
Chapter 5
Moderate Deviations for Recursive
Markov Systems

In this chapter we consider R
d -valued discrete time processes of the same form as in

Chap.4, but instead of analyzing the large deviation behavior, we consider deviations
closer to the LLN limit. Since this will require centering on the limit, we assume that
the process model has the form

Xn
i+1

.= Xn
i + 1

n
b(Xn

i ) + 1

n
νi (X

n
i ), Xn

0 = x0, (5.1)

where {νi (·)}i∈N0 are iid random vector fields as in Chap.4 but with zero mean, and
b : R

d → R
d is continuously differentiable.

As in Chap.4, we consider the continuous time piecewise linear interpolations
{Xn(t)}0≤t≤T with Xn(i/n) = Xn

i . Under moment conditions that are weaker than
those of Chap.4, there is a law of large numbers limit X0 ∈ C ([0, T ] : R

d). Closely
related to X0 is the noiseless version of (5.1) obtained by setting νi (·) = 0, which is
denoted by {Xn,0

i }n∈N0 with piecewise linear interpolation {Xn,0(t)}0≤t≤T . We intro-
duce a scaling sequence κ(n) that satisfies

κ(n) → 0 and κ(n)n → ∞, (5.2)

and study the rescaled difference

Y n .= √
κ(n)n(Xn − Xn,0).

Since under Condition5.1, b is Lipschitz continuous, we have

∥∥X0 − Xn,0
∥∥∞

.= sup
t∈[0,T ]

∥∥X0(t) − Xn,0(t)
∥∥ = O(1/n).

Thus √
κ(n)n

∥∥X0 − Xn,0
∥∥∞ = O(

√
κ(n)/n),
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and hence Y n behaves the same asymptotically as
√

κ(n)n(Xn − X0). It will be
shown that under weaker conditions on the noise νi (·) than were used in Chap.4,
Y n satisfies the large deviation principle on C ([0, T ] : R

d) with a “Gaussian”-type
rate function. As is customary for this type of scaling, we refer to this as moderate
deviations.

While onemight expect the proof of themoderate deviations result to be similar to
that of the corresponding large deviations result, there are important differences. For
example, the tightness proof is significantlymore complicated in the case ofmoderate
deviations than for the case of large deviations. In Chap.4 we were able to establish
an a priori bound on certain relative entropy costs associated with any sequence of
nearly minimizing controls. Under this boundedness of the relative entropy costs,
empiricalmeasures of the controlled driving noises aswell as the controlled processes
themselves were tight. With the scaling used for moderate deviations, and even with
the information that the analogous relative entropy costs decay like O(1/κ(n)n),
tightness of the empirical measures of the driving noise does not hold. Instead,
one must consider the empirical measures of conditional means of the noises, and
additional effort is required to show that the limits of these measures determine the
limit of the controlled processes. This extra difficulty arises for moderate deviations
(even with the vanishing relative entropy costs), because the noise is amplified by
the factor

√
κ(n)n in the definition of Y n .

A second way in which the proofs for large and moderate deviations differ is in
their treatment of degenerate noise, i.e., problems in which the support of νi (·) is not
all ofR

d . As we saw in Chap.4, this leads to significant difficulties in the proof of the
large deviation lower bound, requiring a somewhat involved mollification argument.
In contrast, the proof in the setting of moderate deviations, though more involved
than the nondegenerate case, is much more straightforward.

As a potential application of these resultswemention their usefulness in the design
and analysis of Monte Carlo schemes for events whose probability is small but not
very small. For such problems, the performance of standard Monte Carlo may not be
adequate, especially if the quantity must be computed for many different parameter
settings, as in, say, an optimization problem.Another instance is the situation inwhich
the cost for even a single sample is very high, as for example in the case of stochastic
partial differential equations. Then accelerated Monte Carlo may be of interest, and
as is well known, such schemes (e.g., importance sampling and splitting) benefit
from the use of information contained in the large deviation rate function as part of
the algorithm design (e.g., [28, 76, 114, 116]). In a situation in which one considers
events of small but not too small probability, one may find the moderate deviation
approximation both adequate and relatively easy to apply, since moderate deviations
lead to situations in which the objects needed to design an efficient scheme can be
explicitly constructed in terms of solutions to the linear–quadratic regulator. These
issues were first explored in [101]. Other moderate deviation analyses are presented
in Chaps. 10 and 13, and an example of how moderate deviation approximations can
be used to construct accelerated Monte Carlo schemes is given in Sect. 17.5.
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5.1 Assumptions, Notation, and Theorem Statement

Let

Xn
i+1

.= Xn
i + 1

n
b(Xn

i ) + 1

n
νi (X

n
i ), Xn

0 = x0,

where the {νi (·)}i∈N0 are zero-mean iid vector fields whose distribution is given by a
stochastic kernel θ(dy|x) on R

d given R
d . For α ∈ R

d , define

Hc(x, α)
.= log Ee〈α,νi (x)〉.

The subscript c reflects the fact that this logmoment generating function uses the cen-
tered distribution θ(·|x), rather than H(x, α) = Hc(x, α) + 〈α, b(x)〉 as in Chap.4.
We use the following.

Condition 5.1 (a) There exist λ > 0 and Kmgf < ∞ such that

sup
x∈Rd

sup
‖α‖≤λ

Hc(x, α) ≤ Kmgf. (5.3)

(b) The mapping x 
→ θ(dy|x) from R
d to P(Rd) is continuous with respect to

the topology of weak convergence.
(c) b(x) is continuously differentiable, and the norms of both b(x) and its deriva-

tive are uniformly bounded by a constant Kb < ∞.

Throughout this chapter we let ‖α‖2A .= 〈α, Aα〉 for α ∈ R
d and a symmetric

nonnegative definite matrix A. Define

Ai j (x)
.=
∫

Rd

yi y jθ(dy|x),

and note that the weak continuity of θ(dy|x) with respect to x and (5.3) ensures
that A (x) is continuous in x and that its norm, ‖A(x)‖ .= supv:‖v‖=1 ‖A(x)v‖, is
uniformly bounded by some constant KA. Note that

∂Hc(x, 0)

∂αi
=
∫

Rd

yiθ(dy|x) = 0 (5.4)

and
∂2Hc(x, 0)

∂αi∂α j
=
∫

Rd

yi y jθ(dy|x) = Ai j (x) (5.5)

for all i, j ∈ {1, . . . , d} and x ∈ R
d , and that A(x) is nonnegative definite and sym-

metric. It follows that for x ∈ R
d ,

A(x) = Q(x)Λ(x)QT (x),
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where Q(x) is an orthogonal matrix whose columns are the eigenvectors of A(x),
and Λ(x) is the diagonal matrix consisting of the eigenvalues of A(x) in descending
order. Themap x 
→ Λ(x) is continuous. In what follows, we defineΛ−1(x) to be the
diagonal matrix with diagonal entries each equal to the inverse of the corresponding
eigenvalue for the positive eigenvalues, and equal to ∞ for the zero eigenvalues.
Then when we write

‖α‖2A−1(x) = ‖α‖2Q(x)Λ−1(x)QT (x) , (5.6)

we mean a value of ∞ for α ∈ R
d not in the linear span of the eigenvectors corre-

sponding to the positive eigenvalues, and the standard value for vectors α ∈ R
d in

that linear span. (Note that even if the definition of A−1(x) is ambiguous, in that for α
in the range of A(x) there may be more than one v such that A(x)v = α, the value of
‖α‖2A−1(x) is not ambiguous. Indeed, since the eigenvectors can be assumed orthogo-
nal, for all such v, 〈v, α〉 coincides with 〈v̄, α〉, where v̄ is the solution in the span of
eigenvectors corresponding to positive eigenvalues.) Condition5.1(a) implies there
exist KDA < ∞ and λDA ∈ (0, λ] such that

sup
x∈Rd

sup
‖α‖≤λDA

max
i, j,k

∣∣∣∣
∂3Hc(x, α)

∂αi∂α j∂αk

∣∣∣∣ ≤ KDA

d3
, (5.7)

and consequently for all ‖α‖ ≤ λDA and all x ∈ R
d ,

1

2
‖α‖2A(x) − ‖α‖3 KDA ≤ Hc(x, α) ≤ 1

2
‖α‖2A(x) + ‖α‖3 KDA. (5.8)

Define the continuous time piecewise linear interpolation of Xn
i by

Xn(t)
.= Xn

i + [Xn
i+1 − Xn

i ](nt − i), t ∈ [i/n, i/n + 1/n].

In addition, define

Xn,0
i+1 = Xn,0

i + 1

n
b(Xn,0

i ), Xn,0
0 = x0,

and let Xn,0(t) be the analogously defined continuous time interpolation. Then
Xn,0 → X0 in C ([0, T ] : R

d), where for t ∈ [0, T ],

X0(t) =
∫ t

0
b(X0(s))ds + x0.

