
Chapter 10
Large and Moderate Deviations
for Finite Dimensional Systems

In this chapterweuse the abstract sufficient conditions fromChap.9 to prove large and
moderate deviation principles for small noise finite dimensional jump-diffusions.We
will consider only Laplace principles rather than uniform Laplace principles, since,
as was noted in Chap.9, the extension from the nonuniform to the uniform case
is straightforward. The first general results on large deviation principles for jump-
diffusions of the form considered in this chapter are due to Wentzell [245–248] and
Freidlin and Wentzell [140]. The conditions for an LDP identified in the current
chapter relax some of the assumptions made in these works. Results on moderate
deviation principles in this chapter are based on the recent work [41]. We do not
aim for maximal generality, and from the proofs it is clear that many other models
(e.g., time inhomogeneous jump diffusions, SDEs with delay) can be treated in an
analogous fashion.

The perspective here is different from that of the discrete time model of Chap. 4.
In particular, the emphasis is on viewing the stochastic model as a relatively well
behaved mapping on a fixed noise space consisting of a Brownian motion and one
or more Poisson random measures. This has important consequences for models
with degeneracy, i.e., systems for which the noise does not push the state in all
directions. Processes of this sort in the general discrete time setting required com-
plicated assumptions such as Condition4.8 and a delicate mollification argument as
in Sect. 4.8. In contrast, the degeneracy is essentially irrelevant when the process of
interest can be viewed as a nice mapping (at least asymptotically) on a fixed noise
space. This distinction becomes even more significant for the infinite dimensional
models of Chap.11, where the analogous degeneracy is ubiquitous. In this chapter
we use Lipschitz continuity assumptions on the coefficients to guarantee that the
mapping is well behaved. However, this is not necessary, especially with regard to
Poisson noise, and for one such weakening we refer to Sect. 13.3.

The chapter is organized as follows. Section10.1 introduces the basic stochastic
process model that will be considered. Conditions under which the stochastic equa-
tion and its deterministic analogue have unique solutions are given. In Sect. 10.2 we
use Theorem9.2 to establish an LDP for the solution under additional integrability
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conditions. Finally, in Sect. 10.3 we apply Theorem9.9 to prove a moderate devi-
ations result. For this result the integrability conditions we require are somewhat
weaker, though additional smoothness conditions on the coefficients are assumed
so that one can easily expand around the LLN limit, and the proof of tightness, as
with the discrete time model of Chap.5, is more involved than for the large deviation
counterpart.We use the notation fromChap.9, except that in this chapter,W is a finite
dimensional standard Brownian motion, i.e.,H0 = H = R

d , W = C ([0, T ] : R
d),

and Λ is the identity operator.

10.1 Small Noise Jump-Diffusion

We consider small noise stochastic differential equations (SDEs) of the form

X ε(t) = x0 +
∫ t

0
b(X ε(s))ds + √

ε

∫ t

0
σ(X ε(s))dW (s)

+ ε

∫
X t

G(X ε(s−), y)N 1/ε(ds × dy), (10.1)

where W is a standard d-dimensional Wiener process, N 1/ε is a PRM with intensity
measure λT × ν (see Definition8.11) constructed from N̄ as in (8.16) with ϕ = 1/ε,
and W, N̄ satisfy (a)–(c) in Sect. 9.1. The coefficients are assumed to satisfy the
following condition.

Condition 10.1 The functions b : R
d → R

d , σ : R
d → R

d×d , and G : R
d × X →

R
d satisfy
(a) for some Lb ∈ (0,∞),

‖b(x) − b(x̄)‖ ≤ Lb‖x − x̄‖, x, x̄ ∈ R
d;

(b) for some Lσ ∈ (0,∞),

‖σ(x) − σ(x̄)‖ ≤ Lσ‖x − x̄‖, x, x̄ ∈ R
d;

(c) for some LG ∈ L 1(ν),

‖G(x, y) − G(x̄, y)‖ ≤ LG(y)‖x − x̄‖, x, x̄ ∈ R
d , y ∈ X ;

(d) for some MG ∈ L 1(ν),

‖G(x, y)‖ ≤ MG(y)(1 + ‖x‖), x ∈ R
d , y ∈ X .

The following result follows by standard arguments (seeTheorem IV.9.1 of [159]).
It says that under Condition10.1, Eq. (10.1) has a unique pathwise solution. In
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applying results from Chap.9, we take U = D([0, T ] : R
d), i.e., the space of R

d -
valued right-continuous functions with left limits and the usual Skorokhod topology
[24, Chap.3, Sect. 12].

Theorem 10.2 Fix x0 ∈ R
d , and assume Condition10.1. Then for each ε > 0,

there is a measurable map G ε : V → D([0, T ] : R
d) such that for every prob-

ability space (Ω̃, F̃ , P̃) on which are given a d-dimensional Brownian motion
W̃ and an independent Poisson random measure Ñε on XT with intensity mea-
sure ε−1νT , X̃ ε .= G ε(

√
εW̃ , εÑε) is an F̃t

.= σ {W̃ (s), Ñε(B × [0, s]), s ≤ t, B ∈
B(X ), ν(B) < ∞} adapted process that is the unique solution of the stochastic
integral equation

X̃ ε(t) = x0 +
∫ t

0
b(X̃ ε(s))ds + √

ε

∫ t

0
σ(X̃ ε(s))dW̃ (s)

+ ε

∫
X t

G(X̃ ε(s−), y)Ñε(ds × dy), (10.2)

for t ∈ [0, T ]. In particular, X ε = G ε(
√

εW, εN 1/ε) is the unique solution of (10.1).

10.2 An LDP for Small Noise Jump-Diffusions

The solution X ε of (10.1) is a D([0, T ] : R
d)-valued random variable. To prove

a large deviation principle for {X ε}ε>0 as ε → 0, we will assume the following
additional condition on the coefficient function G. For ρ ∈ (0,∞), let L ρ

exp be the
collection of all measurable θ : X → R+ such that whenever A ∈ B(X ) satisfies
ν(A) < ∞, ∫

A
eρθ(y)ν(dy) < ∞. (10.3)

Let Lexp

.= ∩ρ∈(0,∞)L ρ
exp.

Condition 10.3 MG ∈ Lexp and LG ∈ L ρ
exp for some ρ > 0.

Remark 10.4 This exponential integrability condition on jump distributions is a nat-
ural requirement for the model; it should be compared with Condition4.3, assumed
in the study of small noise discrete time Markov recursive systems. Consider, for
example, the case in whichX = R

d , ν ∈ P(Rd) satisfies
∫
Rd e〈α,y〉ν(dy) < ∞ for

all α ∈ R
d , and for some d × d matrix A and a vector w ∈ R

d ,

G(x, y) = Ay + y 〈x,w〉 .

Then G satisfies parts (c) and (d) of Condition10.1, as well as Condition10.3. In the
general case (in which ν need not be a probability measure), note that the local rate
function corresponding to just the jump part of the SDE (10.2) would be
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L(x, β) = inf

[∫
X

(g(y))ν(dy) :
∫
X

G(x, y)g(y)ν(dy) = β

]
. (10.4)

Using convex duality and that (b) is dual to (ea − 1), for this to be superlinear in β

[a condition needed for the rate function on path space to have compact level sets in
the usual topology of D([0, T ] : R

d)], one needs

∫
X

[
e〈α,G(x,y)〉 − 1

]
ν(dy) < ∞ for all α ∈ R

d . (10.5)

However, this follows under Conditions10.1 and 10.3. One can break the integral
in (10.5) according to {y : MG(y) > 1} and {y : MG(y) ≤ 1}. Then MG ∈ L 1(ν)

implies ν({y : MG(y) > 1}) < ∞, and the integral over {y : MG(y) > 1} is finite
due to Condition10.3. The mean value theorem gives the bound ‖α‖ e‖α‖MG(y)
for the integrand on {y : MG(y) ≤ 1}, and finiteness for the corresponding integral
follows from MG ∈ L 1(ν).

We recall that S
.= ∪n∈NSn , with each Sn

.= SWn × SN
n compact in the appropriate

topology. The proof of the following theorem proceeds using a standard argument
and is given after Lemma10.8.

Theorem 10.5 Fix x0 ∈ R
d , and assume Conditions10.1 and 10.3. Then for each

q = ( f, g) ∈ S, there is a unique ξ = ξq ∈ C ([0, T ] : R
d) such that for all t ∈

[0, T ],

ξ(t) = x0 +
∫ t

0
b(ξ(s))ds +

∫ t

0
σ(ξ(s)) f (s)ds

+
∫
X t

G(ξ(s), y)g(s, y)ν(dy)ds. (10.6)

For q = ( f, g) ∈ S, let ξ = ξq denote the solution of (10.6). Let I : D([0, T ] :
R

d) → [0,∞] be defined by

I (φ)
.= inf

q∈S:φ=ξq
L̄T (q), (10.7)

where L̄T (q)
.= LW

T ( f ) + LN
T (g), with the individual costs defined as in (9.1).

Theorem 10.6 Assume Conditions10.1 and 10.3. Then I is a rate function on
D([0, T ] : R

d) and {X ε}ε>0 satisfies a large deviation principle on D([0, T ] : R
d)

with rate function I .

Following our standard convention, the proof is given for T = 1. Before pro-
ceeding with the proof, we present two lemmas. The first will be used to prove
tightness. Recall that g ∈ SN

n means that
∫
[0,T ]×X (g(u, y))ν(dy)du ≤ n. For a

function f : [0, 1] → R
k , define ‖ f ‖∞,t

.= sup0≤s≤t ‖ f (s)‖ for t ∈ [0, 1]. Note that
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the constant c(δ, n) appearing in the lemma may also depend on the function θ .
However, when the lemma is used, this will be a fixed quantity, such as MG(y), that
is associated with a particular process model under consideration.

Lemma 10.7 Let θ ∈ Lexp and suppose that ν({θ > 1}) < ∞. Then for every δ > 0
and n ∈ N, there exists c(δ, n) ∈ (1,∞) such that for all θ̃ : X → R+ satisfying
θ̃ ≤ θ , every measurable map f : [0, 1] → R+, and all 0 ≤ s ≤ t ≤ 1,

sup
g∈SN

n

∫
(s,t]×X

f (u)θ̃(y)g(u, y)ν(dy)du

≤ c(δ, n)

(∫
X

θ̃ (y)ν(dy)

) (∫ t

s
f (u)du

)
+ δ ‖ f ‖∞,1 . (10.8)

Proof Let f : [0, 1] → R+, g ∈ SN
n , and δ > 0 be given. Then for eachm ∈ (0,∞),

∫
(s,t]×X

f (u)θ̃(y)g(u, y)ν(dy) du = T1(m) + T2(m), (10.9)

where

T1(m)
.=

∫
(s,t]×{θ≤m}

f (u)θ̃(y)g(u, y)ν(dy)du,

and

T2(m)
.=

∫
(s,t]×{θ>m}

f (u)θ̃(y)g(u, y)ν(dy)du.

