
Chapter 3
Examples of Representations and Their
Application

Our approach to the study of large deviations is based on convenient variational
representations for expected values of nonnegative functionals. In this chapter we
give three examples of such representations and show how they allow easy proofs of
some classical results.

In Sect. 3.1 we present a representation for stochastic processes in discrete time.
To illustrate the main idea we consider the simple setting in which the stochastic
process is an iid sequence of random variables [Proposition 3.1]. We then show how
this representation can be used to prove Sanov’s theorem and Cramér’s theorem.
Analogous representations for more general noise models will be used many times
in later chapters. In Sect. 3.2 we state a variational representation for functionals of
a k-dimensional Brownian motion [Theorem 3.14]. This result will be generalized
and proved in the setting of an infinite dimensional Brownian motion in Chap. 8,
and we apply it here to give an elementary proof of the large deviation principle for
small noise diffusions. Section 3.3 states a variational representation for functionals
of a standard Poisson process [Theorem 3.23]. This result will also be extended
in Chap.8 to the setting of Poisson random measures with points in an arbitrary
locally compact Polish space. As an application of Theorem 3.23 we prove the large
deviation principle for stochastic differential equations driven by Poisson processes.

3.1 Representation for an IID Sequence

Owing to the role it plays in the representations, we sometimes refer to the measure
appearing in the second position in relative entropy, i.e., θ in R (μ ‖θ ), as the “base”
measure. The starting point of all large deviation results in the book is the relative
entropy representation in part (a) of Proposition 2.2. When the base measure is
structured, for example when θ is a product measure or a Markov measure, a more
useful, control-theoretic, representation can be found in terms of the component
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measures that make up θ . Here is an example. Suppose that (X1, X2) is an (S1 ×
S2)-valued random variable with joint distribution θ(dx1 × dx2) = θ1(dx1)θ2(dx2).
Then the variational formula (2.1) says that if G ∈ Mb(S1 × S2), then

− log Ee−G(X1,X2) = inf
μ∈P (S1×S2)

[∫
S1×S2

Gdμ + R (μ ‖θ )

]
.

One can always disintegrate μ in the form

μ(dx1 × dx2) = [μ]1(dx1)[μ]2|1(dx2|x1),

where [μ]1 is the marginal on S1 and [μ]2|1 is the conditional distribution on S2
given x1. Suppose that (X̄1, X̄2) is distributed according to μ, μ̄1(·) = [μ]1(·) and
μ̄2(·) = [μ]2|1(·

∣∣X̄1 ) (and note that μ̄2 is a random measure). It follows from the
chain rule [Theorem 2.6] that

R (μ ‖θ ) = R ([μ]1 ‖θ1 ) +
∫
S1

R([μ]2|1(· |x1 ) ‖θ2(·) )[μ]1(dx1)
= E [R (μ̄1 ‖θ1 ) + R (μ̄2 ‖θ2 )] .

Here we have used that X̄1 has distribution [μ]1 to account for integration with
respect to this measure. Then we can rewrite the representation as

− log Ee−G(X1,X2) = inf
μ∈P (S1×S2)

E

[
G(X̄1, X̄2) +

2∑
i=1

R (μ̄i ‖θi )
]

. (3.1)

There is an obvious extension of (3.1) to any finite collection of independent
random variables. The extension for the special case in which the random variables
are iid is as follows. Let Sn denote the product space of n copies of S.

Proposition 3.1 Let {Xi }i∈N be iid S-valued random variables with distribution θ

and let n ∈ N. If G ∈ Mb(Sn), then

− 1

n
log Ee−nG(X1,...,Xn) = inf E

[
G(X̄ n

1 , . . . , X̄
n
n ) + 1

n

n∑
i=1

R
(
μ̄n
i ‖θ )]

, (3.2)

with the infimum over all collections of random probability measures
{
μ̄n
i

}
i∈{1,...,n}

that satisfy the following two conditions:

1. μ̄n
i is measurable with respect to the σ -algebra F n

i−1, where F
n
0 = {∅,�} and

for i ∈ {1, . . . , n}, F n
i = σ {X̄ n

1 , . . . , X̄
n
i };

2. the conditional distribution of X̄n
i , given F n

i−1, is μ̄n
i .

Given any measure μ ∈ P(Sn), if {X̄ n
i }i=1,...,n has distribution μ, then μ̄n

i in the
statement of the proposition would equal [μ]i |1,...,i−1(·|X̄ n

1 , . . . , X̄
n
i−1). On the other
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hand, given {X̄ n
i } and {μ̄n

i } as in the statement of the proposition, one can iden-
tify a μ ∈ P(Sn) that corresponds to these conditional distributions. We consider
{X̄ n

i }i=1,...,n to be a controlled version of the original sequence {Xi }i=1,...,n , with
control μ̄n

i selecting the (conditional) distribution of X̄ n
i .

Notational convention. Throughout, we will use overbars to indicate the controlled
analogue of any uncontrolled process.

3.1.1 Sanov’s and Cramér’s Theorems

First we recall the statement of the Glivenko–Cantelli lemma. The space of proba-
bility measures on S is denoted by P(S) and is equipped with the weak topology
(see Appendix A).

Lemma 3.2 (Glivenko–Cantelli lemma) Let {Xi }i∈N be iid S-valued random
variables with distribution γ , and let Ln be the empirical measure of the first n
variables:

Ln(dx)
.= 1

n

n∑
i=1

δXi (dx).

Then with probability one (w.p.1), Ln converges to γ .

The proof is a special case of the arguments we will use for Sanov’s theorem, and
in particular, the result follows from Lemmas 3.4 and 3.5. Sanov’s theorem itself is
the large deviation refinement of this law of large numbers (LLN) result.

Theorem 3.3 (Sanov’s theorem) Let {Xi }i∈N be iid S-valued random variables
with distribution γ . Then {Ln}n∈N satisfies the LDP on P(S) with rate function
I (μ) = R (μ ‖γ ).

By Theorem 1.8, to prove Theorem 3.3 it is enough to show that

lim
n→∞ −1

n
log E exp{−nF(Ln)} = inf

μ∈P (S)

[
F(μ) + R (μ ‖γ )

]

for every F ∈ Cb(P(S)). The proofwill use the control representation in Proposition
3.1 and will be completed in two steps. First, we will show that the left side in the last
display is bounded belowby the right side (which gives theLaplace upper bound), and
then we will prove the reverse inequality (Laplace lower bound). The first inequality
is proved in Sect. 3.1.3, while the second is proved in Sect. 3.1.4.

Taking G(x1, . . . , xn) = F
(∑n

i=1 δxi (dx)/n
)
in the representation (3.2) gives

− 1

n
log E exp{−nF(Ln)} = inf{μ̄n

i }
E

[
F

(
L̄n

) + 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

, (3.3)
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where L̄n = 1
n

∑n
i=1 δX̄i

. Thus in order to prove Theorem 3.3, we need to show that

inf{μ̄n
i }
E

[
F

(
L̄n

) + 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

→ inf
μ∈P (S)

[
F(μ) + R (μ ‖γ )

]
.

Since F is bounded, the infimum in the representation is always bounded above by
‖F‖∞

.= supx∈S |F(x)| < ∞. It follows that in the infimum in (3.3) we can always
restrict to control sequences {μ̄n

i }i=1,...,n for which

sup
n∈N

E

[
1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

≤ 2 ‖F‖∞ + 1. (3.4)

3.1.2 Tightness and Weak Convergence

The bound (3.4) on relative entropy costs is all that is available, but also all that is
needed, to prove tightness.

Lemma 3.4 Consider any collection of controls {μ̄n
i , i = 1, . . . , n}n∈N for which

(3.4) is satisfied, and let μ̂n = 1
n

∑n
i=1 μ̄n

i . Then {(L̄n, μ̂n)}n∈N is tight.

Proof By the convexity of relative entropy and Jensen’s inequality,

2 ‖F‖∞ + 1 ≥ E

[
1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

≥ E
[
R

(
μ̂n ‖γ )]

.

Since μ 	→ R (μ ‖γ ) has compact level sets, it is a tightness function, and so the
bound in the last display along with Lemmas 2.9 and 2.11 shows that both

{
μ̂n

}
n∈N

and
{
Eμ̂n

}
n∈N are tight. Since μ̄n

i is the conditional distribution used to select X̄ n
i ,

it follows that for every bounded measurable function f ,

E
∫
S
f (x)L̄n(dx) = E

[
1

n

n∑
i=1

f (X̄ n
i )

]

= E

[
1

n

n∑
i=1

∫
S
f (x)μ̄n

i (dx)

]

= E
∫
S
f (x)μ̂n(dx).

Thus E L̄n = Eμ̂n , and so {L̄n} and hence {(L̄n, μ̂n)} are tight. Here once more we
have used Lemma 2.11. �
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Thus (L̄n, μ̂n) will converge, at least along subsequences. To prove the LDP we
need to relate the limits of the controls μ̂n and the controlled process L̄n .

