero
salvage value. This assumption is without loss of generality as any problem with
positive salvage value can be transformed into an equivalent problem with zero
salvage value.

The objective is to maximize the total expected revenue from all fare classes by
dynamically choosing the fare classes to offer for sale during the selling horizon. In
practice this is done by selectively denying requests for lower fare classes with
the hope of using capacity for requests from higher fare classes. Consequently, the
revenue curve that monitors the accumulation of the total revenue during the selling
horizon may start low, but later catch up and hopefully exceed the revenue curve
corresponding to a policy that accepts all requests.

In Sect. 1.2, we study the two fare class revenue management problem, where
the capacity provider has to decide how much capacity to make available to the
low-fare class before seeing the demand for the high fare class. In this formulation
time is treated implicitly by assuming that requests for different fare classes arrive
sequentially. The solution is given by Littlewood’s rule. In Sect. 1.3, we present a
dynamic programming formulation for multiple fare classes under the assumption
that the requests for different fare classes arrive sequentially in a low-before-high
order. Structural results such as concavity of the value function are also presented.
While arrival order can be relaxed, the sequential arrival assumption cannot. In
Sect. 1.4, we study the problem of setting initial capacity and its connections to
the newsvendor problem. In Sect. 1.5, we present commonly used heuristics for the
multiple fare class revenue management problem. In Sect. 1.6, we provide bounds
on the optimal total expected revenue. In Sect. 1.7, we introduce a model that
allows for non-sequential arrival patterns by modeling demands as independent
Poisson processes with time-dependent arrival rates. In Sect. 1.8, we study models
that do not allow fare classes to reopen once they are closed. This restriction may
be helpful to cope with strategic consumers as it deters them from waiting for
lower fares. In Sect. 1.9, we extend the analysis to the case of compound Poisson
demands, where arriving consumers may request more than one unit of capacity. In
Sect. 1.10, we conclude the chapter by comparing the performance of the multi-fare
revenue problem under the sequential, low-before-high fare arrival pattern, to the
performance of the more flexible model that allows for compound Poisson demands.
Not surprisingly, the latter model outperforms the former when the sequential fare
arrival pattern fails to hold.

1.2 Two Fare Classes

Consider an airline flight with c units of capacity. The capacity can be sold either
at full fare for a price of p1 or at a discounted fare for a price of p2 < p1.
The discounted fare typically has advanced purchasing and usage restrictions. As
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an example, a round trip discounted fare may need to be purchased three weeks
in advance and may require a Saturday night stay. We assume that all booked
consumers will actually travel. This assumption avoids the need to overbook the
capacity. We discuss how to deal with cancellations before the departure day and
no-shows on the departure day in a separate chapter on overbooking models.

We assume a low-before-high fare class arrival order, which implies that demand
for the discounted fare, say D2, books before the demand for the full fare, say D1.
This arrival pattern holds approximately in practice and it is encouraged by the
advance purchase restrictions imposed on the lower fare. Notice that low-before-
high is a worst case arrival pattern in terms of revenues. Indeed, if the full fare con-
sumers arrived first, then we would accept them up to the available capacity and use
the residual capacity, if any, to satisfy demand from the discounted fare consumers.
When the arrival pattern is low-before-high, it is critical to impose booking limits on
the low-fare consumers, as otherwise the low-fare consumers may exhaust capacity
and force the provider to deny capacity to consumers willing to pay higher fares.

Let c be the capacity on the flight. Suppose that we protect y ∈ {0, 1, . . . , c}
units of capacity for the full fare before observing the actual demand for the
discounted fare. This leaves c − y units of capacity available to satisfy the demand
for the discounted fare. We refer to c − y as the booking limit for the discounted
fare. Consequently, sales at the discounted fare are given by min{c − y,D2}. The
remaining capacity is equal to c−min{c−y,D2} = max{y, c−D2}, so sales at the
full fare are given by min{max{y, c − D2},D1}. The total expected revenue from
the two fare classes is therefore

W(y, c) := p2 E{min{c − y,D2}} + p1 E{min{max{y, c − D2},D1}}. (1.1)

The objective is to find the protection level y that maximizes the expected revenue
W(y, c). The extreme strategies y = 0 and y = c correspond, respectively, to
the case where no capacity is protected, and to the case where all of the capacity
is protected for the full fare consumers. We will later discuss when these extreme
strategies are optimal. In most cases, however, an intermediate strategy is optimal.

The fare ratio r := p2/p1 plays an important role in determining the optimal
protection level. If the ratio is close to zero, then the full fare is substantially larger
than the discounted fare and we would be inclined to protect more capacity for the
full fare demand. If the ratio is close to one, then the discounted fare is close to the
full fare and we would be inclined to accept more requests for the discounted fare
since we can get almost the same revenue per unit of capacity. The distribution of
the full fare demand is also important in determining the optimal protection level.
If P{D1 ≥ c} is very large, then the full fare demand exceeds the available capacity
with high probability, so it makes sense to protect the entire capacity for the full fare
consumers as it is likely that the provider can sell all of the capacity at the full fare.
However, if P{D1 ≥ c} is very small, then it is unlikely that all the capacity can be
sold at the full fare, so fewer units should be protected for the full fare consumers. As
we demonstrate shortly, the demand for the discounted fare has no influence on the
optimal protection level.
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We can use marginal analysis to study the tradeoff between accepting and
rejecting a request for the discounted fare when we have y units of capacity
available. If we accept this request, then we obtain a revenue of p2 for the marginal
unit. If we reject the request and close down the discount fare, then we will sell
the y-th unit at fare p1 only if the full fare demand D1 is at least as large as y.
Thus, it is intuitively optimal to reject the request for the discounted fare when
p1 P{D1 ≥ y} > p2. This argument suggests that an optimal protection level y∗

1 is
given by

y∗
1 = max{y ∈ N+ : P{D1 ≥ y} > r}, (1.2)

where N+ = {0, 1, . . .} is the set of non-negative integers. The formula for the
optimal protection level in (1.2) is known as Littlewood’s rule. Later we will show
that (1.2) is a maximizer of (1.1).

Example 1.1 Suppose that D1 is a Poisson random variable with mean 80, the full
fare is p1 = $100 and the discounted fare is p2 = $60, so r = 60/100 = 0.6. To
compute the optimal protection level y∗

1 , we are interested in the cumulative tail dis-
tribution P{D1 ≥ y} = 1−P{D1 ≤ y −1}. Since most statistical software packages
return the value of the cumulative distribution P{D1 ≤ y − 1}, rather than the value
of the tail distribution P{D1 ≥ y}, we see that y∗

1 should satisfy P{D1 ≤ y∗
1 − 1} <

1 − r ≤ P{D1 ≤ y∗
1 }. Since P{D1 ≤ 77} < 0.4 ≤ P{D1 ≤ 78}, we conclude that

y∗
1 = 78. Consequently, it is optimal to protect 78 seats for the full fare consumers.

If c = 200, then the booking limit for the discounted fare consumers is c−y∗
1 = 122,

which indicates that it is optimal to allow at most 122 bookings for the discounted
fare class. If c ≤ y∗

1 , then all of the capacity should be protected for the full fare
consumers, resulting in a booking limit of zero for the discounted fare class.

Remark 1.2 The following remarks are immediately derived from Littlewood’s
rule.

• The optimal protection level y∗
1 is independent of the distribution of the

discounted fare demand D2.
• If P{D1 ≥ y∗

1 + 1} = r , then y∗
1 + 1 is also optimal protection level, so both y∗

1
and y∗

1 + 1 result in the same total expected revenue. Protecting the y∗
1 + 1 units

of capacity increases the variance of the revenue, but it reduces the probability of
rejecting requests from the full fare consumers.

From Littlewood’s rule in (1.2), we see that the extreme strategy y∗
1 = 0 is

optimal when P{D1 ≥ 1} ≤ r and y∗
1 = c is optimal when P{D1 ≥ c} > r .

1.2.1 Continuous Demand Distributions

Although the demand in revenue management models is inherently a discrete
quantity, it can be easier to model the demand with a continuous random variable. If
the demand D1 from fare class 1 is a continuous random variable with cumulative
distribution function F1(y) = P{D1 ≤ y}, then the optimal protection level is
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y∗
1 = F−1

1 (1 − r),

where F−1
1 (·) denotes the inverse of F1(·). In particular, if D1 is a normal random

variable with mean μ1 and standard deviation σ1, then we have

y∗
1 = μ1 + σ1 Φ−1(1 − r),

where Φ(·) is the cumulative distribution function of the standard normal random
variable. This formula can be used to understand how the protection level changes
as a function of the demand parameters. Notice that if r < 1/2, then Φ−1(r) < 0,
so y∗

1 < μ1 and y∗
1 decreases with σ1. Similarly, if r > 1/2, then Φ−1(r) > 0, so

y∗
1 > μ1 and y∗

1 increases with σ1. If r = 1/2, then Φ−1(r) = 0 so that y∗
1 = μ1

and it does not depend on σ1.

Example 1.3 Suppose that D1 is a normal random variable with mean 80 and
standard deviation 9, the full fare is p1 = $100 and the discount fare is p2 =
$60. Thus, we have y∗

1 = 80 + 3 × Φ−1(1 − 0.6) = 77.72. Since r < 1/2, we
have y∗

1 < 80. Notice that the solution is quite close to that of Example 1.1. This
is because a Poisson random variable with mean 80 can be well approximated by a
normal random variable with mean 80 and standard deviation 9 ≈ √

80.

1.2.2 Quality of Service, Salvage Values, and Callable Products

As we will now see, Littlewood’s rule can result in poor service to consumers who
prefer the high fare when the fare ratio is high. The probability of denying service
to at least one high fare consumer is known as the full fare spill rate. Since at least
one consumer is denied service when D1 > max{y∗

1 , c − D2}, we have

P{D1 > max{y∗
1 , c − D2}} ≤ P{D1 > y∗

1 } ≤ r < P{D1 ≥ y∗
1 },

where the last two inequalities follow from (1.2). We call P{D1 > y∗
1 } the maximal

spill rate. Notice that if the inequality y∗
1 ≥ c − D2 holds with high probability, as

it typically does in practice when the discount fare demand D2 is large relative to c,
then the spill rate approaches the maximal spill rate which is, by design, close to the
ratio r .

High spill rates may lead to the loss of full fare consumers to competition. To
see this, imagine two airlines, each offering a discounted fare and a full fare in
the same market, where the fare ratio r is large and there is high demand for the
discounted fare. In this situation, the maximal spill rate is high, indicating that with
high probability at least one fare class 1 consumer will be denied capacity. Suppose
Airline A uses Littlewood’s rule with spill rates close to r , which implies that Airline
A turns down fare class 1 consumers with high probability. Airline B can protect
more seats for the full fare consumers than recommended by Littlewood’s rule. By
doing so, Airline B sacrifices revenue in the short run but can attract some of the fare
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class 1 consumers spilled by Airline A. Over time, Airline A may see a decrease in
class fare 1 demand as a secular change and protect even fewer seats for fare class 1
consumers. Meanwhile, Airline B will see an increase in class fare 1 consumers.
At this point, Airline B can switch to the optimal protection level recommended
by Littlewood’s rule, deriving larger revenues in the long run. In essence, Airline
B has strategically traded discounted fare consumers for full fare consumers with
Airline A.

One way to cope with high spill rates and their adverse strategic consequences is
to impose a penalty cost of ρ for each unit of full fare demand that is not served. This
penalty is supposed to measure the ill will incurred when service is denied to a
full fare consumer. Imposing a penalty ρ for each unit of full fare demand that is
not served can be shown to be equivalent to increasing the fare of fare class 1 to
p1 + ρ in the corresponding optimization problem. This leads to a modification of
Littlewood’s rule, resulting in optimal protection level given by

y∗
1 = max

{
y ∈ N+ : P{D1 ≥ y} >

p2

p1 + ρ

}
. (1.3)

Since p2/(p1+ρ) < p2/p1, we get lower maximal spill rates by imposing a penalty
for each unit of fare class 1 demand that is not served. Obviously, this adjustment
in maximal spill rates comes at the expense of having larger protection levels and
lower total expected revenues. This is, in essence, a sacrifice in expected revenues
to keep a stream of consumers from defecting to competitors.

To improve the spill rate without sacrificing sales at the discount fare, the
airline can modify the discount fare offering by adding a restriction that allows
the airline to recall or buy back capacity when needed. This approach leads to
revenue management with callable products. Callable products can be sold either
by giving consumers an upfront discount or by giving them a compensation if
and when capacity is recalled. When managed correctly, callable products lead to
better capacity utilization, provide better service to full fare consumers, and induce
demand from consumers who are attracted either to the upfront discount or to the
compensation when the capacity is recalled. Callable products are common in the
secondary market for event tickets as they provide a hedge against uncertainty in the
supply in the sense that the liability for failing to deliver capacity is limited to the
monetary compensation tied to the callable product.

We can also account for salvage values for the capacity that is not sold at the end
of the selling horizon. Suppose there is a salvage value s < p2 on excess capacity
after the arrival of the full fare demand. This salvage value can be interpreted as the
revenue from standby tickets or last minute travel deals. A salvage value of s for
each unit of unsold capacity is equivalent to decreasing the fare of the fare classes
1 and 2, respectively, to p1 − s and p2 − s. Therefore, using Littlewood’s rule, the
optimal protection level is given by

y∗
1 = max

{
y ∈ N+ : P{D1 ≥ y} >

p2 − s

p1 − s

}
. (1.4)
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1.3 Multiple Fare Classes

In this section, we present an exact solution to the multiple fare class problem using
dynamic programming. The analysis is somewhat technical and readers may prefer
to first focus on the dynamic programming formulation in (1.6) and the main results
in Proposition 1.5, Theorem 1.6, and Corollary 1.7 before going over the details of
the analysis.

