
Chapter 4
Recursive Markov Systems with Small
Noise

In Chap.3 we presented several examples of representations and how they could
be used for large deviation analysis. A simplifying feature of all the examples of
Chap.3 is that the process models (e.g., empirical measure, solution to an SDE)
could be thought of as a “nice” functional of a process that is “white” in the time
variable, by which we mean independent in the setting of discrete time, and with
independent increments in the setting of continuous time (see Sect. 3.5 for what is
meant by a nice functional in the case of small noise SDEs).

In this chapter we study a model for which there is, in general, no convenient
representation as a functional of white noise. Note that we do not claim that such
a representation is impossible, but rather that it will not (in general) be useful, e.g.,
in proving law of large numbers limits. Because of this feature, a more complex
representation and weak convergence analysis cannot be avoided. In particular, the
“base” measure in the representation will be a Markov measure rather than a product
measure, and the process model will be a general “small noise” Markov process.
The model provides a substantial generalization of the random walk considered in
Cramér’s theorem. It occurs frequently in stochastic systems theory, e.g., stochastic
approximation and related recursive algorithms [18, 182, 193], where the rate func-
tion can be used to define a rate of convergence [102]. The model also arises as a
discrete time approximation to various continuous time models, such as the small
noise SDE in Sect. 3.2.1 of Chap.3, and indeed provides an alternative approach to
proving large deviation estimates for such models (though we much prefer the direct
approach of Chap.3).

4.1 Process Model

We begin with a description of the process model. Suppose that θ(dy|x) is a stochas-
tic kernel on R

d given R
d . One can construct a probability space that supports

iid random vector fields
{
vi (x), i ∈ N0, x ∈ R

d
}
, with the property that for all
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x ∈ R
d , vi (x) has distribution θ(·|x). To be precise, there exists a probability space

(Ω,F , P) such that for each i ∈ N0, vi is a measurable map from R
d × Ω to R

d ;
for k ∈ N and distinct i1, . . . , ik ∈ N0 and xi1 , . . . , xik ∈ R

d , the random vectors
vi1(xi1), . . . , vik (xik ) are mutually independent; and for each i ∈ N0, vi (x) has dis-
tribution θ(·|x). We then define for each n ∈ N a Markov process

{
Xn
i

}
i=0,...,n by

setting

Xn
i+1 = Xn

i + 1

n
vi (X

n
i ), Xn

0 = x0. (4.1)

This discrete time process is interpolated into continuous time according to

Xn(t) = Xn
i + [

Xn
i+1 − Xn

i

]
(nt − i) , t ∈ [i/n, i/n + 1/n]. (4.2)

The goal of this chapter is to study a large deviation principle for the sequence
{Xn}n∈N of C ([0, T ] : Rd)-valued random variables.

Example 4.1 Suppose that for each x ∈ R
d , vi (x) has a normal distributionwith con-

tinuousmean b(x) and covarianceσ(x)σT (x). Then Xn(t) is theEuler approximation
with step size 1/n to the SDE (3.15) with drift coefficient b, diffusion coefficient σ,
and ε = 1/n.

Example 4.2 For an example in the form of a stochastic approximation algorithm,
take vi (x) = −∇V (x) + wi , where the wi are iid with Ewi = 0 and V is a smooth
function. In this case, 1/n is the “gain” of the algorithm [18, 182].

Of course, to prove an LDP for {Xn}n∈N, additional assumptions must be made.
For x ∈ R

d and α ∈ R
d , define

H(x,α)
.= log Ee〈α,vi (x)〉.

Condition 4.3 (a) For each α ∈ R
d , supx∈Rd H(x,α) < ∞.

(b) The mapping x �→ θ(·|x) from R
d toP(Rd) is continuous in the topology of

weak convergence.

The first condition is not needed for an LDP to hold. However, if H(x,α) = ∞ for
somevalues of x andα, then vi (x)has relatively heavy tails in certain directions. Paths
with jumpsmay be important from the perspective of large deviations, and the setting
used here is no longer appropriate. The second condition can also be weakened.
However, this often leads to a qualitatively different form of the rate function, and the
process models that violate this condition are said to have “discontinuous statistics”
[95, 98]. For an example of such a process but in continuous time, see Chap.13.
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4.2 The Representation

The first issue to resolve is the formulation of a representation that reflects the natural
structure of the process model. As noted at the beginning of the chapter, it is possible
to represent {Xn} in terms of iid random variables, e.g., in the form Xn

i+1 = Xn
i +

1
n g(X

n
i ,Ui ), where g is measurable and the {Ui , i ∈ N0} are iid random variables

with uniform distribution on [0, 1]. Although this form would allow a representation
in terms of an iid base measure, it would not be useful. This is because the map g is
not in general continuous in x , and hence this formulation is poorly suited for even
a law of large numbers analysis.

An alternative and more useful representation follows from the form (4.1) and the
continuity of x �→ θ(·|x). Following our convention, we present only the represen-
tation needed to prove an LDP on C ([0, 1] : Rd), but the analogous representation
holds with [0, 1] replaced by any interval [0, T ], T < ∞. The line of argument used
to prove the LDP will adapt the arguments used for Sanov’s theorem and Cramér’s
theorem to this functional setting. However, obtaining “process-level” information
requires a more complicated empirical measure than the one used for Sanov’s theo-
rem. Define Ln by

Ln(A × B)
.=
∫

B
Ln(A|t)dt, Ln(A|t) .= δvi (Xn

i )
(A) if t ∈ [i/n, i/n + 1/n)

(4.3)
for Borel sets A ⊂ R

d and B ⊂ [0, 1]. This measure and controlled analogues to be
introduced below record the joint empirical distribution of velocity and time. Owing
to conflicting but standard usage, in this chapter L is used for both an empirical
measure (as defined above) and the local rate function. The intended use should
always be clear, since the former appears only as Ln , and the latter as L .

The following construction identifies quantities that will appear in the represen-
tation as well as others to be used in the convergence analysis. As first discussed in
Sect. 3.1, we can consider [μn]i |0,...,i−1(dvi |v̄n0 , . . . , v̄ni−1) to be simply a randommea-
sure on Rd that is measurable with respect to σ(v̄nj , j = 0, . . . , i − 1) = σ(X̄ n

j , j =
1, . . . , i), and this ω-dependent measure is denoted by μ̄n

i (dvi ). Also as in Sect. 3.1,
for notational convenience we assume that the original processes as well as con-
trolled analogues are all defined on the same probability space. Note that the role of
the “driving noises” played by Xi in Sect. 3.1 is here played by vi (Xn

i ). The mea-
sure μn picks new distributions for these driving noises, as reflected by the notation.
Another minor notational difference is that the noise index is from 0 to n − 1 rather
than 1 to n.

Construction 4.4 Suppose we are given a probability measure μn ∈ P((Rd)n) and
decompose it in terms of conditional distributions [μn]i |1,...,i−1 on the i th variable
given variables 0 through i − 1:
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μn(dv0 × · · · × dvn−1) = [μn]0(dv0)[μn]1|0(dv1|v0)
× · · · × [μn]n−1|1,...,n−2(dvn−1|v0, . . . , vn−2).

Let {v̄ni }i=0,...,n−1 be random variables defined on a probability space (Ω,F , P)

and with joint distribution μn. Thus conditioned on F̄ n
i

.= σ(v̄nj , j = 0, . . . , i −
1), v̄ni has distribution μ̄n

i (dvi )
.= [μn]i |0,...,i−1(dvi |v̄n0 , . . . , v̄ni−1). The collection

{μ̄n
i }i=0,...,n−1 will be called a control. Then controlled processes X̄n and measures

L̄n are recursively constructed as follows. Let X̄n
0 = x0, and for i = 1, . . . , n define

X̄n
i recursively by

X̄n
i+1 = X̄ n

i + 1

n
v̄ni .

When {X̄ n
i }i=1,...,n has been constructed, X̄ n(t) is defined as in (4.2) as piecewise

linear interpolation, and

L̄n(A × B)
.=
∫

B
L̄n(A|t)dt, L̄n(A|t) .= δv̄ni (A) if t ∈ [i/n, i/n + 1/n).

We also define

μ̄n(A × B)
.=
∫

B
μ̄n(A|t)dt, μ̄n(A|t) .= μ̄n

i (A) if t ∈ [i/n, i/n + 1/n)

and

λn(A × B)
.=
∫

B
λn(A|t)dt, λn(A|t) .= θ(A|X̄ n

i ) if t ∈ [i/n, i/n + 1/n).

The measures μ̄n(dx × dt) record the time dependence of the μ̄n
i . When taking

limits, we will also want to keep track of the corresponding θ(·|X̄ n
i ), since the two

appear together in the relative entropy representation. This information is recorded
in λn ∈ P(Rd × [0, 1]). Note also that, as remarked previously, F̄ n

i = σ(X̄ n
j , j =

1, . . . , i).

Theorem 4.5 Let G : P(Rd × [0, 1]) → R be bounded from below and measur-
able. Let Ln be defined as in (4.3), and given a control {μ̄n

i }, let {X̄ n
i } and {L̄n} be

defined as in Construction 4.4. Then

−1

n
log Ee−nG(Ln) = inf

{μ̄n
i }
E

[

G(L̄n) + 1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

.

Proof The representation follows directly from the high-level variational represen-
tation for exponential integrals [part (a) of Proposition2.3] and the chain rule [Theo-
rem2.6], and the argument is almost the same as that used to derive the representation
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used to prove Sanov’s theorem [Proposition3.1]. The only difference is that the base
measure in that case was product measure, reflecting the iid noise structure. Here the
base measure is

θ(dv0|xn0 )θ(dv1|xn1 ) × · · · × θ(dvn−1|xnn−1),

where

xni = x0 + 1

n

i−1∑

j=0

v j .

One applies the chain rule exactly as was done in Proposition3.1. The change in
the base measure is reflected by a change in the measures appearing in the relative
entropy cost, i.e., θ(·|X̄ n

i ) rather than θ(·) as in the iid case. �

Note that the definition of L̄n allows us to write

X̄ n(t) =
∫

Rd×[0,t]
yL̄n(dy × ds) + x0.

Thus a special case of the representation inTheorem4.5 occurs for F that is a bounded
and measurable map from C ([0, 1] : Rd) to R:

− 1

n
log Ee−nF(Xn) = inf

{μ̄n
i }
E

[

F(X̄ n) + 1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

. (4.4)

This representation will be used in the proof of the LDP for {Xn}. As in passing
from Sanov’s theorem to Cramér’s theorem, convergence of L̄n plus some uniform
integrability will imply convergence of X̄ n .

Remark 4.6 Although the proof of the LDP requires only bounded F (and hence
boundedG), we state Theorem4.5 so as to allow its use in the analysis of importance
sampling in Chap.15, where unbounded functionals cannot be avoided.

4.3 Form of the Rate Function

Before going further, we pause to comment on the expected form of the rate function.
We give a completely heuristic calculation, based on a time scale separation due to
the 1/n scaling of the noise and the weak continuity of x → θ(·|x), which suggests
the correct form of the rate function. Over an interval [s, s + δ], with δ > 0 small and
1/δ ∈ N, the noise terms in the definition of Xn(s + δ) − Xn(s) are approximately
iid with distribution θ(·|Xn(s)). Therefore,
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Xn(s + δ) − Xn(s)

δ
≈ 1

nδ

�ns+nδ�∑

i=�ns�
vi (X

n(s)),

and by Cramér’s theorem, the right-hand side satisfies an LDP with the rate function
δL(Xn(s),β), where

L(x,β) = inf

[
R (μ(·) ‖θ(·|x) ) :

∫

Rd

yμ(dy) = β

]
. (4.5)

Suppose that σ > 0 is small, and that in the following display, B(y,σ) denotes a
(context-dependent) open ball of radius σ. Using the Markov property to combine
estimates over small intervals, for a smooth trajectory φ ∈ C ([0, 1] : Rd) that starts
at x0, we have

P
{
Xn ∈ B(φ,σ)

}

≈ P
{
Xn( jδ) ∈ B(φ( jδ),σ) all 1 ≤ j ≤ 1/δ

}

≈ P

{
Xn( jδ + δ) − Xn( jδ)

δ
∈ B

(
φ( jδ + δ) − φ( jδ)

δ
,
2σ

δ

)
, 0 ≤ j <

1

δ

}

≈
1
δ −1∏

j=0

exp

{
−nδL

(
φ( jδ),

φ( jδ + δ) − φ( jδ)

δ

)}

≈ exp

{
−n

∫ 1

0
L(φ(s), φ̇(s))ds

}
.

