
Chapter 11
Systems Driven by an
Infinite Dimensional Brownian Noise

In Chap.8 we gave a representation for positive functionals of a Hilbert space valued
Brownian motion. This chapter will apply the representation to study the large devi-
ation properties of infinite dimensional small noise stochastic dynamical systems. In
the application, the driving noise is given by a Brownian sheet, and so in this chapter
we will present a sufficient condition analogous to Condition9.1 (but there will be
no Poisson noise in this chapter) that covers the setting of such noise processes (see
Condition11.15). Another formulation of an infinite dimensional Brownian motion
that will be needed in Chap.12 is as a sequence of independent Brownian motions
regarded as a C ([0, T ] : R∞)-valued random variable. We also present the analo-
gous sufficient condition (Condition11.12) for an LDP to hold for this type of driving
noise.

To illustrate the approach we consider a class of reaction–diffusion stochastic
partial differential equations (SPDE), for which well-posedness has been studied in
[174]. Previous works that prove an LDP for this SPDE include [170, 235]. The
proof of the Laplace principle proceeds by verification of Condition11.15. Just as
in Chap.10, the key ingredients in the verification of this condition are the well-
posedness and compactness for sequences of controlled versions of the original
SPDE [Theorems11.23, 11.24, and 11.25]. Also as in Chap.10, the techniques and
estimates used to prove such properties for the original (uncontrolled) stochastic
model can be applied here as well, and indeed proofs for the controlled SPDEs
proceed in very much the same way as those of their uncontrolled counterparts.

The chapter is organized as follows. In Sect. 11.1 we recall some common for-
mulations of an infinite dimensional Brownian motion and relations between them.
Starting from the variational representation for a Hilbert space valued Brownian
motion from Chap.8, we present analogous representations for these equivalent for-
mulations of infinite dimensional Brownian motion. Then starting from the sufficient
condition for Hilbert space valued Brownian motion given in Chap.9, we state the
corresponding sufficient conditions for a uniform Laplace principle to hold for these
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other formulations in Sect. 11.2. The illustration of how the conditions are verified
is given in Sect. 11.3, which studies the large deviation properties for a family of
stochastic reaction–diffusion equations.

11.1 Formulations of Infinite Dimensional Brownian
Motion

An infinite dimensional Brownian motion arises in a natural fashion in the study
of stochastic processes with a spatial parameter. We refer the reader to [69, 169,
243] for numerous examples in the physical sciences in which infinite dimensional
Brownian motions are used to model the driving noise for stochastic dynamical
systems. Depending on the application of interest, the infinite dimensional nature of
the driving noise may be expressed in a variety of forms. Some examples include
Hilbert space valued Brownian motion (as was considered in Chap.8); cylindrical
Brownian motion; an infinite sequence of iid standard (1-dimensional) Brownian
motions; and space-time Brownian sheets. In what follows, we describe these various
formulations and explain how they relate to each other. We will be concerned only
with processes defined over a fixed time horizon, and thus fix T ∈ (0,∞), and all
filtrations and stochastic processes will be defined over the horizon [0, T ]. Reference
to T will be omitted unless essential. Let (Ω,F , P) be a probability space with a
filtration {Ft }0≤t≤T satisfying the usual conditions. Let (H , 〈·, ·〉) be a real separable
Hilbert space. LetΛbe a symmetric strictly positive trace class operator onH . Recall
that anH -valued continuous stochastic process {W (t)}0≤t≤T defined on (Ω,F , P)

is called a Λ-Wiener process with respect to {Ft } if for every nonzero h ∈ H ,
{〈Λh, h〉−1/2〈W (t), h〉} is a one-dimensional standard {Ft }-Wiener process.

Another formulation for an infinite dimensional Brownian motion, which will be
used in Chap.12 for the study of stochastic flows of diffeomorphisms, is as follows.
Let {βi }i∈N be an infinite sequence of independent standard one-dimensional, {Ft }-
Brownian motions. We denote the product space of countably infinite copies of the
real line by R

∞. Note that a sequence of independent standard Brownian motions
{βi }i∈N can be regarded as a random variable with values in C ([0, T ] : R∞), where
R

∞ is equipped with the usual topology of coordinatewise convergence, which can
be metrized using the distance

d(u, v)
.=

∞∑

k=1

|uk − vk | ∧ 1

2k
.

It is easily checked that with this metric,R∞ is a Polish space. Thus β = {βi }i∈N is a
random variable with values in the Polish spaceC ([0, T ] : R∞), and can be regarded
as another model of an infinite dimensional Brownian motion.

Let {ei }i∈N be a complete orthonormal system (CONS) for the Hilbert space H
such that Λei = λi ei , where λi is the strictly positive i th eigenvalue of Λ, which
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corresponds to the eigenvector ei . Since Λ is a trace class operator,
∑∞

i=1 λi < ∞.
Define

βi (t)
.= 1√

λi
〈W (t), ei 〉, 0 ≤ t ≤ T, i ∈ N,

whereW as before is aΛ-Wiener process with respect to {Ft }. It is easy to check that
{βi } is a sequence of independent standard {Ft }-Brownian motions. Thus starting
from aΛ-Wiener process, one can produce an infinite collection of independent stan-
dard Brownian motions in a straightforward manner. Conversely, given a collection
of independent standard Brownian motions {βi }i∈N and (Λ, {ei , λi }) as above, one
can obtain a Λ-Wiener process W by setting

W (t)
.=

∞∑

i=1

√
λiβi (t)ei , 0 ≤ t ≤ T . (11.1)

The right side of (11.1) clearly converges in L 2(P) for each fixed t . Furthermore,
one can check that the series also converges in C ([0, T ] : H ) almost surely [69,
Theorem 4.3]. These observations lead to the following result.

Proposition 11.1 There exist measurable maps f : C ([0, T ] : R∞) → C ([0, T ] :
H ) and g : C ([0, T ] : H ) → C ([0, T ] : R∞) such that f (β) = W and g(W ) = β

a.s.

Remark 11.2 Consider the Hilbert space l2
.= {x = (x1, x2, . . .) : xi ∈ R and∑∞

i=1 x
2
i < ∞}with the inner product 〈x, y〉0 .= ∑∞

i=1 xi yi . Let {λi }i∈N be a sequence
of strictly positive numbers such that

∑∞
i=1 λi < ∞. Then the Hilbert space l̄2

.=
{x = (x1, x2, . . .) : xi ∈ R and

∑∞
i=1 λi x2i < ∞} with the inner product 〈x, y〉 .=∑∞

i=1 λi xi yi contains l2, and the embedding map ι : l2 → l̄2, ι(x) = x is Hilbert–
Schmidt. Furthermore, the infinite sequence of real Brownian motions β takes values
in l̄2 almost surely and can be regarded as a l̄2-valued Λ-Wiener process, where Λ is
defined by 〈Λx, y〉 = ∑∞

i=1 λ2
i xi yi , x, y ∈ l̄2.

Equation (11.1) above can be interpreted as saying that the sequence {λi } (or equiv-
alently the trace class operator Λ) injects a “coloring” to a white noise such that the
resulting process has greater regularity. In some models of interest, such coloring is
obtained indirectly in terms of (state-dependent) diffusion coefficients. It is natural in
such situations to consider the driving noise a “cylindrical Brownian motion” rather
than a Hilbert space valued Brownian motion. Let (H , 〈·, ·〉) as before be a real
separable Hilbert space and fix a probability space and a filtration as above.

Definition 11.3 A family {Bt(h) = B(t, h) : t ∈ [0, T ], h ∈ H } of real random
variables is said to be an {Ft }-cylindrical Brownian motion if the following hold.