We assume that the capacity provider has c units of perishable capacity to be
allocated among n fare classes, where the fares are indexed so that pn < . . . < p1.
Lower fares typically have severe time-of-purchase and traveling restrictions. Given
the time-of-purchase restriction, it is natural to assume, as we do, a low-before-high
fare arrival order, with fare class n arriving first and fare class 1 arriving last. We
use N = {1, . . . , n} to denote the set of fare classes. Let Dj denote the random
demand for fare class j . We assume that the demand random variables D1, . . . , Dn

are independent of each other with finite means μj := E{Dj } < ∞ for all j ∈ N .
Let Vj (x) denote the optimal total expected revenue from fare classes

j, j − 1 . . . , 1 given x units of remaining capacity just before facing the demand
for fare class j . To write a dynamic program, we first review the sequence of events
in stage j (just before the arrival of demand for fare class j ):

• Given x units of remaining capacity select protection level y ∈ {0, . . . , x} for
fare classes j − 1, j − 2, . . . , 1 and make x − y units of capacity available for
sale to fare class j .

• Observe demand for fare class j . The capacity sold to fare class j is given by
min{x − y,Dj }, and the revenue generated is pj min{x − y,Dj }.

• The remaining capacity before facing demand for fare class j − 1 is given by
x − min{x − y,Dj } = max{y, x − Dj }.
Let Wj(y, x) be the optimal expected revenue from fare classes j, j − 1, . . . , 1

assuming that we protect y ≤ x units of capacity for the fare classes j −
1, j − 2, . . . , 1. In this case, the functions {Wj(·, ·) : j = n, . . . , 1} and
{Vj (·) : j = n, . . . , 1} satisfy the relationship

Wj(y, x) = pj E{min{x − y,Dj }} + E{Vj−1(max{y, x − Dj })}. (1.5)

In the expression above, pj E{min{x − y,Dj }} is the expected revenue obtained
from fare class j given that we have x units of remaining capacity when facing
the demand for fare class j and we protect y units of capacity for fare classes
j − 1, j − 2, . . . 1. On the other hand, Vj−1(max{y, x − Dj }) is the optimal
expected revenue obtained from fare classes j − 1, j − 2, . . . , 1, given that we
have max{y, x − Dj } units of remaining capacity before facing the demand from
fare class j − 1. Given x units of remaining capacity, we maximize Wj(y, x) over
y ∈ {0, . . . , x} resulting in the dynamic program:

Vj (x) = max
y∈{0,...,x} Wj(y, x)

= max
y∈{0,...,x}

{
pjE{min{x − y,Dj }} + E{Vj−1(max{y, x − Dj })}

}
. (1.6)
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By convention, we have V0(x) = 0, since we do not collect any revenue when there
are no fare classes left to arrive. By definition, Vn(c) is the optimal total expected
revenue for the multiple fare class problem with n fare classes and an initial capacity
of c units. Assuming that computing each one of the expectations in (1.6) takes
constant time, we can solve the dynamic program in O(c2) operations.

1.3.1 Structure of the Optimal Policy

For any function f with integer domain, let Δf (x) = f (x) − f (x − 1).
The following lemma is important in establishing structural results.

Lemma 1.4 Let g(x) := E{G(min{X, x})}, where X is an integer valued random
variable with EX < ∞, and G(·) is a function over the integers. Then,

Δg(x) = ΔG(x)P{X ≥ x}.

Similarly, let h(x) := E{H(max{X, x})}, where X is an integer valued random
variable with EX < ∞, and H(·) is a function over the integers. Then,

Δh(x) = ΔH(x)P{X < x}.

The next two results provide the key results of this section.

Proposition 1.5 The value functions computed through (1.6) satisfy the following
properties.

• ΔVj (x) is decreasing in x ∈ {1, . . . , c}.
• ΔVj (x) is increasing in j ∈ {1, . . . , n}.

Since ΔVj(x) is decreasing in x, the value function Vj (·) is concave. The
following theorem speaks to the monotonicity of the protection levels.

Theorem 1.6 For all j = n, . . . , 1, the function Wj(y, x) is unimodal in y and the
maximizer of Wj(y, x) over y ∈ {0, . . . , x} is given by min{y∗

j−1, x}, where

y∗
j−1 = max{y ∈ N+ : ΔVj−1(y) > pj }. (1.7)

Moreover, y∗
n−1 ≥ y∗

n−2 ≥ . . . ≥ y∗
1 ≥ y∗

0 = 0. Thus, optimal protection levels are
monotone in the number of stages left until the end of the selling horizon.

For the case of n = 2, we get a formal proof of Littlewood’s rule.

Corollary 1.7

y∗
1 = max{y ∈ N+ : p1P{D1 ≥ y} > p2}.

Likewise, it is possible to show (1.3) and (1.4) by appropriately modifying V0(x).
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Table 1.1 Optimal total
expected revenues Vj (c) for
the values of capacity c ∈
{50, 100, 150, 200, 250, 300, 350}
and j = 1, 2, 3, 4, 5

c Load factor V1(c) V2(c) V3(c) V4(c) V5(c)

50 560% 1500 3427 3427 3427 3427

100 280% 1500 3900 5441 5441 5441

150 187% 1500 3900 5900 7189 7189

200 140% 1500 3900 5900 7825 8159

250 112% 1500 3900 5900 7825 8909

300 93% 1500 3900 5900 7825 9564

350 80% 1500 3900 5900 7825 9625

Remark 1.8 The following remarks apply for the structure of the optimal policy:

• Let xj be the remaining capacity just before facing the demand for fare class
j . Then capacity is allocated to fare class j only if xj > y∗

j−1 with at most
[xj − y∗

j−1]+ bookings allowed.
• The protection level y∗

j−1 is independent of the distribution of the demand from
fare classes n, n − 1, . . . , j .

• The policy is implemented as follows: At stage n, we start with xn = c units of
inventory and we protect yn−1(xn) = min{y∗

n−1, xn} units of capacity for fares
n − 1, n − 2, . . . , 1. Therefore, we allow up to [xn − y∗

n−1]+ units of capacity to
be sold to fare class n. We sell min{[xn − y∗

n−1]+,Dn} units of capacity to fare
class n and we have a remaining capacity of xn−1 = xn −min{[xn −y∗

n−1]+,Dn}
at stage n − 1. We protect yn−2(xn−1) = min{y∗

n−2, xn−1} units of capacity for
fares n − 2, n − 1, . . . , 1. Therefore, we allow up to [xn−1 − y∗

n−2]+ units of
capacity to be sold to fare class n − 1. We continue until we reach stage 1 with
x1 units of capacity, allowing (x1 − y0)

+ = (x1 − 0)+ = x1 to be sold to fare
class 1.

Example 1.9 Suppose that there are five fare classes. The demand for all fare
classes is a Poisson random variable. The fares and the expected demand for the
five fare classes are given by (p5, p4, p3, p2, p1) = (15, 35, 40, 60, 100) and
(E{D5},E{D4},E{D3},E{D2},E{D1}) = (120, 55, 50, 40, 15). For this problem
instance, the optimal protection levels are y∗

4 = 169, y∗
3 = 101, y∗

2 = 54, and
y∗

1 = 14. In Table 1.1, we show the total expected revenue Vj (c) obtained from fare
classes j, j − 1, . . . , 1 when we have c units of remaining capacity at the beginning
of stage j , as well as the corresponding load factors

∑5
j=1 E{Dj }/c = 280/c.

The effect of restricting capacity for low fares is apparent in the pattern of total
expected revenues across fare classes. For example, the total expected revenues
V2(50), V3(50), V4(50), and V5(50) are all equal to $3427 since fare classes 5, 4,
and 3 are rationed when c = 50. On the other hand, V1(350) through V5(350) vary
from $1500 to $9625 since there is enough capacity to accommodate all or nearly
all demand from the five fare classes. In Fig. 1.1, we show the marginal value of
capacity ΔVj (x) when we have x units of remaining capacity at the beginning of
stage j . The marginal value of capacity increases as we have fewer units of capacity
and as we have more stages left until the end of the selling horizon.
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Fig. 1.1 Marginal value of capacity ΔVj (x) as a function of x for j = 1, 2, 3, 4, 5

Although computing the optimal policy is not numerically onerous, some
computations can be streamlined to obtain a more efficient implementation. It can
be shown that

ΔVj(x) = pj P{Dj ≥ x − y∗
j−1} +

x−y∗
j−1−1∑

k=0

ΔVj−1(x − k)P{Dj = k} (1.8)

for all x > y∗
j−1, and that ΔVj(x) = ΔVj−1(x) if x ≤ y∗

j−1. The proof of this result
is left as an exercise.

1.3.2 Nonmonotone Fares

It is possible to relax the low-before-high assumption while retaining the assumption
that requests for the different fare classes arrive sequentially. Proposition 1.5 holds
as stated. The optimal protection level y∗

j−1 is computed as stated in Theorem 1.6,
but optimal protection levels are not necessarily monotone. Clearly y∗

j−1 = 0
whenever pj > max{pj−1, pj−2, . . . p1, } since it is optimal to accept all requests
for fare class j up to capacity since there is no point in protecting capacity to sell
it later at a lower fare! As an example, suppose that p3 < p2 and p2 > p1. Since
no fare classes are arriving after fare class 1, it is optimal to serve the demand from
fare class 1 as much as possible, which implies that V1(x) = p1 E{min{x,D1}}.
Using Lemma 1.4, we obtain ΔV1(x) = p1 P{D1 ≥ x} < p2, where the inequality
uses the fact that p2 > p1. In this case, (1.7) implies that y∗

1 = 0. Since y∗
1 = 0,

we see that V2(x) = p2 Emin{x,D2} + E{V1([x − D1]+)} = p2 Emin{x,D2} +
p1 E{min{D1, [x − D2]+}}. One can check that

ΔV2(x) = p2 P{D2 ≥ x} + p1 P{D2 < x ≤ D[1, 2]} ≥ p2 P{D2 ≥ x},
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where we use D[i, j ] := ∑j
k=i Dk . The optimal amount of capacity to protect

for fare classes 2 and 1 is given by y∗
2 = max{y ∈ N+ : ΔV2(y) > p3}.

On the other hand, if there were no fare classes arriving after fare class 2, then
by Littlewood’s rule, the optimal amount of capacity to protect for fare classes 2
would be max{y ∈ N+ : P{D2 ≥ y} > p3/p2}. Since ΔV2(x) > p2 P{D2 ≥ x},
the capacity protected for fare classes 2 and 1 is larger than it would be when there
was no demand for fare class 1.

1.4 The Generalized Newsvendor Problem

Consider the problem of selecting c to maximize Πn(c) := Vn(c) − K(c), where
Vn(c) is the solution to the multi-fare revenue management problem and K(c)

is the cost of procuring c units of capacity. This problem is relevant in revenue
management when capacity decisions are made. We will assume that K(c) is
increasing convex. Two plausible models are the linear model: K(c) = k c for some
unit cost k, or the fixed cost model with a capacity limit: K(0) = 0, K(c) = k for
all 0 < c ≤ c̄ and K(c) = ∞ for c > c̄.

The smallest maximizer of Πn(c), say c∗, is characterized in the following
proposition.

Proposition 1.10 The smallest optimal procurement quantity is given by

c∗ = max{c ∈ N+ : ΔVn(c) > ΔK(c)}.

For the linear model, we can write c∗ as a function of k, yielding

c(k) = max{c ∈ N+ : ΔVn(c) > k}.

The order quantities at the price points are the corresponding protection levels of
the corresponding revenue management problem, so

c(pj+1) = yj ∀ j ∈ {1, . . . , n − 1},

with c(k) increasing in k.
For the fixed cost model, c∗ = c̄ if Vn(c̄) > k and c∗ = 0 otherwise.

Figure 1.2 depicts c(k) for the data of Example 1.9, with c(60) = 14, c(40) = 54,
c(35) = 101, and c(15) = 169.

In a retail setting, the low-before-high arrival pattern is unlikely to hold, and a
more useful model is to seek c to maximize Πn(c) = Vn(c) − k c, where

Vn(c) :=
n∑

j=1

pj E{min{Dj, (c − D[1, j − 1])+}}



14 1 Single Resource Revenue Management with Independent Demands

10

70

140

210

280

350

1 26 51 76 101

c(
k)

k

Fig. 1.2 Optimal capacity as a function of cost for Example 1.9

is the expected revenue corresponding to the high-before-low arrival pattern:
D1,D2, . . . , Dn at prices p1 > p2 > . . . > pn. The marginal value of capacity
can be written as

ΔVn(c) =
n∑

j=1

(pj − pj+1)P{D[1, j ] > c},

where for convenience we define pn+1 = 0. This leads directly to the following
result.

Corollary 1.11 In a retail setting, with a high-before-low arrival pattern, an
optimal order quantity for the linear cost model K(c) = k c is given by

c(k) = max{c ∈ N+ :
n∑

j=1

(pj − pj+1)P{D[1, j ] > c} > k}.

The classical newsvendor problem corresponds to the case n = 2 with p = p1 >

p2 = s, where s is the salvage value and demand at the salvage value is infinite
(an implicit assumption that is seldom discussed in the context of the newsvendor
model). The model presented here is more general, even if n = 2, as it allows for
random demand at the salvage value. In fact, it allows for random demand at all
discounted prices p2, . . . , pn.

Integrating dynamic pricing into the newsvendor problem allows for multiple
price discounts, and this results in higher profits as more sales occur at price points
above the salvage value.

