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Preface

The theory of large deviations is concerned with various approximations involving
rare events. It is also concerned with characterizing the circumstances that lead to a
given rare event. Precise mathematical statements usually involve some variation on
the following. There is a scaling parameter [say e 2 ð0;1Þ], and a collection of
integrals Me indexed by e. The large deviation properties of measures appearing in
these integrals are identified by showing that the limit of scaled nonlinear trans-
formations of the integrals exists, and also expressing the limit as the solution to a
variational problem. A typical example of the scaling and transformation is
�e logMe, and thus one seeks to establish that lime!0 �e logMe exists and char-
acterize the value of the limit.

Suppose that besides the desired variational expression for the limit, one also has
a variational representation for the prelimit, and moreover that quantities appearing
in the prelimit and limit representations are naturally related though a scaling limit,
such as a law of large numbers or ergodic limit. Then a very natural approach to the
convergence issue is to prove the large deviation limit by proving convergence
of the variational characterizations.

This approach, which was first introduced by Richard Ellis and one of the
authors in [97], is the one that will be taken in this book. The method of analysis
involves two steps: first rewrite the quantities such as �e logMe as solutions to
variational problems, and then carry out the asymptotic analysis as e ! 0. Not
surprisingly, there are many choices to be made, both with respect to what repre-
sentation might be most convenient, and also what methods to use for the con-
vergence analysis. We will not go into any details here regarding how one identifies
and proves convenient variational representations for the prelimit objects. This is
indeed one of the main contributions of the book, and is the focus of much dis-
cussion in the pages to follow. However, a discussion on the convergence methods
is much easier. One can interpret the prelimit variational representations as the
value of a stochastic control problem. Given this interpretation, we will carry out
the convergence analysis by proving convergence of value functions using weak
convergence, i.e., convergence in distribution, of the underlying controlled
processes.
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Because we study variational quantities (specifically, the infimum of a “cost”
over a family of “controls”), the application of weak convergence methods is more
involved than in the study of just limits of integrals. One establishes lower bounds
(which correspond to large deviation upper bounds) for the sequence of costs under
more or less arbitrary controls, and these lower bounds identify a candidate limit
variational problem. An upper bound on costs (a large deviation lower bound) gives
the reverse inequality, thus establishing the limit and validating the candidate limit
variational problem. The upper bound is shown by taking a nearly optimal control
for the proposed variational characterization of the limit and adapting to construct
controls for the prelimit that yield the same cost as e ! 0. In applying this general
argument to specific problems of large deviation analysis, the same scaling limit
simplifications that appear in random variables and processes relevant to Me cor-
respond to analogous scaling simplifications for their controlled counterparts that
are relevant to �e logMe. This will be illustrated by many examples. Indeed, the
method described above will be applied to all large deviation problems considered
in this book, and can thus be viewed as a unified approach to the analysis of rare
events for a large and diverse collection of problem settings.

An important difference between our treatment and those in most other works on
this subject is that exponential probability estimates do not play a role in the proofs.
Instead of developing bounds for exponential tightness and exponential closeness,
we establish (ordinary) tightness of suitable families of controls and controlled
processes. Another key difference is in our treatment of continuous time processes,
for which we at no point use an approximation of the process model. Instead, the
central proof ingredients are stochastic control representations for functionals of
noise processes (i.e., Brownian motion and Poisson random measure). The proofs
of these representations do require approximations of the noise processes, and thus
in a sense the “approximation component” of classical proofs is applied at a more
fundamental and abstract level. This allows one to study many complex problems
where standard approximation methods would be hard to implement.

We note that the use of weak convergence methods for the asymptotic analysis
of value functions that appear in stochastic control is not new, and in fact originates
with Harold Kushner in his study of convergence of numerical methods, which was
first presented in book form in [181]. The closely related idea of Gamma conver-
gence was introduced independently, around the same time, by De Giorgi [74].

We have divided the book into four parts. In the first part we review general
results in the theory of large deviations, such as the contraction principle. We also
discuss in detail the many interesting and useful properties of relative entropy, also
known as Kullback–Leibler divergence. Relative entropy is central to the definition
of the appropriate cost structure in all the variational representations given for
prelimit quantities, and so a detailed knowledge of its properties is essential in the
convergence analysis. The last item in Part I is a chapter on introductory examples.
The reader interested in quickly understanding how the general machinery works in
both discrete and continuous time will find all the main issues introduced and
explored there.
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Part II considers discrete time problems. After showing how the chain rule for
relative entropy allows an easy derivation of convenient variational representations,
we proceed through a number of important process models, stating and proving
large and moderate deviation principles. Some of the examples here also were
considered in [97], but for these examples both the derivation of the representation
and weak convergence analysis are new and, in our opinion, simpler.

In Part III we formulate and apply representations for continuous time problems.
The derivation of these representations, which is much more involved than its
discrete time counterparts, had just begun when [97] was published, and none of the
results of this part have appeared in book form. The representations and related
abstract large and moderate deviation results have found wide use, and only a
sample of the many different uses is presented.

The last part of the book is concerned with Monte Carlo methods for problems
that involve rare events. It is perhaps not surprising that methods for analyzing the
impact of rare events on particular integrals can also be used to design and analyze
Monte Carlo-type numerical schemes for the approximation of the same integrals.
This is in some sense the newest of the topics considered in the book.

The main background assumed in the book is as follows. The reader should be
familiar with weak convergence of probability measures on Polish spaces, as dis-
cussed for example in Billingsley [24]. General knowledge of Markov processes in
both discrete and continuous time is also assumed. Part III assumes familiarity with
stochastic differential equations driven by Brownian motion and Poisson random
measures. Throughout the book there is much use of concepts and results from
finite dimensional convex analysis. For these we refer to the standard book of
Rockafeller [217]. Part IV of the book requires some familiarity with basic defi-
nitions and concepts of subsolutions of Hamilton–Jacobi equations, which can be
found, for example, in the books [14, 135].

We request readers to notify us if they discover any errors in the book. We will
maintain an Errata webpage at http://abudhiraja.web.unc.edu/files/2019/07/Errata.
pdf.

Chapel Hill, North Carolina, USA Amarjit Budhiraja
Providence, Rhode Island, USA Paul Dupuis
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Part I
Laplace Principle, Relative Entropy,

and Elementary Examples

The intent of this book is to explain how variational representations and weak con-
vergence methods can be used for the qualitative and quantitative analysis of rare
events (large deviation theory), and to address related questions of numerical anal-
ysis (accelerated Monte Carlo). This introductory part consists of three chapters. In
the first chapter, the equivalence between a large deviation principle and the corre-
sponding Laplace principle is demonstrated for random variables that take values in
a Polish space. The Laplace principle is a “bounded and continuous test function”
characterization, and it asserts the convergence of normalized logarithms of certain
exponential integrals.With this exponential integral characterization in hand, the rest
of the chapter proves a number of general results in the theory.

Chapter 2 discusses relative entropy and its many attractive properties. Relative
entropy plays a central role in everything that is done in the book, owing to its appear-
ance in a fundamental variational formula for the exponential integrals. In particular,
the chain rule of relative entropy, which is the key to obtaining useful representa-
tions for processes with structure (e.g., Markov processes) is stated and proved. The
chapter also proves or references various results on tightness of probability measures
that will be used in the weak convergence analysis.

Chapter 3 shows how refined variational representations can be combined with
weak convergence arguments to prove the large deviation principles for some basic
models: Sanov’s theorem andCramér’s theorem, and stochastic differential equations
driven byBrownian and Poisson noise (the latter using representations for continuous
time processes that will be proved in Chap. 8). Although the analysis of models that
will be considered in later chapters requires considerably more detail, all the main
ideas concerning how the representations should be used can be seen in these simple
examples.



Chapter 1
General Theory

Throughout this chapter {Xn}n∈N is a sequence of random variables defined on a
probability space (Ω,F , P) and taking values in a complete separable metric space
X . As is usual, we will refer to such a space as a Polish space. The metric of X
is denoted by d(x, y), and expectation with respect to P by E . The theory of large
deviations focuses on random variables {Xn} for which the probabilities P{Xn ∈ A}
converge to 0 exponentially fast for a class of Borel sets A. The exponential decay rate
of these probabilities is expressed in terms of a function I mappingX into [0,∞].
A function I on X is called a rate function on X , or simply a rate function, if
I maps X into [0,∞] and if for each M < ∞ the level set {x ∈ X : I (x) ≤ M}
is a compact subset of X . We summarize the last property by saying that I has
compact level sets. A function f : X → [0,∞] is called lower semicontinuous if
for every x ∈ X , f (x) ≤ lim inf y→x f (y). Since a function having compact level
sets is automatically lower semicontinuous and it attains its infimumonanynonempty
closed set, a rate function I satisfies these properties. A convention used throughout
this book is that the infimum of a rate function over the empty set is ∞.

1.1 Large Deviation Principle

We next define the concept of a large deviation principle (LDP). For A a subset of
X , we denote inf x∈A I (x) by I (A).

Definition 1.1 Let I be a rate function on X . The sequence {Xn} is said to satisfy
the large deviation principle on X with rate function I if the following two
conditions hold:

(a) Large deviation upper bound. For each closed subset F of X ,

lim sup
n→∞

1

n
log P{Xn ∈ F} ≤ −I (F).
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4 1 General Theory

(b) Large deviation lower bound. For each open subset G of X ,

lim inf
n→∞

1

n
log P{Xn ∈ G} ≥ −I (G).

As is well known and proved in Theorem1.15, if a sequence of random variables
satisfies the large deviation principle with some rate function, then the rate function
is unique. While the normalization or scaling sequence is 1/n in the definition
just given, one also encounters continuous parameter scalings (e.g., ε ∈ (0, 1) with
ε ↓ 0) and other sequences (e.g., b(n) → ∞ as n → ∞ in moderate deviations as
in Chap.5).

A number of authors such as [80, 82] use the following slightly different termi-
nology, which we do not adopt. A “rate function” on X is a function that maps X
into [0,∞] and is lower semicontinuous. A “good rate function” is a function that
maps X into [0,∞] and has compact level sets.

Here are two examples of large deviation principles.

Example 1.2 The first example is a special case of Cramér’s theorem [Theorem
3.8]. Given positive numbers p and q summing to 1, let {v j } j∈N0 be a sequence of
independent, identically distributed (iid) random variables taking values in R and
having the common distribution P{v j = 0} = q and P{v j = 1} = p. For n ∈ N,
define the sample means

Sn

n
.= 1

n

n−1∑

j=0

v j .

According to Cramér’s theorem, the sequence {Sn/n} satisfies the large deviation
principle on R with rate function

I (x)
.= sup

α∈R

[
αx − log

∫

R

eαy ρ(dy)

]
,

where ρ
.= qδ0 + pδ1 and for x ∈ R, δx denotes the Dirac measure at the point x .

The supremum can be explicitly evaluated to give

I (x)
.=

⎧
⎨

⎩
x log

(
x

p

)
+ (1 − x) log

(
1 − x

q

)
if x ∈ [0, 1]

∞ if x ∈ R \ [0, 1].

Example 1.3 The second example is known as Schilder’s theorem [230] [also a
special case of Theorem3.19]. Let {W (t)}t∈[0,1] denote a standard Brownian motion
taking values inRd , and forn ∈ N consider the processY n = {Y n(t)}t∈[0,1] defined by

Y n(t)
.= 1√

n
W (t).
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Then Y n takes values in the space C ([0, 1] : Rd) consisting of all continuous func-
tions ϕ that map [0, 1] into Rd , and Y n satisfies Y n(0) = 0. When equipped with the
supremum norm,C ([0, 1] : Rd) is a separable Banach space and thus a Polish space.
For x ∈ R

d letA C x ([0, 1] : Rd) denote the subset consisting of all absolutely con-
tinuous functions ϕ satisfying ϕ(0) = x . Schilder’s theorem states that the sequence
{Y n} satisfies the large deviation principle on C ([0, 1] : Rd) with rate function

I (ϕ)
.=

⎧
⎨

⎩

1

2

∫ 1

0
‖ϕ̇(t)‖2 dt if ϕ ∈ A C 0([0, 1] : Rd)

∞ if ϕ ∈ C ([0, 1] : Rd) \ A C 0([0, 1] : Rd).

There is an important qualitative interpretation of the points that minimize a rate
function over a closed set, and in particular, the sense in which they identify the most
likely way a rare event occurs, given that is does occur. Although this result is not
used in the sequel, it is one of the most interesting and useful aspects of the theory
of large deviations.

Theorem 1.4 Assume that C ⊂ X is closed and that I (C) = I (C◦) < ∞. Let G =
{x ∈ C : I (x) = I (C)}, andGε = {x ∈ X : d(x,G) < ε}. If {Xn} satisfies the LDP
with rate I , then for every ε > 0,

P
{
Xn ∈ Gε

∣∣Xn ∈ C
} → 1.

Proof Fix ε > 0. We first claim that there is δ > 0 such that I (C\Gε) − I (C) = δ.
If not, then one can find xi ∈ C\Gε such that I (xi ) ≤ I (C) + 1/ i . Then

{xi , i ∈ N} ⊂ {x : I (x) ≤ I (C) + 1} ,

and so since I (C) < ∞, along a subsequence, xik → x∗ ∈ C . However, the lower
semicontinuity of I implies I (x∗) ≤ lim infk→∞ I (xik ) = I (C), which contradicts
the definition of Gε. Thus such a δ > 0 exists. By Bayes’s rule,

P
{
Xn ∈ Gε ∩ C

∣∣Xn ∈ C
} = 1 − P

{
Xn ∈ C\Gε

∣∣Xn ∈ C
}

= 1 − P {Xn ∈ C\Gε}
P {Xn ∈ C} .

Since

lim inf
n→∞

1

n
log P

{
Xn ∈ C

} ≥ −I (C◦) = −I (C)

and

lim sup
n→∞

1

n
log P

{
Xn ∈ C\Gε

} ≤ −I (C) − δ,

the result follows. �
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Suppose we would like to prove that a sequence {Xn} satisfies the large deviation
principle. As we will show in the next section, the large deviation principle will
follow, provided we can evaluate, for all bounded continuous functions h mapping
X into R, the asymptotics of quantities of the form

1

n
log E exp

{−nh(Xn)
}
as n → ∞. (1.1)

The weak convergence approach initiated in [97] and further developed in this book
is ideally suited to such evaluations. The main purpose of this chapter is to introduce
some of the machinery needed for its implementation. Other key tools, such as the
relative entropy representation for exponential integrals and various properties of
relative entropy, will be discussed in the next chapter.

The evaluation of the asymptotics of quantities of the form given in Eq. (1.1) leads
to the concept of the Laplace principle. In a sense to be made precise in Sect. 1.2, the
Laplace principle is equivalent to the large deviation principle. In Sect. 1.3 we make
a small but pleasant detour as we reformulate, in terms of the Laplace principle, a
number of basic results in the theory.

The techniques used in Sect. 1.2 to prove the equivalence of the Laplace principle
and the large deviation principle as well as the techniques used in Sect. 1.3 are basic
in large deviation theory. However, they will not be used much in the remainder of
the book. In contrast, the techniques used in Chap.2 to establish properties of the
relative entropy will be applied many times.

Notation and Terminology. We will implement the weak convergence approach by
studying the asymptotics of

V n .= −1

n
log E exp{−nh(Xn)}

as n → ∞. Here V n is the negative of the quantity given in Eq. (1.1). We first
reformulate V n as a variational or stochastic control problem. By inserting the
two annoying minus signs in the formula for V n , we obtain a minimization prob-
lem with nonnegative relative entropy costs, which is more natural than a maxi-
mization problem with nonpositive costs. The representations express exponential
integrals in terms of stochastic control problems. To distinguish various objects of
interest we use the term Laplace upper bound to refer to a bound of the form
lim supn→∞

1
n log E exp{−nh(Xn)} ≤ A, and variational lower bound to refer to

the corresponding bound lim infn→∞ − 1
n log E exp{−nh(Xn)} ≥ −A. The terms

Laplace lower bound and variational upper bound are defined analogously. Thus
a Laplace lower bound will give lower bounds on 1

n log E exp{−nh(Xn)}, while the
associated variational lower bound gives lower bounds on the control representation
for − 1

n log E exp{−nh(Xn)}.
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1.2 An Equivalent Formulation of the Large Deviation
Principle

In [238] Varadhan proved an important consequence of the large deviation principle
that involves the asymptotic behavior of certain expectations. It generalizes the well-
known method of Laplace for studying the asymptotics of certain integrals on R.
Given h a bounded continuous function mapping [0, 1] into R, Laplace’s method
states that

lim
n→∞

1

n
log

∫ 1

0
exp{−nh(x)} dx = − min

x∈[0,1] h(x).

The proof is a straightforward exercise, and if h is smooth, then further analysis
yields an asymptotic expansion for the integral as n → ∞. After stating Varadhan’s
result in the next theorem, we will explain its relationship to the weak convergence
approach. We remind the reader that throughout this chapter {Xn}n∈N is a sequence
of random variables defined on a probability space (Ω,F , P) and taking values in
a Polish space X . The metric of X is denoted by d(x, y), and expectation with
respect to P by E .

Theorem 1.5 (Varadhan) Assume that the sequence {Xn} satisfies the large devi-
ation principle onX with rate function I . Then for all bounded continuous functions
h mapping X into R,

lim
n→∞

1

n
log E exp{−nh(Xn)} = − inf

x∈X
[h(x) + I (x)]. (1.2)

More precisely, the following conclusions hold:

(a) The large deviation upper bound implies that

lim sup
n→∞

1

n
log E exp{−nh(Xn)} ≤ − inf

x∈X
[h(x) + I (x)].

(b) The large deviation lower bound implies that

lim inf
n→∞

1

n
log E exp{−nh(Xn)} ≥ − inf

x∈X
[h(x) + I (x)].

Proof (a) There exists M ∈ (0,∞) such that −M ≤ h(x) ≤ M for all x ∈ X . For
N a positive integer and j ∈ {1, 2, . . . , N }, consider the closed sets

FN , j
.=

{
x ∈ X : −M + 2( j − 1)M

N
≤ −h(x) ≤ −M + 2 jM

N

}
.

The large deviation upper bound yields
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lim sup
n→∞

1

n
log E exp{−nh(Xn)}

≤ lim sup
n→∞

1

n
log

⎛

⎝
N∑

j=1

∫

FN , j

exp {−nh(x)} P {
Xn ∈ dx

}
⎞

⎠

≤ max
j∈{1,2,...,N }

[
−M + 2 jM

N
− I (FN , j )

]

≤ max
j∈{1,2,...,N } sup

x∈FN , j

[−h(x) − I (x)] + 2M

N

= sup
x∈X

[−h(x) − I (x)] + 2M

N
.

In obtaining the second inequality we have used the inequality log(
∑N

j=1 a j ) ≤
log N + max j∈{1,...,N }[log a j ] for nonnegative real numbers a j , j = 1, . . . , N . Send-
ing N → ∞, we obtain

lim sup
n→∞

1

n
log E exp{−nh(Xn)} ≤ sup

x∈X
[−h(x) − I (x)]

= − inf
x∈X

[h(x) + I (x)],

as claimed.
(b) Given x an arbitrary point inX and ε an arbitrary positive number, we apply

the large deviation lower bound to the open set G
.= {y ∈ X : h(y) < h(x) + ε},

obtaining

lim inf
n→∞

1

n
log E exp{−nh(Xn)} ≥ lim inf

n→∞
1

n
log E

[
1G(Xn) exp{−nh(Xn)}]

≥ −h(x) − ε + lim inf
n→∞

1

n
log P{Xn ∈ G}

≥ −h(x) − ε − I (G)

≥ −h(x) − I (x) − ε.

Since x ∈ X and ε > 0 are arbitrary,

lim inf
n→∞

1

n
log E exp{−nh(Xn)} ≥ − inf

x∈X
[h(x) + I (x)].

This completes the proof of the theorem. �

If we summarize the large deviation principle by the formal notation

P{Xn ∈ dx} � exp{−nI (x)} dx,
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then we can write

E exp{−nh(Xn)} =
∫

X
exp{−nh(x)} P{Xn ∈ dx}

�
∫

X
exp{−n(h(x) + I (x))} dx .

As in Laplace’s method, Varadhan’s theorem (Theorem1.5) states that to exponential
order, the main contribution to the integral is due to the largest value of the exponent.

It is convenient to coin phrases to refer to the validity of the limit (1.2) for all
bounded continuous functions h as well as to the validity of the upper and lower
bounds in parts (a) and (b) of the theorem.

Definition 1.6 Let I be a rate function on X . The sequence {Xn} is said to satisfy
the Laplace principle on X with rate function I if for all bounded continuous
functions h,

lim
n→∞

1

n
log E exp{−nh(Xn)} = − inf

x∈X
[h(x) + I (x)].

The term Laplace principle upper bound refers to the validity of

lim sup
n→∞

1

n
log E exp{−nh(Xn)} ≤ − inf

x∈X
[h(x) + I (x)]

for all bounded continuous functions h, while the term Laplace principle lower
bound refers to the validity of

lim inf
n→∞

1

n
log E exp{−nh(Xn)} ≥ − inf

x∈X
[h(x) + I (x)]

for all bounded continuous functions h.

Evaluating the Laplace limit for the zero function onX shows that if a sequence
{Xn} satisfies a Laplace principle with rate function I , then the infimum of I onX
equals 0. Since a function with compact level sets attains its infimum on a closed set,
it follows that there exists a point x0 ∈ X for which I (x0) = 0.

With the last definition, we can express the content of Varadhan’s theorem by say-
ing that the large deviation principle implies the Laplace principle with the same rate
function. The next theorem, Theorem1.8, proves the converse. The result is closely
related to another converse of Varadhan’s theorem due to Bryc [36]. In general, the
weak convergence approach directly yields the Laplace principle and thus through
Theorem1.8 can be used to derive the large deviation principle. We will use this
technique for proving the large deviation principle throughout the book.

The equivalence between the Laplace principle and the large deviation principle
as expressed by Theorems1.5 and 1.8 can be regarded as an analogue of the port-
manteau theorem [TheoremA.2]. The latter states the equivalence between the weak
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convergence of probability measures and limits involving closed and open sets. An
examination of the proof of the Theorem1.8 reveals that given a rate function I ,
the Laplace principle upper bound implies the large deviation upper bound, and the
Laplace principle lower bound implies the large deviation lower bound. This and
other features of the theorem will be discussed later in the section.

Remark 1.7 Although we assume for convenience throughout this chapter that X
is a Polish space, the properties of completeness and separability are never used in
the proofs of Theorems1.5 and 1.8. Therefore, these results and consequently the
equivalence of the Laplace principle and large deviation principle hold for anymetric
space X .

Theorem 1.8 The Laplace principle implies the large deviation principle with the
same rate function. More precisely, if I is a rate function onX and the limit

lim
n→∞

1

n
log E exp{−nh(Xn)} = − inf

x∈X
[h(x) + I (x)]

is valid for all bounded continuous functions h, then {Xn} satisfies the large deviation
principle onX with rate function I .

Theorem1.8 states that the large deviation principle follows once we have a suit-
able asymptotic evaluation of the expectations E exp{−n h(Xn)} for all bounded
continuous functions h. In the cases that we will treat, we could easily modify our
method and prove the large deviation principle by obtaining bounds on the asymptotic
behavior of expectations that involve discontinuous functions rather than continuous
functions. This class should be large enough to contain suitable approximations to the
indicator functions of closed sets and of open balls inX . We also note that in some
instances one may find it convenient to consider functions h that are unbounded.

Proof (of Theorem 1.8) We assume that I is a rate function on X and that for all
bounded continuous functions h,

lim
n→∞

1

n
log E exp{−nh(Xn)} = − inf

x∈X
[h(x) + I (x)].

We want to prove that for each closed set F , the sequence {Xn} satisfies the large
deviation upper bound

lim sup
n→∞

1

n
log P{Xn ∈ F} ≤ −I (F)

and that for each open set G, the sequence {Xn} satisfies the large deviation lower
bound

lim inf
n→∞

1

n
log P{Xn ∈ G} ≥ −I (G).
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Proof of the large deviation upper bound. Given a closed set F , we define the non-
negative lower semicontinuous function

ϕ(x)
.=

{
0, if x ∈ F,

∞, if x ∈ Fc.

Let d(x, F)
.= inf{d(x, y) : y ∈ F} denote the distance from x to F , and for j ∈ N,

define
h j (x)

.= j (d(x, F) ∧ 1). (1.3)

Then h j is a bounded continuous function and h j ↑ ϕ as j → ∞. Hence

1

n
log P{Xn ∈ F} = 1

n
log E exp{−nϕ(Xn)} ≤ 1

n
log E exp{−nh j (X

n)},

and so

lim sup
n→∞

1

n
log P{Xn ∈ F} ≤ lim

n→∞
1

n
log E exp{−nh j (X

n)}
= − inf

x∈X
[h j (x) + I (x)].

We complete the proof by showing that

lim
j→∞ inf

x∈X
[h j (x) + I (x)] = I (F). (1.4)

Half of this is easy. Since h j ≤ ϕ,

inf
x∈X

[h j (x) + I (x)] ≤ inf
x∈X

[ϕ(x) + I (x)] = inf
x∈F I (x) = I (F),

and thus
lim sup
j→∞

inf
x∈X

[h j (x) + I (x)] ≤ I (F).

The final step is to prove that

lim inf
j→∞ inf

x∈X
[h j (x) + I (x)] ≥ I (F).

We can assume that I (F) > 0, since if I (F) = 0, we are done. Since h j = 0 on F ,

inf
x∈X

[h j (x) + I (x)] = min

(
inf
x∈F[h j (x) + I (x)], inf

x∈Fc
[h j (x) + I (x)]

)

= min

(
I (F), inf

x∈Fc
[h j (x) + I (x)]

)
.
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It suffices to show that

lim inf
j→∞ inf

x∈Fc
[h j (x) + I (x)] ≥ I (F),

which we prove by contradiction. Thus assume that for some M ∈ (0, I (F)),

lim inf
j→∞ inf

x∈Fc
[h j (x) + I (x)] < M.

Then there exist a subsequence of j ∈ N and ε ∈ (0, M/2) such that for all j in this
subsequence,

inf
x∈Fc

[h j (x) + I (x)] ≤ M − 2ε.

In addition, for each j there exists x j ∈ Fc such that

h j (x j ) + I (x j ) ≤ M − ε.

We claim that d(x j , F) → 0. Indeed, otherwise for some subsubsequence we would
have h j (x j )

.= j (d(x j , F) ∧ 1) → ∞. Since M − ε < ∞, this would contradict the
last display. The convergence d(x j , F) → 0 implies that there exists a sequence {y j }
in F such that d(x j , y j ) → 0.We now use the fact that sup j I (x j ) ≤ M − ε, which is
a consequence of the last display. Since I has compact level sets, it follows that there
exist a further subsequence and a point x∗ ∈ {x ∈ X : I (x) ≤ M − ε} such that
d(x j , x∗) → 0. Of course, d(x j , y j ) → 0 implies that d(y j , x∗) → 0. But since the
subsequence {y j } lies in F , which is closed, x∗ must lie in F , and so I (x∗) ≥ I (F).
This contradicts the fact that I (x∗) ≤ M − ε < I (F). The contradiction completes
the proof of the large deviation upper bound.

Proof of the large deviation lower bound. Let G be an open set. If I (G) = ∞, then
there is nothing to prove, so we may assume that I (G) < ∞. Let x be any point in G
such that I (x) < ∞ and choose a real number M > I (x). There exists δ > 0 such
that B(x, δ)

.= {y ∈ X : d(y, x) < δ} is a subset of G. In terms of M , x , and δ, we
define

h(y)
.= M

(
d(y, x)

δ
∧ 1

)
. (1.5)

This function is bounded and continuous and satisfies h(x) = 0, h(y) = M for y ∈
B(x, δ)c and 0 ≤ h(z) ≤ M for all z ∈ X . We then have

E exp{−nh(Xn)} ≤ e−nM P
{
Xn ∈ B(x, δ)c

} + P
{
Xn ∈ B(x, δ)

}

≤ e−nM + P
{
Xn ∈ B(x, δ)

}
,

and therefore
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max

(
lim inf
n→∞

1

n
log P{Xn ∈ B(x, δ)},−M

)
≥ lim

n→∞
1

n
log E exp{−nh(Xn)}

= − inf
y∈X

[h(y) + I (y)]
≥ −h(x) − I (x)

= −I (x).

Since M > I (x) and B(x, δ) ⊂ G, it follows that

lim inf
n→∞

1

n
log P{Xn ∈ G} ≥ lim inf

n→∞
1

n
log P{Xn ∈ B(x, δ)} ≥ −I (x)

and thus

lim inf
n→∞

1

n
log P{Xn ∈ G} ≥ − inf [I (x) : x ∈ G, I (x) < ∞] = −I (G).

This proves the large deviation lower bound. �

Let ξ be any point inX . If we evaluate the limit (1.4) for the closed set F
.= {ξ},

then it follows that knowing the Laplace limit for all bounded continuous functions
yields the value of the associated rate function at any point.We record this observation
in the next lemma. It leads immediately to the fact that a rate function in a Laplace
principle is unique [Theorem1.15].

Corollary 1.9 Let I be a rate function onX . For every ξ ∈ X and j ∈ Nwe define
the bounded continuous function h j on X by h j (x)

.= j (d(x, ξ) ∧ 1). Then

lim
j→∞ inf

x∈X
[h j (x) + I (x)] = I (ξ).

With the proof of Theorem1.8 we have completed our basic exposition of the
equivalence between the Laplace principle and the large deviation principle. We
next present a technical refinement of the Laplace principle that is useful in some
circumstances. In order to state it, a definition is needed. Let f be a functionmapping
X into R for which there exists M < ∞ such that

| f (x) − f (y)| ≤ M d(x, y)

for all x and y in X . Such an f is called Lipschitz continuous with constant M .
The message of Theorem1.8 is that if the Laplace limit

lim
n→∞

1

n
log E exp{−nh(Xn)} = − inf

x∈X
[h(x) + I (x)]

is valid for all bounded continuous functions h, then the sequence {Xn} satisfies the
large deviation principle onX with rate function I . This can easily be strengthened.
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Indeed, the functions h j defined in Eq. (1.3) in the proof of the large deviation upper
bound are bounded and Lipschitz continuous as is the function h defined in Eq. (1.5)
in the proof of the large deviation lower bound. Thus it suffices if the Laplace limit
is valid merely for all bounded Lipschitz continuous functions. As we point out in
the next corollary, this can be strengthened even further by considering separately
the Laplace principle upper and lower bounds.

Corollary 1.10 Let I be a rate function on X . If the Laplace limit

lim
n→∞

1

n
log E exp{−nh(Xn)} = − inf

x∈X
[h(x) + I (x)]

is valid for all bounded Lipschitz continuous functions h mapping X into R, then
the sequence {Xn} satisfies the Laplace principle onX with rate function I and the
large deviation principle on X with rate function I . More precisely, the following
implications hold.

(a) If the upper bound

lim sup
n→∞

1

n
log E exp{−nh(Xn)} ≤ − inf

x∈X
[h(x) + I (x)]

is valid for all bounded Lipschitz continuous functions h, then both the large
deviation upper bound and the Laplace principle upper bound are valid with
rate function I .

(b) If the lower bound

lim inf
n→∞

1

n
log E exp{−nh(Xn)} ≥ − inf

x∈X
[h(x) + I (x)]

is valid for all bounded Lipschitz continuous functions h, then both the large
deviation lower bound and the Laplace principle lower bound are valid with
rate function I .

Proof As we have just pointed out, the large deviation bounds are valid simply
because the functions h j and h defined in Eqs. (1.3) and (1.5) are bounded and
Lipschitz continuous. The Laplace principle bounds are then obtained by applying
Theorem1.5. �

To introduce the last topic of this section, consider the problem of proving a
Laplace principle for a sequence of stochastic processes {Y n(t), t ∈ [0, T ], n ∈ N},
where T is a fixed positive number and the processes have a fixed initial point
Y n(0) = y. Typically the associated rate function will depend on the parameter y. In
such cases it is often useful to show that the Laplace principle holds uniformly with
respect to the initial point y in compact sets. Another example is the uniformity of
large deviation estimates for empirical measures of a Markov chain with respect to
the initial condition of the chain, though in this case the rate function often does not
depend on the initial condition.
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In this sectionwe formulate the concept of a Laplace principle that is uniformwith
respect to a parameter. We also show that a uniform Laplace principle as formulated
here implies the uniform large deviation principle as defined by Freidlin andWentzell
in [140, p. 92] (as the parameter varies over a compact set). In Remark4.10 we
illustrate, for a class of small-noise stochastic differential equations, the ease and
naturalness with which this issue of uniformity is handled for the case in which
X = C ([0, T ] : Rd) andY = R

d by theLaplace principle formulation of the theory
of large deviations.

A family of rate functions Iy parametrized by y ∈ Y is said to have compact
level sets on compacts if for each compact subset K of Y and each M < ∞,
∪y∈K {x ∈ X : Iy(x) ≤ M} is a compact subset ofX .

Definition 1.11 Let Iy be a family of rate functions on X parametrized by y in a
topological spaceY and assume that this family has compact level sets on compacts.
Let {Xn} be a sequence ofX -valued random variables with distributions that depend
on y ∈ Y and denote the corresponding expectation operator by Ey . The sequence
{Xn} is said to satisfy theLaplace principle onX with rate function Iy uniformly
on compacts if for all compact subsets K ofY and all bounded continuous functions
h mapping X into R,

lim
n→∞ sup

y∈K

∣∣∣∣
1

n
log Ey exp{−nh(Xn)} − F(y, h)

∣∣∣∣ = 0, (1.6)

where F(y, h)
.= − inf x∈X [h(x) + Iy(x)]. The term uniform Laplace principle

upper bound refers to the validity of

lim sup
n→∞

sup
y∈K

(
1

n
log Ey exp{−nh(Xn)} − F(y, h)

)
≤ 0

for all compact subsets K of Y and all bounded continuous functions h. The term
uniform Laplace principle lower bound refers to the validity of

lim inf
n→∞ inf

y∈K

(
1

n
log Ey exp{−nh(Xn)} − F(y, h)

)
≥ 0

for all compact subsets K of Y and all bounded continuous functions h.

It is elementary to show that together, the uniform Laplace principle upper and
lower bounds yield the uniform limit (1.6). The following proposition gives a use-
ful criterion for showing these uniform bounds. The Laplace principle formulation
is especially convenient for dealing with uniformity properties, because typically
the function mapping y ∈ Y �→ F(y, h) is continuous. This should be contrasted
with the discontinuity of the function mapping y ∈ Y �→ Iy(A), which plays the
analogous role in the standard formulation of the theory of large deviations.

Proposition 1.12 Let Iy be a family of rate functions onX parametrized by y in a
Polish space Y and assume that this family has compact level sets on compacts. Let
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h be any bounded continuous function mapping X into R. Assume that whenever
{yn}n∈N is a sequence in Y converging to a point y ∈ Y ,

lim
n→∞

1

n
log Eyn exp{−nh(Xn)} = F(y, h), (1.7)

where F(y, h)
.= − inf x∈X [h(x) + Iy(x)]. Then the sequence {Xn} satisfies the La-

place principle on X with rate function Iy uniformly on compacts.

Proof The key observation is that the function mapping y ∈ Y �→ F(y, h) is con-
tinuous. In order to show this, we define for y ∈ Y ,

Fn(y, h)
.= 1

n
log Ey exp{−nh(Xn)},

and fix ȳ ∈ Y . We claim that for every δ > 0 there exists N ∈ N such that for all n ≥
N and all y ∈ Y satisfying d(y, ȳ) < 1/N , the inequality |Fn(y, h) − F(ȳ, h)| < δ

is valid. Sending n → ∞ yields the continuity of F(·, h). We prove the claim by
contradiction. Thus suppose that there exists δ > 0 such that for all N ∈ N there
exist nN ≥ N and a point yN ∈ Y satisfying d(yN , ȳ) < 1/N and |FnN (yN , h) −
F(ȳ, h)| ≥ δ. The limit (1.7) yields the inequality

0 = lim
N→∞ |FnN (yN , h) − F(ȳ, h)| ≥ δ,

which is nonsense. The claim is proved. Now let {yn}n∈N be any sequence in Y
converging to a point y ∈ Y . Then (1.7) implies that

lim
n→∞ |Fn(yn, h) − F(y, h)| = 0. (1.8)

We prove that (1.8) yields the uniform convergence in (1.6) for all compact sets K .
If this uniform convergence is not valid, then for some compact set K ,

lim sup
n→∞

sup
y∈K

|Fn(y, h) − F(y, h)| > 0.

Thus there would exist a sequence {yn}n∈N in K satisfying

lim sup
n→∞

|Fn(yn, h) − F(yn, h)| > 0.

Without loss of generality we can assume that yn → y for some point y ∈ K . Hence
by the continuity of F(·, h) we would have

lim sup
n→∞

|Fn(yn, h) − F(y, h)| > 0.

Since this contradicts (1.8), the uniform convergence in (1.6) is proved. �
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We now recall the notion of a uniform large deviation principle as defined in [140].
We note that the cited reference considers the case in which X = C ([0, T ] : Rd)

and Y = R
d ; however, the definition for general Polish spaces Y and X is given

similarly. We recall that the distance on the metric space X is denoted by d.

Definition 1.13 Let Iy be a family of rate functions on X parametrized by y in a
topological spaceY and assume that this family has compact level sets on compacts.
Let {Xn} be a sequence ofX -valued random variables with distributions that depend
on y ∈ Y with the corresponding probability and expectation operators denoted by
Py and Ey respectively. The sequence {Xn} is said to satisfy the large deviation
upper bound onX with rate function Iy uniformly on compacts if given δ, γ ∈
(0, 1), L ∈ (0,∞), and compact K ⊂ Y , there exists N < ∞ such that

Py{d(Xn, Φy(l)) ≥ δ} ≤ exp{−n(l − γ )} (1.9)

for all n ≥ N , y ∈ K , and l ∈ [0, L], where

Φy(l)
.= {φ ∈ X : Iy(φ) ≤ l}, l ∈ [0,∞), y ∈ Y .

The sequence {Xn} is said to satisfy the large deviation lower bound on X with
rate function Iy uniformly on compacts if given δ, γ ∈ (0, 1), L ∈ (0,∞), and
compact K ⊂ Y , there exists N < ∞ such that

Py{d(Xn, φ) < δ} ≥ exp{−n(Iy(φ) + γ )} (1.10)

for all n ≥ N , y ∈ K , and φ ∈ Φy(L).
The sequence {Xn} is said to satisfy the large deviation principle on X with

rate function Iy uniformly on compacts if it satisfies both the large deviation upper
and lower bounds with rate function Iy , uniformly on compacts.

The following result shows that a uniform Laplace principle implies this form of
a uniform large deviation principle.

Proposition 1.14 Let Iy be a family of rate functions onX parametrized by y in a
Polish space Y and assume that this family has compact level sets on compacts. Let
{Xn} be a sequence of X -valued random variables with distributions that depend
on y ∈ Y and suppose that {Xn} satisfies the Laplace principle on X with rate
function Iy uniformly on compacts. Then {Xn} satisfies the large deviation principle
onX with rate function Iy uniformly on compacts.

Proof Fix a compact set K ⊂ X , δ, γ ∈ (0, 1), and L < ∞. It suffices to show that
the inequalities in (1.9) and (1.10) are satisfied for all n ≥ N , y ∈ K , l ≤ L , and
φ ∈ Φy(L), for some N ∈ N. As in the proof of Theorem1.8 we will approximate
certain open and closed sets by suitable Lipschitz continuous functions. We now
introduce these functions. For j ∈ N, δ > 0, and φ ∈ X , let

h j,δ,φ(ψ)
.= j

(
d(ψ, φ)

δ
∧ 1

)
, ψ ∈ X .
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These functions will be used to approximate open sets by bounded continuous func-
tions. When clear from context we will suppress j and δ from the notation and write
hφ instead of h j,δ,φ . We will also approximate closed sets of the form

Fy,l,δ
.= {

ψ : d(ψ,Φy(l)) ≥ δ
}
,

where y ∈ K and l ∈ [0, L], by bounded Lipschitz continuous functions h j,δ,Fy,l,δ

defined by

h j,δ,Fy,l,δ (ψ)
.= j − h̄ j,δ,y,l(ψ), h̄ j,δ,y,l(ψ)

.= j

(
d(ψ,Φy(l))

δ
∧ 1

)
.

Once againwewill abbreviate notation andwhenclear fromcontextwrite the function
h j,δ,Fy,l,δ as hy,l . For the rest of the proof we fix j = L + 1.

We claim that for all y ∈ K , φ ∈ Φy(L), and l ∈ [0, L],

Py{d(Xn, φ) < δ} + e−nj ≥ Ey exp
{−nhφ(Xn)

}
, (1.11)

Py{d(Xn, Φy(l)) ≥ δ} ≤ Ey exp
{−nhy,l(X

n)
}
, (1.12)

and

inf
ψ∈X

[
hφ(ψ) + Iy(ψ)

] ≤ Iy(φ) and inf
ψ∈X

[
hy,l(ψ) + Iy(ψ)

] ≥ l. (1.13)

Indeed, sincehφ(φ) = 0, thefirst inequality in (1.13) holds.Also, becausehφ(ψ) = j
if d(ψ, φ) ≥ δ and in general hφ(ψ) ≥ 0, (1.11) follows. The inequality in (1.12)
holds since hy,l(ψ) = 0 whenever d(ψ,Φy(l)) ≥ δ and the expression inside the
expectation is nonnegative. Finally, we prove the second inequality in (1.13). If
ψ /∈ Φy(l), then Iy(ψ) > l and

[
hy,l(ψ) + Iy(ψ)

] ≥ l,

since 0 ≤ hy,l(ψ). If ψ ∈ Φy(l), then hy,l(ψ) = j , and since j = L + 1 > l, the
inequality in the display holds once more. This verifies the second statement in
(1.13) and hence the claim.

Assume for now that the Laplace limit holds uniformly for y ∈ K and g ∈ KK ,L ,
where

KK ,L
.= {g ∈ Cb(X ) : g = hy,l or g = hφ, y ∈ K , l ≤ L , φ ∈ Φy(L)}.

Thus

sup
y∈K ,g∈K K ,L

∣∣∣∣
1

n
log Ey exp

{−ng(Xn)
} + inf

ψ∈X
[
g(ψ) + Iy(ψ)

]∣∣∣∣ → 0 (1.14)
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as n → ∞. Given γ ∈ (0, 1), there is N1 < ∞ such that for all g ∈ KK ,L and y ∈ K ,

∣∣∣∣
1

n
log Ey exp

{−ng(Xn)
} + inf

ψ∈X
[
g(ψ) + Iy(ψ)

]∣∣∣∣ ≤ γ /2 (1.15)

whenever n ≥ N1. Choose N ≥ N1 such that for n ≥ N ,

e−nγ /2 ≥ e−n + e−nγ . (1.16)

We claim that (1.9) and (1.10) hold for all n ≥ N . Indeed, since j = L + 1, for
n ≥ N , (1.11) and (1.15) imply

Py{d(Xn, φ) < δ} ≥ exp{−n(Iy(φ) + γ /2)} − e−n(L+1)

≥ exp{−n(Iy(φ) + γ )}

for all y ∈ K and φ ∈ Φy(L), where the second inequality follows from (1.16) on
noting that Iy(φ) ≤ L for all φ ∈ Φy(L). This proves (1.10).

Now consider (1.9). For all y ∈ K and l ≤ L , (1.12) implies that whenever n ≥ N ,

Py{d(Xn, Φy(l)) ≥ δ} ≤ Ey exp
{−nhy,l(X

n)
}

≤ exp{−n(l − γ /2)},

where the second inequality uses (1.15) and (1.13). Thus (1.9) holds for all n ≥ N ,
y ∈ K , and l ≤ L .

Finally, wemust prove that (1.14) holds. Note that by the assumption of the propo-
sition, the assertion in (1.14) holds with any finite subset K0 of Cb(X ) replacing
KK ,L . Also, if g1, g2 ∈ Cb(X ) are such that supx∈X |g1(x) − g2(x)| ≤ ε, then the
absolute difference between the expressions

∣∣∣∣
1

n
log Ey exp

{−ngi (X
n)

} + inf
ψ∈X

[
gi (ψ) + Iy(ψ)

]∣∣∣∣

for i = 1 and i = 2 is bounded by 2ε.
Thus in order to prove (1.14) it suffices to show that for every ε ∈ (0, 1), there is a

finite ε-netKε of functions inCb(X ) forKK ,L . In other words, for every ε ∈ (0, 1)
there is a finite subset Kε in Cb(X ) such that

sup
g∈K K ,L

min
gε∈K ε

sup
x∈X

|g(x) − gε(x)| ≤ ε.

Since {Iy} has compact level sets on compacts, the space

ΦK ,L
.= ∪y∈KΦy(L)
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is compact. Then each g ∈ KK ,L can be identified with a compact subset of this
space. In particular, we identify g of the form hy,l with Φy(l), and g of the form
hφ with the singleton {φ} for every φ ∈ Φy(L), l ≤ L , and y ∈ K . We will use the
well-known fact that the collection of closed subsets of ΦK ,L , when topologized
using the Hausdorff metric, forms a compact Polish space [128, p. 135]. Recall that
the Hausdorff distance between two closed subsets C1 and C2 of ΦK ,L is given by

λ(C1,C2)
.= inf

{
ε > 0 : C1 ⊂ Cε

2 and C2 ⊂ Cε
1

}
,

whereCε
i is the ε-fattening {φ : d(φ,Ci ) ≤ ε}. Since the collection of closed subsets

of ΦK ,L is a compact metric space, it admits for every ε ∈ (0, 1) a finite ε-net,
which we denote by Nε. Suppose that λ(C1,C2) = a. Then for all ε > a, we have
C1 ⊂ Cε

2 and C2 ⊂ Cε
1 , which implies for all φ ∈ X that d(φ,C1) ≤ d(φ,C2) + ε

and d(φ,C2) ≤ d(φ,C1) + ε. Hence

FC1(ψ)
.= j

(
d(ψ,C1)

δ
∧ 1

)
≤ j

(
d(ψ,C2)

δ
∧ 1

)
+ jε

δ
= FC2(ψ) + jε

δ
,

and so by symmetry, supx∈X |FC1(x) − FC2(x)| ≤ jε/δ. Also, letting F̃C
.= j − FC ,

we see that supx∈X |F̃C1(x) − F̃C2(x)| ≤ jε/δ. Hence an ε-netNε for closed subsets
of ∪y∈KΦy(L) with the Hausdorff metric induces a jε/δ-net for

{g ∈ Cb(X ) : g = FC or g = F̃C , for some closed subset C of ∪y∈K Φy(L)}.

Since F̃Φy(l) = hy,l and F{φ} = hφ , the collection in the last display contains KK ,L .
This proves that for every ε ∈ (0, 1), there is a finite ε-net of functions in Cb(X )

forKK ,L , and thus the claim follows. �

In the next section we explore the Laplace principle in somewhat more detail,
presenting a number of results that are basic to the theory.

1.3 Basic Results in the Theory

The naturalness of formulating the large deviation principle in terms of a Laplace
principle can be seen by the relative ease of proof of a number of basic results in the
theory.

1. If a sequence of random variables satisfies the Laplace principle with some rate
function, then the rate function is unique [Theorem1.15].

2. The continuous image of a sequence of random variables satisfying the Laplace
principle also satisfies the Laplace principle [Theorem1.16].

3. The Laplace principle is preserved under superexponential approximation [The-
orem1.17].
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4. If theLaplace principle is valid, then theLaplace limit holds for certain unbounded
continuous functions [Theorem1.18].

5. If the Laplace principle is valid, then the Laplace limit holds for certain lower
semicontinuous functions satisfying a continuity condition [Theorem1.20].

The first four of these results are standard. Generalizations of the fifth result can
be found in [238]. We start by proving that a rate function in a Laplace principle
must be unique.

Theorem 1.15 We assume that {Xn} satisfies the Laplace principle onX with rate
function I and with rate function J . Then I (ξ) = J (ξ) for all ξ ∈ X .

Proof For j ∈ N and any point ξ ∈ X we define the bounded continuous function
h j (x)

.= j (d(x, ξ) ∧ 1). By Corollary1.9,

lim
j→∞ lim

n→∞
1

n
log E exp{−nh j (X

n)} = lim
j→∞ inf

x∈X
[h j (x) + I (x)] = I (ξ)

and

lim
j→∞ lim

n→∞
1

n
log E exp{−nh j (X

n)} = lim
j→∞ inf

x∈X
[h j (x) + J (x)] = J (ξ).

Thus I (ξ) = J (ξ). �

The next result, known as the contraction principle, is a standard tool in the
theory.

Theorem 1.16 (Contraction Principle) Let X and Y be Polish spaces, I a
rate function onX , and f a continuous function mappingX intoY . The following
conclusions hold:

(a) For each y ∈ Y ,

J (y)
.= inf

[
I (x) : x ∈ f −1(y)

]

is a rate function on Y .
(b) If {Xn} satisfies the Laplace principle onX with rate function I , then { f (Xn)}

satisfies the Laplace principle on Y with rate function J .

Proof (a) Given M < ∞, we define the level sets

L J (M)
.= {y ∈ Y : J (y) ≤ M} and L I (M)

.= {x ∈ X : I (x) ≤ M}.

The definition of J implies that L J (M) ⊃ f (L I (M)). On the other hand, since I is
a rate function, for each y ∈ f (X ) the infimum in the definition of J is attained at
some x in the closed set f −1(y). It follows that L J (M) ⊂ f (L I (M)), which when
coupled with the opposite inclusion yields that L J (M) = f (L I (M)). Since f is
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continuous and the level sets of I are compact, this formula shows that the level sets
of J are compact. Since J is obviously nonnegative, we have shown that J is a rate
function on Y .

(b) For every bounded continuous function h mappingY intoR, the composition
h ◦ f is a bounded continuous function mapping X into R. Hence

lim
n→∞

1

n
log E exp{−nh( f (Xn))} = − inf

x∈X
[h( f (x)) + I (x)]

= − inf
y∈Y

[h(y) + J (y)].

Since we have already checked that J is a rate function on Y , the proof of part (b)
is complete. �

Theorem 1.17 For n ∈ N let Xn and Y n be random variables that are defined on
the same probability space (Ω,F , P) and take values in X . We assume that {Xn}
satisfies the Laplace principle on X with rate function I and that {Y n} is superex-
ponentially close to {Xn} in the following sense: for each δ > 0,

lim sup
n→∞

1

n
log P{d(Y n, Xn) > δ} = −∞. (1.17)

Then {Y n} satisfies the Laplace principle onX with the same rate function I .

Proof By Corollary1.10, it suffices to verify the Laplace limit

lim
n→∞

1

n
log E exp{−nh(Y n)} = − inf

x∈X
[h(x) + I (x)]

for all bounded Lipschitz continuous functions h mapping X into R. Let h be any
such function and let M denote its Lipschitz constant. Then for every δ > 0,

lim sup
n→∞

1

n
log E exp{−nh(Y n)}

= lim sup
n→∞

1

n
log

(
E

[
1{d(Y n ,Xn)≤δ} exp{−nh(Y n)}]

+ E
[
1{d(Y n ,Xn)>δ} exp{−nh(Y n)}])

≤ lim sup
n→∞

1

n
log

(
Eexp{−nh(Xn) + nMδ} + en‖h‖∞ P{d(Y n, Xn) > δ})

=
(
lim sup
n→∞

1

n
log

(
Eexp{−nh(Xn)}) + Mδ

)

∨
(

‖h‖∞ + lim sup
n→∞

1

n
log P{d(Y n, Xn) > δ}

)

= − inf
x∈X

[h(x) + I (x)] + Mδ,
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where the last equality follows from (1.17). Sending δ → 0 gives the Laplace prin-
ciple upper bound

lim sup
n→∞

1

n
log E exp{−nh(Y n)} ≤ − inf

x∈X
[h(x) + I (x)].

Similarly, for every δ > 0,

lim inf
n→∞

1

n
log E exp{−nh(Y n)}

≥ lim inf
n→∞

1

n
log E

[
1{d(Y n ,Xn)≤δ} exp{−nh(Y n)}]

≥ lim inf
n→∞

1

n
log E

[
1{d(Y n ,Xn)≤δ} exp{−nh(Xn) − nMδ}]

≥ lim inf
n→∞

1

n
log

(
E exp{−nh(Xn) − nMδ} − en‖h‖∞−nMδ P{d(Y n, Xn) > δ})+

= − inf
x∈X

[h(x) + I (x)] − Mδ,

where the last equality is due to the fact that if for nonnegative an, bn , and a ∈ R,
one has limn→∞ 1

n log an = a and lim supn→∞
1
n log bn = −∞, then lim infn→∞ 1

n
log(an − bn)+ = a. Sending δ → 0 gives the Laplace principle lower bound

lim inf
n→∞

1

n
log E exp{−nh(Y n)} ≥ − inf

x∈X
[h(x) + I (x)].

This completes the proof of the theorem. �

If the Laplace principle is valid, then a natural question is whether the Laplace
limit can be evaluated for certain unbounded continuous functions mappingX into
R. We next point out a class of such functions for which this can be carried out. The
following theorem is due to Varadhan [238].

Theorem 1.18 Assume that {Xn} satisfies the Laplace principle on X with rate
function I . Let h be a continuous function mapping X into R for which

lim
C→∞ lim sup

n→∞
1

n
log E

[
1{h≤−C}(Xn) exp{−nh(Xn)}] = −∞. (1.18)

Then

lim
n→∞

1

n
log E exp{−nh(Xn)} = − inf

x∈X
[h(x) + I (x)] (1.19)

and the limit is finite. In particular, if h is bounded below on the union of the supports
of the {Xn}, then condition (1.18) is satisfied and the limit (1.19) holds and is finite.
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Proof To streamline the proof, we introduce the notation

�n(A, ϕ)
.= E

[
1A(X

n) exp{−nϕ(Xn)}]

for A a Borel subset of X and ϕ a measurable function mapping X into R. Our
goal is to prove that

lim
n→∞

1

n
log�n(X , h) = − inf

x∈X
[h(x) + I (x)]

and that the limit is finite. We first obtain a lower bound on 1
n log�n(X , h) as

n → ∞. Given x an arbitrary point in X and ε an arbitrary positive number, we
define the open set G

.= {y ∈ X : h(y) < h(x) + ε}. Since the Laplace principle
implies the large deviation principle with the same rate function I [Theorem1.8],
the large deviation lower bound yields

lim inf
n→∞

1

n
log�n(X , h) ≥ lim inf

n→∞
1

n
log�n(G, h)

≥ −h(x) − ε + lim inf
n→∞

1

n
log P{Xn ∈ G}

≥ −h(x) − ε − I (G)

≥ −h(x) − I (x) − ε.

Since x ∈ X and ε > 0 are arbitrary, it follows that

lim inf
n→∞

1

n
log�n(X , h) ≥ − inf

x∈X
[h(x) + I (x)].

Clearly inf x∈X [h(x) + I (x)] < ∞. Condition (1.18) guarantees that as n → ∞,
the limit superior of 1

n log�n(X , h) is finite. Hence the last display implies that
inf x∈X [h(x) + I (x)] > −∞. We now prove that

lim sup
n→∞

1

n
log�n(X , h) ≤ − inf

x∈X
[h(x) + I (x)].

According to (1.18), there exists C ∈ (0,∞) satisfying both

lim sup
n→∞

1

n
log�n({h ≤ −C}, h) ≤ − inf

x∈X
[h(x) + I (x)] (1.20)

and C > inf x∈X [h(x) + I (x)]. In terms of C , we define the bounded continuous
function

hC(x)
.=

⎧
⎨

⎩

h(x), if − C ≤ h(x) ≤ C,

C, if h(x) ≥ C,

−C, if h(x) ≤ −C.
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By the choice of C and the nonnegativity of I ,

inf
x∈X

[hC(x) + I (x)] ≥ inf
x∈X

[h(x) + I (x)],

and since the Laplace principle is valid,

lim
n→∞

1

n
log�n(X , hC) = − inf

x∈X
[hC(x) + I (x)].

Therefore,

lim sup
n→∞

1

n
log�n(X , h)

= lim sup
n→∞

1

n
log

[
�n({−C ≤ h ≤ C}, h) + �n({h > C}, h)

+�n({h < −C}, h)
]

≤ lim sup
n→∞

1

n
log

[
�n(X , hC) + e−n C + �n({h < −C}, h)

]

≤
(

− inf
x∈X

[hC(x) + I (x)]
)

∨ (−C) ∨
(

− inf
x∈X

[h(x) + I (x)]
)

= − inf
x∈X

[h(x) + I (x)],

where the second inequality is from (1.20). This is what we wanted to show. The
proof of the theorem is complete. �

In a number of applications, Laplace-type expectations arise that involve discon-
tinuous functions. Theorem1.20 shows that the Laplace limit can be evaluated if
the function is bounded and lower semicontinuous and satisfies a continuity condi-
tion. One encounters such functions, for example, in the study of the exit times of
processes from smooth regions. Before stating the theorem, we need to know that a
bounded lower semicontinuous function can be suitably approximated by a sequence
of uniformly bounded Lipschitz continuous functions.

Lemma 1.19 Let g be a bounded lower semicontinuous function mapping X into
R. Then there exists a sequence {g j } j∈N of uniformly bounded Lipschitz continuous
functions mapping X into R with the properties that g j ↑ g and that if {x j } j∈N is
a sequence of points in X converging to some point x∗, then lim inf j→∞ g j (x j ) ≥
g(x∗).

Proof We follow the proofs of Lemmas7.7 and 7.14 in [19]. For j ∈ N and x ∈ X ,
define

g j (x)
.= inf

y∈X
[g(y) + j d(x, y)].

Clearly g j ≤ g j+1 and
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inf
y∈X

g(y) ≤ g j (x) ≤ g(x) + j d(x, x) = g(x) ≤ sup
y∈X

g(y).

Thus the sequence {g j } j∈N is uniformly bounded and nondecreasing, and also
lim j→∞ g j ≤ g. For any points x , y, and z inX ,

g(y) + j d(x, y) ≤ g(y) + j d(z, y) + j d(x, z),

which yields g j (x) ≤ g j (z) + j d(x, z), and interchanging x and z gives

|g j (x) − g j (z)| ≤ j d(x, z).

This inequality shows that g j is Lipschitz continuous on X .
Now let {x j } j∈N be any sequence of points inX converging to a point x∗ and set

A
.= supx∈X g(x). For j ∈ N and ε > 0 there exists y j ∈ X such that

A + ε ≥ g j (x j ) + ε ≥ g(y j ) + j d(x j , y j ) ≥ g(y j ).

This inequality is violated unless d(x j , y j ) → 0 as j → ∞, and since x j → x∗, it
follows that y j → x∗. The lower semicontinuity of g yields

lim inf
j→∞ g j (x j ) + ε ≥ lim inf

j→∞ g(y j ) ≥ g(x∗).

Since ε is an arbitrary positive number, we have proved that lim inf j→∞ g j (x j ) ≥
g(x∗). In particular, for each fixed x ∈ X , lim inf j→∞ g j (x) ≥ g(x). Since the
sequence {g j } is nondecreasing and lim j→∞ g j ≤ g, it follows that g j ↑ g. This
completes the proof. �

We next prove that the Laplace limit is valid for a bounded lower semicontinuous
function satisfying a continuity condition. This result can easily be extended to an
unbounded function satisfying condition (1.18) in Theorem1.18. An example of such
a function, which will be used in Chap.17, is ∞1A(x) with A open. Generalizations
for sequences of functions are given in Sect. 3 of [238].

Theorem 1.20 Assume that {Xn} satisfies the Laplace principle on X with rate
function I . Let g be a bounded lower semicontinuous function mapping X into R.
The following conclusions hold.

(a) The upper bound

lim sup
n→∞

1

n
log E exp{−ng(Xn)} ≤ − inf

x∈X
[g(x) + I (x)]

is valid.
(b) Assume in addition that for each ε > 0, there exists a point xε ∈ X such that g

is continuous at xε and
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g(xε) + I (xε) ≤ inf
x∈X

[g(x) + I (x)] + ε.

Then the Laplace limit

lim
n→∞

1

n
log E exp{−ng(Xn)} = − inf

x∈X
[g(x) + I (x)]

is valid.

Proof (a) Let {g j } j∈N be the sequence of functions in Lemma1.19. Since each func-
tion g j is bounded and continuous and g j ≤ g, it follows that

lim sup
n→∞

1

n
log E exp{−n g(Xn)} ≤ lim sup

n→∞
1

n
log E exp{−n g j (X

n)}
= − inf

x∈X
[g j (x) + I (x)].

In order to complete the proof we must show that

lim
j→∞ inf

x∈X
[g j (x) + I (x)] = inf

x∈X
[g(x) + I (x)].

The sequence of infima inf x∈X [g j (x) + I (x)] is nondecreasing, and

lim sup
j→∞

inf
x∈X

[g j (x) + I (x)] ≤ inf
x∈X

[g(x) + I (x)] < ∞.

We now prove that

lim inf
j→∞ inf

x∈X
[g j (x) + I (x)] ≥ inf

x∈X
[g(x) + I (x)].

Since I is a rate function and each g j is bounded and continuous, there exists a
sequence {x j } j∈N such that

g j (x j ) + I (x j ) = inf
x∈X

[g j (x) + I (x)] ≤ inf
x∈X

[g(x) + I (x)].

The uniform boundedness of the sequence {g j } implies that sup j∈N I (x j ) < ∞, and
since I has compact level sets, there exists a subsequence of {x j } converging to some
x∗ ∈ X . A property of {g j } stated at the end of Lemma1.19 gives the required lower
limit

lim inf
j→∞ inf

x∈X
[g j (x) + I (x)] = lim inf

j→∞
[
g j (x j ) + I (x j )

]

≥ g(x∗) + I (x∗)
≥ inf

x∈X
[g(x) + I (x)].
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This completes the proof of the upper bound.
(b) In order to prove part (b) we must show that

lim inf
n→∞

1

n
log E exp{−n g(Xn)} ≥ − inf

x∈X
[g(x) + I (x)].

By the hypothesis on g, for each ε > 0 there exist xε ∈ X and δ > 0 such that

g(xε) + I (xε) ≤ inf
x∈X

[g(x) + I (x)] + ε

and |g(y) − g(xε)| < ε whenever y lies in the open ball B(xε, δ)
.= {y ∈ X :

d(y, xε) < δ}. Since the Laplace principle implies the large deviation principle with
the same rate function I [Theorem1.8], the large deviation lower bound applied to
B(xε, δ) yields the lower limit

lim inf
n→∞

1

n
log E exp{−n g(Xn)}

≥ lim inf
n→∞

1

n
log E[1B(xε,δ)(X

n) exp{−n g(Xn)}]

≥ −g(xε) − ε + lim inf
n→∞

1

n
log P{Xn ∈ B(xε, δ)}

≥ −g(xε) − I (B(xε, δ)) − ε

≥ −g(xε) − I (xε) − ε

≥ − inf
x∈X

[g(x) + I (x)] − 2ε.

Sending ε → 0 completes the proof. �

In the next chapter we introduce the relative entropy function and show how to
represent, via a variational formula involving the relative entropy and in the setting of
discrete time processes, the logarithms of the expectations appearing in the Laplace
limit

lim
n→∞

1

n
log E exp{−n h(Xn)} = − inf

x∈X
[h(x) + I (x)].

This is a key step in representing integrals of exponentials in terms of associated
stochastic control problems. The representation in terms of minimal cost functions is
the basis for analyzing the asymptotic behavior of the expectations and thus, through
Theorem1.8, the basis for proving the large deviation principle for the discrete time
models of Chaps. 4–7. The same representations are also the starting point for the
analysis of the variance of accelerated Monte Carlo schemes in the last part of the
book (Chaps. 15–17). Continuous time models as in Chaps. 10–14 will use related
representations proved in Chap. 8 and tailored to the continuous time setting.



1.4 Notes 29

1.4 Notes

The material of this chapter is mostly taken with little modification from [97]. The
main exception is Proposition1.14, which shows that the uniform Laplace principle
implies the form of uniform large deviation principle used in [140]. This is the for-
mulation that is used in the proofs of various large-time and metastability properties
of finite dimensional processes that satisfy a “small-noise” large deviation principle
on path space. Although the notion of a uniform Laplace principle was introduced
in [97], it was not shown that the corresponding uniform large deviation principle as
in [140] followed.

There are a number of important parts of the theory that will not be addressed
in this book. One is the Gärtner–Ellis theorem [120, 144], which gives conditions
for the LDP to hold for Rd -valued random variables that are phrased in terms of
convergence of the corresponding moment-generating functions. Another is the just
mentioned extensive and widely used theory for the large-time behavior of Markov
processes, due to Freidlin and Wentzell [140], that can be viewed as small perturba-
tions of deterministic systems. Although we do not present any aspects of that theory,
as noted, our formulation of uniform large deviation and Laplace principles in the
present chapter is tailored to the type of uniformity needed for their theory, and that
these issues are still under investigation for processes with infinite dimensional state
variables [189, 227]. Other directions in which the theory has developed but which
we do not pursue include higher-order corrections to the large deviation approxima-
tion (e.g., [7, 9, 136]) and a special focus on Gaussian models (see, e.g., [58] and
references therein).

There are a number of monographs that develop other perspectives and aspects,
including [80–82, 97, 121, 132, 211, 231, 237, 239]. The book [140] is still at this
time the most comprehensive in its treatment of the large-time theory mentioned
previously, though other presentations of certain aspects of that theory appear in [80,
231].



Chapter 2
Relative Entropy and Tightness
of Measures

In this chapter we will collect results on relative entropy and tightness of probability
measures that will be used many times in this book.

2.1 Properties of Relative Entropy

Relative entropy will play a key role in the definition of every rate function that
we encounter. It arises in the weak convergence approach to large deviations via
the variational formula given in part (a) of Proposition2.2. The derivation of this
formula requires only a measurable space (V ,A ). We denote by P(V ) the set of
probability measures on (V ,A ). The probability measure γ ∈ P(V ) is absolutely
continuous with respect to θ ∈ P(V ) if θ(A) = 0 for A ∈ A implies γ (A) = 0,
and this relation is denoted by γ � θ .

For θ ∈ P(V ), the relative entropy R(·‖θ) is a mapping from P(V ) into the
extended real numbers. It is defined by

R(γ ‖θ)
.=

∫
V

(
log

dγ

dθ

)
dγ

whenever γ ∈ P(V ) is absolutely continuous with respect to θ . Otherwise, we
set R(γ ‖θ)

.= ∞. Occasionally we will refer to R(γ ‖θ) as the relative entropy of
γ with respect to θ . For t ∈ R, define t− .= −(t ∧ 0). Since s(log s)− is bounded
for s ∈ [0,∞), it follows that whenever γ ∈ P(V ) is absolutely continuous with
respect to θ , we have

∫
V

(
log

dγ

dθ

)−
dγ =

∫
V

dγ

dθ

(
log

dγ

dθ

)−
dθ < ∞.

© Springer Science+Business Media, LLC, part of Springer Nature 2019
A. Budhiraja and P. Dupuis, Analysis and Approximation of Rare
Events, Probability Theory and Stochastic Modelling 94,
https://doi.org/10.1007/978-1-4939-9579-0_2

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9579-0_2&domain=pdf
https://doi.org/10.1007/978-1-4939-9579-0_2


32 2 Relative Entropy and Tightness of Measures

It follows that
∫
V (log dγ

dθ
)dγ is well defined and that

R(γ ‖θ) =
∫
V

dγ

dθ

(
log

dγ

dθ

)
dθ.

The proof of the variational formula in Proposition2.2 requires the two properties of
relative entropy given in the next lemma.

Lemma 2.1 Let (V ,A ) be a measurable space and γ and θ probability measures
on V . Then R(γ ‖θ) ≥ 0 and R(γ ‖θ) = 0 if and only if γ = θ .

Proof In order to prove the nonnegativity, it suffices to consider the case R(γ ‖θ) <

∞. Since s log s ≥ s − 1 with equality if and only if s = 1,

R(γ ‖θ) =
∫
V

dγ

dθ

(
log

dγ

dθ

)
dθ ≥

∫
V

(
dγ

dθ
− 1

)
dθ = 0.

In this display, equality holds if and only if dγ /dθ = 1 θ -a.e., i.e., if and only if
γ = θ . This completes the proof. �

Part (a) of the next proposition states the variational formula, and part (b) indicates
where the infimum in the variational formula is attained. The proposition, though
completely elementary, is the cornerstone of theweak convergence approach andwill
be applied on numerous occasions throughout the book. Its first applications will be
in Chap.3, where we will prove the Laplace principle for some basic examples.

Proposition 2.2 Let (V ,A ) be a measurable space, k a bounded measurable func-
tionmappingV intoR, and θ a probability measure onV . The following conclusions
hold.

(a) We have the variational formula

− log
∫
V
e−k dθ = inf

γ∈P (V )

[
R(γ ‖θ) +

∫
V
k dγ

]
. (2.1)

(b) Let γ0 denote the probability measure on V that is absolutely continuous with
respect to θ and satisfies

dγ0

dθ
(x)

.= e−k(x) · 1∫
V
e−k dθ

.

Then the infimum in the variational formula (2.1) is uniquely attained at γ0.

Proof For part (a) it suffices to prove that

− log
∫
V
e−k dθ = inf

[
R(γ ‖θ) +

∫
V
k dγ : γ ∈ P(V ), R(γ ‖θ) < ∞

]
.
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If R(γ ‖θ) < ∞, then γ is absolutely continuous with respect to θ , and since θ is
absolutely continuous with respect to γ0, γ is also absolutely continuous with respect
to γ0. Thus

R(γ ‖θ) +
∫
V
k dγ =

∫
V

(
log

dγ

dθ

)
dγ +

∫
V
k dγ

=
∫
V

(
log

dγ

dγ0

)
dγ +

∫
V

(
log

dγ0

dθ

)
dγ +

∫
V
k dγ

= R(γ ‖γ0) − log
∫
V
e−k dθ.

We now use the fact that R(γ ‖γ0) ≥ 0 and R(γ ‖γ0) = 0 if and only if γ = γ0. This
not only completes the proof of the variational formula in part (a) but also shows that
the infimum in the variational formula is uniquely attained at γ0, as claimed in part
(b). �

It is useful in various situations to know that the representation holds for
unbounded functionals. One example can be found when h(x)

.= ∞ 1Ac(x), where A
is a Borel set and the Laplace functional corresponds to the probability of A. Another
that occurs when X is a normed space is h(x) = −c ‖x‖2 with c > 0. The follow-
ing proposition accommodates these sorts of functions. Its proof, which appears in
AppendixC, uses a more structured underlying space, and following our convention
we assume a Polish space structure.

Proposition 2.3 Suppose thatX is a Polish space and θ a probability measure on
X . The following conclusions hold.

(a) If k is a measurable function mappingX into R that is bounded from below,
then

− log
∫
X

e−k dθ = inf
γ∈P (X )

[
R(γ ‖θ) +

∫
X

k dγ

]
. (2.2)

(b) If k is a measurable function mappingX into R that is bounded from above,
then

− log
∫
X

e−k dθ = inf
γ∈Δ(X )

[
R(γ ‖θ) +

∫
X

k dγ

]
, (2.3)

where Δ(X )
.= {γ ∈ P(X ) : R(γ ‖θ) < ∞}.

(c) Suppose thatX = R
d and that for some δ > 0,

∫
Rd exp 〈α, x〉 θ(dx) < ∞ for

all α ∈ R
d with ‖α‖ < δ. If there is σ < ∞ such that |k(x)| ≤ σ(1 + ‖x‖), then

− log
∫
Rd

e−k dθ = inf
γ∈Δ(Rd )

[
R(γ ‖θ) +

∫
Rd

k dγ

]
. (2.4)
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In particular, for all α ∈ R
d ,

− log
∫
Rd

e−〈α,x〉 dθ = inf
γ∈Δ(Rd )

[
R(γ ‖θ) +

∫
Rd

〈α, x〉 dγ

]
. (2.5)

We spend the rest of this section investigating seven extremely pleasant proper-
ties of relative entropy: convexity, lower semicontinuity, compactness of level sets,
uniform integrability of sequences of measures satisfying a suitable relative entropy
bound, approximation by sums, monotonicity under mappings, and a very impor-
tant factorization property known as the “chain rule.” These properties will be used
repeatedly throughout the book. Several of the proofs rely on the Donsker–Varadhan
variational formula for the relative entropy [87], which is stated in part (a) of the
next lemma. This formula is dual to the variational formula (2.1). Relative entropy
has been the subject of deep study by numerous authors in probability, statistics,
information theory, and other areas. In the present section we develop only those
properties of the relative entropy that we need.

Let X be a Polish space and {θn}n∈N a sequence in P(X ). We say that {θn}
converges weakly to a probability measure θ on X , and write θn ⇒ θ , if for each
bounded continuous function g mapping X into R,

lim
n→∞

∫
X

g dθn =
∫
X

g dθ.

We endow P(X ) with the weak topology, which is defined to be the topology
corresponding to the weak convergence of probability measures. As we discuss in
AppendixA, there exists a metric onP(X ) that is compatible with the weak topol-
ogy, and with respect to this metric P(X ) is also a Polish space.

The proof that relative entropy has compact level sets relies on Prohorov’s the-
orem, a key result in weak convergence theory that we now state. A family � of
probability measures on X is said to be tight if for each ε > 0 there exists a com-
pact set K such that

inf
γ∈�

γ (K ) ≥ 1 − ε.

According to Prohorov’s theorem [TheoremA.4], � is tight if and only if it is rela-
tively compact (i.e., it has a compact closure) with respect to weak convergence.

The chain rule asserts a factorization property of relative entropy. In order to
formulate it, we introduce a fundamental concept. Let (V ,A ) be a measurable
space and Y a Polish space and let τ(dy|x) be a family of probability measures on
Y parametrized by x ∈ V . We call τ(dy|x) a stochastic kernel on Y given V if
for every Borel subset E of Y , the function mapping x ∈ V → τ(E |x) ∈ [0, 1] is
measurable. A basic result is that a family τ(dy|x) of probability measures on Y
parametrized by x ∈ V is a stochastic kernel if and only if the function mapping
x ∈ V → τ(·|x) ∈ P(Y ) is measurable [TheoremB.4], i.e., if and only if τ(·|x)
is a random variable mapping V into P(Y ). We have the following useful fact.
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If τ(dy|x) is a stochastic kernel on Y given V , and f is a measurable function
mapping a measurable space (Z ,D) into (V ,A ), then σ(dy|z) .= τ(dy| f (z)) is a
stochastic kernel on Y given Z . We adopt the convention that if V is empty, then
a stochastic kernel on Y given V is a probability measure on Y .

Stochastic kernels are commonly encountered in probability. Indeed, let X and
Y be random variables taking values in V and Y , respectively. Then a regular
conditional distribution for Y given X = x defines a stochastic kernel on Y given
V . A basic example of a stochastic kernel on Y given Y is a transition probability
function τ(x, dy) of a Markov chain taking values in Y . In this example or in cases
in which we want to suggest an interpretation of a particular stochastic kernel as a
transition probability function, we will deviate from the notation τ(dy|x). In this
context, if X is a random variable mapping a probability space (Ω,F , P) into Y ,
then τ(X (ω), dy) is a stochastic kernel on Y given Ω . Similar examples will arise
in the book. Since in general probability spaces are not Polish spaces, this example
motivates our general definition of a stochastic kernel.

Afinitemeasurablepartition ofX is afinite sequenceπ
.= {Ai , i = 1, 2, . . . , r}

consisting of disjoint Borel sets whose union isX . Part (e) of the next lemma gives
an approximation property of the relative entropy in terms of sums over finite mea-
surable partitions.

All of the results in the lemma are formulated for arbitrary Polish spaces except
part (d), which is stated for Rd . A number of the results are valid for more general
spaces, but for ease of exposition we will not point out which ones. Parts (b)–(d) of
the lemma are proved in the present section, since similar techniques will be used
throughout the book. The proof of part (a) can be found in [97]. Parts (e) and (f) are
proved in AppendixC.

Let Cb(X ) [respectively Mb(X )] denote the space of bounded continuous
[respectively Borel-measurable] functions mapping X into R.

Lemma 2.4 Let X and Y be Polish spaces. The relative entropy R(·‖·) has the
following properties.

(a) (Donsker–Varadhan variational formula) For each γ and θ inP(X ),

R(γ ‖θ) = sup
g∈C b(X )

[∫
X

g dγ − log
∫
X

eg dθ

]

= sup
ψ∈M b(X )

[∫
X

ψ dγ − log
∫
X

eψ dθ

]
.

(b) R(γ ‖θ) is a convex, lower semicontinuous function of (γ, θ) ∈ P(X ) ×
P(X ). In particular, R(γ ‖θ) is a convex lower semicontinuous function of each
variable γ and θ separately. In addition, for fixed θ ∈ P(X ), R(·‖θ) is strictly
convex on the set {γ ∈ P(X ) : R(γ ‖θ) < ∞}.

(c)For each θ ∈ P(X ), R(·‖θ) has compact level sets. That is, for each M < ∞,
the set {γ ∈ P(X ) : R(γ ‖θ) ≤ M} is a compact subset ofP(X ).

(d) Let X = R
d and let {γn}n∈N and {θn}n∈N be sequences in P(Rd). Assume

that for each α ∈ R
d ,
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sup
n∈N

∫
Rd

exp〈α, y〉 θn(dy) < ∞ and Δ
.= sup

n∈N
R(γn‖θn) < ∞.

Then {γn} is uniformly integrable in the sense that

lim
C→∞ sup

n∈N

∫
{y∈Rd :‖y‖>C}

‖y‖ γn(dy) = 0.

Furthermore,

sup
n∈N

∫
Rd

‖y‖ γn(dy) < ∞. (2.6)

In particular, {γn} is tight.
(e) We denote by Π the class of all finite measurable partitions of X . Then for

each γ and θ inP(X )

R(γ ‖θ) = sup
π∈Π

∑
A∈π

γ (A) log
γ (A)

θ(A)
,

where the summand equals 0 if γ (A) = 0 and equals ∞ if γ (A) > 0 and θ(A) = 0.
In addition, if A is any Borel subset of X , then

R(γ ‖θ) ≥ γ (A) log
γ (A)

θ(A)
− 1.

(f) Let ψ be a measurable mapping fromX to Y and let Δψ denote the function
mappingP(X ) intoP(Y ) that is given by Δψα

.= α ◦ ψ−1. Then for each γ and
θ inP(X ),

R(Δψγ ‖Δψθ) ≤ R(γ ‖θ).

If ψ is one-to-one and ψ−1 is measurable, then the inequality can be replaced by an
equality.

Proof (a) A proof can be found in [97, AppendixC.2].
(b) To prove the first assertion, we use the variational formula stated in part (a).

For each fixed g ∈ Cb(X ), the function mapping

(γ, θ) ∈ P(X ) × P(X ) →
∫
X

g dγ − log
∫
X

eg dθ

is convex and continuous. As the supremum over g ∈ Cb(X ) of such functions,
R(γ ‖θ) is a convex lower semicontinuous function of (γ, θ) ∈ P(X ) × P(X ).
To prove the strict convexity, we use

R(γ ‖θ) =
∫
X

dγ

dθ

(
log

dγ

dθ

)
dθ,
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which is valid for any γ ∈ P(X ) satisfying R(γ ‖θ) < ∞. The strict convexity of
R(·‖θ) on the set {γ ∈ P(X ) : R(γ ‖θ) < ∞} follows from the strict convexity of
s log s for s ∈ [0,∞). This completes the proof of part (b).

(c) We follow the proof of Lemma5.1 in [88]. Let {γn}n∈N be any sequence in
P(X ) satisfying supn∈N R(γn‖θ) ≤ M < ∞. According to the variational formula
stated in part (a), for any bounded measurable function ψ mapping X into R we
have for each n ∈ N,

∫
X

ψ dγn − log
∫
X

eψ dθ ≤ R(γn‖θ) ≤ M.

Let δ > 0 and ε > 0 be given. It follows fromProhorov’s theorem [TheoremA.4] that
a single probability measure θ is tight. This guarantees that there exists a compact set
K such that θ(Kc) ≤ ε. Substituting into the last display the function ψ that equals
0 on K and equals log(1 + 1/ε) on Kc, we have for each n ∈ N,

γn(K
c) ≤ 1

log(1 + 1/ε)

(
M + log

[
θ(K ) +

(
1 + 1

ε

)
θ(Kc)

])

= 1

log(1 + 1/ε)

(
M + log

[
1 + 1

ε
θ(Kc)

])

≤ 1

log(1 + 1/ε)
(M + log 2).

Since ε > 0 can be chosen so that 1
log(1+1/ε) (M + log 2) ≤ δ, this formula implies

that {γn} is tight. By Prohorov’s theorem there exist γ ∈ P(X ) and a subsequence
of n ∈ N such that γn ⇒ γ . The lower semicontinuity of R(·‖θ) yields

R(γ ‖θ) ≤ lim inf
n→∞ R(γn‖θ) ≤ M.

This completes the proof that {γ ∈ P(X ) : R(γ ‖θ) ≤ M} is compact.
(d) As in the proof of part (c), we again follow the proof of Lemma5.1 in [88].

Let σ be any positive number. By considering each coordinate direction separately,
we obtain from the assumed bound

sup
n∈N

∫
Rd

exp〈α, y〉 θn(dy) < ∞

for each α ∈ R
d the limit

lim
C→∞ sup

n∈N

∫
{y∈Rd :‖y‖ > C}

eσ‖y‖ θn(dy) = 0. (2.7)

Using this together with the bound Δ
.= supn∈N R(γn‖θn) < ∞, we will prove that

{γn} is uniformly integrable. Since the latter property implies that {γn} is tight and
also (2.6), the proof of part (d) will be done.
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Since for each n ∈ N, R(γn‖θn) is finite, γn is absolutely continuous with respect
to θn . Thus we can consider the Radon–Nikodym derivative

fn
.= dγn

dθn
,

in terms of which

R(γn‖θn) =
∫
X

fn log fn dθn. (2.8)

We need the inequality

ab ≤ eσa + 1

σ
(b log b − b + 1) , (2.9)

valid for a ≥ 0, b ≥ 0, and σ ≥ 1. This follows from the fact that

sup
a∈R

[
ab − eσa

] = b

σ

(
log

b

σ
− 1

)
≤ 1

σ
(b log b − b + 1) .

Since b log b − b + 1 ≥ 0 for all b ≥ 0, we find that for σ ≥ 1 and C < ∞,

sup
n∈N

∫
{y∈Rd :‖y‖>C}

‖y‖ γn(dy) = sup
n∈N

∫
{y∈Rd :‖y‖>C}

‖y‖ fn(y) θn(dy)

≤ sup
n∈N

∫
{y∈Rd :‖y‖>C}

eσ‖y‖ θn(dy)

+ 1

σ
sup
n∈N

∫
Rd

( fn log fn − fn + 1) dθn .

Equation (2.8) yields

sup
n∈N

∫
Rd

( fn log fn − fn + 1) dθn = sup
n∈N

∫
Rd

fn log fn dθn = sup
n∈N

R(γn‖θn) = Δ.

Combining this with (2.7), we obtain

lim
C→∞ sup

n∈N

∫
{y∈Rd :‖y‖>C}

‖y‖ γn(dy) ≤ Δ

σ
.

Since σ ≥ 1 can be taken arbitrarily large, we have completed the proof that {γn} is
uniformly integrable.

(e) This is proved in AppendixC.
(f) This is proved in AppendixC. �
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Formany stochastic systems, themapping that takes the noise process into the sys-
tem statemay be onlymeasurable and not continuous. A basic example is a stochastic
differential equation with state-dependent diffusion matrix for which there are exis-
tence and uniqueness in the strong sense. For such a process, the mapping from the
noise space (Wiener process) into the state space (diffusion process) is Borel mea-
surable but not, in general, continuous. In such circumstances the following lemma,
which will guarantee convergence of integrals with respect to bounded and measur-
able functions when a uniform bound on relative entropies holds, is very convenient.
In particular, it will often be used in the study of continuous time processes. The
lemma first appeared in [32].

Lemma 2.5 Let X be a Polish space, θ ∈ P(X ), and let f : X → R be a
bounded Borel-measurable function. Consider a sequence {μn}n∈N ⊂ P(X ) sat-
isfying supn∈N R(μn ‖θ ) ≤ α < ∞, and assume that μn converges weakly to μ ∈
P(X ). Then:

(a) limn→∞
∫
X f dμn = ∫

X f dμ;
(b) if { fn}n∈N is a sequence of uniformly bounded functions (i.e., supn∈N ‖ f ‖∞ <

∞) converging θ -a.s. to f , then

lim
j→∞ sup

n∈N

∫
X

| f j − f |dμn = 0 and lim
n→∞

∫
X

fndμn =
∫
X

f dμ.

Proof As a first step we verify that the limit measureμ is absolutely continuous with
respect to θ . Indeed, by theweak convergence ofμn toμ and the lower semicontinuity
of R(· ‖θ ) [part (b) of Lemma2.4],

R(μ ‖θ ) ≤ lim inf
n→∞ R(μn ‖θ ) ≤ α < ∞.

From the definition of relative entropy, this implies that μ is absolutely continu-
ous with respect to θ . TheoremE.4 guarantees that there is a sequence { f̄ j } j∈N of
uniformly bounded and continuous functions such that lim j→∞ f̄ j = f θ -a.s. Since
μ � θ , the limit also holds μ-a.e. Thus by the dominated convergence theorem,∫
X f̄ j dμ converges to

∫
X f dμ. For each fixed j ∈ N,

∫
X f̄ j dμn converges to∫

X f̄ j dμ because of the weak convergence of μn to μ. Hence to prove part (a) of
the lemma it remains only to verify

lim
j→∞ sup

n∈N

∫
X

∣∣ f̄ j − f
∣∣ dμn = 0. (2.10)

In the proof of (2.10) we will not use the continuity of f̄ j , only the θ -a.s. con-
vergence to f , and so the first statement in part (b) will also follow. Fix ε > 0. Let
M < ∞ be such that ‖ f ‖∞ ≤ M and sup j∈N

∥∥ f̄ j
∥∥∞ ≤ M . Then
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∫
X

∣∣ f̄ j − f
∣∣ dμn =

∫
{| f̄ j− f |>ε}

∣∣ f̄ j − f
∣∣ dμn +

∫
{| f̄ j− f |≤ε}

∣∣ f̄ j − f
∣∣ dμn

≤
∫

{| f̄ j− f |>ε}

∣∣ f̄ j − f
∣∣ dμn + ε

≤ 2Mμn{| f̄ j − f | > ε} + ε.

Using the inequality (2.9) with σ = c and a = 1 we have that for every c ∈ [1,∞),

μn{| f̄ j − f | > ε} =
∫

{| f̄ j− f |>ε}
dμn

dθ
dθ

≤ ecθ{| f̄ j − f | > ε} + 1

c
R(μn ‖θ ).

Thus

sup
n∈N

∫
X

∣∣ f̄ j − f
∣∣ dμn ≤ 2Mecθ{| f̄ j − f | > ε} + 2Mα

c
+ ε.

The convergence in (2.10) now follows on sending j → ∞ followed by c → ∞ and
ε → 0 in the last display.

To prove the second claim in part (b), observe that

∫
X

fndμn =
∫
X

f dμn +
{∫

X
fndμn −

∫
X

f dμn

}
.

From part (a), the first term on the right side converges to
∫
X f dμ, while the second

term converges to 0 from the first statement in part (b). �

LetX and Y be Polish spaces, σ(dy|x) a stochastic kernel on Y givenX , and
θ a probability measure on X . Then we define θ ⊗ σ to be the unique probability
measure on (X × Y ,B(X × Y )) with the property that for Borel subsets A of
X and B of Y ,

θ ⊗ σ(A × B)
.=

∫
A×B

θ(dx) σ (dy|x) =
∫
A
σ(B|x) θ(dx).

This formula is summarized by the notation θ ⊗ σ(dx × dy) = θ(dx) ⊗ σ(dy|x).
If, for example, σ(dy|x) is independent of x , thus defining a probability measure
σ(dy) onY , then θ ⊗ σ equals the product measure θ × σ onX × Y . Conversely,
given a probabilitymeasureα onX × Y and denoting by [α]1 the firstmarginal ofα,
there is a stochastic kernel [α]2|1(dy|x) on Y givenX such that α = [α]1 ⊗ [α]2|1.
This is a consequence of the existence of regular conditional probabilities for random
variables that take values in a Polish space [TheoremB.2].

Using the Laplace formulation, the variational representation (2.1) involving
R(γ ‖θ) becomes the starting point for large deviations and related analysis for sys-
tems driven by the “base” measure θ . When θ has a nice structure (for example if θ is
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product measure or a Markovian measure), this property can be exploited to rewrite
(2.1) in a form that is much more convenient for analysis. This is done in the discrete
time setting using the chain rule, which we now describe. The analogous rewriting
of relative entropy is more involved but still possible in continuous time, and will be
discussed in detail in Chap. 8.

Theorem 2.6 (chain rule)LetX andY bePolish spaces andα andβ probability
measures onX × Y . We denote by [α]1 and [β]1 the first marginals of α and β and
by [α]2|1(dy|x) and [β]2|1(dy|x) the stochastic kernels on Y given X , for which
we have the decompositions

α(dx × dy) = [α]1(dx) ⊗ [α]2|1(dy|x)
β(dx × dy) = [β]1(dx) ⊗ [β]2|1(dy|x).

Then the function mapping x ∈ X → R([α]2|1(·|x)‖[β]2|1(·|x)) is measurable and

R(α‖β) = R([α]1‖[β]1) +
∫
X

R([α]2|1(·|x)‖[β]2|1(·|x)) [α]1(dx).

Before giving the proof of Theorem2.6 we present two corollaries of this result.

Corollary 2.7 Let X and Y be Polish spaces, σ(dy|x) and τ(dy|x) stochastic
kernels on Y given X , and θ a probability measure on X . Then the function
mapping x ∈ X → R(σ (·|x)‖τ(·|x)) is measurable, and

∫
X

R(σ (·|x)‖τ(·|x)) θ(dx) = R(θ ⊗ σ‖θ ⊗ τ). (2.11)

Proof The measurability of the function mapping x ∈ X → R(σ (·|x)‖τ(·|x)) is
shown in the proof of Theorem2.6. In order to prove formula (2.11), we make
the following identifications in Theorem2.6: α(dx × dy)

.= θ(dx) ⊗ σ(dy|x) and
β(dx × dy)

.= θ(dx) ⊗ τ(dy|x). Then the first marginals [α]1(dx) and [β]1(dx)
both equal θ(dx), and Theorem2.6 implies that

R(θ ⊗ σ‖θ ⊗ τ) = R(θ‖θ) +
∫
X

R(σ (·|x)‖τ(·|x)) θ(dx)

=
∫
X

R(σ (·|x)‖τ(·|x)) θ(dx).

This is formula (2.11). �

For use elsewhere in the text, we record another corollary of Theorem2.6 that
applies to product measures.
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Corollary 2.8 Let X and Y be Polish spaces, γ and θ probability measures on
X , and λ and μ probability measures on Y . Then

R(γ × λ‖θ × μ) = R(γ ‖θ) + R(λ‖μ).

Proof (of Theorem 2.6) The stochastic kernels [α]2|1(dy|x) and [β]2|1(dy|x) are
measurable functions mappingX intoP(Y ) [TheoremB.4]. Since R(·‖·) is lower
semicontinuous onP(Y ) × P(Y ) [Lemma2.1(b)], the measurability of the func-
tion mapping x ∈ X → R

([α]2|1(·|x)‖[β]2|1(·|x)
)
follows. We now prove that

R(α‖β) = R([α]1‖[β]1) +
∫
X

R
([α]2|1(·|x)‖[β]2|1(·|x)

) [α]1(dx), (2.12)

assuming first that the right-hand side is finite. Under this assumption, [α]1 � [β]1
and there exists an [α]1-null set � inX such that R

([α]2|1(·|x)‖[β]2|1(·|x)
)
is finite

for x ∈ �c. Hence for x ∈ �c, we have that [α]2|1(·|x) � [β]2|1(·|x) as measures on
Y . By redefining [α]2|1(·|x) for x in the null set �, we can ensure that [α]2|1(·|x) �
[β]2|1(·|x) for all x ∈ X . Let

ψ(x)
.= d[α]1
d[β]1 (x).

TheoremA.5.7 in [97] guarantees that there exists a version of the Radon–Nikodym
derivative

ζ(x, y)
.= d[α]2|1(·|x)
d[β]2|1(·|x) (y)

that is a nonnegative measurable function on X × Y . For any Borel subsets A of
X and B of Y ,

α(A × B) =
∫
A
[α]2|1(B|x)[α]1(dx)

=
∫
A

(∫
B

ζ(x, y) [β]2|1(dy|x)
)

ψ(x) [β]1(dx)

=
∫
A×B

ψ(x) ζ(x, y) β(dx × dy).

This implies that α � β and that for β-a.e. (x, y) ∈ X × Y ,

dα

dβ
(x, y) = ψ(x) ζ(x, y).

As a consequence,
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R([α]1‖[β]1) +
∫
X

R([α]2|1(·|x)‖[β]2|1(·|x)) [α]1(dx)

=
∫
X

logψ(x) [α]1(dx) +
∫
X

(∫
Y

log ζ(x, y) [α]2|1(dy|x)
)

[α]1(dx)

=
∫
X ×Y

logψ(x) α(dx × dy) +
∫
X ×Y

log ζ(x, y) [α]1(dx) ⊗ [α]2|1(dy|x)

=
∫
X ×Y

log[ψ(x) ζ(x, y)] α(dx × dy)

= R(α‖β).

This is formula (2.12).
We now prove (2.12) under the assumption that the left-hand side is finite. Under

this assumption α � β, and so for (x, y) ∈ X × Y we can define

ϕ(x, y)
.= dα

dβ
(x, y).

Since α � β we have [α]1 � [β]1, and also [β]1 a.s. ψ(x)
.= d[α]1

d[β]1 (x) is equal to∫
Y ϕ(x, y)[β]2|1(dy|x),
For any Borel subsets A of X and B of Y ,

∫
A
[α]2|1(B|x) ψ(x) [β]1(dx) =

∫
A
[α]2|1(B|x) [α]1(dx)

= α(A × B)

=
∫
A×B

ϕ(x, y) β(dx × dy)

=
∫
A

(∫
B

ϕ(x, y) [β]2|1(dy|x)
)

[β]1(dx).

This implies that there exists a [β]1-null set � such that for all x ∈ �c,

ψ(x) [α]2|1(B|x) =
∫
B

ϕ(x, y) [β]2|1(dy|x).

In fact, using the separability ofX , we can find a [β]1-null set (denoted again by �)
such that for x ∈ �c, the above equality holds for all Borel subsets B of Y .

Thus for all x ∈ �c ∩ {ψ > 0}, [α]2|1(·|x) � [β]2|1(·|x), and for such x and
[β]2|1(·|x)-a.e. y ∈ Y ,

ζ(x, y)
.= d[α]2|1(·|x)
d[β]2|1(·|x) (y) equals

ϕ(x, y)

ψ(x)
.
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In other words, for all x ∈ �c ∩ {ψ > 0}, the various Radon–Nikodym derivatives
are related by

ϕ(x, y) = ψ(x) ζ(x, y), [β]2|1(·|x)-a.e.

We have [α]1{ψ > 0} = 1, and since [α]1 � [β]1 and [β]1{�c} = 1, we also have
[α]1{�c} = 1. It now follows that

R(α‖β)

=
∫
X ×Y

logϕ(x, y) α(dx × dy)

=
∫
X ×Y

logϕ(x, y) [α]1(dx) ⊗ [α]2|1(dy|x)

=
∫

(�c∩{ψ>0})×Y
log[ψ(x) ζ(x, y)] [α]1(dx) ⊗ [α]2|1(dy|x)

=
∫

�c∩{ψ>0}
logψ(x) [α]1(dx)

+
∫

�c∩{ψ>0}

(∫
Y

log ζ(x, y) [α]2|1(dy|x)
)

[α]1(dx)

= R([α]1‖[β]1) +
∫
X

R([α]2|1(·|x)‖[β]2|1(·|x)) [α]1(dx),

which again is Eq. (2.12). This finishes the proof of the theorem. �
Throughout the remainder of the book we will make frequent use of relative

entropy. It will sometimes be necessary to work simultaneously with the relative
entropy associated with a number of different spaces. We will abuse notation and
simply write R(·‖·) to denote the relative entropy in all the different cases. The
particular space involved in each circumstance will be obvious.

2.2 Tightness of Probability Measures

Many proofs in this book are based on the asymptotic analysis of variational repre-
sentations for exponential integrals. We will evaluate limits of expected values for
continuous functions of various types of random objects, or equivalently limits of
integrals with respect to the distributions of these random objects. The notion of
weak convergence, which was introduced in the last section, is ideally suited to such
analysis, in part because one can often establish precompactness of the collection of
distributions under mild conditions. In this section we review some characterizations
of precompactness that will be useful later in the book.

The two types of random variables most commonly encountered in this book will
be random processes and random probability or subprobability measures. Let E be
a Polish space. Random processes will usually take values in a space of the form
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D([0, T ] : E ), the space of functions from [0, T ] to E that are right continuous and
with limits from the left at each t ∈ (0, T ]. The space D([0, T ] : E ) is equipped
with the usual Skorohod topology, which can be metrized so that it is a Polish
space [24, Chap.3, Sect. 12]. We will also encounter processes taking values in
the subset C ([0, T ] : E ) of continuous functions. When restricted to C ([0, T ] : E ),
convergence in the Skorohod topology is equivalent to convergence with respect to
the supremum metric typically used on C ([0, T ] : E ).

Let A be an index set and let {λa}a∈A ⊂ P(X ), where X is a Polish space.
Recall that the collection {λa} is tight if for each ε > 0 there is a compact set Kε ⊂ X
such that infa∈A λa(Kε) ≥ 1 − ε. If random variables {Xa}a∈A have the distributions
{λa}a∈A, we say that {Xa} is tight if {λa} is tight. According to Prohorov’s theorem,
{λa} is precompact [i.e., has compact closure] in the topology of weak convergence
if and only if it is tight.

The notion of a tightness functionwill be useful. Ameasurable function g : X →
[0,∞] is called a tightness function if it has precompact level sets: for every
M ∈ [0,∞), the set {x ∈ X : g(x) ≤ M} has compact closure. Thus rate functions
are tightness functions. We have the following elementary result.

Lemma 2.9 A collection {λa}a∈A ⊂ P(X ) is tight if and only if there is a tightness
function g such that supa∈A

∫
X g(x)λa(dx) < ∞. If {λa} is tight, then one can

assume without loss that g is lower semicontinuous.

Proof The “if” part follows from Chebyshev’s inequality. Let K̄M be the closure
of {x ∈ X : g(x) ≤ M}. Since g is a tightness function, K̄M is compact. If B

.=
supa∈A

∫
X g(x)λa(dx), then λa(K̄ c

M) ≤ B/M . Thus Kε in the definition of tightness
of {λa} can be taken to be K̄B/ε. To argue the reverse direction, let Kε satisfy the
requirement in the definition of tightness for {λa}a∈A. We can assume without loss
that K2−i is increasing, since if this is not true, we can always use the compact set
∪i

j=1K2− j in place of K2−i . Let

g(x)
.=

∞∑
i=1

1Kc
2−i

(x). (2.13)

Then g(x) ≤ M implies x /∈ Kc
2−i when i > M , and thus {x ∈ X : g(x) ≤ M} ⊂

K2−M−1 . Hence the level sets of g have compact closure. Since for all a ∈ A,

∫
X

g(x)λa(dx) =
∞∑
i=1

λa(K
c
2−i ) ≤

∞∑
i=1

2−i < ∞,

g serves as a tightness function with the desired uniform bound on integrals. To prove
the last claim, note that since Kc

ε is open, x → 1Kc
ε
(x) is lower semicontinuous, and

hence by Fatou’s lemma the same is true for g. �

The next result shows that tightness functions have a useful “bootstrap” property.
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Theorem 2.10 Let g be a tightness function on X . Define G : P(X ) → [0,∞]
by

G(μ)
.=

∫
X

g(x)μ(dx).

Then G is a tightness function on P(X ).

Proof The preceding lemma shows that for every M ∈ [0,∞), the set

{μ ∈ P(X ) : G(μ) ≤ M}

is tight. By Prohorov’s theorem, the same set is precompact, and thusG is a tightness
function. �

The next result shows that a every member of a collection of random probability
measures is tight (as random variables!) if and only if their “means” are tight as
deterministic probability measures.

Theorem 2.11 Let {�a}a∈A be random variables taking values inP(X ) (i.e., ran-
dom probability measures), and let λa = E�a. Then {�a}a∈A is tight if and only if
{λa}a∈A is tight.

Proof Fix ε > 0. Let ηa ∈ P(P(X )) denote the distribution of �a and let ε > 0
be given. Assuming that the random measures {�a} are tight, there is a compact set
K ⊂ P(X ) such that ηa(Kc) ≤ ε for all a ∈ A. Since K is compact, by Prohorov’s
theorem there is a compact K1 ⊂ X such that λ ∈ K implies λ(Kc

1) ≤ ε. Therefore

λa(K
c
1) =

∫
P (X )

λ(Kc
1)ηa(dλ)

=
∫
K

λ(Kc
1)ηa(dλ) +

∫
Kc

λ(Kc
1)ηa(dλ)

≤ 2ε.

Since ε > 0 is arbitrary, we have that {λa}a∈A is tight. To prove the reverse direction,
it suffices from Lemma2.9 to find a tightness function Ḡ : P(X ) → [0,∞] such
that

sup
a∈A

EḠ(�a) < ∞. (2.14)

Since {λa}a∈A is tight by Lemma2.9, there is a tightness function ḡ : X → [0,∞]
such that

sup
a∈A

∫
X

ḡ(x)λa(dx) < ∞.
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By Theorem2.10, Ḡ(ρ)
.= ∫

X ḡ(x)ρ(dx) is a tightness function on P(X ). Also,

sup
a∈A

EḠ(�a) = sup
a∈A

E
∫
X

ḡ(x)�a(dx) = sup
a∈A

∫
X

ḡ(x)λa(dx) < ∞.

This proves (2.14), and hence tightness of {�a}a∈A follows. �

2.3 Notes

Much of the material in this chapter is taken from [97]. Exceptions include parts of
Proposition2.3 and Lemma2.5, which are from [32]. Relative entropy originated in
information theory, and it is also heavily used in statistics and computer science. In
those disciplines it often goes by the name Kullback–Leibler divergence, and indeed,
early references to the topic are Kullback and Leibler [177] and Kullback [176]. An
introduction to its properties in a non-measure-theoretic setting can be found in [67].
Although it is not a metric owing to the lack of symmetry, in many uses relative
entropy is treated as though it were a metric, and in recent years there has been
interest in its relation to genuine metrics on the space of probability measures [240].
The Donsker–Varadhan variational formula and its dual (sometimes called the Gibbs
variational formula) can be considered an infinite dimensional analogue of the pairing
of convex functions through Legendre–Fenchel duality. Although we do not appeal
significantly to infinite dimensional convex analysis in this book, a good reference
for this topic is the book [13].



Chapter 3
Examples of Representations and Their
Application

Our approach to the study of large deviations is based on convenient variational
representations for expected values of nonnegative functionals. In this chapter we
give three examples of such representations and show how they allow easy proofs of
some classical results.

In Sect. 3.1 we present a representation for stochastic processes in discrete time.
To illustrate the main idea we consider the simple setting in which the stochastic
process is an iid sequence of random variables [Proposition 3.1]. We then show how
this representation can be used to prove Sanov’s theorem and Cramér’s theorem.
Analogous representations for more general noise models will be used many times
in later chapters. In Sect. 3.2 we state a variational representation for functionals of
a k-dimensional Brownian motion [Theorem 3.14]. This result will be generalized
and proved in the setting of an infinite dimensional Brownian motion in Chap. 8,
and we apply it here to give an elementary proof of the large deviation principle for
small noise diffusions. Section 3.3 states a variational representation for functionals
of a standard Poisson process [Theorem 3.23]. This result will also be extended
in Chap.8 to the setting of Poisson random measures with points in an arbitrary
locally compact Polish space. As an application of Theorem 3.23 we prove the large
deviation principle for stochastic differential equations driven by Poisson processes.

3.1 Representation for an IID Sequence

Owing to the role it plays in the representations, we sometimes refer to the measure
appearing in the second position in relative entropy, i.e., θ in R (μ ‖θ ), as the “base”
measure. The starting point of all large deviation results in the book is the relative
entropy representation in part (a) of Proposition 2.2. When the base measure is
structured, for example when θ is a product measure or a Markov measure, a more
useful, control-theoretic, representation can be found in terms of the component
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measures that make up θ . Here is an example. Suppose that (X1, X2) is an (S1 ×
S2)-valued random variable with joint distribution θ(dx1 × dx2) = θ1(dx1)θ2(dx2).
Then the variational formula (2.1) says that if G ∈ Mb(S1 × S2), then

− log Ee−G(X1,X2) = inf
μ∈P (S1×S2)

[∫
S1×S2

Gdμ + R (μ ‖θ )

]
.

One can always disintegrate μ in the form

μ(dx1 × dx2) = [μ]1(dx1)[μ]2|1(dx2|x1),

where [μ]1 is the marginal on S1 and [μ]2|1 is the conditional distribution on S2
given x1. Suppose that (X̄1, X̄2) is distributed according to μ, μ̄1(·) = [μ]1(·) and
μ̄2(·) = [μ]2|1(·

∣∣X̄1 ) (and note that μ̄2 is a random measure). It follows from the
chain rule [Theorem 2.6] that

R (μ ‖θ ) = R ([μ]1 ‖θ1 ) +
∫
S1

R([μ]2|1(· |x1 ) ‖θ2(·) )[μ]1(dx1)
= E [R (μ̄1 ‖θ1 ) + R (μ̄2 ‖θ2 )] .

Here we have used that X̄1 has distribution [μ]1 to account for integration with
respect to this measure. Then we can rewrite the representation as

− log Ee−G(X1,X2) = inf
μ∈P (S1×S2)

E

[
G(X̄1, X̄2) +

2∑
i=1

R (μ̄i ‖θi )
]

. (3.1)

There is an obvious extension of (3.1) to any finite collection of independent
random variables. The extension for the special case in which the random variables
are iid is as follows. Let Sn denote the product space of n copies of S.

Proposition 3.1 Let {Xi }i∈N be iid S-valued random variables with distribution θ

and let n ∈ N. If G ∈ Mb(Sn), then

− 1

n
log Ee−nG(X1,...,Xn) = inf E

[
G(X̄ n

1 , . . . , X̄
n
n ) + 1

n

n∑
i=1

R
(
μ̄n
i ‖θ )]

, (3.2)

with the infimum over all collections of random probability measures
{
μ̄n
i

}
i∈{1,...,n}

that satisfy the following two conditions:

1. μ̄n
i is measurable with respect to the σ -algebra F n

i−1, where F
n
0 = {∅,�} and

for i ∈ {1, . . . , n}, F n
i = σ {X̄ n

1 , . . . , X̄
n
i };

2. the conditional distribution of X̄n
i , given F n

i−1, is μ̄n
i .

Given any measure μ ∈ P(Sn), if {X̄ n
i }i=1,...,n has distribution μ, then μ̄n

i in the
statement of the proposition would equal [μ]i |1,...,i−1(·|X̄ n

1 , . . . , X̄
n
i−1). On the other
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hand, given {X̄ n
i } and {μ̄n

i } as in the statement of the proposition, one can iden-
tify a μ ∈ P(Sn) that corresponds to these conditional distributions. We consider
{X̄ n

i }i=1,...,n to be a controlled version of the original sequence {Xi }i=1,...,n , with
control μ̄n

i selecting the (conditional) distribution of X̄ n
i .

Notational convention. Throughout, we will use overbars to indicate the controlled
analogue of any uncontrolled process.

3.1.1 Sanov’s and Cramér’s Theorems

First we recall the statement of the Glivenko–Cantelli lemma. The space of proba-
bility measures on S is denoted by P(S) and is equipped with the weak topology
(see Appendix A).

Lemma 3.2 (Glivenko–Cantelli lemma) Let {Xi }i∈N be iid S-valued random
variables with distribution γ , and let Ln be the empirical measure of the first n
variables:

Ln(dx)
.= 1

n

n∑
i=1

δXi (dx).

Then with probability one (w.p.1), Ln converges to γ .

The proof is a special case of the arguments we will use for Sanov’s theorem, and
in particular, the result follows from Lemmas 3.4 and 3.5. Sanov’s theorem itself is
the large deviation refinement of this law of large numbers (LLN) result.

Theorem 3.3 (Sanov’s theorem) Let {Xi }i∈N be iid S-valued random variables
with distribution γ . Then {Ln}n∈N satisfies the LDP on P(S) with rate function
I (μ) = R (μ ‖γ ).

By Theorem 1.8, to prove Theorem 3.3 it is enough to show that

lim
n→∞ −1

n
log E exp{−nF(Ln)} = inf

μ∈P (S)

[
F(μ) + R (μ ‖γ )

]

for every F ∈ Cb(P(S)). The proofwill use the control representation in Proposition
3.1 and will be completed in two steps. First, we will show that the left side in the last
display is bounded belowby the right side (which gives theLaplace upper bound), and
then we will prove the reverse inequality (Laplace lower bound). The first inequality
is proved in Sect. 3.1.3, while the second is proved in Sect. 3.1.4.

Taking G(x1, . . . , xn) = F
(∑n

i=1 δxi (dx)/n
)
in the representation (3.2) gives

− 1

n
log E exp{−nF(Ln)} = inf{μ̄n

i }
E

[
F

(
L̄n

) + 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

, (3.3)
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where L̄n = 1
n

∑n
i=1 δX̄i

. Thus in order to prove Theorem 3.3, we need to show that

inf{μ̄n
i }
E

[
F

(
L̄n

) + 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

→ inf
μ∈P (S)

[
F(μ) + R (μ ‖γ )

]
.

Since F is bounded, the infimum in the representation is always bounded above by
‖F‖∞

.= supx∈S |F(x)| < ∞. It follows that in the infimum in (3.3) we can always
restrict to control sequences {μ̄n

i }i=1,...,n for which

sup
n∈N

E

[
1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

≤ 2 ‖F‖∞ + 1. (3.4)

3.1.2 Tightness and Weak Convergence

The bound (3.4) on relative entropy costs is all that is available, but also all that is
needed, to prove tightness.

Lemma 3.4 Consider any collection of controls {μ̄n
i , i = 1, . . . , n}n∈N for which

(3.4) is satisfied, and let μ̂n = 1
n

∑n
i=1 μ̄n

i . Then {(L̄n, μ̂n)}n∈N is tight.

Proof By the convexity of relative entropy and Jensen’s inequality,

2 ‖F‖∞ + 1 ≥ E

[
1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

≥ E
[
R

(
μ̂n ‖γ )]

.

Since μ 	→ R (μ ‖γ ) has compact level sets, it is a tightness function, and so the
bound in the last display along with Lemmas 2.9 and 2.11 shows that both

{
μ̂n

}
n∈N

and
{
Eμ̂n

}
n∈N are tight. Since μ̄n

i is the conditional distribution used to select X̄ n
i ,

it follows that for every bounded measurable function f ,

E
∫
S
f (x)L̄n(dx) = E

[
1

n

n∑
i=1

f (X̄ n
i )

]

= E

[
1

n

n∑
i=1

∫
S
f (x)μ̄n

i (dx)

]

= E
∫
S
f (x)μ̂n(dx).

Thus E L̄n = Eμ̂n , and so {L̄n} and hence {(L̄n, μ̂n)} are tight. Here once more we
have used Lemma 2.11. �
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Thus (L̄n, μ̂n) will converge, at least along subsequences. To prove the LDP we
need to relate the limits of the controls μ̂n and the controlled process L̄n .

Lemma 3.5 Suppose {(L̄n, μ̂n)}n∈N converges along a subsequence to (L̄, μ̂). Then
L̄ = μ̂ w.p.1.

The proof of this result, which is amartingale version of the proof of theGlivenko–
Cantelli lemma, will be given in Sect. 3.1.5 after we complete the proof of Sanov’s
theorem.

3.1.3 Laplace Upper Bound

The proof of Theorem 3.3 is partitioned into upper and lower bounds. In this section
we will prove the Laplace upper bound, which is the same as the variational lower
bound

lim inf
n→∞ −1

n
log E exp{−nF(Ln)} ≥ inf

μ∈P (S)

[
F(μ) + R (μ ‖γ )

]
. (3.5)

For ε > 0, let
{
μ̄n
i

}
i=1,...,n and {X̄ n

i }i=1,...,n come within ε of the infimum in (3.3):

−1

n
log E exp{−nF(Ln)} + ε ≥ E

[
F

(
L̄n

) + 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

.

Recall that we assume (without loss of generality) that the uniform bound in (3.4)
holds, and thus by Lemma 3.4, {(L̄n, μ̂n)} is tight.

Owing to tightness, for every subsequence of {(L̄n, μ̂n)} we can extract a further
subsequence that converges weakly. It suffices to prove (3.5) for such a subsubse-
quence. To simplify notation, we denote this subsubsequence by n, and its limit by(
L̄, μ̂

)
. According toLemma3.5, L̄ = μ̂ a.s. Using Jensen’s inequality for the second

inequality, the convergence in distribution, Fatou’s lemma and lower semicontinuity
of relative entropy for the third inequality, and the w.p.1 relation L̄ = μ̂ for the last
inequality, we obtain

lim inf
n→∞ −1

n
log Ee−nF(Ln) + ε ≥ lim inf

n→∞ E

[
F

(
L̄n

) + 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

≥ lim inf
n→∞ E

[
F

(
L̄n

) + R
(
μ̂n ‖γ )]

≥ E
[
F

(
L̄

) + R
(
μ̂ ‖γ )]

≥ inf
μ∈P (S)

[
F(μ) + R (μ ‖γ )

]
.

Since ε > 0 is arbitrary, (3.5) follows. �
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3.1.4 Laplace Lower Bound

Next we prove the variational upper bound

lim sup
n→∞

−1

n
log E exp{−nF(Ln)} ≤ inf

μ∈P (S)

[
F(μ) + R (μ ‖γ )

]
, (3.6)

which establishes the Laplace lower bound. For ε > 0 let μ∗ satisfy

F(μ∗) + R
(
μ∗ ‖γ ) ≤ inf

μ∈P (S)

[
F(μ) + R (μ ‖γ )

] + ε.

Then let μ̄n
i = μ∗ for all n ∈ N and i ∈ {1, . . . , n}. By either Lemma 3.5 or the

ordinary Glivenko–Cantelli lemma, the weak limit of L̄n equals μ∗ w.p.1. The rep-
resentation in Proposition 3.1 gives the first inequality below, and the dominated
convergence theorem gives the equality

lim sup
n→∞

−1

n
log Ee−nF(Ln) ≤ lim sup

n→∞
E

[
F

(
L̄n

) + 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

= [
F

(
μ∗) + R

(
μ∗ ‖γ )]

≤ inf
μ∈P (S)

[
F(μ) + R (μ ‖γ )

] + ε.

Since ε > 0 is arbitrary, the bound (3.6) follows. �

Remark 3.6 When combined with the previous subsection, the argument just given
shows that for asymptotic optimality one can restrict to controls of the form μ̄n

i = μ∗,
i.e., product measure.

3.1.5 Proof of Lemma 3.5 and Remarks on the Proof
of Sanov’s Theorem

Since S is Polish, there exists a countable separating class { fm}m∈N of bounded con-
tinuous functions (see Appendix A). Define Km

.= ‖ fm‖∞ and �n
m,i

.= fm
(
X̄ n
i

) −∫
S fm (x) μ̄n

i (dx). For every ε > 0,

P

{∣∣∣∣∣
1

n

n∑
i=1

fm
(
X̄ n
i

) − 1

n

n∑
i=1

∫
S
fm (x) μ̄n

i (dx)

∣∣∣∣∣ > ε

}

≤ 1

ε2
E

⎡
⎣ 1

n2

n∑
i, j=1

�n
m,i�

n
m, j

⎤
⎦ .
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Recall that F n
j = σ(X̄ n

i , i = 1, . . . , j). By a standard conditioning argument, the
off-diagonal terms vanish: for i > j ,

E
[
�n

m,i�
n
m, j

] = E
[
E

[
�n

m,i�
n
m, j

∣∣F n
i−1

]] = E
[
E

[
�n

m,i

∣∣F n
i−1

]
�n

m, j

] = 0.

Since |�n
m,i | ≤ 2Km ,

P

{∣∣∣∣∣
1

n

n∑
i=1

fm(X̄ n
i ) − 1

n

n∑
i=1

∫
S
fm(x)μ̄n

i (dx)

∣∣∣∣∣ > ε

}
≤ 4K 2

m

nε2
.

Since (L̄n, μ̂n) ⇒ (
L̄, μ̂

)
and ε > 0 is arbitrary, by Fatou’s lemma, we have

P

{∫
S
fm (x) L̄ (dx) =

∫
S
fm (x) μ̂ (dx)

}
= 1.

Now use that { fm} is countable and separating to conclude that L̄ = μ̂ w.p.1. �
Remark 3.7 There is a close relationship between the legitimate use of Jensen’s
inequality in the proof of any particular Laplace upper bound and the asymptotic
independence of optimal controls with respect to one or more parameters. In the
context of Sanov’s theorem, the parameter is the time index i . In the proof of the
upper bound, the inequality

E

[
1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

≥ E
[
R

(
μ̂n ‖γ )]

was used, where μ̂n is the average (over i) of μ̄n
i . In general, Jensen’s inequality holds

with a strict inequality. There is an exception when the quantity being averaged is
independent of the parameter over which the averaging occurs. Since we consider
the limit n → ∞, this means that there should be no loss due to the use of Jensen’s
inequality if one restricts to controls that are independent of i in this limit. In any par-
ticular instance, a use of Jensen’s inequality is appropriate only when one proves the
corresponding lower bound with the same rate function, i.e., in the proof of the lower
bound one should be able to restrict to controls that do not depend on the parameter
being averaged. This of course occurs in the proof of Sanov’s theorem, since for the
lower bound we consider controls of the form μ̄n

i = μ∗ for a fixed measure μ∗.
Information on what control dependencies are asymptotically unimportant can be

useful in various ways, including the construction of importance sampling schemes,
which is considered later in the book. It typically simplifies the large deviation proofs
considerably, since one needs to keep track in the weak convergence analysis of only
the nontrivial dependencies, and often one has some a priori insight into which
parameters should be unimportant. However, as noted previously, it is only after the
proof of upper and lower bounds with the same rate function that one can claim that
the use of Jensen’s inequality was without loss.
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3.1.6 Cramér’s Theorem

Cramér’s theorem states the LDP for the empirical mean of Rd -valued iid random
variables: Sn

.= 1
n (X1 + · · · + Xn). Of course, one can recover the empirical mean

from the empirical measure via Sn = ∫
Rd yLn(dy). If the underlying distribution γ

has compact support, then the mapping μ → ∫
Rd yμ(dy) is continuous on a subset

ofP(Rd) that contains Ln w.p.1. In this case, the LDP for {Sn}n∈N follows directly
from the contraction principle [Theorem 1.16], with the rate function I given by

I (β)
.= inf

[
R (μ ‖γ ) :

∫
Rd

yμ(dy) = β

]
(3.7)

for β ∈ R
d . However, in general the mapping μ 	→ ∫

Rd yμ(dy) is not continuous,
and the contraction principle does not suffice. As we will see, the issue is that the
conditions of Sanov’s theorem are too weak to force continuity with high probability.
They are sufficient to imply tightness of controls, but no more. Once the conditions
are appropriately strengthened, the weak convergence arguments can be carried out
just as before, with the only difference being in the qualitative properties of the
convergence. For α ∈ R

d let

H(α)
.= log

∫
Rd

e〈α,y〉γ (dy).

Theorem 3.8 (Cramér’s theorem) Let {Xn}n∈N be a sequence of iid R
d -valued

random variables with common distribution γ , and let Sn
.= 1

n

∑n
i=1 Xi . Assume

that H(α) < ∞ for all α ∈ R
d . Then {Sn}n∈N satisfies the LDP with rate function I

defined in (3.7).

To prove the LDP we need to calculate the limits of

− 1

n
log E exp

{
−nF

(∫
Rd

yLn(dy)

)}
, (3.8)

where F ∈ Cb(R
d). From the representation in Proposition 3.1 we see that (3.8)

equals

inf{μ̄n
i }
E

[
F

(∫
Rd

y L̄n(dy)

)
+ 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

.

Once more, without loss of generality we can assume that the relative entropy cost
is uniformly bounded, and in particular that (3.4) holds. The next lemma shows that
as a consequence of this uniform bound and our assumption on H , the collection{
L̄n

}
n∈N is uniformly integrable.
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Lemma 3.9 Assume (3.4) and that H(α) < ∞ for all α ∈ R
d . Then

lim
M→∞ lim sup

n→∞
E

[∫
Rd

‖y‖ 1{‖y‖≥M} L̄n(dy)

]
= 0.

Before proving the lemma we complete the proof of Theorem 3.8.

Proof (of Theorem 3.8) The uniform integrability of Lemma 3.9 implies that if L̄n

converges in distribution to L̄ and (3.4) holds, then

E

[
F

(∫
Rd

y L̄n(dy)

)]
→ E

[
F

(∫
Rd

y L̄(dy)

)]
. (3.9)

The limit of (3.8) will now be calculated using essentially the same argument as that
used to prove Sanov’s theorem.

Variational lower bound. For ε > 0 let
{
μ̄n
i

}
i=1,...,n and {X̄ n

i }i=1,...,n satisfy

−1

n
log Ee−nF(

∫
Rd yLn(dy)) + ε ≥ E

[
F

(∫
Rd

y L̄n(dy)

)
+ 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

.

Consider a subsubsequence as in Sect. 3.1.3 (denoted again by n) along which(
L̄n, μ̂n

)
converges weakly to

(
L̄, μ̂

)
. Then as in Sect. 3.1.3, we have

lim inf
n→∞ −1

n
log E exp

{
−nF

(∫
Rd

yLn(dy)

)}
+ ε

≥ lim inf
n→∞ E

[
F

(∫
Rd

y L̄n(dy)

)
+ 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

≥ E

[
F

(∫
Rd

y L̄(dy)

)
+ R

(
μ̂ ‖γ )]

≥ E

[
F

(∫
Rd

y L̄(dy)

)
+ I

(∫
Rd

y L̄(dy)

)]

≥ inf
β∈Rd

[F(β) + I (β)] .

Here the second inequality follows from (3.9), and the third follows from the defini-
tion of I and L̄ = μ̂ a.s. Since ε > 0 is arbitrary, the lower bound follows.

Variational upper bound. For ε ∈ (0, 1) let β∗ ∈ R
d satisfy

F(β∗) + I
(
β∗) ≤ inf

β∈Rd
[F(β) + I (β)] + ε.

Next let μ∗ ∈ P(Rd) be such that
∫
Rd xμ∗(dx) = β∗ and
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F(β∗) + R
(
μ∗ ‖γ ) ≤ F(β∗) + I

(
β∗) + ε.

As in Sect. 3.1.4, let μ̄n
i = μ∗ for all n ∈ N and i ∈ {1, . . . , n}. Then the weak limit

of L̄n equals μ∗ a.s., and (3.4) is satisfied. Thus

lim sup
n→∞

−1

n
log E exp

{
−nF

(∫
Rd

yLn(dy)

)}

≤ lim sup
n→∞

E

[
F

(∫
Rd

y L̄n(dy)

)
+ 1

n

n∑
i=1

R
(
μ̄n
i ‖γ )]

= F
(
β∗) + R

(
μ∗ ‖γ )

≤ F(β∗) + I
(
β∗) + ε

≤ inf
β∈Rd

[F(β) + I (β)] + 2ε.

Here the equality follows from (3.9) and the a.s. convergence of L̄n to μ∗. Since
ε ∈ (0, 1) is arbitrary, the upper bound follows. �

Finally, we give the proof of Lemma 3.9.

Proof (of Lemma 3.9) The uniform integrability stated in this lemma is essentially a
consequence of the bound on relative entropy costs and the assumption H(α) < ∞.
For b ≥ 0 let

�(b)
.= b log b − b + 1. (3.10)

We recall a bound already used frequently in Chap.2 [see (2.9)]: for a ≥ 0, b ≥ 0,
and σ ≥ 1,

ab ≤ eσa + 1

σ
(b log b − b + 1) = eσa + 1

σ
�(b).

Thus if θ ∈ P(Rd) satisfies θ � γ , then for every σ ≥ 1,

∫
Rd

‖y‖ 1{‖y‖≥M}θ(dy) =
∫
Rd

‖y‖ 1{‖y‖≥M}
dθ

dγ
(y)γ (dy)

≤
∫
Rd

eσ‖y‖1{‖y‖≥M}γ (dy) + 1

σ

∫
Rd

�

(
dθ

dγ
(y)

)
γ (dy)

=
∫
Rd

eσ‖y‖1{‖y‖≥M}γ (dy) + 1

σ
R (θ ‖γ ) .

Note that the inequality holds trivially if θ �� γ . Therefore,

E
∫
Rd

‖y‖ 1{‖y‖≥M} L̄n(dy) = E
∫
Rd

‖y‖ 1{‖y‖≥M}μ̂n(dy)

≤
∫
Rd

eσ‖y‖1{‖y‖≥M}γ (dy) + 1

σ
ER

(
μ̂n ‖γ )

. (3.11)
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Since H(α) < ∞ for all α ∈ R
d , for each fixed σ the mapping y 	→ exp{σ ‖y‖} is

integrable with respect to γ . To see this, for λ > 0 let

m(λ)
.= sup

α∈Rd :‖α‖≤λ

eH(α) = sup
α∈Rd :‖α‖≤λ

∫
Rd

e〈α,y〉γ (dy).

From the continuity of α 	→ H(α) it follows thatm(λ) < ∞. For J ⊂ {1, . . . , d} let
R

d
J

.= {x ∈ R
d : xi ≥ 0 if and only if i ∈ J }, and define α J ∈ R

d by

α J
i

.= λ√
d
if i ∈ J and α J

i
.= − λ√

d
if i ∈ J c.

Then ‖α J‖ = λ for all J , and for all y ∈ R
d
J ,

〈α J , y〉 = λ√
d

d∑
i=1

|yi | ≥ λ√
d

‖y‖.

Thus

m(λ) ≥
∫
Rd

e〈α J ,y〉γ (dy) ≥
∫
R

d
J

e〈α J ,y〉γ (dy) ≥
∫
R

d
J

e
λ√
d
‖y‖

γ (dy),

and therefore
∫
Rd

e
λ√
d
‖y‖

γ (dy) =
∑
J

∫
R

d
J

e
λ√
d
‖y‖

γ (dy) ≤ 2dm(λ). (3.12)

Since λ > 0 is arbitrary, we get
∫
Rd exp{σ ‖y‖}γ (dy) < ∞ for every σ ∈ R, as

asserted.
The bound (3.4) on the relative entropy and Jensen’s inequality imply that the

last term in (3.11) is bounded by (2 ‖F‖∞ + 1)/σ . The conclusion of Lemma 3.9
follows by taking limits in (3.11), in the order n → ∞, M → ∞, and then σ → ∞.

�

Remark 3.10 The proofmost often given of Cramér’s theorem (e.g., as in [239]) uses
a change of measure argument for the large deviation lower bound and Chebyshev’s
inequality for the upper bound.This line of argument naturally produces the following
alternative form of the rate function as the Legendre-Fenchel transform of H :

L(β) = sup
α∈Rd

[〈α, β〉 − H(α)] .

By the uniqueness of rate functions [Theorem 1.15] it must be that I = L , though one
can also directly verify that the two coincide [Lemma 4.16]. Both characterizations
of the rate are useful. For example, the description as a Legendre transform easily
shows that I is convex, while the characterization in terms of relative entropy allows
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an easy calculation of the domain of finiteness of I . Note also that in principle, the
two different expressions can be used to obtain upper and lower bounds on I (β) for
any given β. The two descriptions are in fact dual to each other.

Remark 3.11 It is possible to prove Cramér’s theorem under just the condition that
there is δ > 0 such that H(α) < ∞ for all α with ‖α‖ ≤ δ. The main difficulty
imposed by this weaker condition is that boundedness of costs does not imply the
uniform integrability of controls that is used in the proof of the variational lower
bound. This can be bypassed by the use of unbounded test functions of the form
F(x) = ∞1Cc(x), where C is convex. In the proof of the variational upper bound
(large deviation lower bound) we can take C to be an open ball of radius δ > 0 about
a point x . Tightness follows, since here one picks controls that correspond to product
measure. For the lower bound one must first establish that lower bounds for convex
sets, which correspond to large deviation upper bounds, suffice to establish the full
large deviation upper bound. This can be shown by approximating the complement
of a level set of the rate function by a finite union of half-spaces (see the proof of
Cramér’s theorem in [239]), which uses the compactness of the level sets and an
open covering argument. Given that it is sufficient to prove the variational lower
bound for just convex sets, Jensen’s inequality can be used to move the expected
value inside F in the representation, and all that is required to complete the proof is
boundedness of E

∫
Rd xμ̂n(dx)when costs are bounded. Since boundedness of costs

implies boundedness of L(E
∫
Rd xμ̂n(dx)), this follows, since L has compact level

sets.

3.2 Representation for Functionals of Brownian Motion

Let (�,F , P) be a probability space and T ∈ (0,∞). A filtration {Ft }0≤t≤T is a
collection of sub-sigma fields ofF with the propertyFs ⊂ Ft for s ≤ t . A filtration
{Ft }0≤t≤T is called right continuous if∩s>tFs = Ft for every t ∈ [0, T ). A filtration
{Ft }t∈[0,T ] is said to satisfy the usual conditions if it is right continuous and for every
t ∈ [0, T ], Ft contains all P-null sets in F . All filtrations in this book will satisfy
the usual conditions. Suppose we are given such a filtration {Ft } on (�,F , P)

and that {W (t)}0≤t≤T is a k-dimensional Ft -Brownian motion, i.e., W (0) = 0;
W has continuous trajectories; W (t) is Ft -measurable for every t ∈ [0, T ]; and
W (t) − W (s) is independent ofFs for all 0 ≤ s ≤ t ≤ T and is normally distributed
with mean zero and variance (t − s). A standard choice of Ft is the sigma-field
σ {W (s) : 0 ≤ s ≤ t}, augmented with all P-null sets, i.e.,

Gt
.= σ {σ {W (s) : 0 ≤ s ≤ t} ∨ N } ,

where N = {A ⊂ �: there is B ∈ F with A ⊂ B and P(B) = 0}.
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Definition 3.12 An Rk-valued stochastic process {v(t)}0≤t≤T on (�,F , P) is said
to be Ft -progressively measurable if for every t ∈ [0, T ], the map (s, ω) 	→
v(s, ω) from ([0, t] × �,B([0, t]) ⊗ Ft ) to (Rk,B(Rk)) is measurable.

Definition 3.13 Let A [resp., ¯A ] denotes the collection of all Gt -progressively
[resp., Ft -progressively] measurable processes {v(t)}0≤t≤T that satisfy the integra-
bility condition E[∫ T

0 ‖v(t)‖2dt] < ∞.

The following representation theorem for bounded measurable functionals of a
Brownian motion is analogous to the one stated in Proposition 3.1 for functionals of
an iid sequence. It is a special case of a representation that will be proved in Chap. 8
[Theorem 8.3]. In the representation, the controlled measures have been replaced
by just a control process, and the relative entropy cost is the expected L2-norm of
this process. Recall that C ([0, T ] : Rk) denotes the space of Rk-valued continuous
functions on [0, T ]. This space is equipped with the uniform metric, which makes it
a Polish space.

Theorem 3.14 Let G be a bounded Borel measurable function mapping C ([0, T ] :
R

k) into R. Then

− log Ee−G(W ) = inf
v∈A

E

[
G

(
W +

∫ ·

0
v(s)ds

)
+ 1

2

∫ T

0
‖v(s)‖2ds

]
. (3.13)

Remark 3.15 The proof of this representation first appeared in [32]. The form of the
representation closely parallels the corresponding discrete time result for product
measure, reflecting the fact that Brownian motion is the integral of “white” noise,
and progressivemeasurability is analogous to the fact that in the representation for iid
noises, μ̄n

i is allowed to depend on all controlled noises up to time i − 1. In fact, if one
replaces W by the corresponding piecewise linear interpolation with interpolation
interval δ > 0 (which is equivalent to a collectionof 1/δ iid N (0, δ) randomvariables)
and assumes that the minimizing measures are Gaussian with means δv̄ni , then the L

2

cost in (3.13) corresponds to R
(
N (δv̄ni , δ) ‖N (0, δ)

) = δ‖v̄ni ‖2/2. The assumption
that one can restrict the discrete time measures to those of the form N (δv̄ni , δ) is valid
in the limit δ → 0, which is why the continuous time representation is in some ways
simpler than the corresponding discrete time representation.

Remark 3.16 One can replace the classA with ¯A in (3.13) (see Chap.8). Although
in this chapter we use progressively measurable controls (as in [32]), in Chap. 8 these
are replaced by predictable controls. For the case of Brownian motion, the two are
interchangeable, since any Gt [resp., Ft ] predictable process satisfying the square
integrability condition in Definition 3.13 is inA [resp., ¯A ], and conversely, to any v
in A [resp., ¯A ] there is a predictable ṽ in A [resp., ¯A ] such that v(t, ω) = ṽ(t, ω)

a.s. dt × P; see [168, Remark 3.3.1]. However, predictability is needed for the case
of processes with jumps, e.g., systems driven by a Poisson random measure.

We next state a version of the representation that restricts the class of controls to
a compact set. For M ∈ [0,∞) let
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SM
.=

{
φ ∈ L 2([0, T ] : Rk) :

∫ T

0
‖φ(s)‖2 ds ≤ M

}
,

whereL 2([0, T ] : Rk) is theHilbert space of square integrable functions from [0, T ]
to R

k , and define Ab,M to be the subset of A such that v ∈ Ab,M if v(ω) ∈ SM for
all ω ∈ �. Let Ab = ∪∞

M=1Ab,M . In the statement of the theorem, we introduce a
scaling that will be appropriate for large deviation analysis of small noise diffusions.

Theorem 3.17 Let G be a bounded Borel measurable function mapping C ([0, T ] :
R

k) into R and let δ > 0. Then there exist M < ∞ depending on ‖G‖∞ and δ such
that for all ε ∈ (0, 1),

− ε log E exp

{
−1

ε
G(

√
εW )

}
(3.14)

≥ inf
v∈A b,M

E

[
G

(√
εW +

∫ ·

0
v(s)ds

)
+ 1

2

∫ T

0
‖v(s)‖2ds

]
− δ.

Proof To consolidate notation, for v ∈ A let Wv .= W + ∫ ·
0 v(s)ds. For the given

ε ∈ (0, 1) and η ∈ (0, 1), choose ṽε ∈ A such that

inf
v∈A

E

[
G

(√
εWv/

√
ε
)

+ 1

2

∫ T

0
‖v‖2 ds

]

≥ E

[
G

(√
εWṽε/

√
ε
)

+ 1

2

∫ T

0
‖ṽε‖2 ds

]
− η.

From the boundedness of G it follows that

∞ > CG
.= 2(2 ‖G‖∞ + 1) ≥ sup

ε∈(0,1)
E

[∫ T

0
‖ṽε(s)‖2 ds

]
.

We next show using an approximation argument that one can in fact assume an
almost sure bound. For M ∈ (0,∞) let

τ ε
M

.= inf

[
t ∈ [0, T ] :

∫ t

0
‖ṽε(s)‖2 ds ≥ M

]
∧ T .

Note that vε defined by vε(s)
.= ṽε(s)1[0,τ ε

M ](s), s ∈ [0, T ] is an element of A , and
that vε ∈ SM a.s. Note also that

E

[
G

(√
εWṽε/

√
ε
)

+ 1

2

∫ T

0
‖ṽε(s)‖2 ds

]

≥ E

[
G

(√
εWvε/

√
ε
)

+ 1

2

∫ T

0
‖vε(s)‖2 ds

]
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+ E
[
G

(√
εWṽε/

√
ε
)

− G
(√

εWvε/
√

ε
)]

.

By Chebyshev’s inequality,

E
[∣∣∣G (√

εWṽε/
√

ε
)

− G
(√

εWvε/
√

ε
)∣∣∣] ≤ 2 ‖G‖∞ P{τ ε

M < T } ≤ 2 ‖G‖∞
CG

M
.

For δ > 0, let M = (2 ‖G‖∞ CG + 1)/δ. Then for all ε ∈ (0, 1),

E

[
G

(√
εWṽε/

√
ε
)

+ 1

2

∫ T

0
‖ṽε(s)‖2 ds

]

≥ E

[
G

(√
εWvε/

√
ε
)

+ 1

2

∫ T

0
‖vε(s)‖2 ds

]
− δ.

Since η > 0 is arbitrary, the conclusion of the theorem follows from the last display
and Theorem 3.14. �

3.2.1 Large Deviation Theory of Small Noise Diffusions

The representation (3.13) and its variant (3.14) are very convenient for weak con-
vergence large deviation analysis, and in many ways they make the continuous time
setting simpler than the corresponding discrete time setting. As an illustration of
their use we prove the large deviation principle for a class of small noise diffusions.
While fairly general, the assumptions on the coefficients are chosen to make the
presentation simple, and they can be significantly relaxed.

Condition 3.18 There is C ∈ (0,∞) such that b : Rd → R
d and σ : Rd → R

d×k

satisfy

‖b(x) − b(y)‖ + ‖σ(x) − σ(y)‖ ≤ C ‖x − y‖ , ‖b(x)‖ + ‖σ(x)‖ ≤ C(1 + ‖x‖)

for all x, y ∈ R
d .

Fix x ∈ R
d , and for ε > 0 let X ε = {X ε(t)}0≤t≤T be the strong solution of the

stochastic differential equation (SDE) (cf. [172, Sect. 5.2])

dX ε(t) = b(X ε(t))dt + √
εσ (X ε(t))dW (t), X ε(0) = x . (3.15)

LetA C x ([0, T ] : Rd) denote the space ofRd -valued absolutely continuous func-
tions ϕ on [0, T ] with ϕ(0) = x . Also, for ϕ ∈ A C x ([0, T ] : Rd), let
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Uϕ =
{
u ∈ L 2([0, T ] : Rk) : ϕ(·) = x +

∫ ·

0
b(ϕ(s))ds +

∫ ·

0
σ(ϕ(s))u(s)ds

}
.

(3.16)
For all other ϕ ∈ C ([0, T ] : Rd) let Uϕ be the empty set. The following large devi-
ation principle for such small noise diffusions is one of the classical results in the
theory [140]. Following our standard convention, the infimum over the empty set is
taken to be ∞.

Theorem 3.19 Assume Condition 3.18. Then the collection {X ε}ε∈(0,1) satisfies the
LDP on C ([0, T ] : Rd) with rate function

I (ϕ)
.= inf

u∈Uϕ

[
1

2

∫ T

0
‖u(t)‖2dt

]
.

To prove the theorem, we must show that I is a rate function and for bounded and
continuous F : C ([0, T ] : Rd) → R,

lim
ε→0

−ε log E exp

{
−1

ε
F(X ε)

}
= inf

ϕ∈C ([0,T ]:Rd )
[F(ϕ) + I (ϕ)] .

Following a convention that is used here for the first time, we present the proof just
for the case T = 1, noting that the general case involves only notational differences.
The first step is to interpret F(X ε) as a bounded measurable function of W . From
unique pathwise solvability of the SDE in (3.15) [172, Definition 5.3.2 and Corollary
5.3.23] it follows that for each ε > 0, there is a measurable map G ε : C ([0, 1] :
R

k) → C ([0, 1] : Rd) such that whenever W̃ is a k-dimensional standard Brownian
motion given on some probability space (�̃, F̃ , P̃), then X̃ ε = G ε(

√
εW̃ ) is the

unique solution of the SDE (3.15) with W replaced by W̃ . Recalling the notation
Wv .= W + ∫ ·

0 v(s)ds, this says that

−ε log E exp

{
−1

ε
F(X ε)

}
= − ε log E exp

{
−1

ε
F ◦ G ε(

√
εW )

}

= inf
v∈A

E

[
F ◦ G ε(

√
εWv/

√
ε) + 1

2

∫ 1

0
‖v(s)‖2 ds

]
.

Assume that v ∈ Ab,M for some M < ∞, and consider the probability measure Qε

on (�,F ) defined by

dQε

dP
= exp

[
− 1√

ε

∫ 1

0
v(s)dW (s) − 1

2ε

∫ 1

0
‖v(s)‖2 ds

]
.

From Girsanov’s theorem (see Theorem D.1) it follows that Qε{√εWv/
√

ε ∈ ·} =
P{√εW ∈ ·}. Consequently X̄ ε = G ε(

√
εWv/

√
ε) solves the SDE

d X̄ ε(t) = b(X̄ ε(t))dt + √
εσ (X̄ ε(t))dWv/

√
ε(t), X̄ ε(0) = x
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on the filtered probability space (�,F , Qε, {Ft }). Since Qε is mutually absolutely
continuouswith respect to P , it follows that X̄ ε is the unique solution of the following
SDE on (�,F , P, {Ft }):

d X̄ ε(t) = b(X̄ ε(t))dt + √
εσ (X̄ ε(t))dW (t) + σ(X̄ ε(t))v(t)dt, X̄ ε(0) = x .

(3.17)
Thuswhenever v ∈ Ab,M , we have thatG ε(

√
εWv/

√
ε) and the solution to (3.17) coin-

cide. A collection of controls {vε} ⊂ Ab,M for fixed M < ∞ will be regarded as a
collection of SM -valued randomvariables,where SM is equippedwith theweak topol-
ogy on the Hilbert space L 2([0, 1] : Rd). Recall that in a Hilbert space (H , 〈·, ·〉),
fn → f under the weak topology if for all g ∈ H , 〈 fn − f, g〉 → 0. Since SM is
weakly compact inL 2([0, 1] : Rd), such a collection is automatically tight.

We now turn to the proof of the LDP, which will follow the same scheme of proof
as in Sanov’s theorem. Thus we first prove a tightness result and show how to relate
the weak limits of controls and controlled processes. The proof of the variational
lower bound (which corresponds to the Laplace upper bound) as well as the proof
that I is a rate function follows, and we conclude with the proof of the variational
upper bound (Laplace lower bound).

3.2.2 Tightness and Weak Convergence

As noted above, a collection of controls {vε} ⊂ Ab,M is trivially tight, since SM is
compact. The following lemma shows that the corresponding collection of solutions
of controlled SDEs is also tight.

Lemma 3.20 Assume Condition 3.18. Consider any collection of controls {vε} ⊂
Ab,M for fixed M < ∞, and define X̄ ε by (3.17) with v = vε. Then {(X̄ ε, vε)}ε∈(0,1)

is a tight collection of C ([0, 1] : Rd) × SM-valued random variables.

Proof Tightness of {vε} is immediate. Since for ε ∈ (0, 1),
∫ 1
0 ‖vε(s)‖2ds ≤ M a.s.,

it follows on using the linear growth properties of the coefficients and an application
of Gronwall’s lemma [Lemma E.2] that

sup
ε∈(0,1)

E sup
0≤t≤1

‖X̄ ε(t)‖2 < ∞. (3.18)

Also note that

X̄ ε(t) − x =
∫ t

0
b(X̄ ε(s))ds + √

ε

∫ t

0
σ(X̄ ε(s))dW (s) +

∫ t

0
σ(X̄ ε(s))vε(s)ds.

(3.19)
The first and second terms on the right side are easily seen to be tight inC ([0, 1] : Rd)

using themoment bound (3.18). Tightness of the third follows on using the inequality
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∥∥∥∥
∫ t

s
σ(X̄ ε(r))vε(r)dr

∥∥∥∥ ≤ C(t − s)1/2
(
1 + sup

0≤t≤1
‖X̄ ε(t)‖

) (∫ 1

0
‖vε(r)‖2 dr

)1/2

≤ C(t − s)1/2M1/2

(
1 + sup

0≤t≤1
‖X̄ ε(t)‖

)

for 0 ≤ s ≤ t ≤ 1 and once more using the moment bound. �

The following lemma will be used to characterize the limit points of {(X̄ ε, vε)}.
Lemma 3.21 Assume Condition 3.18. Suppose for each ε ∈ (0, 1) that (X̄ ε, vε)

solves (3.19), and that (X̄ ε, vε) converges weakly to (X̄ , v) as ε → 0. Then w.p.1,

X̄(t) − x =
∫ t

0
b(X̄(s))ds +

∫ t

0
σ(X̄(s))v(s)ds. (3.20)

Proof By a standard martingale bound (see (D.3) and Sect.D.2.1),

E sup
0≤t≤T

∥∥∥∥
∫ t

0
σ(X̄ ε(r))dW (r)

∥∥∥∥
2

≤ C
∫ T

0
E

(
1 + ‖X̄ ε(r)‖2) dr,

and thus using the moment bound in (3.18), the stochastic integral term in (3.19)
converges to 0 as ε → 0. By the continuousmapping theorem, it suffices to check that
for each t ∈ [0, 1], the maps φ 	→ ∫ t

0 b(φ(s))ds and (φ, u) 	→ ∫ t
0 σ(φ(s))u(s)ds,

from C ([0, 1] : Rd) toRd and from C ([0, 1] : Rd) × SM toRd , are continuous. The
continuity of the first map is immediate from the Lipschitz property of b. Consider
now the second map. Suppose φn → φ in C ([0, 1] : Rd) and un → u in SM as
n → ∞. We can write

∫ t

0
σ(φn(s))un(s)ds −

∫ t

0
σ(φ(s))u(s)ds

=
∫ t

0
[σ(φn(s)) − σ(φ(s))] un(s)ds +

∫ t

0
σ(φ(s)) [un(s) − u(s)] ds.

The first term tends to zero by Hölder’s inequality and since un ∈ SM , and the second
converges to zero since s 	→ σ(φ(s))1[0,t](s) is in L 2([0, 1] : Rd) and un → u in
SM . �

3.2.3 Laplace Upper Bound

We now prove the Laplace upper bound by establishing the lower bound

lim inf
ε→0

−ε log E exp

{
−1

ε
F(X ε)

}
≥ inf

ϕ∈C ([0,1]:Rd )
[F(ϕ) + I (ϕ)]. (3.21)
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We prove (3.21) using the variational representation. It suffices to show that for every
sequence εk → 0 there is a further subsequence for which (3.21) holds when the limit
inferior on the left side is taken along the particular subsequence. Let δ > 0, and with
G = F ◦ G ε choose M according to Theorem 3.17 (note that M does not depend
on ε), and choose a sequence {vε} ⊂ Ab,M that is within δ of the infimum in (3.14).
We now fix a sequence {εk}. From Lemma 3.20 we can find a subsequence along
which (X̄ εk , vεk ) converges in distribution. For notational convenience, we index this
subsequence once more by ε. Denoting the weak limit of (X̄ ε, vε) by (X̄ , v), we have
from Lemma 3.21 that X̄ is the unique solution of (3.20). Therefore

lim inf
ε→0

−ε log E exp

{
−1

ε
F(X ε)

}
+ 2δ

≥ lim inf
ε→0

E

[
F(X̄ ε) + 1

2

∫ 1

0
‖vε(s)‖2 ds

]

≥ E

[
F(X̄) + 1

2

∫ 1

0
‖v(s)‖2 ds

]

≥ inf
ϕ∈C ([0,1]:Rd )

[F(ϕ) + I (ϕ)] .

