
Chapter 7
Models with Special Features

7.1 Introduction

Chapters 4 through 6 considered small noise large deviations of stochastic recursive
equations, small noise moderate deviations for processes of the same type, and large
deviations for the empirical measure of aMarkov chain. These chapters thus consider
models that are both standard and fairly general for each setting. In this chapter we
consider discrete time models that are somewhat less standard, with the aim being
to show how the weak convergence methodology can be adapted. The examples
presented are just for illustrative purposes, and processes featuring other challenges
are referenced at the end of the chapter.

We first consider occupancy models, which were originally introduced as simpli-
fied models for problems from physics. There are other interesting problems, such as
the “coupon collector’s problem” [165], that can be formulated in terms of occupancy
models. In principle these problems can be treated using combinatorics. However,
when the number of objects (e.g., distinct coupons) is large, combinatorial meth-
ods become numerically difficult, and large deviation approximations and related
numerical methods can be more tractable. One can reformulate many occupancy
problems in terms of Markov models of the type considered in Chap. 4, but owing
to the fact that certain transition probabilities can be arbitrarily small the processes
do not satisfy the conditions of that chapter. As will be discussed, the large deviation
upper bound can be proved using essentially the same argument as in Chap. 4, but
the lower bound requires a more careful analysis near points where the transition
probabilities vanish [see Sect. 7.2.4]. A positive feature of these models is that for
many occupancy-type problems one can solve to a fairly explicit degree for the opti-
mal trajectories in variational problems that result from a large deviations analysis,
and one can also construct explicit solutions to the related partial differential equa-
tions [see Sect. 7.2.5]. These, in turn, can be used to construct subsolutions for the
accelerated Monte Carlo schemes discussed in Chaps. 14–17.
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The second class of models, discussed in Sect. 7.3, are discrete time recursive
Markov models with two time scales. Such models and their continuous time coun-
terparts occur in many applications, such as stochastic approximations [182] and
chemical reaction networks [4]. Owing to a time scale separation, the large deviation
properties of empirical measures are relevant, and these models can be analyzed
using a combination of the arguments used for the small noise model of Chap. 4 and
those applied in Chap. 6.

7.2 Occupancy Models

Occupancy problems center on the distribution of r balls that have been thrown into
n urns. In the simplest scenario each ball is equally likely to fall in any of the urns,
i.e., each ball is independently assigned to a given urn with probability 1/n. In this
case, we say that the urn model usesMaxwell-Boltzmann (MB) statistics. This model
has been studied for decades and applied in diverse fields such as computer science,
biology, and statistics. See [53, 154, 165] and the references therein. However, balls
may also enter the urns in a nonuniform way. An important generalization is to allow
the likelihood that the ball lands in a given urn to depend on its contents prior to the
throw, as in Bose-Einstein (BE) and Fermi-Dirac (FD) statistics [129, 165, 219].

For MB statistics, many results have been obtained using “exact” methods. For
example, combinatorial methods are used in [130] and methods that use generating
functions are discussed in [165]. Although they do not directly involve approxima-
tions, the implementation of these methods can be difficult. For example, in combi-
natorial methods one has to deal with the difference of events using the inclusion-
exclusion formula and the resulting computations can involve large errors. In the
moment generating function approach in [165] similar difficulties occur. Large devi-
ations approximations can give a useful alternative to both of these approaches. As
we have discussed previously for other models, using large deviation theory one
can often obtain useful qualitative insights. This is particularly true for problems of
occupancy type, since in many cases variational problems involving the rate function
can be solved explicitly.

In this section we consider a parametric family of models, of which the previously
mentionedMB, BE and FD statistics are all special cases.We assume there are n urns
and that �Tn� balls are thrown into them (where �s� denotes the integer part of s),
and analyze the asymptotic properties as n goes to ∞. (In contrast with previous
chapters we do not simplify notation by considering just the case T = 1. The reason
for this is because there can be a link between the parameter that characterizes the
particular statistics of the model and a limit on corresponding number of balls that
may be thrown,which can constrain the value of T away from1.)A typical problemof
interest is to characterize the large deviation asymptotics of the empirical distribution
after all the balls are thrown. For example, one may wish to estimate the probability
that at most half of the urns are empty after all the balls are thrown. A direct analysis
of this problem is hard, and instead we lift the problem to the process level and
analyze the large deviation asymptotics at this process level.
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Although we formulate occupancy models in terms of a stochastic recursive equa-
tion of the same general type as considered in Chap. 4, there are several interesting
features, both qualitative and technical, that distinguish occupancy models from the
processes studied in Chap. 4. The most significant of these as far as the proof is
concerned are certain vanishing transition probabilities. A second very interesting
feature which was commented on previously is that one can explicitly solve the
variational problems that arise in the process level approximations. Such explicit
formulas have many uses and add significantly to the practical value of the large
deviation approximations.

In Sect. 7.2.1 the parametric family of occupancy problem is described in detail. A
dynamical characterization of the occupancy model is given, and the representation
for exponential integrals is stated. In Sect. 7.2.2 we prove the lower bound for the
variational problem, which corresponds to the large deviation upper bound. Section
7.2.3 analyzes the rate function I , and proves properties that will allow us to deal
with the technical difficulties of the vanishing transition probabilities. In Sect. 7.2.4,
we prove the variational upper bound which corresponds to the large deviation lower
bound. Finally, in Sect. 7.2.5 we give an explicit formula for the minimum of the rate
function subject to a terminal constraint.

7.2.1 Preliminaries and Main Result

In this section, we formulate the problem of interest and state the LDP. The proof is
given in sections that follow.

The general occupancy problem has the same structure as the MB occupancy
problem, except that in the general problem urns are distinguished according to the
number of balls contained therein. The full collection of models will be indexed by
a parameter a. This parameter takes values in the set (0,∞] ∪ {−1,−2, . . .}, and
its interpretation is as follows. An urn is said to be of category i if it contains i
balls. A ball is thrown in any given urn with probability proportional to a + i , where
i denotes the category of the urn. In particular, suppose that a ball is about to be
thrown, and that any two urns (labeled say A and B) are selected. Suppose that urn A
is of category i , while B is of category j . Then the probability that the ball is thrown
into urn A, conditioned on the state of all the urns and that the ball is thrown into
either urn A or B, is

a + i

(a + i) + (a + j)
.

When a = ∞ we interpret this to mean that the two urns are equally likely. Also,
when a < 0 we use this ratio to define the probabilities only when 0 ≤ i ∨ j ≤
−a and i < −a or j < −a, so the formula gives a well defined probability. The
probability that a ball is placed in an urn of category −a is 0. Thus under this model,
urns can only be of category 0, 1, . . . ,−a, and we only throw balls into categories
0, 1, . . . ,−a − 1. Note that the case a = 0 is in some sense not interesting, in that as
soon as there is an urn of category j > 0 all balls will be placed in that urn. Likewise
the cases a < 0 but not an integer are hard to interpret.
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In this setup, certain special cases are distinguished. The cases a = 1, a = ∞,
a ∈ −N correspond to Bose-Einstein statistics, Maxwell-Boltzmann statistics, and
Fermi-Dirac statistics, respectively.

Suppose that before we throw a ball there are already tn balls in all the urns,
and further suppose that the occupancy state is (x0, x1, . . . , xJ+). Here xi , i =
0, 1, . . . , J denotes the fraction of urns that contain i balls, and xJ+ denotes the
fraction containing more than J balls. When a < 0, we will take J = −a − 1. The
“un-normalized” or “relative” probability of throwing into a category i urn with
i ≤ J is simply (a + i)xi . Let us temporarily abuse notation, and let xJ+1, xJ+2, . . .

denote the exact fraction in each category i with i > J . Since there are tn balls in
the urns before we throw,

∑∞
i=0 i xi = t. Thus the (normalized and true) probabil-

ity that the ball is placed in an urn that contains exactly i balls, i = 0, 1, . . . , J , is
(a + i)xi/(a + t), and the probability that the ball is placed in an urn that has more
than J balls is 1 −∑J

j=0[(a + j)/(a + t)]x j .