Example 1.12 Consider a newsvendor problem with four prices and independent
normally distributed demands as given in Table 1.2. At k = 30, the optimal order
quantity is c = 121, resulting in an expected profit of $4,101.05. Suppose instead,
that the retailer used only price p1 = 100 and salvage value s = 20 at which all
residual capacity can be sold. In this case, the retailer will order c = 30 units and an
expected profit of $1,666.67.
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Table 1.2 Problem
parameters for Example 1.12

j pj μj σj

1 100 125 5

2 70 36 6

3 50 50 10

4 25 100 20

Further research is needed in terms of selecting a multi-price schedule p1 >

p2 > . . . > pn to maximize expected profits taking into account strategic behavior
as consumers may want to wait for a lower price at the cost of deriving lower utility
from the product and at the risk of being rationed.

1.5 Heuristics for Multiple Fare Classes

Several heuristics for the multiple fare class problem were developed in the 1980s.
These heuristics are essentially extensions of Littlewood’s rule. The most important
heuristics are known as EMSR-a and EMSR-b, where EMSR stands for expected
marginal seat revenue. For a while, some of these heuristics were even thought
to be optimal by their proponents, until comparisons with optimal policies based
on dynamic programming were carried out in the 1990s. By that time heuristics
were already part of implemented systems and industry practitioners were reluctant
to replace them with the solutions provided by dynamic programming. There are
several reasons for this reluctance. People feel more comfortable with something
they understand. Also, the performance gap between the heuristics and the optimal
policies tends to be small. Finally, there is a feeling among some users that the
heuristics may be more robust to demand estimation errors.

EMSR-a is based on the idea of adding protection levels produced by applying
Littlewood’s rule to each pair of fare classes. Suppose that we are at stage j and we
need to decide how much capacity to protect for fare classes j −1, j −2, . . . , 1. We
can use Littlewood’s rule to decide how much capacity to protect for fare class k

demand against fare class j for all k = j − 1, . . . , 1. More precisely, we compute
y∗
kj as

y∗
kj = max

{
y ∈ N+ : P{Dk ≥ y} >

pj

pk

}
.

so that y∗
kj is the amount of capacity that we protect for fare class k when serving

the demand for fare class j . In this case, EMSR-a heuristic protects

ya
j−1 :=

j−1∑
k=1

y∗
kj

units of capacity for fare classes j − 1, . . . , 1 when serving the demand for fare
class j . In particular, if the demand Dk for fare class k is a normal random variable
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with mean μk and standard deviation σk , then y∗
jk = μk + σkΦ

−1(1 − pj/pk), so

ya
j−1 = μ[1, j − 1] +

j−1∑
k=1

σkΦ
−1(1 − pj/pk),

we use μ[i, j ] := ∑j
k=i μk . Notice that EMSR-a heuristic involves j − 1 calls to

Littlewood’s rule to compute the protection level ya
j−1.

EMSR-b heuristic is based on a single call to Littlewood’s rule to compute
each protection level. Suppose that we are at stage j and we need to decide how
much capacity to protect for fare classes j − 1, j − 2, . . . , 1. At this point in the
problem, we assume that there are two fare classes, one fare class corresponding
to fare class j and another fare class corresponding to the aggregation of fare
classes j − 1, j − 2, . . . , 1. The demand from fare class j is given by Dj , and
the demand from the fare class that corresponds to the aggregation of fare classes
j − 1, j − 2, . . . , 1 is D[1, j − 1]. The fare associated with fare class j is pj . To
compute the fare associated with the fare class that corresponds to the aggregation of
fare classes j−1, j − 2, . . . , 1, we use a weighted sum of the fares of the aggregated
fare classes and set the fare associated with the aggregated fare class as

p̄j−1 =
j−1∑
k=1

pk

μk

μ[1, j − 1] .

When serving the demand for fare class j , to decide how many units of capacity to
protect for fare classes j − 1, j − 2, . . . , 1, we compute the protection level in a
two fare class problem, where the demand random variables for the two fare classes
are Dj and D[1, j − 1], whereas the fares for the two fare classes are pj and p̄j−1.
Thus, when serving the demand for fare class j , EMSR-b heuristic protects

yb
j−1 = max

{
y ∈ N+ : P{D[1, j − 1] ≥ y} >

pj

p̄j−1

}

units of capacity for fare classes j − 1, j − 2, . . . , 1. We note that using EMSR-b
heuristic requires the distribution of D[1, j − 1] := ∑j−1

k=1 Dk . Computing the
distribution of D[1, j − 1] requires a convolution, but in some cases, such as
the case where the demand has normal or Poisson distribution, the distribution of
D[1, j − 1] can be easily obtained, since sums of independent normal or Poisson
random variables are, respectively, also normal or Poisson random variables. In the
special case where the demand for fare class j is a normal random variable with
mean μj and standard deviation σj , we obtain

yb
j−1 = μ[1, j − 1] + σ [1, j − 1] Φ−1(1 − pj/p̄j−1),
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where σ [1, j − 1] is the standard deviation of the demand D[1, j − 1] from

aggregated fare class. More specifically, we have σ [1, j − 1] =
√∑j−1

k=1 σ 2
k .

Once we compute protection levels either by using EMSR-a or EMSR-b heuris-
tic, we use these protection levels to make capacity allocation decisions in the same
way we use the optimal protection levels that are computed through the dynamic
programming formulation of the problem. In particular, using yh

n−1, y
h
n−2, . . . , y

h
1

to denote the protection level computed by any heuristic, when serving the demand
for fare class j , we protect yh

j−1 units of capacity for fare classes j − 1, j −
2, . . . , 1. Thus, if we have x units of remaining capacity and x ≤ yh

j−1, then we
do not make any capacity available for fare class j , so we do not serve any demand
from fare class j and the remaining capacity at the next stage is still x. If x > yh

j−1,

then we make x − yh
j−1 unit of capacity available for fare class j , so sales to fare

class j equal min{x − yh
j−1,Dj } and the remaining capacity that we have at the

next stage is x − min{x − yh
j−1,Dj } = max{yh

j−1, x − Dj }. Let V h
j (x) be the

total expected revenue obtained from the fare classes j, j − 1, . . . , 1 with x units of
remaining capacity at stage j using heuristic protection levels yh

n−1, y
h
n−2, . . . , y

h
1 ,

we can compute {V h
j (·) : j = n, . . . , 1} by using the recursion:

V h
j (x) =

⎧⎪⎪⎨
⎪⎪⎩

V h
j−1(x) if x ≤ y∗

j−1

pj E{min{x − y∗
j−1,Dj }}
+ E{V h

j−1(max{y∗
j−1, x − Dj })} if x > y∗

j−1

with the boundary condition that V h
0 (x) = 0.

Alternatively, the values V h
j (x) can be estimated using Monte Carlo simulation.

Using Dk
n,D

k
n−1, . . . , D

k
1 to denote the k-th sample, we can simulate the decisions

made by using the protection levels yh
n−1, y

h
n−2, . . . , y

h
1 . We start with a capacity

of xk
n = c at stage n. Given that we have xk

j units of remaining capacity at stage

n, if xk
j ≤ yh

j−1, then we do not make any capacity available for fare class j , so

sk
j = 0. If xk

j > yh
j−1, then we make xk

j − yh
j−1 units of capacity available for fare

class j , so sk
j = min{xk

j − yh
j−1,D

k
j }. The remaining capacity at stage j + 1 is

xk
j+1 = xk

j −sk
k . For the k-th sample, the total revenue is

∑n
j=1 pj sk

j . Averaging the
total revenue over many demand samples provides an estimate of the total expected
revenue obtained by a set of protection levels.

Example 1.13 We have applied the EMSR-a and EMSR-b heuristics to the problem
instance in Example 1.9. Recall that the optimal protection levels for this problem
instance are y∗

4 = 169, y∗
3 = 101, y∗

2 = 54, and y∗
1 = 14. The protection levels

provided by EMSR-a heuristic are ya
4 = 171, ya

3 = 97, ya
2 = 53, and ya

1 = 14. The
protection levels provided by EMSR-b heuristic are yb

4 = 166, yb
3 = 102, yb

2 = 54,
and yb

1 = 14. In Table 1.3, we show the total expected revenues obtained by the
two heuristics and the optimal total expected revenue for different values of initial
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Table 1.3 Performance of
EMSR-a and EMSR-b
heuristics for Example 1.13

c Load factor V a
5 (c) V b

5 (c) V5(c)

50 560% 3427 3427 3427

100 280% 5432 5441 5441

150 187% 7181 7189 7189

200 140% 8157 8151 8159

250 112% 8907 8901 8909

300 93% 9564 9563 9564

350 80% 9625 9625 9625

Table 1.4 Problem
parameters for Example 1.14

j pj μj σj y∗
j ya

j yb
j

1 1050 17.3 5.8 16.7 16.7 16.7

2 567 45.1 15.0 42.5 38.7 50.9

3 534 39.6 13.2 72.3 55.7 83.2

4 520 34.0 11.3

capacity. In particular, V a
5 (c) and V b

5 (c) correspond to the total expected revenues
obtained by EMSR-a and EMSR-b heuristics with c units of initial capacity, whereas
V5(c) corresponds to the optimal total expected revenue.

As seen in Table 1.3, the performance of both heuristics is close to optimal.
We recall that this problem instance involves Poisson demand random variables
and a low-before-high fare arrival order. The heuristics continue to perform well
if the demand random variables are compound Poisson and the aggregate demand
is approximated by a gamma random variable. However, the model constructed in
this chapter makes strong assumptions about the arrival order of the fares and the
heuristics may not perform well when the arrival order assumption does not hold.

Two more examples are presented below.

Example 1.14 There are four fare classes. The demand for each fare class j is
normally distributed with mean μj and standard deviation σj . Table 1.4 shows the
problem parameters and the protection levels computed by EMSR-a and EMSR-b
heuristics, as well as the optimal protection levels. There are considerable discrep-
ancies between the protection levels computed by the different approaches. The
discrepancies are less severe in the later stages, since we essentially deal with a
problem with a small number of fare classes in the later stages.

The total expected revenues obtained by the optimal policy, estimated through
a simulation study with 500,000 replications, are shown in Table 1.5. Capacity is
varied from 80 to 160 to create load factors in the range 1.7–0.85. The percent
suboptimality of the two heuristics is also reported. For this problem instance,
EMSR-a performs slightly better than EMSR-b, but both perform quite well, despite
the discrepancies in the protection levels.

Example 1.15 This problem instance is similar to the one in Example 1.14. The
only difference is in the fares of fare classes 2 and 3. The problem parameters
and the protection levels are shown in Table 1.6. The total expected revenues



1.6 Bounds on Optimal Expected Revenue 19

Table 1.5 Performance of
EMRS-a and EMSR-b
heuristics for Example 1.14

Load EMSR-a EMSR-b
c factor Vn(c) % Sub % Sub

80 1.70 49,642 0.33% 0.43%

90 1.51 54,855 0.24% 0.52%

100 1.36 60,015 0.13% 0.44%

110 1.24 65,076 0.06% 0.34%

120 1.13 69,801 0.02% 0.21%

130 1.05 73,926 0.01% 0.10%

140 0.97 77,252 0.00% 0.04%

150 0.91 79,617 0.00% 0.01%

160 0.85 81,100 0.00% 0.00%

Table 1.6 Problem
parameters and protection
levels for Example 1.15

j pj μj σj y∗
j ya

j yb
j

1 1050 17.3 5.8 9.7 9.8 9.8

2 950 45.1 15.0 54.0 50.4 53.3

3 699 39.6 13.2 98.2 91.6 96.8

4 520 34.0 11.3

Table 1.7 Performance of
EMRS-a and EMSR-b
heuristics for Example 1.15

Load EMSR-a EMSR-b
c factor Vn(c) % Sub % Sub

80 1.70 67,505 0.10% 0.00%

90 1.51 74,003 0.06% 0.00%

100 1.36 79,615 0.40% 0.02%

110 1.24 84,817 0.35% 0.02%

120 1.13 89,963 0.27% 0.01%

130 1.05 94,860 0.15% 0.01%

140 0.97 99,164 0.06% 0.01%

150 0.91 102,418 0.01% 0.00%

160 0.85 104,390 0.00% 0.00%

obtained by the optimal policy, estimated through a simulation study with 500,000
replications, are shown in Table 1.7, as well as the percent suboptimality gaps of the
two heuristics. For this problem instance, both heuristics continue to perform well
and EMSR-b has a slight edge.

1.6 Bounds on Optimal Expected Revenue

In this section, we show how to quickly compute lower and upper bounds on
Vn(c). It is natural to ask why we need bounds on Vn(c) when we can compute
this quantity exactly in O(c2) operations. Although we can compute Vn(c) for the
single resource, multiple fare problem, we will later encounter problems where exact
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computations are either not possible or very time consuming. In such cases, having
bounds on the optimal total expected revenue becomes useful. The techniques
that we develop in this section form a stepping stone for computing bounds on
the optimal total expected revenue for more complicated revenue management
problems.

To obtain an upper bound on Vn(c), consider the perfect foresight problem where
the demand vector D = (Dn, . . . , D1) is known in advance. Having access to the
demand for all fare classes in advance allows us to optimally allocate the capacity
to the different fare classes by solving the knapsack type problem

V̄ (c | D) := max

{ n∑
j=1

pj xj :
n∑

j=1

xj ≤ c, 0 ≤ xj ≤ Dj ∀ j = 1, . . . , n

}
. (1.9)

For each realization D of the demand random variables, advance knowledge results
in a total revenue that is at least as large as the total revenue collected by the optimal
policy with sequential arrivals and unknown demands. As a result, E{V̄ (c | D)} ≥
Vn(c). For convenience, we will denote this upper bound as V U

n (c) := E{V̄ (c | D)}.
The solution to problem (1.9) can be written in explicit form as it is optimal to

serve the demand from fare class 1 as much as possible before serving the demand
from fare class 2. Therefore, the optimal value of the decision variable xj is given by
min{Dj, (c−D[1, j−1])+}. In this expression, we note that (c−D[1, j−1])+ is the
remaining capacity after we satisfy the demand from fare classes 1, 2, . . . , j − 1 as
much as possible. Therefore, the optimal objective value of problem (1.9) is given by

V̄ (c | D) =
n∑

j=1

pj min{Dj, (c − D[1, j − 1])+}.