Since Eνi (x) = 0 for all x ∈ R
d , we know that Xn → X0 inC ([0, T ] : R

d) in prob-
ability.

In Chap.4 we showed, under significantly stronger assumptions, that Xn(t) satis-
fies a large deviation principle on C ([0, T ] : R

d)with scaling sequence r(n) = 1/n.
Letting IL denote this rate function (with L for large deviation), it takes the form
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IL(φ)
.= inf

[∫ T

0
Lc(φ(s), u(s))ds : φ (t) = x0 +

∫ t

0
b(φ(s))ds

+
∫ t

0
u(s)ds, t ∈ [0, T ]

]
,

where
Lc(x, β)

.= sup
α∈Rd

[〈α, β〉 − Hc(x, α)] (5.9)

is the Legendre transform of Hc(x, α).We see that IL coincides with the rate function
of Chap.4, because

L(x, β)
.= sup

α∈Rd

[〈α, β〉 − Hc(x, α) − 〈α, b(x)〉] = Lc(x, β − b(x)),

so that Lc(φ(s), u(s)) = Lc(φ(s), φ̇(s) − b(φ(s))) = L(φ(s), φ̇(s)).
Assume that κ(n) satisfies (5.2):

κ(n) → 0 and κ(n)n → ∞.

We define the rescaled difference

Y n(t)
.= √

κ(n)n(Xn(t) − Xn,0(t)).

Let Db(x) denote the matrix of partial derivatives (Db(x))i j = ∂bi (x)/∂x j , and let
A1/2(x) be the unique nonnegative definite square root of A(x).

Theorem 5.2 Assume Condition5.1. Then {Y n}n∈N satisfies the Laplace principle
on C ([0, T ] : R

d) with scaling sequence κ(n) and rate function

IM(φ) = inf

[
1

2

∫ T

0
‖u(t)‖2 dt : φ(t) =

∫ t

0
Db(X0(s))φ(s)ds

+
∫ t

0
A1/2(X0(s))u(s)ds, t ∈ [0, T ]

]
.

The function IM is essentially the same as what one would obtain using a linear
approximation around the law of large numbers limit X0 of the dynamics and a
quadratic approximation of the costs in IL . By our convention, proofs will be given
for the case T = 1, with only notational modifications needed for the general case.
An alternative form of the rate function that is consistent with expressions we use
for continuous time models is

IM(φ) = inf
u∈Uφ

[
1

2

∫ 1

0
‖u(t)‖2 dt

]
, (5.10)
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where for φ ∈ A C 0([0, 1] : R
d) Uφ is the subset of L 2([0, 1] : R

d) given by

Uφ=̇
{
u : φ(·) =

∫ ·

0
Db(X0(s))φ(s)ds +

∫ ·

0
A1/2(X0(s))u(s)ds

}
,

(5.11)

and Uφ is the empty set otherwise. Since {φ : IM(φ) ≤ K } is the image of the
compact set {u : ∫ 1

0 ‖u(t)‖2 dt ≤ K } (with the weak topology on L 2([0, 1] : R
d))

under a continuous mapping, IM has compact level sets. To complete the proof of
Theorem5.2, we must show that for every bounded and continuous F ,

lim
n→∞ −κ(n) log E

[
e− 1

κ(n)
F(Y n)

]
= inf

φ∈C ([0,1]:Rd )
[IM(φ) + F (φ)] . (5.12)

The argument will follow the same layout as that used in Chaps. 3 and 4. In Sect. 5.2,
a representation is derived for the exponential integral in (5.12), and in Sect. 5.3,
tightness of empirical measures and identification of limits for these measures and
controlled processes are carried out. It is here that the moderate deviation problem
differs most from the corresponding large deviation problem, in that the definition
of the empirical measures is not analogous to the definition used in Chap.4. The
Laplace principle upper and lower bounds that together imply (5.12) are proved in
Sects. 5.4 and 5.5, respectively.

5.2 The Representation

Asusual, the first step is to identify a useful representation for theLaplace functionals.
Owing to themoderate deviation scaling, the construction of the controlled processes
differs slightly from that of Chap. 4.

Construction 5.3 Suppose we are given a probability measureμn ∈ P((Rd)n) and
decompose it in terms of conditional distributions [μn]i |1,...,i−1 on the i th variable
given variables 0 through i − 1:

μn(dv0 × · · · × dvn−1) = [μn]0(dv0)[μn]1|0(dv1|v0)
× · · · × [μn]n−1|0,...,n−2(dvn−1|v0, . . . , vn−2).

Let {v̄ni }i=0,...,n−1 be random variables defined on a probability space (
,F , P) and
with joint distribution μn . Thus conditioned on F̄ n

i
.= σ(v̄nj , j = 0, . . . ,

i − 1), v̄ni has distribution μ̄n
i (dvi )

.= [μn]i |0,...,i−1(dvi |v̄n0 , . . . , v̄ni−1). The collection
{μ̄n

i }i=0,...,n−1 will be called a control. Controlled processes X̄ n, Ȳ n and measures
M̄n are recursively constructed as follows. Let X̄ n

0 = x0, and for i = 1, . . . , n, define
X̄ n
i recursively by
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X̄ n
i+1 = X̄ n

i + 1

n
b(X̄ n

i ) + 1

n
v̄ni .

When {X̄ n
i }i=1,...,n has been constructed, define

Ȳ n
i+1 = Ȳ n

i +
√

κ(n)

n

(
b(X̄ n

i ) − b(Xn,0
i )

)
+
√

κ(n)

n
v̄ni , Ȳ n

0 = 0. (5.13)

Note that

X̄ n
i − Xn,0

i = 1√
κ(n)n

Ȳ n
i , i = 0, 1, . . . , n. (5.14)

Let X̄ n and Ȳ n be as in (4.2) the piecewise linear interpolations with X̄ n(i/n) = X̄ n
i

and Ȳ n(i/n) = Ȳ n
i . Define also the interpolated conditionalmean (provided it exists)

w̄n(t)
.=
∫

Rd

yμ̄n
i (dy), t ∈ [i/n, i/n + 1/n),

the scaled conditional mean

wn(t)
.= √

κ(n)nw̄n(t),

and random measures on R
d × [0, 1] by

M̄n(dw × dt)
.= δwn(t)(dw)dt = δ√

κ(n)nw̄n(t)(dw)dt.

Note that M̄n is the empirical measure of the scaled conditional means and not,
in contrast to Chap.4, of the v̄ni , scaled or otherwise. This additional “averaging”
will be needed for tightness. We will refer to this construction when we are given
{μ̄n

i }i=1,...,n to identify associated X̄ n, Ȳ n,wn and M̄n . By Theorem4.5, for every
bounded, continuous F : C ([0, 1] : R

d) → R,

− κ(n) log E
[
e− 1

κ(n)
F(Y n)

]
(5.15)

= inf
{μ̄n

i }
E

[
n−1∑

i=0

κ(n)R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i )) + F(Ȳ n)

]

.

5.3 Tightness and Limits for Controlled Processes

5.3.1 Tightness and Uniform Integrability

When themoment-generating function is finite for allα, a variational characterization
of its Legendre transform in terms of relative entropy is proved in Lemma4.16. In this
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chapter we will need only the following inequality, which holds when the moment-
generating function is finite in some neighborhood of the origin. Recall that Lc(x, ·)
is the Legendre–Fenchel transform of Hc(x, ·).
Lemma 5.4 Assume Condition5.1. Then for all x, β ∈ R

d ,

Lc (x, β) ≤ R(η(·)‖ θ(·|x))

for all η ∈ P(Rd) satisfying
∫

Rd yη(dy) = β.

Proof Fix x, β ∈ R
d and consider any η ∈ P(Rd) that satisfies

∫
Rd yη(dy) = β. If

R(η(·)‖ θ(·|x)) = ∞, the lemma is automatically true, so we assume without loss
that R(η(·)‖ θ(·|x)) < ∞. From (5.3) we have

∫

Rd

eλ‖y‖/d1/2
θ(dy|x) ≤ 2deKmgf < ∞.

Therefore, recalling the inequality ab ≤ ea + �(b) for a, b ≥ 0, we have

∫

Rd

λ

d1/2
‖y‖ dη(·)

dθ(·|x) (y)θ(dy|x)

≤
∫

Rd

eλ‖y‖/d1/2
θ(dy|x) +

∫

Rd

�

(
dη(·)
dθ(·|x) (y)

)
θ(dy|x)

≤ 2deKmgf + R(η(·)‖ θ(·|x)).

Consequently, for all α ∈ R
d ,

∫

Rd

‖α‖ ‖y‖ dη(·)
dθ(·|x) (y)θ(dy|x) ≤ d1/2 ‖α‖

λ

(
2deKmgf + R(η(·)‖ θ(·|x))) < ∞.