Lemma 3.5 Suppose {(L̄n, μ̂n)}n∈N converges along a subsequence to (L̄, μ̂). Then
L̄ = μ̂ w.p.1.

The proof of this result, which is amartingale version of the proof of theGlivenko–
Cantelli lemma, will be given in Sect. 3.1.5 after we complete the proof of Sanov’s
theorem.

3.1.3 Laplace Upper Bound

The proof of Theorem 3.3 is partitioned into upper and lower bounds. In this section
we will prove the Laplace upper bound, which is the same as the variational lower
bound

lim inf
n→∞ −1

n
log E exp{−nF(Ln)} ≥ inf

μ∈P (S)

[
F(μ) + R (μ ‖γ )

]
. (3.5)

For ε > 0, let
{
μ̄n
i

}
i=1,...,n and {X̄ n

i }i=1,...,n come within ε of the infimum in (3.3):

−1

n
log E exp{−nF(Ln)} + ε ≥ E

[
F

(
L̄n

) + 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

.

Recall that we assume (without loss of generality) that the uniform bound in (3.4)
holds, and thus by Lemma 3.4, {(L̄n, μ̂n)} is tight.

Owing to tightness, for every subsequence of {(L̄n, μ̂n)} we can extract a further
subsequence that converges weakly. It suffices to prove (3.5) for such a subsubse-
quence. To simplify notation, we denote this subsubsequence by n, and its limit by(
L̄, μ̂

)
. According toLemma3.5, L̄ = μ̂ a.s. Using Jensen’s inequality for the second

inequality, the convergence in distribution, Fatou’s lemma and lower semicontinuity
of relative entropy for the third inequality, and the w.p.1 relation L̄ = μ̂ for the last
inequality, we obtain

lim inf
n→∞ −1

n
log Ee−nF(Ln) + ε ≥ lim inf

n→∞ E

[
F

(
L̄n

) + 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

≥ lim inf
n→∞ E

[
F

(
L̄n

) + R
(
μ̂n ‖γ )]

≥ E
[
F

(
L̄

) + R
(
μ̂ ‖γ )]

≥ inf
μ∈P (S)

[
F(μ) + R (μ ‖γ )

]
.

Since ε > 0 is arbitrary, (3.5) follows. �
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3.1.4 Laplace Lower Bound

Next we prove the variational upper bound

lim sup
n→∞

−1

n
log E exp{−nF(Ln)} ≤ inf

μ∈P (S)

[
F(μ) + R (μ ‖γ )

]
, (3.6)

which establishes the Laplace lower bound. For ε > 0 let μ∗ satisfy

F(μ∗) + R
(
μ∗ ‖γ ) ≤ inf

μ∈P (S)

[
F(μ) + R (μ ‖γ )

] + ε.

Then let μ̄n
i = μ∗ for all n ∈ N and i ∈ {1, . . . , n}. By either Lemma 3.5 or the

ordinary Glivenko–Cantelli lemma, the weak limit of L̄n equals μ∗ w.p.1. The rep-
resentation in Proposition 3.1 gives the first inequality below, and the dominated
convergence theorem gives the equality

lim sup
n→∞

−1

n
log Ee−nF(Ln) ≤ lim sup

n→∞
E

[
F

(
L̄n

) + 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

= [
F

(
μ∗) + R

(
μ∗ ‖γ )]

≤ inf
μ∈P (S)

[
F(μ) + R (μ ‖γ )

] + ε.

Since ε > 0 is arbitrary, the bound (3.6) follows. �

Remark 3.6 When combined with the previous subsection, the argument just given
shows that for asymptotic optimality one can restrict to controls of the form μ̄n

i = μ∗,
i.e., product measure.

3.1.5 Proof of Lemma 3.5 and Remarks on the Proof
of Sanov’s Theorem

Since S is Polish, there exists a countable separating class { fm}m∈N of bounded con-
tinuous functions (see Appendix A). Define Km

.= ‖ fm‖∞ and �n
m,i

.= fm
(
X̄ n
i

) −∫
S fm (x) μ̄n

i (dx). For every ε > 0,

P

{∣∣∣∣∣
1

n

n∑
i=1

fm
(
X̄ n
i

) − 1

n

n∑
i=1

∫
S
fm (x) μ̄n

i (dx)

∣∣∣∣∣ > ε

}

≤ 1

ε2
E

⎡
⎣ 1

n2

n∑
i, j=1

�n
m,i�

n
m, j

⎤
⎦ .
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Recall that F n
j = σ(X̄ n

i , i = 1, . . . , j). By a standard conditioning argument, the
off-diagonal terms vanish: for i > j ,

E
[
�n

m,i�
n
m, j

] = E
[
E

[
�n

m,i�
n
m, j

∣∣F n
i−1

]] = E
[
E

[
�n

m,i

∣∣F n
i−1

]
�n

m, j

] = 0.

Since |�n
m,i | ≤ 2Km ,

P

{∣∣∣∣∣
1

n

n∑
i=1

fm(X̄ n
i ) − 1

n

n∑
i=1

∫
S
fm(x)μ̄n

i (dx)

∣∣∣∣∣ > ε

}
≤ 4K 2

m

nε2
.

Since (L̄n, μ̂n) ⇒ (
L̄, μ̂

)
and ε > 0 is arbitrary, by Fatou’s lemma, we have

P

{∫
S
fm (x) L̄ (dx) =

∫
S
fm (x) μ̂ (dx)

}
= 1.

Now use that { fm} is countable and separating to conclude that L̄ = μ̂ w.p.1. �
Remark 3.7 There is a close relationship between the legitimate use of Jensen’s
inequality in the proof of any particular Laplace upper bound and the asymptotic
independence of optimal controls with respect to one or more parameters. In the
context of Sanov’s theorem, the parameter is the time index i . In the proof of the
upper bound, the inequality

E

[
1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

≥ E
[
R

(
μ̂n ‖γ )]

was used, where μ̂n is the average (over i) of μ̄n
i . In general, Jensen’s inequality holds

with a strict inequality. There is an exception when the quantity being averaged is
independent of the parameter over which the averaging occurs. Since we consider
the limit n → ∞, this means that there should be no loss due to the use of Jensen’s
inequality if one restricts to controls that are independent of i in this limit. In any par-
ticular instance, a use of Jensen’s inequality is appropriate only when one proves the
corresponding lower bound with the same rate function, i.e., in the proof of the lower
bound one should be able to restrict to controls that do not depend on the parameter
being averaged. This of course occurs in the proof of Sanov’s theorem, since for the
lower bound we consider controls of the form μ̄n

i = μ∗ for a fixed measure μ∗.
Information on what control dependencies are asymptotically unimportant can be

useful in various ways, including the construction of importance sampling schemes,
which is considered later in the book. It typically simplifies the large deviation proofs
considerably, since one needs to keep track in the weak convergence analysis of only
the nontrivial dependencies, and often one has some a priori insight into which
parameters should be unimportant. However, as noted previously, it is only after the
proof of upper and lower bounds with the same rate function that one can claim that
the use of Jensen’s inequality was without loss.
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3.1.6 Cramér’s Theorem

Cramér’s theorem states the LDP for the empirical mean of Rd -valued iid random
variables: Sn

.= 1
n (X1 + · · · + Xn). Of course, one can recover the empirical mean

from the empirical measure via Sn = ∫
Rd yLn(dy). If the underlying distribution γ

has compact support, then the mapping μ → ∫
Rd yμ(dy) is continuous on a subset

ofP(Rd) that contains Ln w.p.1. In this case, the LDP for {Sn}n∈N follows directly
from the contraction principle [Theorem 1.16], with the rate function I given by

I (β)
.= inf

[
R (μ ‖γ ) :

∫
Rd

yμ(dy) = β

]
(3.7)

for β ∈ R
d . However, in general the mapping μ 	→ ∫

Rd yμ(dy) is not continuous,
and the contraction principle does not suffice. As we will see, the issue is that the
conditions of Sanov’s theorem are too weak to force continuity with high probability.
They are sufficient to imply tightness of controls, but no more. Once the conditions
are appropriately strengthened, the weak convergence arguments can be carried out
just as before, with the only difference being in the qualitative properties of the
convergence. For α ∈ R

d let

H(α)
.= log

∫
Rd

e〈α,y〉γ (dy).

Theorem 3.8 (Cramér’s theorem) Let {Xn}n∈N be a sequence of iid R
d -valued

random variables with common distribution γ , and let Sn
.= 1

n

∑n
i=1 Xi . Assume

that H(α) < ∞ for all α ∈ R
d . Then {Sn}n∈N satisfies the LDP with rate function I

defined in (3.7).

To prove the LDP we need to calculate the limits of

− 1

n
log E exp

{
−nF

(∫
Rd

yLn(dy)

)}
, (3.8)

where F ∈ Cb(R
d). From the representation in Proposition 3.1 we see that (3.8)

equals

inf{μ̄n
i }
E

[
F

(∫
Rd

y L̄n(dy)

)
+ 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

.