An explicit construction of this process is as follows. To simplify, we assume
the empty initial condition, i.e., all urns are empty. One can consider other initial
conditions, with only simple notational changes in the results to be stated below.
We introduce a time variable t that ranges from 0 to T . At a time t that is of the
form l/n, with 0 ≤ l ≤ �nT � an integer, l balls have been thrown. Let Xn(t) =
(Xn

0(t), X
n
1(t), . . . X

n
J (t), X

n
J+(t))′ be the occupancy state at that time. As noted

previously, Xn
i (t) denotes the fraction of urns that contain i balls at time t, i =

0, 1, . . . , J , and Xn
J+(t) the fraction of urns that contain more than J balls. As usual,

the definition of Xn is extended to all t ∈ [0, T ] not of the form l/n bypiecewise linear
interpolation. Note that for each t Xn(t) is a probability vector in R

J+2. Denoting
�

.= {0, 1, . . . , J + 1} and with an abuse of notation

P(Λ)
.=
{

x ∈ R
J+2 : xi ≥ 0, 0 ≤ i ≤ J + 1 and

J+1∑

i=0

xi = 1

}

,

then for any t ∈ [0, T ] , Xn(t) ∈ P(Λ).Thus Xn takes values inC ([0, T ] : P(Λ)).
We equip C ([0, T ] : P(Λ)) with the usual supremum norm and onP(Λ) we take
theL 1-norm, which will be denoted by ‖·‖1.

It will be convenient to work with the following dynamical representation. For
x ∈ R

J+2 and t ∈ [0,−a1{a<0} + ∞1{a>0}) define the vector ρ(t, x) ∈ R
J+2 by

ρk(t, x) = a + k

a + t
xk, for k = 0, 1, . . . , J, (7.1)

ρJ+1(t, x) = 1 −
J∑

k=0

a + k

a + t
xk,

where, as before, when a = ∞ the fraction (a + k)/(a + t) is taken to be 1. Then
ρ·(x, t) will play a role analogous to that of θ(·|x) in Chap. 4 in identifying the
conditional distribution of the increment of the process. Differences are that here
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there is time dependence, and also that the increment is identified by (but not equal
to) the k index in ρk(t, x) [see (7.3)]. A straightforward calculation shows that if

x ∈ P(Λ) and
J∑

k=0

kxk ≤ t, (7.2)

then ρJ+1(t, x) ≥ 0 and ρ(t, x) is therefore a probability vector in R
J+2, i.e.,

ρ(t, x) ∈ P(Λ). Also ρ(t, x) is Lipschitz continuous in (t, x) ∈ [0, T ] × P(Λ),
as long as T < −a when a ∈ −N. We then construct a family of independent ran-
dom functions {

νn
i (·) : i = 0, 1, . . . , �nT � − 1, �nT �}

that take values in
Λ

.= {0, 1, . . . , J + 1}

and with distributions

P
{
νn
i (x) = k

} = ρk (i/n, x) , k ∈ �. (7.3)

The mapping that takes an index k ∈ Λ into a change in the occupancy numbers is

γ [k] = ek+1 − ek, 0 ≤ k ≤ K , γ [J + 1] = 0, (7.4)

where for j = 0, 1, . . . , J + 1, e j denotes the unit vector in R
J+2 with 1 in the

j + 1th coordinate. Finally, we define Xn
l recursively by Xn

0 = (1, 0, . . . , 0)′ = e0
and

Xn
i+1 = Xn

i + 1

n
γ [νn

i

(
Xn
i

)].

For the continuous time interpolation let Xn(i/n) = Xn
i , and for t not of the form

i/n define Xn(t) by piecewise linear interpolation. Observe that the conditional dis-
tribution of the increment

{
νn
i

(
Xn
i

)}
is determined by ρ

(
i/n, Xn

i

)
. Thus the process

Xn at the discrete times i/n is Markovian and will have the same distribution as the
occupancy process described previously.

Define the J + 2 by J + 2 matrix

M
.=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 0 · · · 0 0 0
1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
...

...
... · · · ...

...
...

0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Let ϕ ∈ C ([0, T ] : P(Λ)) be given with ϕ0(0) = 1. Suppose there is a Borel mea-
surable function θ : [0, T ] → P(Λ) such that for all t ∈ [0, T ]

ϕ(t) = ϕ(0) +
∫ t

0
Mθ(s)ds. (7.5)

Note that Mθ = ∑K
k=0 γ [k]θk if θ ∈ P(�). For i = 0, 1, . . . J (resp. i = J + 1)

we interpret θi (s) as the rate at which balls are thrown into urns that contain i balls
(resp. greater than J balls) at time s. The rates θ(s) are unique in the sense that if
another θ̃ : [0, T ] → P(Λ) satisfies (7.5) then θ̃ = θ a.e. on [0, T ] . We call ϕ a
valid occupancy state process if there exists θ : [0, T ] → P(Λ) satisfying (7.5).
In this case θ is called the occupancy rate process associated with ϕ. Using the
observation that

∑J+2
k=1 (k − 1)Mkj = 1 for all j = 1, . . . , J + 1, it is easy to check

that if ϕ is valid then ϕ(s) satisfies (7.2) with x replaced by ϕ(s) and t by s, for all
s ∈ [0, T ]. This shows that ρ (s, ϕ(s)) ∈ P(Λ).

When two probability vectors θ and ν ∈ P(Λ) appear in the relative entropy
function, we interpret them as probability measures on {0, 1, . . . , J, J + 1}, and
thus

R (θ ‖ν )
.=

J+1∑

k=0

θk log
θk

νk
.

As observed before, when ϕ is valid, ρ (s, ϕ(s)) ∈ P(Λ), so R(θ(s) ‖ρ (s, ϕ(s)) )
is well defined for all s ∈ [0, T ]. For such ϕ define

I (ϕ)
.=
∫ T

0
R(θ(s) ‖ρ (s, ϕ(s)) )ds. (7.6)

If ϕ is not valid then define I (ϕ) = ∞.
As usual, representation formulas for exponential integrals will be used to prove

the Laplace principle. The representation needed here is a special case of the one
proved in Chap. 4, and we therefore just state the form of the representation. The
controlled process X̄ n(t) is constructed as follows. The conditional distributions of
controlled random integers

{
ν̄n
i

}
will be specified by a sequence

{
μ̄n
i

}
of controls.

Each μ̄n
i is measurable with respect to the σ -algebra generated by {ν̄n

j }0,1,...,i−1 , and
identifies the conditional distribution of ν̄n

i . The controlled process is determined for
t of the form j/n by X̄ n

0 = e0 and

X̄ n
i+1 = X̄ n

i + 1

n
γ [ν̄n

i ] for i = 0, 1, . . . , �nT � ,

with γ as in (7.4). The random quantities X̄ n
i and ν̄n

i are defined recursively in the
order

X̄ n
0 , ν̄

n
0 , X̄

n
1 , ν̄

n
1 , X̄

n
2 , . . . , X̄

n
�nT �+1,
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We set X̄ n(i/n) = X̄ n
i and use piecewise linear interpolation elsewhere.

Define
rni ({k}) .= ρk

(
i/n, X̄ n

i

)
,

where ρ (t, x) is given in (7.1).

Remark 7.1 As noted previously, there is an abuse of notation, in that we sometimes
think of rni as the probability vector with components rni (k) but at other times as the
probability measure with values rni ({k}). To reinforce the fact that certain probability
measures are on the discrete set �, we write such measures with the differential
dk. Also, note that k will appear both as a subscript, as in ρk

(
i/n, X̄ n

i

)
, and as an

argument, as in rni ({k}).
Let Ln, L̄n, μ̄n and λn be measures on {0, 1, . . . , J + 1} × [0, T ] defined as in

Construction 4.4, except that λn uses ρ·
(
i/n, X̄ n

i

)
in place of θ(·|X̄ n

i ), and the mea-
sures are of mass T and defined on subsets of [0, T ] rather than [0, 1] in the second
marginal. Specifically, for A ⊂ {0, 1, . . . , J + 1} and B ∈ B([0, T ]),

Ln(A × B)
.=
∫

B
Ln(A|t)dt, L̄n(A × B)

.=
∫

B
L̄n(A|t)dt, (7.7)

μ̄n(A × B)
.=
∫

B
μ̄n(A|t)dt, λn(A × B)

.=
∫

B
λn(A|t)dt, (7.8)

where for t ∈ [i/n, i/n + 1/n), i = 0, . . . , �nT �

Ln(A|t) .= δvni (X
n
i )
(A), L̄n(A|t) .= δv̄ni (A),

μ̄n(A|t) .= μ̄n
i (A), λn(A|t) .= rni (A)

(7.9)

The randommeasures Ln, L̄n, μ̄n and λn take values in the collection of nonnegative
measures onP(Λ) × [0, T ] of totalmass T . The topology used is theweak topology,
where these measures are renormalized to have mass one, i.e., probability measures,
and since P(Λ) × [0, T ] is compact this space is compact as well. If G is any
bounded measurable function the space to R, then

− 1

n
log E exp

[−nG(Ln)
] = inf{μ̄n

i }
E

[

G
(
L̄n
)+ 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

, (7.10)

where the infimum is over all the admissible control sequences
{
μ̄n
i

}
. Since

Xn(t) = e0 +
∫ t

0
γ [k]Ln(dk × ds), (7.11)

this also gives a representation for functions of Xn: for any bounded and continuous
F : C ([0, T ] : P(Λ)) → R,
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− 1

n
log E exp

[−nF(Xn)
] = inf{μ̄n

i }
E

[

F(X̄ n) + 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

. (7.12)

Here we have used the fact that (7.11) defines a measurable map that takes Ln to Xn ,
and let X̄ n be the image of L̄n under that map.

