
Chapter 16
Multilevel Splitting

An alternative to importance sampling in estimating rare events and related func-
tionals is multilevel splitting. In the context of estimating probabilities of a set C
in path space, the multilevel splitting philosophy is to simulate particles that evolve
according to the law of {Xi }, and at certain times split those particles considered
more likely to lead to a trajectory that belongs to the set C . For example, C might
be the trajectories that reach some unlikely set B before hitting a likely set A, after
starting in neither A nor B. In this case, the splitting will favor migration toward
B. Splitting can also be used to enhance the sampling of regions that are important
for a given integral. In all cases, particles which are split are given an appropriate
weighting to ensure that the algorithm remains unbiased.

Broadly speaking, there are two types of multilevel splitting algorithms, those
with killing and those without, where stopping is distinguished from killing. In the
example just mentioned, particles are stopped upon entry into either A or B. Killing
involves abandoning a particle prior to entry into either A or B, presumably because
continuation of the trajectory is not worth the computational effort. Care must be
taken that any killing will not introduce bias.

To the authors’ knowledge, there is only one type of multilevel splitting algo-
rithm without killing—the splitting algorithm (see [148] for further references). The
standard implementation of this algorithm requires a sequence of sets CJ ⊃ CJ−1 ⊃
· · · ⊃ C0, splitting thresholds called splitting thresholds, and a sequence of posi-
tive integers RJ−1, . . . , R0, splitting rates called splitting rates. A single particle
is started at the initial position x0 ∈ CJ\CJ−1 and evolves according to the law of
{Xi }. When a particle enters a set C j for the first time, it produces R j − 1 offspring.
After splitting has occurred, all particles evolve independently of each other. Each
particle is stopped according to whatever stopping rule is associated with {Xi }, and
the algorithm terminates when all the particles generated have been stopped. The
probability of interest is approximated by N/

∏J−1
i=0 Ri , where N is the number of

particles simulated whose trajectories belong to C . A more general version of this
algorithm lets the splitting rates Ri take nonnegative real values, in which case the
number of offspring is randomized.

© Springer Science+Business Media, LLC, part of Springer Nature 2019
A. Budhiraja and P. Dupuis, Analysis and Approximation of Rare
Events, Probability Theory and Stochastic Modelling 94,
https://doi.org/10.1007/978-1-4939-9579-0_16

439

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9579-0_16&domain=pdf
https://doi.org/10.1007/978-1-4939-9579-0_16

440 16 Multilevel Splitting

A large deviation analysis of ordinary splitting is given in [76], which shows that it
performs quite well when the thresholds are chosen properly. Although the splitting
algorithm can be very effective, there is one clear source of inefficiency in dealing
with rare events. The vast majority of the particles generatedwill not have trajectories
that belong to the set C , and so much of the computational effort is devoted to
generating trajectories that do not make any direct contribution. Multilevel splitting
algorithms with killing were introduced as a way to mitigate this problem. One
of the first such algorithms was the RESTART (Repetitive Simulation Trials After
Reaching Threshold) algorithm, introduced in [241, 242] (for others, see [208] and
the references therein). Its implementation is identical to that of the standard splitting
algorithm except that particles are split every time they enter a splitting threshold
(and not just at the first entrance time, as with the standard splitting scheme), and
particles are killed when they exit the splitting threshold in which they were born.
The initial particle is assumed to be born in the set CJ , which by convention is equal
to the state space of the process {Xi }, and so this particle is never killed.

The standard version of the RESTART algorithm requires that the splitting rates
be integer-valued and that the process not cross more than one splitting threshold at
each time step. However, its definition implicitly allows one to design an algorithm in
which the process can cross more than one threshold in each time step. The issue of
allowing the process to cross more than one threshold in any given time step was first
addressed explicitly in the context of the DPR (Direct Probability Redistribution)
algorithm, introduced in [152, 153].

In this chapter we will develop a theory for multilevel splitting, and in particular
the RESTART/DPR algorithm, which parallels the theory for importance sampling
that was developed in the last two chapters. Since the algorithm is notationally much
more complicated than importance sampling, to simplify the presentationweconsider
only the case of estimating small probabilities, and refer to [77] for expected values.

Although the statements of performance analysis for splitting are often simi-
lar to those for importance sampling, it should be noted that there is an impor-
tant distinction between the types of subsolution required for the two methods. For
importance sampling, one needs functions that are classical-sense subsolutions. In
contrast, splitting-type schemes require only a subsolution in a weak sense (see
Definition16.12). Indeed, this is in some sense expected, since importance sampling
uses the gradient of the subsolution to construct the algorithm, while splitting uses
only the function itself. For some problems it is easier to construct weak-sense sub-
solutions, in which case splitting-type schemes can be easier to apply. These and
related issues will be discussed and illustrated by examples in Chap.17.

When comparing importance sampling and splitting, one must recognize that
the work used to produce samples need not be the same, and in fact, depending
on circumstances, one method can be strongly favored over the other. However,
when one uses subsolutions to design splitting schemes, the comparison simplifies
somewhat, especially if the performance measure for importance sampling is the
exponential decay rate. Suppose one were to consider, say, a work-normalized rel-
ative error [see (16.21)]. We will show that the computing cost of splitting grows

16 Multilevel Splitting 441

subexponentially when a subsolution is used. Thus the main issue in comparing
splitting to importance sampling is to compare decay rates. This assumes that the
implementation of importance sampling is relatively straightforward, i.e., given a
subsolution, it is easy to compute the needed alternative sampling distribution. Since
splitting simulates using only the original dynamics, it may be preferred when this
is not the case, as in some multiscale models.

In the rest of this chapter, unless explicitly stated otherwise, by a splitting algo-
rithm we mean the RESTART/DPR algorithm. We focus on this version of splitting,
since in our experience it is usually preferable to ordinary splitting, and we will just
note that analogous versions of all the statements presented here apply to ordinary
splitting [76], and with much easier proofs. In Sect. 16.3, we derive formulae for the
computational cost and second moment of the algorithm. These will be used in the
asymptotic analysis, and Sect. 16.4 considers the asymptotic problem. In Sect. 16.4,
a method for designing RESTART/DPR algorithms based on the subsolution frame-
work is developed. Expressions for the asymptotic work-normalized error of such
algorithms are derived using the formulas developed in the previous section, and
subsolutions that lead to asymptotically optimal performance are identified. The for-
mulation of splitting that is appropriate for finite-time problems of the same type
as that considered in the context of importance sampling in Chaps. 14 and 15 is
presented in Sect. 16.5.

16.1 Notation and Terminology

Let {Xi }i∈N0
be a Markov chain with state space R

d for some d ∈ N. Although
we will later consider processes {Xi }i∈N0

as elements of a sequence that satisfies a
large deviation property, for notational simplicity the large deviation index is initially
suppressed. Until Sect. 16.5, we focus on estimating

Px0{XM ∈ B}, (16.1)

where M
.= inf{i : Xi ∈ A ∪ B}, and as in Sect. 14.1, A is open, B is closed, and

A ∩ B = ∅. Although not necessary, to simplify some arguments we will assume as
in Remark15.8 that (A ∪ B)c is bounded and that its closure is denoted by D.

The following notation will be used. Branching processes, which take values in
∪∞
n=1(R

d)n , are denoted by {Zi }i∈N0
. Each branching process has anN-valued process

{Ni }i∈N0 associated with it, where Ni equals the number of particles present in the
branching process at time i . As will be explained later in the section, particles are
born through branching of existing particles when they reach certain thresholds,
while particles die when they exit certain regions.

For each i ∈ N0 and j = 1, . . . , Ni , Zi, j denotes the state of the j th particle at
time i . We also define a measure on Rd associated with such a branching process by
a random measure associated with branching processes

442 16 Multilevel Splitting

δ̄Zi

.=
Ni∑

j=1

δZi, j .

Note that this is typically not a probability measure, and it is referred to as the
unnormalized empirical measure. If Zi, j is in either A or B, then it is killed at the
next time step, and so will be counted only once in this measure. Note that this killing
is distinct from the killing introduced for algorithmic efficiency.

Splitting schemes are often defined in terms of “importance functions.” Later
on, these importance functions will be identified with subsolutions translated by a
constant, and we use U to denote such an object.1 To be precise, an importance
function is a continuous mapping U : Rd → R that is bounded from below. As we
will see, it is only the relative values of U (x) at different points that matter, and so
we assume for simplicity of notation that U (x) ≥ 0 for all x ∈ R

d . There is also a
parameter Δ ∈ (0,∞) such that R

.= eΔ ∈ {2, 3, . . .}, and we define closed sets C j

by
C j

.= {x ∈ D : U (x) ≤ jΔ}

for 0 ≤ j ≤ J − 1
.= �U (x0)/Δ� − 1 and CJ

.= D. Note that x0 /∈ CJ−1. We also
define a piecewise constant function Ū by setting Ū (x) = 0 for x ∈ C0 and jΔ if
x ∈ C j\C j−1

Ū (x) = jΔ for x ∈ C j\C j−1, j − 0, 1, . . . , J,

where we follow the convention C−1 = ∅. After we introduce the large deviation
scaling, it will be possible to obtain a collection of importance functions correspond-
ing to a collection of values of the large deviation index from a single “generating”
function in a convenient manner. While it would be possible to allow the splitting
rate R or the spacing Δ between levels to depend on j , we will not do so once this
scaling is used, and so to simplify notation, we have chosen not to do so here.