(a) For every h ∈ H with ‖h‖ = 1, {B(t, h)} is a standard Ft -Wiener process.
(b) For every t ∈ [0, T ], a1, a2 ∈ R and f1, f2 ∈ H ,

B(t, a1 f1 + a2 f2) = a1B(t, f1) + a2B(t, f2) a.s.
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If {Bt (h)} is a cylindrical Brownian motion and {ei } is a CONS in H , set-
ting βi (t)

.= B(t, ei ), we see that {βi } is a sequence of independent standard one-
dimensional {Ft }-Brownian motions. Conversely, given a sequence {βi }i∈N of inde-
pendent standard one-dimensional {Ft }-Brownian motions,

Bt (h)
.=

∞∑

i=1

βi (t)〈ei , h〉 (11.2)

defines a cylindrical Brownian motion on H . For each h ∈ H , the series in (11.2)
converges inL 2(P) and a.s. in C ([0, T ] : R).

Proposition 11.4 Let B be a cylindrical Brownian motion as in Definition11.3 and
let β be as constructed in the last paragraph. Then σ {Bs(h) : 0 ≤ s ≤ t, h ∈ H } =
σ {β(s) : 0 ≤ s ≤ t} for all t ∈ [0, T ]. In particular, if X is a σ {B(s, h) : 0 ≤ s ≤
T, h ∈ H }-measurable random variable, then there exists a measurable map g :
C ([0, T ] : R∞) → R such that g(β) = X a.s.

In yet other stochastic dynamical systems, the driving noise is given as a space-
time white noise process, also referred to as a Brownian sheet. In what follows, we
introduce this stochastic process and describe its relationship with the formulations
considered above. Let (Ω,F , P, {Ft }) be as before and fix a bounded open subset
O ⊂ R

d . We follow standard usage and denote both cylindrical Brownian motions
by B [more precisely by Bt (h)] and also Brownian sheets by B [in this case B(t, x)].
The intended use should be clear from context.

Definition 11.5 A family of real-valued Gaussian random variables

{B(t, x), (t, x) ∈ [0, T ] × O}

is called a Brownian sheet if the following hold.
(a) If (t, x) ∈ [0, T ] × O , then E(B(t, x)) = 0.
(b) If 0 ≤ s ≤ t ≤ T , then {B(t, x) − B(s, x), x ∈ O} is independent of Fs .
(c) Cov (B(t, x), B(s, y)) = λ(At,x ∩ As,y), where λ is Lebesgue measure on

[0, T ] × O and

At,x
.= {

(s, y) ∈ [0, T ] × O : 0 ≤ s ≤ t and y j ≤ x j , j = 1, . . . , d
}
.

(d) The map (t, u) 
→ B(t, u) from [0, T ] × O to R is uniformly continuous a.s.

Due to the uniform continuity property of part (d), B = {B(t, x), (t, x) ∈ [0, T ] ×
O} can be regarded as a random variable with values in the Polish space C ([0, T ] ×
Ō : R), the space of continuous functions from [0, T ] × Ō to R, equipped with the
uniform topology.

To introduce stochastic integrals with respect to a Brownian sheet, we need the
following definitions and notation, which are largely taken from [169].



11.1 Formulations of Infinite Dimensional Brownian Motion 299

Definition 11.6 (Elementary and simple functions) A function f : O × [0, T ] ×
Ω → R is elementary if there exist a, b ∈ [0, T ], a ≤ b, a bounded
{Fa}-measurable random variable X , and A ∈ B(O) such that

f (x, s, ω) = X (ω)1(a,b](s)1A(x).

A finite sum of elementary functions is referred to as a simple function. We denote
by S̄ the class of all simple functions.

Wenow introduce the {Ft }-predictableσ -field onΩ × [0, T ] × O . The definition
is analogous to that of a predictable σ -field on Ω × [0, T ] introduced in Chap.8 and
is denoted by the same symbol.

Definition 11.7 (Predictable σ -field) The {Ft }-predictable σ -field PF on Ω ×
[0, T ] × O is the σ -field generated by S̄ . A function f : Ω × [0, T ] × O → R is
called an {Ft }-predictable process if it isPF -measurable.

Remark 11.8 InChap.8weconsidered aprobability space supporting aHilbert space
valuedWiener process and defined the classes of integrands/controlsAb,A , ¯Ab, and¯A . The first two are predictable with respect to the filtration generated by theWiener
process and either have a finiteL 2 norm a.s. (A ) or satisfy a uniform bound on this
norm a.s. (Ab), and the last two are analogous, save being {Ft }-predictable (see the
definitions given after Definition8.2). In this chapter we will need the analogous
processes for a number of alternative formulations of infinite dimensional Brownian
motion. With some abuse of notation, we use the same symbols to denote the classes
with the analogous predictability and boundedness properties for all these different
formulations. The class intended in any circumstance will be clear from the context.

Thus analogous to the class of integrands ¯A introduced in Chap.8, consider the
class of all {Ft }-predictable processes f such that

∫
[0,T ]×O f 2(s, x)ds dx < ∞ a.s.,

and denote this class by ¯A . Classes Ab, A , and ¯Ab are defined similarly. For all
f ∈ ¯A , the stochastic integral Mt ( f )

.= ∫
[0,t]×O f (s, u)B(ds × du), t ∈ [0, T ], is

well defined as in Chap. 2 of [243]. Furthermore, for all f ∈ ¯A , {Mt ( f )}0≤t≤T is a
continuous {Ft }-local martingale. More properties of the stochastic integral can be
found in AppendixD.2.4, and in much greater detail in [243].

Consider theHilbert spaceL 2(O)
.= { f : O → R : ∫

O f 2(x)dx < ∞} equipped
with the usual inner product. Let {φi }i∈N be a CONS inL 2(O). Then it is easy to ver-
ify that β = {βi }i∈N defined by βi (t)

.= ∫
[0,t]×O φi (x)B(ds × dx), i ∈ N, t ∈ [0, T ]

is a sequence of independent standard real Brownian motions. Also, for (t, x) ∈
[0, T ] × O ,

B(t, x) =
∞∑

i=1

βi (t)
∫

O
φi (y)1(−∞,x](y)dy (11.3)

(where (−∞, x] = {y : yi ≤ xi for all i = 1, . . . , d}), and the series in (11.3) con-
verges inL 2(P) for each (t, x). From these considerations, it follows that
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σ {B(t, x), t ∈ [0, T ], x ∈ O} = σ {βi (t), i ∈ N, t ∈ [0, T ]}. (11.4)

As a consequence of (11.4) and LemmaE.1 in the appendix, we have the following
result.

Proposition 11.9 There exists a measurable map g : C ([0, T ] : R∞) → C ([0, T ]
× Ō : R) such that B = g(β) a.s., where β is as defined by βi (t)

.= ∫
[0,t]×O φi (x)

B(ds × dx).

11.1.1 The Representations

In Chap.8 we presented a variational representation for positive functionals of a
Hilbert space valued Brownian motion. Using this representation and the results
of Sect. 11.1, we can obtain analogous representations for other formulations of an
infinite dimensional Brownian motion. Let (Ω,F , P, {Ft }) and β = {βi } be as in
Sect. 11.1. Recall that β is a C ([0, T ] : R∞)-valued random variable.

Let PF be the {Ft }-predictable σ -field on [0, T ] × Ω as introduced in Def-
inition8.2. For a Hilbert space H0, let ¯A as in Chap.8 be the collection of all
H0-valued {Ft }-predictable processes for which

∫ T
0 ‖φ(s)‖20ds < ∞ a.s., where

‖ · ‖0 is the norm in the Hilbert space H0. We also recall the classes Ab,A and
¯Ab introduced in Chap.8. Note that when H0 = l2, every u ∈ ¯A can be written

as u = {ui }i∈N, where for each i , ui is a real-valued {Ft }-predictable process and∑∞
i=1

∫ T
0 |ui (s)|2ds < ∞ a.s. The following result is a consequence of Theorem8.3,

Proposition 11.1, and Remark11.2.

