
Chapter 8
Representations for Continuous Time
Processes

In previous chapters we developed and applied representations for the large devia-
tion analysis of discrete time processes. The derivation of useful representations in
this setting follows from a straightforward application of the chain rule. The only
significant issue is to decide on the ordering used for the underlying “driving noises”
when the chain rule is applied, since controls are allowed to depend on the “past,”
which is determined by this ordering.

In continuous time, the situation is both simpler and more complex. It is simpler
in that most models in continuous time can be conveniently represented as systems
driven by an exogenous noise process of either Gaussian or Poisson type. As we
will see, useful representations hold in great generality for both types of noise. It is
also more complex, in that the chain rule cannot be directly applied, and one must
approximate and justify suitable limits to establish the representations. In the end,
the representations take a form that is analogous to their discrete time counterparts,
and we consider controls that are allowed to depend on the past, i.e., controls that
are predictable with respect to a suitable filtration.1

This chapter consists of three sections, which present the representations for func-
tionals of infinite dimensional Brownian motion, functionals of a Poisson random
measure, and the combined case. The proofs given here differ from the first versions
that appeared in [39, 45]. In particular, while the details are different, the approach
to both models is very much the same.

1For special cases, one can consider the infimum of a smaller class (e.g., feedback controls), a result
that is sometimes of interest.
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212 8 Representations for Continuous Time Processes

8.1 Representation for Infinite Dimensional Brownian
Motion

The starting point of the proof of the representation is of course (2.1). Hence we will
need to understand the form of dγ /dθ when θ is the measure induced by an infinite
dimensional Brownian motion. Several formulations of infinite dimensional Brow-
nian motion are commonly used. We focus for now on the formulation as a Hilbert
space valued Wiener process,2 and comment in Chap. 11 on how representations for
other formulations follow easily from this one.

8.1.1 The Representation

Let (Ω,F , P) be a probability space with a filtration {Ft }0≤t≤T satisfying the usual
conditions.We beginwith the definition of aHilbert space valuedWiener process. Let
(H , 〈·, ·〉) be a real separable Hilbert space. Let Λ be a symmetric strictly positive
trace class operator on H (see Appendix E for definitions and terminology related
to Hilbert spaces). This means thatΛ is a bounded linear operator such that if {ei }i∈N
is any complete orthonormal sequence (CONS) inH , then for all i, j ∈ N, we have〈
ei ,Λe j

〉 = 〈
e j ,Λei

〉
, 〈ei ,Λei 〉 > 0, and

∑∞
i=1 〈ei ,Λei 〉 < ∞.

Definition 8.1 AnH -valued continuous stochastic process {W (t)}0≤t≤T is called a
Λ-Wiener processwith respect to {Ft }0≤t≤T if for everynonzeroh ∈ H , 〈Λh, h〉−1/2

〈W (t), h〉 is a standard one-dimensional Ft -Wiener process (see Sect. 3.2).

Define H0
.= Λ1/2H . Then H0 is a Hilbert space with the inner product

〈h, k〉0 .= 〈
Λ−1/2h,Λ−1/2k

〉

for h, k ∈ H0. Denote the norms in H and H0 by ‖ · ‖ and ‖ · ‖0 respectively.
Since Λ is trace class, the identity mapping fromH0 toH is Hilbert–Schmidt. This
Hilbert–Schmidt embedding of H0 in H will play a central role in many of the
arguments to follow. An important consequence of the embedding is that if vn is a
sequence in H0 such that vn → 0 weakly in H0, then ‖vn‖ → 0. For an exposition
of stochastic calculus with respect to anH valued Wiener process, we refer to [69].
Other useful references are [197, 198, 252].

We first present and prove a representation that uses controls that are predictable
with respect to the filtration generated by theWiener process, and later, in Sect. 8.1.5,
we extend this representation to controls that are predictable with respect to {Ft }.
Let {Gt }0≤t≤T be the filtration generated by {W (t)}0≤t≤T augmented with all P-null
sets inF .

2We will use the terms “Brownian motion” and “Wiener process” interchangeably.
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Definition 8.2 Given 0 ≤ a < b ≤ T and a bounded Fa-measurable real random
variable ξ , let g : [0, T ] × Ω → Rbe defined by g(s, ω)

.= ξ(ω)1(a,b](s), s ∈ [0, T ],
ω ∈ Ω . Denote by PF the σ -field on [0, T ] × Ω generated by the collection of
all such g. This σ -field is called the Ft -predictable σ -field. For a Polish space E ,
a PF/B(E )-measurable map v : [0, T ] × Ω → E is referred to as an E -valued
Ft -predictable process.

Define ¯A to be the class of H0-valued Ft -predictable processes v that satisfy

P

{∫ T

0
‖v(s)‖20ds < ∞

}
= 1,

and let A denote the subset of those that are predictable with respect to {Gt }0≤t≤T .
We refer to [69, Chap. 4] for the definition of stochastic integrals of elements of ¯A
with respect to W . Let L 2([0, T ] : H0) denote the Hilbert space of all measurable
maps u : [0, T ] → H0 for which

∫
[0,T ] ‖u(s)‖20ds is finite together with the usual

inner product, and for M ∈ N, define

SM
.=

{
u ∈ L 2([0, T ] : H0) :

∫ T

0
‖u(s)‖20ds ≤ M

}
. (8.1)

We endow SM with the weak topology, which makes it a compact Polish space (cf.
[93]). In particular, a sequence {vn} ⊂ SM converges to v ∈ SM if

∫ T
0 〈vn(s), h(s)〉0ds

converges to
∫ T
0 〈v(s), h(s)〉0ds for all h ∈ L 2([0, T ] : H0). Finally, let

Ab,M
.= {v ∈ A : v(ω) ∈ SM θ -a.s.}, Ab

.= ∪M∈NAb,M . (8.2)

Let ¯Ab,M [resp. ¯Ab] be defined exactly asAb,M [resp.Ab], except that {Gt } is replaced
by {Ft }.

We next state the main result of this section. Let E denote expectation with
respect to P . Though in the theorem we take G to be a bounded function, it can be
shown that the representation holds if G is bounded from above. The fact that the
representation also holdswith respect to the smaller classAb ⊂ A is quite convenient
in applications, since these are in some sense very well behaved processes.

Theorem 8.3 Let W be a Λ-Wiener process and let G be a bounded Borel measur-
able function mapping C ([0, T ] : H ) into R. Then

− log E exp{−G(W )} = inf
v∈R

E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(
W +

∫ ·

0
v(s)ds

)]
,

(8.3)
where R can be either Ab,A , ¯Ab or ¯A .

Using (8.3), one can prove the following in an identical manner as Theorem 3.17,
and we therefore omit the proof.
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Theorem 8.4 Let W and G be as in Theorem 8.3 and let δ > 0. Then there exists
M < ∞ depending on ‖G‖∞ and δ such that for all ε ∈ (0, 1),

− ε log E exp

{
−1

ε
G(

√
εW )

}

≥ inf
v∈A b,M

E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(√
εW +

∫ ·

0
v(s)ds

)]
− δ.

The rest of Sect. 8.1 is devoted to the proof of Theorem 8.3. After developing the
needed preliminary results, the proof forAb andA is given in Sects. 8.1.3 and 8.1.4,
and the extension to ¯Ab and ¯A is completed in Sect. 8.1.5.

8.1.2 Preparatory Results

In this section we present several theorems and approximations that will be used in
the proof of the representation. For use later on, some results are stated for the more
general class of processes ¯A . The following result follows from Theorem 10.14
of [69].

Theorem 8.5 (Girsanov) Let ψ ∈ ¯A be such that

E

[
exp

{∫ T

0
〈ψ(s), dW (s)〉0 − 1

2

∫ T

0
‖ψ(s)‖20ds

}]
= 1.

Then the process

W̃ (t)
.= W (t) −

∫ t

0
ψ(s)ds,

t ∈ [0, T ], is a Λ-Wiener process with respect to {Ft } on (Ω,F , Q), where Q is
the probability measure defined by

dQ

dP
= exp

{∫ T

0
〈ψ(s), dW (s)〉0 − 1

2

∫ T

0
‖ψ(s)‖20ds

}
.

We record a result that will be used in proving tightness for a sequence of Hilbert
space valued processes. Recall the topology on SN introduced below (8.1).

Lemma 8.6 Let {vn}n∈N be a sequence of elements of ¯A . Assume that there is
M < ∞ such that

sup
n∈N

∫ T

0
‖vn(s)‖20ds ≤ M

a.s. Suppose further that {vn} converges in distribution to v as SM-valued random
variables. Then

∫ ·
0 v

n(s)ds converges in distribution to
∫ ·
0 v(s)ds in C ([0, T ] : H ).
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Proof It suffices to show that the map from SM to C ([0, T ] : H ) defined by u 
→∫ ·
0 u(s)ds is continuous. Let {φn} be a sequence in SM that converges toφ. Let {e j } j∈N
be a CONS of eigenvectors of Λ with corresponding eigenvalues {λ j } j∈N. Then for
every t ∈ [0, T ] and i ∈ N,

∫ t

0
〈φn(s) − φ(s), ei 〉ds = λi

∫ t

0
〈φn(s) − φ(s), ei 〉0ds,

and by assumption, the right side converges to 0 as n → ∞. Also,

∥∥∥∥

∫ t

0
[φn(s) − φ(s)]ds

∥∥∥∥

2

=
∞∑

i=1

(∫ t

0
〈φn(s) − φ(s), ei 〉ds

)2

.

By Hölder’s inequality and Λ1/2ei = λi ei ,

(∫ t

0
〈φn(s) − φ(s), ei 〉ds

)2

≤ λi T
∫ T

0
‖Λ−1/2[φn(s) − φ(s)]‖2ds

= λi T
∫ T

0
‖φn(s) − φ(s)‖20ds

≤ 4MTλi .