Using part (a) of Lemma9.6 with σ = k, a = θ(y) and b = g(u, y), for each k ∈ N

we have the bound

T2(m) ≤ ‖ f ‖∞,1

(∫
{θ>m}

ekθ(y)ν(dy) + n

k

)
.

Also, for each β ∈ (1,∞), T1(m) can be bounded by

T1(m) ≤ T3(m, β) + T4(m, β),

where

T3(m, β)
.=

∫
E1(m,β)

f (u)θ̃(y)g(u, y)ν(dy)du,

T4(m, β)
.=

∫
E2(m,β)

f (u)θ̃(y)g(u, y)ν(dy)du,
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and

E1(m, β)
.= {(u, y) ∈ (s, t] × X : θ(y) ≤ m and g(u, y) ≤ β},

E2(m, β)
.= {(u, y) ∈ (s, t] × X : θ(y) ≤ m and g(u, y) > β}.

Using part (b) of Lemma9.6 and that g ∈ SN
n , we obtain

T3(m, β) + T4(m, β) ≤ β

(∫
X

θ̃ (y)ν(dy)

) (∫ t

s
f (u)du

)
+ κ̄1(β)mn ‖ f ‖∞,1 .

(10.10)
Thus the left side of (10.8) can be bounded by

β

(∫
X

θ̃ (y)ν(dy)

) (∫ t

s
f (u)du

)

+ ‖ f ‖∞,1

(
κ̄1(β)mn +

∫
{θ>m}

ekθ(y)ν(dy) + n

k

)
.

Given δ > 0, choose k ∈ N such that n/k < δ/3. Then use that θ ∈ Lexp to choose
m ∈ (0,∞) such that

∫
{θ>m} e

kθ(y)ν(dy) < δ/3. This is possible, since ν({θ > 1}) <

∞. Finally, choose β ∈ (1,∞) such that κ̄1(β)mn < δ/3. The result now follows by
taking c(δ, n) = β. �

The following lemma is proved similarly to Lemma 10.7 and therefore only a
sketch is provided. Recall that X1

.= [0, 1] × X and ν1 ∈ P(X1) is the product
measure ν1(ds × dy) = ν(dy)ds.

Lemma 10.8 Let θ ∈ L ρ
exp ∩ L 1(ν) for some ρ ∈ (0,∞). Then for every n ∈ N,

sup
g∈SN

n

∫
X 1

θ(y)g(u, y)ν(dy)du < ∞.

Proof Consider the equality in (10.9) with m = 1, s = 0, t = 1, f = 1, and θ̃ = θ .
Then as in the proof of Lemma10.7,

T2(1) ≤
∫

{θ>1}
eρθ(y)ν(dy) + n

ρ
.

Also, as with the proof of (10.10),

T1(1) ≤
∫
X

θ(y)ν(dy) + κ̄1(1)n.

The result follows by combining the two estimates. �
Proof of Theorem10.5. Fix q = ( f, g) ∈ S and let k ∈ N be such that q ∈ Sk .We first
prove the existence of a solution to (10.6). Consider a sequence {φn} inC ([0, 1] : R

d)
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constructed recursively as follows.Defineφ1(t)
.= x0 for all t ∈ [0, 1], and for n ∈ N,

let

φn+1(t)
.= x0 +

∫ t

0
b(φn(s))ds +

∫ t

0
σ(φn(s)) f (s)ds

+
∫
X t

G(φn(s), y)g(s, y)ν(dy)ds, t ∈ [0, 1]. (10.11)

Using the growth conditions on b, σ , and G, we have that there is a c1 ∈ (0,∞) such
that for all n ∈ N and t ∈ [0, 1],

‖φn+1‖∞,t ≤ ‖x0‖ + c1

∫ t

0
(1 + ‖φn‖∞,s)(1 + | f (s)|)ds

+ c1

∫
X t

MG(y)(1 + ‖φn‖∞,s)g(s, y)ν(dy)ds.

Thus, with h(s)
.= (1 + | f (s)| + ∫

X MG(y)g(s, y)ν(dy)), for some c2 ∈ (0,∞),
we have

‖φn+1‖∞,t ≤ c2

(
1 +

∫ t

0
‖φn‖∞,sh(s)ds

)
, t ∈ [0, 1], n ∈ N.

FromLemma10.8, we obtain
∫
[0,1] h(s)ds < ∞. A standard recursive argument now

shows that for all n, ‖φn‖∞,1 ≤ c2 exp
∫ 1
0 h(s)ds < ∞.

Using Lemma10.7, it is easily seen that for each n ∈ N, φn ∈ C ([0, 1] : R
d).

Indeed, the continuity of the last term in (10.11) follows on observing that for every
δ > 0 and 0 ≤ s ≤ t ≤ 1,

∫
(s,t]×X

‖G(φn(u), y)‖g(u, y)ν(dy)du

≤ (1 + ‖φn‖∞,1)

(
c(δ, k)(t − s)

∫
X

MG(y)ν(dy) + δ

)
.

For n ∈ N and t ∈ [0, 1], let an(t) .= ‖φn+1 − φn‖∞,t . Then there exists c3 ∈ (0,∞)

such that for all n ≥ 2 and t ∈ [0, 1],

an(t) ≤ c3

∫ t

0
an−1(s)ds + c3

∫ t

0
an−1(s)| f (s)|ds

+
∫ t

0
an−1(s)

(∫
X

LG(y)g(s, y)ν(dy)

)
ds.

Thus, with m(s)
.= c3(1 + | f (s)|) + ∫

X LG(y)g(s, y)ν(dy), we have for all t ∈
[0, 1] and n ≥ 2 that
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an(t) ≤
∫ t

0
an−1(s)m(s)ds.

This shows that for all n ∈ N,

an+1(1) ≤ a1(1)

(∫ 1
0 m(s)ds

)n

n! .

Lemma10.8 implies
∫
X 1

LG(y)g(s, y)ν(dy)ds < ∞, and thus
∫ 1
0 m(s)ds < ∞.

From this it follows that {φn} is a Cauchy sequence in C ([0, 1] : R
d) and there-

fore must converge to some φ ∈ C ([0, 1] : R
d). From the continuity of b and σ it

follows that for every t ∈ [0, 1],
∫ t

0
b(φn(s))ds +

∫ t

0
σ(φn(s)) f (s)ds →

∫ t

0
b(φ(s))ds +

∫ t

0
σ(φ(s)) f (s)ds.

Also,

∫
X 1

‖G(φn(s), y) − G(φ(s), y)‖g(s, y)ν(dy)ds

≤ ‖φn − φ‖∞,1

∫
X 1

LG(y)g(s, y)ν(dy)ds.

Since
∫
X 1

LG(y)g(s, y)ν(dy)ds < ∞, the right-hand side in the last display con-
verges to 0 as n → ∞. Combining these observations, we have that φ solves (10.6),
proving the existence of solutions.

We now consider uniqueness. Suppose that φ1, φ2 are two solutions of (10.6) in
C ([0, 1] : R

d). Then using the Lipschitz property of b, σ , and G, we have that for
some c4 ∈ (0,∞) and all t ∈ [0, 1],

‖φ1 − φ2‖∞,t ≤ c4

∫ t

0
‖φ1 − φ2‖∞,sds + c4

∫ t

0
‖φ1 − φ2‖∞,s | f (s)|ds

+
∫ t

0
‖φ1 − φ2‖∞,s

(∫
X

LG(y)g(s, y)ν(dy)

)
ds.

Thus

‖φ1 − φ2‖∞,t ≤
∫ t

0
‖φ1 − φ2‖∞,s

(
c4 + c4| f (s)| +

∫
X

LG(y)g(s, y)ν(dy)

)
ds.

Recalling that
∫
X 1

LG(y)g(s, y)ν(dy) < ∞, an application of Gronwall’s lemma
implies φ1 = φ2. �

The following lemma is useful in characterizing the limit points of weakly con-
verging controlled jump processes. It will be used in the proof of Theorem10.6.
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Recall that as discussed in Sect. 9.1, gk → g in the topology of SN
n if

∫
X 1

f gkdν1 →∫
X 1

f gdν1 for bounded continuous f with compact support.

Lemma 10.9 Fix n ∈ N and let K be a compact subset ofX1. Let g, gk ∈ SN
n , k ∈ N

be such that gk → g. Also, let γ : X1 → R be a bounded measurable function. Then
as k → ∞,

∫
K

γ (s, y)gk(s, y)ν(dy)ds →
∫
K

γ (s, y)g(s, y)ν(dy)ds. (10.12)

Proof We assume that ν1(K ) = 0, since otherwise, the result is trivially true. By
replacing, if needed, gk and g with gk + 1K and g + 1K respectively, we can assume
without loss of generality that

∫
K g(s, y)ν1(ds × dy) = 0 and

∫
K gk(s, y)ν1(ds ×

dy) = 0 for all k ∈ N. If (10.12) holds with K replaced by K1, where K ⊂ K1 for
some compact K1, then by taking γ̃ = γ 1K , we see that (10.12) also holds with the
compact set K . Also, since ν is finite on every compact set, we can always find a
compact set K1 ⊃ K such that ν1(∂K1) = 0. Hence in proving the lemma, we can
assume without loss of generality that ν1(∂K ) = 0. Recall from Chap.9 that for
g ∈ SN

n , ν
g
1 is defined by setting ν

g
1 (A) = ∫

A g(s, y)ν1(ds × dy) for A ∈ B(X1).
Define probability measures ν̃k and ν̃ as follows:

ν̃k(·) .= ν
gk
1 (· ∩ K )

mk
, ν̃(·) .= ν

g
1 (· ∩ K )

m
,

where m
.= ν

g
1 (K ) and mk

.= ν
gk
1 (K ). Let θ(·) .= ν1(· ∩ K )/ν1(K ). Then

R(ν̃k ‖θ ) =
∫
K
log

(
ν1(K )

mk
gk(s, y)

)
1

mk
gk(s, y)ν1(ds × dy)

= 1

mk

∫
K
[(gk(s, y)) + gk(s, y) − 1] ν1(ds × dy) + log

ν1(K )

mk

≤ n

mk
+ 1 − ν1(K )

mk
+ log

ν1(K )

mk
.