Taking expectations, results in V U
n (c) as

V U
n (c) =

n∑
j=1

pj E{min{Dj, (c − D[1, j − 1])+}}

=
n∑

j=1

pj (E{min{D[1, j ], c}} − E{min{D[1, j − 1], c}})

=
n∑

j=1

(pj − pj+1)E{min{D[1, j ], c}},

=
n∑

j=1

(pj − pj+1)

c∑
k=1

P{D[1, j ] ≥ k} (1.10)

where we define pn+1 ≡ 0. The second equality follows from the fact that
min{Dj, (c −D[1, j − 1])+} = min{D[1, j ], c}− min{D[1, j − 1], c}. Computing
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this upper bound requires the evaluation of E{min{D[1, j ], c}}. If D[1, j ] is a non-
negative integer random variable, then E{min{D[1, j ], c}} = ∑c

k=1 P{D[1, j ] ≥ k}
and this justifies the last equality.

To make the upper bound more tractable, notice that V̄ (c | D) is concave in D,
so by Jensen’s inequality V U

n (c) = E{V̄ (c | D)} ≤ V̄ (c |E{D}) := V̄n(c). Letting
μj := E{Dj }, we see that

V̄n(c) = max

{ n∑
j=1

pj xj :
n∑

j=1

xj ≤ c, 0 ≤ xj ≤ μj ∀ j = 1, . . . , n

}
(1.11)

is the solution to a linear program (1.11) known as the fluid model or the
deterministic capacity allocation problem. It is a knapsack problem. Similar
to problem (1.9), the optimal value of the decision variable xj is given
by min{μj , (c − μ[1, j − 1])+}. In this case, the optimal objective value of
problem (1.11) is

V̄n(c) =
n∑

j=1

(pj − pj+1) min{μ[1, j ], c},

where μ[1, j ] := ∑j

i=1 μi .
A lower bound on the optimal total expected revenue can be obtained by follow-

ing a policy that uses zero protection levels. In this case, since the demand from
fare class n arrives before the demand from fare class n − 1, we serve the demand
from fare class n as much as possible before servicing the demand from fare class
n − 1. Thus, the sales for fare class j are given by min{Dj, (c − D[j + 1, n])+},
where c − D[j + 1, n])+ captures the remaining capacity after we satisfy the
demand from fare classes n, n − 1, . . . , j + 1. Therefore, the total expected
revenue obtained by the policy that uses zero protection levels is V L(c) =∑n

j=1 pj E{min{Dj, (c − D[j + 1, n])+}}. Similar to our approach in (1.10), we
can simplify this expression as

V L
n (c) =

n∑
j=1

pj E{min{Dk, (c − D[j + 1, n])+}}

=
n∑

j=1

pj (Emin{D[j, n], c}} − Emin{D[j + 1, n], c}})

=
n∑

j=1

(pj − pj−1)E{min{D[j, n], c}}, (1.12)

where we define p0 = 0. Notice that all of the terms in the sum are negative except
for the term with j = 1. By the preceding discussion, it follows that V L

n (c) ≤ Vn(c),
since the total expected revenue V L

n (c) is computed under the possible suboptimal
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protection levels, which are all equal to zero. The above arguments justify the
following proposition.

Proposition 1.16 For the multiple fare class problem, we have

V L
n (c) ≤ Vn(c) ≤ V U

n (c) ≤ V̄n(c).

1.6.1 Revenue Opportunity Model

The bounds presented here can help with the so-called revenue opportunity model.
The revenue opportunity is the spread between the ex-post optimal revenue using
the estimated uncensored demand, and the revenue that results from not applying
booking controls. Demand uncensoring refers to a statistical technique that attempts
to estimate actual demand from the observed sales, which may be constrained
by booking limits. The ex-post optimal revenue is a hindsight optimization and
is equivalent to our perfect foresight model, resulting in revenue V̄ (c|D), where
D is the uncensored demand. On the other hand, the revenue that results from
not applying booking controls is given by V L

n (c|D), which corresponds to the
expression in (1.12) before taking the expectation. So for a given realization of
demand, a measure of the revenue opportunity is defined as is V̄ (c|D) − V L

n (c|D).
The achieved revenue opportunity is the difference between the actual revenue from
applying optimal or heuristic controls and the lower bound. The ratio of the achieved
revenue opportunity to the revenue opportunity is often called the percentage
achieved revenue opportunity. The revenue opportunity V̄ (c|D) − V L

n (c|D) is
sometimes approximated by its expectation V U

n (c) − V L
n (c). Tables 1.8 and 1.9

show there is a significant revenue opportunity, particularly for c ≤ 140. Thus,
one use for the revenue opportunity model is to identify situations where revenue
management has the most potential so that more effort can be put where it is most
needed. The revenue opportunity model has also been used to show the benefits of
using network-based controls versus using leg-based controls in networks.

Example 1.17 Tables 1.8 and 1.9 report V L
n (c), Vn(c), V

U
n (c), and V̄n(c) for the

data of Examples 1.14 and 1.15, respectively. Notice that V U
n (c) represents a

significant improvement over the better known bound V̄n(c), particularly for
intermediate values of capacity. The spread V U

n (c) − V L
n (c) between the lower

and upper bound is a gauge of the potential improvements in revenues from using
an optimal or heuristic admission control policy. If capacity is scarce relative to
the potential demand, then the relative gap is large, and the potential for applying
revenue management solutions is also relatively large. This is because significant
improvements in revenues can be obtained from rationing capacity to lower fares.
As capacity increases, the relative gap decreases indicating that less can be gained
by rationing capacity. At very high levels of capacity, it is optimal to accept all
requests, so there is nothing to be gained from the use of an optimal admission
control policy.
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Table 1.8 Optimal expected
revenue and bounds for
Example 1.14

c V L
n (c) Vn(c) V U

n (c) V̄n(c)

80 42,728 49,642 53,039 53,315

90 48,493 54,855 58,293 58,475

100 54,415 60,015 63,366 63,815

110 60,393 65,076 68,126 69,043

120 66,180 69,801 72,380 74,243

130 71,398 73,926 75,923 79,443

140 75,662 77,252 78,618 82,563

150 78,751 79,617 80,456 82,563

160 80,704 81,100 81,564 82,563

Table 1.9 Optimal expected
revenue and bounds for
Example 1.15

c V L
n (c) Vn(c) V U

n (c) V̄n(c)

80 52,462 67,505 72,717 73,312

90 61,215 74,003 79,458 80,302

100 70,136 79,615 85,621 87,292

110 78,803 84,817 91,122 92,850

120 86,728 89,963 95,819 98,050

130 93,446 94,869 99,588 103,250

140 98,630 99,164 102,379 106,370

150 102,209 102,418 104,251 106,370

160 104,385 104,390 105,368 106,370

1.7 General Fare Arrival Patterns with Poisson Demands

So far we have suppressed the time dimension. The order of the arrivals has provided
us with stages that are a proxy for time. In this section, we consider models where
time is considered explicitly. There are advantages of including time as part of the
model as this allows for a more precise formulation of the consumer arrival process.
For example, we can relax the low-before-high fare arrival assumption and allow
for interleaved arrivals for different fare classes. On the other hand, the advantage
of flexibility comes at the cost of estimating arrival rates for each of the fare classes
over the sales horizon. If arrival rates are not estimated accurately, then adding the
time dimension may hurt rather than help performance. In addition, formulations
where time is handled explicitly usually assume that the demand for each fare class
follows a Poisson process, whereas our earlier models based on sequential fare
arrivals do not have this restriction. Here, we will provide formulations for both the
Poisson and the compound Poisson cases. The compound Poisson model is flexible
enough to fit any mean and variance of demand for each fare class. In Sect. 1.10,
we compare the performance of the formulation with sequential fare arrivals to the
formulation that allows for compound Poisson demands. Not surprisingly, optimal
policies designed for arbitrary fare arrival patterns are superior.
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1.7.1 Model

The length of the selling horizon is T , and time t will represent the time left until the
end of the selling horizon. As before, there are n fare classes indexed by {1, . . . , n}.
We assume that consumers will leave the system when their preferred class is not
available. Consumers requesting fare class j may be rejected because the fare is
intentionally not made available in the hope of selling the capacity at a higher fare.
There may also be time-of-purchase restrictions on some fares. We use Mt to denote
the set of valid fares at time-to-go t . Typically Mt = {1, . . . , n} for large t , but
low fares are dropped from Mt as time-of-purchase restrictions become binding.
Consumers requesting fare class j arrive according to a Poisson process with arrival
rate function {λjt : 0 ≤ t ≤ T }. The number of consumers that arrive during the last
t units of time and request fare class j , say Njt , is Poisson with parameter Λjt :=∫ t

0 λjs 1(j ∈ Ms) ds, where 1(j ∈ Ms) = 1 if j ∈ Ms and 0 otherwise. We will use
the shorthand notation Λj := ΛjT to denote the total expected demand for fare class
j ∈ {1, . . . , n}. We assume, without loss of generality, that p1 > p2 > . . . > pn.

Let V (t, x) denote the maximum expected revenue that can be attained over
the last t units of time from x units of capacity. We will develop both discrete
and continuous time dynamic programs to compute V (t, x). We now argue that
the probability that there is exactly one request for fare class j over the interval
(t − δt, t] is λjt δt + o(δt). Let Nj(t − δt, t] denote the number of requests for fare
class j over the interval (t − δt, t]. This is a Poisson random variable with mean∫ t

t−δt
λjs ds = λjt δt + o(δt). Then,

P{Nj(t − δt, t] = 1} = λjt δt exp(−λjt δt) + o(δt) = λjt δt + o(δt),

while the probability that there are no requests for the other fare classes over the
same interval is

P{Nk(t − δt, t] = 0,∀k �= j} = exp
(

−
∑
k �=j

λkt δt
)

+ o(δt)

= 1 −
∑
k �=j

λkt δt + o(δt).

Multiplying the two terms above and rearranging, we obtain λjt δt + o(δt), as
claimed.

Let ΔV (t, x) = V (t, x) − V (t, x − 1) for x ≥ 1 and t ≥ 0 and consider time
steps of size δt � 1. Notice that



1.7 General Fare Arrival Patterns with Poisson Demands 25

V (t, x) =
∑
j∈Mt

λjt δt max{pj + V (t − δt, x − 1), V (t − δt, x)}

+
(

1 −
∑
j∈Mt

λjt δt
)

V (t − δt, x) + o(δt)

= V (t − δt, x) + δt
∑
j∈Mt

λjt [pj − ΔV (t − δt, x)]+ + o(δt) (1.13)

with boundary conditions V (t, 0) = 0 and V (0, x) = 0 for all x ≥ 0. In the first
equality, the first term on the right-hand side corresponds to the arrival of one request
for fare class j , so a decision must be made between accepting the request earning
pj + V (t − δt, x − 1) or rejecting it and earning V (t − δt, x), since we move to
the next time period with the capacity x in the latter case. The second term on the
right-hand side of the first equality corresponds to the case where no request arrives
in the interval (t − δt, t], resulting in expected revenue V (t − δt, x). The second
equality follows by arranging the terms. Subtracting V (t − δt, x) from both sides of
the equality in (1.13), dividing by δt and taking the limit as δt ↓ 0, we obtain the
Hamilton–Jacobi–Bellman (HJB) equation

∂V (t, x)

∂t
= Rt (ΔV (t, x)). (1.14)

where

Rt (z) :=
∑
j∈Mt

λjt [pj − z]+

is a decreasing convex function of z. The boundary conditions are as before
V (t, 0) = V (0, x) = 0. The equation tells us that the rate at which V (t, x) grows
with t is the sum of the arrival rates times the positive part of the fares net of
the marginal value of capacity ΔV (t, x) at state (t, x). We can think of the right-
hand side as the profit rate when the marginal cost is set equal to marginal value
ΔV (t, x) = V (t, x) − V (t, x − 1) of the xth unit of capacity.

1.7.2 Optimal Policy and Structural Results

Notice that fare j is accepted at state (t, x) if and only if pj ≥ ΔV (t, x). Thus, if
fare j is accepted, then all fares k ≤ j are accepted since pk ≥ pj ≥ ΔV (t, x).
This suggest that we find the index for the lowest acceptable fare by letting, for each
time t and capacity x,

a(t, x) := max{j : pj ≥ ΔV (t, x)}.
In this case, if we are at time t with capacity x, then it is optimal to accept all fares
in the active set

A(t, x) := {j ∈ Mt : j ≤ a(t, x)},
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and to reject all fares in the complement R(t, x) := {j ∈ {1, . . . , n} : j /∈ A(t, x)}.
Note that the active set A(t, x) essentially defines an admission control policy. The
following theorem provides some structural results about the value function V (t, x),
its increments ΔV (t, x), and the admission control policy A(t, x).

Theorem 1.18 The value function V (t, x) is increasing in t and in x. The increment
of the value function ΔV (t, x) is decreasing in x and increasing in t . Moreover,
a(t, x) and A(t, x) are increasing in x.

If the arrival rates and the set of valid fares are stationary so that λjt = λj > 0
for all j and Mt = M = {1, . . . , n} for all t , then a(t, x) and A(t, x) are decreasing
in t and V (t, x) is strictly increasing and concave in t .

Notice that we can also express the optimal policy in terms of dynamic protection
levels yj (t), j = 1, . . . , n − 1, 0 ≤ t ≤ T , which are given by

yj (t) := max{x : a(t, x) = j},

Thus, if x ≤ yj (t), then fares k > j should be closed. This observation follows
because a(t, x) is increasing in x.