Here the second inequality is a consequence of Fatou’s lemma and the lower semi-
continuity of the map φ 	→ ∫ 1

0 ‖φ(s)‖2 ds fromL 2([0, 1] : Rd) to R with the weak
topology onL 2([0, 1] : Rd). Recalling the definition ofUϕ in (3.16), the last inequal-
ity follows from the a.s. inequality

F(X̄) + 1

2

∫ 1

0
‖v(s)‖2 ds ≥ F(X̄) + inf

u∈UX̄

[
1

2

∫ 1

0
‖u(s)‖2 ds

]

≥ inf
ϕ∈C ([0,1]:Rd )

[F(ϕ) + I (ϕ)] .

Since δ > 0 is arbitrary, (3.21) follows. �

3.2.4 Compactness of Level Sets

We now argue that I introduced in Theorem3.19 is a rate function, which requires
that we show that it has compact level sets. As we will see, it is essentially just a
deterministic version of the argument used for the Laplace upper bound (variational
lower bound). This is in fact generic in the weak convergence approach to large
deviations and not at all surprising, in that the main difference between these two
arguments is that the variational lower bound has the additional complication of a
law of large numbers limit as the large deviation parameter tends to its limit, an item
missing in the corresponding and purely deterministic analysis of the rate function.
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LetM ∈ (0,∞) and let {ϕn} ⊂ C ([0, 1] : Rd) be a sequence such that I (ϕn) ≤ M
for all n ∈ N. Choose un ∈ Uϕn such that 1

2

∫ 1
0 ‖un(s)‖2 ds ≤ M + 1/n. Then the

sequence {un} is contained in the (weakly) compact set S2(M+1). Let u be a limit
point of un along some subsequence. Then 1

2

∫ 1
0 ‖u(s)‖2 ds ≤ M . Also, a simpler

version of an argument in the proof of Lemma 3.21 shows that along the same
subsequence, ϕn(·) converges to ϕ(·), where ϕ is the unique solution of ϕ(t) =
x + ∫ t

0 (b(ϕ(s)) + σ(ϕ(s))u(s)) ds. In particular, u ∈ Uϕ and thus I (ϕ) ≤ M . This
proves the compactness of level sets of I . �

3.2.5 Laplace Lower Bound

To prove the Laplace lower bound we use the variational representation to show that

lim sup
ε→0

−ε log E exp

{
−1

ε
F(X ε)

}
≤ inf

ϕ∈C ([0,1]:Rd )
[F(ϕ) + I (ϕ)].

For δ > 0 choose ϕ∗ ∈ C ([0, 1] : Rd) such that

F(ϕ∗) + I (ϕ∗) ≤ inf
ϕ∈C ([0,1]:Rd )

[F(ϕ) + I (ϕ)] + δ.

Let u ∈ Uϕ∗ be such that 1
2

∫ 1
0 ‖u(s)‖2ds ≤ I (ϕ∗) + δ, so that in particular, u ∈

Ab,2(I (ϕ∗)+δ). Let X̄ ε be the unique solution of (3.17) when we replace v on the
right side of the equation by u. By Lemmas 3.20 and 3.21 on tightness and weak
convergence, X̄ ε converges in probability to ϕ∗. Thus

lim sup
ε→0

− ε log Ee− 1
ε
F(X ε)

= lim sup
ε→0

inf
v∈A

E

[
F ◦ G ε(

√
εWv/

√
ε) + 1

2

∫ 1

0
‖v(s)‖2ds

]

≤ lim sup
ε→0

E

[
F

(
X̄ ε

) + 1

2

∫ 1

0
‖u(s)‖2ds

]

= F
(
ϕ∗) + 1

2

∫ 1

0
‖u(s)‖2ds

≤ F
(
ϕ∗) + I

(
ϕ∗) + δ

≤ inf
ϕ∈C ([0,1]:Rd )

[F (ϕ) + I (ϕ)] + 2δ.

Since δ > 0 is arbitrary, the upper bound follows. �

Remark 3.22 One can consider the form

I (ϕ)
.= inf

u∈Uϕ

[
1

2

∫ T

0
‖u(t)‖2dt

]
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of the rate function, where Uϕ are those u satisfying ϕ(t) = x + ∫ t
0 b(ϕ(s))ds +∫ t

0 σ(ϕ(s))u(s)ds, as a “control” formulation. If σ(x) is d × d and invertible for all
x ∈ R

d , then one can solve for u and obtain the calculus of variations form

I (ϕ)
.=

∫ T

0

1

2

〈
(ϕ̇(t) − b(ϕ(t))), [σσ T (ϕ(t))]−1(ϕ̇(t) − b(ϕ(t)))

〉
dt,

where σ T is the transpose of σ .

3.3 Representation for Functionals of a Poisson Process

Our final example in this chapter is the representation for positive functionals of a
Poisson process. This example will be substantially generalized in Chap.8, where
we prove the representation for a Poisson random measure (PRM) on an arbitrary
locally compact Polish space. The representation for a PRM allows the treatment of a
much broader class of process models, and in particular when used as a driving noise,
a PRM can easily accommodate both state-dependent jump rates and jumps sizes,
while a Poisson process (which is essentially a PRM with only one “type” of point)
is limited to state dependence of jump sizes. However, the purpose of this chapter is
to illustrate the use of representations, and we prefer to postpone the notation and
terminology required for the general case of a PRM.

Fix T ∈ (0,∞) and let (�,F , P) be a probability spacewith filtration {Ft }0≤t≤T

satisfying the usual conditions. Recall that D([0, T ] : R) is the space of func-
tions from [0, T ] to R that are right continuous and with limits from the left at
each t ∈ (0, T ]. As noted in Chap.2, there is a metric that is consistent with the
usual Skorohod topology that makes this a Polish space [24, Chap.3, Sect. 12].
An Ft -Poisson process is a measurable mapping N from � into D([0, T ] : R)

such that N (t) is Ft -measurable for every t ∈ [0, T ], and for all 0 ≤ t < s ≤ T ,
N (s) − N (t) is independent of Ft and has a Poisson distribution with parame-
ter s − t : P(N (s) − N (t) = j) = (s − t) j e−(s−t)/j !. We say that such a standard
Poisson process has jump intensity or jump rate 1, since the probability that
N (s) − N (t) = 1 is approximately s − t when this difference is small [and the prob-
ability of more than one jump is o(s − t)].

In contrast to the case of Brownianmotion, in which the natural controlled version
shifts the mean, here the controlled version will shift the jump rate and pay the
appropriate cost suggested by Girsanov’s theorem for Poisson processes (see, for
example, Theorem 8.15). There are various ways to construct Poisson processes
with general jump rates on a common probability space. The most convenient one
requires the use of a PRM on the space [0, T ] × [0,∞) and with intensity measure
equal to Lebesgue measure on this space (see Chap.8 for definitions and associated
terminology). In this framework the Poisson process on [0, T ] is considered a PRM
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on [0, T ], and to accommodate general controls we suitably enlarge the space. We
do not give the details here, but instead just state the outcome of this construction.

One can construct a probability space
(
�̄, F̄ , P̄

)
, and on this space a filtration

{F̄t }0≤t≤T satisfying the usual conditions, such that the following properties hold.
Let θ ∈ (0,∞) (later θ will play the role of a large deviation parameter). Denote by
A the collection of predictable processes ϕ : [0, T ] × �̄ → [0,∞) (see Definition
8.2 for the definition of predictability in a general setting) such that

∫ T
0 ϕ(s)ds < ∞

a.s. Predictable processes are in a suitable way not allowed to anticipate the jumps of
a Poisson process with respect to the same filtration, and hence are the appropriate
analogue of the class of controls used for representations in discrete time. Associated
with each ϕ ∈ A one can construct a “controlled” Poisson process N θϕ with jump
intensity θϕ and jump size 1. To be precise, N θϕ is an F̄t -adapted stochastic process
with trajectories inD([0, T ] : R) such that for every bounded function f : [0,∞) →
[0,∞),

f (N θϕ(t)) − f (0) − θ

∫ t

0
ϕ(s)

[
f (N θϕ(s) + 1) − f (N θϕ(s))

]
ds

is an F̄t -martingale, and N θϕ(0) = 0. Note that N θ is an ordinary Poisson process
with constant jump intensity θ and jump size 1.

In terms of these controls and controlled processes, we have the following rep-
resentation. Recall the function � introduced in (3.10): for r ∈ [0,∞), we have
�(r)

.= r log r − r + 1, with the convention that 0 log 0 = 0. We consider all pro-
cesses N θϕ to be random variables with values in D([0, T ] : R). We also introduce

SM
.=

{
φ ∈ L 0([0, T ] : R+) :

∫ T

0
�(φ(s))ds ≤ M

}
,

whereL 0([0, T ] : R+) denotes the space of Borel-measurable functions from [0, T ]
to [0,∞), and given M ∈ (0,∞) define Ab,M to be the subset of A such that
ϕ ∈ Ab,M implies ϕ(ω) ∈ SM for all ω ∈ �̄ and for some K ∈ (0,∞) (possibly
depending on ϕ), K−1 ≤ ϕ ≤ K , a.s. Also, let Ab = ∪∞

M=1Ab,M . The spaces SM ,
Ab,M , Ab in this section play an analogous role for Poisson processes to that of the
corresponding spaces introduced in Sect. 3.2 for the Brownian motion case.

Theorem 3.23 Let G be a bounded Borel measurable function mappingD([0, T ] :
R) into R and let θ ∈ (0,∞). Then

− log E exp{−G(N θ )} = inf
ϕ∈A

E

[
G

(
N θϕ

) + θ

∫ T

0
�(ϕ(s))ds

]
.

If δ > 0, then there exists M < ∞ depending on ‖G‖∞ and δ such that for all
θ ∈ (0,∞),
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− 1

θ
log E exp

{−θG(N θ )
} ≥ inf

ϕ∈A b,M

E

[
G

(
N θϕ

) +
∫ T

0
�(ϕ(s))ds

]
− δ. (3.22)

The proof of Theorem 3.23 follows as a special case of more general results
[Theorems 8.12 and 8.13] that will be proved in Chap.8. In particular, the general
result will show that A can be replaced by Ab in the first representation. We now
show how this representation can be used to obtain a large deviation principle for
SDEs driven by a Poisson process. We begin with a condition on the coefficients that
can be relaxed substantially (see, for example, Chap. 10).

Condition 3.24 There is C ∈ (0,∞) such that b : R → R and σ : R → R satisfy

|b(x) − b(y)| + |σ(x) − σ(y)| ≤ C |x − y| and |b(x)| + |σ(x)| ≤ C

for all x, y ∈ R.

Fix x ∈ R, and for n ∈ N let Xn = {Xn(t)}0≤t≤T be the pathwise solution of the
SDE

dXn(t) = b(Xn(t))dt + 1

n
σ(Xn(t−))dNn(t), Xn(0) = x, (3.23)

where Xn(t−)denotes the limit from the left.One can explicitly construct the solution
in terms of the jump times {tni }i∈N of Nn(·). With probability 1, these jump times
satisfy 0 < tn1 < tn2 < · · · and tni → ∞. Letting tn0 = 0 and Xn(tn0 ) = x , we then
recursively define Xn(t) as follows. Assuming that Xn(tni ) is given, let

Ẋ n(t) = b(Xn(t)) for t ∈ (tni , tni+1)

and then set Xn(tni+1)
.= Xn(tni+1−) + σ(Xn(tni+1−))/n. With Xn(tni+1) now given,

we repeat the procedure, and since tni → ∞, the constructionon [0, T ] iswell defined.
For ψ ∈ A C x ([0, T ] : R), let

Uψ =
{
γ ∈ L 1([0, T ] : R+) : ψ(·) = x +

∫ ·

0
b(ψ(s))ds +

∫ ·

0
σ(ψ(s))γ (s)ds

}
,

(3.24)
where L 1([0, T ] : R+) is the space of R+-valued integrable functions on [0, T ].
Theorem 3.25 Assume Condition 3.24. Then the collection {Xn}n∈N satisfies the
LDP on D([0, T ] : R) with rate function

I (ψ)
.= inf

γ∈Uψ

[∫ T

0
�(γ (t))dt

]
.

The proof of this theorem is a close parallel to that of Brownian motion, and
because of this we do not separate the proof into a series of statements (lemmas,
propositions, etc.) and their proofs. We must show that I is a rate function and that
for every bounded and continuous F : D([0, T ] : R) → R,
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lim
n→∞ −1

n
log E exp

{−nF(Xn)
} = inf

ψ∈D ([0,T ]:R)
[F(ψ) + I (ψ)] .

Following our convention, we consider just the case T = 1. We have already explic-
itly identified the measurable map G n : D([0, 1] : R) → D([0, 1] : R) such that
whenever Ñ n is a Poisson process with rate n on some probability space (�̃, F̃ , P̃),
then X̃ n = G n(Ñ n) is the unique solution of the SDE (3.23) with Nn replaced by
Ñ n . Hence by Theorem 3.23 with θ = n,

−1

n
log E exp

{−nF(Xn)
} = − 1

n
log E exp

{−nF ◦ G n(Nn)
}

= inf
ϕ∈A

E

[
F ◦ G n(Nnϕ) +

∫ 1

0
�(ϕ(t))dt

]
.

Analogous to the case of Brownian motion, if ϕ ∈ Ab,M for some M < ∞, then
X̄ n = G n(Nnϕ) is the solution of the SDE

d X̄n(t) = b(X̄ n(t))dt + σ(X̄ n(t−))dNnϕ(t), X̄ n(0) = x . (3.25)

Here, the important property that follows from ϕ ∈ Ab,M is that it guarantees (as
easily follows from Girsanov’s formula) that the jump times of Nnϕ tend to∞w.p.1,
and so the recursive construction of X̄ n is well defined on [0, 1].

A distinction with respect to the case of Brownian motion is that it is no longer
appropriate to consider SM as a subset of a Hilbert space. Instead, wewill identify SM
with a compact space of measures. In particular, associated with each element γ of
SM is a measure νγ on ([0, 1],B([0, 1])) defined by νγ (ds)

.= γ (s)m(ds), wherem
denotes Lebesgue measure. As discussed in Lemma A.11, when considered with the
natural generalization of the weak topology from probability measures to measures
with finite total measure, SM is a compact Polish space.

Next suppose that Condition 3.24 holds. Consider any collection of controls
{ϕn} ⊂ Ab,M for fixed M < ∞, and define X̄ n by (3.25) with ϕ = ϕn . We claim
that {(X̄ n, ϕn)}n∈N is a tight collection of D([0, 1] : R) × SM -valued random vari-
ables. Tightness of {ϕn} follows from the compactness of SM . For the tightness of
{X̄ n}, we consider the Doob decomposition

X̄ n(t) − x =
∫ t

0
b(X̄ n(s))ds + 1

n

∫ t

0
σ(X̄ n(s−))dNnϕn

(s)

=
∫ t

0
b(X̄ n(s))ds +

∫ t

0
σ(X̄ n(s))ϕn(s)ds

+
∫ t

0
σ(X̄ n(s−))[dNnϕn

(s)/n − ϕn(s)]ds. (3.26)

Since the restriction of the Skorohod metric to C ([0, 1] : R) is equivalent to the
standard uniform metric, it suffices, for the first two terms, to show tightness in
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C ([0, 1] : R). Tightness of the first follows from ‖b‖∞ ≤ C . For the second term we
use the bound ab ≤ eca + �(b)/c, valid for a ≥ 0, b ≥ 0 and c ≥ 1 [see (2.9)]. For
all 0 ≤ s ≤ t ≤ 1,

∫ t

s
σ(X̄ n(r))ϕn(r)dr ≤

∫ t

s
[ec‖σ‖∞ + �(ϕn(r))/c]dr ≤ (t − s)ec‖σ‖∞ + 1

c
M.

This shows equicontinuity of the second term in (3.26) that is uniform inω, and tight-
ness of that term follows. Let Qn(t) denote the third term. This term is a martingale
with quadratic variation (see Sects.D.1 and D.2.2) [Qn]t bounded above by

1

n2
‖σ‖2∞ ENnϕn

(1) = 1

n
‖σ‖2∞ E

∫ 1

0
ϕn(s)ds ≤ 1

n
‖σ‖2∞ (e + M) ,

where b ≤ e + �(b) is used for the last inequality. By the Burkholder–Gundy–Davis
inequality (see (D.3) in Sect.D.1), E supt∈[0,1] |Qn(t)| ≤ C1E[Qn]1/21 → 0 for some
C1 ∈ (0,∞). Thus by Chebyshev’s inequality, Qn converges weakly to zero uni-
formly in t , which both shows tightness and identifies the limit. Since all three terms
on the right-hand side of (3.26) are tight (and limit points are continuous a.s.), so is
{X̄ n}.

To identify weak limits along any convergent subsequence, we need to know that
if γn → γ in SM and ψn → ψ uniformly, then

∫ t

0
σ(ψn(s))γn(s)ds →

∫ t

0
σ(ψ(s))γ (s)ds. (3.27)

Again using b ≤ e + �(b), we have

∣∣∣∣
∫ t

0
[σ(ψn(s)) − σ(ψ(s))]γn(s)ds

∣∣∣∣ ≤ sup
s∈[0,1]

|σ(ψn(s)) − σ(ψ(s))|
∫ t

0
γn(s)ds

≤ sup
s∈[0,1]

|σ(ψn(s)) − σ(ψ(s))| (e + M)

→ 0

as n → ∞. To show that

∫ t

0
σ(ψ(s))[γn(s) − γ (s)]ds → 0,

we use that νγn (ds)
.= γn(s)m(ds) converges in the weak topology to νγ (ds). Since

s 	→ 1[0,t](s)σ (ψ(s)) is bounded and discontinuous only at s = t and νγ ({t}) = 0,
the last display is valid, and this completes the proof of (3.27).

Consider any subsequence of {(X̄ n, ϕn)}n∈N that converges in distribution with
limit (X̄ , ϕ). Sending n → ∞ in (3.26) and using (3.27) establishes thew.p.1 relation
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X̄(t) − x =
∫ t

0
b(X̄(s))ds +

∫ t

0
σ(X̄(s))ϕ(s)ds. (3.28)

The rest of the proof is now essentially identical to that for Brownian motion. For
the Laplace upper bound, we need to show that

lim inf
n→∞ −1

n
log E exp

{−nF(Xn)
} ≥ inf

ψ∈D ([0,1]:R)
[F(ψ) + I (ψ)] .

Let δ > 0, chooseM according toTheorem3.23, and choose a sequence {ϕn} ⊂ Ab,M

that iswithin δ of the infimum in the representation (3.22) (withG replaced by F ◦ G n

and θ replaced by n). Fix any subsequence of n and choose a further subsequence
(again denoted by n) along which (X̄ n, ϕn) converges in distribution to (X̄ , ϕ). Then

lim inf
n→∞ −1

n
log E exp

{−nF(Xn)
} + 2δ

≥ lim inf
n→∞ E

[
F(X̄ n) +

∫ 1

0
�(ϕn(s))ds

]

≥ E

[
F(X̄) +

∫ 1

0
�(ϕ(s))ds

]

≥ inf
ψ∈D ([0,1]:R)

[F(ψ) + I (ψ)] ,

where the second inequality uses Fatou’s lemma and the lower semicontinuity of the
map ϕ 	→ ∫ 1

0 �(ϕ(s))ds from SM to [0,∞). Recalling the definition ofUψ in (3.24),
the last inequality is a consequence of the a.s. inequality

F(X̄) +
∫ 1

0
�(ϕ(s))ds ≥ F(X̄) + inf

ϕ∈UX̄

[∫ 1

0
�(ϕ(s))ds

]

≥ inf
ψ∈D ([0,1]:R)

[F(ψ) + I (ψ)] .

Since δ > 0 is arbitrary, the Laplace upper bound follows.
As in Sect. 3.2.4, a deterministic version of the argument used for the Laplace

upper bound gives the compactness of level sets for the rate function, and so this
argument is omitted. To complete the proof, all that remains is the Laplace lower
bound, which requires that for bounded and continuous F ,

lim sup
n→∞

−1

n
log E exp

{−nF(Xn)
} ≤ inf

ψ∈D ([0,1]:R)
[F(ψ) + I (ψ)] .

For δ > 0 choose ψ∗ ∈ D([0, 1] : R) such that

F(ψ∗) + I (ψ∗) ≤ inf
ψ∈D ([0,1]:R)

[F(ψ) + I (ψ)] + δ.
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Let ϕ ∈ Uψ∗ be such that
∫ 1
0 �(ϕ(s))ds ≤ I (ψ∗) + δ. We now approximate ϕ with

an element in Ab,M , where M = I (ψ∗) + δ. For q ∈ N let

ϕq(t) =
(

ϕ(t) ∨ 1

q

)
∧ q.

Then ϕq ∈ Ab,M and
∫ 1
0 �(ϕq(s))ds ↑ ∫ 1

0 �(ϕ(s))ds as q → ∞. Let ψ∗
q be the solu-

tion of (3.28) with ϕ replaced by ϕq . It is easily seen that ψ∗
q → ψ∗ in C ([0, 1] : R)

as q → ∞. Let X̄ n be the unique solution of (3.25) with ϕ replaced by ϕq . The
tightness of (X̄ n, ϕq) and identification of limits is exactly as in the proof of the
Laplace upper bound, since ϕq ∈ Ab,M . Using the uniqueness of solutions to the
limit ordinary differential equation (ODE), X̄ n converges in probability to ψ∗

q . Thus

lim sup
n→∞

−1

n
log Ee−nF(Xn) ≤ lim sup

n→∞
E

[
F

(
X̄ n

) +
∫ 1

0
�(ϕq(s))ds

]

= F
(
ψ∗

q

) +
∫ 1

0
�(ϕq(s))ds.

Sending q → ∞, we now have

lim sup
n→∞

−1

n
log Ee−nF(Xn) ≤ F

(
ψ∗) +

∫ 1

0
�(ϕ(s))ds

≤ F
(
ψ∗) + I

(
ψ∗) + δ

≤ inf
ψ∈D ([0,1]:R)

[F (ψ) + I (ψ)] + 2δ.

Since δ > 0 is arbitrary, the upper bound follows, thus completing the proof of
Theorem 3.25. �

3.4 Notes

Our treatment of Sanov’s theorem [228] follows very closely the one in [97], though
as noted in the introduction we use the representation based on the chain rule rather
than that based on dynamic programming. The proof of Cramér’s theorem [68] differs
from that of [97] and follows a line of argument that will be used elsewhere, which is
that to analyze discrete time “small noise” problems, we first establish an empirical-
measure-type large deviation result for the driving noises, and then (in combination
with integrability properties of the noise) obtain the large deviation properties of a
process driven by these noises through a continuous-mapping-type argument.

The proof of large deviation estimates for small noise diffusions is taken from [32],
and it suggests why the more highly structured setting of continuous time Markov
processes is, given the appropriate representations, easier than for discrete time. The
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solution mapping to the SDE (3.15) is not continuous, since if it were, we would
just use the contraction principle and the large deviation theory for scaled Brownian
motion (Schilder’s theorem [229]). However, it is in some sense almost continuous
on the support of the measure induced by

√
εW , in that the mapping u 	→ ϕ when

ϕ(t) = x + ∫ t
0 (b(ϕ(s)) + σ(ϕ(s))u(s)) ds is continuous on SM for all M < ∞, a

fact that was key in proving the convergence of the variational representation. An
analogous continuity applies only to particular models in the setting of discrete time.
In particular, the reader will note that the arguments of Chap. 4 are considerablymore
involved than those for SDEs in continuous time.

The idea of viewing a diffusion as a nearly continuous mapping on Brownian
motion (in the small noise limit) originates with Azencott [7]. The first proofs of an
LDP for diffusions appear in the papers of Wentzell [245–248], where they appear
as just a special case of a more general treatment. Fleming [133] considers certain
problems of large deviations involving diffusion process and computes the desired
limits using ideas from stochastic control. His approach is closely related to the
approach of this book and in many ways inspired it.

In the final example of an SDE driven by a Poisson process we have attempted to
emphasize the similaritywith the case ofBrownianmotion, and indeed, the arguments
are very close, with the main differences due to the weaker control one obtains from
bounded costs and the need to place the controls in a space more complicated than
L 2([0, T ] : Rk) with the weak topology. This example is a simplified form of the
problem considered in [45].



Part II
Discrete Time Processes

In the last chapter we considered two basic examples of large deviation theory for
discrete time processes. One example was the empirical measure for iid random
variables in a Polish space S, and the other was the sample mean for the case S =
R

d . In the next part of the book we will generalize these two examples in various
directions. In all cases, the starting point will be a representation obtained using the
chain rule for relative entropy, though the underlying noise models will be more
complex than the simple product measures of Chap. 3. One generalization will be
relatively straightforward, which is the extension from the empirical measure for iid
to the empirical measure for a Markov chain in Chap. 6.

A second generalization will be a “process level” and “state dependent” general-
ization of Cramér’s theorem in Chap. 4. Here we will consider the large deviation
principle for a very general stochastic recursive model. A scaling is introduced that
makes explicit that the system can be thought of as a small random perturbation of
an ordinary differential equation, and indeed included would be models such as the
Euler–Maruyama approximation to an SDE with small noise. Our perspective here
will be very similar to the one used in Chap. 3 to obtain Cramér’s theorem from
Sanov’s theorem, and in fact, we will prove large deviation properties of a “time-
dependent” empirical measure for the driving noises and then view the state of the
stochastic recursive system as a mapping on this empirical measure. Under suit-
able integrability assumptions, the passage from the large deviation of the empirical
measure to that of the process will parallel that taking us from Sanov’s theorem to
Cramér’s theorem.

Chapter 7 focuses on models with various special features. One class comprises
discrete time dynamical models for occupancy-type problems. These are classical
models from combinatorial probability (e.g., the coupon collector’s problem), and
the particular feature that makes their analysis different is that the probabilities of
certain types of jumps tend to zero as a boundary is approached. This “diminishing
rates” feature puts them outside the models of Chap. 4, and in fact, a careful con-
struction is needed to establish the large deviation lower bound for trajectories that
touch the boundary. On the other hand, as also discussed in this chapter, these models
and many related generalizations have the feature that the variational problems one
needs to solve to extract information from the rate function on path space have nearly
explicit solutions, i.e., solutions that can be identified by solving a low-dimensional
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constrained convex optimization problem. Also included in this chapter is the for-
mulation of a two-time-scale model and the statement of the corresponding LDP.
The proof of the LDP for this model, which combines arguments used in Chaps. 4
and 6, is omitted.

Moderate deviations for the same class of small noise Markov processes as in
Chap. 4 are the topic of Chap. 5. What is meant by “moderate deviations” is approx-
imations for events that are closer to the LLN limit then those approximated via
standard large deviations. While the starting point is the same relative entropy repre-
sentation as inChap. 4,moderate deviations (which can be phrased as large deviations
for a suitably centered and rescaled system) are in some ways simpler but in other
ways more difficult than the corresponding large deviations. As discussed at some
length in Chap. 5, a particular motivation for the moderate deviation approximation
is the development of acceleratedMonte Carlo schemes for this same class of events.
An example of such will be given in Sect. 17.5.



Chapter 4
Recursive Markov Systems with Small
Noise

In Chap.3 we presented several examples of representations and how they could
be used for large deviation analysis. A simplifying feature of all the examples of
Chap.3 is that the process models (e.g., empirical measure, solution to an SDE)
could be thought of as a “nice” functional of a process that is “white” in the time
variable, by which we mean independent in the setting of discrete time, and with
independent increments in the setting of continuous time (see Sect. 3.5 for what is
meant by a nice functional in the case of small noise SDEs).

In this chapter we study a model for which there is, in general, no convenient
representation as a functional of white noise. Note that we do not claim that such
a representation is impossible, but rather that it will not (in general) be useful, e.g.,
in proving law of large numbers limits. Because of this feature, a more complex
representation and weak convergence analysis cannot be avoided. In particular, the
“base” measure in the representation will be a Markov measure rather than a product
measure, and the process model will be a general “small noise” Markov process.
The model provides a substantial generalization of the random walk considered in
Cramér’s theorem. It occurs frequently in stochastic systems theory, e.g., stochastic
approximation and related recursive algorithms [18, 182, 193], where the rate func-
tion can be used to define a rate of convergence [102]. The model also arises as a
discrete time approximation to various continuous time models, such as the small
noise SDE in Sect. 3.2.1 of Chap.3, and indeed provides an alternative approach to
proving large deviation estimates for such models (though we much prefer the direct
approach of Chap.3).

4.1 Process Model

We begin with a description of the process model. Suppose that θ(dy|x) is a stochas-
tic kernel on R

d given R
d . One can construct a probability space that supports

iid random vector fields
{
vi (x), i ∈ N0, x ∈ R

d
}
, with the property that for all

© Springer Science+Business Media, LLC, part of Springer Nature 2019
A. Budhiraja and P. Dupuis, Analysis and Approximation of Rare
Events, Probability Theory and Stochastic Modelling 94,
https://doi.org/10.1007/978-1-4939-9579-0_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9579-0_4&domain=pdf
https://doi.org/10.1007/978-1-4939-9579-0_4


80 4 Recursive Markov Systems with Small Noise

x ∈ R
d , vi (x) has distribution θ(·|x). To be precise, there exists a probability space

(Ω,F , P) such that for each i ∈ N0, vi is a measurable map from R
d × Ω to R

d ;
for k ∈ N and distinct i1, . . . , ik ∈ N0 and xi1 , . . . , xik ∈ R

d , the random vectors
vi1(xi1), . . . , vik (xik ) are mutually independent; and for each i ∈ N0, vi (x) has dis-
tribution θ(·|x). We then define for each n ∈ N a Markov process

{
Xn
i

}
i=0,...,n by

setting

Xn
i+1 = Xn

i + 1

n
vi (X

n
i ), Xn

0 = x0. (4.1)

This discrete time process is interpolated into continuous time according to

Xn(t) = Xn
i + [

Xn
i+1 − Xn

i

]
(nt − i) , t ∈ [i/n, i/n + 1/n]. (4.2)

The goal of this chapter is to study a large deviation principle for the sequence
{Xn}n∈N of C ([0, T ] : Rd)-valued random variables.

Example 4.1 Suppose that for each x ∈ R
d , vi (x) has a normal distributionwith con-

tinuousmean b(x) and covarianceσ(x)σT (x). Then Xn(t) is theEuler approximation
with step size 1/n to the SDE (3.15) with drift coefficient b, diffusion coefficient σ,
and ε = 1/n.

Example 4.2 For an example in the form of a stochastic approximation algorithm,
take vi (x) = −∇V (x) + wi , where the wi are iid with Ewi = 0 and V is a smooth
function. In this case, 1/n is the “gain” of the algorithm [18, 182].

Of course, to prove an LDP for {Xn}n∈N, additional assumptions must be made.
For x ∈ R

d and α ∈ R
d , define

H(x,α)
.= log Ee〈α,vi (x)〉.

Condition 4.3 (a) For each α ∈ R
d , supx∈Rd H(x,α) < ∞.

(b) The mapping x �→ θ(·|x) from R
d toP(Rd) is continuous in the topology of

weak convergence.

The first condition is not needed for an LDP to hold. However, if H(x,α) = ∞ for
somevalues of x andα, then vi (x)has relatively heavy tails in certain directions. Paths
with jumpsmay be important from the perspective of large deviations, and the setting
used here is no longer appropriate. The second condition can also be weakened.
However, this often leads to a qualitatively different form of the rate function, and the
process models that violate this condition are said to have “discontinuous statistics”
[95, 98]. For an example of such a process but in continuous time, see Chap.13.
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4.2 The Representation

The first issue to resolve is the formulation of a representation that reflects the natural
structure of the process model. As noted at the beginning of the chapter, it is possible
to represent {Xn} in terms of iid random variables, e.g., in the form Xn

i+1 = Xn
i +

1
n g(X

n
i ,Ui ), where g is measurable and the {Ui , i ∈ N0} are iid random variables

with uniform distribution on [0, 1]. Although this form would allow a representation
in terms of an iid base measure, it would not be useful. This is because the map g is
not in general continuous in x , and hence this formulation is poorly suited for even
a law of large numbers analysis.

An alternative and more useful representation follows from the form (4.1) and the
continuity of x �→ θ(·|x). Following our convention, we present only the represen-
tation needed to prove an LDP on C ([0, 1] : Rd), but the analogous representation
holds with [0, 1] replaced by any interval [0, T ], T < ∞. The line of argument used
to prove the LDP will adapt the arguments used for Sanov’s theorem and Cramér’s
theorem to this functional setting. However, obtaining “process-level” information
requires a more complicated empirical measure than the one used for Sanov’s theo-
rem. Define Ln by

Ln(A × B)
.=
∫

B
Ln(A|t)dt, Ln(A|t) .= δvi (Xn

i )
(A) if t ∈ [i/n, i/n + 1/n)

(4.3)
for Borel sets A ⊂ R

d and B ⊂ [0, 1]. This measure and controlled analogues to be
introduced below record the joint empirical distribution of velocity and time. Owing
to conflicting but standard usage, in this chapter L is used for both an empirical
measure (as defined above) and the local rate function. The intended use should
always be clear, since the former appears only as Ln , and the latter as L .

The following construction identifies quantities that will appear in the represen-
tation as well as others to be used in the convergence analysis. As first discussed in
Sect. 3.1, we can consider [μn]i |0,...,i−1(dvi |v̄n0 , . . . , v̄ni−1) to be simply a randommea-
sure on Rd that is measurable with respect to σ(v̄nj , j = 0, . . . , i − 1) = σ(X̄ n

j , j =
1, . . . , i), and this ω-dependent measure is denoted by μ̄n

i (dvi ). Also as in Sect. 3.1,
for notational convenience we assume that the original processes as well as con-
trolled analogues are all defined on the same probability space. Note that the role of
the “driving noises” played by Xi in Sect. 3.1 is here played by vi (Xn

i ). The mea-
sure μn picks new distributions for these driving noises, as reflected by the notation.
Another minor notational difference is that the noise index is from 0 to n − 1 rather
than 1 to n.

Construction 4.4 Suppose we are given a probability measure μn ∈ P((Rd)n) and
decompose it in terms of conditional distributions [μn]i |1,...,i−1 on the i th variable
given variables 0 through i − 1:
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μn(dv0 × · · · × dvn−1) = [μn]0(dv0)[μn]1|0(dv1|v0)
× · · · × [μn]n−1|1,...,n−2(dvn−1|v0, . . . , vn−2).

Let {v̄ni }i=0,...,n−1 be random variables defined on a probability space (Ω,F , P)

and with joint distribution μn. Thus conditioned on F̄ n
i

.= σ(v̄nj , j = 0, . . . , i −
1), v̄ni has distribution μ̄n

i (dvi )
.= [μn]i |0,...,i−1(dvi |v̄n0 , . . . , v̄ni−1). The collection

{μ̄n
i }i=0,...,n−1 will be called a control. Then controlled processes X̄n and measures

L̄n are recursively constructed as follows. Let X̄n
0 = x0, and for i = 1, . . . , n define

X̄n
i recursively by

X̄n
i+1 = X̄ n

i + 1

n
v̄ni .

When {X̄ n
i }i=1,...,n has been constructed, X̄ n(t) is defined as in (4.2) as piecewise

linear interpolation, and

L̄n(A × B)
.=
∫

B
L̄n(A|t)dt, L̄n(A|t) .= δv̄ni (A) if t ∈ [i/n, i/n + 1/n).

We also define

μ̄n(A × B)
.=
∫

B
μ̄n(A|t)dt, μ̄n(A|t) .= μ̄n

i (A) if t ∈ [i/n, i/n + 1/n)

and

λn(A × B)
.=
∫

B
λn(A|t)dt, λn(A|t) .= θ(A|X̄ n

i ) if t ∈ [i/n, i/n + 1/n).

The measures μ̄n(dx × dt) record the time dependence of the μ̄n
i . When taking

limits, we will also want to keep track of the corresponding θ(·|X̄ n
i ), since the two

appear together in the relative entropy representation. This information is recorded
in λn ∈ P(Rd × [0, 1]). Note also that, as remarked previously, F̄ n

i = σ(X̄ n
j , j =

1, . . . , i).

Theorem 4.5 Let G : P(Rd × [0, 1]) → R be bounded from below and measur-
able. Let Ln be defined as in (4.3), and given a control {μ̄n

i }, let {X̄ n
i } and {L̄n} be

defined as in Construction 4.4. Then

−1

n
log Ee−nG(Ln) = inf

{μ̄n
i }
E

[

G(L̄n) + 1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

.

Proof The representation follows directly from the high-level variational represen-
tation for exponential integrals [part (a) of Proposition2.3] and the chain rule [Theo-
rem2.6], and the argument is almost the same as that used to derive the representation
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used to prove Sanov’s theorem [Proposition3.1]. The only difference is that the base
measure in that case was product measure, reflecting the iid noise structure. Here the
base measure is

θ(dv0|xn0 )θ(dv1|xn1 ) × · · · × θ(dvn−1|xnn−1),

where

xni = x0 + 1

n

i−1∑

j=0

v j .

One applies the chain rule exactly as was done in Proposition3.1. The change in
the base measure is reflected by a change in the measures appearing in the relative
entropy cost, i.e., θ(·|X̄ n

i ) rather than θ(·) as in the iid case. �

Note that the definition of L̄n allows us to write

X̄ n(t) =
∫

Rd×[0,t]
yL̄n(dy × ds) + x0.

Thus a special case of the representation inTheorem4.5 occurs for F that is a bounded
and measurable map from C ([0, 1] : Rd) to R:

− 1

n
log Ee−nF(Xn) = inf

{μ̄n
i }
E

[

F(X̄ n) + 1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

. (4.4)

This representation will be used in the proof of the LDP for {Xn}. As in passing
from Sanov’s theorem to Cramér’s theorem, convergence of L̄n plus some uniform
integrability will imply convergence of X̄ n .

Remark 4.6 Although the proof of the LDP requires only bounded F (and hence
boundedG), we state Theorem4.5 so as to allow its use in the analysis of importance
sampling in Chap.15, where unbounded functionals cannot be avoided.

4.3 Form of the Rate Function

Before going further, we pause to comment on the expected form of the rate function.
We give a completely heuristic calculation, based on a time scale separation due to
the 1/n scaling of the noise and the weak continuity of x → θ(·|x), which suggests
the correct form of the rate function. Over an interval [s, s + δ], with δ > 0 small and
1/δ ∈ N, the noise terms in the definition of Xn(s + δ) − Xn(s) are approximately
iid with distribution θ(·|Xn(s)). Therefore,
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Xn(s + δ) − Xn(s)

δ
≈ 1

nδ

�ns+nδ�∑

i=�ns�
vi (X

n(s)),

and by Cramér’s theorem, the right-hand side satisfies an LDP with the rate function
δL(Xn(s),β), where

L(x,β) = inf

[
R (μ(·) ‖θ(·|x) ) :

∫

Rd

yμ(dy) = β

]
. (4.5)

Suppose that σ > 0 is small, and that in the following display, B(y,σ) denotes a
(context-dependent) open ball of radius σ. Using the Markov property to combine
estimates over small intervals, for a smooth trajectory φ ∈ C ([0, 1] : Rd) that starts
at x0, we have

P
{
Xn ∈ B(φ,σ)

}

≈ P
{
Xn( jδ) ∈ B(φ( jδ),σ) all 1 ≤ j ≤ 1/δ

}

≈ P

{
Xn( jδ + δ) − Xn( jδ)

δ
∈ B

(
φ( jδ + δ) − φ( jδ)

δ
,
2σ

δ

)
, 0 ≤ j <

1

δ

}

≈
1
δ −1∏

j=0

exp

{
−nδL

(
φ( jδ),

φ( jδ + δ) − φ( jδ)

δ

)}

≈ exp

{
−n

∫ 1

0
L(φ(s), φ̇(s))ds

}
.

Therefore, one may expect the rate function I (φ) = ∫ 1
0 L(φ(s), φ̇(s))ds for such φ.

Owing to this interpretation, β �→ L(x,β) is often called a local rate function in
this context.

4.4 Statement of the LDP

We now turn to the rigorous analysis. As was the case in Chap. 3 with Sanov’s
theorem and small noise diffusions, we first establish tightness, and then prove a
result that links the limits of weakly converging controls and controlled processes.
With these results in hand, the Laplace principle is proved by establishing upper and
lower bounds. The conditions we assume and some of the arguments are close to
those used in [97]. However, the perspective is somewhat different, with the main
argument being a functional version of the one used to obtain Cramér’s theorem from
Sanov’s theorem, and we also set the arguments up so they can easily be adapted to
the problems of importance sampling considered later in the book.
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We show that Condition4.3 by itself suffices for the Laplace principle and large
deviation upper bound. For the lower bound we need additional conditions. Two
types of conditions will be used, and are formulated as Conditions4.7 and 4.8 below.
The Laplace principle lower bound under Conditions4.3 and 4.7 will be proved in
Sect. 4.7, and under Conditions4.3 and 4.8 it will be proved in Sect. 4.8. The convex
hull of the support of μ ∈ P(Rd) is the smallest closed and convex set A ⊂ R

d such
that μ(A) = 1.

Condition 4.7 For each x ∈ R
d , the convex hull of the support of θ(·|x) is Rd .

Condition 4.8 For every compact K ⊂ R
d and ε ∈ (0, 1), there exist η = η(K , ε) ∈

(0, 1) and m = m(K , ε) ∈ (0,∞), such that whenever ξ,χ ∈ K satisfy ‖ξ − χ‖ ≤
η, we can find for each γ ∈ R

d a β ∈ R
d such that

L(ξ,β) − L(χ, γ) ≤ ε(1 + L(χ, γ)), ‖β − γ‖ ≤ m(1 + L(χ, γ))‖ξ − χ‖.

Condition4.7 can be weakened to the requirement that the relative interior of
the convex hull of the support of θ(·|x) be independent of x and contain 0 (see
Sect. 6.3 of [97]). Condition4.8 is very important in that it allows the noise to push
the process in only a subset of all possible directions. For example, if the model of
Example4.1 corresponds to a degenerate diffusion, which means that σ(x)σT (x) is
only positive semidefinite, then Condition4.7 is not valid, but under the assumption
that b and σ are Lipschitz continuous, Condition4.8 holds. Under similar Lipschitz-
type assumptions, Condition4.8 is satisfied for a broad range of models, and we refer
the reader to Sect. 6.3 in [97] for additional illustrative examples.

Recall thatA C x0([0, T ] : Rd) denotes the subset of C ([0, T ] : Rd) consisting of
all absolutely continuous functions satisfying φ(0) = x0.

Theorem 4.9 Assume Condition4.3 and define Xn by (4.2) and L : Rd × R
d →

[0,∞) by (4.5). Let

I (φ) =
∫ T

0
L(φ(s), φ̇(s))ds if φ ∈ A C x0([0, T ] : Rd),

and in all other cases set I (φ) = ∞. Then the following conclusions hold.
(a) I is a rate function and {Xn}n∈N satisfies the Laplace principle upper bound

with rate function I .
(b) Suppose that in addition, either Condition4.7 or Condition4.8 holds. Then

{Xn}n∈N satisfies the Laplace principle with rate function I .

Remark 4.10 In the proofs to follow, the initial condition is fixed at x0. However,
the arguments apply with only notational changes if instead we consider a sequence
of initial conditions {xn0 }n∈N with xn0 → x0, and establish

1

n
log Exn0 e

−nF(Xn) + inf
φ:φ(0)=xn0

[F(φ) + I (φ)] → 0. (4.6)
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Using an elementary argument by contradiction, this implies that the Laplace and
large deviation principles hold uniformly for initial conditions in compact sets, as
defined in Chap.1. To be specific, if the uniform Laplace principle is not valid, then
there exists a compact set K ⊂ R

d , δ > 0, and for each n ∈ N, an initial condition
xn0 ∈ K such that

∣∣∣∣
1

n
log Exn0 e

−nF(Xn) + inf
φ:φ(0)=xn0

[F(φ) + I (φ)]

∣∣∣∣ ≥ δ. (4.7)

However, since K is compact, there exist a subsequence xnk0 and x0 ∈ K such that
xnk0 → x0. Then (4.6) contradicts (4.7), and thus the uniform Laplace principle holds.

The rest of the chapter is organized as follows. In Sect. 4.5 we prove part (a) of
Theorem4.9. In preparation for the (two) proofs of the Laplace lower bound, Sect. 4.6
studies some basic properties of the function L(x,β). The last two sections of the
chapter, Sects. 4.7 and 4.8, contain the proof of the lower bound under Condition4.7
and Condition4.8, respectively. Throughout the chapter we assume Condition4.3,
and to simplify notation, proofs are given for T = 1.

4.5 Laplace Upper Bound

We begin with preliminary results on tightness and uniform integrability of the con-
trolled processes from Sect. 4.2.

4.5.1 Tightness and Uniform Integrability

Lemma 4.11 Assume Condition4.3 and consider any sequence of controls
{
μ̄n
i

}
for

which the relative entropy costs satisfy

sup
n∈N

E

[
1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

≤ K < ∞.

Let {L̄n}n∈N, {X̄ n}n∈N, {μ̄n}n∈N, and {λn}n∈N be defined as in Construction4.4. Then
the empirical measures {L̄n} are tight and in fact uniformly integrable in the sense
that

lim
M→∞ lim sup

n→∞
E

[∫

Rd×[0,1]
‖y‖ 1{‖y‖≥M} L̄n(dy × dt)

]
= 0. (4.8)

The measures {μ̄n}n∈N are also uniformly integrable in the sense of (4.8), and {X̄ n},
{μ̄n}, and {λn} are all tight.
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Proof Except for more complicated notation, the proof is almost the same as the
analogous result needed for Cramér’s theorem. From the inequality (2.9), it follows
that if μ ∈ P(Rd × [0, 1]) satisfies μ � λn , then for all σ ∈ [1,∞),

∫

Rd×[0,1]
‖y‖ 1{‖y‖≥M}μ(dy × dt)

≤
∫

Rd×[0,1]
eσ‖y‖1{‖y‖≥M}λn(dy × dt) + 1

σ
R
(
μ
∥∥λn

)
.

Bya conditioning argument it follows that E
∫

f d L̄n = E
∫

f dμ̄n for every bounded
and measurable function f . Using the definitions of μ̄n and λn and the chain rule to
get the first equality, we have

E
[
R
(
μ̄n

∥∥λn
)] = E

[∫ 1

0
R
(
μ̄n(·|t) ∥∥λn(·|t)) dt

]
(4.9)

= E

[
1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

≤ K .

Therefore,

E

[∫

Rd×[0,1]
‖y‖ 1{‖y‖≥M} L̄n(dy × dt)

]

= E

[∫

Rd×[0,1]
‖y‖ 1{‖y‖≥M}μ̄n(dy × dt)

]

≤ sup
x∈Rd

∫

Rd

eσ‖y‖1{‖y‖≥M}θ(dy|x) + 1

σ
K . (4.10)

From part (a) of Condition4.3 it follows that for σ ∈ R,

sup
x∈Rd

∫

Rd

e2σ‖y‖θ(dy|x) < ∞ (4.11)

(for details see the analogous claim in the proof of Lemma3.9). Since

∫

Rd

eσ‖y‖1{‖y‖≥M}θ(dy|x) ≤ e−σM
∫

Rd

e2σ‖y‖θ(dy|x), (4.12)

sending first n → ∞, then M → ∞, and finally σ → ∞ in (4.10), the limit (4.8)
holds for both {L̄n} and {μ̄n}. Tightness of {L̄n} and {μ̄n} follows directly, and the
tightness of {λn} follows from part (a) of Condition4.3.
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To establish tightness of {X̄ n} we use the fact that

X̄ n(t) =
∫

Rd×[0,t]
yL̄n(dy × ds) + x0. (4.13)

Tightness will follow if given ε > 0 and η > 0, there is δ > 0 such that

lim sup
n→∞

P
{
wn(δ) ≥ ε

} ≤ η, (4.14)

where wn(δ)
.= sup0≤s<t≤1:t−s≤δ

∥∥X̄ n(t) − X̄ n(s)
∥∥. Using (4.8), choose M < ∞

such that

lim sup
n→∞

E

[∫

Rd×[0,1]
‖y‖ 1{‖y‖≥M} L̄n(dy × dt)

]
≤ εη

2
.

Let δ
.= (ε/2M) ∧ 1. Then since Mδ ≤ ε/2, we have

sup
0≤s<u≤1:u−s≤δ

∫

Rd×[s,u]
‖y‖ 1{‖y‖≤M} L̄n(dy × dt) ≤ Mδ ≤ ε

2
.

Hence

P
{
wn(δ) ≥ ε

} ≤ P

{∫

Rd×[0,1]
‖y‖ 1{‖y‖≥M} L̄n(dy × dt) ≥ ε

2

}

≤ 2

ε
E

[∫

Rd×[0,1]
‖y‖ 1{‖y‖≥M} L̄n(dy × dt)

]

≤ η.

This proves (4.14), and tightness of {X̄ n} follows. �

4.5.2 Weak Convergence

Lemma4.11 proved tightness of {(L̄n, μ̄n,λn, X̄ n)}n∈N. The following lemma char-
acterizes the weak limits of this collection.

Lemma 4.12 Consider any sequence of controls
{
μ̄n
i

}
as in Construction4.4 for

which the relative entropy costs satisfy

E

[
1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

≤ K < ∞.

Let {(X̄ n, L̄n, μ̄n)} denote a weakly converging subsequence, which for notational
convenience we again label by n, with limit (X̄ , L̄, μ̄). Then w.p.1, L̄ = μ̄, and
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μ̄(dy × dt) can be decomposed as μ̄(dy|t)dt, where μ̄(dy|t) is a stochastic kernel
on Rd given [0, 1], and w.p.1 for all t ∈ [0, 1],

X̄(t) =
∫

Rd×[0,t]
yμ̄(dy × ds) + x0 =

∫

Rd×[0,t]
yμ̄(dy|s)ds + x0. (4.15)

In addition, λn converges weakly to a limit λ of the form

λ(A × B) =
∫

B
θ(A|X̄(t))dt. (4.16)

Proof Recall that μ̄n
i picks the conditional distribution of v̄ni . Hence a minor mod-

ification of the martingale argument used to prove the analogous result needed for
Sanov’s theorem (Lemma3.5) can be used to show that L̄ = μ̄ w.p.1. The changes
are mainly notational, and are needed, since in the present setting the measures must
record time information. For completeness we give the details.

Now, Rd × [0, 1] is a Polish space, and on such a space there exists a countable
separating class of bounded uniformly continuous functions (see AppendixA). Thus
to verify L̄ = μ̄w.p.1, it suffices to show that for every bounded uniformly continuous
f ,

P

{∫

Rd×[0,1]
f (v, t)L̄ (dv × dt) =

∫

Rd×[0,1]
f (v, t)μ̄ (dv × dt)

}
= 1. (4.17)

Define K
.= ‖ f ‖∞ and �n

i
.= f

(
v̄ni , i/n

) − ∫
Rd f (v, i/n) μ̄n

i (dv). For all ε > 0,

P

{∣∣∣∣∣
1

n

n∑

i=1

f
(
v̄ni , i/n

) − 1

n

n∑

i=1

∫

Rd

f (v, i/n) μ̄n
i (dv)

∣∣∣∣∣
> ε

}

≤ 1

ε2
E

⎡

⎣ 1

n2

n∑

i, j=1

�n
i �

n
j

⎤

⎦ .

Recall that F̄ n
i

.= σ(v̄nj , j = 0, . . . , i − 1). By a standard argument, for i �= j , con-

ditioning on F̄ n
j∧i−1 gives E[�n

i �
n
j ] = 0. Since |�n

i | ≤ 2K ,

P

{∣∣∣∣∣
1

n

n∑

i=1

f (v̄ni , i/n) − 1

n

n∑

i=1

∫

Rd

f (v, i/n)μ̄n
i (dv)

∣∣∣∣∣
> ε

}

≤ 4K 2

nε2
.

Let γ(δ) denote the modulus supv∈Rd ,0≤s≤t≤1:t−s≤δ {| f (v, t) − f (v, s)|}. Since f is
uniformly continuous, γ(δ) ↓ 0 as δ ↓ 0, and the definition of γ(δ) implies
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∣∣∣∣∣
1

n

n∑

i=1

f (v̄ni , i/n) −
∫

Rd×[0,1]
f (v, t)L̄n(dv × dt)

∣∣∣∣∣
≤ γ(1/n)

∣∣∣∣∣
1

n

n∑

i=1

∫

Rd

f (v, i/n)μ̄n
i (dv) −

∫

Rd×[0,1]
f (v, t)μ̄n(dv × dt)

∣∣∣∣∣
≤ γ(1/n).

Letting first n → ∞ and then ε → 0, we obtain (4.17), which proves L̄ = μ̄ w.p.1.
Note that both L̄n and μ̄n have secondmarginals equal to Lebesguemeasure. Since

this property is inherited by the weak limits, L̄(Rd × {t}) = 0 w.p.1. This property
and the uniform integrability allow us to pass to the limit in (4.13) and obtain

X̄(t) =
∫

Rd×[0,t]
yL̄(dy × ds) + x0.

Now use that L̄ = μ̄ w.p.1 to get the first part of (4.15). Since each μ̄ has Lebesgue
measure as its second marginal, both the decomposition and the second part of (4.15)
follow. Finally, the weak convergence of λn and the form of the limit follow from
the weak convergence of X̄ n to X̄ and the assumption that x → θ(·|x) is continuous
in the weak topology. �

4.5.3 Completion of the Laplace Upper Bound

The large deviation and Laplace principle upper bounds correspond to the variational
lower bound. To prove such a lower bound, we again follow the line of argument
used forCramér’s theorem inSect. 3.1.6. Fix a continuous andbounded F : C ([0, 1] :
R

d) → R and ε > 0. Using (4.4), let
{
μ̄n
i

}
i=1,...,n satisfy

−1

n
log Ee−nF(Xn) + ε ≥ E

[

F(X̄ n) + 1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

.

Then since F is bounded, we have supn
1
n E

∑n−1
i=0 R

(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
< ∞, and

therefore by Lemma4.11, it follows that
{
(L̄n, X̄ n, μ̄n,λn)

}
is tight. Consider any

subsequence that converges to a weak limit (L̄, X̄ , μ̄,λ), and denote the convergent
subsequence by n. If the lower bound is demonstrated for this subsequence, then
the standard argument by contradiction establishes the lower bound for the original
sequence. Details of the following calculation are given after the display:

lim inf
n→∞ −1

n
log E exp{−nF(Xn)} + ε
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≥ lim inf
n→∞ E

[

F(X̄ n) + 1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

= lim inf
n→∞ E

[
F(X̄ n) + R

(
μ̄n(dy × dt)

∥∥λn(dy × dt)
)]

≥ E
[
F

(
X̄
) + R (μ̄(dy × dt) ‖λ(dy × dt) )

]

= E

[
F

(
X̄
) +

∫

[0,1]
R
(
μ̄(·|t) ∥∥θ(·|X̄(t))

)
dt

]

≥ E

[
F(X̄) +

∫

[0,1]
L(X̄(t), ˙̄X (t))dt

]

≥ inf
φ

[
F(φ) +

∫

[0,1]
L(φ(t), φ̇(t))dt

]
. (4.18)

The first equality uses the rewriting of the relative entropy in (4.9); the next
inequality is due to the weak convergence, the lower semicontinuity of R (· ‖· ),
continuity of F , and Fatou’s lemma; the next equality uses the decompositions
μ̄(dy × dt) = μ̄(dy|t)dt and λ(dy × dt) = θ(dy|X̄(t))dt and the chain rule; the
third inequality follows from (4.5) and (4.15); and the infimum in the last line is over
all φ ∈ A C x0([0, 1] : Rd). Since ε > 0 is arbitrary, we have proved the Laplace
upper bound for {Xn}:

lim sup
n→∞

1

n
log E exp{−nF(Xn)} ≤ − inf

φ∈C ([0,1]:Rd )
[F(φ) + I (φ)] .

�

4.5.4 I is a Rate Function

As first noted in Chap.3, in the weak convergence approach, a deterministic version
of the argument used to prove the Laplace upper bound will usually show that the
proposed rate function is indeed a rate function, i.e., that it has compact level sets.

Theorem 4.13 Assume Condition4.3, define L(x,β) by (4.5), and let I be the func-
tion defined in Theorem4.9. Then I has compact level sets in C ([0, T ] : Rd).

Proof As usual, the proof is given for T = 1. Suppose {φ j } j∈N is given such that
I (φ j ) ≤ K < ∞ for all j ∈ N. Then we need to show that {φ j } is precompact, and
that if φ j → φ, then

lim inf
j→∞ I (φ j ) ≥ I (φ).

Since I (φ j ) < ∞, we knowφ j is absolutely continuous.Define probabilitymeasures
μ j on R

d × [0, 1] by
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μ j (A × B) =
∫

B
δφ̇ j (t)(A)dt, A ∈ B(Rd), B ∈ B([0, 1]).

Note that

φ j (t) = x0 +
∫

Rd×[0,t]
yμ j (dy × ds).

Using I (φ j ) ≤ K < ∞, exactly the same argument as in Lemma4.11 shows that
{μ j } j∈N is tight and uniformly integrable. By the usual subsequential argument, we
can assume that μ j converges along the full sequence, and a deterministic version
of Lemma4.12 shows that the limit μ can be factored in the form μ(dy × dt) =
μ(dy|t)dt , and that φ j → φ, with

∫
Rd yμ(dy|t) = φ̇(t). Thus

{
φ j

}
is precompact.

We now argue that I (φ) ≤ K . In Lemma4.14 it will be shown that L is a lower
semicontinuous function that is convex in the second variable. Using these properties,
we obtain

K ≥ lim inf
j→∞ I (φ j )

= lim inf
j→∞

∫

Rd×[0,1]
L(φ j (t), y)μ

j (dy × dt)

≥
∫

Rd×[0,1]
L(φ(t), y)μ(dy × dt)

=
∫ 1

0

∫

Rd

L(φ(t), y)μ(dy|t)dt

≥
∫ 1

0
L(φ(t), φ̇(t))dt = I (φ),

where the second inequality is a consequence of Fatou’s lemma, the lower semicon-
tinuity of L , and the convergence of (φ j ,μ

j ) to (φ,μ), while the third inequality
uses the convexity of L and Jensen’s inequality. Thus I has compact level sets, and
hence is a rate function. �

4.6 Properties of L(x,β)

To prove a Laplace lower bound, wemust take a trajectory φ that nearly minimizes in
infφ∈C ([0,1]:Rd ) [F(φ) + I (φ)] and showhow to construct a control that can be applied
in the representation that will give asymptotically the same cost. For the continuous-
timemodels in Chap.3 this was not very difficult, in part because the implementation
of the control was straightforward. For example, in the case of the diffusion model,
the construction of a solution to (3.17) is possible when v is measurable in t and
has appropriate integrability properties; in particular, piecewise continuity or some
similar form of regularity is not required. The situation is different in discrete time.
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In general, I (φ) < ∞ implies only that φ is absolutely continuous. As we will see,
it is natural to define controls for the prelimit in terms of φ̇(t), where φ is nearly
minimizing. Since the derivative is well defined only up to a set of Lebesgue mea-
sure zero, this causes a number of problems. The solution is to show that one can
always construct a “nice” nearly minimizing trajectory, e.g., one whose derivative is
continuous from the left with right-hand limits. Such a construction requires some
regularity properties of L(x,β), which we now present.

Recall that for x ∈ R
d , the Legendre–Fenchel transform of H(x, ·) is defined by

H∗(x,β) = sup
α∈Rd

[〈α,β〉 − H(x,α)] , β ∈ R
d ,

and L(x,β) is defined as in (4.5). As noted inRemark3.10 and shown inLemma4.16,
for each fixed x these are dual representations of the same function.

Lemma 4.14 Assume Condition4.3. Then the following are valid.
(a) For each x ∈ R

d , α �→ H(x,α) is a finite convex function on R
d that is

differentiable for all α ∈ R
d . Also, (x,α) �→ H(x,α) is continuous on Rd × R

d .
(b) For each x ∈ R

d , β �→ H∗(x,β) is a convex function on R
d . Furthermore,

(x,β) �→ H∗(x,β) is a nonnegative lower semicontinuous function on R
d × R

d .
(c) The map β �→ H∗(x,β) is superlinear, uniformly in x, which means that

lim
N→∞ inf

x∈Rd
inf

β∈Rd :‖β‖=N

H∗(x,β)

‖β‖ = ∞.

(d) The map (x,β) �→ L(x,β) is a lower semicontinuous function on R
d × R

d ,
and for each x ∈ R

d , the map β �→ L(x,β) is convex.

Proof (a) Part (a) of Condition4.3 ensures that H(x,α) ∈ (−∞,∞) for all (x,α) ∈
R

d × R
d . The convexity of α �→ H(x,α) then follows from Hölder’s inequality: if

α1,α2 ∈ R
d and ρ ∈ [0, 1], then

∫

Rd

e〈ρα1+(1−ρ)α2,y〉θ(dy|x) ≤
(∫

Rd

e〈α1,y〉θ(dy|x)
)ρ (∫

Rd

e〈α2,y〉θ(dy|x)
)1−ρ

.

Taking the logarithm of both sides demonstrates convexity. Under part (a) of
Condition4.3 one can easily construct an appropriate dominating function, and hence
show that α �→ H(x,α) is differentiable, where for all (x,α) ∈ R

d × R
d , the gra-

dient ∇αH(x,α) is given by

∇αH(x,α) =
∫
Rd ye〈α,y〉θ(dy|x)
∫
Rd e〈α,y〉θ(dy|x) . (4.19)

To see the continuity of (x,α) �→ H(x,α), let (xn,αn) → (x,α) in R
d × R

d . We
write
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eH(xn ,αn) − eH(x,α) =
∫

Rd

[
e〈αn ,y〉 − e〈α,y〉] θ(dy|xn)

+
[∫

Rd

e〈α,y〉θ(dy|xn) −
∫

Rd

e〈α,y〉θ(dy|x)
]

,

and recall the bounds (4.11) and (4.12). The second term on the right converges to
zero by the Feller property assumed in Condition4.3(b) and the uniform integrability
implied by Condition4.3(a). For every M < ∞, we have sup‖y‖≤M | exp〈αn, y〉 −
exp〈α, y〉| → 0 as n → ∞, and by part (a) of Condition4.3,

sup
n∈N

sup
x∈Rd

∫

{‖y‖≥M}
e〈αn ,y〉θ(dy|x) → 0

as M → ∞. Hence the first term on the right converges to zero, which completes
the proof of the continuity of (x,α) �→ H(x,α).

(b) By duality for Legendre–Fenchel transforms [217, Theorem 23.5],

H(x,α) = sup
β∈Rd

[〈α,β〉 − H∗(x,β)], α ∈ R
d .

Taking α = 0 in the last display shows that infβ∈Rd H∗(x,β) = −H(x, 0) = 0,
and thus H∗ is nonnegative. For each x ∈ R

d and α ∈ R
d , the mapping β �→

〈α,β〉 − H(x,α) is convex (in fact affine), and for each α ∈ R
d , the mapping

(x,β) �→ 〈α,β〉 − H(x,α) is continuous. Recalling that the pointwise supremum
of convex functions is convex and that the pointwise supremum of continuous func-
tions is lower semicontinuous, we see that H∗(x, ·) is convex onRd and H∗ is lower
semicontinuous on R

d × R
d .

(c) From part (a) of Condition4.3, for every M < ∞, we have

CM
.= sup

x∈Rd

sup
α∈Rd :‖α‖=M

H(x,α) < ∞.

Also, for every β ∈ R
d and x ∈ R

d , the definition of H∗ implies

H∗(x,β) ≥ 〈Mβ/‖β‖,β〉 − H(x, Mβ/‖β‖) ≥ M‖β‖ − CM .

Thus

inf
x∈Rd

inf
β∈Rd :‖β‖=N

H∗(x,β)

‖β‖ ≥ M − CM

N
.

The asserted superlinearity follows by sending first N → ∞ and then M → ∞ in
the last display.

(d) The claimed properties of L(x,β) follow from its definition in (4.5) and
the corresponding properties of R(· ‖· ) [part (b) of Lemma2.4]. We first consider
convexity. Fix x , let β1,β2 ∈ R

d , δ > 0, ρ ∈ [0, 1] be given, and suppose that μi
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are within δ of the infimum in (4.5) for βi , i = 1, 2. Then since the mean under
ρμ1 + (1 − ρ)μ2 is ρβ1 + (1 − ρ)β2, we have

L(x, ρβ1 + (1 − ρ)β2) ≤ R(ρμ1(·) + (1 − ρ)μ2(·) ‖θ(·|x) )
≤ ρR(μ1(·) ‖θ(·|x) ) + (1 − ρ)R(μ2(·) ‖θ(·|x) )
≤ ρL(x,β1) + (1 − ρ)L(x,β2) + δ.

Convexity follows, since δ > 0 is arbitrary. Next suppose that x j → x and β j → β
as j → ∞. By an argument by contradiction based on subsequences, we can assume
without loss that L(x j ,β j ) converges in [0,∞], and we need to prove that L(x,β) ≤
lim j→∞ L(x j ,β j ). If the limit is ∞, there is nothing to prove, and hence we assume
L(x j ,β j ) ≤ M < ∞ for all j . Choose μ j that is within δ > 0 of the infimum in the
definition of L(x j ,β j ). Then by part (d) of Lemma2.4, {μ j } is tight and uniformly
integrable. Thus if μ∗ is the limit of any convergence subsequence, then the mean of
μ∗ is β, and so (along this subsequence)

L(x,β) ≤ R(μ∗(·) ‖θ(·|x) ) ≤ lim inf
j→∞ R(μ j (·)

∥∥θ(·|x j ) ) ≤ lim inf
j→∞ L(x j ,β j ) + δ.

This establishes the lower semicontinuity. �

Remark 4.15 For the next result wewill assume, in addition toCondition4.3, that the
support of θ(·|x) is all of Rd . Part (d) of the lemma was mentioned in Remark3.10,
which noted that the rate function for Cramér’s theorem (which plays the role of the
local rate function here) has two variational representations. These correspond here to
H∗ (as a supremum involving a moment-generating function) and L (as an infimum
involving relative entropy). Although for our needs it suffices to prove this assuming
Conditions4.3 and 4.7, the functions H∗ and L coincidewhen supx∈Rd H(x,α) < ∞
for α in some open neighborhood of the origin. This will be proved in Lemma5.4.
Several statements in the lemma below hold assuming only Condition4.3 (cf. [97,
Lemma 6.2.3]). However, for simplicity we assume here that both Conditions4.3 and
4.7 are satisfied.

Lemma 4.16 Assume Conditions4.3 and 4.7. Then the following conclusions hold.
(a) H∗ is finite on R

d × R
d .

(b) For every x ∈ R
d , α �→ H(x,α) is strictly convex on R

d .
(c) For every (x,β) ∈ R

d × R
d , there is a unique α = α(x,β) ∈ R

d such that
∇αH(x,α(x,β)) = β.

(d) H∗ = L.
(e) For every (x,β) ∈ R

d × R
d , with α(x,β) as in part (c),

L(x,β) = 〈α(x,β),β〉 − H(x,α(x,β)).

(f) (x,β) �→ L(x,β) is continuous on R
d × R

d .
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(g) There exists a measurable α : Rd × R
d → R

d such that the stochastic kernel
γ(dy|x,β) on R

d given R
d × R

d defined by

γ(dy|x,β)
.= e〈α(x,β),y〉−H(x,α(x,β))θ(dy|x),

satisfies

R(γ(·|x,β)‖θ(·|x)) = L(x,β) and
∫

Rd

yγ(dy|x,β) = β for all x ∈ R
d ,β ∈ R

d .

(4.20)

Proof Since x plays no role other than as a parameter in parts (a)–(e), it is dropped
from the notation in the proofs of these parts.

(a) Let Y be a random variable with distribution θ, and let Yi denote the i th
component. We first claim that the map α → H(α) is superlinear. By Condition4.7,
the support of θ is all of Rd . Thus for each M < ∞,

ΘM
.= min

I ⊂{1,...,d}
P

{[∩i∈I {Yi ≥ M}] ⋂ [∩i∈I c{Yi ≤ −M}]} > 0.

Therefore, for every α ∈ R
d ,

1

‖α‖ + 1
log Ee〈α,Y 〉 ≥ 1

‖α‖ + 1
log

[
ΘMe

M
∑d

i=1 |αi |
]

= M

∑d
i=1 |αi |

‖α‖ + 1
+ logΘM

‖α‖ + 1
.

The superlinearity of H now follows by sending ‖α‖ → ∞ and then M → ∞.
The superlinearity implies that the Legendre–Fenchel transform H∗ of H is finite
everywhere, since for each β ∈ R

d , one can find a compact set K ⊂ R
d such that

H∗(β) = sup
α∈Rd

[〈α,β〉 − H(α)] = sup
α∈K

[〈α,β〉 − H(α)].

Since H is continuous, the last expression is finite, and thus (a) follows.
(b) As shown in Lemma4.14, H is convex. Suppose that for some α1,α2 ∈ R

d ,
α1 �= α2, and ρ ∈ (0, 1), we have

H(ρα1 + (1 − ρ)α2) = ρH(α1) + (1 − ρ)H(α2).

Then the condition for equality in Hölder’s inequality requires that for θ(dy) a.e. y,

exp〈α1, y〉∫
Rd exp〈α1, z〉θ(dz) = exp〈α2, y〉∫

Rd exp〈α2, z〉θ(dz) ,

which implies that

〈α1 − α2, y〉 = H(α1) − H(α2) a.s. θ(dy).
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In other words, θ is supported on a hyperplane of dimension d − 1. But this contra-
dicts the fact that the support of θ(dy) is all of Rd , which proves the strict convexity
of α �→ H(α).

(c) From Corollary 26.4.1 in [217] it now follows that the gradient ∇αH(α) is
onto R

d . Thus given β, there exists a vector α(β) such that ∇αH(α(β)) = β. We
claim that α(β) is unique. Suppose α1 �= α2 are such that

∇αH(α1) = ∇αH(α2) = β. (4.21)

Define ζ : R → R by ζ(λ)
.= H(α1 + λ(α2 − α1)), λ ∈ R. From part (b), ζ is

strictly convex on R, and so

ζ ′(0) = 〈∇αH(α1),α2 − α1〉 < ζ ′(1) = 〈∇αH(α2),α2 − α1〉.

This contradicts (4.21), and thus there is only one α that satisfies ∇αH(α) = β.
(d,e) Setting γ(dy) = e〈α(β),y〉θ(dy)/eH(α(β)), we have from (4.19),

∫

Rd

yγ(dy) = 1

eH(α(β))

∫

Rd

ye〈α(β),y〉θ(dy) = ∇αH(α(β)) = β. (4.22)

A direct calculation using the form of γ(dy), the definition of relative entropy, and
the definition of L in (4.5) then gives

L(β) ≤ R (γ ‖θ ) = 〈α(β),β〉 − H(α(β)) ≤ H∗(β). (4.23)

Using the definition of H and part (c) of Proposition2.3, we have

H(α) = sup
μ∈P (Rd ):R(μ‖θ )<∞

[∫

Rd

〈α, y〉 μ(dy) − R (μ ‖θ )

]
.

Therefore, for all α ∈ R
d and μ ∈ P(Rd),

R (μ ‖θ ) ≥
〈
α,

∫

Rd

yμ(dy)

〉
− H(α),

and consequently
L(β) ≥ 〈α,β〉 − H(α).

Sinceα ∈ R
d is arbitrary, we have L(β) ≥ H∗(β). By (4.23), the reverse inequal-

ity holds, which shows that L(β) = H∗(β) and also proves part (e).
(f) For the last two parts of the lemma we include the x dependence. From

Lemma4.14, (x,α) �→ H(x,α) is continuous. We now show that joint continu-
ity of L(x,β) follows from this. If a sequence of differentiable convex functions gi
with Legendre transforms g∗

i converges pointwise to another differentiable convex
function g with transform g∗, and if β is any point such that g∗(β) < ∞, then when-
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ever βi → β, we have g∗
i (βi ) → g∗(β) [97, Lemma C.8.1]. We apply this result with

gi (α) = H(xi ,α) and g(α) = H(x,α) to conclude that if xi → x and βi → β, then
L(xi ,βi ) → L(x,β).

(g) To see the measurability of (x,β) �→ α(x,β), note that for each x , the strict
convexity of α �→ H(x,α) and the fact L(x,β) = H∗(x,β) < ∞ imply that β �→
L(x,β) is differentiable for all β ∈ R

d [217, Theorem 26.3]. The characterization
of H(x,α) as the Legendre–Fenchel transform of L(x,β) then gives α(x,β) =
∇βL(x,β), from which measurability follows.

The second equality in (4.20) follows from (4.22), while the first equality follows
on noting that the first inequality in (4.23) was shown to be an equality. �

4.7 Laplace Lower Bound Under Condition4.7

In this section we prove the Laplace principle lower bound under Conditions4.3 and
4.7. For the proof of this lower bound we construct a nearly optimal trajectory φ∗
for infφ∈C ([0,1]:Rd ) [F(φ) + I (φ)] that has a simple form. Based on φ∗, a control is
constructed for use in the representation, so that the running cost is close to I (φ∗)
and the associated controlled process converges to the nearly optimal trajectory φ∗
as n → ∞.

Fix ε > 0. Then there is ζ ∈ C ([0, 1] : Rd) such that

[F(ζ) + I (ζ)] ≤ inf
φ∈C ([0,1]:Rd )

[F(φ) + I (φ)] + ε. (4.24)

While {ζ(t) : 0 ≤ t ≤ 1} is bounded by continuity, we also claim that without loss
of generality, we can assume that

{ζ̇(t) : 0 ≤ t ≤ 1} is bounded.

This claim will be established in Sect. 4.7.3.
Recall from part (f) of Lemma4.16 that L is continuous. Let M < ∞ and K < ∞

be such that

sup
t∈[0,1]

‖ζ(t)‖ ∨ sup
t∈[0,1]

‖ζ̇(t)‖ ≤ M, sup
{(x,β):‖x‖≤M+1,‖β‖≤M+1}

L(x,β) ≤ K .

For δ > 0, let ζδ be the piecewise linear interpolation of ζ, with interpolation
points t = kδ. Since ζ is absolutely continuous, ζ̇δ(t) converges to ζ̇(t) for a.e.
t ∈ [0, 1]. Also, since supt∈[0,1] ‖ζδ(t)‖ ≤ M and supt∈[0,1] ‖ζ̇δ(t)‖ ≤ M , the conti-
nuity of L and the dominated convergence theorem imply that there is δ > 0 such
that

[
F(ζδ) + I (ζδ)

] ≤ [F(ζ) + I (ζ)] + ε. We set φ∗ = ζδ for such a δ.
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4.7.1 Construction of a Nearly Optimal Control

The construction of a control to apply in the representation is now straightforward.
Let γ(dy|x,β) be as in part (g) of Lemma4.16. Recall that μ̄n

i is allowed to be any
measurable function of X̄ n

j , j = 0, . . . , i . Define Nn .= inf{ j : ‖X̄ n
j − φ∗( j/n)‖ >

1} ∧ n. Then we set

μ̄n
i (·) =

{
γ(·|X̄ n

i , φ̇
∗(i/n)) if i < Nn,

θ(·|X̄ n
i ) if i ≥ Nn.

(4.25)

The cost under this control satisfies

E

[
1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

= E

[
1

n

Nn−1∑

i=0

L(X̄ n
i , φ̇

∗(i/n))

]

≤ K ,

and therefore Lemma4.11 applies. Since τ n .= Nn/n takes values in a compact set,
given any subsequence of N we can find a further subsequence (again denoted by n)
such that (X̄ n, μ̄n, τ n) converges in distribution to a limit (X̄ , μ̄, τ ). Also, it follows
from the fact that the mean of μ̄n

i is φ̇∗(i/n) for i < Nn that

x0 +
∫

Rd×[0,t∧τn ]
yμ̄n(dy × ds) = x0 + 1

n

�nt�∧Nn−1∑

i=0

φ̇∗(i/n) + O(1/n)

= φ∗(t ∧ τ n) + O(1/n).

Using the uniform integrability (4.8), we can send n → ∞ and obtain

x0 +
∫

Rd×[0,t]
yμ̄(dy|s)ds = φ∗(t)

for all t ∈ [0, τ ]. It then follows from Lemma4.12 [see (4.15)] that X̄(t) = φ∗(t) for
all t ∈ [0, τ ], w.p.1. However, since ‖X̄ n(τ n) − φ∗(τ n)‖ converges in distribution
to ‖X̄(τ ) − φ∗(τ )‖, the definition of Nn implies that on the set τ < 1, we have∥∥X̄(τ ) − φ∗(τ )

∥∥ ≥ 1. Thus P(τ < 1) = 0, and so X̄(t) = φ∗(t) for t ∈ [0, 1]. We
conclude that along the full sequence N, X̄ n converges in distribution to φ∗.

4.7.2 Completion of the Proof of the Laplace Lower Bound

We now put the pieces together to prove the Laplace lower bound. For the particular
control

{
μ̄n
i

}
just constructed, we have
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lim sup
n→∞

−1

n
log E exp{−nF(Xn)}

≤ lim sup
n→∞

E

[

F(X̄ n) + 1

n

n−1∑

i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )

)
]

= lim sup
n→∞

E

[

F(X̄ n) + 1

n

Nn−1∑

i=0

L(X̄ n
i , φ̇

∗(i/n))

]

=
[
F(φ∗) +

∫ 1

0
L(φ∗(t), φ̇∗(t))dt

]

≤ inf
φ∈C ([0,1]:Rd )

[F(φ) + I (φ)] + 2ε.

The first inequality follows since the representation considers the infimum over all
controls, and the first equality is due to the definition of μ̄n

i in (4.25). The second
equality follows from the weak convergence X̄ n ⇒ φ∗ [Lemma4.12], the uniform
bound on L(X̄ n

i , φ̇
∗(i/n)) for i ≤ Nn − 1, and the dominated convergence theorem.

The last inequality uses the fact that φ∗ as constructed is within 2ε of the infimum.
Since ε > 0 is arbitrary, the Laplace lower bound

lim inf
n→∞

1

n
log E exp{−nF(Xn)} ≥ − inf

φ∈C ([0,1]:Rd )
[F(φ) + I (φ)]

follows. �

4.7.3 Approximation by Bounded Velocity Paths

We now prove the claim that for ζ satisfying (4.24), ζ̇ can also be assumed bounded.

Lemma 4.17 Consider ζ ∈ C ([0, 1] : Rd) such that [F(ζ) + I (ζ)] < ∞. Then
given ε > 0, there is ζ∗ such that {ζ̇∗(t) : 0 ≤ t ≤ 1} is bounded and

sup
0≤t≤1

‖ζ(t) − ζ∗(t)‖ ≤ ε, I (ζ∗) ≤ I (ζ) + ε.

Proof Since F is bounded, I (ζ) < ∞. For λ ∈ (0, 1) let Dλ
.= {t : ‖ζ̇(t)‖ ≥ 1/λ},

and define a time rescaling Sλ : [0, 1] → [0,∞) by Sλ(0) = 0 and

Ṡλ(t) =
{ ‖ζ̇(t)‖/(1 − λ), t ∈ Dλ,

1 otherwise.

Then Sλ(t) is continuous and strictly increasing. Let Tλ be the inverse of Sλ, which
means that Tλ satisfies Tλ(Sλ(t)) = t for all t ∈ [0, 1] and Sλ(Tλ(t)) = t for all
t ∈ [0, Sλ(1)] ⊃ [0, 1]. Also define ζλ on [0, Sλ(1)] by
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ζλ(t)
.= ζ(Tλ(t)),

which is a “slowed” version of ζ. By the ordinary chain rule, ζ̇λ(Sλ(t)) = ζ̇(t)/Ṡλ(t),
and therefore ζ̇λ(t) has uniformly bounded derivative for t ∈ [0, 1]. The ζ∗ in the
lemma will be ζλ for a positive λ.

From part (c) of Lemma4.14 and part (d) of Lemma4.16, L(x,β) is uniformly
superlinear in β: L(x,β)/‖β‖ → ∞ uniformly in x as ‖β‖ → ∞. This property
and I (ζ) < ∞ imply

∫ 1
0 ‖ζ̇(t)‖dt < ∞, and consequently

lim
λ→0

∫ 1

0
1Dλ

(t)‖ζ̇(t)‖dt = 0. (4.26)

It follows that limλ→0 Sλ(s) = s uniformly for s ∈ [0, 1]. Since

sup
t∈[0,1]

‖ζλ(t) − ζ(t)‖ = sup
t∈[0,1]

‖ζ(Tλ(t)) − ζ(t)‖ = sup
s∈[0,Tλ(1)]

‖ζ(s) − ζ(Sλ(s))‖,

it follows that supt∈[0,1] ‖ζλ(t) − ζ(t)‖ → 0 as λ → 0.
Thus we need only show that I (ζλ) is close to I (ζ). Let

Γ
.= sup

t∈[0,1]
sup

β:‖β‖≤1
L(ζ(t),β) < ∞.

For t ∈ Dλ, the nonnegativity of L implies

L

(

ζ(t),
ζ̇(t)

Ṡλ(t)

)

Ṡλ(t) − L(ζ(t), ζ̇(t)) ≤ L

(

ζ(t),
(1 − λ)ζ̇(t)

‖ζ̇(t)‖

)
‖ζ̇(t)‖
1 − λ

≤ Γ

1 − λ
‖ζ̇(t)‖,

and therefore

I (ζλ) − I (ζ) ≤
∫ Sλ(1)

0
L(ζλ(t), ζ̇λ(t))dt −

∫ 1

0
L(ζ(t), ζ̇(t))dt

=
∫ 1

0
L(ζλ(Sλ(t)), ζ̇λ(Sλ(t)))Ṡλ(t)dt −

∫ 1

0
L(ζ(t), ζ̇(t))dt

=
∫ 1

0
L

(

ζ(t),
ζ̇(t)

Ṡλ(t)

)

Ṡλ(t)dt −
∫ 1

0
L(ζ(t), ζ̇(t))dt

≤ Γ

1 − λ

∫ 1

0
1Dλ

(t)‖ζ̇(t)‖dt.

From (4.26), the last expression converges to 0 as λ → 0. Thus lim supλ→0 I (ζλ) ≤
I (ζ) and ζλ → ζ as λ → 0, and the claim is proved. �
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With the proof that we can assume that ζ̇ is bounded for ζ appearing in (4.24),
the proof of the Laplace lower bound under Condition4.7 is complete.

4.8 Laplace Lower Bound Under Condition4.8

In this section we prove the Laplace principle lower bound without assuming the
support condition on θ(·|x). Instead, besides Condition4.3, we use the Lipschitz-type
assumption of Condition4.8. The main difficulty in the proof for this case is that the
construction of a piecewise linear nearly minimizing trajectory, which simplified the
proof in Sect. 4.7, is not directly available here. The arguments of Sect. 4.7 relied
on the finiteness and continuity of the function (x,β) �→ L(x,β), properties that in
general will not hold for the setting considered in this section.

In order to overcome this difficulty, we introduce a mollification that in a sense
reduces the problem to the form studied in Sect. 4.7. The mollification introduces
an error that needs to be carefully controlled. This is the main technical challenge
in the proof. We will also make use of Lemma1.10, which shows that the Laplace
principle lower bound holds if and only if it holds for F that are Lipschitz continuous.
Mollification techniques are often used in large deviation analysis, and are especially
useful in proving lower bounds.

The section is organized as follows. We begin in Sect. 4.8.1 by introducing the
mollification of the state dynamics. This takes the form of a small additive Gaussian
perturbation, parametrized by σ > 0, to the noise sequence {vi (Xn

i )} in (4.1). We
then estimate the asymptotics of − 1

n log E exp{−nF(Xn)} through an analogous
expression when Xn is replaced by the perturbed state process Zn

σ . Next in Sect. 4.8.2
we give a variational upper bound for functionals of the perturbed process in terms of
a convenient family of controls. The limits of cost functions in this representation are
given in terms of a perturbation Lσ of the function L introduced in (4.5). Section4.8.3
studies properties of Lσ . In particular, we show that Lσ is a finite continuous function,
is bounded above by L , and satisfies properties analogous to those assumed of L in
Condition4.8. Using these results, in Sect. 4.8.4 we construct a piecewise linear
nearly optimal trajectory for infφ∈C ([0,1] :Rd ) [F(φ) + Iσ(φ)], where Iσ is the rate
function associated with the local rate function Lσ , which is then used to construct an
asymptotically nearly optimal control sequence for the representation. Section4.8.5
studies tightness and convergence properties of the associated controlled processes.
Finally, Sect. 4.8.6 uses these convergence results and estimates from Sect. 4.8.1 to
complete the proof of the variational upper bound. Throughout this section, F will
be a real-valued bounded Lipschitz continuous function on C ([0, 1] : Rd).

4.8.1 Mollification

For σ > 0, let {wi,σ}i∈N0 be an iid sequence of Gaussian random variables with mean
0 and covariance σ I that is independent of the random vector fields {vi (·)}i∈N0 .
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For n ∈ N and σ > 0, consider along with the sequence {Xn
i }i=0,...,n , the sequence

{Un
i,σ}i=0,...,n defined by

Un
i+1,σ

.= Un
i,σ + 1

n
wi,σ, Un

0,σ = 0.

Define the piecewise linear process {Un
σ (t)}t∈[0,1] by

Un
σ (t)

.= Un
i,σ + [

Un
i+1,σ −Un

i,σ

]
(nt − i) , t ∈ [i/n, i/n + 1/n].

Let Zn
σ = Xn +Un

σ , where Xn is as in (4.2). Note that Zn
σ is the piecewise linear

interpolation of the sequence {Zn
i,σ}, where Zn

i,σ = Xn
i +Un

i,σ .
The following result shows that the Laplace lower bound properties of {Xn} can

be bounded in terms of the lower bound properties of {Zn
σ}. For φ ∈ C ([0, 1] : Rd),

recall that ‖φ‖∞
.= sup0≤t≤1 ‖φ(t)‖.

Lemma 4.18 For every σ > 0,

lim sup
n→∞

−1

n
log Ee−nF(Xn) ≤ lim sup

n→∞
−1

n
log Ee−nF(Zn

σ) + M2σ2

2
,

where

M
.= sup

φ,η∈C ([0,1]:Rd ),φ �=η

|F(φ) − F(η)|
‖φ − η‖∞

.

Proof Let B = 2‖F‖∞. Then since

F(Zn
σ) ≥ F(Xn) − (M‖Un

σ‖∞) ∧ B,

we see that

− 1

n
log Ee−nF(Xn) ≤ −1

n
log Ee−nF(Zn

σ) + 1

n
log Een[(M‖Un

σ ‖∞)∧B]. (4.27)

We now estimate the second term on the right side of (4.27) using the Laplace
principle upper bound (which was proved in Sect. 4.5) with θ(·|x) = ρσ(·), where ρσ

is the law of a d-dimensional normal random variable with mean 0 and covariance
σ I . Let

Hσ(α)
.= log

∫

Rd

exp〈α, y〉ρσ(dy) = σ2

2
‖α‖2, α ∈ R

d .

The Legendre–Fenchel transform of Hσ is given by

Lσ(β)
.= sup

α∈Rd

[〈α,β〉 − Hσ(α)] = 1

2σ2
‖β‖2.
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Then {Un
σ }n∈N satisfies the Laplace upper bound with rate function

I0,σ(ϕ)
.= 1

2σ2

∫ 1

0
‖ϕ̇(s)‖2ds

if ϕ ∈ C ([0, 1] : Rd) is absolutely continuous and ϕ(0) = 0, and I0,σ(ϕ)
.= ∞ oth-

erwise. This upper bound yields

lim sup
n→∞

1

n
log Een[(M‖Un

σ ‖∞)∧B]

≤ − inf
ϕ∈C ([0,1]:Rd )

[
I0,σ(ϕ) − (M‖ϕ‖∞) ∧ B

]

≤ − inf
ϕ∈C ([0,1]:Rd )

[
I0,σ(ϕ) − M‖ϕ‖∞

]
. (4.28)

For all ϕ ∈ C ([0, 1] : Rd) with I0,σ(ϕ) < ∞, we have

‖ϕ‖2∞ = sup
t∈[0,1]

∥∥∥∥

∫ t

0
ϕ̇(s)ds

∥∥∥∥

2

≤
∫ 1

0
‖ϕ̇(s)‖2ds,

and thus

inf
ϕ∈C ([0,1]:Rd )

[
I0,σ(ϕ) − M‖ϕ‖∞

] ≥ inf
ϕ∈C ([0,1]:Rd )

[‖ϕ‖2∞
2σ2

− M‖ϕ‖∞
]

= inf
r≥0

[
r2

2σ2
− Mr

]

= −M2σ2

2
.

The claim of the lemma now follows from the last display, (4.27), and (4.28). �

4.8.2 Variational Bound for the Mollified Process

In this section we present a variational bound for Ee−nF(Zn
σ). The basic idea is to

apply Theorem4.5 with the Markov chain {Xn
i }i∈N0 replaced by the R

2d -valued
Markov chain {(Xn

i ,U
n
i,σ)}i∈N0 . Let Y

n
i,σ

.= (Xn
i ,U

n
i,σ). The following construction

is analogous to Construction4.4, but for the doubled set of noises appearing in the
mollification. In addition, we will build in the restriction on controls just mentioned.

Construction 4.19 Suppose we are given a probability measure μn ∈ P((Rd ×
R

d)n), and decompose it into a collection of stochastic kernels. With a point in
(Rd × R

d)n denoted by (v1,w1, v2,w2, . . . , vn,wn), [μn]1i |0,...,i−1 will denote the
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marginal distribution of μn on vi given (v j ,wj ), j < i , and [μn]2i |0,...,i−1 will denote
the marginal distribution of μn on wi given (v j ,wj ), j < i and vi .

We now assume that μn also has the property that [μn]2i |0,...,i−1 does not depend
on vi , which implies that the distributions on vi and wi are conditionally independent
given (v j ,wj ), j < i . Let {(v̄ni , w̄n

i )}i=0,...,n−1 be random variables defined on a prob-
ability space (Ω,F , P) and with joint distribution μn. Let F̄ n

i
.= σ((v̄nj , w̄

n
j ), j =

0, . . . , i − 1), and define

μ̄1,n
i (dvi )

.= [μn]1i |0,...,i−1(dvi |v̄n0 , w̄n
0 , . . . , v̄

n
i−1, w̄

n
i−1)

μ̄2,n
i (dwi )

.= [μn]2i |0,...,i−1(dwi |v̄n0 , w̄n
0 , . . . , v̄

n
i−1, w̄

n
i−1),

so that these controls pick the distributions of v̄ni and w̄n
i conditioned on F̄ n

i . Con-
trolled processes X̄n, Ū n

σ and measures L̄n are then recursively constructed as fol-
lows. Let (X̄ n

0 , Ū
n
0,σ) = (x0, 0) and define

X̄n
i+1 = X̄ n

i + 1

n
v̄ni , Ū n

i+1,σ = Ū n
i,σ + 1

n
w̄n
i . (4.29)

Note that F̄ n
i = σ((X̄ n

j , Ū
n
j,σ), j = 1, . . . , i). When {(X̄ n

i , Ū
n
i,σ)}i=1,...,n has been

constructed, X̄n(t) and Ūn
σ (t) are defined as in (4.2) as the piecewise linear inter-

polations, and we set Z̄ n
σ(t)

.= X̄ n(t) + Ū n
σ (t) for t ∈ [0, 1]. In addition, define

L̄n(A × B)
.=
∫

B
L̄n(A|t)dt, L̄n(A|t) = δ(v̄ni ,w̄

n
i )
(A) if t ∈ [i/n, i/n + 1/n).

The following is the main result of this section. Owing to the restriction placed
on the controls in Construction4.19, we obtain only an inequality, but the inequality
is in the right direction to establish a Laplace lower bound.

Proposition 4.20 Let F : C ([0, 1] : Rd) → R be Lipschitz continuous. Given a
control {(μ̄1,n

i , μ̄2,n
i )}i=0,...,n−1, let {X̄ n

i } and {Z̄ n
σ} be defined as in Construction4.19.

Then for all n ∈ N and σ > 0,

− 1

n
log Ee−nF(Zn

σ)

≤ inf
{μ̄1,n

i ,μ̄2,n
i }

E

[

F(Z̄ n
σ) + 1

n

n−1∑

i=0

[
R
(
μ̄1,n
i (·)‖θ(·|X̄ n

i )
)

+ R
(
μ̄2,n
i ‖ρσ

)]]

.

Proof We apply Theorem4.5 with d replaced by 2d, {Xn
i } replaced by {(Xn

i ,U
n
i,σ)},

and G : P(R2d × [0, 1]) → R defined by

G(γ)
.= F(ϕγ), γ ∈ P(R2d × [0, 1]),

where ϕγ ∈ C ([0, 1] : Rd) is defined by
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ϕγ(t)
.=
∫

R2d×[0,t]
(y + z)γ(dy × dz × ds) + x0, t ∈ [0, 1]

if ‖y + z‖ has finite integral under γ, and ϕγ identically zero otherwise. Let
Y n
i,σ = (Xn

i ,U
n
i,σ) and let Ȳ n

i,σ be its controlled analogue according to (4.29), with
the appropriate replacements, and in particular {v̄ni } replaced by {(v̄ni , w̄n

i )}. Let

μ̄n
i (A × B)

.= μ̄1,n
i (A)μ̄2,n

i (B), A, B ∈ B(Rd).

Since we have placed restrictions on the measures μn (equivalently on the controls
{(μ̄1,n

i , μ̄2,n
i )}), Theorem4.5 yields the inequality

− 1

n
log Ee−nF(Zn

σ) (4.30)

≤ inf
{μ̄1,n

i ,μ̄2,n
i }

E

[

F(ϕL̄n ) + 1

n

n−1∑

i=0

R
(
μ̄n
i (dvi × dwi )‖θ(dvi |X̄ n

i )ρσ(dwi )
)
]

.

Here we have used that the distribution of the original process on (vi ,wi ) depends
on Y n

i,σ only through Xn
i . The chain rule implies

R
(
μ̄n
i (dvi × dwi )‖θ(dvi |X̄ n

i )ρσ(dwi )
) = R

(
μ̄1,n
i (·)‖θ(·|X̄ n

j )
)

+ R
(
μ̄2,n
i ‖ρσ

)
.

Finally, from the definition of ϕγ it follows that if the relative entropy cost is finite,
then F(ϕL̄n ) = F(Z̄ n

σ) w.p.1. Inserting these into (4.30) completes the proof of the
lemma. �

4.8.3 Perturbation of L and Its Properties

In order to characterize the limits of the relative entropy terms in (4.30), we use a
perturbation of the function L introduced in (4.5). For σ > 0, let

Lσ(x,β)
.= sup

α∈Rd

[
〈α,β〉 − H(x,α) − σ2

2
‖α‖2

]
.

Note that for each x ∈ R
d , β �→ Lσ(x,β) is the Legendre–Fenchel transform of

Hσ(x,α)
.= log

∫

Rd

e〈α,y〉θσ(dy|x),

where θσ(·|x) is the distribution of v0(x) + w0,σ . The following lemma records some
important properties of Lσ.
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Lemma 4.21 Assume Conditions 4.3 and 4.8 and fix σ > 0. Then the following
conclusions hold.

(a) For all (x,β) ∈ R
d × R

d ,

Lσ(x,β) = inf
b∈Rd

[
L(x,β − b) + ‖b‖2

2σ2

]
.

(b) For all (x,β) ∈ R
d × R

d , Lσ(x,β) ≤ L(x,β).
(c) (x,β) �→ Lσ(x,β) is a finite nonnegative continuous function on Rd × R

d .
(d)Condition4.8 is satisfied with L replaced by Lσ uniformly in σ in the following

sense: for every compact K ⊂ R
d and ε ∈ (0, 1) there exist η̄ = η̄(K , ε) ∈ (0, 1) and

m̄ = m̄(K , ε) ∈ (0,∞) such that whenever ξ,χ ∈ K satisfy ‖ξ − χ‖ ≤ η̄, for every
γ̄ ∈ R

d and σ > 0 we can find β̄ ∈ R
d such that

Lσ(ξ, β̄) − Lσ(χ, γ̄) ≤ ε(1 + Lσ(χ, γ̄)), ‖β̄ − γ̄‖ ≤ m̄(1 + Lσ(χ, γ̄))‖ξ − χ‖.
(4.31)

(e) Given ζ ∈ C ([0, 1] : Rd) satisfying I (ζ) < ∞, there is a ζ∗ ∈ C ([0, 1] : Rd)

that is piecewise linear with finitely many pieces such that ‖ζ∗ − ζ‖∞ < σ and

∫ 1

0
Lσ(ζ

∗(t), ζ̇∗(t))dt ≤
∫ 1

0
Lσ(ζ(t), ζ̇(t))dt + σ ≤ I (ζ) + σ. (4.32)

Proof (a) For each x ∈ R
d , β �→ Lσ(x,β) is the Legendre–Fenchel transform of the

sum of the convex functions H(x, ·) and H̄σ(·), where H̄σ(α) = σ2‖α‖2/2, α ∈ R
d .

The Legendre transform of the first function is L(x, ·), and that of the second function
is Lσ(β) = ‖β‖2/2σ2, β ∈ R

d . From Theorem 16.4 of [217] it follows that

Lσ(x,β) = inf

[
L(x,β1) + ‖β2‖2

2σ2
: βi ∈ R

d , i = 1, 2,β1 + β2 = β

]
,

as claimed.
(b) This is an immediate consequence of part (a).
(c) Note that Conditions4.3 and 4.7 are satisfied with H(x,α) replaced by

Hσ(x,α)
.= H(x,α) + Hσ(α) and θ(·|x) replaced by θσ(·|x). Part (c) now follows

from parts (a), (d), and (f) of Lemma4.16.
(d) Fix a compact K ⊂ R

d and ε ∈ (0, 1). From Condition4.8, we can find η ∈
(0, 1) and m ∈ (0,∞) such that whenever ξ,χ ∈ K satisfy ‖ξ − χ‖ ≤ η, we can
find for every γ ∈ R

d a β ∈ R
d such that

L(ξ,β) − L(χ, γ) ≤ ε

2
(1 + L(χ, γ)), ‖β − γ‖ ≤ m(1 + L(χ, γ))‖ξ − χ‖.

(4.33)
We claim that the statement in (d) holds for η̄ = η and m̄ = 2m. To see this, suppose
ξ,χ ∈ K satisfy ‖ξ − χ‖ ≤ η and γ̄ ∈ R

d . Using part (a), we can find b̄ ∈ R
d such

that
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Lσ(χ, γ̄) ≥ L(χ, γ̄ − b̄) + ‖b̄‖2
2σ2

− ε

4
. (4.34)

Using Condition4.8 and taking γ = γ̄ − b̄, we can find β ∈ R
d such that (4.33)

holds. Letting β̄ = β + b̄, we have

‖β̄ − γ̄‖ = ‖β − γ‖
≤ m(1 + L(χ, γ̄ − b̄))‖ξ − χ‖
≤ m(1 + Lσ(χ, γ̄) + ε/4)‖ξ − χ‖
≤ 2m(1 + Lσ(χ, γ̄))‖ξ − χ‖ ,

where the second inequality follows from (4.34). This proves the second inequality
in (4.31). Also, from part (a),

Lσ(ξ, β̄) − Lσ(χ, γ̄) ≤ L(ξ, β̄ − b̄) + ‖b̄‖2
2σ2

− L(χ, γ̄ − b̄) − ‖b̄‖2
2σ2

+ ε

4

≤ ε

2

(
1 + L(χ, γ̄ − b̄) + ‖b̄‖2

2σ2

)
+ ε

4

≤ ε (1 + Lσ(χ, γ̄)) ,

where the second inequality is from (4.33) and the third is from (4.34). This proves
the first inequality in (4.31) and completes the proof of part (d).

(e) Recall that for all σ > 0, Hσ(·, ·) and θσ satisfy Conditions4.3 and 4.7. Fix
ζ ∈ C ([0, 1] : Rd) satisfying I (ζ) < ∞. Note that Iσ(ζ)

.= ∫ 1
0 Lσ(ζ(t), ζ̇(t))dt ≤

I (ζ). Then applying Lemma4.17 to Iσ , we can find ζ∗
1 ∈ C ([0, 1] : Rd) such that

{ζ̇∗
1 (t) : 0 ≤ t ≤ 1} is bounded, ‖ζ∗

1 − ζ‖∞ < σ
2 , and (4.32) holds with ζ∗ replaced

by ζ∗
1 and σ replaced by σ/2. The statement in part (e) now follows by taking ζ∗

to be a piecewise linear approximation of ζ∗
1 and using the continuity of (x,β) �→

Lσ(x,β). �

4.8.4 A Nearly Optimal Trajectory and Associated Control
Sequence

For ε > 0 let ζ ∈ C ([0, 1] : Rd) be such that

F(ζ) + I (ζ) ≤ inf
ϕ∈C ([0,1]:Rd )

[F(ϕ) + I (ϕ)] + ε. (4.35)

Here F , as in Sect. 4.8.1, is a Lipschitz continuous function from C ([0, 1] : Rd) to
R, and I is the expected rate function for the system without mollification. From part
(e) of Lemma4.21, for each fixed σ ∈ (0, 1), we can find a ζ∗ ∈ C ([0, 1] : Rd) that
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is piecewise linear with finitely many pieces such that ‖ζ∗ − ζ‖∞ ≤ σ and (4.32)
holds, i.e.,

∫ 1
0 Lσ(ζ∗(t), ζ̇∗(t))dt ≤ I (ζ) + σ.

We now construct a control sequence to be applied to the mollified process for
which the running cost is asymptotically close to the left side in (4.32) and the
associated controlled process Z̄ n

σ tracks the nearly optimal trajectory ζ∗ closely as
n → ∞. Let

K
.=

⋃

t∈[0,1]

{
y ∈ R

d : ‖y − ζ(t)‖ ≤ 2
}
.

Since ζ is continuous, K is compact.We apply part (d) of Lemma4.21with K defined
as in the last display and ε as in (4.35). Thus there exist η̄ ∈ (0, 1) and m̄ ∈ (0,∞)

such that whenever ξ,χ ∈ K satisfy ‖ξ − χ‖ ≤ η̄, we can find for every γ̄ ∈ R
d

and σ ∈ (0, 1), a β̄ ∈ R
d such that (4.31) holds. The following lemma says that the

selection of β̄ can be done in a measurable way. Note that the choice of η̄ and m̄
depends on ε and K , but is independent of σ.

Lemma 4.22 (a)Fixχ, γ̄ ∈ R
d andσ > 0. Given ξ ∈ K (χ)

.= {x ∈ K : ‖x − χ‖ ≤
η̄}, define Γξ to be the set of all β̄ ∈ R

d such that (4.31) holds. Then there is a
measurable map B : K (χ) → R

d such that B(ξ) ∈ Γξ for all ξ ∈ K (χ) and χ ∈ K.
(b) Let KM̄ = {β ∈ R

d : ‖β‖ ≤ M̄}, where

M̄ = sup
s∈[0,1],ξ∈K

[
m̄‖ξ − ζ∗(s)‖ (

1 + Lσ(ζ
∗(s), ζ̇∗(s))

) + ‖ζ̇∗(s)‖] .

Given (ξ,β) ∈ K × KM̄ , define Γ̃(ξ,β) to be the set of all (β1,β2) ∈ R
d × R

d such
that

L(ξ,β1) + 1

2σ2
‖β2‖2 ≤ Lσ(ξ,β) + σ, β1 + β2 = β.

Then there are measurable maps Bi : K × KM̄ → R
d , i = 1, 2, such that (B1(ξ,β),

B2(ξ,β)) ∈ Γ̃(ξ,β) for all (ξ,β) ∈ K × KM̄ .

Proof CorollaryE.3 in the appendix is concerned with measurable selections. The
proof of part (a) is immediate from this corollary and the continuity of Lσ(·, ·).
The second part also follows from CorollaryE.3 and the lower semicontinuity of L
proved in part (b) of Lemma4.14. Indeed, suppose (ξn,βn) ∈ K × KM̄ are such that
ξn → ξ and βn → β, and let (β1

n ,β
2
n) ∈ Γ̃(ξn ,βn). Since K × KM̄ is compact and Lσ

is continuous, supn∈N Lσ(ξn,βn) < ∞. Using the inequality

L(ξn,β
1
n) + 1

2σ2
‖β2

n‖2 ≤ Lσ(ξn,βn) + σ , (4.36)

we see that {β2
n} is bounded, and since β1

n + β2
n = βn , {β1

n} is bounded as well.
Suppose now that β1

n → β1 and β2
n → β2 along a subsequence. Clearly β1 + β2 =

β, and from the lower semicontinuity of L and continuity of Lσ, (4.36) holds
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with (ξn,βn,β
1
n ,β

2
n) replaced by (ξ,β,β1,β2). Thus (β1,β2) ∈ Γ̃(ξ,β). Hence the

assumptions of CorollaryE.3 are satisfied, and the result follows. �

As shown in Appendix B, it follows from part (g) of Lemma4.16 that there
are stochastic kernels γi , i = 1, 2, from R

d × R
d to P(Rd) and R

d to P(Rd),
respectively, such that for all (ξ,β1) ∈ R

d × R
d and β2 ∈ R

d ,

R
(
γ1(·|ξ,β1) ‖θ(·|ξ)) = L(ξ,β1) and

∫

Rd

yγ1(dy|ξ,β1) = β1

and

R
(
γ2(·|β2) ‖ρσ(·)) = 1

2σ2
‖β2‖2 and

∫

Rd

yγ2(dy|β2) = β2.

Using these kernels, we recursively define a control sequence {(μ̄1,n
i , μ̄2,n

i )}, con-
trolled processes {(X̄ n

i , Ū
n
i,σ)}, and a stopping time κn as follows. We initialize with

(X̄ n
0 , Ū

n
0,σ) = (x0, 0), and set

κn .= inf
{
i ∈ N0 : ‖X̄ n

i − ζ∗(i/n)‖ > η̄
} ∧ n.

At each discrete time j = 0, . . . ,κn − 1 we apply part (a) of Lemma4.22 with
(χ, γ̄) = (ζ∗( j/n), ζ̇∗( j/n)). Noting that X̄ n

j ∈ K (ζ∗( j/n)), we define β̄n
j =

B(X̄ n
j ). Note that β̄n

j ∈ KM̄ . With Bi as in part (b) of Lemma4.22, let βi,n
j =

Bi (X̄ n
j , β̄

n
j ), i = 1, 2. Define

μ̄1,n
j (·) = 1{ j<κn}γ1(·|X̄ n

j ,β
1,n
j ) + 1{ j≥κn}θ(·|X̄ n

j ),

μ̄2,n
j (·) = 1{ j<κn}γ2(·|β2,n

j ) + 1{ j≥κn}ρσ(·)

and define v̄nj , w̄
n
j,σ, X̄ n

j+1, Ū
n
j+1,σ, X̄ n, Ū n

σ , and Z̄ n
σ according to Construction4.19.

As in the previous proof of a Laplace lower bound, we revert to the original distri-
butions when X̄ n

i wanders farther than η̄ from ζ∗(i/n) to keep the relative entropy
costs uniformly bounded. This will be needed when we study the convergence of the
controlled processes.

Note that the choice of the control sequence ensures that for j ∈ {0, 1, . . . ,
κn − 1},

R
(
μ̄1,n

j (·) ∥∥θ(·|X̄ n
j )
)

= L(X̄ n
j ,β

1,n
j ),

∫

Rd

yμ̄1,n
j (dy) = β1,n

j (4.37)

and

R
(
μ̄2,n

j ‖ρσ

)
= 1

2σ2
‖β2,n

j ‖2,
∫

Rd

yμ̄2,n
j (dy) = β2,n

j . (4.38)
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Also for j ∈ {κn, . . . , n − 1}, R(μ̄1,n
j ||θ(·|X̄ n

j )) = R(μ̄2,n
j ‖ρσ ) = 0. From the

choice of (χ, γ̄) = (ζ∗( j/n), ζ̇∗( j/n)) in the definition of β̄n
j ,

Lσ(X̄ n
j , β̄

n
j ) − Lσ(ζ

∗( j/n), ζ̇∗( j/n)) ≤ ε
[
1 + Lσ(ζ∗( j/n), ζ̇∗( j/n))

]
, (4.39)

‖β̄n
j − ζ̇∗( j/n)‖ ≤ m̄

[
1 + Lσ(ζ∗( j/n), ζ̇∗( j/n))

] ‖X̄ n
j − ζ∗( j/n)‖ (4.40)

and

L(X̄ n
j , β̄

1,n
j ) + 1

2σ2
‖β2,n

j ‖2 ≤ Lσ(X̄ n
j , β̄

n
j ) + σ. (4.41)

It follows that

E

⎡

⎣1

n

n−1∑

j=0

(
R
(
μ̄1,n

j (·)‖θ(·|X̄ n
j )
)

+ R
(
μ̄2,n

j (·)‖ρσ(·)
))

⎤

⎦

= E

⎡

⎣1

n

κn−1∑

j=0

(
R
(
μ̄1,n

j (·)‖θ(·|X̄ n
j )
)

+ R
(
μ̄2,n

j (·)‖ρσ(·)
))

⎤

⎦

= E

⎡

⎣1

n

κn−1∑

j=0

(
L(X̄ n

j ,β
1,n
j ) + 1

2σ2
‖β2,n

j ‖2
)⎤

⎦

≤ E

⎡

⎣1

n

κn−1∑

j=0

Lσ(X̄
n
j , β̄

n
j )

⎤

⎦ + σ

≤ 1

n

n−1∑

j=0

[
Lσ(ζ∗( j/n), ζ̇∗( j/n)) + ε

[
1 + Lσ(ζ∗( j/n), ζ̇∗( j/n))

]] + σ,

where the first equality follows from observing that for j ≥ κn , the relative entropy
terms in the first line are zero, the second from (4.37) and (4.38), the inequality on
the third line from (4.41), and the last line from (4.39). Taking limits as n → ∞
in the last display and using the continuity of Lσ and that ζ∗ is piecewise linear, it
follows that

lim sup
n→∞

E

⎡

⎣1

n

n−1∑

j=0

(
R
(
μ̄1,n

j (·)‖θ(·|X̄ n
j )
)

+ R
(
μ̄2,n

j (·)‖ρσ(·)
))

⎤

⎦

≤ (1 + ε)

∫ 1

0
Lσ(ζ∗(t), ζ̇∗(t))dt + (σ + ε)

≤ (1 + ε)I (ζ) + 2σ + ε(1 + σ), (4.42)

where the last inequality follows on recalling that ζ∗ was chosen so that (4.32) is
satisfied.
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We recall that Lemma4.18 gave a bound for Ee−nF(Xn) in terms of Ee−nF(Zn
σ), and

that Proposition4.20 gave a variational bound for − 1
n log Ee

−nF(Zn
σ). If we combine

these with the last display and (4.35), then

lim sup
n→∞

−1

n
log Ee−nF(Xn) ≤ F(ζ) + I (ζ) + 2σ + ε(1 + σ + I (ζ))

+ lim sup
n→∞

E
[
F(Z̄ n

σ) − F(ζ)
] + M2σ2/2

≤ inf
ϕ∈C ([0,1]:Rd )

[F(ϕ) + I (ϕ)] + 2σ + ε(2 + σ + I (ζ))

+ lim sup
n→∞

E
[
F(Z̄ n

σ) − F(ζ)
] + M2σ2/2,

where M , as in the statement of Lemma4.18, is the Lipschitz constant of F . Taking
the limit as σ → 0 and then ε → 0 gives

lim sup
n→∞

−1

n
log Ee−nF(Xn)

≤ inf
ϕ∈C ([0,1]:Rd )

[F(ϕ) + I (ϕ)] + lim sup
ε→0

lim sup
σ→0

lim sup
n→∞

E
[
F(Z̄ n

σ) − F(ζ)
]
.

Hence in order to complete the proof of the Laplace principle lower bound, it now
suffices to argue that

lim sup
ε→0

lim sup
σ→0

lim sup
n→∞

E
[
F(Z̄ n

σ) − F(ζ)
] = 0. (4.43)

To do this we must analyze the asymptotic properties of the controls and controlled
processes.

4.8.5 Tightness and Convergence of Controlled Processes

To prove (4.43) wewill need to establish tightness and characterize the limits of {Z̄ n
σ}.

The main results that are needed have already been established in Lemmas4.11 and
4.12. To apply these results, we first must identify correspondences between objects
here [on R

d × R
d ] and those of the lemmas [on R

d ]. We recall the definitions

L̄n(A × C)
.=
∫

C
L̄n(A|t)dt, L̄n(A|t) .= δ(v̄ni ,w̄

n
i,σ)(A) if t ∈ [i/n, i/n + 1/n)

and μ̄n
i (A × B)

.= μ̄1,n
i (A)μ̄2,n

i (B). Define random probability measures by
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μ̄1,n(A × C)
.=
∫

C
μ̄1,n(A|t)dt, μ̄1,n(A|t) .= μ̄1,n

i (A) if t ∈ [i/n, i/n + 1/n),

μ̄2,n(B × C)
.=
∫

C
μ̄2,n(B|t)dt, μ̄2,n(B|t) .= μ̄2,n

i (B) if t ∈ [i/n, i/n + 1/n),

and

μ̄n(A × B × C)
.=
∫

C
μ̄1,n(A|t)μ̄2,n(B|t)dt,λn(A × B × C)

.=
∫

C
λn(A × B|t)dt,

λn(A × B|t) .= θ(A|X̄ n
i )ρσ(B) if t ∈ [i/n, i/n + 1/n).

Here A, B ∈ B(Rd) and C ∈ B([0, 1]). Also, let κ̄n = κn/n.

Lemma 4.23 (a) The collection {(μ̄n,λn, μ̄1,n, μ̄2,n, X̄ n, Ū n
σ , κ̄n)}n∈N is a tight fam-

ily of random variables with values in

P(Rd × R
d × [0, 1])2 × P(Rd × [0, 1])2 × C ([0, 1] : Rd)2 × [0, 1].

(b) Suppose (μ̄n,λn, μ̄1,n, μ̄2,n, X̄ n, Ū n
σ , κ̄n) converges along a subsequence in

distribution to (μ̄,λ, μ̄1, μ̄2, X̄ , Ūσ, κ̄). Then a.s., for every t ∈ [0, 1],

X̄(t) = x0 +
∫

Rd×[0,t]
yμ̄1(dy × ds) and Ūσ(t) =

∫

Rd×[0,t]
zμ̄2(dz × ds).

Proof It follows from (4.42) that

sup
n∈N

E
[
R
(
μ̄n‖λn

)]
< ∞.

Also, from part (a) of Condition4.3, for every α = (α1,α2) ∈ R
2d ,

sup
x∈Rd

log
∫

R2d
exp

(〈α1, y〉 + 〈α1, z〉) θ(dy|x)ρσ(dz) < ∞.

We can therefore apply Lemma4.11 with θ(dy|x) replaced with θ(dy|x)ρσ(dz) and
μ̄n
i now given by μ̄1,n

i × μ̄2,n
i . The lemma implies that the families {μ̄n} and {L̄n} are

tight and satisfy the uniform integrability property

lim
M→∞ lim sup

n→∞
E

[∫

R2d×[0,1]
‖(y, z)‖ 1{‖(y,z)‖≥M}μ̄n(dy × dz × dt)

]

= lim
M→∞ lim sup

n→∞
E

[∫

R2d×[0,1]
‖(y, z)‖ 1{‖(y,z)‖≥M} L̄n(dy × dz × dt)

]

= 0. (4.44)
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Tightness of X̄ n and Ū n
σ follows from Lemma4.11 with the identities

(X̄ n(t), Ū n
σ (t)) = (x0, 0) +

∫

R2d×[0,t]
(y, z)L̄n(dy × dz × ds).

Finally, tightness of {(μ̄1,n, μ̄2,n)} is immediate from that of {μ̄n}, and the tightness
of {κ̄n} holds trivially due to the compactness of [0, 1].

It follows from Lemma4.12 that

(X̄(t), Ūσ(t)) = (x0, 0) +
∫

R2d×[0,t]
(y, z)μ̄(dy × dz × ds).

We then use that w.p.1 μ̄1(dy × ds) = μ̄(dy × R
d × ds) and μ̄2(dz × ds) =

μ̄(Rd × dz × ds) to get part (b). �

4.8.6 Completion of the Proof of the Laplace Lower Bound

We now return to the proof of (4.43). We will argue that

lim sup
n→∞

E
[
F(Z̄ n

σ) − F(ζ)
] ≤ h(σ, ε), (4.45)

where h : (0,∞) × (0,∞) → [0,∞) satisfies limσ→0 h(σ, ε) = 0 for all ε ∈ (0, 1).
For this, by a usual subsequential argument it is enough to argue that (4.45) holds
along any subsequence as in part (b) of Lemma4.23 with a function h that is indepen-
dent of the choice of the subsequence. Using the Skorohod representation theorem
[Appendix A, Theorem A.8], we can assume that the convergence in part (b) of
Lemma4.23 is a.s., and without loss we can also assume that it holds along the full
sequence. Then for all t ∈ [0, 1],

Z̄σ(t)
.= lim

n→∞ Z̄ n
σ(t) = lim

n→∞ X̄ n(t) + lim
n→∞ Ū n

σ (t) = X̄(t) + Ūσ(t).

The following lemma estimates the difference between Z̄σ and X̄ .

Lemma 4.24 Let m(σ, ε)
.= 2σ2 ((1 + ε)(2‖F‖∞ + σ + ε) + σ + ε). For every

σ > 0,
E‖Z̄σ − X̄‖2∞ = E‖Ūσ‖2∞ ≤ m(σ, ε).

Proof We use the convergence of μ̄2,n to μ̄2 and the uniform integrability stated in
(4.44). The identities in part (b) of Lemma4.23 and an application of Fatou’s lemma
then imply
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E‖Ūσ‖2∞ ≤ lim inf
n→∞ E

∥∥∥∥

∫

Rd×[0,·]
zμ̄2,n(dz × ds)

∥∥∥∥

2

∞

≤ lim inf
n→∞ E

1

n

n−1∑

j=0

∥∥∥∥

∫

Rd

zμ̄2,n
j (dz)

∥∥∥∥

2

= lim inf
n→∞ E

1

n

κn−1∑

j=0

∥∥∥β2,n
j

∥∥∥
2

≤ 2σ2 lim inf
n→∞

1

n

n−1∑

j=0

[
Lσ(ζ∗( j/n), ζ̇∗( j/n))

+ ε
[
1 + Lσ(ζ

∗( j/n), ζ̇∗( j/n))
]] + 2σ3 ,

where the second inequality follows from Jensen’s inequality and the third uses (4.41)
and (4.39). Using the continuity of Lσ leads to

E‖Ūσ‖2∞ ≤ 2σ2

(
(1 + ε)

∫ 1

0
Lσ(ζ∗(t), ζ̇∗(t))dt

)
+ 2σ2(σ + ε)

≤ 2σ2 ((1 + ε)(I (ζ) + σ)) + 2σ2(σ + ε)

≤ 2σ2 ((1 + ε)(2‖F‖∞ + σ + ε)) + 2σ2(σ + ε),

where the second inequality follows from (4.32) and the third from (4.35). This is
the claim of the lemma. �

We recall that β1,n
j + β2,n

j = β̄n
j and that β̄n

j is chosen equal to B(X̄ n
j ), which

implies (4.31) with (ξ, β̄,χ, γ̄) = (X̄ n
j , β̄

n
j , ζ

∗( j/n), ζ̇∗( j/n)) for j ≤ κn − 1. It fol-
lows from (4.37), (4.38), and (4.40) that for j = 0, 1, . . . ,κn − 1,

∥∥∥∥

∫

Rd

y
[
μ̄1,n

j (dy) + μ̄2,n
j (dy)

]
− ζ̇∗( j/n)

∥∥∥∥

=
∥∥∥β1,n

j + β2,n
j − ζ̇∗( j/n)

∥∥∥

= ∥∥β̄n
j − ζ̇∗( j/n)

∥∥

≤ m̄
(
1 + Lσ(ζ∗( j/n), ζ̇∗( j/n))

) ‖X̄ n
j − ζ∗( j/n)‖.

From the uniform integrability property in (4.44) and the a.s. convergence of
(μ̄1,n, μ̄2,n,κn) to (μ̄1, μ̄2,κ), we have for all t ∈ [0, 1] that

∫

Rd×[0,t∧κn ]
y
[
μ̄1,n(dy × ds) + μ̄2,n(dy × ds)

]

converges in probability to
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∫

Rd×[0,t∧κ]
y
[
μ̄1(dy × ds) + μ̄2(dy × ds)

]
.

Thus for every t ∈ [0, κ̄],
∥∥∥∥

∫

Rd×[0,t]
y
[
μ̄1(dy × ds) + μ̄2(dy × ds)

] −
∫ t

0
ζ̇∗(s)ds

∥∥∥∥

= lim
n→∞

∥∥∥∥

∫

Rd×[0,t]
y
[
μ̄1,n(dy × ds) + μ̄2,n(dy × ds)

] −
∫ t

0
ζ̇∗(s)ds

∥∥∥∥

≤ m̄
∫ t

0
‖X̄(s) − ζ∗(s)‖ (

1 + Lσ(ζ
∗(s), ζ̇∗(s))

)
ds.

For s ∈ [0, 1], let a(s) = 1 + Lσ(ζ∗(s), ζ̇∗(s)) and b(s) = ‖Z̄σ(s) − ζ∗(s)‖. Then
from part (b) of Lemma4.23 and since Z̄σ = X̄ + Ūσ, the last display implies that
for t ∈ [0, κ̄],

b(t) =
∥∥∥∥

∫

Rd×[0,t]
y
[
μ̄1(dy × ds) + μ̄2(dy × ds)

] −
∫ t

0
ζ̇∗(s)ds

∥∥∥∥

≤ m̄
∫ t

0
‖X̄(s) − ζ∗(s)‖a(s)ds

≤ m̄
∫ t

0
b(s)a(s)ds + m̄‖X̄ − Z̄σ‖∞

∫ 1

0
a(s)ds.

Using that [again by (4.32) and (4.35)]
∫ 1
0 a(s)ds ≤ 1 + 2‖F‖∞ + σ + ε, for all

ε,σ ∈ (0, 1), Gronwall’s lemma [LemmaE.2] implies

‖Z̄σ(· ∧ κ̄) − ζ∗(· ∧ κ̄)‖∞ ≤ m̄‖X̄ − Z̄σ‖∞
∫ 1

0
a(s)ds

∫ 1

0
em̄

∫ t
0 a(s)dsdt

≤ m̄(2‖F‖∞ + 3)‖X̄ − Z̄σ‖∞em̄(2‖F‖∞+3)

= m̄1‖X̄ − Z̄σ‖∞, (4.46)

where m̄1
.= m̄(2‖F‖∞ + 3)em̄(2‖F‖∞+3). Finally, with M as in Lemma4.18 equal to

the Lipschitz constant of F , we obtain

lim sup
n→∞

E
[
F(Z̄ n

σ) − F(ζ)
] ≤ lim sup

n→∞
E

[
M‖Z̄ n

σ − ζ‖∞ ∧ 2‖F‖∞
]

≤ M
[
m̄1E‖X̄ − Z̄σ‖∞ + σ

] + 2‖F‖∞P(κ̄ < 1)

≤ M
(
m̄1(m(σ, ε))1/2 + σ

) + 2‖F‖∞P(κ̄ < 1).

For the second inequality we use the fact that ‖ζ − ζ∗‖∞ ≤ σ, and we partition
according to whether κ̄ < 1, using (4.46) when this is not the case. The third inequal-
ity follows from Lemma4.24.
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The last quantity we need to control is P(κ̄ < 1). Since the convergence in path
space is with respect to the uniform topology, we have

P(κ̄ < 1) ≤ P
(∥∥Z̄σ(· ∧ κ̄) − ζ∗(· ∧ κ̄)

∥∥∞ ≥ η̄/2
) ≤ 4

η̄2
m̄2

1 m(σ, ε),

where the first inequality follows from the definition of κn and the second inequality
uses Chebyshev’s inequality, (4.46) and Lemma4.24. Thus (4.45) holds with

h(σ, ε) = M
(
m̄1(m(σ, ε))1/2 + σ

) + 2‖F‖∞
4

η̄2(ε)
m̄2

1 m(σ, ε),

where we write η̄ = η̄(ε) to emphasize its dependence on ε (recall from Lemma4.21
that η̄ does not depend on σ). From the definition ofm(σ, ε) in Lemma4.24 it follows
that limσ→0 m(σ, ε) = 0 for all ε ∈ (0, 1). This proves that limσ→0 h(σ, ε) = 0 for
every ε ∈ (0, 1), and hence (4.43) holds.With the limit (4.43) demonstrated, we have
completed the proof of the Laplace lower bound under Condition4.8. �

4.9 Notes

Among the very first papers to treat models of this type are those of Wentzell [245–
248], Freidlin and Wentzell [140], and Azencott and Ruget [8]. The conditions we
use are weaker than those of the cited references. The statement of assumptions and
conclusions for this chapter parallels that of Chapter 6 of [97], though the proof
is different and is directly analogous to the way Cramér’s theorem was obtained
in Chap.3. In particular, we first prove a process-level generalization of Sanov’s
theorem for the driving noises that define the recursive stochastic model. Then,
assuming appropriate integrability conditions on the distribution of these noises, one
obtains Laplace asymptotics for the process of interest by viewing it as a mapping
on this process-level empirical measure. This leads to a somewhat simpler proof,
though in all approaches the mollification aspect of the proof under Conditions4.3
and 4.8 is technical. We also note that the proof given here corrects a gap in a proof in
[97], in that the constant M defined on page 205 of [97] depends on σ, and therefore
the claim in equation (6.65) of [97] is not really established.

As noted several times already, the analysis of the discrete time model of this
chapter is in many ways more difficult than that of the corresponding continuous-
time models, largely because for continuous time models the noise enters in an
additive and affine manner.



Chapter 5
Moderate Deviations for Recursive
Markov Systems

In this chapter we consider R
d -valued discrete time processes of the same form as in

Chap.4, but instead of analyzing the large deviation behavior, we consider deviations
closer to the LLN limit. Since this will require centering on the limit, we assume that
the process model has the form

Xn
i+1

.= Xn
i + 1

n
b(Xn

i ) + 1

n
νi (X

n
i ), Xn

0 = x0, (5.1)

where {νi (·)}i∈N0 are iid random vector fields as in Chap.4 but with zero mean, and
b : R

d → R
d is continuously differentiable.

As in Chap.4, we consider the continuous time piecewise linear interpolations
{Xn(t)}0≤t≤T with Xn(i/n) = Xn

i . Under moment conditions that are weaker than
those of Chap.4, there is a law of large numbers limit X0 ∈ C ([0, T ] : R

d). Closely
related to X0 is the noiseless version of (5.1) obtained by setting νi (·) = 0, which is
denoted by {Xn,0

i }n∈N0 with piecewise linear interpolation {Xn,0(t)}0≤t≤T . We intro-
duce a scaling sequence κ(n) that satisfies

κ(n) → 0 and κ(n)n → ∞, (5.2)

and study the rescaled difference

Y n .= √
κ(n)n(Xn − Xn,0).

Since under Condition5.1, b is Lipschitz continuous, we have

∥∥X0 − Xn,0
∥∥∞

.= sup
t∈[0,T ]

∥∥X0(t) − Xn,0(t)
∥∥ = O(1/n).

Thus √
κ(n)n

∥∥X0 − Xn,0
∥∥∞ = O(

√
κ(n)/n),
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and hence Y n behaves the same asymptotically as
√

κ(n)n(Xn − X0). It will be
shown that under weaker conditions on the noise νi (·) than were used in Chap.4,
Y n satisfies the large deviation principle on C ([0, T ] : R

d) with a “Gaussian”-type
rate function. As is customary for this type of scaling, we refer to this as moderate
deviations.

While onemight expect the proof of themoderate deviations result to be similar to
that of the corresponding large deviations result, there are important differences. For
example, the tightness proof is significantlymore complicated in the case ofmoderate
deviations than for the case of large deviations. In Chap.4 we were able to establish
an a priori bound on certain relative entropy costs associated with any sequence of
nearly minimizing controls. Under this boundedness of the relative entropy costs,
empiricalmeasures of the controlled driving noises aswell as the controlled processes
themselves were tight. With the scaling used for moderate deviations, and even with
the information that the analogous relative entropy costs decay like O(1/κ(n)n),
tightness of the empirical measures of the driving noise does not hold. Instead,
one must consider the empirical measures of conditional means of the noises, and
additional effort is required to show that the limits of these measures determine the
limit of the controlled processes. This extra difficulty arises for moderate deviations
(even with the vanishing relative entropy costs), because the noise is amplified by
the factor

√
κ(n)n in the definition of Y n .

A second way in which the proofs for large and moderate deviations differ is in
their treatment of degenerate noise, i.e., problems in which the support of νi (·) is not
all ofR

d . As we saw in Chap.4, this leads to significant difficulties in the proof of the
large deviation lower bound, requiring a somewhat involved mollification argument.
In contrast, the proof in the setting of moderate deviations, though more involved
than the nondegenerate case, is much more straightforward.

As a potential application of these resultswemention their usefulness in the design
and analysis of Monte Carlo schemes for events whose probability is small but not
very small. For such problems, the performance of standard Monte Carlo may not be
adequate, especially if the quantity must be computed for many different parameter
settings, as in, say, an optimization problem.Another instance is the situation inwhich
the cost for even a single sample is very high, as for example in the case of stochastic
partial differential equations. Then accelerated Monte Carlo may be of interest, and
as is well known, such schemes (e.g., importance sampling and splitting) benefit
from the use of information contained in the large deviation rate function as part of
the algorithm design (e.g., [28, 76, 114, 116]). In a situation in which one considers
events of small but not too small probability, one may find the moderate deviation
approximation both adequate and relatively easy to apply, since moderate deviations
lead to situations in which the objects needed to design an efficient scheme can be
explicitly constructed in terms of solutions to the linear–quadratic regulator. These
issues were first explored in [101]. Other moderate deviation analyses are presented
in Chaps. 10 and 13, and an example of how moderate deviation approximations can
be used to construct accelerated Monte Carlo schemes is given in Sect. 17.5.
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5.1 Assumptions, Notation, and Theorem Statement

Let

Xn
i+1

.= Xn
i + 1

n
b(Xn

i ) + 1

n
νi (X

n
i ), Xn

0 = x0,

where the {νi (·)}i∈N0 are zero-mean iid vector fields whose distribution is given by a
stochastic kernel θ(dy|x) on R

d given R
d . For α ∈ R

d , define

Hc(x, α)
.= log Ee〈α,νi (x)〉.

The subscript c reflects the fact that this logmoment generating function uses the cen-
tered distribution θ(·|x), rather than H(x, α) = Hc(x, α) + 〈α, b(x)〉 as in Chap.4.
We use the following.

Condition 5.1 (a) There exist λ > 0 and Kmgf < ∞ such that

sup
x∈Rd

sup
‖α‖≤λ

Hc(x, α) ≤ Kmgf. (5.3)

(b) The mapping x 
→ θ(dy|x) from R
d to P(Rd) is continuous with respect to

the topology of weak convergence.
(c) b(x) is continuously differentiable, and the norms of both b(x) and its deriva-

tive are uniformly bounded by a constant Kb < ∞.

Throughout this chapter we let ‖α‖2A .= 〈α, Aα〉 for α ∈ R
d and a symmetric

nonnegative definite matrix A. Define

Ai j (x)
.=
∫

Rd

yi y jθ(dy|x),

and note that the weak continuity of θ(dy|x) with respect to x and (5.3) ensures
that A (x) is continuous in x and that its norm, ‖A(x)‖ .= supv:‖v‖=1 ‖A(x)v‖, is
uniformly bounded by some constant KA. Note that

∂Hc(x, 0)

∂αi
=
∫

Rd

yiθ(dy|x) = 0 (5.4)

and
∂2Hc(x, 0)

∂αi∂α j
=
∫

Rd

yi y jθ(dy|x) = Ai j (x) (5.5)

for all i, j ∈ {1, . . . , d} and x ∈ R
d , and that A(x) is nonnegative definite and sym-

metric. It follows that for x ∈ R
d ,

A(x) = Q(x)Λ(x)QT (x),
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where Q(x) is an orthogonal matrix whose columns are the eigenvectors of A(x),
and Λ(x) is the diagonal matrix consisting of the eigenvalues of A(x) in descending
order. Themap x 
→ Λ(x) is continuous. In what follows, we defineΛ−1(x) to be the
diagonal matrix with diagonal entries each equal to the inverse of the corresponding
eigenvalue for the positive eigenvalues, and equal to ∞ for the zero eigenvalues.
Then when we write

‖α‖2A−1(x) = ‖α‖2Q(x)Λ−1(x)QT (x) , (5.6)

we mean a value of ∞ for α ∈ R
d not in the linear span of the eigenvectors corre-

sponding to the positive eigenvalues, and the standard value for vectors α ∈ R
d in

that linear span. (Note that even if the definition of A−1(x) is ambiguous, in that for α
in the range of A(x) there may be more than one v such that A(x)v = α, the value of
‖α‖2A−1(x) is not ambiguous. Indeed, since the eigenvectors can be assumed orthogo-
nal, for all such v, 〈v, α〉 coincides with 〈v̄, α〉, where v̄ is the solution in the span of
eigenvectors corresponding to positive eigenvalues.) Condition5.1(a) implies there
exist KDA < ∞ and λDA ∈ (0, λ] such that

sup
x∈Rd

sup
‖α‖≤λDA

max
i, j,k

∣∣∣∣
∂3Hc(x, α)

∂αi∂α j∂αk

∣∣∣∣ ≤ KDA

d3
, (5.7)

and consequently for all ‖α‖ ≤ λDA and all x ∈ R
d ,

1

2
‖α‖2A(x) − ‖α‖3 KDA ≤ Hc(x, α) ≤ 1

2
‖α‖2A(x) + ‖α‖3 KDA. (5.8)

Define the continuous time piecewise linear interpolation of Xn
i by

Xn(t)
.= Xn

i + [Xn
i+1 − Xn

i ](nt − i), t ∈ [i/n, i/n + 1/n].

In addition, define

Xn,0
i+1 = Xn,0

i + 1

n
b(Xn,0

i ), Xn,0
0 = x0,

and let Xn,0(t) be the analogously defined continuous time interpolation. Then
Xn,0 → X0 in C ([0, T ] : R

d), where for t ∈ [0, T ],

X0(t) =
∫ t

0
b(X0(s))ds + x0.

Since Eνi (x) = 0 for all x ∈ R
d , we know that Xn → X0 inC ([0, T ] : R

d) in prob-
ability.

In Chap.4 we showed, under significantly stronger assumptions, that Xn(t) satis-
fies a large deviation principle on C ([0, T ] : R

d)with scaling sequence r(n) = 1/n.
Letting IL denote this rate function (with L for large deviation), it takes the form
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IL(φ)
.= inf

[∫ T

0
Lc(φ(s), u(s))ds : φ (t) = x0 +

∫ t

0
b(φ(s))ds

+
∫ t

0
u(s)ds, t ∈ [0, T ]

]
,

where
Lc(x, β)

.= sup
α∈Rd

[〈α, β〉 − Hc(x, α)] (5.9)

is the Legendre transform of Hc(x, α).We see that IL coincides with the rate function
of Chap.4, because

L(x, β)
.= sup

α∈Rd

[〈α, β〉 − Hc(x, α) − 〈α, b(x)〉] = Lc(x, β − b(x)),

so that Lc(φ(s), u(s)) = Lc(φ(s), φ̇(s) − b(φ(s))) = L(φ(s), φ̇(s)).
Assume that κ(n) satisfies (5.2):

κ(n) → 0 and κ(n)n → ∞.

We define the rescaled difference

Y n(t)
.= √

κ(n)n(Xn(t) − Xn,0(t)).

Let Db(x) denote the matrix of partial derivatives (Db(x))i j = ∂bi (x)/∂x j , and let
A1/2(x) be the unique nonnegative definite square root of A(x).

Theorem 5.2 Assume Condition5.1. Then {Y n}n∈N satisfies the Laplace principle
on C ([0, T ] : R

d) with scaling sequence κ(n) and rate function

IM(φ) = inf

[
1

2

∫ T

0
‖u(t)‖2 dt : φ(t) =

∫ t

0
Db(X0(s))φ(s)ds

+
∫ t

0
A1/2(X0(s))u(s)ds, t ∈ [0, T ]

]
.

The function IM is essentially the same as what one would obtain using a linear
approximation around the law of large numbers limit X0 of the dynamics and a
quadratic approximation of the costs in IL . By our convention, proofs will be given
for the case T = 1, with only notational modifications needed for the general case.
An alternative form of the rate function that is consistent with expressions we use
for continuous time models is

IM(φ) = inf
u∈Uφ

[
1

2

∫ 1

0
‖u(t)‖2 dt

]
, (5.10)
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where for φ ∈ A C 0([0, 1] : R
d) Uφ is the subset of L 2([0, 1] : R

d) given by

Uφ=̇
{
u : φ(·) =

∫ ·

0
Db(X0(s))φ(s)ds +

∫ ·

0
A1/2(X0(s))u(s)ds

}
,

(5.11)

and Uφ is the empty set otherwise. Since {φ : IM(φ) ≤ K } is the image of the
compact set {u : ∫ 1

0 ‖u(t)‖2 dt ≤ K } (with the weak topology on L 2([0, 1] : R
d))

under a continuous mapping, IM has compact level sets. To complete the proof of
Theorem5.2, we must show that for every bounded and continuous F ,

lim
n→∞ −κ(n) log E

[
e− 1

κ(n)
F(Y n)

]
= inf

φ∈C ([0,1]:Rd )
[IM(φ) + F (φ)] . (5.12)

The argument will follow the same layout as that used in Chaps. 3 and 4. In Sect. 5.2,
a representation is derived for the exponential integral in (5.12), and in Sect. 5.3,
tightness of empirical measures and identification of limits for these measures and
controlled processes are carried out. It is here that the moderate deviation problem
differs most from the corresponding large deviation problem, in that the definition
of the empirical measures is not analogous to the definition used in Chap.4. The
Laplace principle upper and lower bounds that together imply (5.12) are proved in
Sects. 5.4 and 5.5, respectively.

5.2 The Representation

Asusual, the first step is to identify a useful representation for theLaplace functionals.
Owing to themoderate deviation scaling, the construction of the controlled processes
differs slightly from that of Chap. 4.

Construction 5.3 Suppose we are given a probability measureμn ∈ P((Rd)n) and
decompose it in terms of conditional distributions [μn]i |1,...,i−1 on the i th variable
given variables 0 through i − 1:

μn(dv0 × · · · × dvn−1) = [μn]0(dv0)[μn]1|0(dv1|v0)
× · · · × [μn]n−1|0,...,n−2(dvn−1|v0, . . . , vn−2).

Let {v̄ni }i=0,...,n−1 be random variables defined on a probability space (
,F , P) and
with joint distribution μn . Thus conditioned on F̄ n

i
.= σ(v̄nj , j = 0, . . . ,

i − 1), v̄ni has distribution μ̄n
i (dvi )

.= [μn]i |0,...,i−1(dvi |v̄n0 , . . . , v̄ni−1). The collection
{μ̄n

i }i=0,...,n−1 will be called a control. Controlled processes X̄ n, Ȳ n and measures
M̄n are recursively constructed as follows. Let X̄ n

0 = x0, and for i = 1, . . . , n, define
X̄ n
i recursively by
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X̄ n
i+1 = X̄ n

i + 1

n
b(X̄ n

i ) + 1

n
v̄ni .

When {X̄ n
i }i=1,...,n has been constructed, define

Ȳ n
i+1 = Ȳ n

i +
√

κ(n)

n

(
b(X̄ n

i ) − b(Xn,0
i )

)
+
√

κ(n)

n
v̄ni , Ȳ n

0 = 0. (5.13)

Note that

X̄ n
i − Xn,0

i = 1√
κ(n)n

Ȳ n
i , i = 0, 1, . . . , n. (5.14)

Let X̄ n and Ȳ n be as in (4.2) the piecewise linear interpolations with X̄ n(i/n) = X̄ n
i

and Ȳ n(i/n) = Ȳ n
i . Define also the interpolated conditionalmean (provided it exists)

w̄n(t)
.=
∫

Rd

yμ̄n
i (dy), t ∈ [i/n, i/n + 1/n),

the scaled conditional mean

wn(t)
.= √

κ(n)nw̄n(t),

and random measures on R
d × [0, 1] by

M̄n(dw × dt)
.= δwn(t)(dw)dt = δ√

κ(n)nw̄n(t)(dw)dt.

Note that M̄n is the empirical measure of the scaled conditional means and not,
in contrast to Chap.4, of the v̄ni , scaled or otherwise. This additional “averaging”
will be needed for tightness. We will refer to this construction when we are given
{μ̄n

i }i=1,...,n to identify associated X̄ n, Ȳ n,wn and M̄n . By Theorem4.5, for every
bounded, continuous F : C ([0, 1] : R

d) → R,

− κ(n) log E
[
e− 1

κ(n)
F(Y n)

]
(5.15)

= inf
{μ̄n

i }
E

[
n−1∑

i=0

κ(n)R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i )) + F(Ȳ n)

]

.

5.3 Tightness and Limits for Controlled Processes

5.3.1 Tightness and Uniform Integrability

When themoment-generating function is finite for allα, a variational characterization
of its Legendre transform in terms of relative entropy is proved in Lemma4.16. In this
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chapter we will need only the following inequality, which holds when the moment-
generating function is finite in some neighborhood of the origin. Recall that Lc(x, ·)
is the Legendre–Fenchel transform of Hc(x, ·).
Lemma 5.4 Assume Condition5.1. Then for all x, β ∈ R

d ,

Lc (x, β) ≤ R(η(·)‖ θ(·|x))

for all η ∈ P(Rd) satisfying
∫

Rd yη(dy) = β.

Proof Fix x, β ∈ R
d and consider any η ∈ P(Rd) that satisfies

∫
Rd yη(dy) = β. If

R(η(·)‖ θ(·|x)) = ∞, the lemma is automatically true, so we assume without loss
that R(η(·)‖ θ(·|x)) < ∞. From (5.3) we have

∫

Rd

eλ‖y‖/d1/2
θ(dy|x) ≤ 2deKmgf < ∞.

Therefore, recalling the inequality ab ≤ ea + �(b) for a, b ≥ 0, we have

∫

Rd

λ

d1/2
‖y‖ dη(·)

dθ(·|x) (y)θ(dy|x)

≤
∫

Rd

eλ‖y‖/d1/2
θ(dy|x) +

∫

Rd

�

(
dη(·)
dθ(·|x) (y)

)
θ(dy|x)

≤ 2deKmgf + R(η(·)‖ θ(·|x)).

Consequently, for all α ∈ R
d ,

∫

Rd

‖α‖ ‖y‖ dη(·)
dθ(·|x) (y)θ(dy|x) ≤ d1/2 ‖α‖

λ

(
2deKmgf + R(η(·)‖ θ(·|x))) < ∞.

(5.16)
Define the bounded continuous function FK : R

d × R
d → R by

FK (y, α) =
{ 〈α, y〉 if |〈α, y〉| ≤ K ,

K 〈α,y〉
|〈α,y〉| otherwise.

From (5.16) and the dominated convergence theorem, we have

lim
K→∞

∫

Rd

FK (y, α)η(dy) =
〈
α,

∫

Rd

yη(dy)

〉
= 〈α, β〉.

Another application of the monotone convergence theorem gives

lim
K→∞

∫

{y:〈α,y〉<0}
eFK (y,α)θ(dy|x) =

∫

{y:〈α,y〉<0}
e〈α,y〉θ(dy|x),

and the monotone convergence theorem gives
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lim
K→∞

∫

{y:〈α,y〉≥0}
eFK (y,α)θ(dy|x) =

∫

{y:〈α,y〉≥0}
e〈α,y〉θ(dy|x).

Thus

lim
K→∞ log

(∫

Rd

eFK (y,α)θ(dy|x)
)

= Hc(x, α).

By the Donsker–Varadhan variational formula (Proposition2.2), for every K ∈
(0,∞) and α ∈ R

d ,

R(η(·)‖ θ(·|x)) ≥
∫

Rd

FK (y, α)η(dy) − log

(∫

Rd

eFK (y,α)θ(dy|x)
)

.

Sending K → ∞ and taking the supremum over α ∈ R
d yields

R(η(·)‖ θ(·|x)) ≥ sup
α∈Rd

[〈α, β〉 − Hc(x, α)] = Lc (x, β) ,

which completes the proof of the lemma. �

Theorem 5.5 Assume Condition5.1 and

sup
n∈N

[

κ(n)nE

[
1

n

n−1∑

i=0

R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))

]]

≤ KE < ∞. (5.17)

Let {M̄n}n∈N, {w̄n}n∈N, and {wn}n∈N be defined as in Construction5.3. Then

sup
n∈N

E

[∫ 1

0

√
κ(n)n

∥∥w̄n(t)
∥∥ dt

]
= sup

n∈N

E

[∫ 1

0

∥∥wn(t)
∥∥ dt

]
< ∞.

In addition, {M̄n} is tight (as a sequence of random probability measures) and uni-
formly integrable in the sense that

lim
C→∞ lim sup

n→∞
E

[∫

Rd×[0,1]
‖w‖ 1{‖w‖≥C}M̄n(dw × dt)

]
= 0. (5.18)

Proof We assume without loss of generality that infn∈N{√κ(n)n} > 0. Let B ∈
(0,∞) be such that B ≤ λDA infn∈N{√κ(n)n}, so that λDA ≥ B/

√
κ(n)n for all n.

Recall Lc from (5.9), and let K̄
.= λDAKDA + KA/2, where we recall that KA is the

bound on A(x) and KDA was introduced in (5.8). Let ei denote the standard unit
vectors in R

d . Then for all i ∈ {1, . . . , d} and each choice of ±,
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κ(n)nLc(x, β)

= sup
α∈Rd

[√
κ(n)n

〈
α,
√

κ(n)nβ
〉
− κ(n)nHc(x, α)

]

≥ ±√κ(n)n

〈
B√

κ(n)n
ei ,
√

κ(n)nβ

〉
− κ(n)nHc

(
x,± B√

κ(n)n
ei

)

≥ ±B
√

κ(n)nβi − 1

2
B2 ‖A(x)‖ − B2λDAKDA

≥ ±B
√

κ(n)nβi − B2 K̄ ,

where the first inequality follows from making a specific choice of α and the second
uses (5.8). If we multiply both sides by |βi |, sum on i , and then divide by

∑d
i=1 |βi |,

we obtain

dκ(n)nLc(x, β) + dB2 K̄ ≥ Bd
√

κ(n)n
‖β‖2

∑d
i=1 |βi |

≥ B
√

κ(n)n ‖β‖ . (5.19)

To slightly simplify the notation, we let sn(t)
.= �nt /n, where �a is the integer

part of a. Using the bound relating Lc and relative entropy from Lemma5.4 together
with (5.17), we obtain

d

(
KE

B
+ BK̄

)
≥ dκ(n)n

B
E

[∫ 1

0
Lc
(
X̄ n
(
sn(t)

)
, w̄n(t)

)
dt

]
+ dBK̄

≥ E

[∫ 1

0

√
κ(n)n

∥∥w̄n(t)
∥∥ dt

]
, (5.20)

which proves the first statement in the theorem. Since by Theorem2.10 the mapping

m 
→
∫

Rd×[0,1]
‖w‖m(dw × dt)

defines a tightness function onP
(
R

d × [0, 1]), it follows from Lemma2.9 and the
first claim that {M̄n}n∈N is tight.