Therefore, one may expect the rate function I (φ) = ∫ 1
0 L(φ(s), φ̇(s))ds for such φ.

Owing to this interpretation, β �→ L(x,β) is often called a local rate function in
this context.

4.4 Statement of the LDP

We now turn to the rigorous analysis. As was the case in Chap. 3 with Sanov’s
theorem and small noise diffusions, we first establish tightness, and then prove a
result that links the limits of weakly converging controls and controlled processes.
With these results in hand, the Laplace principle is proved by establishing upper and
lower bounds. The conditions we assume and some of the arguments are close to
those used in [97]. However, the perspective is somewhat different, with the main
argument being a functional version of the one used to obtain Cramér’s theorem from
Sanov’s theorem, and we also set the arguments up so they can easily be adapted to
the problems of importance sampling considered later in the book.
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We show that Condition4.3 by itself suffices for the Laplace principle and large
deviation upper bound. For the lower bound we need additional conditions. Two
types of conditions will be used, and are formulated as Conditions4.7 and 4.8 below.
The Laplace principle lower bound under Conditions4.3 and 4.7 will be proved in
Sect. 4.7, and under Conditions4.3 and 4.8 it will be proved in Sect. 4.8. The convex
hull of the support of μ ∈ P(Rd) is the smallest closed and convex set A ⊂ R

d such
that μ(A) = 1.

Condition 4.7 For each x ∈ R
d , the convex hull of the support of θ(·|x) is Rd .

Condition 4.8 For every compact K ⊂ R
d and ε ∈ (0, 1), there exist η = η(K , ε) ∈

(0, 1) and m = m(K , ε) ∈ (0,∞), such that whenever ξ,χ ∈ K satisfy ‖ξ − χ‖ ≤
η, we can find for each γ ∈ R

d a β ∈ R
d such that

L(ξ,β) − L(χ, γ) ≤ ε(1 + L(χ, γ)), ‖β − γ‖ ≤ m(1 + L(χ, γ))‖ξ − χ‖.

Condition4.7 can be weakened to the requirement that the relative interior of
the convex hull of the support of θ(·|x) be independent of x and contain 0 (see
Sect. 6.3 of [97]). Condition4.8 is very important in that it allows the noise to push
the process in only a subset of all possible directions. For example, if the model of
Example4.1 corresponds to a degenerate diffusion, which means that σ(x)σT (x) is
only positive semidefinite, then Condition4.7 is not valid, but under the assumption
that b and σ are Lipschitz continuous, Condition4.8 holds. Under similar Lipschitz-
type assumptions, Condition4.8 is satisfied for a broad range of models, and we refer
the reader to Sect. 6.3 in [97] for additional illustrative examples.

Recall thatA C x0([0, T ] : Rd) denotes the subset of C ([0, T ] : Rd) consisting of
all absolutely continuous functions satisfying φ(0) = x0.

Theorem 4.9 Assume Condition4.3 and define Xn by (4.2) and L : Rd × R
d →

[0,∞) by (4.5). Let

I (φ) =
∫ T

0
L(φ(s), φ̇(s))ds if φ ∈ A C x0([0, T ] : Rd),

and in all other cases set I (φ) = ∞. Then the following conclusions hold.
(a) I is a rate function and {Xn}n∈N satisfies the Laplace principle upper bound

with rate function I .
(b) Suppose that in addition, either Condition4.7 or Condition4.8 holds. Then

{Xn}n∈N satisfies the Laplace principle with rate function I .

Remark 4.10 In the proofs to follow, the initial condition is fixed at x0. However,
the arguments apply with only notational changes if instead we consider a sequence
of initial conditions {xn0 }n∈N with xn0 → x0, and establish

1

n
log Exn0 e

−nF(Xn) + inf
φ:φ(0)=xn0

[F(φ) + I (φ)] → 0. (4.6)
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Using an elementary argument by contradiction, this implies that the Laplace and
large deviation principles hold uniformly for initial conditions in compact sets, as
defined in Chap.1. To be specific, if the uniform Laplace principle is not valid, then
there exists a compact set K ⊂ R

d , δ > 0, and for each n ∈ N, an initial condition
xn0 ∈ K such that

∣∣∣∣
1

n
log Exn0 e

−nF(Xn) + inf
φ:φ(0)=xn0

[F(φ) + I (φ)]

∣∣∣∣ ≥ δ. (4.7)

However, since K is compact, there exist a subsequence xnk0 and x0 ∈ K such that
xnk0 → x0. Then (4.6) contradicts (4.7), and thus the uniform Laplace principle holds.

The rest of the chapter is organized as follows. In Sect. 4.5 we prove part (a) of
Theorem4.9. In preparation for the (two) proofs of the Laplace lower bound, Sect. 4.6
studies some basic properties of the function L(x,β). The last two sections of the
chapter, Sects. 4.7 and 4.8, contain the proof of the lower bound under Condition4.7
and Condition4.8, respectively. Throughout the chapter we assume Condition4.3,
and to simplify notation, proofs are given for T = 1.

4.5 Laplace Upper Bound

We begin with preliminary results on tightness and uniform integrability of the con-
trolled processes from Sect. 4.2.

4.5.1 Tightness and Uniform Integrability

Lemma 4.11 Assume Condition4.3 and consider any sequence of controls
{
μ̄n
i

}
for

which the relative entropy costs satisfy

sup
n∈N

E

[
1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

≤ K < ∞.

Let {L̄n}n∈N, {X̄ n}n∈N, {μ̄n}n∈N, and {λn}n∈N be defined as in Construction4.4. Then
the empirical measures {L̄n} are tight and in fact uniformly integrable in the sense
that

lim
M→∞ lim sup

n→∞
E

[∫

Rd×[0,1]
‖y‖ 1{‖y‖≥M} L̄n(dy × dt)

]
= 0. (4.8)

The measures {μ̄n}n∈N are also uniformly integrable in the sense of (4.8), and {X̄ n},
{μ̄n}, and {λn} are all tight.
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Proof Except for more complicated notation, the proof is almost the same as the
analogous result needed for Cramér’s theorem. From the inequality (2.9), it follows
that if μ ∈ P(Rd × [0, 1]) satisfies μ � λn , then for all σ ∈ [1,∞),

∫

Rd×[0,1]
‖y‖ 1{‖y‖≥M}μ(dy × dt)

≤
∫

Rd×[0,1]
eσ‖y‖1{‖y‖≥M}λn(dy × dt) + 1

σ
R
(
μ
∥∥λn

)
.

Bya conditioning argument it follows that E
∫

f d L̄n = E
∫

f dμ̄n for every bounded
and measurable function f . Using the definitions of μ̄n and λn and the chain rule to
get the first equality, we have

E
[
R
(
μ̄n

∥∥λn
)] = E

[∫ 1

0
R
(
μ̄n(·|t) ∥∥λn(·|t)) dt

]
(4.9)

= E

[
1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

≤ K .

Therefore,

E

[∫

Rd×[0,1]
‖y‖ 1{‖y‖≥M} L̄n(dy × dt)

]

= E

[∫

Rd×[0,1]
‖y‖ 1{‖y‖≥M}μ̄n(dy × dt)

]

≤ sup
x∈Rd

∫

Rd

eσ‖y‖1{‖y‖≥M}θ(dy|x) + 1

σ
K . (4.10)

From part (a) of Condition4.3 it follows that for σ ∈ R,

sup
x∈Rd

∫

Rd

e2σ‖y‖θ(dy|x) < ∞ (4.11)

(for details see the analogous claim in the proof of Lemma3.9). Since

∫

Rd

eσ‖y‖1{‖y‖≥M}θ(dy|x) ≤ e−σM
∫

Rd

e2σ‖y‖θ(dy|x), (4.12)

sending first n → ∞, then M → ∞, and finally σ → ∞ in (4.10), the limit (4.8)
holds for both {L̄n} and {μ̄n}. Tightness of {L̄n} and {μ̄n} follows directly, and the
tightness of {λn} follows from part (a) of Condition4.3.
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To establish tightness of {X̄ n} we use the fact that

X̄ n(t) =
∫

Rd×[0,t]
yL̄n(dy × ds) + x0. (4.13)

Tightness will follow if given ε > 0 and η > 0, there is δ > 0 such that

lim sup
n→∞

P
{
wn(δ) ≥ ε

} ≤ η, (4.14)

where wn(δ)
.= sup0≤s<t≤1:t−s≤δ

∥∥X̄ n(t) − X̄ n(s)
∥∥. Using (4.8), choose M < ∞

such that

lim sup
n→∞

E

[∫

Rd×[0,1]
‖y‖ 1{‖y‖≥M} L̄n(dy × dt)

]
≤ εη

2
.

Let δ
.= (ε/2M) ∧ 1. Then since Mδ ≤ ε/2, we have

sup
0≤s<u≤1:u−s≤δ

∫

Rd×[s,u]
‖y‖ 1{‖y‖≤M} L̄n(dy × dt) ≤ Mδ ≤ ε

2
.

Hence

P
{
wn(δ) ≥ ε

} ≤ P

{∫

Rd×[0,1]
‖y‖ 1{‖y‖≥M} L̄n(dy × dt) ≥ ε

2

}

≤ 2

ε
E

[∫

Rd×[0,1]
‖y‖ 1{‖y‖≥M} L̄n(dy × dt)

]

≤ η.

This proves (4.14), and tightness of {X̄ n} follows. �

4.5.2 Weak Convergence

Lemma4.11 proved tightness of {(L̄n, μ̄n,λn, X̄ n)}n∈N. The following lemma char-
acterizes the weak limits of this collection.

Lemma 4.12 Consider any sequence of controls
{
μ̄n
i

}
as in Construction4.4 for

which the relative entropy costs satisfy

E

[
1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

≤ K < ∞.

Let {(X̄ n, L̄n, μ̄n)} denote a weakly converging subsequence, which for notational
convenience we again label by n, with limit (X̄ , L̄, μ̄). Then w.p.1, L̄ = μ̄, and
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μ̄(dy × dt) can be decomposed as μ̄(dy|t)dt, where μ̄(dy|t) is a stochastic kernel
on Rd given [0, 1], and w.p.1 for all t ∈ [0, 1],

X̄(t) =
∫

Rd×[0,t]
yμ̄(dy × ds) + x0 =

∫

Rd×[0,t]
yμ̄(dy|s)ds + x0. (4.15)

In addition, λn converges weakly to a limit λ of the form

λ(A × B) =
∫

B
θ(A|X̄(t))dt. (4.16)

Proof Recall that μ̄n
i picks the conditional distribution of v̄ni . Hence a minor mod-

ification of the martingale argument used to prove the analogous result needed for
Sanov’s theorem (Lemma3.5) can be used to show that L̄ = μ̄ w.p.1. The changes
are mainly notational, and are needed, since in the present setting the measures must
record time information. For completeness we give the details.

Now, Rd × [0, 1] is a Polish space, and on such a space there exists a countable
separating class of bounded uniformly continuous functions (see AppendixA). Thus
to verify L̄ = μ̄w.p.1, it suffices to show that for every bounded uniformly continuous
f ,

P

{∫

Rd×[0,1]
f (v, t)L̄ (dv × dt) =

∫

Rd×[0,1]
f (v, t)μ̄ (dv × dt)

}
= 1. (4.17)

Define K
.= ‖ f ‖∞ and �n

i
.= f

(
v̄ni , i/n

) − ∫
Rd f (v, i/n) μ̄n

i (dv). For all ε > 0,

P

{∣∣∣∣∣
1

n

n∑

i=1

f
(
v̄ni , i/n

) − 1

n

n∑

i=1

∫

Rd

f (v, i/n) μ̄n
i (dv)

∣∣∣∣∣
> ε

}

≤ 1

ε2
E

⎡

⎣ 1

n2

n∑

i, j=1

�n
i �

n
j

⎤

⎦ .

Recall that F̄ n
i

.= σ(v̄nj , j = 0, . . . , i − 1). By a standard argument, for i �= j , con-

ditioning on F̄ n
j∧i−1 gives E[�n

i �
n
j ] = 0. Since |�n

i | ≤ 2K ,

P

{∣∣∣∣∣
1

n

n∑

i=1

f (v̄ni , i/n) − 1

n

n∑

i=1

∫

Rd

f (v, i/n)μ̄n
i (dv)

∣∣∣∣∣
> ε

}

≤ 4K 2

nε2
.