(5.16)
Define the bounded continuous function FK : R

d × R
d → R by

FK (y, α) =
{ 〈α, y〉 if |〈α, y〉| ≤ K ,

K 〈α,y〉
|〈α,y〉| otherwise.

From (5.16) and the dominated convergence theorem, we have

lim
K→∞

∫

Rd

FK (y, α)η(dy) =
〈
α,

∫

Rd

yη(dy)

〉
= 〈α, β〉.

Another application of the monotone convergence theorem gives

lim
K→∞

∫

{y:〈α,y〉<0}
eFK (y,α)θ(dy|x) =

∫

{y:〈α,y〉<0}
e〈α,y〉θ(dy|x),

and the monotone convergence theorem gives
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lim
K→∞

∫

{y:〈α,y〉≥0}
eFK (y,α)θ(dy|x) =

∫

{y:〈α,y〉≥0}
e〈α,y〉θ(dy|x).

Thus

lim
K→∞ log

(∫

Rd

eFK (y,α)θ(dy|x)
)

= Hc(x, α).

By the Donsker–Varadhan variational formula (Proposition2.2), for every K ∈
(0,∞) and α ∈ R

d ,

R(η(·)‖ θ(·|x)) ≥
∫

Rd

FK (y, α)η(dy) − log

(∫

Rd

eFK (y,α)θ(dy|x)
)

.

Sending K → ∞ and taking the supremum over α ∈ R
d yields

R(η(·)‖ θ(·|x)) ≥ sup
α∈Rd

[〈α, β〉 − Hc(x, α)] = Lc (x, β) ,

which completes the proof of the lemma. �

Theorem 5.5 Assume Condition5.1 and

sup
n∈N

[

κ(n)nE

[
1

n

n−1∑

i=0

R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))

]]

≤ KE < ∞. (5.17)

Let {M̄n}n∈N, {w̄n}n∈N, and {wn}n∈N be defined as in Construction5.3. Then

sup
n∈N

E

[∫ 1

0

√
κ(n)n

∥∥w̄n(t)
∥∥ dt

]
= sup

n∈N

E

[∫ 1

0

∥∥wn(t)
∥∥ dt

]
< ∞.

In addition, {M̄n} is tight (as a sequence of random probability measures) and uni-
formly integrable in the sense that

lim
C→∞ lim sup

n→∞
E

[∫

Rd×[0,1]
‖w‖ 1{‖w‖≥C}M̄n(dw × dt)

]
= 0. (5.18)

Proof We assume without loss of generality that infn∈N{√κ(n)n} > 0. Let B ∈
(0,∞) be such that B ≤ λDA infn∈N{√κ(n)n}, so that λDA ≥ B/

√
κ(n)n for all n.

Recall Lc from (5.9), and let K̄
.= λDAKDA + KA/2, where we recall that KA is the

bound on A(x) and KDA was introduced in (5.8). Let ei denote the standard unit
vectors in R

d . Then for all i ∈ {1, . . . , d} and each choice of ±,
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κ(n)nLc(x, β)

= sup
α∈Rd

[√
κ(n)n

〈
α,
√

κ(n)nβ
〉
− κ(n)nHc(x, α)

]

≥ ±√κ(n)n

〈
B√

κ(n)n
ei ,
√

κ(n)nβ

〉
− κ(n)nHc

(
x,± B√

κ(n)n
ei

)

≥ ±B
√

κ(n)nβi − 1

2
B2 ‖A(x)‖ − B2λDAKDA

≥ ±B
√

κ(n)nβi − B2 K̄ ,

where the first inequality follows from making a specific choice of α and the second
uses (5.8). If we multiply both sides by |βi |, sum on i , and then divide by

∑d
i=1 |βi |,

we obtain

dκ(n)nLc(x, β) + dB2 K̄ ≥ Bd
√

κ(n)n
‖β‖2

∑d
i=1 |βi |

≥ B
√

κ(n)n ‖β‖ . (5.19)

To slightly simplify the notation, we let sn(t)
.= �nt /n, where �a is the integer

part of a. Using the bound relating Lc and relative entropy from Lemma5.4 together
with (5.17), we obtain

d

(
KE

B
+ BK̄

)
≥ dκ(n)n

B
E

[∫ 1

0
Lc
(
X̄ n
(
sn(t)

)
, w̄n(t)

)
dt

]
+ dBK̄

≥ E

[∫ 1

0

√
κ(n)n

∥∥w̄n(t)
∥∥ dt

]
, (5.20)

which proves the first statement in the theorem. Since by Theorem2.10 the mapping

m 
→
∫

Rd×[0,1]
‖w‖m(dw × dt)

defines a tightness function onP
(
R

d × [0, 1]), it follows from Lemma2.9 and the
first claim that {M̄n}n∈N is tight.

For the uniform integrability, let C ∈ (1,∞) be arbitrary. We note that the esti-
mates in (5.19) and (5.20) hold for any B and n such that B ≤ λDA{√κ(n)n}.
Consider n large enough that

min{λDA, 1} ≥ C√
κ(n)n

.

Then for such n, the estimates (5.19) and (5.20) hold with B = 1 and B = C . Recall-
ing K̄

.= λDAKDA + KA/2 and applying (5.20) with B = 1, we have for such n,
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E

[∫ 1

0

√
κ(n)n

∥∥w̄n(s)
∥∥ ds

]
≤ K ∗ .= d

(
KE + 1

2
KA + λDAKDA

)
,

and therefore

E

[∫ 1

0
1{√κ(n)n‖w̄n(s)‖>C2}ds

]
≤ K ∗

C2
.

In the following bound, (5.19) with C = B is used to get the first inequality and the
last display, and (5.20) with B = 1 for the third inequality:

CE

[∫

Rd×[0,1]
‖w‖ 1{‖w‖≥C2}M̄n(dw × dt)

]

≤ E

[
d
∫ 1

0
1{‖wn(s)‖>C2}

(
κ(n)nLc

(
X̄ n
(
sn(t)

)
, w̄n(t)

)+ C2 K̄
)
dt

]

≤ dκ(n)nE

[∫ 1

0
Lc
(
X̄ n
(
sn(t)

)
, w̄n(t)

)
dt

]
+ C2d K̄ E

[∫ 1

0
1{‖wn(t)‖>C2}dt

]

≤ K ∗d
(
1 + K̄

)
.

This proves the claimed uniform integrability. �

5.3.2 Identification of Limits

The following theorem is a lawof large numbers type result for the difference between
the noises and their conditional means, and is the most complicated part of the
analysis.

Theorem 5.6 Assume Condition5.1 and (5.17). Consider the sequence {ν̄n
i } of con-

trolled noises and {w̄n(i/n)} of means of the controlled noises as in Construction5.3.
For i ∈ {1, . . . , n} let

Wn
i

.= 1

n

i−1∑

j=0

√
κ(n)n

(
ν̄n
j − w̄n ( j/n)

)
.

Then for all δ > 0,

lim
n→∞ P

{
max

i∈{1,...,n}
∥∥Wn

i

∥∥ ≥ δ

}
= 0.

Proof According to (5.17),

1

n

n−1∑

i=0

E[R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))] ≤ KE

κ(n)n
.
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Because of this the (random) Radon–Nikodym derivatives,

f ni (y) = dμ̄n
i (·)

dθ(·|X̄ n
i )

(y)

are well defined and can be selected in a measurable way [79, Theorem V.58]. We
will control the magnitude of the noise when the Radon–Nikodym derivative is large
by bounding

1

n

n−1∑

i=0

E[1{ f ni (ν̄n
i )≥r}

∥∥ν̄n
i

∥∥]

for large r ∈ (0,∞).
From the bound on the moment-generating function (5.3) [see (3.12)], we obtain

sup
x∈Rd

∫

Rd

e
λ√
d
‖y‖

θ(dy|x) ≤ 2deKmgf .

Let σ = min{λ/2
√
d, 1} and recall �(b)

.= b log b − b + 1. Then

1

n

n−1∑

i=0

E
[
1{ f ni (ν̄n

i )≥r}
∥∥ν̄n

i

∥∥] = 1

n

n−1∑

i=0

E

[∫

{y: f ni (y)≥r}
‖y‖ f ni (y)θ(dy|X̄ n

i )

]

,

and the bound ab ≤ ea + �(b) for a, b ≥ 0 with a = σ ‖y‖ and b = f ni (y) gives
that for all i ,

E

[∫

{y: f ni (y)≥r}
‖y‖ f ni (y)θ(dy|X̄ n

i )

]

≤ 1

σ
E

[∫

{y: f ni (y)≥r}
eσ‖y‖θ(dy|X̄ n

i )

]

+ 1

σ
E

[∫

{y: f ni (y)≥r}
�( f ni (y))μ̄n

i (dy)

]

.