Once more, without loss of generality we can assume that the relative entropy cost
is uniformly bounded, and in particular that (3.4) holds. The next lemma shows that
as a consequence of this uniform bound and our assumption on H , the collection{
L̄n

}
n∈N is uniformly integrable.
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Lemma 3.9 Assume (3.4) and that H(α) < ∞ for all α ∈ R
d . Then

lim
M→∞ lim sup

n→∞
E

[∫
Rd

‖y‖ 1{‖y‖≥M} L̄n(dy)

]
= 0.

Before proving the lemma we complete the proof of Theorem 3.8.

Proof (of Theorem 3.8) The uniform integrability of Lemma 3.9 implies that if L̄n

converges in distribution to L̄ and (3.4) holds, then

E

[
F

(∫
Rd

y L̄n(dy)

)]
→ E

[
F

(∫
Rd

y L̄(dy)

)]
. (3.9)

The limit of (3.8) will now be calculated using essentially the same argument as that
used to prove Sanov’s theorem.

Variational lower bound. For ε > 0 let
{
μ̄n
i

}
i=1,...,n and {X̄ n

i }i=1,...,n satisfy

−1

n
log Ee−nF(

∫
Rd yLn(dy)) + ε ≥ E

[
F

(∫
Rd

y L̄n(dy)

)
+ 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

.

Consider a subsubsequence as in Sect. 3.1.3 (denoted again by n) along which(
L̄n, μ̂n

)
converges weakly to

(
L̄, μ̂

)
. Then as in Sect. 3.1.3, we have

lim inf
n→∞ −1

n
log E exp

{
−nF

(∫
Rd

yLn(dy)

)}
+ ε

≥ lim inf
n→∞ E

[
F

(∫
Rd

y L̄n(dy)

)
+ 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

≥ E

[
F

(∫
Rd

y L̄(dy)

)
+ R

(
μ̂ ‖γ )]

≥ E

[
F

(∫
Rd

y L̄(dy)

)
+ I

(∫
Rd

y L̄(dy)

)]

≥ inf
β∈Rd

[F(β) + I (β)] .

Here the second inequality follows from (3.9), and the third follows from the defini-
tion of I and L̄ = μ̂ a.s. Since ε > 0 is arbitrary, the lower bound follows.

Variational upper bound. For ε ∈ (0, 1) let β∗ ∈ R
d satisfy

F(β∗) + I
(
β∗) ≤ inf

β∈Rd
[F(β) + I (β)] + ε.

Next let μ∗ ∈ P(Rd) be such that
∫
Rd xμ∗(dx) = β∗ and
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F(β∗) + R
(
μ∗ ‖γ ) ≤ F(β∗) + I

(
β∗) + ε.

As in Sect. 3.1.4, let μ̄n
i = μ∗ for all n ∈ N and i ∈ {1, . . . , n}. Then the weak limit

of L̄n equals μ∗ a.s., and (3.4) is satisfied. Thus

lim sup
n→∞

−1

n
log E exp

{
−nF

(∫
Rd

yLn(dy)

)}

≤ lim sup
n→∞

E

[
F

(∫
Rd

y L̄n(dy)

)
+ 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

= F
(
β∗) + R

(
μ∗ ‖γ )

≤ F(β∗) + I
(
β∗) + ε

≤ inf
β∈Rd

[F(β) + I (β)] + 2ε.

Here the equality follows from (3.9) and the a.s. convergence of L̄n to μ∗. Since
ε ∈ (0, 1) is arbitrary, the upper bound follows. �

Finally, we give the proof of Lemma 3.9.

Proof (of Lemma 3.9) The uniform integrability stated in this lemma is essentially a
consequence of the bound on relative entropy costs and the assumption H(α) < ∞.
For b ≥ 0 let

�(b)
.= b log b − b + 1. (3.10)

We recall a bound already used frequently in Chap.2 [see (2.9)]: for a ≥ 0, b ≥ 0,
and σ ≥ 1,

ab ≤ eσa + 1

σ
(b log b − b + 1) = eσa + 1

σ
�(b).

Thus if θ ∈ P(Rd) satisfies θ � γ , then for every σ ≥ 1,

∫
Rd

‖y‖ 1{‖y‖≥M}θ(dy) =
∫
Rd

‖y‖ 1{‖y‖≥M}
dθ

dγ
(y)γ (dy)

≤
∫
Rd

eσ‖y‖1{‖y‖≥M}γ (dy) + 1

σ

∫
Rd

�

(
dθ

dγ
(y)

)
γ (dy)

=
∫
Rd

eσ‖y‖1{‖y‖≥M}γ (dy) + 1

σ
R (θ ‖γ ) .

Note that the inequality holds trivially if θ �� γ . Therefore,

E
∫
Rd

‖y‖ 1{‖y‖≥M} L̄n(dy) = E
∫
Rd

‖y‖ 1{‖y‖≥M}μ̂n(dy)

≤
∫
Rd

eσ‖y‖1{‖y‖≥M}γ (dy) + 1

σ
ER

(
μ̂n ‖γ )

. (3.11)
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Since H(α) < ∞ for all α ∈ R
d , for each fixed σ the mapping y 	→ exp{σ ‖y‖} is

integrable with respect to γ . To see this, for λ > 0 let

m(λ)
.= sup

α∈Rd :‖α‖≤λ

eH(α) = sup
α∈Rd :‖α‖≤λ

∫
Rd

e〈α,y〉γ (dy).

From the continuity of α 	→ H(α) it follows thatm(λ) < ∞. For J ⊂ {1, . . . , d} let
R

d
J

.= {x ∈ R
d : xi ≥ 0 if and only if i ∈ J }, and define α J ∈ R

d by

α J
i

.= λ√
d
if i ∈ J and α J

i
.= − λ√

d
if i ∈ J c.

Then ‖α J‖ = λ for all J , and for all y ∈ R
d
J ,

〈α J , y〉 = λ√
d

d∑
i=1

|yi | ≥ λ√
d

‖y‖.

Thus

m(λ) ≥
∫
Rd

e〈α J ,y〉γ (dy) ≥
∫
R

d
J

e〈α J ,y〉γ (dy) ≥
∫
R

d
J

e
λ√
d
‖y‖

γ (dy),

and therefore
∫
Rd

e
λ√
d
‖y‖

γ (dy) =
∑
J

∫
R

d
J

e
λ√
d
‖y‖

γ (dy) ≤ 2dm(λ). (3.12)

Since λ > 0 is arbitrary, we get
∫
Rd exp{σ ‖y‖}γ (dy) < ∞ for every σ ∈ R, as

asserted.
The bound (3.4) on the relative entropy and Jensen’s inequality imply that the

last term in (3.11) is bounded by (2 ‖F‖∞ + 1)/σ . The conclusion of Lemma 3.9
follows by taking limits in (3.11), in the order n → ∞, M → ∞, and then σ → ∞.

�

Remark 3.10 The proofmost often given of Cramér’s theorem (e.g., as in [239]) uses
a change of measure argument for the large deviation lower bound and Chebyshev’s
inequality for the upper bound.This line of argument naturally produces the following
alternative form of the rate function as the Legendre-Fenchel transform of H :

L(β) = sup
α∈Rd

[〈α, β〉 − H(α)] .

By the uniqueness of rate functions [Theorem 1.15] it must be that I = L , though one
can also directly verify that the two coincide [Lemma 4.16]. Both characterizations
of the rate are useful. For example, the description as a Legendre transform easily
shows that I is convex, while the characterization in terms of relative entropy allows
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an easy calculation of the domain of finiteness of I . Note also that in principle, the
two different expressions can be used to obtain upper and lower bounds on I (β) for
any given β. The two descriptions are in fact dual to each other.

Remark 3.11 It is possible to prove Cramér’s theorem under just the condition that
there is δ > 0 such that H(α) < ∞ for all α with ‖α‖ ≤ δ. The main difficulty
imposed by this weaker condition is that boundedness of costs does not imply the
uniform integrability of controls that is used in the proof of the variational lower
bound. This can be bypassed by the use of unbounded test functions of the form
F(x) = ∞1Cc(x), where C is convex. In the proof of the variational upper bound
(large deviation lower bound) we can take C to be an open ball of radius δ > 0 about
a point x . Tightness follows, since here one picks controls that correspond to product
measure. For the lower bound one must first establish that lower bounds for convex
sets, which correspond to large deviation upper bounds, suffice to establish the full
large deviation upper bound. This can be shown by approximating the complement
of a level set of the rate function by a finite union of half-spaces (see the proof of
Cramér’s theorem in [239]), which uses the compactness of the level sets and an
open covering argument. Given that it is sufficient to prove the variational lower
bound for just convex sets, Jensen’s inequality can be used to move the expected
value inside F in the representation, and all that is required to complete the proof is
boundedness of E

∫
Rd xμ̂n(dx)when costs are bounded. Since boundedness of costs

implies boundedness of L(E
∫
Rd xμ̂n(dx)), this follows, since L has compact level

sets.