Let γ(δ) denote the modulus supv∈Rd ,0≤s≤t≤1:t−s≤δ {| f (v, t) − f (v, s)|}. Since f is
uniformly continuous, γ(δ) ↓ 0 as δ ↓ 0, and the definition of γ(δ) implies
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∣∣∣∣∣
1

n

n∑

i=1

f (v̄ni , i/n) −
∫

Rd×[0,1]
f (v, t)L̄n(dv × dt)

∣∣∣∣∣
≤ γ(1/n)

∣∣∣∣∣
1

n

n∑

i=1

∫

Rd

f (v, i/n)μ̄n
i (dv) −

∫

Rd×[0,1]
f (v, t)μ̄n(dv × dt)

∣∣∣∣∣
≤ γ(1/n).

Letting first n → ∞ and then ε → 0, we obtain (4.17), which proves L̄ = μ̄ w.p.1.
Note that both L̄n and μ̄n have secondmarginals equal to Lebesguemeasure. Since

this property is inherited by the weak limits, L̄(Rd × {t}) = 0 w.p.1. This property
and the uniform integrability allow us to pass to the limit in (4.13) and obtain

X̄(t) =
∫

Rd×[0,t]
yL̄(dy × ds) + x0.

Now use that L̄ = μ̄ w.p.1 to get the first part of (4.15). Since each μ̄ has Lebesgue
measure as its second marginal, both the decomposition and the second part of (4.15)
follow. Finally, the weak convergence of λn and the form of the limit follow from
the weak convergence of X̄ n to X̄ and the assumption that x → θ(·|x) is continuous
in the weak topology. �

4.5.3 Completion of the Laplace Upper Bound

The large deviation and Laplace principle upper bounds correspond to the variational
lower bound. To prove such a lower bound, we again follow the line of argument
used forCramér’s theorem inSect. 3.1.6. Fix a continuous andbounded F : C ([0, 1] :
R

d) → R and ε > 0. Using (4.4), let
{
μ̄n
i

}
i=1,...,n satisfy

−1

n
log Ee−nF(Xn) + ε ≥ E

[

F(X̄ n) + 1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

.

Then since F is bounded, we have supn
1
n E

∑n−1
i=0 R

(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
< ∞, and

therefore by Lemma4.11, it follows that
{
(L̄n, X̄ n, μ̄n,λn)

}
is tight. Consider any

subsequence that converges to a weak limit (L̄, X̄ , μ̄,λ), and denote the convergent
subsequence by n. If the lower bound is demonstrated for this subsequence, then
the standard argument by contradiction establishes the lower bound for the original
sequence. Details of the following calculation are given after the display:

lim inf
n→∞ −1

n
log E exp{−nF(Xn)} + ε



4.5 Laplace Upper Bound 91

≥ lim inf
n→∞ E

[

F(X̄ n) + 1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

= lim inf
n→∞ E

[
F(X̄ n) + R

(
μ̄n(dy × dt)

∥∥λn(dy × dt)
)]

≥ E
[
F

(
X̄
) + R (μ̄(dy × dt) ‖λ(dy × dt) )

]

= E

[
F

(
X̄
) +

∫

[0,1]
R
(
μ̄(·|t) ∥∥θ(·|X̄(t))

)
dt

]

≥ E

[
F(X̄) +

∫

[0,1]
L(X̄(t), ˙̄X (t))dt

]

≥ inf
φ

[
F(φ) +

∫

[0,1]
L(φ(t), φ̇(t))dt

]
. (4.18)

The first equality uses the rewriting of the relative entropy in (4.9); the next
inequality is due to the weak convergence, the lower semicontinuity of R (· ‖· ),
continuity of F , and Fatou’s lemma; the next equality uses the decompositions
μ̄(dy × dt) = μ̄(dy|t)dt and λ(dy × dt) = θ(dy|X̄(t))dt and the chain rule; the
third inequality follows from (4.5) and (4.15); and the infimum in the last line is over
all φ ∈ A C x0([0, 1] : Rd). Since ε > 0 is arbitrary, we have proved the Laplace
upper bound for {Xn}:

lim sup
n→∞

1

n
log E exp{−nF(Xn)} ≤ − inf

φ∈C ([0,1]:Rd )
[F(φ) + I (φ)] .

�

4.5.4 I is a Rate Function

As first noted in Chap.3, in the weak convergence approach, a deterministic version
of the argument used to prove the Laplace upper bound will usually show that the
proposed rate function is indeed a rate function, i.e., that it has compact level sets.

Theorem 4.13 Assume Condition4.3, define L(x,β) by (4.5), and let I be the func-
tion defined in Theorem4.9. Then I has compact level sets in C ([0, T ] : Rd).

Proof As usual, the proof is given for T = 1. Suppose {φ j } j∈N is given such that
I (φ j ) ≤ K < ∞ for all j ∈ N. Then we need to show that {φ j } is precompact, and
that if φ j → φ, then

lim inf
j→∞ I (φ j ) ≥ I (φ).

Since I (φ j ) < ∞, we knowφ j is absolutely continuous.Define probabilitymeasures
μ j on R

d × [0, 1] by
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μ j (A × B) =
∫

B
δφ̇ j (t)(A)dt, A ∈ B(Rd), B ∈ B([0, 1]).

Note that

φ j (t) = x0 +
∫

Rd×[0,t]
yμ j (dy × ds).

Using I (φ j ) ≤ K < ∞, exactly the same argument as in Lemma4.11 shows that
{μ j } j∈N is tight and uniformly integrable. By the usual subsequential argument, we
can assume that μ j converges along the full sequence, and a deterministic version
of Lemma4.12 shows that the limit μ can be factored in the form μ(dy × dt) =
μ(dy|t)dt , and that φ j → φ, with

∫
Rd yμ(dy|t) = φ̇(t). Thus

{
φ j

}
is precompact.

We now argue that I (φ) ≤ K . In Lemma4.14 it will be shown that L is a lower
semicontinuous function that is convex in the second variable. Using these properties,
we obtain

K ≥ lim inf
j→∞ I (φ j )

= lim inf
j→∞

∫

Rd×[0,1]
L(φ j (t), y)μ

j (dy × dt)

≥
∫

Rd×[0,1]
L(φ(t), y)μ(dy × dt)

=
∫ 1

0

∫

Rd

L(φ(t), y)μ(dy|t)dt

≥
∫ 1

0
L(φ(t), φ̇(t))dt = I (φ),

where the second inequality is a consequence of Fatou’s lemma, the lower semicon-
tinuity of L , and the convergence of (φ j ,μ

j ) to (φ,μ), while the third inequality
uses the convexity of L and Jensen’s inequality. Thus I has compact level sets, and
hence is a rate function. �

4.6 Properties of L(x,β)

To prove a Laplace lower bound, wemust take a trajectory φ that nearly minimizes in
infφ∈C ([0,1]:Rd ) [F(φ) + I (φ)] and showhow to construct a control that can be applied
in the representation that will give asymptotically the same cost. For the continuous-
timemodels in Chap.3 this was not very difficult, in part because the implementation
of the control was straightforward. For example, in the case of the diffusion model,
the construction of a solution to (3.17) is possible when v is measurable in t and
has appropriate integrability properties; in particular, piecewise continuity or some
similar form of regularity is not required. The situation is different in discrete time.
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In general, I (φ) < ∞ implies only that φ is absolutely continuous. As we will see,
it is natural to define controls for the prelimit in terms of φ̇(t), where φ is nearly
minimizing. Since the derivative is well defined only up to a set of Lebesgue mea-
sure zero, this causes a number of problems. The solution is to show that one can
always construct a “nice” nearly minimizing trajectory, e.g., one whose derivative is
continuous from the left with right-hand limits. Such a construction requires some
regularity properties of L(x,β), which we now present.

Recall that for x ∈ R
d , the Legendre–Fenchel transform of H(x, ·) is defined by

H∗(x,β) = sup
α∈Rd

[〈α,β〉 − H(x,α)] , β ∈ R
d ,

and L(x,β) is defined as in (4.5). As noted inRemark3.10 and shown inLemma4.16,
for each fixed x these are dual representations of the same function.

Lemma 4.14 Assume Condition4.3. Then the following are valid.
(a) For each x ∈ R

d , α �→ H(x,α) is a finite convex function on R
d that is

differentiable for all α ∈ R
d . Also, (x,α) �→ H(x,α) is continuous on Rd × R

d .
(b) For each x ∈ R

d , β �→ H∗(x,β) is a convex function on R
d . Furthermore,

(x,β) �→ H∗(x,β) is a nonnegative lower semicontinuous function on R
d × R

d .
(c) The map β �→ H∗(x,β) is superlinear, uniformly in x, which means that

lim
N→∞ inf

x∈Rd
inf

β∈Rd :‖β‖=N

H∗(x,β)

‖β‖ = ∞.

(d) The map (x,β) �→ L(x,β) is a lower semicontinuous function on R
d × R

d ,
and for each x ∈ R

d , the map β �→ L(x,β) is convex.

Proof (a) Part (a) of Condition4.3 ensures that H(x,α) ∈ (−∞,∞) for all (x,α) ∈
R

d × R
d . The convexity of α �→ H(x,α) then follows from Hölder’s inequality: if

α1,α2 ∈ R
d and ρ ∈ [0, 1], then

∫

Rd

e〈ρα1+(1−ρ)α2,y〉θ(dy|x) ≤
(∫

Rd

e〈α1,y〉θ(dy|x)
)ρ (∫

Rd

e〈α2,y〉θ(dy|x)
)1−ρ

.

Taking the logarithm of both sides demonstrates convexity. Under part (a) of
Condition4.3 one can easily construct an appropriate dominating function, and hence
show that α �→ H(x,α) is differentiable, where for all (x,α) ∈ R

d × R
d , the gra-

dient ∇αH(x,α) is given by

∇αH(x,α) =
∫
Rd ye〈α,y〉θ(dy|x)
∫
Rd e〈α,y〉θ(dy|x) . (4.19)

To see the continuity of (x,α) �→ H(x,α), let (xn,αn) → (x,α) in R
d × R

d . We
write
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eH(xn ,αn) − eH(x,α) =
∫

Rd

[
e〈αn ,y〉 − e〈α,y〉] θ(dy|xn)

+
[∫

Rd

e〈α,y〉θ(dy|xn) −
∫

Rd

e〈α,y〉θ(dy|x)
]

,

and recall the bounds (4.11) and (4.12). The second term on the right converges to
zero by the Feller property assumed in Condition4.3(b) and the uniform integrability
implied by Condition4.3(a). For every M < ∞, we have sup‖y‖≤M | exp〈αn, y〉 −
exp〈α, y〉| → 0 as n → ∞, and by part (a) of Condition4.3,

sup
n∈N

sup
x∈Rd

∫

{‖y‖≥M}
e〈αn ,y〉θ(dy|x) → 0

as M → ∞. Hence the first term on the right converges to zero, which completes
the proof of the continuity of (x,α) �→ H(x,α).

(b) By duality for Legendre–Fenchel transforms [217, Theorem 23.5],

H(x,α) = sup
β∈Rd

[〈α,β〉 − H∗(x,β)], α ∈ R
d .

Taking α = 0 in the last display shows that infβ∈Rd H∗(x,β) = −H(x, 0) = 0,
and thus H∗ is nonnegative. For each x ∈ R

d and α ∈ R
d , the mapping β �→

〈α,β〉 − H(x,α) is convex (in fact affine), and for each α ∈ R
d , the mapping

(x,β) �→ 〈α,β〉 − H(x,α) is continuous. Recalling that the pointwise supremum
of convex functions is convex and that the pointwise supremum of continuous func-
tions is lower semicontinuous, we see that H∗(x, ·) is convex onRd and H∗ is lower
semicontinuous on R

d × R
d .

(c) From part (a) of Condition4.3, for every M < ∞, we have

CM
.= sup

x∈Rd

sup
α∈Rd :‖α‖=M

H(x,α) < ∞.

Also, for every β ∈ R
d and x ∈ R

d , the definition of H∗ implies

H∗(x,β) ≥ 〈Mβ/‖β‖,β〉 − H(x, Mβ/‖β‖) ≥ M‖β‖ − CM .

Thus

inf
x∈Rd

inf
β∈Rd :‖β‖=N

H∗(x,β)

‖β‖ ≥ M − CM

N
.

The asserted superlinearity follows by sending first N → ∞ and then M → ∞ in
the last display.