Since
∑∞

i=1 λi < ∞, it follows from the dominated convergence theorem that for
each t ∈ [0, T ], ∫ t

0 φn(s)ds converges to
∫ t
0 φ(s)ds in H . To prove that this con-

vergence is uniform on [0, T ], we need an equicontinuity estimate. This follows by
noting that for 0 ≤ s ≤ t ≤ T ,

∥∥∥∥

∫ t

0
φn(r)dr −

∫ s

0
φn(r)dr

∥∥∥∥ ≤ √
t − s

(∫ T

0
‖φn(s)‖2ds

)1/2

≤ √
t − s ‖Λ‖1/2

(∫ T

0
‖Λ−1/2φn(s)‖2ds

)1/2

= √
t − s ‖Λ‖1/2

(∫ T

0
‖φn(s)‖20ds

)1/2

≤ √
t − s ‖Λ‖1/2 M1/2,

where ‖Λ‖ .= suph∈H :‖h‖=1 ‖Λh‖ is the operator norm. �

Before turning to the proof of Theorem 8.3, we state one last result. A process
v ∈ A is called simple if there exist k ∈ N, 0 = t1 ≤ · · · ≤ tk+1 = T and N ∈ N

such that

v(s, ω)
.=

k∑

j=1

X j (ω)1(t j ,t j+1](s),
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where the X j areH0-valuedGt j -measurable randomvariables satisfying‖X j (ω)‖0 ≤
N for all j ∈ {1, . . . , k}. Let As denote the collection of simple processes, and note
that As ⊂ Ab. Given any v ∈ As , it is straightforward that

E

[
exp

{∫ T

0
〈v(s), dW (s)〉0 − 1

2

∫ T

0
‖v(s)‖20ds

}]
= 1,

and thus by Theorem 8.5, the process

Wv(t)
.= W (t) −

∫ t

0
v(s)ds,

t ∈ [0, T ], is a Λ-Wiener process with respect to {Gt } on (Ω,F , Qv), where Qv is
the probability measure defined by

dQv

dP
= exp

{∫ T

0
〈v(s), dW (s)〉0 − 1

2

∫ T

0
‖v(s)‖20ds

}
.

Let Ev denote integration with respect to Qv.

Lemma 8.7 For every v ∈ As , there is ṽ ∈ As such that (Wṽ, ṽ) has the same dis-
tribution under Qṽ as (W, v) does under P.

Proof Let v be simple and of the form

v(s, ω)
.=

k∑

j=1

X j (ω)1(t j ,t j+1](s),

where k ∈ N, 0 = t1 ≤ · · · ≤ tk+1 = T and X j are H0-valued Gt j -measurable ran-
dom variables satisfying ‖X j (ω)‖0 ≤ N for all j ∈ {0, . . . , k} and some N ∈ N.
New random variables X̄ j , j ∈ {0, . . . , k}, are defined as follows. Since X1(ω) is G0-
measurable, there exists measurable G1 : H0 → H0 such that X1(ω) =
G1(W (0, ω)) a.s. Let X̄1

.= G1(W (0)) = X1. For j ∈ {2, . . . , k}, there are measur-
able G j : C ([0, t j ] : H0) → H0 such that X j (ω) = G j (W (t, ω), 0 ≤ t ≤ t j ) a.s.
We can also consider G j as a mapping C ([0, T ] : H0) → H0, which depends on
w ∈ C ([0, T ] : H0) only though the restriction to [0, t j ], and we do so with the
notation G j (w). We then recursively define

X̄ j
.= G j

(

W (·) −
∫ ·

0

j−1∑

i=1

X̄i1(ti ,ti+1](s)ds

)

.

By construction, each X̄ j is Gt j -measurable and satisfies ‖X̄ j (ω)‖0 ≤ N for a.e. ω.
Now let
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ṽ(s, ω)
.=

k∑

j=1

X̄ j (ω)1(t j ,t j+1](s),

and note that

ṽ(s)
.=

k∑

j=1

G j

(
W (·) −

∫ ·

0
ṽ(s)ds

)
1(t j ,t j+1](s). (8.4)

By Theorem 8.5, W (t) − ∫ t
0 ṽ(s)ds is a Λ-Wiener process under Qṽ. Since ṽ has

the form given in (8.4), it follows that (Wṽ, ṽ) has the same distribution under Qṽ as
(W, v) does under P . �

8.1.3 Proof of the Upper Bound in the Representation

In this subsection we prove

− log E exp{−G(W )} ≤ inf
v∈A

E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(
W +

∫ ·

0
v(s)ds

)]
.

Note that this automatically gives the corresponding bound for the smaller class Ab

in (8.3). The proof is in two steps.

Step 1. Simple v. According to (2.1), for every probability measure Q on (Ω,F ),

− log E exp{−G(W )} ≤ R(Q ‖P ) +
∫

Ω

G(W )dQ. (8.5)

If v ∈ As , then by Lemma 8.7 there is ṽ ∈ As such that the distribution of (W, v)
under P is the same as that of (Wṽ, ṽ) under Qṽ. Since ṽ is bounded, it follows from
Theorem 8.5 that

R(Qṽ ‖P ) = Eṽ

[∫ T

0
〈ṽ(s), dW (s)〉0 − 1

2

∫ T

0
‖ṽ(s)‖20ds

]

= Eṽ

[∫ T

0

〈
ṽ(s), dW ṽ(s)

〉

0
+ 1

2

∫ T

0
‖ṽ(s)‖20ds

]

= Eṽ

[
1

2

∫ T

0
‖ṽ(s)‖20ds

]

= E

[
1

2

∫ T

0
‖v(s)‖20ds

]
.

Taking Q = Qṽ in (8.5) together with EṽG(W ) = EṽG(Wṽ + ∫ ·
0 ṽ(s)ds) =

EG(W + ∫ ·
0 v(s)ds) gives



218 8 Representations for Continuous Time Processes

− log E exp{−G(W )} ≤ E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(
W +

∫ ·

0
v(s)ds

)]
. (8.6)

Step 2. General v. Next consider v ∈ A .We can assumewithout loss of generality
that E[∫ T

0 ‖v(s)‖20ds] < ∞. Then (see, for example, [159, Lemma II.1.1]) there is a
sequence {vn} ⊂ As such that

E
∫ T

0
‖vn(s) − v(s)‖20ds → 0. (8.7)

In particular, N
.= supn∈N E

∫ T
0 ‖vn(s)‖20ds < ∞. From Step 1, for all n,

− log E exp{−G(W )} ≤ E

[
1

2

∫ T

0
‖vn(s)‖20ds + G

(
W +

∫ ·

0
vn(s)ds

)]
. (8.8)

We would like to apply Lemma 2.5, where μn and θ are the distributions induced
by W + ∫ ·

0 vn(s)ds and W under P , respectively. Since μn is also the distribution
induced by W under Qṽn , part (f) of Lemma 2.4 implies

R(μn ‖θ ) ≤ R(Qṽn ‖P ) = Eṽn

[
1

2

∫ T

0
‖ṽn‖20ds

]
= E

[
1

2

∫ T

0
‖vn‖20ds

]
.

Thus supn R(μn ‖θ ) ≤ N/2. From (8.7), it follows that

E sup
0≤t≤T

∥∥∥∥

∫ t

0
vn(s)ds −

∫ t

0
v(s)ds

∥∥∥∥

2

≤ T ‖Λ‖2opE
∫ T

0
‖vn(s) − v(s)‖20ds → 0,

and thereforeμn convergesweakly toμ,whereμ is the distribution ofW + ∫ ·
0 v(s)ds.

Since G is bounded and measurable, we now obtain (8.6) using Lemma 2.5 and
sending n → ∞ in (8.8). �

8.1.4 Proof of the Lower Bound in the Representation

In this subsection we prove

− log E exp{−G(W )} ≥ inf
v∈A b

E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(
W +

∫ ·

0
v(s)ds

)]
.

(8.9)
This automatically gives the corresponding bound for the larger class A in (8.3).
The proof is in two steps.

Step 1. G of a particular form. We first consider G of a special form. Recall
that {en}n∈N denotes a CONS in H . Let K , N ∈ N be arbitrary, and consider any
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collection 0 = t1 < t2 < · · · < TK = T . Let h : RK N → R have compact support
and continuous derivatives of all orders. Then G is of the form

G(W ) = h(w(t1),w(t2) − w(t1), . . . ,w(tK ) − w(tK−1)), (8.10)

where for 0 ≤ t ≤ T ,

w(t) = (λ
−1/2
1 〈e1,W (t)〉 , . . . , λ

−1/2
N 〈eN ,W (t)〉). (8.11)

Note that {w(t)}0≤t≤T is an N -dimensional standard Gt -Wiener process. Using meth-
ods from stochastic control theory, we will construct a process v ∈ Ab that gives
equality in (8.9). The following lemma, whose proof is omitted, follows by classical
and elementary stochastic control arguments that apply when there is a smooth value
function (see Sect. VI.2 of [134]).

Lemma 8.8 Let g : Rm × R
N → R have compact support and continuous deriva-

tives of all orders. Let {w(t)}0≤t≤T be an N-dimensional standard Brownian motion,
and let V : [0, T ] × R

m × R
N → R be defined by

V (t, z, x)
.= − log Ee−g(z,x+w(T−t)).

Then the following hold.
(a) For all (t, x) ∈ [0, T ] × R

N , z 
→ V (t, z, x) has compact support and deriva-
tives of all orders that are continuous functions of (t, z, x).

(b) For all (t, z) ∈ [0, T ] × R
m, x 
→ V (t, z, x) has derivatives of all orders that

are continuous and bounded functions of (t, z, x).
(c) For z ∈ R

m, let {X (z, t)}0≤t≤T be the unique solution of

X (z, t) = −
∫ t

0
DxV (s, z, X (z, s))ds + w(t), t ∈ [0, T ].

Then with u(t) = −DxV (t, z, X (z, t)) for t ∈ [0, T ],

− log E exp{−g(z,w(T ))} = E

[
1

2

∫ T

0
‖u‖2ds + g

(
z,w +

∫ ·

0
uds

)]
. (8.12)

Remark 8.9 For the proof of Lemma 8.8, one starts with the linear partial differential
equation (PDE) for which (t, z, x) 
→ Ee−g(z,x+w(T−t)) is a classical-sense solution.
From this, one obtains the nonlinear PDE (Hamilton–Jacobi–Bellman equation) for
which V is a classical-sense solution. As such, V also has an interpretation as the
minimal cost in a stochastic optimal control problem. Using a classical verification
argument [134], it is straightforward to show that u as defined in the lemma is the
optimal control, and the right-hand side of (8.12) is the minimal cost starting from
x = 0, which establishes (8.12).



220 8 Representations for Continuous Time Processes

Now for j = 1, . . . , K , define Vj : R j N → R as follows: VK = h and

Vj (z j ) = − log Ee−Vj+1(z j ,w(t j+1)−w(t j )), z j ∈ R
j N , j = 1, . . . , K − 1.

By successive conditioning, it is easily checked that

V0
.= − log Ee−V1(w(t1)−w(t0)) = − log Ee−G(W ),

where G is as in (8.10). From part (a) of Lemma 8.8 it follows that for all j =
1, . . . , K ,Vj has continuous and bounded derivatives of all orders. For j = 1, . . . , K ,
let Z j = (w(t1),w(t2) − w(t1), . . . ,w(t j ) − w(t j−1)), and note that Z j is an R

j N -
valued random variable. For z j ∈ R

j N , let {Y (z j , t)}t∈[t j ,t j+1], j = 1, . . . , K − 1, be
the unique solution of

Y (z j , t) = −
∫ t

t j

DxVj+1(s, z j ,Y (z j , s))ds + w(t) − w(t j ), t ∈ [t j , t j+1].