3.2 Representation for Functionals of Brownian Motion

Let (�,F , P) be a probability space and T ∈ (0,∞). A filtration {Ft }0≤t≤T is a
collection of sub-sigma fields ofF with the propertyFs ⊂ Ft for s ≤ t . A filtration
{Ft }0≤t≤T is called right continuous if∩s>tFs = Ft for every t ∈ [0, T ). A filtration
{Ft }t∈[0,T ] is said to satisfy the usual conditions if it is right continuous and for every
t ∈ [0, T ], Ft contains all P-null sets in F . All filtrations in this book will satisfy
the usual conditions. Suppose we are given such a filtration {Ft } on (�,F , P)

and that {W (t)}0≤t≤T is a k-dimensional Ft -Brownian motion, i.e., W (0) = 0;
W has continuous trajectories; W (t) is Ft -measurable for every t ∈ [0, T ]; and
W (t) − W (s) is independent ofFs for all 0 ≤ s ≤ t ≤ T and is normally distributed
with mean zero and variance (t − s). A standard choice of Ft is the sigma-field
σ {W (s) : 0 ≤ s ≤ t}, augmented with all P-null sets, i.e.,

Gt
.= σ {σ {W (s) : 0 ≤ s ≤ t} ∨ N } ,

where N = {A ⊂ �: there is B ∈ F with A ⊂ B and P(B) = 0}.
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Definition 3.12 An Rk-valued stochastic process {v(t)}0≤t≤T on (�,F , P) is said
to be Ft -progressively measurable if for every t ∈ [0, T ], the map (s, ω) 	→
v(s, ω) from ([0, t] × �,B([0, t]) ⊗ Ft ) to (Rk,B(Rk)) is measurable.

Definition 3.13 Let A [resp., ¯A ] denotes the collection of all Gt -progressively
[resp., Ft -progressively] measurable processes {v(t)}0≤t≤T that satisfy the integra-
bility condition E[∫ T

0 ‖v(t)‖2dt] < ∞.

The following representation theorem for bounded measurable functionals of a
Brownian motion is analogous to the one stated in Proposition 3.1 for functionals of
an iid sequence. It is a special case of a representation that will be proved in Chap. 8
[Theorem 8.3]. In the representation, the controlled measures have been replaced
by just a control process, and the relative entropy cost is the expected L2-norm of
this process. Recall that C ([0, T ] : Rk) denotes the space of Rk-valued continuous
functions on [0, T ]. This space is equipped with the uniform metric, which makes it
a Polish space.

Theorem 3.14 Let G be a bounded Borel measurable function mapping C ([0, T ] :
R

k) into R. Then

− log Ee−G(W ) = inf
v∈A

E

[
G

(
W +

∫ ·

0
v(s)ds

)
+ 1

2

∫ T

0
‖v(s)‖2ds

]
. (3.13)

Remark 3.15 The proof of this representation first appeared in [32]. The form of the
representation closely parallels the corresponding discrete time result for product
measure, reflecting the fact that Brownian motion is the integral of “white” noise,
and progressivemeasurability is analogous to the fact that in the representation for iid
noises, μ̄n

i is allowed to depend on all controlled noises up to time i − 1. In fact, if one
replaces W by the corresponding piecewise linear interpolation with interpolation
interval δ > 0 (which is equivalent to a collectionof 1/δ iid N (0, δ) randomvariables)
and assumes that the minimizing measures are Gaussian with means δv̄ni , then the L

2

cost in (3.13) corresponds to R
(
N (δv̄ni , δ) ‖N (0, δ)

) = δ‖v̄ni ‖2/2. The assumption
that one can restrict the discrete time measures to those of the form N (δv̄ni , δ) is valid
in the limit δ → 0, which is why the continuous time representation is in some ways
simpler than the corresponding discrete time representation.

Remark 3.16 One can replace the classA with ¯A in (3.13) (see Chap.8). Although
in this chapter we use progressively measurable controls (as in [32]), in Chap. 8 these
are replaced by predictable controls. For the case of Brownian motion, the two are
interchangeable, since any Gt [resp., Ft ] predictable process satisfying the square
integrability condition in Definition 3.13 is inA [resp., ¯A ], and conversely, to any v
in A [resp., ¯A ] there is a predictable ṽ in A [resp., ¯A ] such that v(t, ω) = ṽ(t, ω)

a.s. dt × P; see [168, Remark 3.3.1]. However, predictability is needed for the case
of processes with jumps, e.g., systems driven by a Poisson random measure.

We next state a version of the representation that restricts the class of controls to
a compact set. For M ∈ [0,∞) let
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SM
.=

{
φ ∈ L 2([0, T ] : Rk) :

∫ T

0
‖φ(s)‖2 ds ≤ M

}
,

whereL 2([0, T ] : Rk) is theHilbert space of square integrable functions from [0, T ]
to R

k , and define Ab,M to be the subset of A such that v ∈ Ab,M if v(ω) ∈ SM for
all ω ∈ �. Let Ab = ∪∞

M=1Ab,M . In the statement of the theorem, we introduce a
scaling that will be appropriate for large deviation analysis of small noise diffusions.

Theorem 3.17 Let G be a bounded Borel measurable function mapping C ([0, T ] :
R

k) into R and let δ > 0. Then there exist M < ∞ depending on ‖G‖∞ and δ such
that for all ε ∈ (0, 1),

− ε log E exp

{
−1

ε
G(

√
εW )

}
(3.14)

≥ inf
v∈A b,M

E

[
G

(√
εW +

∫ ·

0
v(s)ds

)
+ 1

2

∫ T

0
‖v(s)‖2ds

]
− δ.

Proof To consolidate notation, for v ∈ A let Wv .= W + ∫ ·
0 v(s)ds. For the given

ε ∈ (0, 1) and η ∈ (0, 1), choose ṽε ∈ A such that

inf
v∈A

E

[
G

(√
εWv/

√
ε
)

+ 1

2

∫ T

0
‖v‖2 ds

]

≥ E

[
G

(√
εWṽε/

√
ε
)

+ 1

2

∫ T

0
‖ṽε‖2 ds

]
− η.

From the boundedness of G it follows that

∞ > CG
.= 2(2 ‖G‖∞ + 1) ≥ sup

ε∈(0,1)
E

[∫ T

0
‖ṽε(s)‖2 ds

]
.

We next show using an approximation argument that one can in fact assume an
almost sure bound. For M ∈ (0,∞) let

τ ε
M

.= inf

[
t ∈ [0, T ] :

∫ t

0
‖ṽε(s)‖2 ds ≥ M

]
∧ T .

Note that vε defined by vε(s)
.= ṽε(s)1[0,τ ε

M ](s), s ∈ [0, T ] is an element of A , and
that vε ∈ SM a.s. Note also that

E

[
G

(√
εWṽε/

√
ε
)

+ 1

2

∫ T

0
‖ṽε(s)‖2 ds

]

≥ E

[
G

(√
εWvε/

√
ε
)

+ 1

2

∫ T

0
‖vε(s)‖2 ds

]
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+ E
[
G

(√
εWṽε/

√
ε
)

− G
(√

εWvε/
√

ε
)]

.

By Chebyshev’s inequality,

E
[∣∣∣G (√

εWṽε/
√

ε
)

− G
(√

εWvε/
√

ε
)∣∣∣] ≤ 2 ‖G‖∞ P{τ ε

M < T } ≤ 2 ‖G‖∞
CG

M
.

For δ > 0, let M = (2 ‖G‖∞ CG + 1)/δ. Then for all ε ∈ (0, 1),

E

[
G

(√
εWṽε/

√
ε
)

+ 1

2

∫ T

0
‖ṽε(s)‖2 ds

]

≥ E

[
G

(√
εWvε/

√
ε
)

+ 1

2

∫ T

0
‖vε(s)‖2 ds

]
− δ.

Since η > 0 is arbitrary, the conclusion of the theorem follows from the last display
and Theorem 3.14. �

3.2.1 Large Deviation Theory of Small Noise Diffusions

The representation (3.13) and its variant (3.14) are very convenient for weak con-
vergence large deviation analysis, and in many ways they make the continuous time
setting simpler than the corresponding discrete time setting. As an illustration of
their use we prove the large deviation principle for a class of small noise diffusions.
While fairly general, the assumptions on the coefficients are chosen to make the
presentation simple, and they can be significantly relaxed.

Condition 3.18 There is C ∈ (0,∞) such that b : Rd → R
d and σ : Rd → R

d×k

satisfy

‖b(x) − b(y)‖ + ‖σ(x) − σ(y)‖ ≤ C ‖x − y‖ , ‖b(x)‖ + ‖σ(x)‖ ≤ C(1 + ‖x‖)

for all x, y ∈ R
d .

