
Chapter 9
Abstract Sufficient Conditions for Large
and Moderate Deviations in the Small
Noise Limit

In this chapter we use the representations derived in Chap. 8 to study large and
moderate deviations for stochastic systems driven by Brownian and/or Poisson noise,
and consider a “small noise” limit, as in Sects. 3.2 and 3.3. We will prove general
abstract large deviation principles, and in later chapters apply these to models in
which the noise enters the system in an additive and independent manner.1 For these
systems, one can view the mapping that takes the noise into the state of the system
as “nearly” continuous, and it is this property that allows a unified and relatively
straightforward treatment. In contrast, for the corresponding discrete time processes
of Chap.4, the noise entered in a possibly nonadditive way, and a more involved
analysiswas required. Ifwe had restricted our attention inChap.4 to recursivemodels
of the form

Xn
i+1 = Xn

i + 1

n
b(Xn

i ) + 1

n
σ(Xn

i )θi , Xn
0 = x0,

with {θi }i∈N an iid sequence (the discrete timeanalogues of themodels in this chapter),
then the analysis of Chap.4 would have been much simpler. If one were to generalize
within the continuous time framework to systems in which the noise enters in a more
complicated manner, as in for example processes with multiple time or space scales
(e.g., [111]), then the mapping from noise to state becomes more complex, as do the
formulation of large deviation results and the methods of proof.

The main results of this chapter are Theorems 9.2 and 9.9 on uniform Laplace
principles for a sequence of measurable functions of a Brownian motion and a PRM.
Theorem 9.2 is well suited for proving large deviation results for small noise sys-
tems, whereas Theorem 9.9 is motivated by applications to moderate deviations. The
proof of Theorem 9.2 is given in Sect. 9.3, and that of Theorem 9.9 is in Sect. 9.4.
Theorems 9.2 and 9.9 are applied in Chap.10 to develop large andmoderate deviation
approximations for certain finite dimensional systems. Infinite dimensional systems

1In our terminology, this includes systems with multiplicative noise, namely settings in which the
noise term is multiplied by a state-dependent coefficient.
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are considered in Chap.11, with the case of reaction–diffusion equations being devel-
oped in some detail, and in Chap.12, where stochastic flows of diffeomorphisms are
considered.

9.1 Definitions and Notation

The noise processes that drive the stochastic dynamical systems of this chapter were
introduced in Chap.8, and we adopt the notation used there. All stochastic processes
are on the time horizon [0, T ], for some T ∈ (0,∞). We recall thatΛ is a symmetric
strictly positive trace class operator on the real separable Hilbert space (H , 〈·, ·〉),
H0

.= Λ1/2H , and W
.= C ([0, T ] : H0). Recall also that for a locally compact

Polish space S , Σ(S ) is the space of all measures ν on (S ,B(S )) satisfying
ν(K ) < ∞ for every compact K ⊂ S .

Throughout this chapter we deal simultaneously with Brownian and Poisson noise
models. Because of this, we slightly modify the notation from Chap.8 to make
associations clear. Given a locally compact Polish spaceX that models the different
types of jumps under the PRM, define XT

.= [0, T ] × X , the augmented space
Y

.= X × R+ and the time-dependent version YT
.= [0, T ] × Y , and canonical

spaces M
.= Σ(XT ), M̄

.= Σ(YT ), V
.= W × M, and V̄

.= W × M̄. Let N̄ and W
be the maps from V̄ to M̄ and V̄ to W such that

N̄ (w,m) = m, W (w,m) = w, for (w,m) ∈ V̄.

Define
F 0

t
.= σ

{
N̄ ((0, s] × A),W (s) : 0 ≤ s ≤ t, A ∈ B(Y )

}
.

Assume ν ∈ Σ(X ), and define ν̄
.= ν × λ∞ and ν̄T

.= λT × ν̄, where λT and λ∞
are Lebesgue measure on [0, T ] and [0,∞), respectively. Let P denote the unique
probability measure on (V̄,B(V̄)) such that under P:

(a) W is a Λ-Wiener process with respect toF 0
t ;

(b) N̄ is an F 0
t -PRM with intensity measure ν̄T ;

(c) for all 0 ≤ s ≤ t < ∞, (N̄ ((s, t] × ·),W (t) − W (s)) is independent of F 0
s .

It follows thatW and N̄ are independent under P [167, Lemma 13.6]. Throughout
this chapter we use {Ft }, the augmentation of the filtration {F 0

t }with all P-null sets
in B(V̄). Recall the collections of controls ¯A W , ¯A W

b , ¯A W
b,n,

¯A N , ¯A N
b , and ¯A N

b,n
introduced in Sect. 8.3, where a subscript b, n means that costs are w.p.1 bounded
by n, a b denotes the union over finite n of such controls, and the overbar indicates
that the filtration used in defining these spaces is {Ft }. We also have the definitions

¯Ab,n
.= ¯A W

b,n × ¯A N
b,n , and ¯Ab

.= ∪n∈N ¯Ab,n . For u = (ψ, ϕ) ∈ ¯Ab, define the costs

LW
T (ψ)

.= 1

2

∫ T

0
‖ψ(s)‖20 ds and LN

T (ϕ)
.=

∫

X T


(ϕ(t, x)) νT (dt × dx) (9.1)
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as in Sect. 8.3, and let L̄T (u)
.= LW

T (ψ) + LN
T (ϕ). The controlled PRM Nϕ is also

defined as in that section.
Let SWn denote the subset of L 2([0, T ] : H0) defined as in (8.1), and recall that

this is a compact space with the weak topology on L 2([0, T ] : H0). For n ∈ N,
define the analogous space

SN
n

.= {
g : XT → [0,∞) : LN

T (g) ≤ n
}
.