The existence and uniqueness of the solution is a consequence of the smoothness
property of Vj+1 noted earlier. Now define

u(t) = −DxVj+1(t, Z j ,Y (Z j , t)), t ∈ [t j , t j+1), j = 0, . . . , K − 1.

Then by a straightforward recursive argument using Lemma 8.8, we see that

− log Ee−G(W ) = E

[
1

2

∫ T

0
‖u(s)‖2ds + h

(
w(t1) +

∫ t1

0
u(s)ds, . . .

,w(tK ) − w(tK−1) +
∫ tK

tK−1

u(s)ds

)]
.

Let v(s)
.= ∑N

i=1 λ
1/2
i ui (s)ei , s ∈ [0, T ]. Then v ∈ Ab, and by (8.10) and (8.11),

− log E exp{−G(W )} = E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(
W +

∫ ·

0
v(s)ds

)]
.

Thus we have proved (8.9) for all G of the form (8.10)–(8.11).

Step 2. G that is bounded andmeasurable.Now suppose thatG is simply bounded
and measurable. We claim that there exist functions {Gn}n∈N such that for each n,Gn

is of the form assumed in Step 1, ‖Gn‖∞ ≤ ‖G‖∞, and Gn → G a.s. with respect
to θ . This can be seen most easily by considering the approximation in stages. We
note that each of the following classes admits an approximation of this form relative
to elements of the preceding class, save of course the first:

• G bounded and measurable;
• G bounded and continuous;
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• G(W ) = H(W (t1),W (t2), . . . ,W (tK )), where H : H K → R is continuous and
bounded and K ∈ N and 0 = t1 < t2 < · · · < TK = T are arbitrary;

• G of the form (8.10)–(8.11) where h is a bounded and continuous function from
R

NK → R, K , N ∈ N and 0 = t1 < t2 < · · · < tK = T are arbitrary;
• G as above and in addition, h has compact support;
• G as above and in addition, h has continuous and bounded derivatives of all orders.

All of these approximations follow by standard arguments. The first approxima-
tion statement (i.e., a bounded measurable G can be approximated by a bounded
continuous G) is the conclusion of a result due to Doob and presented in the
appendix as Theorem E.4. For the second statement we use the martingale con-
vergence theorem, which states that if {Fn} is a filtration increasing to the σ -field
F∞ and X is an integrable F∞-measurable random variable, then E[X | Fn] con-
verges to X a.s. Consider a sequence of partitions πn = {0 = tn1 < tn2 < · · · < tnKn

=
T } such that πn ⊂ πn+1 and |πn| .= max1≤ j≤Kn−1(tnj+1 − tnj ) → 0 as n → ∞. Let
Fn

.= σ {W (tni ), 1 ≤ i ≤ Kn}. Clearly,Fn is afiltration andG isF∞
.= σ(∪n≥1Fn)-

measurable. Thus by the martingale convergence theorem, Gn = E[G | Fn] con-
verges a.s. to G. Clearly, ‖Gn‖∞ ≤ ‖G‖∞ a.s. The second approximation statement
now follows from another application of Theorem E.4 if Gn is not continuous. The
proof of the third approximation statement is similar but uses the filtration

Fn
.= σ {〈W (ti ), e j 〉, j = 1, . . . , n, i = 1, . . . , K },

where {e j } j∈N is a CONS inH . The fourth approximation statement involves replac-
ing h in (8.10 )–(8.11) by hψn in definingGn , whereψn is a continuous function with
values in [0, 1] such that ψn(x) = 1 when x is in a ball of radius n and ψn(x) = 0
outside a ball of radius n + 1. Finally, the last statement follows by replacing h with
h ∗ ηn in (8.10)–(8.11), where ηn(x) = n−NKη(nx), x ∈ R

NK ,

η(x)
.= c exp

{
− 1

1 − |x |2
}
1{|x |<1},

and c is the normalizing constant such that
∫

η(x)dx = 1.
With the claim verified, we now complete the lower bound. With each n ∈ N we

can associate vn ∈ Ab such that

− log E exp{−Gn(W )} = E

[
1

2

∫ T

0
‖vn(s)‖20ds + Gn

(
W +

∫ ·

0
vn(s)ds

)]
.

As in the proof of the upper bound, if μn is the distribution induced by W +∫ ·
0 vn(s)ds, then

R(μn ‖θ ) ≤ E

[
1

2

∫ T

0
‖vn(s)‖20ds

]
≤ 2 ‖G‖∞ ,
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where the last inequality is valid because ‖Gn‖∞ ≤ ‖G‖∞. Thus {μn} is tight, and
from part (b) of Lemma 2.5, we have

lim
n→∞ E

∣∣∣∣Gn

(
W +

∫ ·

0
vn(s)ds

)
− G

(
W +

∫ ·

0
vn(s)ds

)∣∣∣∣ = 0.

By the dominated convergence theorem,

lim
n→∞ |log E exp{−Gn(W )} − log E exp{−G(W )}| = 0.

Therefore, given ε > 0, we can find n ∈ N such that

− log Ee−G(W ) ≥ − log Ee−Gn(W ) − ε

= E

[
1

2

∫ T

0
‖vn(s)‖20ds + Gn

(
W +

∫ ·

0
vn(s)ds

)]
− ε

≥ E

[
1

2

∫ T

0
‖vn(s)‖20ds + G

(
W +

∫ ·

0
vn(s)ds

)]
− 2ε.

Since ε > 0 is arbitrary and vn ∈ Ab, we have (8.9), completing the proof. �

8.1.5 Representation with Respect to a General Filtration

We now return to the issue of whether the representation holds when {Gt }0≤t≤T , the
filtration generated by the Wiener process, is replaced by any filtration {Ft }0≤t≤T

that satisfies the usual conditions and such thatW is aΛ-Wiener process with respect
to this larger filtration.

We will make use of the following lemma on measurable selections.

Lemma 8.10 Let E1,E2 be Polish spaces and let g : E1 × E2 → R be a bounded
continuous function. Let K be a compact set in E2. For each x ∈ E1, define

Γx
.=

{
y ∈ K : inf

y0∈K
g(x, y0) = g(x, y)

}
.

Then there exists a Borel measurable function g1 : E1 → E2 such that g1(x) ∈ Γx

for all x ∈ E1.

Proof Let xn be a sequence in E1 converging to x̄ . For each n ∈ N, let yn ∈ Γxn . In
view of Corollary E.3, it suffices to show that {yn} has a limit point in Γx̄ . Let ȳ be a
limit point of {yn}. For each n, g(xn, yn) − inf y0∈K g(xn, y0) equals zero. Since the
map (x, y) 
→ g(x, y) − inf y0∈K g(x, y0) is continuous, letting n → ∞ shows that
ȳ ∈ Γx . �
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Recall that ¯A was defined exactly asA , except with {Gt } replaced by {Ft }. The
only issue to check is whether the upper bound

− log E exp{−G(W )} ≤ inf
v∈ ¯A

E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(
W +

∫ ·

0
v(s)ds

)]

(8.13)
continues to hold.

The only place where the structure of {Gt }0≤t≤T is used in Sect. 8.1.3 is in the
proof of (8.6), where we appeal to Lemma 8.7 to argue that if v ∈ As , then there is
ṽ ∈ As such that the distribution of (W, v) under P is the same as that of (Wṽ, ṽ)
under Qṽ. We can reduce to that case if we show that given ε > 0 and any control v
that is simple with respect to {Ft }0≤t≤T , there is a v̄ ∈ As such that

E

[
1

2

∫ T

0
‖v̄(s)‖20ds + G

(
W +

∫ ·

0
v̄(s)ds

)]
(8.14)

≤ E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(
W +

∫ ·

0
v(s)ds

)]
+ ε.

For simplicity, we consider the case v(s) = 0 for s ∈ [0, t] and v(s) = X for s ∈
(t, T ], where X is Ft -measurable, and also assume that ‖X‖0 ≤ M < ∞ a.s. The
generalization to the finite collection of random variables that appear in a simple
control is straightforward (see [39]). For the moment, we also assume that G is
continuous as well as bounded. Consider the mapping

g (φ, x) = E

[
(T − t)

2
‖x‖20 + G

(
φB +

∫ ·

0
1[t,T ](s)xds

)]
,

where φ ∈ C ([0, t] : H0), x ∈ {x ∈ H0 : ‖x‖0 ≤ M}, and

φB(s) =
{

φ(s), s ∈ [0, t],
φ(t) + B(s − t) − B(0), s ∈ [t, T ],

with B a Λ-Wiener process.
Note that g is bounded, and that by the dominated convergence theorem, it is

also continuous in (φ, x). Consider the C ([0, t] : H0)-valued random variable Z
.=

{W (s)}0≤s≤t . Then

E

[∫ T

0

1

2
‖v(s)‖20 + G

(
W +

∫ ·

0
v(s)ds

)]
= E[g(Z , X)].

Since a single probabilitymeasure on a Polish space is tight, there is a compact subset
K0 of H0 such that P{X ∈ Kc

0} ≤ ε/(2‖g‖∞ + 1). Then

E[g(Z , X)] ≥ E[g(Z , X)1K0(X)] − ε

2
.
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NowweapplyLemma8.10withE1 = C ([0, t] : H0),E2 = H0, and K = K0 ∩ {x ∈
H0 : ‖x‖0 ≤ M}. Then there is ameasurablemap g1 : C ([0, t] : H0) → K such that
with X̄

.= g1(Z),

E[g(Z , X)] ≥ E[g(Z , X)1K0(X)] − ε

2

≥ E[g(Z , g1(Z))1K0(X)] − ε

2
≥ E[g(Z , g1(Z))] − ε

= E

[ [T − t]
2

∥∥X̄
∥∥2

0 + G

(
W +

∫ ·

0
1[t,T ](s)X̄ds

)]
− ε.

Letting v̄(s) = 0 for s ∈ [0, t) and v̄(s) = X̄ for s ∈ [t, T ], we now have that

E

[∫ T

0

1

2
‖v(s)‖20 + G

(
W +

∫ ·

0
v(s)ds

)]
(8.15)

≥ E

[∫ T

0

1

2
‖v̄(s)‖20 + G

(
W +

∫ ·

0
v̄(s)ds

)]
− ε.

This completes the argument for the case that G is continuous.
Finally, we remove the assumption that G is continuous. Let v take the same form

as previously, and suppose that G is bounded and measurable. It then follows from
TheoremE.4 that there are bounded and continuousG j that converge toG as j → ∞
almost surely with respect to the distribution of W and that have the same uniform
bound as G. Thus by the dominated convergence theorem, given ε > 0, we have for
all sufficiently large j ∈ N that

E

[
G j

(
W +

∫ ·

0
v(s)ds

)]
≤ E

[
G

(
W +

∫ ·

0
v(s)ds

)]
+ ε

2
.