A convention for the case a ∈ −N. When a ∈ −N it is only possible to throw
balls into the categories 0, 1, . . . ,−a − 1, and the only possible categories are
0, 1, . . . ,−a. Thus if there are n urns there can at most be −an balls thrown, and
therefore T ≤ −a. When T = −a all the urns have exactly −a balls, which is not
an interesting case to study. As a consequence, throughout this chapter we assume
T < −a. Also, as was noted previously, because of the restriction on the possible
categories we (without loss) assume that J = −a − 1. Thus throughout this section
for a < 0 we assume

T < −a, J = −a − 1. (7.13)

7.2.2 Laplace Upper Bound

In this section, we prove the variational lower bound

lim inf
n→∞ −1

n
log E exp

[−nF(Xn)
] ≥ inf

ϕ∈C ([0,T ]:P (�))
[I (ϕ) + F(ϕ)] ,

which corresponds to the Laplace upper bound. By (7.12) it is enough to show that

lim inf
n→∞ inf{μ̄n

i }
E

[

F
(
X̄ n
)+ 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

≥ inf
ϕ∈C ([0,T ]:P (�))

[I (ϕ) + F(ϕ)] .

The upper bound is actually covered by the analysis of Chap. 4, since the occupancy
model satisfies Condition 4.3 if one appends time as a state variable. However, for
completeness we include the (short) proof here.

Recall the definitions in (7.8) and (7.9). Note that because relative entropy is
nonnegative and (�nT � + 1) /n ≥ T ,

1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

) ≥
∫ T

0
R
(
μ̄n(·|t) ∥∥λn(·|t)) dt. (7.14)

As usual, we will need to understand conditions for tightness, and how the weak
limits of L̄n, μ̄n, λn and X̄ n are all related. As noted previously, tightness of the first
three is automatic since they take values in a compact space. In addition, the process
X̄ n takes values in a space of continuous trajectories that start at e0 and which are
Lipschitz continuous with the Lipschitz constant bounded by
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∥
∥
∥
∥ sup
0≤t≤T

∫

γ [k]L̄n(dk|t)
∥
∥
∥
∥
1

≤ sup
k∈�

‖γ [k]‖1 ≤ 2,

where ‖·‖1 is the L 1-norm on R
J+2. Since the space of all such trajectories is also

compact, {X̄ n} is also automatically tight. The relations between the limits can be
determined using the same argument as in Lemma 4.12, save that ρ· (t, x), which
plays the role of θ(·|x) in Chap. 4, is here time dependent, and whereas the dynamics
of Chap. 4 take the form (4.1), if we consider ρ· (t, x) as determining the noises that
drive the system then these noises enter the system only after passing through γ [·]
as in (7.11).

Rewritten for these differences, the analogue of Lemma 4.12 is as follows.

Lemma 7.2 Consider the sequence {(X̄ n, L̄n, μ̄n, λn)}n∈N as defined in (7.7) and
(7.8), and with X̄n as in (7.11) with Ln replaced by L̄n. Let {(X̄ n, L̄n, μ̄n, λn)} denote
a weakly converging subsequence, which for notational convenience we again label
by n, with limit (X̄ , L̄, μ̄, λ). Then w.p.1 L̄ = μ̄, and μ̄(dk × dt) can be decomposed
as μ̄(dk|t)dt, where μ̄(dk|t) is a stochastic kernel on {0, 1, . . . , J, J + 1} given
[0, T ], and w.p.1 for all t ∈ [0, T ],

X̄(t) = e0 +
∫

Rd×[0,t]
γ [k]μ̄(dk × ds) (7.15)

= e0 +
∫

Rd×[0,t]
γ [k]μ̄(dk|s)ds.

In addition, λ and X̄ are related through

λ({k} × B) =
∫

B
ρk(t, X̄(t))dt, k ∈ {0, 1, . . . , J + 1}, B ∈ B([0, T ]). (7.16)

Theorem 7.3 Define I by (7.6) for any of the occupancy models described in Sect.
7.2.1. If F : C ([0, T ] : P(�)) → R is bounded and continuous, then

lim inf
n→∞ −1

n
log E exp

[−nF(Xn)
] ≥ inf

ϕ∈C ([0,T ]:P (Λ))
[I (ϕ) + F(ϕ)] .

Proof Owing to the representation formula (7.10) it is enough to show that

lim inf
n→∞ inf{μ̄n

i }
E

[

F
(
X̄ n
)+ 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

≥ inf
ϕ∈C ([0,T ]:P (�))

[I (ϕ) + F(ϕ)] .

(7.17)
Consider any admissible sequence

{
μ̄n
i

}
. Then (7.14) implies
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E

[

F
(
X̄ n
)+ 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

≥ E

[

F
(
X̄ n
)+

∫ T

0
R
(
μ̄n(· |t ) ∥∥λn(·|t)) dt

]

= E
[
F
(
X̄ n
)+ T R

(
μ̄n/T

∥
∥λn/T

)]
.

Applying Fatou’s lemma and using the lower semicontinuity of relative entropy,

lim inf
n→∞ E

[

F
(
X̄ n
)+ 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

≥ lim inf
n→∞ E

[
F
(
X̄ n
)+ T R

(
μ̄n/T

∥
∥λn/T

)]

≥ E
[
F
(
X̄
)+ T R (μ̄/T ‖λ/T )

]
(7.18)

= E

[

F
(
X̄
)+

∫ T

0
R
(
μ̄(· |t ) ∥∥ρ·(t, X̄(t))

)
dt

]

.

If θ(s) = ∑J+1
k=0 ekμ̄({k} |s ), then using Mθ(s) = ∑J

k=0 γ [k]θk(s) we see from
Lemma 7.2 that X̄(t) = e0 + ∫ t

0 Mθ(s)ds. Therefore by the definition (7.6) of the
rate function I (ϕ),

∫ T

0
R
(
μ̄(· |t ) ∥∥ρ·(t, X̄(t))

)
dt = I (X̄).

Thus (7.18) yields (7.17), and completes the proof of the Laplace upper bound. ��

7.2.3 Properties of the Rate Function

In this section we prove important properties of the rate function, some of which will
be used later on to prove the Laplace lower bound.

Theorem 7.4 Let I be defined as in (7.6). Then for any K ∈ [0,∞) the level set
{ϕ ∈ C ([0, T ] : P(Λ)) : I (ϕ) ≤ K } is compact.
Proof By adding time as a state variable we see that the occupancy model satisfies
Condition 4.3 of Chap. 4. Thus the conclusion follows from Theorem 4.13.