Fix x ∈ R
d , and for ε > 0 let X ε = {X ε(t)}0≤t≤T be the strong solution of the

stochastic differential equation (SDE) (cf. [172, Sect. 5.2])

dX ε(t) = b(X ε(t))dt + √
εσ (X ε(t))dW (t), X ε(0) = x . (3.15)

LetA C x ([0, T ] : Rd) denote the space ofRd -valued absolutely continuous func-
tions ϕ on [0, T ] with ϕ(0) = x . Also, for ϕ ∈ A C x ([0, T ] : Rd), let
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Uϕ =
{
u ∈ L 2([0, T ] : Rk) : ϕ(·) = x +

∫ ·

0
b(ϕ(s))ds +

∫ ·

0
σ(ϕ(s))u(s)ds

}
.

(3.16)
For all other ϕ ∈ C ([0, T ] : Rd) let Uϕ be the empty set. The following large devi-
ation principle for such small noise diffusions is one of the classical results in the
theory [140]. Following our standard convention, the infimum over the empty set is
taken to be ∞.

Theorem 3.19 Assume Condition 3.18. Then the collection {X ε}ε∈(0,1) satisfies the
LDP on C ([0, T ] : Rd) with rate function

I (ϕ)
.= inf

u∈Uϕ

[
1

2

∫ T

0
‖u(t)‖2dt

]
.

To prove the theorem, we must show that I is a rate function and for bounded and
continuous F : C ([0, T ] : Rd) → R,

lim
ε→0

−ε log E exp

{
−1

ε
F(X ε)

}
= inf

ϕ∈C ([0,T ]:Rd )
[F(ϕ) + I (ϕ)] .

Following a convention that is used here for the first time, we present the proof just
for the case T = 1, noting that the general case involves only notational differences.
The first step is to interpret F(X ε) as a bounded measurable function of W . From
unique pathwise solvability of the SDE in (3.15) [172, Definition 5.3.2 and Corollary
5.3.23] it follows that for each ε > 0, there is a measurable map G ε : C ([0, 1] :
R

k) → C ([0, 1] : Rd) such that whenever W̃ is a k-dimensional standard Brownian
motion given on some probability space (�̃, F̃ , P̃), then X̃ ε = G ε(

√
εW̃ ) is the

unique solution of the SDE (3.15) with W replaced by W̃ . Recalling the notation
Wv .= W + ∫ ·

0 v(s)ds, this says that

−ε log E exp

{
−1

ε
F(X ε)

}
= − ε log E exp

{
−1

ε
F ◦ G ε(

√
εW )

}

= inf
v∈A

E

[
F ◦ G ε(

√
εWv/

√
ε) + 1

2

∫ 1

0
‖v(s)‖2 ds

]
.

Assume that v ∈ Ab,M for some M < ∞, and consider the probability measure Qε

on (�,F ) defined by

dQε

dP
= exp

[
− 1√

ε

∫ 1

0
v(s)dW (s) − 1

2ε

∫ 1

0
‖v(s)‖2 ds

]
.

From Girsanov’s theorem (see Theorem D.1) it follows that Qε{√εWv/
√

ε ∈ ·} =
P{√εW ∈ ·}. Consequently X̄ ε = G ε(

√
εWv/

√
ε) solves the SDE

d X̄ ε(t) = b(X̄ ε(t))dt + √
εσ (X̄ ε(t))dWv/

√
ε(t), X̄ ε(0) = x
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on the filtered probability space (�,F , Qε, {Ft }). Since Qε is mutually absolutely
continuouswith respect to P , it follows that X̄ ε is the unique solution of the following
SDE on (�,F , P, {Ft }):

d X̄ ε(t) = b(X̄ ε(t))dt + √
εσ (X̄ ε(t))dW (t) + σ(X̄ ε(t))v(t)dt, X̄ ε(0) = x .

(3.17)
Thuswhenever v ∈ Ab,M , we have thatG ε(

√
εWv/

√
ε) and the solution to (3.17) coin-

cide. A collection of controls {vε} ⊂ Ab,M for fixed M < ∞ will be regarded as a
collection of SM -valued randomvariables,where SM is equippedwith theweak topol-
ogy on the Hilbert space L 2([0, 1] : Rd). Recall that in a Hilbert space (H , 〈·, ·〉),
fn → f under the weak topology if for all g ∈ H , 〈 fn − f, g〉 → 0. Since SM is
weakly compact inL 2([0, 1] : Rd), such a collection is automatically tight.

We now turn to the proof of the LDP, which will follow the same scheme of proof
as in Sanov’s theorem. Thus we first prove a tightness result and show how to relate
the weak limits of controls and controlled processes. The proof of the variational
lower bound (which corresponds to the Laplace upper bound) as well as the proof
that I is a rate function follows, and we conclude with the proof of the variational
upper bound (Laplace lower bound).

3.2.2 Tightness and Weak Convergence

As noted above, a collection of controls {vε} ⊂ Ab,M is trivially tight, since SM is
compact. The following lemma shows that the corresponding collection of solutions
of controlled SDEs is also tight.

Lemma 3.20 Assume Condition 3.18. Consider any collection of controls {vε} ⊂
Ab,M for fixed M < ∞, and define X̄ ε by (3.17) with v = vε. Then {(X̄ ε, vε)}ε∈(0,1)

is a tight collection of C ([0, 1] : Rd) × SM-valued random variables.

Proof Tightness of {vε} is immediate. Since for ε ∈ (0, 1),
∫ 1
0 ‖vε(s)‖2ds ≤ M a.s.,

it follows on using the linear growth properties of the coefficients and an application
of Gronwall’s lemma [Lemma E.2] that

sup
ε∈(0,1)

E sup
0≤t≤1

‖X̄ ε(t)‖2 < ∞. (3.18)

Also note that

X̄ ε(t) − x =
∫ t

0
b(X̄ ε(s))ds + √

ε

∫ t

0
σ(X̄ ε(s))dW (s) +

∫ t

0
σ(X̄ ε(s))vε(s)ds.

(3.19)
The first and second terms on the right side are easily seen to be tight inC ([0, 1] : Rd)

using themoment bound (3.18). Tightness of the third follows on using the inequality
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∥∥∥∥
∫ t

s
σ(X̄ ε(r))vε(r)dr

∥∥∥∥ ≤ C(t − s)1/2
(
1 + sup

0≤t≤1
‖X̄ ε(t)‖

) (∫ 1

0
‖vε(r)‖2 dr

)1/2

≤ C(t − s)1/2M1/2

(
1 + sup

0≤t≤1
‖X̄ ε(t)‖

)

for 0 ≤ s ≤ t ≤ 1 and once more using the moment bound. �

The following lemma will be used to characterize the limit points of {(X̄ ε, vε)}.
Lemma 3.21 Assume Condition 3.18. Suppose for each ε ∈ (0, 1) that (X̄ ε, vε)

solves (3.19), and that (X̄ ε, vε) converges weakly to (X̄ , v) as ε → 0. Then w.p.1,

X̄(t) − x =
∫ t

0
b(X̄(s))ds +

∫ t

0
σ(X̄(s))v(s)ds. (3.20)

Proof By a standard martingale bound (see (D.3) and Sect.D.2.1),

E sup
0≤t≤T

∥∥∥∥
∫ t

0
σ(X̄ ε(r))dW (r)

∥∥∥∥
2

≤ C
∫ T

0
E

(
1 + ‖X̄ ε(r)‖2) dr,

and thus using the moment bound in (3.18), the stochastic integral term in (3.19)
converges to 0 as ε → 0. By the continuousmapping theorem, it suffices to check that
for each t ∈ [0, 1], the maps φ 	→ ∫ t

0 b(φ(s))ds and (φ, u) 	→ ∫ t
0 σ(φ(s))u(s)ds,

from C ([0, 1] : Rd) toRd and from C ([0, 1] : Rd) × SM toRd , are continuous. The
continuity of the first map is immediate from the Lipschitz property of b. Consider
now the second map. Suppose φn → φ in C ([0, 1] : Rd) and un → u in SM as
n → ∞. We can write

∫ t

0
σ(φn(s))un(s)ds −

∫ t

0
σ(φ(s))u(s)ds

=
∫ t

0
[σ(φn(s)) − σ(φ(s))] un(s)ds +

∫ t

0
σ(φ(s)) [un(s) − u(s)] ds.