Theorem 11.10 Let G be a bounded measurable function mapping C ([0, T ] : R∞)

into R. Then withH0 = l2, we have

− log Ee−G(β) = inf
u={ui }∈R

E

[
1

2

∫ T

0

∞∑

i=1

|ui (s)|2ds + G
(
βu

)
]

,

where β
ui
i = βi + ∫ ·

0 ui (s)ds, i ∈ N, βu .= {βui
i }i∈N, and R can be ¯A , ¯Ab, A , or

Ab.

Proof Taking H = l̄2 introduced in Remark11.2, it follows from Proposition11.1
that there is a measurable map g : C ([0, T ] : H ) → C ([0, T ] : R∞) such that β =
g(W ), where W is as defined in (11.1) with {λi } as in Remark11.2 and ei as the
vector with the i th coordinate 1/

√
λi and remaining coordinates 0. Note that the

function g can be explicitly written as

[g(x)]i (t) = 1√
λi

〈x(t), ei 〉 = xi (t), x ∈ C ([0, T ] : H ), i ∈ N, t ∈ [0, T ].

From Theorem8.3, we then have
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− log Ee−G(β) = − log Ee−G(g(W ))

= inf
u={ui }∈R

E

[
1

2

∫ T

0

∞∑

i=1

|ui (s)|2ds + G
(
g(Wu)

)
]

,

where Wu(t)
.= W (t) + ∫ t

0 u(s)ds. The result now follows on observing that for all
u ∈ R, g(Wu) = βu . �

We next note the representation theorem for a Brownian sheet that follows from
Proposition11.9, Theorem11.10, and an application of Girsanov’s theorem. In the
statement below, ¯A , Ab, A , and ¯Ab are as introduced below Definition11.7.

Theorem 11.11 Let G : C ([0, T ] × Ō : R) → R be a bounded measurable map.
Let B be a Brownian sheet as in Definition11.5. Then

− log Ee−G(B) = inf
u∈R

E

[
1

2

∫ T

0

∫

O
u2(s, r)drds + G(Bu)

]
,

where Bu(t, x) = B(t, x) + ∫ t
0

∫
(−∞,x]∩O u(s, y)dyds andR can be ¯A , ¯Ab, A , or

Ab.

Proof We consider only the case R = Ab, and note that all remaining cases can be
treated similarly. Let g be as in Proposition 11.9. To apply the proposition, we need
to refer to the analogous set of control processes used in Theorem11.10, which we
denote by A β

b . Then with β as defined above (11.3), we have

− log Ee−G(B) = − log Ee−G(g(β))

= inf
û={ûi }∈A β

b

E

[
1

2

∫ T

0

∞∑

i=1

|ûi (s)|2ds + G
(
g(β û)

)]
. (11.5)

Note that there is a one-to-one correspondence between elements of Ab and A β

b
given through the relations

u(t, x)
.=

∞∑

i=1

ûi (t)φi (x), (t, x) ∈ [0, T ] × O for {ûi } ∈ A β

b ,

ûi (t)
.=

∫

O
u(t, x)φi (x)dx, t ∈ [0, T ] for u ∈ Ab.

Furthermore, ∫ T

0

∞∑

i=1

|ûi (s)|2ds =
∫ T

0

∫

O
u2(s, r)drds. (11.6)

Finally, from Girsanov’s theorem, with any u and û given by the above relations
there is a measure Q that is mutually absolutely continuous with respect to P and is
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such that under Q, (β û, Bu) have the same law as (β, B) under P . Thus G(g(β û)) =
G(Bu) a.s., and the result now follows from (11.5) and (11.6). �

The analogous representation holds for cylindrical Brownian motion, with a sim-
ilar proof. We omit the details.

11.2 General Sufficient Condition for an LDP

In this section we will present sufficient conditions for a uniform Laplace principle
that are similar to those presented in Sect. 9.2.1 but with the driving noise a Brownian
sheet or an infinite sequence of real Brownian motions (i.e., the R∞-valued random
variable β), rather than a Hilbert space valued Brownian motion. For simplicity, we
do not include a Poisson noise here, although that setting can be covered in a similar
manner.

Let, as in Sect. 11.1, β = {βi } be a sequence of independent standard real {Ft }-
Brownian motions on (Ω,F , P, {Ft }). Recall that β is a C ([0, T ] : R∞)-valued
random variable. For each ε > 0, let G ε : Z × C ([0, T ] : R∞) → E be a measur-
able map, where Z and E are Polish spaces, and define

X ε,z .= G ε(z,
√

εβ). (11.7)

We now consider the Laplace principle for the family {X ε,z} and introduce the ana-
logue of Condition9.1 for this setting. In the assumption, SM and ¯Ab,M (the determin-
istic controls with squaredL 2 norm bounded by M and {Ft }-predictable processes
that take values in SM , respectively) are defined as in (8.1) and below (8.2), withH0

there replaced by the Hilbert space l2.

Condition 11.12 There exists a measurable map G 0 : Z × C ([0, T ] : R∞) → E
such that the following hold.

(a) For every M < ∞ and compact set K ⊂ Z , the set

ΓM,K
.=

{
G 0

(
z,

∫ ·

0
u(s)ds

)
: u ∈ SM , z ∈ K

}

is a compact subset of E .
(b) Consider M < ∞ and families {uε} ⊂ ¯Ab,M and {zε} ⊂ Z such that uε con-

verges in distribution (as SM-valued random elements) to u and zε → z as ε → 0.
Then

G ε

(
zε,

√
εβ +

∫ ·

0
uε(s)ds

)
→ G 0

(
z,

∫ ·

0
u(s)ds

)
,

as ε → 0 in distribution.

The proof of the following uses a straightforward reduction to Theorem9.2.
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Theorem 11.13 Let X ε,z be as in (11.7) and suppose that Condition11.12 holds.
For z ∈ Z and φ ∈ E let

Iz(φ)
.= inf{u∈L 2([0,T ]:l2):φ=G 0(z,

∫ ·
0 u(s)ds)}

[
1

2

∞∑

i=1

∫ T

0
|ui (s)|2ds

]
. (11.8)

Suppose that for all φ ∈ E , z 
→ Iz(φ) is a lower semicontinuous map from Z to
[0,∞]. Then for all z ∈ E0, φ 
→ Iz(φ) is a rate function on E , and the family
{Iz(·), z ∈ Z } of rate functions has compact level sets on compacts. Furthermore,
the family {X ε,z} satisfies the Laplace principle on E with rate function Iz, uniformly
on compact subsets of Z .

Proof From Remark11.2 we can regard β as an H -valued Λ-Wiener process,
whereH = l̄2 and Λ is a trace class operator, as defined in Remark11.2. Also, one
can check that H0

.= Λ1/2H = l2. Since the embedding map ι : C ([0, T ] : l̄2) →
C ([0, T ] : R∞) is measurable (in fact continuous), Ĝ ε : Z × C ([0, T ] : l̄2) → E
defined by Ĝ ε(z, v)

.= G ε(z, ι(v)), (z, v) ∈ Z × C ([0, T ] : l̄2) is a measurable map
for every ε ≥ 0. Note also that for ε > 0, X ε,z = Ĝ ε(z,

√
εβ) a.s. Since Condi-

tion11.12 holds, we have that parts (a) and (b) of Condition9.1 are satisfied with G ε

there replaced by Ĝ ε for ε ≥ 0 (note that there is no Poisson noise here) and with
W replaced with β. Define Îz(φ) by the right side of (9.4) but with G 0 replaced by
Ĝ 0, S ˆG

z,φ
.= {

f ∈ L 2([0, T ] : H0) : φ = G 0(z,
∫ ·
0 f (s)ds)

}
, and L̄T (q) replaced by

1
2

∫ T
0 ‖ f (s)‖20 ds, so that

Îz(φ) = inf
f ∈SGz,φ

[
1

2

∫ T

0
‖ f (s)‖20 ds

]
.