We have shown that there is v̄ j ∈ As such that (8.15) holds with G replaced by G j .
Since sup j R(μ j ‖θ ) ≤ T M2/2, where μ j is the probability distribution of W +∫ ·
0 v̄ j (s)ds, an application of Lemma 2.5 shows that for sufficiently large j ∈ N,

E

[
G

(
W +

∫ ·

0
v̄ j (s)ds

)]
≤ E

[
G j

(
W +

∫ ·

0
v̄ j (s)ds

)]
+ ε

2
.

Thus for j that satisfy the last two displays, we have

E

[∫ T

0

1

2

∥∥v̄ j (s)
∥∥2
0 + G

(
W +

∫ ·

0
v̄ j (s)ds

)]

≤ E

[∫ T

0

1

2

∥∥v̄ j (s)
∥∥2
0 + G j

(
W +

∫ ·

0
v̄ j (s)ds

)]
+ ε

2
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≤ E

[∫ T

0

1

2
‖v(s)‖20 + G j

(
W +

∫ ·

0
v(s)ds

)]
+ ε

2

≤ E

[∫ T

0

1

2
‖v(s)‖20 + G

(
W +

∫ ·

0
v(s)ds

)]
+ ε.

Since v̄ j ∈ As , we have (8.14), and the desired upper bound (8.13) follows. �

8.2 Representation for Poisson Random Measure

In this section we present the analogous representations for functionals of a Poisson
random measure (PRM), the other important driving noise in continuous time. In
contrast to the case of a Wiener process, for PRM it is convenient and in some
sense necessary to enlarge the underlying probability space. The enlargement is
needed to define a very general class of controlled Poisson random measures. An
alternative approach that has been considered is to dilate time, thereby increasing or
decreasing rates, but this method of producing a controlled PRM does not allow for
a representation general enough. For further discussion, see [45, p. 726].

8.2.1 The Representation

For a locally compact Polish spaceS ,wedenote byΣ(S ) the spaceof allmeasures ν
on (S ,B(S )) satisfying ν(K ) < ∞ for every compact K ⊂ S . We endowΣ(S )

with the vague topology, namely the weakest topology such that for every f ∈
Cc(S ) (the space of real continuous functions on S with compact support), the
function ν 
→ 〈 f, ν〉 = ∫

S f (u) ν(du), ν ∈ Σ(S ) is continuous. This topology can
be metrized such that Σ(S ) is a Polish space. For details, see Sect. A.4.1.

Definition 8.11 Fix T ∈ (0,∞), let X be a locally compact Polish space, and let
XT = [0, T ] × X . Let (Ω,F , P) be a probability spacewith afiltration {Ft }0≤t≤T .
Consider any measure ν ∈ Σ(X ) and let νT = λT × ν, where λT is Lebesgue mea-
sure on [0, T ]. Then anFt -Poisson random measure with intensity measure νT is a
measurable mapping N fromΩ intoΣ(XT ) such that the following properties hold.

• For every t ∈ [0, T ] and every Borel subset A ⊂ [0, t] × X , N (A) is Ft -
measurable.

• For every t ∈ [0, T ] and everyBorel subset A ⊂ (t, T ] × X , N (A) is independent
of Ft .

• If k ∈ N and Ai ∈ B(XT ), i = 1, . . . , k, are such that Ai ∩ A j = ∅ for i �= j and
νT (Ai ) < ∞, then N (A1), . . . , N (Ak) are mutually independent Poisson random
variables with parameters νT (A1), . . . , νT (Ak).
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As with the case of functionals of a Wiener process, it is convenient to first
discuss representations with respect to the canonical filtration. Thus we let M

.=
Σ(XT ) and let P denote the unique probability measure on (M,B(M)) under
which the canonical map, N : M → M, N (m)

.= m, is a Poisson random measure
with intensity measure νT . With applications to large deviations in mind, we also
consider, for θ > 0, the analogous probability measures Pθ on (M,B(M)) under
which N is a Poisson random measure with intensity θνT . (In contrast to the case
of a Wiener process, there is no simple transformation of a PRM with intensity νT
that produces a PRM with intensity θνT , θ �= 1.) The corresponding expectation
operators will be denoted by E and Eθ , respectively. At the end of this section we
state the representation for a general filtration.

We will obtain representations for − log Eθ exp{−G(N )}, where G ∈ Mb(M),
in terms of a “controlled” Poisson random measure constructed on a larger space.
We now describe this construction. Let Y

.= X × [0,∞) and YT
.= [0, T ] × Y .

Let M̄
.= Σ(YT ) and let P̄ be the unique probability measure on (M̄,B(M̄)) such

that the canonical map, N̄ : M̄ → M̄, N̄ (m)
.= m, is a Poisson randommeasure with

intensity measure ν̄T
.= λT × ν × λ∞, where λ∞ is Lebesgue measure on [0,∞).

The corresponding expectation operator will be denoted by Ē . The control will act
through this additional component of the underlying point space.

Let Gt denote the augmentation of σ
{
N̄ ((0, s] × A) : 0 ≤ s ≤ t, A ∈ B(Y )

}

with all P̄ null sets in B(M̄), and denote by PF the predictable σ -field on
[0, T ] × M̄ with the filtration {Gt }0≤t≤T on (M̄,B(M̄)). Let A be the class of all
maps ϕ : XT × M̄ → [0,∞) that are (PF⊗B(X ))\B[0,∞)measurable. [Note
that there is a slight inconsistency in the notation, since PF concerns t, ω, while
B(X ) concerns x , but we write them in the order (t, x, ω).] Since M̄ is the underly-
ing probability space, following standard convention, we will at times suppress the
dependence of ϕ(t, x, ω) on ω, (t, x, ω) ∈ XT × M̄, and merely write ϕ(t, x). For
ϕ ∈ A , define a counting process Nϕ on XT by setting

Nϕ((0, t]×U )
.=

∫

(0,t]×U

∫

(0,∞)

1[0,ϕ(s,x)](r)N̄ (ds × dx × dr) (8.16)

for all t ∈ [0, T ],U ∈ B(X ). Here Nϕ is to be thought of as a controlled random
measure, with ϕ(s, x) selecting the intensity for the points at location x and time s,
in a possibly random but nonanticipating way. Figure 8.1 illustrates how, for some
particular value x , the control modulates the jump rate by “thinning”, i.e., keeping
only the jumps corresponding to atoms of N̄ that lie below ϕ(t, x) at time t .

When ϕ(s, x, ω) = θ for all (s, x, ω) ∈ XT × M̄ and some θ > 0, we write Nϕ

as N θ . Note that N θ has the same distribution on M̄ with respect to P̄ as N has on
M with respect to Pθ . Therefore, N θ plays the role of N on M̄.

Define � : [0,∞) → [0,∞) by

�(r)
.= r log r − r + 1, r ∈ [0,∞),
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Fig. 8.1 Thinning by the
control for a particular x

T
t

r

retained atoms

discarded atoms

ϕ(t, x)

with the convention that 0 log 0 = 0. As is well known, � is the local rate function (see
Sect. 4.3 for this terminology) for a scaled standard Poisson process, and so it is not
surprising that it plays a key role in our analysis. For ϕ ∈ A , define a [0,∞]-valued
random variable LT (ϕ) by

LT (ϕ)(ω)
.=

∫

X T

�(ϕ(t, x, ω)) νT (dt × dx), ω ∈ M̄. (8.17)

As in the setting of a Wiener process, it is convenient that the representation hold
with a more restrictive class of controls. Let {Kn}n∈N be an increasing sequence of
compact subsets ofX such that ∪∞

n=1Kn = X . For each M ∈ (0,∞), let

Ab,M
.= {ϕ ∈ A : LT (ϕ) ≤ M a.e. and for some n ∈ N, n ≥ ϕ(t, x, ω) ≥ 1/n

and ϕ(t, x, ω) = 1 if x ∈ Kc
n , for all (t, ω) ∈ [0, T ] × M̄},

(8.18)
and let

Ab
.= ∪∞

M=1Ab,M . (8.19)

As before, we let ¯Ab,M , ¯A , and ¯Ab denote the analogous spaces of controls when the
canonical filtration {Gt }0≤t≤T is replaced by a filtration {Ft }0≤t≤T with the property
that N̄ is anFt -PRM with the same intensity.

The following is the representation theorem for PRM. The first equality holds
because N under Eθ has the same distribution as N θ under Ē , as was discussed
below (8.16).

Theorem 8.12 Let G ∈ Mb(M). Then for θ > 0,

− log Eθ exp{−G(N )} = − log Ē exp{−G(N θ )} (8.20)

= inf
ϕ∈R

Ē
[
θLT (ϕ) + G(N θϕ)

]
,
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where R can be either Ab,A , ¯Ab or ¯A .

The following is the analogue of Theorem 8.4 for the Poisson noise case.

Theorem 8.13 Let G ∈ Mb(M) and let δ > 0. Then there exist M < ∞ depending
on ‖G‖∞ and δ such that for all ε ∈ (0, 1),

−ε log Ē exp

{
−1

ε
G(εN 1/ε)

}
≥ inf

ϕ∈A b,M

Ē
[
LT (ϕ) + G(εNϕ/ε)

] − δ.

Proof Let δ > 0.UsingTheorem8.12withR = Ab, we can find, for each ε ∈ (0, 1),
ϕ̃ε ∈ Ab such that

−ε log Ē exp

{
−1

ε
G(εN 1/ε)

}
≥ Ē

[
LT (ϕ̃ε) + G(εN ϕ̃ε/ε)

]
− δ/2.

From the boundedness of G, we obtain

sup
ε∈(0,1)

Ē
[
LT (ϕ̃ε)

] ≤ CG
.= (2‖G‖∞ + 1).

For M ∈ N, let

τ ε
M(ω) = inf

[
t ∈ [0, T ] :

∫

[0,t]×X
�(ϕ̃ε(s, x, ω)) νT (ds × dx) ≥ M

]
∧ T .

Note that
ϕε(s, x)

.= 1 + (ϕ̃ε(s, x) − 1) 1[0,τ ε
M ](s), (s, x) ∈ XT

is an element of Ab,M . Also,

Ē
[
LT (ϕ̃ε) + G(εN ϕ̃ε/ε)

]

≥ Ē
[
LT (ϕε) + G(εNϕε/ε)

] + Ē
[
G(εN ϕ̃ε/ε) − G(εNϕε/ε)

]
.

By Chebyshev’s inequality,

Ē
∣∣∣G(εN ϕ̃ε/ε) − G(εNϕε/ε)

∣∣∣ ≤ 2‖G‖∞ P̄
{
τ ε
M < T

} ≤ 2‖G‖∞
CG

M
.