1.7.3 Discrete-Time Formulation

The value function in (1.14) can be accurately computed by solving and pasting
the HJB equation over a discrete mesh. Alternatively, V (t, x) can be approximately
computed by using a discrete time dynamic programming formulation. A discrete
time dynamic programming formulation emerges from (1.13) by rescaling time,
setting δt = 1, and dropping the o(δt) term. This can be done by selecting k > 1,
so that kT is an integer, and setting λjt ← 1

k
λj,t/k , for t ∈ [0, kT ]. The scale factor

k should be sufficiently large so that after scaling, we have
∑

j∈Mt
λjt � 1, e.g.,∑

j∈Mt
λjt ≤ 0.01 for all t ∈ [0, T ], with T ← kT . The resulting discrete time

dynamic program is given by

V (t, x) =
∑
j∈Mt

λjt max{pj + V (t − 1, x − 1), V (t − 1, x)}

+
(

1 −
∑
j∈Mt

λjt

)
V (t − 1, x)

= V (t − 1, x) +
∑
j∈Mt

λjt [pj − ΔV (t − 1, x)]+

= V (t − 1, x) + Rt (ΔV (t − 1, x)), (1.15)

with the same boundary conditions. Computing V (t, x) via (1.15) is quite easy and
fairly accurate if time is scaled appropriately. For each time period t and capacity x,
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Table 1.10 Optimal total expected revenues in Example 1.19

c 50 100 150 200 250 300 350

V (T , c) 3553.6 5654.9 7410.1 8390.6 9139.3 9609.6 9625.0

the complexity is order O(n), so the overall computational complexity to compute
V (t, x) for all t and x is O(ncT ).

From the dynamic program in (1.15), it is optimal to accept a request for
fare class j when we have pj ≥ ΔV (t − 1, x), or equivalently, when pj +
V (t − 1, x − 1) ≥ V (t − 1, x). The latter condition compares the immediate
revenue from fare class j plus the value of being in a state with one less unit of
capacity at the next period with the value of not accepting the request and being in
a state with the same capacity at the next period. Letting a(t, x) := max{j : pj ≥
ΔV (t −1, x)}, if we are at time period t with capacity x, then it is optimal to accept
all fares in the active set

A(t, x) := {j ∈ Mt : j ≤ a(t, x)},

and to reject all fares in the complement R(t, x) := {j ∈ {1, . . . , n} : j /∈ A(t, x)}.
All of the structural results of Theorem 1.18 continue to hold for the discrete time
model.

Example 1.19 Consider Example 1.9 with five fare classes with fares p1 =
$100, p2 = $60, p3 = $40, p4 = $35, and p5 = $15. We also assume that the
arrival rates are uniform over the horizon [0, T ], i.e., λj = Λj/T , and independent
Poisson demands with means Λ1 = 15,Λ2 = 40,Λ3 = 50,Λ4 = 55, and
Λ5 = 120 and T = 1. The scaling factor was selected so that

∑5
i=1 Λi/k < 0.01

resulting in T ← kT = 2800. In Table 1.10, we present the expected revenues
V (T , c) for c ∈ {50, 100, 150, 200, 250, 300, 350}.

1.8 Monotonic Fare Offerings

The dynamic programs in (1.14) and (1.15) implicitly assume that fares can be
opened and closed at any time. To see how a closed fare may reopen, suppose that
a(t, x) = j so set A(t, x) = {k ∈ Mt : k ≤ j} is offered at state (t, x), but
an absence of sales may trigger fare j + 1 to open as a(s, x) increases and as the
time-to-go s decreases. This can lead to the emergence of strategic consumers or
third parties that specialize in exploiting inter-temporal fare arbitrage opportunities,
where one waits for a lower fare class to be available. To avoid such strategic behav-
ior, the capacity provider may commit to a policy of never opening fares once they
are closed. Handling monotonic fares requires modifying the dynamic programming
formulation into something akin to the dynamic program where time was handled
implicitly through prefixed arrival order of the fare classes. In particular, let Vj (t, x)
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be the maximum expected revenue from state (t, x) that can be obtained by offering
any set Sit = {k ∈ Mt, k ≤ i} with i ≤ j , so that we do not open any fares cheaper
than fare class j . Let Wk(t, x) be the expected revenue from accepting fares Skt at
state (t, x) and then following an optimal policy. More precisely,

Wk(t, x) =
∑
i∈Skt

λit [pi + Vk(t − 1, x − 1)] + (1 −
∑
i∈Skt

λit )Vk(t − 1, x)

= Vk(t − 1, x) + λt [rkt − πktΔVk(t − 1, x)]
= Vk(t − 1, x) + λt πkt [qkt − ΔVk(t − 1, x)],

where ΔVk(t, x) = Vk(t, x) − Vk(t, x − 1), and the quantities λt , πkt , and qkt are
as defined as λt := ∑

j∈Mt
λjt , πjt := ∑

k∈Sjt
λkt /λt , and rjt := ∑

k∈Sjt
pkλkt /λt .

Then, Vj (t, x) satisfies

Vj (t, x) = max
k≤j

Wk(t, x) (1.16)

with the boundary conditions Vj (t, 0) = Vj (0, x) = 0 for all t ≥ 0, x ∈ N+ and
j = 1, . . . , n. It follows immediately that Vj (t, x) is monotone increasing in j .
The complexity to compute each Vj (t, x) is O(1), so the complexity to compute
Vj (t, x) for all j = 1, . . . , n, x = 1, . . . , c is O(nc). Since there are T time
periods, the overall complexity is O(ncT ). While computing Vj (t, x) numerically
is fairly simple, it is satisfying to know more about the structure of optimal policies
as this gives both managerial insights and can simplify computations. The proof
of the structural results are intricate and subtle, but they parallel the results for the
dynamic programs in (1.14) and (1.15).

Lemma 1.20 The value functions {Vj (t, x) : j = 1, . . . , n, x = 1, . . . , c, t =
1, . . . , T } computed through the dynamic program in (1.16) satisfy the following
properties.

• ΔVj (t, x) is decreasing in x ∈ {1, . . . , c}, so the marginal value of capacity is
diminishing.

• ΔVj (t, x) is increasing in j ∈ {1, . . . , n}, so the marginal value of capacity
increases when we have more flexibility in terms of opening and closing fare
classes.

• ΔVj (t, x) is increasing in t , so the marginal value of capacity increases as the
time-to-go increases.

Let

aj (t, x) := max{k ≤ j : Wk(t, x) = Vj (t, x)}.

In words, aj (t, x) is the index of the lowest open fare that is optimal to post if we
are at time t with a capacity of x and we are allowed to use any fares in Sjt . Also, let

Aj(t, x) := {k ∈ Mt : k ≤ aj (t, x)}.
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Then, it follows that Aj(t, x) is the optimal set of fares to open at state
(j, t, x). Clearly Vi(t, x) = Vj (t, x) for all i ∈ {aj (t, x), . . . , j}. The following
lemma asserts that aj (t, x) is increasing in x and in j and gives conditions for
aj (t, x) to be decreasing in t .

Lemma 1.21 The index aj (t, x) is increasing in x and in j . Furthermore, aj (t, x)

is decreasing in t if the arrival rates λjt are time invariant and Mt = M for all t .
Moreover, aj (t, x) = k < j implies ai(t, x) = k for all i ≥ k.

It is possible to think of the policy in terms of protection levels, as well as in
terms of stopping sets. Indeed, let Tj := {(t, x) : Vj (t, x) = Vj−1(t, x)}. We can
think of Tj as the stopping set for fare j as it is optimal to close down fare j upon
entering set Tj . For each t , let yj (t) := max{x ∈ N+ : (t, x) ∈ Tj+1}. We can think
of yj (t) as the protection level for fares in Sj against higher fares. The following
theorem is the counterpart to Theorem 1.6.

Theorem 1.22 The optimal policy computed through the dynamic program
in (1.16) satisfies the following properties.

• Aj(t, x) is increasing in x and j . Furthermore, Aj(t, x) is decreasing in t if the
problem parameters is time invariant.

• T1 ⊆ T2 ⊆ . . . ⊆ Tn.
• yj (t) is increasing in t and in j .
• If x ≤ yj (t) then Vi(t, x) = Vj (t, x) for all i > j .

The policy is implemented as follows. The starting state is (n, T , c) as we can
use any of the fares {1, . . . , n}, we have T units of time-to-go and c is the initial
inventory. At any state (j, t, x), we post fares Aj(t, x) = {1, . . . , aj (t, x)}. If a unit
is sold during period t , then the state is updated to (aj (t, x − 1), t − 1, x − 1) since
all fares in the set Aj(t, x) are allowed, the time-to-go is t − 1 and the inventory is
x − 1. If no sales occur during period t , the state is updated to (aj (t, x), t − 1, x).
The process continues until either t = 0 or x = 0.

Example 1.23 Considering the same data in Example 1.19, in Table 1.11,
we give the expected revenues Vj (T , c), j = 1, . . . , 5 and V (T , c) for c ∈
{50, 100, 150, 200, 250}. The first row is V5(T , c) from Example 1.19. Notice that
V (T , c) ≥ Vj (T , c), since the optimal total expected revenue V (T , c) is computed
under the assumption that a closed fare class can be opened again. The difference in
optimal total expected revenues V (T , c)−V5(T , c) due to the flexibility of opening
and closing fares may be significant for some small values of c. For example, the
difference is 1.7% for c = 50. However, the difference is small for larger values of
c, and attempting to go for the extra revenue by opening an already closed fare may
invite strategic consumers to wait for lower fares or for third parties to arbitrage the
system by pre-selling capacity and then optimizing the time-of-purchase to exploit
predictable price dynamics.

We close this section with a remark on mark-up and mark-down policies. Let
us go back to the broader pricing interpretation coupled with the monotonic fare
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Table 1.11 Optimal total expected revenues with monotonic fare offerings in Example 1.23

c 50 100 150 200 250 300 350

V (T , c) 3553.6 5654.9 7410.1 8390.6 9139.3 9609.6 9625.0

V5(T , c) 3494.5 5572.9 7364.6 8262.8 9072.3 9607.2 9625.0

V4(T , c) 3494.5 5572.9 7364.6 7824.9 7825.0 7825.0 7825.0

V3(T , c) 3494.5 5572.9 5900.0 5900.0 5900.0 5900.0 5900.0

V2(T , c) 3494.5 3900.0 3900.0 3900.0 3900.0 3900.0 3900.0

V1(T , c) 1500.0 1500.0 1500.0 1500.0 1500.0 1500.0 1500.0

formulation in (1.16). In many applications the price menu pjt , j = 1, . . . , n is
time invariant, but the associated sales rates πjt , j = 1, . . . , n are time varying. In
addition, we will assume that there is a price p0t such that π0t = 0 for all t . This
technicality helps with the formulation as a means of turning off demand when the
system runs out of inventory. Recalling that we focus on monotonic fare offerings,
the case p1t ≥ p2t ≥ . . . ≥ pnt and π1t ≤ π2t ≤ . . . ≤ πnt is known as the mark-up
problem, while the case p1t ≤ p2t ≤ . . . ≤ pnt and π1t ≥ π2t ≥ . . . ≥ πnt is known
as the mark-down problem. The former model is relevant in revenue management
while the second is relevant in retailing.

For the revenue management formulation, the problem can be viewed as
determining when to mark-up, i.e. switch from action j to j −1. The optimal mark-
up times are random as they depend on the evolution of sales under the optimal
policy. Suppose that the current state is (j, t, x), so the last action was j , the time-
to-go is t and the inventory is x. We want to determine whether we should continue
using action j or switch to action j − 1. We know that if x > yj−1(t), then we
should keep action j and if x ≤ yj−1(t) then we should close fare class j . Let
Tj := {(t, x) : x ≤ yj−1(t)}, so it is optimal to stop action j upon first entering set
Tj . Notice that a mark-up occurs when the current inventory falls below a curve, so
low inventories trigger mark-ups, and mark-ups are triggered by sales. The retailing
formulation also has a threshold structure, but this time a mark-down is triggered by
inventories that are high relative to a curve, so the optimal timing of a mark-down is
triggered by the absence of sales.

1.9 Compound Poisson Demands

The formulations of the dynamic programs in (1.14) and (1.15) implicitly assume
that each request is for a single unit of capacity. Instead, suppose that each arrival
is for a random number of units. More specifically, suppose that size of a request
for fare class j is a random variable Zj , and that the probability mass function
Pj (z) := P{Zj = z} is known for fare class each j . As before, we assume
independent demands for the different fare classes. We seek to generalize the
dynamic programs in (1.14) and (1.15) so that at each state (t, x) we can decide



1.9 Compound Poisson Demands 31

whether or not to accept a fare request for a certain fare class and of a certain size.
If we have a request for fare class j and for size z, then the expected revenue from
accepting the request is z pj + V (t − 1, x − z) and the expected revenue from
rejecting the request is V (t − 1, x). Let ΔzV (t, x) = V (t, x) − V (t, x − z) =
ΔV (t, x) + ΔV (t, x − 1) + . . . + ΔV (t, x − z + 1) for all z ≤ x. We set
ΔzV (t, x) = ∞ if z > x. With this notation, the difference between accepting
and rejecting a request for z units at state (t, x) is given by z pj − ΔzV (t, x), and it
is optimal to accept the request whenever this quantity is non-negative. Notice that
any request for z > x is rejected as capacity is insufficient. (A different model is
needed if a fraction of the consumers are willing to take partial orders.) The dynamic
program in (1.14) with compound Poisson demands is given by

∂V (t, x)

∂t
=

∑
j∈Mt

λjt

x∑
z=1

Pj (z)[z pj − ΔzV (t, x)]+, (1.17)

with boundary conditions V (t, 0) = V (0, x) = 0. The optimal policy is to accept a
request of size z ≤ x for fare class j , if z pj ≥ ΔzV (t, x) and to reject all requests
of size z > x. For z ≤ x, define

j (z|t, x) := arg max

{
j : pj ≥ ΔzV (t, x)

z

}
,

so if we are at time-to-go t with remaining capacity of x, then it is optimal to accept
requests of size z for all fares in the set

A(z|t, x) := {j ∈ Mt : j ≤ j (z|t, x)}.