Since �(b) ≥ 0 for all b ≥ 0, we have

E

[∫

{y: f ni (y)≥r}
�
(
f ni (y)

)
θ(dy|X̄ n

i )

]

≤ E

[∫

Rd

�( f ni (y))θ(dy|X̄ n
i )

]

= E[R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))],

and by Hölder’s inequality,
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E

[∫

{y: f ni (y)≥r}
eσ‖y‖θ(dy|X̄ n

i )

]

≤ E

[(∫

Rd

1{ f ni (y)≥r}θ(dy|X̄ n
i )

)1/2 (∫

Rd

e2σ‖y‖θ(dy|X̄ n
i )

)1/2
]

= E
[
θ({y : f ni (y) ≥ r}|X̄ n

i )
1/2
] (
2deKmgf

)1/2
.

In addition, for all r > 1, Markov’s inequality gives

θ({y : f ni (y) ≥ r}|X̄ n
i ) ≤ 1

r log r

∫
log( f ni (y)) f ni (y)θ(dy|X̄ n

i )

= R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))

r log r
.

The last four displays give the bound

1

n

n−1∑

i=0

E

[∫

{ f ni (y)≥r}
‖y‖ f ni (y)θ(dy|X̄ n

i )

]

≤ 1

σ

(
2deKmgf

)1/2 1

n

n−1∑

i=0

E

⎡

⎣
(
R( μ̄n

i (·)
∥∥ θ(·|X̄ n

i ))

r log r

)1/2
⎤

⎦

+ 1

σ

1

n

n−1∑

i=0

E[R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))].

Since by Jensen’s inequality,

1

n

n−1∑

i=0

E

⎡

⎣
(
R( μ̄n

i (·)
∥∥ θ(·|X̄ n

i ))

r log r

)1/2
⎤

⎦

≤
(

1

r log r

)1/2
(
1

n

n−1∑

i=0

E[R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))]

)1/2

,

we obtain the overall bound

1

n

n−1∑

i=0

E
[
1{ f ni (ν̄n

i )≥r}
∥∥ν̄n

i

∥∥]

≤ 1

σ

(
2deKmgf

)1/2
(

1

r log r

)1/2
(
1

n

n−1∑

i=0

E[R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))]

)1/2

+ 1

σ

1

n

n−1∑

i=0

E[R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))]
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≤ 1

σ

K 1/2
E√

κ(n)n

(
2deKmgf

)1/2
(

1

r log r

)1/2

+ 1

σ

KE

κ(n)n
. (5.21)

Using this result, we can complete the proof. Define

ξ
n,r
i

.=
{

ν̄n
i if f ni (ν̄n

i ) < r,
0 otherwise.

For all δ > 0,

P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n

(
ν̄n
i − w̄n

(
i

n

))∥∥∥∥∥
≥ 3δ

}

≤ P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n(ν̄n

i − ξ
n,r
i )

∥∥∥∥∥
≥ δ

}

+ P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n

(

ξ
n,r
i −

∫

{y: f ni (y)<r}
yμ̄n

i (dy)

)∥∥∥∥∥
≥ δ

}

+ P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n

(

w̄n

(
i

n

)
−
∫

{y: f ni (y)<r}
yμ̄n

i (dy)

)∥∥∥∥∥
≥ δ

}

.

The first term satisfies

P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n(ν̄n

i − ξ
n,r
i )

∥∥∥∥∥
≥ δ

}

≤ 1

δ

√
κ(n)n

1

n

n−1∑

i=0

E
[∥∥ν̄n

i − ξ
n,r
i

∥∥]

= 1

δ

√
κ(n)n

1

n

n−1∑

i=0

E
[
1{ f ni (ν̄n

i )≥r}
∥∥ν̄n

i

∥∥] .

The norm in the second term is a submartingale in k, and so by Doob’s submartingale
inequality [see (D.1)],

P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n

(

ξ
n,r
i −

∫

{y: f ni (y)<r}
yμ̄n

i (dy)

)∥∥∥∥∥
≥ δ

}

≤ 1

δ2
E

⎡

⎣

∥∥∥∥∥
1

n

n−1∑

i=0

√
κ(n)n

(

ξ
n,r
i −

∫

{y: f ni (y)<r}
yμ̄n

i (dy)

)∥∥∥∥∥

2
⎤

⎦
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= 1

δ2

κ(n)

n

n−1∑

i=0

E

⎡

⎣

∥∥∥∥∥

(

ξ
n,r
i −

∫

{y: f ni (y)<r}
yμ̄n

i (dy)

)∥∥∥∥∥

2
⎤

⎦

≤ 1

δ2

κ(n)

n

n−1∑

i=0

E
[∥∥ξ n,r

i

∥∥2
]

= 1

δ2

κ(n)

n

n−1∑

i=0

E

[∫

{y: f ni (y)<r}
‖y‖2 f ni (y)θ(dy|X̄ n

i )

]

≤ r

δ2

κ(n)

n

n−1∑

i=0

E

[∫

Rd

‖y‖2 θ(dy|X̄ n
i )

]

≤ r

δ2
κ(n)Kμ,2,

where

Kμ,2 = sup
x∈Rd

∫

Rd

‖y‖2 θ(dy|x) < ∞,

and the finiteness is due to (5.3). We can use Jensen’s inequality with the third term
and get the same bound that was proved for the first:

P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n

(

w̄n

(
i

n

)
−
∫

{y: f ni (y)<r}
yμ̄n

i (dy)

)∥∥∥∥∥
≥ δ

}

≤ 1

δ

√
κ(n)n

1

n

n−1∑

i=0

E

[∥∥∥∥∥

(

w̄n

(
i

n

)
−
∫

{y: f ni (y)<r}
yμ̄n

i (dy)

)∥∥∥∥∥

]

= 1

δ

√
κ(n)n

1

n

n−1∑

i=0

E

[∥∥∥∥∥

∫

{y: f ni (y)≥r}
yμ̄n

i (dy)

∥∥∥∥∥

]

≤ 1

δ

√
κ(n)n

1

n

n−1∑

i=0

E

[∫

{y: f ni (y)≥r}
‖y‖ μ̄n

i (dy)

]

= 1

δ

√
κ(n)n

1

n

n−1∑

i=0

E
[
1{ f ni (ν̄n

i )≥r}
∥∥ν̄n

i

∥∥] .

Combining the bounds for these three terms with (5.21) gives

P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n

(
ν̄n
i − w̄n

(
i

n

))∥∥∥∥∥
≥ 3δ

}

≤ 2

δ

√
κ(n)n

1

n

n−1∑

i=0

E
[
1{ f ni (ν̄n

i )≥r ]
∥∥ν̄n

i

∥∥]+ r

δ2
κ(n)Kμ,2
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≤ 2

σδ
K 1/2

E

(
2deKmgf

)1/2
(

1

r log r

)1/2

+ 2

σδ

KE√
κ(n)n

+ κ(n)
r

δ2
Kμ,2.

Sending n → ∞ and then r → ∞ (and using κ(n) → 0, κ(n)n → ∞) gives

P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n

(
ν̄n
i − w̄n

(
i

n

))∥∥∥∥∥
≥ 3δ

}

→ 0

as n → ∞, which completes the proof. �

The next result identifies the weak limits of controlled processes. We recall that
for a probability measure γ on R

d × [0, 1], the marginal distribution on the second
coordinate is denoted by [γ ]2, and the conditional distribution on the first coordinate
given the second is given by [γ ]1|2. Thus for Borel sets A and B,

γ (Rd × B) = [γ ]2(B) and γ (A × B) =
∫

B
[γ ]1|2(A|s)[γ ]2(ds).

Theorem 5.7 Let {μ̄n
i }i=1,...,n be a sequence of controls, and define the corre-

sponding random variables as in Construction5.3. Assume Condition5.1 and that
(5.17) holds for some KE < ∞. Then {(M̄n, Ȳ n)}n∈N is tight in P(Rd × [0, 1]) ×
C ([0, 1] : R

d). Consider a subsequence (keeping the index n for convenience) such
that {(M̄n, Ȳ n)} converges weakly to (M̄, Ȳ ). Then with probability 1, [M̄]2(dt) is
Lebesgue measure and

Ȳ (t) =
∫ t

0
Db(X0(s))Ȳ (s)ds +

∫ t

0
w(s)ds, (5.22)

where

w(t) =
∫

Rd

w[M̄]1|2(dw |t ). (5.23)

In addition,

lim inf
n→∞ κ(n)nE

[
1

n

n−1∑

i=0

R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))

]

≥ E

[∫ 1

0

1

2
‖w(s)‖2A−1(X0(s)) ds

]
.

(5.24)

The proof of this theorem is lengthy. After some preliminary discussion, several
lemmas will be presented. After stating and proving the lemmas, we will return to
complete the argument for Theorem5.7.