A function g ∈ SN
n can be identified with a measure ν

g
T ∈ M according to ν

g
T (A) =∫

A g(s, x) νT (ds × dx), A ∈ B(XT ). Since convergence in M is essentially equiva-
lent toweak convergence on compact subsets, the superlinear growth of 
 implies that{
ν
g
T : g ∈ SN

n

}
is a compact subset of M. The proof of this fact is given in Appendix

A.4.3. We equip SN
n with the topology obtained through this identification, which

makes SN
n a compact space.We then let Sn

.= SWn × SN
n with the usual product topol-

ogy, with respect towhich it is also a compact space. An element u ∈ ¯Ab,n is regarded
as a random variable with values in the compact space Sn . Finally, let S

.= ∪n∈NSn .

9.2 Abstract Sufficient Conditions for LDP and MDP

Recall from Chap.1 that various normalizations or scaling sequences are possible
when one is formulating an LDP. In this section we formulate sufficient conditions
for a Laplace principle to hold for general measurable functions of (

√
εW, εN 1/ε)

and with two different scaling sequences. The first sufficient condition will be used
in Chaps. 10, 11 and 12 to study large deviation principles for small noise stochas-
tic dynamical systems. The second sufficient condition is for a moderate deviation
principle. The condition is applied to finite dimensional models in Chap.10, and for
an example of its use in an infinite dimensional setting we refer to [41]. The results
that we prove in fact give more, namely uniform Laplace principles in the sense of
Definition 1.11. The uniformity is with respect to a parameter z (typically an initial
condition), which takes values in some compact subset of a Polish space Z .

The definition of a uniform Laplace principle was given in Chap.1. The statement
there considered the scale sequence ε = 1/n, and the analogous definition for a
general scale functionκ(ε) is as follows. Let {Iz, z ∈ Z } be a family of rate functions
onX parametrized by z in a Polish spaceZ and assume that this family has compact
level sets on compacts, namely, for each compact subset K ofZ and each M < ∞,
∪z∈K {x ∈ X : Iz(x) ≤ M} is a compact subset of X . Let {X ε} be a collection of
X -valued random variables with distributions that depend on z ∈ Z and denote the
corresponding expectation operator by Ez . The collection {X ε} is said to satisfy the
Laplace principle onX with scale function κ(ε) and rate function Iz , uniformly on
compacts, if for all compact subsets K of Z and all bounded continuous functions
h mapping X into R,
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lim
ε→0

sup
z∈K

∣∣κ(ε) log Ez exp{−κ(ε)−1h(X ε)} − F(z, h)
∣∣ = 0,

where F(z, h)
.= − inf x∈X [h(x) + Iz(x)].

In this chapter it will be convenient to work with a common probability measure
(instead of a collection parametrized by z ∈ Z ) and instead note the dependence on
z in the collection of random variables, i.e., we write X ε

z instead of X
ε.

9.2.1 An Abstract Large Deviation Result

In this section we present a sufficient condition for a uniform Laplace principle with
scale function κ(ε) = ε to hold for measurable functions of (

√
εW, εN 1/ε). Recall

that N 1/ε is the PRM defined through (8.16) with ϕ ≡ 1/ε. It is defined on V̄, takes
values in M, and has an intensity measure that is scaled by 1/ε. Let {G ε}ε>0, be a
family ofmeasurablemaps fromZ × V toU,whereZ andU are somePolish spaces.
Let

{
Z ε
z

}
ε>0,z∈Z be the collection of U-valued random variables on (V̄,B(V̄), P)

defined by
Z ε
z

.= G ε(z,
√

εW, εN 1/ε). (9.2)

We are interested in a uniform large deviation principle for the family
{
Z ε
z

}
as ε → 0.

We recall from Proposition 1.14 that a uniform large deviation principle is implied
by a uniform Laplace principle.

A control u = (ψ, ϕ) ∈ ¯Ab,n will be regarded as a random variable with values
in the compact metric space Sn . The following is a sufficient condition for a large
deviation property. As noted in Sect. 9.1, L̄T (u) = LW

T (ψ) + LN
T (ϕ). Recall also the

notation Wψ(·) = W (·) + ∫ ·
0 ψ(s)ds.

Condition 9.1 There exists a measurable map G 0 : Z × V → U such that the fol-
lowing hold.

(a) For n ∈ N and compact K ⊂ Z , the set

Γn,K
.=

{
G 0

(
z,

∫ ·

0
f (s)ds, νg

T

)
: q = ( f, g) ∈ S, L̄T (q) ≤ n, z ∈ K

}
(9.3)

is a compact subset of U.
(b) For n ∈ N, let uε = (ψε, ϕε) ∈ ¯Ab,n, u = (ψ, ϕ) ∈ ¯Ab,n be such that uε con-

verges in distribution to u as ε → 0. Also, let {zε} ⊂ Z be such that zε → z as
ε → 0. Then

G ε
(
zε,

√
εWψε/

√
ε, εNϕε/ε

)
⇒ G 0

(
z,

∫ ·

0
ψ(s)ds, νϕ

T

)
.

