
Chapter 14
Rare Event Monte Carlo and Importance
Sampling

Suppose that in the analysis of some system, the value of a probability or expected
value that is largely determined by one or a few events is important. Examples include
the data loss in a communication network; depletion of capital reserves in a model
for insurance; motion between metastable states in a chemical reaction network;
and exceedance of a regulatory threshold in a model for pollution in a waterway. In
previous chapterswehave described how large deviation theory gives approximations
for such quantities. The approximations take the form of logarithmic asymptotics,
i.e., exponential decay rates.1 For some purposes, especially when one is seeking
qualitative information on how a rare event occurs, these approximations may be
sufficient. For other purposes they may be inadequate, and a more accurate estimate
is needed.

In this situation it is natural to turn to Monte Carlo approximation. However, as
we will explain in some detail, the Monte Carlo approximation of small probabilities
and related expected values also has difficulties owing to the role of rare events, and
the design of reliable schemes requires great care. It turns out that many of the tools
and constructions used for the large deviation analysis of a given problem can be used
for the problem of designing Monte Carlo schemes that are efficient and reliable.

14.1 Example of a Quantity to be Estimated

To set the context, we consider a particular problem that arises frequently in various
systems, especially communication theory. Let Xn be a Markov process with small
noise of the form analyzed in Chap. 4. Thus we are given iid random vector fields
{vi (x), i ∈ N0, x ∈ R

d} on some probability space, and for each x ∈ R
d vi (x) has

1For certain special structures one can obtain more accurate approximations, e.g., approximations
which identify both the exponential rate of decay as well as “pre-exponential” terms.
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distribution θ(·|x), where θ(dy|x) is a stochastic kernel on R
d given R

d . Then the
discrete time Markov process {Xn

i }i∈N0 is constructed through the recursion

Xn
i+1 = Xn

i + 1

n
vi (X

n
i ), Xn

0 = x, (14.1)

and the continuous time interpolation is defined by

Xn(t) = Xn
i + [

Xn
i+1 − Xn

i

]
(nt − i) , t ∈ [i/n, i/n + 1/n] , i ∈ N0. (14.2)

Let Px denote probability conditioned on Xn
0 = x and integration with respect to Px

by Ex . The problem of interest is then to evaluate

pn(x)
.= Px

{
Xn enters B before entering A

}
, (14.3)

where A is open, B is closed, and A ∩ B = ∅. For reasons that will become clear
later, we explicitly record the initial condition in the notation, even though for many
problems there may be only one initial condition of interest.

Under Conditions 4.3 and 4.7 or Conditions 4.3 and 4.8, Theorem 4.9 shows that
for every T ∈ (0,∞), {Xn}n∈N regarded as a collection of stochastic processes over
the time horizon [0, T ] satisfies an LDP. Let IT denote the corresponding rate func-
tion, and recall that IT (φ) = 0 characterizes the LLN limit trajectories of {Xn}n∈N.
We will assume that A is an attractor of the LLN limit with nonempty interior and
that B is in some sense rare. See Fig. 14.1. The trajectories in the figure are assumed
to satisfy IT (φ) = 0 for all T ∈ (0,∞), and for all initial conditions φ(t) enters A
as t → ∞.

Fig. 14.1 Stability of the
zero cost trajectories

IT (φ) = 0
B

x

A
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Recall the notation

H(y, α) = log E exp {〈α, vi (y)〉} , L(y, β) = sup
α∈Rd

[〈α, β〉 − H(y, α)]

from Chap. 4. Under appropriate regularity conditions the large deviation principle
for {Xn} implies

− 1

n
log Px

{
Xn enters B before entering A

} → V (x), (14.4)

where

V (x)
.= inf

[∫ T

0
L(φ(t), φ̇(t))dt : φ ∈ Cx,T , T < ∞

]
,

and with

Cx,T
.= {φ(0) = x, φ(t) ∈ B for some t ∈ [0, T ] and φ(s) /∈ A for s ∈ [0, t]} .

The proof of (14.4) is typically carried out by reducing the analysis to that over a
finite time interval and then invoking the large deviation principle for {Xn} over finite
time intervals (see Condition 15.18 and Proposition 15.19).

14.1.1 Relative Error

Recall that the problem of interest is to estimate the probability

pn(x)
.= Px

{
Xn enters B before entering A

}
.

LetCx
.= ∪T∈(0,∞)Cx,T be the trajectories that enter B before entering A after starting

at x . To apply straightforward Monte Carlo, one would simulate K independent
copies

{
Xn,k

}
k=1,...,K of Xn , and then form the estimate

p̂nK (x)
.= 1

K

K∑

k=1

1{Xn,k∈Cx}.

Note that k here is the index of the sample and not the time step, and that depending
on the problem, the computational expense of simulating a single trajectory can vary
greatly.
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The variance of a single sample is

Var
(
1{Xn,k∈Cx}

)
= Ex

[
1{Xn,k∈Cx} − Ex1{Xn,k∈Cx}

]2

= Ex1{Xn,k∈Cx} −
(
Ex1{Xn,k∈Cx}

)2

= pn(x) − [pn(x)]2,

and if pn(x) is small [pn(x)]2 can be neglected. The relative error, which is defined
by the ratio of the standard deviation of p̂nK (x) and pn(x), is then

√
Var( p̂nK (x))

pn(x)
≈

√
pn(x)

K
· 1

pn(x)
=

√
1

Kpn(x)
.

When considering rare events it is essential to use relative error as the figure of
merit, since the variance can be small (or conversely big in some situations involving
expected values) in absolute terms, and yet provide an estimate that is orders of
magnitude off, and therefore quite inaccurate in a relative sense.

For the example problem, to obtain a relative error of roughly size 1 requires
K ≈ (pn(x))−1 samples. This is computationally infeasiblewhen pn(x) is very small
(e.g., 10−5), or even when pn(x) is not so small if the computational effort needed
to generate samples of Xn is great. For example, consider the problem of estimating
the probability of an unusually large concentration of pollutant in a model for ground
water contamination. The generation of each sample would typically involve solving
a time dependent stochastic partial differential equation, and hence each sample is
computationally expensive.

An alternative to standard Monte Carlo is to construct iid random variables
γ n
1 , . . . , γ n

K with Exγ
n
1 = pn(x), and use the estimator

q̂n
K (x)

.= γ n
1 + · · · + γ n

K

K
.

The performance as with ordinary Monte Carlo is determined by variance of γ n
1 ,

and since the estimator is unbiased [i.e., Exγ
n
1 = pn(x)], minimizing the variance is

equivalent to minimizing Ex
(
γ n
1

)2
.

It is straightforward to obtain bounds on the best possible performance. For exam-
ple, by Jensen’s inequality and (14.4)

− 1

n
log Ex

(
γ n
1

)2 ≤ −2

n
log Exγ

n
1 = −2

n
log pn(x) → 2V (x). (14.5)

Hence the decay rate for the second moment cannot possible exceed 2V (x). An
estimator is called asymptotically efficient if
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lim inf
n→∞ −1

n
log Ex

(
γ n
1

)2 = 2V (x),

i.e., the optimal decay rate is achieved.
One could consider more stringent measures of performance, such as bounded

relative error: there is K < ∞ such that

lim sup
n→∞

√
Var(γ n

1 )

pn(x)
≤ K ,

or vanishing relative error [183].While bounded relative error is certainly a desirable
feature, it can be achieved only for the most elementary process models and events,
such as the probability that a homogeneous random walk escapes from a set with
simple structure. State dependence in the dynamics or even more complex situations
(e.g., Markovmodulated noise, multiscale dynamics) usually make it very difficult to
construct schemeswith (provable) bounded relative error.However,while asymptotic
efficiency may be a more practical figure of merit, the logarithmic scaling can wipe
out important terms in the variance that depend on other system parameters, such
as another exponential scaling in terms of a time variable. Thus while more flexible
and realistic than bounded relative error, it must be used with caution, and in all
cases no single performance measure can replace a careful analysis of the variance
and its dependence on all important system parameters. If different methods vary
significantlywith regard to the computational cost of implementation, then that aspect
should also be factored into the performance measure.

We will discuss two well known methods used to design random variables
{
γ n
k

}

that are unbiased, which can be simulated with reasonable effort, and for which one
may hope to get good performance: importance sampling and splitting schemes.
For the remainder of this chapter and in Chap. 15 we focus on importance sampling
(IS), and then in Chap. 16 turn to splitting. While many of the constructions needed
for the successful design and analysis are essentially the same for both approaches,
there are also interesting differences, some of which will be discussed at the end of
Chap. 17.