Let M = (2‖G‖∞CG + 1)/δ. Then for all ε ∈ (0, 1),

−ε log Ē exp

{
−1

ε
G(εN 1/ε)

}
≥ Ē

[
LT (ϕε) + G(εNϕε/ε)

] − δ,

as desired. �
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Remark 8.14 Wenote that Theorem3.23 is a special case of Theorems 8.12 and 8.13.
To see this, consider the caseX

.= {0} and ν
.= δ0. Define γ : M → D([0, T ] : R)

by γ (m)(t)
.= m((0, t] × {0}), t ∈ [0, T ], m ∈ M. Then γ is a Borel measurable

map, and thus by Theorem 8.12, for every bounded Borel measurable function G
mapping D([0, T ] : R) to R and θ ∈ (0,∞), we have

− log Ē exp{−G ◦ γ (N θ )} = inf
ϕ∈A

Ē
[
θLT (ϕ) + G ◦ γ (N θϕ)

]
. (8.21)

Recalling the definition ofX and ν, any ϕ ∈ A can be identified with a nonnegative
predictable process, and γ (N θϕ) is a controlled Poisson process in the sense of
Sect. 3.3; in particular, γ (N θ ) is a Poisson process with rate θ (denoted in Sect.
3.3 by N θ ). Thus the first representation in Theorem 3.23 follows readily from
(8.21) with (Ω̄, F̄ , P̄, {F̄t }) = (M̄,B(M̄), P̄, {Gt }). The second representation in
Theorem 3.23 follows similarly from Theorem 8.13.

The rest of this section is devoted to the proof of Theorem 8.12. For notational
convenience we provide details only for the case θ = 1. The general case is treated
similarly. As in the case of Brownian motion, we first consider Ab and A , and then
extend to ¯Ab and ¯A .

8.2.2 Preparatory Results

Recall thatPF denotes the predictable σ -field associated with the augmented PRM
N̄ , and thatY = X × [0,∞). A class of processes that will be used as test functions
is defined as follows. Let Âb be the set of all (PF⊗B(Y ))\B(R)-measurable
maps ϑ : YT × M̄ → R that are bounded and such that for some compact K ⊂ Y ,
ϑ(s, x, r, ω) = 0 whenever (x, r) ∈ Kc. Once again ω will usually be suppressed in
the notation. The following result is standard (see, e.g., Theorem III.3.24 of [161]),
and the analogue with Ab replaced by ¯Ab and Gt by Ft also holds. Let N 1

c be the
compensated version of N 1, which is defined by N 1

c (A)
.= N 1(A) − νT (A) for all

A ∈ B(XT ) such that νT (A) < ∞.

Theorem 8.15 (Girsanov) Let ϕ ∈ Ab. Then

E ϕ(t)
.= exp

{∫

(0,t]×X
log(ϕ(s, x))N 1

c (ds × dx) (8.22)

+
∫

(0,t]×X
(log(ϕ(s, x)) − ϕ(s, x) + 1) νT (ds × dx)

}

= exp

{∫

(0,t]×X ×[0,1]
log(ϕ(s, x))N (ds × dx × dr)

+
∫

(0,t]×X ×[0,1]
(−ϕ(s, x) + 1) ν̄T (ds × dx × dr)

}



230 8 Representations for Continuous Time Processes

is a Gt -martingale. Define a probability measure Q̄ϕ on M̄ by

Q̄ϕ(H) =
∫

H
E ϕ(T )d P̄ for H ∈ B(M̄),

and let Ēϕ denote integration with respect to Q̄ϕ . Then for every ϑ ∈ Âb,

Ēϕ

∫

Y T

ϑ(s, x, r)N̄ (ds × dx × dr)

= Ēϕ

∫

Y T

ϑ(s, x, r)
[
ϕ(s, x)1(0,1](r) + 1(1,∞)(r)

]
ν̄T (ds × dx × dr).

The last statement in the lemma says that under Q̄ϕ , N̄ is a random counting
measure with compensator

[
ϕ(s, x)1(0,1](r) + 1(1,∞)(r)

]
ν̄T (ds × dx × dr).

Recall that X = ∪∞
n=1Kn for increasing compact sets Kn . A process ϕ ∈ Ab,M

is in the setAs,M if the following holds. There exist n, �, n1, . . . , n� ∈ N; a partition
0 = t0 < t1 < · · · < t� = T ; for each i = 1, . . . , � a disjoint measurable partition
Ei j of Kn, j = 1, . . . , ni ; Gti−1 -measurable random variables Xi j , i = 1, . . . , �, j =
1, . . . , ni , such that 1/n ≤ Xi j ≤ n; and

ϕ(t, x, m̄) = 1{0}(t) +
�∑

i=1

ni∑

j=1

1(ti−1,ti ](t)Xi j (m̄)1Ei j (x) + 1Kc
n
(x)1(0,T ](t). (8.23)

We let As
.= ∪∞

M=1As,M and refer to elements in As as simple processes.

Lemma 8.16 Let ϕ ∈ Ab. Then there exists a sequence of processes ϕk ∈ As with
the following properties.

(a) Nϕk converges in distribution to Nϕ as k → ∞.
(b) Ē |LT (ϕk) − LT (ϕ)| → 0 and Ē |E ϕk (T ) − E ϕ(T )| → 0, as k → ∞.

Proof We first construct processes ϕk that satisfy parts (a) and (b) of the lemma
but that instead of being simple are continuous in t . Since ϕ ∈ Ab, we have for
some n ∈ N that n ≥ ϕ(t, x, ω) ≥ 1/n and ϕ(t, x, ω) = 1 if x ∈ Kc

n for all (t, ω) ∈
[0, T ] × M̄. For k ∈ N, define

ϕk(t, x, ω) = k

(
1

k
− t

)+
+ k

∫ t

(t− 1
k )

+
ϕ(s, x, ω)ds, (t, x, ω) ∈ XT × M̄.

An application of Lusin’s theorem gives that for ν × P̄-a.e. (x, ω), as k → ∞,

∫

[0,T ]
|ϕk(t, x, ω) − ϕ(t, x, ω)|dt → 0

∫

[0,T ]
|�(ϕk(t, x, ω)) − �(ϕ(t, x, ω))|dt → 0.

(8.24)
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In particular, ϕk ∈ Ab for every k and Ē |LT (ϕk) − LT (ϕ)| → 0, as k → ∞. It fol-
lows from (D.6) and the definition of the controlled PRM that for g ∈ Cc(XT ),

Ē |〈g, Nϕk 〉 − 〈g, Nϕ〉|
≤ Ē

∫

Y T

|g(s, x)||1[0,ϕk (s,x,ω)](r) − 1[0,ϕ(s,x,ω)](r)| ν̄T (ds × dx × dr)

≤ ‖g‖∞ Ē
∫

[0,T ]×Kn

|ϕk(s, x, ω) − ϕ(s, x, ω)| νT (ds × dx ).

Using (8.24), ν(Kn) < ∞, and the uniform bounds on ϕk and ϕ shows that the last
quantity approaches 0 as k → ∞, and hence by Lemma A.10, Nϕk ⇒ Nϕ .

Nextwe consider the convergence ofE ϕk (T ) inL 1(P̄). By Scheffe’s lemma [249,
Sect. 5.11], if fk(ω) and f (ω) are densities with respect to P̄ such that fk → f in
probability, then the convergence is also inL 1(P̄). Thus it suffices to show that

E ϕk (T ) → E ϕ(T ) in P̄-probability. (8.25)

For this, it is enough to show [see (8.22)] that

∫

X T

(1 − ϕk(s, x)) νT (ds × dx ) →
∫

X T

(1 − ϕ(s, x)) νT (ds × dx )

and since N 1 = N 1
c + νT , that

∫

X T

log(ϕk(s, x))N
1(ds × dx) →

∫

X T

log(ϕ(s, x))N 1(ds × dx)

in probability as k → ∞. The first convergence is immediate from (8.24), the uni-
form bounds on ϕk, ϕ, ν(Kn) < ∞, and the fact that 1 − ϕk(s, x) = 1 − ϕ(s, x) = 0
for x /∈ Kn . The second convergence follows similarly on noting that ϕk(s, x) ∧
ϕ(s, x) ≥ 1/n implies

|log(ϕk(s, x)) − log(ϕ(s, x))| ≤ n|ϕk(s, x) − ϕ(s, x)|.

This proves (8.25) and so Ē |E ϕk (T ) − E ϕ(T )| → 0 as k → ∞. This completes the
construction of ϕk that satisfy parts (a) and (b) of the lemma.

Next we show that the processes can be assumed to be simple. Note that by
construction, t 
→ ϕk(t, x, ω) is continuous for ν × P̄-a.e. (x, ω). Consider any ϕk

as constructed previously, and to simplify the notation, drop the k subscript. Two
more levels of approximation will be used, and indexed by q and r . Thus for the
fixed ϕ and q ∈ N, define

ϕq(t, x, ω) =
�qT �∑

m=0

ϕ

(
m

q
, x, ω

)
1( m

q , m+1
q ](t), (t, x, ω) ∈ XT × M̄.
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It is easily checked that (8.24) is satisfied as q → ∞, and so arguing as above, the
sequence {ϕq} satisfies parts (a) and (b) of the lemma. Note that for fixed q and m,
g(x, ω) = ϕ(m/q, x, ω) is aB(X )⊗F̄m/q -measurable map with values in [1/n, n]
and g(x, ω) = 1 for x ∈ Kc

n . By a standard approximation procedure one can find
B(X )⊗F̄m/q -measurable maps gr , r ∈ N with the following properties:

gr (x, ω) =
a(r)∑

j=1

crj (ω)1Er
j
(x) for x ∈ Kn,

where for each r , a(n) ∈ N, {Er
j } j=1,...,a(r) is some measurable partition of Kn , and

for all j, r , crj (ω) ∈ [1/n, n] a.s.; gr (x, ω) = 1 for x ∈ Kc
n ; gr → g a.s. ν × P̄ . If

we make such an approximation for each m and label the process obtained when the
g’s are replaced by gr ’s as ϕr

q , then ϕr
q ∈ As . Hence by the triangle inequality we can

find a sequence {ϕk} ⊂ As such that (a) and (b) hold. �
A last result is needed before we can prove the main theorem. As in the case of the

Wiener process, we need to know that controls under the original probability space
can be replicated on a new space. The proof of the lemma, which uses an elementary
but detailed argument, is given at the end of the chapter.

Lemma 8.17 For every ϕ ∈ As there is ϕ̂ ∈ As such that (LT (ϕ̂), N 1) has the same
distribution under Q̄ϕ̂ as (LT (ϕ), Nϕ) does under P̄.