Later on,U will be derived froma subsolution V̄ that satisfies a boundary condition
(i.e., V̄ (x) ≤ 0 for x ∈ B). One possibilitywill be to let c

.= min[V̄ (x) : x ∈ B], with
c ≤ 0 due to the boundary condition, and then let U (x) be equal to [V̄ (x) − c] ∨ 0.
In this case, as illustrated in Fig. 16.1, C0 ∩ B may be smaller than B. Although the
process stops when B is entered, if it crosses into C1 or C2 without entering B, the
branching will continue. Thus the number of thresholds crossed before entering B
depends on where B is entered. An alternative is to take U (x) equal to V̄ (x) ∨ 0, in
which case V̄ (x) ≤ 0 for x ∈ B implies B ⊂ C0, as in Fig. 16.2. The rate of decay
of the second moment will be the same for both schemes, though one might expect
slightly better performance from the first scheme.

Given an importance function U and x ∈ D, let σ(x) be the unique integer j
such that x ∈ C j\C j−1 unique integer j such that x ∈ C j\C j−1. We let Ūk denote

1While in the usual definition, importance functions increase as one approaches B, with the iden-
tification with subsolutions it will be convenient to have them decrease.

16.1 Notation and Terminology 443

B

x0

A

C1 C2

C0

CJ−1

Fig. 16.1 Splitting based on [V̄ (x) − c] ∨ 0

B

x0

A

C1 C2

C0

CJ−1

Fig. 16.2 Splitting based on V̄ (x) ∨ 0

the common value of Ū (x) for all x such that σ(x) = k Ū (x) if σ(x) = k (i.e.,
x ∈ Ck\Ck−1), and note that with this notation,

e−Ū (x) = e−Ūσ(x) = e−Ūk = R−k for all x ∈ Ck\Ck−1, k = J, J − 1, . . . , 0. (16.2)

444 16 Multilevel Splitting

With ordinary splitting, weights are assigned to particles so that a unit mass asso-
ciated with a single particle starting at any location is partitioned evenly among
the descendants at each splitting. Thus (16.2) are natural weightings for the given
splitting rates, in that the fraction of the mass associated with each such descendant
after k thresholds are crossed is R−k . The issue is more subtle with RESTART, since
particles reaching B can be the result of more splitting events than the number of
intervening thresholds (due to multiple reentries of a particle into a splitting thresh-
old). Nonetheless, owing to the killing, R−k is still the correct weight to apply, as
will be shown in the proof of unbiasedness.

In the standard version of the RESTART algorithm, splitting is fairly simple.
Every time a particle enters a splitting threshold C j , the deterministic number R − 1
of offspring are generated, so that including the parent, R particles result. Also,
particles are destroyed when they exit the splitting threshold in which they are born,
and thus each particle has an integer attached to it to record this splitting threshold.
These are referred to as the support thresholds of the particles. While in general, one
could allow the number of particles to be random and thereby accommodate arbitrary
R ∈ (0,∞), there seems to be little practical benefit in doing so, and we restrict to
the case in which R is an integer. In this chapter we will consider multilevel splitting,
which accounts for the fact that the particles can jumpmore than one level in a single
step. In such a case, different support thresholds must be assigned to the offspring. In
order to analyze this mathematically, it is convenient to use the following notation.
Let S be the set of elements q ∈ N

∞
0 such that q j = 0 for all sufficiently large j .

Vectors q ∈ S will be referred to as splitting vectors.
Consider a particle in a multilevel splitting algorithm that moves from C j\C j−1

toCk\Ck−1, k < j , in a given time step. Then splitting will occur, and all offspring as
well as the original parent particle will be located inCk\Ck−1. The support threshold
of each new particle will be an element of {k, . . . , j − 1}, and numbers of offspring
and their support thresholds will be independent of all past data except through the
values of j and k. It follows that the splitting of a particle is equivalent to assigning
to each particle that splits a vector q ∈ S. The number of new particles will be equal
to

∑∞
l=0 ql , and precisely ql of the new particles will be given support threshold l.

Given that each particle generates R − 1 descendants upon moving fromC j+1\C j to
C j\C j−1, it is clear that when moving from C j\C j−1 to Ck\Ck−1, we should use the
splitting vector q(j, k) defined by ql(j, k)

.= 0 if either l ≥ j or l < k, and splitting
vectors

ql(j, k)
.= (R − 1)R j−l−1 if k ≤ j − 1 and k ≤ l ≤ j − 1. (16.3)

Note that
∑

l∈N0
ql(j, k) = R j−k − 1, and so including the original particle, exactly

R j−k particles are produced. We take ql(j, k) = 0 for all l if j ≤ k.

16.2 Formulation of the Algorithm 445

16.2 Formulation of the Algorithm

To define the algorithm, we assume the following condition. Conditions that imply
the finiteness of M are given in Proposition15.19.

Condition 16.1 M is almost surely finite.

Following the standard logic of acceleration methods generally, the hope is that
with a well-chosen importance function U (x), the variance of the estimator is made
lower than that of standard Monte Carlo by building in information regarding the
underlying process and the event of interest.

In order to analyze the algorithm, we will need some recursive formulas. Observe
that if we examine a generic particle at some time after the algorithm has started, then
it will be in a set of the formC j\C j−1 and have a killing threshold in { j, . . . , J }. For a
Markov property to hold, if we imagine starting the process with an initial condition
in C j\C j−1, j < J , then the support threshold is part of the state variable, and so
we must also assign a distribution to the support threshold that is consistent with
the dynamics prior to entering C j\C j−1. The distribution of the support threshold of
the initial particle will be denoted by I , and will be referred to as the initializing
distribution. The correct form for such initializing distributions will be identified
later on.

The estimator of (16.1), rewritten for a general initial condition x0 (i.e., one not
necessarily in CJ\CJ−1), is

∞∑

i=0

∫

Rd

1B(x)eŪ (x)−Ū (x0)δ̄Zi (dx).

We recall that particles are killed the step after entering A or B, and so contribute
to the sum for at most one time index. The weighting term eŪ (x)−Ū (x0) is important
when the number of thresholds crossed before reaching B depends on where the
particle is located in B, as in Fig. 16.1.

The splitting thresholds, splitting rates, and splitting vectors of the algorithm
will be defined using importance functions U and initialization distributions I as
described previously. In Theorem 16.3 it will be shown that the algorithm is unbiased
when the initializing distributions have a prescribed form thatwill be identified below.
The algorithm, with the dependence on these quantities suppressed in the notation,
can be written in pseudocode as follows.

446 16 Multilevel Splitting

RESTART/DPR Algorithm

Variables:

i current time
Ni number of particles at time i
Zi, j position of j th particle at time i
Ci, j current threshold of j th particle at time i
Li, j support threshold of j th particle at time i
γ (at termination) an estimator of Px0 {XM ∈ B}
j, k, l counting variables
Yi, j free variables

Initialization Step:
N0 = 1, Z0,1 = x0, C0,1 = σ(x0), γ = 0, i = 0
generate a random variable L with distribution I
L0,1 = L

Main Algorithm:
while Ni �= 0

Ni+1 = 0
for j = 1, . . . , Ni

Test to see if the particle is not killed due
to stopping:
if Zi, j /∈ A ∪ B

generate a random variable Yi, j with
distribution P{Yi, j ∈ dy} = P{Xi+1 ∈ dy|Xi = Zi, j }

Test to see if the particle is not killed
due to threshold:
if σ(Yi, j) ≤ Li, j

Ni+1 = Ni+1 + 1
Zi+1,Ni+1 = Yi, j
Ci+1,Ni+1 = σ(Yi, j)
Li+1,Ni+1 = Li, j

end

Test to see if particle should be branched:
if σ(Yi, j) < Ci, j

for k = 1, . . . , J
for l = 1, . . . , qk (Ci, j , σ (Yi, j))

Ni+1 = Ni+1 + 1
Zi+1,Ni+1 = Yi, j
Ci+1,Ni+1 = σ(Yi, j)
Li+1,Ni+1 = k

end
end

end
end

Test to see if the particle is stopped:
if Zi, j ∈ A ∪ B

γ = γ + 1B (Zi, j)e
Ū (Zi, j)

end
end
i = i + 1

end
γ = e−Ū (x0)γ

16.2 Formulation of the Algorithm 447

Remark 16.2 The pseudocode just given presents a “parallel” version of the algo-
rithm, in that all particles for a given threshold are split and then simulated either
to the next threshold, the stopping criteria, or killing. Alternatively, one can imple-
ment a “sequential” version in which a particle is simulated until it either reaches the
stopping criteria or is killed, recording where appropriate the number of additional
particles that remain to be simulated for each threshold. After the current particle
has been simulated to termination, the algorithm reverts to the highest threshold for
which particles remain to be simulated, and starts a new particle.