The first term tends to zero by Hölder’s inequality and since un ∈ SM , and the second
converges to zero since s 	→ σ(φ(s))1[0,t](s) is in L 2([0, 1] : Rd) and un → u in
SM . �

3.2.3 Laplace Upper Bound

We now prove the Laplace upper bound by establishing the lower bound

lim inf
ε→0

−ε log E exp

{
−1

ε
F(X ε)

}
≥ inf

ϕ∈C ([0,1]:Rd )
[F(ϕ) + I (ϕ)]. (3.21)
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We prove (3.21) using the variational representation. It suffices to show that for every
sequence εk → 0 there is a further subsequence for which (3.21) holds when the limit
inferior on the left side is taken along the particular subsequence. Let δ > 0, and with
G = F ◦ G ε choose M according to Theorem 3.17 (note that M does not depend
on ε), and choose a sequence {vε} ⊂ Ab,M that is within δ of the infimum in (3.14).
We now fix a sequence {εk}. From Lemma 3.20 we can find a subsequence along
which (X̄ εk , vεk ) converges in distribution. For notational convenience, we index this
subsequence once more by ε. Denoting the weak limit of (X̄ ε, vε) by (X̄ , v), we have
from Lemma 3.21 that X̄ is the unique solution of (3.20). Therefore

lim inf
ε→0

−ε log E exp

{
−1

ε
F(X ε)

}
+ 2δ

≥ lim inf
ε→0

E

[
F(X̄ ε) + 1

2

∫ 1

0
‖vε(s)‖2 ds

]

≥ E

[
F(X̄) + 1

2

∫ 1

0
‖v(s)‖2 ds

]

≥ inf
ϕ∈C ([0,1]:Rd )

[F(ϕ) + I (ϕ)] .

Here the second inequality is a consequence of Fatou’s lemma and the lower semi-
continuity of the map φ 	→ ∫ 1

0 ‖φ(s)‖2 ds fromL 2([0, 1] : Rd) to R with the weak
topology onL 2([0, 1] : Rd). Recalling the definition ofUϕ in (3.16), the last inequal-
ity follows from the a.s. inequality

F(X̄) + 1

2

∫ 1

0
‖v(s)‖2 ds ≥ F(X̄) + inf

u∈UX̄

[
1

2

∫ 1

0
‖u(s)‖2 ds

]

≥ inf
ϕ∈C ([0,1]:Rd )

[F(ϕ) + I (ϕ)] .

Since δ > 0 is arbitrary, (3.21) follows. �

3.2.4 Compactness of Level Sets

We now argue that I introduced in Theorem3.19 is a rate function, which requires
that we show that it has compact level sets. As we will see, it is essentially just a
deterministic version of the argument used for the Laplace upper bound (variational
lower bound). This is in fact generic in the weak convergence approach to large
deviations and not at all surprising, in that the main difference between these two
arguments is that the variational lower bound has the additional complication of a
law of large numbers limit as the large deviation parameter tends to its limit, an item
missing in the corresponding and purely deterministic analysis of the rate function.
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LetM ∈ (0,∞) and let {ϕn} ⊂ C ([0, 1] : Rd) be a sequence such that I (ϕn) ≤ M
for all n ∈ N. Choose un ∈ Uϕn such that 1

2

∫ 1
0 ‖un(s)‖2 ds ≤ M + 1/n. Then the

sequence {un} is contained in the (weakly) compact set S2(M+1). Let u be a limit
point of un along some subsequence. Then 1

2

∫ 1
0 ‖u(s)‖2 ds ≤ M . Also, a simpler

version of an argument in the proof of Lemma 3.21 shows that along the same
subsequence, ϕn(·) converges to ϕ(·), where ϕ is the unique solution of ϕ(t) =
x + ∫ t

0 (b(ϕ(s)) + σ(ϕ(s))u(s)) ds. In particular, u ∈ Uϕ and thus I (ϕ) ≤ M . This
proves the compactness of level sets of I . �

3.2.5 Laplace Lower Bound

To prove the Laplace lower bound we use the variational representation to show that

lim sup
ε→0

−ε log E exp

{
−1

ε
F(X ε)

}
≤ inf

ϕ∈C ([0,1]:Rd )
[F(ϕ) + I (ϕ)].

For δ > 0 choose ϕ∗ ∈ C ([0, 1] : Rd) such that

F(ϕ∗) + I (ϕ∗) ≤ inf
ϕ∈C ([0,1]:Rd )

[F(ϕ) + I (ϕ)] + δ.

Let u ∈ Uϕ∗ be such that 1
2

∫ 1
0 ‖u(s)‖2ds ≤ I (ϕ∗) + δ, so that in particular, u ∈

Ab,2(I (ϕ∗)+δ). Let X̄ ε be the unique solution of (3.17) when we replace v on the
right side of the equation by u. By Lemmas 3.20 and 3.21 on tightness and weak
convergence, X̄ ε converges in probability to ϕ∗. Thus

lim sup
ε→0

− ε log Ee− 1
ε
F(X ε)

= lim sup
ε→0

inf
v∈A

E

[
F ◦ G ε(

√
εWv/

√
ε) + 1

2

∫ 1

0
‖v(s)‖2ds

]

≤ lim sup
ε→0

E

[
F

(
X̄ ε

) + 1

2

∫ 1

0
‖u(s)‖2ds

]

= F
(
ϕ∗) + 1

2

∫ 1

0
‖u(s)‖2ds

≤ F
(
ϕ∗) + I

(
ϕ∗) + δ

≤ inf
ϕ∈C ([0,1]:Rd )

[F (ϕ) + I (ϕ)] + 2δ.

Since δ > 0 is arbitrary, the upper bound follows. �

Remark 3.22 One can consider the form

I (ϕ)
.= inf

u∈Uϕ

[
1

2

∫ T

0
‖u(t)‖2dt

]
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of the rate function, where Uϕ are those u satisfying ϕ(t) = x + ∫ t
0 b(ϕ(s))ds +∫ t

0 σ(ϕ(s))u(s)ds, as a “control” formulation. If σ(x) is d × d and invertible for all
x ∈ R

d , then one can solve for u and obtain the calculus of variations form

I (ϕ)
.=

∫ T

0

1

2

〈
(ϕ̇(t) − b(ϕ(t))), [σσ T (ϕ(t))]−1(ϕ̇(t) − b(ϕ(t)))

〉
dt,

where σ T is the transpose of σ .

3.3 Representation for Functionals of a Poisson Process

Our final example in this chapter is the representation for positive functionals of a
Poisson process. This example will be substantially generalized in Chap.8, where
we prove the representation for a Poisson random measure (PRM) on an arbitrary
locally compact Polish space. The representation for a PRM allows the treatment of a
much broader class of process models, and in particular when used as a driving noise,
a PRM can easily accommodate both state-dependent jump rates and jumps sizes,
while a Poisson process (which is essentially a PRM with only one “type” of point)
is limited to state dependence of jump sizes. However, the purpose of this chapter is
to illustrate the use of representations, and we prefer to postpone the notation and
terminology required for the general case of a PRM.

Fix T ∈ (0,∞) and let (�,F , P) be a probability spacewith filtration {Ft }0≤t≤T

satisfying the usual conditions. Recall that D([0, T ] : R) is the space of func-
tions from [0, T ] to R that are right continuous and with limits from the left at
each t ∈ (0, T ]. As noted in Chap.2, there is a metric that is consistent with the
usual Skorohod topology that makes this a Polish space [24, Chap.3, Sect. 12].
An Ft -Poisson process is a measurable mapping N from � into D([0, T ] : R)

such that N (t) is Ft -measurable for every t ∈ [0, T ], and for all 0 ≤ t < s ≤ T ,
N (s) − N (t) is independent of Ft and has a Poisson distribution with parame-
ter s − t : P(N (s) − N (t) = j) = (s − t) j e−(s−t)/j !. We say that such a standard
Poisson process has jump intensity or jump rate 1, since the probability that
N (s) − N (t) = 1 is approximately s − t when this difference is small [and the prob-
ability of more than one jump is o(s − t)].

In contrast to the case of Brownianmotion, in which the natural controlled version
shifts the mean, here the controlled version will shift the jump rate and pay the
appropriate cost suggested by Girsanov’s theorem for Poisson processes (see, for
example, Theorem 8.15). There are various ways to construct Poisson processes
with general jump rates on a common probability space. The most convenient one
requires the use of a PRM on the space [0, T ] × [0,∞) and with intensity measure
equal to Lebesgue measure on this space (see Chap.8 for definitions and associated
terminology). In this framework the Poisson process on [0, T ] is considered a PRM
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on [0, T ], and to accommodate general controls we suitably enlarge the space. We
do not give the details here, but instead just state the outcome of this construction.

One can construct a probability space
(
�̄, F̄ , P̄

)
, and on this space a filtration

{F̄t }0≤t≤T satisfying the usual conditions, such that the following properties hold.
Let θ ∈ (0,∞) (later θ will play the role of a large deviation parameter). Denote by
A the collection of predictable processes ϕ : [0, T ] × �̄ → [0,∞) (see Definition
8.2 for the definition of predictability in a general setting) such that

∫ T
0 ϕ(s)ds < ∞

a.s. Predictable processes are in a suitable way not allowed to anticipate the jumps of
a Poisson process with respect to the same filtration, and hence are the appropriate
analogue of the class of controls used for representations in discrete time. Associated
with each ϕ ∈ A one can construct a “controlled” Poisson process N θϕ with jump
intensity θϕ and jump size 1. To be precise, N θϕ is an F̄t -adapted stochastic process
with trajectories inD([0, T ] : R) such that for every bounded function f : [0,∞) →
[0,∞),

f (N θϕ(t)) − f (0) − θ

∫ t

0
ϕ(s)

[
f (N θϕ(s) + 1) − f (N θϕ(s))

]
ds

is an F̄t -martingale, and N θϕ(0) = 0. Note that N θ is an ordinary Poisson process
with constant jump intensity θ and jump size 1.