We now proceed to the proof of Theorem 8.12. We will provide the proof only for
the case that R is A or Ab. The general filtration setting, i.e., when R = ¯A , ¯Ab,
can be treated as in Sect. 8.1.5.

8.2.3 Proof of the Upper Bound in the Representation

In this subsection we prove (recall that we present the argument only for θ = 1)

− log E1 exp{−G(N )} = − log Ē exp{−G(N 1)} (8.26)

≤ inf
ϕ∈A

Ē
[
LT (ϕ) + G(Nϕ)

]
.

Note that this automatically gives the corresponding bound for the smaller class Ab

in (8.20).
The proof parallels that of the case of a Wiener process. Let h : M̄ → M be

defined by

h(m̄)((0, t] ×U ) =
∫

(0,t]×U×(0,∞)

1[0,1](r)m̄(ds × dx × dr)

for t ∈ [0, T ],U ∈ B(X ). Thus N 1 = h(N̄ ). Recalling (2.1), we have
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− log Ē exp{−G(N 1)} = − log
∫

M̄

exp{−G(h(m̄))}P̄(dm̄)

= inf
Q̄∈P (M̄)

[
R

(
Q̄

∥∥P̄
) +

∫

M̄

G(h(m̄))Q̄(dm̄)

]
. (8.27)

We begin by evaluating R
(
Q̄ϕ

∥∥P̄
)
for ϕ ∈ Ab. By Theorem 8.15, {E ϕ(t)} [defined

in (8.22)] is an Gt -martingale, and under Q̄ϕ , N̄ , it is a random counting measure
with compensator

[
ϕ(s, x)1(0,1](r) + 1(1,∞)(r)

]
ν̄T (ds × dx × dr). It follows from

the definition of relative entropy and LT in (8.17) that

R
(
Q̄ϕ

∥∥P̄
)

= Ēϕ

[∫

X T

log(ϕ(s, x))N 1
c (ds × dx)

+
∫

X T

(log(ϕ(s, x)) − ϕ(s, x) + 1) νT (ds × dx)

]

= Ēϕ

[∫

X T

log(ϕ(s, x))N 1(ds × dx) +
∫

X T

(−ϕ(s, x) + 1) νT (ds × dx)

]

= Ēϕ

[∫

X T

(ϕ(s, x) log(ϕ(s, x)) − ϕ(s, x) + 1) νT (ds × dx)

]

= ĒϕLT (ϕ). (8.28)

Thus by (8.27), for ϕ ∈ Ab, we have

− log Ē exp{−G(N 1)} ≤
[
R

(
Q̄ϕ

∥∥P̄
) +

∫

M̄

G(h(m̄))Q̄ϕ(dm̄)

]
(8.29)

= Ēϕ
[
LT (ϕ) + G(N 1)

]
.

The rest of the proof is in three steps.

Step 1. Simple ϕ. Suppose one is given ϕ ∈ As . According to Lemma 8.17, one
can find ϕ̃ that is Gt -predictable and simple and such that (ϕ̃, N 1) under Q̄ϕ̃ has the
same distribution as (ϕ, Nϕ) under P̄ . This implies

Ē ϕ̃
[
LT (ϕ̃) + G(N 1)

] = Ē
[
LT (ϕ) + G(Nϕ)

]
,

and thus the desired inequality follows directly from (8.29).

Step 2. Bounded ϕ. Given ϕ ∈ Ab, let ϕk ∈ As be the sequence constructed in
Lemma 8.16. By Step 1, for every k ∈ N,

− log Ē exp{−G(N 1)} ≤ Ē
[
LT (ϕk) + G(Nϕk )

]
. (8.30)

From Lemma 8.16, under P̄, we have Nϕk ⇒ Nϕ , and Ē [LT (ϕk)] → Ē [LT (ϕ)].
However, G is not assumed continuous, and so we cannot simply pass to the limit
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in the last display. Instead, we will apply Lemma 2.5, which requires bounds on
relative entropies. The first and the last equalities in the following display follow
from Lemma 8.17, the second equality is a consequence of (8.28), and the inequality
follows from the fact that relative entropy can only decrease when one is considering
measures induced by the same mapping (in this case the random variable N 1) [see
part (f) of Lemma 2.4]:

R(P̄ ◦ (Nϕk )−1
∥∥P̄ ◦ (N 1)−1 ) = R(Q̄ϕ̃k ◦ (N 1)−1

∥∥P̄ ◦ (N 1)−1 ) (8.31)

≤ R(Q̄ϕ̃k
∥∥P̄ )

= Ē ϕ̃k
[
LT (ϕ̃k)

]

= Ē [LT (ϕk)] .

Since Ē [LT (ϕk)] → Ē [LT (ϕ)] < ∞, the relative entropies in (8.31) are uniformly
bounded in k. By Lemma 8.16 we can pass to the limit in (8.30) and obtain (8.26)
when A is replaced by Ab. For future use, note that the lower semicontinuity of
relative entropy and (8.31) imply

R(P̄ ◦ (Nϕ)−1
∥∥P̄ ◦ (N 1)−1 ) ≤ Ē [LT (ϕ)] for ϕ ∈ Ab.

Step 3. General ϕ. For ϕ ∈ A , define

ϕn(t, x, ω) =
{
[ϕ(t, x, ω) ∨ (1/n)] ∧ n, x ∈ Kn,

1 otherwise.

Note that ϕn ∈ Ab, and so (8.30) holds with ϕk replaced by ϕn . Since the definition
of ϕn implies that �(ϕn(x, t, ω)) is nondecreasing in n, by the monotone convergence
theorem, we have Ē LT (ϕn) ↑ Ē LT (ϕ). If Ē LT (ϕ) = ∞, there is nothing to prove.
Assume therefore that

Ē LT (ϕ) < ∞. (8.32)

Then R(P̄ ◦ (Nϕn )−1
∥∥P̄ ◦ (N 1)−1 ) ≤ Ē LT (ϕn)≤ Ē LT (ϕ).We claim that Nϕn con-

verges in distribution to Nϕ . If true, then using the uniformboundon relative entropies
just noted, we can once again apply Lemma 2.5, pass to the limit on n, and thereby
obtain (8.26).

Let g ∈ Cc(XT ) and let n0 be large enough that the support of g is contained in
[0, T ] × Kn0 . Then for all n ≥ n0,

Ē |〈g, Nϕn 〉 − 〈g, Nϕ〉| ≤ ‖g‖∞ Ē
∫

[0,T ]×Kn0

(
1

n
+ (ϕ(s, x) − n)+

)
νT (ds × dx).

Note that νT ([0, T ] × Kn0) < ∞, (ϕ(t, x) − n)+ → 0 as n → ∞, and
(ϕ(t, x) − n)+ ≤ �(ϕ(t, x)). These observations together with (8.32) show that the
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right-hand side in the last display approaches 0 as n → ∞. We can therefore apply
Lemma A.10, and Nϕn ⇒ Nϕ follows. �

8.2.4 Proof of the Lower Bound in the Representation

In this subsection we prove (again only for θ = 1)

− log E1 exp{−G(N )} = − log Ē exp{−G(N 1)} (8.33)

≥ inf
ϕ∈A b

Ē
[
LT (ϕ) + G(Nϕ)

]
,

which automatically gives the lower bound for the larger classA in (8.20). As in the
Brownian motion case, the proof is in two steps.

Step 1. G of a particular form. Let K , M ∈ N be arbitrary, and consider any
collection 0 = t1 < t2 < · · · < TK = T . Let h : NKM

0 → R be a bounded map. Let
C1, . . . ,CM be precompact sets inX such that Ci ∩ C j = ∅ if i �= j . Then G is of
the form

G(N 1) = h(n(t1), n(t2) − n(t1), . . . , n(tK ) − n(tK−1)), (8.34)

where for 0 ≤ t ≤ T ,

n(t) = (n1(t), . . . , nM(t)) = (N 1((0, t] × C1), . . . , N
1((0, t] × CM)). (8.35)

For G of this particular form, we will construct ϕ ∈ Ab such that

− log Ē exp{−G(N 1)} = Ē
[
LT (ϕ) + G(Nϕ)

]
,

from which (8.33) is immediate. The underlying idea is the same as in the Brownian
case. Using a conditioning argument, over each interval of the form [ti , ti+1] we can
interpret the logarithm of an exponential integral as the value function of a stochastic
control problem. From the boundedness of h, the integral is smooth in the time vari-
able, which means that the control problem has a classical-sense solution, and then
an optimal control can be found from this solution and the corresponding dynamic
programming equation. The controls over the various intervals are concatenated to
produce ϕ ∈ Ab, which actually achieves the infimum for the givenG. The following
lemma is analogous to Lemma 8.8 for the Brownian motion case and can be proved
in a similar manner. When applied, the k in the statement of the lemma will be of the
form jM , j = 0, . . . , K − 1.

Lemma 8.18 Let g : Nk
0 × N

M
0 → R be uniformly bounded, and let {n(t)}0≤t≤T be

as in (8.35). Define V : [0, T ] × N
k
0 × N

M
0 → R by

V (t, z, x)
.= − log Ēe−g(z,x+n(T−t)), (t, z, x) ∈ [0, T ] × N

k
0 × N

M
0 .
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For (t, z, x) ∈ [0, T ] × N
k
0 × N

M
0 , let

∂xi V (t, z, x)
.= V (t, z, x + ei ) − V (t, z, x),

where {ei }Mi=1 is the coordinate basis inR
M. Then for each z, x and i , ∂xi V (t, z, x) is

continuous in t ∈ [0, T ]. Let {X (z, t)}0≤t≤T with X (z, t) = (X1(z, t), . . . , XM(z, t))
be the unique solution of

Xi (z, t) =
∫

(0,t]×Ci×[0,∞)

1[0,exp{−∂xi V (s,z,X (z,s−))}](r)N̄ (ds × dx × dr), (8.36)

i = 1, . . . , M. Define

ϕ(t, x) =
M∑

i=1

ϕi (t)1Ci (x) + 1Cc(x), (t, x) ∈ [0, T ] × X ,

where C = ∪M
i=1Ci and ϕi (t) = exp{−∂xi V (t, z, X (z, t−))}. Then

− log Ē exp{−g(z, n(T ))} = Ē
[
LT (ϕ) + g (z, nϕ(T ))

]
,

where for t ∈ [0, T ],

nϕ(t) = (nϕ
1 (t), . . . , n

ϕ

M(t)) = (Nϕ((0, t] × C1), . . . , N
ϕ((0, t] × CM)). (8.37)

Since t 
→ ∂xi V (t, z, x) is continuous and ν(Ci ) < ∞ for all (t, z, x) and i =
1, . . . , M , the solution to (8.36)will jumpafinite number of times a.s. over [0, T ]. The
equations can be solved recursively by updating the relevant component Xi (z, t̄), i =
1, . . . , M if a jump occurs at time t̄ , using (8.36) to identify the next time that one
of the components will jump, and repeating.