(d) The claimed properties of L(x,β) follow from its definition in (4.5) and
the corresponding properties of R(· ‖· ) [part (b) of Lemma2.4]. We first consider
convexity. Fix x , let β1,β2 ∈ R

d , δ > 0, ρ ∈ [0, 1] be given, and suppose that μi
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are within δ of the infimum in (4.5) for βi , i = 1, 2. Then since the mean under
ρμ1 + (1 − ρ)μ2 is ρβ1 + (1 − ρ)β2, we have

L(x, ρβ1 + (1 − ρ)β2) ≤ R(ρμ1(·) + (1 − ρ)μ2(·) ‖θ(·|x) )
≤ ρR(μ1(·) ‖θ(·|x) ) + (1 − ρ)R(μ2(·) ‖θ(·|x) )
≤ ρL(x,β1) + (1 − ρ)L(x,β2) + δ.

Convexity follows, since δ > 0 is arbitrary. Next suppose that x j → x and β j → β
as j → ∞. By an argument by contradiction based on subsequences, we can assume
without loss that L(x j ,β j ) converges in [0,∞], and we need to prove that L(x,β) ≤
lim j→∞ L(x j ,β j ). If the limit is ∞, there is nothing to prove, and hence we assume
L(x j ,β j ) ≤ M < ∞ for all j . Choose μ j that is within δ > 0 of the infimum in the
definition of L(x j ,β j ). Then by part (d) of Lemma2.4, {μ j } is tight and uniformly
integrable. Thus if μ∗ is the limit of any convergence subsequence, then the mean of
μ∗ is β, and so (along this subsequence)

L(x,β) ≤ R(μ∗(·) ‖θ(·|x) ) ≤ lim inf
j→∞ R(μ j (·)

∥∥θ(·|x j ) ) ≤ lim inf
j→∞ L(x j ,β j ) + δ.

This establishes the lower semicontinuity. �

Remark 4.15 For the next result wewill assume, in addition toCondition4.3, that the
support of θ(·|x) is all of Rd . Part (d) of the lemma was mentioned in Remark3.10,
which noted that the rate function for Cramér’s theorem (which plays the role of the
local rate function here) has two variational representations. These correspond here to
H∗ (as a supremum involving a moment-generating function) and L (as an infimum
involving relative entropy). Although for our needs it suffices to prove this assuming
Conditions4.3 and 4.7, the functions H∗ and L coincidewhen supx∈Rd H(x,α) < ∞
for α in some open neighborhood of the origin. This will be proved in Lemma5.4.
Several statements in the lemma below hold assuming only Condition4.3 (cf. [97,
Lemma 6.2.3]). However, for simplicity we assume here that both Conditions4.3 and
4.7 are satisfied.

Lemma 4.16 Assume Conditions4.3 and 4.7. Then the following conclusions hold.
(a) H∗ is finite on R

d × R
d .

(b) For every x ∈ R
d , α �→ H(x,α) is strictly convex on R

d .
(c) For every (x,β) ∈ R

d × R
d , there is a unique α = α(x,β) ∈ R

d such that
∇αH(x,α(x,β)) = β.

(d) H∗ = L.
(e) For every (x,β) ∈ R

d × R
d , with α(x,β) as in part (c),

L(x,β) = 〈α(x,β),β〉 − H(x,α(x,β)).

(f) (x,β) �→ L(x,β) is continuous on R
d × R

d .
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(g) There exists a measurable α : Rd × R
d → R

d such that the stochastic kernel
γ(dy|x,β) on R

d given R
d × R

d defined by

γ(dy|x,β)
.= e〈α(x,β),y〉−H(x,α(x,β))θ(dy|x),

satisfies

R(γ(·|x,β)‖θ(·|x)) = L(x,β) and
∫

Rd

yγ(dy|x,β) = β for all x ∈ R
d ,β ∈ R

d .

(4.20)

Proof Since x plays no role other than as a parameter in parts (a)–(e), it is dropped
from the notation in the proofs of these parts.

(a) Let Y be a random variable with distribution θ, and let Yi denote the i th
component. We first claim that the map α → H(α) is superlinear. By Condition4.7,
the support of θ is all of Rd . Thus for each M < ∞,

ΘM
.= min

I ⊂{1,...,d}
P

{[∩i∈I {Yi ≥ M}] ⋂ [∩i∈I c{Yi ≤ −M}]} > 0.

Therefore, for every α ∈ R
d ,

1

‖α‖ + 1
log Ee〈α,Y 〉 ≥ 1

‖α‖ + 1
log

[
ΘMe

M
∑d

i=1 |αi |
]

= M

∑d
i=1 |αi |

‖α‖ + 1
+ logΘM

‖α‖ + 1
.

The superlinearity of H now follows by sending ‖α‖ → ∞ and then M → ∞.
The superlinearity implies that the Legendre–Fenchel transform H∗ of H is finite
everywhere, since for each β ∈ R

d , one can find a compact set K ⊂ R
d such that

H∗(β) = sup
α∈Rd

[〈α,β〉 − H(α)] = sup
α∈K

[〈α,β〉 − H(α)].

Since H is continuous, the last expression is finite, and thus (a) follows.
(b) As shown in Lemma4.14, H is convex. Suppose that for some α1,α2 ∈ R

d ,
α1 �= α2, and ρ ∈ (0, 1), we have

H(ρα1 + (1 − ρ)α2) = ρH(α1) + (1 − ρ)H(α2).

Then the condition for equality in Hölder’s inequality requires that for θ(dy) a.e. y,

exp〈α1, y〉∫
Rd exp〈α1, z〉θ(dz) = exp〈α2, y〉∫

Rd exp〈α2, z〉θ(dz) ,

which implies that

〈α1 − α2, y〉 = H(α1) − H(α2) a.s. θ(dy).
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In other words, θ is supported on a hyperplane of dimension d − 1. But this contra-
dicts the fact that the support of θ(dy) is all of Rd , which proves the strict convexity
of α �→ H(α).

(c) From Corollary 26.4.1 in [217] it now follows that the gradient ∇αH(α) is
onto R

d . Thus given β, there exists a vector α(β) such that ∇αH(α(β)) = β. We
claim that α(β) is unique. Suppose α1 �= α2 are such that

∇αH(α1) = ∇αH(α2) = β. (4.21)

Define ζ : R → R by ζ(λ)
.= H(α1 + λ(α2 − α1)), λ ∈ R. From part (b), ζ is

strictly convex on R, and so

ζ ′(0) = 〈∇αH(α1),α2 − α1〉 < ζ ′(1) = 〈∇αH(α2),α2 − α1〉.

This contradicts (4.21), and thus there is only one α that satisfies ∇αH(α) = β.
(d,e) Setting γ(dy) = e〈α(β),y〉θ(dy)/eH(α(β)), we have from (4.19),

∫

Rd

yγ(dy) = 1

eH(α(β))

∫

Rd

ye〈α(β),y〉θ(dy) = ∇αH(α(β)) = β. (4.22)

A direct calculation using the form of γ(dy), the definition of relative entropy, and
the definition of L in (4.5) then gives

L(β) ≤ R (γ ‖θ ) = 〈α(β),β〉 − H(α(β)) ≤ H∗(β). (4.23)

Using the definition of H and part (c) of Proposition2.3, we have

H(α) = sup
μ∈P (Rd ):R(μ‖θ )<∞

[∫

Rd

〈α, y〉 μ(dy) − R (μ ‖θ )

]
.

Therefore, for all α ∈ R
d and μ ∈ P(Rd),

R (μ ‖θ ) ≥
〈
α,

∫

Rd

yμ(dy)

〉
− H(α),

and consequently
L(β) ≥ 〈α,β〉 − H(α).

Sinceα ∈ R
d is arbitrary, we have L(β) ≥ H∗(β). By (4.23), the reverse inequal-

ity holds, which shows that L(β) = H∗(β) and also proves part (e).
(f) For the last two parts of the lemma we include the x dependence. From

Lemma4.14, (x,α) �→ H(x,α) is continuous. We now show that joint continu-
ity of L(x,β) follows from this. If a sequence of differentiable convex functions gi
with Legendre transforms g∗

i converges pointwise to another differentiable convex
function g with transform g∗, and if β is any point such that g∗(β) < ∞, then when-
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ever βi → β, we have g∗
i (βi ) → g∗(β) [97, Lemma C.8.1]. We apply this result with

gi (α) = H(xi ,α) and g(α) = H(x,α) to conclude that if xi → x and βi → β, then
L(xi ,βi ) → L(x,β).

(g) To see the measurability of (x,β) �→ α(x,β), note that for each x , the strict
convexity of α �→ H(x,α) and the fact L(x,β) = H∗(x,β) < ∞ imply that β �→
L(x,β) is differentiable for all β ∈ R

d [217, Theorem 26.3]. The characterization
of H(x,α) as the Legendre–Fenchel transform of L(x,β) then gives α(x,β) =
∇βL(x,β), from which measurability follows.

The second equality in (4.20) follows from (4.22), while the first equality follows
on noting that the first inequality in (4.23) was shown to be an equality. �

4.7 Laplace Lower Bound Under Condition4.7

In this section we prove the Laplace principle lower bound under Conditions4.3 and
4.7. For the proof of this lower bound we construct a nearly optimal trajectory φ∗
for infφ∈C ([0,1]:Rd ) [F(φ) + I (φ)] that has a simple form. Based on φ∗, a control is
constructed for use in the representation, so that the running cost is close to I (φ∗)
and the associated controlled process converges to the nearly optimal trajectory φ∗
as n → ∞.

Fix ε > 0. Then there is ζ ∈ C ([0, 1] : Rd) such that

[F(ζ) + I (ζ)] ≤ inf
φ∈C ([0,1]:Rd )

[F(φ) + I (φ)] + ε. (4.24)

While {ζ(t) : 0 ≤ t ≤ 1} is bounded by continuity, we also claim that without loss
of generality, we can assume that

{ζ̇(t) : 0 ≤ t ≤ 1} is bounded.

This claim will be established in Sect. 4.7.3.
Recall from part (f) of Lemma4.16 that L is continuous. Let M < ∞ and K < ∞

be such that

sup
t∈[0,1]

‖ζ(t)‖ ∨ sup
t∈[0,1]

‖ζ̇(t)‖ ≤ M, sup
{(x,β):‖x‖≤M+1,‖β‖≤M+1}

L(x,β) ≤ K .

For δ > 0, let ζδ be the piecewise linear interpolation of ζ, with interpolation
points t = kδ. Since ζ is absolutely continuous, ζ̇δ(t) converges to ζ̇(t) for a.e.
t ∈ [0, 1]. Also, since supt∈[0,1] ‖ζδ(t)‖ ≤ M and supt∈[0,1] ‖ζ̇δ(t)‖ ≤ M , the conti-
nuity of L and the dominated convergence theorem imply that there is δ > 0 such
that

[
F(ζδ) + I (ζδ)

] ≤ [F(ζ) + I (ζ)] + ε. We set φ∗ = ζδ for such a δ.
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4.7.1 Construction of a Nearly Optimal Control

The construction of a control to apply in the representation is now straightforward.
Let γ(dy|x,β) be as in part (g) of Lemma4.16. Recall that μ̄n

i is allowed to be any
measurable function of X̄ n

j , j = 0, . . . , i . Define Nn .= inf{ j : ‖X̄ n
j − φ∗( j/n)‖ >

1} ∧ n. Then we set

μ̄n
i (·) =

{
γ(·|X̄ n

i , φ̇
∗(i/n)) if i < Nn,

θ(·|X̄ n
i ) if i ≥ Nn.

(4.25)

The cost under this control satisfies

E

[
1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

= E

[
1

n

Nn−1∑

i=0

L(X̄ n
i , φ̇

∗(i/n))

]

≤ K ,

and therefore Lemma4.11 applies. Since τ n .= Nn/n takes values in a compact set,
given any subsequence of N we can find a further subsequence (again denoted by n)
such that (X̄ n, μ̄n, τ n) converges in distribution to a limit (X̄ , μ̄, τ ). Also, it follows
from the fact that the mean of μ̄n

i is φ̇∗(i/n) for i < Nn that

x0 +
∫

Rd×[0,t∧τn ]
yμ̄n(dy × ds) = x0 + 1

n

�nt�∧Nn−1∑

i=0

φ̇∗(i/n) + O(1/n)

= φ∗(t ∧ τ n) + O(1/n).

Using the uniform integrability (4.8), we can send n → ∞ and obtain

x0 +
∫

Rd×[0,t]
yμ̄(dy|s)ds = φ∗(t)

for all t ∈ [0, τ ]. It then follows from Lemma4.12 [see (4.15)] that X̄(t) = φ∗(t) for
all t ∈ [0, τ ], w.p.1. However, since ‖X̄ n(τ n) − φ∗(τ n)‖ converges in distribution
to ‖X̄(τ ) − φ∗(τ )‖, the definition of Nn implies that on the set τ < 1, we have∥∥X̄(τ ) − φ∗(τ )

∥∥ ≥ 1. Thus P(τ < 1) = 0, and so X̄(t) = φ∗(t) for t ∈ [0, 1]. We
conclude that along the full sequence N, X̄ n converges in distribution to φ∗.