Clearly Iz(φ) = Îz(φ) for all (z, φ) ∈ Z × E . The result is now an immediate con-
sequence of Theorem9.2. �

Remark 11.14 Since for t ∈ (0, T ),
∑∞

i=1(βi (t))2 = ∞ a.s., theR∞-valued random
variable β(t) does not lie in the subset l2 of R∞. However, for any sequence {λi }
as in Remark11.2,

∑∞
i=1 λi (βi (t))2 < ∞ a.s., which shows that the support of β(t)

does lie in the larger Hilbert space l̄2. In fact, t 
→ β(t) is a.s. a continuous map from
[0, T ] to l̄2, and it is easily checked that it defines a Λ-Wiener process with sample
paths in l̄2. This identification of β with a Hilbert space valuedWiener process allows
us to leverage Theorem9.2 in establishing Theorem11.13. Note that there are many
different possible choices of sequences {λi } (and corresponding Hilbert spaces l̄2)
and any of them can be used to prove the theorem, which itself does not involve any
specific Hilbert space.

To close this section,we consider the Laplace principle for functionals of aBrown-
ian sheet. Let B be a Brownian sheet as in Definition11.5. Let G ε : Z × C ([0, T ] ×
Ō : R) → E , ε > 0, be a family of measurable maps. Define X ε,z .= G ε(z,

√
εB).
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We now provide sufficient conditions for a Laplace principle to hold for the family
{X ε,z}.

Analogous to the classes defined in (8.1), we introduce for N ∈ (0,∞),

SN
.=

{
φ ∈ L 2([0, T ] × O) :

∫

[0,T ]×O
φ2(s, r)dsdr ≤ N

}
,

¯Ab,N
.= {u ∈ ¯A : u(ω) ∈ SN , P-a.s.}. (11.9)

Oncemore, SN is endowedwith the weak topology onL 2([0, T ] × O), under which
it is a compact metric space. For u ∈ L 2([0, T ] × O), define Int(u) ∈ C ([0, T ] ×
O : R) by

Int(u)(t, x)
.=

∫

[0,t]×(O∩(−∞,x])
u(s, y)dsdy, (11.10)

where as before, (−∞, x] .= {y : yi ≤ xi for all i = 1, . . . , d}.
Condition 11.15 There exists a measurable map G 0 : Z × C ([0, T ] × O : R) →
E such that the following hold.

(a) For every M < ∞ and compact set K ⊂ Z , the set

ΓM,K
.= {

G 0(z, Int(u)) : u ∈ SM , z ∈ K
}

is a compact subset of E , where Int(u) is as in (11.10).
(b) Consider M < ∞ and families {uε} ⊂ ¯Ab,M and {zε} ⊂ Z such that uε con-

verges in distribution (as SM-valued random elements) to u and zε → z as ε → 0.
Then

G ε
(
zε,

√
εB + Int(uε)

) → G 0 (z, Int(u))

in distribution as ε → 0.

For f ∈ E and z ∈ Z , define

Iz( f ) = inf{u∈L 2([0,T ]×O): f =G 0(z,Int(u))}
[
1

2

∫

[0,T ]×O
u2(s, r)drds

]
. (11.11)

Theorem 11.16 Let G 0 : Z × C ([0, T ] × O : R) → E be a measurable map sat-
isfying Condition11.15. Suppose that for all f ∈ E , z 
→ Iz( f ) is a lower semicon-
tinuous map fromZ to [0,∞]. Then for every z ∈ Z , Iz : E → [0,∞], defined by
(11.11), is a rate function on E , and the family {Iz, z ∈ Z } of rate functions has
compact level sets on compacts. Furthermore, the family {Xz,ε} satisfies the Laplace
principle on E with rate function Iz, uniformly for z in compact subsets of Z .
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Proof Let {φi }∞i=1 be a CONS inL 2(O) and let

βi (t)
.=

∫

[0,t]×O
φi (x)B(ds × dx), t ∈ [0, T ], i ∈ N.

Then β = {βi } is a sequence of independent standard real Brownian motions, and it
can be regarded as a C ([0, T ] : R∞)-valued random variable. Furthermore, (11.3)
is satisfied, and from Proposition11.9, there is a measurable map g : C ([0, T ] :
R

∞) → C ([0, T ] × O : R) such that g(β) = B a.s. For ε > 0, define Ĝ ε : Z ×
C ([0, T ] : R∞) → E by Ĝ ε(z,

√
εv)

.= G ε(z,
√

εg(v)), (z, v) ∈ Z × C ([0, T ] :
R

∞). Clearly, Ĝ ε is a measurable map and Ĝ ε(z,
√

εβ) = X ε,z a.s. Next, note that

{
v ∈ C ([0, T ] : R∞) : v(·) =

∫ ·

0
û(s)ds, for some û ∈ L 2([0, T ] : l2)

}

is a measurable subset of C ([0, T ] : R∞). For û ∈ L 2([0, T ] : l2), define uû ∈
L 2([0, T ] × O) by

uû(t, x)
.=

∞∑

i=1

ûi (t)φi (x), (t, x) ∈ [0, T ] × O.

Define Ĝ 0 : Z × C ([0, T ] : R∞) → E by

Ĝ 0(z, v)
.= G 0(z, Int(uû)) if v =

∫ ·

0
û(s)ds and û ∈ L 2([0, T ] : l2),

and set Ĝ 0(z, v)
.= 0 for all other (z, v). Note that

{
Ĝ 0

(
z,

∫ ·

0
û(s)ds

)
: û ∈ SM , z ∈ K

}
= {

G 0 (z, Int(u)) : u ∈ SM , z ∈ K
}
,

where SM on the left side is the one introduced above Condition 11.12, and SM on
the right side is the one introduced above (11.9). Since Condition11.15 holds, we
have that part (a) of Condition11.12 holds with G 0 there replaced by Ĝ 0. Next, an
application of Girsanov’s theorem (see the proof of Theorem11.11) gives that for
every ûε ∈ ¯Ab,M (where the latter class is as in Condition 11.12),

g

(
β + 1√

ε

∫ ·

0
ûε(s)ds

)
= B + 1√

ε
Int(uûε ),

a.s. In particular, for every M < ∞ and families {ûε} ⊂ ¯Ab,M and {zε} ⊂ Z such
that ûε converges in distribution (as SM -valued random elements) to û and zε → z,
we have
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lim
ε→0

Ĝ ε

(
zε,

√
εβ +

∫ ·

0
ûε(s)ds

)
= lim

ε→0
G ε

(
zε,

√
εB + Int(uûε )

)

= G 0 (z, Int(uû))

= Ĝ 0

(
z,

∫ ·

0
û(s)ds

)
.

Thus w.p.1, part (b) of Condition11.12 is satisfied with G ε replaced by Ĝ ε, ε ≥ 0.
The result now follows on noting that if Îz( f ) is defined by the right side of (11.8)
but with G 0 there replaced by Ĝ 0, then Îz( f ) = Iz( f ) for all (z, f ) ∈ Z × E . �

11.3 Reaction–Diffusion SPDE

In this section we will use results from Sect. 11.2, and in particular Theorem11.16,
to study the small noise large deviation principle for a class of SPDE that was
considered in [174]. The class includes, as a special case, the reaction–diffusion
SPDEs considered in [235] (see Remark11.22). The main result of the section is
Theorem11.21, which establishes the uniform Laplace principle for such SPDE.

As the discussion at the beginning of this Part III of the book indicates, this is but
one of many possible applications of the abstract LDP (Theorem9.2), though for this
particular application we of course use the version appropriate for a Brownian sheet
(Theorem11.16). Amain purpose of the presentation is to illustrate the claim that the
essential issue in proving an LDP is a good qualitative theory for controlled versions
of the original system under a law of large numbers scaling. Since we do not wish
to prove this qualitative theory again, in this section we extensively apply results
proved elsewhere, and in that sense, this section is not self-contained. This situation
illustrates the fact that in any particular application of Theorem9.2, one needs a thor-
ough understanding of the qualitative properties of the infinite dimensional system
under consideration.