For φ ∈ U and z ∈ Z , define SGz,φ
.= {

( f, g) ∈ S : φ = G 0(z,
∫ ·
0 f (s)ds, νg

T )
}
.

These are the controls that produce the output φ. For z ∈ Z , let Iz : U → [0,∞] be
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defined by
Iz(φ)

.= inf
q=( f,g)∈SGz,φ

L̄T (q). (9.4)

Theorem 9.2 Suppose that G ε and G 0 satisfy Condition 9.1. Suppose also that for
all φ ∈ U, z �→ Iz(φ) is a lower semicontinuous mapping from Z to [0,∞]. Then
for all z ∈ Z , Iz defined in (9.4) is a rate function on U, the family {Iz, z ∈ Z }
of rate functions has compact level sets on compacts, and

{
Z ε
z

}
satisfies a Laplace

principle with scale function ε and rate function Iz, uniformly on compact subsets of
Z .

Remark 9.3 Note that the lower semicontinuity of z �→ Iz(φ) is typically automatic
in the situation in which z is an initial condition for a stochastic process defined by
the mapping G ε, since in this case Iz(φ) < ∞ only when z = φ(0).

The proof ofTheorem9.2 is given inSect. 9.3. Twoexampleswere given inChap.3
to illustrate the role of G ε and the scaling. For convenience, we recall the diffusion
example, and hence take V = C ([0, 1] : R

k), U = C ([0, 1] : R
d), and Z = R

d .

Example 9.4 Suppose b : R
d → R

d and σ : R
d → R

d×k satisfy

‖b(x) − b(y)‖ + ‖σ(x) − σ(y)‖ ≤ C ‖x − y‖

for all x, y ∈ R
d , with C ∈ (0,∞). Let W be a standard k-dimensional Brownian

motion, and for fixed z ∈ R
d and ε > 0, let X ε

z = {
X ε
z (t)

}
0≤t≤1 be the strong solution

of the SDE

dX ε
z (t) = b(X ε

z (t))dt + √
εσ (X ε

z (t))dW (t), X ε
z (0) = z. (9.5)

From the unique pathwise solvability of this SDE (see [172, Definition 5.3.2 and
Corollary 5.3.23]), it follows that for each ε > 0, there is a measurable map G ε :
R

d × C ([0, 1] : R
k) → C ([0, 1] : R

d) such that X ε
z = G ε(z,

√
εW ) is the solution

to (9.5). The corresponding map G 0 can be defined by G 0
(
z,

∫ ·
0 f (s)ds

) = ϕ if for
z ∈ R

d and f ∈ L 2([0, 1] : R
k),

ϕ(t) = z +
∫ t

0
b(ϕ(s))ds +

∫ t

0
σ(ϕ(s)) f (s)ds, t ∈ [0, 1],

and G 0 (z, γ ) ≡ 0 for all other (z, γ ) ∈ R
d × C ([0, 1] : R

d). Along the lines of the
discussion in Chap.3, it is easily checked that Condition 9.1 is valid, and in particular,
part (b) is simply a restatement of the LLN limit X̄ ε

zε ⇒ X̄z , where X̄ ε
zε and X̄z are

the solutions to

d X̄ ε
zε (t) = b(X̄ ε

zε (t))dt + σ(X̄ ε
zε (t))ψε(t)dt + √

εσ (X̄ ε
zε (t))dW (t),
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X̄ ε
zε (0) = zε, and

d X̄z(t) = b(X̄z(t))dt + σ(X̄z(t))ψ(t)dt, X̄z(0) = z.

In Chaps. 10, 11, and 12 we consider other applications of Theorem 9.2.

Remark 9.5 The discussion of Example 9.4 shows that the main additional work
needed to prove a uniform LDP instead of the ordinary LDP is to prove, instead of
the convergence X̄ ε

z ⇒ X̄z , the stronger convergence property X̄ ε
zε ⇒ X̄z whenever

zε → z. However, the proof of this stronger convergence property, at least in most
situations of interest, requires the same analysis as that used for the convergence with
a fixed initial condition. Thus in some uses later of Theorems 9.2 and 9.9 we present
the argument for a fixed initial condition, and leave it to the reader to check that the
same arguments could be used for converging initial conditions and thereby yield
the uniform Laplace principle. Two exceptions are the reaction–diffusion example
of Chap.11 and the serve-the-longest queueing example of Chap.13. For the latter
example, as with many models in queueing, the discrete nature of the state space for
the prelimit models requires initial conditions that depend on the scaling parameter.

9.2.2 An Abstract Moderate Deviation Result

Let {K ε}ε>0 be a family of measurable maps from Z × V to U. Let a : (0,∞) →
(0,∞) be such that as ε → 0,

a(ε) → 0 and κ(ε)
.= ε

a2(ε)
→ 0. (9.6)

For ε > 0 and z ∈ Z , let Y ε
z

.= K ε(z,
√

εW, εN 1/ε). In this section we formulate a
sufficient condition for the collection

{
Y ε
z

}
ε>0 to satisfy a uniform Laplace principle

with scale function κ(ε) and a rate function that is given through a suitable quadratic
form.