Note that the output of the algorithm is indeed equal to the desired quantity

γ = e−Ū (x0)
∞∑

i=0

∫

Rd

1B(y)eŪ (y)δ̄Zi (dy). (16.4)

An algorithm resulting from an importance function U , the collection of splitting
vectors q(j, k), and an initializing distribution I will be said to be unbiased if

Ex0

[
γ
] = Px0{XM ∈ B}.

Recall that the splitting rates R are defined in terms the level Δ > 0 that was used
to partition U through R = eΔ. Define the vector

ql
.=
{
1, l = J,
(R − 1)RJ−l−1, 0 ≤ l ≤ J − 1.

(16.5)

In the setting of ordinary splitting, where particles are branched only when they enter
a threshold for the first time, ql is the number of descendants that would be born in
threshold l if all particles descending from a single particle in threshold J were to
make it to l. We then define probability distributions λk on {k, . . . , J } by initializing
distribution for splitting

λk(l)
.= ql/R

J−k =
{
Rk−J , l = J,
(R − 1)Rk−l−1, k ≤ l ≤ J − 1.

(16.6)

We extend the definition ofλk to {0, . . . , J } by settingλk(l) = 0 for l = 0, . . . , k − 1.

Theorem 16.3 Fix x0 ∈ (A ∪ B)c and suppose that X0 = x0. Let U be an impor-
tance function, and assume Condition 16.1. If the initializing distribution is I =
λσ(x0) and the splitting vectors q(j, k) are as in (16.3), then the resulting splitting
algorithm is unbiased.

The proof of Theorem16.3 relies on the following lemma. Recall that as in the
pseudocode, support threshold of particle m at time i

448 16 Multilevel Splitting

Li,m
.= support threshold of particle m at time i,

and that δ̄Zi

.= ∑Ni
m=1 δZi,m .

Lemma 16.4 Assume Condition16.1 and let h be a nonnegative function onRd . Let
h̄(x) = h(x)eŪ (x) and let i ∈ N0 be given. For a splitting scheme with I = λσ(x0)

and q(j, k) as in (16.3),

e−Ū (x0)Ex0

[
Ni∑

m=1

h̄(Zi,m)1{Li,m=l}
]

= Ex0

[
h(Xi)λσ(Xi)(l)1{M≥i}

]
, l = 0, 1, . . . , J,

and

e−Ū (x0)Ex0

[∫

Rd

h̄(y)δ̄Zi (dy)

]

= Ex0

[
h(Xi)1{M≥i}

]
.

Proof Weassume thatM > 0, since otherwise, the lemma is trivial. The second result
is obtained by summing the first one over l. Recall that Zi, j records the location of
particle number j at time i . We will prove the first display by induction on i . The
result holds for i = 0, since in this case there is only a single particle with support
threshold distribution λσ(x0)(l), and thus

e−Ū (x0)Ex0

[
h̄(Z0,1)1{L0,1=l}

]
= e−Ū (x0)h̄(x0)λσ(x0)(l)

= Ex0

[
h(X0)λσ(X0)(l)1{M≥0}

]
.

Suppose the result has been proved up to some time i∗. We then claim that

e−Ū (x0)Ex0

⎡

⎣
Ni∗+1∑

j=1

h̄(Zi∗+1, j)1{Li∗+1, j=l}
⎤

⎦

= e−Ū (x0)Ex0

[

eŪσ(Z0,1)−Ūσ(Z1,1) EZ1,1

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]]

. (16.7)

Thus we currently have one particle located at x0, whose support threshold lies in
{σ(x0), . . . , J }. To prove the claim, wewill compute the above expectation by condi-
tioning on Y0,1 as it appears in the pseudocode, which, we recall, has the distribution
P{Y0,1 ∈ dy} = P{X1 ∈ dy|X0 = Z0,1}. It suffices to show that for all y ∈ R

d ,

Ex0

⎡

⎣
Ni∗+1∑

j=1

h̄(Zi∗+1, j)1{Li∗+1, j=l}

∣
∣
∣
∣
∣
∣
Y0,1 = y

⎤

⎦

= eŪσ(x0)−Ūσ(y) Ey

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

. (16.8)

16.2 Formulation of the Algorithm 449

Decomposing according to the support threshold, which has initializing distribution
λσ(x0)(·), we have

Ex0

⎡

⎣
Ni∗+1∑

j=1

h̄(Zi∗+1, j)1{Li∗+1, j=l}

∣
∣
∣
∣
∣
∣
Y0,1 = y

⎤

⎦

=
J∑

k=σ(x0)

λσ(x0)(k)Ex0,y,k

[Ni∗+1∑

m=1

h̄(Zi∗+1,m)1{Li∗+1,m=l}
]

, (16.9)

where Ex0,y,k denotes expected value given Z0,1 = x0, Y0,1 = y, and L0,1 = k. Sim-
ilarly, Ex,k will denote the expected value given Z0,1 = x and L0,1 = k. Note that by
the Markov property,

Ex0,y,k

[Ni∗+1∑

m=1

h̄(Zi∗+1,m)1{Li∗+1,m=l}
]

= Ex0,y,k

[
N1∑

r=1

EZ1,r ,L1,r

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]]

.

Thus the expression in (16.9) can be written as

J∑

k=σ(x0)

λσ(x0)(k)Ex0,y,k

[
N1∑

r=1

EZ1,r ,L1,r

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]]

. (16.10)

We now consider the expression (16.10) for the three cases σ(y) = σ(x0), σ(y) >

σ(x0), and σ(y) < σ(x0), and show that in each of these cases, the expression equals
the right side of (16.8).

Consider the first case σ(y) = σ(x0). In this case, neither killing nor branching
occurs, and so we have N1 = 1, Z1,1 = y, and L1,1 = L0,1 = k. Thus (16.10) can be
written as

J∑

k=σ(y)

λσ(y)(k)Ey,k

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

= Ey

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

,

which equals the right side of (16.8), since eŪσ(x0)−Ūσ(y) = 1.
Consider next the second case σ(y) > σ(x0). In this case, the particle has moved

to a thresholdwith higher index, and branching does not occur. Recall that the particle
is killed if and only if k < σ(y), since this means that the particle exited its support
threshold. Thus for σ(x0) ≤ k < σ(y), since N1 = 0,

Ex0,y,k

[
N1∑

r=1

EZ1,r ,L1,r

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]]

= 0.

450 16 Multilevel Splitting

Also, if k ≥ σ(y), then N1 = 1 and L1,1 = L0,1 = k. Since λσ(x0)(k)/λσ(y)(k) =
Rσ(x0)−σ(y) = eŪσ(x0)−Ūσ(y) , (16.10) in this case can be written as

J∑

k=σ(y)

λσ(x0)(k)Ey,k

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

=
J∑

k=σ(y)

λσ(x0)(k)

λσ(y)(k)
λσ(y)(k)Ey,k

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

= eŪσ(x0)−Ūσ(y)

J∑

k=σ(y)

λσ(y)(k)Ey,k

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

,

which once more equals the right side of (16.8).
Finally, consider the case σ(y) < σ(x0). Here there is the possibility that new

particles are created (i.e., N1 > 1), though in all cases we have Z1,r = y. When
new particles are created, the associated thresholds are determined according to the
measure ql(j, k), and so using (16.3) and the definition (16.6), (16.10) takes the form

J∑

k=σ(x0)

λσ(x0)(k)

⎡

⎣
σ(x0)−1∑

j=σ(y)

q j (σ (x0), σ (y))Ey, j

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

+Ey,k

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]]

.

Since the sum
∑σ(x0)−1

j=σ(y) has no k dependence, using
∑J

k=σ(x0)
λσ(x0)(k) = 1, that for

j ∈ {σ(y), . . . , σ (x0) − 1},

q j (σ (x0), σ (y)) = eŪσ(x0)−Ūσ(y)λσ(y)(j),

and that for k ≥ σ(x0),

λσ(x0)(k) = eŪσ(x0)−Ūσ(y)λσ(y)(k),

this quantity can be written as

eŪσ(x0)−Ūσ(y)

J∑

k=σ(y)

λσ(y)(k)Ey,k

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

.

Thus in this case as well, (16.10) equals the right side of (16.8). This completes the
proof of (16.8), and hence we have proved the claim in (16.7).