For the uniform integrability, let C ∈ (1,∞) be arbitrary. We note that the esti-
mates in (5.19) and (5.20) hold for any B and n such that B ≤ λDA{√κ(n)n}.
Consider n large enough that

min{λDA, 1} ≥ C√
κ(n)n

.

Then for such n, the estimates (5.19) and (5.20) hold with B = 1 and B = C . Recall-
ing K̄

.= λDAKDA + KA/2 and applying (5.20) with B = 1, we have for such n,
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E

[∫ 1

0

√
κ(n)n

∥∥w̄n(s)
∥∥ ds

]
≤ K ∗ .= d

(
KE + 1

2
KA + λDAKDA

)
,

and therefore

E

[∫ 1

0
1{√κ(n)n‖w̄n(s)‖>C2}ds

]
≤ K ∗

C2
.

In the following bound, (5.19) with C = B is used to get the first inequality and the
last display, and (5.20) with B = 1 for the third inequality:

CE

[∫

Rd×[0,1]
‖w‖ 1{‖w‖≥C2}M̄n(dw × dt)

]

≤ E

[
d
∫ 1

0
1{‖wn(s)‖>C2}

(
κ(n)nLc

(
X̄ n
(
sn(t)

)
, w̄n(t)

)+ C2 K̄
)
dt

]

≤ dκ(n)nE

[∫ 1

0
Lc
(
X̄ n
(
sn(t)

)
, w̄n(t)

)
dt

]
+ C2d K̄ E

[∫ 1

0
1{‖wn(t)‖>C2}dt

]

≤ K ∗d
(
1 + K̄

)
.

This proves the claimed uniform integrability. �

5.3.2 Identification of Limits

The following theorem is a lawof large numbers type result for the difference between
the noises and their conditional means, and is the most complicated part of the
analysis.

Theorem 5.6 Assume Condition5.1 and (5.17). Consider the sequence {ν̄n
i } of con-

trolled noises and {w̄n(i/n)} of means of the controlled noises as in Construction5.3.
For i ∈ {1, . . . , n} let

Wn
i

.= 1

n

i−1∑

j=0

√
κ(n)n

(
ν̄n
j − w̄n ( j/n)

)
.

Then for all δ > 0,

lim
n→∞ P

{
max

i∈{1,...,n}
∥∥Wn

i

∥∥ ≥ δ

}
= 0.

Proof According to (5.17),

1

n

n−1∑

i=0

E[R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))] ≤ KE

κ(n)n
.
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Because of this the (random) Radon–Nikodym derivatives,

f ni (y) = dμ̄n
i (·)

dθ(·|X̄ n
i )

(y)

are well defined and can be selected in a measurable way [79, Theorem V.58]. We
will control the magnitude of the noise when the Radon–Nikodym derivative is large
by bounding

1

n

n−1∑

i=0

E[1{ f ni (ν̄n
i )≥r}

∥∥ν̄n
i

∥∥]

for large r ∈ (0,∞).
From the bound on the moment-generating function (5.3) [see (3.12)], we obtain

sup
x∈Rd

∫

Rd

e
λ√
d
‖y‖

θ(dy|x) ≤ 2deKmgf .

Let σ = min{λ/2
√
d, 1} and recall �(b)

.= b log b − b + 1. Then

1

n

n−1∑

i=0

E
[
1{ f ni (ν̄n

i )≥r}
∥∥ν̄n

i

∥∥] = 1

n

n−1∑

i=0

E

[∫

{y: f ni (y)≥r}
‖y‖ f ni (y)θ(dy|X̄ n

i )

]

,

and the bound ab ≤ ea + �(b) for a, b ≥ 0 with a = σ ‖y‖ and b = f ni (y) gives
that for all i ,

E

[∫

{y: f ni (y)≥r}
‖y‖ f ni (y)θ(dy|X̄ n

i )

]

≤ 1

σ
E

[∫

{y: f ni (y)≥r}
eσ‖y‖θ(dy|X̄ n

i )

]

+ 1

σ
E

[∫

{y: f ni (y)≥r}
�( f ni (y))μ̄n

i (dy)

]

.

Since �(b) ≥ 0 for all b ≥ 0, we have

E

[∫

{y: f ni (y)≥r}
�
(
f ni (y)

)
θ(dy|X̄ n

i )

]

≤ E

[∫

Rd

�( f ni (y))θ(dy|X̄ n
i )

]

= E[R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))],

and by Hölder’s inequality,
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E

[∫

{y: f ni (y)≥r}
eσ‖y‖θ(dy|X̄ n

i )

]

≤ E

[(∫

Rd

1{ f ni (y)≥r}θ(dy|X̄ n
i )

)1/2 (∫

Rd

e2σ‖y‖θ(dy|X̄ n
i )

)1/2
]

= E
[
θ({y : f ni (y) ≥ r}|X̄ n

i )
1/2
] (
2deKmgf

)1/2
.

In addition, for all r > 1, Markov’s inequality gives

θ({y : f ni (y) ≥ r}|X̄ n
i ) ≤ 1

r log r

∫
log( f ni (y)) f ni (y)θ(dy|X̄ n

i )

= R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))

r log r
.

The last four displays give the bound

1

n

n−1∑

i=0

E

[∫

{ f ni (y)≥r}
‖y‖ f ni (y)θ(dy|X̄ n

i )

]

≤ 1

σ

(
2deKmgf

)1/2 1

n

n−1∑

i=0

E

⎡

⎣
(
R( μ̄n

i (·)
∥∥ θ(·|X̄ n

i ))

r log r

)1/2
⎤

⎦

+ 1

σ

1

n

n−1∑

i=0

E[R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))].

Since by Jensen’s inequality,

1

n

n−1∑

i=0

E

⎡

⎣
(
R( μ̄n

i (·)
∥∥ θ(·|X̄ n

i ))

r log r

)1/2
⎤

⎦

≤
(

1

r log r

)1/2
(
1

n

n−1∑

i=0

E[R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))]

)1/2

,

we obtain the overall bound

1

n

n−1∑

i=0

E
[
1{ f ni (ν̄n

i )≥r}
∥∥ν̄n

i

∥∥]

≤ 1

σ

(
2deKmgf

)1/2
(

1

r log r

)1/2
(
1

n

n−1∑

i=0

E[R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))]

)1/2

+ 1

σ

1

n

n−1∑

i=0

E[R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))]
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≤ 1

σ

K 1/2
E√

κ(n)n

(
2deKmgf

)1/2
(

1

r log r

)1/2

+ 1

σ

KE

κ(n)n
. (5.21)

Using this result, we can complete the proof. Define

ξ
n,r
i

.=
{

ν̄n
i if f ni (ν̄n

i ) < r,
0 otherwise.

For all δ > 0,

P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n

(
ν̄n
i − w̄n

(
i

n

))∥∥∥∥∥
≥ 3δ

}

≤ P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n(ν̄n

i − ξ
n,r
i )

∥∥∥∥∥
≥ δ

}

+ P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n

(

ξ
n,r
i −

∫

{y: f ni (y)<r}
yμ̄n

i (dy)

)∥∥∥∥∥
≥ δ

}

+ P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n

(

w̄n

(
i

n

)
−
∫

{y: f ni (y)<r}
yμ̄n

i (dy)

)∥∥∥∥∥
≥ δ

}

.

The first term satisfies

P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n(ν̄n

i − ξ
n,r
i )

∥∥∥∥∥
≥ δ

}

≤ 1

δ

√
κ(n)n

1

n

n−1∑

i=0

E
[∥∥ν̄n

i − ξ
n,r
i

∥∥]

= 1

δ

√
κ(n)n

1

n

n−1∑

i=0

E
[
1{ f ni (ν̄n

i )≥r}
∥∥ν̄n

i

∥∥] .

The norm in the second term is a submartingale in k, and so by Doob’s submartingale
inequality [see (D.1)],

P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n

(

ξ
n,r
i −

∫

{y: f ni (y)<r}
yμ̄n

i (dy)

)∥∥∥∥∥
≥ δ

}

≤ 1

δ2
E

⎡

⎣

∥∥∥∥∥
1

n

n−1∑

i=0

√
κ(n)n

(

ξ
n,r
i −

∫

{y: f ni (y)<r}
yμ̄n

i (dy)

)∥∥∥∥∥

2
⎤

⎦
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= 1

δ2

κ(n)

n

n−1∑

i=0

E

⎡

⎣

∥∥∥∥∥

(

ξ
n,r
i −

∫

{y: f ni (y)<r}
yμ̄n

i (dy)

)∥∥∥∥∥

2
⎤

⎦

≤ 1

δ2

κ(n)

n

n−1∑

i=0

E
[∥∥ξ n,r

i

∥∥2
]

= 1

δ2

κ(n)

n

n−1∑

i=0

E

[∫

{y: f ni (y)<r}
‖y‖2 f ni (y)θ(dy|X̄ n

i )

]

≤ r

δ2

κ(n)

n

n−1∑

i=0

E

[∫

Rd

‖y‖2 θ(dy|X̄ n
i )

]

≤ r

δ2
κ(n)Kμ,2,

where

Kμ,2 = sup
x∈Rd

∫

Rd

‖y‖2 θ(dy|x) < ∞,

and the finiteness is due to (5.3). We can use Jensen’s inequality with the third term
and get the same bound that was proved for the first:

P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n

(

w̄n

(
i

n

)
−
∫

{y: f ni (y)<r}
yμ̄n

i (dy)

)∥∥∥∥∥
≥ δ

}

≤ 1

δ

√
κ(n)n

1

n

n−1∑

i=0

E

[∥∥∥∥∥

(

w̄n

(
i

n

)
−
∫

{y: f ni (y)<r}
yμ̄n

i (dy)

)∥∥∥∥∥

]

= 1

δ

√
κ(n)n

1

n

n−1∑

i=0

E

[∥∥∥∥∥

∫

{y: f ni (y)≥r}
yμ̄n

i (dy)

∥∥∥∥∥

]

≤ 1

δ

√
κ(n)n

1

n

n−1∑

i=0

E

[∫

{y: f ni (y)≥r}
‖y‖ μ̄n

i (dy)

]

= 1

δ

√
κ(n)n

1

n

n−1∑

i=0

E
[
1{ f ni (ν̄n

i )≥r}
∥∥ν̄n

i

∥∥] .

Combining the bounds for these three terms with (5.21) gives

P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n

(
ν̄n
i − w̄n

(
i

n

))∥∥∥∥∥
≥ 3δ

}

≤ 2

δ

√
κ(n)n

1

n

n−1∑

i=0

E
[
1{ f ni (ν̄n

i )≥r ]
∥∥ν̄n

i

∥∥]+ r

δ2
κ(n)Kμ,2
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≤ 2

σδ
K 1/2

E

(
2deKmgf

)1/2
(

1

r log r

)1/2

+ 2

σδ

KE√
κ(n)n

+ κ(n)
r

δ2
Kμ,2.

Sending n → ∞ and then r → ∞ (and using κ(n) → 0, κ(n)n → ∞) gives

P

{

max
k=0,...,n−1

∥∥∥∥∥
1

n

k∑

i=0

√
κ(n)n

(
ν̄n
i − w̄n

(
i

n

))∥∥∥∥∥
≥ 3δ

}

→ 0

as n → ∞, which completes the proof. �

The next result identifies the weak limits of controlled processes. We recall that
for a probability measure γ on R

d × [0, 1], the marginal distribution on the second
coordinate is denoted by [γ ]2, and the conditional distribution on the first coordinate
given the second is given by [γ ]1|2. Thus for Borel sets A and B,

γ (Rd × B) = [γ ]2(B) and γ (A × B) =
∫

B
[γ ]1|2(A|s)[γ ]2(ds).

Theorem 5.7 Let {μ̄n
i }i=1,...,n be a sequence of controls, and define the corre-

sponding random variables as in Construction5.3. Assume Condition5.1 and that
(5.17) holds for some KE < ∞. Then {(M̄n, Ȳ n)}n∈N is tight in P(Rd × [0, 1]) ×
C ([0, 1] : R

d). Consider a subsequence (keeping the index n for convenience) such
that {(M̄n, Ȳ n)} converges weakly to (M̄, Ȳ ). Then with probability 1, [M̄]2(dt) is
Lebesgue measure and

Ȳ (t) =
∫ t

0
Db(X0(s))Ȳ (s)ds +

∫ t

0
w(s)ds, (5.22)

where

w(t) =
∫

Rd

w[M̄]1|2(dw |t ). (5.23)

In addition,

lim inf
n→∞ κ(n)nE

[
1

n

n−1∑

i=0

R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i ))

]

≥ E

[∫ 1

0

1

2
‖w(s)‖2A−1(X0(s)) ds

]
.

(5.24)

The proof of this theorem is lengthy. After some preliminary discussion, several
lemmas will be presented. After stating and proving the lemmas, we will return to
complete the argument for Theorem5.7.

It was shown in Theorem5.5 that {M̄n}n∈N is tight. If M̄ is any weak limit of a
subsequence of {M̄n}n∈N, then since for all n the second marginal of M̄n(dw × dt) is
Lebesgue measure, it follows that [M̄]2(dt) is Lebesgue measure with probability 1.
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The ultimate goal is to show that Ȳ n → Ȳ weakly in C ([0, 1] : R
d), where Ȳ (t)

is given by (5.22) in terms of the weak limit M̄ . To achieve this, we introduce the
following processes, which serve as intermediate steps. Let Y̌ n

0 = 0 and

Y̌ n
i+1 = Y̌ n

i +
√

κ(n)

n

(
b

(
Xn,0
i + 1√

κ(n)n
Y̌ n
i

)
− b

(
Xn,0
i

))
+
√

κ(n)

n
w̄n

(
i

n

)
,

together with its continuous time linear interpolation defined for t ∈ [i/n, i/n +
1/n] by

Y̌ n(t) = (i + 1 − nt)Y̌ n
i + (nt − i)Y̌ n

i+1.

Also let

Ŷ n(t) =
∫ t

0
Db

(
X0(s)

)
Ŷ n(s)ds +

∫ t

0
wn(s)ds, (5.25)

where

wn(t) =
∫

Rd

w[M̄]n1|2(dw |t )

as in Construction5.3. Then both Y̌ n and Ŷ n are random variables taking values in
C ([0, 1] : R

d). Note that Ȳ n differs from Y̌ n , because Ȳ n is driven by the actual
noises and Y̌ n is driven by their conditional means. While the driving terms of Ŷ n

and Y̌ n are the same [recall that
√

κ(n)nw̄n(t) = wn(t)], they differ in that Y̌ n is still
a linear interpolation of a discrete time process, whereas Ŷ n satisfies an ODE. We
will show that along any subsequence where M̄n → M̄ weakly,

Ȳ n − Y̌ n → 0, Y̌ n − Ŷ n → 0, and Ŷ n → Ȳ

in C ([0, 1] : R
d), all in distribution, where Ȳ is the unique solution of (5.22).

To show that Ŷ n → Ȳ , we show that {Ŷ n} is tight in C ([0, 1] : R
d) and use the

mapping defined by (5.25) from
∫ ·
0 w

n to Ŷ n . Recall that supx∈Rd ‖Db(x)‖ ≤ Kb.
The following lemma uses the uniform integrability of {M̄n} given in Theorem5.5
to prove tightness of {Ŷ n}.
Lemma 5.8 Assume Conditions5.1 and (5.17). The sequence {Ŷ n} defined in (5.25)
in terms of the measures {M̄n} via Construction5.3 is tight in C ([0, 1] : R

d), as is
{∫ ·

0 w
nds}.

Proof Tightness of {∫ ·
0 w

nds} is a consequence of the fact that for δ,C ∈ (0,∞),

lim sup
n→∞

P

(

sup
|s−t |≤δ

∫ t

s

∥∥wn(r)
∥∥ dr > ε

)

≤ δ
C

ε
+ 1

ε
T (C),

where
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T (C)
.= lim sup

n→∞
E

[∫ 1

0
1{‖wn(t)‖>C}

∥∥wn(t)
∥∥ dt

]

= lim sup
n→∞

E

[∫

{‖w‖>C}
‖w‖ M̄n(dw × dt)

]
,

and the fact that by Theorem5.5, T (C) → 0 as C → ∞. For tightness of {Ŷ n} it
suffices to check that the map from C ([0, 1] : R

d) to itself that takes z ∈ C ([0, 1] :
R

d) to the unique solution of

φ(t) =
∫ t

0
Db(X0(s))φ(s)ds + z(t), t ∈ [0, 1],

is continuous. However, this continuity follows directly from Gronwall’s
inequality. �

We still need to show that Ŷ n converges to Ȳ . This also relies on the uniform
integrability given by Theorem5.5.

Lemma 5.9 Assume Conditions5.1 and (5.17). Let the sequence {Ŷ n (t)} be defined
by (5.25) and consider a weakly convergent subsequence {(Ŷ n, M̄n)} with limit
(Ŷ , M̄). Then w.p.1, Ŷ = Ȳ , where Ȳ is defined by (5.22)–(5.23).

Proof We can write

Ŷ n(t) =
∫ t

0
Db(X0(s))Ŷ n(s)ds +

∫ t

0

∫

Rd

wM̄n(dw × ds).

The uniform integrability proved in Theorem5.5 and that [M̄]2 is Lebesgue measure
w.p.1 will be used. The latter implies E M̄(Rd × {t}) = 0 for t ∈ [0, 1]. Sending
n → ∞ and using the definition of w(s) in (5.23) gives

Ŷ (t) =
∫ t

0
Db(X0(s))Ŷ (s)ds +

∫ t

0

∫

Rd

wM̄(dw × ds)

=
∫ t

0
Db(X0(s))Ŷ (s)ds +

∫ t

0
w(s)ds.

By uniqueness of the solution, Ŷ = Ȳ follows. �

It remains to show that Ȳ n − Y̌ n → 0 and Y̌ n − Ŷ n → 0. We begin with Ȳ n −
Y̌ n → 0. Recall that the difference between Ȳ n and Y̌ n is that the first is driven by
the actual noises, and the second is driven by their conditional means. The following
discrete version of Gronwall’s inequality will be used to prove Ȳ n − Y̌ n → 0. A
proof can be found in [83, p. 283].

Lemma 5.10 If {zn}, {un}, and {vn} are nonnegative sequences defined for n ∈ N0

that satisfy
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zk ≤ vk +
n−1∑

k=0

ui zi ,

then

zk ≤ vk +
n−1∑

k=0

uivi exp

{
n−1∑

i=k+1

u j

}

.

Lemma 5.11 Assume Conditions5.1 and (5.17). Then Y̌ n − Ȳ n → 0 in probability.

Proof Recall from (5.13) and (5.14) that

Ȳ n
k =

k−1∑

i=0

√
κ(n)

n

(
b

(
Xn,0
i + 1√

κ(n)n
Ȳ n
i

)
− b

(
Xn,0
i

))
+

k−1∑

i=0

√
κ(n)

n
ν̄n
i

and

Y̌ n
k =

k−1∑

i=0

√
κ(n)

n

(
b

(
Xn,0
i + 1√

κ(n)n
Y̌ n
i

)
− b

(
Xn,0
i

))
+

k−1∑

i=0

√
κ(n)

n
w̄n

(
i

n

)
,

so with Wn
k defined as in Theorem5.6,

∥∥∥Ȳ n
k − Y̌ n

k

∥∥∥ ≤ ∥∥Wn
k

∥∥+
k−1∑

i=0

Kb

n

∥∥∥Ȳ n
i − Y̌ n

i

∥∥∥ .

Using Lemma5.10 gives, for k ≤ n,

∥∥∥Ȳ n
k − Y̌ n

k

∥∥∥ ≤ ∥∥Wn
k

∥∥+
k−1∑

i=0

∥∥Wn
i

∥∥ Kb

n
exp

{
Kb

n
(k − i − 1)

}

≤ (1 + Kbe
Kb) max

i∈{0,1,...,k}
∥∥Wn

i

∥∥ .

From Theorem5.6, we have maxi∈{1,...,n}
∥∥Wn

i

∥∥ → 0 in probability, and therefore

max
i∈{1,...,n}

∥∥∥Ȳ n
i − Y̌ n

i

∥∥∥ → 0,

and hence supt∈[0,1]
∥∥∥Ȳ n(t) − Y̌ n(t)

∥∥∥ → 0 in probability. �

To complete the proof of the convergence we need to show that Y̌ n − Ŷ n → 0.
Recall that these two processes have the same driving terms but different drifts, in
that Ŷ n satisfies the ODE
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Ŷ n(t) =
∫ t

0
Db(X0(s))Ŷ n(s)ds +

∫ t

0
wn(s)ds,

while Y̌ n is the linear interpolation of the discrete time process defined by Y̌ n
0 = 0

and

Y̌ n
i+1 = Y̌ n

i +
√

κ(n)

n

(
b

(
Xn,0
i + 1√

κ(n)n
Y̌ n
i

)
− b

(
Xn,0
i

))
+ 1

n
wn

(
i

n

)
.

However, essentially the same arguments as those used in Lemma5.8 to show tight-
ness of {Ŷ n} can be used to prove tightness of {Y̌ n}, and then it easily follows as in
Lemma5.9 that any limit will satisfy the same ODE (5.22) as the limit of {Ŷ n}, and
therefore Y̌ n − Ŷ n → 0 follows.

Combining Ȳ n − Y̌ n → 0, Y̌ n − Ŷ n → 0, and Ŷ n → Ȳ demonstrates that along
the subsequence where M̄n → M̄ weakly, Ȳ n → Ȳ in distribution, which implies
that along this subsequence, (M̄n, Ȳ n) → (M̄, Ȳ ) weakly. We have already shown
that with probability 1, [M̄]2(dt) is Lebesgue measure and

Ȳ (t) =
∫ t

0
Db(X0(s))Ȳ (s)ds +

∫ t

0

∫

Rd

w[M̄]1|2(dw |s )ds,

so the proof of convergence (i.e., the first part of Theorem5.7) is complete.
To finish the proof of Theorem5.7, we must prove the bound (5.24). Recall the

notation sn(t)
.= �nt /n, and note from (5.14) that the weak convergence of Ȳ n

implies
sup

t∈[0,1]

∥∥X̄ n(sn(t)) − X0(t)
∥∥ → 0 in probability. (5.26)

Now define random measures on R
d × R

d × [0, 1] by

γ n (dx × dw × dt) = δX̄ n(sn(t)) (dx) M̄n (dw × dt) .

Note that the tightness of {γ n} follows easily from (5.26) and the tightness of
{
M̄n
}
.

Thus given any subsequence, we can choose a further subsequence (again we will
retain n as the index for simplicity) along which {γ n} converges weakly to some
P
(
R

d × R
d × [0, 1]

)
-valued random variable γ with

[γ ]2,3 (dw × dt) = M̄ (dw × dt) ,

where [γ ]2,3 is the second and third marginal of γ . If we establish (5.24) for this
subsequence, it holds for the original one using a standard argument by contradiction.
For σ > 0, let

GX0

σ

.= {
(x,w, t) : ∥∥x − X0 (t)

∥∥ ≤ σ
}
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be closed sets centered on X0 (t) in the x variable, and note that by (5.26) and weak
convergence, for all σ > 0,

1 = lim sup
n→∞

E
[
γ n
(
GX0

σ

)]
≤ E

[
γ
(
GX0

σ

)]
.

Thus

E

[

γ

(
⋂

n∈N

GX0

1/n

)]

= 1,

so with probability 1, γ puts all its mass on
{
(x,w, t) : x = X0 (t)

}
. Therefore, with

probability 1, for a.e. (w, t) under [γ ]2,3 (dw × dt),

[γ ]1|2,3 (dx |w, t) = δX0(t) (dx) .

Combined with the fact that the second marginal of M̄ (dw × dt) is Lebesgue mea-
sure, this gives

γ (dx × dw × dt) = δX0(t) (dx) M̄ (dw| t) dt . (5.27)

For κ ∈ (0,∞), define

L̄κ (x, β)
.= sup

α∈Rd

[
〈α, β〉 − 1

2
‖α‖2A(x) − 1

2κ
‖α‖2

]
.

Using (5.8),

κ(n)nLc

(
x,

1√
κ(n)n

β

)

= sup
α∈Rd

[√
κ(n)n〈α, β〉 − κ(n)nHc(x, α)

]

≥ sup
α∈Rd

[√
κ(n)n〈α, β〉 − κ(n)n

2
‖α‖2A(x) − κ(n)nKDA‖α‖3

]

≥ sup
α∈Rd

[
〈α, β〉 − ‖α‖2A(x) − 1

2κ
‖α‖2 − KDA√

κ(n)n
‖α‖3

]
. (5.28)

Let K1 be an arbitrary compact subset of R
d . Since ‖α‖2 is superlinear, there exists

another compact set K2 of R
d , depending only on κ and K1, such that whenever

β ∈ K1 and x ∈ R
d ,

sup
α∈K2

[
〈α, β〉 − 1

2
‖α‖2A(x) − 1

2κ
‖α‖2

]
= sup

α∈Rd

[
〈α, β〉 − 1

2
‖α‖2A(x) − 1

2κ
‖α‖2

]

= L̄κ(x, β).
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Also, from (5.28),

Λn
K2

(x, β)
.= sup

α∈K2

[
〈α, β〉 − ‖α‖2A(x) − 1

2κ
‖α‖2 − KDA√

κ(n)n
‖α‖3

]

≤ κ(n)nLc

(
x,

1√
κ(n)n

β

)

Note that as n → ∞,

sup
(x,β)∈Rd×K1

|Λn
K2

(x, β) − L̄κ(x, β)| → 0. (5.29)

By Lemma5.4 and the definitions of γ n and M̄n , we have

lim inf
n→∞ κ(n)nE

[
n−1∑

i=0

1

n
R( μ̄n

i (·)
∥∥ θ(·|X̄ n

i ))

]

≥ lim inf
n→∞ E

[∫

Rd×Rd×[0,1]
κ(n)nLc

(
x,

1√
κ(n)n

w

)
γ n (dx × dw × dt)

]

≥ lim inf
n→∞ E

[∫

Rd×K1×[0,1]
Λn

K2
(x,w)γ n (dx × dw × dt)

]
.

For fixed K1, since K2 is bounded, there is c ∈ (0,∞) such that |Λn
K2

(x,w)| ≤
c(1 + ‖w‖) for all n ∈ N and also |L̄κ(x,w)| ≤ c(1 + ‖w‖). Using these bounds and
(5.18) to control contributions to the integrals from large values of ‖w‖, it follows
from (5.29) that the last quantity in the previous display is the same as

lim inf
n→∞ E

[∫

Rd×K1×[0,1]
L̄κ(x,w)γ n (dx × dw × dt)

]
.

Using the continuity of (x, β) 
→ L̄κ(x, β) and Fatou’s lemma thus gives

lim inf
n→∞ κ(n)nE

[
n−1∑

i=0

1

n
R( μ̄n

i (·)
∥∥ θ(·|X̄ n

i ))

]

≥ E

[∫

Rd×K1×[0,1]
L̄κ (x,w) γ (dx × dw × dt)

]
.

Since L̄κ ≥ 0, by the monotone convergence theorem we can replace K1 by R
d in

the last display. Next note that as κ → ∞,

L̄κ (x, β) ↑ 1

2
‖β‖2A−1(x)



5.3 Tightness and Limits for Controlled Processes 141

for all (x, β) ∈ R
2d . Finally, using the monotone convergence theorem, the decom-

position (5.27), and Jensen’s inequality in that order shows that

lim inf
n→∞ κ(n)nE

[
n−1∑

i=0

1

n
R( μ̄n

i (·)
∥∥ θ(·|X̄ n

i ))

]

≥ lim
κ→∞ E

[∫

Rd×Rd×[0,1]
L̄κ (x,w) γ (dx × dw × dt)

]

= E

[∫

Rd×Rd×[0,1]

1

2
‖w‖2A−1(x) γ (dx × dw × dt)

]

= E

[∫ 1

0

∫

Rd

1

2
‖w‖2A−1(X0(t)) M̄ (dw| t) dt

]

≥ E

[
1

2

∫ 1

0
‖w(t)‖2A−1(X0(t)) dt

]
,

which is (5.24). This concludes the proof of Theorem5.7. �

5.4 Laplace Upper Bound

In this section we prove the variational lower bound

lim inf
n→∞ −κ(n) log E

[
e− 1

κ(n)
F(Y n)

]
≥ inf

φ∈C ([0,1]:Rd )
[IM(φ) + F (φ)] , (5.30)

which corresponds to the Laplace upper bound.
Suppose for each n that {μ̄n

i } comeswithin 1/n of achieving the infimum in (5.15),
so that

lim inf
n→∞ −κ(n) log E

[
e− 1

κ(n)
F(Y n)

]

≥ lim inf
n→∞ E

[
n−1∑

i=0

κ(n)R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i )) + F(Ȳ n)

]

. (5.31)

We also have

sup
n∈N

κ(n)nE

[
n−1∑

i=0

1

n
R( μ̄n

i (·)
∥∥ θ(·|X̄ n

i ))

]

≤ 2 ‖F‖∞ + 1.

Consequently, (5.17) is satisfied with KE = 2 ‖F‖∞ + 1, and from Theorem5.7 we
can choose for every subsequence of {(M̄n, Ȳ n)} a further subsequence (we retain n as
the index for convenience) alongwhich (M̄n, Ȳ n) converges to (M̄, Ȳ ) in distribution,
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M̄ , Ȳ are related by (5.22)–(5.23), and such that (5.24) is satisfied. Combining this
with (5.31) gives

lim inf
n→∞ −κ(n) log E

[
e− 1

κ(n)
F(Y n)

]

≥ lim inf
n→∞ E

[
n−1∑

i=0

κ(n)R( μ̄n
i (·)

∥∥ θ(·|X̄ n
i )) + F(Ȳ n)

]

≥ E

[∫ 1

0

1

2
‖w(s)‖2A−1(X0(s)) ds + F(Ȳ )

]
.

Define φu for u ∈ L 2([0, 1] : R
d) by

φu (t) =
∫ t

0
Db(X0(s))φu(s)ds +

∫ t

0
A1/2(X0(s))u(s)ds. (5.32)

Recalling

Ȳ (t) =
∫ t

0
Db(X0(s))Ȳ (s)ds +

∫ t

0
w(s)ds,

it follows using the expression for IM in (5.10) and (5.11) that

E

[∫ 1

0

1

2
‖w(s)‖2A−1(X0(s)) ds + F(Ȳ )

]

≥ inf
u∈L 2([0,1]:Rd )

[∫ 1

0

1

2
‖u(s)‖2 ds + F(φu)

]

= inf
φ∈C ([0,1]:Rd )

[IM(φ) + F (φ)] ,

which is the lower bound (5.30). �

5.5 Laplace Lower Bound

In this section we prove the variational upper bound

lim sup
n→∞

−κ(n) log E
[
e− 1

κ(n)
F(Y n)

]
≤ inf

φ∈C ([0,1]:Rd )
[IM(φ) + F (φ)] , (5.33)

which is the Laplace lower bound. Note that for u, v ∈ L 2([0, 1] : R
d),

φu(t) − φv(t) =
∫ t

0
Db(X0(s))

(
φu(s) − φv(s)

)
ds

+
∫ t

0
A1/2(X0(s))(u(s) − v(s))ds.
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Thus by Gronwall’s inequality,

sup
t∈[0,1]

∥∥φu(t) − φv(t)
∥∥

≤ eKb

∫ 1

0

∥∥A1/2(X0(s))(u(s) − v(s))
∥∥ ds

≤ eKb

(∫ 1

0

∥∥A1/2(X0(s))(u(s) − v(s))
∥∥2 ds

)1/2

≤ eKb K 1/2
A

(∫ 1

0
‖u(s) − v(s)‖2 ds

)1/2

. (5.34)

Since C ([0, 1] : R
d) is dense in L 2([0, 1] : R

d), the proof of the Laplace lower
bound is reduced to showing that for an arbitrary u ∈ C ([0, 1] : R

d),

lim sup
n→∞

−κ(n) log E
[
e− 1

κ(n)
F(Y n)

]
≤ 1

2

∫ 1

0
‖u(s)‖2 ds + F

(
φu
)
. (5.35)

We fix u ∈ C ([0, 1] : R
d) for the remainder of the proof.

Remark 5.12 The proof of the lower bound for the moderate deviation problem
differs substantially from the corresponding proof of the large deviation problem,
especially in regard to the treatment of degenerate noise. For the case of large devi-
ations, this was handled in Chap.4 using a mollification. In the moderate deviations
setting a simpler argument is possible. This is largely due to the form of the rate
function, which is the same as that of the small noise diffusion model of Sect. 3.2,
but with time-dependent drift Db(X0(t)) and diffusion matrix A1/2

(
X0 (t)

)
. As just

discussed, with this form one can find a nearly optimal trajectory for the limit varia-
tional problem of the form φu , with u continuous rather than just measurable, which
greatly facilitates the construction of nearly optimal controls for the prelimit in the
proof of the lower bound. This is not possible for the general model of Chap. 4, since
it is not useful to view Xn there as a continuous or nearly continuous mapping on
an “exogenous” noise process. In this sense, the moderate deviation problem shares
some of the simplifying features of the continuous timemodels discussed in Sect. 3.2
and at greater length in later chapters.

We now turn to the proof of (5.35) for the given u ∈ C ([0, 1] : R
d). The main

difficulty related to the possible degeneracy of the noise is the following. Since at
the prelimit, the controlled processes X̄ n may be close to but not precisely equal
to X0, the range of A(X̄ n(i/n)) can differ from that of A(X0(i/n)) (at least in the
degenerate case). Because of this, the construction of a control that approximates
A1/2(X0(i/n))u(i/n) with nearly optimal cost is not as straightforward as in the
nondegenerate case [it is simple in that case due to the invertibility of A1/2(X̄ n(i/n))].

Recall the orthogonal decomposition of A−1(x) discussed above (5.6). For κ ∈
(0,∞), define
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A−1
κ (x) = Q(x)Λ−1

κ (x)QT (x),

where Λ−1
κ (x) is the diagonal matrix such that Λ−1

i i,κ (x) = Λ−1
i i (x) when Λ−1

i i (x) ≤
κ2 and Λ−1

i i,κ (x) = κ2 when Λ−1
i i (x) > κ2. Note that by [155, Theorem 6.2.37],

A1/2(x), A−1
κ (x), and A1/2

κ (x) are continuous functions of A(x), and consequently
they are also continuous functions of x ∈ R

d . In addition, define

uκ(s) =
{
u(s) for ‖u(s)‖ ≤ κ,
κu(s)
‖u(s)‖ for ‖u(s)‖ > κ.

Let φu,κ (t) = φA−1/2
κ (X0)uκ (t), and note that φu,κ solves

φu,κ (t) =
∫ t

0
Db(X0(s))φu,κ (s)ds

+
∫ t

0
A(X0(s))A−1/2

κ (X0(s))uκ(s)ds. (5.36)

For n sufficiently large,

max
0≤i≤n−1

1√
κ(n)n

∥∥A−1/2
κ

(
X0 (i/n)

)
uκ (i/n)

∥∥ ≤ 1√
κ(n)n

κ2 ≤ λDA,

andwe can define the sequence {(X̄ n,κ , Ȳ n,κ , M̄n,κ ,wn,κ )} as inConstruction5.3with

μ̄
n,κ
i (dy) = exp

{〈
y,

1√
κ(n)n

A−1/2
κ

(
X0 (i/n)

)
uκ (i/n)

〉

−Hc

(
X̄ n,κ
i ,

1√
κ(n)n

A−1/2
κ

(
X0 (i/n)

)
uκ (i/n)

)}
θ(dy|X̄ n,κ

i ).

We will use
∫

Rd

y exp{〈y, α〉 − Hc(x, α)}θ(dy|x) = DαHc(x, α)

and the formula

DαHc(x, α) = DαHc(x, α) − DαHc(x, 0) =
∫ 1

0

(
d

ds
DαHc(x, sα)

)
ds,

where DαHc(x, 0) = 0 follows from (5.4).Using (5.5) to approximate second deriva-
tives that appear on the right side of the last display, the bounds (5.7) imply that for
‖α‖ ≤ λD A,
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∥∥∥∥

∫

Rd

y exp{〈y, α〉 − Hc(x, α)}θ(dy|x) − A(x)α

∥∥∥∥ ≤ KDA ‖α‖2 . (5.37)

The next result identifies the limit in probability of the controlled processes and an
asymptotic bound for the relative entropies. Recall that u ∈ C ([0, 1] : R

d) has been
fixed.

Theorem 5.13 Let κ ∈ (0,∞) be given. Consider the controls {μ̄n,κ
i } and random

variables {(X̄ n,κ , Ȳ n,κ , M̄n,κ ,wn,κ )} as in Construction5.3 with {μ̄n
i } replaced by

{μ̄n,κ
i }, and define φu,κ by (5.36). Then

Ȳ n,κ → φu,κ (5.38)

in C ([0, 1] : R
d) in probability, and

lim sup
n→∞

κ(n)nE

[
1

n

n−1∑

i=0

R
(
μ̄
n,κ
i (·)∥∥ θ(·|X̄ n,κ

i )
)
]

≤ 1

2

∫ 1

0

∥∥A−1/2
κ (X0(s))uκ(s)

∥∥2
A(X0(s)) ds. (5.39)

Proof From (5.8) and (5.37), for all n large enough that κ2/
√

κ(n)n ≤ λDA andwith
sni

.= i/n,

R
(
μ̄
n,κ
i (·)∥∥ θ(·|X̄ n,κ

i )
)

=
∫

Rd

〈
y,

1√
κ(n)n

A−1/2
κ

(
X0
(
sni
))
uκ

(
sni
)〉

μ̄
n,κ
i (dy)

− Hc

(
X̄ n,κ
i ,

1√
κ(n)n

A−1/2
κ

(
X0 (sni

))
uκ

(
sni
))

≤ 1

κ(n)n

〈
A
(
X̄ n,κ
i

)
A−1/2

κ

(
X0 (sni

))
uκ

(
sni
)
, A−1/2

κ

(
X0 (sni

))
uκ

(
sni
)〉

− 1

2κ(n)n

〈
A
(
X̄ n,κ
i

)
A−1/2

κ

(
X0
(
sni
))
uκ

(
sni
)
,

A−1/2
κ

(
X0
(
sni
))
uκ

(
sni
)〉+ 2

(κ(n)n)3/2
KDAκ

6

= 1

2κ(n)n

∥∥A−1/2
κ

(
X0
(
sni
))
uκ

(
sni
)∥∥2

A(X̄ n,κ
i )

+ 2

(κ(n)n)3/2
KDAκ

6.

Consequently,

lim sup
n→∞

κ(n)nE

[
1

n

n−1∑

i=0

R
(
μ̄
n,κ
i (·)∥∥ θ(·|X̄ n,κ

i )
)
]

(5.40)
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≤ lim sup
n→∞

1

2
E

[
1

n

n−1∑

i=0

∥∥A−1/2
κ

(
X0 (i/n)

)
uκ (i/n)

∥∥2
A(X̄ n,κ

i )

]

,

where in fact,

lim sup
n→∞

1

2
E

[
1

n

n−1∑

i=0

∥∥A−1/2
κ

(
X0 (i/n)

)
uκ (i/n)

∥∥2
A(X̄ n,κ

i )

]

≤ 1

2
κ4KA.

Therefore, (5.17) is satisfied by {μ̄n,κ
i }. Thus the conclusions of Theorem5.7 hold

with Ȳ n , M̄n replaced by Ȳ n,κ , M̄n,κ . Choose a subsequence (keeping n as the
index for convenience) along which {(M̄n,κ , Ȳ n,κ )} converges weakly to some limit
(M̄κ , Ȳ κ), where [M̄κ ]2 is Lebesgue measure and

Ȳ κ(t) =
∫ t

0
Db(X0(s))Ȳ κ(s)ds +

∫ t

0

∫

Rd

w[M̄κ ]1|2(dw |s )ds.

Then Ȳ n,κ → Ȳ κ implies

sup
t∈[0,1]

∥∥X̄ n,κ (t) − X0(t)
∥∥ → 0

in probability. Because of this and the continuity of A1/2(x), we have (recall sn(t)
.=

�nt /n)
sup

t∈[0,1]

∥∥A1/2(X̄ n,κ (sn(t))) − A1/2(X0(sn(t)))
∥∥ → 0

in probability. However, the continuity of t 
→ A1/2(X0(t))A−1/2
κ (X0(t))uκ(t) gives

sup
t∈[0,1]

∥∥A1/2(X0(sn(t)))A−1/2
κ (X0(sn(t)))uκ(s

n(t))

−A1/2(X0(t))A−1/2
κ (X0(t))uκ(t)

∥∥ → 0.

Combining these limits, and using the fact that A−1/2
κ (X0(t))uκ(t) is uniformly

bounded, shows that

sup
t∈[0,1]

∥∥A1/2(X̄ n,κ (sn(t)))A−1/2
κ (X0(sn(t)))uκ(s

n(t)) (5.41)

−A1/2(X0(t))A−1/2
κ (X0(t))uκ(t)

∥∥ → 0

in probability. This combined with the uniform bounds allows the use of the domi-
nated convergence theorem to show that
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lim sup
n→∞

E

[
1

2

∫ 1

0

∥∥A−1/2
κ (X0(sn(t)))uκ(s

n(t))
∥∥2
A(X̄ n,κ (sn(t))) dt

]

= 1

2

∫ 1

0

∥∥A−1/2
κ (X0(t))uκ(t)

∥∥2
A(X0(t))

dt.

Combining this with (5.40) demonstrates (5.39).
To prove (5.38), we will show that in fact,

M̄κ(dw × dt) = δA(X0(t))A−1/2
κ (X0(t))uκ (t)(dw)dt.

For all σ > 0, let

Gσ
.= {

(z, t) ∈ R
d × [0, 1] : ∥∥z − A(X0(t))A−1/2

κ (X0(t))uκ(t)
∥∥ ≤ σ

}
,

and note that by weak convergence, lim supn→∞ E[M̄n,κ (Gσ )] ≤ E[M̄κ(Gσ )]. Note
also that

E[M̄n,κ (Gσ )]
≥ P

[
sup

t∈[0,1]

∥∥∥∥
√

κ(n)n
∫

Rd

yμ̄n,κ
�nt(dy) − A(X0(t))A−1/2

κ (X0(t))uκ(t)

∥∥∥∥ ≤ σ

]
.

However, by (5.37) we can choose n large enough to make

sup
t∈[0,1]

∥∥∥∥
√

κ(n)n
∫

Rd

yμ̄n,κ
�nt(dy) − A

(
X̄ n,κ

(
sn(t)

))
A−1/2

κ

(
X0
(
sn(t)

))
uκ

(
sn(t)

)
∥∥∥∥

arbitrarily small, and the proof that

sup
t∈[0,1]

∥∥A(X̄ n,κ (sn(t)))A−1/2
κ (X0(sn(t)))uκ(s

n(t))

−A(X0(t))A−1/2
κ (X0(t))uκ(t)

∥∥ → 0

inprobability is identical to the proof of (5.41).Hence lim supn→∞ E[M̄n,κ (Gσ )] = 1
for all σ > 0, and so E[M̄κ(∩n∈NG1/n)] = 1. This implies that with probability 1,

[M̄]κ1|2(dw |t ) = δA(X0(t))A−1/2
κ (X0(t))uκ

(dw)

for a.e. t . It follows that

Ȳ κ(t) =
∫ t

0
Db(X0(s))Ȳ κ(s)ds +

∫ t

0
A(X0(s))A−1/2

κ (X0(s))uκ(s)ds,

and therefore Ȳ n,κ → φu,κ weakly. This implies (5.38) and completes the proof. �
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The second theorem in this section allows us to approximate F(φu) by F(φu,κ )

and 1
2

∫ 1
0 ‖u(s)‖2 ds by

1

2

∫ 1

0

∥∥A−1/2
κ (X0(s))uκ(s)

∥∥2
A(X0(s)) ds.

Recall that u ∈ C ([0, 1] : R
d) has been given.

Theorem 5.14 Defineφu by (5.32) andφu,κ by (5.36). Thenφu,κ → φu inC ([0, 1] :
R

d) and

lim sup
κ→∞

1

2

∫ 1

0

∥∥A−1/2
κ (X0(s))uκ(s)

∥∥2
A(X0(s)) ds ≤ 1

2

∫ 1

0
‖u(s)‖2 ds.

Proof Note that

∥∥A1/2(X0(s))A−1/2
κ (X0(s))uκ(s)

∥∥ ≤ ‖u(s)‖

for all s ∈ [0, 1]. Thus it is automatic that

lim sup
κ→∞

1

2

∫ 1

0

∥∥A−1/2
κ (X0(s))uκ(s)

∥∥2
A(X0(s)) ds ≤ 1

2

∫ 1

0
‖u(s)‖2 ds.

Also, for x ∈ R
d ,

A(x)A−1/2
κ (x) = Q(x)Λ(x)Λ−1/2

κ (x)QT (x) → Q(x)Λ1/2(x)QT (x) = A1/2(x).

Since uκ(s) → u(s) for all s ∈ [0, 1],

A(X0(s))A−1/2
κ (X0(s))uκ(s) → A1/2(X0(s))u(s) (5.42)

pointwise. Sinceu ∈ L 2([0, 1] : R
d), by the dominated convergence theorem, (5.42)

also holds in L 2([0, 1] : R
d). Combining this with the second inequality in (5.34)

shows that φu,κ → φu in C ([0, 1] : R
d). �

Using (5.15) and the fact that any given control is suboptimal yields

−κ(n) log E
[
e− 1

κ(n)
F(Y n)

]
≤ E

[
n−1∑

i=0

κ(n)R
(
μ̄
n,κ
i (·)∥∥ θ(·|X̄ n,κ

i )
)+ F(Ȳ n,κ )

]

.
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Using Theorem5.13, this implies

lim sup
n→∞

−κ(n) log E
[
e− 1

κ(n)
F(Y n)

]

≤ 1

2

∫ 1

0

∥∥A−1/2
κ (X0(s))uκ(s)

∥∥2
A(X0(s)) ds + F(φu,κ ).

Sending κ → ∞ and using Theorem5.14 gives (5.35), which completes the proof
of (5.33). �

5.6 Notes

Among the earliest papers to study moderate deviations are those by Rubin and
Sethuraman [222], Ghosh [146], and Michel [200]. See the introduction of [41] for a
more complete discussion of work in this area. While a number of settings have been
considered, to the authors’ knowledge the first papers to considermoderate deviations
for small noise processes around solutions to general nonlinear ODEs (rather than
constant-velocity trajectories) are [100] for discrete time models, upon which this
chapter is based, and [41] for continuous time processes. As noted in the introduction
to the chapter, the proof of the moderate deviation principle presented here is neither
uniformly harder nor easier than its large deviation counterpart, at least when one is
using weak convergence methods. In particular, the large deviation upper bound is
made more difficult due to difficulties in using tightness in the convergence analysis.
(The case of solutions to SDEs driven by Brownian motion, which is given as an
example in Chap.3, is in fact much easier, owing to the fact that the driving noise is
already Gaussian.) Also, the assumed conditions are not strictly weaker, mainly in
that additional smoothness is needed for the proper centering and rescaling.Moderate
deviation principles will also appear in Chaps. 10 and 13.



Chapter 6
Empirical Measure of a Markov Chain

In this chapter we develop the large deviation theory for the empirical measure of
a Markov chain, thus generalizing Sanov’s theorem from Chap.3. The ideas devel-
oped here are useful in other contexts, such as proving sample path large deviation
properties of processes with multiple time scales as described in Sect. 7.3.

To focus on themain issues,wefirst considerMarkov chainswith a compact Polish
state space S. Proving the large deviation upper bound in the case of a general Polish
space requires the existence of a suitable Lyapunov function, which is discussed in
Sect. 6.10. The Lyapunov function is used to prove tightness of a controlled empirical
measure when relative entropy costs are bounded, a tightness that is automatic in the
compact case. For examples in which such Lyapunov functions exist for noncompact
state space models see [87, 88, 97].

Thus let {Xi , i ∈ N0} denote a Markov chain with transition kernel p(x, dy) and
compact state space S. The object of interest is the empirical or occupation measure
defined by

Ln(dx)
.= 1

n

n−1∑

i=0

δXi (dx). (6.1)

Under ergodicity there is a unique invariant measure π ∈ P(S), and by the ergodic
theorem, Ln → π in the weak topology, w.p.1. Large deviation theory gives approxi-
mations to the probability of {Ln ∈ A}when A does not contain π , alongwith related
expected values.

6.1 Applications

While there are many applications of large deviation estimates for the empirical
measure to problems in the physical sciences and engineering, we mention here uses
in other areas.
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6.1.1 Markov Chain Monte Carlo

One of the most important uses of the empirical measure is for the numerical approx-
imation of integrals of the form

∫
S f (x)π(dx), and in particular in the special case

in which π is a Gibbs measure, e.g., π(dx) = e−V (x)/τdx/Z , where S ⊂ R
d , V is

a potential function, τ is a parameter, and Z is a normalization that makes the indi-
cated measure a probability measure. There are well-known methods to construct
ergodic Markov processes {Xi , i ∈ N0} for which π is the unique invariant distribu-
tion, and thus

∫
S f (x)Ln(dx) gives a convergent approximation to

∫
S f (x)π(dx).

This technique has a tremendous number of practical applications in the physical
and biological sciences, engineering, statistics, and elsewhere [6, 190].

However, for many problems, S is in some sense very large, and moreover the
methods that generate the chain from V have the property that when V has many
deep local minima, parts of the state space communicate poorly under the dynamics
p(x, dy). When this happens, and it happens frequently, the issue of good algorithm
design becomes crucial.

In order to compare algorithms, one needs a criterion for good performance. Since
it focuses on the object of interest, i.e., the empirical measure, it would seem that the
large deviation rate is a natural measure. The rate function I depends of course on the
dynamics, though for any chain leading to π as an invariant distribution, I (μ) = 0
if and only μ = π . Different algorithms lead to different rate functions, and the rate
functions give one a great deal of information that can be used to compare algorithms.

The rate function can be compared with other measures that have been tradi-
tionally used to compare chains, such as the subdominant eigenvalue. Let p(x, dy)
be an ergodic transition kernel with invariant distribution π . Under suitable condi-
tions, p(x, ·) has a single eigenvalue equal to 1 corresponding to the eigenvector
π , and the magnitude |λ2| of the next-largest eigenvalue is often used to charac-
terize the performance of the associated empirical measure. However, the second
eigenvalue provides information only on convergence of the n-step transition ker-
nel p(n)(x, dy) = P {Xn ∈ dy|X0 = x}, and in particular does not give any direct
information regarding the empirical measure.

A work that effectively applies the large deviation rate as a measure of rate of
convergence is [108], and further development of its use in algorithm design is
ongoing [86].

6.1.2 Markov Modulated Dynamics

The process models considered in Chap.4 can be made more general and appropriate
for a broader range of applications by allowing the distribution of the driving noise
to depend on an exogenous Markov chain. For example, the homogeneous random
walk model [i.e., θ(dy|x) = θ(dy)] occurs in problems of insurance risk, with the
noises vi representing the difference between income and payouts at time i . A more
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realistic model would allow the distribution θ(dy) to depend on a finite state Markov
chain ξi representing, e.g., the state of the economy and other factors. Such a process
would be called Markov modulated.

Similarly, in the more general case with state dependence one could replace
θ(dy|x) by θ(dy|x, ξ) with ξ ∈ S. Suppose {ξi } is a Markov chain on S that is
independent of {vi (x, ξ), i ∈ N0, x ∈ R

d , ξ ∈ S}, and replace vi (Xn
i ) as in Chap.4

by vi (Xn
i , ξi ). In such a situation, owing to time scale separation (i.e., Xn

i varies
more slowly than ξi when n is large), the large deviation properties of the empirical
measures of the sequences {vi (x, ξi ), i ∈ N0} for various x ∈ R

d are needed to define
the local rate function for the continuous time interpolation {Xn

i }. These empirical
measures can be analyzed using the same methods we use in this chapter to study
the empirical measure of just the {ξi }. A statement of the form of the resulting rate
function on path space is given in Sect. 7.3.

6.2 The Representation

Throughout this chapter, S is a Polish space. Although in the beginning of the chapter
we focus on the case in which S is compact, several results needed later on such as
the representation are stated and proved for the general case. Whenever compactness
of S is assumed, this will be explicitly noted.

We first introduce some needed notation. Just as in the proof of the representation
used for Sanov’s theorem (Proposition 3.1), the representation follows by applying
the chain rule to the “high-level” representation stated in Proposition 2.2. In contrast
with the setting of Sanov’s theorem, where the base measure was product measure,
here the base measure is the Markov measure

θ(dx1 × · · · × dxn) = p(x0, dx1)p(x1, dx2) × · · · × p(xn−1, dxn)

on Sn , where x0 is some fixed initial condition. For the high-level representation we
consider more or less arbitrary alternative measures μ on Sn . Just as in the proof
of Proposition 3.1, we factor μ appearing in R (μ ‖θ ) by conditioning, and then
apply the chain rule to decompose the relative entropy on product space as a sum
of relative entropies. This gives the following proposition, in which X̄0 = x0 by
definition. Except for the form of the base measure θ , the proof is the same as the
proof of Proposition 3.1 and hence omitted.

Proposition 6.1 Let n ∈ N and let {Xi }i∈{1,...,n} be S-valued random variables with
joint distribution θ . If G ∈ Mb(Sn), then

−1

n
log Ee−nG(X1,...,Xn) = inf E

[
G(X̄ n

1 , . . . , X̄
n
n ) + 1

n

n∑

i=1

R
(
μ̄n
i (·)

∥∥p(X̄ n
i−1, ·)

)
]

,
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with the infimum over all collections of random probability measures
{
μ̄n
i

}
i∈{1,...,n}

that satisfy the following two conditions:

1. μ̄n
i is measurable with respect to the σ -algebra generated byF n

i−1, whereF
n
0 =

{∅,Ω} and for i ∈ {1, . . . , n},F n
i = σ {X̄ n

1 , . . . , X̄
n
i }.

2. The conditional distribution of X̄n
i , given F n

i−1, is μ̄n
i .

Later we will consider uniformity of the large deviation estimates with respect
to x0 in some compact subset of S. When dealing with this issue, we denote the
initial condition explicitly by writing Ex0 . As before, we consider {X̄ j }i∈{1,...,n} to
be a controlled version of the original sequence {Xi }i∈{1,...,n}, with the control μ̄n

j

selecting the (conditional) distribution of X̄ j . Let L̄n be the controlled empirical
measure (with X̄ n

0 = x0):

L̄n(dx) = 1

n

n−1∑

i=0

δX̄ n
i
(dx). (6.2)

Then by Proposition 6.1,

− 1

n
log Ee−nF(Ln) = inf{μ̄n

i }
E

[
F(L̄n) + 1

n

n∑

i=1

R
(
μ̄n
i (·)

∥∥p(X̄ n
i−1, ·)

)
]

(6.3)

for every bounded and measurable F : P(S) → R. To prove an LDP for {Ln}n∈N,
it will be enough to consider bounded and continuous F .

6.3 Form of the Rate Function

In the setting of Sanov’s theorem, the minimizing controls were found, a posteriori,
to be asymptotically product measure (see Remark 3.7), reflecting the form of the
base measure on the collection {Xi }i∈N. One might suspect something analogous
here, which is that nearly optimizing controls for large n might be of the Markov
form μ̄n

i (dxi ) = q(X̄ n
i−1, dxi ) for some transition kernel q. With this in mind, we

rewrite the relative entropy using the chain rule [Theorem 2.6]:

R
(
μ̄n
i (·)

∥∥p(X̄ n
i−1, ·)

) = R
(
μ̄n
i (·)

∥∥p(X̄ n
i−1, ·)

)+ R
(
δX̄ n

i−1
(·)
∥∥∥δX̄ n

i−1
(·)
)

= R
(
δX̄ n

i−1
(dx)μ̄n

i (dy)
∥∥∥δX̄ n

i−1
(dx)p(x, dy)

)
.

The measure δX̄ n
i−1

(dx)μ̄n
i (dy) records the control that is used to pick the distribution

of X̄ n
i given the location of X̄

n
i−1, and it will be used to identify the form of q(x, dy).

We will try to guess the form of the rate function, and at the same time sketch the
proof of the large deviation upper bound without giving details; precise statements
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and proofs will be given in later sections. Suppose that the controls
{
μ̄n
i

}
comewithin

1/n of the infimum.By Jensen’s inequality and the joint convexity of relative entropy,
we have

E

[
F(L̄n) + 1

n

n∑

i=1

R
(
δX̄ n

i−1
(dx)μ̄n

i (dy)
∥∥∥δX̄ n

i−1
(dx)p(x, dy)

)]
(6.4)

≥ E

[
F(L̄n) + R

(
1

n

n∑

i=1

δX̄ n
i−1

(dx)μ̄n
i (dy)

∥∥∥∥∥
1

n

n∑

i=1

δX̄ n
i−1

(dx)p(x, dy)

)]

= E

[
F(L̄n) + R

(
1

n

n∑

i=1

δX̄ n
i−1

(dx)μ̄n
i (dy)

∥∥∥∥∥ L̄
n(dx)p(x, dy)

)]
.

Let

λn(dx × dy)
.= 1

n

n∑

i=1

δX̄ n
i−1

(dx)μ̄n
i (dy). (6.5)

Since S and hence S2 are compact, so are P(S) and P(S2), and so automatically{(
λn, L̄n

)
, n ∈ N

}
is tight. Note that L̄n is the first marginal of λn , and that μ̄n

i (dy)
picks the distribution of X̄ n

i . Hence the martingale generalization of the Glivenko–
Cantelli lemma as formulated in Lemma 3.5 can be used to show that asymptotically,
the first and second marginals of λn are the same. The precise result will be given in
Lemma 6.12.

Thus if
(
λn, L̄n

)→ (
λ, L̄

)
in distribution along a subsequence, then [λ]1(dx) =

[λ]2(dx) = L̄(dx), where [λ]1 and [λ]2 denote the first and second marginals of λ.
We will assume that p(x, dy) satisfies the Feller property, i.e., that the mapping
x → p(x, ·) is continuous in the topology of weak convergence. This will imply
L̄n(dx)p(x, dy) → L̄(dx)p(x, dy) in distribution. We can then compute a lower
bound along theweakly converging subsequence using Fatou’s lemma, the continuity
of F , and lower semicontinuity of R ( ·‖ ·):

lim inf
n→∞ −1

n
log Ee−nF(Ln)

≥ lim inf
n→∞ E

[
F(L̄n) + R

(
λn(dx × dy)

∥∥ L̄n(dx)p(x, dy)
)]

≥ E
[
F(L̄) + R

(
λ(dx × dy)‖ L̄(dx)p(x, dy)

)]
.

Given μ ∈ P(S) and a probability transition kernel p on S, let (μ ⊗ p)(dx dy)
denote the probability measure on S2 given by μ(dx)p(x, dy), and let

A(μ)
.= {γ ∈ P(S2) : [γ ]1 = [γ ]2 = μ

}
. (6.6)

Suppose we define
I (μ) = inf

γ∈A(μ)
R (γ ‖ μ ⊗ p) .
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Then since [λ]1 = [λ]2 = L̄ , we have shown that

lim inf
n→∞ −1

n
log Ee−nF(Ln) ≥ inf

μ∈P (S)
[F(μ) + I (μ)] ,

suggesting that I may in fact be the rate function.
To complete the proof we will have to prove the reverse inequality with the

same function I . Note that if γ ∈ A(μ), then we can factor γ (dx × dy) in the form
γ (dx × dy) = μ(dx)q(x, dy) for some transition kernel q, and that [γ ]2 = μ is
exactly the statement that μ is an invariant distribution for q. This will suggest
how to construct a control for the reverse inequality, and also verify the claim that
asymptotically, there are nearly optimal measures that are Markovian and stationary.

6.4 Assumptions and Statement of the LDP

For the purposes of proving a Laplace principle upper bound and identifying the rate
function, we will assume that p(x, dy) satisfies the Feller property: if {xn, n ∈ N} is
any sequence in S such that xn → x ∈ S, then p(xn, ·) ⇒ p(x, ·).
Condition 6.2 The transition probability kernel p satisfies the Feller property.

Under theFeller property,μn ⇒ μ impliesμn ⊗ p ⇒ μ ⊗ p [Lemma6.7],which
greatly simplifies the analysis and the form of the rate function. If the Feller property
does not hold, then sets that are negligible under a stationary distribution of p may
be significant from the large deviation perspective [118].

Given a transition probability function q(x, dy) on S and k ∈ N, let q(1)(x, dy) ≡
q(x, dy) and let q(k)(x, dy) denote the k-step transition probability function defined
recursively by

q(k+1)(x, A) =
∫

S
q(y, A) q(k)(x, dy)

for Borel sets A. The following transitivity assumption, weaker than Hypothesis H
in [88], is a slight variation of Hypothesis (gH) in [59].

Condition 6.3 The transition kernel p satisfies the following transitivity condition.
There exist positive integers l0 and n0 such that for all x and ζ in S,

∞∑

i=l0

1

2i
p(i) (x, dy) �

∞∑

j=n0

1

2 j
p( j) (ζ, dy) , (6.7)

where p(k) denotes the k-step transition probability.
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Thus if one allows a sufficient delay, the weighted distributions of the chain at
future times are in some sense mutually absolutely continuous for all pairs of starting
points.

The following condition and the Feller property (Condition 6.2) will imply the
existence of an invariant probability distribution for p(x, dy).

Condition 6.4 The collection {ELn}n∈N is tight inP(S).

For the proof of the large deviation upper bound we will need a stronger stability
property than Condition 6.4. Such a property can be formulated in terms of a suitable
Lyapunov function (see Sect. 6.10). However, to keep the presentation simple, we
first consider the case in which Condition 6.4 holds automatically, which occurs
when S is compact.

Remark 6.5 If p corresponds to a finite state ergodic Markov chain, then Conditions
6.2, 6.3, and 6.4 all hold.

Theorem 6.6 Assume Conditions 6.2 and 6.3 on the Markov chain {Xi }i∈N0
. Fur-

thermore, suppose that S is compact. Let {Ln}n∈N be the empirical measures defined
in (6.1). Then {Ln}n∈N satisfies an LDP with rate function

I (μ) = inf
γ∈A(μ)

R (γ ‖ μ ⊗ p) . (6.8)

Let d(·, ·) denote the metric on S. Suppose in addition that for each x ∈ S, there are
β ∈ P(S), k ∈ N, and c > 0 such that for all ζ ∈ S satisfying d(ζ, x) < c and all
A ∈ B(S),

k∑

j=1

p( j) (ζ, A) ≥ cβ(A). (6.9)

Then the large deviation estimates are uniform in the initial condition x0, and in
particular, {Ln}n∈N satisfies a uniform Laplace principle in the sense of Definition
1.11 with the rate function Ix0 = I .

The form of the rate function given in (6.8) [see also Remark 6.9] differs from the
standard Donsker–Varadhan rate function given in [87, 88]. The rate function in (6.8)
can be interpreted in terms of the minimal cost for ergodic control (or average cost
per unit time) problems, which is not at all surprising, given the representation (6.3).
The proof of Theorem 6.6 is split over the four sections that follow. In particular,
the Laplace upper bound is proved in Proposition 6.13, the Laplace lower bound in
Proposition 6.15, and the uniform Laplace principle in Proposition 6.18. Finally, in
Sect. 6.10 we discuss the case in which S is not compact.
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6.5 Properties of the Rate Function

We begin with a result used in the arguments of Sect. 6.3.

Lemma 6.7 Assume thatCondition 6.2 holds and thatμn ∈ P(S) convergesweakly
to μ. Then μn ⊗ p converges weakly to μ ⊗ p inP(S2).

Proof Let f ∈ Cb(S2) be given. Then the mapping G : (x, γ ) → ∫
S f (x, y)γ (dy)

from S × P(S) toR is bounded and continuous [this is easy to see, for example, using
the Skorokhod epresentation theorem (Theorem A.8)]. Since x → p(x, ·) is contin-
uous in the weak topology, the mapping x → G(x, p(x, ·)) = ∫S f (x, y)p(x, dy)
is bounded and continuous. Since μn ⇒ μ,

∫

S2
f (x, y)(μn ⊗ p)(dx, dy) =

∫

S

∫

S
f (x, y)p(x, dy)μn(dx)

→
∫

S

∫

S
f (x, y)p(x, dy)μ(dx)

=
∫

S2
f (x, y)(μ ⊗ p)(dx, dy),

proving the claim. �

Recall the sets A(μ), μ ∈ P(S), introduced in (6.6). A distribution μ ∈ P(S) is
said to be invariant (or an invariant measure or stationary distribution) for a transition
kernel q(x, dy) if μ(A) = ∫S q(x, A)μ(dx) for all A ∈ B(S).

Lemma 6.8 (a) If γ ∈ A(μ), then there exists a transition kernel q(x, dy) such that
γ (dx × dy) = μ(dx)q(x, dy), and μ is an invariant distribution for q.

(b) For every μ ∈ P(S) with I (μ) < ∞ there is γ ∈ A(μ) that achieves the
infimum in the definition of I (μ), i.e.,

I (μ) = R (γ ‖ μ ⊗ p) .

Proof If γ ∈ A(μ), then the existence of regular conditional probabilities (Theorem
B.2) guarantees the existence of q(x, dy) with the properties of a probability tran-
sition function and such that γ (dx dy) = μ(dx)q(x, dy). Since γ ∈ A(μ) implies
[γ ]2 = μ, it follows that

∫
S μ(dx)q(x, A) = μ(A) for Borel sets A, and hence μ is

invariant under q. This proves part (a).
Since I (μ) < ∞, given n ∈ N there is γn ∈ A(μ) such that R (γn‖ μ ⊗ p) ≤

I (μ) + 1/n. Since for i = 1, 2, [γn]i = μ, it follows that {[γn]i }n∈N is tight, which
implies in turn that {γn}n∈N is tight. So γn will converge (at least along a subse-
quence) to a limit γ ∈ A(μ), and the lower semicontinuity of R ( ·‖μ ⊗ p) implies
R (γ ‖ μ ⊗ p) ≤ I (μ). However, γ ∈ A(μ) implies I (μ) ≤ R (γ ‖ μ ⊗ p), which
completes the proof for part (b). �
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Remark 6.9 If γ achieves the infimum in the definition of I (μ) and q(x, dy) is the
factorization as in the first part of the lemma, then the chain rule implies

I (μ) =
∫

S
R (q(x, ·)‖ p(x, ·)) μ(dx).

Thus one may interpret the rate function as follows. There is a relative entropy cost
to perturb the dynamics from the underlying Markov chain p to q. We consider all
such perturbations that admit μ as a stationary distribution, pay the relative entropy
cost based on the frequency with which states are visited, and then minimize over q.

Lemma 6.10 Define I : P(S) → [0,∞] by (6.8). Then the following hold.
(a) I is convex.
(b) I (μ) = 0 if and only if μ is an invariant probability distribution for p.
(c) If Condition 6.2 holds, then I is lower semicontinuous.
(d) If in addition S is compact, then the level set {μ : I (μ) ≤ M} is compact for

each M < ∞.

Proof (a) For i = 1, 2, given μi ∈ P(S) with I (μi ) < ∞, there is γi ∈ A(μi ) such
that I (μi ) = R (γi‖ μi ⊗ p) [part (b) of Lemma 6.8]. Given λ ∈ (0, 1),

[λγ1 + (1 − λ)γ2]1 = [λγ1 + (1 − λ)γ2]2 = λμ1 + (1 − λ)μ2.

Using the definition of I and that R ( ·‖ ·) is convex onP(S2)2, for such λ, we have

I (λμ1 + (1 − λ)μ2) ≤ R (λγ1 + (1 − λ)γ2‖ λμ1 ⊗ p + (1 − λ)μ2 ⊗ p)

≤ λR (γ1‖μ1 ⊗ p) + (1 − λ)R (γ2‖ μ2 ⊗ p)

= λI (μ1) + (1 − λ)I (μ2).

Note that the inequality is also true if I (μ1) or I (μ2) is ∞. Thus I is convex.
(b) We next show that I (μ) = 0 if and only if μ is an invariant under p. If

μ is invariant under p, then γ = μ ⊗ p satisfies γ ∈ A(μ), and thus I (μ) = 0.
Conversely, if I (μ) = 0, then by part (b) of Lemma 6.8, there is γ ∈ A(μ) such
that R (γ ‖μ ⊗ p) = 0, which implies γ = μ ⊗ p. Since [μ ⊗ p]2 = [γ ]2 = μ, μ
is invariant for p.

(c)We next show that I is lower semicontinuous under Condition 6.2. Let {μn}n∈N
converge weakly to μ. Without loss of generality we can assume that I (μn) < ∞
for each n. Thus for each n there is γn ∈ A(μn) such that I (μn) = R (γn‖ μn ⊗ p).
It suffices to prove that for every subsequence of {μn} there is a subsubsequence
(relabeled as {n}) such that

lim inf
n→∞ I (μn) ≥ I (μ).

Since each marginal of γn is μn and μn ⇒ μ, {γn} is tight. Hence there is a subse-
quence such that γn ⇒ γ ∈ A(μ). Since μn ⊗ p ⇒ μ ⊗ p along this subsequence
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by Lemma 6.7, the lower semicontinuity of relative entropy implies

lim inf
n→∞ I (μn) = lim inf

n→∞ R (γn‖ μn ⊗ p) ≥ R (γ ‖ μ ⊗ p) ≥ I (μ),

completing the proof that I is lower semicontinuous.
(d) Using the lower semicontinuity established in part (c), {μ : I (μ) ≤ M} is

closed for each M < ∞. Compactness is now immediate on observing that when S
is compact, so isP(S). �

The following lemma gives the existence of an invariant measure for p(x, dy).

Lemma 6.11 Suppose that Conditions 6.2 and 6.4 hold. Then there is at least one
invariant probability for p.

Proof Since {ELn}n∈N is tight, along some subsequence, ELn converges to a prob-
ability measure π . Since p(Xi , ·) gives the conditional distribution of Xi+1 given
σ {X0, . . . Xi }, it follows that for all f ∈ Cb(S),

∣∣∣∣
∫

S
f (x)ELn(dx) −

∫

S2
f (y)p(x, dy)ELn(dx)

∣∣∣∣

= 1

n

∣∣∣∣∣E
n−1∑

i=0

f (Xi ) − E
n−1∑

i=0

∫

S
f (y)p(Xi , dy)

∣∣∣∣∣

= 1

n
|E f (X0) − E f (Xn)|

≤ 2

n
‖ f ‖∞

→ 0

as n → ∞. The Feller property implies that x → ∫
S f (y)p(x, dy) is bounded

and continuous. Hence taking the limit of ELn along the subsequence, we have∫
S f (x)π(dx) = ∫S2 f (y)p(x, dy)π(dx) for every f ∈ Cb(S), and thus π is invari-
ant. �

6.6 Tightness and Weak Convergence

As in the proof of Sanov’s theorem, we will need to relate the weak limits of the
controlled empirical measure L̄n defined in (6.2) to the random measures λn defined
in (6.5), which links μ̄n

i , the measure used to pick X̄ n
i , to the value of X̄

n
i−1. The proof

of the following result is almost identical to that of Lemma 3.5, and is included here
only for completeness. Since it will be used for proving the uniform versions of the
large deviation bounds, we use the notation Ex0 to denote that the uncontrolled and
controlled chains start at x0.
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Lemma 6.12 Let {xn0 }n∈N be a sequence in S. Let {X̄ n
i } be as in Sect.6.2 with X̄n

0 =
xn0 for n ∈ N. Define L̄n and λn through (6.2) and (6.5). Suppose that {(L̄n, λn)}n∈N
converges weakly along a subsequence to (L̄, λ). Then L̄ = [λ]1 = [λ]2 a.s.
Proof Since L̄n = [λn]1, we have L̄ = [λ]1. Thus we need only show that L̄ =
[λ]2. We use the fact that for every Polish space S there is a countable separating
class { fm}m∈N of bounded continuous functions (see Appendix A). Define Δn

m,i
.=

fm
(
X̄ n
i

)− ∫S fm (y) μ̄n
i (dy) and Km

.= ‖ fm‖∞. For all ε > 0,

Pxn0

{∣∣∣∣∣
1

n

n∑

i=1

fm
(
X̄ n
i

)− 1

n

n∑

i=1

∫

S
fm (y) μ̄n

i (dy)

∣∣∣∣∣ > ε

}

≤ 1

ε2
Exn0

⎡

⎣ 1

n2

n∑

i, j=1

Δn
m,iΔ

n
m, j

⎤

⎦ .

Recall thatF n
j = σ(X̄ n

i , i = 1, . . . , j). The off-diagonal terms in the expected value
vanish: for i > j ,

Exn0

[
Δn

m,iΔ
n
m, j

] = Exn0

[
Exn0

[
Δn

m,iΔ
n
m, j

∣∣F n
i−1

]]

= Exn0

[
Exn0

[
Δn

m,i

∣∣F n
i−1

]
Δn

m, j

]

= 0.

Suppose n is large enough that 2Km/n ≤ ε/2. Since |Δn
m,i | ≤ 2Km and [λn]2 =

1
n

∑n
i=1 μ̄n

i (dx), we have

Pxn0

{∣∣∣∣
∫

S
fm (x) L̄n (dx) −

∫

S2
fm(y)λn(dx × dy)

∣∣∣∣ > ε

}

= Pxn0

{∣∣∣∣∣
1

n

n−1∑

i=0

fm(X̄ n
i ) − 1

n

n∑

i=1

∫

S
fm(y)μ̄n

i (dy)

∣∣∣∣∣ > ε

}

≤ Pxn0

{∣∣∣∣∣
1

n

n∑

i=1

fm
(
X̄ n
i

)− 1

n

n∑

i=1

∫

S
fm (y) μ̄n

i (dy)

∣∣∣∣∣ > ε/2

}

≤ 16K 2
m

nε2
.

Since (L̄n, λn) ⇒ (L̄, λ) and ε > 0 is arbitrary, by Fatou’s lemma we have

P

{∫

S
fm (x) L̄ (dx) =

∫

S
fm (y) λ(dx × dy)

}
= 1.

Since { fm} is countable and separating, we conclude that L̄ = [λ]2 a.s. �
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6.7 Laplace Upper Bound

In this section we prove the Laplace upper bound, which is the variational lower
bound. In fact, the result will give a uniform Laplace upper bound in the sense of
Definition 1.11.Recall that Pxn denotes the probabilitymeasure underwhich X0 = xn
a.s.

Proposition 6.13 Assume that S is compact and that Condition 6.2 holds. Let
{Ln}n∈N be the empirical measures defined by (6.1). Let {xn} ⊂ S be any sequence.
Define I : P(S) → [0,∞] by (6.8). Then

lim inf
n→∞ −1

n
log Exn e

−nF(Ln) ≥ inf
μ∈P (S)

[F(μ) + I (μ)] . (6.10)

Proof An application of the representation (6.3) and (6.4) gives

− 1

n
log Exn e

−nF(Ln) + 1

n
≥ Exn

[
F(L̄n) + R

(
λn
∥∥ L̄n ⊗ p

)]
, (6.11)

where L̄n is the controlled empirical measure associated with a control
{
μ̄n
i

}
that

comes within 1/n of the infimum, and λn is defined as in (6.5). Since {(L̄n, λn)} take
values in a compact set, there exists a subsequence along which we have convergence
in distribution to a limit (L̄, λ). It suffices by a standard argument by contradiction
to prove (6.10) for this subsequence. Letting n → ∞ in (6.11) gives the following:

lim inf
n→∞ −1

n
log Exn e

−nF(Ln) ≥ E
[
F(L̄) + R

(
λ‖ L̄ ⊗ p

)]

≥ inf
μ∈P (S)

[
F(μ) + inf

γ∈A(μ)
R (γ ‖μ ⊗ p)

]

= inf
μ∈P (S)

[F(μ) + I (μ)] .

The first inequality uses the weak convergence, boundedness, and continuity of
F , Fatou’s lemma, lower semicontinuity of R ( ·‖ ·), and Lemma 6.7. The second
inequality follows from Lemma 6.12, and the last equality uses the definition of I in
(6.8). �

Remark 6.14 The proof of the upper bound just given uses the compactness of the
state space to argue the tightness of {(L̄n, λn)}. In Sect. 6.10 we outline an argument
for the case in which S is not compact but the Markov chain {Xi } satisfies a suitable
stability condition.
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6.8 Laplace Lower Bound

In this section we prove the Laplace lower bound. A uniform Laplace lower bound
under the stronger condition (6.9) will be proved in Sect. 6.9. Recall that Px denotes
the probability measure under which X0 = x a.s.

Proposition 6.15 Assume Conditions 6.2, 6.3 and 6.4 and let {Ln}n∈N be the empir-
ical measures defined by (6.1). Let x ∈ S be given and define I : P(S) → [0,∞]
by (6.8). Then

lim sup
n→∞

−1

n
log Exe

−nF(Ln) ≤ inf
μ∈P (S)

[F(μ) + I (μ)] . (6.12)

In Lemma 6.16 below we will present two key facts that hold under Conditions 6.2,
6.3, and 6.4. The first is that p(x, dy) has a unique stationary distribution π and the
Markov chain associated with π and p(x, dy) is ergodic (see [34, Sect. 6.3]), and the
second is that I (μ) < ∞ implies μ � π .

The bound (6.12) almost follows from just these facts. Indeed, let ε > 0 and let
ν satisfy F(ν) + I (ν) ≤ infμ [F(μ) + I (μ)] + ε. From the definition of I there is
γ ∈ P(S2) such that [γ ]1 = [γ ]2 = ν and

R (γ ‖ ν ⊗ p) ≤ I (ν) + ε.

Since [γ ]1 = [γ ]2 = ν, there is q(x, dy) such that γ (dx × dy) = ν(dx)q(x, dy)
and ν is invariant under q. Moreover, by the chain rule,

∞ > R (γ ‖ ν ⊗ p) =
∫

S
R (q(x, ·)‖ p(x, ·)) ν(dx).

If q were ergodic, we could use it to define controls for the representation via
μ̄n
i (·) = q(X̄ n

i−1, ·). Using these controls, the representation and the L1-ergodic the-
orem would show that (at least for certain initial conditions x)

lim sup
n→∞

−1

n
log Exe

−nF(Ln) ≤ inf
μ∈P (S)

[F(μ) + I (μ)] + 2ε,

and since ε > 0 is arbitrary wewould be done. However, the problem is that q(x, dy)
need not be ergodic. To deal with this, we add a little bit of p to q, which, as we will
see in Lemma 6.17, makes the combination ergodic.

Lemma 6.16 Suppose Condition 6.3 holds and that the transition probability func-
tion p(x, dy) has an invariant probability measure π . Let I be as in (6.8). Then the
following conclusions hold.

(a) π is the unique invariant probability measure for p(x, dy), and the Markov
chain having π as its initial distribution and p(x, dy) as its transition probability
function is ergodic.
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(b) Let A be a Borel set such that p(�0)(x0, A) > 0 for some x0 ∈ S, where �0 is
as in Condition 6.3. Then π(A) > 0.

(c) For ν ∈ P(S), I (ν) < ∞ implies ν � π .

Proof (a) We prove that p(x, dy) is indecomposable, i.e., that there do not exist
disjoint Borel sets A1 and A2 such that

p(x, A1) = 1 for all x ∈ A1 and p(y, A2) = 1 for all y ∈ A2. (6.13)

Then from [34, Theorem 7.16], π is unique, and the Markov chain associated with
π and p(x, dy) is ergodic, completing the proof of part (a).

Suppose that there exist disjoint Borel sets A1 and A2 such that formula (6.13)
holds. Then for all � and n in N we have p(�)(x, A1) = 1 for all x ∈ A1 and
p(n)(y, A2) = 1 for all y ∈ A2. According to Condition 6.3, the first of these equal-
ities with � = �0 guarantees that for each y ∈ A2, there exists j ≥ n0 such that
p( j)(y, A1) > 0. Since A1 and A2 are disjoint, for y ∈ A2 this inequality is incom-
patible with the equality p(n)(y, A2) = 1 for all n ∈ N. This contradiction shows that
p(x, dy) is indecomposable.

(b) Let A be a set as in the statement of part (b). Define a function ι mapping S
into N by

ι(ζ )
.= min{ j ∈ N : j ≥ n0 and p( j)(ζ, A) > 0}.

Condition 6.3 guarantees that ι(ζ ) is nonempty, and so ι is a well-defined measurable
map. The set S can be written as the disjoint union of Borel sets

⋃∞
j=n0

�( j), where

�( j) .= {ζ ∈ S : ι(ζ ) = j}.

Clearly, π(�(k)) > 0 for some k ∈ N satisfying k ≥ n0. In addition, p(k)(ζ, A) > 0
for all ζ ∈ �(k). Hence

π(A) =
∫

S
p(k)(ζ, A) π(dζ ) ≥

∫

�(k)

p(k)(ζ, A) π(dζ ) > 0.

(c) Let ν ∈ P(S) satisfy I (ν) < ∞. By part (b) of Lemma 6.8 there exists a
transition probability functionq(x, dy) that has ν as an invariantmeasure and satisfies

∫

S
R(q(x, ·)‖p(x, ·)) ν(dx) = I (ν) < ∞.

The set Δ
.= {x ∈ S : q(x, ·) � p(x, ·)} satisfies ν(Δ) = 1. Since q(x, dy) has ν as

an invariant measure, the transition probability function

q̃(x, ·) .=
{
q(x, ·) if x ∈ Δ,

p(x, ·) if x ∈ Δc,
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also has ν as an invariant measure. We will prove that

q̃(�0)(x, ·) � p(�0)(x, ·) for all x ∈ Δ, (6.14)

where �0 is the number appearing in part (a) of Condition 6.3.
Part (c) of the present lemma is an immediate consequence of this assertion.

Indeed, suppose that ν(A) > 0 for some Borel set A. Iterating the equation νq̃ = ν

yields ∫

S
q̃(�0)(x, A) ν(dx) = ν(A) > 0.

Hence there exists a Borel set B such that ν(B) > 0 and q̃(�0)(x, A) > 0 for all
x ∈ B. By formula (6.14), p(�0)(x0, A) > 0 for all x0 ∈ B ∩ Δ. (Note that B ∩ Δ is
nonempty, since ν(B ∩ Δ) = ν(B) > 0.) Part (b) implies that π(A) > 0. This shows
that ν � π and completes the proof of part (c).

We now prove (6.14). In fact, we will prove by induction that for each k ∈ N,

q̃(k)(x, ·) � p(k)(x, ·) for all x ∈ Δ. (6.15)

For k = 1 this assertion is immediate by the definition of Δ. For any j ∈ N, we now
assume (6.15) for all k ∈ {1, 2, . . . , j} and prove it for k = j + 1. For x ∈ Δ, let C
be a Borel set such that

p( j+1)(x,C) =
∫

S
p(y,C) p( j)(x, dy) = 0.

This implies that there exists a Borel setΓ such that p( j)(x, Γ ) = 1 and p(y,C) = 0
for all y ∈ Γ . Since x ∈ Δ, the inductive hypothesis implies that q̃( j)(x, Γ ) = 1. It
also implies that for y ∈ Γ ∩ Δ, q̃(y,C) = 0. Hence for all x ∈ Δ,

q̃( j+1)(x,C) =
∫

S
q̃(y,C) q̃( j)(x, dy)

=
∫

Γ

q̃(y,C) q̃( j)(x, dy)

=
∫

Γ ∩Δ

q̃(y,C) q̃( j)(x, dy) +
∫

Γ ∩Δc

q̃(y,C) q̃( j)(x, dy)

=
∫

Γ ∩Δ

q̃(y,C) q̃( j)(x, dy) +
∫

Γ ∩Δc

p(y,C) q̃( j)(x, dy)

= 0,

where the next to last equality follows on noting that q̃ = p on Δc. This proves
formula (6.15) for k = j + 1. The proof of the lemma is complete. �
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We denote the total variation norm of any signed measure γ on S by

‖γ ‖TV

.= sup
f

∣∣∣∣
∫

S
f (x)γ (dx)

∣∣∣∣ ,

where the supremum is taken over all measurable functions bounded by 1. Note that
under Conditions 6.2, 6.3, and 6.4, from Lemmas 6.16 and 6.11 there is a unique
invariant probability measure for p(x, dy), which we denote by π .

Lemma 6.17 AssumeConditions 6.2, 6.3, and 6.4. Let ν ∈ P(S) satisfy I (ν) < ∞.
Then given δ > 0, there exists ν∗ ∈ P(S) with the following properties:

(a) ‖ν∗ − ν‖TV ≤ δ;
(b) π � ν∗ and ν∗ � π , where π is the unique invariant measure of p(x, dy);
(c) there exists a transition probability function q∗(x, dy) on S such that ν∗ is

an invariant measure of q∗(x, dy) (in fact, the unique invariant measure) and the
associated Markov chain is ergodic. In addition,

I (ν∗) ≤
∫

S
R(q∗(x, ·)‖p(x, ·)) ν∗(dx) ≤ I (ν). (6.16)

Proof (a) For κ ∈ (0, 1), the probabilitymeasure νκ .= (1 − κ)ν+κπ satisfies ‖νκ −
ν‖TV = κ‖π − ν‖TV ≤ 2κ . Hence ‖νκ − ν‖TV ≤ δ for all κ ∈ (0, δ/2]. In the state-
ment of the lemma, we take ν∗ .= νκ for any κ ∈ (0, δ/2].

(b) Since κ > 0 and ν∗(A) ≥ κπ(A) for all Borel sets A, it follows that π � ν∗.
Since I (ν) < ∞, part (c) of Lemma 6.16 implies that ν � π . Thus ν∗ � π .

(c) Using part (b) of Lemma 6.8, we choose a transition probability function
q(x, dy) on S that has ν as an invariant measure and satisfies

∫

S
R(q(x, ·)‖p(x, ·)) ν(dx) = I (ν).

We then define probability measures γ , θ , and γ ∗ on S × S by

γ
.= ν ⊗ q, θ

.= π ⊗ p, and γ ∗ .= (1 − κ)γ + κθ.

Since both of the marginals of γ (resp. θ ) equal ν (resp. π ), both of the marginals of
γ ∗ equal ν∗. Hence there exists a transition probability function q∗(x, dy) on S such
that γ ∗ = ν∗ ⊗ q∗ and ν∗ is an invariant measure of q∗(x, dy) [part (a) of Lemma
6.8].

We next verify formula (6.16), using the fact that R(·‖·) is convex and satisfies
R(α‖α) = 0. We have
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I (ν∗) ≤
∫

S
R(q∗(x, ·)‖p(x, ·)) ν∗(dx) (6.17)

= R(γ ∗‖ν∗ ⊗ p)

= R((1 − κ)ν ⊗ q + κπ ⊗ p‖(1 − κ)ν ⊗ p + κπ ⊗ p)

≤ (1 − κ) R(ν ⊗ q‖ν ⊗ p) + κ R(π ⊗ p‖π ⊗ p)

≤ I (ν).

This proves formula (6.16).
We will now show that ν∗ is the unique invariant measure for a modification of

the transition probability function x → q∗(x, ·) over a set of ν∗-measure zero, and
that the associated Markov chain is ergodic. For this, we would like to apply part (a)
of Lemma 6.16 with π replaced with ν∗ and p replaced by the modification of q∗.

According to part (b) of the present lemma, we have ν∗ � π . Since ν∗(A) ≥
κ π(A) for all Borel sets A, the Radon–Nikodym derivative f (x)

.= dν∗
dπ

(x) satisfies
f (x) ∈ [κ,∞) π -a.s. for x ∈ S. For all Borel sets A and B,

∫

A
q∗(x, B) f (x) π(dx) = γ ∗(A × B) ≥ κ θ(A × B) = κ

∫

A
p(x, B) π(dx).

This together with separability of S implies that π -a.s. for x ∈ S,

q∗(x, B) ≥ κ

f (x)
p(x, B)

for all Borel B, and consequently, for such x ,

p(x, ·) � q∗(x, ·). (6.18)

The formula ∫

S
R(q∗(x, ·)‖p(x, ·)) ν∗(dx) ≤ I (ν) < ∞,

implied by (6.17), shows that ν∗-a.s. for x ∈ S,

q∗(x, ·) � p(x, ·). (6.19)

Since π and ν∗ are mutually absolutely continuous (part (b)), there exists a Borel set
C such that π(C) = 0 = ν∗(C) and both (6.18) and (6.19) hold on the complement
of C . We now redefine q∗(x, dy) to equal p(x, dy) for x ∈ C . Since ν∗(C) = 0, ν∗
remains an invariantmeasure of themodified q∗(x, dy). In addition, (6.18) and (6.19)
are then valid for all x ∈ S, implying in turn that for each j ∈ N and all x ∈ S the
measures p( j)(x, ·) and q∗( j)(x, ·) are mutually absolutely continuous. It follows that
the absolute continuity condition (6.7) on p(x, dy) implies the following absolute
continuity property for q∗(x, dy)
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∞∑

i=�0

1

2i
(q∗)(i)(x, dy) �

∞∑

j=n0

1

2 j
(q∗)( j)(ζ, dy)

Applying part (a) of Lemma 6.16 to the pair (ν∗, q∗) completes the proof of part (c)
of the present lemma. �

Proof (of Proposition 6.15) In order to prove the Laplace principle lower bound
stated in Proposition 6.15, it suffices to consider only bounded Lipschitz continuous
functions F [Corollary 1.10]. More precisely, the spaceP(S) that is considered with
the usual weak convergence topology can be metrized using the Dudley metric (see
[92]) dBL defined by

dBL(ν1, ν2)
.= sup

f

∣∣∣∣
∫

S
f (x)ν1(dx) −

∫

S
f (x)ν2(dx)

∣∣∣∣ ,

where the supremum is taken over all real bounded and Lipschitz continuous func-
tions f on S that are bounded by 1 and whose Lipschitz constant is also bounded by
1. A Lipschitz function F on P(S) is one for which

sup
ν1 �=ν2

|F(ν1) − F(ν2)|
dBL(ν1, ν2)

< ∞.

For a subset Φ of S to be determined below, we will first prove for x ∈ Φ and every
bounded Lipschitz continuous function F the lower bound

lim inf
n→∞

1

n
log Exe

−nF(Ln) ≥ − inf
μ∈P (S)

[F(μ) + I (μ)]. (6.20)

Afterward, we will see how to convert this into a proof of the Laplace principle lower
bound for all x ∈ S.

As usual, the proof will be carried out by working with the representation

−1

n
log Exe

−nF(Ln) = inf{μ̄n
i }
Ex

[
F(L̄n) + 1

n

n∑

i=1

R
(
μ̄n
i (·)

∥∥p(X̄ n
i−1, ·)

)
]

.

Using this representation formula, we will prove (6.20) by proving the upper limit

lim sup
n→∞

inf{μ̄n
i }
Ex

[
F(L̄n) + 1

n

n∑

i=1

R
(
μ̄n
i (·)

∥∥p(X̄ n
i−1, ·)

)
]

≤ inf
μ∈P (S)

[F(μ) + I (μ)].
(6.21)

Let ε > 0 be given and choose ν ∈ P(S) such that

F(ν) + I (ν) ≤ inf
μ∈P (S)

[F(μ) + I (μ)] + ε < ∞. (6.22)



6.8 Laplace Lower Bound 169

Since F is continuous and since convergence in total variation norm implies weak
convergence, Lemma 6.17 yields the existence of ν∗ ∈ P(S) and a transition prob-
ability function q∗(x, dy) with the following properties: ν∗ is an invariant measure
of q∗(x, dy), the Markov chain with initial distribution ν∗ and transition probability
function q∗(x, dy) is ergodic, and

F(ν∗) ≤ F(ν) + ε,

∫

S
R(q∗(x, ·)‖p(x, ·)) ν∗(dx) ≤ I (ν) < ∞. (6.23)

For each j ∈ {0, 1, . . . , n − 1} we define

μ̄n
j (dy) = q∗(X̄ n

j−1, dy)

and consider two different choices for the distribution of X̄ n
0 : δx and ν∗. In the first

case, the corresponding measure on (Ω,F ) is denoted by Px . In the second case,
the controlled process {X̄ n

j , j = 0, 1, . . . , n} equals the first (n + 1) steps of the
ergodic Markov chain with initial distribution ν∗ and transition probability function
q∗(x, dy). The corresponding measure on (Ω,F ) is denoted by P∗.

We first study the convergence of the running costs

1

n

n−1∑

j=0

R
(
μ̄n

j (·)‖p
(
X̄ n

j , ·
)) = 1

n

n−1∑

j=0

R
(
q∗ (X̄ n

j , ·
) ‖p (X̄ n

j , ·
))

.

Define

Dn .= E∗
⎡

⎣

∣∣∣∣∣∣
1

n

n−1∑

j=0

R
(
q∗ (X̄ n

j , ·
) ‖p (X̄ n

j , ·
))−

∫

S
R
(
q∗(ξ, ·) ‖p(ξ, ·)) ν∗(dξ)

∣∣∣∣∣∣

⎤

⎦ ,

where E∗ denotes expectation with respect to P∗, and

Dn
x

.= Ex

⎡

⎣

∣∣∣∣∣∣
1

n

n−1∑

j=0

R
(
q∗(X̄ n

j , ·)‖p(X̄ n
j , ·)
)−

∫

S
R(q∗(ξ, ·)‖p(ξ, ·)) ν∗(dξ)

∣∣∣∣∣∣

⎤

⎦ ,

where Ex denotes expectation with respect to Px . Since the relative entropy is non-
negative and from (6.17), we have

E∗[R
(
q∗(X̄ n

j , ·)‖p(X̄ n
j , ·)
)] =

∫

S
R
(
q∗(ξ, ·)‖p(ξ, ·)) ν∗(dξ) ≤ I (ν) < ∞,

we can apply the L1-ergodic theorem [34, Sect. 6.5], which implies that

lim
n→∞ Dn = lim

n→∞

∫

S
Dn

x ν∗(dx) = 0.
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Hence by Chebyshev’s inequality, for all c > 0,

lim
n→∞ ν∗{x ∈ S : Dn

x ≥ c} = 0.

This convergence in probability guarantees that for every subsequence of {n} there
exist a further subsequence (relabeled as {n}) and aBorel setΦ1 such that ν∗(Φ1) = 1
and such that whenever x ∈ Φ1,

lim
n→∞ Dn

x = lim
n→∞ Ex

∣∣∣∣∣∣
1

n

n−1∑

j=0

R
(
q∗(X̄ n

j , ·)‖p(X̄ n
j , ·)
)−

∫

S
R(q∗(ξ, ·)‖p(ξ, ·)) ν∗(dξ)

∣∣∣∣∣∣

= 0. (6.24)

We now fix the subsubsequence and consider the convergence of the corresponding
sequence of controlled empirical measures {L̄n}. Since S is a Polish space, as noted
in Appendix A there exists a countable convergence determining classΞ of bounded
and continuous functions on S. For g ∈ Ξ define

A(g)
.=
⎧
⎨

⎩ω ∈ Ω : lim
n→∞

1

n

n−1∑

j=0

g(X̄ n
j (ω)) =

∫

S
g dν∗

⎫
⎬

⎭ .

The pointwise ergodic theorem [34, Sect. 6.5] implies that

P∗{A(g)} =
∫

S
Px {A(g)} ν∗(dx) = 1,

which in turn implies that there exists a Borel set Φ2(g) such that ν∗(Φ2(g)) = 1
and Px (A(g)) = 1 whenever x ∈ Φ2(g). Define Φ2

.= ∩g∈ΞΦ2(g). Then whenever
x ∈ Φ2, we have Px -a.s.

lim
n→∞

∫

S
g d L̄n = lim

n→∞
1

n

n−1∑

j=0

g(X̄ n
j ) =

∫

S
g dν∗

for all g ∈ Ξ . Since Ξ is a convergence determining class, it follows that for all
x ∈ Φ2, L̄n ⇒ ν∗, Px -a.s. The continuity of F onP(S) then implies that

lim
n→∞ F(L̄n) = F(ν∗).

We now put these facts together. Define Φ
.= Φ1 ∩ Φ2. Then ν∗(Φ) = 1, and when-

ever x ∈ Φ,
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lim sup
n→∞

−1

n
log Exe

−nF(Ln)

≤ lim
n→∞ Ex

⎡

⎣F(L̄n) + 1

n

n−1∑

j=0

R
(
q∗(X̄ n

j , ·)‖p(X̄ n
j , ·)
)
⎤

⎦

= F(ν∗) +
∫

S
R(q∗(ξ, ·)‖p(ξ, ·)) ν∗(dξ)

≤ F(ν) + I (ν) + ε

≤ inf
μ∈P (S)

[F(μ) + I (μ)] + 2ε,

where the equality on the third line is from (6.24), the inequality on the fourth line uses
(6.23), and the inequality on the last line is from (6.22). Since the chosen subsequence
of {n} was arbitrary, sending ε → 0 yields the upper limit (6.21) whenever x ∈ Φ.

A short argumentwill extend this upper limit to all x ∈ S, thus proving the Laplace
principle lower bound. This will be carried out using the Lipschitz continuity of F .
Let �0 be the number occurring in Condition 6.3. Since μ � ν∗ [Lemma 6.17 (b)]
and ν∗(Φ) = 1, we have that μ(Φ) = 1. We claim that this implies

p(�0)(x, Φ) = 1 for all x ∈ S. (6.25)

If this claim were not true, then for some x0 ∈ S we would have p(�0)(x0, Φc) > 0
and thus, by part (b) of Lemma 6.16, μ(Φc) > 0. Since this contradicts μ(Φ) = 1,
the claim (6.25) is proved.

For n ∈ N we define P(S)-valued random variables L̃n by

L̃n .= 1

n

n+�0−1∑

j=�0

δX j .

Then for all ω ∈ Ω , ∥∥∥L̃n − Ln
∥∥∥

TV
≤ 2�0

n
.

Hence, denoting by M < ∞ the Lipschitz constant of F with respect to the Dudley
metric, and noting that by the definition of the two distances, dBL(Ln, L̃n) ≤ ‖Ln −
L̃n‖TV, we have for all ω ∈ Ω ,

F(Ln) ≤ F(L̃n) + M dBL(L
n, L̃n) ≤ F(L̃n) + 2�0M/n.

For each x ∈ S we now have for all n ∈ N,
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Exexp{−n F(Ln)}
≥ exp{−2�0M}Ex exp{−n F(L̃n)}
= exp{−2�0M}

∫

S
E
[
exp{−n F(L̃n)}|X�0 = y

]
p(�0)(x, dy)

= exp{−2�0M}
∫

Φ

Ey
[
exp{−n F(Ln)}] p(�0)(x, dy), (6.26)

where the last equality uses the Markov property and (6.25).
Let ε > 0 be given. Since we have already established the estimate (6.20) for

y ∈ Φ, we have for each such y an N (y, ε) ∈ N such that for all n ≥ N (y, ε),

−1

n
log Eye

−nF(Ln) ≤ inf
μ∈P (S)

[F(μ) + I (μ)] + ε.

We assume that N (y, ε) is the minimal positive integer with this property. Then the
function y → N (y, ε) is a measurable map from S toN, and Φ can be written as the
disjoint union of Borel sets ∪∞

i=1Φ
(i), where

Φ(i) .= {y ∈ Φ : N (y, ε) = i}.

Since p(�0)(x, Φ) = 1, there exists i0 ∈ N such that p(�0)(x, Φ(i0)) > 0. Hence using
(6.26), we have for all n ≥ i0,

Exexp{−n F(Ln)}
≥ exp{−2�0M}

∫

Φ

Ey[exp{−n F(Ln)}] p(�0)(x, dy)

≥ exp{−2�0M}
∫

Φ(i0)

Ey
[
exp{−n F(Ln)}] p(�0)(x, dy)

≥ exp{−2�0M} exp
[
−n

(
inf

μ∈P (S)
[F(μ) + I (μ)] + ε

)]
p(�0)(x, Φ(i0)).

This gives

lim sup
n→∞

−1

n
log Exe

−nF(Ln) ≤ inf
μ∈P (S)

[F(μ) + I (μ)] + ε.

Sending ε → 0, we have that for each x ∈ S,

lim sup
n→∞

−1

n
log Exe

−nF(Ln) ≤ inf
μ∈P (S)

[F(μ) + I (μ)]. (6.27)

The proof of the Laplace principle lower bound is complete. �
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6.9 Uniform Laplace Principle

We now prove the second part of Theorem 6.6, which gives a uniform Laplace
principle.

Proposition 6.18 Assume Conditions 6.2 and 6.3 on the Markov chain {Xi }i∈N0
and

suppose that S is compact. Assume also that for each x ∈ S there are β ∈ P(S),
k ∈ N, and c > 0 such that for all y ∈ S satisfying d(y, x) < c and all A ∈ B(S),
(6.9) is satisfied. Let {Ln}n∈N denote the sequence of empirical measures defined by
(6.1). Then for every bounded and continuous F,

lim
n→∞ sup

x∈S

∣∣∣∣
1

n
log Exe

−nF(Ln) + inf
μ∈P (S)

[F(μ) + I (μ)]

∣∣∣∣ = 0.

Proof The proof is split into upper and lower bounds. If

lim inf
n→∞ inf

x∈S −1

n
log Exe

−nF(Ln) ≥ inf
μ∈P (S)

[F(μ) + I (μ)] (6.28)

is not valid, then there exist ε > 0, a subsequence of n (labeled once more as n), and
a sequence {xn} ⊂ S for which

lim inf
n→∞ −1

n
log Exn e

−nF(Ln) ≤ inf
μ∈P (S)

[F(μ) + I (μ)] − ε.

However, this contradicts Proposition 6.13, and hence (6.28) is valid.
Next we argue that

lim sup
n→∞

sup
x∈S

−1

n
log Exe

−nF(Ln) ≤ inf
μ∈P (S)

[F(μ) + I (μ)]. (6.29)

Here we make use of the additional assumption in (6.9). For x ∈ S and c > 0, let
B(x, c) be the open ball {y ∈ S : d(y, x) < c}. Let us assume that we have proved

lim sup
n→∞

sup
y∈B(x,c)

−1

n
log Eye

−nF(Ln) ≤ inf
μ∈P (S)

[F(μ) + I (μ)] (6.30)

for every bounded Lipschitz continuous function F , x ∈ S, and c associatedwith x as
in the statement of the proposition. This will be taken care of in the next paragraph.
Since S is compact, there exist finitely many points x1, x2, . . . , xr such that S is
covered by {B(xi , ci ), i = 1, 2, . . . , r}, where ci is the radius associated with xi as
in the statement of the proposition. Hence (6.30) implies (6.29).

We now prove the upper limit (6.30). By a similar conditioning argument as in
(6.26), for each y ∈ B(x, c), each m ∈ {1, 2, . . . , k}, and all n ∈ N,
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Ey
[
exp{−n F(Ln)}] ≥

∫

S
exp{−2mM} Ez[exp{−n F(Ln)}] p(m)(y, dz)

≥
∫

S
exp{−2kM} Ez[exp{−n F(Ln)}] p(m)(y, dz),

where M denotes the Lipschitz constant of F . Hence for all n ∈ N and y ∈ B(x, c),

Ey[exp{−n F(Ln)}]

≥ exp{−2kM}
∫

S
Ez[exp{−n F(Ln)}]

(
1

k

k∑

m=1

p(m)(y, dz)

)

≥ c

k
exp{−2kM}

∫

S
Ez[exp{−n F(Ln)}] β(dz),

where the last inequality uses (6.9). The rest of the proof is similar to the argument
used for proving the bound in (6.27) from (6.26), and so we give only a sketch. We
will apply Proposition 6.15. Given ε > 0 and y ∈ S, let N (y, ε) ∈ N be the minimal
positive integer such that for all n ≥ N (y, ε),

−1

n
log Eye

−nF(Ln) ≤ inf
μ∈P (S)

[F(μ) + I (μ)] + ε.

Define Φ(i) .= {y ∈ S : N (y, ε) = i}. Then there exists i0 ∈ N such that β(Φ(i0)) >

0. Thus for y ∈ B(x, c) and n ≥ i0,

Ey[exp{−n F(Ln)}]
≥ c

k
exp{−2kM}

∫

Φ(i0)

Ez[exp{−n F(Ln)}] β(dz)

≥ c

k
exp{−2kM}β(Φ(i0)) exp

{
−n

(
inf

μ∈P (S)
[F(μ) + I (μ)] + ε

)}
,

and therefore

lim sup
n→∞

sup
y∈B(x,c)

−1

n
log Ey[exp{−n F(Ln)}] ≤ inf

μ∈P (S)
[F(μ) + I (μ)] + ε.

The inequality in (6.30) now follows by sending ε to 0. �

6.10 Noncompact State Space

The LDP already proved in this chapter (Theorem 6.6) is established under the
assumption that the state space S of the Markov chain is compact. As we discuss in
this section, this assumption can be relaxed to a suitable stability condition on the
Markov chain given in terms of an appropriate Lyapunov function.
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Recall that Proposition 6.15 did not require S to be compact. The proof of the
lower bound used only the Feller property (Condition 6.2), the transitivity condition
(Condition 6.3), and the tightness of {ELn} (Condition 6.4). However, the proof of
the upper bound (Proposition 6.13) and the proof of compactness of level sets (part (d)
of Lemma 6.10) make use of the compactness assumption in an important way. For
both these results, compactness of the state space automatically implied the tightness
of certain collections of (random) measures; for the upper bound, the collection {λn}
defined by (6.5), and for level set compactness, the collection {μ ∈ P(S) : I (μ) ≤
M}. We now show how a condition formulated in terms of a Lyapunov function
implies these key tightness properties. Once the tightness is established, the rest of
the proof for the upper bound and the compactness of level sets follows from the
same arguments as in Sects. 6.7 and 6.5. A uniform Laplace principle over initial
conditions in any compact set can also then be established as in Sect. 6.9.

Condition 6.19 There exists a measurable function U : S → [0,∞] such that the
following properties hold.

(a) inf x∈S
[
U (x) − log

∫
S e

U (y) p(x, dy)
]

> −∞.
(b) For each M < ∞,

Z(M)
.=
{
x ∈ S : U (x) − log

∫

S
eU (y) p(x, dy) ≤ M

}

is a relatively compact subset of S.
(c) For every compact K ⊂ S there exists CK < ∞ such that

sup
x∈K

U (x) ≤ CK .

We refer the reader to [97, Example 8.2.3] for a natural class of models in which
Condition 6.19 is satisfied. We note that parts (a) and (b) of the condition say that if

c(x)
.= U (x) − log

∫

S
eU (y) p(x, dy), x ∈ S

and if κ denotes the infimum in part (a), then c̄(x)
.= c(x) − κ is nonnegative and a

tightness function. This property will be used in the proof of Proposition 6.20 below.
An inequality that allows the use of Condition 6.19 in proving tightness comes

from the Donsker–Varadhan variational formula [part (a) of Lemma 2.4], according
to which for every k ∈ N and μ1, μ2 ∈ P(S),

∫

S
Uk(y)μ2(dy) − log

∫

S
eUk (y)μ1(dy) ≤ R(μ2‖μ1), (6.31)

whereUk
.= U ∧ k. This inequality will be key in the tightness arguments to follow.
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We next argue the tightness of the sequence {λn} that appears on the right side of
(6.11). We will assume that the sequence {xn} is contained in some compact K ⊂ S.
Since F is bounded, we can restrict to sequences {λn} that satisfy

sup
n

Exn

[
R
(
λn
∥∥ L̄n ⊗ p

)] ≤ MF
.= 2‖F‖∞ + 1 < ∞. (6.32)

This is true, in particular, for the sequence in (6.11). The following is the key tightness
result needed for the proof of the upper bound.

Proposition 6.20 Suppose that Condition 6.19 and (6.32) hold. Then {λn} is a tight
sequence ofP(S × S)-valued random variables.

Proof It suffices to argue that {[λn]i } is tight in P(S) for i = 1, 2. Also note that
[λn]1 = L̄n , and since μ̄n

j gives the conditional distribution of X̄
n
j , we have ‖E[λn]1 −

E[λn]2‖TV ≤ 2/n. Thus in view of Theorem 2.11, it suffices to argue the tightness of
{L̄n}.

Next note that for k < ∞ and j = 0, 1, . . . , n − 1,

Exn [Uk(X̄
n
j+1) | F n

j ] =
∫

S
Uk(y)μ̄

n
j+1(dy).

It follows that

Exn

[
Uk(X̄

n
j+1) −Uk(X̄

n
j )
] = Exn

[∫

S
Uk(y)μ

n
j+1(dy) −Uk(X̄

n
j )

]

= Exn

[∫

S
Uk(y)μ

n
j+1(dy) − log

∫

S
eUk (y) p(X̄ n

j , dy)

]

+ Exn

[
log
∫

S
eUk (y) p(X̄ n

j , dy) −Uk(X̄
n
j )

]

≤ Exn

[
R
(
μn

j+1(·)‖p(X̄ n
j , ·)
)]− Exn

[
ck(X̄

n
j )
]
,

where

ck(x)
.= Uk(x) − log

∫

S
eUk (y) p(x, dy), x ∈ S,

and the last inequality follows from (6.31). Summing the inequality over j ∈
{0, 1, . . . , n − 1} gives

Exn

[
Uk(X̄

n
n) −Uk(xn)

] ≤ Exn

⎡

⎣
n−1∑

j=0

R
(
μn

j+1‖p(X̄ n
j , ·)
)
⎤

⎦− Exn

⎡

⎣
n−1∑

j=0

ck(X̄
n
j )

⎤

⎦ .
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Noting that ck ≥ κ ∧ 0, applying Fatou’s lemma, and recalling thatU ≥ Uk ≥ 0, we
have

Exn

[∫

S
c(x)L̄n(dx)

]
= Exn

⎡

⎣1

n

n−1∑

j=0

c(X̄ n
j )

⎤

⎦

≤ Exn

⎡

⎣1

n

n−1∑

j=0

R
(
μn

j+1‖p(X̄ n
j , ·)
)
⎤

⎦+ 1

n
U (xn)

≤ MF + 1

n
U (xn), (6.33)

where the last line is from (6.32). Recall that c̄
.= c − κ is a tightness function. From

part (c) of Condition 6.19, supn U (xn) < ∞, and therefore

sup
n∈N

Exn

[∫

S
c̄(x)L̄n(dx)

]
≤ MF + sup

n∈N
1

n
U (xn) − κ < ∞.

Recalling that c̄ is a tightness functionon S,wehave that {Exn L̄
n} is tight.ByTheorem

2.11, the tightness of {L̄n} follows, completing the proof of the proposition. �
Finally, we show that Condition 6.19 also gives the relative compactness of the

level sets of I .

Proposition 6.21 Suppose that Condition 6.19 holds. Then for every M < ∞, the
level set {μ ∈ P(S) : I (μ) ≤ M} is relatively compact.
Proof Let μ ∈ P(S) satisfy I (μ) ≤ M . From Lemma 6.8 there exist a γ ∈ A(μ)

and a transition probability kernel q(x, dy) such that μ is invariant for q(x, dy) and

I (μ) = R (γ ‖μ ⊗ p) =
∫

S
R (q(x, ·)‖ p(x, ·)) μ(dx).

Applying (6.31), we have that for every k ∈ N and x ∈ S,

∫

S
Uk(y)q(x, dy) − log

∫

S
eUk (y) p(x, dy) ≤ R (q(x, ·)‖ p(x, ·)) . (6.34)

Since μ is invariant for q(x, dy), it follows that

∫

S
ck(x)μ(dx) =

∫

S
Uk(x)μ(dx) −

∫

S

(
log
∫

S
eUk (y) p(x, dy)

)
μ(dx)

=
∫

S×S
Uk(y)q(x, dy)μ(dx) −

∫

S

(
log
∫

S
eUk (y) p(x, dy)

)
μ(dx)

=
∫

S

(∫

S
Uk(y)q(x, dy) − log

∫

S
eUk (y) p(x, dy)

)
μ(dx)
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≤
∫

S
R (q(x, ·)‖ p(x, ·)) μ(dx)

= I (μ),

where the last inequality is from (6.34). Applying Fatou’s lemma, we see that

∫

S
c̄(x)μ(dx) ≤ I (μ) − κ ≤ M − κ < ∞.

The result now follows on recalling that c̄ is a tightness function on S. �

As discussed previously, Propositions 6.20 and 6.21 allow the weakening of com-
pactness of S in Theorem 6.6 to Condition 6.19. More precisely, the following result
holds, the proof of which follows, using the same arguments as in Sects. 6.5–6.9.
We note that under Condition 6.19, the collection {Exn L

n} is tight. Indeed, one can
chooseμn

j (·) = p(X̄ n
j−1, ·) in (6.33), inwhich case L̄n = Ln and (6.32) applies. Then

the tightness of {Exn L
n} follows from Proposition 6.20.

Theorem 6.22 Assume Conditions 6.2, 6.3, and 6.19 on the Markov chain {Xi }i∈N0
.

Then the empirical measure sequence {Ln}n∈N defined by (6.1) satisfies an LDP with
rate function I defined by (6.8). Suppose in addition that for each x ∈ S, there are
β ∈ P(S), k ∈ N, and c > 0 such that for all ζ ∈ S satisfying d(ζ, x) < c and all
A ∈ B(S), (6.9) is satisfied. Then the Laplace principle holds uniformly over the
initial condition x0 in compact sets in the sense of Definition 1.11.

6.11 Notes

The pioneering work on large deviations for the empirical measures of a Markov
chain is that of Donsker and Varadhan [87, 88] and Gärtner [144]. Our approach
to this problem uses the same weak convergence analysis as [97, Chap.8], which
in turn adapted many ideas from [88] (a distinction between the present work and
[97] is the derivation of the representation). Related works include [59, 72, 73, 80,
82, 84, 118, 162, 204, 205]. All of these authors who prove the large deviation
upper bound save [118] assume that the transition probability function p(x, dy) of
the Markov chain satisfies the Feller property, as we do in our Theorem 6.6. The
Feller property stipulates that the function mapping x ∈ S → p(x, ·) is continuous
in the weak topology onP(S). If one can guarantee that the discontinuity points of
this mapping are in an appropriate sense very unlikely to be visited often, then one
can weaken the Feller condition and still prove the large deviation principle with the
same rate function as in Theorem 6.6 (see [97, Sect. 9.2]). However, in general, many
unusual behaviors are possible when the Feller property is dropped, and examples
and a discussion on this issue can be found in [118].

Representations for continuous time processes can be used to give a direct proof of
the analogous results for the empirical measure [106], and interesting new behaviors
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can occur for the case of pure jump processes in continuous time owing to the
relatively heavy tails of the exponentially distributed holding times [107]. Large
deviation theorems for multivariate empirical measures and for infinite dimensional
extensions known as empirical processes have been proved by a number of authors
including [29, 73, 80, 82, 89, 122, 123]. Since Brownian motion and reflected
Brownian motion do not satisfy a strong recurrence property, the rate function for its
empirical measure should reflect the possibility that mass may tend to infinity. The
paper [40] elucidates these issues.



Chapter 7
Models with Special Features

7.1 Introduction

Chapters 4 through 6 considered small noise large deviations of stochastic recursive
equations, small noise moderate deviations for processes of the same type, and large
deviations for the empirical measure of aMarkov chain. These chapters thus consider
models that are both standard and fairly general for each setting. In this chapter we
consider discrete time models that are somewhat less standard, with the aim being
to show how the weak convergence methodology can be adapted. The examples
presented are just for illustrative purposes, and processes featuring other challenges
are referenced at the end of the chapter.

We first consider occupancy models, which were originally introduced as simpli-
fied models for problems from physics. There are other interesting problems, such as
the “coupon collector’s problem” [165], that can be formulated in terms of occupancy
models. In principle these problems can be treated using combinatorics. However,
when the number of objects (e.g., distinct coupons) is large, combinatorial meth-
ods become numerically difficult, and large deviation approximations and related
numerical methods can be more tractable. One can reformulate many occupancy
problems in terms of Markov models of the type considered in Chap. 4, but owing
to the fact that certain transition probabilities can be arbitrarily small the processes
do not satisfy the conditions of that chapter. As will be discussed, the large deviation
upper bound can be proved using essentially the same argument as in Chap. 4, but
the lower bound requires a more careful analysis near points where the transition
probabilities vanish [see Sect. 7.2.4]. A positive feature of these models is that for
many occupancy-type problems one can solve to a fairly explicit degree for the opti-
mal trajectories in variational problems that result from a large deviations analysis,
and one can also construct explicit solutions to the related partial differential equa-
tions [see Sect. 7.2.5]. These, in turn, can be used to construct subsolutions for the
accelerated Monte Carlo schemes discussed in Chaps. 14–17.
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The second class of models, discussed in Sect. 7.3, are discrete time recursive
Markov models with two time scales. Such models and their continuous time coun-
terparts occur in many applications, such as stochastic approximations [182] and
chemical reaction networks [4]. Owing to a time scale separation, the large deviation
properties of empirical measures are relevant, and these models can be analyzed
using a combination of the arguments used for the small noise model of Chap. 4 and
those applied in Chap. 6.

7.2 Occupancy Models

Occupancy problems center on the distribution of r balls that have been thrown into
n urns. In the simplest scenario each ball is equally likely to fall in any of the urns,
i.e., each ball is independently assigned to a given urn with probability 1/n. In this
case, we say that the urn model usesMaxwell-Boltzmann (MB) statistics. This model
has been studied for decades and applied in diverse fields such as computer science,
biology, and statistics. See [53, 154, 165] and the references therein. However, balls
may also enter the urns in a nonuniform way. An important generalization is to allow
the likelihood that the ball lands in a given urn to depend on its contents prior to the
throw, as in Bose-Einstein (BE) and Fermi-Dirac (FD) statistics [129, 165, 219].

For MB statistics, many results have been obtained using “exact” methods. For
example, combinatorial methods are used in [130] and methods that use generating
functions are discussed in [165]. Although they do not directly involve approxima-
tions, the implementation of these methods can be difficult. For example, in combi-
natorial methods one has to deal with the difference of events using the inclusion-
exclusion formula and the resulting computations can involve large errors. In the
moment generating function approach in [165] similar difficulties occur. Large devi-
ations approximations can give a useful alternative to both of these approaches. As
we have discussed previously for other models, using large deviation theory one
can often obtain useful qualitative insights. This is particularly true for problems of
occupancy type, since in many cases variational problems involving the rate function
can be solved explicitly.

In this section we consider a parametric family of models, of which the previously
mentionedMB, BE and FD statistics are all special cases.We assume there are n urns
and that �Tn� balls are thrown into them (where �s� denotes the integer part of s),
and analyze the asymptotic properties as n goes to ∞. (In contrast with previous
chapters we do not simplify notation by considering just the case T = 1. The reason
for this is because there can be a link between the parameter that characterizes the
particular statistics of the model and a limit on corresponding number of balls that
may be thrown,which can constrain the value of T away from1.)A typical problemof
interest is to characterize the large deviation asymptotics of the empirical distribution
after all the balls are thrown. For example, one may wish to estimate the probability
that at most half of the urns are empty after all the balls are thrown. A direct analysis
of this problem is hard, and instead we lift the problem to the process level and
analyze the large deviation asymptotics at this process level.
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Although we formulate occupancy models in terms of a stochastic recursive equa-
tion of the same general type as considered in Chap. 4, there are several interesting
features, both qualitative and technical, that distinguish occupancy models from the
processes studied in Chap. 4. The most significant of these as far as the proof is
concerned are certain vanishing transition probabilities. A second very interesting
feature which was commented on previously is that one can explicitly solve the
variational problems that arise in the process level approximations. Such explicit
formulas have many uses and add significantly to the practical value of the large
deviation approximations.

In Sect. 7.2.1 the parametric family of occupancy problem is described in detail. A
dynamical characterization of the occupancy model is given, and the representation
for exponential integrals is stated. In Sect. 7.2.2 we prove the lower bound for the
variational problem, which corresponds to the large deviation upper bound. Section
7.2.3 analyzes the rate function I , and proves properties that will allow us to deal
with the technical difficulties of the vanishing transition probabilities. In Sect. 7.2.4,
we prove the variational upper bound which corresponds to the large deviation lower
bound. Finally, in Sect. 7.2.5 we give an explicit formula for the minimum of the rate
function subject to a terminal constraint.

7.2.1 Preliminaries and Main Result

In this section, we formulate the problem of interest and state the LDP. The proof is
given in sections that follow.

The general occupancy problem has the same structure as the MB occupancy
problem, except that in the general problem urns are distinguished according to the
number of balls contained therein. The full collection of models will be indexed by
a parameter a. This parameter takes values in the set (0,∞] ∪ {−1,−2, . . .}, and
its interpretation is as follows. An urn is said to be of category i if it contains i
balls. A ball is thrown in any given urn with probability proportional to a + i , where
i denotes the category of the urn. In particular, suppose that a ball is about to be
thrown, and that any two urns (labeled say A and B) are selected. Suppose that urn A
is of category i , while B is of category j . Then the probability that the ball is thrown
into urn A, conditioned on the state of all the urns and that the ball is thrown into
either urn A or B, is

a + i

(a + i) + (a + j)
.

When a = ∞ we interpret this to mean that the two urns are equally likely. Also,
when a < 0 we use this ratio to define the probabilities only when 0 ≤ i ∨ j ≤
−a and i < −a or j < −a, so the formula gives a well defined probability. The
probability that a ball is placed in an urn of category −a is 0. Thus under this model,
urns can only be of category 0, 1, . . . ,−a, and we only throw balls into categories
0, 1, . . . ,−a − 1. Note that the case a = 0 is in some sense not interesting, in that as
soon as there is an urn of category j > 0 all balls will be placed in that urn. Likewise
the cases a < 0 but not an integer are hard to interpret.
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In this setup, certain special cases are distinguished. The cases a = 1, a = ∞,
a ∈ −N correspond to Bose-Einstein statistics, Maxwell-Boltzmann statistics, and
Fermi-Dirac statistics, respectively.

Suppose that before we throw a ball there are already tn balls in all the urns,
and further suppose that the occupancy state is (x0, x1, . . . , xJ+). Here xi , i =
0, 1, . . . , J denotes the fraction of urns that contain i balls, and xJ+ denotes the
fraction containing more than J balls. When a < 0, we will take J = −a − 1. The
“un-normalized” or “relative” probability of throwing into a category i urn with
i ≤ J is simply (a + i)xi . Let us temporarily abuse notation, and let xJ+1, xJ+2, . . .

denote the exact fraction in each category i with i > J . Since there are tn balls in
the urns before we throw,

∑∞
i=0 i xi = t. Thus the (normalized and true) probabil-

ity that the ball is placed in an urn that contains exactly i balls, i = 0, 1, . . . , J , is
(a + i)xi/(a + t), and the probability that the ball is placed in an urn that has more
than J balls is 1 −∑J

j=0[(a + j)/(a + t)]x j .

An explicit construction of this process is as follows. To simplify, we assume
the empty initial condition, i.e., all urns are empty. One can consider other initial
conditions, with only simple notational changes in the results to be stated below.
We introduce a time variable t that ranges from 0 to T . At a time t that is of the
form l/n, with 0 ≤ l ≤ �nT � an integer, l balls have been thrown. Let Xn(t) =
(Xn

0(t), X
n
1(t), . . . X

n
J (t), X

n
J+(t))′ be the occupancy state at that time. As noted

previously, Xn
i (t) denotes the fraction of urns that contain i balls at time t, i =

0, 1, . . . , J , and Xn
J+(t) the fraction of urns that contain more than J balls. As usual,

the definition of Xn is extended to all t ∈ [0, T ] not of the form l/n bypiecewise linear
interpolation. Note that for each t Xn(t) is a probability vector in R

J+2. Denoting
�

.= {0, 1, . . . , J + 1} and with an abuse of notation

P(Λ)
.=
{

x ∈ R
J+2 : xi ≥ 0, 0 ≤ i ≤ J + 1 and

J+1∑

i=0

xi = 1

}

,

then for any t ∈ [0, T ] , Xn(t) ∈ P(Λ).Thus Xn takes values inC ([0, T ] : P(Λ)).
We equip C ([0, T ] : P(Λ)) with the usual supremum norm and onP(Λ) we take
theL 1-norm, which will be denoted by ‖·‖1.

It will be convenient to work with the following dynamical representation. For
x ∈ R

J+2 and t ∈ [0,−a1{a<0} + ∞1{a>0}) define the vector ρ(t, x) ∈ R
J+2 by

ρk(t, x) = a + k

a + t
xk, for k = 0, 1, . . . , J, (7.1)

ρJ+1(t, x) = 1 −
J∑

k=0

a + k

a + t
xk,

where, as before, when a = ∞ the fraction (a + k)/(a + t) is taken to be 1. Then
ρ·(x, t) will play a role analogous to that of θ(·|x) in Chap. 4 in identifying the
conditional distribution of the increment of the process. Differences are that here
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there is time dependence, and also that the increment is identified by (but not equal
to) the k index in ρk(t, x) [see (7.3)]. A straightforward calculation shows that if

x ∈ P(Λ) and
J∑

k=0

kxk ≤ t, (7.2)

then ρJ+1(t, x) ≥ 0 and ρ(t, x) is therefore a probability vector in R
J+2, i.e.,

ρ(t, x) ∈ P(Λ). Also ρ(t, x) is Lipschitz continuous in (t, x) ∈ [0, T ] × P(Λ),
as long as T < −a when a ∈ −N. We then construct a family of independent ran-
dom functions {

νn
i (·) : i = 0, 1, . . . , �nT � − 1, �nT �}

that take values in
Λ

.= {0, 1, . . . , J + 1}

and with distributions

P
{
νn
i (x) = k

} = ρk (i/n, x) , k ∈ �. (7.3)

The mapping that takes an index k ∈ Λ into a change in the occupancy numbers is

γ [k] = ek+1 − ek, 0 ≤ k ≤ K , γ [J + 1] = 0, (7.4)

where for j = 0, 1, . . . , J + 1, e j denotes the unit vector in R
J+2 with 1 in the

j + 1th coordinate. Finally, we define Xn
l recursively by Xn

0 = (1, 0, . . . , 0)′ = e0
and

Xn
i+1 = Xn

i + 1

n
γ [νn

i

(
Xn
i

)].

For the continuous time interpolation let Xn(i/n) = Xn
i , and for t not of the form

i/n define Xn(t) by piecewise linear interpolation. Observe that the conditional dis-
tribution of the increment

{
νn
i

(
Xn
i

)}
is determined by ρ

(
i/n, Xn

i

)
. Thus the process

Xn at the discrete times i/n is Markovian and will have the same distribution as the
occupancy process described previously.

Define the J + 2 by J + 2 matrix

M
.=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 0 · · · 0 0 0
1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
...

...
... · · · ...

...
...

0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Let ϕ ∈ C ([0, T ] : P(Λ)) be given with ϕ0(0) = 1. Suppose there is a Borel mea-
surable function θ : [0, T ] → P(Λ) such that for all t ∈ [0, T ]

ϕ(t) = ϕ(0) +
∫ t

0
Mθ(s)ds. (7.5)

Note that Mθ = ∑K
k=0 γ [k]θk if θ ∈ P(�). For i = 0, 1, . . . J (resp. i = J + 1)

we interpret θi (s) as the rate at which balls are thrown into urns that contain i balls
(resp. greater than J balls) at time s. The rates θ(s) are unique in the sense that if
another θ̃ : [0, T ] → P(Λ) satisfies (7.5) then θ̃ = θ a.e. on [0, T ] . We call ϕ a
valid occupancy state process if there exists θ : [0, T ] → P(Λ) satisfying (7.5).
In this case θ is called the occupancy rate process associated with ϕ. Using the
observation that

∑J+2
k=1 (k − 1)Mkj = 1 for all j = 1, . . . , J + 1, it is easy to check

that if ϕ is valid then ϕ(s) satisfies (7.2) with x replaced by ϕ(s) and t by s, for all
s ∈ [0, T ]. This shows that ρ (s, ϕ(s)) ∈ P(Λ).

When two probability vectors θ and ν ∈ P(Λ) appear in the relative entropy
function, we interpret them as probability measures on {0, 1, . . . , J, J + 1}, and
thus

R (θ ‖ν )
.=

J+1∑

k=0

θk log
θk

νk
.

As observed before, when ϕ is valid, ρ (s, ϕ(s)) ∈ P(Λ), so R(θ(s) ‖ρ (s, ϕ(s)) )
is well defined for all s ∈ [0, T ]. For such ϕ define

I (ϕ)
.=
∫ T

0
R(θ(s) ‖ρ (s, ϕ(s)) )ds. (7.6)

If ϕ is not valid then define I (ϕ) = ∞.
As usual, representation formulas for exponential integrals will be used to prove

the Laplace principle. The representation needed here is a special case of the one
proved in Chap. 4, and we therefore just state the form of the representation. The
controlled process X̄ n(t) is constructed as follows. The conditional distributions of
controlled random integers

{
ν̄n
i

}
will be specified by a sequence

{
μ̄n
i

}
of controls.

Each μ̄n
i is measurable with respect to the σ -algebra generated by {ν̄n

j }0,1,...,i−1 , and
identifies the conditional distribution of ν̄n

i . The controlled process is determined for
t of the form j/n by X̄ n

0 = e0 and

X̄ n
i+1 = X̄ n

i + 1

n
γ [ν̄n

i ] for i = 0, 1, . . . , �nT � ,

with γ as in (7.4). The random quantities X̄ n
i and ν̄n

i are defined recursively in the
order

X̄ n
0 , ν̄

n
0 , X̄

n
1 , ν̄

n
1 , X̄

n
2 , . . . , X̄

n
�nT �+1,
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We set X̄ n(i/n) = X̄ n
i and use piecewise linear interpolation elsewhere.

Define
rni ({k}) .= ρk

(
i/n, X̄ n

i

)
,

where ρ (t, x) is given in (7.1).

Remark 7.1 As noted previously, there is an abuse of notation, in that we sometimes
think of rni as the probability vector with components rni (k) but at other times as the
probability measure with values rni ({k}). To reinforce the fact that certain probability
measures are on the discrete set �, we write such measures with the differential
dk. Also, note that k will appear both as a subscript, as in ρk

(
i/n, X̄ n

i

)
, and as an

argument, as in rni ({k}).
Let Ln, L̄n, μ̄n and λn be measures on {0, 1, . . . , J + 1} × [0, T ] defined as in

Construction 4.4, except that λn uses ρ·
(
i/n, X̄ n

i

)
in place of θ(·|X̄ n

i ), and the mea-
sures are of mass T and defined on subsets of [0, T ] rather than [0, 1] in the second
marginal. Specifically, for A ⊂ {0, 1, . . . , J + 1} and B ∈ B([0, T ]),

Ln(A × B)
.=
∫

B
Ln(A|t)dt, L̄n(A × B)

.=
∫

B
L̄n(A|t)dt, (7.7)

μ̄n(A × B)
.=
∫

B
μ̄n(A|t)dt, λn(A × B)

.=
∫

B
λn(A|t)dt, (7.8)

where for t ∈ [i/n, i/n + 1/n), i = 0, . . . , �nT �

Ln(A|t) .= δvni (X
n
i )
(A), L̄n(A|t) .= δv̄ni (A),

μ̄n(A|t) .= μ̄n
i (A), λn(A|t) .= rni (A)

(7.9)

The randommeasures Ln, L̄n, μ̄n and λn take values in the collection of nonnegative
measures onP(Λ) × [0, T ] of totalmass T . The topology used is theweak topology,
where these measures are renormalized to have mass one, i.e., probability measures,
and since P(Λ) × [0, T ] is compact this space is compact as well. If G is any
bounded measurable function the space to R, then

− 1

n
log E exp

[−nG(Ln)
] = inf{μ̄n

i }
E

[

G
(
L̄n
)+ 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

, (7.10)

where the infimum is over all the admissible control sequences
{
μ̄n
i

}
. Since

Xn(t) = e0 +
∫ t

0
γ [k]Ln(dk × ds), (7.11)

this also gives a representation for functions of Xn: for any bounded and continuous
F : C ([0, T ] : P(Λ)) → R,
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− 1

n
log E exp

[−nF(Xn)
] = inf{μ̄n

i }
E

[

F(X̄ n) + 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

. (7.12)

Here we have used the fact that (7.11) defines a measurable map that takes Ln to Xn ,
and let X̄ n be the image of L̄n under that map.

A convention for the case a ∈ −N. When a ∈ −N it is only possible to throw
balls into the categories 0, 1, . . . ,−a − 1, and the only possible categories are
0, 1, . . . ,−a. Thus if there are n urns there can at most be −an balls thrown, and
therefore T ≤ −a. When T = −a all the urns have exactly −a balls, which is not
an interesting case to study. As a consequence, throughout this chapter we assume
T < −a. Also, as was noted previously, because of the restriction on the possible
categories we (without loss) assume that J = −a − 1. Thus throughout this section
for a < 0 we assume

T < −a, J = −a − 1. (7.13)

7.2.2 Laplace Upper Bound

In this section, we prove the variational lower bound

lim inf
n→∞ −1

n
log E exp

[−nF(Xn)
] ≥ inf

ϕ∈C ([0,T ]:P (�))
[I (ϕ) + F(ϕ)] ,

which corresponds to the Laplace upper bound. By (7.12) it is enough to show that

lim inf
n→∞ inf{μ̄n

i }
E

[

F
(
X̄ n
)+ 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

≥ inf
ϕ∈C ([0,T ]:P (�))

[I (ϕ) + F(ϕ)] .

The upper bound is actually covered by the analysis of Chap. 4, since the occupancy
model satisfies Condition 4.3 if one appends time as a state variable. However, for
completeness we include the (short) proof here.

Recall the definitions in (7.8) and (7.9). Note that because relative entropy is
nonnegative and (�nT � + 1) /n ≥ T ,

1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

) ≥
∫ T

0
R
(
μ̄n(·|t) ∥∥λn(·|t)) dt. (7.14)

As usual, we will need to understand conditions for tightness, and how the weak
limits of L̄n, μ̄n, λn and X̄ n are all related. As noted previously, tightness of the first
three is automatic since they take values in a compact space. In addition, the process
X̄ n takes values in a space of continuous trajectories that start at e0 and which are
Lipschitz continuous with the Lipschitz constant bounded by
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∥
∥
∥
∥ sup
0≤t≤T

∫

γ [k]L̄n(dk|t)
∥
∥
∥
∥
1

≤ sup
k∈�

‖γ [k]‖1 ≤ 2,

where ‖·‖1 is the L 1-norm on R
J+2. Since the space of all such trajectories is also

compact, {X̄ n} is also automatically tight. The relations between the limits can be
determined using the same argument as in Lemma 4.12, save that ρ· (t, x), which
plays the role of θ(·|x) in Chap. 4, is here time dependent, and whereas the dynamics
of Chap. 4 take the form (4.1), if we consider ρ· (t, x) as determining the noises that
drive the system then these noises enter the system only after passing through γ [·]
as in (7.11).

Rewritten for these differences, the analogue of Lemma 4.12 is as follows.

Lemma 7.2 Consider the sequence {(X̄ n, L̄n, μ̄n, λn)}n∈N as defined in (7.7) and
(7.8), and with X̄n as in (7.11) with Ln replaced by L̄n. Let {(X̄ n, L̄n, μ̄n, λn)} denote
a weakly converging subsequence, which for notational convenience we again label
by n, with limit (X̄ , L̄, μ̄, λ). Then w.p.1 L̄ = μ̄, and μ̄(dk × dt) can be decomposed
as μ̄(dk|t)dt, where μ̄(dk|t) is a stochastic kernel on {0, 1, . . . , J, J + 1} given
[0, T ], and w.p.1 for all t ∈ [0, T ],

X̄(t) = e0 +
∫

Rd×[0,t]
γ [k]μ̄(dk × ds) (7.15)

= e0 +
∫

Rd×[0,t]
γ [k]μ̄(dk|s)ds.

In addition, λ and X̄ are related through

λ({k} × B) =
∫

B
ρk(t, X̄(t))dt, k ∈ {0, 1, . . . , J + 1}, B ∈ B([0, T ]). (7.16)

Theorem 7.3 Define I by (7.6) for any of the occupancy models described in Sect.
7.2.1. If F : C ([0, T ] : P(�)) → R is bounded and continuous, then

lim inf
n→∞ −1

n
log E exp

[−nF(Xn)
] ≥ inf

ϕ∈C ([0,T ]:P (Λ))
[I (ϕ) + F(ϕ)] .

Proof Owing to the representation formula (7.10) it is enough to show that

lim inf
n→∞ inf{μ̄n

i }
E

[

F
(
X̄ n
)+ 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

≥ inf
ϕ∈C ([0,T ]:P (�))

[I (ϕ) + F(ϕ)] .

(7.17)
Consider any admissible sequence

{
μ̄n
i

}
. Then (7.14) implies
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E

[

F
(
X̄ n
)+ 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

≥ E

[

F
(
X̄ n
)+

∫ T

0
R
(
μ̄n(· |t ) ∥∥λn(·|t)) dt

]

= E
[
F
(
X̄ n
)+ T R

(
μ̄n/T

∥
∥λn/T

)]
.

Applying Fatou’s lemma and using the lower semicontinuity of relative entropy,

lim inf
n→∞ E

[

F
(
X̄ n
)+ 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

≥ lim inf
n→∞ E

[
F
(
X̄ n
)+ T R

(
μ̄n/T

∥
∥λn/T

)]

≥ E
[
F
(
X̄
)+ T R (μ̄/T ‖λ/T )

]
(7.18)

= E

[

F
(
X̄
)+

∫ T

0
R
(
μ̄(· |t ) ∥∥ρ·(t, X̄(t))

)
dt

]

.

If θ(s) = ∑J+1
k=0 ekμ̄({k} |s ), then using Mθ(s) = ∑J

k=0 γ [k]θk(s) we see from
Lemma 7.2 that X̄(t) = e0 + ∫ t

0 Mθ(s)ds. Therefore by the definition (7.6) of the
rate function I (ϕ),

∫ T

0
R
(
μ̄(· |t ) ∥∥ρ·(t, X̄(t))

)
dt = I (X̄).

Thus (7.18) yields (7.17), and completes the proof of the Laplace upper bound. ��

7.2.3 Properties of the Rate Function

In this section we prove important properties of the rate function, some of which will
be used later on to prove the Laplace lower bound.

Theorem 7.4 Let I be defined as in (7.6). Then for any K ∈ [0,∞) the level set
{ϕ ∈ C ([0, T ] : P(Λ)) : I (ϕ) ≤ K } is compact.
Proof By adding time as a state variable we see that the occupancy model satisfies
Condition 4.3 of Chap. 4. Thus the conclusion follows from Theorem 4.13.

Theorem 7.5 (Zero Cost Trajectory) For t ∈ [0, T ] let f (t)
.= (

1 + t
a

)−a

when a < ∞ and f (t)
.= e−t in the case a = ∞. Define

φ̄i (t)
.= (−t)i

i ! f (i)(t) for 0 ≤ i ≤ J,

where f (i)(t) is the i th derivative of f (t), and let φ̄J+1(t)
.= 1 −∑J

i=0 φ̄i (t). Then
I (φ̄) = 0.
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Proof We first assume a �= ∞. It is easy to check that for any 0 ≤ i < ∞,

(−t)i

i ! f (i)(t) ≥ 0 and
∞∑

i=0

(−t)i

i ! f (i)(t) = 1. (7.19)

Thus φ̄ as defined in the statement of the theorem is indeed a probability vector.
It is also a continuously differentiable function and satisfies

∑J
k=0 φ̄k(t) ≤ t for all

t ∈ [0, T ]. We will show that

d

dt
φ̄(t) = Mρ(t, φ̄(t)). (7.20)

If so, then the occupancy rate process θ̄ associated to φ̄ is ρ(t, φ̄(t)), and thus by the
definition of rate function

I (φ̄) =
∫ T

0
R
(
θ̄ (t)

∥
∥ρ(t, φ̄(t))

)
dt = 0.

To show (7.20) we calculate φ̄i (t) = (−t)i

i ! f (i)(t) for 0 ≤ i ≤ J explicitly:

φ̄i (t) = t i

i !
∏i−1

j=0(a + j)

ai

(

1 + t

a

)−a−i

.

Hence the derivative satisfies

d

dt
φ̄i (t) = a + i − 1

a + t
φ̄i−1(t) − a + i

a + t
φ̄i (t)

= ρi−1(t, φ̄(t)) − ρi (t, φ̄(t)) = (Mρ(t, φ̄(t))i ,

where ρ−1 is taken to be 0 and the second equality is due to the definition of ρ(t, φ̄(t))
in (7.1). The case of φJ+1(t) follows on observing that

d

dt
φ̄J+1(t) = −

J∑

i=0

d

dt
φ̄i (t) = −

J∑

i=0

(Mρ(t, φ̄(t))i = (Mρ(t, φ̄(t))J+1,

where the last identity is a consequence of the fact that 1T M = 0.
Next we consider the case when a = ∞. In this case f (t) = e−t , and (7.20) is

immediate on observing that φ̄i (t) = t i e−t/ i ! and so d
dt φ̄i (t) = φ̄i−1(t) − φ̄i (t). ��

Lemma 7.6 Let φ̄ be the zero-cost trajectory from Theorem 7.5. For every choice
of the parameter a there exist δ > 0 and 0 < K < ∞ so that

φ̄i (t) ≥ δt K (7.21)

for any 0 ≤ i ≤ J + 1 and t ∈ [0, T ].
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Proof Note that when a > 0, 0 ≤ i ≤ J and 0 ≤ t ≤ T ,

φ̄i (t) = t i

i !
∏i−1

j=0(a + j)

ai

(

1 + t

a

)−a−i

≥ t i

J !
(

1 + T

a

)−a−J

,

and because of (7.19) we have

φ̄J+1(t) = 1 −
J∑

i=0

φ̄i (t) ≥ (−t)J+1

(J + 1)! f
(J+1)(t) ≥ t J+1

(J + 1)!
(

1 + T

a

)−a−J−1

.

Thus in this case, with δ̄ = 1
(J+1)!

(
1 + T

a

)−a−J−1
,

φ̄i (t) ≥ δ̄t i , for all i = 0, 1, . . . , J + 1, t ∈ [0, T ]. (7.22)

For the case a < 0, by (7.13) T < −a and a = −J − 1. If 0 ≤ i ≤ J , then since
a + j ≤ −1 for each 0 ≤ j ≤ J ,

φ̄i (t) = t i

i !
∏i−1

j=0(a + j)

ai

(

1 + t

a

)−a−i

≥ t i

J !
1

(−a)i

(

1 + t

a

)−a−i

.

Moreover since a < 0, t/a ∈ (−1, 0) for t ∈ [0, T ], and −(a + i) ≥ 1, for each
i ≤ J ,

(
1 + t

a

)−a−i
is monotone decreasing in t ∈ [0, T ]. Therefore

φ̄i (t) ≥ t i

J !
(

−1

a

)i (

1 + T

a

)−a−i

.

For φ̄J+1(t) we have

φ̄J+1(t) = 1 −
J∑

i=0

φ̄i (t)

≥ (−t)J+1

(J + 1)! f
(J+1)(t)

= t J+1

(J + 1)!
∏J

j=0(a + j)

aJ+1

≥ t J+1

(J + 1)!
(

−1

a

)J+1

.

Thus in this case (7.22) holds with δ̄ = (−a)−J−1/(J + 1)!.
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Finally, for the case a = ∞, using the fact that φ̄i (t) = t i e−t/ i ! for i ≤ J and
φ̄J+1(t) ≥ t J+1e−t/(J + 1)!, we have that (7.22) holds with δ̄ = e−T /(J + 1)!. The
result now follows on taking K = J + 1 and δ = δ̄(T−J−1 ∧ 1). ��

For f : [0, T ] → R
J+2, let ‖ f ‖∞,T

.= sup0≤t≤T ‖ f (t)‖1, where ‖·‖1 as before is
theL 1 norm on R

J+2.

Lemma 7.7 For a given value of a let the parameters δ and K be as in (7.21).
Let ϕ ∈ C ([0, T ] : P(Λ)) satisfy I (ϕ) < ∞. Then for any ε > 0 there exists ϕε ∈
C ([0, T ] : P(Λ)) such that

(a) I (ϕε) ≤ I (ϕ),
(b) ‖ϕ − ϕε‖∞,T ≤ ε,
(c) ϕε

i (t) ≥ εδt K for all t ∈ [0, T ] and i = 0, 1, . . . J, J + 1.

Proof For any ε > 0 and ϕ ∈ C ([0, T ] : P(Λ)), let

ϕε = (1 − ε) ϕ + εϕ̄,

where ϕ̄ is the zero cost trajectory from Theorem 7.5. Then ϕε ∈ C ([0, T ] : P(Λ)).
From the definition ofρ(t, x) in (7.1) it follows thatρ(t, x) has the following linearity
property in x . Suppose we are given t ∈ [0, T ] and x, x̃ ∈ P(Λ) that satisfy (7.2).
Then for any α ∈ [0, 1], αx + (1 − α)x̃ satisfies (7.2) and

αρ(t, x) + (1 − α)ρ(t, x̃) = ρ(t, αx + (1 − α)x̃).

Hence recalling the definition of I (ϕ) in (7.6) and the joint convexity of relative
entropy, we find that I (ϕ) is convex in ϕ. Therefore

I (ϕε) ≤ (1 − ε) I (ϕ) + ε I (ϕ̄) = (1 − ε) I (ϕ) ≤ I (ϕ).

Since ‖ϕ − ϕ̄‖∞,T ≤ 2

‖ϕ − ϕε‖∞,T ≤ ε ‖ϕ − ϕ̄‖∞,T ≤ 2ε,

and also from Lemma 7.6, ϕε
i (t) ≥ εϕ̄i (t) ≥ εδt K . ��

The final theorem of this section is useful in proving the Laplace lower bound.

Definition 7.8 We call an occupancy path ϕ ∈ C ([0, T ] : P(Λ)) a good path if
ϕ(0) = e0 and there exist constants 0 < δ′, K ′ < ∞ so that ϕi (t) ≥ δ′t K ′

for t ∈
[0, T ] and 0 ≤ i ≤ J + 1.

Definition 7.9 We call an occupancy rate control θ : [0, T ] → P(Λ) a good
control if (i) there exist a finite number of intervals [ri , si ], 1 ≤ i ≤ m so that
[0, T ] = ∪m

i=1[ri , si ], and θ(t) is a constant vector on each (ri , si ), (ii) there exists
0 < σ < T so that θ is “pure” on [0, σ ), in the sense that for any interval of constancy
(r, s) ⊂ [0, σ ), there exists i, 0 ≤ i ≤ J + 1 such that θi (t) = 1 for t ∈ (r, s).
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Theorem 7.10 For a good path ϕ ∈ C ([0, T ] : P(Λ)) assume I (ϕ) < ∞. Let
δ′, K ′ be the associated constants in the definition of a good path. For any ε > 0
there exists a good control θ∗ and associated σ > 0 so that if ϕ∗ is the occupancy
path associated to θ∗, namely (7.5) holds with (ϕ, θ) replaced by (ϕ∗, θ∗), then there
is δ′′ ∈ (0,∞) such that

(a) I (ϕ∗) ≤ I (ϕ) + ε,
(b) ‖ϕ∗ − ϕ‖∞,T ≤ ε,
(c) if t < σ and θ∗

i (t) = 1 then ϕ∗
i (t) ≥ δ′′σ K ′

.