We next apply Lemma 8.18 recursively. For j = 1, . . . , K , define Vj : N jM
0 → R

as follows: VK = h and

Vj (z j ) = − log Ēe−Vj+1(z j ,n(t j+1)−n(t j )), z j ∈ N
jM
0 , j = 1, . . . , K − 1.

By successive conditioning it is easily checked that

V0
.= − log Ēe−V1(n(t1)−n(t0)) = − log Ee−G(N ).

Note that Vj is a boundedmap for each j . For j = 1, . . . , K , let Z j = (n(t1), n(t2) −
n(t1), . . . , n(t j ) − n(t j−1)) and note that Z j is a N

jM
0 -valued random variable. For

z j ∈ N
jM
0 and j = 1, . . . , K − 1, let {Y (z j , t)}t∈[t j ,t j+1] be the unique solution of

Yi (z j , t) =
∫

(t j ,t]×Ci×[0,∞)

1[0,exp{−∂xi Vj+1(s,z j ,Y (z j ,s−))}](r)N̄ (ds × dx × dr)



8.2 Representation for Poisson Random Measure 237

for t ∈ [t j , t j+1], where Y (z j , t) = (Y1(z j , t), . . . , YM(z j , t)). For i = 1, . . . , M ,
define

ϕi (t) = exp{−∂xi Vj+1(t, Z j ,Y (Z j , t−))}, t ∈ [t j , t j+1), j = 0, . . . , K − 1

and

ϕ(t, x) =
M∑

i=1

ϕi (t, x)1Ci (x) + 1Cc(x), (t, x) ∈ [0, T ] × X .

Then by a recursive argument using Lemma 8.18, we see that

− log Ee−G(N ) = Ē
[
LT (ϕ) + h(nϕ(t1), . . . , n

ϕ(tK ) − nϕ(tK−1))
]

= Ē
[
LT (ϕ) + G(Nϕ)

]
,

where in the first line, nϕ is defined as in (8.37). Note that by construction, ϕ ∈ Ab.
Thus we have proved (8.33) for all G of the form (8.34).

Step 2. G that is bounded andmeasurable.Now suppose thatG is simply bounded
and measurable. We claim that there exist functions {Gn}n∈N such that for each n,Gn

is of the form assumed in Step 1, ‖Gn‖∞ ≤ ‖G‖∞, and Gn → G a.s. with respect
to P . This is shown, as in the Brownian case, by noting that each of the following
classes admits an approximation of this form relative to elements of the preceding
class, save of course the first:

• G bounded and measurable;
• G bounded and continuous;
• G bounded and continuous and depending on N 1 only through

{N 1((0, tk] × ·)}k=1,...,K ;

where K ∈ N and 0 = t1 < t2 < · · · < TK = T are arbitrary;
• G bounded and depending on N 1 only through

{N 1((0, tk] × Ci )}k=1,...,K ,i=1,...,M ,

where K , M ∈ N, 0 = t1 < t2 < · · · < TK = T and C1, . . . ,CM are precompact
sets inX such that Ci ∩ C j = ∅ if i �= j .

As before, these approximations follow by standard arguments based on Theorem
E.4 and the martingale convergence theorem. We now complete the lower bound in
exactly the same way as in the case of Brownian motion. With each n ∈ N we can
associate ϕn ∈ Ab such that

− log E exp{−Gn(N )} = Ē
[
LT (ϕn) + Gn (Nϕn )

]
.

If Qn is the distribution induced by Nϕn , then [see (8.31)]
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R(Qn ‖P ) ≤ Ē [LT (ϕn)] ≤ 2 ‖G‖∞ .

Thus {Qn} is tight, and from part (b) of Lemma 2.5,

lim
n→∞ Ē |Gn(N

ϕn ) − G(Nϕn )| = 0.

By the dominated convergence theorem,

lim
n→∞ |log E exp{−Gn(N )} − log E exp{−G(N )}| = 0.

Therefore, given ε > 0, we can find n ∈ N such that

− log Ee−G(N ) ≥ − log Ee−Gn(N ) − ε

= Ē
[
LT (ϕn) + Gn (Nϕn )

] − ε

≥ Ē
[
LT (ϕn) + G (Nϕn )

] − 2ε.

Since ε > 0 is arbitrary and vn ∈ Ab, we have (8.33), completing the proof. �

8.2.5 Construction of Equivalent Controls

In this section we give the proof of Lemma 8.17.We need to show that given ϕ ∈ As ,
there is ϕ̂ ∈ As such that the distribution of (LT (ϕ̂), N 1) under Q̄ϕ̂ is the same as
that of (LT (ϕ), Nϕ) under P̄. Let ϕ be as in (8.23):

ϕ(t, x, m̄) = 1{0}(t) +
�∑

i=1

ni∑

j=1

1(ti−1,ti ](t)Xi j (m̄)1Ei j (x) + 1Kc
n
(x)1(0,T ](t).

Wewill need somenotation to describe howmeasures on [0, T ] × Y are decomposed
into parts on subintervals of the form (ti−1, ti ], and also how after somemanipulation
such quantities can be recombined. For i = 1, . . . , �, let Ii

.= (ti−1, ti ] and let Yi
.=

Ii × Y . Denote by M̄i the space of nonnegative σ -finite integer-valued measures m̄i

on (Yi ,B(Yi )) that satisfy m̄i (Ii × K ) < ∞ for all compact K ⊂ Y . Endow M̄i

with the weakest topology making the functions m 
→ 〈 f,m〉,m ∈ M̄i continuous,
for every f in Cc(Yi ) vanishing outside some compact subset of Yi . Denote by
M̄i the corresponding Borel σ -field. Let N̄i be the M̄i -valued random variable on
(M̄,B(M̄)) defined by N̄i (A)

.= N̄ (A), A ∈ B(Yi ). Also, define Ji
.= [1/n, n]ni ,

and theJi -valued randomvariable Xi by Xi
.= (Xi1, . . . , Xini ).Let M̂

.= M̄1 × · · · ×
M̄�, and define � : M̂ → M̄ by �(m̂) = m, where for B ∈ B(Y ), A ∈ B[0, T ],
and with m̂ = (m1, . . . ,m�),mi ∈ M̄i , we have



8.2 Representation for Poisson Random Measure 239

m(A × B) =
q∑

i=1

mi ((A ∩ Ii ) × B).

With these definitions,� concatenates the measures back together, and in particular,
�((N̄1, . . . , N̄�)) = N̄ .

From the predictability properties of ϕ it follows that for i = 2, . . . , �, there are
measurable maps ξi : M̄1 × · · · × M̄i−1 → Ji , which can be written in component
form ξi = (ξi1, . . . , ξini ) such that

Xi j (m̄) = ξi j (N̄1(m̄), . . . , N̄i−1(m̄)).

Also, for i = 1, we set X1 = ξ1 a.s.-P̄ for some fixed vector ξ1 in J1. The construction
of ϕ̂, which takes the same form as ϕ, is recursive. For s ∈ I1 we set ϕ̂(s, x, m̄) =
ϕ(s, x, m̄). As we will see, if there were only one time interval, we would be done,
in that Nϕ under P̄ and N 1 under Q̄ϕ̂ would have the same distribution, and the
costs LT (ϕ) and LT (ϕ̂) would obviously be the same. The definition on subsequent
intervals will depend on maps Ti : M̄1 × · · · × M̄i → M̄i for i = 1, . . . , �, which
must also be defined recursively.

Observe that under P̄, N̄1 has intensity ds × ν(dx) × dr . Under Q̄ϕ̂ , regardless
of the definition of ϕ̂ on later intervals, N̄1 has intensity

ds × ν(dx) ×
⎡

⎣
n1∑

j=1

ξ1 j1E1 j (x)1(0,1](r) + 1(1,∞)(r)

⎤

⎦ dr.

The task of T1 is to “undo” the effect of the change of measure, so that under Q̄ϕ̂ ,
N̂1 = T1

[
N̄1

]
has intensity ds × ν(dx) × dr . For m̄1 ∈ M̄1, m̂1 = T1[m̄1] is defined

as follows: for all j ∈ {1, . . . , n1} and Borel subsets A ⊂ I1, B ⊂ E1 j , C1 ⊂ [0, ξ1 j ]
and C2 ⊂ (ξ1 j ,∞),

m̂1 (A × B × [C1 ∪ C2]) = m̄1

(
A × B ×

[
1

ξ1 j
C1 ∪ (

C2 − ξ1 j + 1
)])

.

The mapping T1 can thus be viewed as a transformation on the underlying space Y1

on which m1 is defined. An equivalent characterization of m̂1 = T1(m̄1) that will be
used below is that m̂1 is the unique measure that for all nonnegative ψ ∈ Mb(Y1)

satisfies

∫

Y 1

ψ(s, x, r)m̂1(ds × dx × dr) =
n1∑

j=1

∫

Y 1

1E1 j (x)
[
ψ(s, x, ξ1 j r)1(0,1](r)

+ ψ(s, x, r + ξ1 j − 1)1(1,∞)(r)
]
m̄1(ds × dx × dr).
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With T1 in hand, the definition of ϕ̂(s, x, m̄) for s ∈ I2 is straightforward. Indeed,
since N̂1 has the same distribution under Q̄ϕ̂ that N̄1 has under P̄, and since each
ξ2 j is a function only of N̄1, with the definition X̂2 j = ξ2 j (T1[N̄1]) = ξ2 j (N̂1), X̂2 j

under Q̄ϕ̂ has the same distribution as X2 j under P̄. We now define ϕ̂ on I1 ∪ I2 as in
(8.23) but with X2 j replaced by X̂2 j . Then

{
ϕ̂(s, x, m̄), s ∈ I1 ∪ I2, x ∈ X

}
under

Q̄
ϕ̂ has the same distribution as {ϕ(s, x, m̄), s ∈ I1 ∪ I2, x ∈ X } under P̄.
We now proceed recursively, and having defined T1, . . . , Tp−1 for some 1 < p ≤

�, we define Tp by Tp(m̄1, . . . , m̄ p) = m̂ p, where m̂ p is the unique measure satisfy-
ing, for all nonnegative ψ ∈ Mb(Yp),

∫

Y p

ψ(s, x, r)m̂ p(ds × dx × dr) =
np∑

j=1

∫

Y p

1Epj (x)
[
ψ(s, x, ξ̂pj r)1(0,1](r)

+ ψ(s, x, r + ξ̂pj − 1)1(1,∞)(r)
]
m̄ p(ds × dx × dr),

where ξ̂p = ξp(m̂1, . . . , m̂ p−1) and m̂i = Ti (m̄1, . . . , m̄i ). We define the transforma-
tion T : M̄ → M̄ by

T (m̄) = �
(
T1(N̄1(m̄)), . . . , T�(N̄1(m̄), . . . , N̄�(m̄))

)
,

and define ϕ̂ ∈ As for all times s by replacing Xi j with X̂i j in the right side of (8.23),
where

X̂i (m̄) = Xi (T (m̄)) = ξi (T1(N̄1(m̄)), . . . , Ti (N̄1(m̄), . . . , N̄i (m̄))). (8.38)

Denoting T (N̄ ) by N̂ , we see that for ϑ in the class Âb defined above Theorem 8.15,

∫
ϑ(s, x, r)N̂ (ds × dx × dr) =

∫ [
ϑ(s, x, ϕ̂(s, x)r)1(0,1](r) (8.39)

+ ϑ(s, x, r + ϕ̂(s, x) − 1)1(1,∞)(r)
]
N̄ (ds × dx × dr).