It was shown in Theorem5.5 that {M̄n}n∈N is tight. If M̄ is any weak limit of a
subsequence of {M̄n}n∈N, then since for all n the second marginal of M̄n(dw × dt) is
Lebesgue measure, it follows that [M̄]2(dt) is Lebesgue measure with probability 1.
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The ultimate goal is to show that Ȳ n → Ȳ weakly in C ([0, 1] : R
d), where Ȳ (t)

is given by (5.22) in terms of the weak limit M̄ . To achieve this, we introduce the
following processes, which serve as intermediate steps. Let Y̌ n

0 = 0 and

Y̌ n
i+1 = Y̌ n

i +
√

κ(n)

n

(
b

(
Xn,0
i + 1√

κ(n)n
Y̌ n
i

)
− b

(
Xn,0
i

))
+
√

κ(n)

n
w̄n

(
i

n

)
,

together with its continuous time linear interpolation defined for t ∈ [i/n, i/n +
1/n] by

Y̌ n(t) = (i + 1 − nt)Y̌ n
i + (nt − i)Y̌ n

i+1.

Also let

Ŷ n(t) =
∫ t

0
Db

(
X0(s)

)
Ŷ n(s)ds +

∫ t

0
wn(s)ds, (5.25)

where

wn(t) =
∫

Rd

w[M̄]n1|2(dw |t )

as in Construction5.3. Then both Y̌ n and Ŷ n are random variables taking values in
C ([0, 1] : R

d). Note that Ȳ n differs from Y̌ n , because Ȳ n is driven by the actual
noises and Y̌ n is driven by their conditional means. While the driving terms of Ŷ n

and Y̌ n are the same [recall that
√

κ(n)nw̄n(t) = wn(t)], they differ in that Y̌ n is still
a linear interpolation of a discrete time process, whereas Ŷ n satisfies an ODE. We
will show that along any subsequence where M̄n → M̄ weakly,

Ȳ n − Y̌ n → 0, Y̌ n − Ŷ n → 0, and Ŷ n → Ȳ

in C ([0, 1] : R
d), all in distribution, where Ȳ is the unique solution of (5.22).

To show that Ŷ n → Ȳ , we show that {Ŷ n} is tight in C ([0, 1] : R
d) and use the

mapping defined by (5.25) from
∫ ·
0 w

n to Ŷ n . Recall that supx∈Rd ‖Db(x)‖ ≤ Kb.
The following lemma uses the uniform integrability of {M̄n} given in Theorem5.5
to prove tightness of {Ŷ n}.
Lemma 5.8 Assume Conditions5.1 and (5.17). The sequence {Ŷ n} defined in (5.25)
in terms of the measures {M̄n} via Construction5.3 is tight in C ([0, 1] : R

d), as is
{∫ ·

0 w
nds}.

Proof Tightness of {∫ ·
0 w

nds} is a consequence of the fact that for δ,C ∈ (0,∞),

lim sup
n→∞

P

(

sup
|s−t |≤δ

∫ t

s

∥∥wn(r)
∥∥ dr > ε

)

≤ δ
C

ε
+ 1

ε
T (C),

where
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T (C)
.= lim sup

n→∞
E

[∫ 1

0
1{‖wn(t)‖>C}

∥∥wn(t)
∥∥ dt

]

= lim sup
n→∞

E

[∫

{‖w‖>C}
‖w‖ M̄n(dw × dt)

]
,

and the fact that by Theorem5.5, T (C) → 0 as C → ∞. For tightness of {Ŷ n} it
suffices to check that the map from C ([0, 1] : R

d) to itself that takes z ∈ C ([0, 1] :
R

d) to the unique solution of

φ(t) =
∫ t

0
Db(X0(s))φ(s)ds + z(t), t ∈ [0, 1],

is continuous. However, this continuity follows directly from Gronwall’s
inequality. �

We still need to show that Ŷ n converges to Ȳ . This also relies on the uniform
integrability given by Theorem5.5.

Lemma 5.9 Assume Conditions5.1 and (5.17). Let the sequence {Ŷ n (t)} be defined
by (5.25) and consider a weakly convergent subsequence {(Ŷ n, M̄n)} with limit
(Ŷ , M̄). Then w.p.1, Ŷ = Ȳ , where Ȳ is defined by (5.22)–(5.23).

Proof We can write

Ŷ n(t) =
∫ t

0
Db(X0(s))Ŷ n(s)ds +

∫ t

0

∫

Rd

wM̄n(dw × ds).

The uniform integrability proved in Theorem5.5 and that [M̄]2 is Lebesgue measure
w.p.1 will be used. The latter implies E M̄(Rd × {t}) = 0 for t ∈ [0, 1]. Sending
n → ∞ and using the definition of w(s) in (5.23) gives

Ŷ (t) =
∫ t

0
Db(X0(s))Ŷ (s)ds +

∫ t

0

∫

Rd

wM̄(dw × ds)

=
∫ t

0
Db(X0(s))Ŷ (s)ds +

∫ t

0
w(s)ds.

By uniqueness of the solution, Ŷ = Ȳ follows. �

It remains to show that Ȳ n − Y̌ n → 0 and Y̌ n − Ŷ n → 0. We begin with Ȳ n −
Y̌ n → 0. Recall that the difference between Ȳ n and Y̌ n is that the first is driven by
the actual noises, and the second is driven by their conditional means. The following
discrete version of Gronwall’s inequality will be used to prove Ȳ n − Y̌ n → 0. A
proof can be found in [83, p. 283].

Lemma 5.10 If {zn}, {un}, and {vn} are nonnegative sequences defined for n ∈ N0

that satisfy
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zk ≤ vk +
n−1∑

k=0

ui zi ,

then

zk ≤ vk +
n−1∑

k=0

uivi exp

{
n−1∑

i=k+1

u j

}

.

Lemma 5.11 Assume Conditions5.1 and (5.17). Then Y̌ n − Ȳ n → 0 in probability.

Proof Recall from (5.13) and (5.14) that

Ȳ n
k =

k−1∑

i=0

√
κ(n)

n

(
b

(
Xn,0
i + 1√

κ(n)n
Ȳ n
i

)
− b

(
Xn,0
i

))
+

k−1∑

i=0

√
κ(n)

n
ν̄n
i

and

Y̌ n
k =

k−1∑

i=0

√
κ(n)

n

(
b

(
Xn,0
i + 1√

κ(n)n
Y̌ n
i

)
− b

(
Xn,0
i

))
+

k−1∑

i=0

√
κ(n)

n
w̄n

(
i

n

)
,

so with Wn
k defined as in Theorem5.6,

∥∥∥Ȳ n
k − Y̌ n

k

∥∥∥ ≤ ∥∥Wn
k

∥∥+
k−1∑

i=0

Kb

n

∥∥∥Ȳ n
i − Y̌ n

i

∥∥∥ .

Using Lemma5.10 gives, for k ≤ n,

∥∥∥Ȳ n
k − Y̌ n

k

∥∥∥ ≤ ∥∥Wn
k

∥∥+
k−1∑

i=0

∥∥Wn
i

∥∥ Kb

n
exp

{
Kb

n
(k − i − 1)

}

≤ (1 + Kbe
Kb) max

i∈{0,1,...,k}
∥∥Wn

i

∥∥ .

From Theorem5.6, we have maxi∈{1,...,n}
∥∥Wn

i

∥∥ → 0 in probability, and therefore

max
i∈{1,...,n}

∥∥∥Ȳ n
i − Y̌ n

i

∥∥∥ → 0,

and hence supt∈[0,1]
∥∥∥Ȳ n(t) − Y̌ n(t)

∥∥∥ → 0 in probability. �

To complete the proof of the convergence we need to show that Y̌ n − Ŷ n → 0.
Recall that these two processes have the same driving terms but different drifts, in
that Ŷ n satisfies the ODE
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Ŷ n(t) =
∫ t

0
Db(X0(s))Ŷ n(s)ds +

∫ t

0
wn(s)ds,

while Y̌ n is the linear interpolation of the discrete time process defined by Y̌ n
0 = 0

and

Y̌ n
i+1 = Y̌ n

i +
√

κ(n)

n

(
b

(
Xn,0
i + 1√

κ(n)n
Y̌ n
i

)
− b

(
Xn,0
i

))
+ 1

n
wn

(
i

n

)
.

However, essentially the same arguments as those used in Lemma5.8 to show tight-
ness of {Ŷ n} can be used to prove tightness of {Y̌ n}, and then it easily follows as in
Lemma5.9 that any limit will satisfy the same ODE (5.22) as the limit of {Ŷ n}, and
therefore Y̌ n − Ŷ n → 0 follows.