The discrete time dynamic program in (1.15) with compound Poisson demands
is given by

V (t, x) = V (t − 1, x) +
∑
j∈Mt

λjt

x∑
z=1

Pj (z) [z pj − ΔzV (t − 1, x)]+, (1.18)

with the same boundary conditions, and the optimal controls are of the same form
except that ΔV (t − 1, x) is used in defining j (z|t, x).

For compound Poisson demands, we can no longer claim that the marginal value
of capacity ΔV (t, x) is decreasing in x, although it is still true that ΔV (t, x) is
increasing in t . To see why ΔV (t, x) is not monotone in x, consider a problem
where the majority of the requests are for two units and requests are seldom for
one unit. Then the marginal value of capacity for even values of x may be larger
than the marginal value of capacity for odd values of x. Consequently, some of the
structure may be lost. For example, it may be optimal to accept a request of a single
unit of capacity when x is odd, but not if x is even. However, even if some of the
structure is lost, the computations involved to solve the dynamic program in (1.18)
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Table 1.12 Value function V (T , c) in Example 1.24 with compound Poisson demand

c 50 100 150 200 250 300

V (T , c) 3837 6463 8451 10,241 11,724 12,559

Table 1.13 The first differences ΔV (208, x) in Example 1.24 with compound Poisson demand

x 1 2 3 4 5 6

ΔV (208, x) 70.05 66.48 59.66 60.14 54.62 50.41

are straightforward as long as the distribution of Zj is known. Airlines, for example,
have a very good idea of the distribution of Zj for different fare classes.

Example 1.24 Consider the same data in Example 1.19 with fares p1 = $100, p2 =
$60, p3 = $40, p4 = $35, and p5 = $15 and independent Poisson requests with
means Λ1 = 15,Λ2 = 40,Λ3 = 50,Λ4 = 55,Λ5 = 120 over the horizon
[0, 1]. Now, we will assume that the distribution of the demand sizes is given by
P{Zj = 1} = 0.65, P{Zj = 2} = 0.25, P{Zj = 3} = 0.05, and P{Zj = 4} = 0.05
for all fare classes j = 1, . . . , 5. Notice that E[Zj ] = 1.5 and E[Z2

j ] = 2.90. We
will assume that Mt = {1, . . . , n} for all t ∈ [0, T ]. Our computations are based
on the dynamic program in (1.18) with a rescaled time horizon T ← k T = 2800,
and rescaled arrival rates λj ← λj/k for all j = 1, . . . , n. Table 1.12 provides
V (T , c) for c ∈ {50, 100, 150, 200, 250, 300, 350}. Table 1.13 provides ΔV (t, x)

for t = 207 in the rescaled horizon for x ∈ {1, . . . , 6} to illustrate the behavior of
the policy. The reader can verify that at state (t, x) = (208, 3), it is optimal to accept
a request for one unit at fare p2, and to reject the request if the request is for two
units. If we have one more unit of inventory, so the state is (t, x) = (208, 4) then
it is optimal to reject a request for one unit at fare p2, and to accept the request if
it is for two units. The reason for this behavior is that the value of ΔV (t, x) is not
monotone decreasing at x = 4.

1.10 Sequential vs. Mixed Arrival Formulations

In this section, we compare the performance of sequential policies obtained using
the dynamic program in (1.6) with the performance of formulation (1.18) that allows
for mixed arrivals and compound Poisson demands. Allowing for arbitrary arrivals
provides more flexibility so it should not be surprising that policies based on a
more flexible model would do better. Computational studies should concentrate on
measuring the gap between the two. The gap is fairly small when the arrival rates
are sequential and the low-before-high assumption holds, and more generally when
the arrival rates follow a prescribed order that is consistent with the computations of
the protection levels.



1.11 End of Chapter Problems 33

Table 1.14 Sub-optimality
of EMSR-b with standard
nesting vs optimal dynamic
policy for Example 1.25

c 50 100 150 200 250 300

V s(T , c) 3653 6177 8187 9942 11,511 12,266

V (T , c) 3837 6463 8451 10,241 11,724 12,559

% Sub 4.8% 4.4% 3.1% 2.9% 1.8% 2.3%

Comparing sequential and dynamic policies when the fare arrival rates do not
follow a specific pattern is more difficult because revenues depend heavily on how
the protection levels from the sequential policy are implemented. Two possible
implementations are possible. Under theft nesting a request of size z for fare class
j is accepted if x − z ≥ yj−1, where x is the current inventory and yj−1 is the
protection level for fares {1, . . . , j − 1}. This method is called theft nesting because
the remaining inventory x at time-to-go t deducts all previous bookings regardless
of fare class. In contrast, standard nesting is implemented by accepting a size z

request for fare j if x − z ≥ (yj−1 − b[1, j − 1])+, where b[1, j − 1] are the
observed bookings of fares [1, j − 1] at state (t, x). In practice, standard nesting
works much better than theft nesting when the fare arrival pattern is not low-to-
high. This makes sense because standard nesting does not insist on protecting yj−1
units for fares {1, . . . , j−1} even though we have already booked b[1, j−1] units of
these fares. Consequently, we use standard nesting in comparing sequential policies
versus dynamic policies to give sequential policies a fighting chance.

Example 1.25 Consider the data of Example 1.24. Let V (T , c) be the value function
at the beginning of the selling horizon with initial capacities computed through the
dynamic program in (1.18). Thus, V (T , c) is the optimal total expected revenue
under the compound Poisson arrivals. Let V s(T , c) be the total expected revenue
collected by the sequential EMSR-b policy under standard nesting. In Table 1.14,
we compare V (T , c) with V s(T , c). Part of the gap between V s(T , c) and V (T , c)

can be reduced by frequently recomputing the booking limits applying the EMSR-
b heuristic during the sales horizon. However, this is not enough to overcome the
disadvantage of the EMSR-b heuristic when applied to mixed arrival patterns.

We end by noticing that it is possible to show that the upper bound V U
n (c) for

Vn(c), developed in Sect. 1.6 for the model with fixed arrival order for fares, is still
a valid upper bound for V (T , c) computed under arbitrary arrival pattern.

1.11 End of Chapter Problems

1. A coffee shop gets a daily allocation of 100 bagels. The bagels can be either
sold individually at $1.00 each or can be used later in the day for sandwiches.
Each bagel sold as a sandwich provides a revenue of $1.50 independent of the
other ingredients.
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Table 1.15 Fare classes,
fares and demand
distributions

Class Fare Demand distribution

1 $600 Poisson(25)

2 $475 Poisson(30)

3 $265 Poisson(29)

4 $130 Poisson(30)

(a) Suppose that demand for bagel sandwiches is estimated to be Poisson with
parameter 80. How many bagels would you reserve for sandwiches?

(b) Compare the expected revenue of the solution of part (a) to the expected
revenue of the heuristic that does not reserve capacity for sandwiches
assuming that the demand for individual bagels is Poisson with parameter
150?

(c) Answer Part (a) if the demand for bagel sandwiches is normal with mean
100 and standard deviation 20.

2. Suppose capacity is 120 seats and there are four fares. The demand distributions
for the different fares are given in Table 1.15.

Determine the optimal protection levels. [Hints: The sum of independent
Poisson random variables is Poisson with the obvious choice of parameter to
make the means match. If D is Poisson with parameter λ, then P{D = k+1} =
P{D = k}λ/(k + 1) for any non-negative integer k.

3. Consider a parking lot in a community near Manhattan. The parking lot has
100 parking spaces. The parking lot attracts both commuters and daily parkers.
The parking lot manager knows that he can fill the lot with commuters at a
monthly fee of $180 each. The parking lot manager has conducted a study and
has found that the expected monthly revenue from x parking spaces dedicated
to daily parkers is approximated well by the quadratic function R(x) = 300x −
1.5x2 over the range x ∈ {0, 1, . . . , 100}. Note: Assume for the purpose of the
analysis that parking slots rented to commuters cannot be used for daily parkers
even if some commuters do not always use their slots.

(a) What would the expected monthly revenue of the parking lot be if all the
capacity is allocated to commuters?

(b) What would the expected monthly revenue of the parking lot be if all the
capacity is allocated to daily parkers?

(c) How many units should the parking manager allocate to daily parkers and
how many to commuters?

(d) What is the expected revenue under the optimal allocation policy?

4. A fashion retailer has decided to remove a certain item of clothing from the
racks in 1 week to make room for a new item. There are currently 80 units of
the item and the current sale price is $150 per unit. Consider the following three
strategies assuming that any units remaining at the end of the week can be sold
to a jobber at $30 per unit.
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Table 1.16 Fare classes,
fares and demand
distributions

Class Fare Demand distribution

1 $500 Poisson(45)

2 $380 Poisson(55)

3 $215 Poisson(50)

4 $180 Poisson(100)

(a) Keep the current price. Find the expected revenue under this strategy under
the assumption that demand at the current price is Poisson with parameter
50.

(b) Lower the price to $90 per unit. Find the expected revenue under this
strategy under the assumption that demand at $90 is Poisson with parameter
120.

(c) Keep the price at $150 but e-mail a 40% discount coupon for the item
to a population of price sensitive consumers that would not buy the item
at $150. The coupon is valid only for the first day and does not affect the
demand for the item at $150. Compute the expected revenue under this
strategy assuming that you can control the number of coupons e-mailed
so that demand from the coupon population is Poisson with parameter x

for values of x in the set {0, 5, 10, 15, 20, 25, 30, 35}. In your calculations
assume that demand from coupon holders arrives before demand from
consumers willing to pay the full price. Assume also that you cannot deny
capacity to a coupon holder as long as capacity is available (so capacity
cannot be protected for consumers willing to pay the full price). What value
of x would you select? You can assume, as in parts (a) and (b) that any
leftover units are sold to the jobber at $30 per unit.

5. Prove that Eq. (1.8) holds.
6. Suppose we have a capacity of 220 seats and four fare classes. The fares and

demand distribution for each fare class are given in Table 1.16. In all cases,
except where noted, we will assume a low-to-high fare class arrival pattern.

(a) Determine the optimal protection levels using dynamic programming.
(b) Determine the protection levels under the EMSR-a heuristic
(c) Determine the protection levels under the EMSR-b heuristic
(d) Use simulation or the exact method to estimate the expected sales for each

fare class and the total expected revenues for the policies determined in
parts (a)–(c).

(e) Find the expected revenue under a policy that does not protect inventory
for higher fare classes assuming the arrival pattern is low-to-high.

(f) Find the expected revenue of the policy in part (e) if the fare class arrival
pattern is high-to-low.

(g) Solve the linear programming described in class to obtain an upper bound
on the expected revenue of the optimal policy.
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Table 1.17 Dynamic booking control with booking limits and protection levels

Booking limits Protection levels

1 2 3 4 1 2 3 4 Request Action

1 50 45 37 22 5 13 28 50 4 seats in Class 4

2 5 seats in Class 3

3 7 seats in Class 2

4 5 seats in Class 4

5 5 seats in Class 1

6 5 seats in Class 4

7 6 seats in Class 3

8 3 seats in Class 2

9 1 seats in Class 1

10 2 seats in Class 3

11

7. Consider a flight with a capacity of 50 seats and four fare classes. Suppose
that we implement nested protection levels starting with (y1, y2, y3, y4) =
(5, 13, 28, 50). Table 1.17 shows a series of booking requests. For this problem,
each request must be accepted on all-or-none basis, i.e. given a request of
m units, we can only sell m units or none at all. Determine whether each
request would be accepted, and update the booking limits and protection levels
accordingly.

8. Suppose that you are the capacity provider for a popular event. The face value
of the tickets is $100 per seat, and the venue can hold 350 individuals. The
$100 tickets go on sale a month before the event. Assume demand for $100
tickets is at least 350. You estimate that demand from people willing to pay
$300 for a ticket the day of the event can be modeled as a negative binomial
with parameters r = 36 and p = 1/4 (mean 144 and variance 432). More
precisely, the probability mass function of demand for $300 tickets is P{D1 =
k} = (

k−1
35

)
(1/4)36(3/4)k−36 for integer values of k ≥ 36.

(a) How many tickets should you reserve for sale at $300?
(b) Evaluate the expected revenue of the strategy of part (a) and determine the

average number of unsold seats under the strategy of part (a).
(c) Suppose now that you sell the $100 tickets with a callable option that

allows you to buy them back for $130 if needed (you can assume consumers
are willing to accept this deal). Suppose that you exercise the option of
buying back $100 tickets at $130 when demand for $300 tickets exceeds
the number you reserved for them in part (a). Use simulation to evaluate
the expected revenue of this strategy and determine the average number
of unsold seats. You can continue to assume that demand for $100 tickets
exceeds the capacity of the venue for the purpose of your calculations.
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Table 1.18 Fare classes,
fares and demand
distributions

j pj E[Dj ]
1 $75 8

2 $100 21

3 $75 31

4 $60 20

(d) Consider now a refinement of the strategy in part (c) where you can fine
tune the number of tickets that you reserve for sale at $300. How many
tickets would you reserve? Compute the expected profit under the new
strategy and also the expected number of unsold seats.

9. Find the optimal protection levels for the data in Table 1.18 and
compute the optimal expected revenues V1(c), V2(c), V3(c), and V4(c) for
c ∈ {50, 55, 60, 65, 70, 75, 80} assuming Poisson demands.