11.3.1 The Large Deviation Theorem

Let (Ω,F , P) be a probability space with a filtration {Ft }0≤t≤T satisfying the usual
conditions. Let O ⊂ R

d be a bounded open set and {B(t, x) : (t, x) ∈ R+ × O} a
Brownian sheet on this filtered probability space. Consider the SPDE

dX (t, r) = [L(t)X (t, r) + R (t, r, X (t, r))]drdt + √
εA (t, r, X (t, r)) B(dr × dt)

(11.12)
with initial condition X (0, r) = x(r). Here {L(t)}0≤t<∞ is a family of linear,
closed, densely defined operators on C (O) that generates a two-parameter strongly
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continuous semigroup (see [174, Sect. 1]) {U (t, s)}0≤s≤t on C (O), with kernel func-
tion G(t, s, r, q), 0 ≤ s ≤ t, r, q ∈ O . Thus for f ∈ C (O),

[U (t, s) f ](r) =
∫

O
G(t, s, r, q) f (q)dq, r ∈ O, 0 ≤ s ≤ t ≤ T .

Also, A and R are measurable maps from [0, T ] × O × R to R and ε ∈ (0,∞). By
a solution of the SPDE (11.12), we mean the following.

Definition 11.17 A random field X = {X (t, r) : t ∈ [0, T ], r ∈ O} is called a mild
solution of the stochastic partial differential equation (11.12) with initial condition ξ

if (t, r) 
→ X (t, r) is continuous, X (t, r) is {Ft }-measurable for all t ∈ [0, T ] and
r ∈ O , and if a.s. for all t ∈ [0, T ],

X (t, r) =
∫

O
G(t, 0, r, q)x(q)dq +

∫ t

0

∫

O
G(t, s, r, q)R (s, q, X (s, q)) dqds

+ √
ε

∫ t

0

∫

O
G(t, s, r, q)A (s, q, X (s, q)) B(dq × ds). (11.13)

Implicit in Definition11.17 is the requirement that the integrals in (11.13) be well
defined. We will shortly introduce conditions on G, A, and R that ensure that for a
continuous adapted random field X , all the integrals in (11.13) are meaningful. As a
convention, we take G(t, s, r, q) to be zero when 0 ≤ t < s ≤ T , r, q ∈ O .

For u ∈ ¯Ab,N [which was defined in (11.9)], the controlled analogue of (11.13) is

Y (t, r) =
∫

O
G(t, 0, r, q)x(q)dq +

∫ t

0

∫

O
G(t, s, r, q)R(s, q,Y (s, q))dqds

+ √
ε

∫ t

0

∫

O
G(t, s, r, q)A(s, q,Y (s, q))B(dq × ds) (11.14)

+
∫ t

0

∫

O
G(t, s, r, q)A(s, q,Y (s, q))u(s, q)dqds.

The main work in proving an LDP for (11.13) is to prove qualitative properties
(existence and uniqueness, tightness properties, and stability under perturbations)
for solutions to (11.14). We begin by discussing the known qualitative theory for
(11.13).

For α ∈ (0,∞), let Bα
.= {ψ ∈ C (O) : ‖ψ‖α < ∞} be the Banach space with

norm

‖ψ‖α
.= ‖ψ‖0 + sup

r,q∈O,r �=q

|ψ(r) − ψ(q)|
‖r − q‖α

, (11.15)

where ‖ψ‖0 .= supr∈O |ψ(r)|. The Banach space Bα([0, T ] × O) is defined as in
(11.15) butwith O replaced by [0, T ] × O , and for notational conveniencewe denote
this space byBT

α . For α = 0,BT
0 is the space of all continuous maps from [0, T ] × Ō

to R endowed with the sup-norm. The following will be a standing assumption



308 11 Systems Driven by an Infinite Dimensional Brownian Noise

for this section. In the assumption, ᾱ is a fixed constant, and the large deviation
principle will be proved in the topology of C ([0, T ] : Bα), for any fixed α ∈ (0, ᾱ).
Using the contraction principle, this large deviation principle provides large deviation
asymptotics for the evaluation X (t, r) for every fixed (t, r) ∈ [0, T ] × O , and for
many other functionals as well, e.g., supt∈[0,T ] ‖X (t, ·)‖α , sup(t,r)∈[0,T ]×O |X (t, r)|.
Recall that O ⊂ R

d . The following condition is taken from [170].

Condition 11.18 The following two conditions hold.
(a) There exist constants K (T ) < ∞ and γ ∈ (d,∞) such that
(i) for all t, s ∈ [0, T ], r ∈ O,

∫

O
|G(t, s, r, q)|dq ≤ K (T ); (11.16)

(ii) for all 0 ≤ s < t ≤ T and r, q ∈ O,

|G(t, s, r, q)| ≤ K (T )(t − s)−
d
γ ; (11.17)

(iii) if ᾱ
.= γ−d

2γ , then for all α ∈ (0, ᾱ) and for all 0 ≤ s < t1 ≤ t2 ≤
T, r1, r2, q ∈ O,

|G(t1, s, r1, q) − G(t2, s, r2, q)| (11.18)

≤ K (T )
[
(t2 − t1)

1− d
γ (t1 − s)−1 + |r1 − r2|2α(t1 − s)−

d+2α
γ

]
;

(iv) for all z, y ∈ R, r ∈ O, and 0 ≤ t ≤ T ,

|R(t, r, z) − R(t, r, y)| + |A(t, r, z) − A(t, r, y)| ≤ K (T )|z − y|

and
|R(t, r, z)| + |A(t, r, z)| ≤ K (T )(1 + |z|). (11.19)

(b) For all α ∈ (0, ᾱ) and ξ ∈ Bα , ξ̂ (t)
.= ∫

O G(t, 0, ·, q)ξ(q)dq belongs to Bα

and ξ̂ ∈ C ([0, T ] : Bα). The map ξ 
→ ξ̂ is a continuous map from Bα to C ([0, T ] :
Bα).

Remark 11.19 (a) Note that the definition ᾱ
.= (γ − d)/2γ implies ᾱ ∈ (0, 1/2).

(b) We refer the reader to [169] for examples of families {L(t)}t≥0 that satisfy
Condition11.18.

(c) Using (11.16) and (11.17), it follows that for all 0 ≤ s < t ≤ T and r ∈ O ,

∫

O
|G(t, s, r, q)|2dq ≤ K 2(T )(t − s)−

d
γ . (11.20)

Since γ > d, the estimate (11.20) says that
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sup
(r,t)∈O×[0,T ]

∫

[0,t]×O
|G(t, s, r, q)|2dq < ∞, (11.21)

which in view of the linear growth assumption in (11.19) ensures that the stochastic
integral in (11.13) is well defined.

(d) Lemma 4.1(ii) of [169] shows that under Condition11.18, for every α < ᾱ

there exists a constant K̃ (α) such that for all 0 ≤ t1 ≤ t2 ≤ T and all r1, r2 ∈ O ,

∫ T

0

∫

O
|G(t1, s, r1, q) − G(t2, s, r2, q)|2dq ds ≤ K̃ (α)ρ ((t1, r1), (t2, r2))

2α ,

where ρ is the Euclidean distance in [0, T ] × O ⊂ R
d+1. This estimate will be used

in the proof of Lemma11.28.

The following theorem is due to Kotelenez (see Theorems 2.1 and 3.4 in [174]; see
also Theorem 3.1 in [169]).

Theorem 11.20 Assume Condition11.18 and fix α ∈ (0, ᾱ). There exists a measur-
able function

G ε : Bα × B
T
0 → C ([0, T ] : Bα)

such that for every filtered probability space (Ω,F , P, {Ft })with a Brownian sheet
B, X ε

x
.= G ε(x,

√
εB) is the unique mild solution of (11.12) (with initial condition

x), and it satisfies sup0≤t≤T E‖X ε
x (t)‖p

0 < ∞ for all p ∈ [0,∞).