Combining Ȳ n − Y̌ n → 0, Y̌ n − Ŷ n → 0, and Ŷ n → Ȳ demonstrates that along
the subsequence where M̄n → M̄ weakly, Ȳ n → Ȳ in distribution, which implies
that along this subsequence, (M̄n, Ȳ n) → (M̄, Ȳ ) weakly. We have already shown
that with probability 1, [M̄]2(dt) is Lebesgue measure and

Ȳ (t) =
∫ t

0
Db(X0(s))Ȳ (s)ds +

∫ t

0

∫

Rd

w[M̄]1|2(dw |s )ds,

so the proof of convergence (i.e., the first part of Theorem5.7) is complete.
To finish the proof of Theorem5.7, we must prove the bound (5.24). Recall the

notation sn(t)
.= �nt /n, and note from (5.14) that the weak convergence of Ȳ n

implies
sup

t∈[0,1]

∥∥X̄ n(sn(t)) − X0(t)
∥∥ → 0 in probability. (5.26)

Now define random measures on R
d × R

d × [0, 1] by

γ n (dx × dw × dt) = δX̄ n(sn(t)) (dx) M̄n (dw × dt) .

Note that the tightness of {γ n} follows easily from (5.26) and the tightness of
{
M̄n
}
.

Thus given any subsequence, we can choose a further subsequence (again we will
retain n as the index for simplicity) along which {γ n} converges weakly to some
P
(
R

d × R
d × [0, 1]

)
-valued random variable γ with

[γ ]2,3 (dw × dt) = M̄ (dw × dt) ,

where [γ ]2,3 is the second and third marginal of γ . If we establish (5.24) for this
subsequence, it holds for the original one using a standard argument by contradiction.
For σ > 0, let

GX0

σ

.= {
(x,w, t) : ∥∥x − X0 (t)

∥∥ ≤ σ
}
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be closed sets centered on X0 (t) in the x variable, and note that by (5.26) and weak
convergence, for all σ > 0,

1 = lim sup
n→∞

E
[
γ n
(
GX0

σ

)]
≤ E

[
γ
(
GX0

σ

)]
.

Thus

E

[

γ

(
⋂

n∈N

GX0

1/n

)]

= 1,

so with probability 1, γ puts all its mass on
{
(x,w, t) : x = X0 (t)

}
. Therefore, with

probability 1, for a.e. (w, t) under [γ ]2,3 (dw × dt),

[γ ]1|2,3 (dx |w, t) = δX0(t) (dx) .

Combined with the fact that the second marginal of M̄ (dw × dt) is Lebesgue mea-
sure, this gives

γ (dx × dw × dt) = δX0(t) (dx) M̄ (dw| t) dt . (5.27)

For κ ∈ (0,∞), define

L̄κ (x, β)
.= sup

α∈Rd

[
〈α, β〉 − 1

2
‖α‖2A(x) − 1

2κ
‖α‖2

]
.

Using (5.8),

κ(n)nLc

(
x,

1√
κ(n)n

β

)

= sup
α∈Rd

[√
κ(n)n〈α, β〉 − κ(n)nHc(x, α)

]

≥ sup
α∈Rd

[√
κ(n)n〈α, β〉 − κ(n)n

2
‖α‖2A(x) − κ(n)nKDA‖α‖3

]

≥ sup
α∈Rd

[
〈α, β〉 − ‖α‖2A(x) − 1

2κ
‖α‖2 − KDA√

κ(n)n
‖α‖3

]
. (5.28)

Let K1 be an arbitrary compact subset of R
d . Since ‖α‖2 is superlinear, there exists

another compact set K2 of R
d , depending only on κ and K1, such that whenever

β ∈ K1 and x ∈ R
d ,

sup
α∈K2

[
〈α, β〉 − 1

2
‖α‖2A(x) − 1

2κ
‖α‖2

]
= sup

α∈Rd

[
〈α, β〉 − 1

2
‖α‖2A(x) − 1

2κ
‖α‖2

]

= L̄κ(x, β).
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Also, from (5.28),

Λn
K2

(x, β)
.= sup

α∈K2

[
〈α, β〉 − ‖α‖2A(x) − 1

2κ
‖α‖2 − KDA√

κ(n)n
‖α‖3

]

≤ κ(n)nLc

(
x,

1√
κ(n)n

β

)

Note that as n → ∞,

sup
(x,β)∈Rd×K1

|Λn
K2

(x, β) − L̄κ(x, β)| → 0. (5.29)

By Lemma5.4 and the definitions of γ n and M̄n , we have

lim inf
n→∞ κ(n)nE

[
n−1∑

i=0

1

n
R( μ̄n

i (·)
∥∥ θ(·|X̄ n

i ))

]

≥ lim inf
n→∞ E

[∫

Rd×Rd×[0,1]
κ(n)nLc

(
x,

1√
κ(n)n

w

)
γ n (dx × dw × dt)

]

≥ lim inf
n→∞ E

[∫

Rd×K1×[0,1]
Λn

K2
(x,w)γ n (dx × dw × dt)

]
.

For fixed K1, since K2 is bounded, there is c ∈ (0,∞) such that |Λn
K2

(x,w)| ≤
c(1 + ‖w‖) for all n ∈ N and also |L̄κ(x,w)| ≤ c(1 + ‖w‖). Using these bounds and
(5.18) to control contributions to the integrals from large values of ‖w‖, it follows
from (5.29) that the last quantity in the previous display is the same as

lim inf
n→∞ E

[∫

Rd×K1×[0,1]
L̄κ(x,w)γ n (dx × dw × dt)

]
.

Using the continuity of (x, β) 
→ L̄κ(x, β) and Fatou’s lemma thus gives

lim inf
n→∞ κ(n)nE

[
n−1∑

i=0

1

n
R( μ̄n

i (·)
∥∥ θ(·|X̄ n

i ))

]

≥ E

[∫

Rd×K1×[0,1]
L̄κ (x,w) γ (dx × dw × dt)

]
.

Since L̄κ ≥ 0, by the monotone convergence theorem we can replace K1 by R
d in

the last display. Next note that as κ → ∞,

L̄κ (x, β) ↑ 1

2
‖β‖2A−1(x)
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for all (x, β) ∈ R
2d . Finally, using the monotone convergence theorem, the decom-

position (5.27), and Jensen’s inequality in that order shows that

lim inf
n→∞ κ(n)nE

[
n−1∑

i=0

1

n
R( μ̄n

i (·)
∥∥ θ(·|X̄ n

i ))

]

≥ lim
κ→∞ E

[∫

Rd×Rd×[0,1]
L̄κ (x,w) γ (dx × dw × dt)

]

= E

[∫

Rd×Rd×[0,1]

1

2
‖w‖2A−1(x) γ (dx × dw × dt)

]

= E

[∫ 1

0

∫

Rd

1

2
‖w‖2A−1(X0(t)) M̄ (dw| t) dt

]

≥ E

[
1

2

∫ 1

0
‖w(t)‖2A−1(X0(t)) dt

]
,

which is (5.24). This concludes the proof of Theorem5.7. �

5.4 Laplace Upper Bound

In this section we prove the variational lower bound

lim inf
n→∞ −κ(n) log E

[
e− 1

κ(n)
F(Y n)

]
≥ inf

φ∈C ([0,1]:Rd )
[IM(φ) + F (φ)] , (5.30)

which corresponds to the Laplace upper bound.
Suppose for each n that {μ̄n

i } comeswithin 1/n of achieving the infimum in (5.15),
so that

lim inf
n→∞ −κ(n) log E

[
e− 1

κ(n)
F(Y n)

]

≥ lim inf
n→∞ E

[
n−1∑

i=0

κ(n)R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i )) + F(Ȳ n)

]

. (5.31)

We also have

sup
n∈N

κ(n)nE

[
n−1∑

i=0

1

n
R( μ̄n

i (·)
∥∥ θ(·|X̄ n

i ))

]

≤ 2 ‖F‖∞ + 1.

Consequently, (5.17) is satisfied with KE = 2 ‖F‖∞ + 1, and from Theorem5.7 we
can choose for every subsequence of {(M̄n, Ȳ n)} a further subsequence (we retain n as
the index for convenience) alongwhich (M̄n, Ȳ n) converges to (M̄, Ȳ ) in distribution,
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M̄ , Ȳ are related by (5.22)–(5.23), and such that (5.24) is satisfied. Combining this
with (5.31) gives

lim inf
n→∞ −κ(n) log E

[
e− 1

κ(n)
F(Y n)

]

≥ lim inf
n→∞ E

[
n−1∑

i=0

κ(n)R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i )) + F(Ȳ n)

]

≥ E

[∫ 1

0

1

2
‖w(s)‖2A−1(X0(s)) ds + F(Ȳ )

]
.