Theorem 7.5 (Zero Cost Trajectory) For t ∈ [0, T ] let f (t)
.= (

1 + t
a

)−a

when a < ∞ and f (t)
.= e−t in the case a = ∞. Define

φ̄i (t)
.= (−t)i

i ! f (i)(t) for 0 ≤ i ≤ J,

where f (i)(t) is the i th derivative of f (t), and let φ̄J+1(t)
.= 1 −∑J

i=0 φ̄i (t). Then
I (φ̄) = 0.
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Proof We first assume a �= ∞. It is easy to check that for any 0 ≤ i < ∞,

(−t)i

i ! f (i)(t) ≥ 0 and
∞∑

i=0

(−t)i

i ! f (i)(t) = 1. (7.19)

Thus φ̄ as defined in the statement of the theorem is indeed a probability vector.
It is also a continuously differentiable function and satisfies

∑J
k=0 φ̄k(t) ≤ t for all

t ∈ [0, T ]. We will show that

d

dt
φ̄(t) = Mρ(t, φ̄(t)). (7.20)

If so, then the occupancy rate process θ̄ associated to φ̄ is ρ(t, φ̄(t)), and thus by the
definition of rate function

I (φ̄) =
∫ T

0
R
(
θ̄ (t)

∥
∥ρ(t, φ̄(t))

)
dt = 0.

To show (7.20) we calculate φ̄i (t) = (−t)i

i ! f (i)(t) for 0 ≤ i ≤ J explicitly:

φ̄i (t) = t i

i !
∏i−1

j=0(a + j)

ai

(

1 + t

a

)−a−i

.

Hence the derivative satisfies

d

dt
φ̄i (t) = a + i − 1

a + t
φ̄i−1(t) − a + i

a + t
φ̄i (t)

= ρi−1(t, φ̄(t)) − ρi (t, φ̄(t)) = (Mρ(t, φ̄(t))i ,

where ρ−1 is taken to be 0 and the second equality is due to the definition of ρ(t, φ̄(t))
in (7.1). The case of φJ+1(t) follows on observing that

d

dt
φ̄J+1(t) = −

J∑

i=0

d

dt
φ̄i (t) = −

J∑

i=0

(Mρ(t, φ̄(t))i = (Mρ(t, φ̄(t))J+1,

where the last identity is a consequence of the fact that 1T M = 0.
Next we consider the case when a = ∞. In this case f (t) = e−t , and (7.20) is

immediate on observing that φ̄i (t) = t i e−t/ i ! and so d
dt φ̄i (t) = φ̄i−1(t) − φ̄i (t). ��

Lemma 7.6 Let φ̄ be the zero-cost trajectory from Theorem 7.5. For every choice
of the parameter a there exist δ > 0 and 0 < K < ∞ so that

φ̄i (t) ≥ δt K (7.21)

for any 0 ≤ i ≤ J + 1 and t ∈ [0, T ].
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Proof Note that when a > 0, 0 ≤ i ≤ J and 0 ≤ t ≤ T ,

φ̄i (t) = t i

i !
∏i−1

j=0(a + j)

ai

(

1 + t

a

)−a−i

≥ t i

J !
(

1 + T

a

)−a−J

,

and because of (7.19) we have

φ̄J+1(t) = 1 −
J∑

i=0

φ̄i (t) ≥ (−t)J+1

(J + 1)! f
(J+1)(t) ≥ t J+1

(J + 1)!
(

1 + T

a

)−a−J−1

.

Thus in this case, with δ̄ = 1
(J+1)!

(
1 + T

a

)−a−J−1
,

φ̄i (t) ≥ δ̄t i , for all i = 0, 1, . . . , J + 1, t ∈ [0, T ]. (7.22)

For the case a < 0, by (7.13) T < −a and a = −J − 1. If 0 ≤ i ≤ J , then since
a + j ≤ −1 for each 0 ≤ j ≤ J ,

φ̄i (t) = t i

i !
∏i−1

j=0(a + j)

ai

(

1 + t

a

)−a−i

≥ t i

J !
1

(−a)i

(

1 + t

a

)−a−i

.

Moreover since a < 0, t/a ∈ (−1, 0) for t ∈ [0, T ], and −(a + i) ≥ 1, for each
i ≤ J ,

(
1 + t

a

)−a−i
is monotone decreasing in t ∈ [0, T ]. Therefore

φ̄i (t) ≥ t i

J !
(

−1

a

)i (

1 + T

a

)−a−i

.

For φ̄J+1(t) we have

φ̄J+1(t) = 1 −
J∑

i=0

φ̄i (t)

≥ (−t)J+1

(J + 1)! f
(J+1)(t)

= t J+1

(J + 1)!
∏J

j=0(a + j)

aJ+1

≥ t J+1

(J + 1)!
(

−1

a

)J+1

.

Thus in this case (7.22) holds with δ̄ = (−a)−J−1/(J + 1)!.
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Finally, for the case a = ∞, using the fact that φ̄i (t) = t i e−t/ i ! for i ≤ J and
φ̄J+1(t) ≥ t J+1e−t/(J + 1)!, we have that (7.22) holds with δ̄ = e−T /(J + 1)!. The
result now follows on taking K = J + 1 and δ = δ̄(T−J−1 ∧ 1). ��

For f : [0, T ] → R
J+2, let ‖ f ‖∞,T

.= sup0≤t≤T ‖ f (t)‖1, where ‖·‖1 as before is
theL 1 norm on R

J+2.

Lemma 7.7 For a given value of a let the parameters δ and K be as in (7.21).
Let ϕ ∈ C ([0, T ] : P(Λ)) satisfy I (ϕ) < ∞. Then for any ε > 0 there exists ϕε ∈
C ([0, T ] : P(Λ)) such that

(a) I (ϕε) ≤ I (ϕ),
(b) ‖ϕ − ϕε‖∞,T ≤ ε,
(c) ϕε

i (t) ≥ εδt K for all t ∈ [0, T ] and i = 0, 1, . . . J, J + 1.

Proof For any ε > 0 and ϕ ∈ C ([0, T ] : P(Λ)), let

ϕε = (1 − ε) ϕ + εϕ̄,

where ϕ̄ is the zero cost trajectory from Theorem 7.5. Then ϕε ∈ C ([0, T ] : P(Λ)).
From the definition ofρ(t, x) in (7.1) it follows thatρ(t, x) has the following linearity
property in x . Suppose we are given t ∈ [0, T ] and x, x̃ ∈ P(Λ) that satisfy (7.2).
Then for any α ∈ [0, 1], αx + (1 − α)x̃ satisfies (7.2) and

αρ(t, x) + (1 − α)ρ(t, x̃) = ρ(t, αx + (1 − α)x̃).

Hence recalling the definition of I (ϕ) in (7.6) and the joint convexity of relative
entropy, we find that I (ϕ) is convex in ϕ. Therefore

I (ϕε) ≤ (1 − ε) I (ϕ) + ε I (ϕ̄) = (1 − ε) I (ϕ) ≤ I (ϕ).

Since ‖ϕ − ϕ̄‖∞,T ≤ 2

‖ϕ − ϕε‖∞,T ≤ ε ‖ϕ − ϕ̄‖∞,T ≤ 2ε,

and also from Lemma 7.6, ϕε
i (t) ≥ εϕ̄i (t) ≥ εδt K . ��

The final theorem of this section is useful in proving the Laplace lower bound.

Definition 7.8 We call an occupancy path ϕ ∈ C ([0, T ] : P(Λ)) a good path if
ϕ(0) = e0 and there exist constants 0 < δ′, K ′ < ∞ so that ϕi (t) ≥ δ′t K ′

for t ∈
[0, T ] and 0 ≤ i ≤ J + 1.

Definition 7.9 We call an occupancy rate control θ : [0, T ] → P(Λ) a good
control if (i) there exist a finite number of intervals [ri , si ], 1 ≤ i ≤ m so that
[0, T ] = ∪m

i=1[ri , si ], and θ(t) is a constant vector on each (ri , si ), (ii) there exists
0 < σ < T so that θ is “pure” on [0, σ ), in the sense that for any interval of constancy
(r, s) ⊂ [0, σ ), there exists i, 0 ≤ i ≤ J + 1 such that θi (t) = 1 for t ∈ (r, s).
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Theorem 7.10 For a good path ϕ ∈ C ([0, T ] : P(Λ)) assume I (ϕ) < ∞. Let
δ′, K ′ be the associated constants in the definition of a good path. For any ε > 0
there exists a good control θ∗ and associated σ > 0 so that if ϕ∗ is the occupancy
path associated to θ∗, namely (7.5) holds with (ϕ, θ) replaced by (ϕ∗, θ∗), then there
is δ′′ ∈ (0,∞) such that

(a) I (ϕ∗) ≤ I (ϕ) + ε,
(b) ‖ϕ∗ − ϕ‖∞,T ≤ ε,
(c) if t < σ and θ∗

i (t) = 1 then ϕ∗
i (t) ≥ δ′′σ K ′

.