Since gk → g and ν1(∂K ) = 0, it follows that mk → m, and therefore the last dis-
play implies supk∈N R(ν̃k ‖θ ) < ∞. Also note that ν̃k converges weakly to ν̃. From
Lemma2.5, it follows that

1

mk

∫
K

γ (s, y)gk(s, y)ν1(ds × dy) → 1

m

∫
K

γ (s, y)g(s, y)ν1(ds × dy),

which proves (10.12). �
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10.2.1 Proof of the Large Deviation Principle

In this section we prove Theorem10.6. Theorem 10.2 shows that the solution to
the SDE (10.2) can be expressed as a measurable mapping on the input noises:
X ε = G ε(

√
εW, εN 1/ε). We now verify that G ε satisfies Condition9.1, which by

Theorem9.2will complete the proof of the LDP. The notation used is that of Sect. 9.2.
In particular, the spaces V and V̄ are the canonical spaces for a Brownian motion
and PRM onX1 and Y1, respectively.

Define G 0 : V → D([0, T ] : R
d) as follows. If (w,m) ∈ V is of the form

(w,m) = (
∫ ·
0 f (s)ds, νg

1 ) for some q = ( f, g) ∈ S, set

G 0(w,m) = G 0

(∫ ·

0
f (s)ds, νg

1

)
= ξq ,

where ξq is the unique solution of (10.6). For all other (w,m) ∈ V set G 0(w,m) = 0.
Since L̄T (q) = ∞ for such q, with this definition, I defined in (10.7) is the same as
the function I defined in (9.4).

We will show that part (b) of Condition9.1, which is the weak convergence of the
controlled processes as ε → 0, holds with this choice of G 0. Part (a) of the condition
follows if we prove continuity of q �→ G 0(q) for q such that L̄T (q) ≤ n (recall that
the initial condition has been assumed fixed). This is in fact an easier deterministic
analogue of the proof of part (b), and hence omitted (see, for example, the proof
of Theorem11.25). Fix n ∈ N and let uε = (ψε, ϕε) ∈ ¯Ab,n , u = (ψ, ϕ) ∈ ¯Ab,n be
such that uε converges in distribution to u as ε → 0. We recall that this implies the
a.s. bounds

∫ 1

0
‖ψε(s)‖2 ds ≤ n and

∫
X 1

(ϕε(s, x))ν1(ds × dx) ≤ n. (10.13)

Furthermore, almost surely ϕε(s, x) has upper and lower bounds of the form 1/δ
and δ for all x in some compact set K , and ϕε(s, x) = 1 for x /∈ K (where δ > 0
and K depend on ϕε). The analogous statements also hold for (ψ, ϕ), and as we
will see, the ability to restrict to controls with such nice properties greatly simplifies
the arguments. Almost all of the difficulties in the proof are due to the jump term
[for comparison, one can consider the proof of the analogous diffusion model in
Theorem3.19].

Let ϕ̃ε = 1/ϕε and for t ∈ [0, 1] define

E ε
1 (t)

.= exp

[∫
X t×[0,∞)

1[0,ϕε(s,y)/ε](r) log(ϕ̃ε(s, y))N̄ (ds × dy × dr)

+
∫
X t×[0,∞)

1[0,ϕε(s,y)/ε](r)(−ϕ̃ε(s, y) + 1)ν̄1(ds × dy × dr)

]
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and

E ε
2 (t)

.= exp

[
− 1√

ε

∫ t

0
ψε(s)dW (s) − 1

2ε

∫ t

0
‖ψε(s)‖2ds

]
.

Let E ε(t) = E ε
1 (t)E ε

2 (t). Then using the independence between the Brownian and
Poisson noises, it follows that {E ε(t)}0≤t≤1 is a Ft -martingale, and consequently

Q̄ε(A) =
∫
A
E ε(1)dP, A ∈ B(V̄)

defines a probability measure on V̄. The bounds (10.13) on ψε and ϕε along with
the properties of ϕε in terms of some compact set K noted below (10.13) imply
that P and Q̄ε are mutually absolutely continuous, and by Girsanov’s theorem [see
TheoremD.3], (√

εWψε/
√

ε, εNϕε/ε
)

under Q̄ε has the same probability law as (
√

εW, εN 1/ε) under P , where we recall
Wψ/

√
ε .=W + ∫ ·

0 ψ(s)ds/
√

ε. Thus it follows that X̄ ε = G ε(
√

εWψε/
√

ε, εNϕε/ε) is
the unique solution, under both Q̄ε and P , of the controlled SDEgiven by X̄ ε(0) = x0
and

d X̄ ε(t) = [
b(X̄ ε(t)) + σ(X̄ ε(t))ψε(t)

]
dt + √

εσ (X̄ ε(t))dW (t)

+ ε

∫
X

G(X̄ ε(t−), x)Nϕε/ε(dt × dx). (10.14)

We end this section by stating martingale bounds that will be useful in the sequel.
Recall the definition of ¯A N from Sect. 8.3. Also recall that for ϕ ∈ ¯A N , Nϕ

c denotes
the compensated form of Nϕ .

Lemma 10.10 Let ϕ ∈ ¯A N , and assume thatψ : [0, 1] × Ω × X → R isPF ⊗
B(X )/B(R)-measurable and

E
∫
X 1

(|ψ(s, x)| ∨ |ψ(s, x)|2)ϕ(s, x)ν1(ds × dx) < ∞.

Then there exists C ∈ (0,∞) such that for all t ∈ [0, T ]

E

[
sup
0≤s≤t

∣∣∣∣
∫
X t

ψ(s, x)Nϕ
c (ds × dx)

∣∣∣∣
]

≤ CE

[∫
X t

ψ(s, x)2ϕ(s, x)ν1(ds × dx)

] 1
2

,

and there is also the bound

E

[
sup
0≤s≤t

∣∣∣∣
∫
X t

ψ(s, x)Nϕ
c (ds × dx)

∣∣∣∣
2
]

≤ 4E

[∫
X t

ψ(s, x)2ϕ(s, x)ν1(ds × dx)

]
.
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Proof The bounds follow from Doob’s maximal inequality and the Lenglart–
Lepingle–Pratelli inequality [(D.2) and (D.4) of Appendix D], and from expressions
for the quantities on the right-hand sides that are stated in Sect.D.2.2. In particular, in
applying (D.2), we use that the expected quadratic variation of the stochastic integral
in the last display is

E
∫
X t

ψ(s, x)2Nϕ(ds × dx) = E
∫
X t

ψ(s, x)2ϕ(s, x)ν1(ds × dx).

�

10.2.1.1 Tightness

Lemma 10.11 Assume Conditions10.1 and 10.3. Given controls (ψε, ϕε) ∈ ¯Ab,n,
let X̄ ε be the corresponding unique solution to (10.14). Then {X̄ ε} is a tight family
of D([0, 1] : R

d)-valued random variables.

Proof We begin with an estimate on the supremum of X̄ ε(t). Recalling ‖x‖∞,t
.=

sup0≤s≤t ‖x(s)‖, by Condition10.1 we have that for suitable c1 < ∞,

‖X̄ ε‖∞,t ≤ ‖x0‖ + c1

∫ t

0
(1 + ‖X̄ ε‖∞,s)(1 + ‖ψε(s)‖)ds

+ √
ε

∥∥∥∥
∫ ·

0
σ(X̄ ε(s))dW (s)

∥∥∥∥∞,t

+ ε

∥∥∥∥
∫
X ·

MG(y)(1 + ‖X̄ ε(s−)‖)Nϕε/ε
c (ds × dy)

∥∥∥∥
∞,t

+
∫
X t

MG(y)(1 + ‖X̄ ε‖∞,s)ϕ
ε(s, y)ν(dy)ds,

where Nϕε/ε
c (ds × dy) = Nϕε/ε(ds × dy) − ε−1ϕε(s, y)ν1(ds × dy). Let

Rε
t

.=√
ε

∥∥∥∥
∫ ·

0
σ(X̄ ε(s))dW (s)

∥∥∥∥∞,t

(10.15)

+ ε

∥∥∥∥
∫
X ·

MG(y)(1 + ‖X̄ ε(s−)‖)Nϕε/ε
c (ds × dy)

∥∥∥∥
∞,t

.

Using the bound (10.13) for ψε and Hölder’s inequality, Gronwall’s inequality
[LemmaE.2] gives

1 + ‖X̄ ε‖∞,1 ≤ (1 + ‖x0‖ + Rε
1) exp

{
c1(1 + √

n) +
∫
X 1

MG(y)ϕε(s, y)ν(dy)ds

}

≤ c2(1 + ‖x0‖ + Rε
1), (10.16)
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where, using Lemma10.7 with δ = 1, f ≡ 1 and g = ϕε and the fact that MG ∈
L 1(ν) ∩ Lexp, we obtain

c2
.= exp

{
c1(1 + √

n) + c(1, n)

∫
X

MG(y)ν(dy) + 1

}
< ∞.

Also, Condition10.1 implies that for some c3 < ∞,

√
εE

∥∥∥∥
∫ ·

0
σ(X̄ ε(s))dW (s)

∥∥∥∥∞,1

≤ c3
√

ε
(
E‖X̄ ε‖∞,1 + 1

)
.

Let m ∈ (0,∞). Then the expectation of the second term in the definition ofRε
t can

be bounded by the sum of

T ε
1

.= εE

∥∥∥∥
∫
X ·

MG(y)1{MG≤m}(1 + ‖X̄ ε(s−)‖)Nϕε/ε
c (ds × dy)

∥∥∥∥
∞,1

(10.17)

and

T ε
2

.= 2E
∫
X t

MG(y)1{MG≥m}(1 + ‖X̄ ε(s)‖)ϕε(s, y)ν(dy)ds. (10.18)

For (10.18), we use the representation Nϕε/ε
c = Nϕε/ε − ε−1ϕεν1, that the corre-

sponding integrals are almost surely nondecreasing in t , and the identity

εE
∫
X t

MG(y)1{MG≥m}(1 + ‖X̄ ε(s−)‖)Nϕε/ε(ds × dy)

= E
∫
X t

MG(y)1{MG≥m}(1 + ‖X̄ ε(s)‖)ϕε(s, y)ν(dy)ds.

An application of Lemmas10.7 and 10.10 as used before yield that for some c4 < ∞,

T ε
1 ≤ c4

√
εmE

[
(1 + ‖X̄ ε‖∞,1)

∫
X 1

MG(y)ϕε(s, y)ν(dy)ds

]1/2

≤ c4
√

εm(1 + E‖X̄ ε‖∞,1)

(
c(1, n)

∫
X

MG(y)ν(dy) + 1

)1/2

.