We stress that for any approach to problems of rare event estimation a rigorous
and independent analysis of performance is very important, since typical methods
one would use to assess accuracy of the estimates (e.g., the empirical variance) are
prone to the same difficulties and errors which can affect the estimates themselves.
This point will be illustrated via a numerical example in the next section.

14.2 Importance Sampling

The basic formulae of importance sampling are as follows. Suppose that X has
distribution θ , where X takes values in a Polish space S. Suppose that G : S → R

is Borel measurable and integrable with respect to θ , and the goal is to estimate
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m = EG(X). Consider an alternative sampling distribution π . It is required that θ be
absolutely continuous with respect to π , so that the Radon-Nikodym derivative (also
called the likelihood ratio in this context) f (x)

.= (dθ/dπ)(x) exists. Iid samples
Y0,Y1, . . . with distribution π are generated, and the estimate

m̄K
.= 1

K

K−1∑

k=0

G(Yk) f (Yk)

is formed. Since

EG(Yk) f (Yk) =
∫

S
G(x) f (x)π(dx) =

∫

S
G(x)θ(dx) = m,

m̄K is an unbiased estimate of m, with a rate of convergence determined by

var [G(Y0) f (Y0)] =
∫

S
G(x)2 f (x)θ(dx) −

[∫

S
G(x)θ(dx)

]2

.

StandardMonte Carlo corresponds to f = 1, and the goal of importance sampling
is to choose f in such a way that: (i) the variance is lowered significantly, and (ii)
sampling fromπ is not too difficult. Note thatminimizing the variancewith respect to
f is equivalent to minimizing the second moment, and so if posed as an optimization
problem, one can use the simpler second moment in lieu of variance. Note also
that without further restriction on the class of sampling measures the problem is in
some sense ill-posed. For example, suppose θ is supported on [0,∞), and θ(dx) =
g(x) dx . Let G(x)

.= x so that m = EX �= 0 and let π(dx)
.= m−1xg(x) dx . Then

θ is absolutely continuous with respect to π , with f (x) = m/x . Furthermore,

var [Y0 f (Y0)] =
∫

[0,∞)

x2 f (x)θ(dx) − m2 = 0.

However, such a distribution π is of little use in practice since it requires knowledge
ofm, the very thing we want to estimate! Instead of this unconstrained optimization,
one typically seeks to minimize over parameterized families of alternative sampling
distributions.

14.2.1 Importance Sampling for Rare Events

We now return to the discrete time model of Sect. 14.1. Recall the notation

H(y, α) = log E exp {〈α, vi (y)〉} , L(y, β) = sup
α∈Rd

[〈α, β〉 − H(y, α)] , (14.6)
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and consider the problem of estimating pn(x) as defined in (14.3). When pn(x) is
small (e.g., on the order of say 10−6) ordinary Monte Carlo attempts to estimate this
number as a convex combination of 0’s and 1’s. The goal of importance sampling
(and indeed any accelerated Monte Carlo scheme) is to produce estimators whose
distribution is more closely clustered around the target value of 10−6.

As we have just noted, the problem of optimizing over all changes of measure
is in some sense ill-posed, and thus the first question is, “what are natural changes
of measure?” A hint is provided by the analysis of Chap. 4. The control measures
μ̄n
i of the weak convergence approach correspond to a change of measure for the

noise sequence. An a posteriori conclusion of the large deviation analysis is that
exponential changes of measure are asymptotically optimal in the representation.
(See, for example, the measures γ defined in part (g) of Lemma 4.16, and their use
in the proof of the Laplace lower bound proof in Sect. 4.7.) Exponential changes of
measure have a finite dimensional parameterization, and thus are convenient to work
with. Recalling that {vi (x), i ∈ N} are iid with distribution θ(dv|x) and associated
log moment generating functions H(x, α), this suggests that measures of the form

ηα(dv|x) = e〈α,v〉−H(x,α)θ(dv|x)

be used to generate the noise sequence under the new distribution.Wewill show later
on that changes of measure within this class are sufficient for asymptotic optimality.
The parameter α can be thought of as a control, which is selected to produce good
performance of the resulting Monte Carlo scheme. In this context ηα is sometimes
referred to as an exponential tilt of θ , with α the tilt parameter.

While more complicated dependencies could be considered, it will turn out (for
the models of Chap. 4) that allowing α to depend on time and the current state of
the simulated trajectory will be sufficient for asymptotic optimality. Thus a control
scheme (i.e., a change ofmeasure) will be characterized as a collection ofmeasurable
mappings αn

i : Rd → R
d , defined for i ∈ N0. The generation of a single sample as

well as the likelihood ratio needed to estimate pn(x) then proceeds as follows.
We initialize with Y n

0 = x . A sequence of noises wn
i and states Y n

i+1 are then
generated recursively by

Px
{
wn
i ∈ dv

∣∣F n
i

} = ηαn
i (Y n

i )(dv|Y n
i ), withF n

i = σ
(
wn

j , j = 0, . . . , i − 1
)

and

Y n
i+1 = Y n

i + 1

n
wn
i .

The simulation proceeds up until

Nn .= inf
{
i : Y n

i ∈ A ∪ B
}
,

and we define Y n(t) to be the piecewise linear interpolation, so that 1{Y n∈Cx } means
B was entered before A. The likelihood ratio is then
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Nn−1∏

i=0

dθ(·|Y n
i )

dηαn
i (Y n

i )(·|Y n
i )

(wn
i ) =

Nn−1∏

i=0

e−〈αn
i (Y n

i ),wn
i 〉+H(Y n

i ,αn
i (Y n

i )),

and the estimate based on a single sample is thus

1{Y n∈Cx }
Nn−1∏

i=0

e−〈αn
i (Y n

i ),wn
i 〉+H(Y n

i ,αn
i (Y n

i )). (14.7)

As discussed previously, one then simulates K independent copies of (14.7) and
takes the sample average, where K depends on the variance of a single sample and
the desired accuracy.

We recall that performance is determined by the variance of a single sample, and
minimizing this is the same as minimizing the second moment. The second moment
of (14.7) is

Ex

[

1{Y n∈Cx }
Nn−1∏

i=0

e−2〈αn
i (Y n

i ),wn
i 〉+2H(Y n

i ,αn
i (Y n

i ))

]

,

which when rewritten in terms of the distribution of the original process
{
Xn
i

}
takes

the form

Ex

[

1{Xn∈Cx }
Nn−1∏

i=0

e−〈αn
i (Xn

i ),vi (X
n
i )〉+H(Xn

i ,α
n
i (Xn

i ))

]

.

14.2.2 Controls Without Feedback, and Dangers in the Rare
Event Setting

Since one of the classical approaches to the large deviation lower bound involves a
change of measure argument, it is natural to ask if there is a connection between the
change of measure (equivalently control measure) used there to prove bounds for a
particular event or expected value, and a change of measure that would produce a
good IS scheme for that same event. Note that there are actually many changes of
measure that could be used to prove the lower bound. Here we mean the one that
is typically used in the proof, and which uses a deterministic sequence αn

i (x) that
depends on i but not x , which we refer to as an “open loop” control. It turns out that in
some special circumstances one can achieve asymptotic optimalitywithin the class of
open loop controls (e.g., [232]), and for some time it was generally thought that using
this lower bound change of measure would work well in general. This turned out to
be false, and indeed the class of schemes that had been considered up to that time
turned out to be, in general, inadequate. In this section we illustrate the issue through
an example due to [150]. The techniques we develop to understand the particular
example are broadly useful for understanding rare event importance sampling. Of
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special importance is the game characterization of performance described in the next
section.

The example is as follows. Suppose that vi (Xn
i ) are in fact independent of Xn

i ,
i.e., that they are just an iid sequence with distribution θ . We further assume d = 1
and that Xn

0 = 0 (for the rest of this section we write P and E rather than P0 and
E0). Then Xn

i is a random walk, and Xn
n = 1

n

∑n−1
i=0 vi is just the sample mean, i.e.,

we are in the setting of Cramér’s theorem with rate function L(β) (see Sect. 3.1.6).
Let B ⊂ R, and suppose we want to estimate P

{
Xn
n ∈ B

}
by importance sampling.

The heuristic just described to construct an alternative sampling distribution is
straightforward to implement. Let β∗ solve inf[L(β) : β ∈ B] (and assume the infi-
mumover the interior and closure of B are the same). Ifα∗ is dual toβ∗, i.e., ifα∗ is the
point thatmaximizes in the relation L(β∗) = supα∈R[αβ∗ − H(α)], then as discussed
in Chap. 4 [see part (g) of Lemma 4.16], the mean of ηα∗(dv)

.= eα∗v−H(α∗)θ(dv) is
exactly β∗, and μn

i = ηα∗ is the control one could use to prove the large deviation
lower bound. Since this problem is over a fixed time horizon, the single sample
estimate is just

1{Y n
n ∈B}

n−1∏

i=0

e−α∗wn
i +H(α∗) = 1{Y n

n ∈B}e−n[α∗Y n
n −H(α∗)].