4.7.2 Completion of the Proof of the Laplace Lower Bound

We now put the pieces together to prove the Laplace lower bound. For the particular
control

{
μ̄n
i

}
just constructed, we have
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lim sup
n→∞

−1

n
log E exp{−nF(Xn)}

≤ lim sup
n→∞

E

[

F(X̄ n) + 1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

= lim sup
n→∞

E

[

F(X̄ n) + 1

n

Nn−1∑

i=0

L(X̄ n
i , φ̇

∗(i/n))

]

=
[
F(φ∗) +

∫ 1

0
L(φ∗(t), φ̇∗(t))dt

]

≤ inf
φ∈C ([0,1]:Rd )

[F(φ) + I (φ)] + 2ε.

The first inequality follows since the representation considers the infimum over all
controls, and the first equality is due to the definition of μ̄n

i in (4.25). The second
equality follows from the weak convergence X̄ n ⇒ φ∗ [Lemma4.12], the uniform
bound on L(X̄ n

i , φ̇
∗(i/n)) for i ≤ Nn − 1, and the dominated convergence theorem.

The last inequality uses the fact that φ∗ as constructed is within 2ε of the infimum.
Since ε > 0 is arbitrary, the Laplace lower bound

lim inf
n→∞

1

n
log E exp{−nF(Xn)} ≥ − inf

φ∈C ([0,1]:Rd )
[F(φ) + I (φ)]

follows. �

4.7.3 Approximation by Bounded Velocity Paths

We now prove the claim that for ζ satisfying (4.24), ζ̇ can also be assumed bounded.

Lemma 4.17 Consider ζ ∈ C ([0, 1] : Rd) such that [F(ζ) + I (ζ)] < ∞. Then
given ε > 0, there is ζ∗ such that {ζ̇∗(t) : 0 ≤ t ≤ 1} is bounded and

sup
0≤t≤1

‖ζ(t) − ζ∗(t)‖ ≤ ε, I (ζ∗) ≤ I (ζ) + ε.

Proof Since F is bounded, I (ζ) < ∞. For λ ∈ (0, 1) let Dλ
.= {t : ‖ζ̇(t)‖ ≥ 1/λ},

and define a time rescaling Sλ : [0, 1] → [0,∞) by Sλ(0) = 0 and

Ṡλ(t) =
{ ‖ζ̇(t)‖/(1 − λ), t ∈ Dλ,

1 otherwise.

Then Sλ(t) is continuous and strictly increasing. Let Tλ be the inverse of Sλ, which
means that Tλ satisfies Tλ(Sλ(t)) = t for all t ∈ [0, 1] and Sλ(Tλ(t)) = t for all
t ∈ [0, Sλ(1)] ⊃ [0, 1]. Also define ζλ on [0, Sλ(1)] by
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ζλ(t)
.= ζ(Tλ(t)),

which is a “slowed” version of ζ. By the ordinary chain rule, ζ̇λ(Sλ(t)) = ζ̇(t)/Ṡλ(t),
and therefore ζ̇λ(t) has uniformly bounded derivative for t ∈ [0, 1]. The ζ∗ in the
lemma will be ζλ for a positive λ.

From part (c) of Lemma4.14 and part (d) of Lemma4.16, L(x,β) is uniformly
superlinear in β: L(x,β)/‖β‖ → ∞ uniformly in x as ‖β‖ → ∞. This property
and I (ζ) < ∞ imply

∫ 1
0 ‖ζ̇(t)‖dt < ∞, and consequently

lim
λ→0

∫ 1

0
1Dλ

(t)‖ζ̇(t)‖dt = 0. (4.26)

It follows that limλ→0 Sλ(s) = s uniformly for s ∈ [0, 1]. Since

sup
t∈[0,1]

‖ζλ(t) − ζ(t)‖ = sup
t∈[0,1]

‖ζ(Tλ(t)) − ζ(t)‖ = sup
s∈[0,Tλ(1)]

‖ζ(s) − ζ(Sλ(s))‖,

it follows that supt∈[0,1] ‖ζλ(t) − ζ(t)‖ → 0 as λ → 0.
Thus we need only show that I (ζλ) is close to I (ζ). Let

Γ
.= sup

t∈[0,1]
sup

β:‖β‖≤1
L(ζ(t),β) < ∞.

For t ∈ Dλ, the nonnegativity of L implies

L

(

ζ(t),
ζ̇(t)

Ṡλ(t)

)

Ṡλ(t) − L(ζ(t), ζ̇(t)) ≤ L

(

ζ(t),
(1 − λ)ζ̇(t)

‖ζ̇(t)‖

)
‖ζ̇(t)‖
1 − λ

≤ Γ

1 − λ
‖ζ̇(t)‖,

and therefore

I (ζλ) − I (ζ) ≤
∫ Sλ(1)

0
L(ζλ(t), ζ̇λ(t))dt −

∫ 1

0
L(ζ(t), ζ̇(t))dt

=
∫ 1

0
L(ζλ(Sλ(t)), ζ̇λ(Sλ(t)))Ṡλ(t)dt −

∫ 1

0
L(ζ(t), ζ̇(t))dt

=
∫ 1

0
L

(

ζ(t),
ζ̇(t)

Ṡλ(t)

)

Ṡλ(t)dt −
∫ 1

0
L(ζ(t), ζ̇(t))dt

≤ Γ

1 − λ

∫ 1

0
1Dλ

(t)‖ζ̇(t)‖dt.

From (4.26), the last expression converges to 0 as λ → 0. Thus lim supλ→0 I (ζλ) ≤
I (ζ) and ζλ → ζ as λ → 0, and the claim is proved. �
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With the proof that we can assume that ζ̇ is bounded for ζ appearing in (4.24),
the proof of the Laplace lower bound under Condition4.7 is complete.

4.8 Laplace Lower Bound Under Condition4.8

In this section we prove the Laplace principle lower bound without assuming the
support condition on θ(·|x). Instead, besides Condition4.3, we use the Lipschitz-type
assumption of Condition4.8. The main difficulty in the proof for this case is that the
construction of a piecewise linear nearly minimizing trajectory, which simplified the
proof in Sect. 4.7, is not directly available here. The arguments of Sect. 4.7 relied
on the finiteness and continuity of the function (x,β) �→ L(x,β), properties that in
general will not hold for the setting considered in this section.

In order to overcome this difficulty, we introduce a mollification that in a sense
reduces the problem to the form studied in Sect. 4.7. The mollification introduces
an error that needs to be carefully controlled. This is the main technical challenge
in the proof. We will also make use of Lemma1.10, which shows that the Laplace
principle lower bound holds if and only if it holds for F that are Lipschitz continuous.
Mollification techniques are often used in large deviation analysis, and are especially
useful in proving lower bounds.

The section is organized as follows. We begin in Sect. 4.8.1 by introducing the
mollification of the state dynamics. This takes the form of a small additive Gaussian
perturbation, parametrized by σ > 0, to the noise sequence {vi (Xn

i )} in (4.1). We
then estimate the asymptotics of − 1

n log E exp{−nF(Xn)} through an analogous
expression when Xn is replaced by the perturbed state process Zn

σ . Next in Sect. 4.8.2
we give a variational upper bound for functionals of the perturbed process in terms of
a convenient family of controls. The limits of cost functions in this representation are
given in terms of a perturbation Lσ of the function L introduced in (4.5). Section4.8.3
studies properties of Lσ . In particular, we show that Lσ is a finite continuous function,
is bounded above by L , and satisfies properties analogous to those assumed of L in
Condition4.8. Using these results, in Sect. 4.8.4 we construct a piecewise linear
nearly optimal trajectory for infφ∈C ([0,1] :Rd ) [F(φ) + Iσ(φ)], where Iσ is the rate
function associated with the local rate function Lσ , which is then used to construct an
asymptotically nearly optimal control sequence for the representation. Section4.8.5
studies tightness and convergence properties of the associated controlled processes.
Finally, Sect. 4.8.6 uses these convergence results and estimates from Sect. 4.8.1 to
complete the proof of the variational upper bound. Throughout this section, F will
be a real-valued bounded Lipschitz continuous function on C ([0, 1] : Rd).

4.8.1 Mollification

For σ > 0, let {wi,σ}i∈N0 be an iid sequence of Gaussian random variables with mean
0 and covariance σ I that is independent of the random vector fields {vi (·)}i∈N0 .
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For n ∈ N and σ > 0, consider along with the sequence {Xn
i }i=0,...,n , the sequence

{Un
i,σ}i=0,...,n defined by

Un
i+1,σ

.= Un
i,σ + 1

n
wi,σ, Un

0,σ = 0.

Define the piecewise linear process {Un
σ (t)}t∈[0,1] by

Un
σ (t)

.= Un
i,σ + [

Un
i+1,σ −Un

i,σ

]
(nt − i) , t ∈ [i/n, i/n + 1/n].

Let Zn
σ = Xn +Un

σ , where Xn is as in (4.2). Note that Zn
σ is the piecewise linear

interpolation of the sequence {Zn
i,σ}, where Zn

i,σ = Xn
i +Un

i,σ .
The following result shows that the Laplace lower bound properties of {Xn} can

be bounded in terms of the lower bound properties of {Zn
σ}. For φ ∈ C ([0, 1] : Rd),

recall that ‖φ‖∞
.= sup0≤t≤1 ‖φ(t)‖.

Lemma 4.18 For every σ > 0,

lim sup
n→∞

−1

n
log Ee−nF(Xn) ≤ lim sup

n→∞
−1

n
log Ee−nF(Zn

σ) + M2σ2

2
,

where

M
.= sup

φ,η∈C ([0,1]:Rd ),φ �=η

|F(φ) − F(η)|
‖φ − η‖∞

.

Proof Let B = 2‖F‖∞. Then since

F(Zn
σ) ≥ F(Xn) − (M‖Un

σ‖∞) ∧ B,

we see that

− 1

n
log Ee−nF(Xn) ≤ −1

n
log Ee−nF(Zn

σ) + 1

n
log Een[(M‖Un

σ ‖∞)∧B]. (4.27)

We now estimate the second term on the right side of (4.27) using the Laplace
principle upper bound (which was proved in Sect. 4.5) with θ(·|x) = ρσ(·), where ρσ

is the law of a d-dimensional normal random variable with mean 0 and covariance
σ I . Let

Hσ(α)
.= log

∫

Rd

exp〈α, y〉ρσ(dy) = σ2

2
‖α‖2, α ∈ R

d .

The Legendre–Fenchel transform of Hσ is given by

Lσ(β)
.= sup

α∈Rd

[〈α,β〉 − Hσ(α)] = 1

2σ2
‖β‖2.
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Then {Un
σ }n∈N satisfies the Laplace upper bound with rate function

I0,σ(ϕ)
.= 1

2σ2

∫ 1

0
‖ϕ̇(s)‖2ds

if ϕ ∈ C ([0, 1] : Rd) is absolutely continuous and ϕ(0) = 0, and I0,σ(ϕ)
.= ∞ oth-

erwise. This upper bound yields

lim sup
n→∞

1

n
log Een[(M‖Un

σ ‖∞)∧B]

≤ − inf
ϕ∈C ([0,1]:Rd )

[
I0,σ(ϕ) − (M‖ϕ‖∞) ∧ B

]

≤ − inf
ϕ∈C ([0,1]:Rd )

[
I0,σ(ϕ) − M‖ϕ‖∞

]
. (4.28)

For all ϕ ∈ C ([0, 1] : Rd) with I0,σ(ϕ) < ∞, we have

‖ϕ‖2∞ = sup
t∈[0,1]

∥∥∥∥

∫ t

0
ϕ̇(s)ds

∥∥∥∥

2

≤
∫ 1

0
‖ϕ̇(s)‖2ds,

and thus

inf
ϕ∈C ([0,1]:Rd )

[
I0,σ(ϕ) − M‖ϕ‖∞

] ≥ inf
ϕ∈C ([0,1]:Rd )

[‖ϕ‖2∞
2σ2

− M‖ϕ‖∞
]

= inf
r≥0

[
r2

2σ2
− Mr

]

= −M2σ2

2
.

The claim of the lemma now follows from the last display, (4.27), and (4.28). �

4.8.2 Variational Bound for the Mollified Process

In this section we present a variational bound for Ee−nF(Zn
σ). The basic idea is to

apply Theorem4.5 with the Markov chain {Xn
i }i∈N0 replaced by the R

2d -valued
Markov chain {(Xn

i ,U
n
i,σ)}i∈N0 . Let Y

n
i,σ

.= (Xn
i ,U

n
i,σ). The following construction

is analogous to Construction4.4, but for the doubled set of noises appearing in the
mollification. In addition, we will build in the restriction on controls just mentioned.