While the large and moderate deviation assumptions and arguments are very sim-
ilar when one is considering a diffusionmodel, a significant difference occurs when a
PRMdriving noise is included. This is very similar to the situation encountered in the
discrete time analogue presented in Chap.5. In particular, the Poisson cost must be
replaced by an appropriate quadratic functional in the limit ε → 0, and the dynamics
are also adjusted to make analysis of the LLN limits easier. This is done by center-
ing the controls on ϕ ≡ 1 and rescaling. The following inequalities will be used to
translate bounds on controls ϕε into bounds on this quadratic approximation. Recall
the function 
(r)

.= r log r − r + 1. The following properties can be easily shown.
Part (a) has been used many times already, but is included here for convenience.
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Lemma 9.6 (a) For a, b ∈ (0,∞) and σ ∈ [1,∞), ab ≤ eσa + 1
σ

(b).

(b) For every β > 0, there exist κ1(β), κ̄1(β) ∈ (0,∞) such that κ1(β) and κ̄1(β)

converge to 0 as β → ∞, and for r ≥ 0,

|r − 1| ≤ κ1(β)
(r) if |r − 1| ≥ β, and r ≤ κ̄1(β)
(r) if r ≥ β > 1.

(c) There is a nondecreasing function κ2 : (0,∞) → (0,∞) such that for each
β > 0,

|r − 1|2 ≤ κ2(β)
(r) for |r − 1| ≤ β, r ≥ 0.

(d) There exists κ3 ∈ (0,∞) such that


(r) ≤ κ3|r − 1|2, |
(r) − (r − 1)2/2| ≤ κ3|r − 1|3 for all r ≥ 0.

Recall LN
T (g)

.= ∫
X T


(g(s, y))νT (ds × dy) and LW
T (ψ)

.= 1
2

∫ T
0 ‖ψ(s)‖20 ds. For

ε > 0 and n ∈ N, define the spaces

SN ,ε
n,+

.= {g : XT → R+ such that LN
T (g) ≤ na2(ε)} (9.7)

SN ,ε
n

.= { f : XT → R such that f = (g − 1)/a(ε), with g ∈ SN ,ε
n,+}.

Thus SN ,ε
n are the centered and rescaled versions of the nonnegative functions appear-

ing in SN ,ε
n,+ . The following result is immediate from Lemma 9.6.

Lemma 9.7 Suppose g ∈ SN ,ε
n,+ for some n < ∞ and let f = (g − 1)/a(ε). Then:

(a)
∫

X T

| f (s, y)||1{| f (s,y)|≥β/a(ε)}νT (ds × dy) ≤ na(ε)κ1(β) for all β > 0;

(b)
∫

X T

g(s, y)1{g(s,y)≥β}νT (ds × dy) ≤ na2(ε)κ̄1(β) for all β > 1;

(c)
∫

X T

| f (s, y)|21{| f (s,y)|≤β/a(ε)}νT (ds × dy) ≤ nκ2(β) for all β > 0,

where κ1, κ̄1 and κ2 are as in Lemma 9.6.

Let

U ε
n,+

.=
{
(uW , uN ) ∈ ¯Ab : uW (·, ω) ∈ SWna(ε)2

, uN (·, ·, ω) ∈ SN ,ε
n,+ , P̄-a.s.

}
. (9.8)

Thus by (9.7),U ε
n,+ is the class of controls for both types of noise for which the cost

scales proportionally with a(ε)2. Owing to the moderate deviation scaling, one can
assume without loss that the control appearing in the representation can be restricted
to a class of this form, with n depending on the function F . However, as ε → 0
we will need to use the centered and rescaled analogues, which are related to a
diffusion approximation to the original process. This requires additional notation
and definitions.
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The norm in the Hilbert space L 2(νT ) is denoted by ‖ · ‖N ,2, and the norm in
L 2([0, T ] : H0) by ‖ · ‖W,2. LetL 2 .= L 2([0, T ] : H0) × L 2(νT ) and recall that
PF is the predictable σ -field on [0, T ] × V̄ with the filtration {Ft } on (V̄,B(V̄)).

Given a map K 0 : Z × L 2 → U, z ∈ Z , and η ∈ U, let

SKz,η
.= {q = ( f1, f2) ∈ L 2 : η = K 0(z, q)},

and define Iz for z ∈ Z by

Iz(η)
.= inf

q=( f1, f2)∈SKz,η

[
1

2

(‖ f1‖2W,2 + ‖ f2‖2N ,2

)]
. (9.9)

Here SKz,η identifies the L 2 spaces that lead to the outcome q under the map K 0,
which can be associated with themapK ε linearized about the LLN limit. As always,
we follow the convention that the infimum over an empty set is +∞.

We now introduce a sufficient condition that ensures that Iz is a rate function
for every z ∈ Z , the collection {Iz}z∈Z has compact level sets on compacts, and
the collection {Y ε

z } satisfies a Laplace principle with scale function κ(ε) and rate
function Iz as ε → 0. Let

Ŝn
.= {( f1, f2) ∈ L 2 : ‖ f1‖2W,2 + ‖ f2‖2N ,2 ≤ n}. (9.10)

Condition 9.8 For some measurable map K 0 : Z × L 2 → U, the following two
conditions hold.