One can now describe the shortcomings of the open loop heuristic. Assume that θ

is Gaussian N (0, 1) and consider the nonconvex set B = (−∞,−0.25] ∪ [0.2,∞)

(see Fig. 14.2). For this process L(β) = β2/2, H(α) = α2/2, and α∗ = β∗ = 0.2,
and the change of measure will shift the mean to this value. If all goes according to
plan and the simulated trajectory ends up near β∗, then the likelihood ratio will be
near exp {−n [α∗β∗ − H(α∗)]} = exp {−nL(β∗)}. Thus the estimator is either zero
or close to the large deviation approximation to the probability, which is just the sort
of qualitative behavior that is needed. However, it is also possible that an event that
is rare under the ηα∗(dv) distribution may occur, and one can end up with Y n

n that is
in the interval (−∞,−0.25]. Such an occurrence is labeled the “rogue” simulation
in Fig. 14.2 . When this happens, the likelihood ratio will be approximately

exp
{−n

[
α∗β̄ − H(α∗)

]} = exp

{
n

[
0.2 × 0.25 + 1

2
(0.2)2

]}
.

This quantity grows exponentially in n and, while the event itself might be rare, it
happens often enough that the variance of the estimate is very large, and even larger
than standard Monte Carlo!

In this example the true probability for n = 60 is pn = 8.71 × 10−2, which can
be calculated using the known distribution of Xn

n . The data in Table 14.1 reflect
four trials of K = 5000 replications. The “standard error” is the estimated standard
deviation for the entire trial, and Ŝn is the estimate of the second moment based on
the data.
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Fig. 14.2 An expected trajectory and a rogue trajectory

Table 14.1 Importance sampling implementation based on an open loop control

No. 1 No. 2 No. 3 No. 4

Estimate p̂n (×10−2) 18.36 7.51 5.95 8.02

Standard error (×10−2) 7.41 1.37 0.118 1.80

95% confidence interval (×10−2) [3.83, 32.89] [4.82, 10.20] [5.72, 6.18] [4.49, 11.55]
Number of “rogue” trajectories 3 1 0 1

(− log Ŝn)/(− log p̂n) −1.96 0.0210 1.62 −0.193

The first, second and fourth trials have 3, 1 and 1 “rogue” trajectories, respectively.
In contrast the third has none. While the third estimate has a small standard error
and associated confidence interval, the interval does not contain the true value. The
estimate is smaller than the true value, reflecting the fact that the estimate has never
sampled from the interval (−∞,−0.25], and is therefore in some sense providing an
estimate of only the probability to end in [0.2,∞). Both the estimate and the estimate
of the standard deviation are misleading, and it is in fact the same difficulties that
affect the estimation of pn that make the confidence interval essentially useless,
though one does not a priori know this is the case. Because of this, an independent
theoretical (and not only data driven) analysis of errors is important for rare event
Monte Carlo estimation. All of the other trials include at least one rogue trajectory,
which is needed to avoid the bias of trial 3. The estimates may be far from the true
value, but in this case at least the confidence intervals are correctly indicating this
fact. If the estimates were accurate, (− log Ŝn)/(− log p̂n) should be close to 2 for
asymptotic optimality. This appears to be to some degree valid for trial 3, but for
reasons mentioned previously this is misleading.

One could argue that the difficulties encountered in this example can be avoided
by splitting the problem into that of estimating two half-infinite intervals.While such
an approach would work here, it will fall apart as soon as one considers problems in
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higher dimensions or even slightly more complicated dynamics. What is needed is a
global approach that properly controls the likelihood ratio for any possible simulated
trajectory.

14.2.3 A Dynamic Game Interpretation of Importance
Sampling

Further insight into the difficulties of IS in the rare event setting can be obtained
by modeling the performance in terms of prelimit small noise stochastic game and
limiting deterministic differential game. Although in this section we develop this
connection only for the simple randomwalkmodel just discussed, it is easily adapted
to other situations. Suppose that for the iid random walk model and problem of the
last section we consider, instead of the constant control α∗ suggested by the standard
heuristic, a collection of sampling controls of the general formαn

i (x), and in particular
assume

αn
i (Y

n
i ) = u(Y n

i , i/n)

for some smooth function u : R × [0, 1] → R (we assume d = 1 for simplicity). In
this case, the second moment of a single sample, and hence the performance of the
scheme, is given by the exponential integral

E

[

1{Y n
n ∈B}

n−1∏

i=0

e−2u(Y n
i ,i/n)wn

i +2H(u(Y n
i ,i/n))

]

,

which we can rewrite in terms of the original process as

E

[

1{Xn
n∈B}

n−1∏

i=0

e−u(Xn
i ,i/n)vi+H(u(Xn

i ,i/n))

]

.

Note that this is the sort of Laplace functional for which relative entropy represen-
tations are derived in Chaps. 3 and 4 (see for example Proposition 3.1 and Theorem
4.5), although previously we have assumed (e.g., in Proposition 2.3) that the quan-
tity appearing in the exponent was at least bounded either from above or below. This
boundedness will not hold if the support of {vi } is unbounded above and below. Set-
ting aside the issue of boundedness, the quantity in the last display is still expected
to scale exponentially in n, and thus it is natural to consider the log transform. Using
the same notation for the controls (measures) and controlled processes as in Sect.
4.2, we formally have
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− 1

n
log E

[

1{Xn
n∈B}

n−1∏

i=0

e−u(Xn
i ,i/n)vi+H(u(Xn

i ,i/n))

]

= inf{μ̄n
i }
E

[
1

n

n−1∑

i=0

R
(
μ̄n
i ‖θ

)

+ 1

n

n−1∑

i=0

[
u(X̄ n

i , i/n)v̄i − H(u(X̄ n
i , i/n))

] + ∞1Bc

(
X̄ n
n

)
]

.

Keeping in mind that to minimize the variance we will supremize the right hand side
over u(·, ·), the optimal variance is then characterized in terms of a discrete time
small noise stochastic game. One player (corresponding to u) is given in feedback
form as a function of the state and seeks to maximize. The other player (with controls{
μ̄n
i

}
) arises from the representation, and seeks to minimize. This player’s controls

can depend on the state (in fact the whole history) as well as u, and since it seeks to
minimize the cost, must drive the process into B at time n with probability one. Note
that the class of open loop controls as they would be used in IS schemes correspond
to eliminating state feedback in u, i.e., restricting to the form u(x, s) = u(s).

One can calculate the limit in the last display using the same weak convergence
methods as those used in Chap. 4 to study the LDP for {Xn}, and for a fixed bounded
and continuous control u the limit is characterized by the optimization problem

J [u] = inf
φ

[∫ 1

0

[
u(φ(t), t)φ̇(t) − H(u(φ(t), t)) + L(φ̇(t))

]
dt + ∞1Bc (φ(1))

]
,

where the infimum is over absolutely continuous φ with φ(0) = 0.
The quantity J [u] gives the rate of decay of the second moment of the IS

scheme that uses the sampling control αn
i (Y

n
i ) = u(Y n

i , i/n) to dynamically choose
the change of measure. For the purposes of IS scheme selection, one can consider
this simpler limit problem which characterizes the rate of decay. Thus we consider
U = supu(·,·) J [u]. This is a type of deterministic differential (or dynamic) game,
where φ̇ (replacing

{
μ̄n
i

}
) attempts to minimize (in open loop form) and u attempts

to maximize (in feedback form, but u must be selected before φ is chosen).
Suppose we extend the definition to allow for an arbitrary initial condition (x, t)

(i.e., we consider the cost over [t, 1] and with φ(t) = x), and denote the correspond-
ing optimal rate of decay by U (x, t). Let Ut be the partial with respect to t and
DU (x, t) the gradient in x . Then U (x, t) will be a viscosity solution to

Ut (x, t) + sup
α∈R

inf
β∈R

[DU (x, t)β + αβ − H(α) + L(β)] = 0 (14.8)

and the terminal condition

U (x, 1) = ∞ for x ∈ Bc and U (x, 1) = 0 for x ∈ B. (14.9)

For properties of viscosity solutions that will be used here (though these arguments
are only intended to be formal), we refer to [14].
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We will not delve deeply into the nuances of differential games, since this game
has a special structure which allows a reduction to a much simpler problem. Using
the Minimax theorem [233] and that L is the Legendre-Fenchel transform of H , we
observe that

sup
α∈R

inf
β∈R

[pβ + αβ − H(α) + L(β)] = inf
β∈R

sup
α∈R

[pβ + αβ − H(α) + L(β)]

= inf
β∈R

[pβ + 2L(β)] .