Construction 4.19 Suppose we are given a probability measure μn ∈ P((Rd ×
R

d)n), and decompose it into a collection of stochastic kernels. With a point in
(Rd × R

d)n denoted by (v1,w1, v2,w2, . . . , vn,wn), [μn]1i |0,...,i−1 will denote the
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marginal distribution of μn on vi given (v j ,wj ), j < i , and [μn]2i |0,...,i−1 will denote
the marginal distribution of μn on wi given (v j ,wj ), j < i and vi .

We now assume that μn also has the property that [μn]2i |0,...,i−1 does not depend
on vi , which implies that the distributions on vi and wi are conditionally independent
given (v j ,wj ), j < i . Let {(v̄ni , w̄n

i )}i=0,...,n−1 be random variables defined on a prob-
ability space (Ω,F , P) and with joint distribution μn. Let F̄ n

i
.= σ((v̄nj , w̄

n
j ), j =

0, . . . , i − 1), and define

μ̄1,n
i (dvi )

.= [μn]1i |0,...,i−1(dvi |v̄n0 , w̄n
0 , . . . , v̄

n
i−1, w̄

n
i−1)

μ̄2,n
i (dwi )

.= [μn]2i |0,...,i−1(dwi |v̄n0 , w̄n
0 , . . . , v̄

n
i−1, w̄

n
i−1),

so that these controls pick the distributions of v̄ni and w̄n
i conditioned on F̄ n

i . Con-
trolled processes X̄n, Ū n

σ and measures L̄n are then recursively constructed as fol-
lows. Let (X̄ n

0 , Ū
n
0,σ) = (x0, 0) and define

X̄n
i+1 = X̄ n

i + 1

n
v̄ni , Ū n

i+1,σ = Ū n
i,σ + 1

n
w̄n
i . (4.29)

Note that F̄ n
i = σ((X̄ n

j , Ū
n
j,σ), j = 1, . . . , i). When {(X̄ n

i , Ū
n
i,σ)}i=1,...,n has been

constructed, X̄n(t) and Ūn
σ (t) are defined as in (4.2) as the piecewise linear inter-

polations, and we set Z̄ n
σ(t)

.= X̄ n(t) + Ū n
σ (t) for t ∈ [0, 1]. In addition, define

L̄n(A × B)
.=
∫

B
L̄n(A|t)dt, L̄n(A|t) = δ(v̄ni ,w̄

n
i )
(A) if t ∈ [i/n, i/n + 1/n).

The following is the main result of this section. Owing to the restriction placed
on the controls in Construction4.19, we obtain only an inequality, but the inequality
is in the right direction to establish a Laplace lower bound.

Proposition 4.20 Let F : C ([0, 1] : Rd) → R be Lipschitz continuous. Given a
control {(μ̄1,n

i , μ̄2,n
i )}i=0,...,n−1, let {X̄ n

i } and {Z̄ n
σ} be defined as in Construction4.19.

Then for all n ∈ N and σ > 0,

− 1

n
log Ee−nF(Zn

σ)

≤ inf
{μ̄1,n

i ,μ̄2,n
i }

E

[

F(Z̄ n
σ) + 1

n

n−1∑

i=0

[
R
(
μ̄1,n
i (·)‖θ(·|X̄ n

i )
)

+ R
(
μ̄2,n
i ‖ρσ

)]]

.

Proof We apply Theorem4.5 with d replaced by 2d, {Xn
i } replaced by {(Xn

i ,U
n
i,σ)},

and G : P(R2d × [0, 1]) → R defined by

G(γ)
.= F(ϕγ), γ ∈ P(R2d × [0, 1]),

where ϕγ ∈ C ([0, 1] : Rd) is defined by
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ϕγ(t)
.=
∫

R2d×[0,t]
(y + z)γ(dy × dz × ds) + x0, t ∈ [0, 1]

if ‖y + z‖ has finite integral under γ, and ϕγ identically zero otherwise. Let
Y n
i,σ = (Xn

i ,U
n
i,σ) and let Ȳ n

i,σ be its controlled analogue according to (4.29), with
the appropriate replacements, and in particular {v̄ni } replaced by {(v̄ni , w̄n

i )}. Let

μ̄n
i (A × B)

.= μ̄1,n
i (A)μ̄2,n

i (B), A, B ∈ B(Rd).

Since we have placed restrictions on the measures μn (equivalently on the controls
{(μ̄1,n

i , μ̄2,n
i )}), Theorem4.5 yields the inequality

− 1

n
log Ee−nF(Zn

σ) (4.30)

≤ inf
{μ̄1,n

i ,μ̄2,n
i }

E

[

F(ϕL̄n ) + 1

n

n−1∑

i=0

R
(
μ̄n
i (dvi × dwi )‖θ(dvi |X̄ n

i )ρσ(dwi )
)
]

.

Here we have used that the distribution of the original process on (vi ,wi ) depends
on Y n

i,σ only through Xn
i . The chain rule implies

R
(
μ̄n
i (dvi × dwi )‖θ(dvi |X̄ n

i )ρσ(dwi )
) = R

(
μ̄1,n
i (·)‖θ(·|X̄ n

j )
)

+ R
(
μ̄2,n
i ‖ρσ

)
.

Finally, from the definition of ϕγ it follows that if the relative entropy cost is finite,
then F(ϕL̄n ) = F(Z̄ n

σ) w.p.1. Inserting these into (4.30) completes the proof of the
lemma. �

4.8.3 Perturbation of L and Its Properties

In order to characterize the limits of the relative entropy terms in (4.30), we use a
perturbation of the function L introduced in (4.5). For σ > 0, let

Lσ(x,β)
.= sup

α∈Rd

[
〈α,β〉 − H(x,α) − σ2

2
‖α‖2

]
.

Note that for each x ∈ R
d , β �→ Lσ(x,β) is the Legendre–Fenchel transform of

Hσ(x,α)
.= log

∫

Rd

e〈α,y〉θσ(dy|x),

where θσ(·|x) is the distribution of v0(x) + w0,σ . The following lemma records some
important properties of Lσ.
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Lemma 4.21 Assume Conditions 4.3 and 4.8 and fix σ > 0. Then the following
conclusions hold.

(a) For all (x,β) ∈ R
d × R

d ,

Lσ(x,β) = inf
b∈Rd

[
L(x,β − b) + ‖b‖2

2σ2

]
.

(b) For all (x,β) ∈ R
d × R

d , Lσ(x,β) ≤ L(x,β).
(c) (x,β) �→ Lσ(x,β) is a finite nonnegative continuous function on Rd × R

d .
(d)Condition4.8 is satisfied with L replaced by Lσ uniformly in σ in the following

sense: for every compact K ⊂ R
d and ε ∈ (0, 1) there exist η̄ = η̄(K , ε) ∈ (0, 1) and

m̄ = m̄(K , ε) ∈ (0,∞) such that whenever ξ,χ ∈ K satisfy ‖ξ − χ‖ ≤ η̄, for every
γ̄ ∈ R

d and σ > 0 we can find β̄ ∈ R
d such that

Lσ(ξ, β̄) − Lσ(χ, γ̄) ≤ ε(1 + Lσ(χ, γ̄)), ‖β̄ − γ̄‖ ≤ m̄(1 + Lσ(χ, γ̄))‖ξ − χ‖.
(4.31)

(e) Given ζ ∈ C ([0, 1] : Rd) satisfying I (ζ) < ∞, there is a ζ∗ ∈ C ([0, 1] : Rd)

that is piecewise linear with finitely many pieces such that ‖ζ∗ − ζ‖∞ < σ and

∫ 1

0
Lσ(ζ

∗(t), ζ̇∗(t))dt ≤
∫ 1

0
Lσ(ζ(t), ζ̇(t))dt + σ ≤ I (ζ) + σ. (4.32)

Proof (a) For each x ∈ R
d , β �→ Lσ(x,β) is the Legendre–Fenchel transform of the

sum of the convex functions H(x, ·) and H̄σ(·), where H̄σ(α) = σ2‖α‖2/2, α ∈ R
d .

The Legendre transform of the first function is L(x, ·), and that of the second function
is Lσ(β) = ‖β‖2/2σ2, β ∈ R

d . From Theorem 16.4 of [217] it follows that

Lσ(x,β) = inf

[
L(x,β1) + ‖β2‖2

2σ2
: βi ∈ R

d , i = 1, 2,β1 + β2 = β

]
,

as claimed.
(b) This is an immediate consequence of part (a).
(c) Note that Conditions4.3 and 4.7 are satisfied with H(x,α) replaced by

Hσ(x,α)
.= H(x,α) + Hσ(α) and θ(·|x) replaced by θσ(·|x). Part (c) now follows

from parts (a), (d), and (f) of Lemma4.16.
(d) Fix a compact K ⊂ R

d and ε ∈ (0, 1). From Condition4.8, we can find η ∈
(0, 1) and m ∈ (0,∞) such that whenever ξ,χ ∈ K satisfy ‖ξ − χ‖ ≤ η, we can
find for every γ ∈ R

d a β ∈ R
d such that

L(ξ,β) − L(χ, γ) ≤ ε

2
(1 + L(χ, γ)), ‖β − γ‖ ≤ m(1 + L(χ, γ))‖ξ − χ‖.

(4.33)
We claim that the statement in (d) holds for η̄ = η and m̄ = 2m. To see this, suppose
ξ,χ ∈ K satisfy ‖ξ − χ‖ ≤ η and γ̄ ∈ R

d . Using part (a), we can find b̄ ∈ R
d such

that
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Lσ(χ, γ̄) ≥ L(χ, γ̄ − b̄) + ‖b̄‖2
2σ2

− ε

4
. (4.34)

Using Condition4.8 and taking γ = γ̄ − b̄, we can find β ∈ R
d such that (4.33)

holds. Letting β̄ = β + b̄, we have

‖β̄ − γ̄‖ = ‖β − γ‖
≤ m(1 + L(χ, γ̄ − b̄))‖ξ − χ‖
≤ m(1 + Lσ(χ, γ̄) + ε/4)‖ξ − χ‖
≤ 2m(1 + Lσ(χ, γ̄))‖ξ − χ‖ ,

where the second inequality follows from (4.34). This proves the second inequality
in (4.31). Also, from part (a),

Lσ(ξ, β̄) − Lσ(χ, γ̄) ≤ L(ξ, β̄ − b̄) + ‖b̄‖2
2σ2

− L(χ, γ̄ − b̄) − ‖b̄‖2
2σ2

+ ε

4

≤ ε

2

(
1 + L(χ, γ̄ − b̄) + ‖b̄‖2

2σ2

)
+ ε

4

≤ ε (1 + Lσ(χ, γ̄)) ,

where the second inequality is from (4.33) and the third is from (4.34). This proves
the first inequality in (4.31) and completes the proof of part (d).

(e) Recall that for all σ > 0, Hσ(·, ·) and θσ satisfy Conditions4.3 and 4.7. Fix
ζ ∈ C ([0, 1] : Rd) satisfying I (ζ) < ∞. Note that Iσ(ζ)

.= ∫ 1
0 Lσ(ζ(t), ζ̇(t))dt ≤

I (ζ). Then applying Lemma4.17 to Iσ , we can find ζ∗
1 ∈ C ([0, 1] : Rd) such that

{ζ̇∗
1 (t) : 0 ≤ t ≤ 1} is bounded, ‖ζ∗

1 − ζ‖∞ < σ
2 , and (4.32) holds with ζ∗ replaced

by ζ∗
1 and σ replaced by σ/2. The statement in part (e) now follows by taking ζ∗

to be a piecewise linear approximation of ζ∗
1 and using the continuity of (x,β) �→

Lσ(x,β). �

4.8.4 A Nearly Optimal Trajectory and Associated Control
Sequence

For ε > 0 let ζ ∈ C ([0, 1] : Rd) be such that

F(ζ) + I (ζ) ≤ inf
ϕ∈C ([0,1]:Rd )

[F(ϕ) + I (ϕ)] + ε. (4.35)

Here F , as in Sect. 4.8.1, is a Lipschitz continuous function from C ([0, 1] : Rd) to
R, and I is the expected rate function for the system without mollification. From part
(e) of Lemma4.21, for each fixed σ ∈ (0, 1), we can find a ζ∗ ∈ C ([0, 1] : Rd) that
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is piecewise linear with finitely many pieces such that ‖ζ∗ − ζ‖∞ ≤ σ and (4.32)
holds, i.e.,

∫ 1
0 Lσ(ζ∗(t), ζ̇∗(t))dt ≤ I (ζ) + σ.