Also, for every δ > 0,

T ε
2 ≤ 2(1 + E‖X̄ ε‖∞,1)

(
c(δ, n)

∫
X

MG(y)1{MG≥m}ν(dy) + δ

)
.
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Choosing δ > 0 sufficiently small and thenm < ∞ sufficiently large, there is ε0 > 0
such that for all ε ≤ ε0,

ERε
1 = c3

√
ε
(
E‖X̄ ε‖∞,1 + 1

) + T ε
1 + T ε

2 ≤ 1

2c2

(
E‖X̄ ε‖∞,1 + 1

)
.

Using this in (10.16) then gives that for ε ≤ ε0,

Ē‖X̄ ε‖∞,1 ≤ 2c2(‖x0‖ + 1),

and therefore
sup
ε≤ε0

Ē‖X̄ ε‖∞,1 < ∞. (10.19)

Henceforth we consider only ε < ε0. We next argue that Rε
1 defined in (10.15)

converges to 0 in probability. The term with the Brownian motion is easy. Using
Condition10.1, the estimate in (10.19), and theBurkholder–Davis–Gundy inequality,
it follows that

√
ε

∥∥∥∥
∫

[0,·]
σ(X̄ ε(s))dW (s)

∥∥∥∥
∞,1

→ 0 in probability as ε → 0. (10.20)

Next we consider the Poisson term, and write

ε

∫
X t

G(X̄ ε(s−), y)Nϕε/ε(ds × dy) (10.21)

= ε

∫
X t

G(X̄ ε(s−), y)Nϕε/ε
c (ds × dy) +

∫
X t

G(X̄ ε(s), y)ϕε(s, y)ν(dy)ds.

Consider thefirst termon the right side of (10.21). Forα ∈ (0,∞), define the stopping
time τ ε

α

.= inf{s : ‖X̄ ε(s)‖ > α}. We first show that

T α,ε .= ε

∥∥∥∥∥
∫

(0,τ ε
α∧·]×X

G(X̄ ε(s−), y)Nϕε/ε
c (ds × dy)

∥∥∥∥∥∞,1

converges to zero in probability as ε → 0. To do this, note that for every r ∈ (0,∞),

T α,ε ≤ T α,ε
≤r + T α,ε

>r ,

where

T α,ε
≤r

.= ε

∥∥∥∥∥
∫

(0,τ ε
α∧·]×{MG (y)≤r}

G(X̄ ε(s−), y)Nϕε/ε
c (ds × dy)

∥∥∥∥∥∞,1

,
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T α,ε
>r

.= ε

∥∥∥∥∥
∫

(0,τ ε
α∧·]×{MG (y)>r}

G(X̄ ε(s−), y)Nϕε/ε
c (ds × dy)

∥∥∥∥∥∞,1

.

By Lemma10.10, there is c5 ∈ (0,∞) such that

E(T α,ε
≤r )2 ≤ εc5E

∫
(0,τ ε

α∧1]×{MG (y)≤r}
M2

G(y)(1 + ‖X̄ ε(s)‖2)ϕε(s, y)ν(dy)ds.

We then use that ‖X̄ ε(s)‖ ≤ α for s ∈ (0, τ ε
α ∧ 1) and write (0, τ ε

α ∧ 1] × {MG(y) ≤
r} as the disjoint union of two sets, the first for which ϕε(s, y) < β and the second
for which ϕε(s, y) ≥ β, and finally apply part (b) of Lemma9.6 and use (10.13) to
get

E(T α,ε
≤r )2 ≤ εc5(1 + α2)(βr‖MG‖1 + r2nκ̄1(β)).

To deal with the term T α,ε
>r , note that for every k ∈ N,

ET α,ε
>r ≤ 2E

∫
(0,τ ε

α∧·]×{MG (y)>r}
‖G(X̄ ε(s−), y)‖ϕε(s, y)ν(dy)ds

≤ 2(1 + α)E
∫

[0,1]×{MG (y)>r}
MG(y)ϕε(s, y)ν(dy)ds

≤ 2(1 + α)

(∫
{MG (y)>r}

ekMG (y)ν(dy) + n

k

)
,

where the second inequality follows on using the growth bound stated in part (d)
of Condition10.1 and recalling the definition of τ ε

α , and the last inequality is a con-
sequence of part (a) of Lemma9.6 with σ = k, a = MG(y) and b = ϕε(s, y) and
again the fact that ϕε takes values in SN

n . Since MG ∈ L 1(ν) ∩ Lexp, for every k ∈ N,∫
{MG (y)>r} e

kMG (y)ν(dy) → 0 as r → ∞. Combining these two bounds and sending
ε → 0, r → ∞, k → ∞ in that order shows that for each α ∈ (0,∞),

T α,ε → 0 in probability as ε → 0. (10.22)

Next let

T ε .= ε

∥∥∥∥
∫

(0,·]×X
G(X̄ ε(s−), y)Nϕε/ε

c (ds × dy)

∥∥∥∥
∞,1

,

where the restriction on the time variable in T α,ε has been dropped. Defining Aα
.=

{‖X̄ ε‖∞,1 < α}, for all η > 0,

P(T ε > η) = P({T ε > η} ∩ Aα) + P({T ε > η} ∩ Ac
α)

≤ P(T α,ε
1 > η) + P(Ac

α).
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Combining this last bound with (10.22) and (10.19), we see that T ε → 0 in proba-
bility as ε → 0. Together with (10.20), this shows that

Rε
1 → 0 in probability as ε → 0.

Thus

X̄ ε(t) = x0 +
∫ t

0
b(X̄ ε(s))ds +

∫ t

0
σ(X̄ ε(s))ψε(s)ds

+
∫
X t

G(X̄ ε(s), y)ϕε(s, y)ν(dy) ds + R̄ε(t), (10.23)

where ‖R̄ε‖∞,1 ≤ Rε
1 converges to 0 in probability as ε → 0. Tightness of the terms

in (10.23) that involve b or σ follows from standard estimates, and are the same as
calculations used for the small noise diffusion model in Chap. 3. Thus in order to
prove tightness of {X̄ ε}, it suffices to argue that

ξε(t) =
∫
X t

G(X̄ ε(s), y)ϕε(s, y)ν(dy)ds, t ∈ [0, 1]

is tight in U = D([0, 1] : R
d). By Lemma 10.7, for every δ > 0 and 0 ≤ s ≤ t ≤ 1,

‖ξε(t) − ξε(s)‖ ≤
∫

[s,t]×X
(1 + ‖X̄ ε‖∞,u)MG(y)ϕε(u, y)ν(dy)du

≤ (1 + ‖X̄ ε‖∞,1)c(δ, n)(t − s)‖MG‖1 + δ(1 + ‖X̄ ε‖∞,1),

where as before, ‖ · ‖1 is the norm in L 1(ν). Tightness of ξε is now a consequence
of (10.19). Thus we have shown that {X̄ ε} is tight in D([0, 1] : R

d). �

10.2.1.2 Identification of Limits

The following lemma completes the verification of part (b) of Condition 9.1, and
hence the proof of Theorem10.6.

Lemma 10.12 Assume Conditions10.1 and 10.3. Given controls (ψε, ϕε) ∈ ¯Ab,n,
let X̄ ε be the corresponding unique solution to (10.14). Assume that (ψε, ϕε) con-
verges in distribution to (ψ, ϕ). Then X̄ ε converges in distribution to the unique
solution to (10.6) with ( f, g) = (ψ, ϕ).

Proof From Lemma10.11 it follows that if for some fixed n, the controls (ψε, ϕε)

are in ¯Ab,n for every ε > 0, then {X̄ ε}ε>0 is a tight collection of D([0, 1] : R
d)-

valued random variables. It was also shown in the proof of the lemma that ‖R̄ε‖∞,1

appearing in (10.23) converges to 0 in probability as ε → 0. It follows from this last
property and (10.23) that X̄ has continuous sample paths a.s. By appealing to the
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Skorohod representation theorem, we assume without loss of generality the almost
sure convergence (X̄ ε, ψε, ϕε, R̄ε) → (X̄ , ψ, ϕ, 0). Using the assumed conditions
on b and σ , it is straightforward [see, for example, the proof of Lemma3.21] using
Hölder’s inequality and the dominated convergence theorem to show that for every
t , the sum of the first three terms on the right side of (10.23) converges a.s. to

x0 +
∫ t

0
b(X̄(s))ds +

∫ t

0
σ(X̄(s))ψ(s)ds.

In view of the unique solvability of (10.6), to complete the verification that G ε

satisfies part (b) of Condition 9.1, it then suffices to show that for all t ∈ [0, 1],
∫
X t

G(X̄ ε(s), y)ϕε(s, y)ν(dy)ds −
∫
X t

G(X̄(s), y)ϕ(s, y)ν(dy)ds → 0

(10.24)
as ε → 0.

We write the expression in (10.24) as T ε
3 (t) + T ε

4 (t), where

T ε
3 (t)

.=
∫
X t

(G(X̄ ε(s), y) − G(X̄(s), y))ϕε(s, y)ν(dy)ds,

T ε
4 (t)

.=
∫
X t

G(X̄(s), y)(ϕε(s, y) − ϕ(s, y))ν(dy)ds.

Using Condition10.1, we obtain

T ε
3 (t) ≤ ‖X̄ ε − X̄‖∞,1

∫
X 1

LG(y)ϕε(s, y)ν(dy)ds.

Since LG ∈ L 1(ν) ∩ L ρ
exp, we see from Lemma10.8 that T ε

3 (t) → 0 a.s. as ε → 0.
Let {Kr }r∈N be a sequence of compact subsets ofX such that Kr ↑ X as r → ∞,
and let Er

.= Kr ∩ {MG ≤ r}. Write T ε
4 (t) = T ε

4,r≤(t) + T ε
4,r>(t), where

T ε
4,r≤(t)

.=
∫
X t

G(X̄(s), y)1Er (y)(ϕ
ε(s, y) − ϕ(s, y))ν(dy)ds

T ε
4,r>(t)

.=
∫
X t

G(X̄(s), y)1Ec
r
(y)(ϕε(s, y) − ϕ(s, y))ν(dy)ds.

Using Lemma10.9, for every r ∈ (0,∞), T ε
4,r≤(t) → 0 as ε → 0. Also, using

Lemma10.7 again, for every δ > 0,
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T ε
4,r>(t) ≤ (1 + ‖X̄‖∞,1)

∫
X t

MG(y)1Ec
r
(y)(ϕε(s, y) + ϕ(s, y))ν(dy)ds

≤ 2(1 + ‖X̄‖∞,1)

(
c(δ, n)t

∫
X

MG(y)1Ec
r
(y)ν(dy) + δ

)
.