(a) For every n ∈ N and compact K ⊂ Z , the set

Γn,K
.=

{
K 0(z, q) : z ∈ K , q ∈ Ŝn

}

is a compact subset of U.
(b) Given n ∈ N and ε > 0, let (ψε, ϕε) ∈ U ε

n,+ [defined in (9.8)]. Let θε =
ψε/a(ε) and ζ ε = (ϕε − 1)/a(ε). Suppose that for some β ∈ (0, 1], there is m ∈ N

such that (θε, ζ ε1{|ζ ε |≤β/a(ε)}) ⇒ (θ, ζ ) in Ŝm. Also, let {zε} ⊂ Z be such that zε → z
as ε → 0. Then

K ε
(
zε,

√
εWψε/

√
ε, εNϕε/ε

)
⇒ K 0(z, θ, ζ ).

Note that from Lemma 9.7, (θε, ζ ε1{|ζ ε |≤β/a(ε)}), as in part (b) of Condition 9.8,
takes values in Ŝm with m = n(1 + κ2(β)). Thus if the condition holds, one can
take m = n(1 + κ2(β)) without loss of generality. The following is the analogue of
Theorem 9.2 for the moderate deviation scaling.

Theorem 9.9 Suppose that K ε and K 0 satisfy Condition 9.8. Suppose also that
for all φ ∈ U, z �→ Iz(φ) is a lower semicontinuous mapping from Z to [0,∞].
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Then for z ∈ Z , Iz defined in (9.9) is a rate function on U, the family {Iz, z ∈ Z }
of rate functions has compact level sets on compacts, and {Y ε

z } satisfies a uniform
Laplace principle with scale function κ(ε) and rate function Iz as ε → 0.

The proof of Theorem 9.9 is in Sect. 9.4. As with Theorem 9.2, the assumption
of lower semicontinuity of z �→ Iz(φ) is often vacuous when z plays the role of an
initial condition (see Remark 9.3).

Example 9.10 Let X ε
z be as in Example 9.4. In addition to the Lipschitz condition

on the coefficients b, σ , assume that b is continuously differentiable. Let X0
z be the

solution of the ODE Ẋ0
z (t) = b(X0

z (t)), X
0
z (0) = z, and let Y ε

z = (X ε
z − X0

z )/a(ε).
Then for each ε > 0, there is a measurable map K ε from R

d × C ([0, 1] : R
k) to

C ([0, 1] : R
d) such that Y ε

z = K ε(z,
√

εW ). The corresponding map

K 0 : R
d × L 2([0, 1] : R

k) → C ([0, 1] : R
d)

is defined by K 0(z, f ) = ηz, f , where ηz, f is the unique solution of the equation

ηz, f (t) =
∫ t

0
[Db(X0

z (s))](ηz, f (s))ds +
∫ t

0
σ(X0

z (s)) f (s)ds,

where Db(x) is the matrix (∂bi (x)/∂x j )i j . In Chap.10, under the assumption that
Db is Lipschitz continuous, it will be shown using Theorem 9.9 that for each fixed
z, Y ε

z satisfies a Laplace principle with scale function κ(ε). The proof of the uniform
Laplace principle can be given similarly by considering arbitrary zε → z as ε → 0.
This result can be viewed as a moderate deviation principle for the diffusion process
X ε
z . Chapter 10 will treat the more general setting of d-dimensional jump-diffusions,

andwe refer the reader to [41] for analogous results in an infinite dimensional setting.

9.3 Proof of the Large Deviation Principle

In this section we prove Theorem 9.2. We first argue that for all compact K ⊂ Z
and each M < ∞,

ΛM,K
.= ∪z∈K {φ ∈ U : Iz(φ) ≤ M} (9.11)

is a compact subset of U. Note that this will show that for each z ∈ Z , Iz is a
rate function and the collection {Iz, z ∈ Z } has compact level sets on compacts.
To establish this, we will show that ΛM,K equals ∩δ∈(0,1)ΓM+δ,K , where ΓM,K is as
in (9.3). In view of part (a) of Condition 9.1, the compactness of ΛM,K will then
follow. Let φ ∈ ΛM,K . Then there exists z ∈ K such that Iz(φ) ≤ M . We can now
find, for each δ ∈ (0, 1), qδ = ( fδ, gδ) ∈ SGz,φ , i.e., φ = G 0(z,

∫ ·
0 fδ(s)ds, ν

gδ

T ), such
that L̄T (qδ) ≤ M + δ. In particular, φ ∈ ΓM+δ,K . Since δ ∈ (0, 1) is arbitrary, we
have ΛM,K ⊂ ∩δ∈(0,1)ΓM+δ,K . Conversely, suppose φ ∈ ΓM+δ,K for all δ ∈ (0, 1).
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Then for each δ ∈ (0, 1), there exists zδ ∈ K , qδ = ( fδ, gδ) ∈ S, L̄T (qδ) ≤ M + δ,
such that φ = G 0(zδ,

∫ ·
0 fδ(s)ds, ν

gδ

T ). In particular, we have

inf
z∈K Iz(φ) ≤ Izδ

(φ) ≤ L̄T (qδ) ≤ M + δ.