Define φu for u ∈ L 2([0, 1] : R
d) by

φu (t) =
∫ t

0
Db(X0(s))φu(s)ds +

∫ t

0
A1/2(X0(s))u(s)ds. (5.32)

Recalling

Ȳ (t) =
∫ t

0
Db(X0(s))Ȳ (s)ds +

∫ t

0
w(s)ds,

it follows using the expression for IM in (5.10) and (5.11) that

E

[∫ 1

0

1

2
‖w(s)‖2A−1(X0(s)) ds + F(Ȳ )

]

≥ inf
u∈L 2([0,1]:Rd )

[∫ 1

0

1

2
‖u(s)‖2 ds + F(φu)

]

= inf
φ∈C ([0,1]:Rd )

[IM(φ) + F (φ)] ,

which is the lower bound (5.30). �

5.5 Laplace Lower Bound

In this section we prove the variational upper bound

lim sup
n→∞

−κ(n) log E
[
e− 1

κ(n)
F(Y n)

]
≤ inf

φ∈C ([0,1]:Rd )
[IM(φ) + F (φ)] , (5.33)

which is the Laplace lower bound. Note that for u, v ∈ L 2([0, 1] : R
d),

φu(t) − φv(t) =
∫ t

0
Db(X0(s))

(
φu(s) − φv(s)

)
ds

+
∫ t

0
A1/2(X0(s))(u(s) − v(s))ds.



5.5 Laplace Lower Bound 143

Thus by Gronwall’s inequality,

sup
t∈[0,1]

∥∥φu(t) − φv(t)
∥∥

≤ eKb

∫ 1

0

∥∥A1/2(X0(s))(u(s) − v(s))
∥∥ ds

≤ eKb

(∫ 1

0

∥∥A1/2(X0(s))(u(s) − v(s))
∥∥2 ds

)1/2

≤ eKb K 1/2
A

(∫ 1

0
‖u(s) − v(s)‖2 ds

)1/2

. (5.34)

Since C ([0, 1] : R
d) is dense in L 2([0, 1] : R

d), the proof of the Laplace lower
bound is reduced to showing that for an arbitrary u ∈ C ([0, 1] : R

d),

lim sup
n→∞

−κ(n) log E
[
e− 1

κ(n)
F(Y n)

]
≤ 1

2

∫ 1

0
‖u(s)‖2 ds + F

(
φu
)
. (5.35)

We fix u ∈ C ([0, 1] : R
d) for the remainder of the proof.

Remark 5.12 The proof of the lower bound for the moderate deviation problem
differs substantially from the corresponding proof of the large deviation problem,
especially in regard to the treatment of degenerate noise. For the case of large devi-
ations, this was handled in Chap.4 using a mollification. In the moderate deviations
setting a simpler argument is possible. This is largely due to the form of the rate
function, which is the same as that of the small noise diffusion model of Sect. 3.2,
but with time-dependent drift Db(X0(t)) and diffusion matrix A1/2

(
X0 (t)

)
. As just

discussed, with this form one can find a nearly optimal trajectory for the limit varia-
tional problem of the form φu , with u continuous rather than just measurable, which
greatly facilitates the construction of nearly optimal controls for the prelimit in the
proof of the lower bound. This is not possible for the general model of Chap. 4, since
it is not useful to view Xn there as a continuous or nearly continuous mapping on
an “exogenous” noise process. In this sense, the moderate deviation problem shares
some of the simplifying features of the continuous timemodels discussed in Sect. 3.2
and at greater length in later chapters.

We now turn to the proof of (5.35) for the given u ∈ C ([0, 1] : R
d). The main

difficulty related to the possible degeneracy of the noise is the following. Since at
the prelimit, the controlled processes X̄ n may be close to but not precisely equal
to X0, the range of A(X̄ n(i/n)) can differ from that of A(X0(i/n)) (at least in the
degenerate case). Because of this, the construction of a control that approximates
A1/2(X0(i/n))u(i/n) with nearly optimal cost is not as straightforward as in the
nondegenerate case [it is simple in that case due to the invertibility of A1/2(X̄ n(i/n))].

Recall the orthogonal decomposition of A−1(x) discussed above (5.6). For κ ∈
(0,∞), define
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A−1
κ (x) = Q(x)Λ−1

κ (x)QT (x),

where Λ−1
κ (x) is the diagonal matrix such that Λ−1

i i,κ (x) = Λ−1
i i (x) when Λ−1

i i (x) ≤
κ2 and Λ−1

i i,κ (x) = κ2 when Λ−1
i i (x) > κ2. Note that by [155, Theorem 6.2.37],

A1/2(x), A−1
κ (x), and A1/2

κ (x) are continuous functions of A(x), and consequently
they are also continuous functions of x ∈ R

d . In addition, define

uκ(s) =
{
u(s) for ‖u(s)‖ ≤ κ,
κu(s)
‖u(s)‖ for ‖u(s)‖ > κ.

Let φu,κ (t) = φA−1/2
κ (X0)uκ (t), and note that φu,κ solves

φu,κ (t) =
∫ t

0
Db(X0(s))φu,κ (s)ds

+
∫ t

0
A(X0(s))A−1/2

κ (X0(s))uκ(s)ds. (5.36)

For n sufficiently large,

max
0≤i≤n−1

1√
κ(n)n

∥∥A−1/2
κ

(
X0 (i/n)

)
uκ (i/n)

∥∥ ≤ 1√
κ(n)n

κ2 ≤ λDA,

andwe can define the sequence {(X̄ n,κ , Ȳ n,κ , M̄n,κ ,wn,κ )} as inConstruction5.3with

μ̄
n,κ
i (dy) = exp

{〈
y,

1√
κ(n)n

A−1/2
κ

(
X0 (i/n)

)
uκ (i/n)

〉

−Hc

(
X̄ n,κ
i ,

1√
κ(n)n

A−1/2
κ

(
X0 (i/n)

)
uκ (i/n)

)}
θ(dy|X̄ n,κ

i ).

We will use
∫

Rd

y exp{〈y, α〉 − Hc(x, α)}θ(dy|x) = DαHc(x, α)

and the formula

DαHc(x, α) = DαHc(x, α) − DαHc(x, 0) =
∫ 1

0

(
d

ds
DαHc(x, sα)

)
ds,

where DαHc(x, 0) = 0 follows from (5.4).Using (5.5) to approximate second deriva-
tives that appear on the right side of the last display, the bounds (5.7) imply that for
‖α‖ ≤ λD A,
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∥∥∥∥

∫

Rd

y exp{〈y, α〉 − Hc(x, α)}θ(dy|x) − A(x)α

∥∥∥∥ ≤ KDA ‖α‖2 . (5.37)

The next result identifies the limit in probability of the controlled processes and an
asymptotic bound for the relative entropies. Recall that u ∈ C ([0, 1] : R

d) has been
fixed.

Theorem 5.13 Let κ ∈ (0,∞) be given. Consider the controls {μ̄n,κ
i } and random

variables {(X̄ n,κ , Ȳ n,κ , M̄n,κ ,wn,κ )} as in Construction5.3 with {μ̄n
i } replaced by

{μ̄n,κ
i }, and define φu,κ by (5.36). Then

Ȳ n,κ → φu,κ (5.38)

in C ([0, 1] : R
d) in probability, and

lim sup
n→∞

κ(n)nE

[
1

n

n−1∑

i=0

R
(
μ̄
n,κ
i (·)∥∥ θ(·|X̄ n,κ

i )
)
]

≤ 1

2

∫ 1

0

∥∥A−1/2
κ (X0(s))uκ(s)

∥∥2
A(X0(s)) ds. (5.39)

Proof From (5.8) and (5.37), for all n large enough that κ2/
√

κ(n)n ≤ λDA andwith
sni

.= i/n,

R
(
μ̄
n,κ
i (·)∥∥ θ(·|X̄ n,κ

i )
)

=
∫

Rd

〈
y,

1√
κ(n)n

A−1/2
κ

(
X0
(
sni
))
uκ

(
sni
)〉

μ̄
n,κ
i (dy)

− Hc

(
X̄ n,κ
i ,

1√
κ(n)n

A−1/2
κ

(
X0 (sni

))
uκ

(
sni
))

≤ 1

κ(n)n

〈
A
(
X̄ n,κ
i

)
A−1/2

κ

(
X0 (sni

))
uκ

(
sni
)
, A−1/2

κ

(
X0 (sni

))
uκ

(
sni
)〉

− 1

2κ(n)n

〈
A
(
X̄ n,κ
i

)
A−1/2

κ

(
X0
(
sni
))
uκ

(
sni
)
,

A−1/2
κ

(
X0
(
sni
))
uκ

(
sni
)〉+ 2

(κ(n)n)3/2
KDAκ

6

= 1

2κ(n)n

∥∥A−1/2
κ

(
X0
(
sni
))
uκ

(
sni
)∥∥2

A(X̄ n,κ
i )

+ 2

(κ(n)n)3/2
KDAκ

6.