Proof For a σ ∈ (0, T ) that will be specified later on, we construct a pure control
θ∗(t), t ∈ [0, σ ) as follows. For 0 ≤ i ≤ J let θ∗

i (t) = 1 if

i∑

j=0

jϕ j (σ ) + i
J+1∑

k=i+1

ϕk(σ ) ≤ t <

i∑

j=0

jϕ j (σ ) + (i + 1)
J+1∑

k=i+1

ϕk(σ ),

and let θ∗
J+1(t) = 1 if

J∑

j=0

jϕ j (σ ) + (J + 1)ϕJ+1(σ ) ≤ t < σ. (7.23)

Observe that the component ϕ∗
i for i > 0 will increase only during the interval when

θ∗
i−1(t) = 1, and that it decreases to its final value while θ∗

i (t) = 1. Observe also that
ϕ∗(σ ) = ϕ(σ). Hence for t < σ , if θ∗

i (t) = 1 then ϕ∗
i (t) ≥ ϕ∗

i (σ ) ≥ δ′σ K ′
.

Now assume that 0 < a < ∞. For i and t such that t < σ and θ∗
i (t) = 1,

ρi (t, ϕ
∗(t)) = a + i

a + t
ϕ∗
i (t) ≥ a

a + T
δ′σ K ′ = δ′′σ K ′

, (7.24)

where δ′′ .= a
a+T δ′.

Recall that when a < 0we assumewithout loss that J = −a − 1, and that no balls
are placed in urns that currently contain more than J balls. Thus ρJ+1(t, φ(t)) = 0
and consequently θJ+1(t) = 0 for all t . From (7.5) and recalling that

∑J+1
j=0 jM( j+1),i

= 1 for all i = 1, . . . , J + 1, it follows that

J+1∑

j=0

jϕ j (σ ) = σ.

It then follows from (7.23) that θ∗
J+1(t) = 0 for all t ∈ [0, σ ]. For 0 ≤ i ≤ J , we

have, when t < σ and θ∗
i (t) = 1, that

ρi (t, ϕ
∗(t)) ≥ a + i

a + t
δ′σ K ′ ≥ a + J

a + t
δ′σ K ′ ≥ −1

a
δ′σ K ′

.
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Thus for 0 ≤ i ≤ J , with δ′′ = −a−1δ′, ρi (t, ϕ∗(t)) ≥ δ′′σ K ′
when θ∗

i (t) = 1 and
t ∈ [0, σ ].

Finally, when a = ∞ we can choose δ′′ = δ′ and (7.24) will hold. Thus in all
cases (7.24) holds with some δ′′ > 0, that is independent of the choice of σ .

This completes the construction of θ∗ and ϕ∗ on [0, σ ). The lower bounds on the
ρi and the fact that θ∗ is pure on [0, σ ] imply

∫ σ

0
R
(
θ∗(t)

∥
∥ρ(t, ϕ∗(t))

)
dt ≤ −σ log

(
δ′′σ K ′)

.

Now choose σ > 0 small enough so that

−σ log
(
δ′′σ K ′) ≤ ε/2 and sup

t∈[0,σ )

∥
∥ϕ∗(t) − ϕ(t)

∥
∥
1 ≤ ε.

Note that the latter property can be satisfied by choosing σ sufficiently small since
ϕ(0) = ϕ∗(0) = e0 implies supt∈[0,σ ] ‖ϕ(t) − ϕ∗(t)‖1 ≤ (J + 1)|ϕ0(0) − ϕ0(σ )|.
Also, recall that under the construction ϕ∗(σ ) = ϕ(σ).

The construction of controls on [σ, T ] is easier. Let θ(t) be the rate process
associated with ϕ(t) by (7.5). For N ∈ N we partition [σ, T ] into N subintervals
of length cN = (T − σ) /N . For each s that σ + lcN ≤ s ≤ σ + (l + 1) cN where
0 ≤ l ≤ (N − 1), let

θ(N )(s) =
∫ σ+(l+1)cN
σ+lcN

θ(t)dt

cN
.

Let ϕ(N ) be the occupancy path associated with θ(N ) over the interval [σ, T ], i.e.

ϕ(N )(t) = ϕ(N )(σ ) +
∫ t

σ

Mθ(N )(s)ds, t ∈ [σ, T ], ϕ(N )(σ ) = ϕ(σ).

Then it is easy to check that ϕ(N )(t) coincides with ϕ(t) on the “partition points”
in [σ, T ] , i.e., those points of the form {σ + lcN : 0 ≤ l ≤ (N − 1)} . Thus, since
‖θ(t)‖1 = 1, for N large enough [e.g., N > (T − σ) /ε], supt∈[σ,T ] ‖ϕ(N )(t) −
ϕ(t)‖1 ≤ ε.

Because ϕ(t) is good, when t > σ, we have ϕi (t) ≥ δ′t K ′ ≥ δ′σ K ′
> 0 for all

0 ≤ i ≤ J + 1. Therefore ϕ(t) is uniformly bounded away from the boundary after
time σ , and thus for sufficiently large N , so is ϕ(N )(t). This in particular says that
for such N , t ∈ [σ, T ] , ρ j (t, ϕ(N )(t)) is uniformly bounded away from 0 for j =
0, . . . , J + 1 when a > 0 and for j = 0, . . . , J when a < 0. In the latter case, both
ρJ+1(t, ϕ(N )(t)) and θ

(N )
J+1(t) are identically 0.

As N → ∞, θ (N )(t) converges to θ(t) and ϕ(N )(t) converges to ϕ(t) for a.e.
t ∈ [0, T ]. Using that ρ is bounded away from zero and θ(N ) is bounded above, by
the dominated convergence theorem
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lim
N→∞

∫ T

σ

R(θ (N )(t)
∥
∥ρ(t, ϕ(N )(t)) )dt =

∫ T

σ

R (θ(t) ‖ρ(t, ϕ(t)) ) dt.

Now choose N < ∞ large enough so that the integrals differ by less than ε/2. Let
θ∗ be defined as it was previously on [0, σ ], and set it equal to θ(N ) on [σ, T ]. Let
ϕ∗ denote the corresponding occupancy path over [0, T ]. Then

I (ϕ∗) =
∫ T

σ

R(θ (N )(t)
∥
∥ρ(t, ϕ(N )(t)) )dt +

∫ σ

0
R
(
θ∗(t)

∥
∥ρ(t, ϕ∗(t))

)
dt

≤
∫ T

σ

R (θ(t) ‖ρ(t, ϕ(t)) ) dt + ε/2 + ε/2

≤ I (ϕ) + ε.

This completes the proof. ��

7.2.4 Laplace Lower Bound

Theorem 7.11 Define I by (7.6) for any of the occupancy models described in Sect.
7.2.1. If F : C ([0, T ] : P(Λ)) → R is bounded and continuous, then

lim sup
n→∞

−1

n
log E exp

[−nF(Xn)
] ≤ inf

ϕ∈C ([0,T ]:P (Λ))
[I (ϕ) + F(ϕ)] .

Proof According to (7.12), the theorem follows if

lim sup
n→∞

inf{μ̄n
i }
Ē

[

F
(
X̄ n
)+ 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

≤ inf
ϕ∈C ([0,T ]:P (Λ))

[I (ϕ) + F(ϕ)] .

As was the case with Chap. 4, the main difficulty in the proof of the lower bound is
that controls and controlled processes should be constructed so that the dominated
convergence theorem can be used. Since vanishing transition probabilities can make
relative entropy costs diverge some care is required, but the constructions of the last
sectionwill very carefully control the rates at which balls are put into urns of category
i when rni is small.