Sending δ → 0 gives inf z∈K Iz(φ) ≤ M . Since themap z �→ Iz(φ) is lower semicon-
tinuous, φ ∈ ΛM,K , and the inclusion ∩δ∈(0,1)ΓM+δ,K ⊂ ΛM,K follows. This proves
the compactness of ΛM,K and finishes the first part of the theorem.

We next prove the second statement in the theorem. Fix z ∈ Z and let {zε}ε>0 ⊂
Z be such that zε → z as ε → 0. Fix F ∈ Cb(U). In view of Proposition 1.12, it
suffices to prove the Laplace upper bound

lim sup
ε→0

ε log E exp

{
−1

ε
F(Z ε

zε )

}
≤ − inf

φ∈U
[Iz(φ) + F(φ)] (9.12)

and lower bound

lim inf
ε→0

ε log E exp

{
−1

ε
F(Z ε

zε )

}
≥ − inf

φ∈U
[Iz(φ) + F(φ)]. (9.13)

Proof of the Laplace upper bound. Fix δ > 0 and recall from Sect. 8.3 that Wψ

denotes W + ∫ ·
0ψ(s)ds. Using Theorem 8.19 and the definition (9.2) of Z ε

zε , there
existsM < ∞ such that for each ε ∈ (0, 1), one can find uε = (ψε, ϕε) ∈ ¯Ab,M with

− ε log E exp

{
−1

ε
F(Z ε

zε )

}

= −ε log E exp

{
−1

ε
F ◦ G ε(zε,

√
εW, εN 1/ε)

}

≥ E
[
L̄T (uε) + F ◦ G ε

(
zε,

√
εWψε/

√
ε, εNϕε/ε

)]
− δ.

Using the compactness of SM , we can find a subsequence {εk} along which uεk con-
verges in distribution to some u=(ψ, ϕ) that takes values in SM a.s. By a standard sub-
sequential argument, it is enough todemonstrate the lowerbound for this subsequence,
which for simplicity we label as ε. From part (b) of Condition 9.1, it follows that

lim inf
ε→0

E
[
L̄T (uε) + F ◦ G ε

(
zε,

√
εWψε/

√
ε, εNϕε/ε

)]

≥ E

[
L̄T (u) + F ◦ G 0

(
z,

∫ ·

0
ψ(s)ds, νϕ

T

)]

≥ inf
{(φ,q)∈U×SM :q∈SGz,φ}

[
L̄T (q) + F(φ)

]

= inf
φ∈U

[Iz(φ) + F(φ)],
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where the first inequality is a consequence of Fatou’s lemma and the lower semicon-
tinuity of q �→ L̄T (q) on SM , and the second inequality follows from the definition
of SGz,φ , and the equality is due to the definition of Iz(φ) in (9.4). Since δ > 0 is
arbitrary, this completes the proof of the upper bound (9.12). �
Proof of the Laplace lower bound. We need to prove the inequality in (9.13).
Without loss of generalitywe can assume that infφ∈U[Iz(φ) + F(φ)] < ∞. Let δ > 0
be arbitrary, and let φ0 ∈ U be such that

Iz(φ0) + F(φ0) ≤ inf
φ∈U

[Iz(φ) + F(φ)] + δ

2
. (9.14)

Choose q0 = ( f0, g0) ∈ SGz,φ0
such that

L̄T (q0) ≤ Iz(φ0) + δ

2
. (9.15)

Note that φ0 = G 0
(
z,

∫ ·
0 f0(s)ds, ν

g0
T

)
. Using the representation in Theorem 8.19,

we obtain

lim sup
ε→0

−ε log E exp

{
−1

ε
F(Z ε

zε )

}

= lim sup
ε→0

inf
u=(ψ,ϕ)∈ ¯A

E
[
L̄T (u) + F ◦ G ε

(
zε,

√
εWψ/

√
ε, εNϕ/ε

)]

≤ lim sup
ε→0

E
[
L̄T (q0) + F ◦ G ε

(
zε,

√
εW f0/

√
ε, εNg0/ε

)]

= L̄T (q0) + lim sup
ε→0

E
[
F ◦ G ε

(
zε,

√
εW f0/

√
ε, εNg0/ε

)]
.

By part (b) of Condition 9.1, we have

lim
ε→0

E
[
F ◦ G ε

(
zε,

√
εW f0/

√
ε, εNg0/ε

)]
= F ◦ G 0

(
z,

∫ ·

0
f0(s)ds, ν

g0
T

)

= F(φ0).

In view of (9.14) and (9.15), the left side of (9.13) can be at most infφ∈U[Iz(φ) +
F(φ)] + δ. Since δ is arbitrary, the proof of the Laplace lower bound is complete. �

9.4 Proof of the Moderate Deviation Principle

In this section we prove Theorem 9.9. In order to show that Iz defined in (9.9) is a
rate function on U and the family {Iz, z ∈ Z } of rate functions has compact level
sets on compacts, we need to show that for every compact K ⊂ Z and M < ∞,
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the set ΛM,K defined in (9.11), but with Iz as in (9.9), is compact. The proof of this
property is exactly the same as that in the proof of Theorem 9.2, except we make use
of part (a) of Condition 9.8 instead of the corresponding part of Condition 9.1. We
omit the details.