Not surprisingly then, the PDE (14.8) is closely related to ones that are connected
with the large deviation rate function for the original process. Define H(p)

.=
infβ∈R [pβ + L(β)]. This form of the Legendre transform, which is natural when
discussing PDEs, is related to the form usually used in large deviation theory (e.g.,
a log moment generating function) by H(p) = −H(−p). Then the Isaacs equation
(14.8) can be rewritten as

Ut (x, t) + 2H(DU (x, t)/2) = 0.

Suppose we consider the probability P{Xn
n ∈ B}, but generalize to allow an arbitrary

initial point x and starting time i/n. Let

V n(x, i/n)
.= −1

n
log P

⎧
⎨

⎩
x + 1

n

n−1∑

j=i

vi ∈ B

⎫
⎬

⎭
.

If i/n → t as n → ∞, then by Cramér’s theorem V n(x, i/n) → V (x, t)
.= inf[(1 −

t)L(β) : x + (1 − t)β ∈ B], and it is straightforward to verify that V (x, t) is a vis-
cosity solution to the problem with the same terminal condition (14.9) as U and the
PDE

Vt (x, t) + H(DV (x, t)) = 0. (14.10)

Using the fact that a comparison principle holds for viscosity solutions to these
PDE, is follows that U (x, t) = 2V (x, t), which is consistent with the claim made
previously (see Sect. 14.1.1) that the best possible rate of decay for the second
moment of any IS is precisely twice the large deviation rate. It in fact suggests more,
which is that within the class of IS schemes based on feedback and exponential
changes of measure, one can in fact achieve this best decay rate.

The situation just described, which we have presented here in the context of
Cramér’s theorem and for a particular event, is in fact generic under the small noise
large deviation scaling [116]. Note the remarkable fact that the equation for U ,
which models a game, turns out to be equivalent to the equation for V , which models
a calculus of variations or control problem [14]. The Isaacs equation forU identifies
(at least for smooth solutions) optimal controls for both players. Evaluating the
infimum in β in (14.8) gives



396 14 Rare Event Monte Carlo and Importance Sampling

sup
α∈R

inf
β∈R

[DU (x, t)β + αβ − H(α) + L(β)]

= sup
α∈R

[

− sup
β∈R

[−(DU (x, t) + α)β − L(β)] − H(α)

]

= − inf
α∈R

[H(−DU (x, t) − α) + H(α)] .

Suppose that the distribution of vi does not concentrate on a single point, so that H
is strictly convex. Then the optimal α is given by the unique solution of H ′(α) =
H ′(−DU (x, t) − α), which is α = −DU (x, t)/2. In terms of the value function
associated with the large deviation control problem this is simply α = −DV (x, t).
Although it is not needed or used, the optimal control for the large deviation player
[but for the second moment, and not for the original event!] can be found by solving
L ′(β) = −DU (x, t)/2.

It turns out that one does not need to solve the game or control problem, and in
fact the construction of suitable subsolutions to the associated PDE (14.10) will be
sufficient for a certain level of performance, in a sense that will be made precise in
Chap. 15. This is a significant simplification, because for many interesting classes of
problems such subsolutions can be constructed explicitly. The reason subsolutions
suffice is because the goal in algorithm design is lower bounds on the rate of decay of
the second moment. The verification of these one-sided bounds require only certain
inequalities, which coincide with the subsolution definition.

In the next section the definitions of classical and piecewise classical subsolution
are given. It will turn out to be much easier for many problems to find appropriate
piecewise classical subsolutions, so this generalization is important. We also spell
out how the various subsolutions generate sampling schemes.

14.3 Subsolutions

We will describe the subsolutions needed for both finite time problems (as in Sect.
14.2.2) and exit probability problems (as in Sect. 14.1.1).Webeginwith thefinite time
problem, which generalizes the example used in Sect. 14.2.2. Processes will be of
interest on a continuous time interval of the form [0, T ], T < ∞, and to simplify the
notation we assume Tn is an integer. As in Section 14.1 let {vi (x), i ∈ N0, x ∈ R

d}
be iid random vector fields given on some probability space with the property that
for each x ∈ R

d vi (x) has distribution θ(·|x), where θ(dy|x) is a stochastic kernel
on R

d given R
d . Recall the discrete time Markov process {Xn

i }i=0,...,Tn defined by
the recursion

Xn
i+1 = Xn

i + 1

n
vi (X

n
i ), Xn

0 = x0,

and the continuous time interpolation defined by
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Xn(t) = Xn
i + [

Xn
i+1 − Xn

i

]
(nt − i) , t ∈ [i/n, i/n + 1/n] , i = 0, 1, . . . , Tn.

Also, we assume H(x, α) = log E exp {〈α, vi (x)〉} < ∞ for all x ∈ R
d and α ∈ R

d .
The importance sampling problem of interest is to estimate

Px0
{
Xn(T ) ∈ B

}
,

where B ⊂ R
d . As for the one dimensional setting considered in Sect. 14.2.3, the

PDE that characterizes the large deviation rate and half the optimal rate of decay for
an asymptotically optimal importance sampling scheme is

Vt (x, t) + H(x, DV (x, t)) = 0 (14.11)

for (x, t) ∈ R
d × [0, T ), where H(x, p) = −H(x,−p). The terminal condition is

V (x, T ) = ∞ for x ∈ Bc and V (x, T ) = 0 for x ∈ B. (14.12)

Definition 14.1 A function V̄ : Rd × [0, T ] → R is a classical sense subsolution
(or simply a classical subsolution) if it is continuously differentiable in both variables
and if

V̄t (x, t) + H(x, DV̄ (x, t)) ≥ 0

for all (x, t) ∈ R
d × [0, T ) and

V̄ (x, T ) ≤ ∞ for x ∈ Bc and V̄ (x, T ) ≤ 0 for x ∈ B.

Note that the condition V̄ (x, T ) ≤ ∞ for x ∈ Bc is vacuous. Let ∧J
j=1a j denote

the minimum of real numbers a j , j = 1, . . . , J .

Definition 14.2 A function V̄ : Rd × [0, T ] → R is a piecewise classical sense
subsolution (or simply a piecewise classical subsolution) if the following hold.
There are J ∈ N and functions V̄ ( j) : Rd × [0, T ] → R, j = 1, . . . , J , that are con-
tinuously differentiable in both variables and satisfy

V̄ ( j)
t (x, t) + H(x, DV̄ ( j)(x, t)) ≥ 0

for all (x, t) ∈ R
d × [0, T ). Moreover V̄ (x, t)

.= ∧J
j=1V̄

( j)(x, t) satisfies

V̄ (x, T ) ≤ ∞ for x ∈ Bc and V̄ (x, T ) ≤ 0 for x ∈ B.

Example 14.3 Consider again the iid random walk example of Sect. 14.2.2, where
H(α) = log Eeαvi and {vi }i∈N are iid real random variables with mean zero. Without
loss of generalitywe take the time horizon T = 1. The set B in the examplewas of the
form (−∞, β̄] ∪ [β∗,∞), with β̄ < 0 < β∗. The solution to (14.11) and (14.12) is
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V (x, t) = inf
[
(T − t)L(β) : x + (T − t)β ∈ (−∞, β̄] ∪ [β∗,∞)

]
.

For this example it is natural to look for a piecewise classical subsolution as the min-
imum of two functions. One can easily construct solutions to the PDE by assuming
the simple form−ax + bt + c and requiring that b + H(−a) = b − H(a) = 0 hold.
If α̂ and β̂ are convex dual points, i.e.,

L(β̂) = sup
α∈R

[
αβ̂ − H(α)

]
= α̂β̂ − H(α̂),

we obtain the solution −α̂(x − β̂) + (L(β̂) − α̂β̂)[1 − t], which corresponds to the
terminal condition −α̂(x − β̂). Note that since Evi = 0 Jensen’s inequality implies
H(α̂) ≥ 0, and so α̂β̂ ≥ 0. Thus β̂ > 0 if and only if α̂ > 0.

We conclude that the two solutions

V̄ (1)(x, t) = −α∗(x − β∗) + (L(β∗) − α∗β∗)[1 − t],
V̄ (2)(x, t) = −ᾱ(x − β̄) + (L(β̄) − ᾱβ̄)[1 − t],

which correspond to the terminal conditions indicated in Fig. 14.3, generate the
piecewise classical subsolution V̄

.= V̄ (1) ∧ V̄ (2). Note that since the (α, β) pairs are
convex dual points, α∗ and ᾱ generate changes of measure with the means β∗ and β̄,
respectively. See Fig. 14.4. The dotted line in the figure represents points (x, t) for
which V̄ (1)(x, t) = V̄ (2)(x, t). Note that the subsolution V̄ (x, t) has a much simpler
structure than the solution V (x, t), but it also has the same (maximal) value at (0, 0),
namely

[
L(β∗) ∧ L(β̄)

]
.