Since MG ∈ L1(ν), it follows that supε∈(0,ε0) T
ε
4,r>(t) → 0 if we first send r → ∞

and then δ → 0. Combining these two estimates, we have that T ε
4 (t) converges to 0

as ε → 0. Thus we have proved (10.24), which completes the proof of the lemma
and therefore, as noted previously, also the proof of Theorem10.6. �

10.3 An MDP for Small Noise Jump-Diffusions

Throughout this section we assumeCondition10.1, which implies Lipschitz continu-
ity and linear growth conditions on b, σ , andG in the x variable. Let X0 ∈ C ([0, T ] :
R

d) be the unique solution of the equation

X0(t) = x0 +
∫ t

0
b(X0(s))ds +

∫
X t

G(X0(s), y)ν(dy) ds, t ∈ [0, T ].

We now establish a Laplace principle for {Y ε} with scaling function κ(ε), where

Y ε = 1

a(ε)
(X ε − X0),

and as in (9.6), a(ε) satisfies a(ε) → 0 and κ(ε)
.= ε/a2(ε) → 0. For the MDP we

assume some additional smoothness on the coefficients. For a differentiable function
f : R

d → R
d let Df (x) = (

∂ fi (x)/∂x j
)
i, j . Following our convention, for matrices

we use the operator norm, so that ‖Df (x)‖ .= supw∈Rd :‖w‖=1 ‖Df (x)w‖. Similarly,
if g : R

d × X → R
d is differentiable in x for each fixed y ∈ X and Dxg(x, y) =(

∂gi (x, y)/∂x j
)
i, j , then ‖Dxg(x, y)‖ denotes the norm of this matrix.

For the MDP, the integrability assumption on MG in Condition 10.3 can be weak-
ened, analogous to the corresponding weakening in going from the LDP to MDP
in the setting of discrete time models (Chaps. 4 and 5). The following is the only
assumption besides Condition10.1 needed for the MDP.

Condition 10.13 (a) The functions LG and MG are in L 1(ν) ∩ L ρ
exp for some ρ ∈

(0,∞).
(b) For every y ∈ X , the maps x �→ b(x) and x �→ G(x, y) are differentiable.

For some LDb ∈ (0,∞),

‖Db(x) − Db(x̄)‖ ≤ LDb ‖x − x̄‖ , x, x̄ ∈ R
d;

for some LDG ∈ L 1(ν),
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‖DxG(x, y) − DxG(x̄, y)‖ ≤ LDG(y) ‖x − x̄‖ , x, x̄ ∈ R
d , y ∈ X ;

and lastly,

sup
{x∈Rd :‖x‖≤‖X0‖∞,T }

∫
X

‖DxG(x, y)‖ν(dy) < ∞.

Recall from Chap.9 that we define L 2 .= L 2([0, T ] : H0) × L 2(νT ), and that
in this chapter, H0 = R

d . For q = ( f1, f2) ∈ L 2, consider the equation

η(t) =
∫ t

0
[Db(X0(s))]η(s)ds +

∫
X t

[DxG(X0(s), y)]η(s)ν(dy)ds

+
∫ t

0
σ(X0(s)) f1(s)ds +

∫
X t

G(X0(s), y) f2(s, y)ν(dy)ds. (10.25)

Since MG ∈ L 1(ν) ∩ L ρ
exp ⊂ L 2(ν), the last integral on the right side is finite by

Hölder’s inequality, and so under Condition10.13, (10.25) has a unique solution
ηq ∈ C ([0, T ] : R

d). For η ∈ D([0, T ] : R
d), let

Ī (η)
.= inf

q=( f1, f2)∈L 2:η=ηq

[
1

2

(‖ f1‖2W,2 + ‖ f2‖2N ,2

)]
.

In particular, Ī (η) = ∞ for all η ∈ D([0, T ] : R
d) \ C ([0, T ] : R

d).

Theorem 10.14 Assume Conditions10.1 and 10.13. Then {Y ε}ε>0 satisfies the
Laplace principle in D([0, T ] : R

d) with scaling function κ(ε) and rate function
Ī .

The following theorem gives an alternative expression for the rate function.
From part (d) of Condition10.1 and part (a) of Condition10.13, it follows that
y �→ Gi (X0(s), y) is in L 2(ν) for all s ∈ [0, T ] and i = 1, . . . , d, where G =
(G1, . . . ,Gd)

T . For i = 1, . . . , d, let ei : XT → R be measurable functions such
that for each s ∈ [0, T ], {ei (s, ·)}di=1 is an orthonormal collection in L 2(ν) and
the linear span of the collection contains that of {Gi (X0(s), ·)}di=1. Define b̄(x)

.=∫
X DxG(x, y)ν(dy), x ∈ R

d , and define also A : [0, T ] → R
d×d by

Ai j (s)
.= 〈Gi (X

0(s), ·), e j (s, ·)〉L 2(ν), i, j = 1, . . . , d, s ∈ [0, T ], (10.26)

where 〈·, ·〉L 2(ν) is the inner product inL 2(ν).
For η ∈ D([0, T ] : R

d), let

I (η) = inf
q̃=( f̃1, f̃2)

[
1

2

(
‖ f̃1‖22 + ‖ f̃2‖22

)]
,

where the infimum is taken over all q̃ = ( f̃1, f̃2), f̃1, f̃2 ∈ L 2([0, T ] : R
d) such that

for t ∈ [0, T ],
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η(t) =
∫ t

0
[Db(X0(s)) + b̄(X0(s))]η(s)ds +

∫ t

0
σ(X0(s)) f̃1(s)ds

+
∫ t

0
A(s) f̃2(s)ds. (10.27)

Here ‖ · ‖2 is the usual norm onL 2([0, T ] : R
d), and thus the same as ‖ · ‖W,2. The

proof of the following theorem is given in Sect. 10.3.3.

Theorem 10.15 Under the conditions of Theorem10.14, I = Ī .

Remark 10.16 Theorem10.15 in particular says that the rate function for {Y ε} is the
same as that appearing in the large deviation principle with scaling function ε for the
Gaussian process

dZ ε(t) = B(t)Z ε(t)dt + √
εA(t)dW1(t) + √

εσ (X0(t))dW2(t), Z ε(0) = 0,

where W1, W2 are independent standard d-dimensional Brownian motions and
B(t) = Db(X0(t)) + b̄(X0(t)).

10.3.1 Some Preparatory Results

Following our standard convention, the proof is given for T = 1, and thus U =
D([0, 1] : R

d). From Theorem 10.2, it follows that there exists a measurable map
G ε : V → U such that X ε = G ε(

√
εW, εN 1/ε). Using Y ε = (X ε − X0)/a(ε), there

is measurable K ε such that Y ε = K ε(
√

εW, εN 1/ε). Define K 0 : L 2 → U by
K 0(q) = η if η solves (10.25) for q = ( f1, f2) ∈ L 2. In order to prove Theorem
10.14, we will verify that Condition 9.8 holds with these choices of K ε and K 0.

The following lemma verifies a continuity property ofK 0. Recall the space Ŝn
.=

{( f1, f2) ∈ L 2 : ‖ f1‖2W,2 + ‖ f2‖2N ,2 ≤ n} introduced above Condition 9.8. This is
viewed as a subset of the Hilbert space L 2 defined there, and with respect to the
topology of weak convergence in L 2 is a compact Polish space. Together with the
continuity established in Lemma10.17, the compactness of Ŝn implies part (a) of
Condition 9.8.

Lemma 10.17 SupposeCondition10.1 holds and MG ∈ L 2(ν). Fix n ∈ (0,∞) and
let qk, q ∈ Ŝn, k ∈ N be such that qk → q. LetK 0(q) = η, where η solves (10.25).
Then K 0(qk) → K 0(q).

Proof Note that from part (d) of Condition10.1 and since MG ∈ L 2(ν), the map
(s, y) �→ G(X0(s), y)1[0,t](s) is in L 2(ν1). Let qk = ( f k1 , f k2 ) and q = ( f1, f2).
Since f k2 → f2, we have for every t ∈ [0, 1] that

∫
X t

f k2 (s, y)G(X0(s), y)ν(dy)ds →
∫
X t

f2(s, y)G(X0(s), y)ν(dy)ds. (10.28)
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We argue that the convergence is in fact uniform in t . Note that for 0 ≤ s ≤ t ≤ 1,

∥∥∥∥
∫

[s,t]×X
f k2 (u, y)G(X0(u), y)ν(dy)du

∥∥∥∥
≤ (

1 + ‖X0‖∞,1
) ∫

[s,t]×X
MG(y)| f k2 (u, y)|ν(dy)du

≤ (
1 + ‖X0‖∞,1

) |t − s|1/2√n‖MG‖L 2(ν), (10.29)

where ‖ · ‖L 2(ν) denotes the norm inL 2(ν). This implies equicontinuity, and hence
the convergence in (10.28) is uniform in t ∈ [0, 1].

Next, since f k1 → f1, and since Condition 10.1 implies that σ(·) is continuous, it
follows that for every t ∈ [0, 1],

∫ t

0
σ(X0(s)) f k1 (s)ds →

∫ t

0
σ(X0(s)) f1(s)ds.

Once again an equicontinuity estimate similar to (10.29) shows that the conver-
gence is uniform. The conclusion of the lemma now follows from Gronwall’s
inequality. �

In order to verify part (b) of Condition9.8, we first prove some a priori estimates.
Recall the spaces L ρ

exp introduced in (10.3) and SN ,ε
n,+ and SN ,ε

n in (9.7). Here SN ,ε
n,+

are controls for the Poisson noise with cost bounded by na2(ε), the scaling that is
appropriate for an MDP, and SN ,ε

n are the centered and rescaled versions of elements
of SN ,ε

n,+ .

Lemma 10.18 Let h ∈ L 1(ν) ∩ L ρ
exp for some ρ > 0 and let I be a measurable

subset of [0, 1]. Let n ∈ (0,∞). Then there exist maps ϑ, ξ, ζ from (0,∞) to (0,∞)

such that ϑ(u) → 0 as u → ∞ and ξ(u) → 0 as u → 0, and for all ε, β ∈ (0,∞),

sup
f ∈SN ,ε

n

∫
I×X

h(y)| f (s, y)|1{| f |≥β/a(ε)}ν(dy)ds ≤ √
a(ε)ϑ(β) + (1 + λ1(I ))ξ(ε)

and

sup
f ∈SN ,ε

n

∫
I×X

h(y)| f (s, y)|ν(dy) ds≤ ζ(β)λ1(I )
1/2 +√

a(ε)ϑ(β)+ (1+ λ1(I ))ξ(ε),

where λ1(I ) denotes the Lebesgue measure of I .
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Proof Let f ∈ SN ,ε
n and β ∈ (0,∞). Then

∫
I×X

h(y)| f (s, y)|ν(dy)ds ≤
∫
I×X

h(y)| f (s, y)|1{| f |≤β/a(ε)}ν(dy)ds (10.30)

+
∫
I×X

h(y)| f (s, y)|1{| f |≥β/a(ε)}ν(dy)ds.