Proof For a σ ∈ (0, T ) that will be specified later on, we construct a pure control
θ∗(t), t ∈ [0, σ ) as follows. For 0 ≤ i ≤ J let θ∗

i (t) = 1 if

i∑

j=0

jϕ j (σ ) + i
J+1∑

k=i+1

ϕk(σ ) ≤ t <

i∑

j=0

jϕ j (σ ) + (i + 1)
J+1∑

k=i+1

ϕk(σ ),

and let θ∗
J+1(t) = 1 if

J∑

j=0

jϕ j (σ ) + (J + 1)ϕJ+1(σ ) ≤ t < σ. (7.23)

Observe that the component ϕ∗
i for i > 0 will increase only during the interval when

θ∗
i−1(t) = 1, and that it decreases to its final value while θ∗

i (t) = 1. Observe also that
ϕ∗(σ ) = ϕ(σ). Hence for t < σ , if θ∗

i (t) = 1 then ϕ∗
i (t) ≥ ϕ∗

i (σ ) ≥ δ′σ K ′
.

Now assume that 0 < a < ∞. For i and t such that t < σ and θ∗
i (t) = 1,

ρi (t, ϕ
∗(t)) = a + i

a + t
ϕ∗
i (t) ≥ a

a + T
δ′σ K ′ = δ′′σ K ′

, (7.24)

where δ′′ .= a
a+T δ′.

Recall that when a < 0we assumewithout loss that J = −a − 1, and that no balls
are placed in urns that currently contain more than J balls. Thus ρJ+1(t, φ(t)) = 0
and consequently θJ+1(t) = 0 for all t . From (7.5) and recalling that

∑J+1
j=0 jM( j+1),i

= 1 for all i = 1, . . . , J + 1, it follows that

J+1∑

j=0

jϕ j (σ ) = σ.

It then follows from (7.23) that θ∗
J+1(t) = 0 for all t ∈ [0, σ ]. For 0 ≤ i ≤ J , we

have, when t < σ and θ∗
i (t) = 1, that

ρi (t, ϕ
∗(t)) ≥ a + i

a + t
δ′σ K ′ ≥ a + J

a + t
δ′σ K ′ ≥ −1

a
δ′σ K ′

.
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Thus for 0 ≤ i ≤ J , with δ′′ = −a−1δ′, ρi (t, ϕ∗(t)) ≥ δ′′σ K ′
when θ∗

i (t) = 1 and
t ∈ [0, σ ].

Finally, when a = ∞ we can choose δ′′ = δ′ and (7.24) will hold. Thus in all
cases (7.24) holds with some δ′′ > 0, that is independent of the choice of σ .

This completes the construction of θ∗ and ϕ∗ on [0, σ ). The lower bounds on the
ρi and the fact that θ∗ is pure on [0, σ ] imply

∫ σ

0
R
(
θ∗(t)

∥
∥ρ(t, ϕ∗(t))

)
dt ≤ −σ log

(
δ′′σ K ′)

.

Now choose σ > 0 small enough so that

−σ log
(
δ′′σ K ′) ≤ ε/2 and sup

t∈[0,σ )

∥
∥ϕ∗(t) − ϕ(t)

∥
∥
1 ≤ ε.

Note that the latter property can be satisfied by choosing σ sufficiently small since
ϕ(0) = ϕ∗(0) = e0 implies supt∈[0,σ ] ‖ϕ(t) − ϕ∗(t)‖1 ≤ (J + 1)|ϕ0(0) − ϕ0(σ )|.
Also, recall that under the construction ϕ∗(σ ) = ϕ(σ).

The construction of controls on [σ, T ] is easier. Let θ(t) be the rate process
associated with ϕ(t) by (7.5). For N ∈ N we partition [σ, T ] into N subintervals
of length cN = (T − σ) /N . For each s that σ + lcN ≤ s ≤ σ + (l + 1) cN where
0 ≤ l ≤ (N − 1), let

θ(N )(s) =
∫ σ+(l+1)cN
σ+lcN

θ(t)dt

cN
.

Let ϕ(N ) be the occupancy path associated with θ(N ) over the interval [σ, T ], i.e.

ϕ(N )(t) = ϕ(N )(σ ) +
∫ t

σ

Mθ(N )(s)ds, t ∈ [σ, T ], ϕ(N )(σ ) = ϕ(σ).

Then it is easy to check that ϕ(N )(t) coincides with ϕ(t) on the “partition points”
in [σ, T ] , i.e., those points of the form {σ + lcN : 0 ≤ l ≤ (N − 1)} . Thus, since
‖θ(t)‖1 = 1, for N large enough [e.g., N > (T − σ) /ε], supt∈[σ,T ] ‖ϕ(N )(t) −
ϕ(t)‖1 ≤ ε.

Because ϕ(t) is good, when t > σ, we have ϕi (t) ≥ δ′t K ′ ≥ δ′σ K ′
> 0 for all

0 ≤ i ≤ J + 1. Therefore ϕ(t) is uniformly bounded away from the boundary after
time σ , and thus for sufficiently large N , so is ϕ(N )(t). This in particular says that
for such N , t ∈ [σ, T ] , ρ j (t, ϕ(N )(t)) is uniformly bounded away from 0 for j =
0, . . . , J + 1 when a > 0 and for j = 0, . . . , J when a < 0. In the latter case, both
ρJ+1(t, ϕ(N )(t)) and θ

(N )
J+1(t) are identically 0.

As N → ∞, θ (N )(t) converges to θ(t) and ϕ(N )(t) converges to ϕ(t) for a.e.
t ∈ [0, T ]. Using that ρ is bounded away from zero and θ(N ) is bounded above, by
the dominated convergence theorem
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lim
N→∞

∫ T

σ

R(θ (N )(t)
∥
∥ρ(t, ϕ(N )(t)) )dt =

∫ T

σ

R (θ(t) ‖ρ(t, ϕ(t)) ) dt.

Now choose N < ∞ large enough so that the integrals differ by less than ε/2. Let
θ∗ be defined as it was previously on [0, σ ], and set it equal to θ(N ) on [σ, T ]. Let
ϕ∗ denote the corresponding occupancy path over [0, T ]. Then

I (ϕ∗) =
∫ T

σ

R(θ (N )(t)
∥
∥ρ(t, ϕ(N )(t)) )dt +

∫ σ

0
R
(
θ∗(t)

∥
∥ρ(t, ϕ∗(t))

)
dt

≤
∫ T

σ

R (θ(t) ‖ρ(t, ϕ(t)) ) dt + ε/2 + ε/2

≤ I (ϕ) + ε.

This completes the proof. ��

7.2.4 Laplace Lower Bound

Theorem 7.11 Define I by (7.6) for any of the occupancy models described in Sect.
7.2.1. If F : C ([0, T ] : P(Λ)) → R is bounded and continuous, then

lim sup
n→∞

−1

n
log E exp

[−nF(Xn)
] ≤ inf

ϕ∈C ([0,T ]:P (Λ))
[I (ϕ) + F(ϕ)] .

Proof According to (7.12), the theorem follows if

lim sup
n→∞

inf{μ̄n
i }
Ē

[

F
(
X̄ n
)+ 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

≤ inf
ϕ∈C ([0,T ]:P (Λ))

[I (ϕ) + F(ϕ)] .

As was the case with Chap. 4, the main difficulty in the proof of the lower bound is
that controls and controlled processes should be constructed so that the dominated
convergence theorem can be used. Since vanishing transition probabilities can make
relative entropy costs diverge some care is required, but the constructions of the last
sectionwill very carefully control the rates at which balls are put into urns of category
i when rni is small.

For any ϕ ∈ C ([0, T ] : P(Λ)) such that I (ϕ) < ∞, Lemma 7.7 and Theorem
7.10 imply that for any ε > 0 there exists (ϕ∗, θ∗) with the properties described in
Theorem 7.10. Since F is continuous on C ([0, T ] : P(Λ)), we only need to show
that there exists a sequence of admissible controls

{
μ̄n
i

}
so that

lim sup
n→∞

Ē

[

F
(
X̄ n
)+ 1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

≤ I (ϕ∗) + F(ϕ∗).
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The latter inequality will follow if we can find a sequence of admissible
{
μ̄n
i

}
such

that

lim sup
n→∞

Ē

[
1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

≤ I (ϕ∗), (7.25)

and such that if X̄ n is the occupancy process constructed under
{
μ̄n
i

}
then for any

small b > 0
lim sup
n→∞

P̄
{∥
∥X̄ n − ϕ∗∥∥∞,T > b

}
= 0. (7.26)

In other words, X̄ n converges to ϕ∗ in probability.
To prove the desired inequalities (7.25) and (7.26) we need to construct the proper{

μ̄n
i

}
. Recall that

{
μ̄n
i

}
can depend in any measurable way on the “past,” and so we

could, in principle, use such information in constructing the controls. However, as
seen previously for certain problems of this typewe can construct the controlswithout
reference to the controlled process (i.e., “open loop” controls). Let θ∗ be the good
control as described in Theorem 7.10. We know that θ∗ is piecewise constant and
pure up to time σ > 0. From property (c) in Theorem 7.10, we also know that before
time σ, if θ∗

i (t) = 1 then both ρi (t, ϕ∗(t)) and ϕ∗
i (t) are greater than a fixed value

ζ > 0 (for all i ≤ J + 1when a > 0 and for all i ≤ J when a < 0). Using part (b) of
Theorem 7.10 we can also assume for the same value of ζ that both ρi (t, ϕ∗(t)) and
ϕ∗
i (t) are greater than ζ for all t ∈ [σ, T ] (and again for all i ≤ J + 1 when a > 0

and for all i ≤ J when a < 0).
Although the limit trajectory stays away from the boundary after time σ , there

is no guarantee that the random process X̄ n is uniformly bounded away. In order to
handle this possibility, we use a stopping time argument similar to one used in [109].

Let (ln/n) be the minimum of the first time such that for some i, X̄ n
i (ln/n) ≤ ζ/2

and θ∗
i (ln/n) > 0, and the fixed deterministic time �nT � /n. This is the first time the

random process is close to the boundary, with the possibility of a large contribution
to the total cost [note that when θ∗

i (ln/n) = 0 there is no contribution to the cost
regardless of the value of X̄ n

i (ln/n)]. The control
{
μ̄n
i

}
is then defined by

μ̄n
i ({k}) =

{
θ∗
k (i/n) if i ≤ ln

ρk
(
i/n, X̄ n(i/n)

)
if i > ln.

Prior to the stopping time, we use exactly what θ∗ suggests, and after the stopping
time we follow the law of large number trajectory (and therefore incur no additional
cost).

Now we apply Lemma 7.2. Thus given any subsequence there is convergence
along a further subsequence as indicated in the theorem, with limit

(
X̄ , μ̄

)
. Using

the standard argument by contradiction, it will be enough to prove (7.25) and (7.26)
for this convergent processes. Let τ n = (ln/n) ≤ T . Note that because the applied
controls are pure, the process X̄ n(t) is deterministic prior to σ , and also that prior
to this time, the time derivatives of X̄ n(t) and ϕ∗(t) are piecewise constant. In fact,
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the two derivatives are identical except possibly on a bounded number of intervals
each of length less than 1/n [the points where they may disagree are all located with
within distance 1/n of the endpoints of the intervals of constancy of ϕ̇∗(t)]. Thus for
large n we cannot have τ n < σ. Since the range of τ n is the bounded set [0, T ], we
can also assume τ n converges in distribution to a limit τ , and without loss we assume
the convergence is along the same subsequence. Since τ n ≥ σ for large n we have
τ ≥ σ w.p.1.

Suppose that τ < T . It is easy to check that the limit control processes w.p.1
satisfies, for a.e. t ∈ [0, T ],

μ̄({k} | t ) =
{

θ∗
k (t) if t ≤ τ

ρk
(
t, X̄(t)

)
if t > τ

.

Owing to the definition of τ n , τ < T implies X̄i (τ ) ≤ ζ/2 for some i ∈ Λ (although
ϕ∗
i (t) ≥ ζ when t ∈ [σ, T ]).We use that μ̄({k} |t ) = θ∗

k (t)when t ≤ τ and that θ∗(t)
is deterministic.As shown inTheorem7.2,

(
X̄ , μ̄

)
satisfies (7.15) for t ∈ [0, τ ] .Thus

for t ∈ [0, τ ], X̄(t) = ϕ∗(t) w.p.1. This gives a contradiction since

X̄i (τ ) ≤ ζ/2 < ζ ≤ ϕ∗
i (τ ).

Therefore τ = T, and thus for all t ∈ [0, T ], X̄(t) = ϕ∗(t) w.p.1. This also proves
that the weak limit of the random processes X̄ n is indeed ϕ∗, which implies (7.26).
To prove (7.25), we use the weak convergence, the continuity of the map (x, y) �→
x log(x/y) on [0,∞) × (0,∞) and the dominated convergence theorem to obtain

lim sup
n→∞

Ē

[
1

n

�nT �∑

i=0

R
(
μ̄n
i

∥
∥rni

)
]

=
∫ T

0
R
(
θ∗(t)||ρ(t, ϕ∗(t))

)
dt = I (ϕ∗).

This completes the proof. ��

7.2.5 Solution to Calculus of Variations Problems

In the previous sections we identified the process level large deviation rate function
(7.6) for a class of occupancy problems. The large deviation principle for the process
at a given fixed time can then be expressed in terms of the solution to a calculus of
variations problem. In most cases this calculus of variations problem will not have a
closed form solution. However, for the class of occupancy models studied here it can
be identified with the solution to a related finite dimensional minimization problem.
This latter problem can be solved by the standard Lagrangemultiplier method, which
is easily implemented numerically. In this section we give the precise statement of
this equivalence. We mention two results. The first gives the minimum of the rate
function subject to a terminal constraint, and the second gives the minimum of the
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sum of the rate function plus a cost that is affine in the terminal location. The explicit
formulas generalize ones obtained in [109] for the special case of MB statistics. The
techniques used are quite different, based as they are on dynamic programming and
control theory rather than methods from the calculus of variations. When combined
with methods for accelerated Monte Carlo as discuss in later chapters, these explicit
solutions allow one to obtain not just large deviation approximations but also accurate
approximations to nonasymptotic quantities. Proofs are not given, but interested
readers can find the details in [266].

7.2.5.1 Problem Formulation

Suppose the current occupancy state is x ∈ P(Λ) and that t is the number of balls
per urn among all categories. If yi , i = 0, 1, . . . , J, J + 1, . . . are the fraction in
category i , then xi = yi for i ≤ J and

t =
∞∑

k=0

kyk .

Note that t ≥ ∑J+1
k=0 kxk .

In previous sections we considered the large deviation analysis for just the case
of the initial condition where all urns are empty. To use dynamic programming, one
must introduce the analogue of the rate function that is suitable for general initial
times and states. The set of possible states for a given t [i.e., ones that can be reached
starting from (1, 0, . . . , 0) at t = 0] depends on both t and a, which leads to the
following definition.

Definition 7.12 Define Da , the feasible domain for the occupancy model with
parameter a, as follows:

• when a > 0,

Da
.=
{

(x, t) ∈ P(Λ) × [0, T ) : xJ+1 > 0 and t ≥
J+1∑

i=0

i xi

}

⋃
{

(x, t) ∈ P(Λ) × [0, T ) : xJ+1 = 0 and t =
J∑

i=0

i xi

}

;

• and when a < 0 and J = −a − 1,

Da
.=
{

(x, t) ∈ P(Λ) × [0, T ) : t =
J+1∑

i=0

i xi

}

.
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As before, when a < 0 we restrict to T < −a. In the first case the second set in
the union reflects the fact that when xJ+1 = 0 the number of balls thrown is exactly∑J

i=0 i xi , and similarly for the second case.
Consider a valid occupancy process ϕ ∈ C ([t, T ] : P(Λ)) with ϕ(t) = x and

(x, t) ∈ Da . Making the dependence on (x, t) explicit, the rate function I (x, t;ϕ)

for such paths can be written

I (x, t;ϕ)
.=
∫ T

t
R (θ(s) ‖ρ (s, ϕ(s)) ) ds,

where

ϕ(s) = ϕ(t) +
∫ s

t
Mθ(r)dr

and

ρk(s, y)
.= a + k

a + s
yk, k = 0, 1, . . . , J, ρJ+1(s, y)

.= 1 −
J∑

k=0

ρk(s, y).

The relevant calculus of variations problem for a point in the feasible domain is

O (x, t;ω)
.= inf

ϕ∈C ([t,T ]:P (Λ))
ϕ(t)=x,ϕ(T )=ω

I (x, t;ϕ). (7.27)

The formula for the finite dimensional minimization problem requires some notation.
For all a ∈ R, a �= 0 and i ∈ N, let

(
a

i

)
.=
∏i−1

j=0(a − j)

i !

and
(a
0

) = 1. Note that if a ∈ N and i > a then
(a
i

) = 0, and that if a /∈ N ∪ {0}, then
(a
i

) �= 0. We will use the fact that if a ∈ R and |z| < 1 then the binomial expansion

(1 + z)−a =
∞∑

i=0

(−a

i

)

zi

is valid, and if −a ∈ N then the sum contains only a finite number of nonzero terms
and is valid for all z ∈ R.

For i ∈ N ∪ {0} and a > 0, s ≥ 0 or a ∈ −N, 0 ≤ s ≤ −a, define

Qa
i (s)

.=
(
− s

a

)i
(−a

i

)(
1 + s

a

)−a−i
.

When a = 0 we use the limiting values
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Q0
0(s) = 1, Q0

i (s) = 0

for all i ∈ N and s ≥ 0. One can check that {Qa
i (s)}∞i=0 is a probability vector for

any choice of (a, s) as above.
Denote π k = {π k

0 , π
k
1 , . . . } for all 0 ≤ k ≤ J + 1, where π k

i represents the prob-
ability of throwing i additional balls into the kth category. Denote π = (π0, π1, . . . ,

π J+1). For any given x ∈ P(Λ), we say π = (π0, π1, . . . , π J , π J+1) ∈ F (x, t;
ω, T ) if

∞∑

j=0

π k
j = 1, 0 ≤ k ≤ J + 1,

J+1∑

k=0

xk

∞∑

j=0

jπ k
j = T − t, (7.28)

and

ωi =
i∑

k=0

xkπ
k
i−k, 0 ≤ i ≤ J, ωJ+1 = 1 −

J∑

k=0

ωk . (7.29)

Wewill useω
.= x × π as shorthand for the last display. Roughly speaking, if {xk}J+1

k=0
is the occupancy state at time instant t and π k

i represents the probability of throwing
i additional balls over the interval [nt, nT ] into the kth category, then ωi gives the
average fraction of category i urns at time nT .

A terminal point ω is feasible (for the given initial time and condition) if
F (x, t;ω, T ) is not empty.

Now we are ready to state the theorem. For s > 0 let P(s) denote the Poisson
distribution with parameter s, and if s = 0 let P(s) denote the probability measure
on {0, 1, . . .} with mass one on {0}. The proof of the representation can be found in
[266].

Theorem 7.13 (Explicit Formula for the Rate Function) Consider an
initial condition (x, t) ∈ Da, and a feasible terminal condition ω. If a ∈ (0,∞),
then for xJ+1 > 0 let

τ(x, t)
.= (t −∑J

k=0 kxk)

xJ+1

(so that τ(x, t) is the average number of balls per urn distributed in the J+ categories
for the initial condition (x, t)) and if xJ+1 = 0 let τ(x, t) = 0. Then the quantity
O (x, t;ω) defined in (7.27) has the representation

O (x, t;ω) = min
π∈F (x,t;ω,T )

[
J∑

k=0

xk R

(

π k

∥
∥
∥
∥Q

a+k

(
a + k

a + t
(T − t)

))

+xJ+1R

(

π J+1

∥
∥
∥
∥Q

a+τ(x,t)

(
a + τ(x, t)

a + t
(T − t)

))]

.

If a ∈ −N with J = −a − 1 then τ(x, t) =J+1, and
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O (x, t;ω) = min
π∈F (x,t;ω,T )

[
J+1∑

k=0

xk R

(

π k

∥
∥
∥
∥Q

a+k

(
a + k

a + t
(T − t)

))]

.

In the final case of a = ∞, we have

O (x, t;ω) = min
π∈F (x,t;ω,T )

[
J+1∑

k=0

xk R
(
π k ‖P (T − t)

)
]

.

Although theseminimization problems as stated appear to be infinite dimensional,
they can in fact be reduced to finite dimensional problems. This is because if π k is
the minimizer, then π k

j takes a prescribed form for j > J . In fact, all π k
j can be

represented in terms of no more than J + 3 Lagrange multipliers [119, 266].
Theorem7.13gives theminimal cost tomove fromonepoint in the feasible domain

to another. For the construction of accelerated Monte Carlo schemes it is useful to
know how to construct subsolutions to the related Hamilton-Jacobi-Bellman (HJB)
equation with various terminal conditions. This can often be done by approximating
general terminal conditions from below by a special class of terminal conditions,
such as those involving affine costs (see the examples in Chap. 17). Such a result is
stated in Proposition 7.14, and in fact Theorem 7.13 is shown to be a consequence
of Proposition 7.14 by approximating the function equal to 0 when x = ω and ∞
elsewhere from below by affine functions.

7.2.5.2 The Hamilton-Jacobi-Bellman Equation

In this section we assume a < ∞, noting that theMaxwell-Boltzmann case (a = ∞)
can easily be obtained as a limit. See [119, 266] for further discussion.

The calculus of variations problem (7.27) has a natural control interpretation,
where θ(s) is the control, ϕ̇(s) = Mθ(s) are the dynamics, R (θ(s) ‖ρ (s, ϕ(s)) ) is
the running cost and g(x) = ∞1{ω}c(x) is the terminal cost. It is expected that if we
define

V (x, t)
.= inf

ϕ∈C ([t,T ]:P (Λ)),ϕ(t)=x

[∫ T

t
R (θ(s)||ρ (s, ϕ(s))) ds + g(ϕ(T ))

]

, (7.30)

then V (x, t) is a weak-sense solution [14] to the HJB equation

Wt (x, t) + H(DW (x, t), x, t) = 0,

and terminal condition
W (x, T ) = ∞1{ω}c(x).

Here the Hamiltonian H(p, x, t) is defined by
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H(p, x, t)
.= inf

θ∈P (�)
[〈p, Mθ〉 + R (θ ‖ρ (t, x) )]

and Wt and DW denote the partial derivative with respect to t and gradient in x ,
respectively. Note that by the representation formula Proposition 2.2, the infimum in
the definition of H(p, x, t) can be evaluated, yielding

Wt (x,t) = log

(
J∑

k=0

xk

(
a + k

a + t

)

e(Wxk (x,t)−Wxk+1 (x,t)) +
(
a + τ(x,t)

a + t

)

xJ+1

)

plus the terminal conditionW (x, T ) = g(x), whereWxk (x, t) is the partial derivative
and τ(x, t) is as in Theorem 7.13.

A class of problems that are of interest in applications are those with a terminal
condition of the form

g(x) = ∞1A c(x),

where A is some convex set. Such terminal conditions usually yield only a weak-
sense solution, and not a classical-sense C1 solution to the HJB equation. However,
asmentioned previously it is possible for the purposes of design of acceleratedMonte
Carlo to approximate these terminal conditions frombelow in terms of affine terminal
conditions. In the next result we state a representation for the calculus of variations
problem with affine terminal cost g(ω) = 〈l, ω〉 + b. The representation turns out
to be the unique classical sense solution to the corresponding PDE. To simplify, we
first observe that W is a solution of just the PDE alone (i.e., without the terminal
condition) if and only if W + c is a solution for any real number c. Since ω is a
probability vector, it suffices to prove the representation when lJ+1 = 0 and b = 0.
We also recall the definition (7.29).

Proposition 7.14 Consider (x, t) ∈ Da and g(ω) = 〈l, ω〉, where l ∈ R
J+2 and

lJ+1 = 0. Define V by (7.30) and

U (x, t)
.= min

π∈F (x,t;T )

[
J∑

k=0

xk R

(

π k

∥
∥
∥
∥Q

a+k

(
a + k

a + t
(T − t)

))

+ xJ+1R

(

π J+1

∥
∥
∥
∥Q

a+τ(x,t)

(
a + τ(x, t)

a + t
(T − t)

))

+ g(x × π)

]

where π ∈ F (x, t; T ) means that π satisfies the constraints in (7.28). Then V (x, t)
= U (x, t).

7.3 Two Scale Recursive Markov Systems with Small Noise

In this section we consider a discrete time stochastic dynamical system in which
there are two components to the state. One of the components evolves at a slower
time scale then the other, and this scale separation is determined by the parameter
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that also scales the size of the noise. Such systems include many models arising in
queuing theory and communication systems [18, 35, 182], where they are called
Markov-modulated processes.

We are interested in studying the large deviation behavior of the slow component
(though one could also study the joint large deviation properties of the slow compo-
nent and a time dependent empirical measure of the fast process). The main result
of the section is Theorem 7.17, which establishes the LDP for the slow component.
The proof, which is left to the reader, combines techniques from Chaps. 4 and 6. We
begin by describing the model in precise terms.

7.3.1 Model and Assumptions

Let S be compact metric space and let p(ξ, dς) be a probability transition kernel on
S. We assume that the kernel satisfies the Feller and the transitivity properties from
Chap. 6, namelyConditions 6.2 and 6.3. The fast component of theMarkov chainwill
be governed by this kernel. The slow component is described through a stochastic
kernel θ(dy|x, ξ) on R

d given R
d × S. We suppose as given a probability space

that supports iid random vector fields
{
vi (x, ξ), i ∈ N0, (x, ξ) ∈ R

d × S
}
, with the

property that for any (x, ξ) ∈ R
d × S vi (x, ξ) has distribution θ(·|x, ξ). We also

suppose as given an S-valued Markov chain {�i }i∈N0 on this probability space with
transition kernel p(ξ, dς) and with �0 = ξ0 ∈ S. The sequence {�i } will be the
fast component, and is independent of {vi }. The stochastic process describing the
evolution of the slow component is then given by

Xn
i+1 = Xn

i + 1

n
vi (X

n
i , �i+1), Xn

0 = x0.

Thus {Xn
i } is a stochastic dynamical system with small noise, though the distribution

of the noise depends on both Xn
i and the modulating process �i . The evolution of

Xn
i , being scaled by 1/n, is slow relative to that of �i . As in Chap. 4 this discrete

time process is interpolated into continuous time according to

Xn(t) = Xn
i + [

Xn
i+1 − Xn

i

]
(nt − i) , t ∈ [i/n, i/n + 1/n].

We are interested in the large deviation properties of the sequence {Xn}n∈N of
C ([0, 1] : Rd)-valued random variables.

We impose the following analogues of Conditions 4.3 and 4.7 from Chap. 4. For
(x, ξ) ∈ R

d × S and α ∈ R
d define

H(x, ξ, α)
.= log Ee〈α,vi (x,ξ)〉.

Condition 7.15 (a) For each α ∈ R
d sup(x,ξ)∈Rd×S H(x, ξ, α) < ∞.



7.3 Two Scale Recursive Markov Systems with Small Noise 205

(b) The mapping (x, ξ) �→ θ(·|x, ξ) from R
d × S to P(Rd) is continuous in the

topology of weak convergence.

Condition 7.16 For each (x, ξ) ∈ R
d × S, the convex hull of the support of θ(·|x, ξ)

is Rd .

7.3.2 Rate Function and the LDP

We next introduce the rate function for {Xn}. For μ ∈ P(S) define A(μ) as in Sect.
6.3 [see 6.6]:

A(μ)
.= {

γ ∈ P(S2) : [γ ]1 = [γ ]2 = μ
}
.

Also, as in Chap. 6, given μ ∈ P(S), let (μ ⊗ p)(dx × dy) denote the probability
measure on S2 given byμ(dx)p(x, dy). Let I1 denote the rate function I in Theorem
6.6:

I1(μ) = inf
γ∈A(μ)

R (γ ‖ μ ⊗ p) , μ ∈ P(S).

Define L : Rd × R
d → [0,∞] by

L(x, β)
.= inf

[∫

S
R(ν(·|ξ)‖θ(·|x, ξ))μ(dξ) + I1(μ) :

∫

S×Rd
yν(dy|ξ)μ(dξ) = β

]

,

where the infimum is over μ ∈ P(S) and stochastic kernels v on P(Rd) given S.
The definition of the local rate function involves two changes of distribution and the
associated relative entropy costs. The first switches the distribution of transitions of
{�i } from p(ξ, dς) to q(ξ, dς), where [μ ⊗ q]2 = μ. Since Xn moves only a small
distance over a small interval in continuous time, it is the invariant distribution μ

of q which affects the evolution of the controlled analogue of Xn . Thus if we shift
from the invariant distribution of p to μ, then we must pay a cost of I1(μ) per unit
time. Once this is done, as in Chap. 4 the distribution of the noises vi (x, ξ) can be
perturbed away from θ(·|x, ξ) to ν(·|ξ), but one must pay a relative entropy cost.
The overall cost to track a velocity β minimizes these two costs.

Recall that A C x0([0, 1] : Rd) denotes the subset of C ([0, 1] : Rd) consisting of
all absolutely continuous functions satisfying φ(0) = x0. The rate function for {Xn}
is given as follows. Let

I (φ) =
∫ 1

0
L(φ(s), φ̇(s))ds if φ ∈ A C x0([0, 1] : Rd),

and in all other cases I (φ) = ∞.
The following theorem states the LDP for {Xn}.
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Theorem 7.17 Suppose that Conditions 6.2, 6.3, 7.15 and 7.16 are satisfied. Then
I is a rate function and {Xn}n∈N satisfies the Laplace principle on C ([0, 1] : Rd)

with rate function I , uniformly for initial conditions in compact sets.

7.3.3 Extensions

We have considered the simplest form of a two scale system in discrete time, and in
particular under assumptions such that a straightforward combination of the methods
fromChaps. 4 and 6 can be applied to complete the proof. The model can in principle
be extended in several directions, under various sets of additional assumptions. For
example, as in Chap. 6 the compactness of S can be replaced by a condition on the
existence of a suitable Lyapunov function. Likewise the condition on the support
of the transition kernel θ(·|x, ξ), Condition 7.16, can be replaced by a Lipschitz
type condition of a similar form as Condition 4.8. Finally, for the model considered
here the evolution of the fast component did not depend on the state of the slow
variable. This condition can be relaxed to allow for a fully coupled system. See [42]
for sufficient conditions in a continuous time setting and [94] for a discrete time
system.

7.4 Notes

An overview of occupancy models and their applications can be found in [165].
The first paper to consider the large deviation properties of an occupancy model
appears to be [109], which was motivated by the problem of sizing switches in
optical communications. In [109] the LDP for the MB model is obtained, and the
rate function exhibited in more-or-less explicit form. The arguments in Sect. 7.2 are
based on those used in [266], though as in previous chapters the presentation here
first studies the large deviation properties of an empirical measure and then obtains
those for the process.

As was discussed in Sect. 7.2, the most difficult part of the analysis is in dealing
with parts of the state spacewhere rates go to zero,which produces singular behaviors
in the local rate function. The are many other classes of models in applied proba-
bility where transition probabilities vanish (or in their continuous time analogues
jump rates vanish), including models from queueing and related stochastic networks
[231], chemical reaction networks, and random graphs [23]. A positive feature of
this collection of problems (one that is emphasized in Sect. 7.2) is that the associated
variational problems have explicit or nearly explicit solutions.

The main difficulties are typically in the proof of the large deviation lower bound,
and the approach used in this chapter involves a careful analysis of the local rate
function to construct controls that can be used to establish the lower bound. For the
corresponding continuous time models, one can sometimes represent the process
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as the solution to a stochastic differential equation driven by one or more Poisson
random measures. In this case one might ask if the perspective of Sects. 3.1 and 3.3,
which exploits the fact that the mapping from the noise model (Brownian motion
or Poisson random measure) into the state variable is “nearly continuous” could be
used. This turns out to be possible, as described for example in [23].

The second model of this chapter is a stochastic recursive system with two time
scales. Models of this type appear in many different areas of application, and general
references include [171, 259]. One of the first papers to consider the large devia-
tion properties of processes of this general sort is Freidlin [138]. Continuous time
analogues of such two time scale systems have also been well studied (see [42] and
references therein). Related and very challenging problems involve systems where
the averaging is with respect to an “environment” variable rather than time, e.g.,
a stochastic differential equation where the drift is itself random or periodic and
ergodic in an appropriate sense. An example of how weak convergence methods can
be used to account for such averaging in a relatively simple setting appears in [111].



Part III
Continuous Time Processes

The next part of the book is concernedwith the development of useful representations
for continuous time models and their application. In the setting of discrete time
one could obtain very useful representations using the chain rule. This is no longer
the case in continuous time, but it is possible to obtain representations of a form
analogous to those in discrete time using the Radon–Nikodym Theorem on path
space for one inequality and stochastic control arguments for the reverse inequality.
The representations for infinite dimensional Brownian motion and Poisson random
measures are the topic of Chap. 8.

Formanymodels in continuous time, driving noises enter in amore regular fashion
than for their discrete time counterparts. In particular, for stochastic ordinary and
partial differential equations driven by Brownian and Poisson noise, these noises
enter in an “affine” manner, which is meant to include both what is often referred
to as “additive” noise (constant noise coefficient), and “multiplicative” noise (state-
dependent noise coefficient). As a consequence, the mapping from the noise space
into the state space often has more structure and regularity than in the corresponding
discrete time setting. One can compare, for example, Markov processes described
by SDEs with Markov processes of the type studied in Chap. 4. A consequence of
the improved regularity is that one can identify conditions on the map that takes
the noise process into the state process that are sufficient for large and moderate
deviation principles to hold, and which are broadly applicable. This is the topic of
Chap. 9, which proves large and moderate deviation properties for general mappings
of Brownian motion and Poisson random measures.

The results of Chap. 9 are specialized to prove large and moderate deviation prop-
erties for finite dimensional systems in Chap. 10. The setting is that of a standard
SDE model with regular (e.g., Lipschitz continuous) coefficients. Infinite dimen-
sional systems driven by Brownian noise, including SPDE, are the topic of Chap. 11.
Our previously published versions of these results have foundwide use in small noise
SPDE models with multiplicative noise, and a listing of some of the applications is
given in the notes at the end of Chap. 9.

Chapter 12 presents another use of the representation for infinite dimensional
Brownian motion, which is to the large deviation theory for small noise flows of
diffeomorphisms. Also included is an application to Bayesian image reconstruction.
Chapter 13 returns to finite dimensional models and considers those with special
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features, and emphasizes problems with less regularity in the mapping that takes the
noise into the state. Chapter 13 illustrates a useful aspect of the weak convergence
approach, which is that by converting large deviation questions into questions of
weak convergence, one can more easily understand exactly what regularity condi-
tions are really needed. For related works that highlight this same feature, see [1, 2,
3]. An important class of problems covered in Chap. 13 is that of large and mod-
erate deviations for certain pure jump processes that, when written in the form of
a stochastic differential equation driven by a Poisson random measure, have dis-
continuous coefficients in the stochastic integral and are therefore not covered by
Chap. 10.



Chapter 8
Representations for Continuous Time
Processes

In previous chapters we developed and applied representations for the large devia-
tion analysis of discrete time processes. The derivation of useful representations in
this setting follows from a straightforward application of the chain rule. The only
significant issue is to decide on the ordering used for the underlying “driving noises”
when the chain rule is applied, since controls are allowed to depend on the “past,”
which is determined by this ordering.

In continuous time, the situation is both simpler and more complex. It is simpler
in that most models in continuous time can be conveniently represented as systems
driven by an exogenous noise process of either Gaussian or Poisson type. As we
will see, useful representations hold in great generality for both types of noise. It is
also more complex, in that the chain rule cannot be directly applied, and one must
approximate and justify suitable limits to establish the representations. In the end,
the representations take a form that is analogous to their discrete time counterparts,
and we consider controls that are allowed to depend on the past, i.e., controls that
are predictable with respect to a suitable filtration.1

This chapter consists of three sections, which present the representations for func-
tionals of infinite dimensional Brownian motion, functionals of a Poisson random
measure, and the combined case. The proofs given here differ from the first versions
that appeared in [39, 45]. In particular, while the details are different, the approach
to both models is very much the same.

1For special cases, one can consider the infimum of a smaller class (e.g., feedback controls), a result
that is sometimes of interest.
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8.1 Representation for Infinite Dimensional Brownian
Motion

The starting point of the proof of the representation is of course (2.1). Hence we will
need to understand the form of dγ /dθ when θ is the measure induced by an infinite
dimensional Brownian motion. Several formulations of infinite dimensional Brow-
nian motion are commonly used. We focus for now on the formulation as a Hilbert
space valued Wiener process,2 and comment in Chap. 11 on how representations for
other formulations follow easily from this one.

8.1.1 The Representation

Let (Ω,F , P) be a probability space with a filtration {Ft }0≤t≤T satisfying the usual
conditions.We beginwith the definition of aHilbert space valuedWiener process. Let
(H , 〈·, ·〉) be a real separable Hilbert space. Let Λ be a symmetric strictly positive
trace class operator on H (see Appendix E for definitions and terminology related
to Hilbert spaces). This means thatΛ is a bounded linear operator such that if {ei }i∈N
is any complete orthonormal sequence (CONS) inH , then for all i, j ∈ N, we have〈
ei ,Λe j

〉 = 〈
e j ,Λei

〉
, 〈ei ,Λei 〉 > 0, and

∑∞
i=1 〈ei ,Λei 〉 < ∞.

Definition 8.1 AnH -valued continuous stochastic process {W (t)}0≤t≤T is called a
Λ-Wiener processwith respect to {Ft }0≤t≤T if for everynonzeroh ∈ H , 〈Λh, h〉−1/2

〈W (t), h〉 is a standard one-dimensional Ft -Wiener process (see Sect. 3.2).

Define H0
.= Λ1/2H . Then H0 is a Hilbert space with the inner product

〈h, k〉0 .= 〈
Λ−1/2h,Λ−1/2k

〉

for h, k ∈ H0. Denote the norms in H and H0 by ‖ · ‖ and ‖ · ‖0 respectively.
Since Λ is trace class, the identity mapping fromH0 toH is Hilbert–Schmidt. This
Hilbert–Schmidt embedding of H0 in H will play a central role in many of the
arguments to follow. An important consequence of the embedding is that if vn is a
sequence in H0 such that vn → 0 weakly in H0, then ‖vn‖ → 0. For an exposition
of stochastic calculus with respect to anH valued Wiener process, we refer to [69].
Other useful references are [197, 198, 252].

We first present and prove a representation that uses controls that are predictable
with respect to the filtration generated by theWiener process, and later, in Sect. 8.1.5,
we extend this representation to controls that are predictable with respect to {Ft }.
Let {Gt }0≤t≤T be the filtration generated by {W (t)}0≤t≤T augmented with all P-null
sets inF .

2We will use the terms “Brownian motion” and “Wiener process” interchangeably.
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Definition 8.2 Given 0 ≤ a < b ≤ T and a bounded Fa-measurable real random
variable ξ , let g : [0, T ] × Ω → Rbe defined by g(s, ω)

.= ξ(ω)1(a,b](s), s ∈ [0, T ],
ω ∈ Ω . Denote by PF the σ -field on [0, T ] × Ω generated by the collection of
all such g. This σ -field is called the Ft -predictable σ -field. For a Polish space E ,
a PF/B(E )-measurable map v : [0, T ] × Ω → E is referred to as an E -valued
Ft -predictable process.

Define ¯A to be the class of H0-valued Ft -predictable processes v that satisfy

P

{∫ T

0
‖v(s)‖20ds < ∞

}
= 1,

and let A denote the subset of those that are predictable with respect to {Gt }0≤t≤T .
We refer to [69, Chap. 4] for the definition of stochastic integrals of elements of ¯A
with respect to W . Let L 2([0, T ] : H0) denote the Hilbert space of all measurable
maps u : [0, T ] → H0 for which

∫
[0,T ] ‖u(s)‖20ds is finite together with the usual

inner product, and for M ∈ N, define

SM
.=

{
u ∈ L 2([0, T ] : H0) :

∫ T

0
‖u(s)‖20ds ≤ M

}
. (8.1)

We endow SM with the weak topology, which makes it a compact Polish space (cf.
[93]). In particular, a sequence {vn} ⊂ SM converges to v ∈ SM if

∫ T
0 〈vn(s), h(s)〉0ds

converges to
∫ T
0 〈v(s), h(s)〉0ds for all h ∈ L 2([0, T ] : H0). Finally, let

Ab,M
.= {v ∈ A : v(ω) ∈ SM θ -a.s.}, Ab

.= ∪M∈NAb,M . (8.2)

Let ¯Ab,M [resp. ¯Ab] be defined exactly asAb,M [resp.Ab], except that {Gt } is replaced
by {Ft }.

We next state the main result of this section. Let E denote expectation with
respect to P . Though in the theorem we take G to be a bounded function, it can be
shown that the representation holds if G is bounded from above. The fact that the
representation also holdswith respect to the smaller classAb ⊂ A is quite convenient
in applications, since these are in some sense very well behaved processes.

Theorem 8.3 Let W be a Λ-Wiener process and let G be a bounded Borel measur-
able function mapping C ([0, T ] : H ) into R. Then

− log E exp{−G(W )} = inf
v∈R

E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(
W +

∫ ·

0
v(s)ds

)]
,

(8.3)
where R can be either Ab,A , ¯Ab or ¯A .

Using (8.3), one can prove the following in an identical manner as Theorem 3.17,
and we therefore omit the proof.
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Theorem 8.4 Let W and G be as in Theorem 8.3 and let δ > 0. Then there exists
M < ∞ depending on ‖G‖∞ and δ such that for all ε ∈ (0, 1),

− ε log E exp

{
−1

ε
G(

√
εW )

}

≥ inf
v∈A b,M

E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(√
εW +

∫ ·

0
v(s)ds

)]
− δ.

The rest of Sect. 8.1 is devoted to the proof of Theorem 8.3. After developing the
needed preliminary results, the proof forAb andA is given in Sects. 8.1.3 and 8.1.4,
and the extension to ¯Ab and ¯A is completed in Sect. 8.1.5.

8.1.2 Preparatory Results

In this section we present several theorems and approximations that will be used in
the proof of the representation. For use later on, some results are stated for the more
general class of processes ¯A . The following result follows from Theorem 10.14
of [69].

Theorem 8.5 (Girsanov) Let ψ ∈ ¯A be such that

E

[
exp

{∫ T

0
〈ψ(s), dW (s)〉0 − 1

2

∫ T

0
‖ψ(s)‖20ds

}]
= 1.

Then the process

W̃ (t)
.= W (t) −

∫ t

0
ψ(s)ds,

t ∈ [0, T ], is a Λ-Wiener process with respect to {Ft } on (Ω,F , Q), where Q is
the probability measure defined by

dQ

dP
= exp

{∫ T

0
〈ψ(s), dW (s)〉0 − 1

2

∫ T

0
‖ψ(s)‖20ds

}
.

We record a result that will be used in proving tightness for a sequence of Hilbert
space valued processes. Recall the topology on SN introduced below (8.1).

Lemma 8.6 Let {vn}n∈N be a sequence of elements of ¯A . Assume that there is
M < ∞ such that

sup
n∈N

∫ T

0
‖vn(s)‖20ds ≤ M

a.s. Suppose further that {vn} converges in distribution to v as SM-valued random
variables. Then

∫ ·
0 v

n(s)ds converges in distribution to
∫ ·
0 v(s)ds in C ([0, T ] : H ).
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Proof It suffices to show that the map from SM to C ([0, T ] : H ) defined by u →∫ ·
0 u(s)ds is continuous. Let {φn} be a sequence in SM that converges toφ. Let {e j } j∈N
be a CONS of eigenvectors of Λ with corresponding eigenvalues {λ j } j∈N. Then for
every t ∈ [0, T ] and i ∈ N,

∫ t

0
〈φn(s) − φ(s), ei 〉ds = λi

∫ t

0
〈φn(s) − φ(s), ei 〉0ds,

and by assumption, the right side converges to 0 as n → ∞. Also,

∥∥∥∥

∫ t

0
[φn(s) − φ(s)]ds

∥∥∥∥

2

=
∞∑

i=1

(∫ t

0
〈φn(s) − φ(s), ei 〉ds

)2

.

By Hölder’s inequality and Λ1/2ei = λi ei ,

(∫ t

0
〈φn(s) − φ(s), ei 〉ds

)2

≤ λi T
∫ T

0
‖Λ−1/2[φn(s) − φ(s)]‖2ds

= λi T
∫ T

0
‖φn(s) − φ(s)‖20ds

≤ 4MTλi .

Since
∑∞

i=1 λi < ∞, it follows from the dominated convergence theorem that for
each t ∈ [0, T ], ∫ t

0 φn(s)ds converges to
∫ t
0 φ(s)ds in H . To prove that this con-

vergence is uniform on [0, T ], we need an equicontinuity estimate. This follows by
noting that for 0 ≤ s ≤ t ≤ T ,

∥∥∥∥

∫ t

0
φn(r)dr −

∫ s

0
φn(r)dr

∥∥∥∥ ≤ √
t − s

(∫ T

0
‖φn(s)‖2ds

)1/2

≤ √
t − s ‖Λ‖1/2

(∫ T

0
‖Λ−1/2φn(s)‖2ds

)1/2

= √
t − s ‖Λ‖1/2

(∫ T

0
‖φn(s)‖20ds

)1/2

≤ √
t − s ‖Λ‖1/2 M1/2,

where ‖Λ‖ .= suph∈H :‖h‖=1 ‖Λh‖ is the operator norm. �

Before turning to the proof of Theorem 8.3, we state one last result. A process
v ∈ A is called simple if there exist k ∈ N, 0 = t1 ≤ · · · ≤ tk+1 = T and N ∈ N

such that

v(s, ω)
.=

k∑

j=1

X j (ω)1(t j ,t j+1](s),
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where the X j areH0-valuedGt j -measurable randomvariables satisfying‖X j (ω)‖0 ≤
N for all j ∈ {1, . . . , k}. Let As denote the collection of simple processes, and note
that As ⊂ Ab. Given any v ∈ As , it is straightforward that

E

[
exp

{∫ T

0
〈v(s), dW (s)〉0 − 1

2

∫ T

0
‖v(s)‖20ds

}]
= 1,

and thus by Theorem 8.5, the process

Wv(t)
.= W (t) −

∫ t

0
v(s)ds,

t ∈ [0, T ], is a Λ-Wiener process with respect to {Gt } on (Ω,F , Qv), where Qv is
the probability measure defined by

dQv

dP
= exp

{∫ T

0
〈v(s), dW (s)〉0 − 1

2

∫ T

0
‖v(s)‖20ds

}
.

Let Ev denote integration with respect to Qv.

Lemma 8.7 For every v ∈ As , there is ṽ ∈ As such that (Wṽ, ṽ) has the same dis-
tribution under Qṽ as (W, v) does under P.

Proof Let v be simple and of the form

v(s, ω)
.=

k∑

j=1

X j (ω)1(t j ,t j+1](s),

where k ∈ N, 0 = t1 ≤ · · · ≤ tk+1 = T and X j are H0-valued Gt j -measurable ran-
dom variables satisfying ‖X j (ω)‖0 ≤ N for all j ∈ {0, . . . , k} and some N ∈ N.
New random variables X̄ j , j ∈ {0, . . . , k}, are defined as follows. Since X1(ω) is G0-
measurable, there exists measurable G1 : H0 → H0 such that X1(ω) =
G1(W (0, ω)) a.s. Let X̄1

.= G1(W (0)) = X1. For j ∈ {2, . . . , k}, there are measur-
able G j : C ([0, t j ] : H0) → H0 such that X j (ω) = G j (W (t, ω), 0 ≤ t ≤ t j ) a.s.
We can also consider G j as a mapping C ([0, T ] : H0) → H0, which depends on
w ∈ C ([0, T ] : H0) only though the restriction to [0, t j ], and we do so with the
notation G j (w). We then recursively define

X̄ j
.= G j

(

W (·) −
∫ ·

0

j−1∑

i=1

X̄i1(ti ,ti+1](s)ds

)

.

By construction, each X̄ j is Gt j -measurable and satisfies ‖X̄ j (ω)‖0 ≤ N for a.e. ω.
Now let
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ṽ(s, ω)
.=

k∑

j=1

X̄ j (ω)1(t j ,t j+1](s),

and note that

ṽ(s)
.=

k∑

j=1

G j

(
W (·) −

∫ ·

0
ṽ(s)ds

)
1(t j ,t j+1](s). (8.4)

By Theorem 8.5, W (t) − ∫ t
0 ṽ(s)ds is a Λ-Wiener process under Qṽ. Since ṽ has

the form given in (8.4), it follows that (Wṽ, ṽ) has the same distribution under Qṽ as
(W, v) does under P . �

8.1.3 Proof of the Upper Bound in the Representation

In this subsection we prove

− log E exp{−G(W )} ≤ inf
v∈A

E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(
W +

∫ ·

0
v(s)ds

)]
.

Note that this automatically gives the corresponding bound for the smaller class Ab

in (8.3). The proof is in two steps.

Step 1. Simple v. According to (2.1), for every probability measure Q on (Ω,F ),

− log E exp{−G(W )} ≤ R(Q ‖P ) +
∫

Ω

G(W )dQ. (8.5)

If v ∈ As , then by Lemma 8.7 there is ṽ ∈ As such that the distribution of (W, v)
under P is the same as that of (Wṽ, ṽ) under Qṽ. Since ṽ is bounded, it follows from
Theorem 8.5 that

R(Qṽ ‖P ) = Eṽ

[∫ T

0
〈ṽ(s), dW (s)〉0 − 1

2

∫ T

0
‖ṽ(s)‖20ds

]

= Eṽ

[∫ T

0

〈
ṽ(s), dW ṽ(s)

〉

0
+ 1

2

∫ T

0
‖ṽ(s)‖20ds

]

= Eṽ

[
1

2

∫ T

0
‖ṽ(s)‖20ds

]

= E

[
1

2

∫ T

0
‖v(s)‖20ds

]
.

Taking Q = Qṽ in (8.5) together with EṽG(W ) = EṽG(Wṽ + ∫ ·
0 ṽ(s)ds) =

EG(W + ∫ ·
0 v(s)ds) gives
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− log E exp{−G(W )} ≤ E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(
W +

∫ ·

0
v(s)ds

)]
. (8.6)

Step 2. General v. Next consider v ∈ A .We can assumewithout loss of generality
that E[∫ T

0 ‖v(s)‖20ds] < ∞. Then (see, for example, [159, Lemma II.1.1]) there is a
sequence {vn} ⊂ As such that

E
∫ T

0
‖vn(s) − v(s)‖20ds → 0. (8.7)

In particular, N
.= supn∈N E

∫ T
0 ‖vn(s)‖20ds < ∞. From Step 1, for all n,

− log E exp{−G(W )} ≤ E

[
1

2

∫ T

0
‖vn(s)‖20ds + G

(
W +

∫ ·

0
vn(s)ds

)]
. (8.8)

We would like to apply Lemma 2.5, where μn and θ are the distributions induced
by W + ∫ ·

0 vn(s)ds and W under P , respectively. Since μn is also the distribution
induced by W under Qṽn , part (f) of Lemma 2.4 implies

R(μn ‖θ ) ≤ R(Qṽn ‖P ) = Eṽn

[
1

2

∫ T

0
‖ṽn‖20ds

]
= E

[
1

2

∫ T

0
‖vn‖20ds

]
.

Thus supn R(μn ‖θ ) ≤ N/2. From (8.7), it follows that

E sup
0≤t≤T

∥∥∥∥

∫ t

0
vn(s)ds −

∫ t

0
v(s)ds

∥∥∥∥

2

≤ T ‖Λ‖2opE
∫ T

0
‖vn(s) − v(s)‖20ds → 0,

and thereforeμn convergesweakly toμ,whereμ is the distribution ofW + ∫ ·
0 v(s)ds.

Since G is bounded and measurable, we now obtain (8.6) using Lemma 2.5 and
sending n → ∞ in (8.8). �

8.1.4 Proof of the Lower Bound in the Representation

In this subsection we prove

− log E exp{−G(W )} ≥ inf
v∈A b

E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(
W +

∫ ·

0
v(s)ds

)]
.

(8.9)
This automatically gives the corresponding bound for the larger class A in (8.3).
The proof is in two steps.

Step 1. G of a particular form. We first consider G of a special form. Recall
that {en}n∈N denotes a CONS in H . Let K , N ∈ N be arbitrary, and consider any
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collection 0 = t1 < t2 < · · · < TK = T . Let h : RK N → R have compact support
and continuous derivatives of all orders. Then G is of the form

G(W ) = h(w(t1),w(t2) − w(t1), . . . ,w(tK ) − w(tK−1)), (8.10)

where for 0 ≤ t ≤ T ,

w(t) = (λ
−1/2
1 〈e1,W (t)〉 , . . . , λ

−1/2
N 〈eN ,W (t)〉). (8.11)

Note that {w(t)}0≤t≤T is an N -dimensional standard Gt -Wiener process. Using meth-
ods from stochastic control theory, we will construct a process v ∈ Ab that gives
equality in (8.9). The following lemma, whose proof is omitted, follows by classical
and elementary stochastic control arguments that apply when there is a smooth value
function (see Sect. VI.2 of [134]).

Lemma 8.8 Let g : Rm × R
N → R have compact support and continuous deriva-

tives of all orders. Let {w(t)}0≤t≤T be an N-dimensional standard Brownian motion,
and let V : [0, T ] × R

m × R
N → R be defined by

V (t, z, x)
.= − log Ee−g(z,x+w(T−t)).

Then the following hold.
(a) For all (t, x) ∈ [0, T ] × R

N , z → V (t, z, x) has compact support and deriva-
tives of all orders that are continuous functions of (t, z, x).

(b) For all (t, z) ∈ [0, T ] × R
m, x → V (t, z, x) has derivatives of all orders that

are continuous and bounded functions of (t, z, x).
(c) For z ∈ R

m, let {X (z, t)}0≤t≤T be the unique solution of

X (z, t) = −
∫ t

0
DxV (s, z, X (z, s))ds + w(t), t ∈ [0, T ].

Then with u(t) = −DxV (t, z, X (z, t)) for t ∈ [0, T ],

− log E exp{−g(z,w(T ))} = E

[
1

2

∫ T

0
‖u‖2ds + g

(
z,w +

∫ ·

0
uds

)]
. (8.12)

Remark 8.9 For the proof of Lemma 8.8, one starts with the linear partial differential
equation (PDE) for which (t, z, x) → Ee−g(z,x+w(T−t)) is a classical-sense solution.
From this, one obtains the nonlinear PDE (Hamilton–Jacobi–Bellman equation) for
which V is a classical-sense solution. As such, V also has an interpretation as the
minimal cost in a stochastic optimal control problem. Using a classical verification
argument [134], it is straightforward to show that u as defined in the lemma is the
optimal control, and the right-hand side of (8.12) is the minimal cost starting from
x = 0, which establishes (8.12).
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Now for j = 1, . . . , K , define Vj : R j N → R as follows: VK = h and

Vj (z j ) = − log Ee−Vj+1(z j ,w(t j+1)−w(t j )), z j ∈ R
j N , j = 1, . . . , K − 1.

By successive conditioning, it is easily checked that

V0
.= − log Ee−V1(w(t1)−w(t0)) = − log Ee−G(W ),

where G is as in (8.10). From part (a) of Lemma 8.8 it follows that for all j =
1, . . . , K ,Vj has continuous and bounded derivatives of all orders. For j = 1, . . . , K ,
let Z j = (w(t1),w(t2) − w(t1), . . . ,w(t j ) − w(t j−1)), and note that Z j is an R

j N -
valued random variable. For z j ∈ R

j N , let {Y (z j , t)}t∈[t j ,t j+1], j = 1, . . . , K − 1, be
the unique solution of

Y (z j , t) = −
∫ t

t j

DxVj+1(s, z j ,Y (z j , s))ds + w(t) − w(t j ), t ∈ [t j , t j+1].

The existence and uniqueness of the solution is a consequence of the smoothness
property of Vj+1 noted earlier. Now define

u(t) = −DxVj+1(t, Z j ,Y (Z j , t)), t ∈ [t j , t j+1), j = 0, . . . , K − 1.

Then by a straightforward recursive argument using Lemma 8.8, we see that

− log Ee−G(W ) = E

[
1

2

∫ T

0
‖u(s)‖2ds + h

(
w(t1) +

∫ t1

0
u(s)ds, . . .

,w(tK ) − w(tK−1) +
∫ tK

tK−1

u(s)ds

)]
.

Let v(s)
.= ∑N

i=1 λ
1/2
i ui (s)ei , s ∈ [0, T ]. Then v ∈ Ab, and by (8.10) and (8.11),

− log E exp{−G(W )} = E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(
W +

∫ ·

0
v(s)ds

)]
.

Thus we have proved (8.9) for all G of the form (8.10)–(8.11).

Step 2. G that is bounded andmeasurable.Now suppose thatG is simply bounded
and measurable. We claim that there exist functions {Gn}n∈N such that for each n,Gn

is of the form assumed in Step 1, ‖Gn‖∞ ≤ ‖G‖∞, and Gn → G a.s. with respect
to θ . This can be seen most easily by considering the approximation in stages. We
note that each of the following classes admits an approximation of this form relative
to elements of the preceding class, save of course the first:

• G bounded and measurable;
• G bounded and continuous;
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• G(W ) = H(W (t1),W (t2), . . . ,W (tK )), where H : H K → R is continuous and
bounded and K ∈ N and 0 = t1 < t2 < · · · < TK = T are arbitrary;

• G of the form (8.10)–(8.11) where h is a bounded and continuous function from
R

NK → R, K , N ∈ N and 0 = t1 < t2 < · · · < tK = T are arbitrary;
• G as above and in addition, h has compact support;
• G as above and in addition, h has continuous and bounded derivatives of all orders.

All of these approximations follow by standard arguments. The first approxima-
tion statement (i.e., a bounded measurable G can be approximated by a bounded
continuous G) is the conclusion of a result due to Doob and presented in the
appendix as Theorem E.4. For the second statement we use the martingale con-
vergence theorem, which states that if {Fn} is a filtration increasing to the σ -field
F∞ and X is an integrable F∞-measurable random variable, then E[X | Fn] con-
verges to X a.s. Consider a sequence of partitions πn = {0 = tn1 < tn2 < · · · < tnKn

=
T } such that πn ⊂ πn+1 and |πn| .= max1≤ j≤Kn−1(tnj+1 − tnj ) → 0 as n → ∞. Let
Fn

.= σ {W (tni ), 1 ≤ i ≤ Kn}. Clearly,Fn is afiltration andG isF∞
.= σ(∪n≥1Fn)-

measurable. Thus by the martingale convergence theorem, Gn = E[G | Fn] con-
verges a.s. to G. Clearly, ‖Gn‖∞ ≤ ‖G‖∞ a.s. The second approximation statement
now follows from another application of Theorem E.4 if Gn is not continuous. The
proof of the third approximation statement is similar but uses the filtration

Fn
.= σ {〈W (ti ), e j 〉, j = 1, . . . , n, i = 1, . . . , K },

where {e j } j∈N is a CONS inH . The fourth approximation statement involves replac-
ing h in (8.10 )–(8.11) by hψn in definingGn , whereψn is a continuous function with
values in [0, 1] such that ψn(x) = 1 when x is in a ball of radius n and ψn(x) = 0
outside a ball of radius n + 1. Finally, the last statement follows by replacing h with
h ∗ ηn in (8.10)–(8.11), where ηn(x) = n−NKη(nx), x ∈ R

NK ,

η(x)
.= c exp

{
− 1

1 − |x |2
}
1{|x |<1},

and c is the normalizing constant such that
∫

η(x)dx = 1.
With the claim verified, we now complete the lower bound. With each n ∈ N we

can associate vn ∈ Ab such that

− log E exp{−Gn(W )} = E

[
1

2

∫ T

0
‖vn(s)‖20ds + Gn

(
W +

∫ ·

0
vn(s)ds

)]
.

As in the proof of the upper bound, if μn is the distribution induced by W +∫ ·
0 vn(s)ds, then

R(μn ‖θ ) ≤ E

[
1

2

∫ T

0
‖vn(s)‖20ds

]
≤ 2 ‖G‖∞ ,
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where the last inequality is valid because ‖Gn‖∞ ≤ ‖G‖∞. Thus {μn} is tight, and
from part (b) of Lemma 2.5, we have

lim
n→∞ E

∣∣∣∣Gn

(
W +

∫ ·

0
vn(s)ds

)
− G

(
W +

∫ ·

0
vn(s)ds

)∣∣∣∣ = 0.

By the dominated convergence theorem,

lim
n→∞ |log E exp{−Gn(W )} − log E exp{−G(W )}| = 0.

Therefore, given ε > 0, we can find n ∈ N such that

− log Ee−G(W ) ≥ − log Ee−Gn(W ) − ε

= E

[
1

2

∫ T

0
‖vn(s)‖20ds + Gn

(
W +

∫ ·

0
vn(s)ds

)]
− ε

≥ E

[
1

2

∫ T

0
‖vn(s)‖20ds + G

(
W +

∫ ·

0
vn(s)ds

)]
− 2ε.

Since ε > 0 is arbitrary and vn ∈ Ab, we have (8.9), completing the proof. �

8.1.5 Representation with Respect to a General Filtration

We now return to the issue of whether the representation holds when {Gt }0≤t≤T , the
filtration generated by the Wiener process, is replaced by any filtration {Ft }0≤t≤T

that satisfies the usual conditions and such thatW is aΛ-Wiener process with respect
to this larger filtration.

We will make use of the following lemma on measurable selections.

Lemma 8.10 Let E1,E2 be Polish spaces and let g : E1 × E2 → R be a bounded
continuous function. Let K be a compact set in E2. For each x ∈ E1, define

Γx
.=

{
y ∈ K : inf

y0∈K
g(x, y0) = g(x, y)

}
.

Then there exists a Borel measurable function g1 : E1 → E2 such that g1(x) ∈ Γx

for all x ∈ E1.

Proof Let xn be a sequence in E1 converging to x̄ . For each n ∈ N, let yn ∈ Γxn . In
view of Corollary E.3, it suffices to show that {yn} has a limit point in Γx̄ . Let ȳ be a
limit point of {yn}. For each n, g(xn, yn) − inf y0∈K g(xn, y0) equals zero. Since the
map (x, y) → g(x, y) − inf y0∈K g(x, y0) is continuous, letting n → ∞ shows that
ȳ ∈ Γx . �
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Recall that ¯A was defined exactly asA , except with {Gt } replaced by {Ft }. The
only issue to check is whether the upper bound

− log E exp{−G(W )} ≤ inf
v∈ ¯A

E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(
W +

∫ ·

0
v(s)ds

)]

(8.13)
continues to hold.

The only place where the structure of {Gt }0≤t≤T is used in Sect. 8.1.3 is in the
proof of (8.6), where we appeal to Lemma 8.7 to argue that if v ∈ As , then there is
ṽ ∈ As such that the distribution of (W, v) under P is the same as that of (Wṽ, ṽ)
under Qṽ. We can reduce to that case if we show that given ε > 0 and any control v
that is simple with respect to {Ft }0≤t≤T , there is a v̄ ∈ As such that

E

[
1

2

∫ T

0
‖v̄(s)‖20ds + G

(
W +

∫ ·

0
v̄(s)ds

)]
(8.14)

≤ E

[
1

2

∫ T

0
‖v(s)‖20ds + G

(
W +

∫ ·

0
v(s)ds

)]
+ ε.

For simplicity, we consider the case v(s) = 0 for s ∈ [0, t] and v(s) = X for s ∈
(t, T ], where X is Ft -measurable, and also assume that ‖X‖0 ≤ M < ∞ a.s. The
generalization to the finite collection of random variables that appear in a simple
control is straightforward (see [39]). For the moment, we also assume that G is
continuous as well as bounded. Consider the mapping

g (φ, x) = E

[
(T − t)

2
‖x‖20 + G

(
φB +

∫ ·

0
1[t,T ](s)xds

)]
,

where φ ∈ C ([0, t] : H0), x ∈ {x ∈ H0 : ‖x‖0 ≤ M}, and

φB(s) =
{

φ(s), s ∈ [0, t],
φ(t) + B(s − t) − B(0), s ∈ [t, T ],

with B a Λ-Wiener process.
Note that g is bounded, and that by the dominated convergence theorem, it is

also continuous in (φ, x). Consider the C ([0, t] : H0)-valued random variable Z
.=

{W (s)}0≤s≤t . Then

E

[∫ T

0

1

2
‖v(s)‖20 + G

(
W +

∫ ·

0
v(s)ds

)]
= E[g(Z , X)].

Since a single probabilitymeasure on a Polish space is tight, there is a compact subset
K0 of H0 such that P{X ∈ Kc

0} ≤ ε/(2‖g‖∞ + 1). Then

E[g(Z , X)] ≥ E[g(Z , X)1K0(X)] − ε

2
.
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NowweapplyLemma8.10withE1 = C ([0, t] : H0),E2 = H0, and K = K0 ∩ {x ∈
H0 : ‖x‖0 ≤ M}. Then there is ameasurablemap g1 : C ([0, t] : H0) → K such that
with X̄

.= g1(Z),

E[g(Z , X)] ≥ E[g(Z , X)1K0(X)] − ε

2

≥ E[g(Z , g1(Z))1K0(X)] − ε

2
≥ E[g(Z , g1(Z))] − ε

= E

[ [T − t]
2

∥∥X̄
∥∥2

0 + G

(
W +

∫ ·

0
1[t,T ](s)X̄ds

)]
− ε.

Letting v̄(s) = 0 for s ∈ [0, t) and v̄(s) = X̄ for s ∈ [t, T ], we now have that

E

[∫ T

0

1

2
‖v(s)‖20 + G

(
W +

∫ ·

0
v(s)ds

)]
(8.15)

≥ E

[∫ T

0

1

2
‖v̄(s)‖20 + G

(
W +

∫ ·

0
v̄(s)ds

)]
− ε.

This completes the argument for the case that G is continuous.
Finally, we remove the assumption that G is continuous. Let v take the same form

as previously, and suppose that G is bounded and measurable. It then follows from
TheoremE.4 that there are bounded and continuousG j that converge toG as j → ∞
almost surely with respect to the distribution of W and that have the same uniform
bound as G. Thus by the dominated convergence theorem, given ε > 0, we have for
all sufficiently large j ∈ N that

E

[
G j

(
W +

∫ ·

0
v(s)ds

)]
≤ E

[
G

(
W +

∫ ·

0
v(s)ds

)]
+ ε

2
.

We have shown that there is v̄ j ∈ As such that (8.15) holds with G replaced by G j .
Since sup j R(μ j ‖θ ) ≤ T M2/2, where μ j is the probability distribution of W +∫ ·
0 v̄ j (s)ds, an application of Lemma 2.5 shows that for sufficiently large j ∈ N,

E

[
G

(
W +

∫ ·

0
v̄ j (s)ds

)]
≤ E

[
G j

(
W +

∫ ·

0
v̄ j (s)ds

)]
+ ε

2
.

Thus for j that satisfy the last two displays, we have

E

[∫ T

0

1

2

∥∥v̄ j (s)
∥∥2
0 + G

(
W +

∫ ·

0
v̄ j (s)ds

)]

≤ E

[∫ T

0

1

2

∥∥v̄ j (s)
∥∥2
0 + G j

(
W +

∫ ·

0
v̄ j (s)ds

)]
+ ε

2
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≤ E

[∫ T

0

1

2
‖v(s)‖20 + G j

(
W +

∫ ·

0
v(s)ds

)]
+ ε

2

≤ E

[∫ T

0

1

2
‖v(s)‖20 + G

(
W +

∫ ·

0
v(s)ds

)]
+ ε.

Since v̄ j ∈ As , we have (8.14), and the desired upper bound (8.13) follows. �

8.2 Representation for Poisson Random Measure

In this section we present the analogous representations for functionals of a Poisson
random measure (PRM), the other important driving noise in continuous time. In
contrast to the case of a Wiener process, for PRM it is convenient and in some
sense necessary to enlarge the underlying probability space. The enlargement is
needed to define a very general class of controlled Poisson random measures. An
alternative approach that has been considered is to dilate time, thereby increasing or
decreasing rates, but this method of producing a controlled PRM does not allow for
a representation general enough. For further discussion, see [45, p. 726].

8.2.1 The Representation

For a locally compact Polish spaceS ,wedenote byΣ(S ) the spaceof allmeasures ν
on (S ,B(S )) satisfying ν(K ) < ∞ for every compact K ⊂ S . We endowΣ(S )

with the vague topology, namely the weakest topology such that for every f ∈
Cc(S ) (the space of real continuous functions on S with compact support), the
function ν → 〈 f, ν〉 = ∫

S f (u) ν(du), ν ∈ Σ(S ) is continuous. This topology can
be metrized such that Σ(S ) is a Polish space. For details, see Sect. A.4.1.

Definition 8.11 Fix T ∈ (0,∞), let X be a locally compact Polish space, and let
XT = [0, T ] × X . Let (Ω,F , P) be a probability spacewith afiltration {Ft }0≤t≤T .
Consider any measure ν ∈ Σ(X ) and let νT = λT × ν, where λT is Lebesgue mea-
sure on [0, T ]. Then anFt -Poisson random measure with intensity measure νT is a
measurable mapping N fromΩ intoΣ(XT ) such that the following properties hold.

• For every t ∈ [0, T ] and every Borel subset A ⊂ [0, t] × X , N (A) is Ft -
measurable.

• For every t ∈ [0, T ] and everyBorel subset A ⊂ (t, T ] × X , N (A) is independent
of Ft .

• If k ∈ N and Ai ∈ B(XT ), i = 1, . . . , k, are such that Ai ∩ A j = ∅ for i �= j and
νT (Ai ) < ∞, then N (A1), . . . , N (Ak) are mutually independent Poisson random
variables with parameters νT (A1), . . . , νT (Ak).
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As with the case of functionals of a Wiener process, it is convenient to first
discuss representations with respect to the canonical filtration. Thus we let M

.=
Σ(XT ) and let P denote the unique probability measure on (M,B(M)) under
which the canonical map, N : M → M, N (m)

.= m, is a Poisson random measure
with intensity measure νT . With applications to large deviations in mind, we also
consider, for θ > 0, the analogous probability measures Pθ on (M,B(M)) under
which N is a Poisson random measure with intensity θνT . (In contrast to the case
of a Wiener process, there is no simple transformation of a PRM with intensity νT
that produces a PRM with intensity θνT , θ �= 1.) The corresponding expectation
operators will be denoted by E and Eθ , respectively. At the end of this section we
state the representation for a general filtration.

We will obtain representations for − log Eθ exp{−G(N )}, where G ∈ Mb(M),
in terms of a “controlled” Poisson random measure constructed on a larger space.
We now describe this construction. Let Y

.= X × [0,∞) and YT
.= [0, T ] × Y .

Let M̄
.= Σ(YT ) and let P̄ be the unique probability measure on (M̄,B(M̄)) such

that the canonical map, N̄ : M̄ → M̄, N̄ (m)
.= m, is a Poisson randommeasure with

intensity measure ν̄T
.= λT × ν × λ∞, where λ∞ is Lebesgue measure on [0,∞).

The corresponding expectation operator will be denoted by Ē . The control will act
through this additional component of the underlying point space.

Let Gt denote the augmentation of σ
{
N̄ ((0, s] × A) : 0 ≤ s ≤ t, A ∈ B(Y )

}

with all P̄ null sets in B(M̄), and denote by PF the predictable σ -field on
[0, T ] × M̄ with the filtration {Gt }0≤t≤T on (M̄,B(M̄)). Let A be the class of all
maps ϕ : XT × M̄ → [0,∞) that are (PF⊗B(X ))\B[0,∞)measurable. [Note
that there is a slight inconsistency in the notation, since PF concerns t, ω, while
B(X ) concerns x , but we write them in the order (t, x, ω).] Since M̄ is the underly-
ing probability space, following standard convention, we will at times suppress the
dependence of ϕ(t, x, ω) on ω, (t, x, ω) ∈ XT × M̄, and merely write ϕ(t, x). For
ϕ ∈ A , define a counting process Nϕ on XT by setting

Nϕ((0, t]×U )
.=

∫

(0,t]×U

∫

(0,∞)

1[0,ϕ(s,x)](r)N̄ (ds × dx × dr) (8.16)

for all t ∈ [0, T ],U ∈ B(X ). Here Nϕ is to be thought of as a controlled random
measure, with ϕ(s, x) selecting the intensity for the points at location x and time s,
in a possibly random but nonanticipating way. Figure 8.1 illustrates how, for some
particular value x , the control modulates the jump rate by “thinning”, i.e., keeping
only the jumps corresponding to atoms of N̄ that lie below ϕ(t, x) at time t .

When ϕ(s, x, ω) = θ for all (s, x, ω) ∈ XT × M̄ and some θ > 0, we write Nϕ

as N θ . Note that N θ has the same distribution on M̄ with respect to P̄ as N has on
M with respect to Pθ . Therefore, N θ plays the role of N on M̄.

Define � : [0,∞) → [0,∞) by

�(r)
.= r log r − r + 1, r ∈ [0,∞),
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Fig. 8.1 Thinning by the
control for a particular x

T
t

r

retained atoms

discarded atoms

ϕ(t, x)

with the convention that 0 log 0 = 0. As is well known, � is the local rate function (see
Sect. 4.3 for this terminology) for a scaled standard Poisson process, and so it is not
surprising that it plays a key role in our analysis. For ϕ ∈ A , define a [0,∞]-valued
random variable LT (ϕ) by

LT (ϕ)(ω)
.=

∫

X T

�(ϕ(t, x, ω)) νT (dt × dx), ω ∈ M̄. (8.17)

As in the setting of a Wiener process, it is convenient that the representation hold
with a more restrictive class of controls. Let {Kn}n∈N be an increasing sequence of
compact subsets ofX such that ∪∞

n=1Kn = X . For each M ∈ (0,∞), let

Ab,M
.= {ϕ ∈ A : LT (ϕ) ≤ M a.e. and for some n ∈ N, n ≥ ϕ(t, x, ω) ≥ 1/n

and ϕ(t, x, ω) = 1 if x ∈ Kc
n , for all (t, ω) ∈ [0, T ] × M̄},

(8.18)
and let

Ab
.= ∪∞

M=1Ab,M . (8.19)

As before, we let ¯Ab,M , ¯A , and ¯Ab denote the analogous spaces of controls when the
canonical filtration {Gt }0≤t≤T is replaced by a filtration {Ft }0≤t≤T with the property
that N̄ is anFt -PRM with the same intensity.

The following is the representation theorem for PRM. The first equality holds
because N under Eθ has the same distribution as N θ under Ē , as was discussed
below (8.16).

Theorem 8.12 Let G ∈ Mb(M). Then for θ > 0,

− log Eθ exp{−G(N )} = − log Ē exp{−G(N θ )} (8.20)

= inf
ϕ∈R

Ē
[
θLT (ϕ) + G(N θϕ)

]
,
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where R can be either Ab,A , ¯Ab or ¯A .

The following is the analogue of Theorem 8.4 for the Poisson noise case.

Theorem 8.13 Let G ∈ Mb(M) and let δ > 0. Then there exist M < ∞ depending
on ‖G‖∞ and δ such that for all ε ∈ (0, 1),

−ε log Ē exp

{
−1

ε
G(εN 1/ε)

}
≥ inf

ϕ∈A b,M

Ē
[
LT (ϕ) + G(εNϕ/ε)

] − δ.

Proof Let δ > 0.UsingTheorem8.12withR = Ab, we can find, for each ε ∈ (0, 1),
ϕ̃ε ∈ Ab such that

−ε log Ē exp

{
−1

ε
G(εN 1/ε)

}
≥ Ē

[
LT (ϕ̃ε) + G(εN ϕ̃ε/ε)

]
− δ/2.

From the boundedness of G, we obtain

sup
ε∈(0,1)

Ē
[
LT (ϕ̃ε)

] ≤ CG
.= (2‖G‖∞ + 1).

For M ∈ N, let

τ ε
M(ω) = inf

[
t ∈ [0, T ] :

∫

[0,t]×X
�(ϕ̃ε(s, x, ω)) νT (ds × dx) ≥ M

]
∧ T .

Note that
ϕε(s, x)

.= 1 + (ϕ̃ε(s, x) − 1) 1[0,τ ε
M ](s), (s, x) ∈ XT

is an element of Ab,M . Also,

Ē
[
LT (ϕ̃ε) + G(εN ϕ̃ε/ε)

]

≥ Ē
[
LT (ϕε) + G(εNϕε/ε)

] + Ē
[
G(εN ϕ̃ε/ε) − G(εNϕε/ε)

]
.

By Chebyshev’s inequality,

Ē
∣∣∣G(εN ϕ̃ε/ε) − G(εNϕε/ε)

∣∣∣ ≤ 2‖G‖∞ P̄
{
τ ε
M < T

} ≤ 2‖G‖∞
CG

M
.

Let M = (2‖G‖∞CG + 1)/δ. Then for all ε ∈ (0, 1),

−ε log Ē exp

{
−1

ε
G(εN 1/ε)

}
≥ Ē

[
LT (ϕε) + G(εNϕε/ε)

] − δ,

as desired. �
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Remark 8.14 Wenote that Theorem3.23 is a special case of Theorems 8.12 and 8.13.
To see this, consider the caseX

.= {0} and ν
.= δ0. Define γ : M → D([0, T ] : R)

by γ (m)(t)
.= m((0, t] × {0}), t ∈ [0, T ], m ∈ M. Then γ is a Borel measurable

map, and thus by Theorem 8.12, for every bounded Borel measurable function G
mapping D([0, T ] : R) to R and θ ∈ (0,∞), we have

− log Ē exp{−G ◦ γ (N θ )} = inf
ϕ∈A

Ē
[
θLT (ϕ) + G ◦ γ (N θϕ)

]
. (8.21)

Recalling the definition ofX and ν, any ϕ ∈ A can be identified with a nonnegative
predictable process, and γ (N θϕ) is a controlled Poisson process in the sense of
Sect. 3.3; in particular, γ (N θ ) is a Poisson process with rate θ (denoted in Sect.
3.3 by N θ ). Thus the first representation in Theorem 3.23 follows readily from
(8.21) with (Ω̄, F̄ , P̄, {F̄t }) = (M̄,B(M̄), P̄, {Gt }). The second representation in
Theorem 3.23 follows similarly from Theorem 8.13.

The rest of this section is devoted to the proof of Theorem 8.12. For notational
convenience we provide details only for the case θ = 1. The general case is treated
similarly. As in the case of Brownian motion, we first consider Ab and A , and then
extend to ¯Ab and ¯A .

8.2.2 Preparatory Results

Recall thatPF denotes the predictable σ -field associated with the augmented PRM
N̄ , and thatY = X × [0,∞). A class of processes that will be used as test functions
is defined as follows. Let Âb be the set of all (PF⊗B(Y ))\B(R)-measurable
maps ϑ : YT × M̄ → R that are bounded and such that for some compact K ⊂ Y ,
ϑ(s, x, r, ω) = 0 whenever (x, r) ∈ Kc. Once again ω will usually be suppressed in
the notation. The following result is standard (see, e.g., Theorem III.3.24 of [161]),
and the analogue with Ab replaced by ¯Ab and Gt by Ft also holds. Let N 1

c be the
compensated version of N 1, which is defined by N 1

c (A)
.= N 1(A) − νT (A) for all

A ∈ B(XT ) such that νT (A) < ∞.

Theorem 8.15 (Girsanov) Let ϕ ∈ Ab. Then

E ϕ(t)
.= exp

{∫

(0,t]×X
log(ϕ(s, x))N 1

c (ds × dx) (8.22)

+
∫

(0,t]×X
(log(ϕ(s, x)) − ϕ(s, x) + 1) νT (ds × dx)

}

= exp

{∫

(0,t]×X ×[0,1]
log(ϕ(s, x))N (ds × dx × dr)

+
∫

(0,t]×X ×[0,1]
(−ϕ(s, x) + 1) ν̄T (ds × dx × dr)

}
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is a Gt -martingale. Define a probability measure Q̄ϕ on M̄ by

Q̄ϕ(H) =
∫

H
E ϕ(T )d P̄ for H ∈ B(M̄),

and let Ēϕ denote integration with respect to Q̄ϕ . Then for every ϑ ∈ Âb,

Ēϕ

∫

Y T

ϑ(s, x, r)N̄ (ds × dx × dr)

= Ēϕ

∫

Y T

ϑ(s, x, r)
[
ϕ(s, x)1(0,1](r) + 1(1,∞)(r)

]
ν̄T (ds × dx × dr).

The last statement in the lemma says that under Q̄ϕ , N̄ is a random counting
measure with compensator

[
ϕ(s, x)1(0,1](r) + 1(1,∞)(r)

]
ν̄T (ds × dx × dr).

Recall that X = ∪∞
n=1Kn for increasing compact sets Kn . A process ϕ ∈ Ab,M

is in the setAs,M if the following holds. There exist n, �, n1, . . . , n� ∈ N; a partition
0 = t0 < t1 < · · · < t� = T ; for each i = 1, . . . , � a disjoint measurable partition
Ei j of Kn, j = 1, . . . , ni ; Gti−1 -measurable random variables Xi j , i = 1, . . . , �, j =
1, . . . , ni , such that 1/n ≤ Xi j ≤ n; and

ϕ(t, x, m̄) = 1{0}(t) +
�∑

i=1

ni∑

j=1

1(ti−1,ti ](t)Xi j (m̄)1Ei j (x) + 1Kc
n
(x)1(0,T ](t). (8.23)

We let As
.= ∪∞

M=1As,M and refer to elements in As as simple processes.

Lemma 8.16 Let ϕ ∈ Ab. Then there exists a sequence of processes ϕk ∈ As with
the following properties.

(a) Nϕk converges in distribution to Nϕ as k → ∞.
(b) Ē |LT (ϕk) − LT (ϕ)| → 0 and Ē |E ϕk (T ) − E ϕ(T )| → 0, as k → ∞.

Proof We first construct processes ϕk that satisfy parts (a) and (b) of the lemma
but that instead of being simple are continuous in t . Since ϕ ∈ Ab, we have for
some n ∈ N that n ≥ ϕ(t, x, ω) ≥ 1/n and ϕ(t, x, ω) = 1 if x ∈ Kc

n for all (t, ω) ∈
[0, T ] × M̄. For k ∈ N, define

ϕk(t, x, ω) = k

(
1

k
− t

)+
+ k

∫ t

(t− 1
k )

+
ϕ(s, x, ω)ds, (t, x, ω) ∈ XT × M̄.

An application of Lusin’s theorem gives that for ν × P̄-a.e. (x, ω), as k → ∞,

∫

[0,T ]
|ϕk(t, x, ω) − ϕ(t, x, ω)|dt → 0

∫

[0,T ]
|�(ϕk(t, x, ω)) − �(ϕ(t, x, ω))|dt → 0.

(8.24)
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In particular, ϕk ∈ Ab for every k and Ē |LT (ϕk) − LT (ϕ)| → 0, as k → ∞. It fol-
lows from (D.6) and the definition of the controlled PRM that for g ∈ Cc(XT ),

Ē |〈g, Nϕk 〉 − 〈g, Nϕ〉|
≤ Ē

∫

Y T

|g(s, x)||1[0,ϕk (s,x,ω)](r) − 1[0,ϕ(s,x,ω)](r)| ν̄T (ds × dx × dr)

≤ ‖g‖∞ Ē
∫

[0,T ]×Kn

|ϕk(s, x, ω) − ϕ(s, x, ω)| νT (ds × dx ).

Using (8.24), ν(Kn) < ∞, and the uniform bounds on ϕk and ϕ shows that the last
quantity approaches 0 as k → ∞, and hence by Lemma A.10, Nϕk ⇒ Nϕ .

Nextwe consider the convergence ofE ϕk (T ) inL 1(P̄). By Scheffe’s lemma [249,
Sect. 5.11], if fk(ω) and f (ω) are densities with respect to P̄ such that fk → f in
probability, then the convergence is also inL 1(P̄). Thus it suffices to show that

E ϕk (T ) → E ϕ(T ) in P̄-probability. (8.25)

For this, it is enough to show [see (8.22)] that

∫

X T

(1 − ϕk(s, x)) νT (ds × dx ) →
∫

X T

(1 − ϕ(s, x)) νT (ds × dx )

and since N 1 = N 1
c + νT , that

∫

X T

log(ϕk(s, x))N
1(ds × dx) →

∫

X T

log(ϕ(s, x))N 1(ds × dx)

in probability as k → ∞. The first convergence is immediate from (8.24), the uni-
form bounds on ϕk, ϕ, ν(Kn) < ∞, and the fact that 1 − ϕk(s, x) = 1 − ϕ(s, x) = 0
for x /∈ Kn . The second convergence follows similarly on noting that ϕk(s, x) ∧
ϕ(s, x) ≥ 1/n implies

|log(ϕk(s, x)) − log(ϕ(s, x))| ≤ n|ϕk(s, x) − ϕ(s, x)|.

This proves (8.25) and so Ē |E ϕk (T ) − E ϕ(T )| → 0 as k → ∞. This completes the
construction of ϕk that satisfy parts (a) and (b) of the lemma.

Next we show that the processes can be assumed to be simple. Note that by
construction, t → ϕk(t, x, ω) is continuous for ν × P̄-a.e. (x, ω). Consider any ϕk

as constructed previously, and to simplify the notation, drop the k subscript. Two
more levels of approximation will be used, and indexed by q and r . Thus for the
fixed ϕ and q ∈ N, define

ϕq(t, x, ω) =
�qT �∑

m=0

ϕ

(
m

q
, x, ω

)
1( m

q , m+1
q ](t), (t, x, ω) ∈ XT × M̄.
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It is easily checked that (8.24) is satisfied as q → ∞, and so arguing as above, the
sequence {ϕq} satisfies parts (a) and (b) of the lemma. Note that for fixed q and m,
g(x, ω) = ϕ(m/q, x, ω) is aB(X )⊗F̄m/q -measurable map with values in [1/n, n]
and g(x, ω) = 1 for x ∈ Kc

n . By a standard approximation procedure one can find
B(X )⊗F̄m/q -measurable maps gr , r ∈ N with the following properties:

gr (x, ω) =
a(r)∑

j=1

crj (ω)1Er
j
(x) for x ∈ Kn,

where for each r , a(n) ∈ N, {Er
j } j=1,...,a(r) is some measurable partition of Kn , and

for all j, r , crj (ω) ∈ [1/n, n] a.s.; gr (x, ω) = 1 for x ∈ Kc
n ; gr → g a.s. ν × P̄ . If

we make such an approximation for each m and label the process obtained when the
g’s are replaced by gr ’s as ϕr

q , then ϕr
q ∈ As . Hence by the triangle inequality we can

find a sequence {ϕk} ⊂ As such that (a) and (b) hold. �
A last result is needed before we can prove the main theorem. As in the case of the

Wiener process, we need to know that controls under the original probability space
can be replicated on a new space. The proof of the lemma, which uses an elementary
but detailed argument, is given at the end of the chapter.

Lemma 8.17 For every ϕ ∈ As there is ϕ̂ ∈ As such that (LT (ϕ̂), N 1) has the same
distribution under Q̄ϕ̂ as (LT (ϕ), Nϕ) does under P̄.

We now proceed to the proof of Theorem 8.12. We will provide the proof only for
the case that R is A or Ab. The general filtration setting, i.e., when R = ¯A , ¯Ab,
can be treated as in Sect. 8.1.5.

8.2.3 Proof of the Upper Bound in the Representation

In this subsection we prove (recall that we present the argument only for θ = 1)

− log E1 exp{−G(N )} = − log Ē exp{−G(N 1)} (8.26)

≤ inf
ϕ∈A

Ē
[
LT (ϕ) + G(Nϕ)

]
.

Note that this automatically gives the corresponding bound for the smaller class Ab

in (8.20).
The proof parallels that of the case of a Wiener process. Let h : M̄ → M be

defined by

h(m̄)((0, t] ×U ) =
∫

(0,t]×U×(0,∞)

1[0,1](r)m̄(ds × dx × dr)

for t ∈ [0, T ],U ∈ B(X ). Thus N 1 = h(N̄ ). Recalling (2.1), we have
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− log Ē exp{−G(N 1)} = − log
∫

M̄

exp{−G(h(m̄))}P̄(dm̄)

= inf
Q̄∈P (M̄)

[
R

(
Q̄

∥∥P̄
) +

∫

M̄

G(h(m̄))Q̄(dm̄)

]
. (8.27)

We begin by evaluating R
(
Q̄ϕ

∥∥P̄
)
for ϕ ∈ Ab. By Theorem 8.15, {E ϕ(t)} [defined

in (8.22)] is an Gt -martingale, and under Q̄ϕ , N̄ , it is a random counting measure
with compensator

[
ϕ(s, x)1(0,1](r) + 1(1,∞)(r)

]
ν̄T (ds × dx × dr). It follows from

the definition of relative entropy and LT in (8.17) that

R
(
Q̄ϕ

∥∥P̄
)

= Ēϕ

[∫

X T

log(ϕ(s, x))N 1
c (ds × dx)

+
∫

X T

(log(ϕ(s, x)) − ϕ(s, x) + 1) νT (ds × dx)

]

= Ēϕ

[∫

X T

log(ϕ(s, x))N 1(ds × dx) +
∫

X T

(−ϕ(s, x) + 1) νT (ds × dx)

]

= Ēϕ

[∫

X T

(ϕ(s, x) log(ϕ(s, x)) − ϕ(s, x) + 1) νT (ds × dx)

]

= ĒϕLT (ϕ). (8.28)

Thus by (8.27), for ϕ ∈ Ab, we have

− log Ē exp{−G(N 1)} ≤
[
R

(
Q̄ϕ

∥∥P̄
) +

∫

M̄

G(h(m̄))Q̄ϕ(dm̄)

]
(8.29)

= Ēϕ
[
LT (ϕ) + G(N 1)

]
.

The rest of the proof is in three steps.

Step 1. Simple ϕ. Suppose one is given ϕ ∈ As . According to Lemma 8.17, one
can find ϕ̃ that is Gt -predictable and simple and such that (ϕ̃, N 1) under Q̄ϕ̃ has the
same distribution as (ϕ, Nϕ) under P̄ . This implies

Ē ϕ̃
[
LT (ϕ̃) + G(N 1)

] = Ē
[
LT (ϕ) + G(Nϕ)

]
,

and thus the desired inequality follows directly from (8.29).

Step 2. Bounded ϕ. Given ϕ ∈ Ab, let ϕk ∈ As be the sequence constructed in
Lemma 8.16. By Step 1, for every k ∈ N,

− log Ē exp{−G(N 1)} ≤ Ē
[
LT (ϕk) + G(Nϕk )

]
. (8.30)

From Lemma 8.16, under P̄, we have Nϕk ⇒ Nϕ , and Ē [LT (ϕk)] → Ē [LT (ϕ)].
However, G is not assumed continuous, and so we cannot simply pass to the limit
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in the last display. Instead, we will apply Lemma 2.5, which requires bounds on
relative entropies. The first and the last equalities in the following display follow
from Lemma 8.17, the second equality is a consequence of (8.28), and the inequality
follows from the fact that relative entropy can only decrease when one is considering
measures induced by the same mapping (in this case the random variable N 1) [see
part (f) of Lemma 2.4]:

R(P̄ ◦ (Nϕk )−1
∥∥P̄ ◦ (N 1)−1 ) = R(Q̄ϕ̃k ◦ (N 1)−1

∥∥P̄ ◦ (N 1)−1 ) (8.31)

≤ R(Q̄ϕ̃k
∥∥P̄ )

= Ē ϕ̃k
[
LT (ϕ̃k)

]

= Ē [LT (ϕk)] .

Since Ē [LT (ϕk)] → Ē [LT (ϕ)] < ∞, the relative entropies in (8.31) are uniformly
bounded in k. By Lemma 8.16 we can pass to the limit in (8.30) and obtain (8.26)
when A is replaced by Ab. For future use, note that the lower semicontinuity of
relative entropy and (8.31) imply

R(P̄ ◦ (Nϕ)−1
∥∥P̄ ◦ (N 1)−1 ) ≤ Ē [LT (ϕ)] for ϕ ∈ Ab.

Step 3. General ϕ. For ϕ ∈ A , define

ϕn(t, x, ω) =
{
[ϕ(t, x, ω) ∨ (1/n)] ∧ n, x ∈ Kn,

1 otherwise.

Note that ϕn ∈ Ab, and so (8.30) holds with ϕk replaced by ϕn . Since the definition
of ϕn implies that �(ϕn(x, t, ω)) is nondecreasing in n, by the monotone convergence
theorem, we have Ē LT (ϕn) ↑ Ē LT (ϕ). If Ē LT (ϕ) = ∞, there is nothing to prove.
Assume therefore that

Ē LT (ϕ) < ∞. (8.32)

Then R(P̄ ◦ (Nϕn )−1
∥∥P̄ ◦ (N 1)−1 ) ≤ Ē LT (ϕn)≤ Ē LT (ϕ).We claim that Nϕn con-

verges in distribution to Nϕ . If true, then using the uniformboundon relative entropies
just noted, we can once again apply Lemma 2.5, pass to the limit on n, and thereby
obtain (8.26).

Let g ∈ Cc(XT ) and let n0 be large enough that the support of g is contained in
[0, T ] × Kn0 . Then for all n ≥ n0,

Ē |〈g, Nϕn 〉 − 〈g, Nϕ〉| ≤ ‖g‖∞ Ē
∫

[0,T ]×Kn0

(
1

n
+ (ϕ(s, x) − n)+

)
νT (ds × dx).

Note that νT ([0, T ] × Kn0) < ∞, (ϕ(t, x) − n)+ → 0 as n → ∞, and
(ϕ(t, x) − n)+ ≤ �(ϕ(t, x)). These observations together with (8.32) show that the
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right-hand side in the last display approaches 0 as n → ∞. We can therefore apply
Lemma A.10, and Nϕn ⇒ Nϕ follows. �

8.2.4 Proof of the Lower Bound in the Representation

In this subsection we prove (again only for θ = 1)

− log E1 exp{−G(N )} = − log Ē exp{−G(N 1)} (8.33)

≥ inf
ϕ∈A b

Ē
[
LT (ϕ) + G(Nϕ)

]
,

which automatically gives the lower bound for the larger classA in (8.20). As in the
Brownian motion case, the proof is in two steps.

Step 1. G of a particular form. Let K , M ∈ N be arbitrary, and consider any
collection 0 = t1 < t2 < · · · < TK = T . Let h : NKM

0 → R be a bounded map. Let
C1, . . . ,CM be precompact sets inX such that Ci ∩ C j = ∅ if i �= j . Then G is of
the form

G(N 1) = h(n(t1), n(t2) − n(t1), . . . , n(tK ) − n(tK−1)), (8.34)

where for 0 ≤ t ≤ T ,

n(t) = (n1(t), . . . , nM(t)) = (N 1((0, t] × C1), . . . , N
1((0, t] × CM)). (8.35)

For G of this particular form, we will construct ϕ ∈ Ab such that

− log Ē exp{−G(N 1)} = Ē
[
LT (ϕ) + G(Nϕ)

]
,

from which (8.33) is immediate. The underlying idea is the same as in the Brownian
case. Using a conditioning argument, over each interval of the form [ti , ti+1] we can
interpret the logarithm of an exponential integral as the value function of a stochastic
control problem. From the boundedness of h, the integral is smooth in the time vari-
able, which means that the control problem has a classical-sense solution, and then
an optimal control can be found from this solution and the corresponding dynamic
programming equation. The controls over the various intervals are concatenated to
produce ϕ ∈ Ab, which actually achieves the infimum for the givenG. The following
lemma is analogous to Lemma 8.8 for the Brownian motion case and can be proved
in a similar manner. When applied, the k in the statement of the lemma will be of the
form jM , j = 0, . . . , K − 1.

Lemma 8.18 Let g : Nk
0 × N

M
0 → R be uniformly bounded, and let {n(t)}0≤t≤T be

as in (8.35). Define V : [0, T ] × N
k
0 × N

M
0 → R by

V (t, z, x)
.= − log Ēe−g(z,x+n(T−t)), (t, z, x) ∈ [0, T ] × N

k
0 × N

M
0 .
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For (t, z, x) ∈ [0, T ] × N
k
0 × N

M
0 , let

∂xi V (t, z, x)
.= V (t, z, x + ei ) − V (t, z, x),

where {ei }Mi=1 is the coordinate basis inR
M. Then for each z, x and i , ∂xi V (t, z, x) is

continuous in t ∈ [0, T ]. Let {X (z, t)}0≤t≤T with X (z, t) = (X1(z, t), . . . , XM(z, t))
be the unique solution of

Xi (z, t) =
∫

(0,t]×Ci×[0,∞)

1[0,exp{−∂xi V (s,z,X (z,s−))}](r)N̄ (ds × dx × dr), (8.36)

i = 1, . . . , M. Define

ϕ(t, x) =
M∑

i=1

ϕi (t)1Ci (x) + 1Cc(x), (t, x) ∈ [0, T ] × X ,

where C = ∪M
i=1Ci and ϕi (t) = exp{−∂xi V (t, z, X (z, t−))}. Then

− log Ē exp{−g(z, n(T ))} = Ē
[
LT (ϕ) + g (z, nϕ(T ))

]
,

where for t ∈ [0, T ],

nϕ(t) = (nϕ
1 (t), . . . , n

ϕ

M(t)) = (Nϕ((0, t] × C1), . . . , N
ϕ((0, t] × CM)). (8.37)

Since t → ∂xi V (t, z, x) is continuous and ν(Ci ) < ∞ for all (t, z, x) and i =
1, . . . , M , the solution to (8.36)will jumpafinite number of times a.s. over [0, T ]. The
equations can be solved recursively by updating the relevant component Xi (z, t̄), i =
1, . . . , M if a jump occurs at time t̄ , using (8.36) to identify the next time that one
of the components will jump, and repeating.

We next apply Lemma 8.18 recursively. For j = 1, . . . , K , define Vj : N jM
0 → R

as follows: VK = h and

Vj (z j ) = − log Ēe−Vj+1(z j ,n(t j+1)−n(t j )), z j ∈ N
jM
0 , j = 1, . . . , K − 1.

By successive conditioning it is easily checked that

V0
.= − log Ēe−V1(n(t1)−n(t0)) = − log Ee−G(N ).

Note that Vj is a boundedmap for each j . For j = 1, . . . , K , let Z j = (n(t1), n(t2) −
n(t1), . . . , n(t j ) − n(t j−1)) and note that Z j is a N

jM
0 -valued random variable. For

z j ∈ N
jM
0 and j = 1, . . . , K − 1, let {Y (z j , t)}t∈[t j ,t j+1] be the unique solution of

Yi (z j , t) =
∫

(t j ,t]×Ci×[0,∞)

1[0,exp{−∂xi Vj+1(s,z j ,Y (z j ,s−))}](r)N̄ (ds × dx × dr)
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for t ∈ [t j , t j+1], where Y (z j , t) = (Y1(z j , t), . . . , YM(z j , t)). For i = 1, . . . , M ,
define

ϕi (t) = exp{−∂xi Vj+1(t, Z j ,Y (Z j , t−))}, t ∈ [t j , t j+1), j = 0, . . . , K − 1

and

ϕ(t, x) =
M∑

i=1

ϕi (t, x)1Ci (x) + 1Cc(x), (t, x) ∈ [0, T ] × X .

Then by a recursive argument using Lemma 8.18, we see that

− log Ee−G(N ) = Ē
[
LT (ϕ) + h(nϕ(t1), . . . , n

ϕ(tK ) − nϕ(tK−1))
]

= Ē
[
LT (ϕ) + G(Nϕ)

]
,

where in the first line, nϕ is defined as in (8.37). Note that by construction, ϕ ∈ Ab.
Thus we have proved (8.33) for all G of the form (8.34).

Step 2. G that is bounded andmeasurable.Now suppose thatG is simply bounded
and measurable. We claim that there exist functions {Gn}n∈N such that for each n,Gn

is of the form assumed in Step 1, ‖Gn‖∞ ≤ ‖G‖∞, and Gn → G a.s. with respect
to P . This is shown, as in the Brownian case, by noting that each of the following
classes admits an approximation of this form relative to elements of the preceding
class, save of course the first:

• G bounded and measurable;
• G bounded and continuous;
• G bounded and continuous and depending on N 1 only through

{N 1((0, tk] × ·)}k=1,...,K ;

where K ∈ N and 0 = t1 < t2 < · · · < TK = T are arbitrary;
• G bounded and depending on N 1 only through

{N 1((0, tk] × Ci )}k=1,...,K ,i=1,...,M ,

where K , M ∈ N, 0 = t1 < t2 < · · · < TK = T and C1, . . . ,CM are precompact
sets inX such that Ci ∩ C j = ∅ if i �= j .

As before, these approximations follow by standard arguments based on Theorem
E.4 and the martingale convergence theorem. We now complete the lower bound in
exactly the same way as in the case of Brownian motion. With each n ∈ N we can
associate ϕn ∈ Ab such that

− log E exp{−Gn(N )} = Ē
[
LT (ϕn) + Gn (Nϕn )

]
.

If Qn is the distribution induced by Nϕn , then [see (8.31)]



238 8 Representations for Continuous Time Processes

R(Qn ‖P ) ≤ Ē [LT (ϕn)] ≤ 2 ‖G‖∞ .

Thus {Qn} is tight, and from part (b) of Lemma 2.5,

lim
n→∞ Ē |Gn(N

ϕn ) − G(Nϕn )| = 0.

By the dominated convergence theorem,

lim
n→∞ |log E exp{−Gn(N )} − log E exp{−G(N )}| = 0.

Therefore, given ε > 0, we can find n ∈ N such that

− log Ee−G(N ) ≥ − log Ee−Gn(N ) − ε

= Ē
[
LT (ϕn) + Gn (Nϕn )

] − ε

≥ Ē
[
LT (ϕn) + G (Nϕn )

] − 2ε.

Since ε > 0 is arbitrary and vn ∈ Ab, we have (8.33), completing the proof. �

8.2.5 Construction of Equivalent Controls

In this section we give the proof of Lemma 8.17.We need to show that given ϕ ∈ As ,
there is ϕ̂ ∈ As such that the distribution of (LT (ϕ̂), N 1) under Q̄ϕ̂ is the same as
that of (LT (ϕ), Nϕ) under P̄. Let ϕ be as in (8.23):

ϕ(t, x, m̄) = 1{0}(t) +
�∑

i=1

ni∑

j=1

1(ti−1,ti ](t)Xi j (m̄)1Ei j (x) + 1Kc
n
(x)1(0,T ](t).

Wewill need somenotation to describe howmeasures on [0, T ] × Y are decomposed
into parts on subintervals of the form (ti−1, ti ], and also how after somemanipulation
such quantities can be recombined. For i = 1, . . . , �, let Ii

.= (ti−1, ti ] and let Yi
.=

Ii × Y . Denote by M̄i the space of nonnegative σ -finite integer-valued measures m̄i

on (Yi ,B(Yi )) that satisfy m̄i (Ii × K ) < ∞ for all compact K ⊂ Y . Endow M̄i

with the weakest topology making the functions m → 〈 f,m〉,m ∈ M̄i continuous,
for every f in Cc(Yi ) vanishing outside some compact subset of Yi . Denote by
M̄i the corresponding Borel σ -field. Let N̄i be the M̄i -valued random variable on
(M̄,B(M̄)) defined by N̄i (A)

.= N̄ (A), A ∈ B(Yi ). Also, define Ji
.= [1/n, n]ni ,

and theJi -valued randomvariable Xi by Xi
.= (Xi1, . . . , Xini ).Let M̂

.= M̄1 × · · · ×
M̄�, and define � : M̂ → M̄ by �(m̂) = m, where for B ∈ B(Y ), A ∈ B[0, T ],
and with m̂ = (m1, . . . ,m�),mi ∈ M̄i , we have
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m(A × B) =
q∑

i=1

mi ((A ∩ Ii ) × B).

With these definitions,� concatenates the measures back together, and in particular,
�((N̄1, . . . , N̄�)) = N̄ .

From the predictability properties of ϕ it follows that for i = 2, . . . , �, there are
measurable maps ξi : M̄1 × · · · × M̄i−1 → Ji , which can be written in component
form ξi = (ξi1, . . . , ξini ) such that

Xi j (m̄) = ξi j (N̄1(m̄), . . . , N̄i−1(m̄)).

Also, for i = 1, we set X1 = ξ1 a.s.-P̄ for some fixed vector ξ1 in J1. The construction
of ϕ̂, which takes the same form as ϕ, is recursive. For s ∈ I1 we set ϕ̂(s, x, m̄) =
ϕ(s, x, m̄). As we will see, if there were only one time interval, we would be done,
in that Nϕ under P̄ and N 1 under Q̄ϕ̂ would have the same distribution, and the
costs LT (ϕ) and LT (ϕ̂) would obviously be the same. The definition on subsequent
intervals will depend on maps Ti : M̄1 × · · · × M̄i → M̄i for i = 1, . . . , �, which
must also be defined recursively.

Observe that under P̄, N̄1 has intensity ds × ν(dx) × dr . Under Q̄ϕ̂ , regardless
of the definition of ϕ̂ on later intervals, N̄1 has intensity

ds × ν(dx) ×
⎡

⎣
n1∑

j=1

ξ1 j1E1 j (x)1(0,1](r) + 1(1,∞)(r)

⎤

⎦ dr.

The task of T1 is to “undo” the effect of the change of measure, so that under Q̄ϕ̂ ,
N̂1 = T1

[
N̄1

]
has intensity ds × ν(dx) × dr . For m̄1 ∈ M̄1, m̂1 = T1[m̄1] is defined

as follows: for all j ∈ {1, . . . , n1} and Borel subsets A ⊂ I1, B ⊂ E1 j , C1 ⊂ [0, ξ1 j ]
and C2 ⊂ (ξ1 j ,∞),

m̂1 (A × B × [C1 ∪ C2]) = m̄1

(
A × B ×

[
1

ξ1 j
C1 ∪ (

C2 − ξ1 j + 1
)])

.

The mapping T1 can thus be viewed as a transformation on the underlying space Y1

on which m1 is defined. An equivalent characterization of m̂1 = T1(m̄1) that will be
used below is that m̂1 is the unique measure that for all nonnegative ψ ∈ Mb(Y1)

satisfies

∫

Y 1

ψ(s, x, r)m̂1(ds × dx × dr) =
n1∑

j=1

∫

Y 1

1E1 j (x)
[
ψ(s, x, ξ1 j r)1(0,1](r)

+ ψ(s, x, r + ξ1 j − 1)1(1,∞)(r)
]
m̄1(ds × dx × dr).
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With T1 in hand, the definition of ϕ̂(s, x, m̄) for s ∈ I2 is straightforward. Indeed,
since N̂1 has the same distribution under Q̄ϕ̂ that N̄1 has under P̄, and since each
ξ2 j is a function only of N̄1, with the definition X̂2 j = ξ2 j (T1[N̄1]) = ξ2 j (N̂1), X̂2 j

under Q̄ϕ̂ has the same distribution as X2 j under P̄. We now define ϕ̂ on I1 ∪ I2 as in
(8.23) but with X2 j replaced by X̂2 j . Then

{
ϕ̂(s, x, m̄), s ∈ I1 ∪ I2, x ∈ X

}
under

Q̄
ϕ̂ has the same distribution as {ϕ(s, x, m̄), s ∈ I1 ∪ I2, x ∈ X } under P̄.
We now proceed recursively, and having defined T1, . . . , Tp−1 for some 1 < p ≤

�, we define Tp by Tp(m̄1, . . . , m̄ p) = m̂ p, where m̂ p is the unique measure satisfy-
ing, for all nonnegative ψ ∈ Mb(Yp),

∫

Y p

ψ(s, x, r)m̂ p(ds × dx × dr) =
np∑

j=1

∫

Y p

1Epj (x)
[
ψ(s, x, ξ̂pj r)1(0,1](r)

+ ψ(s, x, r + ξ̂pj − 1)1(1,∞)(r)
]
m̄ p(ds × dx × dr),

where ξ̂p = ξp(m̂1, . . . , m̂ p−1) and m̂i = Ti (m̄1, . . . , m̄i ). We define the transforma-
tion T : M̄ → M̄ by

T (m̄) = �
(
T1(N̄1(m̄)), . . . , T�(N̄1(m̄), . . . , N̄�(m̄))

)
,

and define ϕ̂ ∈ As for all times s by replacing Xi j with X̂i j in the right side of (8.23),
where

X̂i (m̄) = Xi (T (m̄)) = ξi (T1(N̄1(m̄)), . . . , Ti (N̄1(m̄), . . . , N̄i (m̄))). (8.38)

Denoting T (N̄ ) by N̂ , we see that for ϑ in the class Âb defined above Theorem 8.15,

∫
ϑ(s, x, r)N̂ (ds × dx × dr) =

∫ [
ϑ(s, x, ϕ̂(s, x)r)1(0,1](r) (8.39)

+ ϑ(s, x, r + ϕ̂(s, x) − 1)1(1,∞)(r)
]
N̄ (ds × dx × dr).

Also, let hϕ : M̄ → M be defined by

hϕ(m̄)(A × B)
.=

�∑

i=1

ni∑

j=1

m̄((A ∩ Ii ) × (B ∩ Ei j ) × [0, Xi j (m̄)])

for A × B ∈ B(XT ). Recall that LT was defined in (8.17). In order to complete the
proof of the lemma, we will prove the following:

(a) the distribution of N̂ = T (N̄ ) under Q̄ϕ̂ is the same as that of N̄ under P̄;
(b) hϕ(N̄ ) = Nϕ and hϕ(T (N̄ )) = hϕ(N̂ ) = N 1;
(c) for some measurable map Θ : M̄ → [0,∞), LT (ϕ) = Θ(N̄ ) and LT (ϕ̂) =

Θ(T (N̄ )), a.s. P̄.
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Item (c) is an immediate consequence of the definition of ϕ̂ via (8.38). We next
consider (b). Noting that N̄ (m̄) = m̄, suppressing m̄ in notation, and recalling the
form of ϕ in (8.23), we have for A × B ∈ B(XT ),

hϕ(N̄ )(A × B) =
�∑

i=1

ni∑

j=1

N̄ ((A ∩ Ii ) × (B ∩ Ei j ) × [0, Xi j ])

=
�∑

i=1

∫

(ti−1,ti ]×X ×[0,∞)

1A×B(s, x)1[0,ϕ(s,x)](r)N̄ (ds × dx × dr)

=
∫

Y T

1A×B(s, x)1[0,ϕ(s,x)](r)N̄ (ds × dx × dr)

= Nϕ(A × B).

This proves the first statement in (b). Next, using (8.38), (8.39), and that r > 1 implies
r + ϕ̂(s, x) − 1 > ϕ̂(s, x), we obtain

hϕ(T (N̄ ))(A × B) =
∫

1A×B(s, x)1[0,ϕ̂(s,x)](r)N̂ (ds × dx × dr)

=
∫

1A×B(s, x)[1[0,ϕ̂(s,x)](ϕ̂(s, x)r)1[0,1](r)

+ 1[0,ϕ̂(s,x)](r + ϕ̂(s, x) − 1)1(1,∞)(r)]N̄ (ds × dx × dr)

=
∫

1A×B(s, x)1[0,1](r)N̄ (ds × dx × dr)

= N 1(A × B).

This proves the second statement in (b). Lastly, we prove (a). It suffices to show that
for every ϑ ∈ Âb,

Ē ϕ̂

∫
ϑ(s, x, r)N̂ (ds × dx × dr) = Ē ϕ̂

∫
ϑ(s, x, r)ν̄T (ds × dx × dr).

Using (8.39) and the last part of Theorem 8.15 for the first equality and that the
marginal of ν̄T (ds × dx × dr) in r is Lebesgue measure, we have

Ē ϕ̂

∫
ϑ(s, x, r)N̂ (ds × dx × dr)

= Ē ϕ̂

∫ [
ϑ(s, x, ϕ̂(s, x)r)ϕ̂(s, x)1(0,1](r)

+ ϑ(s, x, r + ϕ̂(s, x) − 1)1(1,∞)(r)
]
ν̄T (ds × dx × dr)

= Ē ϕ̂

∫ [
ϑ(s, x, r)1(0,ϕ̂(s,x)](r)

+ ϑ(s, x, r)1(ϕ̂(s,x),∞)(r)
]
ν̄T (ds × dx × dr)
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= Ē ϕ̂

∫
ϑ(s, x, r)ν̄T (ds × dx × dr),

which proves (a), and completes the proof of the lemma. �

8.3 Representation for Functionals of PRM and Brownian
Motion

In this section we state the representation for functionals of both a PRM and a Hilbert
space valued Wiener process. In Chap. 11 we will show how representations for a
Hilbert space valued Brownian motion can be translated into representations for
related objects, such as a collection of infinitely many independent scalar Brownian
motions and the Brownian sheet. The analogous conversions can also be done when
one is considering a PRM along with a Hilbert space valued Brownian motion.

The independent processes we consider are thus a Λ-Wiener process as in Defi-
nition 8.1 and a PRM as in Definition 8.11. In the proof of such a result we would
follow the same procedure as in the separate cases and consider first the canoni-
cal space and filtration and then generalize. However, in this instance we skip the
proof because it is simply a combination of the arguments used for the two separate
cases, and we instead present a result that holds for a general filtration on a general
probability space.

Thuswe let (Ω,F , P)be a probability spacewith afiltration {Ft }0≤t≤T satisfying
the usual conditions, and assume that (Ω,F , P) supports all the following processes.
Let W be a Λ-Wiener process with respect to {Ft }. Let ν be a σ -finite measure on
(X ,B(X )) and let N̄ be a PRM, with respect to {Ft }, onYT

.= [0, T ] × Y , where
Y

.= X × [0,∞), with intensity measure ν̄T
.= λT × ν × λ∞. We assume that for

all 0 ≤ s ≤ t < ∞, (N̄ ((s, t] × ·),W (t) − W (s)) is independent of Fs . Let PF
be the predictable σ -field on [0, T ] × Ω . Let ¯A W and ¯A W

b be the collections of
controls for the Wiener process defined as ¯A was below Definition 8.2 and ¯Ab was
below (8.2) respectively, and let ¯A N , ¯A N

b be controls for the PRM defined as ¯A

and ¯Ab were below (8.19). The classes ¯A N
b,M and ¯A W

b,M , which give uniform (in ω)
bounds, are defined as they were in (8.18) and (8.2). For each ϕ ∈ ¯A N , Nϕ will
be a counting process on XT defined as in (8.16) with ϕ as its controlled intensity
measure.

Let ¯Ab,M
.= ¯A W

b,M× ¯A N
b,M , ¯Ab

.= ¯A W
b × ¯A N

b , and ¯A
.= ¯A W× ¯A N . For ψ ∈ ¯A W ,

define LW
T (ψ)

.= 1
2

∫ T
0 ‖ψ(s)‖20 ds, with the norm ‖·‖0 as in Sect. 8.1.1. For ϕ ∈ ¯A N ,

define LN
T (ϕ)

.= ∫
X T

�(ϕ(t, x)) νT (dt × dx), and for u = (ψ, ϕ) ∈ ¯A , set L̄T (u)
.=

LN
T (ϕ) + LW

T (ψ). Forψ ∈ ¯A W , letWψ be defined byWψ(t) = W (t) + ∫ t
0 ψ(s)ds,

t ∈ [0, T ]. We recall the definition of the space of measuresM = Σ(XT ) from Sect.
8.2.1 and its associated topology.With these definitions, the following representation
holds. The proof of the second part of the theorem is similar to the proofs of Theorems
8.4 and 8.13.
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Theorem 8.19 Let G ∈ Mb(C ([0, T ] : H ) × M). Then for θ ∈ (0,∞),

− log E exp{−G(W, N θ )} = inf
u=(ψ,ϕ)∈R

E
[
θ L̄T (u) + G(W

√
θψ , N θϕ)

]
,

whereR can be either ¯Ab or ¯A . Furthermore, for every δ > 0, there exists M < ∞
depending on ‖G‖∞ and δ such that for all ε ∈ (0, 1),

− ε log E exp

{
−1

ε
G(

√
εW, εN 1/ε)

}

≥ inf
u=(ψ,ϕ)∈ ¯A b,M

E
[
L̄T (u) + G(

√
εWψ/

√
ε, εNϕ/ε)

]
− δ.

8.4 Notes

For basic results on Hilbert space valued Brownian motions see [69], and for Poisson
random measures see [159, 161].

The representation for a finite dimensionalBrownianmotion first appeared in [32].
In Sect. 3.2, we saw how this representation allowed a straightforward large devi-
ation analysis of small noise diffusions using weak convergence arguments. Other
applications of the finite dimensional case include large deviation analysis of small
noise diffusions with discontinuous statistics [33] and homogenization [111], and
also the analysis of importance sampling for accelerating Monte Carlo in estimating
rare events [112].

With respect to its application to large deviation analysis, the representation is
convenient because it eliminates the need for superexponentially close approxima-
tion and exponential tightness results used by other methods. A special case of the
representation, rediscovered by Borell in [31], has found use in proving various
functional inequalities, as in [184].

While convenient in the finite dimensional setting, the representation for func-
tionals of Brownian motion and associated weak convergence methods are even
more important for processes with an infinite dimensional state, where the proof of
approximation and tightness results can be very demanding, and which often require
assumptions beyond those needed for the large deviation result itself to be valid.
Representations for infinite dimensional problems first appeared in [39] for the case
of infinite dimensional Brownian motion, and in [45] for the case of Poisson random
measures. The proof given here differs substantially from those of [39, 45], in par-
ticular in that they use classical-sense solutions to dynamic programming equations
to establish the first step in the proof of the lower bound. As noted in the overview
of Part III of the book, other authors have made numerous and varied applications of
these representations and the associated abstract large deviation theorems that can
be based on them. These abstract large deviation theorems are the topic of the next
chapter.
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A generalization of the representation that is sometimes useful (see, e.g., [11] for
its use in a problem studying large deviations from a hydrodynamic limit) is that
the infimum in the representation can be restricted to simple adapted processes [39].
Another extension is to the case in which the functional, in addition to depending
on a BM and PRM, depends also on aF0-valued random variable, such as an initial
condition (see [11, 46]).

A somewhat different variational representation for functionals of a PRM is pre-
sented in [269]. This representation is given in terms of some predictable transforma-
tions on the canonical Poisson space whose existence relies on solvability of certain
nonlinear partial differential equations from the theory of mass transportation. This
imposes restrictive conditions on the intensity measure (e.g., absolute continuity
with respect to Lebesgue measure) of the PRM, and in particular, a standard Poisson
process is not covered. The use of such a representation for proving large deviation
results for general continuous time models with jumps appears to be unclear.



Chapter 9
Abstract Sufficient Conditions for Large
and Moderate Deviations in the Small
Noise Limit

In this chapter we use the representations derived in Chap. 8 to study large and
moderate deviations for stochastic systems driven by Brownian and/or Poisson noise,
and consider a “small noise” limit, as in Sects. 3.2 and 3.3. We will prove general
abstract large deviation principles, and in later chapters apply these to models in
which the noise enters the system in an additive and independent manner.1 For these
systems, one can view the mapping that takes the noise into the state of the system
as “nearly” continuous, and it is this property that allows a unified and relatively
straightforward treatment. In contrast, for the corresponding discrete time processes
of Chap.4, the noise entered in a possibly nonadditive way, and a more involved
analysiswas required. Ifwe had restricted our attention inChap.4 to recursivemodels
of the form

Xn
i+1 = Xn

i + 1

n
b(Xn

i ) + 1

n
σ(Xn

i )θi , Xn
0 = x0,

with {θi }i∈N an iid sequence (the discrete timeanalogues of themodels in this chapter),
then the analysis of Chap.4 would have been much simpler. If one were to generalize
within the continuous time framework to systems in which the noise enters in a more
complicated manner, as in for example processes with multiple time or space scales
(e.g., [111]), then the mapping from noise to state becomes more complex, as do the
formulation of large deviation results and the methods of proof.

The main results of this chapter are Theorems 9.2 and 9.9 on uniform Laplace
principles for a sequence of measurable functions of a Brownian motion and a PRM.
Theorem 9.2 is well suited for proving large deviation results for small noise sys-
tems, whereas Theorem 9.9 is motivated by applications to moderate deviations. The
proof of Theorem 9.2 is given in Sect. 9.3, and that of Theorem 9.9 is in Sect. 9.4.
Theorems 9.2 and 9.9 are applied in Chap.10 to develop large andmoderate deviation
approximations for certain finite dimensional systems. Infinite dimensional systems

1In our terminology, this includes systems with multiplicative noise, namely settings in which the
noise term is multiplied by a state-dependent coefficient.
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are considered in Chap.11, with the case of reaction–diffusion equations being devel-
oped in some detail, and in Chap.12, where stochastic flows of diffeomorphisms are
considered.

9.1 Definitions and Notation

The noise processes that drive the stochastic dynamical systems of this chapter were
introduced in Chap.8, and we adopt the notation used there. All stochastic processes
are on the time horizon [0, T ], for some T ∈ (0,∞). We recall thatΛ is a symmetric
strictly positive trace class operator on the real separable Hilbert space (H , 〈·, ·〉),
H0

.= Λ1/2H , and W
.= C ([0, T ] : H0). Recall also that for a locally compact

Polish space S , Σ(S ) is the space of all measures ν on (S ,B(S )) satisfying
ν(K ) < ∞ for every compact K ⊂ S .

Throughout this chapter we deal simultaneously with Brownian and Poisson noise
models. Because of this, we slightly modify the notation from Chap.8 to make
associations clear. Given a locally compact Polish spaceX that models the different
types of jumps under the PRM, define XT

.= [0, T ] × X , the augmented space
Y

.= X × R+ and the time-dependent version YT
.= [0, T ] × Y , and canonical

spaces M
.= Σ(XT ), M̄

.= Σ(YT ), V
.= W × M, and V̄

.= W × M̄. Let N̄ and W
be the maps from V̄ to M̄ and V̄ to W such that

N̄ (w,m) = m, W (w,m) = w, for (w,m) ∈ V̄.

Define
F 0

t
.= σ

{
N̄ ((0, s] × A),W (s) : 0 ≤ s ≤ t, A ∈ B(Y )

}
.

Assume ν ∈ Σ(X ), and define ν̄
.= ν × λ∞ and ν̄T

.= λT × ν̄, where λT and λ∞
are Lebesgue measure on [0, T ] and [0,∞), respectively. Let P denote the unique
probability measure on (V̄,B(V̄)) such that under P:

(a) W is a Λ-Wiener process with respect toF 0
t ;

(b) N̄ is an F 0
t -PRM with intensity measure ν̄T ;

(c) for all 0 ≤ s ≤ t < ∞, (N̄ ((s, t] × ·),W (t) − W (s)) is independent of F 0
s .

It follows thatW and N̄ are independent under P [167, Lemma 13.6]. Throughout
this chapter we use {Ft }, the augmentation of the filtration {F 0

t }with all P-null sets
in B(V̄). Recall the collections of controls ¯A W , ¯A W

b , ¯A W
b,n,

¯A N , ¯A N
b , and ¯A N

b,n
introduced in Sect. 8.3, where a subscript b, n means that costs are w.p.1 bounded
by n, a b denotes the union over finite n of such controls, and the overbar indicates
that the filtration used in defining these spaces is {Ft }. We also have the definitions

¯Ab,n
.= ¯A W

b,n × ¯A N
b,n , and ¯Ab

.= ∪n∈N ¯Ab,n . For u = (ψ, ϕ) ∈ ¯Ab, define the costs

LW
T (ψ)

.= 1

2

∫ T

0
‖ψ(s)‖20 ds and LN

T (ϕ)
.=

∫

X T


(ϕ(t, x)) νT (dt × dx) (9.1)
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as in Sect. 8.3, and let L̄T (u)
.= LW

T (ψ) + LN
T (ϕ). The controlled PRM Nϕ is also

defined as in that section.
Let SWn denote the subset of L 2([0, T ] : H0) defined as in (8.1), and recall that

this is a compact space with the weak topology on L 2([0, T ] : H0). For n ∈ N,
define the analogous space

SN
n

.= {
g : XT → [0,∞) : LN

T (g) ≤ n
}
.

A function g ∈ SN
n can be identified with a measure ν

g
T ∈ M according to ν

g
T (A) =∫

A g(s, x) νT (ds × dx), A ∈ B(XT ). Since convergence in M is essentially equiva-
lent toweak convergence on compact subsets, the superlinear growth of 
 implies that{
ν
g
T : g ∈ SN

n

}
is a compact subset of M. The proof of this fact is given in Appendix

A.4.3. We equip SN
n with the topology obtained through this identification, which

makes SN
n a compact space.We then let Sn

.= SWn × SN
n with the usual product topol-

ogy, with respect towhich it is also a compact space. An element u ∈ ¯Ab,n is regarded
as a random variable with values in the compact space Sn . Finally, let S

.= ∪n∈NSn .

9.2 Abstract Sufficient Conditions for LDP and MDP

Recall from Chap.1 that various normalizations or scaling sequences are possible
when one is formulating an LDP. In this section we formulate sufficient conditions
for a Laplace principle to hold for general measurable functions of (

√
εW, εN 1/ε)

and with two different scaling sequences. The first sufficient condition will be used
in Chaps. 10, 11 and 12 to study large deviation principles for small noise stochas-
tic dynamical systems. The second sufficient condition is for a moderate deviation
principle. The condition is applied to finite dimensional models in Chap.10, and for
an example of its use in an infinite dimensional setting we refer to [41]. The results
that we prove in fact give more, namely uniform Laplace principles in the sense of
Definition 1.11. The uniformity is with respect to a parameter z (typically an initial
condition), which takes values in some compact subset of a Polish space Z .

The definition of a uniform Laplace principle was given in Chap.1. The statement
there considered the scale sequence ε = 1/n, and the analogous definition for a
general scale functionκ(ε) is as follows. Let {Iz, z ∈ Z } be a family of rate functions
onX parametrized by z in a Polish spaceZ and assume that this family has compact
level sets on compacts, namely, for each compact subset K ofZ and each M < ∞,
∪z∈K {x ∈ X : Iz(x) ≤ M} is a compact subset of X . Let {X ε} be a collection of
X -valued random variables with distributions that depend on z ∈ Z and denote the
corresponding expectation operator by Ez . The collection {X ε} is said to satisfy the
Laplace principle onX with scale function κ(ε) and rate function Iz , uniformly on
compacts, if for all compact subsets K of Z and all bounded continuous functions
h mapping X into R,
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lim
ε→0

sup
z∈K

∣∣κ(ε) log Ez exp{−κ(ε)−1h(X ε)} − F(z, h)
∣∣ = 0,

where F(z, h)
.= − inf x∈X [h(x) + Iz(x)].

In this chapter it will be convenient to work with a common probability measure
(instead of a collection parametrized by z ∈ Z ) and instead note the dependence on
z in the collection of random variables, i.e., we write X ε

z instead of X
ε.

9.2.1 An Abstract Large Deviation Result

In this section we present a sufficient condition for a uniform Laplace principle with
scale function κ(ε) = ε to hold for measurable functions of (

√
εW, εN 1/ε). Recall

that N 1/ε is the PRM defined through (8.16) with ϕ ≡ 1/ε. It is defined on V̄, takes
values in M, and has an intensity measure that is scaled by 1/ε. Let {G ε}ε>0, be a
family ofmeasurablemaps fromZ × V toU,whereZ andU are somePolish spaces.
Let

{
Z ε
z

}
ε>0,z∈Z be the collection of U-valued random variables on (V̄,B(V̄), P)

defined by
Z ε
z

.= G ε(z,
√

εW, εN 1/ε). (9.2)

We are interested in a uniform large deviation principle for the family
{
Z ε
z

}
as ε → 0.

We recall from Proposition 1.14 that a uniform large deviation principle is implied
by a uniform Laplace principle.

A control u = (ψ, ϕ) ∈ ¯Ab,n will be regarded as a random variable with values
in the compact metric space Sn . The following is a sufficient condition for a large
deviation property. As noted in Sect. 9.1, L̄T (u) = LW

T (ψ) + LN
T (ϕ). Recall also the

notation Wψ(·) = W (·) + ∫ ·
0 ψ(s)ds.

Condition 9.1 There exists a measurable map G 0 : Z × V → U such that the fol-
lowing hold.

(a) For n ∈ N and compact K ⊂ Z , the set

Γn,K
.=

{
G 0

(
z,

∫ ·

0
f (s)ds, νg

T

)
: q = ( f, g) ∈ S, L̄T (q) ≤ n, z ∈ K

}
(9.3)

is a compact subset of U.
(b) For n ∈ N, let uε = (ψε, ϕε) ∈ ¯Ab,n, u = (ψ, ϕ) ∈ ¯Ab,n be such that uε con-

verges in distribution to u as ε → 0. Also, let {zε} ⊂ Z be such that zε → z as
ε → 0. Then

G ε
(
zε,

√
εWψε/

√
ε, εNϕε/ε

)
⇒ G 0

(
z,

∫ ·

0
ψ(s)ds, νϕ

T

)
.

For φ ∈ U and z ∈ Z , define SGz,φ
.= {

( f, g) ∈ S : φ = G 0(z,
∫ ·
0 f (s)ds, νg

T )
}
.

These are the controls that produce the output φ. For z ∈ Z , let Iz : U → [0,∞] be
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defined by
Iz(φ)

.= inf
q=( f,g)∈SGz,φ

L̄T (q). (9.4)

Theorem 9.2 Suppose that G ε and G 0 satisfy Condition 9.1. Suppose also that for
all φ ∈ U, z �→ Iz(φ) is a lower semicontinuous mapping from Z to [0,∞]. Then
for all z ∈ Z , Iz defined in (9.4) is a rate function on U, the family {Iz, z ∈ Z }
of rate functions has compact level sets on compacts, and

{
Z ε
z

}
satisfies a Laplace

principle with scale function ε and rate function Iz, uniformly on compact subsets of
Z .

Remark 9.3 Note that the lower semicontinuity of z �→ Iz(φ) is typically automatic
in the situation in which z is an initial condition for a stochastic process defined by
the mapping G ε, since in this case Iz(φ) < ∞ only when z = φ(0).

The proof ofTheorem9.2 is given inSect. 9.3. Twoexampleswere given inChap.3
to illustrate the role of G ε and the scaling. For convenience, we recall the diffusion
example, and hence take V = C ([0, 1] : R

k), U = C ([0, 1] : R
d), and Z = R

d .

Example 9.4 Suppose b : R
d → R

d and σ : R
d → R

d×k satisfy

‖b(x) − b(y)‖ + ‖σ(x) − σ(y)‖ ≤ C ‖x − y‖

for all x, y ∈ R
d , with C ∈ (0,∞). Let W be a standard k-dimensional Brownian

motion, and for fixed z ∈ R
d and ε > 0, let X ε

z = {
X ε
z (t)

}
0≤t≤1 be the strong solution

of the SDE

dX ε
z (t) = b(X ε

z (t))dt + √
εσ (X ε

z (t))dW (t), X ε
z (0) = z. (9.5)

From the unique pathwise solvability of this SDE (see [172, Definition 5.3.2 and
Corollary 5.3.23]), it follows that for each ε > 0, there is a measurable map G ε :
R

d × C ([0, 1] : R
k) → C ([0, 1] : R

d) such that X ε
z = G ε(z,

√
εW ) is the solution

to (9.5). The corresponding map G 0 can be defined by G 0
(
z,

∫ ·
0 f (s)ds

) = ϕ if for
z ∈ R

d and f ∈ L 2([0, 1] : R
k),

ϕ(t) = z +
∫ t

0
b(ϕ(s))ds +

∫ t

0
σ(ϕ(s)) f (s)ds, t ∈ [0, 1],

and G 0 (z, γ ) ≡ 0 for all other (z, γ ) ∈ R
d × C ([0, 1] : R

d). Along the lines of the
discussion in Chap.3, it is easily checked that Condition 9.1 is valid, and in particular,
part (b) is simply a restatement of the LLN limit X̄ ε

zε ⇒ X̄z , where X̄ ε
zε and X̄z are

the solutions to

d X̄ ε
zε (t) = b(X̄ ε

zε (t))dt + σ(X̄ ε
zε (t))ψε(t)dt + √

εσ (X̄ ε
zε (t))dW (t),
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X̄ ε
zε (0) = zε, and

d X̄z(t) = b(X̄z(t))dt + σ(X̄z(t))ψ(t)dt, X̄z(0) = z.

In Chaps. 10, 11, and 12 we consider other applications of Theorem 9.2.

Remark 9.5 The discussion of Example 9.4 shows that the main additional work
needed to prove a uniform LDP instead of the ordinary LDP is to prove, instead of
the convergence X̄ ε

z ⇒ X̄z , the stronger convergence property X̄ ε
zε ⇒ X̄z whenever

zε → z. However, the proof of this stronger convergence property, at least in most
situations of interest, requires the same analysis as that used for the convergence with
a fixed initial condition. Thus in some uses later of Theorems 9.2 and 9.9 we present
the argument for a fixed initial condition, and leave it to the reader to check that the
same arguments could be used for converging initial conditions and thereby yield
the uniform Laplace principle. Two exceptions are the reaction–diffusion example
of Chap.11 and the serve-the-longest queueing example of Chap.13. For the latter
example, as with many models in queueing, the discrete nature of the state space for
the prelimit models requires initial conditions that depend on the scaling parameter.

9.2.2 An Abstract Moderate Deviation Result

Let {K ε}ε>0 be a family of measurable maps from Z × V to U. Let a : (0,∞) →
(0,∞) be such that as ε → 0,

a(ε) → 0 and κ(ε)
.= ε

a2(ε)
→ 0. (9.6)

For ε > 0 and z ∈ Z , let Y ε
z

.= K ε(z,
√

εW, εN 1/ε). In this section we formulate a
sufficient condition for the collection

{
Y ε
z

}
ε>0 to satisfy a uniform Laplace principle

with scale function κ(ε) and a rate function that is given through a suitable quadratic
form.

While the large and moderate deviation assumptions and arguments are very sim-
ilar when one is considering a diffusionmodel, a significant difference occurs when a
PRMdriving noise is included. This is very similar to the situation encountered in the
discrete time analogue presented in Chap.5. In particular, the Poisson cost must be
replaced by an appropriate quadratic functional in the limit ε → 0, and the dynamics
are also adjusted to make analysis of the LLN limits easier. This is done by center-
ing the controls on ϕ ≡ 1 and rescaling. The following inequalities will be used to
translate bounds on controls ϕε into bounds on this quadratic approximation. Recall
the function 
(r)

.= r log r − r + 1. The following properties can be easily shown.
Part (a) has been used many times already, but is included here for convenience.
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Lemma 9.6 (a) For a, b ∈ (0,∞) and σ ∈ [1,∞), ab ≤ eσa + 1
σ

(b).

(b) For every β > 0, there exist κ1(β), κ̄1(β) ∈ (0,∞) such that κ1(β) and κ̄1(β)

converge to 0 as β → ∞, and for r ≥ 0,

|r − 1| ≤ κ1(β)
(r) if |r − 1| ≥ β, and r ≤ κ̄1(β)
(r) if r ≥ β > 1.

(c) There is a nondecreasing function κ2 : (0,∞) → (0,∞) such that for each
β > 0,

|r − 1|2 ≤ κ2(β)
(r) for |r − 1| ≤ β, r ≥ 0.

(d) There exists κ3 ∈ (0,∞) such that


(r) ≤ κ3|r − 1|2, |
(r) − (r − 1)2/2| ≤ κ3|r − 1|3 for all r ≥ 0.

Recall LN
T (g)

.= ∫
X T


(g(s, y))νT (ds × dy) and LW
T (ψ)

.= 1
2

∫ T
0 ‖ψ(s)‖20 ds. For

ε > 0 and n ∈ N, define the spaces

SN ,ε
n,+

.= {g : XT → R+ such that LN
T (g) ≤ na2(ε)} (9.7)

SN ,ε
n

.= { f : XT → R such that f = (g − 1)/a(ε), with g ∈ SN ,ε
n,+}.

Thus SN ,ε
n are the centered and rescaled versions of the nonnegative functions appear-

ing in SN ,ε
n,+ . The following result is immediate from Lemma 9.6.

Lemma 9.7 Suppose g ∈ SN ,ε
n,+ for some n < ∞ and let f = (g − 1)/a(ε). Then:

(a)
∫

X T

| f (s, y)||1{| f (s,y)|≥β/a(ε)}νT (ds × dy) ≤ na(ε)κ1(β) for all β > 0;

(b)
∫

X T

g(s, y)1{g(s,y)≥β}νT (ds × dy) ≤ na2(ε)κ̄1(β) for all β > 1;

(c)
∫

X T

| f (s, y)|21{| f (s,y)|≤β/a(ε)}νT (ds × dy) ≤ nκ2(β) for all β > 0,

where κ1, κ̄1 and κ2 are as in Lemma 9.6.

Let

U ε
n,+

.=
{
(uW , uN ) ∈ ¯Ab : uW (·, ω) ∈ SWna(ε)2

, uN (·, ·, ω) ∈ SN ,ε
n,+ , P̄-a.s.

}
. (9.8)

Thus by (9.7),U ε
n,+ is the class of controls for both types of noise for which the cost

scales proportionally with a(ε)2. Owing to the moderate deviation scaling, one can
assume without loss that the control appearing in the representation can be restricted
to a class of this form, with n depending on the function F . However, as ε → 0
we will need to use the centered and rescaled analogues, which are related to a
diffusion approximation to the original process. This requires additional notation
and definitions.



252 9 Abstract Sufficient Conditions for Large and Moderate Deviations

The norm in the Hilbert space L 2(νT ) is denoted by ‖ · ‖N ,2, and the norm in
L 2([0, T ] : H0) by ‖ · ‖W,2. LetL 2 .= L 2([0, T ] : H0) × L 2(νT ) and recall that
PF is the predictable σ -field on [0, T ] × V̄ with the filtration {Ft } on (V̄,B(V̄)).

Given a map K 0 : Z × L 2 → U, z ∈ Z , and η ∈ U, let

SKz,η
.= {q = ( f1, f2) ∈ L 2 : η = K 0(z, q)},

and define Iz for z ∈ Z by

Iz(η)
.= inf

q=( f1, f2)∈SKz,η

[
1

2

(‖ f1‖2W,2 + ‖ f2‖2N ,2

)]
. (9.9)

Here SKz,η identifies the L 2 spaces that lead to the outcome q under the map K 0,
which can be associated with themapK ε linearized about the LLN limit. As always,
we follow the convention that the infimum over an empty set is +∞.

We now introduce a sufficient condition that ensures that Iz is a rate function
for every z ∈ Z , the collection {Iz}z∈Z has compact level sets on compacts, and
the collection {Y ε

z } satisfies a Laplace principle with scale function κ(ε) and rate
function Iz as ε → 0. Let

Ŝn
.= {( f1, f2) ∈ L 2 : ‖ f1‖2W,2 + ‖ f2‖2N ,2 ≤ n}. (9.10)

Condition 9.8 For some measurable map K 0 : Z × L 2 → U, the following two
conditions hold.

(a) For every n ∈ N and compact K ⊂ Z , the set

Γn,K
.=

{
K 0(z, q) : z ∈ K , q ∈ Ŝn

}

is a compact subset of U.
(b) Given n ∈ N and ε > 0, let (ψε, ϕε) ∈ U ε

n,+ [defined in (9.8)]. Let θε =
ψε/a(ε) and ζ ε = (ϕε − 1)/a(ε). Suppose that for some β ∈ (0, 1], there is m ∈ N

such that (θε, ζ ε1{|ζ ε |≤β/a(ε)}) ⇒ (θ, ζ ) in Ŝm. Also, let {zε} ⊂ Z be such that zε → z
as ε → 0. Then

K ε
(
zε,

√
εWψε/

√
ε, εNϕε/ε

)
⇒ K 0(z, θ, ζ ).

Note that from Lemma 9.7, (θε, ζ ε1{|ζ ε |≤β/a(ε)}), as in part (b) of Condition 9.8,
takes values in Ŝm with m = n(1 + κ2(β)). Thus if the condition holds, one can
take m = n(1 + κ2(β)) without loss of generality. The following is the analogue of
Theorem 9.2 for the moderate deviation scaling.

Theorem 9.9 Suppose that K ε and K 0 satisfy Condition 9.8. Suppose also that
for all φ ∈ U, z �→ Iz(φ) is a lower semicontinuous mapping from Z to [0,∞].
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Then for z ∈ Z , Iz defined in (9.9) is a rate function on U, the family {Iz, z ∈ Z }
of rate functions has compact level sets on compacts, and {Y ε

z } satisfies a uniform
Laplace principle with scale function κ(ε) and rate function Iz as ε → 0.

The proof of Theorem 9.9 is in Sect. 9.4. As with Theorem 9.2, the assumption
of lower semicontinuity of z �→ Iz(φ) is often vacuous when z plays the role of an
initial condition (see Remark 9.3).

Example 9.10 Let X ε
z be as in Example 9.4. In addition to the Lipschitz condition

on the coefficients b, σ , assume that b is continuously differentiable. Let X0
z be the

solution of the ODE Ẋ0
z (t) = b(X0

z (t)), X
0
z (0) = z, and let Y ε

z = (X ε
z − X0

z )/a(ε).
Then for each ε > 0, there is a measurable map K ε from R

d × C ([0, 1] : R
k) to

C ([0, 1] : R
d) such that Y ε

z = K ε(z,
√

εW ). The corresponding map

K 0 : R
d × L 2([0, 1] : R

k) → C ([0, 1] : R
d)

is defined by K 0(z, f ) = ηz, f , where ηz, f is the unique solution of the equation

ηz, f (t) =
∫ t

0
[Db(X0

z (s))](ηz, f (s))ds +
∫ t

0
σ(X0

z (s)) f (s)ds,

where Db(x) is the matrix (∂bi (x)/∂x j )i j . In Chap.10, under the assumption that
Db is Lipschitz continuous, it will be shown using Theorem 9.9 that for each fixed
z, Y ε

z satisfies a Laplace principle with scale function κ(ε). The proof of the uniform
Laplace principle can be given similarly by considering arbitrary zε → z as ε → 0.
This result can be viewed as a moderate deviation principle for the diffusion process
X ε
z . Chapter 10 will treat the more general setting of d-dimensional jump-diffusions,

andwe refer the reader to [41] for analogous results in an infinite dimensional setting.

9.3 Proof of the Large Deviation Principle

In this section we prove Theorem 9.2. We first argue that for all compact K ⊂ Z
and each M < ∞,

ΛM,K
.= ∪z∈K {φ ∈ U : Iz(φ) ≤ M} (9.11)

is a compact subset of U. Note that this will show that for each z ∈ Z , Iz is a
rate function and the collection {Iz, z ∈ Z } has compact level sets on compacts.
To establish this, we will show that ΛM,K equals ∩δ∈(0,1)ΓM+δ,K , where ΓM,K is as
in (9.3). In view of part (a) of Condition 9.1, the compactness of ΛM,K will then
follow. Let φ ∈ ΛM,K . Then there exists z ∈ K such that Iz(φ) ≤ M . We can now
find, for each δ ∈ (0, 1), qδ = ( fδ, gδ) ∈ SGz,φ , i.e., φ = G 0(z,

∫ ·
0 fδ(s)ds, ν

gδ

T ), such
that L̄T (qδ) ≤ M + δ. In particular, φ ∈ ΓM+δ,K . Since δ ∈ (0, 1) is arbitrary, we
have ΛM,K ⊂ ∩δ∈(0,1)ΓM+δ,K . Conversely, suppose φ ∈ ΓM+δ,K for all δ ∈ (0, 1).
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Then for each δ ∈ (0, 1), there exists zδ ∈ K , qδ = ( fδ, gδ) ∈ S, L̄T (qδ) ≤ M + δ,
such that φ = G 0(zδ,

∫ ·
0 fδ(s)ds, ν

gδ

T ). In particular, we have

inf
z∈K Iz(φ) ≤ Izδ

(φ) ≤ L̄T (qδ) ≤ M + δ.

Sending δ → 0 gives inf z∈K Iz(φ) ≤ M . Since themap z �→ Iz(φ) is lower semicon-
tinuous, φ ∈ ΛM,K , and the inclusion ∩δ∈(0,1)ΓM+δ,K ⊂ ΛM,K follows. This proves
the compactness of ΛM,K and finishes the first part of the theorem.

We next prove the second statement in the theorem. Fix z ∈ Z and let {zε}ε>0 ⊂
Z be such that zε → z as ε → 0. Fix F ∈ Cb(U). In view of Proposition 1.12, it
suffices to prove the Laplace upper bound

lim sup
ε→0

ε log E exp

{
−1

ε
F(Z ε

zε )

}
≤ − inf

φ∈U
[Iz(φ) + F(φ)] (9.12)

and lower bound

lim inf
ε→0

ε log E exp

{
−1

ε
F(Z ε

zε )

}
≥ − inf

φ∈U
[Iz(φ) + F(φ)]. (9.13)

Proof of the Laplace upper bound. Fix δ > 0 and recall from Sect. 8.3 that Wψ

denotes W + ∫ ·
0ψ(s)ds. Using Theorem 8.19 and the definition (9.2) of Z ε

zε , there
existsM < ∞ such that for each ε ∈ (0, 1), one can find uε = (ψε, ϕε) ∈ ¯Ab,M with

− ε log E exp

{
−1

ε
F(Z ε

zε )

}

= −ε log E exp

{
−1

ε
F ◦ G ε(zε,

√
εW, εN 1/ε)

}

≥ E
[
L̄T (uε) + F ◦ G ε

(
zε,

√
εWψε/

√
ε, εNϕε/ε

)]
− δ.

Using the compactness of SM , we can find a subsequence {εk} along which uεk con-
verges in distribution to some u=(ψ, ϕ) that takes values in SM a.s. By a standard sub-
sequential argument, it is enough todemonstrate the lowerbound for this subsequence,
which for simplicity we label as ε. From part (b) of Condition 9.1, it follows that

lim inf
ε→0

E
[
L̄T (uε) + F ◦ G ε

(
zε,

√
εWψε/

√
ε, εNϕε/ε

)]

≥ E

[
L̄T (u) + F ◦ G 0

(
z,

∫ ·

0
ψ(s)ds, νϕ

T

)]

≥ inf
{(φ,q)∈U×SM :q∈SGz,φ}

[
L̄T (q) + F(φ)

]

= inf
φ∈U

[Iz(φ) + F(φ)],
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where the first inequality is a consequence of Fatou’s lemma and the lower semicon-
tinuity of q �→ L̄T (q) on SM , and the second inequality follows from the definition
of SGz,φ , and the equality is due to the definition of Iz(φ) in (9.4). Since δ > 0 is
arbitrary, this completes the proof of the upper bound (9.12). �
Proof of the Laplace lower bound. We need to prove the inequality in (9.13).
Without loss of generalitywe can assume that infφ∈U[Iz(φ) + F(φ)] < ∞. Let δ > 0
be arbitrary, and let φ0 ∈ U be such that

Iz(φ0) + F(φ0) ≤ inf
φ∈U

[Iz(φ) + F(φ)] + δ

2
. (9.14)

Choose q0 = ( f0, g0) ∈ SGz,φ0
such that

L̄T (q0) ≤ Iz(φ0) + δ

2
. (9.15)

Note that φ0 = G 0
(
z,

∫ ·
0 f0(s)ds, ν

g0
T

)
. Using the representation in Theorem 8.19,

we obtain

lim sup
ε→0

−ε log E exp

{
−1

ε
F(Z ε

zε )

}

= lim sup
ε→0

inf
u=(ψ,ϕ)∈ ¯A

E
[
L̄T (u) + F ◦ G ε

(
zε,

√
εWψ/

√
ε, εNϕ/ε

)]

≤ lim sup
ε→0

E
[
L̄T (q0) + F ◦ G ε

(
zε,

√
εW f0/

√
ε, εNg0/ε

)]

= L̄T (q0) + lim sup
ε→0

E
[
F ◦ G ε

(
zε,

√
εW f0/

√
ε, εNg0/ε

)]
.