For the rest of the section we consider only α ∈ (0, ᾱ). For f ∈ C ([0, T ] : Bα),
define

Ix ( f )
.= inf

u

∫

[0,T ]×O
u2(s, q)dsdq, (11.22)

where the infimum is taken over all u ∈ L 2([0, T ] × O) such that

f (t, r) =
∫

O
G(t, 0, r, q)x(q)dq +

∫

[0,t]×O
G(t, s, r, q)R(s, q, f (s, q))dsdq

+
∫

[0,t]×O
G(t, s, r, q)A(s, q, f (s, q))u(s, q)dsdq. (11.23)

The following is the main result of this section, which is a uniform Laplace principle
for {X ε

x }. The definition of a uniform Laplace principle was given in Chap.1. There
the dependence on the parameter over which uniformity is considered was noted in
the expectation operator. In this chapter, however, it will be more convenient to work
with a common probability measure (instead of a collection parametrized by x ∈ Bα)
and instead note the dependence on x in the collection of random variables, i.e., we
write X ε

x to note this dependence.

Theorem 11.21 Assume Condition11.18, let α ∈ (0, ᾱ), and let X ε
x be as in Theo-

rem11.20. Then Ix defined by (11.22) is a rate function on C ([0, T ] : Bα), and the
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family {Ix , x ∈ Bα} of rate functions has compact level sets on compacts. Further-
more, {X ε

x } satisfies the Laplace principle on C ([0, T ] : Bα) with the rate function
Ix , uniformly for x in compact subsets of Bα .

Remark 11.22 (a) If part (b) of Condition11.18 is weakened to merely the require-
ment that for every ξ ∈ Bα , t 
→ ∫

O G(t, 0, ·, q)ξ(q)dq be in C ([0, T ] : Bα), then
the proof of Theorem11.21 shows that for all x ∈ Bα , the large deviation principle
for {X ε

x } on C ([0, T ] : Bα) holds (but not necessarily uniformly).
(b) The small noise LDP for a class of reaction–diffusion SPDEs, with O = [0, 1]

and a bounded diffusion coefficient, has been studied in [235]. A difference in the
conditions on the kernel G in [235] is that instead of (11.18), G satisfies the L 2

estimate in Remark11.19 (c) with ᾱ = 1/4. One finds that the proof of Lemma11.28,
which is at the heart of the proof of Theorem 11.21, uses only theL 2 estimate rather
than the condition (11.18). Using this observation and techniques in the proof of
Theorem11.21, one can extend results of [235] to the case in which the diffusion
coefficient, instead of being bounded, satisfies the linear growth condition (11.19).

Since the proof of Theorem11.21 relies on properties of the controlled process
(11.14), the first step is to prove existence and uniqueness of solutions. This follows
from a standard application of Girsanov’s theorem. Following the convention used
throughout the book, we denote the controlled version of the SPDE by an overbar.

Theorem 11.23 Let G ε be as in Theorem11.20 and let u ∈ ¯Ab,N for some N ∈ N,
where ¯Ab,N is as defined in (11.9). For ε > 0 and x ∈ Bα , define

X̄ ε
x

.= G ε
(
x,

√
εB + Int(u)

)
,

where Int is defined in (11.10). Then X̄ ε
x is the unique solution of (11.14).

Proof Fix u ∈ ¯Ab,N . Since

E

[
exp

{
− 1√

ε

∫

[0,T ]×O
u(s, q)B(ds × dq) − 1

2ε

∫

[0,T ]×O
u2(s, q)dsdq

}]
= 1,

the measure γ u,ε defined by

dγ u,ε = exp

{
− 1√

ε

∫

[0,T ]×O
u(s, q)B(ds × dq) − 1

2ε

∫

[0,T ]×O
u2(s, q)dsdq

}
dP

is a probability measure on (Ω,F , P). Furthermore, γ u,ε is mutually absolutely
continuous with respect to P , and by Girsanov’s theorem (TheoremD.2), the pro-
cess Bu/

√
ε .= B + ε−1/2Int(u) on (Ω,F , γ u,ε, {Ft }) is a Brownian sheet. Thus

by Theorem11.20, X̄ ε
x = G ε

(
x,

√
εB + Int(u)

)
is the unique solution of (11.13),

with B there replaced by Bu/
√

ε, on (Ω,F , γ u,ε, {Ft }). However, equation (11.13)
with Bu/

√
ε is precisely the same as equation (11.14), and since γ u,ε and P are

mutually absolutely continuous, we get that X̄ ε
x is the unique solution of (11.14) on

(Ω,F , P, {Ft }). This completes the proof. �
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We next state two basic qualitative results regarding the processes X̄ ε
x that hold

under Condition11.18. The first is simply the controlled zero-noise version of the
theorem just stated. Its proof follows from a simpler version of the arguments used
in [174] to establish Theorem11.20, and thus is omitted. The second is a standard
convergence result, whose proof is given in Sect. 11.3.2.

Theorem 11.24 Assume Condition11.18, let α ∈ (0, ᾱ), and fix x ∈ Bα and u ∈
L 2([0, T ] × O). Then there is a unique function f in C ([0, T ] : Bα) that satisfies
equation (11.23).

In analogy with the notation X̄ ε
x for the solution of (11.14), we denote the unique

solution f given by Theorem 11.24 by X̄0
x .

Theorem 11.25 Assume Condition11.18 and let α ∈ (0, ᾱ). Let M < ∞, and sup-
pose that xε → x and uε → u in distribution as ε → 0 with {uε} ⊂ ¯Ab,M. Let X̄ ε

xε

solve (11.14) with u = uε, and let X̄x solve (11.14). Then X̄ ε
xε → X̄x in distribution.

Remark 11.26 As noted several times already in this book, the same analysis as that
used to establish the largedeviationbounds (and inparticular the largedeviationupper
bound) typically yields compactness of level sets for the associated rate function. In
the present setting, we note that the same argument used to prove Theorem11.25 but
with ε set to zero shows the following (under Condition11.18). Suppose that xn → x
and un → u with {xn}n∈N ⊂ Bα and {un}n∈N ⊂ SM , and that fn solves (11.14) when
(x, u) is replaced by (xn, un). Then fn → f .

Proof (of Theorem11.21) Define the map G 0 : Bα × B
T
0 → C ([0, T ] : Bα) as fol-

lows. If x ∈ Bα and φ ∈ B
T
0 is of the form φ(t, x)

.= Int(u)(t, x) for some u ∈
L 2([0, T ] × O), we define G 0(x, φ) to be the solution f to (11.23). Let G 0(x, φ) =
0 for all other φ ∈ B

T
0 . In view of Theorem11.16, it suffices to show that (G ε,G 0)

satisfy Condition11.15 with Z and E there replaced by Bα and C ([0, T ] : Bα),
respectively, and that for all f ∈ E , the map x 
→ Ix ( f ) is lower semicontinu-
ous. The latter property and the first part of Condition11.15 follow directly from
Theorem11.24 and Remark 11.26. The second part of Condition11.15 follows from
Theorem11.25. �

Thus all that remains to complete the proof is to verify Theorem 11.25.

11.3.2 Qualitative Properties of Controlled Stochastic
Reaction–Diffusion Equations

This section is devoted to the proof of Theorem11.25. Throughout this section we
assume Condition11.18 and consider any fixed α ∈ (0, ᾱ), where ᾱ

.= (γ − d)/2γ .
Whenever a control u appears, the associated controlled SPDE is of the form (11.14),
and its solution is denoted by X̄ ε

x . Our first result shows that L
p bounds hold for

controlled SDEs, uniformly when the initial condition and controls lie in compact
sets and ε ∈ [0, 1).
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Lemma 11.27 If K is any compact subset of Bα and M < ∞, then for every p ∈
[1,∞),

sup
u∈ ¯A b,M

sup
x∈K

sup
ε∈[0,1)

sup
(t,r)∈[0,T ]×O

E‖X̄ ε
x (t, r)‖p < ∞.