Recall thatL 1(ν) ∩ L ρ
exp ⊂ L p(ν) for all p ≥ 1. By theCauchy-Schwarz inequality

and part (c) of Lemma9.7, we have

∫
I×X

h(y)| f (s, y)|1{| f |≤β/a(ε)}ν(dy)ds (10.31)

≤
(

λ1(I )‖h‖22
∫
X 1

f (s, y)21{| f |≤β/a(ε)}ν(dy)ds

)1/2

≤ ‖h‖2(nκ2(β))1/2λ1(I )
1/2.

We now consider the second term on the right side of (10.30). We decompose h as
h1{h≤1/a(ε)1/2} + h1{h>1/a(ε)1/2}. Then using part (a) of Lemma9.7, we obtain

∫
I×X

h(y)1{h≤1/a(ε)1/2}| f (s, y)|1{| f |≥β/a(ε)}ν(dy) ds ≤ 1√
a(ε)

na(ε)κ1(β)

= n
√
a(ε)κ1(β).

Also, letting g = a(ε) f + 1 and noting that the definition of SN ,ε
n implies g ≥ 0, we

have
∫
I×X

h(y)1{h>1/a(ε)1/2}| f (s, y)|1{| f |≥β/a(ε)}ν(dy) ds

≤ λ1(I )

a(ε)

∫
X

h(y)1{h>1/a(ε)1/2}ν(dy)

+ 1

a(ε)

∫
I×X

h(y)1{h>1/a(ε)1/2}g(s, y)ν(dy) ds. (10.32)

The first term on the right side can be bounded by

λ1(I )C1(ε)
.= λ1(I )

∫
X

h(y)31{h>1/a(ε)1/2}ν(dy),

where h ∈ L ρ
exp ∩ L 1(ν) impliesC1(ε) → 0 as ε → 0. The second term on the right

side of (10.32) can be bounded, using part (a) of Lemma9.6 with a = ρh(y)/2,
b = g(s, y), σ = 1, and also using that g ∈ SN ,ε

n,+ , by
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2λ1(I )

ρa(ε)

∫
X

eρh(y)/21{h>1/a(ε)1/2}ν(dy) + 2

ρa(ε)
na2(ε)

≤ 2λ1(I )

ρ

∫
X

h(y)2eρh(y)/21{h>1/a(ε)1/2}ν(dy) + 2na(ε)

ρ

= λ1(I )C2(ε) + 2na(ε)

ρ
,

where C2(ε) converges to 0 as ε → 0. Thus the second term on the right side of
(10.30) can be bounded by

√
a(ε)ϑ(β) + (1 + λ1(I ))ξ(ε),

where

ϑ(β) = nκ1(β), ξ(ε) = C1(ε) + C2(ε) + 2na(ε)

ρ
.

This gives the first bound of the lemma. The second bound also follows with these
choices of ξ , ϑ , and ζ(β) = ‖h‖2(nκ2(β))1/2 using (10.31). �

The following lemma is proved in a fashion similar to that of Lemma 10.7, and
so only a sketch is given.

Lemma 10.19 Let θ ∈ L ρ
exp for some ρ > 0 and suppose that ν({θ > 1}) < ∞.

Then for every δ > 0 and n ∈ N, there exists c̃(δ, n) ∈ (0,∞) such that for all mea-
surable maps θ̃ : X → R+ satisfying θ̃ ≤ θ , any measurable f : [0, 1] → R+, and
all 0 ≤ s ≤ t ≤ 1,

sup
g∈SN ,ε

n,+

∫
(s,t]×X

f (u)θ̃(y)g(u, y)ν(dy)du

≤ c̃(δ, n)

(∫
X

θ̃ (y)ν(dy)

) (∫ t

s
f (u)du

)
+ (δ + nρ−1a2(ε))‖ f ‖∞,1.

Proof Let f : [0, 1] → R+ and g ∈ SN ,ε
n,+ . For m ∈ (0,∞), let Ti (m), i = 1, 2, be

as in the proof of Lemma 10.7. Then using part (a) of Lemma9.6 with a = ρθ(y),
b = g(u, y), and σ = 1, we can bound T2(m) as

T2(m) ≤ ‖ f ‖∞,1

ρ

(∫
{θ>m}

eρθ(y)ν(dy) + na2(ε)

)
.

Also, as in the proof of Lemma10.7,

T1(m) ≤ β

(∫
X

θ̃ (y)ν(dy)

) (∫ t

s
f (u)du

)
+ κ̄1(β)mna2(ε)‖ f ‖∞,1,
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where κ̄1(β) → 0 as β → ∞. The result now follows on recalling (10.9) and choos-
ing first m sufficiently large and then β sufficiently large. �

Recall the mapK ε introduced at the beginning of Sect. 10.3.1 and the definition
of U ε

n,+ in (9.8), and recall that by (9.7), U ε
n,+ is the class of controls for both

types of noise for which the cost scales proportionally with a2(ε). Since U ε
n,+ is

contained in ¯Ab,n̄ for some n̄ ∈ N, it follows from Sect. 10.2.1 that for n ∈ N and
u = (ζ, ϕ) ∈ U ε

n,+, the equation

d X̄ ε(t) = [
b(X̄ ε(t)) + σ(X̄ ε(t))ζ(t)

]
dt + √

εσ (X̄ ε(t))dW (t)

+ ε

∫
X

G(X̄ ε(t−), x)Nϕ/ε(dt × dx),

X̄ ε(0) = x0 has a unique solution.
Define Ȳ ε = K ε(

√
εW ζ/

√
ε, εNϕ/ε), and note that using Girsanov’s theorem

[TheoremD.3] as in the proof of Theorem3.19 yields

Ȳ ε = 1

a(ε)
(X̄ ε − X0). (10.33)

The following moment bound on X̄ ε follows along the lines of the proof of (10.19).

Lemma 10.20 Assume Conditions10.1 and 10.13. For every n ∈ N, there exists an
ε0 ∈ (0, 1) such that

sup
ε∈(0,ε0)

sup
u=(ζ,ϕ)∈U ε

n,+
E‖X̄ ε‖∞,1 < ∞.

Proof Using the same argument as that used to establish (10.16), for all ε ∈ (0, 1),
we have

‖X̄ ε‖∞,1 ≤ (1 + ‖x0‖ + R̃ε
1) exp

{
c1(1 + √

na1) +
∫
X 1

MG(y)ϕ(s, y)ν(dy) ds

}
,

(10.34)

where a1
.= supε∈(0,1) a(ε) and

R̃ε
1

.= √
ε

∥∥∥∥
∫ ·

0
σ(X̄ ε(s))dW (s)

∥∥∥∥∞,1

+ ε

∥∥∥∥
∫
X ·

MG(y)(1 + ‖X̄ ε(s−)‖)Nϕ/ε
c (ds × dy)

∥∥∥∥
∞,1

.

Using Lemma10.19 with δ = 1, f ≡ 1 and recalling that ϕ ∈ SN ,ε
n,+ and the fact that

MG ∈ L 1(ν) ∩ Lexp, we obtain
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‖X̄ ε‖∞,1 ≤ c2(1 + ‖x0‖ + R̃ε
1), (10.35)

where

c2
.= exp

{
c1(1 + √

na1) + c̃(1, n)

∫
X

MG(y)ν(dy) + 1 + n

ρ
a21

}
< ∞.

We split the expected value of the second term in the definition of R̃ε
1 as T ε

1 + T ε
2 ,

where T ε
i are just as in (10.17)–(10.18) in the proof of the corresponding LDP, and

then follow the same procedure as that below (10.17)–(10.18) to bound the two terms.
In this case, however, we use Lemma10.19 rather than Lemma 10.7, and find that
for some c3 ∈ (0,∞),

T ε
1 ≤ c3

√
εm(1 + E‖X̄ ε‖∞,1)

(
c̃(1, n)

∫
X

MG(y)ν(dy) + 1 + n

ρ
a21

)1/2

,

and for every δ > 0 and ε ∈ (0, 1),

T ε
2 ≤ 2(1 + E‖X̄ ε‖∞,1)

(
c̃(δ, n)

∫
X

MG(y)1{MG≥m}ν(dy) + δ + n

ρ
a2(ε)

)
.

Choosing first δ sufficiently small, nextm sufficiently large, and finally ε0 sufficiently
small, we have for all ε ≤ ε0 that

ER̃ε
1 ≤ 1

2c2

(
E‖X̄ ε‖∞,1 + 1

)
.

The result now follows on using this estimate in (10.35). �

The following tightness property plays a key role in the proof of Theorem 10.14.

Lemma 10.21 Suppose Conditions10.1 and 10.13 hold, and define Ȳ ε by (10.33).
For every n ∈ N, there exists an ε1 ∈ (0, 1) such that

{‖Ȳ ε‖∞,1, u ∈ U ε
n,+, ε ∈ (0, ε1)

}

is a tight collection of R+-valued random variables.

Proof Let u = (ζ, ϕ) ∈ U ε
n,+ and let ψ

.= (ϕ − 1)/a(ε). Then

X̄ ε(t) − X0(t) =
∫ t

0

(
b(X̄ ε(s)) − b(X0(s))

)
ds + √

ε

∫ t

0
σ(X̄ ε(s))dW (s)

+
∫
X t

εG(X̄ ε(s−), y)Nϕ/ε
c (ds × dy)

+
∫
X t

(
G(X̄ ε(s), y) − G(X0(s), y)

)
ϕ(s, y)ν(dy)ds
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+
∫
X t

G(X0(s), y)(ϕ(s, y) − 1)ν(dy)ds

+
∫ t

0
σ(X̄ ε(s))ζ(s)ds.

Write Ȳ ε = (X̄ ε − X0)/a(ε) as

Ȳ ε = Mε + Aε + Bε + E ε + Cε, (10.36)

where for t ∈ [0, 1],

Mε(t)
.= ε

a(ε)

∫
X t

G(X̄ ε(s−), y)Nϕ/ε
c (ds × dy) +

(
ε

a(ε)

)1/2 ∫ t

0
σ(X̄ ε(s))dW (s)

Aε(t)
.= 1

a(ε)

∫ t

0

(
b(X̄ ε(s)) − b(X0(s))

)
ds,

Bε(t)
.= 1

a(ε)

∫
X t

(
G(X̄ ε(s), y) − G(X0(s), y)

)
ν(dy)ds,

E ε(t)
.=

∫
X t

(
G(X̄ ε(s), y) − G(X0(s), y)

)
ψ(s, y)ν(dy)ds,

Cε(t)
.=

∫
X t

G(X0(s), y)ψ(s, y)ν(dy)ds + 1

a(ε)

∫ t

0
σ(X̄ ε(s))ζ(s)ds.