We next prove the second statement in the theorem. Fix z ∈ Z and let {zε}ε>0 ⊂
Z be such that zε → z as ε → 0. Fix F ∈ Cb(U). It suffices to prove the Laplace
upper and lower bounds:

lim sup
ε→0

κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}
≤ − inf

φ∈U
[Iz(φ) + F(φ)], (9.16)

lim inf
ε→0

κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}
≥ − inf

φ∈U
[Iz(φ) + F(φ)]. (9.17)

Proof of the Laplace upper bound. Since Y ε,zε .= K ε(zε,
√

εW, εN ε−1
), Theorem

8.19 implies

− κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}
(9.18)

= inf
u=(ψ,ϕ)∈ ¯A b

E

[
1

a2(ε)
L̄T (u) + F ◦ K ε

(
zε,

√
εWψ/

√
ε, εNϕ/ε

)]
.

For later use, recall that by Theorem 8.3, ¯Ab in the representation can be replaced
by ¯A . Choose ũε = (ψ̃ε, ϕ̃ε) ∈ ¯Ab such that

− κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}
+ ε (9.19)

≥ E

[
1

a2(ε)

[
LW
T (ψ̃ε) + LN

T (ϕ̃ε)
]

+ F ◦ K ε
(
zε,

√
εW ψ̃ε/

√
ε, εN ϕ̃ε/ε

)]
.

Note that for ε ∈ (0, 1),

1

a2(ε)
E

[
LW
T (ψ̃ε) + LN

T (ϕ̃ε)
]

≤ M̃
.= (2‖F‖∞ + 1).

We would like to argue as in Theorem 8.4 that one can consider controls that are in
a certain sense bounded, but in this case the bound should depend on ε. Fix δ > 0
and define

τ ε .= inf
{
t ∈ [0, T ] : LW

t (ψ̃ε) ≥ a2(ε)2M or LN
t (ϕ̃ε) ≥ a2(ε)2M

}
∧ T,

where M
.= M̃‖F‖∞/δ. Let

ϕε(s, y)
.= ϕ̃ε(y, s)1{s≤τ ε} + 1{s>τε}, ψε(s)

.= ψ̃ε(s)1{s≤τ ε}
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for (s, y) ∈ XT . Then uε .= (ψε, ϕε) ∈ ¯Ab,

LN
T (ϕε) ≤ a2(ε)2M, LW

T (ψε) ≤ a2(ε)2M,

and

P{ϕε �= ϕ̃ε or ψε �= ψ̃ε} ≤ 1

a2(ε)2M
E

[
LW
T (ψ̃ε) + LN

T (ϕ̃ε)
]

≤ δ

2‖F‖∞
.

For (s, y) ∈ XT , define the rescaled and (for ϕε) centered controls

ζ ε(s, y)
.= ϕε(s, y) − 1

a(ε)
, θε(s)

.= ψε(s)

a(ε)
.

Fix any β ∈ (0, 1]. Applying part (d) of Lemma 9.6 yields

E

[
1

a2(ε)

∫

X T


(ϕ̃ε)dνT

]
≥ E

[
1

a2(ε)

∫

X T


(ϕε)1{|ζ ε |≤β/a(ε)}dνT

]

≥ E

[∫

X T

(
1

2
(ζ ε)2 − κ3a(ε)|ζ ε|3

)
1{|ζ ε |≤β/a(ε)}dνT

]

≥
(
1

2
− κ3β

)
E

[∫

X T

(ζ ε)21{|ζ ε |≤β/a(ε)}dνT

]
. (9.20)

Also, from the definition of τ ε, it follows that

E
[
F ◦ K ε

(
zε,

√
εW ψ̃ε/

√
ε, εN ϕ̃ε/ε

)
− F ◦ K ε

(
zε,

√
εWψε/

√
ε, εNϕε/ε

)]

≤ 2‖F‖∞P{ϕε �= ϕ̃ε or ψε �= ψ̃ε}
≤ δ.

The definition of τ ε implies ϕε ∈ SN ,ε
2M,+, which was defined in (9.7), and thus part (c)

of Lemma 9.7 implies an upper bound of 2Mκ2(β) on the expected value in (9.20).
Using the last two displays, (9.19), and κ2(1) ≥ κ2(β), we have

− κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}

≥ E

[
1

2

∫

X T

(ζ ε)21{|ζ ε |≤β/a(ε)}dνT + LW
T (θε)

]
(9.21)

+ E
[
F ◦ K ε

(
zε,

√
εWψε/

√
ε, εNϕε/ε

)]
− δ − ε − 2βκ3Mκ2(1).

Recall Ŝn defined in (9.10), and note that {θε, ζ ε1{|ζ ε |≤β/a(ε)}} is a sequence in the
compact set ŜK for sufficiently large but finite K , and is therefore automatically
tight. Let (θ, ζ ) be a limit point along a subsequence that we index once more by
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ε. By a standard argument by contradiction, it suffices to prove (9.16) along this
subsequence. Using part (b) of Condition 9.8, we have that along this subsequence,

K ε
(
zε,

√
εWψε/

√
ε, εNϕε/ε

)
⇒ K 0(z, θ, ζ )

.= η.