In terms of these controls and controlled processes, we have the following rep-
resentation. Recall the function � introduced in (3.10): for r ∈ [0,∞), we have
�(r)

.= r log r − r + 1, with the convention that 0 log 0 = 0. We consider all pro-
cesses N θϕ to be random variables with values in D([0, T ] : R). We also introduce

SM
.=

{
φ ∈ L 0([0, T ] : R+) :

∫ T

0
�(φ(s))ds ≤ M

}
,

whereL 0([0, T ] : R+) denotes the space of Borel-measurable functions from [0, T ]
to [0,∞), and given M ∈ (0,∞) define Ab,M to be the subset of A such that
ϕ ∈ Ab,M implies ϕ(ω) ∈ SM for all ω ∈ �̄ and for some K ∈ (0,∞) (possibly
depending on ϕ), K−1 ≤ ϕ ≤ K , a.s. Also, let Ab = ∪∞

M=1Ab,M . The spaces SM ,
Ab,M , Ab in this section play an analogous role for Poisson processes to that of the
corresponding spaces introduced in Sect. 3.2 for the Brownian motion case.

Theorem 3.23 Let G be a bounded Borel measurable function mappingD([0, T ] :
R) into R and let θ ∈ (0,∞). Then

− log E exp{−G(N θ )} = inf
ϕ∈A

E

[
G

(
N θϕ

) + θ

∫ T

0
�(ϕ(s))ds

]
.

If δ > 0, then there exists M < ∞ depending on ‖G‖∞ and δ such that for all
θ ∈ (0,∞),
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− 1

θ
log E exp

{−θG(N θ )
} ≥ inf

ϕ∈A b,M

E

[
G

(
N θϕ

) +
∫ T

0
�(ϕ(s))ds

]
− δ. (3.22)

The proof of Theorem 3.23 follows as a special case of more general results
[Theorems 8.12 and 8.13] that will be proved in Chap.8. In particular, the general
result will show that A can be replaced by Ab in the first representation. We now
show how this representation can be used to obtain a large deviation principle for
SDEs driven by a Poisson process. We begin with a condition on the coefficients that
can be relaxed substantially (see, for example, Chap. 10).

Condition 3.24 There is C ∈ (0,∞) such that b : R → R and σ : R → R satisfy

|b(x) − b(y)| + |σ(x) − σ(y)| ≤ C |x − y| and |b(x)| + |σ(x)| ≤ C

for all x, y ∈ R.

Fix x ∈ R, and for n ∈ N let Xn = {Xn(t)}0≤t≤T be the pathwise solution of the
SDE

dXn(t) = b(Xn(t))dt + 1

n
σ(Xn(t−))dNn(t), Xn(0) = x, (3.23)

where Xn(t−)denotes the limit from the left.One can explicitly construct the solution
in terms of the jump times {tni }i∈N of Nn(·). With probability 1, these jump times
satisfy 0 < tn1 < tn2 < · · · and tni → ∞. Letting tn0 = 0 and Xn(tn0 ) = x , we then
recursively define Xn(t) as follows. Assuming that Xn(tni ) is given, let

Ẋ n(t) = b(Xn(t)) for t ∈ (tni , tni+1)

and then set Xn(tni+1)
.= Xn(tni+1−) + σ(Xn(tni+1−))/n. With Xn(tni+1) now given,

we repeat the procedure, and since tni → ∞, the constructionon [0, T ] iswell defined.
For ψ ∈ A C x ([0, T ] : R), let

Uψ =
{
γ ∈ L 1([0, T ] : R+) : ψ(·) = x +

∫ ·

0
b(ψ(s))ds +

∫ ·

0
σ(ψ(s))γ (s)ds

}
,

(3.24)
where L 1([0, T ] : R+) is the space of R+-valued integrable functions on [0, T ].
Theorem 3.25 Assume Condition 3.24. Then the collection {Xn}n∈N satisfies the
LDP on D([0, T ] : R) with rate function

I (ψ)
.= inf

γ∈Uψ

[∫ T

0
�(γ (t))dt

]
.

The proof of this theorem is a close parallel to that of Brownian motion, and
because of this we do not separate the proof into a series of statements (lemmas,
propositions, etc.) and their proofs. We must show that I is a rate function and that
for every bounded and continuous F : D([0, T ] : R) → R,



72 3 Examples of Representations and Their Application

lim
n→∞ −1

n
log E exp

{−nF(Xn)
} = inf

ψ∈D ([0,T ]:R)
[F(ψ) + I (ψ)] .

Following our convention, we consider just the case T = 1. We have already explic-
itly identified the measurable map G n : D([0, 1] : R) → D([0, 1] : R) such that
whenever Ñ n is a Poisson process with rate n on some probability space (�̃, F̃ , P̃),
then X̃ n = G n(Ñ n) is the unique solution of the SDE (3.23) with Nn replaced by
Ñ n . Hence by Theorem 3.23 with θ = n,

−1

n
log E exp

{−nF(Xn)
} = − 1

n
log E exp

{−nF ◦ G n(Nn)
}

= inf
ϕ∈A

E

[
F ◦ G n(Nnϕ) +

∫ 1

0
�(ϕ(t))dt

]
.

Analogous to the case of Brownian motion, if ϕ ∈ Ab,M for some M < ∞, then
X̄ n = G n(Nnϕ) is the solution of the SDE

d X̄n(t) = b(X̄ n(t))dt + σ(X̄ n(t−))dNnϕ(t), X̄ n(0) = x . (3.25)

Here, the important property that follows from ϕ ∈ Ab,M is that it guarantees (as
easily follows from Girsanov’s formula) that the jump times of Nnϕ tend to∞w.p.1,
and so the recursive construction of X̄ n is well defined on [0, 1].

A distinction with respect to the case of Brownian motion is that it is no longer
appropriate to consider SM as a subset of a Hilbert space. Instead, wewill identify SM
with a compact space of measures. In particular, associated with each element γ of
SM is a measure νγ on ([0, 1],B([0, 1])) defined by νγ (ds)

.= γ (s)m(ds), wherem
denotes Lebesgue measure. As discussed in Lemma A.11, when considered with the
natural generalization of the weak topology from probability measures to measures
with finite total measure, SM is a compact Polish space.

Next suppose that Condition 3.24 holds. Consider any collection of controls
{ϕn} ⊂ Ab,M for fixed M < ∞, and define X̄ n by (3.25) with ϕ = ϕn . We claim
that {(X̄ n, ϕn)}n∈N is a tight collection of D([0, 1] : R) × SM -valued random vari-
ables. Tightness of {ϕn} follows from the compactness of SM . For the tightness of
{X̄ n}, we consider the Doob decomposition

X̄ n(t) − x =
∫ t

0
b(X̄ n(s))ds + 1

n

∫ t

0
σ(X̄ n(s−))dNnϕn

(s)

=
∫ t

0
b(X̄ n(s))ds +

∫ t

0
σ(X̄ n(s))ϕn(s)ds

+
∫ t

0
σ(X̄ n(s−))[dNnϕn

(s)/n − ϕn(s)]ds. (3.26)

Since the restriction of the Skorohod metric to C ([0, 1] : R) is equivalent to the
standard uniform metric, it suffices, for the first two terms, to show tightness in
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C ([0, 1] : R). Tightness of the first follows from ‖b‖∞ ≤ C . For the second term we
use the bound ab ≤ eca + �(b)/c, valid for a ≥ 0, b ≥ 0 and c ≥ 1 [see (2.9)]. For
all 0 ≤ s ≤ t ≤ 1,

∫ t

s
σ(X̄ n(r))ϕn(r)dr ≤

∫ t

s
[ec‖σ‖∞ + �(ϕn(r))/c]dr ≤ (t − s)ec‖σ‖∞ + 1

c
M.

This shows equicontinuity of the second term in (3.26) that is uniform inω, and tight-
ness of that term follows. Let Qn(t) denote the third term. This term is a martingale
with quadratic variation (see Sects.D.1 and D.2.2) [Qn]t bounded above by

1

n2
‖σ‖2∞ ENnϕn

(1) = 1

n
‖σ‖2∞ E

∫ 1

0
ϕn(s)ds ≤ 1

n
‖σ‖2∞ (e + M) ,

where b ≤ e + �(b) is used for the last inequality. By the Burkholder–Gundy–Davis
inequality (see (D.3) in Sect.D.1), E supt∈[0,1] |Qn(t)| ≤ C1E[Qn]1/21 → 0 for some
C1 ∈ (0,∞). Thus by Chebyshev’s inequality, Qn converges weakly to zero uni-
formly in t , which both shows tightness and identifies the limit. Since all three terms
on the right-hand side of (3.26) are tight (and limit points are continuous a.s.), so is
{X̄ n}.