Thus from the induction hypothesis and (16.7), we have that

16.2 Formulation of the Algorithm 451

e−Ū (x0)Ex0

⎡

⎣
Ni∗+1∑

j=1

h̄(Zi∗+1, j)1{Li∗+1, j=l}
⎤

⎦

= e−Ū (x0)Ex0

[

eŪσ(Z0,1)−Ūσ(Z1,1) EZ1,1

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]]

= e−Ū (x0)Ex0

[
eŪσ(Z0,1) EZ1,1

[
h(Xi∗)λσ(Xi∗)(l)1{M≥i∗}

]]

= Ex0

[
EZ1,1

[
h(Xi∗)λσ(Xi∗)(l)1{M≥i∗}

]]

= Ex0

[
EX1

[
h(Xi∗)λσ(Xi∗)(l)1{M≥i∗}

]]

= Ex0

[
h(Xi∗+1)λσ(Xi∗+1)(l)1{M≥i∗+1}

]
,

where the third equality uses the fact that Z1,1 and X1 have the same distribution,
and the last equality uses the Markov property of {Xi }. This completes the induction
step, and thus the lemma follows. �

Proof (of Theorem 16.3) Since by Condition16.1, M < ∞ a.s., we have

Ex0 [1B(XM)] = Ex0

[∞∑

i=0

1B(Xi)1{M=i}

]

=
∞∑

i=0

Ex0

[
1B(Xi)1{M=i}

]

=
∞∑

i=0

e−Ū (x0)Ex0

[∫

Rd

1B(x)eŪ (x)δ̄Zi (dx)

]

= Ex0

[∞∑

i=0

e−Ū (x0)
∫

Rd

1B(x)eŪ (x)δ̄Zi (dx)

]

,

where the second and fourth equalities use Tonelli’s theorem, and the third
uses Lemma16.4 applied to h = 1B and the observation that 1B(Xi)1{M=i} =
1B(Xi)1{M≥i}. The result now follows on observing that the term on the last line
equals Ex0

[
γ
]
. �

16.3 Performance Measures

Recall that to derive a recurrence equation, we had to consider initializing distribu-
tions of the form I = λσ(x0). In actual numerical implementation, it is always the
case that x0 ∈ CJ , which implies that all mass will be placed on l = J .

The performance of the algorithm depends on two factors: the second moment
(and hence variance) of the estimator and the computational cost of each

452 16 Multilevel Splitting

simulation. To avoid discussion of any issues relating to the specific way the algo-
rithm is implemented in practice, the computational cost is defined to be

w =
∞∑

i=0

Ni , (16.11)

where Ni = ∫
Rd δ̄Zi (dx). Thus w is the sum of the lifetimes of all the particles

simulated in the algorithm. In this section, formulas for both the second moment
and computational cost are derived in terms of only the importance function and the
underlying process. Throughout it is assumed that U is an importance function and
Condition 16.1 is satisfied.

We begin by characterizing the mean of w.

Theorem 16.5 Assume Condition16.1. Then

Ex0 [w] = eŪ (x0)Ex0

[
M∑

i=0

e−Ū (Xi)

]

.

Proof With the third equality due to Lemma16.4 applied to h(x) = eŪ (x0)−Ū (x), an
application of Tonelli’s theorem gives

Ex0 [w] = Ex0

[∞∑

i=0

∫

Rd

δ̄Zi (dx)

]

=
∞∑

i=0

Ex0

[∫

Rd

δ̄Zi (dx)

]

=
∞∑

i=0

eŪ (x0)Ex0

[
e−Ū (Xi)1{M≥i}

]

= eŪ (x0)Ex0

[∞∑

i=0

e−Ū (Xi)1{M≥i}

]

= eŪ (x0)Ex0

[
M∑

i=0

e−Ū (Xi)

]

.

�

Next note that the following bounds hold for allU , all 0 ≤ k ≤ l < j ≤ J , 0 ≤ k ≤
m < j ≤ J . Since ql(j, k) as defined in (16.3) equals [R j−l − R j−l−1], it follows
that

(ql(j, k))2 − ql(j, k) ≤ [R j−l − R j−l−1]2,
ql(j, k)qm(j, k) = [R j−l − R j−l−1][R j−m − R j−m−1]. (16.12)

16.3 Performance Measures 453

We can now give bounds for the second moment of the splitting estimator. LetS(Ū)

denote Ex0 [γ 2] when Ū is used to design the splitting scheme.

Theorem 16.6 Assume Condition16.1. Then for all x0 ∈ (A ∪ B)c,

S(Ū) ≤ e−Ū (x0)Ex0

[
M∑

i=1

eŪ (Xi−1)
[
PXi {XM ∈ B}]2

]

+ e−Ū (x0)Ex0

[
eŪ (XM)1B(XM)

]
. (16.13)

Proof Recall that M is the first entry time of the set A ∪ B ⊂ D. First consider the
case in which there is T < ∞ such that M ≤ T Px0 -a.s. Let W (x)

.= eŪ (x)Ex [γ 2]
with γ as in (16.4), and let s(x, j; k), k = 0, . . . , denote iid sequences of random
variables with the same distribution as γ , conditioned on Z0,1 = x and L0,1 = j .
Note that since the maximum possible number of particles is bounded, these random
variables are bounded.

The proof is based on finding a recurrence equation for W . If x0 /∈ A ∪ B, then
there are two contributions to γ depending on the killing and/or splitting that takes
place over the next time step. Thefirst is due to future contributions if the particle stays
within the support threshold, and the second occurs if new particles are generated
[σ(X1) < σ(X0)]. To account for thresholds of both the existing particles and those
that might be generated, let Ql(j, k) random vector defined in terms of ql(j, k) be
random vectors defined by Ql(j, k) = ql(j, k) for j > l (i.e., these components are
deterministic), and such that Ql(j, k) equals 1 for exactly one value of j ≤ l ≤ J and
0 for remaining values, with the index chosen according to the initializing distribution
λ j . Recall that ql(j, k) = 0 for all l if k ≥ j . To abbreviate notation temporarily, let
σi = σ(Zi,1), i = 0, 1. Then

W (x0) = eŪ (x0)Ex0

⎡

⎣

⎛

⎝1{L0,1≥σ1}eŪ (Z1,1)−Ū (Z0,1)s(Z1,1, L0,1; 0)

+1{σ0>σ1}

⎛

⎝
σ0−1∑

j=σ1

q j (σ0,σ1)∑

m=1

eŪ (Z1,1)−Ū (Z0,1)s(Z1,1, j;m)

⎞

⎠

⎞

⎠

2⎤

⎦

= eŪ (x0)Ex0

⎡

⎣

⎛

⎝
J∑

j=0

Q j (σ0,σ1)∑

m=1

eŪ (Z1,1)−Ū (Z0,1)s(Z1,1, j;m)

⎞

⎠

2⎤

⎦ .

We now use the following facts: L0,1 has distribution λσ(X0); Z1,1 has the same
distribution (conditioned on Z0,1 = X0 = x0) as X1; by the definition of Ql(j, k),
for all j, k, l [see also (16.6) and (16.5)],

Ex0Ql(j, k)e
Ūk−Ū j = λk(l); (16.14)

454 16 Multilevel Splitting

and that the future evolution of the algorithm is independent of the Ql(j, k). Now let
σi denote σ(Xi), i = 0, 1. Together with the expression just given for W (x0), these
give

W (x0) = e−Ū (x0)Ex0

⎡

⎣
J∑

j,k=0

e2Ū (X1)Q j (σ0, σ1)Qk(σ0, σ1)EX1, j [γ]EX1,k[γ]
⎤

⎦

(16.15)

+ e−Ū (x0)Ex0

⎡

⎣
J∑

j=0

e2Ū (X1)Q j (σ0, σ1)
(
EX1, j

[
γ 2

] − (
EX1, j [γ])2

)
⎤

⎦ .

We examine the various terms separately. Using (16.14) and W (x)
.= eŪ (x)Ex [γ 2],

e−Ū (x0)Ex0

⎡

⎣
J∑

j=0

e2Ū (X1)Q j (σ0, σ1)EX1, j
[
γ 2

]
⎤

⎦

= Ex0

⎡

⎣eŪ (X1)

J∑

j=0

eŪ (X1)−Ū (X0)Q j (σ0, σ1)EX1, j
[
γ 2

]
⎤

⎦

= Ex0

⎡

⎣eŪ (X1)

J∑

j=0

λσ1(j)EX1, j
[
γ 2

]
⎤

⎦

= Ex0 [W (X1)] . (16.16)

If (16.16) is subtracted from the right side of (16.15), the remaining quantity is

eŪ (x0)Ex0

⎡

⎣
J∑

j=0

J∑

l=0

e2Ū (X1)−2Ū (X0)Q j (σ0, σ1)Ql(σ0, σ1)EX1, j
[
γ
]
EX1,l

[
γ
]
⎤

⎦

− eŪ (x0)Ex0

⎡

⎣
J∑

j=0

e2Ū (X1)−2Ū (X0)Q j (σ0, σ1)
(
EX1, j

[
γ
])2

⎤

⎦ . (16.17)

The terms with both l and j at or above σ(X0) contribute nothing to this expression.
Indeed, Q j (σ0, σ1) is equal to 1 for exactly one j and to 0 for all remaining j that are
greater thanσ(X0) − 1.Hence the corresponding terms in the double and single sums
cancel. Also, this is the only possibility when σ(X1) ≥ σ(X0), and so we restrict to
σ(X1) < σ(X0), and use that Q j (σ0, σ1) = 0 for j < σ(X1) when this is the case.
Dropping terms that contribute nothing, we decompose the double sum as

16.3 Performance Measures 455

σ(X0)−1∑

j=σ(X1)

σ (X0)−1∑

l=σ(X1)

+2
J∑

j=σ(X0)

σ (X0)−1∑

l=σ(X1)

.