Consider next the problem of entering a rare set B before a typical set A (Fig.
14.5). Thus the importance sampling problem is to estimate

Px0
{
Xn enters B before entering A

}
.

B B

β̄ β∗

G(x)

−ᾱ(x − β̄) −α∗(x − β∗)

Fig. 14.3 Terminal condition corresponding to a subsolution
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B

B

t

x

β∗ = 0.2

β̄ = −0.25

Fig. 14.4 Partition of the domain by a piecewise classical subsolution

The definitions for classical and piecewise classical subsolutions are similar to the
finite time case. The relevant PDE is

H(x, DV (x)) = 0, (14.13)

with the boundary condition

V (x) = 0 for x ∈ ∂B. (14.14)

Definition 14.4 A function V̄ : Rd → R is a classical sense subsolution (or simply
a classical subsolution) of (14.13)–(14.14) if it is continuously differentiable and if

H(x, DV̄ (x)) ≥ 0

for all x ∈ (A ∪ B)c, and if

V̄ (x) ≤ 0 for x ∈ B.

Definition 14.5 A function V̄ : Rd → R is a piecewise classical sense subsolu-
tion (or simply a piecewise classical subsolution) if the following hold. For some
J ∈ N there are functions V̄ ( j) : Rd → R, j = 1, . . . , J , that are continuously dif-
ferentiable and satisfy

H(x, DV̄ ( j)(x)) ≥ 0

for all x ∈ (A ∪ B)c. Moreover V̄ (x)
.= ∧J

j=1V̄
( j)(x) satisfies

V̄ (x) ≤ 0 for x ∈ B.

Remark 14.6 (boundary condition for ∂A) In general one should specify a bound-
ary condition for A as well. Since we have taken A to be open, the appropriate



400 14 Rare Event Monte Carlo and Importance Sampling

Fig. 14.5 Subsolution for
the exit problem

B

A
V̄ (x) ≤ ∞

V̄ (x) ≤ 0

x0

H(x,DV̄ (x)) ≥ 0

boundary condition is the one which corresponds to a “state space constraint” [234].
For example, if ∂A were smooth with x ∈ ∂A and n an outward normal to A at x ,
then the classical formulation of the state space constraint is

inf
β:〈β,n〉≥0

[〈DV (x), β〉 + L(x, β)] = 0,

which reflects the fact that any candidate trajectory in the definition of V (x) cannot
enter A. Since our approach to rare event simulation is based on the construction
of suitable classical and piecewise classical subsolutions, this boundary condition
is vacuous. Indeed, we will assume that V̄ is a subsolution in the sense of either
Definition14.4or 14.5, and as a consequence theboundary condition for a subsolution
will hold automatically. For example, in the context of Definition 14.4

inf
β:〈β,n〉≥0

[〈
DV̄ (x), β

〉 + L(x, β)
] ≥ inf

β∈Rd

[〈
DV̄ (x), β

〉 + L(x, β)
]

= −H(x,−DV̄ (x))

= H(x, DV̄ (x))

≥ 0.

For a piecewise classical subsolution the concavity of H(x, p) gives the analogous
bound. If instead we had assumed that A is closed with the attractor in the interior
of A, the appropriate boundary condition (V (x) = ∞ for x ∈ ∂A) would again be
vacuous when used to characterize a subsolution (V̄ (x) ≤ ∞ for x ∈ ∂A). The fact
that these boundary conditions are vacuous can also be seen from the proofs of
asymptotic optimality, where they play no role.
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Of course there are many other types of events and (risk-sensitive) expected values
that one could consider, and the interested reader can find the appropriate definitions
of subsolutions for many of these in the references and Sect. 14.5. However, the two
examples of this section will suffice to illustrate the main points.

14.4 The IS Scheme Associated to a Subsolution

We next discuss importance sampling schemes associated with a particular subsolu-
tion. Consider first the finite time problem. As discussed at the end of Sect. 14.2.3,
if a smooth solution V (x, t) to the HJB equation were available, then the correct
change of measure if the current state of the simulated trajectory is at Y n

i would be
to replace the original distribution on the noise vi (Y n

i ), i.e., θ(dv|Y n
i ), by

ηα(dv|Y n
i ) = e〈α,v〉−H(Y n

i ,α)θ(dv|Y n
i ) with α = −DV (Y n

i , i/n).

If one is using a classical subsolution V̄ to design a scheme we follow exactly the
same recipe, and the resulting second moment, rewritten in terms of the original
random variables and process model, will equal

Sn(V̄ )
.= Ex0

[
1{Xn

Tn∈B}
∏Tn−1

i=0 e〈DV̄ (Xn
i ,i/n),vi (Xn

i )〉+H(Xn
i ,−DV̄ (Xn

i ,i/n))
]
. (14.15)

Rigorous asymptotic bounds on Sn(V̄ ) will be derived in Sect. 15.2. It is shown in
Theorem15.1 that the decay rate of the secondmoment is bounded below by V (x0, 0)
(the large deviation decay rate for the starting point x0) plus V̄ (x0, 0). If V̄ (x0, 0) =
V (x0, 0) (the maximum possible value) then we have asymptotic optimality.

If dealingwith a piecewise classical sense subsolution, the situation is different. In
such a case the gradient DV̄ is not smooth, and the analysis used to prove asymptotic
performance bounds on Sn(V̄ ) for the smooth case does not apply. In this case we
mollify V̄ and consider two associated importance sampling schemes. To be precise,
for a small parameter δ > 0 the standard mollification

V̄ δ(x, t)
.= −δ log

(
e− 1

δ
V̄ (1)(x,t) + · · · + e− 1

δ
V̄ (J )(x,t)

)
(14.16)

is used. The properties of this mollification are summarized in the following lemma.
The straightforward proof is omitted.

Lemma 14.7 Let V̄ δ be as in (14.16) where each function V̄ ( j), j = 1, . . . , J is
continuously differentiable on R

d × [0, T ]. Define the weights

ρδ
j (x, t)

.= e− 1
δ
V̄ ( j)(x,t)

e− 1
δ
V̄ (1)(x,t) + · · · + e− 1

δ
V̄ (J )(x,t)

.
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Then

DV̄ δ(x, t) =
J∑

j=1

ρδ
j (x, t)DV̄ ( j)(x, t) and V̄ δ

t (x, t) =
J∑

j=1

ρδ
j (x, t)V̄

( j)
t (x, t).

(14.17)
Moreover

e− 1
δ
V̄ (x,t) ≤ e− 1

δ
V̄ δ(x,t) ≤ Je− 1

δ
V̄ (x,t),

and therefore
V̄ (x, t) ≥ V̄ δ(x, t) ≥ V̄ (x, t) − δ log J. (14.18)

Recall that given an initial condition x0, we seek a subsolution for which the
value at (x, t) = (x0, 0) is as large as possible. From the convexity of H and the
properties (14.17) it is easily checked that V̄ δ is a classical subsolution in the sense
of Definition 14.1 whenever V̄ is a piecewise subsolution in the sense of Definition
14.2. The inequality (14.18) together with Theorem 15.1 in Chap. 15 then says
that the mollification may lead to a loss of performance (a lowering of the decay
rate of the second moment) that is at most δ log J (see Theorem 15.1). Thus the
role of the mollification is to define a mixture whose performance is very close to
that of a classical subsolution, without giving up the flexibility and convenience of
piecewise subsolutions. There are (at least) two schemes generated by a subsolution
of the form (14.16), which we call the ordinary implementation and the randomized
implementation.

Ordinary Implementation. Using the fact that V̄ δ is a classical subsolution
whenever V̄ is a piecewise subsolution, we follow the standard procedure for clas-
sical subsolutions. Given that the state of the current simulated trajectory is Y n

i , we
use the sampling distribution ηα(dv|Y n

i ) = e〈α,v〉−H(Y n
i ,α)θ(dv|Y n

i )with tilt parameter
α = −DV̄ δ(Y n

i , i/n) to generate a random variable wn
i with the given (conditional)

distribution. The state of the system is then updated according to Y n
i+1 = Y n

i + wn
i /n,

and we repeat. The likelihood ratio is

Rn({Y n
i ,wn

i }i=0,...,Tn−1) = ∏Tn−1
i=0 e〈DV̄ δ(Y n

i , i
n ),w

n
i 〉+H(Y n

i ,−DV̄ δ(Y n
i , i

n )), (14.19)

and the resulting estimator is 1{Y n(T )∈B}Rn({Y n
i ,wn

i }i=0,...,Tn−1), where Y n(t) is the
continuous time interpolation.