Proof By Hölder’s inequality, it suffices to establish the claim for all sufficiently
large p. Using the standard bound for the pth power of a sum in terms of the pth
powers of the summands and Doob’s inequality (D.2) for the stochastic integral,
there exists c1 ∈ (0,∞) such that

E‖X̄ ε
x (t, r)‖p ≤ c1

∥∥∥∥
∫

O
G(t, 0, r, q)x(q)dq

∥∥∥∥
p

+ c1E

∥∥∥∥
∫ t

0

∫

O
G(t, s, r, q)R

(
s, q, X̄ ε

x (s, q)
)
dqds

∥∥∥∥
p

+ c1E

[∫ t

0

∫

O
|G(t, s, r, q)|2 ∣∣A

(
s, q, X̄ ε

x (s, q)
)∣∣2 dqds

] p
2

+ c1E

[∫ t

0

∫

O
|G(t, s, r, q)| |A (

s, q, X̄ ε
x (s, q)

) ||u(s, q)|dqds
]p

.

Using (11.19) and the Cauchy-Schwarz inequality, the entire sum on the right-hand
side above can be bounded by

c2

[
1 + E

[∫ t

0

∫

O
|G(t, s, r, q)|2‖X̄ ε

x (s, q)‖2dq ds
] p

2

]
.

If p > 2, then Hölder’s inequality yields

Λp(t) ≤ c2

[
1 +

(∫ t

0

∫

O
|G(t, s, r, q)|2 p̃dq ds

) p−2
2

∫ t

0
Λp(s)ds

]
,

where
Λp(t)

.= sup
u∈ ¯A b,M

sup
x∈K

sup
ε∈[0,1)

sup
r∈O

E‖X̄ ε
x (t, r)‖p

and p̃
.= p/(p − 2). Recall that ᾱ < 1/2 (see Remark 11.19). Using (11.16) and

(11.17), we obtain

∫

O
|G(t, s, r, q)|2 p̃dq ≤ (K (T ))2 p̃(t − s)−

d
γ
(2 p̃−1)

.

Suppose p0 is large enough that (
2p0
p0−2 − 1)(1 − 2ᾱ) < 1. Noting that ᾱ

.= (γ −
d)/2γ implies d/γ = 1 − 2ᾱ, we have that for all p ≥ p0 and t ∈ [0, T ],
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[∫ t

0

∫

O
|G(t, s, r, q)|2 p̃dqds

] p−2
2

≤ c3T
[1−(2 p̃−1)(1−2ᾱ)] p−2

2 .

Thus for every p ≥ p0 there exists a constant c4 such that

Λp(t) ≤ c4

[
1 +

∫ t

0
Λp(s)ds

]
.

The result now follows from Gronwall’s lemma. �

The following lemma will be instrumental in proving tightness and weak con-
vergence in Banach spaces such as Bα and B

T
α . Recall that ρ denotes the Euclidean

distance in [0, T ] × O ⊂ R
d+1.

Lemma 11.28 Let V be a collection of Rd -valued predictable processes such that
for all p ∈ [2,∞),

sup
f ∈V

sup
(t,r)∈[0,T ]×O

E‖ f (t, r)‖p < ∞. (11.24)

Also, let U ⊂ ¯Ab,M for some M < ∞. For f ∈ V and u ∈ U , define

Ψ1(t, r)
.=

∫ t

0

∫

O
G(t, s, r, q) f (s, q)B(dq × ds),

Ψ2(t, r)
.=

∫ t

0

∫

O
G(t, s, r, q) f (s, q)u(s, q)dqds,

where the dependence on f and u is not made explicit in the notation. Then for all
α < ᾱ and i = 1, 2,

sup
f ∈V ,u∈U

E

[
sup

ρ((t,r),(s,q))<1

‖Ψi (t, r) − Ψi (s, q)‖
ρ ((t, r), (s, q))α

]
< ∞.

Proof We will prove the result for i = 1; the proof for i = 2 is identical (except
for an additional application of the Cauchy-Schwarz inequality), and thus omitted.
Henceforthwewrite, for simplicity,Ψ1 asΨ .We applyTheorem6of [157], according
to which it suffices to show that there are p ∈ (2,∞), cp ∈ (0,∞), and a function
ω̂ : [0,∞) → [0,∞) satisfying

∫ 1

0

ω̂(u)

u1+α+(d+1)/p
du < ∞ (11.25)

such that for all 0 ≤ t1 < t2 ≤ T and r1, r2 ∈ O , one has

sup
f ∈V ,u∈U

E ‖Ψ (t2, r2) − Ψ (t1, r1)‖p ≤ cp
(
ω̂ (ρ ((t1, r1), (t2, r2)))

)p
. (11.26)
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We will show that (11.26) holds with ω̂(u) = uα0 for some α0 ∈ (α, ᾱ) and all p
sufficiently large. With such choices (and p large enough), the integrand in (11.25)
will be of the form uβ with β ∈ (−1, 0). This will establish the result.

Fix α1 such that α < α1 < ᾱ and let t1 < t2, r1, r2 ∈ O and p > 2.Wewill need p
to be sufficiently large, and the choice of p will be fixed in the course of the proof. By
the Burkholder–Davis–Gundy inequality [AppendixD, (D.3)], there exists a constant
c1 such that

E ‖Ψ (t2, r2) − Ψ (t1, r1)‖p

≤ c1E

[∫ T

0

∫

O
|G(t2, s, r2, q) − G(t1, s, r1, q)|2 ‖ f (s, q)‖2dq ds

] p
2

. (11.27)

Let p̃ = p/(p − 2) and δ = 4/p. Note that (2 − δ) p̃ = δp/2 = 2. Hölder’s inequal-
ity (with parameters p/(p − 2) and p/2) and (11.24) give that the right-hand side
of (11.27) is bounded above by

c1

[∫ T

0

∫

O
|G(t2, s, r2, q) − G(t1, s, r1, q)|(2−δ) p̃ dq ds

] p−2
2

×
[∫ T

0

∫

O
|G(t2, s, r2, q) − G(t1, s, r1, q)|δp/2 E‖ f (s, q)‖pdq ds

]

≤ c2

[∫ T

0

∫

O
|G(t2, s, r2, q) − G(t1, s, r1, q)|2 dq ds

] p
2

(11.28)

for a suitable constant c2 that is independent of f . From part (d) of Remark11.19,
the expression in (11.28) can be bounded (for p large enough) by

c3ρ ((t1, r1), (t2, r2))
α1 p .

The result follows. �

The next lemma will be used to prove that the stochastic integral appearing in X̄ ε
x

converges to 0 in C ([0, T ] × O), a result that will be strengthened shortly.

Lemma 11.29 LetV andΨ1 beas inLemma11.28, and for f ∈ V , let Z ε
f

.= √
ε Ψ1.

Then for every sequence { fε} ⊂ V , Z ε
fε

→ 0 in C ([0, T ] × O) and in probability
as ε → 0.

Proof Note that for t ∈ [0, T ] and r ∈ O ,

sup
f ∈V

E |Ψ1(t, r)|2 = sup
f ∈V

∫ t

0

∫

O
|G(t, s, r, q)|2E ‖ f (s, q)‖2 dqds

≤ c1

∫ t

0

∫

O
|G(t, s, r, q)|2dqds

< ∞,
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where the last inequality is from (11.21). This shows that for such (t, r), Z ε
fε
(t, r) →

0 inL 2 and hence in probability. For δ ∈ (0, 1) and x ∈ C ([0, T ] × O), define

ω(x, δ)
.= sup

[‖x(t, r) − x(t ′, r ′)‖ : ρ
(
(t, r), (t ′, r ′)

) ≤ δ
]
.

Then ω(Z ε
fε
, δ) ≤ √

εδαMε
fε
, where

Mε
fε

.= sup
0<ρ((t,r),(s,q))<1

‖Ψ1(t, r) − Ψ1(s, q)‖
ρ ((t, r), (s, q))α .