To identify weak limits along any convergent subsequence, we need to know that
if γn → γ in SM and ψn → ψ uniformly, then

∫ t

0
σ(ψn(s))γn(s)ds →

∫ t

0
σ(ψ(s))γ (s)ds. (3.27)

Again using b ≤ e + �(b), we have

∣∣∣∣
∫ t

0
[σ(ψn(s)) − σ(ψ(s))]γn(s)ds

∣∣∣∣ ≤ sup
s∈[0,1]

|σ(ψn(s)) − σ(ψ(s))|
∫ t

0
γn(s)ds

≤ sup
s∈[0,1]

|σ(ψn(s)) − σ(ψ(s))| (e + M)

→ 0

as n → ∞. To show that

∫ t

0
σ(ψ(s))[γn(s) − γ (s)]ds → 0,

we use that νγn (ds)
.= γn(s)m(ds) converges in the weak topology to νγ (ds). Since

s 	→ 1[0,t](s)σ (ψ(s)) is bounded and discontinuous only at s = t and νγ ({t}) = 0,
the last display is valid, and this completes the proof of (3.27).

Consider any subsequence of {(X̄ n, ϕn)}n∈N that converges in distribution with
limit (X̄ , ϕ). Sending n → ∞ in (3.26) and using (3.27) establishes thew.p.1 relation
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X̄(t) − x =
∫ t

0
b(X̄(s))ds +

∫ t

0
σ(X̄(s))ϕ(s)ds. (3.28)

The rest of the proof is now essentially identical to that for Brownian motion. For
the Laplace upper bound, we need to show that

lim inf
n→∞ −1

n
log E exp

{−nF(Xn)
} ≥ inf

ψ∈D ([0,1]:R)
[F(ψ) + I (ψ)] .

Let δ > 0, chooseM according toTheorem3.23, and choose a sequence {ϕn} ⊂ Ab,M

that iswithin δ of the infimum in the representation (3.22) (withG replaced by F ◦ G n

and θ replaced by n). Fix any subsequence of n and choose a further subsequence
(again denoted by n) along which (X̄ n, ϕn) converges in distribution to (X̄ , ϕ). Then

lim inf
n→∞ −1

n
log E exp

{−nF(Xn)
} + 2δ

≥ lim inf
n→∞ E

[
F(X̄ n) +

∫ 1

0
�(ϕn(s))ds

]

≥ E

[
F(X̄) +

∫ 1

0
�(ϕ(s))ds

]

≥ inf
ψ∈D ([0,1]:R)

[F(ψ) + I (ψ)] ,

where the second inequality uses Fatou’s lemma and the lower semicontinuity of the
map ϕ 	→ ∫ 1

0 �(ϕ(s))ds from SM to [0,∞). Recalling the definition ofUψ in (3.24),
the last inequality is a consequence of the a.s. inequality

F(X̄) +
∫ 1

0
�(ϕ(s))ds ≥ F(X̄) + inf

ϕ∈UX̄

[∫ 1

0
�(ϕ(s))ds

]

≥ inf
ψ∈D ([0,1]:R)

[F(ψ) + I (ψ)] .

Since δ > 0 is arbitrary, the Laplace upper bound follows.
As in Sect. 3.2.4, a deterministic version of the argument used for the Laplace

upper bound gives the compactness of level sets for the rate function, and so this
argument is omitted. To complete the proof, all that remains is the Laplace lower
bound, which requires that for bounded and continuous F ,

lim sup
n→∞

−1

n
log E exp

{−nF(Xn)
} ≤ inf

ψ∈D ([0,1]:R)
[F(ψ) + I (ψ)] .

For δ > 0 choose ψ∗ ∈ D([0, 1] : R) such that

F(ψ∗) + I (ψ∗) ≤ inf
ψ∈D ([0,1]:R)

[F(ψ) + I (ψ)] + δ.
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Let ϕ ∈ Uψ∗ be such that
∫ 1
0 �(ϕ(s))ds ≤ I (ψ∗) + δ. We now approximate ϕ with

an element in Ab,M , where M = I (ψ∗) + δ. For q ∈ N let

ϕq(t) =
(

ϕ(t) ∨ 1

q

)
∧ q.

Then ϕq ∈ Ab,M and
∫ 1
0 �(ϕq(s))ds ↑ ∫ 1

0 �(ϕ(s))ds as q → ∞. Let ψ∗
q be the solu-

tion of (3.28) with ϕ replaced by ϕq . It is easily seen that ψ∗
q → ψ∗ in C ([0, 1] : R)

as q → ∞. Let X̄ n be the unique solution of (3.25) with ϕ replaced by ϕq . The
tightness of (X̄ n, ϕq) and identification of limits is exactly as in the proof of the
Laplace upper bound, since ϕq ∈ Ab,M . Using the uniqueness of solutions to the
limit ordinary differential equation (ODE), X̄ n converges in probability to ψ∗

q . Thus

lim sup
n→∞

−1

n
log Ee−nF(Xn) ≤ lim sup

n→∞
E

[
F

(
X̄ n

) +
∫ 1

0
�(ϕq(s))ds

]

= F
(
ψ∗

q

) +
∫ 1

0
�(ϕq(s))ds.

Sending q → ∞, we now have

lim sup
n→∞

−1

n
log Ee−nF(Xn) ≤ F

(
ψ∗) +

∫ 1

0
�(ϕ(s))ds

≤ F
(
ψ∗) + I

(
ψ∗) + δ

≤ inf
ψ∈D ([0,1]:R)

[F (ψ) + I (ψ)] + 2δ.

Since δ > 0 is arbitrary, the upper bound follows, thus completing the proof of
Theorem 3.25. �

3.4 Notes

Our treatment of Sanov’s theorem [228] follows very closely the one in [97], though
as noted in the introduction we use the representation based on the chain rule rather
than that based on dynamic programming. The proof of Cramér’s theorem [68] differs
from that of [97] and follows a line of argument that will be used elsewhere, which is
that to analyze discrete time “small noise” problems, we first establish an empirical-
measure-type large deviation result for the driving noises, and then (in combination
with integrability properties of the noise) obtain the large deviation properties of a
process driven by these noises through a continuous-mapping-type argument.

The proof of large deviation estimates for small noise diffusions is taken from [32],
and it suggests why the more highly structured setting of continuous time Markov
processes is, given the appropriate representations, easier than for discrete time. The
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solution mapping to the SDE (3.15) is not continuous, since if it were, we would
just use the contraction principle and the large deviation theory for scaled Brownian
motion (Schilder’s theorem [229]). However, it is in some sense almost continuous
on the support of the measure induced by

√
εW , in that the mapping u 	→ ϕ when

ϕ(t) = x + ∫ t
0 (b(ϕ(s)) + σ(ϕ(s))u(s)) ds is continuous on SM for all M < ∞, a

fact that was key in proving the convergence of the variational representation. An
analogous continuity applies only to particular models in the setting of discrete time.
In particular, the reader will note that the arguments of Chap. 4 are considerablymore
involved than those for SDEs in continuous time.

The idea of viewing a diffusion as a nearly continuous mapping on Brownian
motion (in the small noise limit) originates with Azencott [7]. The first proofs of an
LDP for diffusions appear in the papers of Wentzell [245–248], where they appear
as just a special case of a more general treatment. Fleming [133] considers certain
problems of large deviations involving diffusion process and computes the desired
limits using ideas from stochastic control. His approach is closely related to the
approach of this book and in many ways inspired it.

In the final example of an SDE driven by a Poisson process we have attempted to
emphasize the similaritywith the case ofBrownianmotion, and indeed, the arguments
are very close, with the main differences due to the weaker control one obtains from
bounded costs and the need to place the controls in a space more complicated than
L 2([0, T ] : Rk) with the weak topology. This example is a simplified form of the
problem considered in [45].


	3 Examples of Representations and Their Application
	3.1 Representation for an IID Sequence
	3.1.1 Sanov's and Cramér's Theorems
	3.1.2 Tightness and Weak Convergence
	3.1.3 Laplace Upper Bound
	3.1.4 Laplace Lower Bound
	3.1.5 Proof of Lemma 3.5 and Remarks on the Proof  of Sanov's Theorem
	3.1.6 Cramér's Theorem

	3.2 Representation for Functionals of Brownian Motion
	3.2.1 Large Deviation Theory of Small Noise Diffusions
	3.2.2 Tightness and Weak Convergence
	3.2.3 Laplace Upper Bound
	3.2.4 Compactness of Level Sets
	3.2.5 Laplace Lower Bound

	3.3 Representation for Functionals of a Poisson Process
	3.4 Notes