Consequently,

lim sup
n→∞

κ(n)nE

[
1

n

n−1∑

i=0

R
(
μ̄
n,κ
i (·)∥∥ θ(·|X̄ n,κ

i )
)
]

(5.40)
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≤ lim sup
n→∞

1

2
E

[
1

n

n−1∑

i=0

∥∥A−1/2
κ

(
X0 (i/n)

)
uκ (i/n)

∥∥2
A(X̄ n,κ

i )

]

,

where in fact,

lim sup
n→∞

1

2
E

[
1

n

n−1∑

i=0

∥∥A−1/2
κ

(
X0 (i/n)

)
uκ (i/n)

∥∥2
A(X̄ n,κ

i )

]

≤ 1

2
κ4KA.

Therefore, (5.17) is satisfied by {μ̄n,κ
i }. Thus the conclusions of Theorem5.7 hold

with Ȳ n , M̄n replaced by Ȳ n,κ , M̄n,κ . Choose a subsequence (keeping n as the
index for convenience) along which {(M̄n,κ , Ȳ n,κ )} converges weakly to some limit
(M̄κ , Ȳ κ), where [M̄κ ]2 is Lebesgue measure and

Ȳ κ(t) =
∫ t

0
Db(X0(s))Ȳ κ(s)ds +

∫ t

0

∫

Rd

w[M̄κ ]1|2(dw |s )ds.

Then Ȳ n,κ → Ȳ κ implies

sup
t∈[0,1]

∥∥X̄ n,κ (t) − X0(t)
∥∥ → 0

in probability. Because of this and the continuity of A1/2(x), we have (recall sn(t)
.=

�nt /n)
sup

t∈[0,1]

∥∥A1/2(X̄ n,κ (sn(t))) − A1/2(X0(sn(t)))
∥∥ → 0

in probability. However, the continuity of t 
→ A1/2(X0(t))A−1/2
κ (X0(t))uκ(t) gives

sup
t∈[0,1]

∥∥A1/2(X0(sn(t)))A−1/2
κ (X0(sn(t)))uκ(s

n(t))

−A1/2(X0(t))A−1/2
κ (X0(t))uκ(t)

∥∥ → 0.

Combining these limits, and using the fact that A−1/2
κ (X0(t))uκ(t) is uniformly

bounded, shows that

sup
t∈[0,1]

∥∥A1/2(X̄ n,κ (sn(t)))A−1/2
κ (X0(sn(t)))uκ(s

n(t)) (5.41)

−A1/2(X0(t))A−1/2
κ (X0(t))uκ(t)

∥∥ → 0

in probability. This combined with the uniform bounds allows the use of the domi-
nated convergence theorem to show that
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lim sup
n→∞

E

[
1

2

∫ 1

0

∥∥A−1/2
κ (X0(sn(t)))uκ(s

n(t))
∥∥2
A(X̄ n,κ (sn(t))) dt

]

= 1

2

∫ 1

0

∥∥A−1/2
κ (X0(t))uκ(t)

∥∥2
A(X0(t))

dt.

Combining this with (5.40) demonstrates (5.39).
To prove (5.38), we will show that in fact,

M̄κ(dw × dt) = δA(X0(t))A−1/2
κ (X0(t))uκ (t)(dw)dt.

For all σ > 0, let

Gσ
.= {

(z, t) ∈ R
d × [0, 1] : ∥∥z − A(X0(t))A−1/2

κ (X0(t))uκ(t)
∥∥ ≤ σ

}
,

and note that by weak convergence, lim supn→∞ E[M̄n,κ (Gσ )] ≤ E[M̄κ(Gσ )]. Note
also that

E[M̄n,κ (Gσ )]
≥ P

[
sup

t∈[0,1]

∥∥∥∥
√

κ(n)n
∫

Rd

yμ̄n,κ
�nt(dy) − A(X0(t))A−1/2

κ (X0(t))uκ(t)

∥∥∥∥ ≤ σ

]
.

However, by (5.37) we can choose n large enough to make

sup
t∈[0,1]

∥∥∥∥
√

κ(n)n
∫

Rd

yμ̄n,κ
�nt(dy) − A

(
X̄ n,κ

(
sn(t)

))
A−1/2

κ

(
X0
(
sn(t)

))
uκ

(
sn(t)

)
∥∥∥∥

arbitrarily small, and the proof that

sup
t∈[0,1]

∥∥A(X̄ n,κ (sn(t)))A−1/2
κ (X0(sn(t)))uκ(s

n(t))

−A(X0(t))A−1/2
κ (X0(t))uκ(t)

∥∥ → 0

inprobability is identical to the proof of (5.41).Hence lim supn→∞ E[M̄n,κ (Gσ )] = 1
for all σ > 0, and so E[M̄κ(∩n∈NG1/n)] = 1. This implies that with probability 1,

[M̄]κ1|2(dw |t ) = δA(X0(t))A−1/2
κ (X0(t))uκ

(dw)

for a.e. t . It follows that

Ȳ κ(t) =
∫ t

0
Db(X0(s))Ȳ κ(s)ds +

∫ t

0
A(X0(s))A−1/2

κ (X0(s))uκ(s)ds,

and therefore Ȳ n,κ → φu,κ weakly. This implies (5.38) and completes the proof. �
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The second theorem in this section allows us to approximate F(φu) by F(φu,κ )

and 1
2

∫ 1
0 ‖u(s)‖2 ds by

1

2

∫ 1

0

∥∥A−1/2
κ (X0(s))uκ(s)

∥∥2
A(X0(s)) ds.

Recall that u ∈ C ([0, 1] : R
d) has been given.

Theorem 5.14 Defineφu by (5.32) andφu,κ by (5.36). Thenφu,κ → φu inC ([0, 1] :
R

d) and

lim sup
κ→∞

1

2

∫ 1

0

∥∥A−1/2
κ (X0(s))uκ(s)

∥∥2
A(X0(s)) ds ≤ 1

2

∫ 1

0
‖u(s)‖2 ds.

Proof Note that

∥∥A1/2(X0(s))A−1/2
κ (X0(s))uκ(s)

∥∥ ≤ ‖u(s)‖

for all s ∈ [0, 1]. Thus it is automatic that

lim sup
κ→∞

1

2

∫ 1

0

∥∥A−1/2
κ (X0(s))uκ(s)

∥∥2
A(X0(s)) ds ≤ 1

2

∫ 1

0
‖u(s)‖2 ds.

Also, for x ∈ R
d ,

A(x)A−1/2
κ (x) = Q(x)Λ(x)Λ−1/2

κ (x)QT (x) → Q(x)Λ1/2(x)QT (x) = A1/2(x).

Since uκ(s) → u(s) for all s ∈ [0, 1],

A(X0(s))A−1/2
κ (X0(s))uκ(s) → A1/2(X0(s))u(s) (5.42)

pointwise. Sinceu ∈ L 2([0, 1] : R
d), by the dominated convergence theorem, (5.42)

also holds in L 2([0, 1] : R
d). Combining this with the second inequality in (5.34)

shows that φu,κ → φu in C ([0, 1] : R
d). �

Using (5.15) and the fact that any given control is suboptimal yields

−κ(n) log E
[
e− 1

κ(n)
F(Y n)

]
≤ E

[
n−1∑

i=0

κ(n)R
(
μ̄
n,κ
i (·)∥∥ θ(·|X̄ n,κ

i )
)+ F(Ȳ n,κ )

]

.
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Using Theorem5.13, this implies

lim sup
n→∞

−κ(n) log E
[
e− 1

κ(n)
F(Y n)

]

≤ 1

2

∫ 1

0

∥∥A−1/2
κ (X0(s))uκ(s)

∥∥2
A(X0(s)) ds + F(φu,κ ).

Sending κ → ∞ and using Theorem5.14 gives (5.35), which completes the proof
of (5.33). �

5.6 Notes

Among the earliest papers to study moderate deviations are those by Rubin and
Sethuraman [222], Ghosh [146], and Michel [200]. See the introduction of [41] for a
more complete discussion of work in this area. While a number of settings have been
considered, to the authors’ knowledge the first papers to considermoderate deviations
for small noise processes around solutions to general nonlinear ODEs (rather than
constant-velocity trajectories) are [100] for discrete time models, upon which this
chapter is based, and [41] for continuous time processes. As noted in the introduction
to the chapter, the proof of the moderate deviation principle presented here is neither
uniformly harder nor easier than its large deviation counterpart, at least when one is
using weak convergence methods. In particular, the large deviation upper bound is
made more difficult due to difficulties in using tightness in the convergence analysis.
(The case of solutions to SDEs driven by Brownian motion, which is given as an
example in Chap.3, is in fact much easier, owing to the fact that the driving noise is
already Gaussian.) Also, the assumed conditions are not strictly weaker, mainly in
that additional smoothness is needed for the proper centering and rescaling.Moderate
deviation principles will also appear in Chaps. 10 and 13.
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