For any ϕ ∈ C ([0, T ] : P(Λ)) such that I (ϕ) < ∞, Lemma 7.7 and Theorem
7.10 imply that for any ε > 0 there exists (ϕ∗, θ∗) with the properties described in
Theorem 7.10. Since F is continuous on C ([0, T ] : P(Λ)), we only need to show
that there exists a sequence of admissible controls

{
μ̄n
i

}
so that

lim sup
n→∞

Ē

[

F
(
X̄ n
)+ 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

≤ I (ϕ∗) + F(ϕ∗).
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The latter inequality will follow if we can find a sequence of admissible
{
μ̄n
i

}
such

that

lim sup
n→∞

Ē

[
1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

≤ I (ϕ∗), (7.25)

and such that if X̄ n is the occupancy process constructed under
{
μ̄n
i

}
then for any

small b > 0
lim sup
n→∞

P̄
{∥
∥X̄ n − ϕ∗∥∥∞,T > b

}
= 0. (7.26)

In other words, X̄ n converges to ϕ∗ in probability.
To prove the desired inequalities (7.25) and (7.26) we need to construct the proper{

μ̄n
i

}
. Recall that

{
μ̄n
i

}
can depend in any measurable way on the “past,” and so we

could, in principle, use such information in constructing the controls. However, as
seen previously for certain problems of this typewe can construct the controlswithout
reference to the controlled process (i.e., “open loop” controls). Let θ∗ be the good
control as described in Theorem 7.10. We know that θ∗ is piecewise constant and
pure up to time σ > 0. From property (c) in Theorem 7.10, we also know that before
time σ, if θ∗

i (t) = 1 then both ρi (t, ϕ∗(t)) and ϕ∗
i (t) are greater than a fixed value

ζ > 0 (for all i ≤ J + 1when a > 0 and for all i ≤ J when a < 0). Using part (b) of
Theorem 7.10 we can also assume for the same value of ζ that both ρi (t, ϕ∗(t)) and
ϕ∗
i (t) are greater than ζ for all t ∈ [σ, T ] (and again for all i ≤ J + 1 when a > 0

and for all i ≤ J when a < 0).
Although the limit trajectory stays away from the boundary after time σ , there

is no guarantee that the random process X̄ n is uniformly bounded away. In order to
handle this possibility, we use a stopping time argument similar to one used in [109].

Let (ln/n) be the minimum of the first time such that for some i, X̄ n
i (ln/n) ≤ ζ/2

and θ∗
i (ln/n) > 0, and the fixed deterministic time �nT � /n. This is the first time the

random process is close to the boundary, with the possibility of a large contribution
to the total cost [note that when θ∗

i (ln/n) = 0 there is no contribution to the cost
regardless of the value of X̄ n

i (ln/n)]. The control
{
μ̄n
i

}
is then defined by

μ̄n
i ({k}) =

{
θ∗
k (i/n) if i ≤ ln

ρk
(
i/n, X̄ n(i/n)

)
if i > ln.

Prior to the stopping time, we use exactly what θ∗ suggests, and after the stopping
time we follow the law of large number trajectory (and therefore incur no additional
cost).

Now we apply Lemma 7.2. Thus given any subsequence there is convergence
along a further subsequence as indicated in the theorem, with limit

(
X̄ , μ̄

)
. Using

the standard argument by contradiction, it will be enough to prove (7.25) and (7.26)
for this convergent processes. Let τ n = (ln/n) ≤ T . Note that because the applied
controls are pure, the process X̄ n(t) is deterministic prior to σ , and also that prior
to this time, the time derivatives of X̄ n(t) and ϕ∗(t) are piecewise constant. In fact,
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the two derivatives are identical except possibly on a bounded number of intervals
each of length less than 1/n [the points where they may disagree are all located with
within distance 1/n of the endpoints of the intervals of constancy of ϕ̇∗(t)]. Thus for
large n we cannot have τ n < σ. Since the range of τ n is the bounded set [0, T ], we
can also assume τ n converges in distribution to a limit τ , and without loss we assume
the convergence is along the same subsequence. Since τ n ≥ σ for large n we have
τ ≥ σ w.p.1.

Suppose that τ < T . It is easy to check that the limit control processes w.p.1
satisfies, for a.e. t ∈ [0, T ],

μ̄({k} | t ) =
{

θ∗
k (t) if t ≤ τ

ρk
(
t, X̄(t)

)
if t > τ

.

Owing to the definition of τ n , τ < T implies X̄i (τ ) ≤ ζ/2 for some i ∈ Λ (although
ϕ∗
i (t) ≥ ζ when t ∈ [σ, T ]).We use that μ̄({k} |t ) = θ∗

k (t)when t ≤ τ and that θ∗(t)
is deterministic.As shown inTheorem7.2,

(
X̄ , μ̄

)
satisfies (7.15) for t ∈ [0, τ ] .Thus

for t ∈ [0, τ ], X̄(t) = ϕ∗(t) w.p.1. This gives a contradiction since

X̄i (τ ) ≤ ζ/2 < ζ ≤ ϕ∗
i (τ ).

Therefore τ = T, and thus for all t ∈ [0, T ], X̄(t) = ϕ∗(t) w.p.1. This also proves
that the weak limit of the random processes X̄ n is indeed ϕ∗, which implies (7.26).
To prove (7.25), we use the weak convergence, the continuity of the map (x, y) �→
x log(x/y) on [0,∞) × (0,∞) and the dominated convergence theorem to obtain

lim sup
n→∞

Ē

[
1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

=
∫ T

0
R
(
θ∗(t)||ρ(t, ϕ∗(t))

)
dt = I (ϕ∗).

This completes the proof. ��

7.2.5 Solution to Calculus of Variations Problems

In the previous sections we identified the process level large deviation rate function
(7.6) for a class of occupancy problems. The large deviation principle for the process
at a given fixed time can then be expressed in terms of the solution to a calculus of
variations problem. In most cases this calculus of variations problem will not have a
closed form solution. However, for the class of occupancy models studied here it can
be identified with the solution to a related finite dimensional minimization problem.
This latter problem can be solved by the standard Lagrangemultiplier method, which
is easily implemented numerically. In this section we give the precise statement of
this equivalence. We mention two results. The first gives the minimum of the rate
function subject to a terminal constraint, and the second gives the minimum of the
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sum of the rate function plus a cost that is affine in the terminal location. The explicit
formulas generalize ones obtained in [109] for the special case of MB statistics. The
techniques used are quite different, based as they are on dynamic programming and
control theory rather than methods from the calculus of variations. When combined
with methods for accelerated Monte Carlo as discuss in later chapters, these explicit
solutions allow one to obtain not just large deviation approximations but also accurate
approximations to nonasymptotic quantities. Proofs are not given, but interested
readers can find the details in [266].

7.2.5.1 Problem Formulation

Suppose the current occupancy state is x ∈ P(Λ) and that t is the number of balls
per urn among all categories. If yi , i = 0, 1, . . . , J, J + 1, . . . are the fraction in
category i , then xi = yi for i ≤ J and

t =
∞∑

k=0

kyk .

Note that t ≥ ∑J+1
k=0 kxk .

In previous sections we considered the large deviation analysis for just the case
of the initial condition where all urns are empty. To use dynamic programming, one
must introduce the analogue of the rate function that is suitable for general initial
times and states. The set of possible states for a given t [i.e., ones that can be reached
starting from (1, 0, . . . , 0) at t = 0] depends on both t and a, which leads to the
following definition.

Definition 7.12 Define Da , the feasible domain for the occupancy model with
parameter a, as follows:

• when a > 0,

Da
.=
{

(x, t) ∈ P(Λ) × [0, T ) : xJ+1 > 0 and t ≥
J+1∑

i=0

i xi

}

⋃
{

(x, t) ∈ P(Λ) × [0, T ) : xJ+1 = 0 and t =
J∑

i=0

i xi

}

;

• and when a < 0 and J = −a − 1,

Da
.=
{

(x, t) ∈ P(Λ) × [0, T ) : t =
J+1∑

i=0

i xi

}

.
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As before, when a < 0 we restrict to T < −a. In the first case the second set in
the union reflects the fact that when xJ+1 = 0 the number of balls thrown is exactly∑J

i=0 i xi , and similarly for the second case.
Consider a valid occupancy process ϕ ∈ C ([t, T ] : P(Λ)) with ϕ(t) = x and

(x, t) ∈ Da . Making the dependence on (x, t) explicit, the rate function I (x, t;ϕ)

for such paths can be written

I (x, t;ϕ)
.=
∫ T

t
R (θ(s) ‖ρ (s, ϕ(s)) ) ds,

where

ϕ(s) = ϕ(t) +
∫ s

t
Mθ(r)dr

and

ρk(s, y)
.= a + k

a + s
yk, k = 0, 1, . . . , J, ρJ+1(s, y)

.= 1 −
J∑

k=0

ρk(s, y).