Using (16.14), we get the following upper bound for expression (16.17):

eŪ (x0)Ex0

⎡

⎣1{σ(X1)<σ(X0)}

⎛

⎝
σ(X0)−1∑

j=σ(X1)

λσ(X1)(j)EX1, j
[
γ
]
⎞

⎠

2⎤

⎦

+ 2eŪ (x0)Ex0

⎡

⎣1{σ(X1)<σ(X0)}

⎛

⎝
J∑

j=σ(X0)

λσ(X1)(j)EX1, j
[
γ
]
⎞

⎠

×
⎛

⎝
σ(X0)−1∑

l=σ(X1)

λσ(X1)(l)EX1,l
[
γ
]
⎞

⎠

⎤

⎦

≤ eŪ (x0)Ex0

⎡

⎣1{σ(X1)<σ(X0)}

⎛

⎝
J∑

j=σ(X1)

λσ(X1)(j)EX1, j
[
γ
]
⎞

⎠

2⎤

⎦ . (16.18)

We now combine (16.15), (16.16), (16.18), and Theorem 16.3 to get that for x0 /∈
A ∪ B,

W (x0) ≤ eŪ (x0)Ex0

[
1{σ(X1)<σ(X0)}

(
EX1 [1B(XM)]

)2
]

+ Ex0 [W (X1)] .

Since all functions involved are bounded and nonnegative, it follows that the sequence

Σi
.= W (Xi∧M) +

i∧M∑

j=1

{
eŪ (X j−1)

(
EX j [1B(XM)]

)2
}

defined for i ∈ {0, . . . , T } is a submartingale. Thus, using W (XT∧M) = eŪ (XM)

1B(XM) and that 1B(Xk) = 0 if k < M , we have

eŪ (x0)S(Ū) = W (x0)

= Σ0

≤ Ex0 [ΣT]

= Ex0

[
M∑

i=1

eŪ (Xi−1)
(
EXi [1B(XM)]

)2
]

+ Ex0

[
eŪ (XM)1B(XM)

]
,

which is the same as (16.13).
We next remove the restriction that M ≤ T for some constant T < ∞. We add

timeas a state variable [i.e.,workwith the process (Xi , i)], and consider the analogous

456 16 Multilevel Splitting

estimation problem in which the stopping set is (A ∪ B) × {T } (i.e., we stop if either
Xi enters A ∪ B or i = T). Then γT defined in an analogous manner is an unbiased
estimator of Ex0

[
1B(XM)1{M≤T }

]
, and by the previous result for bounded stopping

times,

eŪ (x0)Ex0 [(γT)2] (16.19)

≤ Ex0

[
M∧T∑

i=1

eŪ (Xi−1)
(
EXi

[
1B(XM)1{M≤T }

])2
]

+ Ex0

[
eŪ (XM)1B(XM)1{M≤T }

]
.

Also note that

γT = e−Ū (x0)
T∑

i=0

∫

Rd

eŪ (y)1B(y)δ̄Zi (dy)

and γT ↑ γ a.s. By the monotone convergence theorem,

Ex0

[
(γT)2

] → S(Ū).

Using this in (16.19), the nonnegativity of 1B , and themonotone convergence theorem
a second time gives (16.13) without the restriction on M . �

The following result gives a lower bound on the second moment of the estimator,
complementing the upper bound in Theorem16.6.

Theorem 16.7 Assume Condition16.1. Then

S(Ū) ≥ e−Ū (x0)Ex0

[
eŪ (XM)1B(XM)

]
.

Proof From the nonnegativity of 1B , (16.15), and (16.16), it follows that W (x0) ≥
Ex0 [W (X1)]. From the Markov property of {Xi }, it follows that Σi

.= W (Xi∧M) is
a supermartingale, and in particular,

Ex0 [W (XM∧i)] ≤ W (x0).

The definition W
.= eŪ (x)Ex [γ 2] and its nonnegativity then give

Ex0

[
W (XM)1{M≤i}

] ≤ Ex0 [W (XM∧i)] ≤ eŪ (x0)S(Ū).

Since W (x) = eŪ (x)1B(x) for x ∈ A ∪ B, the last display gives

Ex0

[
eŪ (XM)1B(XM)1{M≤i}

]
≤ eŪ (x0)S(Ū).

The result now follows on sending i → ∞ and using the monotone convergence
theorem. �

16.4 Design and Asymptotic Analysis of Splitting Schemes 457

16.4 Design and Asymptotic Analysis of Splitting Schemes

Thus far we have considered only the problem of estimating a single probability of
the form (16.1). Now we shall turn to the problem of estimating a sequence of such
probabilities

Px0{Xn
Mn ∈ B}, (16.20)

n ∈ N, where Mn .= inf{i : Xn
i ∈ A ∪ B} and {Xn

i }i∈N0 is a Markov chain for each
n that satisfies a large deviation principle as n → ∞ (see Condition 16.9). We recall
that by assumption, A is open, B is closed, and (A ∪ B)c is bounded. With Sn(Ū)

denoting the second moment Ex0

[
(γ n)2

]
, the asymptotic performance will be eval-

uated using the following measure of work-normalized error:

lim
n→∞

1

n
log

Sn(Ū)Ex0 [w
n]

[
Px0{Xn

Mn ∈ B}]2
, (16.21)

where γ n is the splitting-based estimator for (16.20), and wn is its computational
cost, which was defined in the nonasymptotic setting in (16.11). (Such a weighted
performance measure is not needed for importance sampling, since the cost per
sample is essentially independent of the subsolution.)

Suppose that−(1/n) log Px0{Xn
Mn ∈ B} → V (x0) as n → ∞. Jensen’s inequality

as discussed in Chap.14 shows that the best possible value of (16.21) is zero, and this
occurs only when the work grows subexponentially and the second momentSn(Ū)

decays at rate 2V (x0). Bounds on the asymptotic behavior of the work-normalized
error will be obtained using Theorems16.5–16.7 and are stated in Theorem16.15,
Corollary 16.16, and Theorem16.18.

Remark 16.8 As in Chap.15, the theoretical bounds on performance are given for
the case of a fixed initial condition x0. However, all results are easily generalized
to the case of varying initial conditions xn that converge to x0 as n → ∞. This
generalization is useful for systems with discrete state spaces, such as queueing
networks.

The theory presented in this section will require some fairly standard assumptions
on the stability and large deviation behavior of

{
Xn
i

}
, and also some regularity prop-

erties on A and B that are qualitatively similar to assumptions made in Chap.15 (e.g.,
Condition15.9). For example, we will want to know that τ n .= Mn/n can essentially
be taken as bounded, in the sense that there is some T < ∞ such that the event
τ n > T is unimportant as far as the large deviation asymptotics are concerned. This
is an important qualitative assumption, and it is related to stability properties of the
law of large numbers limit processes obtained when n → ∞.

We define continuous time stochastic processes as usual by setting Xn(t) = Xn
i for

t = i/n and by piecewise linear interpolation for t ∈ [i/n, (i + 1)/n). Throughout,
we assume that x0 ∈ (Ā ∪ B)c. The following condition will be needed to establish

458 16 Multilevel Splitting

a limit for the second moment; it is not needed if one wants to give just upper bounds
on the second moment.

Condition 16.9 For every T ∈ (0,∞), the sequence {Xn}n∈N satisfies a large devi-
ation principle onC

([0, T] : Rd
)
that is uniform with respect to the initial condition

in compacts sets. The rate function is of the form

IT (φ)
.=
∫ T

0
L(φ(s), φ̇(s))ds

if φ ∈ C
([0, T] : Rd

)
is absolutely continuous with φ(0) = x0 and ∞ otherwise,

where L is a nonnegative measurable function.

As remarked above, the conditions we use beyond the LDP can be partitioned
into “stability” and “controllability” type conditions. We give two conditions that
will be sufficient (but not necessary) for what follows. Moreover, the sufficient con-
ditions we give will by themselves cover many interesting problems. The stability
condition (Condition16.10) will imply that the algorithm is practical in that the tails
of the hitting times are controlled, and also that the escape time problem can be
approximated using estimates over finite time intervals. The condition we refer to
as “controllability” (Condition 16.11) is needed to establish limits rather than just
bounds, and is analogous to the additional conditions that would have been required
in Chap.15 as noted in Remark15.16.

We will assume the following condition, which is the same as Condition15.9 in
Chap.15.

Condition 16.10 There exist c > 0, T0 ∈ (0,∞) and n0 ∈ N such that for all n ≥
n0, T < ∞, and x ∈ D,

Px {τ n > T } ≤ exp{−cn(T − T0)}.

Note that Condition16.10 implies that

lim sup
T→∞

lim sup
n→∞

sup
x∈D

1

n
log Px {τ n > T } = −∞. (16.22)

Condition16.10 would not hold if there were two attractors for the zero-cost trajec-
tories, A ∪ B contains one of the attractors but not the other, and the process starts
in the domain of attraction of the stable point that is not in A ∪ B.