10. Modify Problem 9 so that p1 = $125 and compute optimal protection levels
and the value function V4(c) for c ∈ {50, 55, 60, 65, 70, 75, 80}.

11. Compute the upper bound V H (c) and V̄ (c) and the lower bound V L(c) and the
spread V H (c) − V L(c) for Problem 9 for c ∈ {50, 55, 60, 65, 70, 75, 80}.

12. Use the discrete time dynamic programs to compute V (T , c) and Vj (T , c), j =
1, 2, 3, 4 for the data of Problem 9, for the values of the capacity c ∈
{50, 55, 60, 65, 70, 75, 80} for the following arrival rate models:

(a) Uniform arrival rates, e.g. λtj = Λj = E[Dj ] for 0 ≤ t ≤ T = 1.
Be sure to rescale time so that T = a is an integer large enough so
that

∑3
j=1 E[Dj ]/a ≤ 0.01. What accounts for the difference between

V (T , c) and V4(T , c)? What accounts for the difference between V4(T , c)

and V4(c)?
(b) Low-to-high arrival rates: Dividing the selling horizon [0, T ] = [0, 1] into

4 sub-intervals [tj−1, tj ], j = 1, . . . , 4 with tj = j/4, and set λjt = 4Λj

over t ∈ [tj−1, tj ] and λjt = 0 otherwise. Again, be sure to rescale the
system so that T = a is an integer large enough so that maxj maxt λjt /a ≤
0.01. What accounts for the difference between V (T , c) and V4(T , c)?
What accounts for the difference between V4(T , c) and V4(c)?

13. Show that the upper bound (1.11) holds for the model presented in Sect. 1.7
with μi = Λi for all i ∈ N . Find the dual for the formulation and show that
you can reduce this to a single dimensional convex problem in the dual of the
capacity constraint.
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and van Ryzin and Talluri (2005) give reviews of the literature on the subject. For
the two-fare class model, a formula for the optimal protection level as a function
of P{D1 ≥ y} and r was proposed by Littlewood (1972). His arguments were
not formal; however, they were later justified by Bathia and Prakesh (1973) and
Richter (1982). Our discussion of quality of service and salvage values borrows
from Brumelle et al. (1990). Gallego et al. (2008a) discuss how callable products
can improve the quality of service. The two-fare class model has connections to the
newsvendor problem. A coverage of the newsvendor problem can be found in Zipkin
(2000). Cachon and Kok (2007a) study the newsvendor problem when the salvage
value of the product depends on how much inventory is left over. Gallego and Moon
(1993) and Perakis and Roels (2008) focus on the newsvendor problem when the
demand distribution is not known fully. Boyaci and Ozer (2010) consider a problem
of information acquisition for capacity planning. Levi et al. (2015) give bounds for
sample average approximation solution to the newsvendor problem, which extend
to the two-fare class model. Hu et al. (2016a) consider a newsvendor problem where
the customers choose between products.

Wollmer (1992) uses dynamic programming to obtain the optimal policy for
the multi-fare problem with discrete demands and fixed arrival rate for the fare
classes. Curry (1990) derives optimality conditions when demands are assumed
to follow a continuous distribution. Brumelle and McGill (1993) allow for either
discrete or continuous demand distributions and make a connection with the theory
of optimal stopping. The reader is referred to Robinson (1995) for the case where
the arrival pattern of the fare classes is not necessary low-to-high. The papers by van
Ryzin and McGill (2000) and Kunnumkal and Topaloglu (2009) give an algorithm
for computing the optimal protection levels only by using samples of the random
demand, instead of using the demand distributions. Ball and Queyranne (2009) and
Ma et al. (2018) provide a competitive analysis for single-leg revenue management
problems.

Credit for the EMSR heuristics is sometimes given to the American Airlines
team working on revenue management problems shortly after deregulation. The first
published account of these heuristics appears in Simpson (1985), Belobaba (1987)
and Belobaba (1989). Ratliff (2005) reports that EMSR-b usually provides improved
performance on real world problems, especially ones involving nested inventory
controls. Diwan (2010) numerically compares various approaches for single-leg
revenue management problems.

Examples 1.14 and 1.15 are from Wollmer (1992). The reader is referred to
Chandler and Ja (2007) and Temath et al. (2010) for further information on the uses
of the revenue opportunity model. Lee and Hersh (1993) first proposed a model
that is equivalent to our discrete-time formulation with arbitrary arrival patterns.
Brumelle and Walczak (2003) present more general results in this vein.

Weatherford et al. (1993) consider problems with diversion possibilities between
the different fare classes. Revenue management problems have clear connections to
dynamic packing problems studied in Kleywegt and Papastavrou (1998). Belobaba
and Farkas (1999) focus on the interactions between revenue management decisions
and estimating the spill rate between different classes. Zhao and Zheng (2001)
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consider the case with monotonic fare offerings but with only two fare classes. The
sample path based proof technique that can be found in their paper becomes useful
in numerous revenue management settings. In particular, this approach can be used
to show the results related to monotonic fare offerings in this chapter. Mark-up and
the mark-down problems can be studied from the point of view of stopping times.
We refer the reader to Feng and Gallego (1995, 2000), and Feng and Xiao (2000)
for mark-up and mark-down problems.

Gupta and Cooper (2005) and Cooper and Gupta (2006) provide comparisons
between revenues in different systems with different demand distributions.

Appendix

Proof of Lemma 1.4 Taking expectations yields g(x) = G(x)P{X ≥ x} +∑
j≤x−1 G(j)P{X = j} and g(x − 1) = G(x − 1)P{X ≥ x} +∑
j≤x−1 G(j)P{X = j}. Taking the difference yields Δg(x) = ΔG(x)P{X ≥ x}.

Similarly, taking expectations, we have h(x) = H(x)P{X < x}+∑
j≥x H(j)P{X =

j}. Similarly, we also have h(x−1) = H(x − 1)P{X < x}+∑
j≥x H(j)P{X = j}.

Taking the difference, we see that Δh(x)=ΔH(x)P{X<x}. ��
Proof of Proposition 1.5 We will prove the result by induction on j . The result
holds for j = 1 since ΔV1(y) = p1 P{D1 ≥ y} is decreasing in y, and clearly
ΔV1(y) = p1 P{D1 ≥ y} ≥ ΔV0(y) = 0. Assume that the result is true for Vj−1. It
follows from the dynamic programming equation that

Vj (x) = max
y≤x

{
Wj(y, x)

}
,

where, for any y ≤ x,

Wj(y, x) = E{pj min{Dj, x − y}} + E{Vj−1(max{x − Dj, y})}.

Directly using the definition of Wj(y, x), for y ∈ {1, . . . , x}, we can show that

ΔWj(y, x) = Wj(y, x) − Wj(y − 1, x) = [ΔVj−1(y) − pj ]P{Dj > x − y}.

Since ΔVj−1(y) is decreasing in y by the inductive hypothesis, we see that
Wj(y, x) ≥ Wj(y − 1, x) if ΔVj−1(y) > pj and Wj(y, x) ≤ Wj(y − 1, x) if
ΔVj−1(y) ≤ pj . Consider the expression

yj−1 = max{y ∈ N+ : ΔVj−1(y) > pj },
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where the definition of ΔVj (y) is extended to y = 0 for all j by setting ΔVj (0) =
p1. If x ≥ yj−1, then

Vj (x) = max
y≤x

Wj (y, x) = Wj(yj−1, x).

On the other hand, if x < yj−1, then

Vj (x) = max
y≤x

Wj (y, x) = Wj(x, x).

In summary, we have

Vj (x) = Wj(min(x, yj−1), x)

=
⎧⎨
⎩

Vj−1(x), if x ≤ yj−1

E{pj min{Dj, x − yj−1}}
+ E{Vj−1(max{x − Dj, yj−1})} if x > yj−1.

Using the expression above, computing ΔVj (x) = Vj (x) − Vj (x − 1) for x ∈ N+
results in

ΔVj (x) =
{

ΔVj−1(x), if x ≤ yj−1

E{min{pj ,ΔVj−1(x − Dj)}} if x > yj−1.

We will now use this result to show that ΔVj (x) is itself decreasing in x. Since
ΔVj (x) = ΔVj−1(x) for x ≤ yj−1 and ΔVj−1(x) is decreasing in x, we only need
to worry about the case x > yj−1. However, in this case, we have

ΔVj (x) = E min(pj ,ΔVj−1(x − Dj))

is decreasing in x, since ΔVj−1(x) is itself decreasing in x. Lastly, at yj−1, using
the expression for the first difference ΔVj (x) above,

ΔVj (yj−1) = ΔVj−1(yj−1) > pj

≥ E{min{pj ,ΔVj−1(x − Dj)}} = ΔVj (yj−1 + 1),

showing that ΔVj−1(x) is decreasing at x = yj−1 as well.
Now, we show that ΔVj (x) ≥ ΔVj−1(x). For x > yj−1, we have

min{pj ,ΔVj−1(x − Dj)} ≥ min{pj ,ΔVj−1(x)} = ΔVj−1(x),

where the inequality follows since ΔVj−1(x) is decreasing in x, and the equality
holds since x > yj−1. Taking expectations we see that ΔVj (x) ≥ ΔVj−1(x) on
x > yj−1. Lastly, note that ΔVj (x) = ΔVj−1(x) on x ≤ yj−1. ��
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Proof of Theorem 1.6 By Lemma 1.4, we have

E{min{x − y,Dj }} − E{min{x − (y − 1),Dj }}
= −E{min{x − y + 1,Dj }} + E{min{x − y,Dj }}
= −P{Dj ≥ x − y + 1) = −P{Dj > x − y}.

Similarly, E{Vj−1(max{y, x−Dj })}−E{Vj−1(max{y−1, x−Dj })} = ΔVj−1(y)×
P{x − Dj < y} = ΔVj−1(y)P{Dj > x − y}. This implies that

ΔWj(y, x) = Wj(y, x) − Wj(y − 1, x) = (ΔVj−1(y) − pj )P{Dj > x − y},

thus, the sign of ΔWj(y, x) is dictated by the sign of ΔVj−1(y) − pj .
We now show that Wj(y, x) is a unimodal in y. Letting y∗

j−1 be as defined
in (1.7), for all y > y∗

j−1, we have ΔVj−1(y) ≤ pj . Therefore, ΔWj(y, x) ≤ 0
for all y > y∗

j−1. Similarly, we have ΔVj−1(y
∗
j−1) > pj , but since ΔVj (x) is

decreasing in x by the first part of Proposition 1.5, it follows that ΔVj−1(y) >

pj for all y ≤ y∗
j−1. Therefore, ΔWj(y, x) ≥ 0 for all y ≤ y∗

j−1. Having
ΔWj(y, x) ≥ 0 for all y ≤ y∗

j−1 and ΔWj(y, x) ≤ 0 for all y > y∗
j−1 implies

that Wj(y, x) is unimodal in y and its maximizer occurs at y∗
j−1. So, the maximizer

of Wj(y, x) over y ∈ {0, . . . , x} occurs at min{y∗
j−1, x}. Third, we show that

the optimal protection levels are monotone in the fare classes. By the definition
of y∗

j−1, we have ΔVj−1(y
∗
j−1) > pj , and since ΔVj (x) ≥ ΔVj−1(x) by the

second part of Proposition 1.5, we obtain ΔVj (y
∗
j−1) ≥ ΔVj−1(y

∗
j−1) > pj >

pj+1, which implies that ΔVj (y
∗
j−1) > pj+1. In this case, since y∗

j is given by
max{y ∈ N+ : ΔVj(y) > pj+1}, it must be the case that y∗

j ≥ y∗
j−1. ��

Proof of Corollary 1.7 Let G(x) = p1 x, then V1(x) = g(x) = E{G(min{D1, x})},
so ΔV1(x) = Δg(x) = p1 P{D1 ≥ x}. Then, by Theorem 1.6,

y1 = max{y ∈ N+ : p1 P{D1 ≥ x} > p2}

which coincides with Littlewood’s rule. ��
Proof of Proposition 1.10 Since Πn(c, k) is the difference of a concave and a linear
function, Πn(c, k) is itself concave. The marginal value of adding the c-th unit of
capacity is ΔVn(c) − k so the c-th unit increases profits as long as ΔVn(c) > k.
Therefore, the smallest optimal capacity is given by c(k). (Notice that c(k) + 1 may
be also optimal if ΔVn(c(k) + 1) = k.) Note that c(k) is decreasing in k since
ΔVn(c) is decreasing in c. Suppose that k = pj+1. To establish c(pj+1) = yj ,
it is enough to show that ΔVn(yj ) > pj+1 ≥ ΔVn(yj + 1). By definition, yj =
max{y ∈ N+ : ΔVj(y) > pj+1}, so that we have ΔVj (yj ) > pj+1 ≥ ΔVj (yj +1).
Since it is optimal to protect up to yj units of capacity for sale at fares j, j −
1, . . . , 1, it follows that Vn(c) = Vj (c) for all c ≤ yj , and consequently ΔVn(yj ) =
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ΔVj (yj ) > pj+1. Now ΔVn(yj + 1) can be written as a convex combination of
pj+1 and ΔVj (yj +1) ≤ pj+1 which implies that ΔVn(yj +1) ≤ pj+1, as desired.

��
Proof of Theorem 1.18 Since Rt (z) ≥ 0, it follows from (1.14) that V (t, x) is
increasing in t , with strict inequality as long as there is a fare k ∈ Mt such that
pk > ΔV (t, x) and λkt > 0. To show that V (t, x + 1) ≥ V (t, x) consider a sample
path argument where the system with x+1 units of inventory uses the optimal policy
for the system with x units of inventory until either the system with x units runs out
of stock or time runs out. If the system with x units of inventory runs out at time s,
then the system with x + 1 units of inventory can still collect V (s, 1) ≥ 0. On the
other hand, if time runs out the two systems collect the same revenue. Consequently,
the system with x + 1 units of inventory makes at least as much revenue resulting in
V (t, x + 1) ≥ V (t, x).