With ε0 as in Lemma10.20, we have from the Burkholder–Davis–Gundy inequality
(see Sect.D.1) that {∥∥∥∥

∫ ·

0
σ(X̄ ε(s))dW (s)

∥∥∥∥∞,1

}

ε≤ε0

is tight. Also, as in the proof of Lemma10.20, for some c1 ∈ (0,∞), we have

E

∥∥∥∥
∫
X ·

G(X̄ ε(s−), y)Nϕ/ε
c (ds × dy)

∥∥∥∥
∞,1

≤ (1 + E‖X̄ ε‖∞,1)

×
(
c1

√
εm + 2c̃(δ, n)

∫
X

MG(y)1{MG≥m}ν(dy) + 2δ + 2n

ρ
a2(ε)

)

for every δ > 0, ε ∈ (0, ε0), and u ∈ U ε
n,+. Combining these two estimates, we see

that
{‖Mε‖∞,1

}
ε≤ε0

is tight, and since ε/a(ε) → 0

‖Mε‖∞,1 → 0 in probability (10.37)

as ε → 0.
In the rest of the proof,wewill showupper bounds of the form c, c

∫ t
0 ‖Ȳ ε‖∞,sds or

ca(ε)‖Ȳ ε‖∞,1 for each of the remaining terms in (10.36). By the Lipschitz condition
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onG [part (c) of Condition 10.1 and part (a) of Condition10.13], there is c2 ∈ (0,∞)

such that for all t ∈ [0, 1], u ∈ U ε
n,+, we have

‖E ε‖∞,t ≤ a(ε)

∫
X t

LG(y)‖Ȳ ε(s)‖ |ψ(s, y)|ν(dy)ds

≤ a(ε)‖Ȳ ε‖∞,t

∫
X t

LG(y)|ψ(s, y)|ν(dy)ds

≤ c2a(ε)‖Ȳ ε‖∞,t , (10.38)

where the last inequality follows from the second bound in Lemma10.18. Again
using the Lipschitz condition on G, we have for all t ∈ [0, 1] that

‖Bε‖∞,t ≤ ‖LG‖1
∫ t

0
‖Ȳ ε(s)‖ds.

Similarly, the Lipschitz condition on b gives

‖Aε‖∞,t ≤ Lb

∫ t

0
‖Ȳ ε(s)‖ds.

Finally, we come to the term Cε. Again using the second bound in Lemma10.18,
we have that for some c3 ∈ (0,∞) and all u ∈ U ε

n,+, with u = (ζ, ϕ), ψ = (ϕ −
1)/a(ε), ∥∥∥∥

∫
X ·

G(X0(s), y)ψ(s, y)ν(dy)ds

∥∥∥∥
∞,1

≤ c3.

Since (ζ, ϕ) ∈ U ε
n,+, the bound

∫ 1
0 ‖ζ(s)‖2 ds ≤ na2(ε) applies. Thus for t ∈ [0, 1],

1

a(ε)

∫ t

0
σ(X̄ ε(s))ζ(s)ds = 1

a(ε)

∫ t

0
σ(X0(s))ζ(s)ds + 1

a(ε)
Rε

1(t),

where
‖Rε

1‖∞,1 ≤ a(ε)Lσ‖Ȳ ε‖∞,1
√
n, (10.39)

and ∥∥∥∥ 1

a(ε)

∫ t

0
σ(X0(s))ζ(s)ds

∥∥∥∥∞,1

≤ (‖X0‖∞,1Lσ + ‖σ(0)‖)√n.

Bringing terms in (10.36) of the form ca(ε)‖Ȳ ε‖∞,1 to the left side and renormalizing
for a coefficient of one,we have, for some c4 ∈ (0,∞), ε̃0 ∈ (0, ε0), and all u ∈ U ε

n,+,
t ∈ [0, 1], and ε ≤ ε̃0, that

‖Ȳ ε‖∞,t ≤ c4

(
1 +

∫ t

0
‖Ȳ ε‖∞,sds

)
+ Z ε,
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where {Z ε}ε≤ε̃0 is tight. The result now follows by an application of Gronwall’s
inequality. �

The next two lemmas will be needed in the weak convergence arguments of
Lemma 10.24. The first is an immediate consequence of Lemma10.18.

Lemma 10.22 Let h ∈ L 1(ν) ∩ L ρ
exp for some ρ > 0. Then for all n ∈ N, and β ∈

(0,∞),

sup
f ∈SN ,ε

n

∫
X 1

h(y) | f (s, y)|1{| f |≥β/a(ε)}ν(dy)ds → 0 as ε → 0.

For n ∈ (0,∞), let ŜN
n

.= { f ∈ L 2(ν1) : ‖ f ‖2N ,2 ≤ n}.
Lemma 10.23 Let n ∈ N, ε > 0, and f ε ∈ SN ,ε

n . Let η : X1 → R
d be a measurable

function such that
|η(s, y)| ≤ h(y) for y ∈ X , s ∈ [0, 1],

where h ∈ L 1(ν) ∩ L ρ
exp for some ρ > 0. Suppose there is β ∈ (0, 1] such that

f ε1{| f ε |≤β/a(ε)} converges in ŜN
nκ2(1)

to f . Then for all t ∈ [0, 1],
∫
X t

η(s, y) f ε(s, y)ν1(ds × dy) →
∫
X t

η(s, y) f (s, y)ν1(ds × dy).

Proof It follows from Lemma10.22 that

∫
X 1

|η(s, y) f ε(s, y)|1{| f ε |≥β/a(ε)}ν1(ds × dy) → 0 as ε → 0.

Also, since η1[0,t] ∈ L 2(ν1) for all t ∈ [0, 1] and f ε1{| f ε |≤β/a(ε)} → f , we have

∫
X t

η(s, y) f ε(s, y)1{| f ε |≤β/a(ε)}ν1(ds × dy) →
∫
X t

η(s, y) f (s, y)ν1(ds × dy).

The result follows on combining the last two displays. �

10.3.2 Proof of the Moderate Deviation Principle

The following is the key result needed in the proof ofTheorem10.14. It gives tightness
of the joint distribution of controls and controlled processes, and indicates how limits
of these two quantities are related. Recall ŜN

n
.= { f ∈ L 2(ν1) : ‖ f ‖2N ,2 ≤ n}.
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Lemma 10.24 Suppose Conditions10.1 and 10.13 hold. Let n ∈ N, ε > 0, and
uε = (ζ ε, ϕε) ∈ U ε

n,+. Let ψε .= (ϕε − 1)/a(ε), suppose β ∈ (0, 1], and set Ȳ ε .=
K ε(

√
εW ζ ε/

√
ε, εNϕε/ε). Then {(Ȳ ε, ψε1{|ψε |≤β/a(ε)}, ζ ε/a(ε))}ε>0 is tight in

D([0, 1] : R
d) × Ŝn(κ2(1)+1),

and any limit point (Ȳ , ψ, ζ ) satisfies (10.25) a.s., with η replaced by Ȳ and ( f1, f2)
replaced by (ψ, ζ ).

Proof Weuse the notation from the proof of Lemma10.21 but replace (ζ, ϕ) through-
out by (ζ ε, ϕε). Assume without loss of generality that ε ≤ ε0. From (10.37) we
have that ‖Mε‖∞,1 → 0 in probability as ε → 0. Also, since from Lemma10.21
{‖Ȳ ε‖∞,1}ε≤ε0 is tight, (10.38) implies that ‖E ε‖∞,1 → 0 in probability.

Noting that X̄ ε(t) = X0(t) + a(ε)Ȳ ε(t), we have by Taylor’s formula,

G(X̄ ε(s), y) − G(X0(s), y) = a(ε)DxG(X0(s), y)Ȳ ε(t) + Rε(s, y),

where
‖Rε(s, y)‖ ≤ LDG(y)a2(ε)‖Ȳ ε(s)‖2.

Hence

Bε(t) =
∫
X t

DxG(X0(s), y)Ȳ ε(s)ν(dy) ds + T ε
1 (t),

where

‖T ε
1 ‖∞,1 ≤ ‖LDG‖1 a(ε)

∫ 1

0
‖Ȳ ε(s)‖2ds.

Thus using Lemma10.21 again, we have that ‖T ε
1 ‖∞,1 → 0 in probability. Similarly,

Aε(t) =
∫ t

0
Db(X0(s))Ȳ ε(s)ds + T ε

2 (t),

where ‖T ε
2 ‖∞,1 → 0 in probability. Also, from (10.39) ‖Rε

1‖∞,1 → 0 in probability.
Putting these estimates together, we have from (10.36) that

Ȳ ε(t) = T ε
3 (t) +

∫ t

0
Db(X0(s))Ȳ ε(s)ds + 1

a(ε)

∫ t

0
σ(X0(s))ζ ε(s)ds (10.40)

+
∫
X t

DxG(X0(s), y)Ȳ ε(s)ν(dy)ds +
∫
X t

G(X0(s), y)ψε(s, y)ν(dy)ds,

where
T ε
3

.= Mε + E ε + T ε
1 + T ε

2 + Rε
1 ⇒ 0.
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We now prove tightness of

Ãε(·) .=
∫ ·

0
Db(X0(s))Ȳ ε(s)ds, B̃ε(·) .=

∫
X ·

DxG(X0(s), y)Ȳ ε(s)ν(dy)ds,

C̃ε(·) .=
∫
X ·

G(X0(s), y)ψε(s, y)ν(dy)ds, D̃ε(·) .= 1

a(ε)

∫ ·

0
σ(X0(s))ζ ε(s)ds.

Applying Lemma10.18 with h = MG , for every β ∈ (0, 1] and δ ∈ (0, 1), we have

‖C̃ε(t + δ) − C̃ε(t)‖ =
∫

[t,t+δ]×X
‖G(X0(s), y)‖ |ψε(s, y)|ν(dy)ds

≤ (
1 + ‖X0‖∞,1

) ∫
[t,t+δ]×X

MG(y)|ψε(s, y)|ν(dy)ds

≤ (
1 + ‖X0‖∞,1

)
(ζ(β)δ1/2 + √

a(ε)ϑ(β) + 2ξ(ε)).