By part (b) of Condition 9.1, we have

lim
ε→0

E
[
F ◦ G ε

(
zε,

√
εW f0/

√
ε, εNg0/ε

)]
= F ◦ G 0

(
z,

∫ ·

0
f0(s)ds, ν

g0
T

)

= F(φ0).

In view of (9.14) and (9.15), the left side of (9.13) can be at most infφ∈U[Iz(φ) +
F(φ)] + δ. Since δ is arbitrary, the proof of the Laplace lower bound is complete. �

9.4 Proof of the Moderate Deviation Principle

In this section we prove Theorem 9.9. In order to show that Iz defined in (9.9) is a
rate function on U and the family {Iz, z ∈ Z } of rate functions has compact level
sets on compacts, we need to show that for every compact K ⊂ Z and M < ∞,
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the set ΛM,K defined in (9.11), but with Iz as in (9.9), is compact. The proof of this
property is exactly the same as that in the proof of Theorem 9.2, except we make use
of part (a) of Condition 9.8 instead of the corresponding part of Condition 9.1. We
omit the details.

We next prove the second statement in the theorem. Fix z ∈ Z and let {zε}ε>0 ⊂
Z be such that zε → z as ε → 0. Fix F ∈ Cb(U). It suffices to prove the Laplace
upper and lower bounds:

lim sup
ε→0

κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}
≤ − inf

φ∈U
[Iz(φ) + F(φ)], (9.16)

lim inf
ε→0

κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}
≥ − inf

φ∈U
[Iz(φ) + F(φ)]. (9.17)

Proof of the Laplace upper bound. Since Y ε,zε .= K ε(zε,
√

εW, εN ε−1
), Theorem

8.19 implies

− κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}
(9.18)

= inf
u=(ψ,ϕ)∈ ¯A b

E

[
1

a2(ε)
L̄T (u) + F ◦ K ε

(
zε,

√
εWψ/

√
ε, εNϕ/ε

)]
.

For later use, recall that by Theorem 8.3, ¯Ab in the representation can be replaced
by ¯A . Choose ũε = (ψ̃ε, ϕ̃ε) ∈ ¯Ab such that

− κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}
+ ε (9.19)

≥ E

[
1

a2(ε)

[
LW
T (ψ̃ε) + LN

T (ϕ̃ε)
]

+ F ◦ K ε
(
zε,

√
εW ψ̃ε/

√
ε, εN ϕ̃ε/ε

)]
.

Note that for ε ∈ (0, 1),

1

a2(ε)
E

[
LW
T (ψ̃ε) + LN

T (ϕ̃ε)
]

≤ M̃
.= (2‖F‖∞ + 1).

We would like to argue as in Theorem 8.4 that one can consider controls that are in
a certain sense bounded, but in this case the bound should depend on ε. Fix δ > 0
and define

τ ε .= inf
{
t ∈ [0, T ] : LW

t (ψ̃ε) ≥ a2(ε)2M or LN
t (ϕ̃ε) ≥ a2(ε)2M

}
∧ T,

where M
.= M̃‖F‖∞/δ. Let

ϕε(s, y)
.= ϕ̃ε(y, s)1{s≤τ ε} + 1{s>τε}, ψε(s)

.= ψ̃ε(s)1{s≤τ ε}
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for (s, y) ∈ XT . Then uε .= (ψε, ϕε) ∈ ¯Ab,

LN
T (ϕε) ≤ a2(ε)2M, LW

T (ψε) ≤ a2(ε)2M,

and

P{ϕε �= ϕ̃ε or ψε �= ψ̃ε} ≤ 1

a2(ε)2M
E

[
LW
T (ψ̃ε) + LN

T (ϕ̃ε)
]

≤ δ

2‖F‖∞
.

For (s, y) ∈ XT , define the rescaled and (for ϕε) centered controls

ζ ε(s, y)
.= ϕε(s, y) − 1

a(ε)
, θε(s)

.= ψε(s)

a(ε)
.

Fix any β ∈ (0, 1]. Applying part (d) of Lemma 9.6 yields

E

[
1

a2(ε)

∫

X T


(ϕ̃ε)dνT

]
≥ E

[
1

a2(ε)

∫

X T


(ϕε)1{|ζ ε |≤β/a(ε)}dνT

]

≥ E

[∫

X T

(
1

2
(ζ ε)2 − κ3a(ε)|ζ ε|3

)
1{|ζ ε |≤β/a(ε)}dνT

]

≥
(
1

2
− κ3β

)
E

[∫

X T

(ζ ε)21{|ζ ε |≤β/a(ε)}dνT

]
. (9.20)

Also, from the definition of τ ε, it follows that

E
[
F ◦ K ε

(
zε,

√
εW ψ̃ε/

√
ε, εN ϕ̃ε/ε

)
− F ◦ K ε

(
zε,

√
εWψε/

√
ε, εNϕε/ε

)]

≤ 2‖F‖∞P{ϕε �= ϕ̃ε or ψε �= ψ̃ε}
≤ δ.

The definition of τ ε implies ϕε ∈ SN ,ε
2M,+, which was defined in (9.7), and thus part (c)

of Lemma 9.7 implies an upper bound of 2Mκ2(β) on the expected value in (9.20).
Using the last two displays, (9.19), and κ2(1) ≥ κ2(β), we have

− κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}

≥ E

[
1

2

∫

X T

(ζ ε)21{|ζ ε |≤β/a(ε)}dνT + LW
T (θε)

]
(9.21)

+ E
[
F ◦ K ε

(
zε,

√
εWψε/

√
ε, εNϕε/ε

)]
− δ − ε − 2βκ3Mκ2(1).

Recall Ŝn defined in (9.10), and note that {θε, ζ ε1{|ζ ε |≤β/a(ε)}} is a sequence in the
compact set ŜK for sufficiently large but finite K , and is therefore automatically
tight. Let (θ, ζ ) be a limit point along a subsequence that we index once more by
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ε. By a standard argument by contradiction, it suffices to prove (9.16) along this
subsequence. Using part (b) of Condition 9.8, we have that along this subsequence,

K ε
(
zε,

√
εWψε/

√
ε, εNϕε/ε

)
⇒ K 0(z, θ, ζ )

.= η.

Hence taking limits in (9.21) along this subsequence yields

lim inf
ε→0

−κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}

≥ E

[
1

2
(‖θ‖2W,2 + ‖ζ‖2N ,2) + F(η)

]
− δ − βκ3Mκ2(1)

≥ E
[
Iz(η) + F(η)

] − δ − βκ3Mκ2(1)

≥ inf
η∈U

[
Iz(η) + F(η)

] − δ − βκ3κ2(1)
M̃‖F‖∞

δ
,

where the first line is from Fatou’s lemma, and the second uses the definition of Iz
in (9.9). Sending first β to 0 and then δ to 0 gives (9.16). �
Proof of the Laplace lower bound. For δ > 0, there exists η ∈ U such that

Iz(η) + F(η) ≤ inf
η∈U

[Iz(η) + F(η)] + δ/2. (9.22)

Choose (θ, ζ ) ∈ SKz,η such that

1

2
(‖θ‖2W,2 + ‖ζ‖2N ,2) ≤ Iz(η) + δ/2. (9.23)

For β ∈ (0, 1], define

ζ ε .= ζ1{|ζ |≤β/a(ε)}, ϕε .= 1 + a(ε)ζ ε, ψε .= a(ε)θ.

For every ε > 0, using ζ ε = (ϕε − 1)/a(ε) and part (d) of Lemma 9.6, we have

∫

X T


(ϕε)dνT ≤ κ3

∫

X T

(ϕε − 1)2dνT = a2(ε)κ3

∫

X T

|ζ ε|2dνT ≤ a2(ε)M,

where M
.= κ3

∫
X T

|ζ |2dνT . Thus ϕε ∈ U ε
M,+, with this space defined in (9.8), for

all ε > 0. Also
ζ ε1{|ζ ε |≤β/a(ε)} = ζ1{|ζ |≤β/a(ε)},

which converges to ζ in L2(νT ) as ε → 0. Thus by part (b) of Condition 9.8,

K ε
(
zε,

√
εWψε/

√
ε, εNϕε/ε

)
⇒ K 0(z, θ, ζ ) = η. (9.24)
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Using part (d) of Lemma 9.6 and κ(ε)ε−1 = 1/a(ε)2, we obtain

κ(ε)ε−1LN
T (ϕε) ≤ 1

2

∫

X T

|ζ ε|2 dνT + κ3

∫

X T

a(ε)|ζ ε|3 dνT

≤ 1

2
(1 + 2κ3β)

∫

X T

|ζ |2 dνT .

For ϕε as defined in terms of ζ , there is no guarantee that ϕε ∈ ¯A N
b . However, as

noted previously, the variational representation (9.18) holds with ¯Ab replaced by ¯A .
Hence by the last display,

− κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}

≤ 1

a2(ε)

[
LW
T (ψε) + LN

T (ϕε)
] + E

[
F ◦ K ε

(
zε,

√
εWψε/

√
ε, εNϕε/ε

)]

≤ 1

2
(‖θ‖2W,2 + ‖ζ‖2N ,2) + E

[
F ◦ K ε

(
zε,

√
εWψε/

√
ε, εNϕε/ε

)]

+ κ3β

∫

X T

|ζ |2 dνT .

Taking the limit as ε → 0 and using (9.24) yields

lim sup
ε→0

−κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}

≤ 1

2
(‖θ‖2W,2 + ‖ζ‖2N ,2) + F(η) + κ3β

∫
|ζ |2dνT .

Finally, sending β → 0 gives

lim sup
ε→0

−κ(ε) log E exp

{
− 1

κ(ε)
F(Y ε

zε )

}
≤ 1

2
(‖θ‖2W,2 + ‖ζ‖2N ,2) + F(η)

≤ Iz(η) + F(η) + δ/2

≤ inf
η∈U

[Iz(η) + F(η)] + δ,

where the second inequality is from (9.23) and the last inequality follows from (9.22).
Since δ > 0 is arbitrary, this completes the proof of (9.17) and consequently the proof
of Theorem 9.9. �

9.5 Notes

The sufficient condition for a Laplace principle given in Theorem 9.2, in the case that
there is no Poisson noise, was established in [39], and the general case was treated in
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[45], where its application to the study of a small noise LDP for finite dimensional
jump-diffusions was studied as well. The sufficient condition given in Theorem 9.9
for the case inwhich the driving noise does not have aGaussian component was given
in [41]. This work also gave applications of Theorem 9.9 to the study of moderate
deviation principles for finite and infinite dimensional stochastic dynamical systems
driven by Poisson random measures.

The sufficient conditions given in this chapter have found applications in many
different problems. Some of the works that have used the sufficient condition for
Brownian motion functional given in [39] include [20–22, 37, 43, 44, 63, 64, 71,
91, 142, 143, 156, 191, 192, 196, 203, 207, 212–216, 218, 236, 244, 250, 254–256,
263, 268, 270]. Sufficient conditions given in this chapter for functionals of PRM
and BM have been used in [12, 38, 47, 55, 70, 75, 251, 253, 258, 262, 264, 267,
272]. MDP sufficient conditions have found applications in [48, 57, 186–188, 194,
257, 265, 273].



Chapter 10
Large and Moderate Deviations
for Finite Dimensional Systems

In this chapterweuse the abstract sufficient conditions fromChap.9 to prove large and
moderate deviation principles for small noise finite dimensional jump-diffusions.We
will consider only Laplace principles rather than uniform Laplace principles, since,
as was noted in Chap.9, the extension from the nonuniform to the uniform case
is straightforward. The first general results on large deviation principles for jump-
diffusions of the form considered in this chapter are due to Wentzell [245–248] and
Freidlin and Wentzell [140]. The conditions for an LDP identified in the current
chapter relax some of the assumptions made in these works. Results on moderate
deviation principles in this chapter are based on the recent work [41]. We do not
aim for maximal generality, and from the proofs it is clear that many other models
(e.g., time inhomogeneous jump diffusions, SDEs with delay) can be treated in an
analogous fashion.

The perspective here is different from that of the discrete time model of Chap. 4.
In particular, the emphasis is on viewing the stochastic model as a relatively well
behaved mapping on a fixed noise space consisting of a Brownian motion and one
or more Poisson random measures. This has important consequences for models
with degeneracy, i.e., systems for which the noise does not push the state in all
directions. Processes of this sort in the general discrete time setting required com-
plicated assumptions such as Condition4.8 and a delicate mollification argument as
in Sect. 4.8. In contrast, the degeneracy is essentially irrelevant when the process of
interest can be viewed as a nice mapping (at least asymptotically) on a fixed noise
space. This distinction becomes even more significant for the infinite dimensional
models of Chap.11, where the analogous degeneracy is ubiquitous. In this chapter
we use Lipschitz continuity assumptions on the coefficients to guarantee that the
mapping is well behaved. However, this is not necessary, especially with regard to
Poisson noise, and for one such weakening we refer to Sect. 13.3.

The chapter is organized as follows. Section10.1 introduces the basic stochastic
process model that will be considered. Conditions under which the stochastic equa-
tion and its deterministic analogue have unique solutions are given. In Sect. 10.2 we
use Theorem9.2 to establish an LDP for the solution under additional integrability
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conditions. Finally, in Sect. 10.3 we apply Theorem9.9 to prove a moderate devi-
ations result. For this result the integrability conditions we require are somewhat
weaker, though additional smoothness conditions on the coefficients are assumed
so that one can easily expand around the LLN limit, and the proof of tightness, as
with the discrete time model of Chap.5, is more involved than for the large deviation
counterpart.We use the notation fromChap.9, except that in this chapter,W is a finite
dimensional standard Brownian motion, i.e.,H0 = H = R

d , W = C ([0, T ] : R
d),

and Λ is the identity operator.

10.1 Small Noise Jump-Diffusion

We consider small noise stochastic differential equations (SDEs) of the form

X ε(t) = x0 +
∫ t

0
b(X ε(s))ds + √

ε

∫ t

0
σ(X ε(s))dW (s)

+ ε

∫
X t

G(X ε(s−), y)N 1/ε(ds × dy), (10.1)

where W is a standard d-dimensional Wiener process, N 1/ε is a PRM with intensity
measure λT × ν (see Definition8.11) constructed from N̄ as in (8.16) with ϕ = 1/ε,
and W, N̄ satisfy (a)–(c) in Sect. 9.1. The coefficients are assumed to satisfy the
following condition.

Condition 10.1 The functions b : R
d → R

d , σ : R
d → R

d×d , and G : R
d × X →

R
d satisfy
(a) for some Lb ∈ (0,∞),

‖b(x) − b(x̄)‖ ≤ Lb‖x − x̄‖, x, x̄ ∈ R
d;

(b) for some Lσ ∈ (0,∞),

‖σ(x) − σ(x̄)‖ ≤ Lσ‖x − x̄‖, x, x̄ ∈ R
d;

(c) for some LG ∈ L 1(ν),

‖G(x, y) − G(x̄, y)‖ ≤ LG(y)‖x − x̄‖, x, x̄ ∈ R
d , y ∈ X ;

(d) for some MG ∈ L 1(ν),

‖G(x, y)‖ ≤ MG(y)(1 + ‖x‖), x ∈ R
d , y ∈ X .

The following result follows by standard arguments (seeTheorem IV.9.1 of [159]).
It says that under Condition10.1, Eq. (10.1) has a unique pathwise solution. In
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applying results from Chap.9, we take U = D([0, T ] : R
d), i.e., the space of R

d -
valued right-continuous functions with left limits and the usual Skorokhod topology
[24, Chap.3, Sect. 12].

Theorem 10.2 Fix x0 ∈ R
d , and assume Condition10.1. Then for each ε > 0,

there is a measurable map G ε : V → D([0, T ] : R
d) such that for every prob-

ability space (Ω̃, F̃ , P̃) on which are given a d-dimensional Brownian motion
W̃ and an independent Poisson random measure Ñε on XT with intensity mea-
sure ε−1νT , X̃ ε .= G ε(

√
εW̃ , εÑε) is an F̃t

.= σ {W̃ (s), Ñε(B × [0, s]), s ≤ t, B ∈
B(X ), ν(B) < ∞} adapted process that is the unique solution of the stochastic
integral equation

X̃ ε(t) = x0 +
∫ t

0
b(X̃ ε(s))ds + √

ε

∫ t

0
σ(X̃ ε(s))dW̃ (s)

+ ε

∫
X t

G(X̃ ε(s−), y)Ñε(ds × dy), (10.2)

for t ∈ [0, T ]. In particular, X ε = G ε(
√

εW, εN 1/ε) is the unique solution of (10.1).

10.2 An LDP for Small Noise Jump-Diffusions

The solution X ε of (10.1) is a D([0, T ] : R
d)-valued random variable. To prove

a large deviation principle for {X ε}ε>0 as ε → 0, we will assume the following
additional condition on the coefficient function G. For ρ ∈ (0,∞), let L ρ

exp be the
collection of all measurable θ : X → R+ such that whenever A ∈ B(X ) satisfies
ν(A) < ∞, ∫

A
eρθ(y)ν(dy) < ∞. (10.3)

Let Lexp

.= ∩ρ∈(0,∞)L ρ
exp.

Condition 10.3 MG ∈ Lexp and LG ∈ L ρ
exp for some ρ > 0.

Remark 10.4 This exponential integrability condition on jump distributions is a nat-
ural requirement for the model; it should be compared with Condition4.3, assumed
in the study of small noise discrete time Markov recursive systems. Consider, for
example, the case in whichX = R

d , ν ∈ P(Rd) satisfies
∫
Rd e〈α,y〉ν(dy) < ∞ for

all α ∈ R
d , and for some d × d matrix A and a vector w ∈ R

d ,

G(x, y) = Ay + y 〈x,w〉 .

Then G satisfies parts (c) and (d) of Condition10.1, as well as Condition10.3. In the
general case (in which ν need not be a probability measure), note that the local rate
function corresponding to just the jump part of the SDE (10.2) would be
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L(x, β) = inf

[∫
X

(g(y))ν(dy) :
∫
X

G(x, y)g(y)ν(dy) = β

]
. (10.4)

Using convex duality and that (b) is dual to (ea − 1), for this to be superlinear in β

[a condition needed for the rate function on path space to have compact level sets in
the usual topology of D([0, T ] : R

d)], one needs

∫
X

[
e〈α,G(x,y)〉 − 1

]
ν(dy) < ∞ for all α ∈ R

d . (10.5)

However, this follows under Conditions10.1 and 10.3. One can break the integral
in (10.5) according to {y : MG(y) > 1} and {y : MG(y) ≤ 1}. Then MG ∈ L 1(ν)

implies ν({y : MG(y) > 1}) < ∞, and the integral over {y : MG(y) > 1} is finite
due to Condition10.3. The mean value theorem gives the bound ‖α‖ e‖α‖MG(y)
for the integrand on {y : MG(y) ≤ 1}, and finiteness for the corresponding integral
follows from MG ∈ L 1(ν).

We recall that S
.= ∪n∈NSn , with each Sn

.= SWn × SN
n compact in the appropriate

topology. The proof of the following theorem proceeds using a standard argument
and is given after Lemma10.8.

Theorem 10.5 Fix x0 ∈ R
d , and assume Conditions10.1 and 10.3. Then for each

q = ( f, g) ∈ S, there is a unique ξ = ξq ∈ C ([0, T ] : R
d) such that for all t ∈

[0, T ],

ξ(t) = x0 +
∫ t

0
b(ξ(s))ds +

∫ t

0
σ(ξ(s)) f (s)ds

+
∫
X t

G(ξ(s), y)g(s, y)ν(dy)ds. (10.6)

For q = ( f, g) ∈ S, let ξ = ξq denote the solution of (10.6). Let I : D([0, T ] :
R

d) → [0,∞] be defined by

I (φ)
.= inf

q∈S:φ=ξq
L̄T (q), (10.7)

where L̄T (q)
.= LW

T ( f ) + LN
T (g), with the individual costs defined as in (9.1).

Theorem 10.6 Assume Conditions10.1 and 10.3. Then I is a rate function on
D([0, T ] : R

d) and {X ε}ε>0 satisfies a large deviation principle on D([0, T ] : R
d)

with rate function I .

Following our standard convention, the proof is given for T = 1. Before pro-
ceeding with the proof, we present two lemmas. The first will be used to prove
tightness. Recall that g ∈ SN

n means that
∫
[0,T ]×X (g(u, y))ν(dy)du ≤ n. For a

function f : [0, 1] → R
k , define ‖ f ‖∞,t

.= sup0≤s≤t ‖ f (s)‖ for t ∈ [0, 1]. Note that



10.2 An LDP for Small Noise Jump-Diffusions 265

the constant c(δ, n) appearing in the lemma may also depend on the function θ .
However, when the lemma is used, this will be a fixed quantity, such as MG(y), that
is associated with a particular process model under consideration.

Lemma 10.7 Let θ ∈ Lexp and suppose that ν({θ > 1}) < ∞. Then for every δ > 0
and n ∈ N, there exists c(δ, n) ∈ (1,∞) such that for all θ̃ : X → R+ satisfying
θ̃ ≤ θ , every measurable map f : [0, 1] → R+, and all 0 ≤ s ≤ t ≤ 1,

sup
g∈SN

n

∫
(s,t]×X

f (u)θ̃(y)g(u, y)ν(dy)du

≤ c(δ, n)

(∫
X

θ̃ (y)ν(dy)

) (∫ t

s
f (u)du

)
+ δ ‖ f ‖∞,1 . (10.8)

Proof Let f : [0, 1] → R+, g ∈ SN
n , and δ > 0 be given. Then for eachm ∈ (0,∞),

∫
(s,t]×X

f (u)θ̃(y)g(u, y)ν(dy) du = T1(m) + T2(m), (10.9)

where

T1(m)
.=

∫
(s,t]×{θ≤m}

f (u)θ̃(y)g(u, y)ν(dy)du,

and

T2(m)
.=

∫
(s,t]×{θ>m}

f (u)θ̃(y)g(u, y)ν(dy)du.

Using part (a) of Lemma9.6 with σ = k, a = θ(y) and b = g(u, y), for each k ∈ N

we have the bound

T2(m) ≤ ‖ f ‖∞,1

(∫
{θ>m}

ekθ(y)ν(dy) + n

k

)
.

Also, for each β ∈ (1,∞), T1(m) can be bounded by

T1(m) ≤ T3(m, β) + T4(m, β),

where

T3(m, β)
.=

∫
E1(m,β)

f (u)θ̃(y)g(u, y)ν(dy)du,

T4(m, β)
.=

∫
E2(m,β)

f (u)θ̃(y)g(u, y)ν(dy)du,
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and

E1(m, β)
.= {(u, y) ∈ (s, t] × X : θ(y) ≤ m and g(u, y) ≤ β},

E2(m, β)
.= {(u, y) ∈ (s, t] × X : θ(y) ≤ m and g(u, y) > β}.

Using part (b) of Lemma9.6 and that g ∈ SN
n , we obtain

T3(m, β) + T4(m, β) ≤ β

(∫
X

θ̃ (y)ν(dy)

) (∫ t

s
f (u)du

)
+ κ̄1(β)mn ‖ f ‖∞,1 .

(10.10)
Thus the left side of (10.8) can be bounded by

β

(∫
X

θ̃ (y)ν(dy)

) (∫ t

s
f (u)du

)

+ ‖ f ‖∞,1

(
κ̄1(β)mn +

∫
{θ>m}

ekθ(y)ν(dy) + n

k

)
.

Given δ > 0, choose k ∈ N such that n/k < δ/3. Then use that θ ∈ Lexp to choose
m ∈ (0,∞) such that

∫
{θ>m} e

kθ(y)ν(dy) < δ/3. This is possible, since ν({θ > 1}) <

∞. Finally, choose β ∈ (1,∞) such that κ̄1(β)mn < δ/3. The result now follows by
taking c(δ, n) = β. �

The following lemma is proved similarly to Lemma 10.7 and therefore only a
sketch is provided. Recall that X1

.= [0, 1] × X and ν1 ∈ P(X1) is the product
measure ν1(ds × dy) = ν(dy)ds.

Lemma 10.8 Let θ ∈ L ρ
exp ∩ L 1(ν) for some ρ ∈ (0,∞). Then for every n ∈ N,

sup
g∈SN

n

∫
X 1

θ(y)g(u, y)ν(dy)du < ∞.

Proof Consider the equality in (10.9) with m = 1, s = 0, t = 1, f = 1, and θ̃ = θ .
Then as in the proof of Lemma10.7,

T2(1) ≤
∫

{θ>1}
eρθ(y)ν(dy) + n

ρ
.

Also, as with the proof of (10.10),

T1(1) ≤
∫
X

θ(y)ν(dy) + κ̄1(1)n.

The result follows by combining the two estimates. �
Proof of Theorem10.5. Fix q = ( f, g) ∈ S and let k ∈ N be such that q ∈ Sk .We first
prove the existence of a solution to (10.6). Consider a sequence {φn} inC ([0, 1] : R

d)
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constructed recursively as follows.Defineφ1(t)
.= x0 for all t ∈ [0, 1], and for n ∈ N,

let

φn+1(t)
.= x0 +

∫ t

0
b(φn(s))ds +

∫ t

0
σ(φn(s)) f (s)ds

+
∫
X t

G(φn(s), y)g(s, y)ν(dy)ds, t ∈ [0, 1]. (10.11)

Using the growth conditions on b, σ , and G, we have that there is a c1 ∈ (0,∞) such
that for all n ∈ N and t ∈ [0, 1],

‖φn+1‖∞,t ≤ ‖x0‖ + c1

∫ t

0
(1 + ‖φn‖∞,s)(1 + | f (s)|)ds

+ c1

∫
X t

MG(y)(1 + ‖φn‖∞,s)g(s, y)ν(dy)ds.

Thus, with h(s)
.= (1 + | f (s)| + ∫

X MG(y)g(s, y)ν(dy)), for some c2 ∈ (0,∞),
we have

‖φn+1‖∞,t ≤ c2

(
1 +

∫ t

0
‖φn‖∞,sh(s)ds

)
, t ∈ [0, 1], n ∈ N.

FromLemma10.8, we obtain
∫
[0,1] h(s)ds < ∞. A standard recursive argument now

shows that for all n, ‖φn‖∞,1 ≤ c2 exp
∫ 1
0 h(s)ds < ∞.

Using Lemma10.7, it is easily seen that for each n ∈ N, φn ∈ C ([0, 1] : R
d).

Indeed, the continuity of the last term in (10.11) follows on observing that for every
δ > 0 and 0 ≤ s ≤ t ≤ 1,

∫
(s,t]×X

‖G(φn(u), y)‖g(u, y)ν(dy)du

≤ (1 + ‖φn‖∞,1)

(
c(δ, k)(t − s)

∫
X

MG(y)ν(dy) + δ

)
.

For n ∈ N and t ∈ [0, 1], let an(t) .= ‖φn+1 − φn‖∞,t . Then there exists c3 ∈ (0,∞)

such that for all n ≥ 2 and t ∈ [0, 1],

an(t) ≤ c3

∫ t

0
an−1(s)ds + c3

∫ t

0
an−1(s)| f (s)|ds

+
∫ t

0
an−1(s)

(∫
X

LG(y)g(s, y)ν(dy)

)
ds.

Thus, with m(s)
.= c3(1 + | f (s)|) + ∫

X LG(y)g(s, y)ν(dy), we have for all t ∈
[0, 1] and n ≥ 2 that
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an(t) ≤
∫ t

0
an−1(s)m(s)ds.

This shows that for all n ∈ N,

an+1(1) ≤ a1(1)

(∫ 1
0 m(s)ds

)n

n! .

Lemma10.8 implies
∫
X 1

LG(y)g(s, y)ν(dy)ds < ∞, and thus
∫ 1
0 m(s)ds < ∞.

From this it follows that {φn} is a Cauchy sequence in C ([0, 1] : R
d) and there-

fore must converge to some φ ∈ C ([0, 1] : R
d). From the continuity of b and σ it

follows that for every t ∈ [0, 1],
∫ t

0
b(φn(s))ds +

∫ t

0
σ(φn(s)) f (s)ds →

∫ t

0
b(φ(s))ds +

∫ t

0
σ(φ(s)) f (s)ds.

Also,

∫
X 1

‖G(φn(s), y) − G(φ(s), y)‖g(s, y)ν(dy)ds

≤ ‖φn − φ‖∞,1

∫
X 1

LG(y)g(s, y)ν(dy)ds.

Since
∫
X 1

LG(y)g(s, y)ν(dy)ds < ∞, the right-hand side in the last display con-
verges to 0 as n → ∞. Combining these observations, we have that φ solves (10.6),
proving the existence of solutions.

We now consider uniqueness. Suppose that φ1, φ2 are two solutions of (10.6) in
C ([0, 1] : R

d). Then using the Lipschitz property of b, σ , and G, we have that for
some c4 ∈ (0,∞) and all t ∈ [0, 1],

‖φ1 − φ2‖∞,t ≤ c4

∫ t

0
‖φ1 − φ2‖∞,sds + c4

∫ t

0
‖φ1 − φ2‖∞,s | f (s)|ds

+
∫ t

0
‖φ1 − φ2‖∞,s

(∫
X

LG(y)g(s, y)ν(dy)

)
ds.

Thus

‖φ1 − φ2‖∞,t ≤
∫ t

0
‖φ1 − φ2‖∞,s

(
c4 + c4| f (s)| +

∫
X

LG(y)g(s, y)ν(dy)

)
ds.

Recalling that
∫
X 1

LG(y)g(s, y)ν(dy) < ∞, an application of Gronwall’s lemma
implies φ1 = φ2. �

The following lemma is useful in characterizing the limit points of weakly con-
verging controlled jump processes. It will be used in the proof of Theorem10.6.
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Recall that as discussed in Sect. 9.1, gk → g in the topology of SN
n if

∫
X 1

f gkdν1 →∫
X 1

f gdν1 for bounded continuous f with compact support.

Lemma 10.9 Fix n ∈ N and let K be a compact subset ofX1. Let g, gk ∈ SN
n , k ∈ N

be such that gk → g. Also, let γ : X1 → R be a bounded measurable function. Then
as k → ∞,

∫
K

γ (s, y)gk(s, y)ν(dy)ds →
∫
K

γ (s, y)g(s, y)ν(dy)ds. (10.12)

Proof We assume that ν1(K ) = 0, since otherwise, the result is trivially true. By
replacing, if needed, gk and g with gk + 1K and g + 1K respectively, we can assume
without loss of generality that

∫
K g(s, y)ν1(ds × dy) = 0 and

∫
K gk(s, y)ν1(ds ×

dy) = 0 for all k ∈ N. If (10.12) holds with K replaced by K1, where K ⊂ K1 for
some compact K1, then by taking γ̃ = γ 1K , we see that (10.12) also holds with the
compact set K . Also, since ν is finite on every compact set, we can always find a
compact set K1 ⊃ K such that ν1(∂K1) = 0. Hence in proving the lemma, we can
assume without loss of generality that ν1(∂K ) = 0. Recall from Chap.9 that for
g ∈ SN

n , ν
g
1 is defined by setting ν

g
1 (A) = ∫

A g(s, y)ν1(ds × dy) for A ∈ B(X1).
Define probability measures ν̃k and ν̃ as follows:

ν̃k(·) .= ν
gk
1 (· ∩ K )

mk
, ν̃(·) .= ν

g
1 (· ∩ K )

m
,

where m
.= ν

g
1 (K ) and mk

.= ν
gk
1 (K ). Let θ(·) .= ν1(· ∩ K )/ν1(K ). Then

R(ν̃k ‖θ ) =
∫
K
log

(
ν1(K )

mk
gk(s, y)

)
1

mk
gk(s, y)ν1(ds × dy)

= 1

mk

∫
K
[(gk(s, y)) + gk(s, y) − 1] ν1(ds × dy) + log

ν1(K )

mk

≤ n

mk
+ 1 − ν1(K )

mk
+ log

ν1(K )

mk
.

Since gk → g and ν1(∂K ) = 0, it follows that mk → m, and therefore the last dis-
play implies supk∈N R(ν̃k ‖θ ) < ∞. Also note that ν̃k converges weakly to ν̃. From
Lemma2.5, it follows that

1

mk

∫
K

γ (s, y)gk(s, y)ν1(ds × dy) → 1

m

∫
K

γ (s, y)g(s, y)ν1(ds × dy),

which proves (10.12). �
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10.2.1 Proof of the Large Deviation Principle

In this section we prove Theorem10.6. Theorem 10.2 shows that the solution to
the SDE (10.2) can be expressed as a measurable mapping on the input noises:
X ε = G ε(

√
εW, εN 1/ε). We now verify that G ε satisfies Condition9.1, which by

Theorem9.2will complete the proof of the LDP. The notation used is that of Sect. 9.2.
In particular, the spaces V and V̄ are the canonical spaces for a Brownian motion
and PRM onX1 and Y1, respectively.

Define G 0 : V → D([0, T ] : R
d) as follows. If (w,m) ∈ V is of the form

(w,m) = (
∫ ·
0 f (s)ds, νg

1 ) for some q = ( f, g) ∈ S, set

G 0(w,m) = G 0

(∫ ·

0
f (s)ds, νg

1

)
= ξq ,

where ξq is the unique solution of (10.6). For all other (w,m) ∈ V set G 0(w,m) = 0.
Since L̄T (q) = ∞ for such q, with this definition, I defined in (10.7) is the same as
the function I defined in (9.4).

We will show that part (b) of Condition9.1, which is the weak convergence of the
controlled processes as ε → 0, holds with this choice of G 0. Part (a) of the condition
follows if we prove continuity of q �→ G 0(q) for q such that L̄T (q) ≤ n (recall that
the initial condition has been assumed fixed). This is in fact an easier deterministic
analogue of the proof of part (b), and hence omitted (see, for example, the proof
of Theorem11.25). Fix n ∈ N and let uε = (ψε, ϕε) ∈ ¯Ab,n , u = (ψ, ϕ) ∈ ¯Ab,n be
such that uε converges in distribution to u as ε → 0. We recall that this implies the
a.s. bounds

∫ 1

0
‖ψε(s)‖2 ds ≤ n and

∫
X 1

(ϕε(s, x))ν1(ds × dx) ≤ n. (10.13)

Furthermore, almost surely ϕε(s, x) has upper and lower bounds of the form 1/δ
and δ for all x in some compact set K , and ϕε(s, x) = 1 for x /∈ K (where δ > 0
and K depend on ϕε). The analogous statements also hold for (ψ, ϕ), and as we
will see, the ability to restrict to controls with such nice properties greatly simplifies
the arguments. Almost all of the difficulties in the proof are due to the jump term
[for comparison, one can consider the proof of the analogous diffusion model in
Theorem3.19].

Let ϕ̃ε = 1/ϕε and for t ∈ [0, 1] define

E ε
1 (t)

.= exp

[∫
X t×[0,∞)

1[0,ϕε(s,y)/ε](r) log(ϕ̃ε(s, y))N̄ (ds × dy × dr)

+
∫
X t×[0,∞)

1[0,ϕε(s,y)/ε](r)(−ϕ̃ε(s, y) + 1)ν̄1(ds × dy × dr)

]
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and

E ε
2 (t)

.= exp

[
− 1√

ε

∫ t

0
ψε(s)dW (s) − 1

2ε

∫ t

0
‖ψε(s)‖2ds

]
.

Let E ε(t) = E ε
1 (t)E ε

2 (t). Then using the independence between the Brownian and
Poisson noises, it follows that {E ε(t)}0≤t≤1 is a Ft -martingale, and consequently

Q̄ε(A) =
∫
A
E ε(1)dP, A ∈ B(V̄)

defines a probability measure on V̄. The bounds (10.13) on ψε and ϕε along with
the properties of ϕε in terms of some compact set K noted below (10.13) imply
that P and Q̄ε are mutually absolutely continuous, and by Girsanov’s theorem [see
TheoremD.3], (√

εWψε/
√

ε, εNϕε/ε
)

under Q̄ε has the same probability law as (
√

εW, εN 1/ε) under P , where we recall
Wψ/

√
ε .=W + ∫ ·

0 ψ(s)ds/
√

ε. Thus it follows that X̄ ε = G ε(
√

εWψε/
√

ε, εNϕε/ε) is
the unique solution, under both Q̄ε and P , of the controlled SDEgiven by X̄ ε(0) = x0
and

d X̄ ε(t) = [
b(X̄ ε(t)) + σ(X̄ ε(t))ψε(t)

]
dt + √

εσ (X̄ ε(t))dW (t)

+ ε

∫
X

G(X̄ ε(t−), x)Nϕε/ε(dt × dx). (10.14)

We end this section by stating martingale bounds that will be useful in the sequel.
Recall the definition of ¯A N from Sect. 8.3. Also recall that for ϕ ∈ ¯A N , Nϕ

c denotes
the compensated form of Nϕ .

Lemma 10.10 Let ϕ ∈ ¯A N , and assume thatψ : [0, 1] × Ω × X → R isPF ⊗
B(X )/B(R)-measurable and

E
∫
X 1

(|ψ(s, x)| ∨ |ψ(s, x)|2)ϕ(s, x)ν1(ds × dx) < ∞.

Then there exists C ∈ (0,∞) such that for all t ∈ [0, T ]

E

[
sup
0≤s≤t

∣∣∣∣
∫
X t

ψ(s, x)Nϕ
c (ds × dx)

∣∣∣∣
]

≤ CE

[∫
X t

ψ(s, x)2ϕ(s, x)ν1(ds × dx)

] 1
2

,

and there is also the bound

E

[
sup
0≤s≤t

∣∣∣∣
∫
X t

ψ(s, x)Nϕ
c (ds × dx)

∣∣∣∣
2
]

≤ 4E

[∫
X t

ψ(s, x)2ϕ(s, x)ν1(ds × dx)

]
.



272 10 Large and Moderate Deviations for Finite Dimensional Systems

Proof The bounds follow from Doob’s maximal inequality and the Lenglart–
Lepingle–Pratelli inequality [(D.2) and (D.4) of Appendix D], and from expressions
for the quantities on the right-hand sides that are stated in Sect.D.2.2. In particular, in
applying (D.2), we use that the expected quadratic variation of the stochastic integral
in the last display is

E
∫
X t

ψ(s, x)2Nϕ(ds × dx) = E
∫
X t

ψ(s, x)2ϕ(s, x)ν1(ds × dx).

�

10.2.1.1 Tightness

Lemma 10.11 Assume Conditions10.1 and 10.3. Given controls (ψε, ϕε) ∈ ¯Ab,n,
let X̄ ε be the corresponding unique solution to (10.14). Then {X̄ ε} is a tight family
of D([0, 1] : R

d)-valued random variables.

Proof We begin with an estimate on the supremum of X̄ ε(t). Recalling ‖x‖∞,t
.=

sup0≤s≤t ‖x(s)‖, by Condition10.1 we have that for suitable c1 < ∞,

‖X̄ ε‖∞,t ≤ ‖x0‖ + c1

∫ t

0
(1 + ‖X̄ ε‖∞,s)(1 + ‖ψε(s)‖)ds

+ √
ε

∥∥∥∥
∫ ·

0
σ(X̄ ε(s))dW (s)

∥∥∥∥∞,t

+ ε

∥∥∥∥
∫
X ·

MG(y)(1 + ‖X̄ ε(s−)‖)Nϕε/ε
c (ds × dy)

∥∥∥∥
∞,t

+
∫
X t

MG(y)(1 + ‖X̄ ε‖∞,s)ϕ
ε(s, y)ν(dy)ds,

where Nϕε/ε
c (ds × dy) = Nϕε/ε(ds × dy) − ε−1ϕε(s, y)ν1(ds × dy). Let

Rε
t

.=√
ε

∥∥∥∥
∫ ·

0
σ(X̄ ε(s))dW (s)

∥∥∥∥∞,t

(10.15)

+ ε

∥∥∥∥
∫
X ·

MG(y)(1 + ‖X̄ ε(s−)‖)Nϕε/ε
c (ds × dy)

∥∥∥∥
∞,t

.

Using the bound (10.13) for ψε and Hölder’s inequality, Gronwall’s inequality
[LemmaE.2] gives

1 + ‖X̄ ε‖∞,1 ≤ (1 + ‖x0‖ + Rε
1) exp

{
c1(1 + √

n) +
∫
X 1

MG(y)ϕε(s, y)ν(dy)ds

}

≤ c2(1 + ‖x0‖ + Rε
1), (10.16)
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where, using Lemma10.7 with δ = 1, f ≡ 1 and g = ϕε and the fact that MG ∈
L 1(ν) ∩ Lexp, we obtain

c2
.= exp

{
c1(1 + √

n) + c(1, n)

∫
X

MG(y)ν(dy) + 1

}
< ∞.

Also, Condition10.1 implies that for some c3 < ∞,

√
εE

∥∥∥∥
∫ ·

0
σ(X̄ ε(s))dW (s)

∥∥∥∥∞,1

≤ c3
√

ε
(
E‖X̄ ε‖∞,1 + 1

)
.

Let m ∈ (0,∞). Then the expectation of the second term in the definition ofRε
t can

be bounded by the sum of

T ε
1

.= εE

∥∥∥∥
∫
X ·

MG(y)1{MG≤m}(1 + ‖X̄ ε(s−)‖)Nϕε/ε
c (ds × dy)

∥∥∥∥
∞,1

(10.17)

and

T ε
2

.= 2E
∫
X t

MG(y)1{MG≥m}(1 + ‖X̄ ε(s)‖)ϕε(s, y)ν(dy)ds. (10.18)

For (10.18), we use the representation Nϕε/ε
c = Nϕε/ε − ε−1ϕεν1, that the corre-

sponding integrals are almost surely nondecreasing in t , and the identity

εE
∫
X t

MG(y)1{MG≥m}(1 + ‖X̄ ε(s−)‖)Nϕε/ε(ds × dy)

= E
∫
X t

MG(y)1{MG≥m}(1 + ‖X̄ ε(s)‖)ϕε(s, y)ν(dy)ds.

An application of Lemmas10.7 and 10.10 as used before yield that for some c4 < ∞,

T ε
1 ≤ c4

√
εmE

[
(1 + ‖X̄ ε‖∞,1)

∫
X 1

MG(y)ϕε(s, y)ν(dy)ds

]1/2

≤ c4
√

εm(1 + E‖X̄ ε‖∞,1)

(
c(1, n)

∫
X

MG(y)ν(dy) + 1

)1/2

.

Also, for every δ > 0,

T ε
2 ≤ 2(1 + E‖X̄ ε‖∞,1)

(
c(δ, n)

∫
X

MG(y)1{MG≥m}ν(dy) + δ

)
.
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Choosing δ > 0 sufficiently small and thenm < ∞ sufficiently large, there is ε0 > 0
such that for all ε ≤ ε0,

ERε
1 = c3

√
ε
(
E‖X̄ ε‖∞,1 + 1

) + T ε
1 + T ε

2 ≤ 1

2c2

(
E‖X̄ ε‖∞,1 + 1

)
.

Using this in (10.16) then gives that for ε ≤ ε0,

Ē‖X̄ ε‖∞,1 ≤ 2c2(‖x0‖ + 1),

and therefore
sup
ε≤ε0

Ē‖X̄ ε‖∞,1 < ∞. (10.19)

Henceforth we consider only ε < ε0. We next argue that Rε
1 defined in (10.15)

converges to 0 in probability. The term with the Brownian motion is easy. Using
Condition10.1, the estimate in (10.19), and theBurkholder–Davis–Gundy inequality,
it follows that

√
ε

∥∥∥∥
∫

[0,·]
σ(X̄ ε(s))dW (s)

∥∥∥∥
∞,1

→ 0 in probability as ε → 0. (10.20)

Next we consider the Poisson term, and write

ε

∫
X t

G(X̄ ε(s−), y)Nϕε/ε(ds × dy) (10.21)

= ε

∫
X t

G(X̄ ε(s−), y)Nϕε/ε
c (ds × dy) +

∫
X t

G(X̄ ε(s), y)ϕε(s, y)ν(dy)ds.

Consider thefirst termon the right side of (10.21). Forα ∈ (0,∞), define the stopping
time τ ε

α

.= inf{s : ‖X̄ ε(s)‖ > α}. We first show that

T α,ε .= ε

∥∥∥∥∥
∫

(0,τ ε
α∧·]×X

G(X̄ ε(s−), y)Nϕε/ε
c (ds × dy)

∥∥∥∥∥∞,1

converges to zero in probability as ε → 0. To do this, note that for every r ∈ (0,∞),

T α,ε ≤ T α,ε
≤r + T α,ε

>r ,

where

T α,ε
≤r

.= ε

∥∥∥∥∥
∫

(0,τ ε
α∧·]×{MG (y)≤r}

G(X̄ ε(s−), y)Nϕε/ε
c (ds × dy)

∥∥∥∥∥∞,1

,



10.2 An LDP for Small Noise Jump-Diffusions 275

T α,ε
>r

.= ε

∥∥∥∥∥
∫

(0,τ ε
α∧·]×{MG (y)>r}

G(X̄ ε(s−), y)Nϕε/ε
c (ds × dy)

∥∥∥∥∥∞,1

.

By Lemma10.10, there is c5 ∈ (0,∞) such that

E(T α,ε
≤r )2 ≤ εc5E

∫
(0,τ ε

α∧1]×{MG (y)≤r}
M2

G(y)(1 + ‖X̄ ε(s)‖2)ϕε(s, y)ν(dy)ds.

We then use that ‖X̄ ε(s)‖ ≤ α for s ∈ (0, τ ε
α ∧ 1) and write (0, τ ε

α ∧ 1] × {MG(y) ≤
r} as the disjoint union of two sets, the first for which ϕε(s, y) < β and the second
for which ϕε(s, y) ≥ β, and finally apply part (b) of Lemma9.6 and use (10.13) to
get

E(T α,ε
≤r )2 ≤ εc5(1 + α2)(βr‖MG‖1 + r2nκ̄1(β)).

To deal with the term T α,ε
>r , note that for every k ∈ N,

ET α,ε
>r ≤ 2E

∫
(0,τ ε

α∧·]×{MG (y)>r}
‖G(X̄ ε(s−), y)‖ϕε(s, y)ν(dy)ds

≤ 2(1 + α)E
∫

[0,1]×{MG (y)>r}
MG(y)ϕε(s, y)ν(dy)ds

≤ 2(1 + α)

(∫
{MG (y)>r}

ekMG (y)ν(dy) + n

k

)
,

where the second inequality follows on using the growth bound stated in part (d)
of Condition10.1 and recalling the definition of τ ε

α , and the last inequality is a con-
sequence of part (a) of Lemma9.6 with σ = k, a = MG(y) and b = ϕε(s, y) and
again the fact that ϕε takes values in SN

n . Since MG ∈ L 1(ν) ∩ Lexp, for every k ∈ N,∫
{MG (y)>r} e

kMG (y)ν(dy) → 0 as r → ∞. Combining these two bounds and sending
ε → 0, r → ∞, k → ∞ in that order shows that for each α ∈ (0,∞),

T α,ε → 0 in probability as ε → 0. (10.22)

Next let

T ε .= ε

∥∥∥∥
∫

(0,·]×X
G(X̄ ε(s−), y)Nϕε/ε

c (ds × dy)

∥∥∥∥
∞,1

,

where the restriction on the time variable in T α,ε has been dropped. Defining Aα
.=

{‖X̄ ε‖∞,1 < α}, for all η > 0,

P(T ε > η) = P({T ε > η} ∩ Aα) + P({T ε > η} ∩ Ac
α)

≤ P(T α,ε
1 > η) + P(Ac

α).
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Combining this last bound with (10.22) and (10.19), we see that T ε → 0 in proba-
bility as ε → 0. Together with (10.20), this shows that

Rε
1 → 0 in probability as ε → 0.

Thus

X̄ ε(t) = x0 +
∫ t

0
b(X̄ ε(s))ds +

∫ t

0
σ(X̄ ε(s))ψε(s)ds

+
∫
X t

G(X̄ ε(s), y)ϕε(s, y)ν(dy) ds + R̄ε(t), (10.23)

where ‖R̄ε‖∞,1 ≤ Rε
1 converges to 0 in probability as ε → 0. Tightness of the terms

in (10.23) that involve b or σ follows from standard estimates, and are the same as
calculations used for the small noise diffusion model in Chap. 3. Thus in order to
prove tightness of {X̄ ε}, it suffices to argue that

ξε(t) =
∫
X t

G(X̄ ε(s), y)ϕε(s, y)ν(dy)ds, t ∈ [0, 1]

is tight in U = D([0, 1] : R
d). By Lemma 10.7, for every δ > 0 and 0 ≤ s ≤ t ≤ 1,

‖ξε(t) − ξε(s)‖ ≤
∫

[s,t]×X
(1 + ‖X̄ ε‖∞,u)MG(y)ϕε(u, y)ν(dy)du

≤ (1 + ‖X̄ ε‖∞,1)c(δ, n)(t − s)‖MG‖1 + δ(1 + ‖X̄ ε‖∞,1),

where as before, ‖ · ‖1 is the norm in L 1(ν). Tightness of ξε is now a consequence
of (10.19). Thus we have shown that {X̄ ε} is tight in D([0, 1] : R

d). �

10.2.1.2 Identification of Limits

The following lemma completes the verification of part (b) of Condition 9.1, and
hence the proof of Theorem10.6.

Lemma 10.12 Assume Conditions10.1 and 10.3. Given controls (ψε, ϕε) ∈ ¯Ab,n,
let X̄ ε be the corresponding unique solution to (10.14). Assume that (ψε, ϕε) con-
verges in distribution to (ψ, ϕ). Then X̄ ε converges in distribution to the unique
solution to (10.6) with ( f, g) = (ψ, ϕ).

Proof From Lemma10.11 it follows that if for some fixed n, the controls (ψε, ϕε)

are in ¯Ab,n for every ε > 0, then {X̄ ε}ε>0 is a tight collection of D([0, 1] : R
d)-

valued random variables. It was also shown in the proof of the lemma that ‖R̄ε‖∞,1

appearing in (10.23) converges to 0 in probability as ε → 0. It follows from this last
property and (10.23) that X̄ has continuous sample paths a.s. By appealing to the
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Skorohod representation theorem, we assume without loss of generality the almost
sure convergence (X̄ ε, ψε, ϕε, R̄ε) → (X̄ , ψ, ϕ, 0). Using the assumed conditions
on b and σ , it is straightforward [see, for example, the proof of Lemma3.21] using
Hölder’s inequality and the dominated convergence theorem to show that for every
t , the sum of the first three terms on the right side of (10.23) converges a.s. to

x0 +
∫ t

0
b(X̄(s))ds +

∫ t

0
σ(X̄(s))ψ(s)ds.

In view of the unique solvability of (10.6), to complete the verification that G ε

satisfies part (b) of Condition 9.1, it then suffices to show that for all t ∈ [0, 1],
∫
X t

G(X̄ ε(s), y)ϕε(s, y)ν(dy)ds −
∫
X t

G(X̄(s), y)ϕ(s, y)ν(dy)ds → 0

(10.24)
as ε → 0.

We write the expression in (10.24) as T ε
3 (t) + T ε

4 (t), where

T ε
3 (t)

.=
∫
X t

(G(X̄ ε(s), y) − G(X̄(s), y))ϕε(s, y)ν(dy)ds,

T ε
4 (t)

.=
∫
X t

G(X̄(s), y)(ϕε(s, y) − ϕ(s, y))ν(dy)ds.

Using Condition10.1, we obtain

T ε
3 (t) ≤ ‖X̄ ε − X̄‖∞,1

∫
X 1

LG(y)ϕε(s, y)ν(dy)ds.

Since LG ∈ L 1(ν) ∩ L ρ
exp, we see from Lemma10.8 that T ε

3 (t) → 0 a.s. as ε → 0.
Let {Kr }r∈N be a sequence of compact subsets ofX such that Kr ↑ X as r → ∞,
and let Er

.= Kr ∩ {MG ≤ r}. Write T ε
4 (t) = T ε

4,r≤(t) + T ε
4,r>(t), where

T ε
4,r≤(t)

.=
∫
X t

G(X̄(s), y)1Er (y)(ϕ
ε(s, y) − ϕ(s, y))ν(dy)ds

T ε
4,r>(t)

.=
∫
X t

G(X̄(s), y)1Ec
r
(y)(ϕε(s, y) − ϕ(s, y))ν(dy)ds.

Using Lemma10.9, for every r ∈ (0,∞), T ε
4,r≤(t) → 0 as ε → 0. Also, using

Lemma10.7 again, for every δ > 0,
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T ε
4,r>(t) ≤ (1 + ‖X̄‖∞,1)

∫
X t

MG(y)1Ec
r
(y)(ϕε(s, y) + ϕ(s, y))ν(dy)ds

≤ 2(1 + ‖X̄‖∞,1)

(
c(δ, n)t

∫
X

MG(y)1Ec
r
(y)ν(dy) + δ

)
.

Since MG ∈ L1(ν), it follows that supε∈(0,ε0) T
ε
4,r>(t) → 0 if we first send r → ∞

and then δ → 0. Combining these two estimates, we have that T ε
4 (t) converges to 0

as ε → 0. Thus we have proved (10.24), which completes the proof of the lemma
and therefore, as noted previously, also the proof of Theorem10.6. �

10.3 An MDP for Small Noise Jump-Diffusions

Throughout this section we assumeCondition10.1, which implies Lipschitz continu-
ity and linear growth conditions on b, σ , andG in the x variable. Let X0 ∈ C ([0, T ] :
R

d) be the unique solution of the equation

X0(t) = x0 +
∫ t

0
b(X0(s))ds +

∫
X t

G(X0(s), y)ν(dy) ds, t ∈ [0, T ].

We now establish a Laplace principle for {Y ε} with scaling function κ(ε), where

Y ε = 1

a(ε)
(X ε − X0),

and as in (9.6), a(ε) satisfies a(ε) → 0 and κ(ε)
.= ε/a2(ε) → 0. For the MDP we

assume some additional smoothness on the coefficients. For a differentiable function
f : R

d → R
d let Df (x) = (

∂ fi (x)/∂x j
)
i, j . Following our convention, for matrices

we use the operator norm, so that ‖Df (x)‖ .= supw∈Rd :‖w‖=1 ‖Df (x)w‖. Similarly,
if g : R

d × X → R
d is differentiable in x for each fixed y ∈ X and Dxg(x, y) =(

∂gi (x, y)/∂x j
)
i, j , then ‖Dxg(x, y)‖ denotes the norm of this matrix.

For the MDP, the integrability assumption on MG in Condition 10.3 can be weak-
ened, analogous to the corresponding weakening in going from the LDP to MDP
in the setting of discrete time models (Chaps. 4 and 5). The following is the only
assumption besides Condition10.1 needed for the MDP.

Condition 10.13 (a) The functions LG and MG are in L 1(ν) ∩ L ρ
exp for some ρ ∈

(0,∞).
(b) For every y ∈ X , the maps x �→ b(x) and x �→ G(x, y) are differentiable.

For some LDb ∈ (0,∞),

‖Db(x) − Db(x̄)‖ ≤ LDb ‖x − x̄‖ , x, x̄ ∈ R
d;

for some LDG ∈ L 1(ν),
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‖DxG(x, y) − DxG(x̄, y)‖ ≤ LDG(y) ‖x − x̄‖ , x, x̄ ∈ R
d , y ∈ X ;

and lastly,

sup
{x∈Rd :‖x‖≤‖X0‖∞,T }

∫
X

‖DxG(x, y)‖ν(dy) < ∞.

Recall from Chap.9 that we define L 2 .= L 2([0, T ] : H0) × L 2(νT ), and that
in this chapter, H0 = R

d . For q = ( f1, f2) ∈ L 2, consider the equation

η(t) =
∫ t

0
[Db(X0(s))]η(s)ds +

∫
X t

[DxG(X0(s), y)]η(s)ν(dy)ds

+
∫ t

0
σ(X0(s)) f1(s)ds +

∫
X t

G(X0(s), y) f2(s, y)ν(dy)ds. (10.25)

Since MG ∈ L 1(ν) ∩ L ρ
exp ⊂ L 2(ν), the last integral on the right side is finite by

Hölder’s inequality, and so under Condition10.13, (10.25) has a unique solution
ηq ∈ C ([0, T ] : R

d). For η ∈ D([0, T ] : R
d), let

Ī (η)
.= inf

q=( f1, f2)∈L 2:η=ηq

[
1

2

(‖ f1‖2W,2 + ‖ f2‖2N ,2

)]
.

In particular, Ī (η) = ∞ for all η ∈ D([0, T ] : R
d) \ C ([0, T ] : R

d).

Theorem 10.14 Assume Conditions10.1 and 10.13. Then {Y ε}ε>0 satisfies the
Laplace principle in D([0, T ] : R

d) with scaling function κ(ε) and rate function
Ī .

The following theorem gives an alternative expression for the rate function.
From part (d) of Condition10.1 and part (a) of Condition10.13, it follows that
y �→ Gi (X0(s), y) is in L 2(ν) for all s ∈ [0, T ] and i = 1, . . . , d, where G =
(G1, . . . ,Gd)

T . For i = 1, . . . , d, let ei : XT → R be measurable functions such
that for each s ∈ [0, T ], {ei (s, ·)}di=1 is an orthonormal collection in L 2(ν) and
the linear span of the collection contains that of {Gi (X0(s), ·)}di=1. Define b̄(x)

.=∫
X DxG(x, y)ν(dy), x ∈ R

d , and define also A : [0, T ] → R
d×d by

Ai j (s)
.= 〈Gi (X

0(s), ·), e j (s, ·)〉L 2(ν), i, j = 1, . . . , d, s ∈ [0, T ], (10.26)

where 〈·, ·〉L 2(ν) is the inner product inL 2(ν).
For η ∈ D([0, T ] : R

d), let

I (η) = inf
q̃=( f̃1, f̃2)

[
1

2

(
‖ f̃1‖22 + ‖ f̃2‖22

)]
,

where the infimum is taken over all q̃ = ( f̃1, f̃2), f̃1, f̃2 ∈ L 2([0, T ] : R
d) such that

for t ∈ [0, T ],
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η(t) =
∫ t

0
[Db(X0(s)) + b̄(X0(s))]η(s)ds +

∫ t

0
σ(X0(s)) f̃1(s)ds

+
∫ t

0
A(s) f̃2(s)ds. (10.27)

Here ‖ · ‖2 is the usual norm onL 2([0, T ] : R
d), and thus the same as ‖ · ‖W,2. The

proof of the following theorem is given in Sect. 10.3.3.

Theorem 10.15 Under the conditions of Theorem10.14, I = Ī .

Remark 10.16 Theorem10.15 in particular says that the rate function for {Y ε} is the
same as that appearing in the large deviation principle with scaling function ε for the
Gaussian process

dZ ε(t) = B(t)Z ε(t)dt + √
εA(t)dW1(t) + √

εσ (X0(t))dW2(t), Z ε(0) = 0,

where W1, W2 are independent standard d-dimensional Brownian motions and
B(t) = Db(X0(t)) + b̄(X0(t)).

10.3.1 Some Preparatory Results

Following our standard convention, the proof is given for T = 1, and thus U =
D([0, 1] : R

d). From Theorem 10.2, it follows that there exists a measurable map
G ε : V → U such that X ε = G ε(

√
εW, εN 1/ε). Using Y ε = (X ε − X0)/a(ε), there

is measurable K ε such that Y ε = K ε(
√

εW, εN 1/ε). Define K 0 : L 2 → U by
K 0(q) = η if η solves (10.25) for q = ( f1, f2) ∈ L 2. In order to prove Theorem
10.14, we will verify that Condition 9.8 holds with these choices of K ε and K 0.

The following lemma verifies a continuity property ofK 0. Recall the space Ŝn
.=

{( f1, f2) ∈ L 2 : ‖ f1‖2W,2 + ‖ f2‖2N ,2 ≤ n} introduced above Condition 9.8. This is
viewed as a subset of the Hilbert space L 2 defined there, and with respect to the
topology of weak convergence in L 2 is a compact Polish space. Together with the
continuity established in Lemma10.17, the compactness of Ŝn implies part (a) of
Condition 9.8.

Lemma 10.17 SupposeCondition10.1 holds and MG ∈ L 2(ν). Fix n ∈ (0,∞) and
let qk, q ∈ Ŝn, k ∈ N be such that qk → q. LetK 0(q) = η, where η solves (10.25).
Then K 0(qk) → K 0(q).

Proof Note that from part (d) of Condition10.1 and since MG ∈ L 2(ν), the map
(s, y) �→ G(X0(s), y)1[0,t](s) is in L 2(ν1). Let qk = ( f k1 , f k2 ) and q = ( f1, f2).
Since f k2 → f2, we have for every t ∈ [0, 1] that

∫
X t

f k2 (s, y)G(X0(s), y)ν(dy)ds →
∫
X t

f2(s, y)G(X0(s), y)ν(dy)ds. (10.28)
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We argue that the convergence is in fact uniform in t . Note that for 0 ≤ s ≤ t ≤ 1,

∥∥∥∥
∫

[s,t]×X
f k2 (u, y)G(X0(u), y)ν(dy)du

∥∥∥∥
≤ (

1 + ‖X0‖∞,1
) ∫

[s,t]×X
MG(y)| f k2 (u, y)|ν(dy)du

≤ (
1 + ‖X0‖∞,1

) |t − s|1/2√n‖MG‖L 2(ν), (10.29)

where ‖ · ‖L 2(ν) denotes the norm inL 2(ν). This implies equicontinuity, and hence
the convergence in (10.28) is uniform in t ∈ [0, 1].

Next, since f k1 → f1, and since Condition 10.1 implies that σ(·) is continuous, it
follows that for every t ∈ [0, 1],

∫ t

0
σ(X0(s)) f k1 (s)ds →

∫ t

0
σ(X0(s)) f1(s)ds.

Once again an equicontinuity estimate similar to (10.29) shows that the conver-
gence is uniform. The conclusion of the lemma now follows from Gronwall’s
inequality. �

In order to verify part (b) of Condition9.8, we first prove some a priori estimates.
Recall the spaces L ρ

exp introduced in (10.3) and SN ,ε
n,+ and SN ,ε

n in (9.7). Here SN ,ε
n,+

are controls for the Poisson noise with cost bounded by na2(ε), the scaling that is
appropriate for an MDP, and SN ,ε

n are the centered and rescaled versions of elements
of SN ,ε

n,+ .

Lemma 10.18 Let h ∈ L 1(ν) ∩ L ρ
exp for some ρ > 0 and let I be a measurable

subset of [0, 1]. Let n ∈ (0,∞). Then there exist maps ϑ, ξ, ζ from (0,∞) to (0,∞)

such that ϑ(u) → 0 as u → ∞ and ξ(u) → 0 as u → 0, and for all ε, β ∈ (0,∞),

sup
f ∈SN ,ε

n

∫
I×X

h(y)| f (s, y)|1{| f |≥β/a(ε)}ν(dy)ds ≤ √
a(ε)ϑ(β) + (1 + λ1(I ))ξ(ε)

and

sup
f ∈SN ,ε

n

∫
I×X

h(y)| f (s, y)|ν(dy) ds≤ ζ(β)λ1(I )
1/2 +√

a(ε)ϑ(β)+ (1+ λ1(I ))ξ(ε),

where λ1(I ) denotes the Lebesgue measure of I .
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Proof Let f ∈ SN ,ε
n and β ∈ (0,∞). Then

∫
I×X

h(y)| f (s, y)|ν(dy)ds ≤
∫
I×X

h(y)| f (s, y)|1{| f |≤β/a(ε)}ν(dy)ds (10.30)

+
∫
I×X

h(y)| f (s, y)|1{| f |≥β/a(ε)}ν(dy)ds.

Recall thatL 1(ν) ∩ L ρ
exp ⊂ L p(ν) for all p ≥ 1. By theCauchy-Schwarz inequality

and part (c) of Lemma9.7, we have

∫
I×X

h(y)| f (s, y)|1{| f |≤β/a(ε)}ν(dy)ds (10.31)

≤
(

λ1(I )‖h‖22
∫
X 1

f (s, y)21{| f |≤β/a(ε)}ν(dy)ds

)1/2

≤ ‖h‖2(nκ2(β))1/2λ1(I )
1/2.

We now consider the second term on the right side of (10.30). We decompose h as
h1{h≤1/a(ε)1/2} + h1{h>1/a(ε)1/2}. Then using part (a) of Lemma9.7, we obtain

∫
I×X

h(y)1{h≤1/a(ε)1/2}| f (s, y)|1{| f |≥β/a(ε)}ν(dy) ds ≤ 1√
a(ε)

na(ε)κ1(β)

= n
√
a(ε)κ1(β).

Also, letting g = a(ε) f + 1 and noting that the definition of SN ,ε
n implies g ≥ 0, we

have
∫
I×X

h(y)1{h>1/a(ε)1/2}| f (s, y)|1{| f |≥β/a(ε)}ν(dy) ds

≤ λ1(I )

a(ε)

∫
X

h(y)1{h>1/a(ε)1/2}ν(dy)

+ 1

a(ε)

∫
I×X

h(y)1{h>1/a(ε)1/2}g(s, y)ν(dy) ds. (10.32)

The first term on the right side can be bounded by

λ1(I )C1(ε)
.= λ1(I )

∫
X

h(y)31{h>1/a(ε)1/2}ν(dy),

where h ∈ L ρ
exp ∩ L 1(ν) impliesC1(ε) → 0 as ε → 0. The second term on the right

side of (10.32) can be bounded, using part (a) of Lemma9.6 with a = ρh(y)/2,
b = g(s, y), σ = 1, and also using that g ∈ SN ,ε

n,+ , by
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2λ1(I )

ρa(ε)

∫
X

eρh(y)/21{h>1/a(ε)1/2}ν(dy) + 2

ρa(ε)
na2(ε)

≤ 2λ1(I )

ρ

∫
X

h(y)2eρh(y)/21{h>1/a(ε)1/2}ν(dy) + 2na(ε)

ρ

= λ1(I )C2(ε) + 2na(ε)

ρ
,

where C2(ε) converges to 0 as ε → 0. Thus the second term on the right side of
(10.30) can be bounded by

√
a(ε)ϑ(β) + (1 + λ1(I ))ξ(ε),

where

ϑ(β) = nκ1(β), ξ(ε) = C1(ε) + C2(ε) + 2na(ε)

ρ
.

This gives the first bound of the lemma. The second bound also follows with these
choices of ξ , ϑ , and ζ(β) = ‖h‖2(nκ2(β))1/2 using (10.31). �

The following lemma is proved in a fashion similar to that of Lemma 10.7, and
so only a sketch is given.

Lemma 10.19 Let θ ∈ L ρ
exp for some ρ > 0 and suppose that ν({θ > 1}) < ∞.

Then for every δ > 0 and n ∈ N, there exists c̃(δ, n) ∈ (0,∞) such that for all mea-
surable maps θ̃ : X → R+ satisfying θ̃ ≤ θ , any measurable f : [0, 1] → R+, and
all 0 ≤ s ≤ t ≤ 1,

sup
g∈SN ,ε

n,+

∫
(s,t]×X

f (u)θ̃(y)g(u, y)ν(dy)du

≤ c̃(δ, n)

(∫
X

θ̃ (y)ν(dy)

) (∫ t

s
f (u)du

)
+ (δ + nρ−1a2(ε))‖ f ‖∞,1.

Proof Let f : [0, 1] → R+ and g ∈ SN ,ε
n,+ . For m ∈ (0,∞), let Ti (m), i = 1, 2, be

as in the proof of Lemma 10.7. Then using part (a) of Lemma9.6 with a = ρθ(y),
b = g(u, y), and σ = 1, we can bound T2(m) as

T2(m) ≤ ‖ f ‖∞,1

ρ

(∫
{θ>m}

eρθ(y)ν(dy) + na2(ε)

)
.

Also, as in the proof of Lemma10.7,

T1(m) ≤ β

(∫
X

θ̃ (y)ν(dy)

) (∫ t

s
f (u)du

)
+ κ̄1(β)mna2(ε)‖ f ‖∞,1,
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where κ̄1(β) → 0 as β → ∞. The result now follows on recalling (10.9) and choos-
ing first m sufficiently large and then β sufficiently large. �

Recall the mapK ε introduced at the beginning of Sect. 10.3.1 and the definition
of U ε

n,+ in (9.8), and recall that by (9.7), U ε
n,+ is the class of controls for both

types of noise for which the cost scales proportionally with a2(ε). Since U ε
n,+ is

contained in ¯Ab,n̄ for some n̄ ∈ N, it follows from Sect. 10.2.1 that for n ∈ N and
u = (ζ, ϕ) ∈ U ε

n,+, the equation

d X̄ ε(t) = [
b(X̄ ε(t)) + σ(X̄ ε(t))ζ(t)

]
dt + √

εσ (X̄ ε(t))dW (t)

+ ε

∫
X

G(X̄ ε(t−), x)Nϕ/ε(dt × dx),

X̄ ε(0) = x0 has a unique solution.
Define Ȳ ε = K ε(

√
εW ζ/

√
ε, εNϕ/ε), and note that using Girsanov’s theorem

[TheoremD.3] as in the proof of Theorem3.19 yields

Ȳ ε = 1

a(ε)
(X̄ ε − X0). (10.33)

The following moment bound on X̄ ε follows along the lines of the proof of (10.19).

Lemma 10.20 Assume Conditions10.1 and 10.13. For every n ∈ N, there exists an
ε0 ∈ (0, 1) such that

sup
ε∈(0,ε0)

sup
u=(ζ,ϕ)∈U ε

n,+
E‖X̄ ε‖∞,1 < ∞.

Proof Using the same argument as that used to establish (10.16), for all ε ∈ (0, 1),
we have

‖X̄ ε‖∞,1 ≤ (1 + ‖x0‖ + R̃ε
1) exp

{
c1(1 + √

na1) +
∫
X 1

MG(y)ϕ(s, y)ν(dy) ds

}
,

(10.34)

where a1
.= supε∈(0,1) a(ε) and

R̃ε
1

.= √
ε

∥∥∥∥
∫ ·

0
σ(X̄ ε(s))dW (s)

∥∥∥∥∞,1

+ ε

∥∥∥∥
∫
X ·

MG(y)(1 + ‖X̄ ε(s−)‖)Nϕ/ε
c (ds × dy)

∥∥∥∥
∞,1

.

Using Lemma10.19 with δ = 1, f ≡ 1 and recalling that ϕ ∈ SN ,ε
n,+ and the fact that

MG ∈ L 1(ν) ∩ Lexp, we obtain
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‖X̄ ε‖∞,1 ≤ c2(1 + ‖x0‖ + R̃ε
1), (10.35)

where

c2
.= exp

{
c1(1 + √

na1) + c̃(1, n)

∫
X

MG(y)ν(dy) + 1 + n

ρ
a21

}
< ∞.

We split the expected value of the second term in the definition of R̃ε
1 as T ε

1 + T ε
2 ,

where T ε
i are just as in (10.17)–(10.18) in the proof of the corresponding LDP, and

then follow the same procedure as that below (10.17)–(10.18) to bound the two terms.
In this case, however, we use Lemma10.19 rather than Lemma 10.7, and find that
for some c3 ∈ (0,∞),

T ε
1 ≤ c3

√
εm(1 + E‖X̄ ε‖∞,1)

(
c̃(1, n)

∫
X

MG(y)ν(dy) + 1 + n

ρ
a21

)1/2

,

and for every δ > 0 and ε ∈ (0, 1),

T ε
2 ≤ 2(1 + E‖X̄ ε‖∞,1)

(
c̃(δ, n)

∫
X

MG(y)1{MG≥m}ν(dy) + δ + n

ρ
a2(ε)

)
.

Choosing first δ sufficiently small, nextm sufficiently large, and finally ε0 sufficiently
small, we have for all ε ≤ ε0 that

ER̃ε
1 ≤ 1

2c2

(
E‖X̄ ε‖∞,1 + 1

)
.

The result now follows on using this estimate in (10.35). �

The following tightness property plays a key role in the proof of Theorem 10.14.

Lemma 10.21 Suppose Conditions10.1 and 10.13 hold, and define Ȳ ε by (10.33).
For every n ∈ N, there exists an ε1 ∈ (0, 1) such that

{‖Ȳ ε‖∞,1, u ∈ U ε
n,+, ε ∈ (0, ε1)

}

is a tight collection of R+-valued random variables.

Proof Let u = (ζ, ϕ) ∈ U ε
n,+ and let ψ

.= (ϕ − 1)/a(ε). Then

X̄ ε(t) − X0(t) =
∫ t

0

(
b(X̄ ε(s)) − b(X0(s))

)
ds + √

ε

∫ t

0
σ(X̄ ε(s))dW (s)

+
∫
X t

εG(X̄ ε(s−), y)Nϕ/ε
c (ds × dy)

+
∫
X t

(
G(X̄ ε(s), y) − G(X0(s), y)

)
ϕ(s, y)ν(dy)ds
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+
∫
X t

G(X0(s), y)(ϕ(s, y) − 1)ν(dy)ds

+
∫ t

0
σ(X̄ ε(s))ζ(s)ds.

Write Ȳ ε = (X̄ ε − X0)/a(ε) as

Ȳ ε = Mε + Aε + Bε + E ε + Cε, (10.36)

where for t ∈ [0, 1],

Mε(t)
.= ε

a(ε)

∫
X t

G(X̄ ε(s−), y)Nϕ/ε
c (ds × dy) +

(
ε

a(ε)

)1/2 ∫ t

0
σ(X̄ ε(s))dW (s)

Aε(t)
.= 1

a(ε)

∫ t

0

(
b(X̄ ε(s)) − b(X0(s))

)
ds,

Bε(t)
.= 1

a(ε)

∫
X t

(
G(X̄ ε(s), y) − G(X0(s), y)

)
ν(dy)ds,

E ε(t)
.=

∫
X t

(
G(X̄ ε(s), y) − G(X0(s), y)

)
ψ(s, y)ν(dy)ds,

Cε(t)
.=

∫
X t

G(X0(s), y)ψ(s, y)ν(dy)ds + 1

a(ε)

∫ t

0
σ(X̄ ε(s))ζ(s)ds.

With ε0 as in Lemma10.20, we have from the Burkholder–Davis–Gundy inequality
(see Sect.D.1) that {∥∥∥∥

∫ ·

0
σ(X̄ ε(s))dW (s)

∥∥∥∥∞,1

}

ε≤ε0

is tight. Also, as in the proof of Lemma10.20, for some c1 ∈ (0,∞), we have

E

∥∥∥∥
∫
X ·

G(X̄ ε(s−), y)Nϕ/ε
c (ds × dy)

∥∥∥∥
∞,1

≤ (1 + E‖X̄ ε‖∞,1)

×
(
c1

√
εm + 2c̃(δ, n)

∫
X

MG(y)1{MG≥m}ν(dy) + 2δ + 2n

ρ
a2(ε)

)

for every δ > 0, ε ∈ (0, ε0), and u ∈ U ε
n,+. Combining these two estimates, we see

that
{‖Mε‖∞,1

}
ε≤ε0

is tight, and since ε/a(ε) → 0

‖Mε‖∞,1 → 0 in probability (10.37)

as ε → 0.
In the rest of the proof,wewill showupper bounds of the form c, c

∫ t
0 ‖Ȳ ε‖∞,sds or

ca(ε)‖Ȳ ε‖∞,1 for each of the remaining terms in (10.36). By the Lipschitz condition
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onG [part (c) of Condition 10.1 and part (a) of Condition10.13], there is c2 ∈ (0,∞)

such that for all t ∈ [0, 1], u ∈ U ε
n,+, we have

‖E ε‖∞,t ≤ a(ε)

∫
X t

LG(y)‖Ȳ ε(s)‖ |ψ(s, y)|ν(dy)ds

≤ a(ε)‖Ȳ ε‖∞,t

∫
X t

LG(y)|ψ(s, y)|ν(dy)ds

≤ c2a(ε)‖Ȳ ε‖∞,t , (10.38)

where the last inequality follows from the second bound in Lemma10.18. Again
using the Lipschitz condition on G, we have for all t ∈ [0, 1] that

‖Bε‖∞,t ≤ ‖LG‖1
∫ t

0
‖Ȳ ε(s)‖ds.

Similarly, the Lipschitz condition on b gives

‖Aε‖∞,t ≤ Lb

∫ t

0
‖Ȳ ε(s)‖ds.

Finally, we come to the term Cε. Again using the second bound in Lemma10.18,
we have that for some c3 ∈ (0,∞) and all u ∈ U ε

n,+, with u = (ζ, ϕ), ψ = (ϕ −
1)/a(ε), ∥∥∥∥

∫
X ·

G(X0(s), y)ψ(s, y)ν(dy)ds

∥∥∥∥
∞,1

≤ c3.

Since (ζ, ϕ) ∈ U ε
n,+, the bound

∫ 1
0 ‖ζ(s)‖2 ds ≤ na2(ε) applies. Thus for t ∈ [0, 1],

1

a(ε)

∫ t

0
σ(X̄ ε(s))ζ(s)ds = 1

a(ε)

∫ t

0
σ(X0(s))ζ(s)ds + 1

a(ε)
Rε

1(t),

where
‖Rε

1‖∞,1 ≤ a(ε)Lσ‖Ȳ ε‖∞,1
√
n, (10.39)

and ∥∥∥∥ 1

a(ε)

∫ t

0
σ(X0(s))ζ(s)ds

∥∥∥∥∞,1

≤ (‖X0‖∞,1Lσ + ‖σ(0)‖)√n.

Bringing terms in (10.36) of the form ca(ε)‖Ȳ ε‖∞,1 to the left side and renormalizing
for a coefficient of one,we have, for some c4 ∈ (0,∞), ε̃0 ∈ (0, ε0), and all u ∈ U ε

n,+,
t ∈ [0, 1], and ε ≤ ε̃0, that

‖Ȳ ε‖∞,t ≤ c4

(
1 +

∫ t

0
‖Ȳ ε‖∞,sds

)
+ Z ε,
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where {Z ε}ε≤ε̃0 is tight. The result now follows by an application of Gronwall’s
inequality. �

The next two lemmas will be needed in the weak convergence arguments of
Lemma 10.24. The first is an immediate consequence of Lemma10.18.

Lemma 10.22 Let h ∈ L 1(ν) ∩ L ρ
exp for some ρ > 0. Then for all n ∈ N, and β ∈

(0,∞),

sup
f ∈SN ,ε

n

∫
X 1

h(y) | f (s, y)|1{| f |≥β/a(ε)}ν(dy)ds → 0 as ε → 0.

For n ∈ (0,∞), let ŜN
n

.= { f ∈ L 2(ν1) : ‖ f ‖2N ,2 ≤ n}.
Lemma 10.23 Let n ∈ N, ε > 0, and f ε ∈ SN ,ε

n . Let η : X1 → R
d be a measurable

function such that
|η(s, y)| ≤ h(y) for y ∈ X , s ∈ [0, 1],

where h ∈ L 1(ν) ∩ L ρ
exp for some ρ > 0. Suppose there is β ∈ (0, 1] such that

f ε1{| f ε |≤β/a(ε)} converges in ŜN
nκ2(1)

to f . Then for all t ∈ [0, 1],
∫
X t

η(s, y) f ε(s, y)ν1(ds × dy) →
∫
X t

η(s, y) f (s, y)ν1(ds × dy).

Proof It follows from Lemma10.22 that

∫
X 1

|η(s, y) f ε(s, y)|1{| f ε |≥β/a(ε)}ν1(ds × dy) → 0 as ε → 0.

Also, since η1[0,t] ∈ L 2(ν1) for all t ∈ [0, 1] and f ε1{| f ε |≤β/a(ε)} → f , we have

∫
X t

η(s, y) f ε(s, y)1{| f ε |≤β/a(ε)}ν1(ds × dy) →
∫
X t

η(s, y) f (s, y)ν1(ds × dy).

The result follows on combining the last two displays. �

10.3.2 Proof of the Moderate Deviation Principle

The following is the key result needed in the proof ofTheorem10.14. It gives tightness
of the joint distribution of controls and controlled processes, and indicates how limits
of these two quantities are related. Recall ŜN

n
.= { f ∈ L 2(ν1) : ‖ f ‖2N ,2 ≤ n}.



10.3 An MDP for Small Noise Jump-Diffusions 289

Lemma 10.24 Suppose Conditions10.1 and 10.13 hold. Let n ∈ N, ε > 0, and
uε = (ζ ε, ϕε) ∈ U ε

n,+. Let ψε .= (ϕε − 1)/a(ε), suppose β ∈ (0, 1], and set Ȳ ε .=
K ε(

√
εW ζ ε/

√
ε, εNϕε/ε). Then {(Ȳ ε, ψε1{|ψε |≤β/a(ε)}, ζ ε/a(ε))}ε>0 is tight in

D([0, 1] : R
d) × Ŝn(κ2(1)+1),

and any limit point (Ȳ , ψ, ζ ) satisfies (10.25) a.s., with η replaced by Ȳ and ( f1, f2)
replaced by (ψ, ζ ).

Proof Weuse the notation from the proof of Lemma10.21 but replace (ζ, ϕ) through-
out by (ζ ε, ϕε). Assume without loss of generality that ε ≤ ε0. From (10.37) we
have that ‖Mε‖∞,1 → 0 in probability as ε → 0. Also, since from Lemma10.21
{‖Ȳ ε‖∞,1}ε≤ε0 is tight, (10.38) implies that ‖E ε‖∞,1 → 0 in probability.

Noting that X̄ ε(t) = X0(t) + a(ε)Ȳ ε(t), we have by Taylor’s formula,

G(X̄ ε(s), y) − G(X0(s), y) = a(ε)DxG(X0(s), y)Ȳ ε(t) + Rε(s, y),

where
‖Rε(s, y)‖ ≤ LDG(y)a2(ε)‖Ȳ ε(s)‖2.

Hence

Bε(t) =
∫
X t

DxG(X0(s), y)Ȳ ε(s)ν(dy) ds + T ε
1 (t),

where

‖T ε
1 ‖∞,1 ≤ ‖LDG‖1 a(ε)

∫ 1

0
‖Ȳ ε(s)‖2ds.

Thus using Lemma10.21 again, we have that ‖T ε
1 ‖∞,1 → 0 in probability. Similarly,

Aε(t) =
∫ t

0
Db(X0(s))Ȳ ε(s)ds + T ε

2 (t),

where ‖T ε
2 ‖∞,1 → 0 in probability. Also, from (10.39) ‖Rε

1‖∞,1 → 0 in probability.
Putting these estimates together, we have from (10.36) that

Ȳ ε(t) = T ε
3 (t) +

∫ t

0
Db(X0(s))Ȳ ε(s)ds + 1

a(ε)

∫ t

0
σ(X0(s))ζ ε(s)ds (10.40)

+
∫
X t

DxG(X0(s), y)Ȳ ε(s)ν(dy)ds +
∫
X t

G(X0(s), y)ψε(s, y)ν(dy)ds,

where
T ε
3

.= Mε + E ε + T ε
1 + T ε

2 + Rε
1 ⇒ 0.
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We now prove tightness of

Ãε(·) .=
∫ ·

0
Db(X0(s))Ȳ ε(s)ds, B̃ε(·) .=

∫
X ·

DxG(X0(s), y)Ȳ ε(s)ν(dy)ds,

C̃ε(·) .=
∫
X ·

G(X0(s), y)ψε(s, y)ν(dy)ds, D̃ε(·) .= 1

a(ε)

∫ ·

0
σ(X0(s))ζ ε(s)ds.

Applying Lemma10.18 with h = MG , for every β ∈ (0, 1] and δ ∈ (0, 1), we have

‖C̃ε(t + δ) − C̃ε(t)‖ =
∫

[t,t+δ]×X
‖G(X0(s), y)‖ |ψε(s, y)|ν(dy)ds

≤ (
1 + ‖X0‖∞,1

) ∫
[t,t+δ]×X

MG(y)|ψε(s, y)|ν(dy)ds

≤ (
1 + ‖X0‖∞,1

)
(ζ(β)δ1/2 + √

a(ε)ϑ(β) + 2ξ(ε)).

Tightness of {C̃ε}ε>0 in C ([0, 1] : R
d) is now immediate from the properties of ϑ

and ξ .
Next we argue the tightness of B̃ε. For 0 ≤ t ≤ t + δ ≤ 1, we have

‖B̃ε(t + δ) − B̃ε(t)‖ ≤
∫

[t,t+δ]×X
‖DxG(X0(s), y)Ȳ ε(s)‖ν(dy)ds

≤
(

sup
‖x‖≤‖X0‖∞,1

∫
X

‖DxG(x, y)‖ν(dy)

) ∫
[t,t+δ]

‖Ȳ ε(s)‖ds

≤ c1‖Ȳ ε‖∞,1δ,

where c1
.= sup‖x‖≤‖X0‖∞,1

∫
X ‖DxG(x, y)‖ν(dy) is finite by part (b) of Condi-

tion10.13. Tightness of {B̃ε}ε>0 in C ([0, 1] : R
d) now follows as a consequence of

Lemma10.21. Similarly, it can be seen that Ãε is tight in C ([0, 1] : R
d). Finally,

since ζ ε ∈ SWna2(ε) implies the bound na2(ε) for
∫ 1
0 ‖ζ ε‖2ds, it follows that for

0 ≤ t ≤ t + δ ≤ 1, we have

‖D̃ε(t + δ) − D̃ε(t)‖ ≤ 1

a(ε)

∫ t+δ

t
‖σ(X0(s))ζ ε(s)‖ds

≤ √
δ(‖X0‖∞,1Lσ + ‖σ(0)‖)√n.

Tightness of {D̃ε}ε>0 in C ([0, 1] : R
d) is now immediate. Since each of these terms

is tight, {Ȳ ε}ε>0 is tight in D([0, 1] : R
d). Also, from part (c) of Lemma9.7,

(
ψε1{|ψε |≤β/a(ε)},

1

a(ε)
ζ ε

)
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takes values in the compact space Ŝn(κ2(1)+1) for all ε > 0 and is therefore automati-
cally tight. This completes the proof of the first part of the lemma.

Suppose now that (
Ȳ ε, ψε1{|ψε |≤β/a(ε)},

1

a(ε)
ζ ε

)

converges in distribution along a subsequence to (Ȳ , ψ, ζ ). From Lemma10.23 and
the tightness of C̃ε, D̃ε established above, we have that

(
Ȳ ε,

∫
X ·

G(X0(s), y)ψε(s, y)ν(dy)ds,
1

a(ε)

∫ ·

0
σ(X0(s))ζ ε(s)ds

)

converges in distribution, in D([0, 1] : R
3d), to

(
Ȳ ,

∫
X ·

G(X0(s), y)ψ(s, y)ν(dy)ds,
∫ ·

0
σ(X0(s))ζ(s)ds

)
.

The result now follows on using this convergence in (10.40) and recalling that T ε
3 ⇒

0. �

We now complete the proof of the moderate deviation principle.

Proof (of Theorem10.14) It suffices to show that Condition 9.8 holds with K ε

and K 0 defined as at the beginning of Sect. 10.3.1. Part (a) of the condition
was verified in Lemma10.17. Consider now part (b). Fix n ∈ N and β ∈ (0, 1].
Let (ζ ε, ϕε) ∈ U ε

n,+ and ψε = (ϕε − 1)/a(ε). Suppose that for some β ∈ (0, 1],
(ψε1{|ψε |≤β/a(ε)}, ζ ε/a(ε)) ⇒ (ψ, ζ ). To complete the proof, we need to show that

K ε
(√

εW ζ ε/
√

ε, εNϕε/ε
)

⇒ K 0(ζ, ψ). (10.41)

Recall that the left side of (10.41) equals Ȳ ε defined in (10.33). FromLemma10.24,
{(Ȳ ε, ψε1{|ψε |≤β/a(ε)}, ζ ε/a(ε))} is tight in D([0, 1] : R

d) × Ŝn(κ2(1)+1), and every
limit point (Ȳ , ψ̄, ζ̄ ) satisfies (10.25) a.s., with η replaced by Ȳ and ( f1, f2) with
(ψ̄, ζ̄ ). Since (10.25) has a unique solution,K 0( f1, f2) for every f = ( f1, f2) ∈ L 2

[recall L 2 .= L 2([0, 1] : R
d) × L 2(νT )], (ζ, ψ) has the same law as (ζ̄ , ψ̄), and

every limit point of Ȳ ε must have the same distribution as K 0(ζ, ψ). The result
follows. �

10.3.3 Equivalence of Two Rate Functions

In this section we present the proof of Theorem 10.15. To simplify notation, suppose
without loss that T = 1. Fix η ∈ C ([0, 1] : R

d) and δ > 0. Let f̃ = ( f̃1, f̃2), where
f̃i ∈ L 2([0, 1] : R

d), i = 1, 2, be such that
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1

2

∫ 1

0

(
‖ f̃1(s)‖2 + ‖ f̃2(s)‖2

)
ds ≤ I (η) + δ

and (η, f̃ ) satisfy (10.27). Define f2 : X1 → R by

f2(s, y)
.=

d∑
i=1

f̃2,i (s)ei (s, y), (s, y) ∈ X1, (10.42)

where the ei were introduced just before the statement of Theorem10.15. From the
orthonormality of ei (s, ·), it follows that

1

2

∫
X 1

| f2(s, y)|2ν1(ds × dy) = 1

2

∫ 1

0
‖ f̃2(s)‖2ds. (10.43)

Also, with A(s) defined as in (10.26), we have

[A(s) f̃2(s)]i =
d∑
j=1

〈Gi (X
0(s), ·), e j (s, ·)〉L 2(ν) f̃2, j (s)

=
〈
Gi (X

0(s), ·),
d∑
j=1

e j (s, ·) f̃2, j (s)
〉

L 2(ν)

= 〈Gi (X
0(s), ·), f2(s, ·)〉L 2(ν),

so that A(s) f̃2(s) = ∫
X f2(s, y)G(X0(s), y)ν(dy). Consequently,η satisfies (10.25)

with f2 as in (10.42) and f1 = f̃1. Combining this with (10.43), we have

Ī (η) ≤ 1

2

∫ 1

0
‖ f̃1(s)‖2ds + 1

2

∫
X 1

| f2(s, y)|2ν2(ds × dy)

= 1

2

∫ 1

0

(
‖ f̃1(s)‖2 + ‖ f̃2(s)‖2

)
ds

≤ I (η) + δ.

Since δ > 0 is arbitrary, we have Ī (η) ≤ I (η).
Conversely, suppose δ > 0 and q = ( f1, f2) ∈ L 2 is such that

1

2

∫
X 1

| f2(s, y)|2ν1(ds × dy) + 1

2

∫ 1

0
‖ f1(s)‖2ds ≤ Ī (η) + δ

and (10.25) holds. For i = 1, . . . , d, define f̃2,i : [0, 1] → R by

f̃2,i (s) = 〈 f2(s, ·), ei (s, ·)〉L 2(ν).
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For s ∈ [0, 1], let {e j (s, ·)}∞j=d+1 be defined in such a manner that {e j (s, ·)}∞j=1 is
a complete orthonormal system inL 2(ν). Then for every s ∈ [0, 1], i = 1, . . . , d,

[A(s) f̃2(s)]i =
d∑
j=1

〈Gi (X
0(s), ·), e j (s, ·)〉L 2(ν)〈 f2(s, ·), e j (·, s)〉L 2(ν)

=
∞∑
j=1

〈Gi (X
0(s), ·), e j (·, s)〉L 2(ν)〈 f2(s, ·), e j (s, ·)〉L 2(ν)

= 〈Gi (X
0(s), ·), f2(s, ·)〉L 2(ν),

where the second equality follows on observing thatGi (X0(s), ·) is in the linear span
of {e j (s, ·)}dj=1 for i = 1, . . . , d. Thus A(s) f̃2(s) = ∫

X f2(s, y)G(X0(s), y)ν(dy),

and therefore (η, f̃ ) satisfy (10.27) with f̃2 defined as above and f̃1 = f1. Note that
with f̃2 = ( f̃2,1, . . . , f̃2,d),

1

2

∫ 1

0
‖ f̃2(s)‖2ds = 1

2

∫ 1

0

d∑
j=1

〈 f2(s, ·), e j (s, ·)〉2L 2(ν)ds

≤ 1

2

∫ 1

0

∫
X

f 22 (s, y)ν(dy)ds.

Thus

I (η) ≤ 1

2

∫ 1

0

(
‖ f̃1(s)‖2 + ‖ f̃2(s)‖2

)
ds

≤ 1

2

∫ 1

0
‖ f1(s)‖2ds + 1

2

∫ 1

0

∫
X

f 22 (s, y)ν(dy)ds

≤ Ī (η) + δ.

Since δ > 0 is arbitrary, I (η) ≤ Ī (η), which completes the proof. �

10.4 Notes

The first results for a general class of continuous time small noise Markov processes
appear to be those of Wentzell [245–248]. The class covered includes both Gaus-
sian and Poisson driving noises, and the proof uses approximation by discrete time
processes.

Large deviation principles for small noise infinite dimensional stochastic differ-
ential equations driven by PRM are considered in [38]. Although this paper considers
a considerably more complex setting than the one studied in the current chapter, it
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assumed a somewhat stronger condition on the coefficient function that plays the role
of G in this chapter. Specifically, it required the functions MG and LG to satisfy a
more stringent integrability condition than the one used here (Condition 10.3). Some
of the results used to deal with these weaker integrability conditions are from [47].
Another distinction between this chapter and [38] is that here we consider systems
driven by both Gaussian and Poisson noise, and consider both large and moderate
deviations. Amoderate deviation principle of the form given in Sect. 10.3, applicable
to both finite and infinite dimensional SDE, was presented in [41] for the setting in
which the driving noise is only Poisson. It is worth noting that most of the technical
details in this chapter arise from the treatment of the PRM term.

There is an important distinction between the types of processes one can represent
using PRMs and their large deviation analysis. For one class, which includes the
models considered in this chapter as well as the example in Sect. 3.3, different points
in the point space of the underlying PRM are used to model different types of jumps
in the solution to the SDE. The conditions placed on the coefficient that modulates
the impact of the noise on the state (G in this chapter) tend to be continuity-type
conditions, analogous to those one places on the diffusion coefficient of an SDE
driven by Brownian motion, though stated in terms of integration over the spaceX .
These continuity properties are used to establish uniqueness of the map that takes the
controls into the state for the limit dynamics, under the assumption that the cost of
the controls is bounded. With the second class, there are only finitely many different
types of jumps of the state, and the role of G is simply to “thin” the PRM to produce
state-dependent jump rates. Examples of this type include the process models of
Chap.13 as well as those in [23, 42]. Owing to its role in thinning, G is typically not
continuous, and one does not expect uniqueness of the limiting deterministic map
that takes controls to the state process. However, as we will see, it is in fact sufficient
to prove the following restricted uniqueness: given a state trajectory for which there
is a corresponding control with finite cost, find a control that produces the same state
trajectory with nearly the same cost and for which there is uniqueness. These points
are illustrated in the analysis carried out in Chap.13.



Chapter 11
Systems Driven by an
Infinite Dimensional Brownian Noise

In Chap.8 we gave a representation for positive functionals of a Hilbert space valued
Brownian motion. This chapter will apply the representation to study the large devi-
ation properties of infinite dimensional small noise stochastic dynamical systems. In
the application, the driving noise is given by a Brownian sheet, and so in this chapter
we will present a sufficient condition analogous to Condition9.1 (but there will be
no Poisson noise in this chapter) that covers the setting of such noise processes (see
Condition11.15). Another formulation of an infinite dimensional Brownian motion
that will be needed in Chap.12 is as a sequence of independent Brownian motions
regarded as a C ([0, T ] : R∞)-valued random variable. We also present the analo-
gous sufficient condition (Condition11.12) for an LDP to hold for this type of driving
noise.

To illustrate the approach we consider a class of reaction–diffusion stochastic
partial differential equations (SPDE), for which well-posedness has been studied in
[174]. Previous works that prove an LDP for this SPDE include [170, 235]. The
proof of the Laplace principle proceeds by verification of Condition11.15. Just as
in Chap.10, the key ingredients in the verification of this condition are the well-
posedness and compactness for sequences of controlled versions of the original
SPDE [Theorems11.23, 11.24, and 11.25]. Also as in Chap.10, the techniques and
estimates used to prove such properties for the original (uncontrolled) stochastic
model can be applied here as well, and indeed proofs for the controlled SPDEs
proceed in very much the same way as those of their uncontrolled counterparts.

The chapter is organized as follows. In Sect. 11.1 we recall some common for-
mulations of an infinite dimensional Brownian motion and relations between them.
Starting from the variational representation for a Hilbert space valued Brownian
motion from Chap.8, we present analogous representations for these equivalent for-
mulations of infinite dimensional Brownian motion. Then starting from the sufficient
condition for Hilbert space valued Brownian motion given in Chap.9, we state the
corresponding sufficient conditions for a uniform Laplace principle to hold for these
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other formulations in Sect. 11.2. The illustration of how the conditions are verified
is given in Sect. 11.3, which studies the large deviation properties for a family of
stochastic reaction–diffusion equations.

11.1 Formulations of Infinite Dimensional Brownian
Motion

An infinite dimensional Brownian motion arises in a natural fashion in the study
of stochastic processes with a spatial parameter. We refer the reader to [69, 169,
243] for numerous examples in the physical sciences in which infinite dimensional
Brownian motions are used to model the driving noise for stochastic dynamical
systems. Depending on the application of interest, the infinite dimensional nature of
the driving noise may be expressed in a variety of forms. Some examples include
Hilbert space valued Brownian motion (as was considered in Chap.8); cylindrical
Brownian motion; an infinite sequence of iid standard (1-dimensional) Brownian
motions; and space-time Brownian sheets. In what follows, we describe these various
formulations and explain how they relate to each other. We will be concerned only
with processes defined over a fixed time horizon, and thus fix T ∈ (0,∞), and all
filtrations and stochastic processes will be defined over the horizon [0, T ]. Reference
to T will be omitted unless essential. Let (Ω,F , P) be a probability space with a
filtration {Ft }0≤t≤T satisfying the usual conditions. Let (H , 〈·, ·〉) be a real separable
Hilbert space. LetΛbe a symmetric strictly positive trace class operator onH . Recall
that anH -valued continuous stochastic process {W (t)}0≤t≤T defined on (Ω,F , P)

is called a Λ-Wiener process with respect to {Ft } if for every nonzero h ∈ H ,
{〈Λh, h〉−1/2〈W (t), h〉} is a one-dimensional standard {Ft }-Wiener process.

Another formulation for an infinite dimensional Brownian motion, which will be
used in Chap.12 for the study of stochastic flows of diffeomorphisms, is as follows.
Let {βi }i∈N be an infinite sequence of independent standard one-dimensional, {Ft }-
Brownian motions. We denote the product space of countably infinite copies of the
real line by R

∞. Note that a sequence of independent standard Brownian motions
{βi }i∈N can be regarded as a random variable with values in C ([0, T ] : R∞), where
R

∞ is equipped with the usual topology of coordinatewise convergence, which can
be metrized using the distance

d(u, v)
.=

∞∑

k=1

|uk − vk | ∧ 1

2k
.

It is easily checked that with this metric,R∞ is a Polish space. Thus β = {βi }i∈N is a
random variable with values in the Polish spaceC ([0, T ] : R∞), and can be regarded
as another model of an infinite dimensional Brownian motion.

Let {ei }i∈N be a complete orthonormal system (CONS) for the Hilbert space H
such that Λei = λi ei , where λi is the strictly positive i th eigenvalue of Λ, which
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corresponds to the eigenvector ei . Since Λ is a trace class operator,
∑∞

i=1 λi < ∞.
Define

βi (t)
.= 1√

λi
〈W (t), ei 〉, 0 ≤ t ≤ T, i ∈ N,

whereW as before is aΛ-Wiener process with respect to {Ft }. It is easy to check that
{βi } is a sequence of independent standard {Ft }-Brownian motions. Thus starting
from aΛ-Wiener process, one can produce an infinite collection of independent stan-
dard Brownian motions in a straightforward manner. Conversely, given a collection
of independent standard Brownian motions {βi }i∈N and (Λ, {ei , λi }) as above, one
can obtain a Λ-Wiener process W by setting

W (t)
.=

∞∑

i=1

√
λiβi (t)ei , 0 ≤ t ≤ T . (11.1)

The right side of (11.1) clearly converges in L 2(P) for each fixed t . Furthermore,
one can check that the series also converges in C ([0, T ] : H ) almost surely [69,
Theorem 4.3]. These observations lead to the following result.

Proposition 11.1 There exist measurable maps f : C ([0, T ] : R∞) → C ([0, T ] :
H ) and g : C ([0, T ] : H ) → C ([0, T ] : R∞) such that f (β) = W and g(W ) = β

a.s.

Remark 11.2 Consider the Hilbert space l2
.= {x = (x1, x2, . . .) : xi ∈ R and∑∞

i=1 x
2
i < ∞}with the inner product 〈x, y〉0 .= ∑∞

i=1 xi yi . Let {λi }i∈N be a sequence
of strictly positive numbers such that

∑∞
i=1 λi < ∞. Then the Hilbert space l̄2

.=
{x = (x1, x2, . . .) : xi ∈ R and

∑∞
i=1 λi x2i < ∞} with the inner product 〈x, y〉 .=∑∞

i=1 λi xi yi contains l2, and the embedding map ι : l2 → l̄2, ι(x) = x is Hilbert–
Schmidt. Furthermore, the infinite sequence of real Brownian motions β takes values
in l̄2 almost surely and can be regarded as a l̄2-valued Λ-Wiener process, where Λ is
defined by 〈Λx, y〉 = ∑∞

i=1 λ2
i xi yi , x, y ∈ l̄2.

Equation (11.1) above can be interpreted as saying that the sequence {λi } (or equiv-
alently the trace class operator Λ) injects a “coloring” to a white noise such that the
resulting process has greater regularity. In some models of interest, such coloring is
obtained indirectly in terms of (state-dependent) diffusion coefficients. It is natural in
such situations to consider the driving noise a “cylindrical Brownian motion” rather
than a Hilbert space valued Brownian motion. Let (H , 〈·, ·〉) as before be a real
separable Hilbert space and fix a probability space and a filtration as above.

Definition 11.3 A family {Bt(h) = B(t, h) : t ∈ [0, T ], h ∈ H } of real random
variables is said to be an {Ft }-cylindrical Brownian motion if the following hold.

(a) For every h ∈ H with ‖h‖ = 1, {B(t, h)} is a standard Ft -Wiener process.
(b) For every t ∈ [0, T ], a1, a2 ∈ R and f1, f2 ∈ H ,

B(t, a1 f1 + a2 f2) = a1B(t, f1) + a2B(t, f2) a.s.
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If {Bt (h)} is a cylindrical Brownian motion and {ei } is a CONS in H , set-
ting βi (t)

.= B(t, ei ), we see that {βi } is a sequence of independent standard one-
dimensional {Ft }-Brownian motions. Conversely, given a sequence {βi }i∈N of inde-
pendent standard one-dimensional {Ft }-Brownian motions,

Bt (h)
.=

∞∑

i=1

βi (t)〈ei , h〉 (11.2)

defines a cylindrical Brownian motion on H . For each h ∈ H , the series in (11.2)
converges inL 2(P) and a.s. in C ([0, T ] : R).

Proposition 11.4 Let B be a cylindrical Brownian motion as in Definition11.3 and
let β be as constructed in the last paragraph. Then σ {Bs(h) : 0 ≤ s ≤ t, h ∈ H } =
σ {β(s) : 0 ≤ s ≤ t} for all t ∈ [0, T ]. In particular, if X is a σ {B(s, h) : 0 ≤ s ≤
T, h ∈ H }-measurable random variable, then there exists a measurable map g :
C ([0, T ] : R∞) → R such that g(β) = X a.s.

In yet other stochastic dynamical systems, the driving noise is given as a space-
time white noise process, also referred to as a Brownian sheet. In what follows, we
introduce this stochastic process and describe its relationship with the formulations
considered above. Let (Ω,F , P, {Ft }) be as before and fix a bounded open subset
O ⊂ R

d . We follow standard usage and denote both cylindrical Brownian motions
by B [more precisely by Bt (h)] and also Brownian sheets by B [in this case B(t, x)].
The intended use should be clear from context.

Definition 11.5 A family of real-valued Gaussian random variables

{B(t, x), (t, x) ∈ [0, T ] × O}

is called a Brownian sheet if the following hold.
(a) If (t, x) ∈ [0, T ] × O , then E(B(t, x)) = 0.
(b) If 0 ≤ s ≤ t ≤ T , then {B(t, x) − B(s, x), x ∈ O} is independent of Fs .
(c) Cov (B(t, x), B(s, y)) = λ(At,x ∩ As,y), where λ is Lebesgue measure on

[0, T ] × O and

At,x
.= {

(s, y) ∈ [0, T ] × O : 0 ≤ s ≤ t and y j ≤ x j , j = 1, . . . , d
}
.

(d) The map (t, u) → B(t, u) from [0, T ] × O to R is uniformly continuous a.s.

Due to the uniform continuity property of part (d), B = {B(t, x), (t, x) ∈ [0, T ] ×
O} can be regarded as a random variable with values in the Polish space C ([0, T ] ×
Ō : R), the space of continuous functions from [0, T ] × Ō to R, equipped with the
uniform topology.

To introduce stochastic integrals with respect to a Brownian sheet, we need the
following definitions and notation, which are largely taken from [169].
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Definition 11.6 (Elementary and simple functions) A function f : O × [0, T ] ×
Ω → R is elementary if there exist a, b ∈ [0, T ], a ≤ b, a bounded
{Fa}-measurable random variable X , and A ∈ B(O) such that

f (x, s, ω) = X (ω)1(a,b](s)1A(x).

A finite sum of elementary functions is referred to as a simple function. We denote
by S̄ the class of all simple functions.

Wenow introduce the {Ft }-predictableσ -field onΩ × [0, T ] × O . The definition
is analogous to that of a predictable σ -field on Ω × [0, T ] introduced in Chap.8 and
is denoted by the same symbol.

Definition 11.7 (Predictable σ -field) The {Ft }-predictable σ -field PF on Ω ×
[0, T ] × O is the σ -field generated by S̄ . A function f : Ω × [0, T ] × O → R is
called an {Ft }-predictable process if it isPF -measurable.

Remark 11.8 InChap.8weconsidered aprobability space supporting aHilbert space
valuedWiener process and defined the classes of integrands/controlsAb,A , ¯Ab, and¯A . The first two are predictable with respect to the filtration generated by theWiener
process and either have a finiteL 2 norm a.s. (A ) or satisfy a uniform bound on this
norm a.s. (Ab), and the last two are analogous, save being {Ft }-predictable (see the
definitions given after Definition8.2). In this chapter we will need the analogous
processes for a number of alternative formulations of infinite dimensional Brownian
motion. With some abuse of notation, we use the same symbols to denote the classes
with the analogous predictability and boundedness properties for all these different
formulations. The class intended in any circumstance will be clear from the context.

Thus analogous to the class of integrands ¯A introduced in Chap.8, consider the
class of all {Ft }-predictable processes f such that

∫
[0,T ]×O f 2(s, x)ds dx < ∞ a.s.,

and denote this class by ¯A . Classes Ab, A , and ¯Ab are defined similarly. For all
f ∈ ¯A , the stochastic integral Mt ( f )

.= ∫
[0,t]×O f (s, u)B(ds × du), t ∈ [0, T ], is

well defined as in Chap. 2 of [243]. Furthermore, for all f ∈ ¯A , {Mt ( f )}0≤t≤T is a
continuous {Ft }-local martingale. More properties of the stochastic integral can be
found in AppendixD.2.4, and in much greater detail in [243].

Consider theHilbert spaceL 2(O)
.= { f : O → R : ∫

O f 2(x)dx < ∞} equipped
with the usual inner product. Let {φi }i∈N be a CONS inL 2(O). Then it is easy to ver-
ify that β = {βi }i∈N defined by βi (t)

.= ∫
[0,t]×O φi (x)B(ds × dx), i ∈ N, t ∈ [0, T ]

is a sequence of independent standard real Brownian motions. Also, for (t, x) ∈
[0, T ] × O ,

B(t, x) =
∞∑

i=1

βi (t)
∫

O
φi (y)1(−∞,x](y)dy (11.3)

(where (−∞, x] = {y : yi ≤ xi for all i = 1, . . . , d}), and the series in (11.3) con-
verges inL 2(P) for each (t, x). From these considerations, it follows that
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σ {B(t, x), t ∈ [0, T ], x ∈ O} = σ {βi (t), i ∈ N, t ∈ [0, T ]}. (11.4)

As a consequence of (11.4) and LemmaE.1 in the appendix, we have the following
result.

Proposition 11.9 There exists a measurable map g : C ([0, T ] : R∞) → C ([0, T ]
× Ō : R) such that B = g(β) a.s., where β is as defined by βi (t)

.= ∫
[0,t]×O φi (x)

B(ds × dx).

11.1.1 The Representations

In Chap.8 we presented a variational representation for positive functionals of a
Hilbert space valued Brownian motion. Using this representation and the results
of Sect. 11.1, we can obtain analogous representations for other formulations of an
infinite dimensional Brownian motion. Let (Ω,F , P, {Ft }) and β = {βi } be as in
Sect. 11.1. Recall that β is a C ([0, T ] : R∞)-valued random variable.

Let PF be the {Ft }-predictable σ -field on [0, T ] × Ω as introduced in Def-
inition8.2. For a Hilbert space H0, let ¯A as in Chap.8 be the collection of all
H0-valued {Ft }-predictable processes for which

∫ T
0 ‖φ(s)‖20ds < ∞ a.s., where

‖ · ‖0 is the norm in the Hilbert space H0. We also recall the classes Ab,A and
¯Ab introduced in Chap.8. Note that when H0 = l2, every u ∈ ¯A can be written

as u = {ui }i∈N, where for each i , ui is a real-valued {Ft }-predictable process and∑∞
i=1

∫ T
0 |ui (s)|2ds < ∞ a.s. The following result is a consequence of Theorem8.3,

Proposition 11.1, and Remark11.2.

Theorem 11.10 Let G be a bounded measurable function mapping C ([0, T ] : R∞)

into R. Then withH0 = l2, we have

− log Ee−G(β) = inf
u={ui }∈R

E

[
1

2

∫ T

0

∞∑

i=1

|ui (s)|2ds + G
(
βu

)
]

,

where β
ui
i = βi + ∫ ·

0 ui (s)ds, i ∈ N, βu .= {βui
i }i∈N, and R can be ¯A , ¯Ab, A , or

Ab.

Proof Taking H = l̄2 introduced in Remark11.2, it follows from Proposition11.1
that there is a measurable map g : C ([0, T ] : H ) → C ([0, T ] : R∞) such that β =
g(W ), where W is as defined in (11.1) with {λi } as in Remark11.2 and ei as the
vector with the i th coordinate 1/

√
λi and remaining coordinates 0. Note that the

function g can be explicitly written as

[g(x)]i (t) = 1√
λi

〈x(t), ei 〉 = xi (t), x ∈ C ([0, T ] : H ), i ∈ N, t ∈ [0, T ].

From Theorem8.3, we then have
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− log Ee−G(β) = − log Ee−G(g(W ))

= inf
u={ui }∈R

E

[
1

2

∫ T

0

∞∑

i=1

|ui (s)|2ds + G
(
g(Wu)

)
]

,

where Wu(t)
.= W (t) + ∫ t

0 u(s)ds. The result now follows on observing that for all
u ∈ R, g(Wu) = βu . �

We next note the representation theorem for a Brownian sheet that follows from
Proposition11.9, Theorem11.10, and an application of Girsanov’s theorem. In the
statement below, ¯A , Ab, A , and ¯Ab are as introduced below Definition11.7.

Theorem 11.11 Let G : C ([0, T ] × Ō : R) → R be a bounded measurable map.
Let B be a Brownian sheet as in Definition11.5. Then

− log Ee−G(B) = inf
u∈R

E

[
1

2

∫ T

0

∫

O
u2(s, r)drds + G(Bu)

]
,

where Bu(t, x) = B(t, x) + ∫ t
0

∫
(−∞,x]∩O u(s, y)dyds andR can be ¯A , ¯Ab, A , or

Ab.

Proof We consider only the case R = Ab, and note that all remaining cases can be
treated similarly. Let g be as in Proposition 11.9. To apply the proposition, we need
to refer to the analogous set of control processes used in Theorem11.10, which we
denote by A β

b . Then with β as defined above (11.3), we have

− log Ee−G(B) = − log Ee−G(g(β))

= inf
û={ûi }∈A β

b

E

[
1

2

∫ T

0

∞∑

i=1

|ûi (s)|2ds + G
(
g(β û)

)]
. (11.5)

Note that there is a one-to-one correspondence between elements of Ab and A β

b
given through the relations

u(t, x)
.=

∞∑

i=1

ûi (t)φi (x), (t, x) ∈ [0, T ] × O for {ûi } ∈ A β

b ,

ûi (t)
.=

∫

O
u(t, x)φi (x)dx, t ∈ [0, T ] for u ∈ Ab.

Furthermore, ∫ T

0

∞∑

i=1

|ûi (s)|2ds =
∫ T

0

∫

O
u2(s, r)drds. (11.6)

Finally, from Girsanov’s theorem, with any u and û given by the above relations
there is a measure Q that is mutually absolutely continuous with respect to P and is
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such that under Q, (β û, Bu) have the same law as (β, B) under P . Thus G(g(β û)) =
G(Bu) a.s., and the result now follows from (11.5) and (11.6). �

The analogous representation holds for cylindrical Brownian motion, with a sim-
ilar proof. We omit the details.

11.2 General Sufficient Condition for an LDP

In this section we will present sufficient conditions for a uniform Laplace principle
that are similar to those presented in Sect. 9.2.1 but with the driving noise a Brownian
sheet or an infinite sequence of real Brownian motions (i.e., the R∞-valued random
variable β), rather than a Hilbert space valued Brownian motion. For simplicity, we
do not include a Poisson noise here, although that setting can be covered in a similar
manner.

Let, as in Sect. 11.1, β = {βi } be a sequence of independent standard real {Ft }-
Brownian motions on (Ω,F , P, {Ft }). Recall that β is a C ([0, T ] : R∞)-valued
random variable. For each ε > 0, let G ε : Z × C ([0, T ] : R∞) → E be a measur-
able map, where Z and E are Polish spaces, and define

X ε,z .= G ε(z,
√

εβ). (11.7)

We now consider the Laplace principle for the family {X ε,z} and introduce the ana-
logue of Condition9.1 for this setting. In the assumption, SM and ¯Ab,M (the determin-
istic controls with squaredL 2 norm bounded by M and {Ft }-predictable processes
that take values in SM , respectively) are defined as in (8.1) and below (8.2), withH0

there replaced by the Hilbert space l2.

Condition 11.12 There exists a measurable map G 0 : Z × C ([0, T ] : R∞) → E
such that the following hold.

(a) For every M < ∞ and compact set K ⊂ Z , the set

ΓM,K
.=

{
G 0

(
z,

∫ ·

0
u(s)ds

)
: u ∈ SM , z ∈ K

}

is a compact subset of E .
(b) Consider M < ∞ and families {uε} ⊂ ¯Ab,M and {zε} ⊂ Z such that uε con-

verges in distribution (as SM-valued random elements) to u and zε → z as ε → 0.
Then

G ε

(
zε,

√
εβ +

∫ ·

0
uε(s)ds

)
→ G 0

(
z,

∫ ·

0
u(s)ds

)
,

as ε → 0 in distribution.

The proof of the following uses a straightforward reduction to Theorem9.2.
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Theorem 11.13 Let X ε,z be as in (11.7) and suppose that Condition11.12 holds.
For z ∈ Z and φ ∈ E let

Iz(φ)
.= inf{u∈L 2([0,T ]:l2):φ=G 0(z,

∫ ·
0 u(s)ds)}

[
1

2

∞∑

i=1

∫ T

0
|ui (s)|2ds

]
. (11.8)

Suppose that for all φ ∈ E , z → Iz(φ) is a lower semicontinuous map from Z to
[0,∞]. Then for all z ∈ E0, φ → Iz(φ) is a rate function on E , and the family
{Iz(·), z ∈ Z } of rate functions has compact level sets on compacts. Furthermore,
the family {X ε,z} satisfies the Laplace principle on E with rate function Iz, uniformly
on compact subsets of Z .

Proof From Remark11.2 we can regard β as an H -valued Λ-Wiener process,
whereH = l̄2 and Λ is a trace class operator, as defined in Remark11.2. Also, one
can check that H0

.= Λ1/2H = l2. Since the embedding map ι : C ([0, T ] : l̄2) →
C ([0, T ] : R∞) is measurable (in fact continuous), Ĝ ε : Z × C ([0, T ] : l̄2) → E
defined by Ĝ ε(z, v)

.= G ε(z, ι(v)), (z, v) ∈ Z × C ([0, T ] : l̄2) is a measurable map
for every ε ≥ 0. Note also that for ε > 0, X ε,z = Ĝ ε(z,

√
εβ) a.s. Since Condi-

tion11.12 holds, we have that parts (a) and (b) of Condition9.1 are satisfied with G ε

there replaced by Ĝ ε for ε ≥ 0 (note that there is no Poisson noise here) and with
W replaced with β. Define Îz(φ) by the right side of (9.4) but with G 0 replaced by
Ĝ 0, S ˆG

z,φ
.= {

f ∈ L 2([0, T ] : H0) : φ = G 0(z,
∫ ·
0 f (s)ds)

}
, and L̄T (q) replaced by

1
2

∫ T
0 ‖ f (s)‖20 ds, so that

Îz(φ) = inf
f ∈SGz,φ

[
1

2

∫ T

0
‖ f (s)‖20 ds

]
.

Clearly Iz(φ) = Îz(φ) for all (z, φ) ∈ Z × E . The result is now an immediate con-
sequence of Theorem9.2. �

Remark 11.14 Since for t ∈ (0, T ),
∑∞

i=1(βi (t))2 = ∞ a.s., theR∞-valued random
variable β(t) does not lie in the subset l2 of R∞. However, for any sequence {λi }
as in Remark11.2,

∑∞
i=1 λi (βi (t))2 < ∞ a.s., which shows that the support of β(t)

does lie in the larger Hilbert space l̄2. In fact, t → β(t) is a.s. a continuous map from
[0, T ] to l̄2, and it is easily checked that it defines a Λ-Wiener process with sample
paths in l̄2. This identification of β with a Hilbert space valuedWiener process allows
us to leverage Theorem9.2 in establishing Theorem11.13. Note that there are many
different possible choices of sequences {λi } (and corresponding Hilbert spaces l̄2)
and any of them can be used to prove the theorem, which itself does not involve any
specific Hilbert space.

To close this section,we consider the Laplace principle for functionals of aBrown-
ian sheet. Let B be a Brownian sheet as in Definition11.5. Let G ε : Z × C ([0, T ] ×
Ō : R) → E , ε > 0, be a family of measurable maps. Define X ε,z .= G ε(z,

√
εB).
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We now provide sufficient conditions for a Laplace principle to hold for the family
{X ε,z}.

Analogous to the classes defined in (8.1), we introduce for N ∈ (0,∞),

SN
.=

{
φ ∈ L 2([0, T ] × O) :

∫

[0,T ]×O
φ2(s, r)dsdr ≤ N

}
,

¯Ab,N
.= {u ∈ ¯A : u(ω) ∈ SN , P-a.s.}. (11.9)

Oncemore, SN is endowedwith the weak topology onL 2([0, T ] × O), under which
it is a compact metric space. For u ∈ L 2([0, T ] × O), define Int(u) ∈ C ([0, T ] ×
O : R) by

Int(u)(t, x)
.=

∫

[0,t]×(O∩(−∞,x])
u(s, y)dsdy, (11.10)

where as before, (−∞, x] .= {y : yi ≤ xi for all i = 1, . . . , d}.
Condition 11.15 There exists a measurable map G 0 : Z × C ([0, T ] × O : R) →
E such that the following hold.

(a) For every M < ∞ and compact set K ⊂ Z , the set

ΓM,K
.= {

G 0(z, Int(u)) : u ∈ SM , z ∈ K
}

is a compact subset of E , where Int(u) is as in (11.10).
(b) Consider M < ∞ and families {uε} ⊂ ¯Ab,M and {zε} ⊂ Z such that uε con-

verges in distribution (as SM-valued random elements) to u and zε → z as ε → 0.
Then

G ε
(
zε,

√
εB + Int(uε)

) → G 0 (z, Int(u))

in distribution as ε → 0.

For f ∈ E and z ∈ Z , define

Iz( f ) = inf{u∈L 2([0,T ]×O): f =G 0(z,Int(u))}
[
1

2

∫

[0,T ]×O
u2(s, r)drds

]
. (11.11)

Theorem 11.16 Let G 0 : Z × C ([0, T ] × O : R) → E be a measurable map sat-
isfying Condition11.15. Suppose that for all f ∈ E , z → Iz( f ) is a lower semicon-
tinuous map fromZ to [0,∞]. Then for every z ∈ Z , Iz : E → [0,∞], defined by
(11.11), is a rate function on E , and the family {Iz, z ∈ Z } of rate functions has
compact level sets on compacts. Furthermore, the family {Xz,ε} satisfies the Laplace
principle on E with rate function Iz, uniformly for z in compact subsets of Z .
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Proof Let {φi }∞i=1 be a CONS inL 2(O) and let

βi (t)
.=

∫

[0,t]×O
φi (x)B(ds × dx), t ∈ [0, T ], i ∈ N.

Then β = {βi } is a sequence of independent standard real Brownian motions, and it
can be regarded as a C ([0, T ] : R∞)-valued random variable. Furthermore, (11.3)
is satisfied, and from Proposition11.9, there is a measurable map g : C ([0, T ] :
R

∞) → C ([0, T ] × O : R) such that g(β) = B a.s. For ε > 0, define Ĝ ε : Z ×
C ([0, T ] : R∞) → E by Ĝ ε(z,

√
εv)

.= G ε(z,
√

εg(v)), (z, v) ∈ Z × C ([0, T ] :
R

∞). Clearly, Ĝ ε is a measurable map and Ĝ ε(z,
√

εβ) = X ε,z a.s. Next, note that

{
v ∈ C ([0, T ] : R∞) : v(·) =

∫ ·

0
û(s)ds, for some û ∈ L 2([0, T ] : l2)

}

is a measurable subset of C ([0, T ] : R∞). For û ∈ L 2([0, T ] : l2), define uû ∈
L 2([0, T ] × O) by

uû(t, x)
.=

∞∑

i=1

ûi (t)φi (x), (t, x) ∈ [0, T ] × O.

Define Ĝ 0 : Z × C ([0, T ] : R∞) → E by

Ĝ 0(z, v)
.= G 0(z, Int(uû)) if v =

∫ ·

0
û(s)ds and û ∈ L 2([0, T ] : l2),

and set Ĝ 0(z, v)
.= 0 for all other (z, v). Note that

{
Ĝ 0

(
z,

∫ ·

0
û(s)ds

)
: û ∈ SM , z ∈ K

}
= {

G 0 (z, Int(u)) : u ∈ SM , z ∈ K
}
,

where SM on the left side is the one introduced above Condition 11.12, and SM on
the right side is the one introduced above (11.9). Since Condition11.15 holds, we
have that part (a) of Condition11.12 holds with G 0 there replaced by Ĝ 0. Next, an
application of Girsanov’s theorem (see the proof of Theorem11.11) gives that for
every ûε ∈ ¯Ab,M (where the latter class is as in Condition 11.12),

g

(
β + 1√

ε

∫ ·

0
ûε(s)ds

)
= B + 1√

ε
Int(uûε ),

a.s. In particular, for every M < ∞ and families {ûε} ⊂ ¯Ab,M and {zε} ⊂ Z such
that ûε converges in distribution (as SM -valued random elements) to û and zε → z,
we have
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lim
ε→0

Ĝ ε

(
zε,

√
εβ +

∫ ·

0
ûε(s)ds

)
= lim

ε→0
G ε

(
zε,

√
εB + Int(uûε )

)

= G 0 (z, Int(uû))

= Ĝ 0

(
z,

∫ ·

0
û(s)ds

)
.

Thus w.p.1, part (b) of Condition11.12 is satisfied with G ε replaced by Ĝ ε, ε ≥ 0.
The result now follows on noting that if Îz( f ) is defined by the right side of (11.8)
but with G 0 there replaced by Ĝ 0, then Îz( f ) = Iz( f ) for all (z, f ) ∈ Z × E . �

11.3 Reaction–Diffusion SPDE

In this section we will use results from Sect. 11.2, and in particular Theorem11.16,
to study the small noise large deviation principle for a class of SPDE that was
considered in [174]. The class includes, as a special case, the reaction–diffusion
SPDEs considered in [235] (see Remark11.22). The main result of the section is
Theorem11.21, which establishes the uniform Laplace principle for such SPDE.

As the discussion at the beginning of this Part III of the book indicates, this is but
one of many possible applications of the abstract LDP (Theorem9.2), though for this
particular application we of course use the version appropriate for a Brownian sheet
(Theorem11.16). Amain purpose of the presentation is to illustrate the claim that the
essential issue in proving an LDP is a good qualitative theory for controlled versions
of the original system under a law of large numbers scaling. Since we do not wish
to prove this qualitative theory again, in this section we extensively apply results
proved elsewhere, and in that sense, this section is not self-contained. This situation
illustrates the fact that in any particular application of Theorem9.2, one needs a thor-
ough understanding of the qualitative properties of the infinite dimensional system
under consideration.

11.3.1 The Large Deviation Theorem

Let (Ω,F , P) be a probability space with a filtration {Ft }0≤t≤T satisfying the usual
conditions. Let O ⊂ R

d be a bounded open set and {B(t, x) : (t, x) ∈ R+ × O} a
Brownian sheet on this filtered probability space. Consider the SPDE

dX (t, r) = [L(t)X (t, r) + R (t, r, X (t, r))]drdt + √
εA (t, r, X (t, r)) B(dr × dt)

(11.12)
with initial condition X (0, r) = x(r). Here {L(t)}0≤t<∞ is a family of linear,
closed, densely defined operators on C (O) that generates a two-parameter strongly
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continuous semigroup (see [174, Sect. 1]) {U (t, s)}0≤s≤t on C (O), with kernel func-
tion G(t, s, r, q), 0 ≤ s ≤ t, r, q ∈ O . Thus for f ∈ C (O),

[U (t, s) f ](r) =
∫

O
G(t, s, r, q) f (q)dq, r ∈ O, 0 ≤ s ≤ t ≤ T .

Also, A and R are measurable maps from [0, T ] × O × R to R and ε ∈ (0,∞). By
a solution of the SPDE (11.12), we mean the following.

Definition 11.17 A random field X = {X (t, r) : t ∈ [0, T ], r ∈ O} is called a mild
solution of the stochastic partial differential equation (11.12) with initial condition ξ

if (t, r) → X (t, r) is continuous, X (t, r) is {Ft }-measurable for all t ∈ [0, T ] and
r ∈ O , and if a.s. for all t ∈ [0, T ],

X (t, r) =
∫

O
G(t, 0, r, q)x(q)dq +

∫ t

0

∫

O
G(t, s, r, q)R (s, q, X (s, q)) dqds

+ √
ε

∫ t

0

∫

O
G(t, s, r, q)A (s, q, X (s, q)) B(dq × ds). (11.13)

Implicit in Definition11.17 is the requirement that the integrals in (11.13) be well
defined. We will shortly introduce conditions on G, A, and R that ensure that for a
continuous adapted random field X , all the integrals in (11.13) are meaningful. As a
convention, we take G(t, s, r, q) to be zero when 0 ≤ t < s ≤ T , r, q ∈ O .

For u ∈ ¯Ab,N [which was defined in (11.9)], the controlled analogue of (11.13) is

Y (t, r) =
∫

O
G(t, 0, r, q)x(q)dq +

∫ t

0

∫

O
G(t, s, r, q)R(s, q,Y (s, q))dqds

+ √
ε

∫ t

0

∫

O
G(t, s, r, q)A(s, q,Y (s, q))B(dq × ds) (11.14)

+
∫ t

0

∫

O
G(t, s, r, q)A(s, q,Y (s, q))u(s, q)dqds.

The main work in proving an LDP for (11.13) is to prove qualitative properties
(existence and uniqueness, tightness properties, and stability under perturbations)
for solutions to (11.14). We begin by discussing the known qualitative theory for
(11.13).

For α ∈ (0,∞), let Bα
.= {ψ ∈ C (O) : ‖ψ‖α < ∞} be the Banach space with

norm

‖ψ‖α
.= ‖ψ‖0 + sup

r,q∈O,r �=q

|ψ(r) − ψ(q)|
‖r − q‖α

, (11.15)

where ‖ψ‖0 .= supr∈O |ψ(r)|. The Banach space Bα([0, T ] × O) is defined as in
(11.15) butwith O replaced by [0, T ] × O , and for notational conveniencewe denote
this space byBT

α . For α = 0,BT
0 is the space of all continuous maps from [0, T ] × Ō

to R endowed with the sup-norm. The following will be a standing assumption
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for this section. In the assumption, ᾱ is a fixed constant, and the large deviation
principle will be proved in the topology of C ([0, T ] : Bα), for any fixed α ∈ (0, ᾱ).
Using the contraction principle, this large deviation principle provides large deviation
asymptotics for the evaluation X (t, r) for every fixed (t, r) ∈ [0, T ] × O , and for
many other functionals as well, e.g., supt∈[0,T ] ‖X (t, ·)‖α , sup(t,r)∈[0,T ]×O |X (t, r)|.
Recall that O ⊂ R

d . The following condition is taken from [170].

Condition 11.18 The following two conditions hold.
(a) There exist constants K (T ) < ∞ and γ ∈ (d,∞) such that
(i) for all t, s ∈ [0, T ], r ∈ O,

∫

O
|G(t, s, r, q)|dq ≤ K (T ); (11.16)

(ii) for all 0 ≤ s < t ≤ T and r, q ∈ O,

|G(t, s, r, q)| ≤ K (T )(t − s)−
d
γ ; (11.17)

(iii) if ᾱ
.= γ−d

2γ , then for all α ∈ (0, ᾱ) and for all 0 ≤ s < t1 ≤ t2 ≤
T, r1, r2, q ∈ O,

|G(t1, s, r1, q) − G(t2, s, r2, q)| (11.18)

≤ K (T )
[
(t2 − t1)

1− d
γ (t1 − s)−1 + |r1 − r2|2α(t1 − s)−

d+2α
γ

]
;

(iv) for all z, y ∈ R, r ∈ O, and 0 ≤ t ≤ T ,

|R(t, r, z) − R(t, r, y)| + |A(t, r, z) − A(t, r, y)| ≤ K (T )|z − y|

and
|R(t, r, z)| + |A(t, r, z)| ≤ K (T )(1 + |z|). (11.19)

(b) For all α ∈ (0, ᾱ) and ξ ∈ Bα , ξ̂ (t)
.= ∫

O G(t, 0, ·, q)ξ(q)dq belongs to Bα

and ξ̂ ∈ C ([0, T ] : Bα). The map ξ → ξ̂ is a continuous map from Bα to C ([0, T ] :
Bα).

Remark 11.19 (a) Note that the definition ᾱ
.= (γ − d)/2γ implies ᾱ ∈ (0, 1/2).

(b) We refer the reader to [169] for examples of families {L(t)}t≥0 that satisfy
Condition11.18.

(c) Using (11.16) and (11.17), it follows that for all 0 ≤ s < t ≤ T and r ∈ O ,

∫

O
|G(t, s, r, q)|2dq ≤ K 2(T )(t − s)−

d
γ . (11.20)

Since γ > d, the estimate (11.20) says that
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sup
(r,t)∈O×[0,T ]

∫

[0,t]×O
|G(t, s, r, q)|2dq < ∞, (11.21)

which in view of the linear growth assumption in (11.19) ensures that the stochastic
integral in (11.13) is well defined.

(d) Lemma 4.1(ii) of [169] shows that under Condition11.18, for every α < ᾱ

there exists a constant K̃ (α) such that for all 0 ≤ t1 ≤ t2 ≤ T and all r1, r2 ∈ O ,

∫ T

0

∫

O
|G(t1, s, r1, q) − G(t2, s, r2, q)|2dq ds ≤ K̃ (α)ρ ((t1, r1), (t2, r2))

2α ,

where ρ is the Euclidean distance in [0, T ] × O ⊂ R
d+1. This estimate will be used

in the proof of Lemma11.28.

The following theorem is due to Kotelenez (see Theorems 2.1 and 3.4 in [174]; see
also Theorem 3.1 in [169]).

Theorem 11.20 Assume Condition11.18 and fix α ∈ (0, ᾱ). There exists a measur-
able function

G ε : Bα × B
T
0 → C ([0, T ] : Bα)

such that for every filtered probability space (Ω,F , P, {Ft })with a Brownian sheet
B, X ε

x
.= G ε(x,

√
εB) is the unique mild solution of (11.12) (with initial condition

x), and it satisfies sup0≤t≤T E‖X ε
x (t)‖p

0 < ∞ for all p ∈ [0,∞).

For the rest of the section we consider only α ∈ (0, ᾱ). For f ∈ C ([0, T ] : Bα),
define

Ix ( f )
.= inf

u

∫

[0,T ]×O
u2(s, q)dsdq, (11.22)

where the infimum is taken over all u ∈ L 2([0, T ] × O) such that

f (t, r) =
∫

O
G(t, 0, r, q)x(q)dq +

∫

[0,t]×O
G(t, s, r, q)R(s, q, f (s, q))dsdq

+
∫

[0,t]×O
G(t, s, r, q)A(s, q, f (s, q))u(s, q)dsdq. (11.23)

The following is the main result of this section, which is a uniform Laplace principle
for {X ε

x }. The definition of a uniform Laplace principle was given in Chap.1. There
the dependence on the parameter over which uniformity is considered was noted in
the expectation operator. In this chapter, however, it will be more convenient to work
with a common probability measure (instead of a collection parametrized by x ∈ Bα)
and instead note the dependence on x in the collection of random variables, i.e., we
write X ε

x to note this dependence.

Theorem 11.21 Assume Condition11.18, let α ∈ (0, ᾱ), and let X ε
x be as in Theo-

rem11.20. Then Ix defined by (11.22) is a rate function on C ([0, T ] : Bα), and the
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family {Ix , x ∈ Bα} of rate functions has compact level sets on compacts. Further-
more, {X ε

x } satisfies the Laplace principle on C ([0, T ] : Bα) with the rate function
Ix , uniformly for x in compact subsets of Bα .

Remark 11.22 (a) If part (b) of Condition11.18 is weakened to merely the require-
ment that for every ξ ∈ Bα , t → ∫

O G(t, 0, ·, q)ξ(q)dq be in C ([0, T ] : Bα), then
the proof of Theorem11.21 shows that for all x ∈ Bα , the large deviation principle
for {X ε

x } on C ([0, T ] : Bα) holds (but not necessarily uniformly).
(b) The small noise LDP for a class of reaction–diffusion SPDEs, with O = [0, 1]

and a bounded diffusion coefficient, has been studied in [235]. A difference in the
conditions on the kernel G in [235] is that instead of (11.18), G satisfies the L 2

estimate in Remark11.19 (c) with ᾱ = 1/4. One finds that the proof of Lemma11.28,
which is at the heart of the proof of Theorem 11.21, uses only theL 2 estimate rather
than the condition (11.18). Using this observation and techniques in the proof of
Theorem11.21, one can extend results of [235] to the case in which the diffusion
coefficient, instead of being bounded, satisfies the linear growth condition (11.19).

Since the proof of Theorem11.21 relies on properties of the controlled process
(11.14), the first step is to prove existence and uniqueness of solutions. This follows
from a standard application of Girsanov’s theorem. Following the convention used
throughout the book, we denote the controlled version of the SPDE by an overbar.

Theorem 11.23 Let G ε be as in Theorem11.20 and let u ∈ ¯Ab,N for some N ∈ N,
where ¯Ab,N is as defined in (11.9). For ε > 0 and x ∈ Bα , define

X̄ ε
x

.= G ε
(
x,

√
εB + Int(u)

)
,

where Int is defined in (11.10). Then X̄ ε
x is the unique solution of (11.14).

Proof Fix u ∈ ¯Ab,N . Since

E

[
exp

{
− 1√

ε

∫

[0,T ]×O
u(s, q)B(ds × dq) − 1

2ε

∫

[0,T ]×O
u2(s, q)dsdq

}]
= 1,

the measure γ u,ε defined by

dγ u,ε = exp

{
− 1√

ε

∫

[0,T ]×O
u(s, q)B(ds × dq) − 1

2ε

∫

[0,T ]×O
u2(s, q)dsdq

}
dP

is a probability measure on (Ω,F , P). Furthermore, γ u,ε is mutually absolutely
continuous with respect to P , and by Girsanov’s theorem (TheoremD.2), the pro-
cess Bu/

√
ε .= B + ε−1/2Int(u) on (Ω,F , γ u,ε, {Ft }) is a Brownian sheet. Thus

by Theorem11.20, X̄ ε
x = G ε

(
x,

√
εB + Int(u)

)
is the unique solution of (11.13),

with B there replaced by Bu/
√

ε, on (Ω,F , γ u,ε, {Ft }). However, equation (11.13)
with Bu/

√
ε is precisely the same as equation (11.14), and since γ u,ε and P are

mutually absolutely continuous, we get that X̄ ε
x is the unique solution of (11.14) on

(Ω,F , P, {Ft }). This completes the proof. �
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We next state two basic qualitative results regarding the processes X̄ ε
x that hold

under Condition11.18. The first is simply the controlled zero-noise version of the
theorem just stated. Its proof follows from a simpler version of the arguments used
in [174] to establish Theorem11.20, and thus is omitted. The second is a standard
convergence result, whose proof is given in Sect. 11.3.2.

Theorem 11.24 Assume Condition11.18, let α ∈ (0, ᾱ), and fix x ∈ Bα and u ∈
L 2([0, T ] × O). Then there is a unique function f in C ([0, T ] : Bα) that satisfies
equation (11.23).

In analogy with the notation X̄ ε
x for the solution of (11.14), we denote the unique

solution f given by Theorem 11.24 by X̄0
x .

Theorem 11.25 Assume Condition11.18 and let α ∈ (0, ᾱ). Let M < ∞, and sup-
pose that xε → x and uε → u in distribution as ε → 0 with {uε} ⊂ ¯Ab,M. Let X̄ ε

xε

solve (11.14) with u = uε, and let X̄x solve (11.14). Then X̄ ε
xε → X̄x in distribution.

Remark 11.26 As noted several times already in this book, the same analysis as that
used to establish the largedeviationbounds (and inparticular the largedeviationupper
bound) typically yields compactness of level sets for the associated rate function. In
the present setting, we note that the same argument used to prove Theorem11.25 but
with ε set to zero shows the following (under Condition11.18). Suppose that xn → x
and un → u with {xn}n∈N ⊂ Bα and {un}n∈N ⊂ SM , and that fn solves (11.14) when
(x, u) is replaced by (xn, un). Then fn → f .

Proof (of Theorem11.21) Define the map G 0 : Bα × B
T
0 → C ([0, T ] : Bα) as fol-

lows. If x ∈ Bα and φ ∈ B
T
0 is of the form φ(t, x)

.= Int(u)(t, x) for some u ∈
L 2([0, T ] × O), we define G 0(x, φ) to be the solution f to (11.23). Let G 0(x, φ) =
0 for all other φ ∈ B

T
0 . In view of Theorem11.16, it suffices to show that (G ε,G 0)

satisfy Condition11.15 with Z and E there replaced by Bα and C ([0, T ] : Bα),
respectively, and that for all f ∈ E , the map x → Ix ( f ) is lower semicontinu-
ous. The latter property and the first part of Condition11.15 follow directly from
Theorem11.24 and Remark 11.26. The second part of Condition11.15 follows from
Theorem11.25. �

Thus all that remains to complete the proof is to verify Theorem 11.25.

11.3.2 Qualitative Properties of Controlled Stochastic
Reaction–Diffusion Equations

This section is devoted to the proof of Theorem11.25. Throughout this section we
assume Condition11.18 and consider any fixed α ∈ (0, ᾱ), where ᾱ

.= (γ − d)/2γ .
Whenever a control u appears, the associated controlled SPDE is of the form (11.14),
and its solution is denoted by X̄ ε

x . Our first result shows that L
p bounds hold for

controlled SDEs, uniformly when the initial condition and controls lie in compact
sets and ε ∈ [0, 1).
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Lemma 11.27 If K is any compact subset of Bα and M < ∞, then for every p ∈
[1,∞),

sup
u∈ ¯A b,M

sup
x∈K

sup
ε∈[0,1)

sup
(t,r)∈[0,T ]×O

E‖X̄ ε
x (t, r)‖p < ∞.

Proof By Hölder’s inequality, it suffices to establish the claim for all sufficiently
large p. Using the standard bound for the pth power of a sum in terms of the pth
powers of the summands and Doob’s inequality (D.2) for the stochastic integral,
there exists c1 ∈ (0,∞) such that

E‖X̄ ε
x (t, r)‖p ≤ c1

∥∥∥∥
∫

O
G(t, 0, r, q)x(q)dq

∥∥∥∥
p

+ c1E

∥∥∥∥
∫ t

0

∫

O
G(t, s, r, q)R

(
s, q, X̄ ε

x (s, q)
)
dqds

∥∥∥∥
p

+ c1E

[∫ t

0

∫

O
|G(t, s, r, q)|2 ∣∣A

(
s, q, X̄ ε

x (s, q)
)∣∣2 dqds

] p
2

+ c1E

[∫ t

0

∫

O
|G(t, s, r, q)| |A (

s, q, X̄ ε
x (s, q)

) ||u(s, q)|dqds
]p

.

Using (11.19) and the Cauchy-Schwarz inequality, the entire sum on the right-hand
side above can be bounded by

c2

[
1 + E

[∫ t

0

∫

O
|G(t, s, r, q)|2‖X̄ ε

x (s, q)‖2dq ds
] p

2

]
.

If p > 2, then Hölder’s inequality yields

Λp(t) ≤ c2

[
1 +

(∫ t

0

∫

O
|G(t, s, r, q)|2 p̃dq ds

) p−2
2

∫ t

0
Λp(s)ds

]
,

where
Λp(t)

.= sup
u∈ ¯A b,M

sup
x∈K

sup
ε∈[0,1)

sup
r∈O

E‖X̄ ε
x (t, r)‖p

and p̃
.= p/(p − 2). Recall that ᾱ < 1/2 (see Remark 11.19). Using (11.16) and

(11.17), we obtain

∫

O
|G(t, s, r, q)|2 p̃dq ≤ (K (T ))2 p̃(t − s)−

d
γ
(2 p̃−1)

.

Suppose p0 is large enough that (
2p0
p0−2 − 1)(1 − 2ᾱ) < 1. Noting that ᾱ

.= (γ −
d)/2γ implies d/γ = 1 − 2ᾱ, we have that for all p ≥ p0 and t ∈ [0, T ],
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[∫ t

0

∫

O
|G(t, s, r, q)|2 p̃dqds

] p−2
2

≤ c3T
[1−(2 p̃−1)(1−2ᾱ)] p−2

2 .

Thus for every p ≥ p0 there exists a constant c4 such that

Λp(t) ≤ c4

[
1 +

∫ t

0
Λp(s)ds

]
.

The result now follows from Gronwall’s lemma. �

The following lemma will be instrumental in proving tightness and weak con-
vergence in Banach spaces such as Bα and B

T
α . Recall that ρ denotes the Euclidean

distance in [0, T ] × O ⊂ R
d+1.

Lemma 11.28 Let V be a collection of Rd -valued predictable processes such that
for all p ∈ [2,∞),

sup
f ∈V

sup
(t,r)∈[0,T ]×O

E‖ f (t, r)‖p < ∞. (11.24)

Also, let U ⊂ ¯Ab,M for some M < ∞. For f ∈ V and u ∈ U , define

Ψ1(t, r)
.=

∫ t

0

∫

O
G(t, s, r, q) f (s, q)B(dq × ds),

Ψ2(t, r)
.=

∫ t

0

∫

O
G(t, s, r, q) f (s, q)u(s, q)dqds,

where the dependence on f and u is not made explicit in the notation. Then for all
α < ᾱ and i = 1, 2,

sup
f ∈V ,u∈U

E

[
sup

ρ((t,r),(s,q))<1

‖Ψi (t, r) − Ψi (s, q)‖
ρ ((t, r), (s, q))α

]
< ∞.

Proof We will prove the result for i = 1; the proof for i = 2 is identical (except
for an additional application of the Cauchy-Schwarz inequality), and thus omitted.
Henceforthwewrite, for simplicity,Ψ1 asΨ .We applyTheorem6of [157], according
to which it suffices to show that there are p ∈ (2,∞), cp ∈ (0,∞), and a function
ω̂ : [0,∞) → [0,∞) satisfying

∫ 1

0

ω̂(u)

u1+α+(d+1)/p
du < ∞ (11.25)

such that for all 0 ≤ t1 < t2 ≤ T and r1, r2 ∈ O , one has

sup
f ∈V ,u∈U

E ‖Ψ (t2, r2) − Ψ (t1, r1)‖p ≤ cp
(
ω̂ (ρ ((t1, r1), (t2, r2)))

)p
. (11.26)
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We will show that (11.26) holds with ω̂(u) = uα0 for some α0 ∈ (α, ᾱ) and all p
sufficiently large. With such choices (and p large enough), the integrand in (11.25)
will be of the form uβ with β ∈ (−1, 0). This will establish the result.

Fix α1 such that α < α1 < ᾱ and let t1 < t2, r1, r2 ∈ O and p > 2.Wewill need p
to be sufficiently large, and the choice of p will be fixed in the course of the proof. By
the Burkholder–Davis–Gundy inequality [AppendixD, (D.3)], there exists a constant
c1 such that

E ‖Ψ (t2, r2) − Ψ (t1, r1)‖p

≤ c1E

[∫ T

0

∫

O
|G(t2, s, r2, q) − G(t1, s, r1, q)|2 ‖ f (s, q)‖2dq ds

] p
2

. (11.27)

Let p̃ = p/(p − 2) and δ = 4/p. Note that (2 − δ) p̃ = δp/2 = 2. Hölder’s inequal-
ity (with parameters p/(p − 2) and p/2) and (11.24) give that the right-hand side
of (11.27) is bounded above by

c1

[∫ T

0

∫

O
|G(t2, s, r2, q) − G(t1, s, r1, q)|(2−δ) p̃ dq ds

] p−2
2

×
[∫ T

0

∫

O
|G(t2, s, r2, q) − G(t1, s, r1, q)|δp/2 E‖ f (s, q)‖pdq ds

]

≤ c2

[∫ T

0

∫

O
|G(t2, s, r2, q) − G(t1, s, r1, q)|2 dq ds

] p
2

(11.28)

for a suitable constant c2 that is independent of f . From part (d) of Remark11.19,
the expression in (11.28) can be bounded (for p large enough) by

c3ρ ((t1, r1), (t2, r2))
α1 p .

The result follows. �

The next lemma will be used to prove that the stochastic integral appearing in X̄ ε
x

converges to 0 in C ([0, T ] × O), a result that will be strengthened shortly.

Lemma 11.29 LetV andΨ1 beas inLemma11.28, and for f ∈ V , let Z ε
f

.= √
ε Ψ1.