The relevant calculus of variations problem for a point in the feasible domain is

O (x, t;ω)
.= inf

ϕ∈C ([t,T ]:P (Λ))
ϕ(t)=x,ϕ(T )=ω

I (x, t;ϕ). (7.27)

The formula for the finite dimensional minimization problem requires some notation.
For all a ∈ R, a �= 0 and i ∈ N, let

(
a

i

)
.=
∏i−1

j=0(a − j)

i !

and
(a
0

) = 1. Note that if a ∈ N and i > a then
(a
i

) = 0, and that if a /∈ N ∪ {0}, then
(a
i

) �= 0. We will use the fact that if a ∈ R and |z| < 1 then the binomial expansion

(1 + z)−a =
∞∑

i=0

(−a

i

)

zi

is valid, and if −a ∈ N then the sum contains only a finite number of nonzero terms
and is valid for all z ∈ R.

For i ∈ N ∪ {0} and a > 0, s ≥ 0 or a ∈ −N, 0 ≤ s ≤ −a, define

Qa
i (s)

.=
(
− s

a

)i
(−a

i

)(
1 + s

a

)−a−i
.

When a = 0 we use the limiting values
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Q0
0(s) = 1, Q0

i (s) = 0

for all i ∈ N and s ≥ 0. One can check that {Qa
i (s)}∞i=0 is a probability vector for

any choice of (a, s) as above.
Denote π k = {π k

0 , π
k
1 , . . . } for all 0 ≤ k ≤ J + 1, where π k

i represents the prob-
ability of throwing i additional balls into the kth category. Denote π = (π0, π1, . . . ,

π J+1). For any given x ∈ P(Λ), we say π = (π0, π1, . . . , π J , π J+1) ∈ F (x, t;
ω, T ) if

∞∑

j=0

π k
j = 1, 0 ≤ k ≤ J + 1,

J+1∑

k=0

xk

∞∑

j=0

jπ k
j = T − t, (7.28)

and

ωi =
i∑

k=0

xkπ
k
i−k, 0 ≤ i ≤ J, ωJ+1 = 1 −

J∑

k=0

ωk . (7.29)

Wewill useω
.= x × π as shorthand for the last display. Roughly speaking, if {xk}J+1

k=0
is the occupancy state at time instant t and π k

i represents the probability of throwing
i additional balls over the interval [nt, nT ] into the kth category, then ωi gives the
average fraction of category i urns at time nT .

A terminal point ω is feasible (for the given initial time and condition) if
F (x, t;ω, T ) is not empty.

Now we are ready to state the theorem. For s > 0 let P(s) denote the Poisson
distribution with parameter s, and if s = 0 let P(s) denote the probability measure
on {0, 1, . . .} with mass one on {0}. The proof of the representation can be found in
[266].

Theorem 7.13 (Explicit Formula for the Rate Function) Consider an
initial condition (x, t) ∈ Da, and a feasible terminal condition ω. If a ∈ (0,∞),
then for xJ+1 > 0 let

τ(x, t)
.= (t −∑J

k=0 kxk)

xJ+1

(so that τ(x, t) is the average number of balls per urn distributed in the J+ categories
for the initial condition (x, t)) and if xJ+1 = 0 let τ(x, t) = 0. Then the quantity
O (x, t;ω) defined in (7.27) has the representation

O (x, t;ω) = min
π∈F (x,t;ω,T )

[
J∑

k=0

xk R

(

π k

∥
∥
∥
∥Q

a+k

(
a + k

a + t
(T − t)

))

+xJ+1R

(

π J+1

∥
∥
∥
∥Q

a+τ(x,t)

(
a + τ(x, t)

a + t
(T − t)

))]

.

If a ∈ −N with J = −a − 1 then τ(x, t) =J+1, and
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O (x, t;ω) = min
π∈F (x,t;ω,T )

[
J+1∑

k=0

xk R

(

π k

∥
∥
∥
∥Q

a+k

(
a + k

a + t
(T − t)

))]

.

In the final case of a = ∞, we have

O (x, t;ω) = min
π∈F (x,t;ω,T )

[
J+1∑

k=0

xk R
(
π k ‖P (T − t)

)
]

.

Although theseminimization problems as stated appear to be infinite dimensional,
they can in fact be reduced to finite dimensional problems. This is because if π k is
the minimizer, then π k

j takes a prescribed form for j > J . In fact, all π k
j can be

represented in terms of no more than J + 3 Lagrange multipliers [119, 266].
Theorem7.13gives theminimal cost tomove fromonepoint in the feasible domain

to another. For the construction of accelerated Monte Carlo schemes it is useful to
know how to construct subsolutions to the related Hamilton-Jacobi-Bellman (HJB)
equation with various terminal conditions. This can often be done by approximating
general terminal conditions from below by a special class of terminal conditions,
such as those involving affine costs (see the examples in Chap. 17). Such a result is
stated in Proposition 7.14, and in fact Theorem 7.13 is shown to be a consequence
of Proposition 7.14 by approximating the function equal to 0 when x = ω and ∞
elsewhere from below by affine functions.

7.2.5.2 The Hamilton-Jacobi-Bellman Equation

In this section we assume a < ∞, noting that theMaxwell-Boltzmann case (a = ∞)
can easily be obtained as a limit. See [119, 266] for further discussion.

The calculus of variations problem (7.27) has a natural control interpretation,
where θ(s) is the control, ϕ̇(s) = Mθ(s) are the dynamics, R (θ(s) ‖ρ (s, ϕ(s)) ) is
the running cost and g(x) = ∞1{ω}c(x) is the terminal cost. It is expected that if we
define

V (x, t)
.= inf

ϕ∈C ([t,T ]:P (Λ)),ϕ(t)=x

[∫ T

t
R (θ(s)||ρ (s, ϕ(s))) ds + g(ϕ(T ))

]

, (7.30)

then V (x, t) is a weak-sense solution [14] to the HJB equation

Wt (x, t) + H(DW (x, t), x, t) = 0,

and terminal condition
W (x, T ) = ∞1{ω}c(x).

Here the Hamiltonian H(p, x, t) is defined by
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H(p, x, t)
.= inf

θ∈P (�)
[〈p, Mθ〉 + R (θ ‖ρ (t, x) )]

and Wt and DW denote the partial derivative with respect to t and gradient in x ,
respectively. Note that by the representation formula Proposition 2.2, the infimum in
the definition of H(p, x, t) can be evaluated, yielding

Wt (x,t) = log

(
J∑

k=0

xk

(
a + k

a + t

)

e(Wxk (x,t)−Wxk+1 (x,t)) +
(
a + τ(x,t)

a + t

)

xJ+1

)

plus the terminal conditionW (x, T ) = g(x), whereWxk (x, t) is the partial derivative
and τ(x, t) is as in Theorem 7.13.

A class of problems that are of interest in applications are those with a terminal
condition of the form

g(x) = ∞1A c(x),

where A is some convex set. Such terminal conditions usually yield only a weak-
sense solution, and not a classical-sense C1 solution to the HJB equation. However,
asmentioned previously it is possible for the purposes of design of acceleratedMonte
Carlo to approximate these terminal conditions frombelow in terms of affine terminal
conditions. In the next result we state a representation for the calculus of variations
problem with affine terminal cost g(ω) = 〈l, ω〉 + b. The representation turns out
to be the unique classical sense solution to the corresponding PDE. To simplify, we
first observe that W is a solution of just the PDE alone (i.e., without the terminal
condition) if and only if W + c is a solution for any real number c. Since ω is a
probability vector, it suffices to prove the representation when lJ+1 = 0 and b = 0.
We also recall the definition (7.29).

Proposition 7.14 Consider (x, t) ∈ Da and g(ω) = 〈l, ω〉, where l ∈ R
J+2 and

lJ+1 = 0. Define V by (7.30) and

U (x, t)
.= min

π∈F (x,t;T )

[
J∑

k=0

xk R

(

π k

∥
∥
∥
∥Q

a+k

(
a + k

a + t
(T − t)

))

+ xJ+1R

(

π J+1

∥
∥
∥
∥Q

a+τ(x,t)

(
a + τ(x, t)

a + t
(T − t)

))

+ g(x × π)

]

where π ∈ F (x, t; T ) means that π satisfies the constraints in (7.28). Then V (x, t)
= U (x, t).