Randomized Implementation. In this case, the estimator is constructed as fol-
lows. Given that the state of the current simulated trajectory is Y n

i , we generate
an independent random variable κn

i ∈ {1, . . . , J } with probabilities ρδ
j (Y

n
i , i/n),

and if κn
i = j then use the sampling distribution with the tilt parameter α =

−DV̄ ( j)(Y n
i , i/n) to generate wn

i . In this case the likelihood ratio is
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Rn({Y n
i ,wn

i }i=0,...,Tn−1) (14.20)

=
Tn−1∏

i=0

⎛

⎝
J∑

j=1

ρδ
j

(
Y n
i ,

i

n

)
e−〈DV̄ ( j)(Y n

i , i
n ),w

n
i 〉−H(Y n

i ,−DV̄ ( j)(Y n
i , i

n ))

⎞

⎠

−1

,

and the estimator takes the same form as in the ordinary case.
For both implementations the resulting second moment, rewritten in terms of the

original process and noises, is

Sn(V̄ δ)
.= Ex0

[
1{Xn(T )∈B}Rn({Xn

i , vi (X
n
i )}i=0,...,Tn−1)

]
. (14.21)

where Rn is given by (14.19) or (14.20) depending on which implementation is used.
Since V̄ δ is a classical subsolution, the randomized case includes the ordinary case
with J = 1 and taking V̄ (1) = V̄ δ . It is shown in Theorem 15.1 that the decay rate
of the second moment for both implementations is bounded below by V (x0, 0) (the
large deviation decay rate for the starting point x0) plus V̄ δ(x0, 0).

Example 14.8 (Example 14.3 continued) In Example 14.3 a piecewise subsolution
was constructed for the problem of Sect. 14.2.2 with a nonconvex set B. We apply
this subsolution for the same data (β∗ = 0.2 and β̄ = −0.25) as in Sect. 14.2.2. As
before, each trial is based on K = 5, 000 simulated trajectories. We give the num-
ber of “rogue” trajectories (those ending in (−∞,−0.25]) even though that name
is no longer appropriate. Recall that the true value for n = 60 is pn = 8.70 × 10−2.
Table 14.2 presents data using the ordinary implementation. The estimates are much
more stable across the different trials, with confidence intervals that are both small
and which contain the true value. Table 14.3 gives the analogous data for the ran-
domized implementation, which is qualitatively very similar to that of the ordinary
case. Table 14.4 considers the same model and escape set for the randomized imple-
mentation, but for various values of n. The analogous results for the ordinary imple-
mentation are omitted since they are similar. Each trial used K = 20, 000 simulated
trajectories. As with n = 60, the results are stable and accurate. Note that the ratio
(− log Ŝn)/(− log p̂n) is increasing in n (though since δ > 0 is fixed it will never
reach 2), and that the number of “rogue” trajectories is decreasing in n, reflecting

Table 14.2 Ordinary implementation of mollified subsolution with δ = 0.02

No. 1 No. 2 No. 3 No. 4

Estimate p̂n (×10−2) 8.55 8.73 8.72 8.61

Standard error (×10−2) 0.183 0.184 0.182 0.182

95% confidence interval (×10−2) [8.19, 8.91] [8.37, 9.10] [8.36, 9.08] [8.25, 8.97]
Number of “rogue” trajectories 751 727 833 807

(− log Ŝn)/(− log p̂n) 1.51 1.52 1.53 1.52
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Table 14.3 Randomized implementation of mollified subsolution with δ = 0.02

No. 1 No. 2 No. 3 No. 4

Estimate p̂n (×10−2) 9.02 8.76 8.62 8.91

Standard error (×10−2) 0.183 0.182 0.181 0.183

95% confidence interval (×10−2) [8.66, 9.38] [8.40, 9.11] [8.26, 8.97] [8.55, 9.26]
Number of “rogue” trajectories 802 782 823 883

(− log Ŝn)/(− log p̂n) 1.54 1.53 1.52 1.53

Table 14.4 Randomized implementation of mollified subsolution with δ = 0.02

n = 100 n = 200 n = 500

Exact value pn 2.90 × 10−2 2.54 × 10−3 3.88 × 10−6

Estimate p̂n 2.93 × 10−2 2.59 × 10−3 3.81 × 10−6

Standard error 3.76 × 10−4 4.82 × 10−5 1.35 × 10−7

95% confidence interval [2.86, 3.00] × 10−2 [2.49, 2.68] × 10−3 [3.55, 4.08] × 10−6

Number of “rogue” trajectories 2176 935 107

(− log Ŝn)/(− log p̂n) 1.59 1.65 1.74

the fact that the probability associated with (−∞,−0.25] conditioned on ending in
B is decreasing in n.

Remark 14.9 (role of smoothness) The theoretical bounds on performance derived
in Chap. 15 make use of the fact that V̄ δ smooth, and in particular that it is a classical
sense subsolution (and not just a viscosity sense subsolution [14, 134]). A natural
question is whether this smoothness is necessary. From the perspective of implemen-
tation it is certainly convenient, since the change of measure for the increments is
based on the gradient of the subsolution. However, one could ask if there is some gen-
eralized implementation (e.g., based on sub or superdifferentials) that might allow
for less regular subsolutions. Such a construction would require that in the analysis
of the secondmoment we consider the large deviation theory for processes with “dis-
continuous statistics.” The theory for such processes is not well understood in great
generality, and in particular there is no rigorous analysis of importance sampling
for nonsmooth subsolutions. Given the subtlety in applying importance sampling to
rare event estimation, it seems prudent to use the mollification presented previously,
which is very easy to implement and for which a rigorous analysis is available. This
difference in the properties of subsolutions is one of the key qualitative distinctions
between importance sampling and the analogous splitting algorithms to be consid-
ered in Chap. 16, for which a weak sense subsolution is known to be sufficient.

Remark 14.10 (achieving asymptotic optimality) Since the mollification can reduce
the value of the subsolution at the starting point [i.e., V̄ δ(x0, 0) < V (x0, 0) is possible
even when V̄ (x0, 0) = V (x0, 0)], this would seem to be a significant drawback for
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importance sampling. However, while there may be other issues to consider when
comparing importance sampling and splitting, it is easy to remedy this objection, and
in general one can allow δ → 0 as n → ∞ so as to achieve asymptotic optimality.
This issue is discussed in Remark 15.7 and Theorem 15.14.

Remark 14.11 (randomized versus ordinary)When dealing with noise models such
as those of (14.1) one may prefer the ordinary implementation over the randomized
implementation, since the appropriate change of measure is simply defined by an
exponential tilt, and there is no need to generate random variables according to the
weights ρδ

j (·, i/n). Note that for these models the distribution of the noise, con-
ditioned on the state Xn

i , is independent in the time variable. For more complex
models (e.g., the Markov modulated models discussed in Sect. 7.3) there may be an
advantage to using the randomized implementation, since the change of measure is
more complex, and requires, for each distinct value of the gradient, the solution of
an eigenvalue problem. In particular, if the component functions V̄ ( j) all have a con-
stant gradient then one must solve at most J eigenvalue problems for the randomized
implementation, while the ordinary implementation will typically require that such
a problem be solved for each time i = 0, . . . , Tn − 1 of the simulation. An example
of this sort appears in Sect. 14.5.5.

Remark 14.12 The implementation of the importance sampling scheme and result-
ing form of the second moment are entirely analogous for the problem of hitting a
rare set before a typical set, save that the scheme has no explicit dependence on time,
and Tn is replaced by the first exit time Nn .

14.5 Generalizations

In this section we briefly comment on generalizations with respect to various aspects
of the model, including expected values besides probabilities, continuous time mod-
els, and more complex noise models. Some generalizations that are very straightfor-
ward (e.g., when the local rate function also depends on time) are not discussed.

14.5.1 Functionals Besides Probabilities

Straightforward and natural generalizations in the context of both the finite time
problem and the problem of hitting a rare set prior to a typical set involve the com-
putation of risk-sensitive functionals. For example, in the setting of the finite time
problem, we may want to compute a quantity such as

V n(x, 0) = −1

n
log Ex exp

{−nF(Xn
Tn)

}
,
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where F is a suitably regular (e.g., continuous) function, and where for convenience
in the notationwe assume Tn is an integer. Under appropriate conditions V n(x, 0) →
V (x, 0), where

V (x, t)
.= inf

[∫ T

t
L(φ(s), φ̇(s))ds + F(φ(T )) : φ(t) = x

]
, (14.22)

and the only difference in the definition of the various forms of subsolution occur in
the terminal condition. Thus in Definition 14.1, the condition V̄ (x, T ) ≤ 0 for x ∈ B
is replaced by V̄ (x, T ) ≤ F(x) for x ∈ R

d .
A single sample of the estimator, with Rn({Y n

i ,wn
i }i=0,...,Tn−1) defined by either

(14.19) or (14.20) depending on which implementation is used, is

F(Y n
Tn)R

n({Y n
i ,wn

i }i=0,...,Tn−1).