Then for every sequence { fε} ⊂ V , Z ε
fε

→ 0 in C ([0, T ] × O) and in probability
as ε → 0.

Proof Note that for t ∈ [0, T ] and r ∈ O ,

sup
f ∈V

E |Ψ1(t, r)|2 = sup
f ∈V

∫ t

0

∫

O
|G(t, s, r, q)|2E ‖ f (s, q)‖2 dqds

≤ c1

∫ t

0

∫

O
|G(t, s, r, q)|2dqds

< ∞,
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where the last inequality is from (11.21). This shows that for such (t, r), Z ε
fε
(t, r) →

0 inL 2 and hence in probability. For δ ∈ (0, 1) and x ∈ C ([0, T ] × O), define

ω(x, δ)
.= sup

[‖x(t, r) − x(t ′, r ′)‖ : ρ
(
(t, r), (t ′, r ′)

) ≤ δ
]
.

Then ω(Z ε
fε
, δ) ≤ √

εδαMε
fε
, where

Mε
fε

.= sup
0<ρ((t,r),(s,q))<1

‖Ψ1(t, r) − Ψ1(s, q)‖
ρ ((t, r), (s, q))α .

Since α < ᾱ, it follows by Lemma11.28 that

lim
δ→0

sup
ε∈(0,1)

Eω(Z ε
fε , δ) = 0.

This establishes a form of uniform equicontinuity, and the result now follows from
Theorem 14.5 of [167]. �

We now establish the main convergence result.

Proof (of Theorem11.25) Consider sequences {xε} and {uε} as in the statement of
Theorem11.25. Letting X̄ ε

xε denote the corresponding controlled process, define

Z ε
1(t, r)

.=
∫

O
G(t, 0, r, q)xε(q)dq,

Z ε
2(t, r)

.=
∫ t

0

∫

O
G(t, s, r, q)R(s, q, X̄ ε

xε (s, q))dqds,

Z ε
3(t, r)

.= √
ε

∫ t

0

∫

O
G(t, s, r, q)A(s, q, X̄ ε

xε (s, q))B(dq × ds),

Z ε
4(t, r)

.=
∫ t

0

∫

O
G(t, s, r, q)A(s, q, X̄ ε

xε (s, q))uε(s, q)dqds.

We first show that {Z ε
i } is tight in C ([0, T ] : Bα), for i = 1, 2, 3, 4. For i = 1, this

follows from part (b) of Condition11.18. Recall that the norm on BT
α is

‖ψ‖α,T
.= ‖ψ‖0,T + sup

s,t∈[0,T ],r,q∈O,s �=t,r �=q

|ψ(t, r) − ψ(s, q)|
ρ ((t, r), (s, q))α ,

with ‖ψ‖0,T .= supt∈[0,T ],q∈O |ψ(t, r)|. Since BT
α∗ is compactly embedded in BT

α for
ᾱ > α∗ > α (cf. [147, Lemma 6.33]), it suffices to show that for some α∗ ∈ (α, ᾱ),

sup
ε∈(0,1)

P
{‖Z ε

i ‖α∗,T > K
} → 0 as K → ∞ for i = 2, 3, 4. (11.29)

For i = 2, 4, (11.29) is an immediate consequence of
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sup
ε∈(0,1)

E‖Z ε
i ‖α∗,T < ∞,

which follows from Lemma11.28, the linear growth condition (11.19), and
Lemma11.27. For i = 3, in view of Lemma 11.29, it suffices to establish

sup
ε∈(0,1)

E[Z ε
3]α∗,T < ∞, (11.30)

where for z ∈ B
T
α , [z]α∗,T = ‖z‖α∗,T − ‖z‖0,T . From the linear growth condition

(11.19) and Lemma11.27, it follows that

sup
ε∈[0,1)

sup
(t,r)∈[0,T ]×O

E |A(t, r, X̄ ε
xε (t, r))|p < ∞.

The bound in (11.30) now follows on using Lemma11.28, with d = 1 and

V
.= {(t, r) → A(t, r, X̄ ε

xε (t, r)), ε ∈ (0, 1)}.

Having shown tightness of Z ε
i for i = 1, 2, 3, 4, we can extract a subsequence

along which each of these processes and also X̄ ε
xε jointly converge in distribution,

with X̄ ε
xε taking values inC ([0, T ] : Bα). Let Zi and X̄x denote the respective limits.

We will show that

Z1(t, r) =
∫

O
G(t, 0, r, q)x(q)dq,

Z2(t, r) =
∫ t

0

∫

O
G(t, s, r, q)R(s, q, X̄x (s, q))dqds,

Z3(t, r) = 0,

Z4(t, r) =
∫ t

0

∫

O
G(t, s, r, q)A(s, q, X̄x (s, q))u(s, q)dqds. (11.31)

The uniqueness result Theorem11.24 will then complete the proof.
Convergence for i = 1 follows from part (b) of Condition11.18. The case i = 3

follows from Lemmas11.29, 11.27, and the linear growth condition. To deal with the
cases i = 2, 4, we invoke the Skorohod representation theorem, which allows us to
assume with probability one convergence for the purposes of identifying the limits.
We give the proof of convergence only for the harder case i = 4. Denote the right
side of (11.31) by Ẑ4(t, r). We have the bound

∣∣∣Z ε
4(t, r) − Ẑ4(t, r)

∣∣∣

≤
∫ t

0

∫

O
|G(t, s, r, q)| ∣∣A(s, q, X̄ ε

xε (s, q)) − A(s, q, X̄x (s, q))
∣∣ |uε(s, q)| dqds
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+
∣∣∣∣
∫ t

0

∫

O
G(t, s, r, q)A(s, q, X̄x (s, q)) (uε(s, q) − u(s, q)) dqds

∣∣∣∣ . (11.32)

Using the Cauchy-Schwarz inequality and the uniform Lipschitz property of A, for a
suitable constant c ∈ (0,∞) the first term on the right side of (11.32) can be bounded
above by

√
M

[∫ t

0

∫

O
|G(t, s, r, q)|2 ∣∣A(s, q, X̄ ε

xε (s, q)) − A(s, q, X̄x (s, q))
∣∣2 dqds

]1/2

≤ c

(
sup

(s,q)∈[0,T ]×O

∥∥X̄ ε
xε (s, q) − X̄x (s, q)

∥∥
)

,

and thus it converges to 0 as ε → 0. The second term in (11.32) converges to 0
as well, since uε → u as elements of ¯Ab,M and by (11.20) and the linear growth
assumption (11.19),

∫ t

0

∫

O
|G(t, s, r, q)|2 ∣∣A(s, q, X̄x (s, q))

∣∣2 dqds < ∞.

By uniqueness of limits and noting that Ẑ4 is a continuous random field, we see that
Z4 = Ẑ4, and the proof is complete. �

11.4 Notes

Some general references for stochastic partial differential equations are [169, 175,
221, 243]. The material of this chapter is largely taken from [43]. The approach
taken is different from that of [170, 235] and other early works on large deviations
for SPDE [50, 52, 56, 60, 127, 139, 160, 209, 252, 261]. The arguments used in
these papers, which build on the ideas of [7], proceed by approximating the original
model by a suitable time and/or space discretization. First one establishes an LDP
for the approximate system and then argues that an LDP continues to hold as one
approaches the original infinite dimensional model. For the last step, one needs suit-
able exponential probability estimates. These are usually the most technical aspects
of the proofs, and they often assume conditions stronger than those needed for the
LDP. Examples of various models to which the approach has been applied can be
found in the references listed at the beginning of Part III of this book.

An alternative approach, based on nonlinear semigroup theory and infinite dimen-
sionalHamilton–Jacobi–Bellman (HJB) equations, has been developed in [131, 132].
This approach relies on a uniqueness result for the corresponding infinite dimen-
sional nonlinear PDEs. The uniqueness requirement on the limit HJB equation is an
extraneous artifact of the approach, and different models seem to require different
methods for this, in general very hard, uniqueness problem. In contrast to the weak
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convergence approach, it requires an analysis of the model that goes significantly
beyond the unique solvability of the SPDE.

One of the main reasons for proving a sample path LDP for any given stochastic
system is as a step to validating the corresponding Freidlin–Wentzell large-time
theory [140]. A key distinction between the cases of finite and infinite dimensional
state is that open neighborhoods of points, which have compact closure in the finite
dimensional case, are merely bounded in the infinite dimensional case. This means,
unfortunately, that one should prove that the large deviation estimates are uniform
for initial conditions in bounded sets in the latter case. As was discussed in Chap.1,
it is usually easy to establish a Laplace principle that is uniformwith respect to initial
conditions in compact sets using a straightforward argument by contradiction, which
then gives the corresponding uniform LDP (Proposition1.14). A different approach
is needed for the infinite dimensional problem if one wants an LDP that is uniform
over bounded sets, and one way to deal with the issue within the Laplace principle
formalism is presented in [227].

The paper [38] studies large deviations for reaction–diffusion SPDE driven by
a Poisson noise using representations for Poisson random measures of the form
presented in Chap.8.



Chapter 12
Stochastic Flows of Diffeomorphisms
and Image Matching

The previous chapter considered in detail an example driven by a Brownian sheet,
namely a stochastic reaction–diffusion equation. In this chapter we consider an appli-
cation of one of the other formulations of infinite dimensional Brownian motion,
which is the infinite sequence of independent one-dimensional Brownian motions.
Such a collection will be used to define a general class of Brownian flows of diffeo-
morphisms [178], which are a special case of the stochastic flows of diffeomorphisms
studied in [16, 25, 124, 178]. We will consider small noise asymptotics, prove the
corresponding LDP, and then use it to give a Bayesian interpretation of an estimator
used for image matching.

Elementary examples of Brownian flows are those constructed by solving finite
dimensional Itô stochastic differential equations. More precisely, suppose b, fi , i =
1, . . . ,m, are functions from R

d × [0, T ] to R
d that are continuous in (x, t) and

(k + 1)-times continuously differentiable (with uniformly bounded derivatives) in
x . Let (Ω,F , P) be a probability space with a filtration {Ft } and let β1, . . . , βm be
independent standard {Ft }-Brownianmotions. Then for each s ∈ [0, T ] and x ∈ R

d ,
there is a unique continuous {Ft }-adapted, Rd -valued process φs,t (x), s ≤ t ≤ T ,
satisfying

φs,t (x) = x +
∫ t

s
b(φs,r (x), r)dr +

m∑
i=1

∫ t

s
fi (φs,r (x), r)dβi (r). (12.1)

By choosing a suitable modification, {φs,t }0≤s≤t≤T defines a Brownian flow of C k-
diffeomorphisms (see Sect. 12.1). In particular, letting D k denote the topological
group of C k-diffeomorphisms (see Sect. 12.2 for precise definitions of the topology
and the metric onD k), one has that φ = {φ0,t }0≤t≤T is a random variable with values
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in the Polish space Ŵk = C ([0, T ] : D k).1 For ε ∈ (0,∞), when fi is replaced by√
ε fi in (12.1), we write the corresponding flow as φε. Large deviations for φε in Ŵk ,

as ε → 0, have been studied for the case k = 0 in [10, 202] and for general k in [5].
As is well known (cf. [16, 163, 178]), not all Brownian flows can be expressed

as in (12.1), and in general one needs infinitely many Brownian motions to obtain a
stochastic differential equation (SDE) representation for the flow. Indeed, correlation
structures (in the spatial parameter) that one is likely to encounter in applications
generically lead to a formulation with infinitely many Brownian motions. One such
example is given in Sect. 12.4. Thus, following Kunita’s notation [178] for stochastic
integration with respect to semimartingales with a spatial parameter, the study of
general Brownian flows of C k-diffeomorphisms leads to SDEs of the form

dφs,t (x) = Φ(φs,t (x), dt), φs,s(x) = x, 0 ≤ s ≤ t ≤ T, x ∈ R
d , (12.2)

where Φ(x, t) is a C k+1-Brownian motion (see Definition 12.3). Note that Φ can
be regarded as a random variable with values in the Polish space Wk = C ([0, T ] :
C k+1(Rd)), whereC k+1(Rd) is the space of (k + 1) times continuously differentiable
functions from R

d to R
d . Representations of such Brownian motions in terms of

infinitely many independent standard real Brownian motions is well known (see,
e.g., Kunita [178, Exercise 3.2.10]). Indeed, one can represent Φ as

Φ(x, t)
.=

∫ t

0
b(x, r)dr +

∞∑
i=1

∫ t

0
fi (x, r)dβi (r), (x, t) ∈ R

d × [0, T ], (12.3)

where {βi }∞i=1 is an infinite sequence of iid real Brownian motions and b, fi are
suitable functions from R

d × [0, T ] to Rd (see below Definition 12.3 for details).
Letting a(x, y, t) = ∑∞

i=1 fi (x, t) f Ti (y, t) for x, y ∈ R
d and t ∈ [0, T ], the func-

tions (a, b) are referred to as the local characteristics of the Brownian motion
Φ. When Eq. (12.2) is driven by the Brownian motion Φε with local characteris-
tics (εa, b), we denote the corresponding solution by φε. In this chapter we estab-
lish a large deviation principle for (φε,Φε) in Ŵk−1 × Wk−1. Note that the LDP is
established in a larger space than the one in which (φε,Φε) take values (namely,
Ŵk × Wk). This is consistent with results in [5, 10, 202], which consider stochas-
tic flows driven by only finitely many real Brownian motions. The main technical
difficulty in establishing the LDP in Ŵk × Wk is the proof of a result analogous to
Proposition 12.18, which establishes tightness of certain controlled processes, when
k − 1 is replaced by k.

In Sect. 12.4 we study an application of these results to a problem in image analy-
sis. Stochastic diffeomorphic flows have been suggested formodelingprior statistical
distributions on the space of possible images/targets of interest in the study of non-
linear inverse problems in this field (see [99] and references therein). Along with

1Although elsewhere in the book D is used for a Skorohod space such as D([0, T ] : Rd ), in this
chapter only it is used for such spaces of diffeomorphisms.
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a data model, noise-corrupted observations together with such a prior distribution
can then be used to compute a posterior distribution on this space, from which it
is possible to construct various estimators of the true image underlying the obser-
vations, such as an approximate maximum likelihood estimator. Motivated by such
a Bayesian framework, a variational approach to the image-matching problem has
been suggested and analyzed in [99]. Here we develop a rigorous asymptotic theory
that relates a standard Bayesian formulation of the problem, in the small noise limit,
to the deterministic variational approach taken in [99]. This is done in Theorem 12.20
of Sect. 12.4.

We now give an outline of the chapter. Section12.1 contains notation needed for
this chapter as well as the definitions of C k-Brownian motion and Brownian flow.
Section12.2 presents the main large deviation result. The weak convergence needed
to prove this result, Theorem 12.8, is established in Sect. 12.3. We would like to
highlight the fact that apart from the much greater level of detail required due to the
complexity of the state space, the argument here is very much the same as that used
to establish the finite dimensional results in Sect. 3.2.1. We also note that as in the
reaction–diffusion example of Chap.11, we do not have to start from scratch, and
in fact, the analysis of the controlled systems appearing in the representation will
borrowmuch fromKunita’s corresponding qualitative analysis of the original system
as presented in [178]. Finally, Sect. 12.4 introduces the image analysis problem and
uses the results of Sect. 12.2 to obtain an asymptotic result relating the Bayesian
formulation of the problem to the deterministic variational approach of [99].

12.1 Notation and Definitions

There is a great deal of specialized notation associated with the study of stochastic
flows of diffeomorphisms. In order to minimize the notational conflict with standard
references in the area such as [178], we adopt much of this notation for this chapter
only. In particular, the following list gives notation that is specific to this chapter and
that may differ from the notation used for the same objects elsewhere in the book.
This notation generally follows [178].

• Let α = (α1, α2, . . . , αd) be a multi-index of nonnegative integers and |α| =
α1 + α2 + · · · + αd . For an |α|-times differentiable function f : Rd → R, set
∂α f

.= ∂α
x f = ∂ |α| f

(∂x1)α1 ···(∂xd )αd . For such an f , we write ∂ f (x)
∂xi

as ∂i f . If f =
( f1, f2, . . . , fd)T is an |α|-times differentiable function from R

d to R
d , we write

∂α f
.= (∂α f1, ∂α f2, . . . , ∂α fd)T . By convention, ∂0 f = f .

• Form ∈ N0, let C m denote the space ofm-times continuously differentiable func-
tions from R

d to R.
• For any subset A ⊂ R

d , m ∈ N0, and f ∈ C m , let

‖ f ‖m;A
.=

∑
0≤|α|≤m

sup
x∈A

|∂α f (x)|.
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The space C m is a Fréchet space [226, Sect. 1.8] with the countable collection of
seminorms ‖ f ‖m;An , An

.= {x : ‖x‖ ≤ n} [178]. In particular, it is a Polish space.
• For 0 < δ ≤ 1, let

‖ f ‖m,δ;A
.= ‖ f ‖m;A +

∑
|α|=m

sup
x,y∈A;x 	=y

|∂α f (x) − ∂α f (y)|
‖x − y‖δ

and
C m,δ .= {

f ∈ C m : ‖ f ‖m,δ;An < ∞ for any n ∈ N
}
.

The seminorms {‖ · ‖m,δ;An , n ∈ N} make C m,δ a Fréchet space.
• For m ∈ N0 let C̃ m denote the space of functions g : Rd × R

d → R such that
g(x, y), x, y ∈ R

d is m-times continuously differentiable with respect to both x
and y. Endowed with the seminorms

‖g‖∼
m;An

.=
∑

0≤|α|≤m

sup
x,y∈An

|∂α
x ∂α

y g(x, y)|,

where n ∈ N, C̃ m is a Fréchet space. Also, for 0 < δ ≤ 1, let

‖g‖∼
m,δ;An

.= ‖g‖∼
m;An

+
∑

|α|=m

sup
x 	=x̄,y 	=ȳ

x,y,x̄,ȳ∈An

|Δα
x,x̄ g(y) − Δα

x,x̄ g(ȳ)|
‖x − x̄‖δ ‖y − ȳ‖δ

,

where Δα
x,x̄ g(y)

.= ∂̂α
x,yg(x, y) − ∂̂α

x̄,yg(x̄, y), ∂̂
α
x,yg(x, y)

.= ∂α
x ∂α

y g(x, y). Then

C̃ m,δ .= {
g ∈ C̃ m; ‖g‖∼

m,δ;An
< ∞, for every n ∈ N

}

is a Fréchet space with respect to the seminorms {‖ · ‖∼
m,δ;An

, n ∈ N}.
• Wewrite ‖ f ‖m;Rd as ‖ f ‖m . The norms ‖ · ‖m,δ, ‖ · ‖∼

m, ‖ · ‖∼
m,δ are to be interpreted

in a similar manner.
• Let C m(Rd)

.= {
f = ( f1, . . . , fd)T : fi ∈ C m, i = 1, . . . , d

}
and with some

abuse of notation ‖ f ‖m,A
.= ∑d

i=1 ‖ fi‖m,A. Spaces such as C m,δ(Rd), C̃ m(Rd×d)

and C̃ m,δ(Rd×d) and their corresponding seminorms are defined similarly. Note
that here the argument indicates the range space, and that in particular, h ∈
C̃ m,δ(Rd×d) is a map from R

d × R
d to Rd×d .

• LetC m,δ
T (Rd) and C̃ m,δ

T (Rd×d) be the classes ofmeasurable functions b : [0, T ] →
C m,δ(Rd) and a : [0, T ] → C̃ m,δ(Rd×d), respectively, such that

‖b‖T,m,δ
.= sup

0≤t≤T
‖b(t)‖m,δ < ∞ and ‖a‖∼

T,m,δ

.= sup
0≤t≤T

‖a(t)‖∼
m,δ < ∞.

For convenience, we also recall the following notation fromChap.11. The Hilbert
space l2 is defined by
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l2
.=

{
(x1, x2, . . .) : xi ∈ R, i ∈ N and

∞∑
i=1

x2i < ∞
}

,

where the inner product on l2 is 〈x, y〉0 .= ∑∞
i=1 xi yi , x, y ∈ l2. We denote the cor-

responding norm by ‖ · ‖0. Given a probability space (Ω,F , P) and a filtration {Ft }
satisfying the usual conditions, we recall that

¯A
.=

{
φ = {φi }∞i=1

∣∣∣∣ φi : [0, T ] → R is {Ft }-predictable for all i

and P

{∫ T

0
‖φ(s)‖20ds < ∞

}
= 1

}
.

Recall also the definition

SN
.=

{
φ = {φi }∞i=1 ∈ L 2([0, T ] : l2) such that

∫ T

0
‖φ(s)‖20ds ≤ N

}
,

and that when equippedwith theweak topology for theHilbert spaceL 2([0, T ] : l2),
SN is a compact Polish space. Lastly, recall

¯Ab,N
.= {

u ∈ ¯A : u(ω) ∈ SN , P-a.s.
}
and ¯Ab

.= ∪N∈N ¯Ab,N . (12.4)

When referring to convergence in distribution of SN -valued random variables, we
always consider SN with the weak topology.

We next give definitions that are particular to this chapter. Let ◦ denote the com-
position of maps and let ι denote the identity map on R

d .

Definition 12.1 A collection
{
φs,t (x) : 0 ≤ s ≤ t ≤ T, x ∈ R

d
}
of Rd -valued ran-

dom variables on some (Ω,F , P, {Ft }) is called a forward stochastic flow of
homeomorphisms if there exists N ∈ F , with P(N ) = 0, such that for all ω ∈ Nc:

(a) (s, t, x) �→ φs,t (x, ω) is continuous;
(b) φs,u(ω) = φt,u(ω) ◦ φs,t (ω) holds for all s, t, u, 0 ≤ s ≤ t ≤ u ≤ T ;
(c) φs,s(ω) = ι for all s, 0 ≤ s ≤ T ;
(d) the map φs,t (ω) : Rd → R

d is an onto homeomorphism for all s, t, 0 ≤ s ≤
t ≤ T .

If in addition φs,t (x, ω) is k-times differentiable with respect to x for all s ≤ t
and the derivatives are continuous in (s, t, x), it is called a stochastic flow of C k-
diffeomorphisms.

We now introduce a Brownian motion with a spatial parameter, with local character-
istics (a, b). Fix k ∈ N and δ ∈ (0, 1]. Throughout this chapter, we will assume the
following.
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Condition 12.2 The coefficients satisfy (a, b) ∈ C̃ k,δ
T (Rd×d) × C k,δ

T (Rd).

Fix ν such that 0 < ν < δ.

Definition 12.3 A continuous stochastic process {Φ(t)}t≥0 on (Ω,F , P, {Ft })
with values in C k,ν(Rd) is said to be a C k,ν-Brownian motion with local char-
acteristics (a, b) if Φ(0), Φ(ti+1) − Φ(ti ), i = 0, 1, . . . , n − 1, are independent
C k,ν(Rd)-valued random variables whenever 0 ≤ t0 < t1 < · · · < tn ≤ T , and if
for each x ∈ R

d , M(x, t)
.= Φ(x, t) − ∫ t

0 b(x, r)dr is a continuous (d-dimensional)
martingale such that the matrix quadratic variation process (see Sect.D.1) satisfies
〈〈M(x, ·), M(y, ·)〉〉t = ∫ t

0 a(x, y, r)dr for all (x, y) ∈ R
d × R

d .

The existence of a C k,ν-Brownian motion with local characteristics (a, b) follows
from [178] (see, e.g., Theorem 3.1.2 and Exercise 3.2.10). Indeed, for every γ < δ,
one can representΦ as in (12.3), where fi : Rd × [0, T ] → R

d are such that for each
t ∈ [0, T ], fi (·, t) ∈ C k,γ (Rd),

a(x, y, t) =
∞∑
i=1

fi (x, t) f
T
i (y, t), a.e. t, (12.5)

and ∫ T

0

∞∑
i=1

| fi (x, r)|2dr ≤ T ‖a‖∼
T,k,δ < ∞.

In particular, note that if Φ is a C k,ν-valued Brownian motion, its finite dimen-
sional restriction (Φ(x1, ·), Φ(x2, ·), . . . , Φ(xn, ·))T is an nd-dimensional Gaussian
process with independent increments for all (x1, . . . , xn) ∈ R

nd . If Φ is as defined
by (12.3) and {φt }0≤t≤1 is a continuous Rd -valued {Ft }-adapted stochastic process,
then the stochastic integral

∫ t
0 Φ(φr , dr) is a well-defined d-dimensional continuous

{Ft }-adapted stochastic process (see Chap.3, Sect. 2, pages 71–86 of [178]).

Definition 12.4 Let Φ be as in Definition 12.3. Then for each s ∈ [0, T ] and x ∈
R

d , there is a unique continuous Ft -adapted, Rd -valued process φs,t (x), s ≤ t ≤
T satisfying φs,t (x) = x + ∫ t

s Φ(φs,r (x), dr), t ∈ [s, T ]. This stochastic process is
called the solution of Itô’s stochastic differential equation based on the Brownian
motion Φ.

From Theorem D.5 it follows that {φs,t }0≤s≤t≤T , as introduced in Definition 12.4,
has a modification that is a forward stochastic flow of C k-diffeomorphisms.

12.2 Statement of the LDP

Given ε > 0, let Φε be a C k,ν-Brownian motion on (Ω,F , P, {Ft }), with local
characteristics (εa, b), where (a, b) satisfyCondition 12.2.Without loss of generality
we assume that Φε is represented as
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Φε(x, t)
.=

∫ t

0
b(x, r)dr + √

ε

∞∑
l=1

∫ t

0
fl(x, r)dβl(r), (x, t) ∈ R

d × [0, T ],
(12.6)

where (βl , fl)l∈N are as in (12.3) and (12.5). Define the martingale M(x, t) by

√
εM(x, t)

.= Φε(x, t) −
∫ t

0
b(x, r)dr. (12.7)

With an abuse of notation, when ε = εn , we write Φε as Φn . Observe that

〈〈M(x, ·), βl(·)〉〉t =
∫ t

0
fl(x, r)dr for all t ∈ [0, T ], a.s.

Let φε = {φε
s,t (x)} be the forward stochastic flow of C k-diffeomorphisms based on

Φε. With another abuse of notation, we write φε
0,t as φε

t and sometimes use φε to
denote {φε

t (x)}0≤t≤T,x∈Rd .
In this chapter we show that {(φε,Φε)}ε>0 satisfies a large deviation principle

on two suitable function spaces. The appropriate spaces are defined as follows. For
m ∈ N, let Dm be the group of C m-diffeomorphisms on R

d ; Dm is endowed with
the metric

dm(φ,ψ)
.= λm(φ,ψ) + λm(φ−1, ψ−1), (12.8)

where

λm(φ,ψ)
.=

∑
|α|≤m

ρ(∂αφ, ∂αψ), (12.9)

ρ(φ,ψ)
.=

∞∑
N=1

1

2N
sup‖x‖≤N |φ(x) − ψ(x)|

1 + sup‖x‖≤N |φ(x) − ψ(x)| .

Under this metric, Dm is a Polish space (see [178, Chap.4]). Let Ŵm
.= C

([0, T ] :
Dm

)
be the set of all continuous maps from [0, T ] to Dm and let Wm

.= C
([0, T ] :

C m(Rd)
)
be the set of all continuous maps from [0, T ] to C m(Rd). Hence being

an element of Wm implies a smoothness in x , while being in Ŵm says that the
function is a diffeomorphism. The space Ŵm endowed with the metric d̂m(φ,ψ) =
sup0≤t≤T dm(φ(t), ψ(t)) and the space Wm endowed with the metric d̄m(φ,ψ) =
sup0≤t≤T λm(φ(t), ψ(t)) are both Polish spaces. Note that (φε,Φε) belongs to

Ŵk × Wk ⊂ Ŵk−1 × Wk−1 ⊂ Wk−1 × Wk−1.Wewill show that the pair {(φε,Φε)}ε>0

satisfies LDPs in both of the spaces Ŵk−1 × Wk−1 andWk−1 × Wk−1, with a rate func-
tion I that is introduced below.

Let u = {ul}∞l=1 ∈ ¯Ab, and recall that this implies that there is M < ∞ such that

w.p.1
∑∞

l=1

∫ T
0 |ul(s)|2 ds ≤ M . Given any such control, we want to construct a

corresponding controlled flow in the form of a perturbed analogue of (12.6). To state
the LDP, we need only consider the case u ∈ L 2([0, T ] : l2), but for later use, it is
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convenient to consider the more general case in which u is allowed to be random.We
first need to interpret this control as a drift. Observe that Zt

.= ∑∞
l=1

∫ t
0 ul(s)dβl(s)

is a continuous square-integrable martingale. For any γ < δ one can find bu : Rd ×
[0, T ] × Ω → R

d such that bu(·, t, ω) ∈ C k,γ (Rd) for a.e. (t, ω), such that for each
x ∈ R

d , bu(x, ·) is predictable, and such that
∫ t
0 bu(x, s)ds = 〈〈Z , M(x, ·)〉〉t for each

(x, t) ∈ R
d × [0, T ]. In particular, for each x ∈ R

d , bu(x, t)
.= ∑∞

l=1 ul(t) fl(x, t)
for almost every (t, ω). Furthermore, for some c ∈ (0,∞),

‖bu(·, t)‖2k,γ ≤ c‖a‖∼
T,k,δ

∞∑
l=1

|ul(t)|2, [dt × P] − a.e. in (t, ω). (12.10)

The proofs of these statements follow along the lines of Exercise 3.2.10 and Lemma
3.2.3 of [178]. Next, define

Φ̄(x, t)
.=

∫ t

0
bu(x, s)ds +

∫ t

0
b(x, s)ds. (12.11)

It follows that Φ̄(·, t) is a C k,γ (Rd)-valued continuous adapted stochastic process.
Let b̂u

.= bu + b, and for (t0, x) ∈ [0, T ] × R
d , let {φ̄t0,t (x)}t0≤t≤T be the unique

solution of the equation

φ̄t0,t (x)
.= x +

∫ t

t0

b̂u
(
φ̄t0,t (x), r

)
dr, t ∈ [t0, T ]. (12.12)

By Theorem D.5, {φ̄s,t }0≤s≤t≤T is a forward flow of C k-diffeomorphisms.
For (φ0, Φ0) ∈ Ŵk × Wk , define

I (φ0, Φ0)
.= inf

u

1

2

∫ T

0
‖u(s)‖20ds, (12.13)

where the infimum is taken over all u such that (φ0, Φ0) = (φ̄, Φ̄), where φ̄ and
Φ̄ are given by (12.12) and (12.11), respectively. If (φ0, Φ0) ∈ (Wk−1 × Wk−1) \
(Ŵk × Wk), we set I (φ0, Φ0) = ∞. We denote the restriction of I to Ŵk−1 × Wk−1

by the same symbol. The following is the main result of the section.

Theorem 12.5 The family (φε,Φε)ε>0 satisfies an LDP in the spaces Ŵk−1 × Wk−1

and Wk−1 × Wk−1 with rate function I .

Let {un}∞n=1 (with un = {unl }∞l=1) be a sequence in ¯Ab,N for some fixed N < ∞. Let
{εn}n∈N be a sequence such that εn ≥ 0 for each n and εn → 0 as n → ∞. Note
that we allow εn = 0 for all n. Recall M(x, t) from (12.7). Following our standard
convention, controlled versions of processes are indicated by an overbar, without
explicitly denoting the dependence on the control. Thus we define
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Φ̄n(x, t)
.=

∫ t

0
b̂un (x, r)dr + √

εn M(x, t) (12.14)

and let φ̄n be the solution to

φ̄n
t (x) = x +

∫ t

0
b̂un

(
φ̄n
r (x), r

)
dr + √

εn

∫ t

0
M

(
φ̄n
r (x), dr

)
. (12.15)

Clearly Φ̄n ∈ Wk , and from Theorem D.5, Eq. (12.15) has a unique solution φ̄n that
lies in Ŵk a.s. We next introduce some basic weak convergence definitions.

Definition 12.6 Let {un}n∈N ⊂ ¯Ab,N , u ∈ ¯Ab,N , and let (φ̄n, Φ̄n) and (φ̄, Φ̄) be
defined by (12.14), (12.15) and (12.11), (12.12), respectively. Let P̂n

k−1, P̂k−1 be

the measures induced by (φ̄n, Φ̄n), (φ̄, Φ̄), respectively, on Ŵk−1 × Wk−1. Thus for
A ∈ B(Ŵk−1 × Wk−1), we have

P̂n
k−1(A) = P

(
(φ̄n, Φ̄n) ∈ A

)
, P̂k−1(A) = P

(
(φ̄, Φ̄) ∈ A

)
.

The sequence
{
(φ̄n, Φ̄n)

}
n∈N is said to converge weakly as D k−1-flows to (φ̄, Φ̄)

as n → ∞ if P̂n
k−1 converges weakly to P̂k−1 as n → ∞.

Definition 12.7 Let {un}n∈N ⊂ ¯Ab,N , u ∈ ¯Ab,N , and let Pn
k−1, Pk−1 be the mea-

sures induced by (φ̄n, Φ̄n), (φ̄, Φ̄) respectively on Wk−1 × Wk−1. The sequence{
(φ̄n, Φ̄n)

}
n∈N is said to converge weakly as C k−1-flows to (φ̄, Φ̄) as n → ∞ if

Pn
k−1 converges weakly to Pk−1 as n → ∞.

As is the case throughout the book, the proofs of large deviation properties essen-
tially reduce to weak convergence questions for controlled analogues of the original
process. For the present problem, the following theorem gives the needed result. The
proof is given in the next section.

Theorem 12.8 Let un, u ∈ ¯Ab,N be such that un converges to u in distribution,
and define (φ̄n, Φ̄n), (φ̄, Φ̄) as in (12.14), (12.15) and (12.11), (12.12). Then the
sequence {(φ̄n, Φ̄n)}n∈N converges weakly as C k−1-flows and D k−1-flows to (φ̄, Φ̄)

as n → ∞.

Proof of Theorem 12.5Wewill show only that the sequence (φε,Φε) satisfies an LDP
in Ŵk−1 × Wk−1 with rate function I defined as in (12.13). The LDP inWk−1 × Wk−1

follows similarly. We apply Theorem 11.13. Let G ε : C ([0, T ] : R∞) → Ŵk−1 ×
Wk−1 be a measurable map such that G ε(

√
εβ) = (φε,Φε) a.s., whereΦε is given by

(12.6) and φε is the associated flow based onΦε. The existence of such amap follows
through an adaptation of the classical Yamada–Watanabe proof [159, Chap. IV] for
finite dimensional diffusions with unique pathwise solutions. Define G 0 : C ([0, T ] :
R

∞) → Ŵk−1 × Wk−1 by G 0
(∫ ·

0 u(s)ds
) = (φ̄, Φ̄) if u ∈ L 2([0, T ] : l2) and with

φ̄, Φ̄ as defined in (12.12) and (12.11), respectively. Set G 0( f ) = 0 for all other
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f ∈ C ([0, T ] : R∞). We now verify Condition 11.12 withG ε andG 0 as just defined.
In the present setting there is only one initial condition of interest. Hence Z is a
single point, and so we verify the modified form of Condition 11.12 in which G ε and
G 0 are maps defined on C ([0, T ] : R∞) rather than on Z × C ([0, T ] : R∞).

Fix N < ∞ and consider ΓN
.= {G 0(

∫ ·
0 u(s)ds), u ∈ SN }. We now show that ΓN

is a compact subset of Ŵk−1 × Wk−1. If u �→ G 0(
∫ ·
0 u(s)ds) is continuous on SN ,

then as the continuous forward image of a compact set, ΓN is also compact. Hence
it suffices to show that if un, u ∈ SN are such that un → u, then G 0(

∫ ·
0 u

n(s)ds) →
G 0(

∫ ·
0 u(s)ds) in Ŵk−1 × Wk−1. This is immediate from Theorem 12.8 on noting that

G 0(
∫ ·
0 u

n(s)ds) = (φ̄n, Φ̄n), where φ̄n, Φ̄n are as in (12.15) and (12.14) respectively
with εn = 0; and G 0(

∫ ·
0 u(s)ds) = (φ̄, Φ̄), where φ̄, Φ̄ are as in (12.12) and (12.11)

respectively. This verifies part (a) of Condition 11.12.
Next let {un} ⊂ ¯Ab,N and εn ∈ (0,∞) be such that εn → 0 and un converges in

distribution to some u as n → ∞. We now show that G εn (
√

εnβ + ∫ ·
0 u

n(s)ds) ⇒
G 0(

∫ ·
0 u(s)ds) in Ŵk−1 × Wk−1 as n → ∞. An application of Girsanov’s theo-

rem [see below Theorem D.1] shows that G εn (
√

εnβ + ∫ ·
0 u

n(s)ds) = (φ̄n, Φ̄n),
where φ̄n, Φ̄n are defined as in (12.15) and (12.14), respectively [see, for exam-
ple, Sect. 10.2.1, where a similar argument for finite dimensional jump-diffusions
was used]. Also, G 0(

∫ ·
0 u(s)ds) = (φ̄, Φ̄), where φ̄, Φ̄ are as in (12.12) and (12.11),

respectively. The desired convergence now follows from Theorem 12.8. This verifies
part (b) of Condition 11.12, and Theorem 12.5 now follows from Theorem 11.13. �

12.3 Weak Convergence for Controlled Flows

This section will present the proof of Theorem 12.8. It is worth recalling assumptions
that will be in effect for this section, which are that {un} is converging to u in
distribution as an SN -valued sequence of random variables, where we recall that SN
is a compact Polish space under the weak topology, and that by Condition 12.2,
(a, b) ∈ C̃ k,δ

T (Rd×d) × C k,δ
T (Rd), for some k ∈ N and δ ∈ (0, 1].

We begin by introducing the (m, p)-pointmotion of the flow and the related notion
of “convergence as diffusions.” Let x .= (x1, x2, . . . , xm) and y .= (y1, y2, . . . , yp)
be arbitrary fixed points in R

d×m and R
d×p, respectively. Set

φ̄n
t (x)

.= (
φ̄n
t (x1), φ̄

n
t (x2), . . . , φ̄

n
t (xm)

)

and
Φ̄n(y, t) .= (

Φ̄n(y1, t), Φ̄
n(y2, t), . . . , Φ̄

n(yp, t)
)
.

Then the pair {φ̄n
t (x), Φ̄

n(y, t)} is a continuous stochastic process with values in
R

d×m × R
d×p and is called an (m, p)-point motion of the flow. Let Vm

.= C
([0, T ] :

R
d×m

)
be the space of all continuous maps from [0, T ] to R

d×m , equipped with the
usual uniform topology, and let Vm,p = Vm × Vp be the product space. Let φ̄n(x)
and Φ̄n(y) denote φ̄n· (x) and Φ̄n(y, ·), respectively.
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Definition 12.9 Let Pn
x,y and Px,y be the measures induced by (φ̄n(x), Φ̄n(y)) and

(φ̄(x), Φ̄(y)) on Vm,p, respectively. Thus for A ∈ B(Vm,p),

Pn
x,y = P

(
(φ̄n(x), Φ̄n(y)) ∈ A

)
, Px,y = P

(
(φ̄(x), Φ̄(y)) ∈ A

)
.

The sequence {(φ̄n, Φ̄n)}n∈N is said to converge weakly as diffusions to (φ̄, Φ̄) as
n → ∞ if Pn

x,y converges weakly to Px,y as n → ∞ for each (x, y) ∈ R
d×m × R

d×p

and m, p ∈ N.

The following result [178, Theorem 5.1.1] is a key ingredient in the proof of Theo-
rem 12.8. It is analogous to the criteria for weak convergence of finite dimensional
stochastic processes in terms of tightness as processes and convergence of finite
dimensional distributions.

Theorem 12.10 The family of probability measures P̂n
k−1(respectively, P

n
k−1) con-

verges weakly to probability measures P̂k−1(respectively, Pk−1) as n → ∞ if and
only if the following two conditions are satisfied:

1. The sequence {(φ̄n, Φ̄n)}n∈N converges weakly as diffusions to (φ̄, Φ̄) as n →
∞.

2. The sequence {P̂n
k−1} (respectively, {Pn

k−1}) is tight.
Wewill show first that under the condition of Theorem 12.8, the sequence {(φ̄n, Φ̄n)}
converges weakly as diffusions to (φ̄, Φ̄) as n → ∞. We begin with the following
lemma.

Lemma 12.11 For each x ∈ R
d ,

E sup
0≤t≤T

∥∥∥∥∥
∞∑
l=1

∫ t

0
fl(x, s)dβl(s)

∥∥∥∥∥
2

< ∞, (12.16)

sup
n∈N

E sup
0≤t≤T

∥∥∥∥∥
∞∑
l=1

∫ t

0
fl(φ̄

n
s (x), s)dβl(s)

∥∥∥∥∥
2

< ∞. (12.17)

Proof We will prove only (12.17). The proof of (12.16) follows in a similar manner.
From the Burkholder–Davis–Gundy inequality [see (D.3)], (12.5), and the definition
of ‖a‖∼

T,k,δ , the left-hand side of (12.17) is bounded by

c1E

∣∣∣∣∣
∞∑
l=1

∫ T

0
tr
(
fl(φ̄

n
s (x), s) f

T
l (φ̄n

s (x), s)
)
ds

∣∣∣∣∣
= c1E

∣∣∣∣
∫ T

0
tr

(
a(φ̄n

s (x), φ̄
n
s (x), s)

)
ds

∣∣∣∣
≤ c2‖a‖∼

T,k,δ,
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where for a d × d matrix A, tr(A) denotes its trace. The last expression is finite,
since a belongs to C̃ k,δ

T (Rd×d). �

An immediate consequence of Lemma 12.11 is the following corollary [recall
(12.14), (12.15), and the definition of M(x, t) in (12.6), (12.7)]. The continuity in t
follows from the fact that M(x, ·) is continuous for each x ∈ R

d .

Corollary 12.12 For each x ∈ R
d and t ∈ [0, T ], we have

Φ̄n(x, t) =
∫ t

0
b̂un (x, r)dr + Rn(x, t)

and

φ̄n
t (x) = x +

∫ t

0
b̂un (φ̄

n
r (x), r)dr + Tn(x, t),

where Rn(x, ·) and Tn(x, ·) are continuous stochastic processes with values in R
d ,

which satisfy sup0≤t≤T

{‖Rn(x, t)‖ + ‖Tn(x, t)‖
} → 0 in probability as n → ∞.

Since x and y are finite dimensional, the next lemma will imply the tightness of
Pn
x,y.

Lemma 12.13 For each x ∈ R
d , the sequence {(φ̄n(x), Φ̄n(x)

)}n∈N is tight in
C

([0, T ] : Rd × R
d
)
.

Proof We will argue only the tightness of {φ̄n(x)}, since tightness of {Φ̄n(x)} is
proved similarly. Corollary 12.12 yields that Tn(x, ·) is tight in C

([0, T ] : Rd
)
. Thus

it suffices to show the tightness of
{∫ ·

0 b̂un
(
φ̄n
r (x), r

)
dr

}
. Consider any p ∈ (0,∞)

and recall that b̂u
.= bu + b. From the Cauchy-Schwarz inequality, (12.10), and

recalling that un ∈ ¯Ab,N , we see that E
∥∥∫ t

s b̂un (φ̄
n
r (x), r)dr

∥∥p
is bounded by

E

[∫ t

s

∥∥b̂un (φ̄n
r (x), r

)∥∥2
dr

]p/2

(t − s)p/2 ≤ c1(‖a‖∼
T,k,δ + ‖b‖2T,k,δ)

p/2(t − s)p/2

≤ c2(t − s)p/2.

The result follows. �

Proposition 12.14 The sequence {(φ̄n, Φ̄n)}n∈N converges weakly as diffusions to
(φ̄, Φ̄) as n → ∞.

Proof We recall that bu was defined above (12.10) according to
∫ t
0 bu(x, s)ds =

〈〈Z , M(x, ·)〉〉t for (x, t) ∈ R
d × [0, T ], that it takes the form bu(x, t)

.= ∑∞
l=1 ul(t)

fl(x, t) a.e. (t, ω), and that b̂u
.= bu + b. We claim that it suffices to show that for

each t ∈ [0, T ], the map

(ξ, v) �→
∫ t

0
b̂v(ξs, s)ds (12.18)
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from C ([0, T ] : Rd) × SN to R
d is continuous. To prove the claim, note that in

view of the tightness established in Lemma 12.13 and uniqueness of the solution of
the second equation in (12.19), the proposition will follow if for every x ∈ R

d and
each fixed t ∈ [0, T ], every weak limit point (φ̄(x), Φ̄(x), ū) of (φ̄n(x), Φ̄n(x), un)
satisfies

Φ̄(x, t) =
∫ t

0
b̂ū(x, r)dr, φ̄t (x) = x +

∫ t

0
b̂ū(φ̄r (x), r)dr, a.s. (12.19)

Now fix a weakly convergent subsequence of (φ̄n(x), Φ̄n(x), un) and t ∈ [0, T ].
From (12.18) and (φ̄n(x), un(x)) ⇒ (φ̄(x), ū(x)), it follows that

(
φ̄n
t (x),

∫ t

0
b̂un (φ̄

n
r (x), r)dr

)
⇒

(
φ̄t (x),

∫ t

0
b̂ū(φ̄r (x), r)dr

)
.

The second equality in (12.19) is now an immediate consequence of the second
equality in Corollary 12.12. The first equality in (12.19) is proved similarly on noting
that (12.18) in particular implies that for each x ∈ R

d , the map v �→ ∫ t
0 b̂v(x, s)ds,

from SN to Rd , is continuous.
We now prove the continuity of the mapping (12.18). Let (ξ n, vn) → (ξ, v) in

C ([0, T ] : Rd) × SN . Then

∥∥∥∥
∫ t

0

(
b̂vn (ξ

n
s , s) − b̂v(ξs, s)

)
ds

∥∥∥∥ ≤ T n
1 + T n

2 , (12.20)

where

T n
1

.=
∥∥∥∥
∫ t

0

(
b̂vn (ξ

n
s , s) − b̂vn (ξs, s)

)
ds

∥∥∥∥ , T n
2

.=
∥∥∥∥
∫ t

0

(
b̂vn (ξs, s) − b̂v(ξs, s)

)
ds

∥∥∥∥ .

Recall that b̂u = b + bu and bu(x, t) = ∑∞
l=1 ul(t) fl(x, t). Since vn → v weakly in

L 2([0, T ] : l2) and
∞∑
l=1

∫ t

0
‖ fl(x, s)‖2ds ≤ T ‖a‖∼

T,k,δ < ∞,

we have for each x ∈ R
d that

∥∥∥∥
∫ t

0

(
b̂vn (x, s) − b̂v(x, s)

)
ds

∥∥∥∥ =
∥∥∥∥∥

∞∑
l=1

∫ t

0
fl(x, s)(v

n
l (s) − vl(s))ds

∥∥∥∥∥ → 0.

(12.21)
Furthermore, from (12.10) (recall k ≥ 1), we have that for some c1 ∈ (0,∞) and all
x, y ∈ R

d , 0 ≤ t ≤ T ,
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∥∥∥∥
∫ t

0

(
b̂vn (x, s) − b̂vn (y, s)

)
ds

∥∥∥∥ ≤ ‖x − y‖
∫ t

0

(‖bvn (s)‖k,γ + ‖b(s)‖k,γ
)
ds

≤ c1‖x − y‖. (12.22)

The Ascoli–Arzelà theorem (in the spatial variable) and equations (12.21), (12.22)
yield that the expression on the left side of (12.21) converges to 0 uniformly for x
in compact subsets of Rd . Thus T n

2 → 0 as n → ∞. Following similar arguments,
T n
1 is bounded by c2 sup0≤s≤T ‖ξ n

s − ξs‖, which converges to 0 as n → ∞. Hence
(12.20) converges to 0 as n → ∞, and the result follows. �

We next show the tightness of the family of probability measures {Pn
k−1}, where

Pn
k−1 is the measure induced by (φ̄n, Φ̄n) on Wk−1 × Wk−1. Key ingredients in the

proof are the following uniform L p estimates on ∂αΦ̄n(x, t) and ∂αφ̄n
t (x).

Lemma 12.15 For each p ∈ [1,∞), there exists k1 ∈ (0,∞) such that for all t, s ∈
[0, T ], x ∈ R

d , n ∈ N, and |α| ≤ k,

E
∥∥∂αΦ̄n(x, t) − ∂αΦ̄n(x, s)

∥∥p ≤ k1 |t − s|p/2 . (12.23)

Proof We use that u ∈ ¯Ab,N [which was defined in (12.4)] and that γ ∈ (0, δ). Fix
a multi-index α such that |α| ≤ k and p ∈ [1,∞). Using the Burkholder–Davis–
Gundy inequality for the martingale ∂αM(x, ·) and the fact that a ∈ C̃ k,δ

T (Rd), we
obtain that for some c1 ∈ (0,∞) and all x ∈ R

d , t, s ∈ [0, T ], s ≤ t ,

E
∥∥∂αM(x, t) − ∂αM(x, s)

∥∥p ≤ c1 |t − s|p/2 . (12.24)

Recalling that b̂un (·, t) ∈ C k,γ (Rd) for a.e. (t, ω) and using (12.10), we get

∫ t

0
sup
x∈Rd

‖∂α b̂un (x, r)‖dr < ∞ a.e.,

and thus ∂α
∫ t
0 b̂un (x, r)dr = ∫ t

0 ∂α b̂un (x, r)dr a.e. An application of the Cauchy-
Schwarz inequality and (12.10) now give, for some c2 ∈ (0,∞), that

E

∥∥∥∥∂α

∫ t

s
b̂un (x, r)dr

∥∥∥∥
p

≤ c2 |t − s|p/2 . (12.25)

Equation (12.23) is an immediate consequence of (12.24), (12.25), and the definition
of Φ̄n in (12.14). �

For g : Rd × [0, T ] → R
d , let Dyg(y, r) denote the d × d matrix whose i j th

entry is ∂gi (y, r)/∂y j , and let ∂i denote differentiation with respect to xi . Differen-
tiating in (12.15), we obtain
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∂1φ̄
n
t (x) = ∂1x +

∫ t

0
[Dyb̂un (φ̄

n
r (x), r)∂1φ̄

n
r (x)]dr

+ √
εn

∫ t

0
DyM(φ̄n

r (x), dr)∂1φ̄
n
r (x)

= ∂1x +
∫ t

0
DyΦ̄

n(φ̄n
r (x), dr)∂1φ̄

n
r (x).

By repeated differentiation, one obtains the following lemma, whose proof follows
along the lines of Theorem 3.3.3 of [178]. Given 0 ≤ m ≤ k, let Λm be the set of all
multi-indices α satisfying |α| ≤ m. For a multi-index γ , letm(γ ) denote the number
of multi-indices γ0 such that |γ0| ≤ |γ |. Also, for a |γ |-times differentiable func-
tion Ψ : Rd → R, denote by ∂≤|γ |Ψ (x) the m(γ )-dimensional vector with entries
∂γ0Ψ (x), |γ0| ≤ |γ |. IfΨ = (Ψ1, Ψ2, . . . , Ψd) : Rd → R

d is such that eachΨi is |γ |-
times continuously differentiable, then ∂≤|γ |Ψ (x)

.= (∂≤|γ |Ψ1(x), . . . , ∂≤|γ |Ψd(x)).
We will call a map ζ : Rm → R

d a polynomial of degree at most ℘ if ζ(x) =
(ζ1(x), . . . , ζd(x))T and each ζi : Rm → R is a polynomial of degree at most ℘.
Also, for u, v ∈ R

l , we define

u ∗ v
.= (u1v1, . . . , ulvl)

T .

Lemma 12.16 Let α be a multi-index such that |α| ≤ k. Then there exist subsets
Λ1

α ⊂ Λ|α|, Λ2
α ⊂ Λ|α|−1 and polynomials ζ α

β,θ : Rm(θ) → R
d of degree at most |α|

such that ∂αφ̄n satisfies

∂αφ̄n
t (x) = ∂αx +

∫ t

0
Gn

(
∂αφ̄n

r (x), φ̄
n
r (x), dr

)

+
∑

(β,θ)∈Λ1
α×Λ2

α

∫ t

0
Gα,n

β,θ

(
∂≤|θ |φ̄n

r (x), φ̄
n
r (x), dr

)
, (12.26)

where for x, y ∈ R
d , Gn(x, y, r)

.= DyΦ̄
n(y, r) · x, and for (x, y) ∈ R

m(θ) × R
d ,

Gα,n
β,θ (x, y, r)

.= ζ α
β,θ (x) ∗ ∂βΦ̄n(y, r).

Note in particular that in the third term on the right-hand side of (12.26), one finds
only partial derivatives of φ̄n

r (x) of order strictly less than |α|.
Lemma 12.17 For each p ∈ [1,∞) and L ∈ (0,∞), there is k1 = k1(k, p, L) ∈
(0,∞) such that for every multi-index α, |α| ≤ k, and s, t ∈ [0, T ],

sup
n∈N

sup
‖x‖≤L

E sup
0≤t≤T

‖∂αφ̄n
t (x)‖p ≤ k1 (12.27)

sup
n∈N

sup
‖x‖≤L

E
∥∥∂αφ̄n

t (x) − ∂αφ̄n
s (x)

∥∥p ≤ k1 |t − s|p/2 . (12.28)
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Proof We first prove inequality (12.27). It suffices to prove (12.27) for α = 0 and
establish that if for some m < k, it holds for ∂αφ̄n

t with |α| ≤ m and all p ∈ [1,∞),
then it also holds for ∂i∂

αφ̄n
t with all p ∈ [1,∞) (with a possibly larger constant k1)

and i = 1, . . . , d. The desired result then follows by induction.
Consider first α = 0. For this case, the bound in (12.27) follows immedi-

ately on using (12.10) and applying the Burkholder–Davis–Gundy inequality to
the square-integrable martingale Nt = ∫ t

0 M(φ̄n
r (x), dr) [here we use that 〈〈N 〉〉t =∫ t

0 a(φ̄n
r (x), φ̄

n
r (x), r)dr and a ∈ C̃ k,δ

T (Rd×d)].
Next suppose that (12.27) holds for all multi-indices α with |α| ≤ m, for some

m < k. Fix α with |α| ≤ m, and i ∈ {1, 2, . . . , d}, and consider the multi-index
α̃ = α + ei , where ei is a d-dimensional vectorwith 1 in the i th entry and 0 elsewhere.
From Lemma 12.16, one finds that ∂α̃φ̄n

t solves (12.26) for α = α̃. Note that for
β ∈ Λ1

α̃
,

∂βΦ̄n(x, t) =
∫ t

0
∂β b̂un (x, s)ds + √

εn∂
βM(x, t).

From (12.10) and recalling that (b, a) ∈ C k,δ
T (Rd) × C̃ k,δ

T (Rd×d), we have that for
some c1, c2 ∈ (0,∞),

sup
n∈N

sup
0≤t≤T

sup
x∈Rd

∥∥∥∥
∫ t

0
∂β b̂un (x, s)ds

∥∥∥∥ ≤ c1 and sup
0≤t≤T

sup
x∈Rd

∥∥〈〈
∂βM(x, ·)〉〉t

∥∥ ≤ c2.

This along with the assumption

sup
n∈N

sup
‖x‖≤L

E sup
0≤t≤T

‖∂νφ̄n
t (x)‖p ≤ k1 for all ν with |ν| ≤ |α|

shows that for some c3 ∈ (0,∞), for all (β, θ) ∈ Λ1
α̃

× Λ2
α̃
,

sup
n∈N

sup
‖x‖≤L

E sup
0≤t≤T

∥∥∥∥
∫ t

0
G α̃,n

β,θ

(
∂≤|θ |φ̄n

r (x), φ̄
n
r (x), dr

)∥∥∥∥
p

≤ c3.

Also, in a similar manner one has for some c4 ∈ (0,∞),

E sup
0≤t≤T

∥∥∥
∫ s

0
Gn

(
∂α̃φ̄n

r (x), φ̄
n
r (x), dr

)∥∥∥p ≤ c4

∫ T

0
E sup

0≤r≤s
‖∂α̃φ̄n

r (x)‖pds.

Combining the last two inequalities with (12.26), we obtain

sup
n∈N

sup
‖x‖≤L

E sup
0≤s≤t

∥∥∥∂α̃φ̄n
s (x)

∥∥∥p ≤ c3 + c4 sup
n∈N

sup
‖x‖≤L

∫ t

0
E

(
sup
0≤r≤s

∥∥∥∂α̃φ̄n
r (x)

∥∥∥p
)
ds,

where the constants c3, c4 depend on L . Now an application of Gronwall’s inequality
shows that for some c5 ∈ (0,∞),



12.3 Weak Convergence for Controlled Flows 335

sup
n∈N

sup
‖x‖≤L

E sup
0≤t≤T

‖∂α̃φ̄n
t (x)‖p ≤ c5.

This establishes (12.27) for all α̃ with |α̃| ≤ |α| + 1. Finally, consider (12.28). For
t, s ∈ [0, T ], s ≤ t , we have from (12.26) that

∂αφ̄n
t (x) − ∂αφ̄n

s (x) =
∫ t

s
Gn

(
∂αφ̄n

r (x), φ̄
n
r (x), dr

)

+
∑

(β,θ)∈Λ1
α×Λ2

α

∫ t

s
Gα,n

β,θ

(
∂≤|θ |φ̄n

r (x), φ̄
n
r (x), dr

)
. (12.29)

Using (12.27) on the right-hand side of (12.29), we now have (12.28) via an appli-
cation of Hölder’s inequality and the Burkholder–Davis–Gundy inequality. �

The proof of Theorem 12.8 proceeds along the lines of Sect. 5.4 of [178]. We
begin by introducing certain Sobolev spaces. Let j ∈ N and p ∈ (1,∞) be given.
Let BN denote the open ball in R

d with radius N . Let h : Rd → R
d be a function

such that the distributional derivative ∂αh, when restricted to BN , is inL p(BN ) for
all α such that |α| ≤ j . For such h, define

‖h‖ j,p:N
.=

⎛
⎝∑

|α|≤ j

∫
BN

∥∥∂αh(x)
∥∥p

dx

⎞
⎠

1/p

.

The space Hloc
j,p

.= {h : Rd → R
d , ‖h‖ j,p:N < ∞ for all N } together with the semi-

norms defined above is a real separable semireflexive Fréchet space (see [226], [178,
Sect. 5.4]). By Sobolev’s embedding theorem, we have Hloc

j+1,p ⊂ C j (Rd) ⊂ Hloc
j,p if

p > d. Furthermore, the embedding ι : Hloc
j+1,p → C j (Rd) is a compact operator by

the Rellich–Kondrachov theorem (see [1]).

Proposition 12.18 The sequence {(φ̄n, Φ̄n)}n∈N is tight in Wk−1 × Wk−1.

Proof It suffices to show that both {φ̄n}n∈N and {Φ̄n}n∈N are tight inWk−1.Wewill use
Kolmogorov’s tightness criterion [178, Theorem 1.4.7, p. 38]. From Lemmas 12.15
and 12.17, we have that for each p ∈ (1,∞), N ∈ N, there exist c1, c2 ∈ (0,∞)

such that for all t, s ∈ [0, T ],

sup
n∈N

E‖φ̄n
t − φ̄n

s ‖p
k,p:N ≤ c1 |t − s|p/2 ,

sup
n∈N

E‖Φ̄n(t) − Φ̄n(s)‖p
k,p:N ≤ c2 |t − s|p/2 .

Furthermore, since Φ̄n(·, 0) = 0 and φ̄n
0 (x) = x , we get that for each p ∈ (1,∞),

N ∈ N, there exist c3, c4 ∈ (0,∞) such that for all t ∈ [0, T ],

sup
n∈N

E‖φ̄n
t ‖p

k,p:N ≤ c3 and sup
n∈N

E‖Φ̄n(t)‖p
k,p:N ≤ c4.
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Applying Theorem 1.4.7 of [178] with p > 2 now gives tightness of {φ̄n}n∈N and
{Φ̄n}n∈N in the semiweak topology (see [178, Sect. 1.4]) on C ([0, T ] : Hloc

k,p). Since
the embedding map ι : Hloc

k,p → C k−1 is compact, tightness inWk−1 × Wk−1 follows,

where the topology is that generatedby d̄k−1,with d̄k−1(φ,ψ) = sup0≤t≤T λk−1(φ(t),
ψ(t)) and λk−1 as defined in (12.9) (see [178, pp. 246–247]). �

This gives tightness in the space of smooth maps, and it will give an LDP in that
space. To extend to smooth invertible maps we will use the following lemma, whose
proof can be found in Sect. 2.1 of [16]. Recall the definitions (12.8) and (12.9).

Lemma 12.19 Let fn, f ∈ Ŵk−1 be such that sup0≤t≤T λk−1( fn(t), f (t)) → 0 as
n → ∞. Then sup0≤t≤T dk−1( fn(t), f (t)) → 0.

Proof of Theorem 12.8 Convergence as C k−1-flows follows directly from Theo-
rem 12.10, Propositions12.14 and 12.18. Using Skorohod’s representation theorem,
one can find a sequence of pairs {(φ̃n, Φ̃n)}n∈N that has the same distribution as
{(φ̄n, Φ̄n)}n∈N and (φ̃, Φ̃), which has the same distribution as (φ̄, Φ̄), and such
that sup0≤t≤T

[
λk(φ̃

n
t , φ̃t ) + λk(Φ̃

n(t), Φ̃(t))
] → 0, a.s. Since φ̄n, φ̄ ∈ Ŵk a.s., we

also have φ̃n, φ̃ ∈ Ŵk a.s. Thus from Lemma 12.19, sup0≤t≤T dk−1(φ̃
n
t , φ̃t ) → 0 a.s.

Hence (φ̄n, Φ̄n) → (φ̄, Φ̄) in distribution as D k−1-flows. �

12.4 Application to Image Analysis

Acommon approach to image-matching problems (see [99, 151, 201] and references
therein) is to consider anRp-valued continuous and bounded functionT (·), referred
to as the “template” function, that represents some canonical example of a structure
of interest. Although one can consider other scenarios, for problems from medical
imaging the template is definedon someboundedopen setO ⊂ R

3, an assumptionwe
make in this section.By considering all possible smooth transformations h : O → O ,
one can generate a rich library of targets (or images) given by the form T

(
h(·)).

In typical situations we are given data generated by an a priori unknown func-
tion h, and the key issue of image matching is estimating h from the observed data.
A Bayesian approach to this problem requires a prior distribution on the space of
transformations and the formulation of a noise/data model. The “maximum” of the
posterior distribution on the space of transformations given the data can then be used
as an estimate ĥ for the unknown underlying transformation h. In certain applications
(e.g., medical diagnosis), the goal is to obtain numerical approximations for certain
key structures present in the image, such as volumes of subregions, curvatures and
surface areas. If the prior distribution on the transformations (and in particular the
estimated transformation) is on the space of diffeomorphisms, then this type of infor-
mation can be recovered from the template. Motivated by such a Bayesian approach,
a variational problem on the space of C m-diffeomorphic flows was formulated and
analyzed in [99].
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Before giving the description of this variational problem, we note that although
the chief motivation for the variational problem studied in [99] came from Bayesian
considerations, no rigorous results on relationships between the two formulations
(variational and Bayesian) were established. The goal of this section is to apply the
asymptotic theory developed earlier in the chapter and connect a Bayesian formula-
tion of the image-matching problem with the variational approach taken in [99]. The
precise result we establish is Theorem 12.20, given at the end of this section. The
result is an application of Theorem 12.5 for local characteristics (a, b) = (a, 0) and
a ∈ C̃ k,1/2

T (R3×3), with k = m − 2.
Let C∞

0 (O) be the space of infinitely differentiable real-valued functions on O
with compact support in O . The starting point of the variational formulation is a
differential operator L on [C∞

0 (O)]3, the exact form of which is determined from
specific features of the problem under study. The formulation, particularly for prob-
lems from biology, often uses principles from physics and continuum mechanics as
a guide in the selection of L . We refer the reader to [61, 62], where natural choices
of L for shape models from anatomy are provided.

Define the norm ‖ · ‖L on [C∞
0 (O)]3 by

‖g‖2L .=
3∑

i=1

∫
O

|(Lg)i (u)|2du,

where we write a function g ∈ [C∞
0 (O)]3 as (g1, g2, g3)T . It is assumed that ‖ · ‖L

generates an inner product on [C∞
0 (O)]3, and that the Hilbert spaceH defined as the

closure of [C∞
0 (O)]3 with this inner product is separable. We will need the functions

inH to have sufficient regularity and thus assume that the norm ‖ · ‖L dominates an
appropriate Sobolev norm. More precisely, letW m+2,2

0 (O) be the closure of C∞
0 (O)

with respect to the norm

‖g‖W m+2,2
0 (O)

.=
(∫

O

∑
|α|≤m+2

|∂αg(u)|2du
)1/2

, g ∈ C∞
0 (O),

where α denotes a multi-index and m ≥ 3. Define Vm
.= [W m+2,2

0 (O)]⊗3, where ⊗
is used to denote the usual tensor product of Hilbert spaces. We denote the norm
on Vm by ‖ · ‖Vm . The main regularity condition on L is the following domination
requirement on the ‖ · ‖L norm. There exists a constant c ∈ (0,∞) such that

‖ f ‖L ≥ c‖ f ‖Vm for all f ∈ [C∞
0 (O)]3.

This condition ensures thatH ⊂ C m,1/2(Ō) (see [1, Theorem 4.12, parts II and III,
p. 85]).

To simplify notation we will take T = 1, though in general, this parameter affects
the tradeoff between the distributions used to model the prior and data noise. We
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denote theHilbert spaceL 2([0, 1] : H )byM . For a fixedϑ ∈ M , let {ηs,t (x)}s≤t≤1

be the unique solution of the ordinary differential equation

∂ηs,t (x)

∂t
.= ϑ

(
ηs,t (x), t

)
, ηs,s(x) = x, 0 ≤ s ≤ t ≤ 1. (12.30)

Then it follows that {ηs,t }0≤s≤t≤1 is a forward flow ofC m-diffeomorphisms on O (see
Theorem D.5). Since ϑ(·, t) has compact support in O , one can extend ηs,t to all of
R

3 by setting ηs,t (x) = x for x ∈ Oc. Extended in this way, ηs,t can be considered an
element of Dm , as defined in Sect. 12.2. Denoting η0,1 by hϑ , we can now generate
a family of smooth transformations (diffeomorphisms) on O by varying ϑ ∈ M .
Specifically, the library of transformations that is used in the variational formulation
of the image-matching problem is {hϑ : ϑ ∈ M }.

We next describe the data that is used in selecting the transformation hϑ∗ for
which the image T

(
hϑ∗(·)) best matches the data. Let I be a finite index set and

{Oi }i∈I a collection of disjoint subsets of O such that ∪i∈I Oi = O . The data
{di }i∈I represent the integrated responses over each of the subsets Oi , i ∈ I . More
precisely, if T

(
h(·)) were the true underlying image and if the data were error-free

and noiseless, then we would have di = ∫
Oi
T (h(σ ))dσ/vol(Oi ), i ∈ I , where

vol denotes volume. Let d = (d1, d2, . . . , dn)T , where n = |I |. Defining Yd(x) =
di , x ∈ Oi , i ∈ I , the expression

1

2

∫
O

∥∥T (hϑ(x)) − Yd(x)
∥∥2
dx

is a measure of discrepancy between a candidate target image T (hϑ(·)) and the
observations. This suggests a natural variational criterion for selecting the “best”
transformation matching the data. The objective function that is minimized in the
variational formulation of the image-matching problem is a sum of two terms, the
first reflecting the “likelihood” of the transformation or change-of-variable hϑ , and
the second measuring the conformity of the transformed template with the observed
data. More precisely, for ϑ ∈ M define

Jd(ϑ)
.= 1

2

(
‖ϑ‖2M +

∫
O

∥∥T (hϑ(x)) − Yd(x)
∥∥2
dx

)
. (12.31)

Then ϑ∗ ∈ argminϑ∈M Jd(ϑ) represents the “optimal” velocity field that matches
the data d and for which the hϑ∗ , obtained by solving (12.30), gives the “optimal”
transformation. This transformation then yields an estimate of the target image as
T (hϑ∗(·)). Suppose that for each h ∈ D0, we define

Ĵd(h)
.= inf

ϑ∈Ψh

Jd(ϑ), (12.32)

whereΨh
.= {ϑ ∈ M : h = hϑ }. Then an equivalent characterizations is h∗ = hϑ∗ ∈

argminh Ĵd(h).
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Up to a relabeling of the time variable, the variational formulation just described
(in particular the cost function in (12.31)) was motivated in [99] by Bayesian con-
siderations, but no rigorous justification was provided. [In [99], the orientation of
time is consistent with the change-of-variable evolving toward the identity mapping
at the terminal time. To relate the variational problem to stochastic flows, it is more
convenient to have the identity mapping at time zero.] We next introduce a stochas-
tic Bayesian formulation of the image-matching problem and describe the precise
asymptotic result that we will establish.

Let { fi } be a complete orthonormal system in H and let β = (βi )
∞
i=1 be, as in

Sect. 12.1, a sequence of independent standard real-valued Brownian motions on
(Ω,F , P, {Ft }). Consider the stochastic flow

dφs,t (x) = √
ε

∞∑
i=1

fi
(
φs,t (x)

)
dβi (t), φs,s(x) = x, x ∈ O, 0 ≤ s ≤ t ≤ 1,

(12.33)
where ε ∈ (0,∞) is fixed. FromMaurin’s theorem (see [1, Theorem 6.61, p. 202]), it
follows that the embedding map H → Vm−2

.= [W m,2
0 (O)]⊗3 is Hilbert–Schmidt.

Also, Vm−2 is continuously embedded in C m−2,1/2(Ō). Thus for some k1, k2 ∈
(0,∞) and all u, x, y ∈ O ,

∞∑
i=1

‖ fi (u)‖2 ≤ k1

∞∑
i=1

‖ fi‖2Vm−2
< ∞,

∞∑
i=1

‖ fi (x) − fi (y)‖2 ≤ k1‖x − y‖2
∞∑
i=1

‖ fi‖2Vm−2
= k2‖x − y‖2.

One also has that if fl is extended to all of R3 by setting fl(u) = 0 for all x ∈ Oc,
then a(x, y) = ∑∞

l=1 fl(x) f Tl (y) is in C̃ m−2,1/2
T (R3×3). Thus it follows (see [178,

pages 80 and 106]) that

Φ(x, t) =
∞∑
l=1

∫ t

0
fl(x)dβl(r)

is a C m−2,ν-Brownian motion, 0 < ν < 1/2, with local characteristics (a, 0). Also,
(12.33) admits a unique solution {φε

s,t (x)}0≤s≤t≤1 for each x ∈ O , and {φε
s,t }0≤s≤t≤1

is a forward flow of C k-diffeomorphisms, with k = m − 2 (see Theorem D.5 ). In
particular, X ε .= φε

0,1 is a random variable in the space of C k-diffeomorphisms on
O . The law of X ε (for a fixed ε > 0) on D k will be used as the prior distribution on
the transformation spaceD k . Note thatT

(
X ε(·)) induces a measure on the space of

target images.
We next consider the data model. Let I and n be as introduced below (12.30).

We suppose that the data is given through an additive Gaussian noise model:
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Di =
∫
Oi

T
(
X ε(x)

)
dx + √

εξi ,

where {ξi }i∈I is a family of independent p-dimensional standard normal random
variables.

In aBayesian approach to the image-matching problemone considers the posterior
distribution of X ε given the data D and uses the “mode” of this distribution as an
estimate for the underlying true transformation. More precisely, let {Γ ε}ε>0 be a
family of measurable maps from R

np to P(D k) (the space of probability measures
on D k) such that

Γ ε(A | D) = P {X ε ∈ A | D} a.s. for all A ∈ B(D k).

We refer to Γ ε(· | d) as a regular conditional probability distribution (r.c.p.d.) of
X ε given D = d. In Theorem 12.20 below, we show that there is an r.c.p.d. {Γ ε(· |
d), d ∈ R

np}ε>0 such that for each d ∈ R
np, the family {Γ ε(· | d)}ε>0, regarded as

elements of P(D k−1) ⊃ P(D k), satisfies an LDP with rate function

Id(h)
.= Ĵd(h) − λd , where λd

.= inf
h∈D k−1

Ĵd(h) = inf
ϑ∈M

Jd(ϑ).

Formally writing Γ ε(A | d) ≈ ∫
A e

− Id (h)

ε dh, one sees that for small ε, the “mode” of
the posterior distribution given D = d, which represents the optimal transformation
in the Bayesian formulation, can be formally interpreted as argminh Id(h). Note that
Ĵd(h) = ∞ if h /∈ Dm (recall m = k + 2). Theorem 12.20 in particular says that
h ∈ Dm is a δ-minimizer for Id(h) (i.e., an element within δ > 0 of the infimum) if
and only if it is also a δ-minimizer for Ĵd(h). Thus Theorem 12.20 makes precise
the asymptotic relationship between the variational and the Bayesian formulations
of the image-matching problem described previously.

Theorem 12.20 There exists an r.c.p.d. Γ ε such that for each d ∈ R
n, the family of

probability measures {Γ ε(d)}ε>0 on D k−1 satisfies a large deviation principle (as
ε → 0) with rate function

Id(h)
.= Ĵd(h) − λd . (12.34)

We begin with the following proposition. Let Ĩ : D k−1 → [0,∞] be defined by

Ĩ (h)
.= inf

ϑ∈Ψh

[
1

2
‖ϑ‖2M

]
,

where Ψh
.= {ϑ ∈ M : h = hϑ }.

Proposition 12.21 The family {X ε}ε>0 satisfies an LDP in D k−1 with rate function
Ĩ .

Remark 12.22 Proposition 12.21 is consistent with results in Sect. 12.2 in that
although the local characteristics are in C k and X ε ∈ D k , the LDP is established
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in the larger space D k−1. This is due to the tightness issues described at the begin-
ning of the chapter. Furthermore, as noted below (12.30), if ‖ϑ‖M < ∞, then ϑ

induces a flow of C m-diffeomorphisms on O . Thus if h ∈ D k−1 \ Dm , then Ψh is
empty, and consequently Ĩ (h) = ∞. Hence there is a further widening of the “gap”
between the regularity needed for the rate function to be finite and the regularity
associated with the space in which the LDP is set. This is due to the fact that the
variational problem is formulated essentially in terms of L 2 norms of derivatives,
while in the theory of stochastic flows as developed in [178], assumptions are phrased
in terms of L ∞ norms.

Proof of Proposition 12.21 From Theorem 12.5 and an application of the contraction
principle we have that {X ε}ε>0 satisfies an LDP in D k−1 with rate function

I ∗(h)
.= inf

u∈A ∗(h)

[
1

2

∫ T

0
‖u(s)‖20ds

]
,

where A ∗(h) = {
u ∈ L 2([0, 1] : l2) : h = φ̄(1)

}
, and where φ̄ is defined via

(12.12). Note that there is a one-to-one correspondence between u ∈ L 2([[0, 1] : l2)
and ϑ ∈ M given by ϑ(t, x) = ∑∞

l=1 ul(t) fl(x) and
∫ T
0 ‖u(s)‖20ds = ‖ϑ‖2M . In

particular, u ∈ A ∗(h) if and only if ϑ ∈ Ψh . Thus I ∗(h) = Ĩ (h), and the result
follows. �

Proposition 12.23 For each d ∈ R
n, Id defined in (12.34) is a rate function onD k−1.

Proof From (12.34) and the definition of Ĩ , we have for h ∈ D k−1 that

Id(h) = Ĩ (h) + 1

2

∫
O

‖T (h(x)) − Yd(x)‖2dx

− inf
h∈D k−1

[
Ĩ (h) + 1

2

∫
O

‖T (h(x)) − Yd(x)‖2dx
]

.

From Proposition 12.21, Ĩ is a rate function and therefore has compact level sets.
Additionally, T is a continuous and bounded function on O . The result follows. �

Proof of Theorem 12.20 We begin by noting that Γ ε(· | d) defined by

Γ ε(A | d)
.=

∫
A
e− 1

2ε

∑n
i=1

∥∥di−
∫
Oi

T (h(y))dy
∥∥2

με(dh)

∫
D k−1

e− 1
2ε

∑n
i=1

∥∥di−
∫
Oi

T (h(y))dy
∥∥2

με(dh)

,

where με = P ◦ (X ε)−1 ∈ P(D k−1), is an r.c.p.d. of X ε given D = d. It suffices to
show that for all d and all continuous and bounded real functions f on D k−1,

− ε log
∫
D k−1

e− 1
ε
f (v)Γ ε(dv | d) (12.35)
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converges to infh∈D k−1[ f (h) + Id(h)] as ε → 0. Note that (12.35) can be expressed
as

− ε log
∫
D k−1

e
− 1

ε

(
f (h)+ 1

2

∑n
i=1

∥∥di−
∫
Oi

T (h(y))dy
∥∥2

)
με(dh)

+ ε log
∫
D k−1

e
− 1

ε

(
1
2

∑n
i=1

∥∥di−
∫
Oi

T (h(y))dy
∥∥2

)
με(dh). (12.36)

From Proposition 12.21, we see that the first term converges to

inf
h∈D k−1

[
Ĩ (h) + f (h) + 1

2

n∑
i=1

∥∥∥∥di −
∫
Oi

T (h(y))dy

∥∥∥∥
2
}

= inf
h∈D k−1

inf
ϑ∈Ψh

[
f (h) + 1

2
‖ϑ‖2M + 1

2

∫
O

‖T (h(y)) − Yd(y)‖2dy
]

= inf
h∈D k−1

[ f (h) + Ĵd(h)],

where the last equality is a consequence of (12.31) and (12.32). Taking f = 0 in the
last display, we see that the second term in (12.36) converges to −λd . This proves
the result. �

12.5 Notes

General references for stochastic flows are [17, 125, 164, 178]. The properties of
Sobolev spaces used in this chapter can be found in [1].

Variational mappings on path space for problems of image analysis are now a
widely used tool. The first paper to formulate and rigorously analyze such vari-
ational problems is [99], although, as noted in this chapter, [99] does not give a
precise Bayesian interpretation to the variational problem. This is carried out in [44],
on which this chapter is based. Large deviations for finite dimensional stochastic
flows are used for an asymptotic analysis of small noise finite dimensional antici-
pative SDEs in [202], and of finite dimensional diffusions generated by εL1 + L2,
where L1, L2 are two second-order differential operators, in [5]. Analogous prob-
lems for infinite dimensionalmodels can be treated using the large deviation principle
established here.



Chapter 13
Models with Special Features

13.1 Introduction

Chapters 8 through 12 considered representations in continuous time and their appli-
cation to large and moderate deviation analyses of finite and infinite dimensional
systems described by stochastic differential equations. In this chapter we complete
our study of continuous time processes by considering additional problems with fea-
tures that benefit from a somewhat different use of the representations and/or weak
convergence arguments.

The first section gives an example from the important class of problems with “dis-
continuous statistics.” The large deviation analysis of queueing networks and related
systems generally fall into this category. Though in some instances such problems
can be handled using the Contraction Principle (Theorem 1.16) and mappings on
path space, the example presented here (the weighted serve-the-longest queueing
system), cannot be treated in such a simple way, and a detailed weak convergence
analysis of what happens in a neighborhood of the places where discontinuities occur
is required.

The second section gives large and moderate deviation analyses for continuous
time pure jump processes. Processes of this sort can in principle be represented as
solutions of stochastic differential equations driven by Poisson random measures.
However, when this is done the driving measures are simply “thinned” to produce
the desired (possibly state dependent) jump rate for a given jump type. In particular,
the points of each Poisson random measure play exactly the same role, which is just
to indicate that a jump occurs. This is in contrast to the general SDE model of Chap.
10, where points that correspond to different locations of the spatial variable [i.e.,
x in N (dt × dx)] in general correspond to different types of jumps. Owing to the
homogeneous role played by the jumps corresponding to different locations of the
spatial variable, a more efficient representation and analysis are possible, which is
the main point of the section. Since many of the arguments of this section parallel
others already given, in some places we present only the main steps, and point to
these analogous proofs for more details.

© Springer Science+Business Media, LLC, part of Springer Nature 2019
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13.2 A Model with Discontinuous Statistics-Weighted
Serve-the-Longest Queue

The aim of this section is to indicate some of the subtleties encountered when using
weak convergence and representations to study the large deviation properties of
processeswithwhat we call “discontinuous statistics.” In theMarkovian setting these
are processes for which the generator, even when applied to a smooth function, is
not continuous in the state variable. While there are in general significant differences
in the analysis of both upper and lower bounds when compared to more regular
processes, we focus here on a model for which the main differences occur in the
large deviation lower bound. This model will also be used in later chapters as an
example for which accelerated Monte Carlo methods can be developed.

Consider a single server that must serve multiple queues of customers from differ-
ent classes (Fig. 13.1). A common service discipline in this situation is the serve-the-
longest queue policy, in which the longest queue is given priority. Here we consider
a natural generalization of this discipline, namely, the weighted serve-the-longest
queuing (WSLQ) policy. Under WSLQ, each queue length is multiplied by a con-
stant to determine a “score” for that queue, and the queue with the largest score is
granted priority. Such service policies are more appropriate than serve-the-longest
policy when the different arrival queues or customer classes have different require-
ments or statistical properties. For example, if there is a finite queueing capacity to
be split among the different classes, one may want to choose the partition and the
weighting constants in order to optimize a certain performance measure.

Because WSLQ is a frequently proposed discipline for queueing models in com-
munication problems, a large deviations analysis of this protocol can be useful [260].
However, service policies such asWSLQare not smooth functions of the system state,
and thus lead to multidimensional stochastic processes with discontinuous statistics.
It is worthwhile to first explain why the large deviation analysis of these systems
is difficult. As suggested by the results of [98], a large deviation upper bound can
often be established using the same basic arguments as in either Chaps. 3, 4 or 10, so
long as one defines the local rate function L(x, β) to be the lower semicontinuous
regularization of the local rate function as it would usually be defined on a pointwise
(in x) basis, e.g., as in (4.5). However, this upper bound is generally not tight, even
for the very simple situation of two regions of constant statistical behavior separated
by a hyperplane of codimension one [95, Chap. 7].

Fig. 13.1 WSLQ system

λ2

λ1

λd

μ1

μ2

μd
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The reason for this gap is most easily identified by considering the corresponding
lower bound. When proving a large deviation lower bound for a model with discon-
tinuous statistics, it is necessary to analyze the probability that the process closely
follows or tracks a constant velocity trajectory that lies on the interface of two or
more regions of smooth statistical behavior. For this one has to consider all controls
in these different regions that lead to the desired tracking behavior. The thorny issue
is how to characterize such controls. In the case of two regions [95, Chap. 7], this
can be done in a satisfactory fashion and it turns out that the large deviation rate
function is a modified version of the upper bound in [98]. The modification is made
to explicitly include certain “stability about the interface” conditions, and part of the
reason that everything works out nicely in the setup of [95] is that these stability
conditions can be easily characterized.

A key observation that makes possible a large deviations analysis for WSLQ
is that for this model, the required stability conditions are implicitly built into the
upper bound rate function obtained by lower semicontinuous regularization. More
precisely, it can be shown that in the lower bound analysis one can restrict, a priori,
to a class of controls for which the stability conditions are automatically implied (see
Sect. 13.2.5.3 for additional discussion). Thus while it is true that the upper bound
of [98] is not tight in general, it is so in this case due to the structural properties of
WSLQ policy.

The study of the large deviation properties of WSLQ is partly motivated by the
problem of estimating buffer overflow probabilities for stable WSLQ systems using
either importance sampling or particle splitting (here we mean stable in a standard
sense, such as positive recurrence, rather than stability about the interface). It turns
out that the simple form of the large deviation local rate function as exhibited in (13.2)
and (13.3) is helpful in constructing simple and asymptotically optimal importance
sampling schemes, a topic to be discussed on the last part of this book. A WSLQ
example is given in Sect. 17.4.

This section is organized as follows. In Sect. 13.2.1, we introduce the single server
system with WSLQ policy. In Sect. 13.2.2, we state the main result, whose proof is
presented in Sect. 13.2.3 (upper bound) and Sect. 13.2.5 (lower bound).

13.2.1 Problem Formulation

Consider a serverwithd customer classes,where customers of class i arrive according
to a Poisson process with rate λi and are buffered at queue i for i = 1, . . . , d. The
service time for a customer of class i is exponentially distributed with rate μi .

The service policy is determined according to theWSLQ discipline, which can be
described as follows. Let ci be theweight associatedwith class i . If the size of queue i
is qi , then the “score” of queue i is defined as ciqi , and service priority will be given to
the queue with the maximal score. When there are multiple queues with the maximal
score, the assignment of priority among these queues can be arbitrary—the choice
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is unimportant and will lead to the same rate function. We adopt the convention that
when there are ties, the priority will be given to the queue with the largest index.

The system state at time t is the vector of queue lengths and is denoted by Q(t)
.=

(Q1(t), . . . , Qd(t)) . Then Q is a continuous time pure jumpMarkov process whose
possible jumps belong to the set

V
.= {±e1,±e2, . . . ,±ed}.

For v ∈ V , let r(x; v) denote the jump intensity of process Q from state x to state
x + v. Under the WSLQ discipline, these jump intensities are as follows. For x =
(x1, . . . , xd) ∈ R

d+ and x �= 0, let π(x) denote the indices of queues that have the
maximal score, that is,

π(x)
.=
{
1 ≤ i ≤ d : ci xi = max

j
c j x j

}
.

Then

r(x; v) =
⎧⎨
⎩

λi , if v = ei and i = 1, . . . , d,

μi , if v = −ei where i = maxπ(x),
0 , otherwise.

For x = 0, there is no service and the jump intensities are

r(0; v) =
{

λi , if v = ei and i = 1, . . . , d,

0 , otherwise.

We also set
π(0)

.= {0, 1, 2, . . . , d}.

An illustrative figure for the case of two queues in Fig. 13.2.

Fig. 13.2 System dynamics
for d = 2
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1/c2

x2
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Remark 13.1 It is not difficult to see that jump distributions and jump intensities stay
constant in the regions where π(·) is constant. Discontinuities in jump distributions
occur when π(·) changes, and every x with |π(x)| ≥ 2 (i.e., when there is a tie) is
in fact a discontinuous point. Therefore, we have various discontinuity interfaces
with different dimensions. For example, for every subset A ⊂ {1, 2, . . . , d} with
|A| ≥ 2 or A = {0, 1, 2, . . . , d}, the set {x ∈ R

d+ : π(x) = A} defines an interface
with dimension d − |A| + 1.

Remark 13.2 The definition of π(0) is introduced to cope with the discontinuous
dynamics at the origin.Note thatwith this definition,π(x) canonly be {0, 1, 2, . . . , d}
if x = 0 or a subset of {1, 2, . . . , d} if x �= 0.

Remark 13.3 A useful observation is that π is upper semicontinuous as a set-valued
function. That is, for any x ∈ R

d+,π(y) ⊂ π(x) for all y in a small neighborhood of x .

13.2.2 Form of the Rate Function and Statement of the
Laplace Principle

In order to state a large deviation principle, we fix T ∈ (0,∞), and for each n ∈ N

let {Xn(t)}t∈[0,T ] be the scaled process defined by

Xn(t)
.= 1

n
Q(nt).

Then Xn is a continuous time Markov process with generator

L n f (x)
.= n
∑
v∈V

r(x; v) [ f (x + v/n) − f (x)] .

The processes {Xn} take values in the space of right-continuous functions with left
limits D([0, T ] : R

d), which is endowed with the usual Skorohod metric and is a
Polish space [24, Chapter 3].

For each i = 1, . . . , d, let H (i) be the convex function given by

H (i)(α)
.= μi (e

−αi − 1) +
d∑
j=1

λ j (e
α j − 1),

for all α = (α1, . . . , αd) ∈ R
d . We also define

H (0)(α)
.=

d∑
j=1

λ j (e
α j − 1)

for α ∈ R
d .
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For each nonempty subset A ⊂ {1, . . . , d} or A = {0, 1, . . . , d}, let LA be the
Legendre transform of H A .= maxi∈A H (i) , that is,

L A(β)
.= sup

α∈Rd

[
〈α, β〉 − max

i∈A
H (i)(α)

]

for each β ∈ R
d . Clearly, L A is convex and nonnegative. When A is a singleton {i},

we write L A as L(i). Recall the function �(x)
.= x log x − x + 1 for x ≥ 0. We next

state some variational representations that are based on convex duality.

Lemma 13.4 Given β ∈ R
d , the following representation for L (i)(β) holds. For

each i = 1, 2, . . . , d

L(i)(β) = inf

⎡
⎣ d∑

j=1

λ j�(λ̄ j/λ j ) + μi�(c) :
d∑
j=1

λ̄ j/e j − μi cei = β

⎤
⎦ , (13.1)

and for i = 0

L(0)(β) = inf

⎡
⎣ d∑

j=1

λ j�
(
λ̄ j/λ j

) :
d∑
j=1

λ̄ j e j = β

⎤
⎦ .

In every case the infimum is attained.

Proof For λ > 0 and v ∈ R
d , straightforward calculation shows that the Legendre

transform for the convex function

h(α)
.= λ
(
e〈α,v〉 − 1

)
, α ∈ R

d

is

h∗(β)
.=
{

λ�(λ̄/λ), if β = λ̄v for some λ̄ ∈ R+
∞ , otherwise

, β ∈ R
d .

The representation for L(i) then follows directly from [97, Corollary D.4.2]. The
fact that the infimum is attained follows easily from the growth properties and lower
semicontinuity of �, and the proof is omitted. �

Note that we can also interpret L(i) as the local rate function for the jumpMarkov
process with generator

nμi [ f (x − ei/n) − f (x)] + n
d∑

i=1

λi [ f (x + ei/n) − f (x)] ,
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see (10.4). A useful representation of L A [97, Corollary D.4.3] is

L A(β) = inf

[∑
i∈A

ρi L(i)(β i )

]
, (13.2)

where the infimum is taken over all {(ρi , β i ) : i ∈ A} such that

ρi ≥ 0,
∑
i∈A

ρi = 1,
∑
i∈A

ρiβ i = β. (13.3)

An alternative representation for LA(β) can be given in terms of the relevant
possible jump types.

Lemma 13.5 Given β ∈ R
d , we have the following representation for L A(β). If

A ⊂ {1, 2, . . . , d} is nonempty then

L A(β) = inf

⎡
⎣∑

i∈A

ρiμi� (μ̄i/μi ) +
d∑
j=1

λ j�
(
λ̄ j/λ j

)
⎤
⎦ ,

where the infimum is taken over all collections of (ρi , μ̄i , λ̄ j ) such that

ρi ≥ 0,
∑
i∈A

ρi = 1, −
∑
i∈A

ρi μ̄i ei +
d∑
j=1

λ̄ j e j = β. (13.4)

If A = {0, 1, 2, . . . , d} then

L A(β) = inf

⎡
⎣ d∑

i=1

ρiμi� (μ̄i/μi ) +
d∑
j=1

λ j�
(
λ̄ j/λ j

)
⎤
⎦ ,

where the infimum is taken over all collections of (ρi , μ̄i , λ̄ j ) such that

ρi ≥ 0,
d∑

i=0

ρi = 1, −
d∑

i=1

ρi μ̄i ei +
d∑
j=1

λ̄ j e j = β.

Proof We only present the proof for the first claim, since the second is similar. Using
Lemma 13.4 and Eqs. (13.2 )–(13.3), we have

L A(β) = inf

⎡
⎣∑

i∈A

ρi

⎧⎨
⎩μi� (μ̄i/μi ) +

d∑
j=1

λ j�
(
λ̄i
j/λ j

)
⎫⎬
⎭
⎤
⎦ ,
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where the infimum is taken over all (ρi , μ̄i , λ̄
i
j ) such that

ρi ≥ 0,
∑
i∈A

ρi = 1,
∑
i∈A

ρi

⎡
⎣−μ̄i ei +

d∑
j=1

λ̄i
j e j

⎤
⎦ = β. (13.5)

Abusing notation, let λ̄ j
.=∑i∈A ρi λ̄i

j for j = 1, 2, . . . , d. Using (13.5), the col-
lection (ρi , μ̄i , λ̄ j ) satisfies the constraints (13.4). Observe that by the convexity of
� ∑

i∈A

ρi
d∑
j=1

λ j�
(
λ̄i
j/λ j

) =
d∑
j=1

λ j

∑
i∈A

ρi�
(
λ̄i
j/λ j

) ≥
d∑
j=1

λ j�
(
λ̄ j/λ j

)
,

with equality if λ̄i
j = λ̄i ′

j for every i, i ′ ∈ A and j = 1, . . . , d. The first claim of
Lemma 13.5 then follows. �

Remark 13.6 The representation of LA in Lemma 13.5 remains valid if we further
constrain ρi , μ̄i , and λ̄i to be strictly positive for every i ∈ A. This is an easy conse-
quence of the fact that � is finite and continuous on the interval [0,∞).

Remark 13.7 Given any nonempty strict subset A ⊂ {1, 2, . . . , d} and any β =
(β1, . . . , βd) ∈ R

d , L A(β) is finite if and only if β j ≥ 0 for all j /∈ A. In partic-
ular, for A = {1, 2, . . . , d} or {0, 1, 2, . . . , d}, LA(β) is finite for every β ∈ R

d .

For x ∈ R
d+ let L(x, β)

.= Lπ(x)(β). Note that if A ⊂ B then L A(β) ≥ LB(β)

for all β ∈ R
d , and therefore upper semicontinuity of π implies L(·, ·) is lower

semicontinuous. We can now define the process level rate function. For x ∈ R
d+,

define Ix : D([0, T ] : R
d) → [0,∞] by

Ix (ψ)
.=
∫ T

0
L(ψ(t), ψ̇(t))dt (13.6)

if ψ ∈ A C x ([0, T ] : R
d+), and otherwise set Ix (ψ)

.= ∞.
Let Exn denote the expectation conditioned on Xn(0) = xn . Note that the only

initial conditions that are meaningful for this model must have components of the
form j/n with j ∈ N0. Hence varying initial conditions are needed in the state-
ment of any sort of Laplace principle. Recall the definition of a uniform LDP from
Definition 1.11. In the current setting where only certain forms of initial conditions
are meaningful, this definition needs to be slightly modified in that we replace K
therein by Kn

.= K ∩ (N0/n)d . With this modified definition, the following result
states a uniform Laplace principle on compacts.

Theorem 13.8 The sequence of processes {Xn}n∈N satisfies the Laplace principle
with rate function Ix uniformly on compacts. Thus for any sequence {xn} ⊂ (N0/n)d

such that xn → x and any bounded continuous function F : D([0, T ] : R
d) → R
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lim
n→∞ −1

n
log Exn

{
exp
[−nF(Xn)

]} = inf
ψ∈D ([0,T ]:Rd )

[Ix (ψ) + F(ψ)] ,

and in addition Ix has compact level sets on compacts.

In the following sections, we follow our usual convention and give the proof for
the case T = 1. The general case involves only notational differences. The proof of
Theorem 13.8 is given in the next three subsections, which present the upper bound,
properties of the rate function, and the lower bound, respectively.

13.2.3 Laplace Upper Bound

The proof of the Laplace upper bound, which is a lower bound on the variational
representations, is very similar to analogous proofs given previously, and in particular
to corresponding proofs in Chaps. 3, 4 and 10. As a consequence the proof of this
bound is only sketched. As noted previously, for some problems with discontinuous
statistics the analysis of the upper bound is much more involved than the one needed
for the WSLQ model. The reason will be made more precise when we get to the
lower bound.

The starting point for the analysis is a stochastic differential equation formulation
of the processmodel Xn . Recall thatπ(x) selects the queue that is given service when
Xn(t) = x . Let Nn be a Poisson randommeasure withX

.= {±1,±2, . . . ,±d}, and
with intensitymeasure nν, where ν({i}) = λi , ν({−i}) = μi , i = 1, . . . , d. Then the
SDE formulation for Xn is given by

Xn(t) = xn

+ 1

n

d∑
i=1

(
ei N

n([0, t] × {i}) −
∫

[0,t]
1{i=maxπ(Xn(s−)),Xn(s−)�=0}ei Nn(ds × {−i})

)
.

To simplify the notation we write Nn
i (ds) and Nn

−i (ds) for Nn(ds × {i}) and
Nn(ds × {−i}), and similarly for the controlled versions. Likewise, the controls
ϕ(t, i) and ϕ(t,−i) are also denoted by ϕi (t) and ϕ−i (t). Recall that X1 = X ×
[0, 1] and �(X1) denotes the space of all locally finite measures on (X1,B(X1)).
It is straightforward to show there is a measurable mapping G n ∈ Mb(�(X1)) such
that Xn = G n(Nn), and hence by Theorem 8.12 and using the same argument as in
Sect. 10.2.1 for the last equality, for any F ∈ Cb(D([0, 1] : R

d))

− 1

n
log Exn exp

{−nF(Xn)
}

(13.7)

= −1

n
log Exn exp

{−nF(G n(Nn))
}
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= inf
ϕ∈A b

Exn

[∫
X 1

� (ϕ(t, z)) ν1(dt × dz) + F(G n(Nnϕ))

]

= inf
ϕ∈A b

Exn

[∫
X 1

� (ϕ(t, z)) ν1(dt × dz) + F(X̄ n)

]
,

where ν1(dt × {±i}) = ν({±i})dt , the space Ab is defined as in Sect. 8.2.1, Nnϕ is
a controlled PRM with intensity nϕν1,

X̄ n(t) = xn

+ 1

n

d∑
i=1

(∫
[0,t]

ei N
nϕ

i (ds) −
∫

[0,t]
1{i=maxπ(X̄ n(s−)),X̄ n(s−)�=0}ei N

nϕ

−i (ds)

)
,

and

∫
X 1

� (ϕ(t, z)) ν1(dt × dz) =
d∑

i=1

∫
[0,1]

[
λi� (ϕi (t)) + μi� (ϕ−i (t))

]
dt.

Thus the intensity of each jump type is perturbed by a corresponding control ϕ±i (t),
with the usual cost in terms of �.

To prove the variational lower bound we need to establish

lim inf
n→∞ inf

ϕ∈A b

Exn

[∫
X 1

� (ϕ(t, z)) ν1(dt × dz) + F(X̄ n)

]
(13.8)

≥ inf
ψ∈D ([0,1]:Rd )

[Ix (ψ) + F(ψ)] ,

with Ix given by (13.6). The proof follows the lines of those given previously. Since
F is bounded we can restrict to a class of controls which are tight and for which
the costs are uniformly bounded in n. Let {ϕn} be such a sequence of controls.
It is enough to establish (13.8) along any convergent subsequence, again denoted
by n. Decomposing X̄ n into a bounded variation part plus a martingale, we have
X̄ n(t) = Bn(t) + Mn(t), where

Bn(t) = xn

+
d∑

i=1

(∫
[0,t]

λi eiϕ
n
i (s)ds −

∫
[0,t]

1{i=maxπ(X̄ n(s−)),X̄ n(s−)�=0}μi eiϕ
n
−i (s)ds

)

and where Mn → 0 inD([0, 1] : R
d) in probability as n → ∞. Using the definition

L(x, β)
.= Lπ(x)(β), (13.1) and (13.2), we have

d∑
i=1

[
λi�
(
ϕn
i (t)

)+ μi�
(
ϕn

−i (t)
)]
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≥
d∑

i=1

[
λi�
(
ϕn
i (t)

)+ 1{i=maxπ(X̄ n(t)),X̄ n(t)�=0}μi�(ϕ
n
−i (t))

]

≥ L(X̄ n(t), Ḃn(t)). (13.9)

Define random probability measures μ̄n on R
d × [0, 1] according to

μ̄n(A × C)
.=
∫
C
1A(Ḃ

n(t))dt.

The superlinearity of � implies tightness and uniform integrability of {μ̄n}, and
without loss of generality we assume that μ̄n converges weakly to μ̄ along the sub-
sequence. The same argument as that used for Lemma 4.12 shows that if (μ̄, X̄ , B)

is the weak limit of {(μ̄n, X̄ n, Bn)}, then X̄ = B w.p.1 and

X̄(t) = x +
∫
Rd×[0,t]

yμ̄(dy × ds) = x +
∫
Rd×[0,t]

yμ̄(dy|s)ds.

Recalling that L(·, ·) is lower semicontinuous, we obtain

lim inf
n→∞ Exn

[∫
X 1

� (ϕ(t, z)) ν1(dt × dz) + F(X̄ n)

]

≥ lim inf
n→∞ Exn

[∫ 1

0
L(X̄ n(t), Ṡn(t))dt + F(X̄ n)

]

= lim inf
n→∞ Exn

[∫ 1

0

∫
Rd

L(X̄ n(t), y)μ̄n(dy|t)dt + F(X̄ n)

]

≥ Ex

[∫ 1

0

∫
Rd

L(X̄(t), y)μ̄(dy|t)dt + F(X̄)

]

≥ Ex

[∫ 1

0
L(X̄(t), ˙̄X (t))dt + F(X̄)

]

≥ inf
ψ∈D ([0,1]:Rd )

[Ix (ψ) + F(ψ)] ,

where the first inequality is due to (13.9), the equality uses the definition of μ̄n ,
Fatou’s lemma and the lower semicontinuity of L(x, β) imply the second inequality,
Jensen’s inequality gives the third, and the last follows since the corresponding bound
without the expectation holds w.p.1. This completes the proof of the uniform Laplace
upper bound. �

13.2.4 Properties of the Rate Function

The following lemma says that the rate function Ix has compact level sets on com-
pacts.
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Lemma 13.9 For any compact set C ⊂ R
d and M ∈ (0,∞),

S
.= ∪x∈C {ψ : Ix (ψ) ≤ M}

is compact in D([0, 1] : R
d).

Proof The argument is almost exactly the same as that of Theorem 4.13. For each
α ∈ R

d let
H̄(α)

.= max
i∈π(0)

H (i)(α) < ∞.

Owing to the last inequality, L̄(β)
.= supα∈Rd

[〈α, β〉 − H̄(α)
]
is superlinear in the

sense that limc→∞ inf {β:‖β‖≥c} L̄(β)/ ‖β‖ = ∞ [see the proof of part (c) of Lemma
4.14].

Let {ψ j } j∈N ⊂ S be given with the property that Ix j (ψ j ) ≤ M for all j ∈ N, with
x j = ψ j (0) ∈ C . It suffices to show that {ψ j } is precompact, and that if ψ is the
limit along any subsequence and x = ψ(0), then Ix (ψ) ≤ M . Define a probability
measure γ j on R

d × [0, 1] by

γ j (A × B) =
∫
B

δψ̇ j (t)(A)dt, A ∈ B(Rd), B ∈ B([0, 1]),

so that

ψ j (t) = x j +
∫
Rd×[0,t]

βγ j (dβ × ds).

We claim that {γ j } is tight and uniformly integrable. For c ∈ (0,∞) let g(c)
.=

inf {β:‖β‖≥c} L̄(β)/ ‖β‖. Since H̄(α) ≥ H A(α) for all A and α ∈ R
d , L(x, β) ≥ L̄(β)

for all (x, β) ∈ R
d+ × R

d . It follows that for c ∈ (0,∞)

M ≥ Ix j (ψ j )

≥
∫
Rd×[0,1]

L̄(β)γ j (dβ × ds)

≥ g(c)
∫
Rd×[0,1]

‖β‖ 1{‖β‖≥c}γ j (dβ × ds).

Since g(c) → ∞ as c → ∞

lim
c→∞ sup

j∈N

∫
Rd×[0,1]

‖β‖ 1{‖β‖≥c}γ j (dβ × ds) = 0,

and therefore {γ j } is tight and uniformly integrable.
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If 0 ≤ s ≤ t ≤ 1 then

∥∥ψ j (t) − ψ j (s)
∥∥ ≤

∫
Rd×[s,t]

‖β‖ 1{‖β‖≥c}γ j (dβ × dr) + c(t − s)

≤ M

g(c)
+ c(t − s),

which together with precompactness of {ψ j (0)} shows that {ψ j } is precompact.
Since {γ j } is tight there is a subsequence (again denoted by j) such that γ j converges
weakly to γ ∈ P(Rd × [0, 1]) and ψ j converges uniformly to ψ ∈ C ([0, 1] : R

d+)

as j → ∞. Since the second marginal γ j is Lebesgue measure the same is true of γ ,
and therefore γ (dβ × dt) can be decomposed in the form γ (dβ|t)dt , where γ (dβ|t)
is a stochastic kernel on R

d given [0, 1]. Using the uniform integrability we obtain

ψ(t) = x +
∫
Rd×[0,t]

βγ (dβ|s)ds

by passing to the limit where x ∈ C . Hence along this subsequence

M ≥ lim inf
j→∞

∫ 1

0
L(ψ j (t), ψ̇ j (t))dt

= lim inf
j→∞

∫
Rd×[0,1]

L(ψ j (t), β)γ j (dβ × dt)

≥
∫
Rd×[0,1]

L(ψ(t), β)γ (dβ|t)dt

≥
∫

[0,1]
L(ψ(t), ψ̇(t))dt,

where the second inequality uses Fatou’s lemma and the lower semicontinuity of
L(·, ·), and the last inequality uses Jensen’s inequality. �

13.2.5 Laplace Lower Bound

In this section we prove that if xn → x then

lim sup
n→∞

−1

n
log Exn

{
exp
[−nF(Xn)

]} ≤ inf
ψ∈D ([0,1]:Rd )

[Ix (ψ) + F(ψ)] . (13.10)

An important step in the proof of (13.10) uses the following approximation lemma.
LetN be the collection of functionsψ∗ ∈ A C ([0, 1] : R

d+) that satisfy the follow-
ing conditions:
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(a) ψ̇∗ is piecewise constant with finitely many jumps on (0,1).
(b) If (t, s) is an interval on which ψ̇∗ is constant, then π(ψ∗(·)) remains the same

on the interval (t, s).

Lemma 13.10 Given any ψ ∈ D([0, 1] : R
d) such that Ix (ψ) < ∞ and any δ > 0,

there exists ψ∗ ∈ N such that ‖ψ − ψ∗‖∞ < δ and Ix (ψ∗) ≤ Ix (ψ) + δ.

Theproof ofLemma13.10 is lengthy but relatively straightforward, and for a proof
we refer to [104]. The main idea can be described as follows. Suppose we consider
the analogous question of approximation for a problem where the rate function is of
the same form Ix (ψ) = ∫ 1

0 L(ψ, ψ̇)ds, but with L defined on R
d × R

d and constant
on each of the sets {x : x1 = 0}, {x : x1 > 0} and {x : x1 < 0}. We also assume, as
is true here, that L is jointly lower semicontinuous and convex in β for each x . Then
given an absolutely continuous trajectory ψ , we can decompose [0, 1] according
to the closed set B

.= {t : ψ1(t) = 0}, where ψ1(t) is the first component of ψ(t).
If t ∈ Bc and if there is a sufficiently “large” interval (a, b) ⊂ Bc with t ∈ (a, b)
we can replace ψ by its linear interpolation on [at , bt ], where at = inf{s ∈ [0, t] :
s ∈ Bc} and bt = sup{s ∈ [t, 1] : s ∈ Bc}. If the distance between ψ and its linear
interpolation is too large we break the interval up into (a finite number of) smaller
intervals to control this distance. After removing a finite collection of such “large”
intervals, all remaining open (relative to [0, 1]) intervals are small, and have the
property that their endpoints are either in B or of the form {0, 1}. We then again
replace ψ by its piecewise linear interpolation on these intervals, with a controllably
small distance between the original and its replacement. If one of the endpoints were
from {0, 1} we are done. If both are from B, then we use that, owing to the lower
semicontinuity, L(x, ·) is smaller if x1 = 0 than if x1 �= 0. Since the trajectory starts
on and ends in B we can use Jensen’s inequality and the lower semicontinuity to
argue that the cost of a trajectory that stays entirely in {x : x1 = 0} is smaller than
the original, which completes the argument. The general case is more complicated
since there the discontinuities occur across sets of different dimensions, but the main
idea is the same, and one starts by approximating parts of the trajectories near sets
of the lowest dimension and works up to those parts in sets of higher dimension.

Since F is continuous, by Lemma 13.10 it suffices to show that for any xn → x
and ψ∗ ∈ N ,

lim sup
n→∞

−1

n
log Exn

{
exp
[−nF(Xn)

]} ≤ Ix (ψ
∗) + F(ψ∗). (13.11)

Using the control representation (13.7), the Laplace principle lower bound (13.11)
for ψ∗ ∈ N follows if one can, for an arbitrarily fixed ε > 0, construct a sequence
of controls {ϕn

±i } such that

lim sup
n→∞

Exn

[∫ 1

0

d∑
i=1

[
λi�
(
ϕn
i (t)

)+ μi�
(
ϕn

−i (t)
)]
dt + F(X̄ n)

]
(13.12)

≤ Ix (ψ
∗) + F(ψ∗) + ε.

The details of the construction will be carried out in the next section.
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13.2.5.1 The Construction of Controls and the Cost

Fix ε > 0. We will use ψ∗ to construct a control {ϕn
±i } based on the representation

of the local rate function as in Lemma 13.5. Since ψ∗ ∈ N , there exist 0 = t0 <

t1 < · · · < tK = 1 such that for every k there are βk and Ak with ψ̇∗(t) = βk and
π(ψ∗(t)) = Ak for all t ∈ (tk, tk+1). We start by defining a suitable collection of
{(ρi

k, μ̄i,k, λ̄ j,k) : 0 ≤ i ≤ d, 1 ≤ j ≤ d}. We consider the following two cases.

Case 1. Suppose Ak = {0, 1, 2, . . . , d}. Lemma 13.5 and Remark 13.6 imply the
existence of a collection {(ρi

k, μ̄i,k, λ̄ j,k) : 0 ≤ i ≤ d, 1 ≤ j ≤ d} such that μ̄i,k > 0,
λ̄i,k > 0 for all i and

ρi
k > 0,

d∑
i=0

ρi
k = 1, −

d∑
i=1

ρi
kμ̄i,kei +

d∑
j=1

λ̄ j,ke j = βk, (13.13)

d∑
i=1

ρi
kμi�

(
μ̄i,k/μi,k

)+
d∑
j=1

λ j�
(
λ̄ j,k/λ j,k

) ≤ L Ak (βk) + ε.

Case 2. Suppose Ak ⊂ {1, 2, . . . , d}. According to Lemma 13.5 and Remark 13.6,
for each k there exists a collection {(ρi

k, μ̄i,k, λ̄ j,k) : i ∈ Ak, 1 ≤ j ≤ d} such that
μ̄i,k > 0, λ̄i,k > 0 for all i ∈ Ak and

ρi
k > 0,

∑
i∈Ak

ρi
k = 1, −

∑
i∈Ak

ρi
kμ̄i,kei +

d∑
j=1

λ̄ j,ke j = βk, (13.14)

∑
i∈Ak

ρi
kμi�

(
μ̄i,k/μi,k

)+
d∑
j=1

λ j�
(
λ̄ j,k/λ j,k

) ≤ L Ak (βk) + ε. (13.15)

We extend the definition by letting ρi
k

.= 0, μ̄i,k
.= μi for i /∈ Ak and i �= 0, and

letting ρ0
k

.= 0.

A feedback control r̄ is defined as follows. For t ∈ [tk, tk+1), let

r̄(x, t; v) =
⎧⎨
⎩

λ̄ j,k , if v = e j and j = 1, . . . , d,

μ̄ j,k, if v = −e j where j = maxπ(x) and x �= 0,
0 , otherwise.

In other words, on time interval [tk, tk+1), the system has arrival rates {λ̄1,k, . . . , λ̄d,k}
and service rates {μ̄1,k, . . . , μ̄d,k} under the control r̄ . If X̄ n(t) is the corresponding
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controlled processwith initial value xn = �nx�/n, then the predictable controls {ϕn
±i }

are defined for i ∈ {1, . . . , d} by

ϕn
i (t) = r̄(X̄ n(t), t; ei )

r(X̄ n(t); ei )
, ϕn

−i (t) = r̄(X̄ n(t), t;−ei )

r(X̄ n(t);−ei )

where 0/0 is taken to be 1. The corresponding running cost for t ∈ [tk, tk+1) is

d∑
j=1

μ j�
(
μ̄ j,k/μ j

)
1{maxπ(X̄ n(t))= j,X̄ n(t)�=0} +

d∑
j=1

λ j�
(
λ̄ j,k/λ j

)
(13.16)

=
∑

i∈Ak ,i �=0

μi�
(
μ̄i,k/μi

)
1{maxπ(X̄ n(t))=i,X̄ n(t)�=0} +

d∑
j=1

λ j�
(
λ̄ j,k/λ j

)
,

here the equality holds since μ̄i,k = μi for i /∈ Ak .
For future use, for each i = 1, . . . , d we define

β i
k

.= −μ̄i,kei +
d∑
j=1

λ̄ j,ke j , (13.17)

which is the law of large number limit of the velocity of the controlled process if
queue of class i is served. Analogously, we also define (when none of the queues are
being served)

β0
k

.=
d∑
j=1

λ̄ j,ke j . (13.18)

13.2.5.2 Weak Convergence Analysis

In this sectionwe characterize the limit processes. For the lower boundmore informa-
tion is needed regarding the weak limits. For each j , define random sub-probability
measures {γ n

j } on [0, 1] by

γ n
j (B)

.=
∫
B
1{maxπ(X̄ n(t))= j,X̄ n(t)�=0}dt, j = 1, 2, . . . , d,

γ n
0 (B)

.=
∫
B
1{X̄ n(t)=0}dt,

for Borel subsets B ⊂ [0, 1], and denote γ n .= (γ n
0 , γ n

1 , . . . , γ n
d ). We also define the

stochastic processes
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Bn(t)
.= xn +

d∑
j=0

[
κ(t)−1∑
k=0

β
j
k γ

n
j ([tk, tk+1)) + β

j
κ(t)γ

n
j ([tκ(t), t))

]
,

where κ(t)
.= max{0 ≤ k ≤ K : tk ≤ t} and xn = �nx�/n.

Proposition 13.11 Given any subsequence of (γ n, Bn, X̄ n), there exist a subsub-
sequence, a collection of random measures γ

.= (γ0, γ1, . . . , γd) on [0, 1], and a
continuous process X̄ such that the following hold.

(a) The subsubsequence converges in distribution to (γ, X̄ , X̄).
(b) With probability one, γ j is absolutely continuous with respect to Lebesgue

measure on [0, 1], and the set of densities {h j }dj=0 satisfy

d∑
j=0

h j (t) =
∑

j∈π(X̄(t))

h j (t) = 1

for almost every t .
(c) With probability one, the process X̄ satisfies

X̄(t) = x +
d∑
j=0

[
κ(t)−1∑
k=0

β
j
k γ j ([tk, tk+1)) + β

j
κ(t)γ j ([tκ(t), t))

]

for every t . Therefore, X̄ is absolutely continuous with derivative

d X̄(t)

dt
=

d∑
j=0

β
j
κ(t)h j (t).

Proof The family of random measures {γ n
j } is contained in the compact set of sub-

probability measures on [0, 1] and is therefore tight. Furthermore, since {Bn} is
uniformly Lipschitz continuous, it takes values in a compact subset ofC ([0, 1] : R

d),
and therefore is also tight. We also observe that for every ε > 0

lim
n→∞ P(‖X̄ n − Bn‖∞ > ε) = 0, (13.19)

which in turn implies that {X̄ n} is tight. Equation (13.19) holds since X̄ n − Bn is
a martingale, and thus by Doob’s maximal inequality [see (D.2)] and the uniform
boundedness of the jump intensity r̄ ,

P

(
sup
0≤t≤1

‖X̄ n(t) − Bn(t)‖ > ε

)
≤ 4

ε2
E
[‖X̄ n(1) − Bn(1)‖2]→ 0.

It follows that there exists a subsubsequence that converges weakly to say (γ, B, B),
with γ = (γ0, γ1, . . . , γd). By the Skorohod representation theorem, we assume
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without loss of generality that the convergence is almost sure convergence, and all
random variables are defined on a probability space (Ω̄, F̄ , P̄).

Since the {γ n
j } are absolutely continuous with respect to Lebesgue measure on

[0, 1]with uniformly bounded densities in both n and t , the limit γ j is also absolutely
continuous. Furthermore, if we define the process X̄ as in (c), this implies that, for
every t ∈ [0, 1], Bn(t) converges to X̄(t) almost surely. Therefore, with probability
one B(t) = X̄(t) for all rational t ∈ [0, 1], and since both B and X̄ are continuous,
B = X̄ with probability one.

It remains to show the two equalities of (b). Since
∑d

j=0 γ n
j equals Lebesgue

measure for every n, we have
∑d

j=0 h j (t) = 1 for almost every t . The proof of
the second equality is similar to that of [97, Theorem 7.4.4(c)]. Consider an ω ∈ Ω̄

such that X̄(t, ω) is a continuous function of t ∈ [0, 1], γ n(ω) ⇒ γ (ω), and such that
X̄ n(·, ω) converges to X̄(·, ω) in the Skorohodmetric and hence also in the supremum
norm since X̄(·, ω) is continuous [97, Theorem A.6.5]. By the upper semicontinuity
of π(·) [Remark 13.3], it follows that for any t ∈ (0, 1) and A ⊂ {0, 1, . . . , d} such
that π(X̄(t, ω)) ⊂ A, there exist an open interval (a, b) containing t and N ∈ N such
thatπ(X̄ n(s, ω)) ⊂ A for alln ≥ N and s ∈ (a, b). Therefore

∑
j /∈A γ n

j (ω)((a, b)) =
0 for all n ≥ N. Taking the limit as n → ∞we have

∑
j /∈A γ j (ω)((a, b)) = 0, which

in turn implies that

∑
j /∈A

γ j (ω)({t ∈ (0, 1) : π(X̄(t, ω)) ⊂ A}) = 0,

or equivalently, ∫ 1

0

∑
j /∈A

h j (t, ω)1{π(X̄(t,ω))⊂A} dt = 0.

We claim that this implies the desired equality for any such ω ∈ Ω̄ . Otherwise, there
exists a subset D ⊂ (0, 1)with positive Lebesgue measure such that for every t ∈ D,

∑
j /∈π(X̄(t,ω))

h j (t, ω) > 0.

Since π(X̄(t, ω)) can only take finitely many possible values, there exists a subset
Ā ⊂ {0, 1, . . . , d} such that the set

D̄
.= {t ∈ D : π(X̄(t, ω)) = Ā}

has positive Lebesgue measure. It follows that

∫ 1

0

∑
j /∈ Ā

h j (t, ω)1{π(X̄(t,ω))⊂ Ā} dt ≥
∫
D̄

∑
j /∈ Ā

h j (t, ω)1{π(X̄(t,ω))⊂ Ā} dt



13.2 A Model with Discontinuous Statistics-Weighted Serve-the-Longest Queue 361

=
∫
D̄

∑
j /∈π(X̄(t,ω))

h j (t, ω) dt

> 0,

a contradiction. This completes the proof of the claim and thus of the proposition. �

13.2.5.3 Stability Analysis

In this section we prove a key lemma in the analysis that identifies the weak limit X̄
as ψ∗. The proof uses the implied “stability about the interface” in a crucial way.

We discuss the main idea behind this stability property before giving the detailed
proof. For the large deviation analysis, it is important to analyze the probability that
the process tracks a segment of trajectory that lies on an interface, say {x : π(x) = A},
with a constant velocity β. To this end, it is natural to use the change of measure
induced by β through the local rate function L as described in Lemma 13.5. However,
for general systems, this very natural construction does not guarantee that X̄ will
follow or track ψ . When this happens L is not the true local rate (although it is an
upper bound local rate), and additional conditions must be added for this tracking to
occur.

For the WSLQ system, a stability condition is not explicitly needed since it is
implicitly and automatically built into the upper bound local rate function L . To
simplify the discussion, we can assume thatψ(t) lies in {x : π(x) = A}with ψ̇(t) =
β for t ∈ [0, 1]. Then K = 1, and we drop k from the notation. Consider a set of
arrival and service rates λ̄i and μ̄i and fractions ρi associated with β through (13.14).
For β to keepψ in the set it must be the case that {ρi } is the (strictly positive) solution
to the system of equations

ci (λ̄i − ρi μ̄i ) = c j (λ̄ j − ρ j μ̄ j ), i, j ∈ A, and
∑
i∈A

ρi = 1. (13.20)

Recall that {hi (t)} is the limit of the fraction of time the process X̄ n spends in the
region {x : maxπ(x) = i}, and that according to Proposition 13.11 these proportions
satisfy ∑

i∈π(X̄(t))

hi (t) = 1.

Therefore, to show X̄(t) = ψ(t) it is enough to show that π(X̄(t)) ≡ A and hi (t) ≡
ρi for i ∈ A. This can be verified, and the argument is based on the fact that for
any non-empty subset B ⊂ {1, 2, . . . , d} and any b, the solution {xi : i ∈ B} to the
system of equations

ci (λ̄i − xi μ̄i ) = c j (λ̄ j − x j μ̄ j ), i, j ∈ B, and
∑
i∈B

xi = ς, (13.21)
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is unique and component-wise strictly increasing with respect to ς . Indeed, it is not
hard to check that one solution is

xi = λ̄i

μ̄i
− 1

ci μ̄i
·
⎛
⎝∑

j∈B

1

c j μ̄ j

⎞
⎠

−1

·
⎛
⎝−ς +

∑
j∈B

λ̄ j

μ̄ j

⎞
⎠ .

If x̄i is another solution and Δxi = x̄i − xi , then ci μ̄iΔxi = c j μ̄ jΔx j implies that
all Δxi have the same sign, and then

∑
i∈B Δxi = 0 implies they are all equal to

zero.
Now supposeπ(X̄(t)) = B on some time interval (a, b), where B is a strict subset

of A. It is not difficult to see that {hi (t) : i ∈ B} is a solution to Eq. (13.21) because,
by Proposition 13.11,

d

dt
(X̄(t))i = λ̄i − hi (t)μ̄i , for i ∈ B.

Thus both {hi (t), i ∈ B} and {ρi , i ∈ B} are solutions. Since
∑
i∈B

ρi = 1 −
∑
i∈A\B

ρi < 1,

the monotonicity of xi in ς implies hi (t) > ρi for all i ∈ B. We also have h j (t) < ρ j

for all j ∈ A \ B. Thus by comparing with 0 = d
dt

[
ci (ψ(t))i − c j (ψ(t)) j

]
, we find

that for i ∈ B and j ∈ A \ B,

d

dt

[
ci (X̄(t))i − c j (X̄(t)) j

]
< 0. (13.22)

Thus the differences between weighted queue lengths grow smaller, and the state
is “pushed” towards the interface A. This can be used to prove by contradiction
that A ⊂ π(X̄(t)). The other direction π(X̄(t)) ⊂ A can be shown similarly. Once
π(X̄(t)) = A is shown, hi (t) = ρi follows immediately from the uniqueness of the
solution to Eq. (13.21).

Lemma 13.12 Let (γ, X̄ , X̄) be a limit of any weakly converging subsubsequence
(γ n, Bn, X̄ n) as in Proposition 13.11. Then with probability one, X̄(t) = ψ∗(t) for
every t ∈ [0, 1], and for each j ,

h j (t) =
K−1∑
k=0

ρ
j
k 1(tk ,tk+1)(t)

for almost every t ∈ [0, 1].
Proof The proof is by induction. Since xn → x wehave X̄(0) = x = ψ∗(0). Assume
that X̄(t) = ψ∗(t) for all t ∈ [0, tk]. The goal is to show that X̄(t) = ψ∗(t) for all
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t ∈ [0, tk+1]. Define Ak = π(ψ∗(t)), t ∈ (tk, tk+1) and A = π(ψ∗(tk)). Note that
Ak ⊂ A due to the continuity of ψ∗ and the upper semicontinuity of π . Define the
random time

τk
.= inf

{
t > tk : π(X̄(t)) �⊂ A

}
.

Since π(X̄(tk)) = π(ψ∗(tk)) = A and X̄ is continuous, the upper semicontinuity of
π implies that τk > tk and π(X̄(τk)) �⊂ A. We claim that it suffices to show X̄(t) =
ψ∗(t) and h j (t) = ρ

j
k for all t ∈ (tk, tk+1 ∧ τk). Indeed, if this is the case, we must

have τk ≥ tk+1 with probability one, since otherwise by continuity X̄(τk) = ψ∗(τk)
and thus π(X̄(τk)) = Ak ⊂ A, a contradiction.

The proof of X̄(t) = ψ∗(t) and h j (t) = ρ
j
k for all t ∈ Ik

.= (tk, tk+1 ∧ τk) pro-
ceeds as follows. By Proposition 13.11, we can assume that

∑
i∈A hi (t) = 1 for all

t ∈ Ik . It follows from (13.17), (13.18 ), and Proposition 13.11 that

d

dt
X̄(t) =

∑
i∈π(X̄(t))

β i
khi (t) =

d∑
j=1

λ̄ j,ke j −
∑

i∈π(X̄(t)), i �=0

μ̄i,khi (t)ei . (13.23)

Wewill assume that Ak is a strict subset of A and 0 /∈ A, and note that the cases when
they are equal or 0 ∈ A are similar. Also, it is straightforward to show that (X̄(t))i =
(ψ∗(t))i for i /∈ A and t ∈ Ik , and so we only have to establish (X̄(t))i = (ψ∗(t))i
and hi (t) = ρi

k for i ∈ A and t ∈ Ik . It follows from the definitions of π , A, and Ak

that for every i ∈ Ak and j ∈ A \ Ak

ci
(
ψ∗(tk)

)
i − c j

(
ψ∗(tk)

)
j = 0,

and for t ∈ (tk, tk+1)

ci
(
ψ∗(t)

)
i − c j

(
ψ∗(t)

)
j > 0.

Since ψ̇∗(t) ≡ βk for t ∈ (tk, tk+1), the last display and (13.14) yield

0 < ci (βk)i − c j (βk) j = ci (λ̄i,k − ρi
kμ̄i,k) − c j λ̄ j,k . (13.24)

We first claim that if i ∈ Ak and j ∈ A\Ak then c j (X̄(t)) j ≤ ci (X̄(t))i for all t ∈
Ik . Indeed, using (13.24) for the last inequality and h j (t) ≥ 0, ρi ≥ 0 for the first
inequality, for any t ∈ Ik at which c j (X̄(t)) j > ci (X̄(t))i holds we have

d

dt

[
c j (X̄(t)) j − ci (X̄(t))i

]
= c j (λ̄ j,k − h j (t)μ j,k) − ci λ̄i,k

= c j λ̄ j,k − ci λ̄i,k + ciρ
i
kμi,k − c j h j (t)μ j,k − ciρ

i
kμi,k

< c j λ̄ j,k − ci λ̄i,k + ciρ
i
kμi,k

< 0.
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Thus c j (X̄(t)) j ≤ ci (X̄(t))i follows.
If ci (X̄(t))i are not all the same for i ∈ Ak , thenπ(X̄(t)) ⊂ Ak butπ(X̄(t)) �= Ak .

If they are all the same then i ∈ Ak implies i ∈ π(X̄(t)), and it is possible that
j ∈ π(X̄(t)) for some j ∈ A \ Ak . Hence there are only two possibilities, which
are π(X̄(t)) ⊂ Ak but π(X̄(t)) �= Ak , or Ak ⊂ π(X̄(t)). If the second case occurs,
then we use the fact that for any nonempty B the solution to (13.21) is unique and
component-wise strictly increasing. Note that there are only finitely many possible
choices for π(X̄(t)). Consider the set Tk(B) of t such that π(X̄(t)) = B. Recall
that for an absolutely continuous function g : [0, 1] → R the Lebesgue measure of
{t : g(t) = 0, ġ(t) �= 0} is zero. It follows that within Tk(B) it is enough to consider
only t such that

c j (λ̄ j,k − h j (t)μ j,k) = ci (λ̄i,k − hi (t)μi,k) for all i, j ∈ B. (13.25)

If B = Ak then hi (t) = ρi
k and there is nothing to prove. If B is strictly larger than

Ak then
∑

i∈Ak
hi (t) < 1, and by the uniqueness of solutions to (13.21) hi (t) < ρi

k
for i ∈ Ak . However in this case, for any i ∈ Ak and j ∈ B\Ak Eq. (13.24) implies

d

dt

[
c j (X̄(t)) j − ci (X̄(t))i

]
= c j (λ̄ j,k − h j (t)μ j,k) − ci (λ̄i,k − hi (t)μi,k)

= c j λ̄ j,k − ci λ̄i,k + ciρ
i
kμi,k − c j h j (t)μ j,k − ci [ρi

k − hi (t)]μi,k

< c j λ̄ j,k − ci λ̄i,k + ciρ
i
kμi,k

< 0,

a contradiction to (13.25). Finally there is the case where π(X̄(t)) ⊂ Ak and the
inclusion is strict. Again we partition according to π(X̄(t)). Suppose that i ∈ B and
j ∈ Ak\B. Again using the properties of solutions to (13.21) we have hi (t) > ρi

k for
i ∈ B. Using that ρi

k satisfy (13.20)

d

dt

[
c j (X̄(t)) j − ci (X̄(t))i

]
= c j λ̄ j,k − ci λ̄i,k + ci hi (t)μi,k

= c j λ̄ j,k − c jρ
j
k μ j,k − ci λ̄i,k + ciρ

i
kμi,k + ci [hi (t) − ρi

k]μi,k + c jρ
j
k μ j,k

= ci [hi (t) − ρi
k]μi,k + c jρ

j
k μ j,k

> 0,

again a contradiction to (13.25). Hence the only possibility is π(X̄(t)) = Ak with
hi (t) = ρi

k . �
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13.2.5.4 Analysis of the Cost

In this section, we prove the Laplace lower bound, namely inequality (13.12). Recall
the definition of γ n

i from Sect. 13.2.5.2. Using (13.16),

lim
n→∞ Exn

[∫ tk+1

tk

d∑
i=1

[
λi�
(
ϕn
i (t)

)+ μi�
(
ϕn

−i (t)
)]
dt

]

= lim
n→∞ Exn

⎡
⎣∫ tk+1

tk

∑
i∈Ak ,i �=0

μi�

(
μ̄i,k

μi

)
γ n
i (dt) +

d∑
j=1

λ j�

(
λ̄ j,k

λ j

)
dt

⎤
⎦

=
∫ tk+1

tk

⎡
⎣ ∑

i∈Ak ,i �=0

μi�

(
μ̄i,k

μi

)
hi (t) +

d∑
j=1

λ j�

(
λ̄ j,k

λ j

)⎤⎦ dt

= (tk+1 − tk)

⎡
⎣ ∑

i∈Ak ,i �=0

μi�

(
μ̄i,k

μi

)
ρi
k +

d∑
j=1

λ j�

(
λ̄ j,k

λ j

)⎤
⎦

≤ (tk+1 − tk) · [L Ak (βk) + ε]
=
∫ tk+1

tk

L(ψ∗(t), ψ̇∗(t))dt + (tk+1 − tk)ε,

where the second equality is from Proposition 13.11, the third uses Lemma 13.12, the
inequality on the fourth line is from (13.15) and the last line uses the fact that for t ∈
(tk, tk+1), ψ̇∗(t) = βk and π(ψ∗(t)) = Ak . Summing over k and using Proposition
13.11 and Lemma 13.12 to establish

lim
n→∞ Exn F(X̄ n) = Ex F(X̄) = F(ψ∗),

we complete the proof of the inequality (13.12) and hence also the proof of Theorem
13.8. �

13.3 A Class of Pure Jump Markov Processes

In this section we consider the class of R
d -valued pure jump Markov processes

{X ε}ε∈(0,1) with infinitesimal generator of the form

L ε f (x) = 1

ε

K∑
k=1

λk(x)[ f (x + εvk(x)) − f (x)], x ∈ R
d , (13.26)
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where f is a real bounded measurable map on R
d and for k = 1, . . . , K , λk : R

d →
[0,∞) and vk : R

d → R
d are Lipschitz continuous functions. Such processes are

ubiquitous in applications. However, they are not usually written in the SDE form
of Chap. 10, and even when represented as the solution of an SDE they do not
satisfy the conditions of Chap. 10, since G as in (10.1) cannot in general be smooth.
However, unlike the last section the lack of smoothness is not a obstacle, and the
SDE formulation provides a variational representation that allows an easy derivation
of large and moderate deviation theorems. We will prove a large deviation principle
for such processes in Sect. 13.3.1 and a moderate deviation principle in Sect. 13.3.2.

13.3.1 Large Deviation Principle

Themain result of this section is a large deviation principle for {X ε} inD([0, T ] : R
d)

when X ε(0) = xε for some xε ∈ R
d and xε → x as ε → 0.We begin by introducing

the associated rate function. For ξ ∈ C ([0, T ] : R
d) with ξ(0) = x define U (ξ)

to be the collection of all ϕ = {ϕi }Ki=1, such that each ϕi : [0, T ] × R+ → R+ is a
measurable map and the equation

ξ(t) = x +
K∑

k=1

∫
[0,t]×R+

vk(ξ(s))1[0,λk (ξ(s))](y)ϕk(s, y)dyds, t ∈ [0, T ]

holds. Define I : D([0, T ] : R
d) → [0,∞] by

I (ξ)
.= inf

ϕ∈U (ξ)

[
K∑

k=1

∫
[0,T ]×R+

�(ϕk(s, y))dyds

]

if ξ ∈ C ([0, T ] : R
d) (where as usual the infimum is taken to be ∞ if the set is

empty), and I (ξ) = ∞ if ξ ∈ D([0, T ] : R
d) \ C ([0, T ] : R

d) or if ξ(0) �= x . We
will impose the following condition on {λk}.
Condition 13.13 λk : R

d → [0,∞) and vk : R
d → R

d are Lipschitz continuous
functions for all k = 1, . . . , K , and there is c ∈ (0,∞) such that | log λk(x)| ≤ c
for all k = 1, . . . , K and x ∈ R

d .

Assume Condition 13.13 is satisfied and take as given ξ ∈ C ([0, T ] : R
d) and

ϕ ∈ U (ξ). We can assume without loss that ϕk(s, y) = 1 if y > λk(ξ(s)). Let

ϕ̄k(s) = 1

λk(ξ(s))

∫ λk (ξ(s))

0
ϕk(s, y)dy.



13.3 A Class of Pure Jump Markov Processes 367

Then of course

ξ(t) = x +
K∑

k=1

∫ t

0
vk(ξ(s))λk(ξ(s))ϕ̄k(s)ds, t ∈ [0, T ] (13.27)

holds, and by Jensen’s inequality and since � ≥ 0

K∑
k=1

∫
[0,T ]×R+

�(ϕk(s, y))dyds ≥
K∑

k=1

∫ T

0
λk(ξ(s))�(ϕ̄k(s))ds.

Hence if Ū (ξ) is the collection of ϕ̄ = {ϕ̄i }Ki=1, ϕ̄i : [0, T ] → R+ that satisfy (13.27),
then an alternative and simpler expression for the rate function is

I (ξ) = inf
ϕ̄∈ ¯U (ξ)

[
K∑

k=1

∫ T

0
λk(ξ(s))�(ϕ̄k(s))ds

]
.

Theorem 13.14 Suppose that Condition 13.13 is satisfied. Let X ε be the Markov
process with infinitesimal generatorL ε in (13.26) and initial value X ε(0) = xε for
some xε ∈ R

d . Suppose xε → x as ε → 0. Then {X ε} satisfies a large deviation
principle on D([0, T ] : R

d) with rate function I .

As usual, we give the proof only for the case T = 1. Let F : D([0, 1] : R
d) → R

be a bounded and continuous function. In order to prove the theorem it suffices to
show that I has compact level sets and that for any such F

lim
ε→0

−ε log E exp
{−ε−1F(X ε)

} = inf
ξ∈D ([0,1]:Rd )

[I (ξ) + F(ξ)] .

The upper bound is shown in Sect. 13.3.1.1 and the lower bound in Sect. 13.3.1.2. The
proof of compactness of level sets is similar to that of the Laplace upper bound and
therefore omitted. Since the statement allows general convergent initial conditions,
Proposition 1.12 implies that the LDP is uniform with respect to initial conditions in
compact sets.

13.3.1.1 Laplace Upper Bound

In this section we will prove that for every F ∈ Cb(D([0, 1] : R
d))

lim sup
ε→0

ε log E exp
{−ε−1F(X ε)

} ≤ − inf
ξ∈D ([0,1]:Rd )

[I (ξ) + F(ξ)] .

Let (Ω,F , P) be a probability space equipped with a filtration {Ft }0≤t≤1 that sat-
isfies the usual conditions (see Appendix D). Let N̄i , for i = 1, . . . , K , be mutually
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independentFt -Poisson randommeasures on [0, 1] × R+ × R+ with intensity mea-
sure ν̄1(ds × dy × dz) = ν̄(dy × dz)ds, where ν̄ is Lebesgue measure on R

2+ (see
Definition 8.11). Following the notation in Sect. 8.2, for M ∈ (0,∞) let ¯Ab,M be the
collection of allFt -predictable ϕ : [0, 1] × R+ × Ω → R+ such that: L1(ϕ) ≤ M ;
n ≥ ϕ(t, y, ω) ≥ 1/n for some n ∈ N and all (t, y, ω); and ϕ(t, y, ω) = 1 if y > n
for all (t, ω). Here L1 is as defined as in 8.17 with T = 1, ν1(ds × dy) = ν(dy)ds,
ν is Lebesgue measure on R+ and X = R+. Let as before ¯Ab

.= ∪M∈N ¯Ab,M . For
ϕ ∈ ¯Ab, the point process N

ϕ

i for i = 1, . . . , K is defined by 8.16 with N̄ replaced
with N̄i . In terms of these point processes the variational representation in Theorem
8.12 gives

− ε log E exp
{−ε−1F(X ε)

} = inf
ϕ

E

[
F(X̄ ε) +

K∑
i=1

∫
[0,1]×R+

�(ϕi (t, y))dydt

]
,

(13.28)
where the infimum is taken over all ϕ = {ϕi }Ki=1 such that ϕi ∈ ¯Ab for each i , and
for any such ϕ, X̄ ε is given as the solution of the equation

X̄ ε(t) = xε + ε

K∑
k=1

∫
[0,t]×R+

vk(X̄
ε(s−))1[0,λk (X̄ ε(s−))](y)N

ϕk/ε

k (ds × dy) (13.29)

for t ∈ [0, 1]. For each ε > 0, let ϕε = {ϕε
i }Ki=1 be ε-optimal for the infimum in

(13.28), so that

− ε log E exp
{−ε−1F(X ε)

} ≥ E

[
F(X̄ ε) +

K∑
i=1

∫
[0,1]×R+

�(ϕε
i (t, y))dydt

]
− ε,

(13.30)
where X̄ ε is defined by (13.29), replacing ϕ there with ϕε. Using the boundedness
of F and a localization argument (see for example the proof of Theorem 3.17), we
can assume without loss of generality that

sup
ε∈(0,1)

K∑
i=1

∫
[0,1]×R+

�(ϕε
i (t, y))dydt ≤ M

for some M < ∞. Using the boundedness of λk and linear growth of vk for k =
1, . . . , K , it follows that the collection {(X̄ ε, ϕε)} is tight (see for example the proof
of Lemma 10.11) and using the superlinearity of � we obtain the following uniform
integrability property:

lim
m→∞ sup

ε∈(0,1)

K∑
i=1

∫
[0,1]×R+

ϕε
i (t, y)1{ϕε

i (t,y)≥m}dydt = 0.
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Let (X̄ , ϕ) denote the limit along a weakly convergent sequence and assume without
loss of generality by using the Skorohod representation theorem that the convergence
is a.s. Then it follows from (13.29) that (see for example the proof of Lemma 10.12)

X̄(t) = x +
K∑

k=1

∫
[0,t]×R+

vk(X̄(s))1[0,λk (X̄(s))](y)ϕk(s, y)dyds, t ∈ [0, 1].
(13.31)

Then using the definition of I , lower semicontinuity of � and Fatou’s lemma, it
follows that

lim inf
ε→0

E

[
F(X̄ ε) +

K∑
i=1

∫
[0,1]×R+

�(ϕε
i (t, y))dy dt

]
≥ inf

ξ∈D ([0,1]:Rd )
[F(ξ) + I (ξ)] ,

and the desired Laplace upper bound follows from (13.30). �

13.3.1.2 Laplace Lower Bound

In this section we prove that for every F ∈ Cb(D([0, 1] : R
d))

lim inf
ε→0

ε log E exp
{−ε−1F(X ε)

} ≥ − inf
ξ∈D ([0,1]:Rd )

[I (ξ) + F(ξ)] .

The key ingredient in the proof of the lower bound is the following uniqueness result.

Proposition 13.15 Fix σ ∈ (0, 1). Given ξ ∈ C ([0, 1] : R
d) with I (ξ) < ∞ there

exists a ϕ∗ = {ϕ∗
i }Ki=1 ∈ U (ξ) such that

(a)
K∑
i=1

∫
[0,1]×R+

�(ϕ∗
i (t, y))dy dt ≤ I (ξ) + σ,

(b) if ξ̃ ∈ C ([0, 1] : R
d) is another function such that ϕ∗ ∈ U (ξ̃ ) then ξ = ξ̃ .

Proof Since I (ξ) < ∞ , we can find ϕ = {ϕi }Ki=1 ∈ U (ξ) such that

K∑
i=1

∫
[0,1]×R+

�(ϕi (t, y))dy dt ≤ I (ξ) + σ/2.

Using Jensen’s inequality, we can assume without loss that for i = 1, . . . , K there
are ρi : [0, 1] → R+ such that for all (s, y) ∈ [0, 1] × R+,

ϕi (s, y) = ρi (s)1[0,λi (ξ(s))](y) + 1(λi (ξ(s)),∞)(y).

For a ∈ (0, 1) let
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ϕa
i (s, y) = ρi (s)

1 − a
1[0,(1−a)λi (ξ(s))](y) + 1((1+a)λi (ξ(s)),∞)(y). (13.32)

Then ϕa .= {ϕa
i }Ki=1 satisfies ϕa ∈ U (ξ). It can be checked using the formula for �

that there is γ : R+ → R+ such that γ (θ) → 0 as θ → 0 and

K∑
i=1

∫
[0,1]×R+

[�(ϕa
i (s, y)) − �(ϕi (s, y))]dyds ≤ γ (a)(I (ξ) + 1).

Choose a > 0 sufficiently small so that the right side is bounded above by σ/2. Then
the first part of the proposition holds with ϕ∗ .= ϕa . We now show that the second
part holds with this ϕ∗ as well.

Suppose that ξ̃ is another function such that ϕ∗ ∈ U (ξ̃ ). We need to show that
ξ̃ = ξ . Let

τ
.= inf{t ∈ [0, 1] : ξ(t) �= ξ̃ (t)} ∧ 1.

It suffices to show that τ = 1. Suppose to the contrary that τ < 1. We will show that
for some δ ∈ (0, 1 − τ ]

ξ(t) = ξ̃ (t), t ∈ [τ, τ + δ]. (13.33)

This contradiction will prove the desired result.
Note that ξ(τ ) = ξ̃ (τ ). From Condition 13.13, we can find c1, c2 ∈ (0,∞) such

that c1 ≤ λk(x) ≤ c2 for all x ∈ R
d and k = 1, . . . , K . Using continuity of λk , ξ and

ξ̃ we can find δ > 0 such that for all s ∈ [τ, τ + δ] and k = 1, . . . , K

(1 − a)λk(ξ(s)) < λk(ξ̃ (s)) < (1 + a)λk(ξ(s)). (13.34)

Also, using the Lipschitz property of vk , there is κ ∈ (0,∞) such that

max
1≤k≤K

‖vk(x) − vk(x̃)‖ ≤ κ‖x − x̃‖ for all x, x̃ ∈ R
d .

Then for any s ∈ [0, δ]

sup
0≤u≤s

‖ξ(τ + u) − ξ̃ (τ + u)‖

≤
K∑
i=1

∫
[τ,τ+s]×R+

∥∥∥vi (ξ(r))1[0,λi (ξ(r))](y) − vi (ξ̃ (r))1[0,λi (ξ̃ (r))](y)
∥∥∥ϕa

i (r, y)dydr

≤
K∑
i=1

∫
[τ,τ+s]×R+

∥∥∥vi (ξ(r)) − vi (ξ̃ (r))
∥∥∥ϕa

i (r, y)1[0,λi (ξ(r))](y)dydr
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≤ κ

∫
[τ,τ+s]

sup
0≤u≤r

∥∥∥ξ(u) − ξ̃ (u)

∥∥∥
(∫

R+

K∑
i=1

ϕa
i (r, y)1[0,λi (ξ(r))](y)dy

)
dr,

where the second inequality follows on observing that by (13.32) and (13.34), for all
r ∈ [τ, τ + δ] and y ∈ R+

1[0,λi (ξ(r))](y)ϕa
i (r, y) = 1[0,λi (ξ̃ (r))](y)ϕ

a
i (r, y).

The bound x ≤ c[�(x) + 1] for some c < ∞, the bound asserted in part (a), and an
application of Gronwall’s lemma shows that

sup
0≤u≤δ

‖ξ(τ + u) − ξ̃ (τ + u)‖

is identically 0. This proves (13.33) and completes the proof of the proposition. �

Remark 13.16 Proposition 13.15 is the key ingredient in the proof of the large devi-
ation lower bound. It asserts that given any trajectory with finite cost, we can find
controls that one could apply to the driving Poisson random measure that are arbi-
trarily close in cost to the infimum over all controls, and that give a unique output
when pushed through the deterministic limiting dynamics that map a control to a
controlled trajectory. Note that the perturbation of the controls in (13.32), which can
be done without changing the trajectory and with a small increase in cost, conve-
niently sets the intensity to zero in a neighborhood of the points at which themapping
from noise space to state space is discontinuous. This provides a new technique for
proving the large deviation lower bound, and it relies heavily on being able to rep-
resent the system of interest (here a pure jump process with a finite number of jump
types) in terms of a fixed and exogenous set of PRMs, as well as the representation
theorem for PRMs. In comparison with the mollifications used say in Sect. 4.7, the
mollification or approximation here is done directly on the controls {ϕi }, rather than
on the trajectory ξ . Recent applications of this technique include [23, 42], and for
further discussion see the notes at the end of Chap. 10.

We now complete the proof of Laplace lower bound. Fix σ ∈ (0, 1) and let ξ ∗ ∈
C ([0, T ] : R

d) satisfy

F(ξ ∗) + I (ξ ∗) ≤ inf
ξ∈C ([0,T ]:Rd )

[F(ξ) + I (ξ)] + σ.

Let ϕ∗ = {ϕ∗
i }Ki=1 ∈ U (ξ ∗) be as given by Proposition 13.15 (with ξ replaced by ξ ∗).