Condition 16.11 Suppose we are given absolutely continuous φ satisfying φ(0) =
x0 /∈ Ā ∪ B, φ(t) /∈ A ∪ B◦ for t ∈ [0, T), and φ(T) ∈ B for some T < ∞. Then
given γ > 0, there exist absolutely continuous φ∗, T ∗ < ∞, and τ ∗ < T ∗ such that
φ∗(0) = x0, φ∗(t) /∈ Ā ∪ B for t ∈ [0, τ ∗), φ∗(t) ∈ B◦ for t ∈ (τ ∗, T ∗], and such
that

16.4 Design and Asymptotic Analysis of Splitting Schemes 459

∫ T ∗

0
L(φ∗(r), φ̇∗(r))dr ≤

∫ T

0
L(φ(r), φ̇(r))dr + γ,

∥
∥φ(T) − φ∗(τ ∗)

∥
∥ ≤ γ.

Onecan consider this a controllability-type condition. It says that given a trajectory
φ that enters Ā ∪ B but not A ∪ B◦ and finally enters B◦ at T , one can find a trajectory
with almost the same cost that avoids Ā ∪ B till τ ∗, at which time it enters B◦ near
φ(T). One can establish more concrete conditions that imply this condition, such as
assuming that L(x, β) is continuous, bounded on each compact subset of Rd × R

d ,
and assuming regularity properties for the boundaries of A and B.

We next give a definition of subsolution appropriate to this problem, but phrased
directly in terms of the calculus of variations problem. The definition via calculus
of variations is somewhat more to the point of what is required and is used in the
proofs. For y ∈ (A ∪ B◦)c and T ∈ (0,∞), define

Ky,T (16.23)
.= {

φ ∈ A C ([0, T] : Rd) : φ(0) = y;φ(s) /∈ A ∪ B◦, s ∈ (0, T), φ(T) ∈ B
}
.

Definition 16.12 Acontinuous function V̄ : Rd → R is a subsolution if it is bounded
from below,

V̄ (y) ≤ inf
φ∈Ky,T ,T<∞

[∫ T

0
L(φ(s), φ̇(s))ds + V̄ (φ(T))

]

(16.24)

for all y ∈ (A ∪ B◦)c, and V̄ (z) ≤ 0 for z ∈ B.

Remark 16.13 (Relations between notions of subsolution I) Suppose that V̄ is a
subsolution in the sense of Definitions14.4 or 14.5 that is bounded from below,
and to simplify the discussion, assume also that H(x, α) is continuous. Then we
claim that V̄ is a subsolution in the sense of Definition16.12. Consider the case of
Definition14.4, and for y ∈ (A ∪ B◦)c, suppose φ ∈ Ky,T . Since V̄ is continuously
differentiable, the definition H(x, α)

.= infβ∈Rd [〈α, β〉 + L(x, β)] implies

〈
DV̄ (φ(s)), φ̇(s)

〉 + L(φ(s), φ̇(s)) ≥ 0

for a.e. s ∈ [0, T]. Integrating gives

V̄ (y) ≤
[∫ T

0
L(φ(s), φ̇(s))ds + V̄ (φ(T))

]

.

Since φ ∈ Ky,T is arbitrary, and V̄ (z) ≤ 0 for z ∈ B is part of Definition14.4, the
claim follows. For the case of piecewise classical subsolutions it is enough to note that
the mollification (14.16) produces a classical-sense subsolution V̄ δ , and the claim
follows by taking the limit δ ↓ 0. Note that one does not need to use the mollified
subsolution for the design of the splitting scheme, but can instead use the potentially

460 16 Multilevel Splitting

nonsmooth limit. It is also worth noting that the continuity of H is not used in any
essentialway, so that the analogous claimholds for problems involving discontinuous
statistics, such as queueing networks.

Remark 16.14 (Relations between notions of subsolution II) The set of trajectories
Ky,T in (16.23) differs from Cy,T introduced in Chap.14 in that trajectories are
excluded from B for s ∈ (0, T) for Cy,T , but only from B◦ for Ky,T . The reason for
the difference is the slightly different way in which the subsolution property is used
in the cases of importance sampling and splitting. However, under the conditions we
assume, to obtain a limit as in Theorem16.15 one could use Cy,T in Definition 16.12
instead. Indeed, sinceCy,T ⊂ Ky,T , one has only to check that the defining inequality
(16.24) holds for φ ∈ Ky,T for all T if it holds for all φ ∈ Cy,S , y ∈ (A ∪ B◦)c, and
S ∈ (0,∞). But this is easy to check under Condition16.11. Note also that the two
definitions are equivalent without reference to Condition16.11 if V̄ is constant on
B, simply because L ≥ 0.

Note that V̄ is never greater than the solution to the calculus of variations problem,
which is defined by V (z) = 0 for z ∈ B, V (z) = ∞ for z ∈ A, and

V (x) = inf
φ∈Kx,T ;T<∞

[∫ T

0
L(φ(s), φ̇(s))ds

]

(16.25)

for x ∈ (A ∪ B)c. Given a subsolution, the corresponding splitting scheme is defined
as follows. Thresholds are defined in terms of the levels

V̄ (x0), V̄ (x0) − (log R)/n, V̄ (x0) − (2 log R)/n,

Let J n be the smallest number such that V̄ (x) ≥ V̄ (x0) − (J n log R)/n for all x ∈ D,
so that there are no more than J n thresholds. Then we define Cn

Jn
.= D,Cn

−1
.= ∅,

and

Cn
Jn− j

.= {
x : V̄ (x) ≤ V̄ (x0) − (j log R)/n

}
, j = 1, . . . , J n . (16.26)

Recall R = eΔ and define Δn .= Δ/n. Also define a sequence {Ū n} according to

Ū n(x)
.= (J n log R)/n − (j log R)/n for x ∈ Cn

Jn− j\Cn
Jn− j−1, j = 0, 1, . . . , J n .

Note that whenever yn → y, Ū n(yn) − Ū n(x0) → V̄ (y) ∧ V̄ (x0) − V̄ (x0). Note
also that if V̄ is a subsolution in the sense ofDefinition16.12, then so is V̄ (·) ∧ V̄ (x0).
To simplify notation, we assume without loss that V̄ (x) ≤ V̄ (x0) for all x ∈ D, and
therefore for x ∈ D,

∣
∣(Ū n(x0) − Ū n(x)) − (V̄ (x0) − V̄ (x))

∣
∣ ≤ log R

n
. (16.27)

In particular, Ū n(x0) − Ū n(x) → V̄ (x0) − V̄ (x) for all x ∈ D. We now apply
Theorems16.6 and 16.7, with Δ replaced by Δn and Ū replaced by nŪn , to the

16.4 Design and Asymptotic Analysis of Splitting Schemes 461

Markov chain {Xn
i }. Following the same notation as in Chaps. 14 and 15, we denote

the second moment of the estimator Ex0 [(γ n)2] by Sn(V̄). The corresponding ini-
tializing distribution λn

k is defined as λn
k (l) = qn

l /RJn−k , with qn
l defined by (16.5)

but with J replaced by J n . Theorems16.6 and 16.7 then say that

e−nŪn(x0)Ex0

[
Mn
∑

i=1

enŪ
n(Xn

i−1)
(
EXn

i

[
1B(Xn

Mn)
])2

]

+ e−nŪn(x0)Ex0

[
enŪ

n(Xn
Mn)1B(Xn

Mn)
]

≥ Sn(V̄) (16.28)

and
Sn(V̄) ≥ e−nŪn(x0)Ex0

[
enŪ

n(Xn
Mn)1B(Xn

Mn)
]
,

where γ n = e−nŪn(x0)
∑∞

i=0

∫
Rd 1B(y)e−nŪn(y)δ̄Zn

i
(dy) is the estimator of (16.20)

based on the importance function Ū n .
Theorem16.15 below describes the asymptotic performance of the splitting

scheme based on importance functions {Ū n}. As a consequence of this result, in
Corollary16.16, we will see that the decay rate

lim
n→∞ −1

n
logSn(V̄)

is bounded below by V (x0) + V̄ (x0), where V (x0) is defined in (16.25), which is
the same as the decay rate for an importance sampling scheme based on the same
subsolution if it is sufficiently regular (see Theorem15.10). We recall from (14.5)
that when the large deviation limit holds, the decay rate of any unbiased splitting
scheme is bounded above by 2V (x0). In particular, if V̄ (x0) = V (x0), we get the best
possible decay rate 2V (x0). Finally, in Theorem16.18 below, we will show that

lim
n→∞

1

n
log Ex0

[
wn

] = 0.

Thus the work associated with such a scheme grows subexponentially, and conse-
quently, the decay rate of thework-normalized error is zero, which is the best possible
rate.