14.5.2 Continuous Time

When considering continuous time process models a basic issue is numerical imple-
mentation. For example, trajectories of the solution to an SDE are usually approx-
imated, e.g., by the Euler-Maruyama method. Since this returns the problem to the
discrete time setting, it can be dealt with using the same notions of importance sam-
pling and subsolutions as those already given. (Note that there is still the problem of
quantifying the impact of the time discretization, but that is a topic we do not consider
here.) In contrast, for continuous time models that are of pure jump form there is
no need to discretize time, and one can formulate both the importance sampling and
related analysis directly in continuous time.

To keep the presentation brief we will consider just one class of models, but the
ideas can easily be generalized. Thus suppose that Xn is a continuous time Markov
process of the following form. There is J ∈ N and bounded and Lipschitz continuous
functions

v j : Rd → R
d , r j : Rd → (0,∞), j = 1, . . . , J,

where nr j (x) is the jump intensity of a jump to the point x + v j (x)/n, given that
Xn(t) = x . Thus Xn has the infinitesimal generator

(L n f )(x)
.=

J∑

j=1

nr j (x)
[
f (x + v j (x)/n) − f (x)

]

for bounded functions f : Rd → R. Hence the process waits at the location x for
an exponentially distributed time τ with inverse mean

∑J
j=1 nr j (x). After τ units

of time, it jumps to the location x + v j (x)/n with probability proportional to r j (x)



14.5 Generalizations 407

for j = 1, . . . , J . The weighed serve-the-longest queue model of Chap. 13 is of this
sort, except that r j (x) can be equal to zero for some x values.

If we consider the problem of hitting a rare set before a typical one, the continuous
time aspect is unimportant, and this problem can be reduced to the discrete time
problems considered previously byworkingwith the imbedded discrete time process.
This is the approach taken in [105, 110, 117]. In the notation of this chapter, the
discrete time model corresponds to

θ(A|x) =
J∑

j=1

r j (x)δv j (x)(A)

/ J∑

j=1

r j (x).

This simplification is not possible with the finite time problem, since a rare outcome
depends on the holding time and not just on which jump type is selected at the time
of a transition. In this case, we need to stay in the continuous time framework.

The processes Xn take values in D([0, T ] : Rd), and the local rate function for
the sequence {Xn}n∈N is given by

L(x, β)
.=

inf

⎡

⎣
J∑

j=1

r j (x)�(r̄ j/r j (x)) :
J∑

j=1

r̄ j v j (x) = β, r̄ j ∈ [0,∞), j = 1, . . . , J

⎤

⎦ ,

where x ∈ R
d , β ∈ R

d and as usual �(z)
.= z log z − z + 1 for z ∈ [0,∞). The ana-

logue of the log moment generating function is given by

H(x, α) = sup
β∈Rd

[〈α, β〉 − L(x, β)]

= sup
r̄ j∈[0,∞), j=1,...,J

⎡

⎣
J∑

j=1

r̄ j
〈
v j (x), α

〉 −
J∑

j=1

r j (x)�(r̄ j/r j (x))

⎤

⎦

=
J∑

j=1

r j (x)
[
e〈v j (x),α〉 − 1

]
,

with the supremum achieved at r̄ j = r j (x)e〈v j (x),α〉. As before the PDE that is
relevant takes the form (14.11), where H(x, p) = −H(x,−p), and the terminal
condition is as in the discrete time setting. Given a classical subsolution V̄ (x, t),
the simulated process under the ordinary implementation uses the rates r̄ j (x, t) =
r j (x)e〈v j (x),−DV̄ (x,t)〉. The estimate is then 1{Y n(T )∈B}Rn(Y n), where

log Rn(Y n) =
∫ T

0

J∑

j=1

r j (Y
n(t))

[
e〈v j (Y n(t)),−DV̄ (Y n(t),t)〉 − 1

]
dt
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−
∑

i :tni ≤T

[〈v jni (Y n(tni −)), DV̄ (Y n(tni −), tni −)〉] ,

with tni the jump times of Y n and with j ni identifying the type of jump.

Remark 14.13 For the problem of hitting a rare set before a typical set one could
also use the PDE (14.13) and boundary condition (14.14), with

H(x, p) = −
J∑

j=1

r j (x)[e−〈v j (x),p〉 − 1].

This form of H differs from the discrete time analogue, but characterizes the same
set of subsolutions if used for an exit type problem.

14.5.3 Level Crossing

Problems such as level crossings, which appear in ruin problems from insurance, are
of the same general sort as that of hitting a rare set before hitting a typical set. The
main distinction is that the “typical set” is not part to the state space, and instead
corresponds to the process drifting infinitely far in some direction. For example,
consider once again the discrete time setting, suppose that θ(dy|x) = θ(dy), H(α) <

∞ for all α ∈ R
d and also that

∫

Rd

ykθ(dy) < 0 for k = 1, . . . , d. (14.23)

Then each component of Xn(t) tends to −∞ as t → ∞. Let Mk ∈ (0,∞) for i =
1, . . . , d and consider the problem of estimating the level crossing probability

P

{

sup
m∈N

max
k=1,...,d

1

Mk

m−1∑

i=0

(vi )k ≥ n

}

,

where vi are iid with distribution θ and (vi )k denotes the kth component of vi . This
quantity is the same as

P0

{

sup
t∈[0,∞)

max
k=1,...,d

[Xn(t)]k
Mk

≥ 1

}

,

and can be thought of has hitting the rare setGc, whereG
.= ×d

k=1(−∞, Mk), before
wandering off to −∞ in each component (the “typical” set). With this analogy in
place, the definitions of subsolution and their use are exactly as before. In particular,
if H(α) is the log moment generating function of θ and H(p) = −H(−p), then a
smooth function V̄ : Rd → R is a classical subsolution if
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H(DV̄ (x)) ≥ 0 for x ∈ G and V̄ (x) ≤ 0 for x ∈ Gc. (14.24)

The (now state dependent) alternative sampling distribution for the next increment
wn
i given Y n

i = x is e−〈DV̄ (x),v〉−H(−DV̄ (x))θ(dv), and the estimate is

1{
Y n
N̄n ∈Gc

}∏N̄ n−1
i=0 e〈DV̄(Y n

i ),w
n
i 〉+H(−DV̄(Y n

i )),

where N̄ n .= inf
{
i : Y n

i ∈ Gc
}
. For such problems it is natural to consider piece-

wise classical subsolutions with one component V̄ (k) for each index k = 1, . . . , d.
V̄ (k)(x) should be of the form = −〈α(k), x〉 + c(k), where α(k) is of the form
a(k)ek , H(α(k)) = 0, and c(k) = a(k)Mk . One can check that under (14.23), for each
k = 1, . . . , d there is exactly one positive number a(k) such that H(a(k)ek) = 0, that
with these choices V̄ (x)

.= mink=1,...,d V̄ (k)(x) is a piecewise classical subsolution
with V (0) = V̄ (0) = mink=1,...,d a(k)Mk . For any problemwhere the simulation time
is potentially unbounded it is important to know that a proposed scheme is practical.
In the present setting, for the process that is simulated the increments have condi-
tional distribution e−〈DV̄ δ(x),v〉−H(−DV̄ δ(x))θ(dv). The mean of this distribution points
towards the target set, and it follows that N̄ n < ∞ and Y n

N̄n ∈ Gc with probability

one. One can in fact show more, for example that E N̄n < ∞.

14.5.4 Path Dependent Events

In some situations one may be interested in probabilities and related quantities in
which the occurrence or not of the rare event is determined by the path of Xn over an
interval [0, T ]. To simplify notation we will consider a homogeneous random walk
as in the last section [i.e., θ(dy|x) = θ(dy)], T = 1, and the case of one dimension.
Then an example of this type of problem is to compute

E0

[
e−nF(Xn(1))1{maxt∈[0,1] Xn(t)≥h}

]
, (14.25)

where h ∈ (0,∞) and F is bounded and continuous. Let l < h and define τ n
h

.=
inf{t ≥ 0 : Xn(t) ≥ h} and τ n

l
.= inf{t ≥ τ n

h : Xn(t) ≤ l}. A second example is com-
puting P0

{
τ n
l ≤ 1

}
. Of course this is only particularly difficult if the indicated events

are rare, and to make this so we assume
∫
R
yθ(dy) < h.