7.3 Two Scale Recursive Markov Systems with Small Noise

In this section we consider a discrete time stochastic dynamical system in which
there are two components to the state. One of the components evolves at a slower
time scale then the other, and this scale separation is determined by the parameter
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that also scales the size of the noise. Such systems include many models arising in
queuing theory and communication systems [18, 35, 182], where they are called
Markov-modulated processes.

We are interested in studying the large deviation behavior of the slow component
(though one could also study the joint large deviation properties of the slow compo-
nent and a time dependent empirical measure of the fast process). The main result
of the section is Theorem 7.17, which establishes the LDP for the slow component.
The proof, which is left to the reader, combines techniques from Chaps. 4 and 6. We
begin by describing the model in precise terms.

7.3.1 Model and Assumptions

Let S be compact metric space and let p(ξ, dς) be a probability transition kernel on
S. We assume that the kernel satisfies the Feller and the transitivity properties from
Chap. 6, namelyConditions 6.2 and 6.3. The fast component of theMarkov chainwill
be governed by this kernel. The slow component is described through a stochastic
kernel θ(dy|x, ξ) on R

d given R
d × S. We suppose as given a probability space

that supports iid random vector fields
{
vi (x, ξ), i ∈ N0, (x, ξ) ∈ R

d × S
}
, with the

property that for any (x, ξ) ∈ R
d × S vi (x, ξ) has distribution θ(·|x, ξ). We also

suppose as given an S-valued Markov chain {�i }i∈N0 on this probability space with
transition kernel p(ξ, dς) and with �0 = ξ0 ∈ S. The sequence {�i } will be the
fast component, and is independent of {vi }. The stochastic process describing the
evolution of the slow component is then given by

Xn
i+1 = Xn

i + 1

n
vi (X

n
i , �i+1), Xn

0 = x0.

Thus {Xn
i } is a stochastic dynamical system with small noise, though the distribution

of the noise depends on both Xn
i and the modulating process �i . The evolution of

Xn
i , being scaled by 1/n, is slow relative to that of �i . As in Chap. 4 this discrete

time process is interpolated into continuous time according to

Xn(t) = Xn
i + [

Xn
i+1 − Xn

i

]
(nt − i) , t ∈ [i/n, i/n + 1/n].

We are interested in the large deviation properties of the sequence {Xn}n∈N of
C ([0, 1] : Rd)-valued random variables.

We impose the following analogues of Conditions 4.3 and 4.7 from Chap. 4. For
(x, ξ) ∈ R

d × S and α ∈ R
d define

H(x, ξ, α)
.= log Ee〈α,vi (x,ξ)〉.

Condition 7.15 (a) For each α ∈ R
d sup(x,ξ)∈Rd×S H(x, ξ, α) < ∞.
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(b) The mapping (x, ξ) �→ θ(·|x, ξ) from R
d × S to P(Rd) is continuous in the

topology of weak convergence.

Condition 7.16 For each (x, ξ) ∈ R
d × S, the convex hull of the support of θ(·|x, ξ)

is Rd .

7.3.2 Rate Function and the LDP

We next introduce the rate function for {Xn}. For μ ∈ P(S) define A(μ) as in Sect.
6.3 [see 6.6]:

A(μ)
.= {

γ ∈ P(S2) : [γ ]1 = [γ ]2 = μ
}
.

Also, as in Chap. 6, given μ ∈ P(S), let (μ ⊗ p)(dx × dy) denote the probability
measure on S2 given byμ(dx)p(x, dy). Let I1 denote the rate function I in Theorem
6.6:

I1(μ) = inf
γ∈A(μ)

R (γ ‖ μ ⊗ p) , μ ∈ P(S).

Define L : Rd × R
d → [0,∞] by

L(x, β)
.= inf

[∫

S
R(ν(·|ξ)‖θ(·|x, ξ))μ(dξ) + I1(μ) :

∫

S×Rd
yν(dy|ξ)μ(dξ) = β

]

,

where the infimum is over μ ∈ P(S) and stochastic kernels v on P(Rd) given S.
The definition of the local rate function involves two changes of distribution and the
associated relative entropy costs. The first switches the distribution of transitions of
{�i } from p(ξ, dς) to q(ξ, dς), where [μ ⊗ q]2 = μ. Since Xn moves only a small
distance over a small interval in continuous time, it is the invariant distribution μ

of q which affects the evolution of the controlled analogue of Xn . Thus if we shift
from the invariant distribution of p to μ, then we must pay a cost of I1(μ) per unit
time. Once this is done, as in Chap. 4 the distribution of the noises vi (x, ξ) can be
perturbed away from θ(·|x, ξ) to ν(·|ξ), but one must pay a relative entropy cost.
The overall cost to track a velocity β minimizes these two costs.

Recall that A C x0([0, 1] : Rd) denotes the subset of C ([0, 1] : Rd) consisting of
all absolutely continuous functions satisfying φ(0) = x0. The rate function for {Xn}
is given as follows. Let

I (φ) =
∫ 1

0
L(φ(s), φ̇(s))ds if φ ∈ A C x0([0, 1] : Rd),

and in all other cases I (φ) = ∞.
The following theorem states the LDP for {Xn}.
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Theorem 7.17 Suppose that Conditions 6.2, 6.3, 7.15 and 7.16 are satisfied. Then
I is a rate function and {Xn}n∈N satisfies the Laplace principle on C ([0, 1] : Rd)

with rate function I , uniformly for initial conditions in compact sets.

7.3.3 Extensions

We have considered the simplest form of a two scale system in discrete time, and in
particular under assumptions such that a straightforward combination of the methods
fromChaps. 4 and 6 can be applied to complete the proof. The model can in principle
be extended in several directions, under various sets of additional assumptions. For
example, as in Chap. 6 the compactness of S can be replaced by a condition on the
existence of a suitable Lyapunov function. Likewise the condition on the support
of the transition kernel θ(·|x, ξ), Condition 7.16, can be replaced by a Lipschitz
type condition of a similar form as Condition 4.8. Finally, for the model considered
here the evolution of the fast component did not depend on the state of the slow
variable. This condition can be relaxed to allow for a fully coupled system. See [42]
for sufficient conditions in a continuous time setting and [94] for a discrete time
system.

7.4 Notes

An overview of occupancy models and their applications can be found in [165].
The first paper to consider the large deviation properties of an occupancy model
appears to be [109], which was motivated by the problem of sizing switches in
optical communications. In [109] the LDP for the MB model is obtained, and the
rate function exhibited in more-or-less explicit form. The arguments in Sect. 7.2 are
based on those used in [266], though as in previous chapters the presentation here
first studies the large deviation properties of an empirical measure and then obtains
those for the process.

As was discussed in Sect. 7.2, the most difficult part of the analysis is in dealing
with parts of the state spacewhere rates go to zero,which produces singular behaviors
in the local rate function. The are many other classes of models in applied proba-
bility where transition probabilities vanish (or in their continuous time analogues
jump rates vanish), including models from queueing and related stochastic networks
[231], chemical reaction networks, and random graphs [23]. A positive feature of
this collection of problems (one that is emphasized in Sect. 7.2) is that the associated
variational problems have explicit or nearly explicit solutions.

The main difficulties are typically in the proof of the large deviation lower bound,
and the approach used in this chapter involves a careful analysis of the local rate
function to construct controls that can be used to establish the lower bound. For the
corresponding continuous time models, one can sometimes represent the process
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as the solution to a stochastic differential equation driven by one or more Poisson
random measures. In this case one might ask if the perspective of Sects. 3.1 and 3.3,
which exploits the fact that the mapping from the noise model (Brownian motion
or Poisson random measure) into the state variable is “nearly continuous” could be
used. This turns out to be possible, as described for example in [23].

The second model of this chapter is a stochastic recursive system with two time
scales. Models of this type appear in many different areas of application, and general
references include [171, 259]. One of the first papers to consider the large devia-
tion properties of processes of this general sort is Freidlin [138]. Continuous time
analogues of such two time scale systems have also been well studied (see [42] and
references therein). Related and very challenging problems involve systems where
the averaging is with respect to an “environment” variable rather than time, e.g.,
a stochastic differential equation where the drift is itself random or periodic and
ergodic in an appropriate sense. An example of how weak convergence methods can
be used to account for such averaging in a relatively simple setting appears in [111].
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