For i = 1, . . . , K define the deterministic controls

ϕε
i (s, y) (13.35)
.= 1 + 1{y≤1/ε}

(
ε1{ϕ∗

i (s,y)≤ε} + ϕ∗
i (s, y)1{ε<ϕ∗

i (s,y)<1/ε} + ε−11{ϕ∗
i (s,y)≥1/ε} − 1

)
.
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Since x �→ �(x) is increasing for x ≥ 1 and decreasing for x ≤ 1, �(ϕε
i (t, y)) ≤

�(ϕ∗
i (t, y)) for all ε > 0, i, t and y. Hence if X̄ ε is defined through (13.29) with ϕ

replaced with ϕε, then

−ε log E exp
{−ε−1F(X ε)

} ≤ E

[
F(X̄ ε) +

K∑
i=1

∫
[0,1]×R+

�(ϕε
i (t, y))dy dt

]

≤ E

[
F(X̄ ε) +

K∑
i=1

∫
[0,1]×R+

�(ϕ∗
i (t, y))dy dt

]
,

where the first inequality is from (13.28) on observing that ϕε
i in (13.35) is in ¯Ab

for each i . By repeating the arguments used for proving the upper bound we see that
{X̄ ε} is tight. Furthermore, ϕε converges to ϕ∗. If X̄ ε converges along a subsequence
to X̄ then X̄ must satisfy (13.31) with ϕ replaced with ϕ∗. From the uniqueness in
Proposition 13.15 it follows that X̄ = ξ ∗. Therefore

lim sup
ε→0

−ε log E exp
{−ε−1F(X ε)

}

≤ lim sup
ε→0

E

[
F(X̄ ε) +

K∑
i=1

∫
[0,1]×R+

�(ϕ∗
i (t, y))dydt

]

= F(ξ ∗) +
K∑
i=1

∫
[0,1]×R+

�(ϕ∗
i (t, y))dydt

≤ F(ξ ∗) + I (ξ ∗) + σ

≤ inf
ξ∈D ([0,T ]:Rd )

[F(ξ) + I (ξ)] + 2σ.

Since σ > 0 is arbitrary, we have the desired Laplace lower bound. �

13.3.2 Moderate Deviation Principle

We will use notation and results from Sects. 9.2.2 and 10.3. In particular, a(ε) and
κ(ε) as in (9.6) satisfy a(ε) → 0 and κ(ε)

.= ε/a2(ε) → 0 as ε → 0. Let X0 ∈
C ([0, T ] : R

d) be a solution of the equation

X0(t) = x +
∫ t

0
β(X0(s))ds, t ∈ [0, T ], (13.36)

where for x ∈ R
d , β(x)

.=∑K
k=1 vk(x)λk(x). We will impose the following condi-

tion, under which there is a unique solution of (13.36).
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Condition 13.17 λk : R
d → [0,∞) and vk : R

d → R
d are Lipschitz continuous

functions for all k = 1, . . . , K and there is c ∈ (0,∞) such that λk(x) ≤ c for all
k = 1, . . . , K and x ∈ R

d . Themapβ : R
d → R

d is differentiable and Dβ, the d × d
matrix of first derivatives of β, is Lipschitz continuous. Thus for some LDβ ∈ (0,∞),

‖Dβ(x) − Dβ(y)‖ ≤ LDβ‖x − y‖ for all x, y ∈ R
d .

Note that under Condition 13.17 β is a locally Lipschitz continuous function with
linear growth, and thus (13.36) admits a unique solution. In this section we establish
a Laplace principle for {Y ε} with scaling function κ(ε), where

Y ε = 1

a(ε)
(X ε − X0).

We now introduce the rate function associated with the collection {Y ε}. For η ∈
C ([0, T ] : R

d), let V (η) be the collection of all u = {ui }Ki=1 such that each ui ∈
L 2([0, T ] : R) and the equation

η(t) =
∫ t

0
[Dβ(X0(s))]η(s)ds +

K∑
k=1

∫ t

0
vk(X

0(s))
√

λk(X0(s))uk(s)ds, t ∈ [0, T ]

is satisfied. Define I : D([0, T ] : R
d) → [0,∞] by

I (η)
.= inf

u∈V (η)

[
1

2

K∑
k=1

∫ 1

0
u2k(s)ds

]

if η ∈ C ([0, T ] : R
d) (where the infimum is taken to be ∞ if the set is empty),

and I (η) = ∞ for η ∈ D([0, T ] : R
d) \ C ([0, T ] : R

d). The following is the main
theorem of this section.

Theorem 13.18 Suppose that Condition 13.17 is satisfied. Further suppose that
(xε − x)/a(ε) → 0 as ε → 0. Then {Y ε} satisfies a Laplace principle in D([0, T ] :
R

d) with scaling function κ(ε) and rate function I .

Remark 13.19 The rate function I has the following alternative representation. For
η ∈ C ([0, 1] : R

d), let Ṽ (η) be the collection of all ψ = {ψi }Ki=1 such that each
ψi ∈ L 2([0, 1] × R+) and the following equation is satisfied for t ∈ [0, 1].

η(t) =
∫ t

0
[Dβ(X0(s))]η(s)ds

+
K∑

k=1

∫
[0,t]×R+

vk(X
0(s))1[0,λk (X0(s))](y)ψk(s, y)dyds. (13.37)

Define Ĩ : D([0, 1] : R
d) → [0,∞] by
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Ĩ (η)
.= inf

ψ∈ ˜V (η)

[
1

2

K∑
k=1

∫
[0,1]×R+

ψ2
k (s, y)dyds

]

if η ∈ C ([0, 1] : R
d), and Ĩ (η) = ∞ for η ∈ D([0, 1] : R

d) \ C ([0, 1] : R
d). Then

it can be checked that Ĩ = I . The optimal ψk(s, y) for a given uk(s) is equal to
uk(s)1[0,λk (X0(s))](y)/[λk(X0(s))]1/2.
Remark 13.20 Another form of the rate function is analogous to that of Chap. 5.
Define

Ai j (x)
.=

K∑
k=1

λk(x) [vk(x)]i [vk(x)] j ,

where [vk(x)]i is the i th component of vk(x). It is easy to check that Ai j (x) is
symmetric and nonnegative definite, and thus has a well defined square root A1/2(x).
It can be shown that the rate function I is same as the function Ī defined by

Ī (η)
.= inf

f ∈L 2([0,1]:Rd )

[
1

2

∫ 1

0
‖ f (s)‖2ds

]

for η ∈ C ([0, 1] : R
d), where the infimum is taken over all f ∈ L 2([0, 1] : R

d) such
that

η(t) =
∫ t

0
[Dβ(X0(s))]η(s)ds +

∫ t

0
A1/2(X0(s)) f (s)ds, t ∈ [0, 1].

The infimum is taken to be ∞ if the set of such f is empty, and Ĩ (η) = ∞ for
η ∈ D([0, 1] : R

d) \ C ([0, 1] : R
d). To see that the two rate functions are the same

it is enough to check that they give the same cost in the sense that for all p ∈ R
d the

Legendre-Fenchel transforms

sup
f ∈Rd

[〈
p, A1/2(x) f

〉− 1

2
〈 f, f 〉

]

and

sup
u∈RK

[
K∑

k=1

〈
p, vk(v)

√
λk(x)uk

〉
− 1

2

K∑
k=1

u2k

]

coincide. Evaluating for the optimum gives

1

2
〈p, A(x)p〉 and

1

2

K∑
k=1

〈
p, vk(v)

√
λk(x)

〉2

respectively, which coincide owing to the definition of A(x).
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We return to the proof of Theorem 13.18, which will be given for the case T = 1.
In order to prove the theorem we will verify the sufficient condition for a MDP
formulated in Condition 9.8. We will in fact use a simpler form of this condition
since the process of interest does not have a Brownian noise component and we
do not seek a uniform Laplace principle here. We record this simpler version of
Condition 9.8 below. Let M

.= �([0, 1] × R+). Also, let U be a Polish space and
{K ε} be a collection of maps from M

K → U. Let

Ŝn
.=
{
f = { fi }Ki=1 : fi ∈ L 2([0, 1] × R+) and

K∑
i=1

∫
[0,1]×R+

f 2i (s, y)dyds ≤ n

}
.

For n ∈ N let

Sε
n,+

.= {g = {gi }Ki=1 : gi : [0, 1] × R+ → R+

and
K∑
i=1

∫
[0,1]×R+

�(gi (s, y))dyds ≤ na2(ε)

}

and let

U ε
n,+

.= {ϕ = {ϕi }Ki=1 : ϕi ∈ ¯Ab for each i , and ϕ ∈ Sε
n,+ a.s.

}
.

For notational convenience when ϕ ∈ U ε
n,+, we write {εNϕi/ε

i }Ki=1 as εNϕ/ε. The
following is a sufficient condition for {K ε(εN 1/ε)} to satisfy an MDP with scaling
function κ(ε).

Condition 13.21 For some measurable map K 0 : (L 2([0, 1] × R+))K → U, the
following two conditions hold.

(a) For every n ∈ N, the set
{
K 0( f ) : f ∈ Ŝn

}
is a compact subset of U.

(b) Given n ∈ N and ε > 0, let ϕε ∈ U ε
n,+ and ζ ε

i
.= (ϕε

i − 1)/a(ε). Suppose that
for some θ ∈ (0, 1] there is m ∈ N such that

{ζ ε
i 1{|ζ ε

i |≤θ/a(ε)}}Ki=1 ⇒ ζ
.= {ζi }Ki=1 in Ŝm .

Then K ε(εNϕε/ε) ⇒ K 0(ζ ).

For η ∈ U define

I (η)
.= inf

f ∈(L 2([0,1]×R+))K :η=K 0( f )

[
1

2

K∑
i=1

∫
[0,1]×R+

f 2i (s, y)dyds

]
.

It follows from Theorem 9.9 that if Condition 13.21 is satisfied, the collection
{K ε(εN 1/ε)} satisfies an MDP with scaling function κ(ε) and the rate function
I defined in the last display.
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We will now apply Theorem 9.9 for the case where K ε is implicitly defined
by K ε(εN 1/ε) = Y ε. For ϕε ∈ U ε

n,+, let Ȳ ε .= (X̄ ε − X0)/a(ε), where X̄ ε solves
(13.29) with ϕ replaced with ϕε. Also, for f ∈ (L 2([0, 1] × R+))K , let

η(t) =
∫ t

0
[Dβ(X0(s))]η(s)ds (13.38)

+
K∑

k=1

∫
[0,t]×R+

vk(X
0(s))1[0,λk (X0(s))](y) fk(s, y)dyds.

Then in order to prove Theorem 13.18, in view of Remark 13.19, it suffices to show
the following.

(i) If for some n ∈ N f m → f in Ŝn as m → ∞, and if ηm solves (13.38) with f
replaced by f m , then ηm → η.

(ii) Let ζ ε
i

.= (ϕε
i − 1)/a(ε) where ϕε ∈ U ε

n,+. If for some θ ∈ (0, 1], there is
m ∈ N such that

ζ̃ ε .= {ζ ε
i 1{|ζ ε

i |≤θ/a(ε)}}Ki=1 ⇒ ζ
.= {ζi }Ki=1 in Ŝm,

then Ȳ ε ⇒ Ȳ , where Ȳ solves (13.38) with f replaced by ζ .

In rest of the section we prove (i) and (ii).

13.3.2.1 Proof of (i)

Let { f m}, f be elements in Ŝn such that f m → f as m → ∞. Then using the fact
that

(s, y) �→ vk(X
0(s))1[0,λk (X0(s))](y)

is inL 2([0, 1] × R+), it follows from Hölder’s inequality and f mk → fk weakly in
L 2 that as m → ∞

sup
0≤t≤1

K∑
k=1

∥∥∥∥
∫

[0,t]×R+
vk(X

0(s))1[0,λk (X0(s))](y)( f mk (s, y) − fk(s, y))dyds

∥∥∥∥→ 0.

We also have

‖ηm(t) − η(t)‖
≤ ‖Dβ(X0(·))‖∞,1

∫ t

0
‖ηm(s) − η(s)‖ds

+ sup
0≤t≤1

K∑
k=1

∥∥∥∥
∫

[0,t]×R+
vk(X

0(s))1[0,λk (X0(s))](y)( f mk (s, y) − fk(s, y))dyds

∥∥∥∥ .

The statement in (i) now follows from Gronwall’s inequality. �
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13.3.2.2 Proof of (ii)

From arguments as in Lemma 10.20 it follows that there exists an ε0 ∈ (0, 1) such
that

sup
ε∈(0,ε0)

sup
ϕ∈U ε

n,+
E‖X̄ ε‖∞,1 < ∞. (13.39)

This is a consequence of the fact that β has linear growth and the quantity in the
current setting that is analogous toMG(y) in Sect. 10.3 is 1[0,c](y), which is clearly in
the classL 1(ν) ∩ L ρ

exp when ν is Lebesguemeasure onR+ (here c is fromCondition
13.17).

Next we prove the following analogue of Lemma 10.21.

Lemma 13.22 For every n ∈ N, there exists an ε1 ∈ (0, 1) such that

{‖Ȳ ε‖∞,1, ϕ ∈ U ε
n,+, ε ∈ (0, ε1)

}

is a tight collection of R+-valued random variables and

{
Ȳ ε, ϕ ∈ U ε

n,+, ε ∈ (0, ε1)
}

is a tight collection of D([0, 1] : R
d)-valued random variables, where Ȳ ε .= (X̄ ε −

X0)/a(ε) and X̄ ε uses the control ϕ.

Proof We write Ȳ ε as

Ȳ ε(t) = Ȳ ε(0) + Mε(t) + Bε(t) + Cε(t), t ∈ [0, 1] (13.40)

where Ȳ ε(0) = a(ε)−1(xε − x) → 0 as ε → 0, and

Mε(t)
.= ε

a(ε)

K∑
k=1

∫
[0,t]×R+

vk(X̄
ε(s−))1[0,λk (X̄ ε(s−))](y)N

ϕk/ε

c,k (ds × dy)

Bε(t)
.= 1

a(ε)

∫ t

0
(β(X̄ ε(s)) − β(X0(s)))ds

Cε(t)
.=

K∑
k=1

∫
[0,t]×R+

vk(X̄
ε(s))1[0,λk (X̄ ε(s))](y)ψk(s, y)dyds,

where Nϕk/ε

c,k is the compensated form of the point process Nϕk/ε

k and ψ
.= (ϕ −

1)/a(ε).
Exactly as in the proof of (10.37) we see, by using the moment bound (13.39),

that
sup

ϕ∈U ε
n,+

E‖Mε‖∞,1 → 0 as ε → 0.



378 13 Models with Special Features

Also, using the Lipschitz property of vk, λk , the boundedness of λk , and the fact that
sup0≤t≤1 ‖X0(t)‖ < ∞, we see that for some κ ∈ (0,∞) (not depending on ε or ϕ)
and all s ∈ [0, 1],

‖β(X̄ ε(s)) − β(X0(s))‖ ≤
K∑

k=1

‖vk(X̄ ε(s))λk(X̄
ε(s)) − vk(X

0(s))λk(X
0(s))‖

≤
K∑

k=1

λk(X̄
ε(s))‖vk(X̄ ε(s)) − vk(X

0(s))‖

+
K∑

k=1

‖vk(X0(s))‖|λk(X̄
ε(s)) − λk(X

0(s))|

≤ κ‖X̄ ε(s) − X0(s)‖.

Therefore,

‖Bε‖∞,t ≤ κ

∫ t

0
‖Ȳ ε(s)‖ds, t ∈ [0, 1].

By using λk(x) ≤ c, for some c1 ∈ (0,∞), and all ϕ ∈ U ε
n,+, ε ∈ (0, 1),

E‖Cε‖∞,1 ≤ c1E

((‖X̄ ε‖∞,1 + 1
) K∑
k=1

∫
[0,1]×[0,c]

|ψk(s, y)|dy ds
)

.

From parts (a) and (c) of Lemma 9.7, there is a c2 ∈ (0,∞) such that for every
ϕ ∈ U ε

n,+, ε ∈ (0, 1), k = 1, . . . , K ,

∫
[0,1]×[0,c]

|ψk(s, y)|dy ds =
∫

[0,1]×[0,c]
|ψk(s, y)|1{|ψk (s,y)|≥1/a(ε)}dy ds

+
∫

[0,1]×[0,c]
|ψk(s, y)|1{|ψk (s,y)|<1/a(ε)}dy ds

≤
∫

[0,1]×[0,c]
|ψk(s, y)|1{|ψk (s,y)|≥1/a(ε)}dy ds

+ c1/2
(∫

[0,1]×[0,c]
|ψk(s, y)|21{|ψk (s,y)|<1/a(ε)}dy ds

)1/2

≤ c2.

Combining this with the moment bound in (13.39), we obtain

sup
ϕ∈U ε

n,+,ε∈(0,ε0)
E‖Cε‖∞,1 < ∞.
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The first statement in the lemma now follows by combining these estimates on
Mε, Bε,Cε and Gronwall’s lemma. The second statement follows on estimating
oscillations of Ȳ ε using similar estimates along with Lemma 10.18 and the first
tightness property established in the lemma. Details are omitted. �

We now verify (ii). Let ϕε ∈ U ε
n,+ and let ζ ε

i
.= (ϕε

i − 1)/a(ε). Suppose for some
θ ∈ (0, 1], there is m ∈ N such that

ζ̃ ε .= {ζ ε
i 1{|ζ ε

i |≤θ/a(ε)}}Ki=1 ⇒ ζ
.= {ζi }Ki=1 in Ŝm .

We need to show that
Ȳ ε ⇒ Ȳ , (13.41)

where Ȳ ε = (X̄ ε − X0)/a(ε), X̄ ε solves (13.29) with ϕ replaced by ϕε, and Ȳ solves
(13.38) with f replaced by ζ .

From Lemma 13.22, {Ȳ ε} is tight. Note that in particular this implies X̄ ε → X0.
Now suppose that (Ȳ ε, X̄ ε, ζ̃ ε) converges to (Ȳ , X0, ζ̃ ) in distribution. Note that ζ̃

and ζ have the same distribution. We use the representation analogous to (13.40),
but with ϕk replaced by ϕε

k and ψk replaced by ζ ε
k . Using our assumption on β

Bε(t) =
∫ t

0
[Dβ(X0(s))]Ȳ ε(s)ds + T ε

1 (t),

and where using the tightness of {‖Ȳ ε‖∞,1}, as in proof of Lemma 10.24, we find
‖T ε

1 ‖∞,1 → 0 in probability. Also as seen in Lemma 10.21, E‖Mε‖∞,1 → 0 in
probability as well. Next, using part (a) of Lemma 9.7 to handle {|ζ ε

i | ≤ θ/a(ε)} and
the convergence of ζ̃ ε to ζ̃ , we have that for each k = 1, . . . , K ,

∫
[0,t]×R+

vk(X
0(s))1[0,λk (X0(s))](y)ζ ε

k (s, y)dyds

converges to ∫
[0,t]×R+

vk(X
0(s))1[0,λk (X0(s))](y)ζ̃k(s, y)dyds.

Using the convergence of X̄ ε to X0, the fact that ζ̃ ε ∈ Ŝm , and the Cauchy-Schwarz
inequality, we have that

∫
[0,t]×R+

[
vk(X̄

ε(s))1[0,λk (X ε(s))](y) − vk(X
0(s))1[0,λk (X0(s))](y)

]
ζ̃ ε
k (s, y)dyds → 0.
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Finally, using part (a) of Lemma 9.7 again and the tightness of {X̄ ε}
∫

[0,t]×R+
ζ ε
k (s, y)1{|ζ ε

k |>θ/a(ε)}
× [vk(X̄ ε(s))1[0,λk (X̄ ε(s))](y) − vk(X

0(s))1[0,λk (X0(s))](y)
]
dyds → 0.

Combining the last three convergence statements identifies the limit of the term that
corresponds to Cε. We see that Ȳ solves the equation

Ȳ (t) =
∫ t

0
[Dβ(X0(s))]Ȳ (s)ds +

K∑
k=1

∫
[0,t]×R+

vk(X
0(s))1[0,λk(X0(s))](y)ζ̃k(s, y)dyds,

i.e., (13.38) with f replaced by ζ̃ . Since ζ̃ and ζ have the same distribution, we have
from unique solvability of (13.37) the desired convergence (13.41). This completes
the verification of (ii) and thus the proof of Theorem 13.18. �

13.4 Notes

Section 13.2 presents our only example of the large deviations analysis of processes
with what are sometimes called “discontinuous statistics” [98]. Processes of this type
are common in queueing theory [96, 141, 231], and appear in many applications. In
general, the large deviation properties of processes with discontinuous statistics are
hard to analyze [2, 137, 158, 195]. This is especially true when the discontinuities
appear on the interior of the state space, rather than the boundary. In fact, very
general results with an explicit identification of the rate function only exist for the
case where two regions of smooth statistical behavior are separated by an interface
of codimension one [97]. Our analysis of the WSLQmodel is based in part on [104],
but uses the representation in terms of a PRM.

Section 13.3 considers pure jump processes with a finite number of jump types
where the jump rates and jump sizes can depend on the state. The analysis is based
on their representation as the solution to a stochastic differential equation driven by a
corresponding number of PRMs. Using similar representations, moderate deviation
principle for weakly interacting pure jump processes with countably many jump
types are studied in [48]. See the Notes at the end of Chap. 10 for a discussion of the
qualitative differences between the SDE model of that chapter and the SDE models
of the present chapter.



Part IV
Accelerated Monte Carlo for Rare Events

In the previous three sections of the book we developed methods for identifying
the rate function and proving a large deviation principle for many different types of
stochastic systems. With the rate function identified, the LDP, Varadhan’s lemma,
and related limits can be used to derive approximations for various probabilities and
expected values. The approximation requires that one solve a variational problem,
which may be very challenging. If this obstacle is overcome, then one also often
obtains very useful qualitative information, such as how the rare event occurred or
what events contributed the most to an expected value. However, the quantitative
information is often fairly crude, in that large deviation theory provides only asymp-
totics of logarithms, i.e., exponential rates. In certain cases one may obtain more,
such as upper bounds that are valid in the prelimit, but in general one does not identify
other terms in an expansion for the quantity of interest, such as a polynomial term
multiplying the exponential.

In many situations one seeks approximations that are more accurate than those
given just by the decay rate. Among the possible choices, Monte Carlo methods are
arguably among the most valuable general-purpose numerical tools currently avail-
able. They are indeed general purpose, being a primary means by which researchers
in fields such biology, chemistry, andmaterials science probe the atomic-level details
of complex systems; researchers in statistics solve high-dimensional and complicated
problems of inference; and those in electrical engineering and operations research
analyze and optimize large scale networks. And they are the main computational tool
used in much of mathematical finance. However, rare events are in some sense the
bane of Monte Carlo simulation algorithms.

Here are two fundamental examples to illustrate why rare events present a par-
ticular challenge for simulation methods. The first is the estimation of a probability
determined by a single rare event. When straightforward Monte Carlo is used, the
standard deviation of a single sample, i.e., a random variable that is 1 if the event
occurs and 0 otherwise, is many times larger than the probability being estimated.
One can reduce the variance by averaging a number of iid samples. However, if the
event is very rare, then the number required to obtain an acceptable variance will
make the approach impractical. The second example occurs in the approximation of
ergodic averages for some given Markov process. The straightforward approach is
to simulate the process and use the empirical measure of the simulated trajectory as
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a surrogate for the true invariant distribution. In this case, if convergence to equilib-
rium depends on the occurrence of a (perhaps large) number of relatively rare events,
then the trajectory must be simulated for an extraordinarily long time before a good
approximation is obtained.

Although Monte Carlo methods have benefited greatly from decades of research
into questions of analysis and design, when rare events play a significant role, our
understanding of these issues is limited, and a great many algorithms are justified
largely by numerical evidence. This is not surprising, given the highly nonlinear
and/or singular equations typically associated with systems that involve rare events.
However, a natural and perhaps underutilized tool in the analysis of Monte Carlo
is large deviation theory, and in the remaining chapters of this book we will show
how many of the ideas and constructions developed previously can be applied for
problems of algorithm analysis, design, and optimization. In this book we consider
only the first class of problems, i.e., estimating probabilities and expected values that
depend on one or a few rare events. The use of ideas from large deviation theory for
the second class is also under development, as in [1, 2, 3].



Chapter 14
Rare Event Monte Carlo and Importance
Sampling

Suppose that in the analysis of some system, the value of a probability or expected
value that is largely determined by one or a few events is important. Examples include
the data loss in a communication network; depletion of capital reserves in a model
for insurance; motion between metastable states in a chemical reaction network;
and exceedance of a regulatory threshold in a model for pollution in a waterway. In
previous chapterswehave described how large deviation theory gives approximations
for such quantities. The approximations take the form of logarithmic asymptotics,
i.e., exponential decay rates.1 For some purposes, especially when one is seeking
qualitative information on how a rare event occurs, these approximations may be
sufficient. For other purposes they may be inadequate, and a more accurate estimate
is needed.

In this situation it is natural to turn to Monte Carlo approximation. However, as
we will explain in some detail, the Monte Carlo approximation of small probabilities
and related expected values also has difficulties owing to the role of rare events, and
the design of reliable schemes requires great care. It turns out that many of the tools
and constructions used for the large deviation analysis of a given problem can be used
for the problem of designing Monte Carlo schemes that are efficient and reliable.

14.1 Example of a Quantity to be Estimated

To set the context, we consider a particular problem that arises frequently in various
systems, especially communication theory. Let Xn be a Markov process with small
noise of the form analyzed in Chap. 4. Thus we are given iid random vector fields
{vi (x), i ∈ N0, x ∈ R

d} on some probability space, and for each x ∈ R
d vi (x) has

1For certain special structures one can obtain more accurate approximations, e.g., approximations
which identify both the exponential rate of decay as well as “pre-exponential” terms.
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distribution θ(·|x), where θ(dy|x) is a stochastic kernel on R
d given R

d . Then the
discrete time Markov process {Xn

i }i∈N0 is constructed through the recursion

Xn
i+1 = Xn

i + 1

n
vi (X

n
i ), Xn

0 = x, (14.1)

and the continuous time interpolation is defined by

Xn(t) = Xn
i + [

Xn
i+1 − Xn

i

]
(nt − i) , t ∈ [i/n, i/n + 1/n] , i ∈ N0. (14.2)

Let Px denote probability conditioned on Xn
0 = x and integration with respect to Px

by Ex . The problem of interest is then to evaluate

pn(x)
.= Px

{
Xn enters B before entering A

}
, (14.3)

where A is open, B is closed, and A ∩ B = ∅. For reasons that will become clear
later, we explicitly record the initial condition in the notation, even though for many
problems there may be only one initial condition of interest.

Under Conditions 4.3 and 4.7 or Conditions 4.3 and 4.8, Theorem 4.9 shows that
for every T ∈ (0,∞), {Xn}n∈N regarded as a collection of stochastic processes over
the time horizon [0, T ] satisfies an LDP. Let IT denote the corresponding rate func-
tion, and recall that IT (φ) = 0 characterizes the LLN limit trajectories of {Xn}n∈N.
We will assume that A is an attractor of the LLN limit with nonempty interior and
that B is in some sense rare. See Fig. 14.1. The trajectories in the figure are assumed
to satisfy IT (φ) = 0 for all T ∈ (0,∞), and for all initial conditions φ(t) enters A
as t → ∞.

Fig. 14.1 Stability of the
zero cost trajectories

IT (φ) = 0
B

x

A
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Recall the notation

H(y, α) = log E exp {〈α, vi (y)〉} , L(y, β) = sup
α∈Rd

[〈α, β〉 − H(y, α)]

from Chap. 4. Under appropriate regularity conditions the large deviation principle
for {Xn} implies

− 1

n
log Px

{
Xn enters B before entering A

} → V (x), (14.4)

where

V (x)
.= inf

[∫ T

0
L(φ(t), φ̇(t))dt : φ ∈ Cx,T , T < ∞

]
,

and with

Cx,T
.= {φ(0) = x, φ(t) ∈ B for some t ∈ [0, T ] and φ(s) /∈ A for s ∈ [0, t]} .

The proof of (14.4) is typically carried out by reducing the analysis to that over a
finite time interval and then invoking the large deviation principle for {Xn} over finite
time intervals (see Condition 15.18 and Proposition 15.19).

14.1.1 Relative Error

Recall that the problem of interest is to estimate the probability

pn(x)
.= Px

{
Xn enters B before entering A

}
.

LetCx
.= ∪T∈(0,∞)Cx,T be the trajectories that enter B before entering A after starting

at x . To apply straightforward Monte Carlo, one would simulate K independent
copies

{
Xn,k

}
k=1,...,K of Xn , and then form the estimate

p̂nK (x)
.= 1

K

K∑

k=1

1{Xn,k∈Cx}.

Note that k here is the index of the sample and not the time step, and that depending
on the problem, the computational expense of simulating a single trajectory can vary
greatly.
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The variance of a single sample is

Var
(
1{Xn,k∈Cx}

)
= Ex

[
1{Xn,k∈Cx} − Ex1{Xn,k∈Cx}

]2

= Ex1{Xn,k∈Cx} −
(
Ex1{Xn,k∈Cx}

)2

= pn(x) − [pn(x)]2,

and if pn(x) is small [pn(x)]2 can be neglected. The relative error, which is defined
by the ratio of the standard deviation of p̂nK (x) and pn(x), is then

√
Var( p̂nK (x))

pn(x)
≈

√
pn(x)

K
· 1

pn(x)
=

√
1

Kpn(x)
.

When considering rare events it is essential to use relative error as the figure of
merit, since the variance can be small (or conversely big in some situations involving
expected values) in absolute terms, and yet provide an estimate that is orders of
magnitude off, and therefore quite inaccurate in a relative sense.

For the example problem, to obtain a relative error of roughly size 1 requires
K ≈ (pn(x))−1 samples. This is computationally infeasiblewhen pn(x) is very small
(e.g., 10−5), or even when pn(x) is not so small if the computational effort needed
to generate samples of Xn is great. For example, consider the problem of estimating
the probability of an unusually large concentration of pollutant in a model for ground
water contamination. The generation of each sample would typically involve solving
a time dependent stochastic partial differential equation, and hence each sample is
computationally expensive.

An alternative to standard Monte Carlo is to construct iid random variables
γ n
1 , . . . , γ n

K with Exγ
n
1 = pn(x), and use the estimator

q̂n
K (x)

.= γ n
1 + · · · + γ n

K

K
.

The performance as with ordinary Monte Carlo is determined by variance of γ n
1 ,

and since the estimator is unbiased [i.e., Exγ
n
1 = pn(x)], minimizing the variance is

equivalent to minimizing Ex
(
γ n
1

)2
.

It is straightforward to obtain bounds on the best possible performance. For exam-
ple, by Jensen’s inequality and (14.4)

− 1

n
log Ex

(
γ n
1

)2 ≤ −2

n
log Exγ

n
1 = −2

n
log pn(x) → 2V (x). (14.5)

Hence the decay rate for the second moment cannot possible exceed 2V (x). An
estimator is called asymptotically efficient if
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lim inf
n→∞ −1

n
log Ex

(
γ n
1

)2 = 2V (x),

i.e., the optimal decay rate is achieved.
One could consider more stringent measures of performance, such as bounded

relative error: there is K < ∞ such that

lim sup
n→∞

√
Var(γ n

1 )

pn(x)
≤ K ,

or vanishing relative error [183].While bounded relative error is certainly a desirable
feature, it can be achieved only for the most elementary process models and events,
such as the probability that a homogeneous random walk escapes from a set with
simple structure. State dependence in the dynamics or even more complex situations
(e.g., Markovmodulated noise, multiscale dynamics) usually make it very difficult to
construct schemeswith (provable) bounded relative error.However,while asymptotic
efficiency may be a more practical figure of merit, the logarithmic scaling can wipe
out important terms in the variance that depend on other system parameters, such
as another exponential scaling in terms of a time variable. Thus while more flexible
and realistic than bounded relative error, it must be used with caution, and in all
cases no single performance measure can replace a careful analysis of the variance
and its dependence on all important system parameters. If different methods vary
significantlywith regard to the computational cost of implementation, then that aspect
should also be factored into the performance measure.

We will discuss two well known methods used to design random variables
{
γ n
k

}

that are unbiased, which can be simulated with reasonable effort, and for which one
may hope to get good performance: importance sampling and splitting schemes.
For the remainder of this chapter and in Chap. 15 we focus on importance sampling
(IS), and then in Chap. 16 turn to splitting. While many of the constructions needed
for the successful design and analysis are essentially the same for both approaches,
there are also interesting differences, some of which will be discussed at the end of
Chap. 17.

We stress that for any approach to problems of rare event estimation a rigorous
and independent analysis of performance is very important, since typical methods
one would use to assess accuracy of the estimates (e.g., the empirical variance) are
prone to the same difficulties and errors which can affect the estimates themselves.
This point will be illustrated via a numerical example in the next section.

14.2 Importance Sampling

The basic formulae of importance sampling are as follows. Suppose that X has
distribution θ , where X takes values in a Polish space S. Suppose that G : S → R

is Borel measurable and integrable with respect to θ , and the goal is to estimate
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m = EG(X). Consider an alternative sampling distribution π . It is required that θ be
absolutely continuous with respect to π , so that the Radon-Nikodym derivative (also
called the likelihood ratio in this context) f (x)

.= (dθ/dπ)(x) exists. Iid samples
Y0,Y1, . . . with distribution π are generated, and the estimate

m̄K
.= 1

K

K−1∑

k=0

G(Yk) f (Yk)

is formed. Since

EG(Yk) f (Yk) =
∫

S
G(x) f (x)π(dx) =

∫

S
G(x)θ(dx) = m,

m̄K is an unbiased estimate of m, with a rate of convergence determined by

var [G(Y0) f (Y0)] =
∫

S
G(x)2 f (x)θ(dx) −

[∫

S
G(x)θ(dx)

]2

.

StandardMonte Carlo corresponds to f = 1, and the goal of importance sampling
is to choose f in such a way that: (i) the variance is lowered significantly, and (ii)
sampling fromπ is not too difficult. Note thatminimizing the variancewith respect to
f is equivalent to minimizing the second moment, and so if posed as an optimization
problem, one can use the simpler second moment in lieu of variance. Note also
that without further restriction on the class of sampling measures the problem is in
some sense ill-posed. For example, suppose θ is supported on [0,∞), and θ(dx) =
g(x) dx . Let G(x)

.= x so that m = EX �= 0 and let π(dx)
.= m−1xg(x) dx . Then

θ is absolutely continuous with respect to π , with f (x) = m/x . Furthermore,

var [Y0 f (Y0)] =
∫

[0,∞)

x2 f (x)θ(dx) − m2 = 0.

However, such a distribution π is of little use in practice since it requires knowledge
ofm, the very thing we want to estimate! Instead of this unconstrained optimization,
one typically seeks to minimize over parameterized families of alternative sampling
distributions.

14.2.1 Importance Sampling for Rare Events

We now return to the discrete time model of Sect. 14.1. Recall the notation

H(y, α) = log E exp {〈α, vi (y)〉} , L(y, β) = sup
α∈Rd

[〈α, β〉 − H(y, α)] , (14.6)
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and consider the problem of estimating pn(x) as defined in (14.3). When pn(x) is
small (e.g., on the order of say 10−6) ordinary Monte Carlo attempts to estimate this
number as a convex combination of 0’s and 1’s. The goal of importance sampling
(and indeed any accelerated Monte Carlo scheme) is to produce estimators whose
distribution is more closely clustered around the target value of 10−6.

As we have just noted, the problem of optimizing over all changes of measure
is in some sense ill-posed, and thus the first question is, “what are natural changes
of measure?” A hint is provided by the analysis of Chap. 4. The control measures
μ̄n
i of the weak convergence approach correspond to a change of measure for the

noise sequence. An a posteriori conclusion of the large deviation analysis is that
exponential changes of measure are asymptotically optimal in the representation.
(See, for example, the measures γ defined in part (g) of Lemma 4.16, and their use
in the proof of the Laplace lower bound proof in Sect. 4.7.) Exponential changes of
measure have a finite dimensional parameterization, and thus are convenient to work
with. Recalling that {vi (x), i ∈ N} are iid with distribution θ(dv|x) and associated
log moment generating functions H(x, α), this suggests that measures of the form

ηα(dv|x) = e〈α,v〉−H(x,α)θ(dv|x)

be used to generate the noise sequence under the new distribution.Wewill show later
on that changes of measure within this class are sufficient for asymptotic optimality.
The parameter α can be thought of as a control, which is selected to produce good
performance of the resulting Monte Carlo scheme. In this context ηα is sometimes
referred to as an exponential tilt of θ , with α the tilt parameter.

While more complicated dependencies could be considered, it will turn out (for
the models of Chap. 4) that allowing α to depend on time and the current state of
the simulated trajectory will be sufficient for asymptotic optimality. Thus a control
scheme (i.e., a change ofmeasure) will be characterized as a collection ofmeasurable
mappings αn

i : Rd → R
d , defined for i ∈ N0. The generation of a single sample as

well as the likelihood ratio needed to estimate pn(x) then proceeds as follows.
We initialize with Y n

0 = x . A sequence of noises wn
i and states Y n

i+1 are then
generated recursively by

Px
{
wn
i ∈ dv

∣∣F n
i

} = ηαn
i (Y n

i )(dv|Y n
i ), withF n

i = σ
(
wn

j , j = 0, . . . , i − 1
)

and

Y n
i+1 = Y n

i + 1

n
wn
i .

The simulation proceeds up until

Nn .= inf
{
i : Y n

i ∈ A ∪ B
}
,

and we define Y n(t) to be the piecewise linear interpolation, so that 1{Y n∈Cx } means
B was entered before A. The likelihood ratio is then
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Nn−1∏

i=0

dθ(·|Y n
i )

dηαn
i (Y n

i )(·|Y n
i )

(wn
i ) =

Nn−1∏

i=0

e−〈αn
i (Y n

i ),wn
i 〉+H(Y n

i ,αn
i (Y n

i )),

and the estimate based on a single sample is thus

1{Y n∈Cx }
Nn−1∏

i=0

e−〈αn
i (Y n

i ),wn
i 〉+H(Y n

i ,αn
i (Y n

i )). (14.7)

As discussed previously, one then simulates K independent copies of (14.7) and
takes the sample average, where K depends on the variance of a single sample and
the desired accuracy.

We recall that performance is determined by the variance of a single sample, and
minimizing this is the same as minimizing the second moment. The second moment
of (14.7) is

Ex

[

1{Y n∈Cx }
Nn−1∏

i=0

e−2〈αn
i (Y n

i ),wn
i 〉+2H(Y n

i ,αn
i (Y n

i ))

]

,

which when rewritten in terms of the distribution of the original process
{
Xn
i

}
takes

the form

Ex

[

1{Xn∈Cx }
Nn−1∏

i=0

e−〈αn
i (Xn

i ),vi (X
n
i )〉+H(Xn

i ,α
n
i (Xn

i ))

]

.

14.2.2 Controls Without Feedback, and Dangers in the Rare
Event Setting

Since one of the classical approaches to the large deviation lower bound involves a
change of measure argument, it is natural to ask if there is a connection between the
change of measure (equivalently control measure) used there to prove bounds for a
particular event or expected value, and a change of measure that would produce a
good IS scheme for that same event. Note that there are actually many changes of
measure that could be used to prove the lower bound. Here we mean the one that
is typically used in the proof, and which uses a deterministic sequence αn

i (x) that
depends on i but not x , which we refer to as an “open loop” control. It turns out that in
some special circumstances one can achieve asymptotic optimalitywithin the class of
open loop controls (e.g., [232]), and for some time it was generally thought that using
this lower bound change of measure would work well in general. This turned out to
be false, and indeed the class of schemes that had been considered up to that time
turned out to be, in general, inadequate. In this section we illustrate the issue through
an example due to [150]. The techniques we develop to understand the particular
example are broadly useful for understanding rare event importance sampling. Of
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special importance is the game characterization of performance described in the next
section.

The example is as follows. Suppose that vi (Xn
i ) are in fact independent of Xn

i ,
i.e., that they are just an iid sequence with distribution θ . We further assume d = 1
and that Xn

0 = 0 (for the rest of this section we write P and E rather than P0 and
E0). Then Xn

i is a random walk, and Xn
n = 1

n

∑n−1
i=0 vi is just the sample mean, i.e.,

we are in the setting of Cramér’s theorem with rate function L(β) (see Sect. 3.1.6).
Let B ⊂ R, and suppose we want to estimate P

{
Xn
n ∈ B

}
by importance sampling.

The heuristic just described to construct an alternative sampling distribution is
straightforward to implement. Let β∗ solve inf[L(β) : β ∈ B] (and assume the infi-
mumover the interior and closure of B are the same). Ifα∗ is dual toβ∗, i.e., ifα∗ is the
point thatmaximizes in the relation L(β∗) = supα∈R[αβ∗ − H(α)], then as discussed
in Chap. 4 [see part (g) of Lemma 4.16], the mean of ηα∗(dv)

.= eα∗v−H(α∗)θ(dv) is
exactly β∗, and μn

i = ηα∗ is the control one could use to prove the large deviation
lower bound. Since this problem is over a fixed time horizon, the single sample
estimate is just

1{Y n
n ∈B}

n−1∏

i=0

e−α∗wn
i +H(α∗) = 1{Y n

n ∈B}e−n[α∗Y n
n −H(α∗)].

One can now describe the shortcomings of the open loop heuristic. Assume that θ

is Gaussian N (0, 1) and consider the nonconvex set B = (−∞,−0.25] ∪ [0.2,∞)

(see Fig. 14.2). For this process L(β) = β2/2, H(α) = α2/2, and α∗ = β∗ = 0.2,
and the change of measure will shift the mean to this value. If all goes according to
plan and the simulated trajectory ends up near β∗, then the likelihood ratio will be
near exp {−n [α∗β∗ − H(α∗)]} = exp {−nL(β∗)}. Thus the estimator is either zero
or close to the large deviation approximation to the probability, which is just the sort
of qualitative behavior that is needed. However, it is also possible that an event that
is rare under the ηα∗(dv) distribution may occur, and one can end up with Y n

n that is
in the interval (−∞,−0.25]. Such an occurrence is labeled the “rogue” simulation
in Fig. 14.2 . When this happens, the likelihood ratio will be approximately

exp
{−n

[
α∗β̄ − H(α∗)

]} = exp

{
n

[
0.2 × 0.25 + 1

2
(0.2)2

]}
.

This quantity grows exponentially in n and, while the event itself might be rare, it
happens often enough that the variance of the estimate is very large, and even larger
than standard Monte Carlo!

In this example the true probability for n = 60 is pn = 8.71 × 10−2, which can
be calculated using the known distribution of Xn

n . The data in Table 14.1 reflect
four trials of K = 5000 replications. The “standard error” is the estimated standard
deviation for the entire trial, and Ŝn is the estimate of the second moment based on
the data.
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Fig. 14.2 An expected trajectory and a rogue trajectory

Table 14.1 Importance sampling implementation based on an open loop control

No. 1 No. 2 No. 3 No. 4

Estimate p̂n (×10−2) 18.36 7.51 5.95 8.02

Standard error (×10−2) 7.41 1.37 0.118 1.80

95% confidence interval (×10−2) [3.83, 32.89] [4.82, 10.20] [5.72, 6.18] [4.49, 11.55]
Number of “rogue” trajectories 3 1 0 1

(− log Ŝn)/(− log p̂n) −1.96 0.0210 1.62 −0.193

The first, second and fourth trials have 3, 1 and 1 “rogue” trajectories, respectively.
In contrast the third has none. While the third estimate has a small standard error
and associated confidence interval, the interval does not contain the true value. The
estimate is smaller than the true value, reflecting the fact that the estimate has never
sampled from the interval (−∞,−0.25], and is therefore in some sense providing an
estimate of only the probability to end in [0.2,∞). Both the estimate and the estimate
of the standard deviation are misleading, and it is in fact the same difficulties that
affect the estimation of pn that make the confidence interval essentially useless,
though one does not a priori know this is the case. Because of this, an independent
theoretical (and not only data driven) analysis of errors is important for rare event
Monte Carlo estimation. All of the other trials include at least one rogue trajectory,
which is needed to avoid the bias of trial 3. The estimates may be far from the true
value, but in this case at least the confidence intervals are correctly indicating this
fact. If the estimates were accurate, (− log Ŝn)/(− log p̂n) should be close to 2 for
asymptotic optimality. This appears to be to some degree valid for trial 3, but for
reasons mentioned previously this is misleading.

One could argue that the difficulties encountered in this example can be avoided
by splitting the problem into that of estimating two half-infinite intervals.While such
an approach would work here, it will fall apart as soon as one considers problems in
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higher dimensions or even slightly more complicated dynamics. What is needed is a
global approach that properly controls the likelihood ratio for any possible simulated
trajectory.

14.2.3 A Dynamic Game Interpretation of Importance
Sampling

Further insight into the difficulties of IS in the rare event setting can be obtained
by modeling the performance in terms of prelimit small noise stochastic game and
limiting deterministic differential game. Although in this section we develop this
connection only for the simple randomwalkmodel just discussed, it is easily adapted
to other situations. Suppose that for the iid random walk model and problem of the
last section we consider, instead of the constant control α∗ suggested by the standard
heuristic, a collection of sampling controls of the general formαn

i (x), and in particular
assume

αn
i (Y

n
i ) = u(Y n

i , i/n)

for some smooth function u : R × [0, 1] → R (we assume d = 1 for simplicity). In
this case, the second moment of a single sample, and hence the performance of the
scheme, is given by the exponential integral

E

[

1{Y n
n ∈B}

n−1∏

i=0

e−2u(Y n
i ,i/n)wn

i +2H(u(Y n
i ,i/n))

]

,

which we can rewrite in terms of the original process as

E

[

1{Xn
n∈B}

n−1∏

i=0

e−u(Xn
i ,i/n)vi+H(u(Xn

i ,i/n))

]

.

Note that this is the sort of Laplace functional for which relative entropy represen-
tations are derived in Chaps. 3 and 4 (see for example Proposition 3.1 and Theorem
4.5), although previously we have assumed (e.g., in Proposition 2.3) that the quan-
tity appearing in the exponent was at least bounded either from above or below. This
boundedness will not hold if the support of {vi } is unbounded above and below. Set-
ting aside the issue of boundedness, the quantity in the last display is still expected
to scale exponentially in n, and thus it is natural to consider the log transform. Using
the same notation for the controls (measures) and controlled processes as in Sect.
4.2, we formally have
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− 1

n
log E

[

1{Xn
n∈B}

n−1∏

i=0

e−u(Xn
i ,i/n)vi+H(u(Xn

i ,i/n))

]

= inf{μ̄n
i }
E

[
1

n

n−1∑

i=0

R
(
μ̄n
i ‖θ

)

+ 1

n

n−1∑

i=0

[
u(X̄ n

i , i/n)v̄i − H(u(X̄ n
i , i/n))

] + ∞1Bc

(
X̄ n
n

)
]

.

Keeping in mind that to minimize the variance we will supremize the right hand side
over u(·, ·), the optimal variance is then characterized in terms of a discrete time
small noise stochastic game. One player (corresponding to u) is given in feedback
form as a function of the state and seeks to maximize. The other player (with controls{
μ̄n
i

}
) arises from the representation, and seeks to minimize. This player’s controls

can depend on the state (in fact the whole history) as well as u, and since it seeks to
minimize the cost, must drive the process into B at time n with probability one. Note
that the class of open loop controls as they would be used in IS schemes correspond
to eliminating state feedback in u, i.e., restricting to the form u(x, s) = u(s).

One can calculate the limit in the last display using the same weak convergence
methods as those used in Chap. 4 to study the LDP for {Xn}, and for a fixed bounded
and continuous control u the limit is characterized by the optimization problem

J [u] = inf
φ

[∫ 1

0

[
u(φ(t), t)φ̇(t) − H(u(φ(t), t)) + L(φ̇(t))

]
dt + ∞1Bc (φ(1))

]
,

where the infimum is over absolutely continuous φ with φ(0) = 0.
The quantity J [u] gives the rate of decay of the second moment of the IS

scheme that uses the sampling control αn
i (Y

n
i ) = u(Y n

i , i/n) to dynamically choose
the change of measure. For the purposes of IS scheme selection, one can consider
this simpler limit problem which characterizes the rate of decay. Thus we consider
U = supu(·,·) J [u]. This is a type of deterministic differential (or dynamic) game,
where φ̇ (replacing

{
μ̄n
i

}
) attempts to minimize (in open loop form) and u attempts

to maximize (in feedback form, but u must be selected before φ is chosen).
Suppose we extend the definition to allow for an arbitrary initial condition (x, t)

(i.e., we consider the cost over [t, 1] and with φ(t) = x), and denote the correspond-
ing optimal rate of decay by U (x, t). Let Ut be the partial with respect to t and
DU (x, t) the gradient in x . Then U (x, t) will be a viscosity solution to

Ut (x, t) + sup
α∈R

inf
β∈R

[DU (x, t)β + αβ − H(α) + L(β)] = 0 (14.8)

and the terminal condition

U (x, 1) = ∞ for x ∈ Bc and U (x, 1) = 0 for x ∈ B. (14.9)

For properties of viscosity solutions that will be used here (though these arguments
are only intended to be formal), we refer to [14].
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We will not delve deeply into the nuances of differential games, since this game
has a special structure which allows a reduction to a much simpler problem. Using
the Minimax theorem [233] and that L is the Legendre-Fenchel transform of H , we
observe that

sup
α∈R

inf
β∈R

[pβ + αβ − H(α) + L(β)] = inf
β∈R

sup
α∈R

[pβ + αβ − H(α) + L(β)]

= inf
β∈R

[pβ + 2L(β)] .

Not surprisingly then, the PDE (14.8) is closely related to ones that are connected
with the large deviation rate function for the original process. Define H(p)

.=
infβ∈R [pβ + L(β)]. This form of the Legendre transform, which is natural when
discussing PDEs, is related to the form usually used in large deviation theory (e.g.,
a log moment generating function) by H(p) = −H(−p). Then the Isaacs equation
(14.8) can be rewritten as

Ut (x, t) + 2H(DU (x, t)/2) = 0.

Suppose we consider the probability P{Xn
n ∈ B}, but generalize to allow an arbitrary

initial point x and starting time i/n. Let

V n(x, i/n)
.= −1

n
log P

⎧
⎨

⎩
x + 1

n

n−1∑

j=i

vi ∈ B

⎫
⎬

⎭
.

If i/n → t as n → ∞, then by Cramér’s theorem V n(x, i/n) → V (x, t)
.= inf[(1 −

t)L(β) : x + (1 − t)β ∈ B], and it is straightforward to verify that V (x, t) is a vis-
cosity solution to the problem with the same terminal condition (14.9) as U and the
PDE

Vt (x, t) + H(DV (x, t)) = 0. (14.10)

Using the fact that a comparison principle holds for viscosity solutions to these
PDE, is follows that U (x, t) = 2V (x, t), which is consistent with the claim made
previously (see Sect. 14.1.1) that the best possible rate of decay for the second
moment of any IS is precisely twice the large deviation rate. It in fact suggests more,
which is that within the class of IS schemes based on feedback and exponential
changes of measure, one can in fact achieve this best decay rate.

The situation just described, which we have presented here in the context of
Cramér’s theorem and for a particular event, is in fact generic under the small noise
large deviation scaling [116]. Note the remarkable fact that the equation for U ,
which models a game, turns out to be equivalent to the equation for V , which models
a calculus of variations or control problem [14]. The Isaacs equation forU identifies
(at least for smooth solutions) optimal controls for both players. Evaluating the
infimum in β in (14.8) gives
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sup
α∈R

inf
β∈R

[DU (x, t)β + αβ − H(α) + L(β)]

= sup
α∈R

[

− sup
β∈R

[−(DU (x, t) + α)β − L(β)] − H(α)

]

= − inf
α∈R

[H(−DU (x, t) − α) + H(α)] .

Suppose that the distribution of vi does not concentrate on a single point, so that H
is strictly convex. Then the optimal α is given by the unique solution of H ′(α) =
H ′(−DU (x, t) − α), which is α = −DU (x, t)/2. In terms of the value function
associated with the large deviation control problem this is simply α = −DV (x, t).
Although it is not needed or used, the optimal control for the large deviation player
[but for the second moment, and not for the original event!] can be found by solving
L ′(β) = −DU (x, t)/2.

It turns out that one does not need to solve the game or control problem, and in
fact the construction of suitable subsolutions to the associated PDE (14.10) will be
sufficient for a certain level of performance, in a sense that will be made precise in
Chap. 15. This is a significant simplification, because for many interesting classes of
problems such subsolutions can be constructed explicitly. The reason subsolutions
suffice is because the goal in algorithm design is lower bounds on the rate of decay of
the second moment. The verification of these one-sided bounds require only certain
inequalities, which coincide with the subsolution definition.

In the next section the definitions of classical and piecewise classical subsolution
are given. It will turn out to be much easier for many problems to find appropriate
piecewise classical subsolutions, so this generalization is important. We also spell
out how the various subsolutions generate sampling schemes.

14.3 Subsolutions

We will describe the subsolutions needed for both finite time problems (as in Sect.
14.2.2) and exit probability problems (as in Sect. 14.1.1).Webeginwith thefinite time
problem, which generalizes the example used in Sect. 14.2.2. Processes will be of
interest on a continuous time interval of the form [0, T ], T < ∞, and to simplify the
notation we assume Tn is an integer. As in Section 14.1 let {vi (x), i ∈ N0, x ∈ R

d}
be iid random vector fields given on some probability space with the property that
for each x ∈ R

d vi (x) has distribution θ(·|x), where θ(dy|x) is a stochastic kernel
on R

d given R
d . Recall the discrete time Markov process {Xn

i }i=0,...,Tn defined by
the recursion

Xn
i+1 = Xn

i + 1

n
vi (X

n
i ), Xn

0 = x0,

and the continuous time interpolation defined by
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Xn(t) = Xn
i + [

Xn
i+1 − Xn

i

]
(nt − i) , t ∈ [i/n, i/n + 1/n] , i = 0, 1, . . . , Tn.

Also, we assume H(x, α) = log E exp {〈α, vi (x)〉} < ∞ for all x ∈ R
d and α ∈ R

d .
The importance sampling problem of interest is to estimate

Px0
{
Xn(T ) ∈ B

}
,

where B ⊂ R
d . As for the one dimensional setting considered in Sect. 14.2.3, the

PDE that characterizes the large deviation rate and half the optimal rate of decay for
an asymptotically optimal importance sampling scheme is

Vt (x, t) + H(x, DV (x, t)) = 0 (14.11)

for (x, t) ∈ R
d × [0, T ), where H(x, p) = −H(x,−p). The terminal condition is

V (x, T ) = ∞ for x ∈ Bc and V (x, T ) = 0 for x ∈ B. (14.12)

Definition 14.1 A function V̄ : Rd × [0, T ] → R is a classical sense subsolution
(or simply a classical subsolution) if it is continuously differentiable in both variables
and if

V̄t (x, t) + H(x, DV̄ (x, t)) ≥ 0

for all (x, t) ∈ R
d × [0, T ) and

V̄ (x, T ) ≤ ∞ for x ∈ Bc and V̄ (x, T ) ≤ 0 for x ∈ B.

Note that the condition V̄ (x, T ) ≤ ∞ for x ∈ Bc is vacuous. Let ∧J
j=1a j denote

the minimum of real numbers a j , j = 1, . . . , J .

Definition 14.2 A function V̄ : Rd × [0, T ] → R is a piecewise classical sense
subsolution (or simply a piecewise classical subsolution) if the following hold.
There are J ∈ N and functions V̄ ( j) : Rd × [0, T ] → R, j = 1, . . . , J , that are con-
tinuously differentiable in both variables and satisfy

V̄ ( j)
t (x, t) + H(x, DV̄ ( j)(x, t)) ≥ 0

for all (x, t) ∈ R
d × [0, T ). Moreover V̄ (x, t)

.= ∧J
j=1V̄

( j)(x, t) satisfies

V̄ (x, T ) ≤ ∞ for x ∈ Bc and V̄ (x, T ) ≤ 0 for x ∈ B.

Example 14.3 Consider again the iid random walk example of Sect. 14.2.2, where
H(α) = log Eeαvi and {vi }i∈N are iid real random variables with mean zero. Without
loss of generalitywe take the time horizon T = 1. The set B in the examplewas of the
form (−∞, β̄] ∪ [β∗,∞), with β̄ < 0 < β∗. The solution to (14.11) and (14.12) is
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V (x, t) = inf
[
(T − t)L(β) : x + (T − t)β ∈ (−∞, β̄] ∪ [β∗,∞)

]
.

For this example it is natural to look for a piecewise classical subsolution as the min-
imum of two functions. One can easily construct solutions to the PDE by assuming
the simple form−ax + bt + c and requiring that b + H(−a) = b − H(a) = 0 hold.
If α̂ and β̂ are convex dual points, i.e.,

L(β̂) = sup
α∈R

[
αβ̂ − H(α)

]
= α̂β̂ − H(α̂),

we obtain the solution −α̂(x − β̂) + (L(β̂) − α̂β̂)[1 − t], which corresponds to the
terminal condition −α̂(x − β̂). Note that since Evi = 0 Jensen’s inequality implies
H(α̂) ≥ 0, and so α̂β̂ ≥ 0. Thus β̂ > 0 if and only if α̂ > 0.

We conclude that the two solutions

V̄ (1)(x, t) = −α∗(x − β∗) + (L(β∗) − α∗β∗)[1 − t],
V̄ (2)(x, t) = −ᾱ(x − β̄) + (L(β̄) − ᾱβ̄)[1 − t],

which correspond to the terminal conditions indicated in Fig. 14.3, generate the
piecewise classical subsolution V̄

.= V̄ (1) ∧ V̄ (2). Note that since the (α, β) pairs are
convex dual points, α∗ and ᾱ generate changes of measure with the means β∗ and β̄,
respectively. See Fig. 14.4. The dotted line in the figure represents points (x, t) for
which V̄ (1)(x, t) = V̄ (2)(x, t). Note that the subsolution V̄ (x, t) has a much simpler
structure than the solution V (x, t), but it also has the same (maximal) value at (0, 0),
namely

[
L(β∗) ∧ L(β̄)

]
.

Consider next the problem of entering a rare set B before a typical set A (Fig.
14.5). Thus the importance sampling problem is to estimate

Px0
{
Xn enters B before entering A

}
.

B B

β̄ β∗

G(x)

−ᾱ(x − β̄) −α∗(x − β∗)

Fig. 14.3 Terminal condition corresponding to a subsolution
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B

B

t

x

β∗ = 0.2

β̄ = −0.25

Fig. 14.4 Partition of the domain by a piecewise classical subsolution

The definitions for classical and piecewise classical subsolutions are similar to the
finite time case. The relevant PDE is

H(x, DV (x)) = 0, (14.13)

with the boundary condition

V (x) = 0 for x ∈ ∂B. (14.14)

Definition 14.4 A function V̄ : Rd → R is a classical sense subsolution (or simply
a classical subsolution) of (14.13)–(14.14) if it is continuously differentiable and if

H(x, DV̄ (x)) ≥ 0

for all x ∈ (A ∪ B)c, and if

V̄ (x) ≤ 0 for x ∈ B.

Definition 14.5 A function V̄ : Rd → R is a piecewise classical sense subsolu-
tion (or simply a piecewise classical subsolution) if the following hold. For some
J ∈ N there are functions V̄ ( j) : Rd → R, j = 1, . . . , J , that are continuously dif-
ferentiable and satisfy

H(x, DV̄ ( j)(x)) ≥ 0

for all x ∈ (A ∪ B)c. Moreover V̄ (x)
.= ∧J

j=1V̄
( j)(x) satisfies

V̄ (x) ≤ 0 for x ∈ B.

Remark 14.6 (boundary condition for ∂A) In general one should specify a bound-
ary condition for A as well. Since we have taken A to be open, the appropriate
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Fig. 14.5 Subsolution for
the exit problem

B

A
V̄ (x) ≤ ∞

V̄ (x) ≤ 0

x0

H(x,DV̄ (x)) ≥ 0

boundary condition is the one which corresponds to a “state space constraint” [234].
For example, if ∂A were smooth with x ∈ ∂A and n an outward normal to A at x ,
then the classical formulation of the state space constraint is

inf
β:〈β,n〉≥0

[〈DV (x), β〉 + L(x, β)] = 0,

which reflects the fact that any candidate trajectory in the definition of V (x) cannot
enter A. Since our approach to rare event simulation is based on the construction
of suitable classical and piecewise classical subsolutions, this boundary condition
is vacuous. Indeed, we will assume that V̄ is a subsolution in the sense of either
Definition14.4or 14.5, and as a consequence theboundary condition for a subsolution
will hold automatically. For example, in the context of Definition 14.4

inf
β:〈β,n〉≥0

[〈
DV̄ (x), β

〉 + L(x, β)
] ≥ inf

β∈Rd

[〈
DV̄ (x), β

〉 + L(x, β)
]

= −H(x,−DV̄ (x))

= H(x, DV̄ (x))

≥ 0.

For a piecewise classical subsolution the concavity of H(x, p) gives the analogous
bound. If instead we had assumed that A is closed with the attractor in the interior
of A, the appropriate boundary condition (V (x) = ∞ for x ∈ ∂A) would again be
vacuous when used to characterize a subsolution (V̄ (x) ≤ ∞ for x ∈ ∂A). The fact
that these boundary conditions are vacuous can also be seen from the proofs of
asymptotic optimality, where they play no role.
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Of course there are many other types of events and (risk-sensitive) expected values
that one could consider, and the interested reader can find the appropriate definitions
of subsolutions for many of these in the references and Sect. 14.5. However, the two
examples of this section will suffice to illustrate the main points.

14.4 The IS Scheme Associated to a Subsolution

We next discuss importance sampling schemes associated with a particular subsolu-
tion. Consider first the finite time problem. As discussed at the end of Sect. 14.2.3,
if a smooth solution V (x, t) to the HJB equation were available, then the correct
change of measure if the current state of the simulated trajectory is at Y n

i would be
to replace the original distribution on the noise vi (Y n

i ), i.e., θ(dv|Y n
i ), by

ηα(dv|Y n
i ) = e〈α,v〉−H(Y n

i ,α)θ(dv|Y n
i ) with α = −DV (Y n

i , i/n).

If one is using a classical subsolution V̄ to design a scheme we follow exactly the
same recipe, and the resulting second moment, rewritten in terms of the original
random variables and process model, will equal

Sn(V̄ )
.= Ex0

[
1{Xn

Tn∈B}
∏Tn−1

i=0 e〈DV̄ (Xn
i ,i/n),vi (Xn

i )〉+H(Xn
i ,−DV̄ (Xn

i ,i/n))
]
. (14.15)

Rigorous asymptotic bounds on Sn(V̄ ) will be derived in Sect. 15.2. It is shown in
Theorem15.1 that the decay rate of the secondmoment is bounded below by V (x0, 0)
(the large deviation decay rate for the starting point x0) plus V̄ (x0, 0). If V̄ (x0, 0) =
V (x0, 0) (the maximum possible value) then we have asymptotic optimality.

If dealingwith a piecewise classical sense subsolution, the situation is different. In
such a case the gradient DV̄ is not smooth, and the analysis used to prove asymptotic
performance bounds on Sn(V̄ ) for the smooth case does not apply. In this case we
mollify V̄ and consider two associated importance sampling schemes. To be precise,
for a small parameter δ > 0 the standard mollification

V̄ δ(x, t)
.= −δ log

(
e− 1

δ
V̄ (1)(x,t) + · · · + e− 1

δ
V̄ (J )(x,t)

)
(14.16)

is used. The properties of this mollification are summarized in the following lemma.
The straightforward proof is omitted.

Lemma 14.7 Let V̄ δ be as in (14.16) where each function V̄ ( j), j = 1, . . . , J is
continuously differentiable on R

d × [0, T ]. Define the weights

ρδ
j (x, t)

.= e− 1
δ
V̄ ( j)(x,t)

e− 1
δ
V̄ (1)(x,t) + · · · + e− 1

δ
V̄ (J )(x,t)

.
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Then

DV̄ δ(x, t) =
J∑

j=1

ρδ
j (x, t)DV̄ ( j)(x, t) and V̄ δ

t (x, t) =
J∑

j=1

ρδ
j (x, t)V̄

( j)
t (x, t).

(14.17)
Moreover

e− 1
δ
V̄ (x,t) ≤ e− 1

δ
V̄ δ(x,t) ≤ Je− 1

δ
V̄ (x,t),

and therefore
V̄ (x, t) ≥ V̄ δ(x, t) ≥ V̄ (x, t) − δ log J. (14.18)

Recall that given an initial condition x0, we seek a subsolution for which the
value at (x, t) = (x0, 0) is as large as possible. From the convexity of H and the
properties (14.17) it is easily checked that V̄ δ is a classical subsolution in the sense
of Definition 14.1 whenever V̄ is a piecewise subsolution in the sense of Definition
14.2. The inequality (14.18) together with Theorem 15.1 in Chap. 15 then says
that the mollification may lead to a loss of performance (a lowering of the decay
rate of the second moment) that is at most δ log J (see Theorem 15.1). Thus the
role of the mollification is to define a mixture whose performance is very close to
that of a classical subsolution, without giving up the flexibility and convenience of
piecewise subsolutions. There are (at least) two schemes generated by a subsolution
of the form (14.16), which we call the ordinary implementation and the randomized
implementation.

Ordinary Implementation. Using the fact that V̄ δ is a classical subsolution
whenever V̄ is a piecewise subsolution, we follow the standard procedure for clas-
sical subsolutions. Given that the state of the current simulated trajectory is Y n

i , we
use the sampling distribution ηα(dv|Y n

i ) = e〈α,v〉−H(Y n
i ,α)θ(dv|Y n

i )with tilt parameter
α = −DV̄ δ(Y n

i , i/n) to generate a random variable wn
i with the given (conditional)

distribution. The state of the system is then updated according to Y n
i+1 = Y n

i + wn
i /n,

and we repeat. The likelihood ratio is

Rn({Y n
i ,wn

i }i=0,...,Tn−1) = ∏Tn−1
i=0 e〈DV̄ δ(Y n

i , i
n ),w

n
i 〉+H(Y n

i ,−DV̄ δ(Y n
i , i

n )), (14.19)

and the resulting estimator is 1{Y n(T )∈B}Rn({Y n
i ,wn

i }i=0,...,Tn−1), where Y n(t) is the
continuous time interpolation.

Randomized Implementation. In this case, the estimator is constructed as fol-
lows. Given that the state of the current simulated trajectory is Y n

i , we generate
an independent random variable κn

i ∈ {1, . . . , J } with probabilities ρδ
j (Y

n
i , i/n),

and if κn
i = j then use the sampling distribution with the tilt parameter α =

−DV̄ ( j)(Y n
i , i/n) to generate wn

i . In this case the likelihood ratio is
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Rn({Y n
i ,wn

i }i=0,...,Tn−1) (14.20)

=
Tn−1∏

i=0

⎛

⎝
J∑

j=1

ρδ
j

(
Y n
i ,

i

n

)
e−〈DV̄ ( j)(Y n

i , i
n ),w

n
i 〉−H(Y n

i ,−DV̄ ( j)(Y n
i , i

n ))

⎞

⎠

−1

,

and the estimator takes the same form as in the ordinary case.
For both implementations the resulting second moment, rewritten in terms of the

original process and noises, is

Sn(V̄ δ)
.= Ex0

[
1{Xn(T )∈B}Rn({Xn

i , vi (X
n
i )}i=0,...,Tn−1)

]
. (14.21)

where Rn is given by (14.19) or (14.20) depending on which implementation is used.
Since V̄ δ is a classical subsolution, the randomized case includes the ordinary case
with J = 1 and taking V̄ (1) = V̄ δ . It is shown in Theorem 15.1 that the decay rate
of the second moment for both implementations is bounded below by V (x0, 0) (the
large deviation decay rate for the starting point x0) plus V̄ δ(x0, 0).

Example 14.8 (Example 14.3 continued) In Example 14.3 a piecewise subsolution
was constructed for the problem of Sect. 14.2.2 with a nonconvex set B. We apply
this subsolution for the same data (β∗ = 0.2 and β̄ = −0.25) as in Sect. 14.2.2. As
before, each trial is based on K = 5, 000 simulated trajectories. We give the num-
ber of “rogue” trajectories (those ending in (−∞,−0.25]) even though that name
is no longer appropriate. Recall that the true value for n = 60 is pn = 8.70 × 10−2.
Table 14.2 presents data using the ordinary implementation. The estimates are much
more stable across the different trials, with confidence intervals that are both small
and which contain the true value. Table 14.3 gives the analogous data for the ran-
domized implementation, which is qualitatively very similar to that of the ordinary
case. Table 14.4 considers the same model and escape set for the randomized imple-
mentation, but for various values of n. The analogous results for the ordinary imple-
mentation are omitted since they are similar. Each trial used K = 20, 000 simulated
trajectories. As with n = 60, the results are stable and accurate. Note that the ratio
(− log Ŝn)/(− log p̂n) is increasing in n (though since δ > 0 is fixed it will never
reach 2), and that the number of “rogue” trajectories is decreasing in n, reflecting

Table 14.2 Ordinary implementation of mollified subsolution with δ = 0.02

No. 1 No. 2 No. 3 No. 4

Estimate p̂n (×10−2) 8.55 8.73 8.72 8.61

Standard error (×10−2) 0.183 0.184 0.182 0.182

95% confidence interval (×10−2) [8.19, 8.91] [8.37, 9.10] [8.36, 9.08] [8.25, 8.97]
Number of “rogue” trajectories 751 727 833 807

(− log Ŝn)/(− log p̂n) 1.51 1.52 1.53 1.52
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Table 14.3 Randomized implementation of mollified subsolution with δ = 0.02

No. 1 No. 2 No. 3 No. 4

Estimate p̂n (×10−2) 9.02 8.76 8.62 8.91

Standard error (×10−2) 0.183 0.182 0.181 0.183

95% confidence interval (×10−2) [8.66, 9.38] [8.40, 9.11] [8.26, 8.97] [8.55, 9.26]
Number of “rogue” trajectories 802 782 823 883

(− log Ŝn)/(− log p̂n) 1.54 1.53 1.52 1.53

Table 14.4 Randomized implementation of mollified subsolution with δ = 0.02

n = 100 n = 200 n = 500

Exact value pn 2.90 × 10−2 2.54 × 10−3 3.88 × 10−6

Estimate p̂n 2.93 × 10−2 2.59 × 10−3 3.81 × 10−6

Standard error 3.76 × 10−4 4.82 × 10−5 1.35 × 10−7

95% confidence interval [2.86, 3.00] × 10−2 [2.49, 2.68] × 10−3 [3.55, 4.08] × 10−6

Number of “rogue” trajectories 2176 935 107

(− log Ŝn)/(− log p̂n) 1.59 1.65 1.74

the fact that the probability associated with (−∞,−0.25] conditioned on ending in
B is decreasing in n.

Remark 14.9 (role of smoothness) The theoretical bounds on performance derived
in Chap. 15 make use of the fact that V̄ δ smooth, and in particular that it is a classical
sense subsolution (and not just a viscosity sense subsolution [14, 134]). A natural
question is whether this smoothness is necessary. From the perspective of implemen-
tation it is certainly convenient, since the change of measure for the increments is
based on the gradient of the subsolution. However, one could ask if there is some gen-
eralized implementation (e.g., based on sub or superdifferentials) that might allow
for less regular subsolutions. Such a construction would require that in the analysis
of the secondmoment we consider the large deviation theory for processes with “dis-
continuous statistics.” The theory for such processes is not well understood in great
generality, and in particular there is no rigorous analysis of importance sampling
for nonsmooth subsolutions. Given the subtlety in applying importance sampling to
rare event estimation, it seems prudent to use the mollification presented previously,
which is very easy to implement and for which a rigorous analysis is available. This
difference in the properties of subsolutions is one of the key qualitative distinctions
between importance sampling and the analogous splitting algorithms to be consid-
ered in Chap. 16, for which a weak sense subsolution is known to be sufficient.

Remark 14.10 (achieving asymptotic optimality) Since the mollification can reduce
the value of the subsolution at the starting point [i.e., V̄ δ(x0, 0) < V (x0, 0) is possible
even when V̄ (x0, 0) = V (x0, 0)], this would seem to be a significant drawback for
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importance sampling. However, while there may be other issues to consider when
comparing importance sampling and splitting, it is easy to remedy this objection, and
in general one can allow δ → 0 as n → ∞ so as to achieve asymptotic optimality.
This issue is discussed in Remark 15.7 and Theorem 15.14.

Remark 14.11 (randomized versus ordinary)When dealing with noise models such
as those of (14.1) one may prefer the ordinary implementation over the randomized
implementation, since the appropriate change of measure is simply defined by an
exponential tilt, and there is no need to generate random variables according to the
weights ρδ

j (·, i/n). Note that for these models the distribution of the noise, con-
ditioned on the state Xn

i , is independent in the time variable. For more complex
models (e.g., the Markov modulated models discussed in Sect. 7.3) there may be an
advantage to using the randomized implementation, since the change of measure is
more complex, and requires, for each distinct value of the gradient, the solution of
an eigenvalue problem. In particular, if the component functions V̄ ( j) all have a con-
stant gradient then one must solve at most J eigenvalue problems for the randomized
implementation, while the ordinary implementation will typically require that such
a problem be solved for each time i = 0, . . . , Tn − 1 of the simulation. An example
of this sort appears in Sect. 14.5.5.

Remark 14.12 The implementation of the importance sampling scheme and result-
ing form of the second moment are entirely analogous for the problem of hitting a
rare set before a typical set, save that the scheme has no explicit dependence on time,
and Tn is replaced by the first exit time Nn .

14.5 Generalizations

In this section we briefly comment on generalizations with respect to various aspects
of the model, including expected values besides probabilities, continuous time mod-
els, and more complex noise models. Some generalizations that are very straightfor-
ward (e.g., when the local rate function also depends on time) are not discussed.

14.5.1 Functionals Besides Probabilities

Straightforward and natural generalizations in the context of both the finite time
problem and the problem of hitting a rare set prior to a typical set involve the com-
putation of risk-sensitive functionals. For example, in the setting of the finite time
problem, we may want to compute a quantity such as

V n(x, 0) = −1

n
log Ex exp

{−nF(Xn
Tn)

}
,
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where F is a suitably regular (e.g., continuous) function, and where for convenience
in the notationwe assume Tn is an integer. Under appropriate conditions V n(x, 0) →
V (x, 0), where

V (x, t)
.= inf

[∫ T

t
L(φ(s), φ̇(s))ds + F(φ(T )) : φ(t) = x

]
, (14.22)

and the only difference in the definition of the various forms of subsolution occur in
the terminal condition. Thus in Definition 14.1, the condition V̄ (x, T ) ≤ 0 for x ∈ B
is replaced by V̄ (x, T ) ≤ F(x) for x ∈ R

d .
A single sample of the estimator, with Rn({Y n

i ,wn
i }i=0,...,Tn−1) defined by either

(14.19) or (14.20) depending on which implementation is used, is

F(Y n
Tn)R

n({Y n
i ,wn

i }i=0,...,Tn−1).

14.5.2 Continuous Time

When considering continuous time process models a basic issue is numerical imple-
mentation. For example, trajectories of the solution to an SDE are usually approx-
imated, e.g., by the Euler-Maruyama method. Since this returns the problem to the
discrete time setting, it can be dealt with using the same notions of importance sam-
pling and subsolutions as those already given. (Note that there is still the problem of
quantifying the impact of the time discretization, but that is a topic we do not consider
here.) In contrast, for continuous time models that are of pure jump form there is
no need to discretize time, and one can formulate both the importance sampling and
related analysis directly in continuous time.

To keep the presentation brief we will consider just one class of models, but the
ideas can easily be generalized. Thus suppose that Xn is a continuous time Markov
process of the following form. There is J ∈ N and bounded and Lipschitz continuous
functions

v j : Rd → R
d , r j : Rd → (0,∞), j = 1, . . . , J,

where nr j (x) is the jump intensity of a jump to the point x + v j (x)/n, given that
Xn(t) = x . Thus Xn has the infinitesimal generator

(L n f )(x)
.=

J∑

j=1

nr j (x)
[
f (x + v j (x)/n) − f (x)

]

for bounded functions f : Rd → R. Hence the process waits at the location x for
an exponentially distributed time τ with inverse mean

∑J
j=1 nr j (x). After τ units

of time, it jumps to the location x + v j (x)/n with probability proportional to r j (x)
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for j = 1, . . . , J . The weighed serve-the-longest queue model of Chap. 13 is of this
sort, except that r j (x) can be equal to zero for some x values.

If we consider the problem of hitting a rare set before a typical one, the continuous
time aspect is unimportant, and this problem can be reduced to the discrete time
problems considered previously byworkingwith the imbedded discrete time process.
This is the approach taken in [105, 110, 117]. In the notation of this chapter, the
discrete time model corresponds to

θ(A|x) =
J∑

j=1

r j (x)δv j (x)(A)

/ J∑

j=1

r j (x).

This simplification is not possible with the finite time problem, since a rare outcome
depends on the holding time and not just on which jump type is selected at the time
of a transition. In this case, we need to stay in the continuous time framework.

The processes Xn take values in D([0, T ] : Rd), and the local rate function for
the sequence {Xn}n∈N is given by

L(x, β)
.=

inf

⎡

⎣
J∑

j=1

r j (x)�(r̄ j/r j (x)) :
J∑

j=1

r̄ j v j (x) = β, r̄ j ∈ [0,∞), j = 1, . . . , J

⎤

⎦ ,

where x ∈ R
d , β ∈ R

d and as usual �(z)
.= z log z − z + 1 for z ∈ [0,∞). The ana-

logue of the log moment generating function is given by

H(x, α) = sup
β∈Rd

[〈α, β〉 − L(x, β)]

= sup
r̄ j∈[0,∞), j=1,...,J

⎡

⎣
J∑

j=1

r̄ j
〈
v j (x), α

〉 −
J∑

j=1

r j (x)�(r̄ j/r j (x))

⎤

⎦

=
J∑

j=1

r j (x)
[
e〈v j (x),α〉 − 1

]
,

with the supremum achieved at r̄ j = r j (x)e〈v j (x),α〉. As before the PDE that is
relevant takes the form (14.11), where H(x, p) = −H(x,−p), and the terminal
condition is as in the discrete time setting. Given a classical subsolution V̄ (x, t),
the simulated process under the ordinary implementation uses the rates r̄ j (x, t) =
r j (x)e〈v j (x),−DV̄ (x,t)〉. The estimate is then 1{Y n(T )∈B}Rn(Y n), where

log Rn(Y n) =
∫ T

0

J∑

j=1

r j (Y
n(t))

[
e〈v j (Y n(t)),−DV̄ (Y n(t),t)〉 − 1

]
dt
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−
∑

i :tni ≤T

[〈v jni (Y n(tni −)), DV̄ (Y n(tni −), tni −)〉] ,

with tni the jump times of Y n and with j ni identifying the type of jump.

Remark 14.13 For the problem of hitting a rare set before a typical set one could
also use the PDE (14.13) and boundary condition (14.14), with

H(x, p) = −
J∑

j=1

r j (x)[e−〈v j (x),p〉 − 1].

This form of H differs from the discrete time analogue, but characterizes the same
set of subsolutions if used for an exit type problem.

14.5.3 Level Crossing

Problems such as level crossings, which appear in ruin problems from insurance, are
of the same general sort as that of hitting a rare set before hitting a typical set. The
main distinction is that the “typical set” is not part to the state space, and instead
corresponds to the process drifting infinitely far in some direction. For example,
consider once again the discrete time setting, suppose that θ(dy|x) = θ(dy), H(α) <

∞ for all α ∈ R
d and also that

∫

Rd

ykθ(dy) < 0 for k = 1, . . . , d. (14.23)

Then each component of Xn(t) tends to −∞ as t → ∞. Let Mk ∈ (0,∞) for i =
1, . . . , d and consider the problem of estimating the level crossing probability

P

{

sup
m∈N

max
k=1,...,d

1

Mk

m−1∑

i=0

(vi )k ≥ n

}

,

where vi are iid with distribution θ and (vi )k denotes the kth component of vi . This
quantity is the same as

P0

{

sup
t∈[0,∞)

max
k=1,...,d

[Xn(t)]k
Mk

≥ 1

}

,

and can be thought of has hitting the rare setGc, whereG
.= ×d

k=1(−∞, Mk), before
wandering off to −∞ in each component (the “typical” set). With this analogy in
place, the definitions of subsolution and their use are exactly as before. In particular,
if H(α) is the log moment generating function of θ and H(p) = −H(−p), then a
smooth function V̄ : Rd → R is a classical subsolution if
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H(DV̄ (x)) ≥ 0 for x ∈ G and V̄ (x) ≤ 0 for x ∈ Gc. (14.24)

The (now state dependent) alternative sampling distribution for the next increment
wn
i given Y n

i = x is e−〈DV̄ (x),v〉−H(−DV̄ (x))θ(dv), and the estimate is

1{
Y n
N̄n ∈Gc

}∏N̄ n−1
i=0 e〈DV̄(Y n

i ),w
n
i 〉+H(−DV̄(Y n

i )),

where N̄ n .= inf
{
i : Y n

i ∈ Gc
}
. For such problems it is natural to consider piece-

wise classical subsolutions with one component V̄ (k) for each index k = 1, . . . , d.
V̄ (k)(x) should be of the form = −〈α(k), x〉 + c(k), where α(k) is of the form
a(k)ek , H(α(k)) = 0, and c(k) = a(k)Mk . One can check that under (14.23), for each
k = 1, . . . , d there is exactly one positive number a(k) such that H(a(k)ek) = 0, that
with these choices V̄ (x)

.= mink=1,...,d V̄ (k)(x) is a piecewise classical subsolution
with V (0) = V̄ (0) = mink=1,...,d a(k)Mk . For any problemwhere the simulation time
is potentially unbounded it is important to know that a proposed scheme is practical.
In the present setting, for the process that is simulated the increments have condi-
tional distribution e−〈DV̄ δ(x),v〉−H(−DV̄ δ(x))θ(dv). The mean of this distribution points
towards the target set, and it follows that N̄ n < ∞ and Y n

N̄n ∈ Gc with probability

one. One can in fact show more, for example that E N̄n < ∞.

14.5.4 Path Dependent Events

In some situations one may be interested in probabilities and related quantities in
which the occurrence or not of the rare event is determined by the path of Xn over an
interval [0, T ]. To simplify notation we will consider a homogeneous random walk
as in the last section [i.e., θ(dy|x) = θ(dy)], T = 1, and the case of one dimension.
Then an example of this type of problem is to compute

E0

[
e−nF(Xn(1))1{maxt∈[0,1] Xn(t)≥h}

]
, (14.25)

where h ∈ (0,∞) and F is bounded and continuous. Let l < h and define τ n
h

.=
inf{t ≥ 0 : Xn(t) ≥ h} and τ n

l
.= inf{t ≥ τ n

h : Xn(t) ≤ l}. A second example is com-
puting P0

{
τ n
l ≤ 1

}
. Of course this is only particularly difficult if the indicated events

are rare, and to make this so we assume
∫
R
yθ(dy) < h.

It is easy to write down the variational problem for the large deviation approx-
imations to these quantities. For example, for the expected value in (14.25) the
corresponding variational problem is

inf

[∫ 1

0
L(φ̇(t))dt + F(φ(1)) : φ(0) = 0, φ(s) ≥ h for some s ∈ [0, 1]

]
,



410 14 Rare Event Monte Carlo and Importance Sampling

where the infimum is over absolutely continuous φ. To identify the PDE that is
related to this problem we introduce a state variable that will indicate whether or not
h has been crossed. Denote the simulated process by Y n(t) and consider the associ-
ated indicator process Zn(t)

.= 1[h,∞)(maxs∈[0,t] Y n(s)). Suppose we are given that
(Zn(t),Y n(t)) = (1, x). Then the event {maxt∈[0,1] Y n(t) ≥ h} is certain, and impor-
tance sampling schemes for time instants after t can be generated by subsolutions of
the PDE

V̄t (1, x, t) + H(DV̄ (1, x, t)) ≥ 0, x ∈ R, t ∈ (0, 1), (14.26)

with terminal condition
V̄ (1, x, 1) ≤ F(x), x ∈ R (14.27)

(here we use variables (z, x, t), and V̄ (1, x, t) indicates that z = 1). If on the other
hand we are given (Zn(t),Y n(t)) = (0, x), then for the cost to be finite the event
Y n(s) ≥ h must occur for some s ∈ [t, 1], and by the usual logic of dynamic pro-
gramming the asymptotic optimal future costs after that time will be bounded below
by any subsolution V̄ (1, ·, ·) to (14.26). The characterization of a subsolution for
times prior to this event is given by

V̄t (0, x, t) + H(DV̄ (0, x, t)) ≥ 0, x ∈ (−∞, h), t ∈ (0, 1), (14.28)

and
V̄ (0, x, t) ≤ V̄ (1, x, t), x ∈ [h,∞), t ∈ (0, 1). (14.29)

Note that one must construct the subsolutions in the order first V̄ (1, x, t), then
V̄ (0, x, t). Given classical subsolutions V̄ (0, x, t) and V̄ (1, x, t), the simulated tra-
jectory {Y n(t)} is defined as follows. Given that the state of the current simulated
trajectory is Y n

i , we use the sampling distribution ηα(dv|Y n
i ) = e〈α,v〉−H(α)θ(dv)with

tilt parameterα = −DV̄ (0,Y n
i , i/n) to generate a randomvariablewn

i with the given
(conditional) distribution if i < Nn , where Nn .= inf{i : Y n

i ≥ h} ∧ n. If i ≥ Nn we
instead use the tilt parameter α = −DV̄ (1,Y n

i , i/n) to generate a random variable
wn
i . The state of the system is then updated according to Y n

i+1 = Y n
i + wn

i /n, and we
repeat. The likelihood ratio is

Rn({Y n
i ,wn

i }i=0,...,n−1) = ∏Nn−1
i=0 e〈DV̄(0,Y n

i , i
n ),w

n
i 〉+H(−DV̄(0,Y n

i , i
n ))

× ∏n−1
i=Nn e〈DV̄(1,Y n

i , i
n ),w

n
i 〉+H(−DV̄(1,Y n

i , i
n )),

and the resulting estimator is

e−nF(Y n(1))1{maxt∈[0,1] Y n(t)≥h}Rn({Y n
i ,wn

i }i=0,...,n−1),

where Y n(t) is the continuous time interpolation.
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The corresponding set of PDEs for P0
{
τ n
l ≤ 1

}
is similar, save (14.26) and (14.27)

are replaced by

V̄t (1, x, t) + H(DV̄ (x, 1, t)) ≥ 0, x ∈ (l,∞), t ∈ (0, 1),

and
V̄ (1, x, t) ≤ 0, x ∈ (−∞, l], t ∈ [0, 1].

This construction can be generalized in many directions. For example, with a level
crossing problem as in the last section one could consider the event that a particular
level is crossed (i.e., one component exceeds its threshold) prior to a level crossing
in some other coordinate direction.

14.5.5 Markov Modulated Models

As a final example we consider problems where there are two times scales, as was the
case with the models of Sect. 7.3. To keep the discussion simple we consider the case

Xn
i+1 = Xn

i + 1

n
vi (�i+1), Xn

0 = x0, �1 = ξ,

with Xn
i taking values in R

d and the probability of interest a level crossing as in
Sect. 14.5.3. However, the constructions generalize greatly, and other examples can
be found in [116]. Recall from Sect. 7.3 that {�i }i∈N is an S-valued Markov chain
with transition probability kernel p and that {vi (ξ)}i∈N0 is a sequence of iid random
vector fields with distribution given by θ(·|ξ). We assume that the moment generat-
ing functions Ee〈α,vi (ξ)〉 are bounded from above uniformly in ξ ∈ S, and the other
conditions of Sect. 7.3. The local rate function for this model is

L(β)
.=

inf

[∫

S
R(ν(·|ξ)‖θ(·|ξ))μ(dξ) + R (γ ‖μ ⊗ p) :

∫

S×Rd

yν(dy|ξ)μ(dξ) = β

]
,

where the infimum is over γ ∈ P(S × S) such that [γ ]1 = [γ ]2 = μ and stochastic
kernels ν(dw|ξ) on R

d given S.
Let H(p) = infβ∈Rd [〈p, β〉 + L(β)]. Then the correct notion of subsolution for

this problem is again (14.24). There is an alternative characterization of H(p) =
−H(−p) in terms of an eigenvector/eigenvalue problem. For α ∈ R

d let H(α) and
r(·;α) solve

∫

S

∫

Rd

e〈α,w〉θ(dw|η)r(η;α)p(ξ, dη) = eH(α)r(ξ ;α), ξ ∈ S,

where r(·;α) : S → [0,∞) is the corresponding eigenfunction [116]. One can inter-
pret H(α) in terms of a large time risk-sensitive (i.e., multiplicative) cost, in that
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1

k
log E

[
en〈α,Xn

k 〉
∣∣∣ Xn

0 = 0, �1 = ξ
]

→ H(α) as k → ∞,

and r(ξ ;α) plays the role of the cost potential. One can in fact prove this limit using
the weak convergence arguments of Chap. 6.

Given a subsolution V̄ , we generate processes {(Y n
i ,Θn

i+1)} by setting Y n
0 = x0

and Θn
1 = ξ , using

e−〈DV̄ (Y n
i ),w〉−H(−DV̄ (Y n

i ))θ(dw|η)
r(η;−DV̄ (Y n

i ))

r(Θn
i ;−DV̄ (Y n

i ))
p(Θn

i , dη)

to identify the conditional distribution of wn
i and Θn

i+1 given Y n
i and Θn

i , and then
setting Y n

i+1 = Y n
i + wn

i /n. The estimator for the level crossing problem is then

1{
Y n
N̄n ∈(×d

k=1(−∞,Mk ))c
}∏N̄ n−1

i=0 e〈DV̄(Y n
i ),w

n
i 〉+H(−DV̄(Y n

i ))
r(Θn

i ;−DV̄ (Y n
i ))

r(Θn
i+1;−DV̄ (Y n

i ))
,

where N̄ n .= inf
{
i : Y n

i ∈ (×d
k=1(−∞, Mk))

c
}
. As in the iid case the resulting algo-

rithm is practical, in that E N̄n < ∞.

14.6 Notes

The references [6, 190, 224] present Monte Carlo methods in a general setting, and
also discuss various aspects of rare event estimation. A nice overview of the use
of Monte Carlo in the rare event setting specifically can be found in [223], which
discusses other methods that are widely used, such as interacting particle methods
(see also [51, 78]) and the cross entropymethod for the designof importance sampling
(see also [225]).

As noted previously the first paper to apply importance sampling in the rare event
context is Siegmund [232]. The material of this chapter is mostly taken from [114,
116, 150], though the last section includes examples from other papers as well. The
notion of Lyapunov inequality as used in [27] is closely related to that of subsolution
in the context of importance sampling, and more information on this connection can
be found in [28].

We consider only the light tailed cases (i.e., distributions for which moment gen-
erating functions are finite at least in a neighborhood of the origin). Problems with
heavy tailed distributions are also important. A survey of developments up to 2012 on
importance sampling for rare event estimation that includes the heavy tailed case is
[26], and more recent developments for the heavy tailed case (including new classes
of problem formulation not discussed previously) appear in [54].

For background on the Hamilton-Jacobi-Bellman equations used in this chapter
we refer to [14, 134].



Chapter 15
Performance of an IS Scheme Based
on a Subsolution

In Chap. 14 we considered the problem of rare event simulation associated with
small noise discrete time Markov processes of the form analyzed in Chap. 4. Two
types of events were emphasized: those that are described by process behavior on
a bounded time interval (finite time problems) and those that concern properties of
the process over unbounded time horizons (e.g., exit probability problems). For both
families of problems, importance sampling schemes based on classical and piecewise
classical-sense subsolutions of certain Hamilton–Jacobi–Bellman equations were
proposed. In the current chapter we provide asymptotic performance bounds for
such schemes. The main result for the finite-time problem is Theorem 15.1, whereas
the performance bound for the exit probability problem is given in Theorem 15.10.
The proofs of Theorems 15.1 and 15.10 appear in Sects. 15.2 and 15.3, respectively.
One can weaken the conditions that are assumed, and also generalize the arguments
in many directions. In particular, generalizations to cover the examples of Sect. 14.5
can all be carried out using arguments analogous to those presented in Sects. 15.2
and 15.3.

15.1 Statement of Resulting Performance

We recall that the performance of anyMonte Carlo approximation scheme is charac-
terized by the variance of a single sample, and that since the schemes we consider are
unbiased, minimizing the variance is equivalent to minimizing the second moment.
We also recall from Eq. (14.5) that under suitable regularity assumptions on the event
of interest, the best possible rate of decay for this second moment is precisely twice
the large deviation rate for the quantity being estimated.
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We will identify a lower bound on the decay rate for any scheme constructed in
terms of a subsolution as described in Sect. 14.4. As we will see, the bound has a
simple expression, and moreover, the proof of this result will follow from almost the
same argument used to prove the large deviation upper bound. Under additional reg-
ularity one can also characterize the limit of the second moment; see Remark 15.16.

We first state the result for the finite-time problem and then the corresponding
result for the exit problem. The process model will be the state-dependent random
walk model of Chap. 4. However, for the reasons just given, the proof carries over
to other process models once one has established the corresponding large deviation
theory. As noted previously, generalizations to the various functionals described in
Sect. 14.5 can be established using arguments of the same type.

We follow the notation from Chaps. 4 and 14 for the small noise Markov process
Xn of this chapter. In particular, iid random vector fields {vi (x), i ∈ N0, x ∈ R

d}
and a stochastic kernel θ(dy|x) on R

d given R
d are as in Sect. 14.1, and {Xn

i }i∈N0 ,
{Xn(t)}t≥0 are defined through (14.1) and (14.2), respectively. Recall also that for
x0 ∈ R

d , Px0 denotes the probability measure under which Xn
0 = Xn(0) = x0.

We first consider the finite-time problem. Recall that the finite-time importance
sampling problem of interest is to estimate Px0 {Xn(T ) ∈ B}, where B is a closed set
inRd and T ∈ (0,∞). Also recall that the PDE that characterizes the large deviation
rate, or equivalently, half the optimal rate of decay for an asymptotically optimal
importance sampling scheme, is given by (14.11) with the terminal condition as in
(14.12). The importance sampling schemes proposed in Sect. 14.4 use classical and
piecewise classical subsolutions of such equations as defined in Definitions 14.1 and
14.2 respectively. For T ∈ [0,∞), recall the rate function IT associated with the
LDP for Xn on C ([0, T ] : Rd). It is given by

IT (φ)
.=
∫ T

0
L(φ(t), φ̇(t))dt, φ ∈ A C ([0, T ] : Rd),

where L is as in (14.6), and IT (φ) = ∞ for all other φ. Let

V (x0, 0)
.= inf [IT (φ) : φ(0) = x0, φ(T ) ∈ B] .

The following theorem gives the performance bound for this problem. Recall that
the second moment of the single-sample estimate for a scheme based on such a
subsolution V̄ is denoted by Sn(V̄ ), and is defined in (14.15) in the classical case
and (14.21) in the piecewise classical case.

Theorem 15.1 Suppose that Condition 4.3 holds. Let V̄ be a classical subsolution
for the PDE (14.11) with terminal condition (14.12) such that

sup
x∈Rd , t∈[0,T ]

[‖DV̄ (x, t)‖ + |V̄t (x, t)|
]

< ∞,
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and define the IS scheme as in Sect. 14.4. Then the second moment for this scheme
satisfies

lim inf
n→∞ −1

n
logSn(V̄ ) ≥ V (x0, 0) + V̄ (x0, 0). (15.1)

Suppose that V̄ = ∧J
j=1V̄

( j) is a piecewise classical subsolution such that for each
j = 1, . . . , J ,

sup
x∈Rd , t∈[0,T ]

[
‖DV̄ ( j)(x, t)‖ + |V̄ ( j)

t (x, t)|
]

< ∞,

and let V̄ δ denote the mollification defined by (14.16). If one is using either the
ordinary or randomized implementation as described in Sect. 14.4, then (15.1) holds
with V̄ replaced by V̄ δ .

Remark 15.2 According to (15.1), the performance of the scheme based on any
subsolution is measured by the value of the subsolution at the starting point, with
larger values giving better performance. When there is a comparison principle for
the PDE, a subsolution can never be greater than the solution, and the best possible
value is V̄ (x0, 0) = V (x0, 0). In this case, the decay rate of the second moment is
2V̄ (x0, 0), the best possible, and thus the scheme is asymptotically efficient in the
sense of Sect. 14.1. There are proofs under many different sets of conditions of
comparison principles for solutions to viscosity solutions. In this finite-time context,
examples include [14, Theorem 3.7] and [134, Theorem II.9.1].

Remark 15.3 The subsolution property relaxes various equalities to inequalities, but
only in directions such that a verification argument can rigorously bound the second
moment of the corresponding estimator. However, one can ask whether the subso-
lution property is needed, and in particular whether a scheme based on a function
that is not a subsolution can be expected to perform in some predictable way, with
the decay rate of the second moment characterized by the value of this function at
the starting location (x0, 0). Example 14.3 shows that in general, this is not the case.
One can construct a function V̄ that has the same value as the solution at (x0, 0),
and which will generate the importance sampling scheme used in the example (it is,
in fact, V̄ (1)). Thus the relation between the asymptotics of the second moment and
the value at the starting point of the function that generates the scheme is in general
valid only for subsolutions.

Remark 15.4 (Bounding the state space) The assumed bounds on derivatives of V̄
will hold just by continuity if one replaces Rd by a large but compact set D and
considers in place of the original problem that of estimating Px0{Xn(t) ∈ D for
t ∈ [0, T ) and Xn(T ) ∈ B}. This “bounding” of the state space for computational
purposes is common, and it is easy to obtain a priori bounds on how large D must
be so that Px0{Xn(t) /∈ D for some t ∈ [0, T ]} is many orders of magnitude smaller
than Px0 {Xn(T ) ∈ B}. The corresponding definition of a subsolution differs by a
condition that holds vacuously (see Remark 14.6), and so any subsolution for the
original problem is a subsolution for this problem as well.
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Remark 15.5 Note that for an asymptotically efficient scheme, the equality between
subsolution and solution is required only at the starting point (x0, 0). As we will
see, for many problems, subsolutions with the optimal value at a given point can be
easier to find than the solution. In fact, there are in general many subsolutions with
the optimal value at the starting point.

Remark 15.6 The subsolution V̄ (x0, 0) = 0 corresponds to standard Monte Carlo,
and Theorem 15.1 gives the very poor bound V (x0, 0) on the rate of decay. Thus
any subsolution with V̄ (x0, 0) > 0 will improve on standard Monte Carlo, though it
is also possible that a scheme could correspond to V̄ (x0, 0) < 0 and do even worse
than standard Monte Carlo!

Remark 15.7 (Obtaining asymptotic optimality) Recall from (14.18) that themollifi-
cation V̄ δ corresponding to a piecewise classical subsolution V̄ satisfies the inequality

V̄ δ(x0, 0) ≥ V̄ (x0, 0) − δ log J.

Consider a sequence δn > 0 such that δn → 0 and nδn → ∞. Assuming greater
regularity of the component pieces of V̄ δ , it can be shown that the inequality in
(15.1) continues to hold with V̄ on the left side of (15.1) replaced by V̄ δn . For the
precise statement, see Theorem 15.14.

We next consider the exit probability problem. Consider the ordinary differential
equation

ξ̇ (t) =
∫
Rd

yθ(dy|ξ(t)), ξ(0) = x . (15.2)

UnderCondition 4.3, themapping x �→ ∫
Rd yθ(dy|x) is well defined and continuous.

Suppose the ODE (15.2) has a unique solution {ξx(·)} in C ([0,∞) : Rd) for every
x ∈ R

d . Let x∗ ∈ R
d be an asymptotically stable equilibrium point of the ODE, and

suppose that A is an open set with x∗ ∈ A and B is a disjoint closed set as in Sect.
14.3, with the problem of interest being to estimate the probability that Xn

i enters B
before A after starting as x0 ∈ (A ∪ B)c.

Remark 15.8 To simplify the analysis we assume as in Remark 15.4 that a “bound-
ing” of the computational domain has already been carried out, so that (A ∪ B)c is
bounded, and thus by continuity,

∥∥DV̄ (x)
∥∥ is uniformly bounded on (A ∪ B)c for

every classical-sense subsolution. To be precise, if (A ∪ B)c is not bounded then we
choose a compact set D such that the probability of exiting D prior to entering A or
B is negligible compared with the probability of entering B before A. Given such a
set, we redefine A to be the set A ∪ [Dc\B]. Then automatically (A ∪ B)c ⊂ D is
bounded. With such a redefinition of A, every classical-sense subsolution or piece-
wise classical-sense subsolution for the original problem retains this property, since
the added requirement is vacuous (see Remark 14.6).

We are interested in the probability that given Xn(0) = x0 ∈ (A ∪ B)c, the process
Xn(·) enters B before reaching A. Thus letting
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Nn .= inf{ j ∈ N0 : Xn
j ∈ A ∪ B} and τ n .= Nn/n,

we consider the probability of the event {Xn(τ n) ∈ B}. We will also assume Condi-
tion 15.9 below, which in particular ensures that τ n < ∞ a.s. and therefore Xn(τ n)

is well defined.
For x ∈ (A ∪ B)c ⊂ D, define

V (x)
.= inf[IT (φ) : φ(0) = x, T ∈ [0,∞) and for some t ≤ T

φ(t) ∈ B and φ(s) ∈ Ac for all 0 ≤ s ≤ t].

Given a classical subsolution V̄ of the PDE 14.3 with boundary condition 14.14 (see
Definition 14.4), the importance sampling scheme to estimate Px {Xn(τ n) ∈ B} is
constructed as in Sect. 14.4. Thus if the current state of the simulated trajectory is
Y n
i , then we replace the original distribution on the noise vi (Y n

i ), i.e., θ(dy|Y n
i ), by

ηα(dv|Y n
i ) = e〈α,v〉−H(Y n

i ,α)θ(dv|Y n
i ) with α = −DV̄ (Y n

i ).

Using a bound on certain exponential moments of Nn that is stated in (15.32), the
second moment of the estimator can be written in terms of the original random
variables and process model as

Sn(V̄ ) = Ex0

[
1{Xn

Nn ∈B}
Nn−1∏
i=0

e〈DV̄ (Xn
i ),vi (X

n
i )〉+H(Xn

i ,−DV̄ (Xn
i ))

]
. (15.3)

Similarly, if V̄ (x) = ∧J
i=1V̄

(i)(x) is a piecewise classical subsolution, then the mol-
lification V̄ δ(x) is defined as in 14.16 but with V̄ ( j)(x, t) replaced by V̄ ( j)(x). If the
ordinary implementation is used, then the second moment is given by (15.3) with V̄
replaced by V̄ δ . If the randomized implementation is used, then the second moment
takes the form

Sn(V̄ δ)
.=

Ex0

⎡
⎣1{Xn

Nn ∈B}
∏Nn−1

i=0

⎛
⎝ J∑

j=1

ρδ
j

(
Xn
i ,

i

n

)
e−〈DV̄ ( j)(Xn

i ),vi (X
n
i )〉−H(Xn

i ,−DV̄ ( j)(Xn
i ))

⎞
⎠

−1⎤
⎦ .

Besides other uses, the following bound ensures that all moments of the time till
the simulation terminates are finite. As shown in Proposition 15.19, the bound in
Condition 15.9 follows from classical Freidlin–Wentzell arguments [140] under quite
general conditions. In the condition, D is a closed bounded set that contains (A ∪ B)c.

Condition 15.9 There exist c > 0, T0 ∈ (0,∞) and n0 ∈ N such that for all n ≥ n0,
T < ∞, and x ∈ D,

Px {τ n > T } ≤ exp{−cn(T − T0)}.
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The following theorem gives the asymptotic performance bound for the exit prob-
ability problem.

Theorem 15.10 Assume Conditions 4.3 and 15.9 and that (A ∪ B)c is bounded. Let
V̄ be a classical subsolution for the PDE (14.13) with boundary condition (14.14),
construct the corresponding IS estimator as in Sect. 14.4, and consider its second
moment Sn(V̄ ), for which we have the representation (15.3). Then for every x0 ∈
(A ∪ B)c, this second moment satisfies

lim inf
n→∞ −1

n
logSn(V̄ ) ≥ V (x0) + V̄ (x0). (15.4)

Suppose that V̄ = ∧J
j=1V̄

( j) is a piecewise classical subsolution and let V̄ δ denote
the mollification defined by (14.16). If one is using either the ordinary or randomized
implementation as described in Sect. 14.4, then (15.4) holds with V̄ replaced by V̄ δ .

15.2 Performance Bounds for the Finite-Time Problem

In this section we prove Theorem 15.1. As in Chap. 4, we simplify notation by giving
the proof for T = 1.

We first consider the simpler case of a classical subsolution. Recall from (14.15)
that when rewritten in terms of the original process model, the second moment of
the scheme defined in terms of a subsolution V̄ takes the form

Sn(V̄ ) = Ex0

[
1{Xn

n∈B}
n−1∏
i=0

e〈DV̄ (Xn
i ,i/n),vi (Xn

i )〉+H(Xn
i ,−DV̄ (Xn

i ,i/n))

]
, (15.5)

where H is as in (14.6). To obtain this expression for the second moment, we used a
change of measure to rewrite the expectation under the original probability law. We
now use a second change of measure to give another expression for Sn(V̄ ), which
will allow a convenient use of the representation obtained in Sect. 4.2. This change
of measure will rewrite Sn(V̄ ) as an exponential integral with an exponent that is
bounded from below. An alternative approach would be to extend the representation
of Sect. 4.2 to a class of exponents that are not bounded from one side or the other
(i.e., above or below), but we consider the approach based on the second change of
measure simpler.

For n ∈ N and i = 0, 1, . . . , n − 1, define stochastic kernels γ n
i (dy|x) on R

d

given R
d by

γ n
i (dy|x) .= e〈DV̄ (x,i/n),y〉−H(x,DV̄ (x,i/n))θ(dy|x). (15.6)

Note that under Condition 4.3, γ n
i (·|x) is awell-defined probabilitymeasure for every

x . Let {v̌ni (x), i = 0, 1, . . . , n − 1, x ∈ R
d} be independent random vector fields on

some probability space with the property that for each x ∈ R
d , v̌ni (x) has distribution
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γ n
i (·|x). Construct a time-inhomogeneous Markov chain {X̌ n

i }i=0,...,n through the
recurrence (14.1) with vi replaced by v̌ni . Then in terms of the sequence {X̌ n

i }, the
second moment Sn(V̄ ) can be rewritten as

Sn(V̄ ) = Ex0

[
1{

X̌ n
n∈B

}
n−1∏
i=0

eH(X̌ n
i ,DV̄ (X̌ n

i ,i/n))+H(X̌ n
i ,−DV̄ (X̌ n

i ,i/n))

]
. (15.7)

Note that by the boundedness assumption on DV̄ and the property that

sup
x∈Rd

sup
‖α‖≤M

H(x, α) < ∞, for all M ∈ (0,∞), (15.8)

the functional F to which the representation in (4.4) would be applied to get a
representation for Sn(V̄ ) is bounded from below (although it is not bounded from
above due to the indicator function). Hence Theorem 4.5 can be applied. This gives
the representation

−1

n
logSn(V̄ )

= 1

n
inf{μ̄n

i }
Ex0

[
n−1∑
i=0

[−H
(
X̄ n
i , DV̄

(
X̄ n
i , i/n

))− H
(
X̄ n
i ,−DV̄

(
X̄ n
i , i/n

))]

+
n−1∑
i=0

R
(
μ̄n
i (·)

∥∥γ n
i (·|X̄ n

i )
)+ ∞1{X̄ n

n∈Bc}
]

, (15.9)

where {μ̄n
i } and {X̄ n

i } are as defined in Construction 4.4. We remark that although the
representation (4.4) is written for a time-homogeneous Markov chain with a fixed
stochastic kernel θ(dy|x), the representation needed here for a time-inhomogeneous
Markov chain given through a time-dependent sequence of stochastic kernels
γ n
i (dy|x) can be obtained in a completely analogous manner.

Remark 15.11 At this point, we have introduced many related processes, due to the
fact that we use two changes of measure and a representation. To recapitulate, we
have the original process {Xn

i }, the process {Y n
i } that is actually simulated and is

related to {Xn
i } by a change of measure, the process {X̌ n

i }, which is also related to
{Xn

i } by a change of measure and used to make the derivation of a representation for
the second moment simpler, and the process {X̄ n

i } that appears in the representation
(15.9). For the present purpose of performance analysis, it is only the last process
and the representation (15.9) that are relevant.

We now show that for every sequence of controls and controlled processes {μ̄n
i }

and {X̄ n
i },
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lim inf
n→∞

1

n
Ex0

[
n−1∑
i=0

[−H
(
X̄ n
i , DV̄

(
X̄ n
i , i/n

))− H
(
X̄ n
i ,−DV̄

(
X̄ n
i , i/n

))]

(15.10)

+
n−1∑
i=0

R
(
μ̄n
i (·)

∥∥γ n
i (·|X̄ n

i )
)+ ∞1{X̄ n

n∈Bc}
]

≥ V (x0, 0) + V̄ (x0, 0).

For this it suffices to argue that every subsequence has a further subsequence (labeled
once more by n) along which (15.10) holds with lim inf replaced by lim sup. Note
that we can assume without loss of generality that along this sequence,

sup
n∈N

1

n
Ex0

[
n−1∑
i=0

R
(
μ̄n
i (·)

∥∥γ n
i (·|X̄ n

i )
)]

< ∞ and X̄ n
n ∈ B a.s. (15.11)

Henceforth, we fix such a sequence and suppose that the properties (15.11) are
satisfied along this sequence.

Recall from Construction 4.4 the noise sequence {v̄ni } with conditional distribu-
tions {μ̄n

i } and the sequences of measure-valued random variables {L̄n}, {μ̄n}, {λn}.
To prove the tightness of the sequence {(X̄ n, L̄n, μ̄n)}, we will use Lemma 4.11. The
following lemma gives the key estimate that allows the application of Lemma 4.11.

Lemma 15.12 Assume the conditions of Theorem 15.1 and (15.11). Then

sup
n∈N

1

n
Ex0

[
n−1∑
i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )
)]

< ∞.

Proof Note that for each x ∈ R
d and μ ∈ P(Rd), (15.6) implies

R (μ(·) ‖θ(·|x) ) (15.12)

= R
(
μ(·) ∥∥γ n

i (·|x))+
∫
Rd

log

(
dγ n

i (·|x)
dθ(·|x) (y)

)
μ(dy)

= R
(
μ(·) ∥∥γ n

i (·|x))+
∫
Rd

〈
DV̄ (x, i/n), y

〉
μ(dy) − H(x, DV̄ (x, i/n)).

Thus, in view of the bound (15.11), the boundedness of DV̄ , and (15.8), it suffices
to show that

sup
n

1

n
Ex0

n−1∑
i=0

‖v̄ni ‖ < ∞. (15.13)

For this we use a minor modification of Lemma 4.11 with θ replaced by γ n
i . A

similar argument to that used for the proof of (4.8) [see (4.10)] shows that
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sup
n∈N

1

n
Ex0

n−1∑
i=0

‖v̄ni ‖ = sup
n∈N

Ex0

[∫
Rd×[0,1]

‖y‖ L̄n(dy × dt)

]

≤ sup
n∈N

sup
x∈Rd

max
i=0,1,...,n−1

∫
Rd

e‖y‖γ n
i (dy|x)

+ sup
n∈N

1

n
Ex0

[
n−1∑
i=0

R
(
μ̄n
i (·)

∥∥γ n
i (·|X̄ n

i )
)]

.

The last term is of course bounded by (15.11). Recall the relation between γ n
i and

θ in (15.6). The desired bound (15.13) now follows on noting (for more details see
the proof of Lemma 3.9) that due to the boundedness of DV̄ and (15.8), for each
m < ∞ there are C, M < ∞ such that for all i = 0, 1, . . . , n − 1 and x ∈ R

d ,

sup
‖α‖≤m

∫
Rd

e〈α,y〉γ n
i (dy|x) = sup

‖α‖≤m

∫
Rd

e〈α,y〉+〈DV̄ (x,i/n),y〉−H(x,DV̄ (x,i/n))θ(dy|x)

≤ sup
‖α‖≤M, x∈Rd

C
∫
Rd

e〈α,y〉θ(dy|x).

Since (15.8) implies that the last quantity is bounded, this completes the proof of the
lemma. �

We can now complete the proof of Theorem 15.1. Note that each summand in the
third term on the left side of (15.10) can be written as

R
(
μ̄n
i (·)

∥∥γ n
i (·|X̄ n

i )
) = R

(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )
)+

∫
Rd

log

(
dθ(·|X̄ n

i )

dγ n
i (·|X̄ n

i )
(y)

)
μ̄n
i (dy).

(15.14)
Using (15.6), the second term on the right side of (15.14) takes the form

∫
Rd

log

(
dθ(·|X̄ n

i )

dγ n
i (·|X̄ n

i )
(y)

)
μ̄n
i (dy)

= −
∫
Rd

〈
DV̄ (X̄ n

i , i/n), y
〉
μ̄n
i (dy) + H

(
X̄ n
i , DV̄

(
X̄ n
i , i/n

))
. (15.15)

The last term in (15.15) nicely cancels a term in (15.10), and thus in view of the
discussion below (15.10), it suffices to show that

lim sup
n→∞

1

n
Ex0

[
n−1∑
i=0

[
−
∫
Rd

〈
DV̄ (X̄ n

i , i/n), y
〉
μ̄n
i (dy) − H

(
X̄ n
i ,−DV̄

(
X̄ n
i , i/n

))]

+
n−1∑
i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )
)+ ∞1{X̄ n

n∈Bc}
]

≥ V (x0, 0) + V̄ (x0, 0). (15.16)
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As a side remark, note that since a conditioning argument allows
∫
Rd yμ̄n

i (dy) to be
replaced by v̄ni , this is exactly the expression one would have obtained by formally
applying the representation toSn(V̄ ), in spite of the fact that the exponent inSn(V̄ )

is not bounded either above or below.
Since V̄ is a subsolution, for i = 0, 1, . . . , n − 1 we have

−H
(
X̄ n
i ,−DV̄

(
X̄ n
i , i/n

)) = H
(
X̄ n
i , DV̄

(
X̄ n
i , i/n

)) ≥ −V̄t (X̄
n
i , i/n). (15.17)

Then (15.17) implies

1

n

n−1∑
i=0

Ex0

[− 〈DV̄ (X̄ n
i , i/n), v̄ni

〉− H
(
X̄ n
i ,−DV̄

(
X̄ n
i , i/n

))]

≥ − 1

n

n−1∑
i=0

Ex0

[〈
DV̄ (X̄ n

i , i/n), v̄ni
〉+ V̄t (X̄

n
i , i/n)

]
. (15.18)

Using the estimate from Lemma 15.12, we can apply Lemma 4.11, which says that{
(X̄ n, L̄n, μ̄n, λn)

}
n∈N is tight and also that the uniform integrability estimate in (4.8)

holds. The estimate in Lemma 15.12 also allows us to apply Lemma 4.12, which says
that every weak limit (X̄ , L̄, μ̄, λ) has the properties that μ̄ can be disintegrated as
μ̄(dy|t)dt for a suitable kernel on [0, 1] given R

d , and that (4.15) and (4.16) hold,
namely,

X̄(t) =
∫
Rd×[0,t]

yL̄(dy × ds) + x0 =
∫
Rd×[0,t]

yμ̄(dy|s)ds + x0, t ∈ [0, 1],
(15.19)

λ(A × B) =
∫
B

θ(A|X̄(t))dt, A ∈ B(Rd), B ∈ B([0, 1]).

Also, in view of (15.11) and since B is closed, we have X̄(1) ∈ B a.s. In proving
the inequality (15.16), we can assume without loss of generality that along this
sequence, (X̄ n, L̄n, μ̄n, λn) converges weakly to (X̄ , L̄, μ̄, λ). Using Fatou’s lemma
and the properties of the limit points, we have, just as in the proof of (4.18),

lim sup
n→∞

Ex0

[
1

n

n−1∑
i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )
)] ≥ Ex0

[∫ 1

0
L(X̄(t), ˙̄X (t))dt

]
. (15.20)

Let X̂ n be the piecewise constant interpolation

X̂ n(t) = X̄ n
i , t ∈ [i/n, i/n + 1/n) , i = 0, 1, . . . , n − 1. (15.21)

Noting that

sup
0≤t≤1

‖X̂ n(t) − X̄ n(t)‖ ≤ 1

n
sup
0≤t≤1

‖X̄ n(t)‖,
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we see that X̂ n also converges weakly inD([0, 1] : Rd) to X̄ . From (15.18), we have

1

n

n−1∑
i=0

Ex0

[− 〈DV̄ (X̄ n
i , i/n), v̄ni

〉− H
(
X̄ n
i ,−DV̄

(
X̄ n
i , i/n

))]+ O(1) (15.22)

≥ − Ex0

[∫
Rd×[0,1]

(〈
DV̄

(
X̂ n(t), t

)
, y
〉
+ V̄t

(
X̂ n(t), t

))
L̄n(dy × dt)

]
,

where the error term O(1) is due to replacing DV̄
(
X̄ n
i , i/n

)
by DV̄ (X̂ n(t), t) =

DV̄ (X̄ n
i , t) for t ∈ [i/n, i/n + 1/n), and we have used the continuity of

DV̄ (x, t) , V̄t (x, t) and tightness of {X̄ n}. Using the uniform integrability property
(4.8) of L̄n and since L̄ = μ̄, we have

lim sup
n→∞

−Ex0

[∫
Rd×[0,1]

(〈
DV̄

(
X̂ n(t), t

)
, y
〉
+ V̄t

(
X̂ n(t), t

))
L̄n(dy × dt)

]

= −Ex0

[∫
Rd×[0,1]

(〈
DV̄

(
X̄(t), t

)
, y
〉+ V̄t

(
X̄(t), t

))
μ̄(dy|t)dt

]

= −Ex0

[∫ 1

0

(〈
DV̄

(
X̄(t), t

)
, ˙̄X (t)

〉
+ V̄t

(
X̄(t), t

))
dt

]
, (15.23)

where in the last equality we have used (15.19). Finally, by combining (15.20),
(15.22), and (15.23), we see that the left side of (15.16) is bounded below by

Ex0

[∫ 1

0

(
−
〈
DV̄

(
X̄(t), t

)
, ˙̄X (t)

〉
− V̄t

(
X̄(t), t

))
dt +

∫ 1

0
L(X̄(t), ˙̄X (t))dt

]
.

(15.24)
Using that X̄(0) = x0, X̄(1) ∈ B a.s., and (since V̄ is a subsolution) V̄ (x, 1) ≤ 0 for
x ∈ B, by the (ordinary) chain rule, we have

∫ 1

0

(
−
〈
DV̄

(
X̄(t), t

)
, ˙̄X (t)

〉
− V̄t

(
X̄(t), t

))
dt ≥ V̄ (x0, 0) a.s.

Also, from the definition of V (x0, 0) and using again that X̄(1) ∈ B a.s., we obtain

∫ 1

0
L(X̄(t), ˙̄X (t))dt ≥ V (x0, 0) a.s.

From the last two observations, we see that the expression in (15.24) is bounded
below by V̄ (x0, 0) + V (x0, 0), which proves (15.16) and completes the proof of the
theorem for the case that V̄ is a classical subsolution.

We now consider the second part of the theorem, namely the case that V̄ is a piece-
wise classical subsolution. Let δ > 0 and let V̄ δ be the corresponding mollification
defined by (14.16). The proof for the ordinary implementation is immediate on recall-
ing that V̄ δ is a classical subsolution. Consider now the randomized implementation.
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We will make use of the identities

DV̄ δ(x, t) =
J∑

j=1

ρδ
j (x, t)DV̄ ( j)(x, t) and V̄ δ

t (x, t) =
J∑

j=1

ρδ
j (x, t)V̄

( j)
t (x, t).

(15.25)
As noted in Sect. 14.4, the second moment of the scheme based on V̄ δ is equal to

Sn(V̄ δ) = Ex0

[
1{Xn(1)∈B}Rn({Xn

i , vi (X
n
i )}i=0,...,n−1)

]
,

where

Rn({Xn
i , vi (X

n
i )}i=0,...,n−1)

=
n−1∏
i=0

⎛
⎝ J∑

j=1

ρδ
j

(
Xn
i , i/n

)
e−〈DV̄ ( j)(Xn

i ,i/n),vi (X
n
i )〉−H(Xn

i ,−DV̄ ( j)(Xn
i ,i/n))

⎞
⎠

−1

.

By Jensen’s inequality,

J∑
j=1

ρδ
j

(
Xn
i , i/n

)
e−〈DV̄ ( j)(Xn

i ,i/n),vi (X
n
i )〉−H(Xn

i ,−DV̄ ( j)(Xn
i ,i/n))

≥ e−∑J
j=1 ρδ

j(X
n
i ,i/n)(〈DV̄ ( j)(Xn

i ,i/n),vi (X
n
i )〉−H(Xn

i ,−DV̄ ( j)(Xn
i ,i/n))).

Thus in view of (15.25), Sn(V̄ δ) is bounded above by

Ex0

[
1{Xn

n∈B}
n−1∏
i=0

(
e
∑J

j=1 ρδ
j(X

n
i ,i/n)[〈DV̄ ( j)(Xn

i ,i/n),vi (X
n
i )〉+H(Xn

i ,−DV̄ ( j)(Xn
i ,i/n))]

)]

= Ex0

[
1{Xn

n∈B}
n−1∏
i=0

(
e〈DV̄ δ(Xn

i ,i/n),vi (X
n
i )〉+∑J

j=1 ρδ
j(X

n
i ,i/n)H(Xn

i ,−DV̄ ( j)(Xn
i ,i/n))

)]
.

Define {γ n
i } by (15.6) with V̄ replaced by V̄ δ . Then using the fact that DV̄ δ

is uniformly bounded by (15.25) and the assumption made for the second part of
Theorem 15.1, we have, exactly as in the proof for the case of a classical subsolution,

−1

n
logSn(V̄ δ) (15.26)

≥ 1

n
inf{μ̄n

i }
Ex0

[
n−1∑
i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )
)+ ∞1{X̄ n

n∈Bc} −
n−1∑
i=0

〈
DV̄

(
X̄ n
i , i/n

)
, v̄ni

〉

−
n−1∑
i=0

J∑
j=1

ρδ
j

(
X̄ n
i , i/n

)
H
(
X̄ n
i ,−DV̄ ( j)

(
X̄ n
i , i/n

))
⎤
⎦ .
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Also, since each V̄ ( j) is a subsolution, for each i = 0, 1, . . . , n − 1, we have

−
J∑

j=1

ρδ
j

(
X̄ n
i ,

i

n

)
H
(
X̄ n
i ,−DV̄ ( j)

(
X̄ n
i , i/n

)) ≥ −
J∑

j=1

ρδ
j

(
X̄ n
i ,

i

n

)
V̄ ( j)
t (X̄ n

i , i/n)

= −V̄ δ
t (X̄ n

i , i/n), (15.27)

where the equality is a consequence of (15.25). The proof of the second part of the
theorem can now be completed exactly as was the proof for the case of a classical
subsolution. �

Remark 15.13 Note that the proof of Theorem 15.1 uses little of the particular prop-
erties of the underlying process, given that one has used the weak convergence
approach to establish the large deviation upper bound, and thus it can be adapted
with few changes to other process models.

The following theorem proves the statement in Remark 15.7.

Theorem 15.14 Assume the conditions of Theorem 15.1 and also that the second
derivatives of the form ∂2V̄ ( j)(x, t)/∂xi∂xk and ∂2V̄ ( j)(x, t)/∂xi∂t exist and are
continuous and uniformly bounded for x ∈ R

d , t ∈ [0, T ], and j = 1, . . . , J . For
δ > 0, let V̄ δ be themollification defined by (14.16) and let {δn} be a positive sequence
such that δn → 0 and nδn → ∞. Define the IS scheme as in Sect. 14.4 with V̄ δ

replaced by V̄ δn . Then

lim inf
n→∞ −1

n
logSn(V̄ δn ) ≥ V (x0, 0) + V̄ (x0, 0).

Proof Replacing δ by δn , (15.26) and (15.27), and the analogue of (15.15) with V̄
replaced by V̄ δn together imply

− 1

n
logSn(V̄ δn ) ≥ 1

n
inf{μ̄n

i }
Ex0

[
n−1∑
i=0

[
− 〈DV̄ δn (X̄ n

i , i/n), v̄ni
〉− V̄ δn

t (X̄ n
i , i/n)

]

+
n−1∑
i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )
)+ ∞1{X̄ n

n∈Bc}
]

.

Let rn(t)
.= rn1 (t) + rn2 (t), where

rn1 (t)
.= 〈

DV̄ δn (X̄ n
i , i/n), v̄ni

〉− 〈
DV̄ δn (X̄ n(t), t), ˙̄Xn(t)

〉

rn2 (t)
.= V̄ δn

t (X̄ n
i , i/n) − V̄ δn

t (X̄ n(t), t)

for t ∈ [i/n, i/n + 1/n). Then
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−1

n
logSn(V̄ δn )

≥ inf{μ̄n
i }
Ex0

[∫ 1

0

[
−
〈
DV̄ δn (X̄ n(t), t), ˙̄Xn(t)

〉
− V̄ δn

t (X̄ n(t), t)
]
dt

−
∫ 1

0
rn(t)dt + 1

n

n−1∑
i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )
)+ ∞1{X̄ n

n∈Bc}
]

.

Since there is C < ∞ such that ‖DV̄ δn (x, t)‖ ≤ C for all x, t and n of interest, it
follows that for M ∈ (0,∞),

∣∣rn1 (t)
∣∣ ≤ ∥∥DV̄ δn (X̄ n

i , i/n) − DV̄ δn (X̄ n(t), t)
∥∥ ∥∥v̄ni

∥∥ (15.28)

≤ 2C
∥∥v̄ni

∥∥ 1{‖v̄ni ‖≥M} + ∥∥DV̄ δn (X̄ n
i , i/n) − DV̄ δn (X̄ n(t), t)

∥∥M1{‖v̄ni ‖<M}.

Recall that by assumption there is K ∈ (0,∞) such that the terms |∂ V̄ ( j)(x, t)/∂xi |,
|∂ V̄ ( j)(x, t)/∂t |, |∂2V̄ ( j)(x, t)/∂xi∂xk |, and |∂2V̄ ( j)(x, t)/∂xi∂t | are bounded by K
for all (x, t) ∈ R

d × [0, T ] and all i , k, and j . Using the definition of V̄ δ in (14.16),
we see that for some K̄ ∈ (0,∞), for all n ∈ N, we have

sup
(x,t)∈Rd×[0,T ]

max
i,k

{∣∣∂2V̄ δn (x, t)/∂xi∂xk
∣∣+ ∣∣∂2V̄ δn (x, t)/∂xi∂t

∣∣} ≤ K̄

δn
.

Using this bound for the second term on the right side of (15.28), we have

∥∥DV̄ δn (X̄ n
i , i/n) − DV̄ δn (X̄ n(t), t)

∥∥M1{‖v̄ni ‖<M}
≤ 1{‖v̄ni ‖<M}

(
d‖X̄ n

i − X̄ n(t)‖ + 1

n

)
K̄ M

δn

≤ (dM + 1)MK̄

nδn
.

Once more we can assume without loss of generality that

sup
n∈N

1

n
Ex0

[
n−1∑
i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )
)]

< ∞.

Thus by Lemma 4.11,

lim sup
n→∞

Ex0

∣∣∣∣
∫ 1

0
rn1 (t)dt

∣∣∣∣ ≤ lim sup
M→∞

lim sup
n→∞

2C
1

n
Ex0

n−1∑
i=0

∥∥v̄ni
∥∥ 1{‖v̄ni ‖≥M} = 0.

Asimilar bound applies to rn2 ,whose details are omitted. The chain rule, the constraint
X̄ n(1) ∈ B w.p.1, and V̄ δn (x, 1) ≤ 0 for x ∈ B then imply
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− 1

n
logSn(V̄ δn ) ≥ V̄ δn (x0, 0) (15.29)

+ inf{μ̄n
i }
Ex0

[∫ 1

0
rn(t)dt + 1

n

n−1∑
i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )
)+ ∞1{X̄ n

n∈Bc}
]

,

and the proof now proceeds exactly as for the proof of Theorem 15.1.

Remark 15.15 (Nonasymptotic bounds) If we in addition assume that there is σ > 0
such that E exp{σ ‖vi (x)‖2} < ∞ for all x ∈ R

d , then nonasymptotic bounds can be
derived. A sketch of the argument is as follows. For the piecewise classical case, the
mollification V̄ δ has all second derivatives bounded by a constant times 1/δ. Hence
one has the bound

∣∣rn(t)∣∣ ≤ 1

nδn

(
K0 + K1

∥∥v̄ni
∥∥+ K2

∥∥v̄ni
∥∥2)

for t ∈ [i/n, i/n + 1/n) and suitable K j < ∞, j = 0, 1, 2. Therefore,

∣∣∣∣Ex0

∫ 1

0
rn(t)dt

∣∣∣∣ ≤ 1

nδn
Ex0

[
K0 + K1

1

n

n−1∑
i=0

‖v̄ni ‖ + K2
1

n

n−1∑
i=0

‖v̄ni ‖2
]

.

The claim that there is a uniform bound on

Ex0

[
1

n

n−1∑
i=0

‖v̄ni ‖2
]

follows from the same argument used to get (15.13), where we use the assumption
supx Ee

σ‖vi (x)‖2 < ∞ for some σ > 0 in place of supx Ee
σ‖vi (x)‖ < ∞. Thus (15.29)

becomes

− 1

n
logSn(V̄ δn )

≥ V̄ δn (x0, 0) − K

nδn
+ inf{μ̄n

i }
Ex0

[
1

n

n−1∑
i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )
)+ ∞1{X̄ n

n∈Bc}
]

= V̄ δn (x0, 0) − K

nδn
− 1

n
log Px0

{
Xn(1) ∈ B

}
,

where the constant K < ∞ can be estimated based on the problem data. The worst
possible “loss” due to the mollification is of the form

−δn log J − K

nδn
,
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and that occurs when x0 is close to a point where V̄ is not smooth. To minimize this
worst possible loss, one would minimize δ → δ log J + K/(nδ), which suggests δn
proportional to n−1/2, leading to a loss of [log J + K ]/n1/2. If x0 is away from the
places where V̄ is not smooth, then the difference between V̄ δ and V̄ scales like e−c/δ .
Minimizing a quantity of the form e−c/δ + K/nδ leads to δn = c/[log n + log(c/K )]
and a loss proportional to log n/n.

If mollification is not needed, then the nonasymptotic bound is of the form
V̄ (x0, 0) − K/n − log Px0 {Xn(1) ∈ B} /n for all points, which appears qualita-
tively better.

Remark 15.16 (Limits rather than bounds) One can askwhether a limit for the decay
rate of the second moment associated with a subsolution V̄ is possible. The answer
is yes, though one must strengthen the assumptions to include the types of regularity
properties needed on the process and set B so that a large deviation lower bound
holds. We consider the case of a classical subsolution. Using (15.9), (15.12), and
(15.14) gives the representation

−1

n
logSn(V̄ )

= 1

n
inf{μ̄n

i }
Ex0

[
n−1∑
i=0

[
−
∫
Rd

〈
DV̄ (X̄ n

i , i/n), y
〉
μ̄n
i (dy) + H

(
X̄ n
i , DV̄

(
X̄ n
i , i/n

))]

+
n−1∑
i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )
)+ ∞1{X̄ n

n∈Bc}
]

,

where DV̄ (x, t) is bounded and continuous, as is H(x, DV̄ (x, t)). Hence this is in
the form of the representation of a Laplace functional for the pair (Ln, Xn). Arguing
as in Chap. 4, one can establish the limit

lim
n→∞ −1

n
logSn(V̄ )

= inf
φ

[∫ 1

0

(
H
(
φ(t), DV̄ (φ(t), t)

)− 〈
DV̄ (φ(t), t), φ̇(t)

〉)
dt

+
∫ 1

0
L(φ(t), φ̇(t))dt + ∞1{φ(1)∈Bc}

]
,

where the infimum is over absolutely continuous φ with φ(0) = x0. The additional
condition that is needed is that there exists a nearly infimizing φ such that φ(1) ∈ B◦.
If V̄ is a subsolution, it is easy to check using the subsolution property that one
recovers the bound given previously, i.e., the infimum in the last display is bounded
below by V (x0, 0) + V̄ (x0, 0).
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15.3 Performance Bounds for the Exit Probability Problem

We give the proof of Theorem 15.10 in this section. Details are given only for
the case of a classical subsolution, since the proof for mollified piecewise classical
subsolutions can be completed in the same way as in Sect. 15.2. Recalling that
(A ∪ B)c ⊂ D is bounded and by modifying V̄ outside a neighborhood of D if
needed, we can assume without loss of generality that

sup
x∈Rd

[|V (x)| + ‖DV (x)‖] < ∞. (15.30)

By the subsolution property of V̄ , for i = 0, 1, . . . , Nn − 1, we have

H(Xn
i ,−DV̄ (Xn

i )) = −H(Xn
i , DV̄ (Xn

i )) ≤ 0.

Thus (15.3) implies

Sn(V̄ ) ≤ Ex0

[
1{Xn

Nn ∈B}
Nn−1∏
i=0

e〈DV̄ (Xn
i ),vi (X

n
i )〉
]

. (15.31)

An immediate consequence of Condition 15.9 is that for the given n0 and some
γ ∈ (0,∞),

Kγ
.= sup

n≥n0
sup
x∈D

e−ncT0Ex [eγ Nn ] < ∞. (15.32)

Let Xn
0 = x0 ∈ (A ∪ B)c. We use Taylor’s theorem to write

V̄ (Xn
Nn ) − V̄ (x0)

= 1

n

Nn−1∑
i=0

〈
DV̄ (Xn

i ), vi (X
n
i )
〉+ 1

n

Nn−1∑
i=0

〈
DV̄ (Zn

i ) − DV̄ (Xn
i ), vi (X

n
i )
〉
,

where Zn
i is on the line segment joining Xn

i and Xn
i+1, and therefore

∥∥Zn
i − Xn

i

∥∥ ≤∥∥vi (Xn
i )
∥∥ /n. Thus

Nn−1∑
i=0

〈
DV̄ (Xn

i ), vi (X
n
i )
〉 ≤ 2n‖V̄ ‖∞ −

Nn−1∑
i=0

〈
DV̄ (Zn

i ) − DV̄ (Xn
i ), vi (X

n
i )
〉
.

(15.33)
Let T ∈ (0,∞) and define

Sn
1T (V̄ )

.= e2n‖V̄ ‖∞ Ex0

[
1{τ n>T }

Nn−1∏
i=0

e〈DV̄ (Xn
i )−DV̄ (Zn

i ),vi (Xn
i )〉
]

,
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Sn
2T (V̄ )

.= Ex0

[
1{τ n≤T, Xn

Nn ∈B}
Nn−1∏
i=0

e〈DV̄ (Xn
i ),vi (X

n
i )〉
]

.

Then (15.31) and (15.33) imply Sn(V̄ ) ≤ Sn
1T (V̄ ) + Sn

2T (V̄ ). We first show for
large but finite T that Sn

1T (V̄ ) is unimportant, thus reducing back to the finite-time
case.

Reduction to the case of finite time. Since V̄ is uniformly continuous on D, given
h ∈ (0, 1) there is δ(h) > 0 such that for all x, y ∈ D,

‖x − y‖ ≤ δ(h) ⇒ ‖DV̄ (x) − DV̄ (y)‖ ≤ h.

For h > 0, n ∈ N, and v ∈ R
d , let

fn,h(v)
.= e2‖DV̄ ‖∞‖v‖1{‖v‖≥nδ(h)} + eh‖v‖1{‖v‖<nδ(h)}.

Since for v ∈ R
d ,

∣∣〈DV̄ (Zn
i ) − DV̄ (Xn

i ), v)
〉∣∣ ≤ min

{
2‖DV̄ ‖∞‖‖v‖, ‖DV̄ (Zn

i ) − DV̄ (Xn
i )‖‖v‖

}
,

we have from the choice of δ(h) that

e〈DV̄ (Xn
i )−DV̄ (Zn

i ),vi (Xn
i )〉 ≤ fn,h(vi (X

n
i )). (15.34)

Let fh(v)
.= eh‖v‖. Then for every h ∈ (0, 1), fn,h converges pointwise to fh as n →

∞.
We claim that as n → ∞,

∫
Rd

f 2n,h(v)θ(dv|x) →
∫
Rd

f 2h (v)θ(dv|x), uniformly in x ∈ D. (15.35)

To prove the claim, it suffices to show that if xn → x , with xn, x ∈ D, then

∫
Rd

f 2n,h(v)θ(dv|xn) →
∫
Rd

f 2h (v)θ(dv|x).

From continuity of x �→ θ(·|x) and the uniform bound on the moment-generating
function (Condition 4.3), as n → ∞,

∫
Rd

f 2h (v)θ(dv|xn) →
∫
Rd

f 2h (v)θ(dv|x). (15.36)

Also, for K ∈ (0,∞), h ≤ 1 implies
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∫
Rd

| f 2n,h(v) − f 2h (v)|θ(dv|xn) ≤
∫

{‖v‖≤K }
| f 2n,h(v) − f 2h (v)|θ(dv|xn)

+ 2
∫

{‖v‖≥K }
e2(1+2‖DV̄ ‖∞)‖v‖θ(dv|xn).

For n > K/δ(h), the first term is zero. Using Condition 4.3 again, the second term
approaches 0 as K → ∞, uniformly in n. From this it follows that the left side of
the last display approaches 0 as n → ∞. The uniform convergence in (15.35) now
follows from this and (15.36).

Recall γ introduced in (15.32). Using Condition 4.3 once more, we can choose
h ∈ (0, 1) such that

sup
x∈D

∫
Rd

e2h‖v‖θ(dy | x) < eγ /4.

Recall the parameter n0 from Condition 15.9. Combining the last display with
(15.35), for h ∈ (0, 1) there is n1 ∈ [n0,∞) such that for all n ≥ n1,

sup
x∈D

∫
Rd

f 2n,h(v)θ(dy | x) < eγ /2. (15.37)

We now bound Sn
1T (V̄ ) using

e−2n‖V̄ ‖∞Sn
1T (V̄ ) ≤ Ex0

[
1{τ n>T }

Nn−1∏
i=0

fn,h(vi (X
n
i ))

]

≤ (
Ex0

[
1{τ n>T }eγ Nn/2])1/2

(
Ex0

[
Nn−1∏
i=0

e−γ /2 f 2n,h(vi (X
n
i ))

])1/2

,

where the first inequality uses (15.34) and the second follows from the Cauchy-
Schwarz inequality. Note that (15.37) implies Um

.= ∏m−1
i=0 e−γ /2 f 2n,h(vi (X

n
i )), m ∈

N, and U0
.= 1 is a nonnegative supermartingale, and therefore

Ex0

[
Nn−1∏
i=0

e−γ /2 f 2n,h(vi (X
n
i ))

]
= Ex0 [UNn ] ≤ 1.

Thus using 1{τ n>T } ≤ eγ Nn/2−γ Tn/2, for all n ≥ n1,

e−2n‖V̄ ‖∞Sn
1T (V̄ ) ≤ (

Ex0

[
1{τ n>T }eγ Nn/2

])1/2
≤ e−γ nT/4

(
Ex0

[
eγ Nn ])1/2

≤ e−γ nT/4
(
Kγ e

cnT0
)1/2

,

where the last inequality uses (15.32). Thus



432 15 Performance of an IS Scheme Based on a Subsolution

lim sup
n→∞

1

n
logSn

1T (V̄ ) ≤ −γ T

4
+ cT0

2
+ 2‖V̄ ‖∞.

In proving Theorem 15.10, we can assume without loss of generality that

K
.= − lim sup

n→∞
1

n
logSn(V̄ ) < ∞.

Choosing T large enough that γ T
4 − cT0

2 − 2‖V̄ ‖∞ > K , we thus have

lim sup
n→∞

1

n
logSn(V̄ ) ≤ lim sup

n→∞
1

n
log

(
Sn

1T (V̄ ) + Sn
2T (V̄ )

)

≤ max

{
lim sup
n→∞

1

n
logSn

1T (V̄ ), lim sup
n→∞

1

n
logSn

2T (V̄ )

}

= lim sup
n→∞

1

n
logSn

2T (V̄ ).

Completion of the proof. We can now focus on the finite-time problem associated
with Sn

2T (V̄ ), using very much the same ideas as those of the last section. Letting
Nn
T

.= Nn ∧ �nT �, we can rewrite Sn
2T (V̄ ) as

Sn
2T (V̄ )

.= Ex0

⎡
⎣1{Xn

Nn
T
∈B}

Nn
T −1∏
i=0

e〈DV̄ (Xn
i ),vi (X

n
i )〉
⎤
⎦ .

Recalling (15.30), we see that

γ (dy|x) .= e〈DV̄ (x),y〉−H(x,DV̄ (x))θ(dy|x)

defines a stochastic kernel on R
d given R

d . Let v̌i , X̌ n
i+1, i = 0, 1, . . . , �nT �, be

defined as below (15.6). Then just as (15.5) became (15.7),Sn
2T (V̄ ) can be written as

Sn
2T (V̄ ) = Ex0

⎡
⎣1{X̌ n

Ňn
T
∈B}

Ň n
T −1∏
i=0

eH(X̌ n
i ,DV̄ (X̌ n

i ))

⎤
⎦ ,

where τ̌ n, Ň n, Ň n
T are the analogues of τ n, Nn, Nn

T , defined in terms of the sequence
X̌ n . Applying the representation in (4.4) as in (15.9) yields

−1

n
logSn

2T (V̄ ) = 1

n
inf{μ̄n

i }
Ex0

⎡
⎣

N̄ n
T −1∑
i=0

−H
(
X̄ n
i , DV̄

(
X̄ n
i

))

+
�nT �−1∑
i=0

R
(
μ̄n
i (·)

∥∥γ (·|X̄ n
i )
)+ ∞1{

X̂ n∈Cc
T

}
]

,
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where N̄ n
T is the analogue of N

n
T defined in terms of the sequence {X̄ n

i },CT is the set of
trajectories inD([0, T ] : Rd) that enter B at some time t ≤ T without having entered
A previously, and X̂ n is the piecewise constant interpolation of {X̄ n

i } as defined in
(15.21). We note that without loss of generality, the second sum in the last display
can be replaced by a sum up to N̄ n

T − 1 by replacing μ̄n
i with

μ̄n
i (·)1{i<N̄ n

T } + γ (·|X̄ n
i )1{i≥N̄ n

T }.

Wenowshow that for every sequence of controls and controlled processes {(μ̄n
i , X̄

n
i )},

lim inf
n→∞

1

n
Ex0

⎡
⎣

N̄ n
T −1∑
i=0

−H
(
X̄ n
i , DV̄

(
X̄ n
i

))
(15.38)

+
N̄ n
T −1∑
i=0

R
(
μ̄n
i (·)

∥∥γ (·|X̄ n
i )
)+ ∞1{

X̂ n∈Cc
T

}
⎤
⎦ ≥ V (x0) + V̄ (x0).

For this, once more a subsequential argument implies we can replace lim inf by
lim sup, and then we can assume without loss of generality that

sup
n∈N

1

n
Ex0

⎡
⎣

N̄ n
T −1∑
i=0

R
(
μ̄n
i (·)

∥∥γ (·|X̄ n
i )
)
⎤
⎦ = sup

n∈N
1

n
Ex0

[�nT �−1∑
i=0

R
(
μ̄n
i (·)

∥∥γ (·|X̄ n
i )
)]

< ∞

and X̂ n ∈ CT a.s. for every n ∈ N.
Using the fact that DV̄ is bounded, exactly as in the proof of Lemma 15.12, we

see that

sup
n

1

n
Ex0

[
n−1∑
i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )
)]

< ∞.

From this, the property that τ̄ n ≤ T a.s., and Lemmas 15.12 and 4.12, we get as
before that {

(X̄ n, L̄n, μ̄n, λn, τ̄ n)
}
n∈N

is tight. Moreover, the uniform integrability estimate in (4.8) holds, and every
weak limit (X̄ , L̄, μ̄, λ, τ̄ ) has the properties noted in (15.19). By taking a con-
vergent subsequence, we can assume that (X̄ n, L̄n, μ̄n, λn, τ̄ n) converges weakly
to (X̄ , L̄, μ̄, λ, τ̄ ). Since X̄(τ̄ ) ∈ B a.s., X̄(0) /∈ B, and B is closed, it follows that
τ̄ > 0 a.s. Also, since τ̄ n ≤ T a.s., we have τ̄ ≤ T . Using Fatou’s lemma and aminor
modification of the argument in (4.18), we obtain
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lim inf
n→∞ Ex0

⎡
⎣1

n

N̄n
T −1∑
i=0

R
(
μ̄n
i (·)

∥∥θ(·|X̄ n
i )
)
⎤
⎦

= lim inf
n→∞ Ex0

[
τ̄ n R

(
1

τ̄ n
μ̄n(dy × (dt ∩ [0, τ̄ n]))

∥∥∥∥ 1

τ̄ n
λn(dy × (dt ∩ [0, τ̄ n]))

)]

≥ Ex0

[
τ̄ R

(
1

τ̄
μ̄(dy × (dt ∩ [, τ̄ ]))

∥∥∥∥1τ̄ λ(dy × (dt ∩ [0, τ̄ ]))
)]

= Ex0

[∫
[0,τ̄ ]

R
(
μ̄(·|t) ∥∥θ(·|X̄(t))

)
dt

]

≥ Ex0

[∫
[0,τ̄ ]

L(X̄(t), ˙̄X (t))dt

]
. (15.39)

Also, using (15.15), we have

1

n
Ex0

N̄ n
T −1∑
i=0

∫
Rd

log

(
dθ(·|X̄ n

i )

dγ (·|X̄ n
i )

(y)

)
μ̄n
i (dy) − 1

n
Ex0

N̄ n
T −1∑
i=0

H
(
X̄ n
i , DV̄

(
X̄ n
i

))

= −1

n
Ex0

N̄ n
T −1∑
i=0

∫
Rd

〈
DV̄ (X̄ n

i ), y
〉
μ̄n
i (dy)

= −Ex0

∫
Rd×[0,τ̄ n ]

〈
DV̄ (X̂ n(t)), y

〉
L̄n(dy × dt). (15.40)

Using the uniform integrability of L̄n as in (15.23), we have

lim inf
n→∞ −Ex0

∫
Rd×[0,τ̄ n ]

〈
DV̄ (X̂ n(t)), y

〉
L̄n(dy × dt)

= −Ex0

∫
[0,τ̄ ]

〈DV̄ (X̄(t)), ˙̄X (t)〉dt.

Combining (15.40) with (15.39) and using (15.14) [with γ n
i replaced by γ ], we have

lim sup
n→∞

1

n
Ex0

⎡
⎣−

N̄ n
T −1∑
i=0

H
(
X̄ n
i , DV̄

(
X̄ n
i

))+
N̄ n
T −1∑
i=0

R
(
μ̄n
i (·)

∥∥γ (·|X̄ n
i )
)+ ∞1{

X̂ n∈Cc
T

}
⎤
⎦

≥ Ex0

[
−
∫ τ̄

0

〈
DV̄

(
X̄(t)

)
, ˙̄X (t)

〉
dt +

∫ τ̄

0
L(X̄(t), ˙̄X (t))dt

]
.

Note that CT is a closed set in C ([0, T ] : Rd), and so X̄ ∈ CT a.s. Also recall that
X̄(τ̄ ) ∈ B a.s. as well. From these observations and the definition of V , it follows that

∫ τ̄

0
L(X̄(t), ˙̄X (t))dt ≥ V (x0).
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By the chain rule,

−
∫ τ̄

0

〈
DV̄

(
X̄(t)

)
, ˙̄X (t)

〉
dt = V̄ (x0) − V̄ (X̄(τ ))

≥ V̄ (x0),

where the last inequality uses the fact that V̄ (x) ≤ 0 for all x ∈ B. Combining the
last two displays, we have (15.38), and the result follows. �

Remark 15.17 The argument used for the escape time problem consists in showing
that for large enough T < ∞, the contribution to the second moment due to escape
after time T is negligible, and then using the same arguments as those used for
the finite-time problem. Because of this, it is straightforward to show that natural
analogues of Theorem 15.14, which shows how one can let δ → 0 as n → ∞ for
mollified piecewise classical subsolutions; Remark 15.15, which gives nonasymp-
totic bounds on the second moment; and Remark 15.16, which gives a limit for the
normalized logarithm of the second moment rather than a bound, all hold here as
well.