Tightness of {C̃ε}ε>0 in C ([0, 1] : R
d) is now immediate from the properties of ϑ

and ξ .
Next we argue the tightness of B̃ε. For 0 ≤ t ≤ t + δ ≤ 1, we have

‖B̃ε(t + δ) − B̃ε(t)‖ ≤
∫

[t,t+δ]×X
‖DxG(X0(s), y)Ȳ ε(s)‖ν(dy)ds

≤
(

sup
‖x‖≤‖X0‖∞,1

∫
X

‖DxG(x, y)‖ν(dy)

) ∫
[t,t+δ]

‖Ȳ ε(s)‖ds

≤ c1‖Ȳ ε‖∞,1δ,

where c1
.= sup‖x‖≤‖X0‖∞,1

∫
X ‖DxG(x, y)‖ν(dy) is finite by part (b) of Condi-

tion10.13. Tightness of {B̃ε}ε>0 in C ([0, 1] : R
d) now follows as a consequence of

Lemma10.21. Similarly, it can be seen that Ãε is tight in C ([0, 1] : R
d). Finally,

since ζ ε ∈ SWna2(ε) implies the bound na2(ε) for
∫ 1
0 ‖ζ ε‖2ds, it follows that for

0 ≤ t ≤ t + δ ≤ 1, we have

‖D̃ε(t + δ) − D̃ε(t)‖ ≤ 1

a(ε)

∫ t+δ

t
‖σ(X0(s))ζ ε(s)‖ds

≤ √
δ(‖X0‖∞,1Lσ + ‖σ(0)‖)√n.

Tightness of {D̃ε}ε>0 in C ([0, 1] : R
d) is now immediate. Since each of these terms

is tight, {Ȳ ε}ε>0 is tight in D([0, 1] : R
d). Also, from part (c) of Lemma9.7,

(
ψε1{|ψε |≤β/a(ε)},

1

a(ε)
ζ ε

)
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takes values in the compact space Ŝn(κ2(1)+1) for all ε > 0 and is therefore automati-
cally tight. This completes the proof of the first part of the lemma.

Suppose now that (
Ȳ ε, ψε1{|ψε |≤β/a(ε)},

1

a(ε)
ζ ε

)

converges in distribution along a subsequence to (Ȳ , ψ, ζ ). From Lemma10.23 and
the tightness of C̃ε, D̃ε established above, we have that

(
Ȳ ε,

∫
X ·

G(X0(s), y)ψε(s, y)ν(dy)ds,
1

a(ε)

∫ ·

0
σ(X0(s))ζ ε(s)ds

)

converges in distribution, in D([0, 1] : R
3d), to

(
Ȳ ,

∫
X ·

G(X0(s), y)ψ(s, y)ν(dy)ds,
∫ ·

0
σ(X0(s))ζ(s)ds

)
.

The result now follows on using this convergence in (10.40) and recalling that T ε
3 ⇒

0. �

We now complete the proof of the moderate deviation principle.

Proof (of Theorem10.14) It suffices to show that Condition 9.8 holds with K ε

and K 0 defined as at the beginning of Sect. 10.3.1. Part (a) of the condition
was verified in Lemma10.17. Consider now part (b). Fix n ∈ N and β ∈ (0, 1].
Let (ζ ε, ϕε) ∈ U ε

n,+ and ψε = (ϕε − 1)/a(ε). Suppose that for some β ∈ (0, 1],
(ψε1{|ψε |≤β/a(ε)}, ζ ε/a(ε)) ⇒ (ψ, ζ ). To complete the proof, we need to show that

K ε
(√

εW ζ ε/
√

ε, εNϕε/ε
)

⇒ K 0(ζ, ψ). (10.41)

Recall that the left side of (10.41) equals Ȳ ε defined in (10.33). FromLemma10.24,
{(Ȳ ε, ψε1{|ψε |≤β/a(ε)}, ζ ε/a(ε))} is tight in D([0, 1] : R

d) × Ŝn(κ2(1)+1), and every
limit point (Ȳ , ψ̄, ζ̄ ) satisfies (10.25) a.s., with η replaced by Ȳ and ( f1, f2) with
(ψ̄, ζ̄ ). Since (10.25) has a unique solution,K 0( f1, f2) for every f = ( f1, f2) ∈ L 2

[recall L 2 .= L 2([0, 1] : R
d) × L 2(νT )], (ζ, ψ) has the same law as (ζ̄ , ψ̄), and

every limit point of Ȳ ε must have the same distribution as K 0(ζ, ψ). The result
follows. �

10.3.3 Equivalence of Two Rate Functions

In this section we present the proof of Theorem 10.15. To simplify notation, suppose
without loss that T = 1. Fix η ∈ C ([0, 1] : R

d) and δ > 0. Let f̃ = ( f̃1, f̃2), where
f̃i ∈ L 2([0, 1] : R

d), i = 1, 2, be such that
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1

2

∫ 1

0

(
‖ f̃1(s)‖2 + ‖ f̃2(s)‖2

)
ds ≤ I (η) + δ

and (η, f̃ ) satisfy (10.27). Define f2 : X1 → R by

f2(s, y)
.=

d∑
i=1

f̃2,i (s)ei (s, y), (s, y) ∈ X1, (10.42)

where the ei were introduced just before the statement of Theorem10.15. From the
orthonormality of ei (s, ·), it follows that

1

2

∫
X 1

| f2(s, y)|2ν1(ds × dy) = 1

2

∫ 1

0
‖ f̃2(s)‖2ds. (10.43)

Also, with A(s) defined as in (10.26), we have

[A(s) f̃2(s)]i =
d∑
j=1

〈Gi (X
0(s), ·), e j (s, ·)〉L 2(ν) f̃2, j (s)

=
〈
Gi (X

0(s), ·),
d∑
j=1

e j (s, ·) f̃2, j (s)
〉

L 2(ν)

= 〈Gi (X
0(s), ·), f2(s, ·)〉L 2(ν),

so that A(s) f̃2(s) = ∫
X f2(s, y)G(X0(s), y)ν(dy). Consequently,η satisfies (10.25)

with f2 as in (10.42) and f1 = f̃1. Combining this with (10.43), we have

Ī (η) ≤ 1

2

∫ 1

0
‖ f̃1(s)‖2ds + 1

2

∫
X 1

| f2(s, y)|2ν2(ds × dy)

= 1

2

∫ 1

0

(
‖ f̃1(s)‖2 + ‖ f̃2(s)‖2

)
ds

≤ I (η) + δ.

Since δ > 0 is arbitrary, we have Ī (η) ≤ I (η).
Conversely, suppose δ > 0 and q = ( f1, f2) ∈ L 2 is such that

1

2

∫
X 1

| f2(s, y)|2ν1(ds × dy) + 1

2

∫ 1

0
‖ f1(s)‖2ds ≤ Ī (η) + δ

and (10.25) holds. For i = 1, . . . , d, define f̃2,i : [0, 1] → R by

f̃2,i (s) = 〈 f2(s, ·), ei (s, ·)〉L 2(ν).
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For s ∈ [0, 1], let {e j (s, ·)}∞j=d+1 be defined in such a manner that {e j (s, ·)}∞j=1 is
a complete orthonormal system inL 2(ν). Then for every s ∈ [0, 1], i = 1, . . . , d,

[A(s) f̃2(s)]i =
d∑
j=1

〈Gi (X
0(s), ·), e j (s, ·)〉L 2(ν)〈 f2(s, ·), e j (·, s)〉L 2(ν)

=
∞∑
j=1

〈Gi (X
0(s), ·), e j (·, s)〉L 2(ν)〈 f2(s, ·), e j (s, ·)〉L 2(ν)

= 〈Gi (X
0(s), ·), f2(s, ·)〉L 2(ν),

where the second equality follows on observing thatGi (X0(s), ·) is in the linear span
of {e j (s, ·)}dj=1 for i = 1, . . . , d. Thus A(s) f̃2(s) = ∫

X f2(s, y)G(X0(s), y)ν(dy),

and therefore (η, f̃ ) satisfy (10.27) with f̃2 defined as above and f̃1 = f1. Note that
with f̃2 = ( f̃2,1, . . . , f̃2,d),

1

2

∫ 1

0
‖ f̃2(s)‖2ds = 1

2

∫ 1

0

d∑
j=1

〈 f2(s, ·), e j (s, ·)〉2L 2(ν)ds

≤ 1

2

∫ 1

0

∫
X

f 22 (s, y)ν(dy)ds.

Thus

I (η) ≤ 1

2

∫ 1

0

(
‖ f̃1(s)‖2 + ‖ f̃2(s)‖2

)
ds

≤ 1

2

∫ 1

0
‖ f1(s)‖2ds + 1

2

∫ 1

0

∫
X

f 22 (s, y)ν(dy)ds

≤ Ī (η) + δ.

Since δ > 0 is arbitrary, I (η) ≤ Ī (η), which completes the proof. �

10.4 Notes

The first results for a general class of continuous time small noise Markov processes
appear to be those of Wentzell [245–248]. The class covered includes both Gaus-
sian and Poisson driving noises, and the proof uses approximation by discrete time
processes.

Large deviation principles for small noise infinite dimensional stochastic differ-
ential equations driven by PRM are considered in [38]. Although this paper considers
a considerably more complex setting than the one studied in the current chapter, it
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assumed a somewhat stronger condition on the coefficient function that plays the role
of G in this chapter. Specifically, it required the functions MG and LG to satisfy a
more stringent integrability condition than the one used here (Condition 10.3). Some
of the results used to deal with these weaker integrability conditions are from [47].
Another distinction between this chapter and [38] is that here we consider systems
driven by both Gaussian and Poisson noise, and consider both large and moderate
deviations. Amoderate deviation principle of the form given in Sect. 10.3, applicable
to both finite and infinite dimensional SDE, was presented in [41] for the setting in
which the driving noise is only Poisson. It is worth noting that most of the technical
details in this chapter arise from the treatment of the PRM term.

There is an important distinction between the types of processes one can represent
using PRMs and their large deviation analysis. For one class, which includes the
models considered in this chapter as well as the example in Sect. 3.3, different points
in the point space of the underlying PRM are used to model different types of jumps
in the solution to the SDE. The conditions placed on the coefficient that modulates
the impact of the noise on the state (G in this chapter) tend to be continuity-type
conditions, analogous to those one places on the diffusion coefficient of an SDE
driven by Brownian motion, though stated in terms of integration over the spaceX .
These continuity properties are used to establish uniqueness of the map that takes the
controls into the state for the limit dynamics, under the assumption that the cost of
the controls is bounded. With the second class, there are only finitely many different
types of jumps of the state, and the role of G is simply to “thin” the PRM to produce
state-dependent jump rates. Examples of this type include the process models of
Chap.13 as well as those in [23, 42]. Owing to its role in thinning, G is typically not
continuous, and one does not expect uniqueness of the limiting deterministic map
that takes controls to the state process. However, as we will see, it is in fact sufficient
to prove the following restricted uniqueness: given a state trajectory for which there
is a corresponding control with finite cost, find a control that produces the same state
trajectory with nearly the same cost and for which there is uniqueness. These points
are illustrated in the analysis carried out in Chap.13.
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