We now construct a control sequence to be applied to the mollified process for
which the running cost is asymptotically close to the left side in (4.32) and the
associated controlled process Z̄ n

σ tracks the nearly optimal trajectory ζ∗ closely as
n → ∞. Let

K
.=

⋃

t∈[0,1]

{
y ∈ R

d : ‖y − ζ(t)‖ ≤ 2
}
.

Since ζ is continuous, K is compact.We apply part (d) of Lemma4.21with K defined
as in the last display and ε as in (4.35). Thus there exist η̄ ∈ (0, 1) and m̄ ∈ (0,∞)

such that whenever ξ,χ ∈ K satisfy ‖ξ − χ‖ ≤ η̄, we can find for every γ̄ ∈ R
d

and σ ∈ (0, 1), a β̄ ∈ R
d such that (4.31) holds. The following lemma says that the

selection of β̄ can be done in a measurable way. Note that the choice of η̄ and m̄
depends on ε and K , but is independent of σ.

Lemma 4.22 (a)Fixχ, γ̄ ∈ R
d andσ > 0. Given ξ ∈ K (χ)

.= {x ∈ K : ‖x − χ‖ ≤
η̄}, define Γξ to be the set of all β̄ ∈ R

d such that (4.31) holds. Then there is a
measurable map B : K (χ) → R

d such that B(ξ) ∈ Γξ for all ξ ∈ K (χ) and χ ∈ K.
(b) Let KM̄ = {β ∈ R

d : ‖β‖ ≤ M̄}, where

M̄ = sup
s∈[0,1],ξ∈K

[
m̄‖ξ − ζ∗(s)‖ (

1 + Lσ(ζ
∗(s), ζ̇∗(s))

) + ‖ζ̇∗(s)‖] .

Given (ξ,β) ∈ K × KM̄ , define Γ̃(ξ,β) to be the set of all (β1,β2) ∈ R
d × R

d such
that

L(ξ,β1) + 1

2σ2
‖β2‖2 ≤ Lσ(ξ,β) + σ, β1 + β2 = β.

Then there are measurable maps Bi : K × KM̄ → R
d , i = 1, 2, such that (B1(ξ,β),

B2(ξ,β)) ∈ Γ̃(ξ,β) for all (ξ,β) ∈ K × KM̄ .

Proof CorollaryE.3 in the appendix is concerned with measurable selections. The
proof of part (a) is immediate from this corollary and the continuity of Lσ(·, ·).
The second part also follows from CorollaryE.3 and the lower semicontinuity of L
proved in part (b) of Lemma4.14. Indeed, suppose (ξn,βn) ∈ K × KM̄ are such that
ξn → ξ and βn → β, and let (β1

n ,β
2
n) ∈ Γ̃(ξn ,βn). Since K × KM̄ is compact and Lσ

is continuous, supn∈N Lσ(ξn,βn) < ∞. Using the inequality

L(ξn,β
1
n) + 1

2σ2
‖β2

n‖2 ≤ Lσ(ξn,βn) + σ , (4.36)

we see that {β2
n} is bounded, and since β1

n + β2
n = βn , {β1

n} is bounded as well.
Suppose now that β1

n → β1 and β2
n → β2 along a subsequence. Clearly β1 + β2 =

β, and from the lower semicontinuity of L and continuity of Lσ, (4.36) holds
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with (ξn,βn,β
1
n ,β

2
n) replaced by (ξ,β,β1,β2). Thus (β1,β2) ∈ Γ̃(ξ,β). Hence the

assumptions of CorollaryE.3 are satisfied, and the result follows. �

As shown in Appendix B, it follows from part (g) of Lemma4.16 that there
are stochastic kernels γi , i = 1, 2, from R

d × R
d to P(Rd) and R

d to P(Rd),
respectively, such that for all (ξ,β1) ∈ R

d × R
d and β2 ∈ R

d ,

R
(
γ1(·|ξ,β1) ‖θ(·|ξ)) = L(ξ,β1) and

∫

Rd

yγ1(dy|ξ,β1) = β1

and

R
(
γ2(·|β2) ‖ρσ(·)) = 1

2σ2
‖β2‖2 and

∫

Rd

yγ2(dy|β2) = β2.

Using these kernels, we recursively define a control sequence {(μ̄1,n
i , μ̄2,n

i )}, con-
trolled processes {(X̄ n

i , Ū
n
i,σ)}, and a stopping time κn as follows. We initialize with

(X̄ n
0 , Ū

n
0,σ) = (x0, 0), and set

κn .= inf
{
i ∈ N0 : ‖X̄ n

i − ζ∗(i/n)‖ > η̄
} ∧ n.

At each discrete time j = 0, . . . ,κn − 1 we apply part (a) of Lemma4.22 with
(χ, γ̄) = (ζ∗( j/n), ζ̇∗( j/n)). Noting that X̄ n

j ∈ K (ζ∗( j/n)), we define β̄n
j =

B(X̄ n
j ). Note that β̄n

j ∈ KM̄ . With Bi as in part (b) of Lemma4.22, let βi,n
j =

Bi (X̄ n
j , β̄

n
j ), i = 1, 2. Define

μ̄1,n
j (·) = 1{ j<κn}γ1(·|X̄ n

j ,β
1,n
j ) + 1{ j≥κn}θ(·|X̄ n

j ),

μ̄2,n
j (·) = 1{ j<κn}γ2(·|β2,n

j ) + 1{ j≥κn}ρσ(·)

and define v̄nj , w̄
n
j,σ, X̄ n

j+1, Ū
n
j+1,σ, X̄ n, Ū n

σ , and Z̄ n
σ according to Construction4.19.

As in the previous proof of a Laplace lower bound, we revert to the original distri-
butions when X̄ n

i wanders farther than η̄ from ζ∗(i/n) to keep the relative entropy
costs uniformly bounded. This will be needed when we study the convergence of the
controlled processes.

Note that the choice of the control sequence ensures that for j ∈ {0, 1, . . . ,
κn − 1},

R
(
μ̄1,n

j (·) ∥∥θ(·|X̄ n
j )
)

= L(X̄ n
j ,β

1,n
j ),

∫

Rd

yμ̄1,n
j (dy) = β1,n

j (4.37)

and

R
(
μ̄2,n

j ‖ρσ

)
= 1

2σ2
‖β2,n

j ‖2,
∫

Rd

yμ̄2,n
j (dy) = β2,n

j . (4.38)
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Also for j ∈ {κn, . . . , n − 1}, R(μ̄1,n
j ||θ(·|X̄ n

j )) = R(μ̄2,n
j ‖ρσ ) = 0. From the

choice of (χ, γ̄) = (ζ∗( j/n), ζ̇∗( j/n)) in the definition of β̄n
j ,

Lσ(X̄ n
j , β̄

n
j ) − Lσ(ζ

∗( j/n), ζ̇∗( j/n)) ≤ ε
[
1 + Lσ(ζ∗( j/n), ζ̇∗( j/n))

]
, (4.39)

‖β̄n
j − ζ̇∗( j/n)‖ ≤ m̄

[
1 + Lσ(ζ∗( j/n), ζ̇∗( j/n))

] ‖X̄ n
j − ζ∗( j/n)‖ (4.40)

and

L(X̄ n
j , β̄

1,n
j ) + 1

2σ2
‖β2,n

j ‖2 ≤ Lσ(X̄ n
j , β̄

n
j ) + σ. (4.41)

It follows that

E

⎡

⎣1

n

n−1∑

j=0

(
R
(
μ̄1,n

j (·)‖θ(·|X̄ n
j )
)

+ R
(
μ̄2,n

j (·)‖ρσ(·)
))

⎤

⎦

= E

⎡

⎣1

n

κn−1∑

j=0

(
R
(
μ̄1,n

j (·)‖θ(·|X̄ n
j )
)

+ R
(
μ̄2,n

j (·)‖ρσ(·)
))

⎤

⎦

= E

⎡

⎣1

n

κn−1∑

j=0

(
L(X̄ n

j ,β
1,n
j ) + 1

2σ2
‖β2,n

j ‖2
)⎤

⎦

≤ E

⎡

⎣1

n

κn−1∑

j=0

Lσ(X̄
n
j , β̄

n
j )

⎤

⎦ + σ

≤ 1

n

n−1∑

j=0

[
Lσ(ζ∗( j/n), ζ̇∗( j/n)) + ε

[
1 + Lσ(ζ∗( j/n), ζ̇∗( j/n))

]] + σ,

where the first equality follows from observing that for j ≥ κn , the relative entropy
terms in the first line are zero, the second from (4.37) and (4.38), the inequality on
the third line from (4.41), and the last line from (4.39). Taking limits as n → ∞
in the last display and using the continuity of Lσ and that ζ∗ is piecewise linear, it
follows that

lim sup
n→∞

E

⎡

⎣1

n

n−1∑

j=0

(
R
(
μ̄1,n

j (·)‖θ(·|X̄ n
j )
)

+ R
(
μ̄2,n

j (·)‖ρσ(·)
))

⎤

⎦

≤ (1 + ε)

∫ 1

0
Lσ(ζ∗(t), ζ̇∗(t))dt + (σ + ε)

≤ (1 + ε)I (ζ) + 2σ + ε(1 + σ), (4.42)

where the last inequality follows on recalling that ζ∗ was chosen so that (4.32) is
satisfied.
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We recall that Lemma4.18 gave a bound for Ee−nF(Xn) in terms of Ee−nF(Zn
σ), and

that Proposition4.20 gave a variational bound for − 1
n log Ee

−nF(Zn
σ). If we combine

these with the last display and (4.35), then

lim sup
n→∞

−1

n
log Ee−nF(Xn) ≤ F(ζ) + I (ζ) + 2σ + ε(1 + σ + I (ζ))

+ lim sup
n→∞

E
[
F(Z̄ n

σ) − F(ζ)
] + M2σ2/2

≤ inf
ϕ∈C ([0,1]:Rd )

[F(ϕ) + I (ϕ)] + 2σ + ε(2 + σ + I (ζ))

+ lim sup
n→∞

E
[
F(Z̄ n

σ) − F(ζ)
] + M2σ2/2,

where M , as in the statement of Lemma4.18, is the Lipschitz constant of F . Taking
the limit as σ → 0 and then ε → 0 gives

lim sup
n→∞

−1

n
log Ee−nF(Xn)

≤ inf
ϕ∈C ([0,1]:Rd )

[F(ϕ) + I (ϕ)] + lim sup
ε→0

lim sup
σ→0

lim sup
n→∞

E
[
F(Z̄ n

σ) − F(ζ)
]
.

Hence in order to complete the proof of the Laplace principle lower bound, it now
suffices to argue that

lim sup
ε→0

lim sup
σ→0

lim sup
n→∞

E
[
F(Z̄ n

σ) − F(ζ)
] = 0. (4.43)

To do this we must analyze the asymptotic properties of the controls and controlled
processes.

4.8.5 Tightness and Convergence of Controlled Processes

To prove (4.43) wewill need to establish tightness and characterize the limits of {Z̄ n
σ}.

The main results that are needed have already been established in Lemmas4.11 and
4.12. To apply these results, we first must identify correspondences between objects
here [on R

d × R
d ] and those of the lemmas [on R

d ]. We recall the definitions

L̄n(A × C)
.=
∫

C
L̄n(A|t)dt, L̄n(A|t) .= δ(v̄ni ,w̄

n
i,σ)(A) if t ∈ [i/n, i/n + 1/n)

and μ̄n
i (A × B)

.= μ̄1,n
i (A)μ̄2,n

i (B). Define random probability measures by
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μ̄1,n(A × C)
.=
∫

C
μ̄1,n(A|t)dt, μ̄1,n(A|t) .= μ̄1,n

i (A) if t ∈ [i/n, i/n + 1/n),

μ̄2,n(B × C)
.=
∫

C
μ̄2,n(B|t)dt, μ̄2,n(B|t) .= μ̄2,n

i (B) if t ∈ [i/n, i/n + 1/n),

and

μ̄n(A × B × C)
.=
∫

C
μ̄1,n(A|t)μ̄2,n(B|t)dt,λn(A × B × C)

.=
∫

C
λn(A × B|t)dt,

λn(A × B|t) .= θ(A|X̄ n
i )ρσ(B) if t ∈ [i/n, i/n + 1/n).

Here A, B ∈ B(Rd) and C ∈ B([0, 1]). Also, let κ̄n = κn/n.