It is easily checked that if V̄ is not a subsolution, then at points where the subso-
lution property fails, the branching is supercritical, and hence in this case there exists
y ∈ D such that if yn → y, then

lim inf
n→∞

1

n
log Eyn

[
wn

]
> 0.

It follows that importance functions that are not obtained from subsolutions should
not be used to design schemes, since it is possible that the computational costs of
such schemes will grow exponentially.

462 16 Multilevel Splitting

Recall that x0 /∈ Ā ∪ B, V̄ is a subsolution as in Definition16.12, and that as noted
previously, we can assume V̄ (x) ≤ V̄ (x0) for all x ∈ D. Recall also the definition
of Ky,T in (16.23).

Theorem 16.15 Assume Conditions16.9–16.11. Then for x0 /∈ Ā ∪ B,

lim
n→∞ −1

n
logSn(V̄)

= inf
φ∈Kx0 ,T ,T<∞

[∫ T

0
L(φ(r), φ̇(r))dr + V̄ (φ(0)) − V̄ (φ(T))

]

. (16.29)

Proof We first consider the lower bound

lim inf
n→∞ −1

n
logSn(V̄)

≥ inf
φ∈Kx0 ,T ,T<∞

[∫ T

0
L(φ(r), φ̇(r))dr + V̄ (φ(0)) − V̄ (φ(T))

]

, (16.30)

which is based on (16.28). While there are two terms in (16.28), the second term can
be treated in a similar manner as the first term, and so we focus on the first. This term
is

e−nŪn(x0)Ex0

[
Mn
∑

i=1

enŪ
n(Xn

i−1)1B
(
X1,i,n

M1,i,n

)
1B

(
X2,i,n

M2,i,n

)
]

, (16.31)

where {Xk,i,n
j } j≥i , k = 1, 2, are (conditionally) independent copies of {Xn

j } j≥i that
start at Xn

i at j = i , and Mk,i,n are the corresponding escape times.
We claim that instead of the large deviation asymptotics of (16.31), it suffices to

consider the large deviation asymptotics of

e−nŪn(x0)Ex0

[�nT �∑

i=1

1{Mn≥i}enŪ
n(Xn

i−1)1B
(
X1,i,n

M1,i,n∧�nT �
)
1B

(
X2,i,n

M2,i,n∧�nT �
)
]

(16.32)

for some fixed and finite T . Assuming the claim, observe that there are no more than
order-n terms in the expected value, and it suffices to obtain the desired bound on
each of these terms. Let in index such a term. In obtaining a bound, we can assume
without loss that in/nwill converge to some limit t ∈ [0, T], and to simplify notation,
we write i for in . We first show that

lim inf
n→∞ −1

n
log e−nŪn(x0)Ex0

[
enŪ

n(Xn
i−1)1{Mn≥i}1B

(
X1,i,n

M1,i,n∧�nT �
)
1B

(
X2,i,n

M2,i,n∧�nT �
)]

≥ inf

[∫ s

0
L(φ(r), φ̇(r))dr + V̄ (x0) − V̄ (φ(s))

]

, (16.33)

16.4 Design and Asymptotic Analysis of Splitting Schemes 463

where the infimum is over all absolutely continuousφ such thatφ(0) = x0 andφ(r) /∈
A ∪ B◦ for r ∈ (0, s) and φ(s) ∈ B for some s ≥ t . Let X̂ n(t) be the continuous time
trajectory that interpolates Xn

j up till i , and thereafter is a two-component process that

interpolates X1,i,n
j and X2,i,n

j up until �nT �. It is straightforward, using the Markov
property and the uniformity of the large deviation estimates with respect to initial
conditions that is assumed in Condition16.9, to check that {X̂ n} satisfies a large
deviation property, and that the rate function (with obvious notation for a trajectory
η that branches at time t into η1 and η2) is

∫ t

0
L(η(r), η̇(r))dr +

∫ T

t
L(η1(r), η̇1(r))dr +

∫ T

t
L(η2(r), η̇2(r))dr.

Since V̄ is continuous and B is closed, we obtain the lower bound

inf

[∫ t

0
L(η(r), η̇(r))dr +

∫ T

t
L(η1(r), η̇1(r))dr

+
∫ T

t
L(η2(r), η̇2(r))dr + V̄ (x0) − V̄ (η(t))

]

for the left side of (16.33), where the infimum is over all η such that η(0) = x0 and
η(r) /∈ A ∪ B◦ for r ∈ (0, t] and ηk, k = 1, 2 such that ηk(t) = η(t) and ηk(r) /∈
A ∪ B◦ for r ∈ [t, sk], sk ∈ [t, T], ηk(sk) ∈ B. Without loss we can assume that the
cost is zero after sk and that η1 = η2 (which we relabel as η, and sk as s). By the
subsolution property,

V̄ (η(t)) ≤
∫ s

t
L(η(r), η̇(r))dr + V̄ (η(s)),

which gives (16.33).
We now prove the claim. It remains to show that (16.31) has the same large

deviation asymptotics as (16.32). To justify bounding the other random times by
�nT �, we need to show that

lim sup
T→∞

lim sup
n→∞

1

n
log e−nŪn(x0)Ex0

[
Mn∧�nT �∑

i=1

enŪ
n(Xn

i−1)
(
1{τ 1,i,n≥nT} + 1{τ 2,i,n≥nT}

)
]

= −∞. (16.34)

However, using (16.27), the expected value is bounded above by

2Ren2‖V̄‖∞

�nT �∑

i=1

Px0
{
τ 1,i,n ≥ nT

}
,

and thus (16.34), and therefore the claim, follows fromCondition16.10 [see (16.22)].

464 16 Multilevel Splitting

We now prove the upper bound

lim sup
n→∞

−1

n
logSn(V̄)

≤ inf
φ∈Kx0 ,T ,T<∞

[∫ T

0
L(φ(r), φ̇(r))dr + V̄ (φ(0)) − V̄ (φ(T))

]

. (16.35)

Fix ε ∈ (0, 1), let Γ denote the right-hand side of (16.35), and using Condition16.11
choose an absolutely continuousφ, T and τ ∈ (0, T) such thatφ(0) = x0,φ(τ) ∈ B,
φ(t) /∈ Ā ∪ B for all t ∈ (0, τ), φ(t) ∈ B◦ for all t ∈ (τ, T], and

∫ T

0
L(φ(r), φ̇(r))dr + V̄ (φ(0)) − V̄ (φ(τ)) ≤ Γ + ε. (16.36)

Let δ > 0 satisfy ‖φ(r) − x‖ ≥ δ if r ∈ [0, τ − δ) and x ∈ Ā ∪ B and ‖φ(r) −
x‖ ≥ δ if r ∈ [τ + δ, T] and x /∈ B. Let alsoΞ n .= {sup0≤t≤T ‖Xn(t) − φ(t)‖ < δ}.
Then using the large deviation lower bound for the third inequality and (16.36) for
the fourth, we obtain

lim inf
n→∞

1

n
logSn(V̄)

≥ lim inf
n→∞

1

n
log e−nŪn(x0)Ex0

[
enŪ

n(Xn
Mn)1B(Xn

Mn)
]

≥ lim inf
n→∞

1

n
log e−nŪn(x0)Ex0

[
enŪ

n(Xn
Mn)1B(Xn

Mn)1Ξ n

]

≥ inf
y∈Cδ

V̄ (y) − V̄ (x0) + lim inf
n→∞

1

n
log Px0{Ξ n}

≥ inf
y∈Cδ

V̄ (y) − V̄ (φ(τ)) − Γ − ε,

where Cδ
.= {y : ‖y − φ(t)‖ < δ for some t ∈ [τ − δ, τ + δ]}. Since V̄ and φ are

continuous, we have inf y∈Cδ
V̄ (y) − V̄ (φ(τ)) → 0 as δ → 0. Since ε > 0 and δ > 0

are arbitrary, this proves the upper bound in (16.35). �

Corollary 16.16 Under same conditions and with the same notation as in
Theorem16.15,

lim inf
n→∞ −1

n
logSn(V̄) ≥ V (x0) + V̄ (x0).

In particular, if V̄ (x0) = V (x0), then

lim
n→∞ −1

n
logSn(V̄) = 2V (x0).

16.4 Design and Asymptotic Analysis of Splitting Schemes 465

Proof Recall the set Kx0,T introduced in (16.23) and consider any φ ∈ Kx0,T with
T ∈ (0,∞). Since V̄ is a subsolution, it follows that V̄ (z) ≤ 0 for z ∈ B, and so

∫ T

0
L(φ(r), φ̇(r))dr + V̄ (φ(0)) − V̄ (φ(T)) ≥

∫ T

0
L(φ(r), φ̇(r))dr + V̄ (x0).

Taking the infimum over all φ ∈ Kx0,T and T ∈ (0,∞), we have from (16.25) and
(16.29) that

lim inf
n→∞ −1

n
logSn(V̄) ≥ V (x0) + V̄ (x0),

proving the first statement in the corollary. On the other hand, as was argued previ-
ously,

lim sup
n→∞

−1

n
logSn(V̄) ≤ 2V (x0).