Clearly ΔV (t, 1) ≤ ΔV (t, 0) = ∞. Assume as the inductive hypothesis that
ΔV (t, y) is decreasing in y ≤ x for all t ≥ 0. We want to show that ΔV (t, x +1) ≤
ΔV (t, x), or equivalently that

V (t, x + 1) + V (t, x − 1) ≤ V (x) + V (x). (1.19)

We will use a sample path argument to establish inequality (1.19). Consider four
systems, one with x + 1 units of inventory, one with x − 1 units of inventory, and
two with x units of inventory. Assume that we follow the optimal policy for the
system with x + 1 and for the system with x − 1 that are on the left-hand side of
inequality (1.19). For the two systems on the right, we use the sub-optimal policies
designed for x+1 and x−1 units of inventory, respectively. We follow these policies
until one of the following events occurs: time runs out, the difference in inventories
for the systems on the left drops to 1, or the inventory of the system with x − 1 units
drops to zero. After that time we follow optimal policies for all four systems. To
establish inequality (1.19), we will show that the revenues obtained for the systems
in the right are at least as large as for the systems on the left, even though sub-
optimal policies are used for the systems in the right. This is obviously true if we
run out of time since the realized revenues of the two systems on the right are exactly
equal to the realized revenues from the two systems on the left. Assume now that
at time s ∈ (0, t), the difference in inventories on the two systems on the left-hand
side drops to 1, so that the states are (s, y + 1) and (s, y) for some y < x. This
means that system on the left with x + 1 units of inventory had x − y units of sale
and the system with x −1 units of inventory had x −1−y units of sale. This implies
that the system on the right that was following the policy designed for x + 1 reaches
state (s, y), while the system that was using the policy designed for x − 1 reaches
state (s, y + 1). Clearly, the additional optimal expected revenues over [0, s] for
each pair of systems is V (s, y + 1) + V (s, y) = V (s, y) + V (s, y + 1), showing
that the system on the right gets as much revenue as the system on the left even if
sub-optimal polices are used for part of the horizon. Finally, if the inventory of the
system with x − 1 units of inventory drops to 0 at some time s ∈ [0, t), so that
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state of the systems on the left are, respectively, (s, y) and (s, 0) for some y, such
that 1 < y ≤ x, while the systems on the left are (s, y − 1) and (s, 1). From the
inductive hypothesis, we know that ΔV (s, y) ≤ ΔV (s, 1) for all y ≤ x and all
s ≤ t . Consequently,

V (s, y) = V (s, y) + V (s, 0) ≤ V (s, y − 1) + V (s, 1),

and once again the pair of systems on the right result in at least as much revenue
even though sub-optimal policies are used for part of the sales horizon.

We now show that ΔV (t, x) is increasing in t . This is equivalent to

∂V (t, x)

∂t
= Rt (ΔV (t, x)) ≥ Rt (ΔV (t, x − 1)) = ∂V (t, x − 1)

∂t
,

but this is true on account of Rt (z) being decreasing in z and ΔV (t, x) being
decreasing in x.

Notice that the set a(t, x) is increasing in x since ΔV (t, x) is decreasing in x.
Consequently, the set A(t, x) is also increasing in x.

We now show that V (t, x) is strictly increasing in t when dt (p) = d(p) is time
invariant. This is because

∂V (t, x)

∂t
= r(ΔV (t, x)) ≥ r(ΔV (t, 1)) = r(V (t, 1)) > 0,

where the first inequality follows because r is decreasing and V (t, 1) = ΔV (t, 1) ≥
ΔV (t, x) for all x ≥ 1. The strict inequality follows because V (t, 1) must be below
p1 as otherwise if V (t, 1) = p1, then the single unit of inventory must be priced
at p1 over the horizon [0, t] and must sell with probability one over that interval.
However, there is a positive probability equal to e−λ1t that the unit does not sell, so
V (t, 1) < p1, implying that r(V (t, 1)) > 0, so V (t, x) is strictly increasing in t .

To show that V (t, x) is concave, notice that since r(z) is almost everywhere
differentiable, then

∂2V (t, x)

∂t2 = r ′(ΔV (t, x))
∂ΔV (t, x)

∂t
≤ 0,

follows since r ′(z) ≤ 0, on account of r(z) being decreasing in z, and from the
fact that ΔV (t, x) is increasing in t . The fact that r(z) is not differentiable at points
pj ∈ M does not change the argument because we can take the right derivative of r

and things work well given that ΔV (t, x) is increasing in t . ��
Proof of Lemma 1.20 We will first show part that ΔVj (t, x) is decreasing in x

which is equivalent to showing that 2Vj (t, x) ≥ Vj (t, x + 1) + Vj (t, x − 1)] for all
x ≥ 1. Let A be an optimal admission control rule starting from state (t, x + 1) and
let B be an optimal admission control rule starting from (t, x − 1). These admission
control rules are mappings from the state space to subsets Sk = {1, . . . , k}, k =
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0, 1, . . . , j where S0 = ∅ is the optimal control whenever a system runs out of
inventory. Consider four systems: two starting from state (t, x), using control rules
A′ and B ′, respectively, and one each starting from (t, x + 1) and (t, x − 1), using
control rule A and B, respectively. Our goal is to specify heuristic control rules A′
and B ′ that together make the expected revenues of the two systems starting with
(t, x) at least as large as the expected revenues from the systems starting at (t, x+1)

and (t, x − 1). This will imply that 2Vj (t, x) ≥ Vj (t, x + 1) + Vj (t, x − 1).
We will use the control rules A′ = A ∩ B and B ′ = A ∪ B until the first time,

if ever, the remaining inventory of the system (t, x) controlled by A′ is equal to the
remaining inventory of the system (t, x + 1) controlled by A. This will happen the
first time, if ever, there is a sale under A and not under A′, i.e. a sale under A but
not under B. Let t ′ be the first time this happens, if it happens before the end of
the horizon, and set t ′ = 0 otherwise. If t ′ > 0 then we apply policy A′ = A and
B ′ = B over s ∈ [0, t ′). We claim that the expected revenue from the two systems
starting with (t, x) is the same as the expected revenue from the other two systems.
This is because the sales and revenues up to, but before t ′, are the same in the two
systems. At t ′ sales occur only for the system (t, x) controlled by B ′ and the system
(t, x + 1) controlled by A, and the revenues from the two sales are identical. After
the sales at t ′, the inventory of the system (t, x) controlled by A′ becomes identical
to the inventory of the system (t, x + 1) controlled by A while the inventory of
the system (t, x) controlled by B ′ becomes identical to the inventory of the system
(t, x − 1) controlled by B. Since the policy switches to A′ = A and B ′ = B, then
sales and revenues are the same over [0, t ′). If t ′ = 0, then the sales of the two
systems are the same during the entire horizon.

It remains to verify that inventories don’t become negative. Prior to time t ′, the
systems remain balance in the sense that system (t, x) governed by A′ always has
one unit of inventory less than system (t, x + 1) governed by A and system (t, x)

governed by B ′ has one more unit of inventory than system (t, x − 1) governed by
B. Thus the only two systems that could potential run out of inventory before t ′ are
A′ and B.

Since sales under A′ = A ∩ B are more restricted than sales under B, the
inventory of system (t, x) governed by A′ will always be at least one unit since
at most x − 1 units of sale are allowed under B. Therefore the only way the
system can run out of inventory is if system (t, x − 1) runs out of inventory
under B before t ′. However, in this case, sales would stop under systems A′ and
B, while sales will continue under B ′ = A and A so revenues will continue
to be the same until the first sale under A at which point we reached t ′. This
shows that even if the system (t, x − 1) runs out of inventory under B the two
systems continue to have the same revenues over the entire horizon. Consequently
2ΔVj (t, x) ≥ Vj (t, x + 1) + Vj (t, x − 1) for all x ≥ 1.

To show that ΔVj(t, x) is increasing in j , it is enough to show that

Vj (t, x) + Vj−1(t, x − 1) ≥ Vj (t, x − 1) + Vj−1(t, x).
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To do this, we again use a sample path argument. Let A be an optimal admission
control rule for the system (j, t, x − 1) and B be an admission control rule for the
system (j −1, t, x). Let A′ and B ′ be heuristic admission rules applied, respectively,
to the systems (j, t, x) and (j − 1, t, x − 1). Our goal is to exhibit heuristics A′ and
B ′ such that when applied to the systems (j, t, x) and (j −1, t, x −1) they generate
as much revenue as the applying A to (j, t, x − 1) and B to (j − 1, t, x). This will
imply that Vj (t, x) + Vj−1(t, x − 1) ≥ Vj (t, x − 1) + Vj−1(t, x).

Let A′ = A ∪ B and B ′ = A ∩ B and let t ′ be the first time there is a sale under
A ∪ B without a corresponding sale in A, so there is a sale under B but not under
A. If t ′ = 0, then the revenues of the sets of two systems are equal. If t ′ > 0 switch
at that point to the policy A′ = A and B ′ = B. Then sales and revenues under both
sets of two systems are equal up to t ′. At t ′ there are sales for the system (j, t, x)

and (j − 1, t, x − 1) that generate the same revenues. Moreover, the inventories of
the two sets of two systems have the same inventories immediately after the sale at
t ′. Since the policy then switches to A′ = A and B ′ = B then sales and revenues
are the same for the two set of systems over s ∈ [0, t ′). The only system in danger
to run out of inventory is system (j, t, x) under A′ = A ∪ B, but that system has
the same number of sales as the system (j, t, x − 1) under A up to t ′. Therefore the
system (j, t, x) has at least one unit of inventory up to t ′.

To show that ΔVj(t, x) is increasing in t it is enough to show that

Vj (t, x) + Vj (t − 1, x − 1) ≥ Vj (t, x − 1) + Vj (t − 1, x).

To do this we again use a sample path argument. Let A be an optimal admission
control rule for the system (t, x − 1) and B be an optimal admission control rule for
the system (t−1, x) Let A′ and B ′ be heuristic admission rules applied, respectively,
to the systems (t, x) and (t − 1, x − 1). Our goal is to exhibit heuristics A′ and B ′
such that when applied to the systems (t, x) and (t − 1, x − 1) they generate as
much revenue as the applying A to (t, x − 1) and B to (t − 1, x). This will imply
that Vj (t, x) + Vj (t − 1, x − 1) ≥ Vj (t, x − 1) + Vj (t − 1, x). Let A′ = A ∪ B

and B ′ = A ∩ B and let t ′ be the first time there is a sale under A′ without a
corresponding sale in A, so there is a sale under B but not under A. If t ′ = 0 then
the revenues of the sets of two systems are equal. If t ′ > 0 switch at that point to
the policy A′ = A and B ′ = B. Then sales and revenues under both sets of two
systems are equal up to t ′. At t ′, there are sales for the system (t, x) and (t − 1, x)

that generate the same revenues. Moreover, the inventories of the two sets of two
systems have the same inventories immediately after the sale at t ′. Since the policy
then switches to A′ = A and B ′ = B, then sales and revenues are the same for the
two set of systems over s ∈ [0, t ′). The only system in danger to run out of inventory
is system (t − 1, x − 1) under B ′ = A ∪ B, but that system has the same number of
sales as the system (t − 1, x) under B up to t ′. Therefore, the system (t − 1, x − 1)

has at least one unit of inventory up to t ′. ��
Proof of Lemma 1.21 We will first show that aj (t, x) can also be characterized as
aj (t, x) = max{k ≤ j : pk ≥ ΔVk(t − 1, x)}. The result will then follow from
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Lemma 1.20. First notice that if aj (t, x) = k < j then Vi(t, x) = Vk(t, x) for all
i ∈ {k, . . . , j}. Moreover, aj (t, x) = k < j implies that Wk(t, x) > Wk+1(t, x).
Consequently, 0 > Wk+1(t, x) − Wk(t, x) = (pk+1 − ΔVk+1(t − 1, x))λk+1, so
pk+1 < ΔVk+1(t − 1, x). Conversely, if pk ≥ ΔVk(t − 1, x) then Wk(t, x) −
Wk−1(t, x) ≥ (pk −ΔVk(t − 1, x))λk ≥ 0 so Wk(t, x) ≥ Wk−1(t, x). With the new
characterization, we now turn to the monotonicity of aj (t, x) = max{k ≤ j : pk ≥
ΔVk(t − 1, x)}. The monotonicity with respect to j is obvious because it expands
the set over which we are maximizing. To see the monotonicity with respect to t ,
notice that ΔVk(t, x) ≥ ΔVk(t − 1, x) so k is excluded from the set whenever
ΔVk(t − 1, x) ≤ pk < ΔVk(t, x). To see the monotonicity with respect to x, notice
that ΔVk(t − 1, x + 1) ≤ ΔVk(t, x) ≤ pk implies that k contributes positively at
state (t − 1, x + 1) whenever it contributes at (t − 1, x). ��
Proof of Theorem 1.22 The properties of Aj(t, x) follow from the properties of
aj (t, x) established in Lemma 1.21. Note that Tj = {(t, x) : aj (t, x) < j}. From
Lemma 1.21, aj (t, x) < j implies that ai(t, x) < i for all i > j , so Tj ⊆ Ti for
all i > j . This implies that yj (t) is increasing in j for any t ≥ 0. If t ′ > t , then
aj+1(t

′, yj (t)) ≤ aj+1(t, yj (t)) < j + 1, so yj (t
′) ≥ yj (t). Note that yj (t) ≤ yi(t)

for all i > j , then x ≤ yj (t) implies Vi+1(t, x) = Vi(t, x) for all i ≥ j and
therefore Vi(t, x) = Vj (t, x) for all i > j . ��
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