Lemma 4.23 (a) The collection {(μ̄n,λn, μ̄1,n, μ̄2,n, X̄ n, Ū n
σ , κ̄n)}n∈N is a tight fam-

ily of random variables with values in

P(Rd × R
d × [0, 1])2 × P(Rd × [0, 1])2 × C ([0, 1] : Rd)2 × [0, 1].

(b) Suppose (μ̄n,λn, μ̄1,n, μ̄2,n, X̄ n, Ū n
σ , κ̄n) converges along a subsequence in

distribution to (μ̄,λ, μ̄1, μ̄2, X̄ , Ūσ, κ̄). Then a.s., for every t ∈ [0, 1],

X̄(t) = x0 +
∫

Rd×[0,t]
yμ̄1(dy × ds) and Ūσ(t) =

∫

Rd×[0,t]
zμ̄2(dz × ds).

Proof It follows from (4.42) that

sup
n∈N

E
[
R
(
μ̄n‖λn

)]
< ∞.

Also, from part (a) of Condition4.3, for every α = (α1,α2) ∈ R
2d ,

sup
x∈Rd

log
∫

R2d
exp

(〈α1, y〉 + 〈α1, z〉) θ(dy|x)ρσ(dz) < ∞.

We can therefore apply Lemma4.11 with θ(dy|x) replaced with θ(dy|x)ρσ(dz) and
μ̄n
i now given by μ̄1,n

i × μ̄2,n
i . The lemma implies that the families {μ̄n} and {L̄n} are

tight and satisfy the uniform integrability property

lim
M→∞ lim sup

n→∞
E

[∫

R2d×[0,1]
‖(y, z)‖ 1{‖(y,z)‖≥M}μ̄n(dy × dz × dt)

]

= lim
M→∞ lim sup

n→∞
E

[∫

R2d×[0,1]
‖(y, z)‖ 1{‖(y,z)‖≥M} L̄n(dy × dz × dt)

]

= 0. (4.44)
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Tightness of X̄ n and Ū n
σ follows from Lemma4.11 with the identities

(X̄ n(t), Ū n
σ (t)) = (x0, 0) +

∫

R2d×[0,t]
(y, z)L̄n(dy × dz × ds).

Finally, tightness of {(μ̄1,n, μ̄2,n)} is immediate from that of {μ̄n}, and the tightness
of {κ̄n} holds trivially due to the compactness of [0, 1].

It follows from Lemma4.12 that

(X̄(t), Ūσ(t)) = (x0, 0) +
∫

R2d×[0,t]
(y, z)μ̄(dy × dz × ds).

We then use that w.p.1 μ̄1(dy × ds) = μ̄(dy × R
d × ds) and μ̄2(dz × ds) =

μ̄(Rd × dz × ds) to get part (b). �

4.8.6 Completion of the Proof of the Laplace Lower Bound

We now return to the proof of (4.43). We will argue that

lim sup
n→∞

E
[
F(Z̄ n

σ) − F(ζ)
] ≤ h(σ, ε), (4.45)

where h : (0,∞) × (0,∞) → [0,∞) satisfies limσ→0 h(σ, ε) = 0 for all ε ∈ (0, 1).
For this, by a usual subsequential argument it is enough to argue that (4.45) holds
along any subsequence as in part (b) of Lemma4.23 with a function h that is indepen-
dent of the choice of the subsequence. Using the Skorohod representation theorem
[Appendix A, Theorem A.8], we can assume that the convergence in part (b) of
Lemma4.23 is a.s., and without loss we can also assume that it holds along the full
sequence. Then for all t ∈ [0, 1],

Z̄σ(t)
.= lim

n→∞ Z̄ n
σ(t) = lim

n→∞ X̄ n(t) + lim
n→∞ Ū n

σ (t) = X̄(t) + Ūσ(t).

The following lemma estimates the difference between Z̄σ and X̄ .

Lemma 4.24 Let m(σ, ε)
.= 2σ2 ((1 + ε)(2‖F‖∞ + σ + ε) + σ + ε). For every

σ > 0,
E‖Z̄σ − X̄‖2∞ = E‖Ūσ‖2∞ ≤ m(σ, ε).

Proof We use the convergence of μ̄2,n to μ̄2 and the uniform integrability stated in
(4.44). The identities in part (b) of Lemma4.23 and an application of Fatou’s lemma
then imply
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E‖Ūσ‖2∞ ≤ lim inf
n→∞ E

∥∥∥∥

∫

Rd×[0,·]
zμ̄2,n(dz × ds)

∥∥∥∥

2

∞

≤ lim inf
n→∞ E

1

n

n−1∑

j=0

∥∥∥∥

∫

Rd

zμ̄2,n
j (dz)

∥∥∥∥

2

= lim inf
n→∞ E

1

n

κn−1∑

j=0

∥∥∥β2,n
j

∥∥∥
2

≤ 2σ2 lim inf
n→∞

1

n

n−1∑

j=0

[
Lσ(ζ∗( j/n), ζ̇∗( j/n))

+ ε
[
1 + Lσ(ζ

∗( j/n), ζ̇∗( j/n))
]] + 2σ3 ,

where the second inequality follows from Jensen’s inequality and the third uses (4.41)
and (4.39). Using the continuity of Lσ leads to

E‖Ūσ‖2∞ ≤ 2σ2

(
(1 + ε)

∫ 1

0
Lσ(ζ∗(t), ζ̇∗(t))dt

)
+ 2σ2(σ + ε)

≤ 2σ2 ((1 + ε)(I (ζ) + σ)) + 2σ2(σ + ε)

≤ 2σ2 ((1 + ε)(2‖F‖∞ + σ + ε)) + 2σ2(σ + ε),

where the second inequality follows from (4.32) and the third from (4.35). This is
the claim of the lemma. �

We recall that β1,n
j + β2,n

j = β̄n
j and that β̄n

j is chosen equal to B(X̄ n
j ), which

implies (4.31) with (ξ, β̄,χ, γ̄) = (X̄ n
j , β̄

n
j , ζ

∗( j/n), ζ̇∗( j/n)) for j ≤ κn − 1. It fol-
lows from (4.37), (4.38), and (4.40) that for j = 0, 1, . . . ,κn − 1,

∥∥∥∥

∫

Rd

y
[
μ̄1,n

j (dy) + μ̄2,n
j (dy)

]
− ζ̇∗( j/n)

∥∥∥∥

=
∥∥∥β1,n

j + β2,n
j − ζ̇∗( j/n)

∥∥∥

= ∥∥β̄n
j − ζ̇∗( j/n)

∥∥

≤ m̄
(
1 + Lσ(ζ∗( j/n), ζ̇∗( j/n))

) ‖X̄ n
j − ζ∗( j/n)‖.

From the uniform integrability property in (4.44) and the a.s. convergence of
(μ̄1,n, μ̄2,n,κn) to (μ̄1, μ̄2,κ), we have for all t ∈ [0, 1] that

∫

Rd×[0,t∧κn ]
y
[
μ̄1,n(dy × ds) + μ̄2,n(dy × ds)

]

converges in probability to
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∫

Rd×[0,t∧κ]
y
[
μ̄1(dy × ds) + μ̄2(dy × ds)

]
.

Thus for every t ∈ [0, κ̄],
∥∥∥∥

∫

Rd×[0,t]
y
[
μ̄1(dy × ds) + μ̄2(dy × ds)

] −
∫ t

0
ζ̇∗(s)ds

∥∥∥∥

= lim
n→∞

∥∥∥∥

∫

Rd×[0,t]
y
[
μ̄1,n(dy × ds) + μ̄2,n(dy × ds)

] −
∫ t

0
ζ̇∗(s)ds

∥∥∥∥

≤ m̄
∫ t

0
‖X̄(s) − ζ∗(s)‖ (

1 + Lσ(ζ
∗(s), ζ̇∗(s))

)
ds.

For s ∈ [0, 1], let a(s) = 1 + Lσ(ζ∗(s), ζ̇∗(s)) and b(s) = ‖Z̄σ(s) − ζ∗(s)‖. Then
from part (b) of Lemma4.23 and since Z̄σ = X̄ + Ūσ, the last display implies that
for t ∈ [0, κ̄],

b(t) =
∥∥∥∥

∫

Rd×[0,t]
y
[
μ̄1(dy × ds) + μ̄2(dy × ds)

] −
∫ t

0
ζ̇∗(s)ds

∥∥∥∥

≤ m̄
∫ t

0
‖X̄(s) − ζ∗(s)‖a(s)ds

≤ m̄
∫ t

0
b(s)a(s)ds + m̄‖X̄ − Z̄σ‖∞

∫ 1

0
a(s)ds.

Using that [again by (4.32) and (4.35)]
∫ 1
0 a(s)ds ≤ 1 + 2‖F‖∞ + σ + ε, for all

ε,σ ∈ (0, 1), Gronwall’s lemma [LemmaE.2] implies

‖Z̄σ(· ∧ κ̄) − ζ∗(· ∧ κ̄)‖∞ ≤ m̄‖X̄ − Z̄σ‖∞
∫ 1

0
a(s)ds

∫ 1

0
em̄

∫ t
0 a(s)dsdt

≤ m̄(2‖F‖∞ + 3)‖X̄ − Z̄σ‖∞em̄(2‖F‖∞+3)

= m̄1‖X̄ − Z̄σ‖∞, (4.46)

where m̄1
.= m̄(2‖F‖∞ + 3)em̄(2‖F‖∞+3). Finally, with M as in Lemma4.18 equal to

the Lipschitz constant of F , we obtain

lim sup
n→∞

E
[
F(Z̄ n

σ) − F(ζ)
] ≤ lim sup

n→∞
E

[
M‖Z̄ n

σ − ζ‖∞ ∧ 2‖F‖∞
]

≤ M
[
m̄1E‖X̄ − Z̄σ‖∞ + σ

] + 2‖F‖∞P(κ̄ < 1)

≤ M
(
m̄1(m(σ, ε))1/2 + σ

) + 2‖F‖∞P(κ̄ < 1).

For the second inequality we use the fact that ‖ζ − ζ∗‖∞ ≤ σ, and we partition
according to whether κ̄ < 1, using (4.46) when this is not the case. The third inequal-
ity follows from Lemma4.24.
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The last quantity we need to control is P(κ̄ < 1). Since the convergence in path
space is with respect to the uniform topology, we have

P(κ̄ < 1) ≤ P
(∥∥Z̄σ(· ∧ κ̄) − ζ∗(· ∧ κ̄)

∥∥∞ ≥ η̄/2
) ≤ 4

η̄2
m̄2

1 m(σ, ε),

where the first inequality follows from the definition of κn and the second inequality
uses Chebyshev’s inequality, (4.46) and Lemma4.24. Thus (4.45) holds with

h(σ, ε) = M
(
m̄1(m(σ, ε))1/2 + σ

) + 2‖F‖∞
4

η̄2(ε)
m̄2

1 m(σ, ε),

where we write η̄ = η̄(ε) to emphasize its dependence on ε (recall from Lemma4.21
that η̄ does not depend on σ). From the definition ofm(σ, ε) in Lemma4.24 it follows
that limσ→0 m(σ, ε) = 0 for all ε ∈ (0, 1). This proves that limσ→0 h(σ, ε) = 0 for
every ε ∈ (0, 1), and hence (4.43) holds.With the limit (4.43) demonstrated, we have
completed the proof of the Laplace lower bound under Condition4.8. �

4.9 Notes

Among the very first papers to treat models of this type are those of Wentzell [245–
248], Freidlin and Wentzell [140], and Azencott and Ruget [8]. The conditions we
use are weaker than those of the cited references. The statement of assumptions and
conclusions for this chapter parallels that of Chapter 6 of [97], though the proof
is different and is directly analogous to the way Cramér’s theorem was obtained
in Chap.3. In particular, we first prove a process-level generalization of Sanov’s
theorem for the driving noises that define the recursive stochastic model. Then,
assuming appropriate integrability conditions on the distribution of these noises, one
obtains Laplace asymptotics for the process of interest by viewing it as a mapping
on this process-level empirical measure. This leads to a somewhat simpler proof,
though in all approaches the mollification aspect of the proof under Conditions4.3
and 4.8 is technical. We also note that the proof given here corrects a gap in a proof in
[97], in that the constant M defined on page 205 of [97] depends on σ, and therefore
the claim in equation (6.65) of [97] is not really established.

As noted several times already, the analysis of the discrete time model of this
chapter is in many ways more difficult than that of the corresponding continuous-
time models, largely because for continuous time models the noise enters in an
additive and affine manner.
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