Also, let hϕ : M̄ → M be defined by

hϕ(m̄)(A × B)
.=

�∑

i=1

ni∑

j=1

m̄((A ∩ Ii ) × (B ∩ Ei j ) × [0, Xi j (m̄)])

for A × B ∈ B(XT ). Recall that LT was defined in (8.17). In order to complete the
proof of the lemma, we will prove the following:

(a) the distribution of N̂ = T (N̄ ) under Q̄ϕ̂ is the same as that of N̄ under P̄;
(b) hϕ(N̄ ) = Nϕ and hϕ(T (N̄ )) = hϕ(N̂ ) = N 1;
(c) for some measurable map Θ : M̄ → [0,∞), LT (ϕ) = Θ(N̄ ) and LT (ϕ̂) =

Θ(T (N̄ )), a.s. P̄.
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Item (c) is an immediate consequence of the definition of ϕ̂ via (8.38). We next
consider (b). Noting that N̄ (m̄) = m̄, suppressing m̄ in notation, and recalling the
form of ϕ in (8.23), we have for A × B ∈ B(XT ),

hϕ(N̄ )(A × B) =
�∑

i=1

ni∑

j=1

N̄ ((A ∩ Ii ) × (B ∩ Ei j ) × [0, Xi j ])

=
�∑

i=1

∫

(ti−1,ti ]×X ×[0,∞)

1A×B(s, x)1[0,ϕ(s,x)](r)N̄ (ds × dx × dr)

=
∫

Y T

1A×B(s, x)1[0,ϕ(s,x)](r)N̄ (ds × dx × dr)

= Nϕ(A × B).

This proves the first statement in (b). Next, using (8.38), (8.39), and that r > 1 implies
r + ϕ̂(s, x) − 1 > ϕ̂(s, x), we obtain

hϕ(T (N̄ ))(A × B) =
∫

1A×B(s, x)1[0,ϕ̂(s,x)](r)N̂ (ds × dx × dr)

=
∫

1A×B(s, x)[1[0,ϕ̂(s,x)](ϕ̂(s, x)r)1[0,1](r)

+ 1[0,ϕ̂(s,x)](r + ϕ̂(s, x) − 1)1(1,∞)(r)]N̄ (ds × dx × dr)

=
∫

1A×B(s, x)1[0,1](r)N̄ (ds × dx × dr)

= N 1(A × B).

This proves the second statement in (b). Lastly, we prove (a). It suffices to show that
for every ϑ ∈ Âb,

Ē ϕ̂

∫
ϑ(s, x, r)N̂ (ds × dx × dr) = Ē ϕ̂

∫
ϑ(s, x, r)ν̄T (ds × dx × dr).

Using (8.39) and the last part of Theorem 8.15 for the first equality and that the
marginal of ν̄T (ds × dx × dr) in r is Lebesgue measure, we have

Ē ϕ̂

∫
ϑ(s, x, r)N̂ (ds × dx × dr)

= Ē ϕ̂

∫ [
ϑ(s, x, ϕ̂(s, x)r)ϕ̂(s, x)1(0,1](r)

+ ϑ(s, x, r + ϕ̂(s, x) − 1)1(1,∞)(r)
]
ν̄T (ds × dx × dr)

= Ē ϕ̂

∫ [
ϑ(s, x, r)1(0,ϕ̂(s,x)](r)

+ ϑ(s, x, r)1(ϕ̂(s,x),∞)(r)
]
ν̄T (ds × dx × dr)
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= Ē ϕ̂

∫
ϑ(s, x, r)ν̄T (ds × dx × dr),

which proves (a), and completes the proof of the lemma. �

8.3 Representation for Functionals of PRM and Brownian
Motion

In this section we state the representation for functionals of both a PRM and a Hilbert
space valued Wiener process. In Chap. 11 we will show how representations for a
Hilbert space valued Brownian motion can be translated into representations for
related objects, such as a collection of infinitely many independent scalar Brownian
motions and the Brownian sheet. The analogous conversions can also be done when
one is considering a PRM along with a Hilbert space valued Brownian motion.

The independent processes we consider are thus a Λ-Wiener process as in Defi-
nition 8.1 and a PRM as in Definition 8.11. In the proof of such a result we would
follow the same procedure as in the separate cases and consider first the canoni-
cal space and filtration and then generalize. However, in this instance we skip the
proof because it is simply a combination of the arguments used for the two separate
cases, and we instead present a result that holds for a general filtration on a general
probability space.

Thuswe let (Ω,F , P)be a probability spacewith afiltration {Ft }0≤t≤T satisfying
the usual conditions, and assume that (Ω,F , P) supports all the following processes.
Let W be a Λ-Wiener process with respect to {Ft }. Let ν be a σ -finite measure on
(X ,B(X )) and let N̄ be a PRM, with respect to {Ft }, onYT

.= [0, T ] × Y , where
Y

.= X × [0,∞), with intensity measure ν̄T
.= λT × ν × λ∞. We assume that for

all 0 ≤ s ≤ t < ∞, (N̄ ((s, t] × ·),W (t) − W (s)) is independent of Fs . Let PF
be the predictable σ -field on [0, T ] × Ω . Let ¯A W and ¯A W

b be the collections of
controls for the Wiener process defined as ¯A was below Definition 8.2 and ¯Ab was
below (8.2) respectively, and let ¯A N , ¯A N

b be controls for the PRM defined as ¯A

and ¯Ab were below (8.19). The classes ¯A N
b,M and ¯A W

b,M , which give uniform (in ω)
bounds, are defined as they were in (8.18) and (8.2). For each ϕ ∈ ¯A N , Nϕ will
be a counting process on XT defined as in (8.16) with ϕ as its controlled intensity
measure.

Let ¯Ab,M
.= ¯A W

b,M× ¯A N
b,M , ¯Ab

.= ¯A W
b × ¯A N

b , and ¯A
.= ¯A W× ¯A N . For ψ ∈ ¯A W ,

define LW
T (ψ)

.= 1
2

∫ T
0 ‖ψ(s)‖20 ds, with the norm ‖·‖0 as in Sect. 8.1.1. For ϕ ∈ ¯A N ,

define LN
T (ϕ)

.= ∫
X T

�(ϕ(t, x)) νT (dt × dx), and for u = (ψ, ϕ) ∈ ¯A , set L̄T (u)
.=

LN
T (ϕ) + LW

T (ψ). Forψ ∈ ¯A W , letWψ be defined byWψ(t) = W (t) + ∫ t
0 ψ(s)ds,

t ∈ [0, T ]. We recall the definition of the space of measuresM = Σ(XT ) from Sect.
8.2.1 and its associated topology.With these definitions, the following representation
holds. The proof of the second part of the theorem is similar to the proofs of Theorems
8.4 and 8.13.
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Theorem 8.19 Let G ∈ Mb(C ([0, T ] : H ) × M). Then for θ ∈ (0,∞),

− log E exp{−G(W, N θ )} = inf
u=(ψ,ϕ)∈R

E
[
θ L̄T (u) + G(W

√
θψ , N θϕ)

]
,

whereR can be either ¯Ab or ¯A . Furthermore, for every δ > 0, there exists M < ∞
depending on ‖G‖∞ and δ such that for all ε ∈ (0, 1),

− ε log E exp

{
−1

ε
G(

√
εW, εN 1/ε)

}

≥ inf
u=(ψ,ϕ)∈ ¯A b,M

E
[
L̄T (u) + G(

√
εWψ/

√
ε, εNϕ/ε)

]
− δ.

8.4 Notes

For basic results on Hilbert space valued Brownian motions see [69], and for Poisson
random measures see [159, 161].

The representation for a finite dimensionalBrownianmotion first appeared in [32].
In Sect. 3.2, we saw how this representation allowed a straightforward large devi-
ation analysis of small noise diffusions using weak convergence arguments. Other
applications of the finite dimensional case include large deviation analysis of small
noise diffusions with discontinuous statistics [33] and homogenization [111], and
also the analysis of importance sampling for accelerating Monte Carlo in estimating
rare events [112].

With respect to its application to large deviation analysis, the representation is
convenient because it eliminates the need for superexponentially close approxima-
tion and exponential tightness results used by other methods. A special case of the
representation, rediscovered by Borell in [31], has found use in proving various
functional inequalities, as in [184].

While convenient in the finite dimensional setting, the representation for func-
tionals of Brownian motion and associated weak convergence methods are even
more important for processes with an infinite dimensional state, where the proof of
approximation and tightness results can be very demanding, and which often require
assumptions beyond those needed for the large deviation result itself to be valid.
Representations for infinite dimensional problems first appeared in [39] for the case
of infinite dimensional Brownian motion, and in [45] for the case of Poisson random
measures. The proof given here differs substantially from those of [39, 45], in par-
ticular in that they use classical-sense solutions to dynamic programming equations
to establish the first step in the proof of the lower bound. As noted in the overview
of Part III of the book, other authors have made numerous and varied applications of
these representations and the associated abstract large deviation theorems that can
be based on them. These abstract large deviation theorems are the topic of the next
chapter.
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A generalization of the representation that is sometimes useful (see, e.g., [11] for
its use in a problem studying large deviations from a hydrodynamic limit) is that
the infimum in the representation can be restricted to simple adapted processes [39].
Another extension is to the case in which the functional, in addition to depending
on a BM and PRM, depends also on aF0-valued random variable, such as an initial
condition (see [11, 46]).

A somewhat different variational representation for functionals of a PRM is pre-
sented in [269]. This representation is given in terms of some predictable transforma-
tions on the canonical Poisson space whose existence relies on solvability of certain
nonlinear partial differential equations from the theory of mass transportation. This
imposes restrictive conditions on the intensity measure (e.g., absolute continuity
with respect to Lebesgue measure) of the PRM, and in particular, a standard Poisson
process is not covered. The use of such a representation for proving large deviation
results for general continuous time models with jumps appears to be unclear.
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