It is easy to write down the variational problem for the large deviation approx-
imations to these quantities. For example, for the expected value in (14.25) the
corresponding variational problem is

inf

[∫ 1

0
L(φ̇(t))dt + F(φ(1)) : φ(0) = 0, φ(s) ≥ h for some s ∈ [0, 1]

]
,
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where the infimum is over absolutely continuous φ. To identify the PDE that is
related to this problem we introduce a state variable that will indicate whether or not
h has been crossed. Denote the simulated process by Y n(t) and consider the associ-
ated indicator process Zn(t)

.= 1[h,∞)(maxs∈[0,t] Y n(s)). Suppose we are given that
(Zn(t),Y n(t)) = (1, x). Then the event {maxt∈[0,1] Y n(t) ≥ h} is certain, and impor-
tance sampling schemes for time instants after t can be generated by subsolutions of
the PDE

V̄t (1, x, t) + H(DV̄ (1, x, t)) ≥ 0, x ∈ R, t ∈ (0, 1), (14.26)

with terminal condition
V̄ (1, x, 1) ≤ F(x), x ∈ R (14.27)

(here we use variables (z, x, t), and V̄ (1, x, t) indicates that z = 1). If on the other
hand we are given (Zn(t),Y n(t)) = (0, x), then for the cost to be finite the event
Y n(s) ≥ h must occur for some s ∈ [t, 1], and by the usual logic of dynamic pro-
gramming the asymptotic optimal future costs after that time will be bounded below
by any subsolution V̄ (1, ·, ·) to (14.26). The characterization of a subsolution for
times prior to this event is given by

V̄t (0, x, t) + H(DV̄ (0, x, t)) ≥ 0, x ∈ (−∞, h), t ∈ (0, 1), (14.28)

and
V̄ (0, x, t) ≤ V̄ (1, x, t), x ∈ [h,∞), t ∈ (0, 1). (14.29)

Note that one must construct the subsolutions in the order first V̄ (1, x, t), then
V̄ (0, x, t). Given classical subsolutions V̄ (0, x, t) and V̄ (1, x, t), the simulated tra-
jectory {Y n(t)} is defined as follows. Given that the state of the current simulated
trajectory is Y n

i , we use the sampling distribution ηα(dv|Y n
i ) = e〈α,v〉−H(α)θ(dv)with

tilt parameterα = −DV̄ (0,Y n
i , i/n) to generate a randomvariablewn

i with the given
(conditional) distribution if i < Nn , where Nn .= inf{i : Y n

i ≥ h} ∧ n. If i ≥ Nn we
instead use the tilt parameter α = −DV̄ (1,Y n

i , i/n) to generate a random variable
wn
i . The state of the system is then updated according to Y n

i+1 = Y n
i + wn

i /n, and we
repeat. The likelihood ratio is

Rn({Y n
i ,wn

i }i=0,...,n−1) = ∏Nn−1
i=0 e〈DV̄(0,Y n

i , i
n ),w

n
i 〉+H(−DV̄(0,Y n

i , i
n ))

× ∏n−1
i=Nn e〈DV̄(1,Y n

i , i
n ),w

n
i 〉+H(−DV̄(1,Y n

i , i
n )),

and the resulting estimator is

e−nF(Y n(1))1{maxt∈[0,1] Y n(t)≥h}Rn({Y n
i ,wn

i }i=0,...,n−1),

where Y n(t) is the continuous time interpolation.
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The corresponding set of PDEs for P0
{
τ n
l ≤ 1

}
is similar, save (14.26) and (14.27)

are replaced by

V̄t (1, x, t) + H(DV̄ (x, 1, t)) ≥ 0, x ∈ (l,∞), t ∈ (0, 1),

and
V̄ (1, x, t) ≤ 0, x ∈ (−∞, l], t ∈ [0, 1].

This construction can be generalized in many directions. For example, with a level
crossing problem as in the last section one could consider the event that a particular
level is crossed (i.e., one component exceeds its threshold) prior to a level crossing
in some other coordinate direction.

14.5.5 Markov Modulated Models

As a final example we consider problems where there are two times scales, as was the
case with the models of Sect. 7.3. To keep the discussion simple we consider the case

Xn
i+1 = Xn

i + 1

n
vi (�i+1), Xn

0 = x0, �1 = ξ,

with Xn
i taking values in R

d and the probability of interest a level crossing as in
Sect. 14.5.3. However, the constructions generalize greatly, and other examples can
be found in [116]. Recall from Sect. 7.3 that {�i }i∈N is an S-valued Markov chain
with transition probability kernel p and that {vi (ξ)}i∈N0 is a sequence of iid random
vector fields with distribution given by θ(·|ξ). We assume that the moment generat-
ing functions Ee〈α,vi (ξ)〉 are bounded from above uniformly in ξ ∈ S, and the other
conditions of Sect. 7.3. The local rate function for this model is

L(β)
.=

inf

[∫

S
R(ν(·|ξ)‖θ(·|ξ))μ(dξ) + R (γ ‖μ ⊗ p) :

∫

S×Rd

yν(dy|ξ)μ(dξ) = β

]
,

where the infimum is over γ ∈ P(S × S) such that [γ ]1 = [γ ]2 = μ and stochastic
kernels ν(dw|ξ) on R

d given S.
Let H(p) = infβ∈Rd [〈p, β〉 + L(β)]. Then the correct notion of subsolution for

this problem is again (14.24). There is an alternative characterization of H(p) =
−H(−p) in terms of an eigenvector/eigenvalue problem. For α ∈ R

d let H(α) and
r(·;α) solve

∫

S

∫

Rd

e〈α,w〉θ(dw|η)r(η;α)p(ξ, dη) = eH(α)r(ξ ;α), ξ ∈ S,

where r(·;α) : S → [0,∞) is the corresponding eigenfunction [116]. One can inter-
pret H(α) in terms of a large time risk-sensitive (i.e., multiplicative) cost, in that
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1

k
log E

[
en〈α,Xn

k 〉
∣∣∣ Xn

0 = 0, �1 = ξ
]

→ H(α) as k → ∞,

and r(ξ ;α) plays the role of the cost potential. One can in fact prove this limit using
the weak convergence arguments of Chap. 6.

Given a subsolution V̄ , we generate processes {(Y n
i ,Θn

i+1)} by setting Y n
0 = x0

and Θn
1 = ξ , using

e−〈DV̄ (Y n
i ),w〉−H(−DV̄ (Y n

i ))θ(dw|η)
r(η;−DV̄ (Y n

i ))

r(Θn
i ;−DV̄ (Y n

i ))
p(Θn

i , dη)

to identify the conditional distribution of wn
i and Θn

i+1 given Y n
i and Θn

i , and then
setting Y n

i+1 = Y n
i + wn

i /n. The estimator for the level crossing problem is then

1{
Y n
N̄n ∈(×d

k=1(−∞,Mk ))c
}∏N̄ n−1

i=0 e〈DV̄(Y n
i ),w

n
i 〉+H(−DV̄(Y n

i ))
r(Θn

i ;−DV̄ (Y n
i ))

r(Θn
i+1;−DV̄ (Y n

i ))
,

where N̄ n .= inf
{
i : Y n

i ∈ (×d
k=1(−∞, Mk))

c
}
. As in the iid case the resulting algo-

rithm is practical, in that E N̄n < ∞.

14.6 Notes

The references [6, 190, 224] present Monte Carlo methods in a general setting, and
also discuss various aspects of rare event estimation. A nice overview of the use
of Monte Carlo in the rare event setting specifically can be found in [223], which
discusses other methods that are widely used, such as interacting particle methods
(see also [51, 78]) and the cross entropymethod for the designof importance sampling
(see also [225]).

As noted previously the first paper to apply importance sampling in the rare event
context is Siegmund [232]. The material of this chapter is mostly taken from [114,
116, 150], though the last section includes examples from other papers as well. The
notion of Lyapunov inequality as used in [27] is closely related to that of subsolution
in the context of importance sampling, and more information on this connection can
be found in [28].

We consider only the light tailed cases (i.e., distributions for which moment gen-
erating functions are finite at least in a neighborhood of the origin). Problems with
heavy tailed distributions are also important. A survey of developments up to 2012 on
importance sampling for rare event estimation that includes the heavy tailed case is
[26], and more recent developments for the heavy tailed case (including new classes
of problem formulation not discussed previously) appear in [54].

For background on the Hamilton-Jacobi-Bellman equations used in this chapter
we refer to [14, 134].
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