Since α < ᾱ, it follows by Lemma11.28 that

lim
δ→0

sup
ε∈(0,1)

Eω(Z ε
fε , δ) = 0.

This establishes a form of uniform equicontinuity, and the result now follows from
Theorem 14.5 of [167]. �

We now establish the main convergence result.

Proof (of Theorem11.25) Consider sequences {xε} and {uε} as in the statement of
Theorem11.25. Letting X̄ ε

xε denote the corresponding controlled process, define

Z ε
1(t, r)

.=
∫

O
G(t, 0, r, q)xε(q)dq,

Z ε
2(t, r)

.=
∫ t

0

∫

O
G(t, s, r, q)R(s, q, X̄ ε

xε (s, q))dqds,

Z ε
3(t, r)

.= √
ε

∫ t

0

∫

O
G(t, s, r, q)A(s, q, X̄ ε

xε (s, q))B(dq × ds),

Z ε
4(t, r)

.=
∫ t

0

∫

O
G(t, s, r, q)A(s, q, X̄ ε

xε (s, q))uε(s, q)dqds.

We first show that {Z ε
i } is tight in C ([0, T ] : Bα), for i = 1, 2, 3, 4. For i = 1, this

follows from part (b) of Condition11.18. Recall that the norm on BT
α is

‖ψ‖α,T
.= ‖ψ‖0,T + sup

s,t∈[0,T ],r,q∈O,s �=t,r �=q

|ψ(t, r) − ψ(s, q)|
ρ ((t, r), (s, q))α ,

with ‖ψ‖0,T .= supt∈[0,T ],q∈O |ψ(t, r)|. Since BT
α∗ is compactly embedded in BT

α for
ᾱ > α∗ > α (cf. [147, Lemma 6.33]), it suffices to show that for some α∗ ∈ (α, ᾱ),

sup
ε∈(0,1)

P
{‖Z ε

i ‖α∗,T > K
} → 0 as K → ∞ for i = 2, 3, 4. (11.29)

For i = 2, 4, (11.29) is an immediate consequence of
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sup
ε∈(0,1)

E‖Z ε
i ‖α∗,T < ∞,

which follows from Lemma11.28, the linear growth condition (11.19), and
Lemma11.27. For i = 3, in view of Lemma 11.29, it suffices to establish

sup
ε∈(0,1)

E[Z ε
3]α∗,T < ∞, (11.30)

where for z ∈ B
T
α , [z]α∗,T = ‖z‖α∗,T − ‖z‖0,T . From the linear growth condition

(11.19) and Lemma11.27, it follows that

sup
ε∈[0,1)

sup
(t,r)∈[0,T ]×O

E |A(t, r, X̄ ε
xε (t, r))|p < ∞.

The bound in (11.30) now follows on using Lemma11.28, with d = 1 and

V
.= {(t, r) 
→ A(t, r, X̄ ε

xε (t, r)), ε ∈ (0, 1)}.

Having shown tightness of Z ε
i for i = 1, 2, 3, 4, we can extract a subsequence

along which each of these processes and also X̄ ε
xε jointly converge in distribution,

with X̄ ε
xε taking values inC ([0, T ] : Bα). Let Zi and X̄x denote the respective limits.

We will show that

Z1(t, r) =
∫

O
G(t, 0, r, q)x(q)dq,

Z2(t, r) =
∫ t

0

∫

O
G(t, s, r, q)R(s, q, X̄x (s, q))dqds,

Z3(t, r) = 0,

Z4(t, r) =
∫ t

0

∫

O
G(t, s, r, q)A(s, q, X̄x (s, q))u(s, q)dqds. (11.31)

The uniqueness result Theorem11.24 will then complete the proof.
Convergence for i = 1 follows from part (b) of Condition11.18. The case i = 3

follows from Lemmas11.29, 11.27, and the linear growth condition. To deal with the
cases i = 2, 4, we invoke the Skorohod representation theorem, which allows us to
assume with probability one convergence for the purposes of identifying the limits.
We give the proof of convergence only for the harder case i = 4. Denote the right
side of (11.31) by Ẑ4(t, r). We have the bound

∣∣∣Z ε
4(t, r) − Ẑ4(t, r)

∣∣∣

≤
∫ t

0

∫

O
|G(t, s, r, q)| ∣∣A(s, q, X̄ ε

xε (s, q)) − A(s, q, X̄x (s, q))
∣∣ |uε(s, q)| dqds
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+
∣∣∣∣
∫ t

0

∫

O
G(t, s, r, q)A(s, q, X̄x (s, q)) (uε(s, q) − u(s, q)) dqds

∣∣∣∣ . (11.32)

Using the Cauchy-Schwarz inequality and the uniform Lipschitz property of A, for a
suitable constant c ∈ (0,∞) the first term on the right side of (11.32) can be bounded
above by

√
M

[∫ t

0

∫

O
|G(t, s, r, q)|2 ∣∣A(s, q, X̄ ε

xε (s, q)) − A(s, q, X̄x (s, q))
∣∣2 dqds

]1/2

≤ c

(
sup

(s,q)∈[0,T ]×O

∥∥X̄ ε
xε (s, q) − X̄x (s, q)

∥∥
)

,

and thus it converges to 0 as ε → 0. The second term in (11.32) converges to 0
as well, since uε → u as elements of ¯Ab,M and by (11.20) and the linear growth
assumption (11.19),

∫ t

0

∫

O
|G(t, s, r, q)|2 ∣∣A(s, q, X̄x (s, q))

∣∣2 dqds < ∞.

By uniqueness of limits and noting that Ẑ4 is a continuous random field, we see that
Z4 = Ẑ4, and the proof is complete. �

11.4 Notes

Some general references for stochastic partial differential equations are [169, 175,
221, 243]. The material of this chapter is largely taken from [43]. The approach
taken is different from that of [170, 235] and other early works on large deviations
for SPDE [50, 52, 56, 60, 127, 139, 160, 209, 252, 261]. The arguments used in
these papers, which build on the ideas of [7], proceed by approximating the original
model by a suitable time and/or space discretization. First one establishes an LDP
for the approximate system and then argues that an LDP continues to hold as one
approaches the original infinite dimensional model. For the last step, one needs suit-
able exponential probability estimates. These are usually the most technical aspects
of the proofs, and they often assume conditions stronger than those needed for the
LDP. Examples of various models to which the approach has been applied can be
found in the references listed at the beginning of Part III of this book.

An alternative approach, based on nonlinear semigroup theory and infinite dimen-
sionalHamilton–Jacobi–Bellman (HJB) equations, has been developed in [131, 132].
This approach relies on a uniqueness result for the corresponding infinite dimen-
sional nonlinear PDEs. The uniqueness requirement on the limit HJB equation is an
extraneous artifact of the approach, and different models seem to require different
methods for this, in general very hard, uniqueness problem. In contrast to the weak
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convergence approach, it requires an analysis of the model that goes significantly
beyond the unique solvability of the SPDE.

One of the main reasons for proving a sample path LDP for any given stochastic
system is as a step to validating the corresponding Freidlin–Wentzell large-time
theory [140]. A key distinction between the cases of finite and infinite dimensional
state is that open neighborhoods of points, which have compact closure in the finite
dimensional case, are merely bounded in the infinite dimensional case. This means,
unfortunately, that one should prove that the large deviation estimates are uniform
for initial conditions in bounded sets in the latter case. As was discussed in Chap.1,
it is usually easy to establish a Laplace principle that is uniformwith respect to initial
conditions in compact sets using a straightforward argument by contradiction, which
then gives the corresponding uniform LDP (Proposition1.14). A different approach
is needed for the infinite dimensional problem if one wants an LDP that is uniform
over bounded sets, and one way to deal with the issue within the Laplace principle
formalism is presented in [227].

The paper [38] studies large deviations for reaction–diffusion SPDE driven by
a Poisson noise using representations for Poisson random measures of the form
presented in Chap.8.
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