The second statement in the corollary follows. �

Remark 16.17 An examination of the proof shows that the greatest contribution to
the second moment of the estimator is from the correlation of particles that make it
to B and whose last common ancestor is located in one of the thresholds close to B.

Finally, we now show that the work associated with the splitting scheme based
on the sequence {Ū n} grows subexponentially.
Theorem 16.18 Under same conditions and with the same notation as in
Theorem16.15,

lim
n→∞

1

n
log Ex0

[
wn

] = 0,

where wn is defined by the right side of (16.11) replacing Ni by Nn
i

.= ∫
D δ̄Zn

i
(dx).

Proof We know from Theorem16.5 that

Ex0

[
wn

] = enŪ
n(x0)Ex0

[
Mn
∑

i=0

e−nŪn(Xn
i)

]

.

Exactly as in the proof of (16.30), it follows that the large deviation asymptotics of
Ex0 [w

n] are the same as those of

enŪ
n(x0)Ex0

[
Mn∧�nT �∑

i=0

e−nŪn(Xn
i)

]

for some sufficiently large but finiteT . The convergence Ū n(y) − Ū n(x0) → V̄ (y) −
V̄ (x0) and the same line of argument as in the proof of (16.30) show that

466 16 Multilevel Splitting

lim sup
n→∞

1

n
log enŪ

n(x0)Ex0

[
Mn∧�nT �∑

i=0

e−nŪn(Xn
i)

]

≤ − inf
φ∈Kx0 ,T ,T<∞

[∫ T

0
L(φ(s), φ̇(s))ds − (V̄ (x0) − V̄ (φ(T)))

]

.

By the subsolution property (Definition16.12), the quantity to beminimized is always
nonnegative, and so the upper bound follows. Since Ex0 [w

n] ≥ 1 for all n, the lower
bound is automatic, which completes the proof. �

Remark 16.19 Although the subsolution property implies a type of stability as
asserted in Theorem16.18, it could allow for polynomial growth of the number
of particles. If in practice one observes that a large number of particles make it to B
in the course of simulating a single sample, then one can consider the use of a strict
subsolution, i.e., a function V̄ that satisfies the boundary conditions and

V̄ (y) ≤ inf
φ∈Ky,T ,T<∞

[∫ T

0
[L(φ(s), φ̇(s)) − ε]ds + V̄ (φ(T))

]

for some ε > 0. Because the value of V̄ (x0) is lowered slightly, there will be a
slight increase in the second moment of the estimator. However, the strict inequality
provides stronger control, and indeed, the expected number of particles andmoments
of the number of particles are bounded uniformly in n. See [76] for further discussion
and examples. If phrased in terms of H as in Remark16.14, the strict subsolution
property means that H(x, DV̄ (x)) ≥ ε for x ∈ (A ∪ B◦)c.

16.5 Splitting for Finite-Time Problems

By adding time as a state variable, finite-time problems such as those discussed in the
context of importance sampling in Sect. 15.2 can also be be put into the RESTART
framework. Thus the process {Xn

i } is replaced by {(Xn
i , t

n
i)}, where

Xn
i+1 = Xn

i + 1

n
vi (X

n
i), Xn

0 = x0, tni+1 = tni + 1

n
, tn0 = 0.

Consider, for example, the estimation of Px0 {Xn(T) ∈ B}. For this problem, it is
assumed that the rare set B ⊂ R

d does not contain the terminal values φ(T) of
zero-cost trajectories that start at x0, and the typical behavior is {Xn(T) ∈ A} with
A = Bc. (Note that if we wish to continue the reduction to the time-independent
case, then with the state spaceRd+1, we would call the rare set B × {T } ⊂ R

d+1 and
the typical set A × {T }.) The definition of subsolution becomes the following, with
K̄ y,t,T the set of absolutely continuous trajectories φ with φ(t) = y and φ(T) ∈ B.

16.5 Splitting for Finite-Time Problems 467

Definition 16.20 A continuous function V̄ : Rd × [0, T] → R is a subsolution if it
is bounded from below and

V̄ (y, t) ≤ inf
φ∈K̄ y,t,T

[∫ T

t
L(φ(s), φ̇(s))ds + V̄ (φ(T), T)

]

for all (y, t) ∈ R
d × [0, T), and V̄ (z, T) ≤ 0 for z ∈ B.

One can add a “bounding” set as in Remark15.4, which does not change the
requirement for V̄ to be a subsolution, except that A × {T } now also includes the
points Dc × [0, T), and we restrict in the definition to (y, t) ∈ D × [0, T). As in
Remark16.13, a classical or piecewise classical subsolution in the sense of Defini-
tions14.1 and 14.2 is a subsolution in the sense of Definition16.20.

A related problem of interest is to estimate the probability of escaping any time
during the time interval, i.e., Px0{Xn(t) ∈ B for some t ∈ [0, T]}. In this case, one
should replace B in the time-independent setting by B × [0, T], and A by A × {T }.
The definition of subsolution is then the following.

Definition 16.21 A continuous function V̄ : Rd × [0, T] → R is a subsolution if it
is bounded from below and

V̄ (y, t) ≤ inf
φ∈K̄ y,t,s ,t≤s≤T

[∫ s

t
L(φ(s), φ̇(s))ds + V̄ (φ(s), s)

]

for all (y, t) ∈ R
d × [0, T) and V̄ (z, t) ≤ 0 for z ∈ B and t ∈ [0, T].

As an elementary time-dependent example, we consider the case in which the
{vi (x)} are N (0, 1) (and thus independent of x), so that H(α) = α2/2 and L(β) =
β2/2. With B = [1,∞) and T = 1,

V̄ (x, t) = −x + 1

2
t + 1

2

is a subsolution with the optimal value at (0, 0). Splitting thresholds as well as the
start of a simulation with splitting rate R = 3 are depicted in Fig. 16.3.

16.5.1 Subsolutions for Analysis of Metastability

Suppose that x∗ has the property that all zero-cost trajectories are attracted to x∗ in the
sense that for all x0 ∈ R

d , the properties IS(φ) = 0 for all S and φ(0) = x0 imply that
φ(S) → x∗ as S → ∞. Consider the issue of estimating Px∗ {Xn(T) ∈ B}. Assume
for simplicity that Bc is bounded and define

W (x, y) = inf [IS(φ) : φ(0) = x, φ(S) = y, S < ∞] .

468 16 Multilevel Splitting

Fig. 16.3 Splitting
thresholds for
time-dependent problem

B

x = 1

t

x

β∗ = 0.5

t = 1

A

Then W (x, y) is the Freidlin–Wentzell quasipotential [140] relative to the starting
point x . Suppose again for simplicity of presentation that W (x∗, ·) is continuous. In
this context, a particularly convenient subsolution is that of the form

V̄ (y, t) = V̄ (y) = −W (x∗, y) + c.

Here c ∈ R is the largest value such that the boundary condition−W (x∗, y) + c ≤ 0
holds for all y ∈ B.

To see that V̄ (y) is a subsolution, we note that W (x, z) satisfies the dynamic
programming equation

W (x, z) = inf
y∈Rd

[W (x, y) + W (y, z)] ,

from which it follows that for all y ∈ R
d and c ∈ R,

−W (x∗, y) + c ≤ −W (x∗, z) + c + W (y, z).

The definition of W (y, z) then gives [for all φ ∈ K̄ y,t,T and with z = φ(T)] that

V̄ (y) ≤ V̄ (φ(T)) +
∫ T

0
L(φ(s), φ̇(s))ds,

and therefore V̄ is a subsolution. One can show that under appropriate conditions,
as T → ∞,

inf
φ∈K̄x∗ ,t,T :φ(T)∈B

[∫ T

0
L(φ(s), φ̇(s))ds

]

16.5 Splitting for Finite-Time Problems 469

converges to V̄ (x∗), and hence V̄ (y) is a potentially useful subsolution for studying
escape to B from a neighborhood of the attractor x∗ at the end of a long time interval.

With regard to the problem of estimating Px∗ {Xn(t) ∈ B for some t ∈ [0, T]},
V̄ (y) again provides a (time-independent) subsolution with a nearly optimal value
at x∗ when T is large. The argument is similar to the case of Px∗ {Xn(T) ∈ B} and
is hence omitted.

16.6 Notes

Particle splitting methods originate with [166], and are further developed in [30]. A
review of their application to rare-event problems appears in [145], as well as [223].
The RESTART algorithm, which is the focus of this chapter, was first presented in
[241].

Themain source for this chapter is [77],whichuses amore general formulation and
also phrases the assumptions to explicitly include queueing networks and expected
values. Just as with importance sampling, some incorrect uses of large deviation
asymptotics for the design of splitting schemes have been proposed, and a discussion
on these issues can be found in [149].

	16 Multilevel Splitting
	16.1 Notation and Terminology
	16.2 Formulation of the Algorithm
	16.3 Performance Measures
	16.4 Design and Asymptotic Analysis of Splitting Schemes
	16.5 Splitting for Finite-Time Problems
	16.5.1 Subsolutions for Analysis of Metastability

	16.6 Notes