Hence taking limits in (9.21) along this subsequence yields

lim inf
ε→0

−κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}

≥ E

[
1

2
(‖θ‖2W,2 + ‖ζ‖2N ,2) + F(η)

]
− δ − βκ3Mκ2(1)

≥ E
[
Iz(η) + F(η)

] − δ − βκ3Mκ2(1)

≥ inf
η∈U

[
Iz(η) + F(η)

] − δ − βκ3κ2(1)
M̃‖F‖∞

δ
,

where the first line is from Fatou’s lemma, and the second uses the definition of Iz
in (9.9). Sending first β to 0 and then δ to 0 gives (9.16). �
Proof of the Laplace lower bound. For δ > 0, there exists η ∈ U such that

Iz(η) + F(η) ≤ inf
η∈U

[Iz(η) + F(η)] + δ/2. (9.22)

Choose (θ, ζ ) ∈ SKz,η such that

1

2
(‖θ‖2W,2 + ‖ζ‖2N ,2) ≤ Iz(η) + δ/2. (9.23)

For β ∈ (0, 1], define

ζ ε .= ζ1{|ζ |≤β/a(ε)}, ϕε .= 1 + a(ε)ζ ε, ψε .= a(ε)θ.

For every ε > 0, using ζ ε = (ϕε − 1)/a(ε) and part (d) of Lemma 9.6, we have

∫

X T


(ϕε)dνT ≤ κ3

∫

X T

(ϕε − 1)2dνT = a2(ε)κ3

∫

X T

|ζ ε|2dνT ≤ a2(ε)M,

where M
.= κ3

∫
X T

|ζ |2dνT . Thus ϕε ∈ U ε
M,+, with this space defined in (9.8), for

all ε > 0. Also
ζ ε1{|ζ ε |≤β/a(ε)} = ζ1{|ζ |≤β/a(ε)},

which converges to ζ in L2(νT ) as ε → 0. Thus by part (b) of Condition 9.8,

K ε
(
zε,

√
εWψε/

√
ε, εNϕε/ε

)
⇒ K 0(z, θ, ζ ) = η. (9.24)
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Using part (d) of Lemma 9.6 and κ(ε)ε−1 = 1/a(ε)2, we obtain

κ(ε)ε−1LN
T (ϕε) ≤ 1

2

∫

X T

|ζ ε|2 dνT + κ3

∫

X T

a(ε)|ζ ε|3 dνT

≤ 1

2
(1 + 2κ3β)

∫

X T

|ζ |2 dνT .

For ϕε as defined in terms of ζ , there is no guarantee that ϕε ∈ ¯A N
b . However, as

noted previously, the variational representation (9.18) holds with ¯Ab replaced by ¯A .
Hence by the last display,

− κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}

≤ 1

a2(ε)

[
LW
T (ψε) + LN

T (ϕε)
] + E

[
F ◦ K ε

(
zε,

√
εWψε/

√
ε, εNϕε/ε

)]

≤ 1

2
(‖θ‖2W,2 + ‖ζ‖2N ,2) + E

[
F ◦ K ε

(
zε,

√
εWψε/

√
ε, εNϕε/ε

)]

+ κ3β

∫

X T

|ζ |2 dνT .

Taking the limit as ε → 0 and using (9.24) yields

lim sup
ε→0

−κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}

≤ 1

2
(‖θ‖2W,2 + ‖ζ‖2N ,2) + F(η) + κ3β

∫
|ζ |2dνT .

Finally, sending β → 0 gives

lim sup
ε→0

−κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}
≤ 1

2
(‖θ‖2W,2 + ‖ζ‖2N ,2) + F(η)

≤ Iz(η) + F(η) + δ/2

≤ inf
η∈U

[Iz(η) + F(η)] + δ,

where the second inequality is from (9.23) and the last inequality follows from (9.22).
Since δ > 0 is arbitrary, this completes the proof of (9.17) and consequently the proof
of Theorem 9.9. �

9.5 Notes

The sufficient condition for a Laplace principle given in Theorem 9.2, in the case that
there is no Poisson noise, was established in [39], and the general case was treated in
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[45], where its application to the study of a small noise LDP for finite dimensional
jump-diffusions was studied as well. The sufficient condition given in Theorem 9.9
for the case inwhich the driving noise does not have aGaussian component was given
in [41]. This work also gave applications of Theorem 9.9 to the study of moderate
deviation principles for finite and infinite dimensional stochastic dynamical systems
driven by Poisson random measures.

The sufficient conditions given in this chapter have found applications in many
different problems. Some of the works that have used the sufficient condition for
Brownian motion functional given in [39] include [20–22, 37, 43, 44, 63, 64, 71,
91, 142, 143, 156, 191, 192, 196, 203, 207, 212–216, 218, 236, 244, 250, 254–256,
263, 268, 270]. Sufficient conditions given in this chapter for functionals of PRM
and BM have been used in [12, 38, 47, 55, 70, 75, 251, 253, 258, 262, 264, 267,
272]. MDP sufficient conditions have found applications in [48, 57, 186–188, 194,
257, 265, 273].
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