We close this section by giving a set of sufficient conditions underwhichCondition
15.9 holds. Recall that ξx was defined as a solution to the ODE (15.2) with initial
condition x . We assume uniqueness of the solution to the ODE in this condition, but
if this does not hold, then one can formulate an analogous condition that requires all
solutions to be attracted to x∗. The proof of the proposition is similar to that of [140,
Lemma 4.2.2], and thus only a sketch is provided. For a set K ⊂ R

d , let d(y, K )
.=

inf[‖y − x‖ : x ∈ K ], and for sets K1 and K2, let d(K1, K2)
.= inf[d(y, K2) : y ∈

K1]. In the statement of the condition, Ix,T (φ) equals IT (φ) if φ(0) = x and is ∞
otherwise. LetC ([0,∞) : Rd) denote the space of continuous functions from [0,∞)

to R
d . This is a Polish space when equipped with the topology of local uniform

convergence (i.e., uniform convergence on every compact interval).

Condition 15.18 The following properties hold.

(a) The map x �→ ξx is continuous from R
d to C ([0,∞) : Rd).

(b) Let Dκ .= {y ∈ R
d : d(y, D) < κ}. For some κ > 0 and all x ∈ Dκ , ξx (t) → x∗

as t → ∞.
(c) For every T ∈ (0,∞), M ∈ (0,∞), and compact K ⊂ R

d ,

∪x∈K {φ ∈ C ([0, T ] : Rd) : IT (φ) ≤ M, φ(0) = x}

is a compact subset of C ([0, T ] : Rd).
(d) For every T < ∞, the sequence {Xn} satisfies the large deviation upper bound

on C ([0, T ] : Rd) with rate functions {Ix,T , x ∈ R
d}, uniformly on compacts (in

the sense of Definition 1.11).
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Proposition 15.19 Assume Conditions 4.3 and 15.18. Then there exist c, T0 ∈
(0,∞) and n0 ∈ N such that for all n ≥ n0, T < ∞, and x ∈ D, one has

Px {τ n > T } ≤ exp{−cn(T − T0)}.

Proof Fix κ̄ ∈ (0, κ) such that d(B(x∗, κ̄), Ac) > κ̄ , where for δ > 0, B(x∗, κ̄) is
the open ball of radius δ centered at x∗. For x ∈ R

d , let

T (x)
.= inf{t > 0 : ξx (t) ∈ B(x∗, κ̄)}.

Since x �→ ξx is continuous, the map x �→ T (x) is upper semicontinuous, and con-
sequently T0

.= maxx∈Dκ̄ T (x) < ∞. Define the closed set

Cκ̄ (T0)
.= {φ ∈ C ([0, T0] : Rd) : φ(t) ∈ Dκ̄ \ B(x∗, κ̄) for all t ∈ [0, T0]}.

Note that Cκ̄ (T0) ∩ {ξx(· ∧ T0), x ∈ Dκ̄} = ∅. Combining this with the fact that
for x ∈ R

d , L(x, v) > 0 if v �= ∫
Rd yθ(dy|x), we see that IT0(φ) > 0 for every

φ ∈ Cκ̄ (T0). We claim that for some r > 0,

IT0(φ) > r for all φ ∈ Cκ̄ (T0).

Indeed, if the claim is false, by part (c) of Condition 15.18 there is φ∗ ∈ Cκ̄ (T0) such
that IT0(φ

∗) = 0, which is a contradiction.
For a < ∞, x ∈ R

d , and T < ∞, let

Φx,T (a)
.= {

φ ∈ C ([0, T ] : Rd) : φ(0) = x, IT (φ) ≤ a
}
.

Note that for all x ∈ D, Φx,T0(r) ∩ Cκ̄ (T0) = ∅, and therefore φ ∈ Φx0,T0(r) that
implies φ(t) enters B(x∗, κ̄) for some t ∈ [0, T0]. Also, since d(B(x∗, κ̄), Ac) ≥ κ̄ ,
and d(D, (Dκ̄ )c) ≥ κ̄ , it follows that

d(Xn(· ∧ T0),Φx0,T0(r)) ≥ κ̄, on the set {τ n > T0}.

Using part (e) of Condition 15.18, it follows that there exists n0 ∈ N such that for
every x0 ∈ D and n ≥ n0,

Px0{τ n > T0} ≤ Px0
{
d(Xn(· ∧ T0),Φx0,T0(r)) ≥ κ̄

} ≤ exp{−nr/2}.

A standard argument using the Markov property now shows that for all such n and
x0,

Px0{τ n > T } ≤ exp

{
−nr

2

(
T

T0
− 1

)}
,

and the result follows. �
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15.4 Notes

The theory presented in this chapter is based on similar results that have appeared
in the papers [103, 105, 110, 114], but it improves on them in various ways. The
improvements include limits on the normalized log of the second moment of the esti-
mator, where previously only one-sided bounds had been obtained, nonasymptotic
bounds, etc. The first paper to use the convenient double change of measure for the
analysis of importance sampling was [112].



Chapter 16
Multilevel Splitting

An alternative to importance sampling in estimating rare events and related func-
tionals is multilevel splitting. In the context of estimating probabilities of a set C
in path space, the multilevel splitting philosophy is to simulate particles that evolve
according to the law of {Xi }, and at certain times split those particles considered
more likely to lead to a trajectory that belongs to the set C . For example, C might
be the trajectories that reach some unlikely set B before hitting a likely set A, after
starting in neither A nor B. In this case, the splitting will favor migration toward
B. Splitting can also be used to enhance the sampling of regions that are important
for a given integral. In all cases, particles which are split are given an appropriate
weighting to ensure that the algorithm remains unbiased.

Broadly speaking, there are two types of multilevel splitting algorithms, those
with killing and those without, where stopping is distinguished from killing. In the
example just mentioned, particles are stopped upon entry into either A or B. Killing
involves abandoning a particle prior to entry into either A or B, presumably because
continuation of the trajectory is not worth the computational effort. Care must be
taken that any killing will not introduce bias.

To the authors’ knowledge, there is only one type of multilevel splitting algo-
rithm without killing—the splitting algorithm (see [148] for further references). The
standard implementation of this algorithm requires a sequence of sets CJ ⊃ CJ−1 ⊃
· · · ⊃ C0, splitting thresholds called splitting thresholds, and a sequence of posi-
tive integers RJ−1, . . . , R0, splitting rates called splitting rates. A single particle
is started at the initial position x0 ∈ CJ\CJ−1 and evolves according to the law of
{Xi }. When a particle enters a set C j for the first time, it produces R j − 1 offspring.
After splitting has occurred, all particles evolve independently of each other. Each
particle is stopped according to whatever stopping rule is associated with {Xi }, and
the algorithm terminates when all the particles generated have been stopped. The
probability of interest is approximated by N/

∏J−1
i=0 Ri , where N is the number of

particles simulated whose trajectories belong to C . A more general version of this
algorithm lets the splitting rates Ri take nonnegative real values, in which case the
number of offspring is randomized.

© Springer Science+Business Media, LLC, part of Springer Nature 2019
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Events, Probability Theory and Stochastic Modelling 94,
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A large deviation analysis of ordinary splitting is given in [76], which shows that it
performs quite well when the thresholds are chosen properly. Although the splitting
algorithm can be very effective, there is one clear source of inefficiency in dealing
with rare events. The vast majority of the particles generatedwill not have trajectories
that belong to the set C , and so much of the computational effort is devoted to
generating trajectories that do not make any direct contribution. Multilevel splitting
algorithms with killing were introduced as a way to mitigate this problem. One
of the first such algorithms was the RESTART (Repetitive Simulation Trials After
Reaching Threshold) algorithm, introduced in [241, 242] (for others, see [208] and
the references therein). Its implementation is identical to that of the standard splitting
algorithm except that particles are split every time they enter a splitting threshold
(and not just at the first entrance time, as with the standard splitting scheme), and
particles are killed when they exit the splitting threshold in which they were born.
The initial particle is assumed to be born in the set CJ , which by convention is equal
to the state space of the process {Xi }, and so this particle is never killed.

The standard version of the RESTART algorithm requires that the splitting rates
be integer-valued and that the process not cross more than one splitting threshold at
each time step. However, its definition implicitly allows one to design an algorithm in
which the process can cross more than one threshold in each time step. The issue of
allowing the process to cross more than one threshold in any given time step was first
addressed explicitly in the context of the DPR (Direct Probability Redistribution)
algorithm, introduced in [152, 153].

In this chapter we will develop a theory for multilevel splitting, and in particular
the RESTART/DPR algorithm, which parallels the theory for importance sampling
that was developed in the last two chapters. Since the algorithm is notationally much
more complicated than importance sampling, to simplify the presentationweconsider
only the case of estimating small probabilities, and refer to [77] for expected values.

Although the statements of performance analysis for splitting are often simi-
lar to those for importance sampling, it should be noted that there is an impor-
tant distinction between the types of subsolution required for the two methods. For
importance sampling, one needs functions that are classical-sense subsolutions. In
contrast, splitting-type schemes require only a subsolution in a weak sense (see
Definition16.12). Indeed, this is in some sense expected, since importance sampling
uses the gradient of the subsolution to construct the algorithm, while splitting uses
only the function itself. For some problems it is easier to construct weak-sense sub-
solutions, in which case splitting-type schemes can be easier to apply. These and
related issues will be discussed and illustrated by examples in Chap.17.

When comparing importance sampling and splitting, one must recognize that
the work used to produce samples need not be the same, and in fact, depending
on circumstances, one method can be strongly favored over the other. However,
when one uses subsolutions to design splitting schemes, the comparison simplifies
somewhat, especially if the performance measure for importance sampling is the
exponential decay rate. Suppose one were to consider, say, a work-normalized rel-
ative error [see (16.21)]. We will show that the computing cost of splitting grows
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subexponentially when a subsolution is used. Thus the main issue in comparing
splitting to importance sampling is to compare decay rates. This assumes that the
implementation of importance sampling is relatively straightforward, i.e., given a
subsolution, it is easy to compute the needed alternative sampling distribution. Since
splitting simulates using only the original dynamics, it may be preferred when this
is not the case, as in some multiscale models.

In the rest of this chapter, unless explicitly stated otherwise, by a splitting algo-
rithm we mean the RESTART/DPR algorithm. We focus on this version of splitting,
since in our experience it is usually preferable to ordinary splitting, and we will just
note that analogous versions of all the statements presented here apply to ordinary
splitting [76], and with much easier proofs. In Sect. 16.3, we derive formulae for the
computational cost and second moment of the algorithm. These will be used in the
asymptotic analysis, and Sect. 16.4 considers the asymptotic problem. In Sect. 16.4,
a method for designing RESTART/DPR algorithms based on the subsolution frame-
work is developed. Expressions for the asymptotic work-normalized error of such
algorithms are derived using the formulas developed in the previous section, and
subsolutions that lead to asymptotically optimal performance are identified. The for-
mulation of splitting that is appropriate for finite-time problems of the same type
as that considered in the context of importance sampling in Chaps. 14 and 15 is
presented in Sect. 16.5.

16.1 Notation and Terminology

Let {Xi }i∈N0
be a Markov chain with state space R

d for some d ∈ N. Although
we will later consider processes {Xi }i∈N0

as elements of a sequence that satisfies a
large deviation property, for notational simplicity the large deviation index is initially
suppressed. Until Sect. 16.5, we focus on estimating

Px0{XM ∈ B}, (16.1)

where M
.= inf{i : Xi ∈ A ∪ B}, and as in Sect. 14.1, A is open, B is closed, and

A ∩ B = ∅. Although not necessary, to simplify some arguments we will assume as
in Remark15.8 that (A ∪ B)c is bounded and that its closure is denoted by D.

The following notation will be used. Branching processes, which take values in
∪∞
n=1(R

d)n , are denoted by {Zi }i∈N0
. Each branching process has anN-valued process

{Ni }i∈N0 associated with it, where Ni equals the number of particles present in the
branching process at time i . As will be explained later in the section, particles are
born through branching of existing particles when they reach certain thresholds,
while particles die when they exit certain regions.

For each i ∈ N0 and j = 1, . . . , Ni , Zi, j denotes the state of the j th particle at
time i . We also define a measure on Rd associated with such a branching process by
a random measure associated with branching processes



442 16 Multilevel Splitting

δ̄Zi

.=
Ni∑

j=1

δZi, j .

Note that this is typically not a probability measure, and it is referred to as the
unnormalized empirical measure. If Zi, j is in either A or B, then it is killed at the
next time step, and so will be counted only once in this measure. Note that this killing
is distinct from the killing introduced for algorithmic efficiency.

Splitting schemes are often defined in terms of “importance functions.” Later
on, these importance functions will be identified with subsolutions translated by a
constant, and we use U to denote such an object.1 To be precise, an importance
function is a continuous mapping U : Rd → R that is bounded from below. As we
will see, it is only the relative values of U (x) at different points that matter, and so
we assume for simplicity of notation that U (x) ≥ 0 for all x ∈ R

d . There is also a
parameter Δ ∈ (0,∞) such that R

.= eΔ ∈ {2, 3, . . .}, and we define closed sets C j

by
C j

.= {x ∈ D : U (x) ≤ jΔ}

for 0 ≤ j ≤ J − 1
.= �U (x0)/Δ� − 1 and CJ

.= D. Note that x0 /∈ CJ−1. We also
define a piecewise constant function Ū by setting Ū (x) = 0 for x ∈ C0 and jΔ if
x ∈ C j\C j−1

Ū (x) = jΔ for x ∈ C j\C j−1, j − 0, 1, . . . , J,

where we follow the convention C−1 = ∅. After we introduce the large deviation
scaling, it will be possible to obtain a collection of importance functions correspond-
ing to a collection of values of the large deviation index from a single “generating”
function in a convenient manner. While it would be possible to allow the splitting
rate R or the spacing Δ between levels to depend on j , we will not do so once this
scaling is used, and so to simplify notation, we have chosen not to do so here.

Later on,U will be derived froma subsolution V̄ that satisfies a boundary condition
(i.e., V̄ (x) ≤ 0 for x ∈ B). One possibilitywill be to let c

.= min[V̄ (x) : x ∈ B], with
c ≤ 0 due to the boundary condition, and then let U (x) be equal to [V̄ (x) − c] ∨ 0.
In this case, as illustrated in Fig. 16.1, C0 ∩ B may be smaller than B. Although the
process stops when B is entered, if it crosses into C1 or C2 without entering B, the
branching will continue. Thus the number of thresholds crossed before entering B
depends on where B is entered. An alternative is to take U (x) equal to V̄ (x) ∨ 0, in
which case V̄ (x) ≤ 0 for x ∈ B implies B ⊂ C0, as in Fig. 16.2. The rate of decay
of the second moment will be the same for both schemes, though one might expect
slightly better performance from the first scheme.

Given an importance function U and x ∈ D, let σ(x) be the unique integer j
such that x ∈ C j\C j−1 unique integer j such that x ∈ C j\C j−1. We let Ūk denote

1While in the usual definition, importance functions increase as one approaches B, with the iden-
tification with subsolutions it will be convenient to have them decrease.
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B

x0

A

C1 C2

C0

CJ−1

Fig. 16.1 Splitting based on [V̄ (x) − c] ∨ 0

B

x0

A

C1 C2

C0

CJ−1

Fig. 16.2 Splitting based on V̄ (x) ∨ 0

the common value of Ū (x) for all x such that σ(x) = k Ū (x) if σ(x) = k (i.e.,
x ∈ Ck\Ck−1), and note that with this notation,

e−Ū (x) = e−Ūσ(x) = e−Ūk = R−k for all x ∈ Ck\Ck−1, k = J, J − 1, . . . , 0. (16.2)
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With ordinary splitting, weights are assigned to particles so that a unit mass asso-
ciated with a single particle starting at any location is partitioned evenly among
the descendants at each splitting. Thus (16.2) are natural weightings for the given
splitting rates, in that the fraction of the mass associated with each such descendant
after k thresholds are crossed is R−k . The issue is more subtle with RESTART, since
particles reaching B can be the result of more splitting events than the number of
intervening thresholds (due to multiple reentries of a particle into a splitting thresh-
old). Nonetheless, owing to the killing, R−k is still the correct weight to apply, as
will be shown in the proof of unbiasedness.

In the standard version of the RESTART algorithm, splitting is fairly simple.
Every time a particle enters a splitting threshold C j , the deterministic number R − 1
of offspring are generated, so that including the parent, R particles result. Also,
particles are destroyed when they exit the splitting threshold in which they are born,
and thus each particle has an integer attached to it to record this splitting threshold.
These are referred to as the support thresholds of the particles. While in general, one
could allow the number of particles to be random and thereby accommodate arbitrary
R ∈ (0,∞), there seems to be little practical benefit in doing so, and we restrict to
the case in which R is an integer. In this chapter we will consider multilevel splitting,
which accounts for the fact that the particles can jumpmore than one level in a single
step. In such a case, different support thresholds must be assigned to the offspring. In
order to analyze this mathematically, it is convenient to use the following notation.
Let S be the set of elements q ∈ N

∞
0 such that q j = 0 for all sufficiently large j .

Vectors q ∈ S will be referred to as splitting vectors.
Consider a particle in a multilevel splitting algorithm that moves from C j\C j−1

toCk\Ck−1, k < j , in a given time step. Then splitting will occur, and all offspring as
well as the original parent particle will be located inCk\Ck−1. The support threshold
of each new particle will be an element of {k, . . . , j − 1}, and numbers of offspring
and their support thresholds will be independent of all past data except through the
values of j and k. It follows that the splitting of a particle is equivalent to assigning
to each particle that splits a vector q ∈ S. The number of new particles will be equal
to

∑∞
l=0 ql , and precisely ql of the new particles will be given support threshold l.

Given that each particle generates R − 1 descendants upon moving fromC j+1\C j to
C j\C j−1, it is clear that when moving from C j\C j−1 to Ck\Ck−1, we should use the
splitting vector q( j, k) defined by ql( j, k)

.= 0 if either l ≥ j or l < k, and splitting
vectors

ql( j, k)
.= (R − 1)R j−l−1 if k ≤ j − 1 and k ≤ l ≤ j − 1. (16.3)

Note that
∑

l∈N0
ql( j, k) = R j−k − 1, and so including the original particle, exactly

R j−k particles are produced. We take ql( j, k) = 0 for all l if j ≤ k.
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16.2 Formulation of the Algorithm

To define the algorithm, we assume the following condition. Conditions that imply
the finiteness of M are given in Proposition15.19.

Condition 16.1 M is almost surely finite.

Following the standard logic of acceleration methods generally, the hope is that
with a well-chosen importance function U (x), the variance of the estimator is made
lower than that of standard Monte Carlo by building in information regarding the
underlying process and the event of interest.

In order to analyze the algorithm, we will need some recursive formulas. Observe
that if we examine a generic particle at some time after the algorithm has started, then
it will be in a set of the formC j\C j−1 and have a killing threshold in { j, . . . , J }. For a
Markov property to hold, if we imagine starting the process with an initial condition
in C j\C j−1, j < J , then the support threshold is part of the state variable, and so
we must also assign a distribution to the support threshold that is consistent with
the dynamics prior to entering C j\C j−1. The distribution of the support threshold of
the initial particle will be denoted by I , and will be referred to as the initializing
distribution. The correct form for such initializing distributions will be identified
later on.

The estimator of (16.1), rewritten for a general initial condition x0 (i.e., one not
necessarily in CJ\CJ−1), is

∞∑

i=0

∫

Rd

1B(x)eŪ (x)−Ū (x0)δ̄Zi (dx).

We recall that particles are killed the step after entering A or B, and so contribute
to the sum for at most one time index. The weighting term eŪ (x)−Ū (x0) is important
when the number of thresholds crossed before reaching B depends on where the
particle is located in B, as in Fig. 16.1.

The splitting thresholds, splitting rates, and splitting vectors of the algorithm
will be defined using importance functions U and initialization distributions I as
described previously. In Theorem 16.3 it will be shown that the algorithm is unbiased
when the initializing distributions have a prescribed form thatwill be identified below.
The algorithm, with the dependence on these quantities suppressed in the notation,
can be written in pseudocode as follows.
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RESTART/DPR Algorithm

Variables:

i current time
Ni number of particles at time i
Zi, j position of j th particle at time i
Ci, j current threshold of j th particle at time i
Li, j support threshold of j th particle at time i
γ (at termination) an estimator of Px0 {XM ∈ B}
j, k, l counting variables
Yi, j free variables

Initialization Step:
N0 = 1, Z0,1 = x0, C0,1 = σ(x0), γ = 0, i = 0
generate a random variable L with distribution I
L0,1 = L

Main Algorithm:
while Ni �= 0

Ni+1 = 0
for j = 1, . . . , Ni

Test to see if the particle is not killed due
to stopping:
if Zi, j /∈ A ∪ B

generate a random variable Yi, j with
distribution P{Yi, j ∈ dy} = P{Xi+1 ∈ dy|Xi = Zi, j }

Test to see if the particle is not killed
due to threshold:
if σ(Yi, j ) ≤ Li, j

Ni+1 = Ni+1 + 1
Zi+1,Ni+1 = Yi, j
Ci+1,Ni+1 = σ(Yi, j )
Li+1,Ni+1 = Li, j

end

Test to see if particle should be branched:
if σ(Yi, j ) < Ci, j

for k = 1, . . . , J
for l = 1, . . . , qk (Ci, j , σ (Yi, j ))

Ni+1 = Ni+1 + 1
Zi+1,Ni+1 = Yi, j
Ci+1,Ni+1 = σ(Yi, j )
Li+1,Ni+1 = k

end
end

end
end

Test to see if the particle is stopped:
if Zi, j ∈ A ∪ B

γ = γ + 1B (Zi, j )e
Ū (Zi, j )

end
end
i = i + 1

end
γ = e−Ū (x0)γ
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Remark 16.2 The pseudocode just given presents a “parallel” version of the algo-
rithm, in that all particles for a given threshold are split and then simulated either
to the next threshold, the stopping criteria, or killing. Alternatively, one can imple-
ment a “sequential” version in which a particle is simulated until it either reaches the
stopping criteria or is killed, recording where appropriate the number of additional
particles that remain to be simulated for each threshold. After the current particle
has been simulated to termination, the algorithm reverts to the highest threshold for
which particles remain to be simulated, and starts a new particle.

Note that the output of the algorithm is indeed equal to the desired quantity

γ = e−Ū (x0)
∞∑

i=0

∫

Rd

1B(y)eŪ (y)δ̄Zi (dy). (16.4)

An algorithm resulting from an importance function U , the collection of splitting
vectors q( j, k), and an initializing distribution I will be said to be unbiased if

Ex0

[
γ
] = Px0{XM ∈ B}.

Recall that the splitting rates R are defined in terms the level Δ > 0 that was used
to partition U through R = eΔ. Define the vector

ql
.=
{
1, l = J,
(R − 1)RJ−l−1, 0 ≤ l ≤ J − 1.

(16.5)

In the setting of ordinary splitting, where particles are branched only when they enter
a threshold for the first time, ql is the number of descendants that would be born in
threshold l if all particles descending from a single particle in threshold J were to
make it to l. We then define probability distributions λk on {k, . . . , J } by initializing
distribution for splitting

λk(l)
.= ql/R

J−k =
{
Rk−J , l = J,
(R − 1)Rk−l−1, k ≤ l ≤ J − 1.

(16.6)

We extend the definition ofλk to {0, . . . , J } by settingλk(l) = 0 for l = 0, . . . , k − 1.

Theorem 16.3 Fix x0 ∈ (A ∪ B)c and suppose that X0 = x0. Let U be an impor-
tance function, and assume Condition 16.1. If the initializing distribution is I =
λσ(x0) and the splitting vectors q( j, k) are as in (16.3), then the resulting splitting
algorithm is unbiased.

The proof of Theorem16.3 relies on the following lemma. Recall that as in the
pseudocode, support threshold of particle m at time i
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Li,m
.= support threshold of particle m at time i,

and that δ̄Zi

.= ∑Ni
m=1 δZi,m .

Lemma 16.4 Assume Condition16.1 and let h be a nonnegative function onRd . Let
h̄(x) = h(x)eŪ (x) and let i ∈ N0 be given. For a splitting scheme with I = λσ(x0)

and q( j, k) as in (16.3),

e−Ū (x0)Ex0

[
Ni∑

m=1

h̄(Zi,m)1{Li,m=l}
]

= Ex0

[
h(Xi )λσ(Xi )(l)1{M≥i}

]
, l = 0, 1, . . . , J,

and

e−Ū (x0)Ex0

[∫

Rd

h̄(y)δ̄Zi (dy)

]

= Ex0

[
h(Xi )1{M≥i}

]
.

Proof Weassume thatM > 0, since otherwise, the lemma is trivial. The second result
is obtained by summing the first one over l. Recall that Zi, j records the location of
particle number j at time i . We will prove the first display by induction on i . The
result holds for i = 0, since in this case there is only a single particle with support
threshold distribution λσ(x0)(l), and thus

e−Ū (x0)Ex0

[
h̄(Z0,1)1{L0,1=l}

]
= e−Ū (x0)h̄(x0)λσ(x0)(l)

= Ex0

[
h(X0)λσ(X0)(l)1{M≥0}

]
.

Suppose the result has been proved up to some time i∗. We then claim that

e−Ū (x0)Ex0

⎡

⎣
Ni∗+1∑

j=1

h̄(Zi∗+1, j )1{Li∗+1, j=l}
⎤

⎦

= e−Ū (x0)Ex0

[

eŪσ(Z0,1)−Ūσ(Z1,1) EZ1,1

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]]

. (16.7)

Thus we currently have one particle located at x0, whose support threshold lies in
{σ(x0), . . . , J }. To prove the claim, wewill compute the above expectation by condi-
tioning on Y0,1 as it appears in the pseudocode, which, we recall, has the distribution
P{Y0,1 ∈ dy} = P{X1 ∈ dy|X0 = Z0,1}. It suffices to show that for all y ∈ R

d ,

Ex0

⎡

⎣
Ni∗+1∑

j=1

h̄(Zi∗+1, j )1{Li∗+1, j=l}

∣
∣
∣
∣
∣
∣
Y0,1 = y

⎤

⎦

= eŪσ(x0)−Ūσ(y) Ey

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

. (16.8)



16.2 Formulation of the Algorithm 449

Decomposing according to the support threshold, which has initializing distribution
λσ(x0)(·), we have

Ex0

⎡

⎣
Ni∗+1∑

j=1

h̄(Zi∗+1, j )1{Li∗+1, j=l}

∣
∣
∣
∣
∣
∣
Y0,1 = y

⎤

⎦

=
J∑

k=σ(x0)

λσ(x0)(k)Ex0,y,k

[Ni∗+1∑

m=1

h̄(Zi∗+1,m)1{Li∗+1,m=l}
]

, (16.9)

where Ex0,y,k denotes expected value given Z0,1 = x0, Y0,1 = y, and L0,1 = k. Sim-
ilarly, Ex,k will denote the expected value given Z0,1 = x and L0,1 = k. Note that by
the Markov property,

Ex0,y,k

[Ni∗+1∑

m=1

h̄(Zi∗+1,m)1{Li∗+1,m=l}
]

= Ex0,y,k

[
N1∑

r=1

EZ1,r ,L1,r

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]]

.

Thus the expression in (16.9) can be written as

J∑

k=σ(x0)

λσ(x0)(k)Ex0,y,k

[
N1∑

r=1

EZ1,r ,L1,r

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]]

. (16.10)

We now consider the expression (16.10) for the three cases σ(y) = σ(x0), σ(y) >

σ(x0), and σ(y) < σ(x0), and show that in each of these cases, the expression equals
the right side of (16.8).

Consider the first case σ(y) = σ(x0). In this case, neither killing nor branching
occurs, and so we have N1 = 1, Z1,1 = y, and L1,1 = L0,1 = k. Thus (16.10) can be
written as

J∑

k=σ(y)

λσ(y)(k)Ey,k

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

= Ey

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

,

which equals the right side of (16.8), since eŪσ(x0)−Ūσ(y) = 1.
Consider next the second case σ(y) > σ(x0). In this case, the particle has moved

to a thresholdwith higher index, and branching does not occur. Recall that the particle
is killed if and only if k < σ(y), since this means that the particle exited its support
threshold. Thus for σ(x0) ≤ k < σ(y), since N1 = 0,

Ex0,y,k

[
N1∑

r=1

EZ1,r ,L1,r

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]]

= 0.
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Also, if k ≥ σ(y), then N1 = 1 and L1,1 = L0,1 = k. Since λσ(x0)(k)/λσ(y)(k) =
Rσ(x0)−σ(y) = eŪσ(x0)−Ūσ(y) , (16.10) in this case can be written as

J∑

k=σ(y)

λσ(x0)(k)Ey,k

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

=
J∑

k=σ(y)

λσ(x0)(k)

λσ(y)(k)
λσ(y)(k)Ey,k

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

= eŪσ(x0)−Ūσ(y)

J∑

k=σ(y)

λσ(y)(k)Ey,k

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

,

which once more equals the right side of (16.8).
Finally, consider the case σ(y) < σ(x0). Here there is the possibility that new

particles are created (i.e., N1 > 1), though in all cases we have Z1,r = y. When
new particles are created, the associated thresholds are determined according to the
measure ql( j, k), and so using (16.3) and the definition (16.6), (16.10) takes the form

J∑

k=σ(x0)

λσ(x0)(k)

⎡

⎣
σ(x0)−1∑

j=σ(y)

q j (σ (x0), σ (y))Ey, j

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

+Ey,k

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]]

.

Since the sum
∑σ(x0)−1

j=σ(y) has no k dependence, using
∑J

k=σ(x0)
λσ(x0)(k) = 1, that for

j ∈ {σ(y), . . . , σ (x0) − 1},

q j (σ (x0), σ (y)) = eŪσ(x0)−Ūσ(y)λσ(y)( j),

and that for k ≥ σ(x0),

λσ(x0)(k) = eŪσ(x0)−Ūσ(y)λσ(y)(k),

this quantity can be written as

eŪσ(x0)−Ūσ(y)

J∑

k=σ(y)

λσ(y)(k)Ey,k

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]

.

Thus in this case as well, (16.10) equals the right side of (16.8). This completes the
proof of (16.8), and hence we have proved the claim in (16.7).

Thus from the induction hypothesis and (16.7), we have that
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e−Ū (x0)Ex0

⎡

⎣
Ni∗+1∑

j=1

h̄(Zi∗+1, j )1{Li∗+1, j=l}
⎤

⎦

= e−Ū (x0)Ex0

[

eŪσ(Z0,1)−Ūσ(Z1,1) EZ1,1

[
Ni∗∑

m=1

h̄(Zi∗,m)1{Li∗ ,m=l}
]]

= e−Ū (x0)Ex0

[
eŪσ(Z0,1) EZ1,1

[
h(Xi∗)λσ(Xi∗ )(l)1{M≥i∗}

]]

= Ex0

[
EZ1,1

[
h(Xi∗)λσ(Xi∗ )(l)1{M≥i∗}

]]

= Ex0

[
EX1

[
h(Xi∗)λσ(Xi∗ )(l)1{M≥i∗}

]]

= Ex0

[
h(Xi∗+1)λσ(Xi∗+1)(l)1{M≥i∗+1}

]
,

where the third equality uses the fact that Z1,1 and X1 have the same distribution,
and the last equality uses the Markov property of {Xi }. This completes the induction
step, and thus the lemma follows. �

Proof (of Theorem 16.3) Since by Condition16.1, M < ∞ a.s., we have

Ex0 [1B(XM)] = Ex0

[ ∞∑

i=0

1B(Xi )1{M=i}

]

=
∞∑

i=0

Ex0

[
1B(Xi )1{M=i}

]

=
∞∑

i=0

e−Ū (x0)Ex0

[∫

Rd

1B(x)eŪ (x)δ̄Zi (dx)

]

= Ex0

[ ∞∑

i=0

e−Ū (x0)
∫

Rd

1B(x)eŪ (x)δ̄Zi (dx)

]

,

where the second and fourth equalities use Tonelli’s theorem, and the third
uses Lemma16.4 applied to h = 1B and the observation that 1B(Xi )1{M=i} =
1B(Xi )1{M≥i}. The result now follows on observing that the term on the last line
equals Ex0

[
γ
]
. �

16.3 Performance Measures

Recall that to derive a recurrence equation, we had to consider initializing distribu-
tions of the form I = λσ(x0). In actual numerical implementation, it is always the
case that x0 ∈ CJ , which implies that all mass will be placed on l = J .

The performance of the algorithm depends on two factors: the second moment
(and hence variance) of the estimator and the computational cost of each
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simulation. To avoid discussion of any issues relating to the specific way the algo-
rithm is implemented in practice, the computational cost is defined to be

w =
∞∑

i=0

Ni , (16.11)

where Ni = ∫
Rd δ̄Zi (dx). Thus w is the sum of the lifetimes of all the particles

simulated in the algorithm. In this section, formulas for both the second moment
and computational cost are derived in terms of only the importance function and the
underlying process. Throughout it is assumed that U is an importance function and
Condition 16.1 is satisfied.

We begin by characterizing the mean of w.

Theorem 16.5 Assume Condition16.1. Then

Ex0 [w] = eŪ (x0)Ex0

[
M∑

i=0

e−Ū (Xi )

]

.

Proof With the third equality due to Lemma16.4 applied to h(x) = eŪ (x0)−Ū (x), an
application of Tonelli’s theorem gives

Ex0 [w] = Ex0

[ ∞∑

i=0

∫

Rd

δ̄Zi (dx)

]

=
∞∑

i=0

Ex0

[∫

Rd

δ̄Zi (dx)

]

=
∞∑

i=0

eŪ (x0)Ex0

[
e−Ū (Xi )1{M≥i}

]

= eŪ (x0)Ex0

[ ∞∑

i=0

e−Ū (Xi )1{M≥i}

]

= eŪ (x0)Ex0

[
M∑

i=0

e−Ū (Xi )

]

.

�

Next note that the following bounds hold for allU , all 0 ≤ k ≤ l < j ≤ J , 0 ≤ k ≤
m < j ≤ J . Since ql( j, k) as defined in (16.3) equals [R j−l − R j−l−1], it follows
that

(ql( j, k))2 − ql( j, k) ≤ [R j−l − R j−l−1]2,
ql( j, k)qm( j, k) = [R j−l − R j−l−1][R j−m − R j−m−1]. (16.12)
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We can now give bounds for the second moment of the splitting estimator. LetS(Ū )

denote Ex0 [γ 2] when Ū is used to design the splitting scheme.

Theorem 16.6 Assume Condition16.1. Then for all x0 ∈ (A ∪ B)c,

S(Ū ) ≤ e−Ū (x0)Ex0

[
M∑

i=1

eŪ (Xi−1)
[
PXi {XM ∈ B}]2

]

+ e−Ū (x0)Ex0

[
eŪ (XM )1B(XM)

]
. (16.13)

Proof Recall that M is the first entry time of the set A ∪ B ⊂ D. First consider the
case in which there is T < ∞ such that M ≤ T Px0 -a.s. Let W (x)

.= eŪ (x)Ex [γ 2]
with γ as in (16.4), and let s(x, j; k), k = 0, . . . , denote iid sequences of random
variables with the same distribution as γ , conditioned on Z0,1 = x and L0,1 = j .
Note that since the maximum possible number of particles is bounded, these random
variables are bounded.

The proof is based on finding a recurrence equation for W . If x0 /∈ A ∪ B, then
there are two contributions to γ depending on the killing and/or splitting that takes
place over the next time step. Thefirst is due to future contributions if the particle stays
within the support threshold, and the second occurs if new particles are generated
[σ(X1) < σ(X0)]. To account for thresholds of both the existing particles and those
that might be generated, let Ql( j, k) random vector defined in terms of ql( j, k) be
random vectors defined by Ql( j, k) = ql( j, k) for j > l (i.e., these components are
deterministic), and such that Ql( j, k) equals 1 for exactly one value of j ≤ l ≤ J and
0 for remaining values, with the index chosen according to the initializing distribution
λ j . Recall that ql( j, k) = 0 for all l if k ≥ j . To abbreviate notation temporarily, let
σi = σ(Zi,1), i = 0, 1. Then

W (x0) = eŪ (x0)Ex0

⎡

⎣

⎛

⎝1{L0,1≥σ1}eŪ (Z1,1)−Ū (Z0,1)s(Z1,1, L0,1; 0)

+1{σ0>σ1}

⎛

⎝
σ0−1∑

j=σ1

q j (σ0,σ1)∑

m=1

eŪ (Z1,1)−Ū (Z0,1)s(Z1,1, j;m)

⎞

⎠

⎞

⎠

2⎤

⎦

= eŪ (x0)Ex0

⎡

⎣

⎛

⎝
J∑

j=0

Q j (σ0,σ1)∑

m=1

eŪ (Z1,1)−Ū (Z0,1)s(Z1,1, j;m)

⎞

⎠

2⎤

⎦ .

We now use the following facts: L0,1 has distribution λσ(X0); Z1,1 has the same
distribution (conditioned on Z0,1 = X0 = x0) as X1; by the definition of Ql( j, k),
for all j, k, l [see also (16.6) and (16.5)],

Ex0Ql( j, k)e
Ūk−Ū j = λk(l); (16.14)
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and that the future evolution of the algorithm is independent of the Ql( j, k). Now let
σi denote σ(Xi ), i = 0, 1. Together with the expression just given for W (x0), these
give

W (x0) = e−Ū (x0)Ex0

⎡

⎣
J∑

j,k=0

e2Ū (X1)Q j (σ0, σ1)Qk(σ0, σ1)EX1, j [γ ]EX1,k[γ ]
⎤

⎦

(16.15)

+ e−Ū (x0)Ex0

⎡

⎣
J∑

j=0

e2Ū (X1)Q j (σ0, σ1)
(
EX1, j

[
γ 2

] − (
EX1, j [γ ])2

)
⎤

⎦ .

We examine the various terms separately. Using (16.14) and W (x)
.= eŪ (x)Ex [γ 2],

e−Ū (x0)Ex0

⎡

⎣
J∑

j=0

e2Ū (X1)Q j (σ0, σ1)EX1, j
[
γ 2

]
⎤

⎦

= Ex0

⎡

⎣eŪ (X1)

J∑

j=0

eŪ (X1)−Ū (X0)Q j (σ0, σ1)EX1, j
[
γ 2

]
⎤

⎦

= Ex0

⎡

⎣eŪ (X1)

J∑

j=0

λσ1( j)EX1, j
[
γ 2

]
⎤

⎦

= Ex0 [W (X1)] . (16.16)

If (16.16) is subtracted from the right side of (16.15), the remaining quantity is

eŪ (x0)Ex0

⎡

⎣
J∑

j=0

J∑

l=0

e2Ū (X1)−2Ū (X0)Q j (σ0, σ1)Ql(σ0, σ1)EX1, j
[
γ
]
EX1,l

[
γ
]
⎤

⎦

− eŪ (x0)Ex0

⎡

⎣
J∑

j=0

e2Ū (X1)−2Ū (X0)Q j (σ0, σ1)
(
EX1, j

[
γ
])2

⎤

⎦ . (16.17)

The terms with both l and j at or above σ(X0) contribute nothing to this expression.
Indeed, Q j (σ0, σ1) is equal to 1 for exactly one j and to 0 for all remaining j that are
greater thanσ(X0) − 1.Hence the corresponding terms in the double and single sums
cancel. Also, this is the only possibility when σ(X1) ≥ σ(X0), and so we restrict to
σ(X1) < σ(X0), and use that Q j (σ0, σ1) = 0 for j < σ(X1) when this is the case.
Dropping terms that contribute nothing, we decompose the double sum as
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σ(X0)−1∑

j=σ(X1)

σ (X0)−1∑

l=σ(X1)

+2
J∑

j=σ(X0)

σ (X0)−1∑

l=σ(X1)

.

Using (16.14), we get the following upper bound for expression (16.17):

eŪ (x0)Ex0

⎡

⎣1{σ(X1)<σ(X0)}

⎛

⎝
σ(X0)−1∑

j=σ(X1)

λσ(X1)( j)EX1, j
[
γ
]
⎞

⎠

2⎤

⎦

+ 2eŪ (x0)Ex0

⎡

⎣1{σ(X1)<σ(X0)}

⎛

⎝
J∑

j=σ(X0)

λσ(X1)( j)EX1, j
[
γ
]
⎞

⎠

×
⎛

⎝
σ(X0)−1∑

l=σ(X1)

λσ(X1)(l)EX1,l
[
γ
]
⎞

⎠

⎤

⎦

≤ eŪ (x0)Ex0

⎡

⎣1{σ(X1)<σ(X0)}

⎛

⎝
J∑

j=σ(X1)

λσ(X1)( j)EX1, j
[
γ
]
⎞

⎠

2⎤

⎦ . (16.18)

We now combine (16.15), (16.16), (16.18), and Theorem 16.3 to get that for x0 /∈
A ∪ B,

W (x0) ≤ eŪ (x0)Ex0

[
1{σ(X1)<σ(X0)}

(
EX1 [1B(XM)]

)2
]

+ Ex0 [W (X1)] .

Since all functions involved are bounded and nonnegative, it follows that the sequence

Σi
.= W (Xi∧M) +

i∧M∑

j=1

{
eŪ (X j−1)

(
EX j [1B(XM)]

)2
}

defined for i ∈ {0, . . . , T } is a submartingale. Thus, using W (XT∧M) = eŪ (XM )

1B(XM) and that 1B(Xk) = 0 if k < M , we have

eŪ (x0)S(Ū ) = W (x0)

= Σ0

≤ Ex0 [ΣT ]

= Ex0

[
M∑

i=1

eŪ (Xi−1)
(
EXi [1B(XM)]

)2
]

+ Ex0

[
eŪ (XM )1B(XM)

]
,

which is the same as (16.13).
We next remove the restriction that M ≤ T for some constant T < ∞. We add

timeas a state variable [i.e.,workwith the process (Xi , i)], and consider the analogous
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estimation problem in which the stopping set is (A ∪ B) × {T } (i.e., we stop if either
Xi enters A ∪ B or i = T ). Then γT defined in an analogous manner is an unbiased
estimator of Ex0

[
1B(XM)1{M≤T }

]
, and by the previous result for bounded stopping

times,

eŪ (x0)Ex0 [(γT )2] (16.19)

≤ Ex0

[
M∧T∑

i=1

eŪ (Xi−1)
(
EXi

[
1B(XM)1{M≤T }

])2
]

+ Ex0

[
eŪ (XM )1B(XM)1{M≤T }

]
.

Also note that

γT = e−Ū (x0)
T∑

i=0

∫

Rd

eŪ (y)1B(y)δ̄Zi (dy)

and γT ↑ γ a.s. By the monotone convergence theorem,

Ex0

[
(γT )2

] → S(Ū ).

Using this in (16.19), the nonnegativity of 1B , and themonotone convergence theorem
a second time gives (16.13) without the restriction on M . �

The following result gives a lower bound on the second moment of the estimator,
complementing the upper bound in Theorem16.6.

Theorem 16.7 Assume Condition16.1. Then

S(Ū ) ≥ e−Ū (x0)Ex0

[
eŪ (XM )1B(XM)

]
.

Proof From the nonnegativity of 1B , (16.15), and (16.16), it follows that W (x0) ≥
Ex0 [W (X1)]. From the Markov property of {Xi }, it follows that Σi

.= W (Xi∧M) is
a supermartingale, and in particular,

Ex0 [W (XM∧i )] ≤ W (x0).

The definition W
.= eŪ (x)Ex [γ 2] and its nonnegativity then give

Ex0

[
W (XM)1{M≤i}

] ≤ Ex0 [W (XM∧i )] ≤ eŪ (x0)S(Ū ).

Since W (x) = eŪ (x)1B(x) for x ∈ A ∪ B, the last display gives

Ex0

[
eŪ (XM )1B(XM)1{M≤i}

]
≤ eŪ (x0)S(Ū ).

The result now follows on sending i → ∞ and using the monotone convergence
theorem. �
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16.4 Design and Asymptotic Analysis of Splitting Schemes

Thus far we have considered only the problem of estimating a single probability of
the form (16.1). Now we shall turn to the problem of estimating a sequence of such
probabilities

Px0{Xn
Mn ∈ B}, (16.20)

n ∈ N, where Mn .= inf{i : Xn
i ∈ A ∪ B} and {Xn

i }i∈N0 is a Markov chain for each
n that satisfies a large deviation principle as n → ∞ (see Condition 16.9). We recall
that by assumption, A is open, B is closed, and (A ∪ B)c is bounded. With Sn(Ū )

denoting the second moment Ex0

[
(γ n)2

]
, the asymptotic performance will be eval-

uated using the following measure of work-normalized error:

lim
n→∞

1

n
log

Sn(Ū )Ex0 [w
n]

[
Px0{Xn

Mn ∈ B}]2
, (16.21)

where γ n is the splitting-based estimator for (16.20), and wn is its computational
cost, which was defined in the nonasymptotic setting in (16.11). (Such a weighted
performance measure is not needed for importance sampling, since the cost per
sample is essentially independent of the subsolution.)

Suppose that−(1/n) log Px0{Xn
Mn ∈ B} → V (x0) as n → ∞. Jensen’s inequality

as discussed in Chap.14 shows that the best possible value of (16.21) is zero, and this
occurs only when the work grows subexponentially and the second momentSn(Ū )

decays at rate 2V (x0). Bounds on the asymptotic behavior of the work-normalized
error will be obtained using Theorems16.5–16.7 and are stated in Theorem16.15,
Corollary 16.16, and Theorem16.18.

Remark 16.8 As in Chap.15, the theoretical bounds on performance are given for
the case of a fixed initial condition x0. However, all results are easily generalized
to the case of varying initial conditions xn that converge to x0 as n → ∞. This
generalization is useful for systems with discrete state spaces, such as queueing
networks.

The theory presented in this section will require some fairly standard assumptions
on the stability and large deviation behavior of

{
Xn
i

}
, and also some regularity prop-

erties on A and B that are qualitatively similar to assumptions made in Chap.15 (e.g.,
Condition15.9). For example, we will want to know that τ n .= Mn/n can essentially
be taken as bounded, in the sense that there is some T < ∞ such that the event
τ n > T is unimportant as far as the large deviation asymptotics are concerned. This
is an important qualitative assumption, and it is related to stability properties of the
law of large numbers limit processes obtained when n → ∞.

We define continuous time stochastic processes as usual by setting Xn(t) = Xn
i for

t = i/n and by piecewise linear interpolation for t ∈ [i/n, (i + 1)/n). Throughout,
we assume that x0 ∈ ( Ā ∪ B)c. The following condition will be needed to establish
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a limit for the second moment; it is not needed if one wants to give just upper bounds
on the second moment.

Condition 16.9 For every T ∈ (0,∞), the sequence {Xn}n∈N satisfies a large devi-
ation principle onC

([0, T ] : Rd
)
that is uniform with respect to the initial condition

in compacts sets. The rate function is of the form

IT (φ)
.=
∫ T

0
L(φ(s), φ̇(s))ds

if φ ∈ C
([0, T ] : Rd

)
is absolutely continuous with φ(0) = x0 and ∞ otherwise,

where L is a nonnegative measurable function.

As remarked above, the conditions we use beyond the LDP can be partitioned
into “stability” and “controllability” type conditions. We give two conditions that
will be sufficient (but not necessary) for what follows. Moreover, the sufficient con-
ditions we give will by themselves cover many interesting problems. The stability
condition (Condition16.10) will imply that the algorithm is practical in that the tails
of the hitting times are controlled, and also that the escape time problem can be
approximated using estimates over finite time intervals. The condition we refer to
as “controllability” (Condition 16.11) is needed to establish limits rather than just
bounds, and is analogous to the additional conditions that would have been required
in Chap.15 as noted in Remark15.16.

We will assume the following condition, which is the same as Condition15.9 in
Chap.15.

Condition 16.10 There exist c > 0, T0 ∈ (0,∞) and n0 ∈ N such that for all n ≥
n0, T < ∞, and x ∈ D,

Px {τ n > T } ≤ exp{−cn(T − T0)}.

Note that Condition16.10 implies that

lim sup
T→∞

lim sup
n→∞

sup
x∈D

1

n
log Px {τ n > T } = −∞. (16.22)

Condition16.10 would not hold if there were two attractors for the zero-cost trajec-
tories, A ∪ B contains one of the attractors but not the other, and the process starts
in the domain of attraction of the stable point that is not in A ∪ B.

Condition 16.11 Suppose we are given absolutely continuous φ satisfying φ(0) =
x0 /∈ Ā ∪ B, φ(t) /∈ A ∪ B◦ for t ∈ [0, T ), and φ(T ) ∈ B for some T < ∞. Then
given γ > 0, there exist absolutely continuous φ∗, T ∗ < ∞, and τ ∗ < T ∗ such that
φ∗(0) = x0, φ∗(t) /∈ Ā ∪ B for t ∈ [0, τ ∗), φ∗(t) ∈ B◦ for t ∈ (τ ∗, T ∗], and such
that
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∫ T ∗

0
L(φ∗(r), φ̇∗(r))dr ≤

∫ T

0
L(φ(r), φ̇(r))dr + γ,

∥
∥φ(T ) − φ∗(τ ∗)

∥
∥ ≤ γ.

Onecan consider this a controllability-type condition. It says that given a trajectory
φ that enters Ā ∪ B but not A ∪ B◦ and finally enters B◦ at T , one can find a trajectory
with almost the same cost that avoids Ā ∪ B till τ ∗, at which time it enters B◦ near
φ(T ). One can establish more concrete conditions that imply this condition, such as
assuming that L(x, β) is continuous, bounded on each compact subset of Rd × R

d ,
and assuming regularity properties for the boundaries of A and B.

We next give a definition of subsolution appropriate to this problem, but phrased
directly in terms of the calculus of variations problem. The definition via calculus
of variations is somewhat more to the point of what is required and is used in the
proofs. For y ∈ (A ∪ B◦)c and T ∈ (0,∞), define

Ky,T (16.23)
.= {

φ ∈ A C ([0, T ] : Rd) : φ(0) = y;φ(s) /∈ A ∪ B◦, s ∈ (0, T ), φ(T ) ∈ B
}
.

Definition 16.12 Acontinuous function V̄ : Rd → R is a subsolution if it is bounded
from below,

V̄ (y) ≤ inf
φ∈Ky,T ,T<∞

[∫ T

0
L(φ(s), φ̇(s))ds + V̄ (φ(T ))

]

(16.24)

for all y ∈ (A ∪ B◦)c, and V̄ (z) ≤ 0 for z ∈ B.

Remark 16.13 (Relations between notions of subsolution I) Suppose that V̄ is a
subsolution in the sense of Definitions14.4 or 14.5 that is bounded from below,
and to simplify the discussion, assume also that H(x, α) is continuous. Then we
claim that V̄ is a subsolution in the sense of Definition16.12. Consider the case of
Definition14.4, and for y ∈ (A ∪ B◦)c, suppose φ ∈ Ky,T . Since V̄ is continuously
differentiable, the definition H(x, α)

.= infβ∈Rd [〈α, β〉 + L(x, β)] implies

〈
DV̄ (φ(s)), φ̇(s)

〉 + L(φ(s), φ̇(s)) ≥ 0

for a.e. s ∈ [0, T ]. Integrating gives

V̄ (y) ≤
[∫ T

0
L(φ(s), φ̇(s))ds + V̄ (φ(T ))

]

.

Since φ ∈ Ky,T is arbitrary, and V̄ (z) ≤ 0 for z ∈ B is part of Definition14.4, the
claim follows. For the case of piecewise classical subsolutions it is enough to note that
the mollification (14.16) produces a classical-sense subsolution V̄ δ , and the claim
follows by taking the limit δ ↓ 0. Note that one does not need to use the mollified
subsolution for the design of the splitting scheme, but can instead use the potentially
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nonsmooth limit. It is also worth noting that the continuity of H is not used in any
essentialway, so that the analogous claimholds for problems involving discontinuous
statistics, such as queueing networks.

Remark 16.14 (Relations between notions of subsolution II) The set of trajectories
Ky,T in (16.23) differs from Cy,T introduced in Chap.14 in that trajectories are
excluded from B for s ∈ (0, T ) for Cy,T , but only from B◦ for Ky,T . The reason for
the difference is the slightly different way in which the subsolution property is used
in the cases of importance sampling and splitting. However, under the conditions we
assume, to obtain a limit as in Theorem16.15 one could use Cy,T in Definition 16.12
instead. Indeed, sinceCy,T ⊂ Ky,T , one has only to check that the defining inequality
(16.24) holds for φ ∈ Ky,T for all T if it holds for all φ ∈ Cy,S , y ∈ (A ∪ B◦)c, and
S ∈ (0,∞). But this is easy to check under Condition16.11. Note also that the two
definitions are equivalent without reference to Condition16.11 if V̄ is constant on
B, simply because L ≥ 0.

Note that V̄ is never greater than the solution to the calculus of variations problem,
which is defined by V (z) = 0 for z ∈ B, V (z) = ∞ for z ∈ A, and

V (x) = inf
φ∈Kx,T ;T<∞

[∫ T

0
L(φ(s), φ̇(s))ds

]

(16.25)

for x ∈ (A ∪ B)c. Given a subsolution, the corresponding splitting scheme is defined
as follows. Thresholds are defined in terms of the levels

V̄ (x0), V̄ (x0) − (log R)/n, V̄ (x0) − (2 log R)/n, . . . .

Let J n be the smallest number such that V̄ (x) ≥ V̄ (x0) − (J n log R)/n for all x ∈ D,
so that there are no more than J n thresholds. Then we define Cn

Jn
.= D,Cn

−1
.= ∅,

and

Cn
Jn− j

.= {
x : V̄ (x) ≤ V̄ (x0) − ( j log R)/n

}
, j = 1, . . . , J n . (16.26)

Recall R = eΔ and define Δn .= Δ/n. Also define a sequence {Ū n} according to

Ū n(x)
.= (J n log R)/n − ( j log R)/n for x ∈ Cn

Jn− j\Cn
Jn− j−1, j = 0, 1, . . . , J n .

Note that whenever yn → y, Ū n(yn) − Ū n(x0) → V̄ (y) ∧ V̄ (x0) − V̄ (x0). Note
also that if V̄ is a subsolution in the sense ofDefinition16.12, then so is V̄ (·) ∧ V̄ (x0).
To simplify notation, we assume without loss that V̄ (x) ≤ V̄ (x0) for all x ∈ D, and
therefore for x ∈ D,

∣
∣(Ū n(x0) − Ū n(x)) − (V̄ (x0) − V̄ (x))

∣
∣ ≤ log R

n
. (16.27)

In particular, Ū n(x0) − Ū n(x) → V̄ (x0) − V̄ (x) for all x ∈ D. We now apply
Theorems16.6 and 16.7, with Δ replaced by Δn and Ū replaced by nŪn , to the
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Markov chain {Xn
i }. Following the same notation as in Chaps. 14 and 15, we denote

the second moment of the estimator Ex0 [(γ n)2] by Sn(V̄ ). The corresponding ini-
tializing distribution λn

k is defined as λn
k (l) = qn

l /RJn−k , with qn
l defined by (16.5)

but with J replaced by J n . Theorems16.6 and 16.7 then say that

e−nŪn(x0)Ex0

[
Mn
∑

i=1

enŪ
n(Xn

i−1)
(
EXn

i

[
1B(Xn

Mn )
])2

]

+ e−nŪn(x0)Ex0

[
enŪ

n(Xn
Mn )1B(Xn

Mn )
]

≥ Sn(V̄ ) (16.28)

and
Sn(V̄ ) ≥ e−nŪn(x0)Ex0

[
enŪ

n(Xn
Mn )1B(Xn

Mn )
]
,

where γ n = e−nŪn(x0)
∑∞

i=0

∫
Rd 1B(y)e−nŪn(y)δ̄Zn

i
(dy) is the estimator of (16.20)

based on the importance function Ū n .
Theorem16.15 below describes the asymptotic performance of the splitting

scheme based on importance functions {Ū n}. As a consequence of this result, in
Corollary16.16, we will see that the decay rate

lim
n→∞ −1

n
logSn(V̄ )

is bounded below by V (x0) + V̄ (x0), where V (x0) is defined in (16.25), which is
the same as the decay rate for an importance sampling scheme based on the same
subsolution if it is sufficiently regular (see Theorem15.10). We recall from (14.5)
that when the large deviation limit holds, the decay rate of any unbiased splitting
scheme is bounded above by 2V (x0). In particular, if V̄ (x0) = V (x0), we get the best
possible decay rate 2V (x0). Finally, in Theorem16.18 below, we will show that

lim
n→∞

1

n
log Ex0

[
wn

] = 0.

Thus the work associated with such a scheme grows subexponentially, and conse-
quently, the decay rate of thework-normalized error is zero, which is the best possible
rate.

It is easily checked that if V̄ is not a subsolution, then at points where the subso-
lution property fails, the branching is supercritical, and hence in this case there exists
y ∈ D such that if yn → y, then

lim inf
n→∞

1

n
log Eyn

[
wn

]
> 0.

It follows that importance functions that are not obtained from subsolutions should
not be used to design schemes, since it is possible that the computational costs of
such schemes will grow exponentially.
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Recall that x0 /∈ Ā ∪ B, V̄ is a subsolution as in Definition16.12, and that as noted
previously, we can assume V̄ (x) ≤ V̄ (x0) for all x ∈ D. Recall also the definition
of Ky,T in (16.23).

Theorem 16.15 Assume Conditions16.9–16.11. Then for x0 /∈ Ā ∪ B,

lim
n→∞ −1

n
logSn(V̄ )

= inf
φ∈Kx0 ,T ,T<∞

[∫ T

0
L(φ(r), φ̇(r))dr + V̄ (φ(0)) − V̄ (φ(T ))

]

. (16.29)

Proof We first consider the lower bound

lim inf
n→∞ −1

n
logSn(V̄ )

≥ inf
φ∈Kx0 ,T ,T<∞

[∫ T

0
L(φ(r), φ̇(r))dr + V̄ (φ(0)) − V̄ (φ(T ))

]

, (16.30)

which is based on (16.28). While there are two terms in (16.28), the second term can
be treated in a similar manner as the first term, and so we focus on the first. This term
is

e−nŪn(x0)Ex0

[
Mn
∑

i=1

enŪ
n(Xn

i−1)1B
(
X1,i,n

M1,i,n

)
1B

(
X2,i,n

M2,i,n

)
]

, (16.31)

where {Xk,i,n
j } j≥i , k = 1, 2, are (conditionally) independent copies of {Xn

j } j≥i that
start at Xn

i at j = i , and Mk,i,n are the corresponding escape times.
We claim that instead of the large deviation asymptotics of (16.31), it suffices to

consider the large deviation asymptotics of

e−nŪn(x0)Ex0

[�nT �∑

i=1

1{Mn≥i}enŪ
n(Xn

i−1)1B
(
X1,i,n

M1,i,n∧�nT �
)
1B

(
X2,i,n

M2,i,n∧�nT �
)
]

(16.32)

for some fixed and finite T . Assuming the claim, observe that there are no more than
order-n terms in the expected value, and it suffices to obtain the desired bound on
each of these terms. Let in index such a term. In obtaining a bound, we can assume
without loss that in/nwill converge to some limit t ∈ [0, T ], and to simplify notation,
we write i for in . We first show that

lim inf
n→∞ −1

n
log e−nŪn(x0)Ex0

[
enŪ

n(Xn
i−1)1{Mn≥i}1B

(
X1,i,n

M1,i,n∧�nT �
)
1B

(
X2,i,n

M2,i,n∧�nT �
)]

≥ inf

[∫ s

0
L(φ(r), φ̇(r))dr + V̄ (x0) − V̄ (φ(s))

]

, (16.33)
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where the infimum is over all absolutely continuousφ such thatφ(0) = x0 andφ(r) /∈
A ∪ B◦ for r ∈ (0, s) and φ(s) ∈ B for some s ≥ t . Let X̂ n(t) be the continuous time
trajectory that interpolates Xn

j up till i , and thereafter is a two-component process that

interpolates X1,i,n
j and X2,i,n

j up until �nT �. It is straightforward, using the Markov
property and the uniformity of the large deviation estimates with respect to initial
conditions that is assumed in Condition16.9, to check that {X̂ n} satisfies a large
deviation property, and that the rate function (with obvious notation for a trajectory
η that branches at time t into η1 and η2) is

∫ t

0
L(η(r), η̇(r))dr +

∫ T

t
L(η1(r), η̇1(r))dr +

∫ T

t
L(η2(r), η̇2(r))dr.

Since V̄ is continuous and B is closed, we obtain the lower bound

inf

[∫ t

0
L(η(r), η̇(r))dr +

∫ T

t
L(η1(r), η̇1(r))dr

+
∫ T

t
L(η2(r), η̇2(r))dr + V̄ (x0) − V̄ (η(t))

]

for the left side of (16.33), where the infimum is over all η such that η(0) = x0 and
η(r) /∈ A ∪ B◦ for r ∈ (0, t] and ηk, k = 1, 2 such that ηk(t) = η(t) and ηk(r) /∈
A ∪ B◦ for r ∈ [t, sk], sk ∈ [t, T ], ηk(sk) ∈ B. Without loss we can assume that the
cost is zero after sk and that η1 = η2 (which we relabel as η, and sk as s). By the
subsolution property,

V̄ (η(t)) ≤
∫ s

t
L(η(r), η̇(r))dr + V̄ (η(s)),

which gives (16.33).
We now prove the claim. It remains to show that (16.31) has the same large

deviation asymptotics as (16.32). To justify bounding the other random times by
�nT �, we need to show that

lim sup
T→∞

lim sup
n→∞

1

n
log e−nŪn(x0)Ex0

[
Mn∧�nT �∑

i=1

enŪ
n(Xn

i−1)
(
1{τ 1,i,n≥nT} + 1{τ 2,i,n≥nT}

)
]

= −∞. (16.34)

However, using (16.27), the expected value is bounded above by

2Ren2‖V̄‖∞

�nT �∑

i=1

Px0
{
τ 1,i,n ≥ nT

}
,

and thus (16.34), and therefore the claim, follows fromCondition16.10 [see (16.22)].
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We now prove the upper bound

lim sup
n→∞

−1

n
logSn(V̄ )

≤ inf
φ∈Kx0 ,T ,T<∞

[∫ T

0
L(φ(r), φ̇(r))dr + V̄ (φ(0)) − V̄ (φ(T ))

]

. (16.35)

Fix ε ∈ (0, 1), let Γ denote the right-hand side of (16.35), and using Condition16.11
choose an absolutely continuousφ, T and τ ∈ (0, T ) such thatφ(0) = x0,φ(τ) ∈ B,
φ(t) /∈ Ā ∪ B for all t ∈ (0, τ ), φ(t) ∈ B◦ for all t ∈ (τ, T ], and

∫ T

0
L(φ(r), φ̇(r))dr + V̄ (φ(0)) − V̄ (φ(τ)) ≤ Γ + ε. (16.36)

Let δ > 0 satisfy ‖φ(r) − x‖ ≥ δ if r ∈ [0, τ − δ) and x ∈ Ā ∪ B and ‖φ(r) −
x‖ ≥ δ if r ∈ [τ + δ, T ] and x /∈ B. Let alsoΞ n .= {sup0≤t≤T ‖Xn(t) − φ(t)‖ < δ}.
Then using the large deviation lower bound for the third inequality and (16.36) for
the fourth, we obtain

lim inf
n→∞

1

n
logSn(V̄ )

≥ lim inf
n→∞

1

n
log e−nŪn(x0)Ex0

[
enŪ

n(Xn
Mn )1B(Xn

Mn )
]

≥ lim inf
n→∞

1

n
log e−nŪn(x0)Ex0

[
enŪ

n(Xn
Mn )1B(Xn

Mn )1Ξ n

]

≥ inf
y∈Cδ

V̄ (y) − V̄ (x0) + lim inf
n→∞

1

n
log Px0{Ξ n}

≥ inf
y∈Cδ

V̄ (y) − V̄ (φ(τ)) − Γ − ε,

where Cδ
.= {y : ‖y − φ(t)‖ < δ for some t ∈ [τ − δ, τ + δ]}. Since V̄ and φ are

continuous, we have inf y∈Cδ
V̄ (y) − V̄ (φ(τ)) → 0 as δ → 0. Since ε > 0 and δ > 0

are arbitrary, this proves the upper bound in (16.35). �

Corollary 16.16 Under same conditions and with the same notation as in
Theorem16.15,

lim inf
n→∞ −1

n
logSn(V̄ ) ≥ V (x0) + V̄ (x0).

In particular, if V̄ (x0) = V (x0), then

lim
n→∞ −1

n
logSn(V̄ ) = 2V (x0).
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Proof Recall the set Kx0,T introduced in (16.23) and consider any φ ∈ Kx0,T with
T ∈ (0,∞). Since V̄ is a subsolution, it follows that V̄ (z) ≤ 0 for z ∈ B, and so

∫ T

0
L(φ(r), φ̇(r))dr + V̄ (φ(0)) − V̄ (φ(T )) ≥

∫ T

0
L(φ(r), φ̇(r))dr + V̄ (x0).

Taking the infimum over all φ ∈ Kx0,T and T ∈ (0,∞), we have from (16.25) and
(16.29) that

lim inf
n→∞ −1

n
logSn(V̄ ) ≥ V (x0) + V̄ (x0),

proving the first statement in the corollary. On the other hand, as was argued previ-
ously,

lim sup
n→∞

−1

n
logSn(V̄ ) ≤ 2V (x0).

The second statement in the corollary follows. �

Remark 16.17 An examination of the proof shows that the greatest contribution to
the second moment of the estimator is from the correlation of particles that make it
to B and whose last common ancestor is located in one of the thresholds close to B.

Finally, we now show that the work associated with the splitting scheme based
on the sequence {Ū n} grows subexponentially.
Theorem 16.18 Under same conditions and with the same notation as in
Theorem16.15,

lim
n→∞

1

n
log Ex0

[
wn

] = 0,

where wn is defined by the right side of (16.11) replacing Ni by Nn
i

.= ∫
D δ̄Zn

i
(dx).

Proof We know from Theorem16.5 that

Ex0

[
wn

] = enŪ
n(x0)Ex0

[
Mn
∑

i=0

e−nŪn(Xn
i )

]

.

Exactly as in the proof of (16.30), it follows that the large deviation asymptotics of
Ex0 [w

n] are the same as those of

enŪ
n(x0)Ex0

[
Mn∧�nT �∑

i=0

e−nŪn(Xn
i )

]

for some sufficiently large but finiteT . The convergence Ū n(y) − Ū n(x0) → V̄ (y) −
V̄ (x0) and the same line of argument as in the proof of (16.30) show that
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lim sup
n→∞

1

n
log enŪ

n(x0)Ex0

[
Mn∧�nT �∑

i=0

e−nŪn(Xn
i )

]

≤ − inf
φ∈Kx0 ,T ,T<∞

[∫ T

0
L(φ(s), φ̇(s))ds − (V̄ (x0) − V̄ (φ(T )))

]

.

By the subsolution property (Definition16.12), the quantity to beminimized is always
nonnegative, and so the upper bound follows. Since Ex0 [w

n] ≥ 1 for all n, the lower
bound is automatic, which completes the proof. �

Remark 16.19 Although the subsolution property implies a type of stability as
asserted in Theorem16.18, it could allow for polynomial growth of the number
of particles. If in practice one observes that a large number of particles make it to B
in the course of simulating a single sample, then one can consider the use of a strict
subsolution, i.e., a function V̄ that satisfies the boundary conditions and

V̄ (y) ≤ inf
φ∈Ky,T ,T<∞

[∫ T

0
[L(φ(s), φ̇(s)) − ε]ds + V̄ (φ(T ))

]

for some ε > 0. Because the value of V̄ (x0) is lowered slightly, there will be a
slight increase in the second moment of the estimator. However, the strict inequality
provides stronger control, and indeed, the expected number of particles andmoments
of the number of particles are bounded uniformly in n. See [76] for further discussion
and examples. If phrased in terms of H as in Remark16.14, the strict subsolution
property means that H(x, DV̄ (x)) ≥ ε for x ∈ (A ∪ B◦)c.

16.5 Splitting for Finite-Time Problems

By adding time as a state variable, finite-time problems such as those discussed in the
context of importance sampling in Sect. 15.2 can also be be put into the RESTART
framework. Thus the process {Xn

i } is replaced by {(Xn
i , t

n
i )}, where

Xn
i+1 = Xn

i + 1

n
vi (X

n
i ), Xn

0 = x0, tni+1 = tni + 1

n
, tn0 = 0.

Consider, for example, the estimation of Px0 {Xn(T ) ∈ B}. For this problem, it is
assumed that the rare set B ⊂ R

d does not contain the terminal values φ(T ) of
zero-cost trajectories that start at x0, and the typical behavior is {Xn(T ) ∈ A} with
A = Bc. (Note that if we wish to continue the reduction to the time-independent
case, then with the state spaceRd+1, we would call the rare set B × {T } ⊂ R

d+1 and
the typical set A × {T }.) The definition of subsolution becomes the following, with
K̄ y,t,T the set of absolutely continuous trajectories φ with φ(t) = y and φ(T ) ∈ B.
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Definition 16.20 A continuous function V̄ : Rd × [0, T ] → R is a subsolution if it
is bounded from below and

V̄ (y, t) ≤ inf
φ∈K̄ y,t,T

[∫ T

t
L(φ(s), φ̇(s))ds + V̄ (φ(T ), T )

]

for all (y, t) ∈ R
d × [0, T ), and V̄ (z, T ) ≤ 0 for z ∈ B.

One can add a “bounding” set as in Remark15.4, which does not change the
requirement for V̄ to be a subsolution, except that A × {T } now also includes the
points Dc × [0, T ), and we restrict in the definition to (y, t) ∈ D × [0, T ). As in
Remark16.13, a classical or piecewise classical subsolution in the sense of Defini-
tions14.1 and 14.2 is a subsolution in the sense of Definition16.20.

A related problem of interest is to estimate the probability of escaping any time
during the time interval, i.e., Px0{Xn(t) ∈ B for some t ∈ [0, T ]}. In this case, one
should replace B in the time-independent setting by B × [0, T ], and A by A × {T }.
The definition of subsolution is then the following.

Definition 16.21 A continuous function V̄ : Rd × [0, T ] → R is a subsolution if it
is bounded from below and

V̄ (y, t) ≤ inf
φ∈K̄ y,t,s ,t≤s≤T

[∫ s

t
L(φ(s), φ̇(s))ds + V̄ (φ(s), s)

]

for all (y, t) ∈ R
d × [0, T ) and V̄ (z, t) ≤ 0 for z ∈ B and t ∈ [0, T ].

As an elementary time-dependent example, we consider the case in which the
{vi (x)} are N (0, 1) (and thus independent of x), so that H(α) = α2/2 and L(β) =
β2/2. With B = [1,∞) and T = 1,

V̄ (x, t) = −x + 1

2
t + 1

2

is a subsolution with the optimal value at (0, 0). Splitting thresholds as well as the
start of a simulation with splitting rate R = 3 are depicted in Fig. 16.3.

16.5.1 Subsolutions for Analysis of Metastability

Suppose that x∗ has the property that all zero-cost trajectories are attracted to x∗ in the
sense that for all x0 ∈ R

d , the properties IS(φ) = 0 for all S and φ(0) = x0 imply that
φ(S) → x∗ as S → ∞. Consider the issue of estimating Px∗ {Xn(T ) ∈ B}. Assume
for simplicity that Bc is bounded and define

W (x, y) = inf [IS(φ) : φ(0) = x, φ(S) = y, S < ∞] .
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Fig. 16.3 Splitting
thresholds for
time-dependent problem

B

x = 1

t

x

β∗ = 0.5

t = 1

A

Then W (x, y) is the Freidlin–Wentzell quasipotential [140] relative to the starting
point x . Suppose again for simplicity of presentation that W (x∗, ·) is continuous. In
this context, a particularly convenient subsolution is that of the form

V̄ (y, t) = V̄ (y) = −W (x∗, y) + c.

Here c ∈ R is the largest value such that the boundary condition−W (x∗, y) + c ≤ 0
holds for all y ∈ B.

To see that V̄ (y) is a subsolution, we note that W (x, z) satisfies the dynamic
programming equation

W (x, z) = inf
y∈Rd

[W (x, y) + W (y, z)] ,

from which it follows that for all y ∈ R
d and c ∈ R,

−W (x∗, y) + c ≤ −W (x∗, z) + c + W (y, z).

The definition of W (y, z) then gives [for all φ ∈ K̄ y,t,T and with z = φ(T )] that

V̄ (y) ≤ V̄ (φ(T )) +
∫ T

0
L(φ(s), φ̇(s))ds,

and therefore V̄ is a subsolution. One can show that under appropriate conditions,
as T → ∞,

inf
φ∈K̄x∗ ,t,T :φ(T )∈B

[∫ T

0
L(φ(s), φ̇(s))ds

]
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converges to V̄ (x∗), and hence V̄ (y) is a potentially useful subsolution for studying
escape to B from a neighborhood of the attractor x∗ at the end of a long time interval.

With regard to the problem of estimating Px∗ {Xn(t) ∈ B for some t ∈ [0, T ]},
V̄ (y) again provides a (time-independent) subsolution with a nearly optimal value
at x∗ when T is large. The argument is similar to the case of Px∗ {Xn(T ) ∈ B} and
is hence omitted.

16.6 Notes

Particle splitting methods originate with [166], and are further developed in [30]. A
review of their application to rare-event problems appears in [145], as well as [223].
The RESTART algorithm, which is the focus of this chapter, was first presented in
[241].

Themain source for this chapter is [77],whichuses amore general formulation and
also phrases the assumptions to explicitly include queueing networks and expected
values. Just as with importance sampling, some incorrect uses of large deviation
asymptotics for the design of splitting schemes have been proposed, and a discussion
on these issues can be found in [149].



Chapter 17
Examples of Subsolutions and Their
Application

In this chapter we present examples to illustrate the importance sampling and split-
ting techniques developed in Chaps. 14, 15, and 16. There are many different types of
problems one might consider, and the interested reader can find additional examples
in the references [76, 77, 101, 103, 105, 110, 112, 113, 116, 117]. As mentioned
in Chaps. 14 and 16, an important distinction is that in the case of importance sam-
pling, we use a smooth classical-sense subsolution, while in the case of splitting, we
use a continuous but not necessarily smooth weak-sense solution. For many of the
examples presented, the construction of subsolutions can be carried out in arbitrary
dimension. However, for higher-dimensional problems, the construction can be alge-
braically complicated, and for this reason we present lower-dimensional examples
and send the reader to the references for the general case. It also should be repeated
that the structure of each subsolution that we construct is usually much simpler than
that of the corresponding solution.

The purpose of each section is to illustrate how different features are accommo-
dated in the construction. Section 17.1 describes the construction for expected values
rather than probabilities. We will also give, at least for this first example, calcula-
tions analogous to those of Remark 16.13, to show that any classical or piecewise
classical subsolution suitable for importance sampling is also suitable for splitting.
This argument is broadly applicable, and can be adapted to cover all the other exam-
ples we present. Section 17.2 considers level crossings and more generally hitting
probabilities, and Sect. 17.3 considers a functional that depends on the entire tra-
jectory of the process. Section 17.4 contains the only example we present for the
important class of problems with discontinuous statistics, which includes various
problems from queueing theory, and Sect. 17.5 considers the construction of sub-
solutions that are appropriate for probabilities that fall into the regime of moderate
deviations. Section 17.6 compares importance sampling and splitting for estimating
probabilities that a process escapes from a neighborhood of a metastable point, and
concludes (based only on empirical evidence) that splitting is preferred when the
time interval of interest is large.

© Springer Science+Business Media, LLC, part of Springer Nature 2019
A. Budhiraja and P. Dupuis, Analysis and Approximation of Rare
Events, Probability Theory and Stochastic Modelling 94,
https://doi.org/10.1007/978-1-4939-9579-0_17
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In each section we essentially follow the following format: problem statement;
formulation of the PDE and boundary/terminal conditions; identification of functions
from which a subsolution can be assembled, which we call component functions;
construction of subsolutions; and finally, numerical examples.

17.1 Estimating an Expected Value

As noted in Sect. 14.5.1, various risk-sensitive functionals can be approximated using
the same methods as used to estimate rare events. In this section we consider such a
problem when the underlying process model is a random walk, and numerically test
the resulting importance sampling and splitting algorithms.

17.1.1 Problem Statement

Weconsider an example of the estimation problem discussed in Sect. 14.5.1. Suppose
{vi }∞i=1 are iid R

d -valued random variables, and let

Xn
i = 1

n

i∑

j=1

v j , Xn
0 = 0.

We are interested in unbiased Monte Carlo approximation of E[e−nF(Xn
n )], where

F : R
d → R is a continuous function. This is a finite-time problem in the form

considered in Sect. 14.3, generalized to the setting of a general functional. It follows
from Jensen’s inequality that one can restrict in the variational expression (14.22)
for the large deviation limit to constant-velocity paths. Therefore, if F satisfies the
condition required of h in Theorem 1.18, then

η
.= lim

n→∞ −1

n
log E[e−nF(Xn

n )] = inf
β∈Rd

[L(β) + F(β)] . (17.1)

Here L(β) is the Legendre–Fenchel transform of H(α), the log moment-generating
function of vi . For the right-hand side of (17.1) to be finite, one should impose growth
conditions on F . For example, if the {vi } are N (0, 1), so that H(α) = α2/2, and if
F(β) = −aβ2, then the right-hand side of (17.1) is −∞ if a > 1/2 and finite if
a ≤ 1/2.

17.1.2 Associated PDE

As discussed in Sects. 14.2 and 14.3, the Hamilton–Jacobi–Bellman (HJB) equation
that is used to construct subsolutions for this problem is
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Vt (x, t) + H(DV (x, t)) = 0 (17.2)

for (x, t) ∈ R
d × [0, 1), where H(p) = −H(−p), together with the terminal condi-

tion
V (x, 1) = F(x) for x ∈ R

d . (17.3)

17.1.3 Component Functions

As in Sect. 14.3, a natural collection of functions to use in building a subsolution are
those of the form

V̄ (x, t;β, c)
.= −〈α, (x − β)〉 − H(α)[1 − t] + c, β ∈ R

d , c ∈ R,

where α = DL(β) is the point that is dual or conjugate to β in the Legendre–Fenchel
transform relating L(β) and H(α). Using this duality, one can check as in Sect. 14.5.1
that these are in fact solutions to theHJB equation (17.2) [though theymay not satisfy
the terminal condition]. Although here we parametrize by β, one could also use α.
For the Gaussian case considered later, we have the very simple relation α = β, and
so the component functions (when d = 1) are V̄ (x, t;β, c)

.= −β(x − β) − β2[1 −
t]/2 + c.

17.1.4 Subsolutions

Convex functions and classical subsolutions. The construction of a subsolution
with the maximum possible value (namely η) at (0, 0) requires knowing the mini-
mizers in the definition of η in (17.1). For example, if F is convex, then there is a
uniqueminimizerβ∗, and onemight conjecture that V̄ (x, t;β∗, F(β∗)) is such a sub-
solution, where c = F(β∗) is the largest value of c that allows the terminal inequality
V̄ (x, 1;β∗, c) ≤ F(x) to be satisfied. When F is twice continuously differentiable,
this can be seen as follows. Using the optimality of β∗, we have that

0 = DL(β∗) + DF(β∗) = α∗ + DF(β∗),

with α∗ dual to β∗. By Taylor’s theorem, convexity, and the last display, we have

F(x) − F(β∗) = 〈
(x − β∗), DF(β∗)

〉 + 1

2

〈
(x − β∗), D2F(x̄)(x − β∗)

〉

≥ 〈
(x − β∗), DF(β∗)

〉

= − 〈
(x − β∗), α∗〉 ,
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where x̄ is some point between x and β∗. Therefore,

F(x) ≥ − 〈
(x − β∗), α∗〉 + F(β∗) = V̄ (x, 1;β∗, F(β∗)),

showing that V̄ (x, t;β∗, F(β∗)) is a subsolution to both the PDE and terminal con-
dition. Since

V̄ (0, 0;β∗, F(β∗)) = 〈
β∗, α∗〉 − H(α∗) + F(β∗) = L(β∗) + F(β∗) = η,

it has the optimal value at (0, 0). Although the derivation just given assumes that F
is smooth, it can be generalized to arbitrary convex functions by approximation via
smooth convex functions.

Piecewise classical subsolution. Suppose that F is the minimum of a finite
collection of convex functions Fk , k = 1, . . . , K and β∗

k are the corresponding
minimizers in (17.1) (with F replaced by Fk). If V̄ (k)(x, t)

.= V̄ (x, t;β∗
k , Fk(β

∗
k )),

k = 1, . . . , K , then the preceding calculations show that V̄ (x, t)
.= ∧K

k=1V̄
(k)(x, t)

is a piecewise classical subsolution to (17.2) and (17.3), in the sense analogous to
Definition 14.2 but for the terminal cost F . In particular, we have that V̄ (x, 1) =
∧K
k=1V̄

(k)(x, 1) ≤ ∧K
k=1Fk(x) = F(x). Then as in Chap. 14, one can use the molli-

fication of this function given by (14.16) and with implementations as described in
Sect. 14.4 to construct associated importance sampling schemes. Note that for each
k,

V̄ (k)(0, 0) = L(β∗
k ) + Fk(β

∗
k ) = inf

β∈Rd
[L(β) + Fk(β)] ,

and therefore

V̄ (0, 0) = ∧K
k=1 inf

β∈Rd
[L(β) + Fk(β)] = inf

β∈Rd
[L(β) + F(β)] = η.

Therefore, up tomollification, the optimal value at (0, 0) is achieved. (We also remind
the reader that as discussed in Theorem 15.14, one can let themollification parameter
δ > 0 tend to 0 as n → ∞ to obtain asymptotic optimality.)

Subsolution for splitting. While a smooth subsolution is needed for importance
sampling, less regularity is needed for splitting, and the analogue of Definition 16.12
that is appropriate for the present setting is to require

V̄ (y, t) ≤ inf
φ:φ(t)=y

[∫ 1

t
L(φ̇(r))dr + V̄ (φ(1), 1)

]
(17.4)

for all y ∈ R
d , 0 ≤ t ≤ 1, and V̄ (x, 1) ≤ F(x) for x ∈ R

d . A standard verification
argument shows that a piecewise classical subsolution is a subsolution in the sense
of (17.4) (together with the boundary condition). Indeed, let absolutely continuous
φ satisfy φ(t) = y and let k satisfy V̄ (φ(1), 1) = V̄ (k)(φ(1), 1). Then since V̄ (k) is
a classical-sense solution to (17.2), for all β ∈ R

d , z ∈ R
d and r ∈ (0, 1),
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0 = V̄ (k)
t (z, r) + H(DV̄ (k)(z, r)) ≤ V̄ (k)

t (z, r) + 〈DV̄ (k)(z, r), β〉 + L(β).

Replacing (z, β) by (φ(r), φ̇(r)) and integrating from t to 1 gives

V̄ (k)(y, t) ≤ V̄ (k)(φ(1), 1) +
∫ 1

t
L(φ̇(r))dr.

Now use that V̄ (y, t) ≤ V̄ (k)(y, t), V̄ (k)(φ(1), 1) = V̄ (φ(1), 1), and that φ is arbi-
trary to get (17.4).

When F is not the minimum of a finite collection of convex functions, one should
not use component functions that correspond to the solution to the HJB equation
with an affine terminal condition, since they do not give a convenient approximation
to F from below. One alternative is to consider solutions to the HJB equation with
concave terminal conditions. In the special case of Gaussian {vi }, one might consider
concave quadratic functions.

17.1.5 Example

As an example, we consider {vi } with distribution N (0, 1) and F = F1 ∧ F2 ∧ F3

with
F1(x) = (ax + a + 1)+ , F2(x) = 1, F3(x) = (bx − b − 1)− ,

where a = 3/2 and b = 4. See Fig. 17.1.
Each Fk is convex, with F1 giving the minimum on (−∞, 0], F2 on [0, 1], and F3

on [1,∞). One can check that with these choices, α∗
1 = β∗

1 = −3/2, α∗
2 = β∗

2 = 0,
and α∗

3 = β∗
3 = 5/4, and that the corresponding classical subsolutions are

V̄ (1)(x, t) = 3

2
x + 9

8
t + 11

8
, V̄ (2)(x, t) = 1, V̄ (3)(x, t) = −5

4
x + 25

32
t + 25

32
.

Fig. 17.1 F as the minimum
of three convex functions

F3

x

x = 0 x = 1

F2

F1
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Table 17.1 Importance sampling estimation of an expected value

n = 10 n = 20 n = 30

Theoretical value 1.03 × 10−4 1.87 × 10−8 5.63 × 10−12

Estimate 1.02 × 10−4 1.90 × 10−8 5.55 × 10−12

Standard error 0.01 × 10−4 0.03 × 10−8 0.09 × 10−12

95% CI [1.00, 1.05] × 10−4 [1.84, 1.95] × 10−8 [5.38, 5.72] × 10−12

LD estimate 4.05 × 10−4 1.64 × 10−7 6.63 × 10−11

Table 17.2 Splitting estimation of an expected value

n = 10 n = 20 n = 30

Theoretical value 1.03 × 10−4 1.87 × 10−8 5.63 × 10−12

Estimate 1.00 × 10−4 1.64 × 10−8 5.05 × 10−12

Standard error 0.04 × 10−4 0.18 × 10−8 0.80 × 10−12

Average # particles 1.5 1.4 1.5

SD # particles 0.03 0.04 0.05

Max # particles 177 208 297

Average # steps 13.1 27.0 42.4

SD # steps 0.14 0.41 0.84

Max # steps 914 2498 4211

95% CI [0.91, 1.08] × 10−4 [1.28, 2.00] × 10−8 [3.45, 6.65] × 10−12

The large deviation decay rate is η = 25/32, and the dominant contribution to the
integral E[e−nF(Xn

n )] is from points in the neighborhood of x = 5/4.
For importance sampling, we use amollification parameter δ = 0.1, and each esti-

mate is based on L = 20,000 simulations. The theoretical value is computed using
the cumulative distribution function of N (0, 1). The simulation results for impor-
tance sampling are presented in Table 17.1. In the table, “CI” stands for “confidence
interval,” and “LD estimate” stands for “large deviation estimate,” bywhichwemean
e−nη.

We next present numerical results for splitting, where no mollification is needed.
Splitting thresholds are defined according to (16.26) based on the piecewise classical
subsolution V̄ , and the splitting scheme is implemented as described in Sect. 16.2.
The splitting rate is R = 5, and we take Δ = log R/n. Each estimate is based on
20,000 simulations. In Table 17.2, “# particles” is the number of particles that reach
discrete time n, and “# steps” is the total number of transitions of all particles that
occur during a simulation. “SD” stands for “standard deviation.”
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17.2 Hitting Probabilities and Level Crossing

17.2.1 Problem Statement

In this section we present examples of importance sampling and splitting for comput-
ing hitting probabilities, which include the level crossing probabilities of Sect. 14.5.3
as a special case. Let {vi }∞i=1 be iid random variables taking values in R

d with com-
mon distribution θ , and for n ∈ N let Sn = ∑n

i=1 vi , with the convention that S0 = 0.
Given a closed set B ⊂ R

d equal to the closure of its interior and z ∈ (0,∞), define

Tz
.= inf{n ≥ 0 : Sn ∈ zB}.

We are interested in estimating P{Tz < ∞}, and we assume that {Tz < ∞} is a rare
event for large z in the sense that

lim
z→∞ −1

z
log P {Tz < ∞} = η (17.5)

for some η > 0.

17.2.2 Associated PDE

Let

H(α) = log
∫

Rd

e〈α,y〉θ(dy)

be the log-moment generating function and as usual let L be the Legendre–Fenchel
transform of H and H(p) = −H(−p). The HJB equation that is used to construct
subsolutions for this problem is H(DV (x)) = 0 for x ∈ R

d\B, together with the
boundary condition V (x) = 0 for x ∈ B.

17.2.3 Component Functions

First suppose that B is a closed convex set (not containing 0) such that m
.=∫

Rd yθ(dy) /∈ B, and that B is the closure of its interior. Then under various regularity
conditions on the rate function (e.g., if L is superlinear and finite in a neighborhood
of the origin [65]), (17.5) holds with

η = inf [T L(β) : Tβ ∈ B, T ∈ (0,∞)] . (17.6)
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If H(α) < ∞ for α ∈ R
d , then L is superlinear, and in this case, convexity of B

implies that there are unique β∗ and T ∗ such that η = T ∗L(β∗) and T ∗β∗ ∈ B. If
α∗ is dual to β∗, then we claim that V̄ (x;β∗, T ∗) is a subsolution to the PDE and
boundary condition, where

V̄ (x;β, T )
.= −〈α, (x − Tβ)〉 , β ∈ R

d , T ∈ (0,∞)

and again α = DL(β) is the point dual to β. We argue this for the case that B has a
smooth boundary of the form {y : f (y) = 0}, B = {y : f (y) ≤ 0}, Df (y) �= 0 for
y ∈ ∂B, and f is convex and continuously differentiable, leaving the more general
case to the reader.

For B of this form, we can use Lagrange multipliers with Lagrangian T L(β) +
λ f (Tβ) to argue that there exist T ∗ ∈ (0,∞), β∗ ∈ R

d and λ∗ ∈ R that solve

L(β∗) + λ∗ 〈β∗, Df (T ∗β∗)
〉 = 0,

T ∗DL(β∗) + T ∗λ∗Df (T ∗β∗) = 0

f (T ∗β∗) = 0,

and for which the (T ∗, β∗) component can be identified as the unique minimizer in
(17.6). Convexity of f and 0 /∈ B implies 〈β∗, Df (T ∗β∗)〉 < 0, so that L(β∗) ≥ 0
gives λ∗ ≥ 0. Since by convex duality DL(β∗) is equal to α∗, the first two equations
in the last display give the third equality in the following:

H(α∗) = 〈
α∗, β∗〉 − L(β∗)

= 〈
DL(β∗), β∗〉 − L(β∗)

= − 〈
λ∗Df (T ∗β∗), β∗〉 + λ∗ 〈β∗, Df (T ∗β∗)

〉

= 0.

Thus V̄ (x;β∗, T ∗) solves the HJB equation. Moreover, for x ∈ B, convexity implies
〈Df (T ∗β∗), (x − T ∗β∗)〉 ≤ 0, and therefore for such x ,

V̄ (x;β∗, T ∗) = − 〈
DL(β∗), (x − T ∗β∗)

〉
(17.7)

= λ∗ 〈Df (T ∗β∗), (x − T ∗β∗)
〉

≤ 0.

Lastly, we note that

V̄ (0;β∗, T ∗) = 〈
DL(β∗), T ∗β∗〉 = −T ∗λ∗ 〈Df (T ∗β∗), β∗〉 = T ∗L(β∗) = η,

and therefore V̄ (0;β∗, T ∗) achieves the maximum possible value.
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17.2.4 Subsolutions

Suppose that B can be written as the union of K convex and closed sets Bk . Assume
also that with m

.= ∫
Rd yθ(dy) we have m /∈ Bk for k = 1, . . . , K , that the limit on

the left side of (17.5) exists with B replaced by Bk , and that there are unique (T ∗
k , β∗

k )

that minimize in inf [T L(β) : Tβ ∈ Bk, T ∈ (0,∞)]. Let V̄ (k)(x)
.= V̄ (x;β∗

k , T
∗
k ),

V̄ (x) = ∧K
k=1V̄

(k)(x) and η = V̄ (0). Then (17.5) holds, and moreover, V̄ (x) is a
piecewise classical subsolution to the HJB equation and boundary condition. The
verification of the last claim follows the same line of argument as in the previous
section, but is included here for completeness. It is automatic from the definition
that each V̄ (k)(x) is a classical-sense solution to H(DV (x)) = 0, and so only the
boundary condition needs to be checked. However, if x ∈ Bk , then by (17.7),

V̄ (x) ≤ V̄ (x;β∗
k , T

∗
k ) ≤ 0,

and since k is arbitrary, the boundary inequality holds. Hence the mollification of
this subsolution as described in Sect. 14.4 is appropriate for the design of importance
sampling schemes. For V̄ (x) to be used in the design of splitting schemes, the required
properties are the just established boundary inequality V̄ (x) ≤ 0 for x ∈ ∪K

k=1Bk , and
also

V̄ (y) ≤
∫ T

0
L(φ(r), φ̇(r))dr + V̄ (x) (17.8)

whenever absolutely continuous φ satisfies φ(0) = y, φ(T ) = x and φ(t) /∈ B◦
for t ∈ [0, T ), with T ∈ (0,∞) (see Definition 16.12). Let k satisfy V̄ (k)(x) =
V̄ (x). Using 0 ≤ V̄ (k)(z) + 〈DV̄ (k)(z), β〉 + L(β) for z, β ∈ R

d and integratingwith
(z, β) = (φ(r), φ̇(r)) gives

V̄ (k)(y) ≤
∫ T

0
L(φ(r), φ̇(r))dr + V̄ (x).

Then (17.8) follows, since V̄ (k)(y) ≥ V̄ (y).

17.2.5 Examples

We present two examples. The first is a two-dimensional Gaussian system that satis-
fies all the needed conditions for the theoretical results developed in previous chapters
to apply. The second example, studied in [150], has been used to illustrate the prob-
lems with importance sampling estimators that do not allow state feedback. Since
the second example involves exponential random variables, H(α) is not finite for all
α, and the theory of Chap. 4 does not apply, and in particular one does not have a
standard LDP on path space. A theory on path space has been developed [185], but
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the rate function will no longer be finite only on absolutely continuous paths. This is
due to the relatively heavy tail of the exponential distribution, and the rate can even
be finite on paths with jumps. Nonetheless, for the problem of level crossing one can
rigorously justify the importance sampling scheme that is appropriate when H(α) is
finite for all α.

For these level crossing problems one might be concerned that simulation times
are finite in an appropriate sense, since the problem is of interest over a potentially
unbounded time interval. However, the importance sampling change of measure
based on a subsolution leads to a process that hits the target set B with probability
one, and in fact, one has finite moments for the expected hitting time.

17.2.5.1 Two-Dimensional Gaussian Example

Let

vi =
(
v1i
v2i

)
=

[
1 1.2
0 1

](
Z1
i

Z2
i

)
−

(
0.5
0.4

)
,

where {Z1
i }∞i=1 and {Z2

i }∞i=1 are iid N (0, 1), and let

B
.= {(x1, x2) : x1 ≥ 1 or x2 ≥ 1.2}.

If

μ
.= −

(
0.5
0.4

)
, Σ

.=
[
2.44 1.2
1.2 1

]
,

then the log moment-generating function for vi is

H(α) = 〈μ, α〉 + 1

2
〈α,Σα〉 .

Suppose that ηi > 0 satisfy H((η1, 0)T ) = 0 and H((0, η2)T ) = 0, so that η1 =
1/2.44 and η2 = 0.8. Let α∗

1
.= (η1, 0) and α∗

2
.= (0, η2). Then

B = ∪2
i=1{x : 〈x, α∗

i 〉 ≥ ηi }. (17.9)

We always have (β∗
k T

∗
k )k = 1, and thus

V̄ (k)(x) = −〈α∗
k , x〉 + ηk, k = 1, 2.

Using (17.9), it is easily checked that V̄
.= V̄ (1) ∧ V̄ (2) satisfies the boundary condi-

tion V̄ (x) ≤ 0 for x ∈ B and that V̄ (0) = η, and in fact, V̄ is the minimal cost for
the corresponding optimal control problem.

To implement importance sampling with mollification parameter δ > 0 for this
problem we use the randomized implementation of Sect. 14.4. The process under the
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Table 17.3 Importance sampling for level crossing with Gaussian distributions

z = 10 z = 20 z = 30

Theoretical value 1.14 × 10−2 1.90 × 10−4 3.15 × 10−6

Estimate 1.15 × 10−2 1.89 × 10−4 3.15 × 10−6

Standard error 2.38 × 10−5 3.99 × 10−7 6.66 × 10−9

95% CI [1.14, 1.15] × 10−2 [1.88, 1.90] × 10−4 [3.14, 3.17] × 10−6

Table 17.4 First splitting for level crossing with Gaussian distributions

z = 10 z = 20 z = 30

Theoretical value 1.14 × 10−2 1.90 × 10−4 3.15 × 10−6

Estimate 1.16 × 10−2 1.83 × 10−4 3.08 × 10−6

Standard error 3.87 × 10−4 8.75 × 10−6 2.02 × 10−7

Average # steps 32.70 67.42 102.28

Max # steps 336 1520 4953

95% CI [1.09, 1.24] × 10−2 [1.66, 2.00] × 10−4 [2.68, 3.47] × 10−6

# level crossed 1419 712 476

importance sampling change of measure based on the subsolution is

S̄n =
n∑

i=1

v̄i ,

where the conditional distribution of v̄i given S̄i−1 is

ρδ
1

(
S̄i−1

z

)
P1(dy) + ρδ

2

(
S̄i−1

z

)
P2(dy),

and where Pk(dy) is the distribution of N (μ + Σα∗
k ,Σ).

For values of z = 10, 20, 30, estimates are based on 20,000 simulations and use
δ = 0.1. What we call “theoretical” values are obtained by running 1,000,000 sim-
ulations. The results are presented in Table 17.3.

Since Sn → (−∞,−∞) a.s., for the splitting algorithm to terminate we must kill
particles if they go too far in the (−∞,−∞) direction, which will lead to a small
bias (which could itself be estimated using a large deviation calculation). Here we
use the terminal set (−∞,−1] × (−∞,−1]. The splitting rate is R = 5, and we take
Δ = log R/z. The subsolution used to define splitting thresholds is V̄ (1) ∧ V̄ (2). We
conduct 20,000 simulations for each estimate. The theoretical values are obtained by
running 1,000,000 simulations of importance sampling. These results are presented
in Table 17.4. Here “# level crossed” means the number of simulations in which the
level is crossed successfully.
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Table 17.5 Second splitting for level crossing with Gaussian distributions

z = 10 z = 20 z = 30

Theoretical value 1.14 × 10−2 1.90 × 10−4 3.15 × 10−6

Estimate 1.16 × 10−2 1.85 × 10−4 3.08 × 10−6

Standard error 3.90 × 10−4 8.83 × 10−6 1.91 × 10−7

Average # steps 131.02 265.94 400.66

Max # steps 413 1536 3434

95% CI [1.09, 1.24] × 10−2 [1.68, 2.03] × 10−4 [2.71, 3.46] × 10−6

# level crossed 1418 728 488

Table 17.5 considers the terminal set (−∞,−5] × (−∞,−5]. The simulation
time is approximately three to four times greater.

17.2.5.2 Two-Dimensional Exponential Example

Let
vi = (v1i , v

2
i ) = (Z1

i − 2, Z2
i − 3),

where {Z1
i }∞i=1 and {Z2

i }∞i=1 are iid and mutually independent exponentially dis-
tributed random variables with mean 1, and let B = {x = (x1, x2) : x1 ≥ 1 or x2 ≥
1}. The log moment-generating functions Hj for v

j
1 , j = 1, 2, are

H1(α) = −2α − log(1 − α), H2(α) = −3α − log(1 − α), α ∈ (−∞, 1).

For i = 1, 2 let ηi be the unique positive solution of Hi (α) = 0. Then it can be
checked that the limit in (17.5) exists and

η
.= lim

z→∞ −1

z
log P {Tz < ∞} = η1 ∧ η2.

Let α∗
1

.= (η1, 0) and α∗
2

.= (0, η2). Then

B = ∪2
i=1{x : 〈x, α∗

i 〉 ≥ ηi }.

A numerical approximation yields that η1 ≈ 0.8 and η2 ≈ 0.94.
We always have (β∗

k T
∗
k )k = 1, and thus

V̄ (k)(x) = −〈α∗
k , x〉 + ηk, k = 1, 2.

As before, V̄
.= V̄ (1) ∧ V̄ (2) satisfies the boundary condition V̄ (x) = 0 for x ∈ B

and V̄ (0) = η, and V̄ is the solution. To implement importance sampling with mol-
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Table 17.6 Importance sampling for level crossing with exponential distributions

z = 10 z = 20 z = 30

Theoretical value 7.53 × 10−4 2.48 × 10−8 8.47 × 10−12

Estimate 7.44 × 10−5 2.46 × 10−8 8.51 × 10−12

Standard error 0.08 × 10−5 0.02 × 10−8 0.08 × 10−12

95% CI [7.28, 7.60] × 10−5 [2.41, 2.51] × 10−8 [8.35, 8.67] × 10−12

lification parameter δ > 0 for this problem we use the randomized implementation
of Sect. 14.4. In particular, if the index k = 1 is selected then, v̄i will have the dis-
tribution of (Ẑ1 − 2, Z2 − 3), where Ẑ1 is exponential with mean 1/(1 − α∗

1) and
Z2 (independent of Ẑ1) is exponential with mean 1. If k = 2 is selected, then v̄i
has the distribution of (Z1 − 2, Ẑ2 − 3), with Z1 exponential with mean 1 and Ẑ2

(independent of Z1) exponential with mean 1/(1 − α∗
2).

We run 20,000 simulations for values of z = 10, 20, 30 and use δ = 0.1. The
theoretical values are exact up to numerical precision, and they can be obtained
because the dynamics in the two dimensions are independent (under the original
distribution). Simulation results for importance sampling are presented in Table 17.6.

Splitting can in principle also be applied to this problem. However, the need
to truncate the state space causes some difficulties not present in the Gaussian case.
Owing to the relatively heavy tail of the exponential distribution, there is a significant
probability of reaching the crossing level even when if one starts far away. Therefore,
the terminated trajectories will lead to significant errors unless they are terminated
only when they are very far from the crossing boundary. This leads to many paths
that must be simulated for very long times. In comparison, with importance sampling
all simulations reach the crossing level with probability one, and typically in short
time, and with no truncation error. For these reasons, importance sampling appears
better suited in this context.

17.3 Path-Dependent Functional

In this section we consider the estimation of expected values that depend on the path
of a randomwalk. Problems of this type in a particular form were introduced in Sect.
14.5.4, where the relevant subsolutions were characterized in terms of a coupled pair
of PDEs, and the specific form of the estimator was made precise. In this section
we explain how one can construct a subsolution in terms of affine functions, and
illustrate the performance of the resulting schemes.
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17.3.1 Problem Formulation

Let {vi }∞i=1 be iid R-valued random variables with common distribution θ such that
E [vi ] = 0. Let H and L be the log moment-generating function and its Legendre–
Fenchel transform, and let Xn

i = 1
n

∑i
j=1 v j . We are interested in estimating

E
[
e−nF(Xn

n )1{max0≤i≤n Xn
i ≥h}

]

for some h ∈ (0,∞) and a suitable function F . Under conditions on F and θ , we
have

lim
n→∞ −1

n
log E

[
e−nF(Xn

n )1{max0≤i≤n Xn
i ≥h}

] = η,

where η is characterized by

η
.= inf

[∫ 1

0
L(φ̇(t))dt + F(φ(1)) : φ(0) = 0, max

s∈[0,1] φ(s) ≥ h

]
. (17.10)

17.3.2 Subsolutions

Suppose we consider the particular problem

P

{
max
0≤i≤n

Xn
i ≥ h, Xn

n ≤ l

}

for some 0 < l < h. Thus F(x) = ∞1(l,∞)(x). The relevant PDEs and bound-
ary/terminal conditions for a similar problem were derived in Sect. 14.5.4 and stated
in (14.26)–(14.29). For the present problem, they take the form

V̄t (1, x, t) + H(DV̄ (1, x, t)) ≥ 0, x ∈ R, t ∈ (0, 1),

V̄ (1, x, 1) ≤ 0, x ≤ l, (17.11)

and
V̄t (0, x, t) + H(DV̄ (0, x, t)) ≥ 0, x ∈ R, t ∈ (0, 1),

V̄ (0, x, t) ≤ V̄ (1, x, t), x ≥ h, t ∈ (0, 1). (17.12)

As in the previous examples, a subsolution can be identified once we know the
solution to the large deviation variational problem. Specifically, using convexity and
Jensen’s inequality, the decay rate η in (17.10) can be equivalently written as
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η = inf

[
ρ0L

(
h

ρ0

)
+ ρ1L

(
l − h

ρ1

)
: ρi ≥ 0, i = 0, 1, ρ0 + ρ1 = 1

]
.

Since the mean under θ is zero, we have L(β) = 0 if and only if β = 0, and thus
the infimum is achieved at ρ∗

0 , ρ
∗
1 ∈ (0, 1). Let β∗

0 = h/ρ∗
0 , β∗

1 = (l − h)/ρ∗
1 , and

let α∗
0 , α

∗
1 be their convex conjugates. Then ρ∗

0 is the length of time, after starting
at 0 at t = 0, that the velocity β∗

0 is applied to push the trajectory over h, and ρ∗
1

and β∗
1 are the subsequent time and velocity needed to optimally push the trajectory

below l at time 1. It can be checked that optimality implies α∗
1 < 0, α∗

0 > 0, and
H(α∗

0) = H(α∗
1). Using the interpretation of V̄ (1, x, t) as the solution to the finite-

time problem with the terminal condition V̄ (1, x, 1) ≤ 0 for x ≤ l, a subsolution as
in Sect. 17.1 is given by

V̄ (1, x, t) = −α∗
1(x − β∗

1 ) − H(α∗
1)[1 − t] + c1

= −α∗
1(x − l) − H(α∗

1)[1 − t]

when c1 is chosen to be the largest value that satisfies (17.11). For times prior to
exceeding h, we use a subsolution of the form

V̄ (0, x, t) = −α∗
0(x − β∗

0 ) − H(α∗
1)[1 − t] + c0.

For the boundary condition (17.12) to be satisfied, we need

−α∗
0(h − β∗

0 ) + c0 ≤ −α∗
1(h − l),

and to obtain the largest value for V̄ (0, 0, 0) we take c0 = h[α∗
0 − α∗

1 ] − α∗
0β

∗
0 +

α∗
1 l. In particular, the two functions agree when x = h. Since ρ∗

0 + ρ∗
1 = 1, ρ∗

0β
∗
0 +

ρ∗
1β

∗
1 = l, and H(α∗

0) = H(α∗
1), it follows that

V̄ (0, 0, 0) = α∗
0β

∗
0 − H(α∗

1) + h[α∗
0 − α∗

1 ] − α∗
0β

∗
0 + α∗

1 l

= −H(α∗
1) + ρ∗

0β
∗
0 [α∗

0 − α∗
1 ] + α∗

1

(
ρ∗
0β

∗
0 + ρ∗

1β
∗
1

)

= ρ∗
0 [α∗

0β
∗
0 − H(α∗

0)] + ρ∗
1 [α∗

1β
∗
1 − H(α∗

1)],

which equals the optimal asymptotic decay rate η. Note that this is a classical-sense
subsolution to the pair of PDEs and boundary/terminal condition, and therefore no
mollification is needed.

17.3.3 Example

For a numerical example we take vi ∼ N (0, 1), h = 1, and l = 0.8. This results in
the subsolution
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V̄ (1, x, t) = 6

5
x − 6

5
(.8) − 1

2
(1 − t)

(
6

5

)2

and

V̄ (0, x, t) = −6

5
x + 6

5
(1.2) − 1

2
(1 − t)

(
6

5

)2

.

Mollification is not needed, since the subsolution is in the classical sense for the pair
of PDEs. The controlled process using the importance sampling change of measure
based on this subsolution takes the form

Y n
i = 1

n

i∑

j=1

wn
j ,

where

wn
i ∼

{
N (−6/5, 1) if Zn

i = 1,
N (6/5, 1) otherwise,

and Zn
i = 1 if max0≤ j≤i Y n

j ≥ h and Zn
i = 0 otherwise. The corresponding impor-

tance sampling estimator is

1{max0≤i≤n Y n
i ≥1,Y n

n ≤.8}
n∏

j=1

ew
n
j V̄x (Zn

j ,Y
n
j , j/n)+(6/5)2 .

The results presented in Table 17.7 are based on 20,000 simulations, and we use
n = 10, 20, 30. The theoretical value is an estimate based on one billion simulations
of the importance sampling scheme.

The results for splitting are given in Table 17.8. The splitting rate is R = 5, andwe
take Δ = log R/n. No mollification is needed, and we conduct 20,000 simulations
for each estimate. Here “# particles” is the number of particles that reach the terminal
time.

Table 17.7 Importance sampling estimation of a path-dependent functional

n = 10 n = 20 n = 30

Theoretical value 1.68 × 10−5 9.66 × 10−9 6.09 × 10−12

Estimate 1.71 × 10−5 9.63 × 10−9 6.37 × 10−12

Standard error 0.04 × 10−5 0.27 × 10−9 0.19 × 10−12

95% CI [1.62, 1.79] × 10−5 [9.10, 10.2] × 10−9 [6.00, 6.75] × 10−12
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Table 17.8 Splitting estimation of a path-dependent functional

n = 10 n = 20 n = 30

Theoretical value 1.68 × 10−5 9.66 × 10−9 6.09 × 10−12

Estimate 2.06 × 10−5 10.2 × 10−9 5.04 × 10−12

Standard error 0.25 × 10−5 2.06 × 10−9 0.99 × 10−12

Average # particles 1.2 1.2 1.2

SD # particles 0.01 0.02 0.02

Max # particles 53 153 152

Average # steps 12.5 27.1 40.8

SD # steps 0.10 0.40 0.62

Max # steps 445 4308 2401

95% CI [1.58, 2.54] × 10−5 [6.15, 14.25] × 10−9 [3.10, 6.98] × 10−12

17.4 Serve-the-Longest Queue

Subsolutions that induce asymptotically optimal importance sampling and splitting
schemes can be constructed for many queuing systems and networks, and refer-
ences are given in Sect. 17.7. This is due to the fact that the dynamics of these
models are “sectionally” homogeneous, and as a consequence, the subsolutions are
constructed in terms of a finite number of affine functions. We will illustrate this
using the weighted serve-the-longest queue model of Sect. 13.2. There are, however,
some subtleties, which arise from the fact that while sectionally homogeneous, the
dynamics also have certain discontinuous behaviors. The key issue then is the proper
definition of the PDE that characterizes large deviation rates as a function of starting
position and time, and which is also used to characterize subsolutions. We review the
construction and use of subsolutions for the two-dimensional problem in this section,
and refer the reader to [105] for the general case. One can construct subsolutions
for either the true continuous time model or, when the event of interest does not
depend on time, in terms of the embedded discrete time Markov process, with both
constructions leading to the same algorithm.

17.4.1 Problem Formulation

The weighed serve-the-longest queue was described in detail in Sect. 13.2, and we
adopt the notation of that section, specialized to the two-dimensional setting. The
system state at time t is the vector of queue lengths and is denoted by Q(t)

.=
(Q1(t), Q2(t)). Also, V

.= {±e1,±e2}, and for v ∈ V , r(x; v) denotes the jump
intensity of the process Q from state x to state x + v. For x = (x1, x2) ∈ R

2+ and
x �= 0, let



488 17 Examples of Subsolutions and Their Application

Fig. 17.2 System dynamics
for d = 2

x1

λ1μ1

λ2

λ2

λ1

μ2

c1x1 = c2x2

1/c1

1/c2

x2

π(x)
.=
{
i ∈ {1, 2} : ci xi = max

j∈{1,2} c j x j

}
.

Then

r(x; v) =

⎧
⎪⎪⎨

⎪⎪⎩

λi if v = ei , i = 1, 2,
μ2 if v = −e2, 2 ∈ π(x),
μ1 if v = −e1, {1} = π(x),
0 otherwise.

Thus queue 2 is given priority when there are ties. For x = 0, there is no service, and
the jump intensities are

r(0; v) =
{

λi , if v = ei and i = 1, 2,
0 , otherwise.

See Fig. 17.2.
For the system to be stable, we assume

2∑

j=1

λ j

μ j
< 1. (17.13)

The quantity of interest is the buffer overflow probability

pn
.= P {Qi (t) reaches n/ci for i = 1 or 2 before Q(t) = 0 |Q(0) = q0 } ,

where n is large and q0 = (0, 1) or (1, 0). Let

G
.= {x = (x1, x2) ∈ R

2
+ : ci xi < 1, i = 1, 2}.
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and let Gc denote the complement of G relative to R
2+. The probability pn is then

conveniently phrased in terms of the scaled process Xn(t)
.= Q(nt)/n as

pn
.= P

{
Xn(t) reaches Gc before Xn(t) = 0

∣∣Xn(0) = q0/n
}
.

17.4.2 Associated Rate Function

For i = 1, 2 and for α = (α1, α2) ∈ R
2 define

H {i}(α)
.= μi (e

−αi − 1) +
2∑

j=1

λ j (e
α j − 1).

Werecall the definition of the rate function for theWSLQmodel fromSect. 13.26 [see
(13.6)], specialized to d = 2, and for absolutely continuous trajectories φ : [0, T ] →
R

2+. For i = 1, 2, let L {i} be the Legendre–Fenchel transform of H {i}. We also define
L {1,2} to be the Legendre–Fenchel transform of maxi∈{1,2} H {i}, that is,

L {1,2}(β)
.= sup

α∈R2

[
〈α, β〉 − max

i∈{1,2} H
{i}(α)

]

for each β ∈ R
2. Because the system is stable, we have Lπ(0)(0) = 0 (see Lemma

13.4), and since for an absolutely continuous φ the Lebesgue measure of the set {t ∈
[0, T ] : φ(t) = 0, φ̇(t) �= 0} is zero, this is the only value of Lπ(0)(·) that matters.
As shown in Chap. 13, the rate function takes the form

Iφ(0)(φ)
.=
∫ T

0
Lπ(φ(t))(φ̇(t))dt.

Thus L {1,2}(β) is the correct local rate function when φ is on the boundary set
{(x1, x2) : π(x) = {1, 2}}. Since maxi∈{1,2} H {i}(α) is a proper convex function, it is
the Legendre–Fenchel transform of L {1,2}(β). It is important to note that this very
simple relationship, in which the local rate function at x is simply the Legendre–
Fenchel transformation of the pointwise maximum of the H {i} for which i ∈ π(x),
in general does not hold for processes with such “discontinuous statistics.” In the
current setting, it is due to the “stability about the interface” property of the WSLQ
discipline policy discussed at length in Sect. 13.2.

17.4.3 Adaptations Needed for the WSLQ Model

In Chaps. 14–16, we considered the problem of hitting a set B before A. A standing
assumption was that all trajectories with zero cost would eventually enter the open
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set A. This setup is appropriate for many types of processes, since, for example, with
a diffusion process in dimension greater than one, it does not make sense to consider
the question of reaching some set B before hitting a single point. However, for some
systems, and in particular for queueing systems, such a question can make perfect
sense.

Indeed, for the WSLQ system, we replace A by {0}, and we also have initial
conditions of the form Xn(0) ∈ {(1/n, 0), (0, 1/n)}, which converge to 0 as n → ∞.
Since the event of interest is qualitatively different, it follows that the formulation of
the variational problem and related definitions of subsolution are slightly different,
as is the proof of the performance bounds. The variational problem becomes

V (x) = inf

[∫ T

0
Lπ(φ(t))(φ̇(t))dt : φ(0) = x, φ(T ) ∈ B, T < ∞

]
, (17.14)

where B = Gc. Although one might expect, as in Chap. 15, that there is also the
requirement that φ(t) /∈ {0} for t ∈ (0, T ), it is easy to check that if a trajectory
passes through {0} on the way to B, then one can find a trajectory with starting point
x and nearly the same cost that avoids {0}. The formulation (17.14) is preferred,
because it gives the correct value for the statement of rate of decay for the second
moment at the point x = 0, which, as observed, is the limit of the starting points that
are natural for this problem.

A second adaptation is needed owing to the discontinuous statistical behavior
of the process. As we will see, the construction of subsolutions will be based on
important roots associated with the Hamiltonians H {i}(α), i = 1, 2, and H {1,2}(α)

.=
H {1}(α) ∨ H {2}(α).We recall that as used inChap. 15, the classical-sense subsolution
property for V̄ with respect to the PDE (but not necessarily the boundary conditions)
means thatH(x, DV̄ (x)) ≥ 0 for x in the domain of interest. However, Theorem15.1
in that chapter assumes conditions that imply, among other properties, that H(x, α)

is jointly continuous. As a consequence, this performance bound on importance
sampling does not directly cover the WSLQmodel, owing to the discontinuity of the
dynamics in a neighborhood of {(x1, x2) : π(x) = {1, 2}}.

For an analysis of the second moment that gives the (not tight) lower bound
of 2V̄ (x) on the decay rate of the second moment, we refer to [105]. The reader
interested in the tighter bound V (x) + V̄ (x), which is analogous to that stated in
Theorem 15.10, can adapt the arguments of Chap. 15 using the definition of subso-
lution given in the next subsection. The situation with regard to splitting is simpler.
Since the performance analysis uses only certain large deviation properties of the
process model, one can continue to use the notion of subsolution introduced in Defi-
nition 16.12, except as with (17.14), trajectories do not have to avoid A = {0} before
reaching B.
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17.4.4 Characterization of Subsolutions

Let

H
{1}(α)

.= −H {1}(−α), H
{2}(α)

.= −H {2}(−α), H
{1,2}(α)

.= −H {1,2}(−α),

and let V̄ be continuously differentiable on an open neighborhood ofG. Each Hamil-
tonian in the last display is appropriate to that part of the domain where its dual is
the local rate function. To be precise, given a continuously differentiable function
V̄ : R

2 → R, the analogue of Definition 14.4 is

H
Π(∇ V̄ (x)) ≥ 0 for x ∈ {x ∈ R

2
+\{0} : π(x) = Π}

and V̄ (x) ≤ 0 for x ∈ B, and the definition corresponding to Definition 14.5 is anal-
ogous.

17.4.5 Component Functions

Ignoring for the moment the boundary condition, we will construct a subsolution as
the minimum of three affine functions, one for each region. The critical component
function will be the one corresponding to H

{1,2}, since it must bridge the regions that
correspond to π(x) = {1} and π(x) = {2}.

In the situation considered here, with just two regions separated by one boundary,
it will be easy to construct the needed affine functions. We refer to [105] for the more
involved general case. We first claim that there exist vectors α{1}, α{2} such that

H
{1}(α{1}) = 0 with α

{1}
2 = 0 and α

{1}
1 < 0,

H
{2}(α{2}) = 0 with α

{2}
1 = 0 and α

{2}
2 < 0.

The existence of α{1} follows from the following:H{1}(0) = 0; DαH
{1}(0) = DαH {1}

(0) = (λ1 − μ1, λ2); the stability condition (17.13) then implies that the 1-component
of DαH

{1}(0) is negative; and that H
{1}((z, 0)) → −∞ as z → −∞. These facts

imply the existence of z < 0 such that H
{1}((z, 0)) = 0, and the strict concavity of

H
{1} implies that the solution is unique. A similar argument gives the existence (and

uniqueness) of α{2}.
Next we observe that owing to (17.13), there exists z ∈ (0,mini∈{1,2} μi ) such that

∑

j∈{1,2}

λ j

μ j − z
= 1, (17.15)

and define
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α
{1,2}
i

.= log

(
1 − z

μi

)
for i = 1, 2.

Since z ∈ (0,mini∈{1,2} μi ), it follows that α
{1,2}
i < 0 for i = 1, 2. We claim that

H
{i}(α{1,2}) = 0 for i = 1, 2, and thus H

{1,2}(α{1,2}) = 0. We prove just the case
i = 1, since the case i = 2 follows via an analogous argument. Using the explicit
expression for H

{1} and (17.15), we obtain

H
{1}(α{1,2}) = −μ1(e

α
{1,2}
1 − 1) − λ1(e

−α
{1,2}
1 − 1) − λ2(e

−α
{1,2}
2 − 1)

= −μ1

[(
1 − z

μ1

)
− 1

]
− λ1

[(
1 − z

μ1

)−1

− 1

]

− λ2

[(
1 − z

μ2

)−1

− 1

]

= z − λ1

[
z

μ1 − z

]
− λ2

[
z

μ2 − z

]

= 0.

The component functions that will be used to construct a piecewise classical subso-
lution are then

V̄Π(x) = 〈x, αΠ 〉 + bΠ, Π = {1}, {2}, {1, 2},

where the constants bΠ will be chosen to satisfy boundary conditions.

17.4.6 Subsolutions

Define the vector
c̄

.= (1/c1, 1/c2)

and define
η

.= min
{〈−αΠ, c̄〉 : Π = {1}, {2}, {1, 2}} . (17.16)

Then by a verification argument, η can be shown to be the value of the calculus of
variations problem that is associated with the large deviation decay rate of {pn} given
by (17.14) with x = 0, with the minimizing Π identifying the region traveled by the
optimal trajectory (where Π = {1, 2} corresponds to traveling along the interface).
Suppose the constants bΠ are defined by bΠ

.= 〈−αΠ, c̄〉 for Π = {1}, {2}, {1, 2}.
Then for all x ∈ R

+, we have the boundary values

V̄ {1}((1/c1, x)) = 〈α{1}, c̄〉 + b{1} = 0, V̄ {2}((x, 1/c2)) = 〈α{2}, c̄〉 + b{2} = 0,
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and similarly V̄ {1,2}((1/c1, 1/c2)) = 0. Also, it is automatic from the definition that
if Π is the minimizer in (17.16), then V̄Π(0) ≤ V̄Θ(0) for Θ �= Π .

We can now construct piecewise classical subsolutions to be used for importance
sampling as well as the subsolutions that will be used for splitting. The construction
is divided into cases according to the minimizer in (17.16), and by symmetry, it
is enough to consider just the cases in which that minimizer is either Π = {1} or
Π = {1, 2}.
The case Π = {1} is the unique minimizer. In this case, the minimizing trajectory
in (17.14) that starts at 0 stays in the region where π(x) = {1}, so that c1 times the
first component is larger than c2 times the second. In particular, this trajectory will
exit at a point of the form (1/c1, x2), with x2 < 1/c2. This suggests the use of V̄ {1}(x)
in this region, but does not resolve the issue of what to use in the regions where either
π(x) = {2} or π(x) = {1, 2}. In order that the correct affine function minimize in
these regions, we lower the functions V̄ {2} and V̄ {1,2} so that their values at 0 agree
with V̄ {1}(0) = η (sinceΠ = {1} is the uniqueminimizer, it follows that V̄ {2}(0) > η

and V̄ {1,2}(0) > η). Specifically, we let

r2
.= η/V̄ {2}(0) ∈ (0, 1) and r1,2

.= η/V̄ {1,2}(0) ∈ (0, 1).

Owing to the concavity of H
{2}, r2V̄ {2}(x) satisfies

H
{2}(D[r2V̄ {2}](x)) ≥ r2H

{2}(α{2}) + (1 − r2)H
{2}(0) = 0,

and likewise H
{2}(D[r1,2V̄ {1,2}](x)) ≥ 0, and therefore the subsolution property is

preserved if V̄ {2} [resp. V̄ {1,2}] is replaced by r2V̄ {2} [resp. r1,2V̄ {1,2}].
There is a last small adjustment needed for importance sampling. If the mollifi-

cation of Sect. 14.2 were applied to the current piecewise classical subsolution to
produce V̄ δ(x), then gradients in any open neighborhood of {x ∈ G : π(x) = {1, 2}}
would be a convex combination ρ1α

{1} + ρ2r2α{2}, and thus the subsolution property
may no longer hold in this region. To deal with this, we will lower r1,2V̄ {1,2}(x)
slightly so that it is the smallest of the three functions in some open neighborhood
of this set. Thus the piecewise classical subsolution that is used for importance sam-
pling is

V̄κ(x) = V̄ {1}(x) ∧ [r2V̄ {2}(x)] ∧ [r1,2V̄ {1,2}(x) − κ],

where κ ∈ (0, 1). While it is still true that the gradient of V̄κ is a convex combination
of α{1}, r2α{2}, and r1,2α{1,2}, it is easy to check (see [105, Sect. 7.2]) that because
H

{1}(r1,2α{1,2}) ∧ H
{2}(r1,2α{1,2}) ≥ 0, in fact H(x, DV̄ δ

κ (x)) ≥ −Ke−κ/δ for all x ∈
G, where K ∈ [0,∞) can be made explicit in terms of the system parameters. This
“loss” of the subsolution property can bemade negligible by choosing κ appropriately
in terms of δ. Since V̄ δ

κ (x) satisfies V̄ δ
κ (x) ≤ 0 for x ∈ ∂G, this function can be used

for either the randomized or ordinary implementation. One can go further, and show
that with κ = κn and δ = δn , the resulting schemes are asymptotically optimal so
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long as κn → 0, κn/δn → ∞ and nδn → ∞ as n → ∞ (see [105, Proposition 8.1]
and Theorem 15.14).

Using a verification argument, one can show that V̄κ is a suitable subsolution for
splitting in the sense of the appropriate analogue of Definition 16.12 (see Sect. 17.2)
for each κ > 0. Sending κ → 0 shows that

V̄0(x) = V̄ {1}(x) ∧ [r2V̄ {2}(x)]

is a suitable subsolution for the design of splitting schemes, with the optimal value
at x = 0.

The case Π = {1, 2} is a minimizer. An analogous argument in this case shows that

V̄κ(x) = [r1V̄ {1}(x)] ∧ [r2V̄ {2}(x)] ∧ [V̄ {1,2}(x) − κ]

is a suitable piecewise classical subsolution for importance sampling when κ ∈
(0, 1), where r1 = η/V̄ {1}(0) ∈ (0, 1), and that

V̄0(x) = [r1V̄ {1}(x)] ∧ [r2V̄ {2}(x)]

is a suitable subsolution for the design of splitting schemes. The piecewise classical
subsolution is mollified when used for importance sampling just as in the case that
Π = {1} is the minimizer.

17.4.7 Example

We consider the problem with data

λ1 = 1, λ2 = 2, μ1 = 3, μ2 = 4, c1 = 1/2, c2 = 1.

Then the relevant roots are

α{1} = (log(1/3), 0) ≈ (−1.0986, 0),

α{2} = (0, log(1/2)) ≈ (0,−0.6931),

α{1,2} = (log([1 + √
2]/3), log([2 + √

2]/4])) ≈ (−0.2172,−0.1583).

Since c̄ = (2, 1), we see that the minimizer in (17.16) is approximately 0.5927, and
it occurs for Π = {1, 2}. Hence the minimizing trajectory is along the interface.

The queueing model is a continuous time pure jump Markov process, and in
general, one should use the likelihood ratio appropriate for such processes (e.g.,
Theorem [161, Theorem III.3.24] and Appendix D.3). However, since we consider
here an exit probability,we can insteadworkwith the embedded discrete timeMarkov
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chain, whose transition probabilities are given by renormalizing the rates, so that the
probability of a transition from state q to q + v/n is given by

r(x, v)

/∑

w∈V
r(x,w).

Whereas in the continuous time setting one would interpret the duality formula

H(x, DV̄ (x)) = inf

[
〈
DV̄ (x), β

〉 +
∑

w∈V
r(x,w)� (r̄(x,w)/r(x,w))

]

as indicating that the process used for importance sampling is a continuous time
Markov process with jump rates (see Sect. 14.5.2)

r̄(x, v) = r(x, v)e−〈v,DV̄ (x)〉,

for the embedded chain, we use transition probabilities r̄(x, v)/R̄(x) and the impor-
tance sampling estimator

1{Y n
Nn �=0}

Nn−1∏

j=0

r(Y n
j /n,wj+1)/R(Y n

j /n)

r̄(Y n
j /n,wj+1)/R̄(Y n

j /n)
.

Here R(x)
.= ∑

v∈V r(x, v), R̄(x)
.= ∑

v∈V r̄(x, v), wj+1 = n(Y n
j+1 − Y n

j ),

Nn .= inf{k ∈ N : Y n
j /∈ G or Y n

j = 0},

and {Y n
j } is a Markov chain with these transition probabilities and initial condition

Y n
0 = q0. We note that an entirely analogous development of the large deviation and

importance sampling theory is possible that works directly with the embedded chain,
and following that route would produce the same expressions.

For importance sampling we use the ordinary mollification with δn = 1/5 log n
and κn = −δn log δn . We ran 20,000 simulations for values of n = 20, 50, 80, and
results are presented in Table 17.9. For the system, the exact values are obtained
by solving the linear system that arises from a first step analysis. To compute the
probability of hitting B before (0, 0) after leaving (0, 0), we compute the proba-
bility of returning to (0, 0) before reaching B, after starting at (1, 0) or (0, 1) with
probabilities 2/3 and 1/3, respectively.

Table 17.10 gives the corresponding results for splitting. The splitting rate is
R = 5, andwe takeΔ = log R/n. The subsolution used to define splitting thresholds
is

V̄0(x) = [r1V̄ {1}(x)] ∧ [r2V̄ {2}(x)].

20,000 simulations are used for each estimate.
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Table 17.9 Importance sampling for serve-the-longest queue

n = 20 n = 50 n = 80

Theoretical value 1.90 × 10−5 4.36 × 10−13 8.31 × 10−21

Estimate 1.96 × 10−5 4.20 × 10−13 7.75 × 10−21

Standard error 3.81 × 10−7 1.87 × 10−14 5.86 × 10−22

95% CI [1.88, 2.03] × 10−5 [3.84, 4.57] × 10−13 [6.60, 8.90] × 10−21

Table 17.10 Splitting for serve-the-longest queue

n = 20 n = 50 n = 80

Theoretical value 1.90 × 10−5 4.36 × 10−13 8.31 × 10−21

Estimate 1.75 × 10−5 5.07 × 10−13 9.81 × 10−21

Standard error 1.23 × 10−6 6.21 × 10−14 1.59 × 10−21

Average # steps 109.60 464.11 842.64

Max # steps 20650 160622 692367

95% CI [1.51, 1.99] × 10−5 [3.86, 6.29] × 10−13 [6.70, 12.93] × 10−21

# success 604 193 94

17.5 Jump Markov Processes with Moderate Deviation
Scaling

Recall from Chaps. 5, 9 and 10 that a moderate deviation principle provides approxi-
mations for events that fall somewhere between a central limit approximation and the
full large deviation approximation. As such, they can be used for the development of
splitting and importance sampling schemes for events in this regime. The construc-
tion uses the same ideas and methods as in the large deviation setting, but is in some
sense simpler, since the rate functions are usually quadratic approximations of the
large deviation rate in a neighborhood of its minimizers. For more on this and other
aspects of the use of the moderate deviation approximation, as well as a discussion
of different ways the schemes can be implemented, we refer to [101].

In this section we present an example of a discrete state model in continuous
time. We should remark that Theorem 15.1 does not cover this problem, since (as
with the development of the moderate deviation theory itself) tightness of processes
requires a different treatment from that under the large deviation scaling (see Chap.
5 and Sect. 13.3). We refer to [101] for a proper theoretical basis of the importance
sampling scheme. The case of splitting is covered by Chap. 15, since it requires only
that certain large deviation bounds be valid.
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17.5.1 Problem Formulation

The vehicle that is used to illustrate the use of moderate deviation approximations
in algorithm design is the empirical measure process of a collection of finite state
Markov chains with mean field interaction. We let n ∈ N denote the number of
chains andX

.= {1, 2, 3} the state space of each chain. Then the state space for the
empirical measure is a subset of the two-dimensional unit simplex S

.= {x ∈ R
3+ :

〈x, (1, 1, 1)〉 = 1}. In particular, the state space for each fixed n is finite, but the
number of states increases with n. The precise model is as follows.

Suppose that {Zn
i }i=1,...,n is a collection of continuous time jump processes with

right continuous paths that have limits from the left and with values in X . The
associated empirical measure process is given by Xn(t)

.= 1
n

∑n
i=1 δZn

i (t). Then Xn

is a stochastic process that takes values in Sn
.= {x ∈ S : xi = ji/n, ji ∈ N0, i =

1, 2, 3}. We assume that conditioned on {Xn(s), s ∈ [0, t]}, waiting times until the
next jump of each of the particles are independent, with rate of jump of a particle
from state i to state j given by

ri j (x)
.= 2 − x j ,

where x = Xn(t). This implies that the transition rates for the empirical distribution
process Xn are given by

Rn

(
x, x + 1

n
(e j − ei )

)
.= nxi (2 − x j ),

where x ∈ Sn and ei is the unit vector in the i th direction in R
3. The jump rate

Rn (x, y) for all other x, y ∈ Sn is zero. In the notation of Sect. 13.3 and using x1 +
x2 + x3 = 1, we have β(x) = (2 − x1, 2 − x2, 2 − x3), and therefore if Xn(0) = xn ,
where xn ∈ Sn satisfies xn → x0 as n → ∞, then Xn converges in probability in
D([0, 1] : S ) to the solution X0 of the ODE

d

dt
X0(t) = 6

(
1

3
(1, 1, 1) − X0(t)

)
, X0(0) = x0.

Let {κ(n)} be a sequence of positive real numbers such that κ(n) → 0 and
κ(n)n → ∞ asn → ∞. Amoderate deviation principle for Xn gives the asymptotics
of probabilities associated with Y n(·) = √

κ(n)n(Xn(·) − X0(·)) ∈ R
3. In particu-

lar, it follows from Theorem 13.18 (see Remark 13.20 for this form of the rate
function) that if

√
κ(n)n(xn − x0) → 0, then Y n satisfies a Laplace principle on

D([0, T ] : R
3) with scaling function κ(n) and rate function IM given by

IM(φ)
.= inf

[
1

2

∫ T

0
‖u(t)‖2 dt

]
,
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where the infimum is over all u ∈ L2([0, T ] : R
3) such that

φ(t) = −6
∫ t

0
φ(s)ds +

∫ t

0
A1/2(X0(s))u(s)ds, t ∈ [0, T ],

and for x ∈ S ,

Ai j (x) =
{−2(xi + x j − xi x j ), for i �= j,

2(1 + x2i ), for i = j.

Since Sect. 13.3.2 uses the scaling sequence ε > 0, we shouldmake the identification
ε = 1/n, and κ(ε) there is κ(n) here. For this model we will use the moderate
deviation principle as the basis for constructing Monte Carlo schemes for estimating
probabilities of the form

pn = P{Xn
1(T ) − X0

1(T ) /∈ (−c, c)}

for c ∈ (0, 1).

17.5.2 Associated PDE

Since the moderate deviation approximation requires centering on the minimizers
of the rate for the corresponding large deviation approximation (i.e., the LLN limit),
the event {Xn

1(T ) − X0
1(T ) /∈ (−c, c)} should be reformulated in terms of Y n as

{Y n
1 (T ) /∈ (−c

√
κ(n)n, c

√
κ(n)n)}. Thus when a subsolution is constructed, the

boundary condition will depend on n. Since there are many ways in which one could
embed {Xn}n∈N into a moderate deviation approximation (that is to say, on the par-
ticular scaling sequence κ(n) used), one might be concerned that the approximation
itself depends on the embedding. However, as discussed in [101], when the algo-
rithm is written in terms of an importance sampling scheme or splitting scheme for
the original process {Xn}n∈N, there is no dependence on the embedding.

With the rate function as defined in the last subsection, the moderate deviation
approximation leads to an HJB equation for which subsolutions V̄ (y, t) are charac-
terized by

V̄t (y, t) ≥ 1

2

〈
DyV̄ (y, t), A(X0(t))DyV̄ (y, t)

〉 + 6
〈
DyV̄ (y, t), y

〉

for y ∈ R
3 and t ∈ [0, T ], and

V̄ (y, T ) ≤ 0 for y1 ∈ (−b, b)c.
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Note that for a fixed n, wewill have b = c
√

κ(n)n. Hence the subsolution depends on
n, but as remarked previously, when interpreted as inducing a scheme for estimating
P{Xn

1(T ) − X0
1(T ) /∈ (−c, c)}, this dependence vanishes.

17.5.3 Component Functions

As in previous examples (e.g., as in Sect. 17.1), the component functions will be
obtained as solutions to the corresponding HJB equation together with a terminal
condition that allows for explicit expressions. In the present setting, we will use an
affine terminal condition, in which case the PDE and terminal condition are then
a special case of those that characterize the value function of the linear/quadratic
regulator. To be precise, suppose we denote the solution to

V̄t (y, t) = 1

2

〈
DyV̄ (y, t), A(X0(t))DyV̄ (y, t)

〉 + 6
〈
DyV̄ (y, t), y

〉

for y ∈ R
3 and t ∈ [0, T ] and

V̄ (y, T ) = 〈w, y〉 + c

by V̄ (y, t;w, c). Then by simply computing the derivatives, one can verify that

V̄ (y, t;w, c) =
〈
eΩ(t,T )T w, y

〉
− 1

2

〈
w,

(∫ T

t
eΩ(s,T )A

(
X0 (s)

)
eΩ(s,T )T ds

)
w

〉
+ c

satisfies the PDE and terminal condition (see [101, Theorem 4.1]), where Ω(s, t)
takes values in the set of 3 × 3 real matrices and is the solution to

d

dt
exp{Ω(s, t)} = −6 exp{Ω(s, t)}, s < t, Ω(s, s) = 0.

17.5.4 Subsolutions

Subsolutions will be constructed for the Y n process but then applied, after a change of
variable, to the Xn process. For importance sampling, we will use the mollification
of two subsolutions V̄ (y, t;w1, c1) and V̄ (y, t;w2, c2), and for (near) asymptotic
optimality (under the moderate deviation scaling), we will need that

V̄ (0, 0;w1, c1) ∧ V̄ (0, 0;w2, c2) = inf[IM(φ) : φ(0) = 0, φ1(T ) /∈ (−b, b)].
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One can show using Lagrange multipliers and the solutions of the form V̄ (y, t;w, c)
that the minimal cost from (0, 0) to (z, T ) for arbitrary z satisfies

C(z) = inf [IM(φ) : φ(0) = 0, φ1(T ) = z]

= 1

2

〈
z,

(∫ T

0
eΩ(s,T )A

(
X0 (s)

)
eΩ(s,T )T ds

)−1

z

〉
,

[101] where
∫ T
0 eΩ(s,T )A

(
X0 (s)

)
eΩ(s,T )T ds is calculated using numerical approxi-

mation to the corresponding ODEs. Therefore,

inf [IM(φ) : φ(0) = 0, φ1(T ) /∈ (−b, b)] = inf [C(z) : z1 ∈ {−b, b}] ,

and it turns out (for the example) that the minimum of C(y) over z of the form
(b, z2, z3) is at (b, 0, 0), and likewise, that over (−b, z2, z3) is at (−b, 0, 0). We also
have the representation

V̄ (0, 0;w, g) = inf
z∈R3

[C(z) + 〈w, z〉 + g] .

We can then use Lagrange multipliers again to maximize over w and g subject to the
constraints 〈w, (b, 0, 0)〉 + g ≤ 0 and 〈w, (−b, 0, 0)〉 + g ≤ 0 to find (w1, g1) and
(w2, g2) such that

V̄ (0, 0;w1, g1) ∧ V̄ (0, 0;w2, g2) = C((b, 0, 0)) ∧ C((−b, 0, 0))

= inf [IM(φ) : φ(0) = 0, φ1(T ) /∈ (−b, b)] .

17.5.5 Example

We take T = 1, and find using numerical evaluation of
∫ 1
0 eΩ(t,1)A(X0(t))eΩ(t,1)T dt

and eΩ(t,1) that
w1 = (−5.39, 0, 0)b, g1 = 5.39b2

and
w2 = (5.39, 0, 0)b, g2 = 5.39b2.

We use the ordinary implementation of the mollification of V̄ (y, t;w1, g1) and
V̄ (y, t;w2, g2) as described in Sect. 14.2.

Remark 17.1 Besides the “standard” scheme defined by this mollification, the paper
[100] also develops a “corrected” scheme thatmore carefully accounts for the fact that
increments of the truemodel may not be very close to their Gaussian approximations.
For some problems, the corrected scheme outperforms (at times significantly) the
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standard scheme when n is small. For the present example, there was little difference
in performance, and for this reason we discuss only for the standard scheme.

Although our convention is to use Y n for the process simulated for purposes
of importance sampling, here we have used Y n already for the moderate deviation
approximation. We therefore (knowing that it conflicts with notation in the first three
parts of the book) use Ȳ n and X̄ n (in this section only) to denote the simulated process.
These processes are constructed as follows. The process X̄ n will have jump times
{tni }i∈N with tn0 = 0. Then

X̄ n(tni ) = xn + 1

n

i−1∑

j=0

wn
j , i = 1, 2, . . . ,

where (tnk ,wn
k ) are constructed recursively as follows. Conditional on X̄ n(tnk ) = x ,

(tnk+1 − tnk ) and wn
k are independent, with (conditional) distributions given as expo-

nential with rate nS̄(x, tnk ) and discrete measure on {e j − ei , i �= j} with weights
r̄(x, e j − ei , tnk ), respectively, where for x ∈ S , we have

r̄(x, e j − ei , t) = xi (2 − x j )e〈e j−ei ,−DV̄ (y,tnk )/
√

κ(n)n〉,

y = √
κ(n)n(x − X0(tnk )) and

S̄(x, t) =
∑

i �= j

r̄(x, e j − ei , t).

Letting Nn .= min{i ∈ N : tni > 1}, the importance sampling estimate based on a
single sample of {X̄ n} is

1(−c,c)c (X̄
n
1(t

n
Nn−1) − X0

1(t
n
Nn−1))

Nn−2∏

i=0

e−n(tni+1−tni )(S(X̄ n(tni ))−S̄(X̄ n(tni ),tni ))

× r(X̄ n(tni ),wn
i )

r̄(X̄ n(tni ),wn
i , t

n
i )

S(X̄ n(tnNn−1))

S̄(X̄ n(tnNn−1), t
n
Nn−1)

e−n(tnNn −tnNn−1)(S(X̄ n(tnNn−1))−S̄(X̄ n(tnNn−1),t
n
Nn−1)),

where
r(x, e j − ei ) = xi (2 − x j ), S(x) =

∑

i �= j

r(x, e j − ei ).

The theoretical values were estimated using 1,000,000 samples of the scheme. The
following numerical results were computed with xn = x0 = (1, 0, 0), n = 200, δ =
0.01, and using 100,000 samples, wherewe recall that δ is themollification parameter
(Table17.11). Thus the empirical measure starts with all processes in state 1, and we
estimate a deviation from the LLN limit for this initial condition.
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Table 17.11 Importance sampling for MD-based approximation

b = 0.12 b = 0.16 b = 0.2

Theoretical value 9.10 × 10−5 2.18 × 10−7 1.25 × 10−10

Estimate 9.13 × 10−5 2.15 × 10−7 1.23 × 10−10

Standard error 0.08 × 10−5 0.02 × 10−7 0.02 × 10−10

95% CI [8.98, 9.29] × 10−5 [2.10, 2.20] × 10−7 [1.20, 1.26] × 10−10

Table 17.12 Splitting sampling for MD-based approximation

b = 0.12 b = 0.16 b = 0.2

Theoretical value 9.10 × 10−5 2.18 × 10−7 1.25 × 10−10

Estimate 9.10 × 10−5 2.15 × 10−7 1.26 × 10−10

Standard error 1.80 × 10−6 5.54 × 10−9 4.03 × 10−12

Average # steps 766.40 798.99 831.68

Max # steps 7306 13614 17738

95% CI [8.75, 9.46] × 10−5 [2.04, 2.26] × 10−7 [1.18, 1.34] × 10−10

# success 5198 3291 2189

Table 17.12 corresponds to splitting with n = 200. The splitting rate is R = 5,
and we take Δ = log R/n. The subsolution used to define splitting thresholds is

V̄ (y, t) = V̄ (y, t;w1, g1) ∧ V̄ (y, t;w2, g2).

We used 100,000 simulations for each estimate.

17.6 Escape from the Neighborhood of a Rest Point

The examples of this section illustrate numerically that for some rare event problems,
the splitting schemes of the form introduced inChap. 16 can be computationallymore
efficient than their importance sampling counterparts. The example considers a prob-
lem of escape of a small noise process from the neighborhood of a stable fixed point
of the associated noiseless system. We present results for one- and two-dimensional
models. In the one-dimensional setting, an importance sampling scheme was devel-
oped in [113], where it was observed that schemes based on a time-independent
subsolution must degrade as the time horizon becomes larger. The paper also pre-
sented methods to improve the performance of the importance sampling estimator
for one-dimensional models using a more complex time-dependent change of mea-
sure. In higher dimensions, such constructions become challenging, and thus it is of
interest to examine the performance of splitting schemes, as possibly preferable to
importance sampling methods for problems involving rest points.



17.6 Escape from the Neighborhood of a Rest Point 503

17.6.1 Problem Formulation

Consider the following d-dimensional process model, which is a special case of the
model of Chap. 4:

Xn
i+1 = Xn

i − 1

n
ΛXn

i + 1

n
vi , Xn

0 = 0,

where the {vi }∞i=0 are iid N (0, I ) random variables and Λ is a symmetric positive
definite d × d matrix. We also define as in Chap. 4 the usual piecewise linear inter-
polation with Xn(i/n) = Xn

i . The LLN dynamics, given by

d

dt
X0(t) = −ΛX0(t), X0(0) = 0,

have a unique equilibrium point at the origin. Also, for every T ∈ (0,∞), {Xn}n∈N

satisfies the LDP on C ([0, T ] : R
d) with a rate function that can be written in the

form

IT (φ) = inf

[∫ T

0

1

2
‖u(s)‖2 ds : φ̇ = −Λφ + u

]

when φ is absolutely continuous and φ(0) = 0, and IT (φ) = ∞ otherwise.
Let W (x, y), as in Sect. 16.5, be the quasipotential for this rate function, and let

S(x)
.= W (0, x). Thus for x ∈ R

d ,

S(x) = inf [IT (φ) : φ(T ) = x, T < ∞] .

It is easy to check by a verification argument that S(x) = 〈x,Λx〉. We are interested
in computing probabilities such as

pε
T

.= P {X ε(t) ∈ B for some t ≤ T } (17.17)

for various T and suitable B, and in particular for T large.

17.6.2 Associated PDE

Subsolutions to the Hamilton–Jacobi–Bellman equation associated with this escape
probability must satisfy

V̄t (x, t) ≥ 〈
DV̄ (x, t),Λx

〉 + 1

2

∥∥DV̄ (x, t)
∥∥2 (17.18)

for x ∈ Bc and t ∈ [0, T ], and the boundary condition
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V̄ (x, t) ≤ 0 for x ∈ B (17.19)

(note that the terminal condition V̄ (x, T ) ≤ ∞ for x ∈ Bc is vacuous).

17.6.3 Subsolutions

Let V (x, t) denote the solution to the corresponding HJB equation, and suppose
we temporarily put the dependence on T into the notation as V (x, t; T ). Define
V̄∞(x)

.= C − S(x) for x ∈ Bc, where C
.= inf x∈B S(x). One can verify by direct

computation that V̄∞ is a classical-sense subsolution to (17.18) and (17.19). Also, as
noted in Sect. 16.5, V̄∞ is also a weak-sense subsolution in the sense of Definition
16.21. It follows that V̄∞ can be used for the design of both importance sampling and
splitting schemes that will estimate (17.17). Since V (x, 0; T ) has the interpretation
as the minimal cost for trajectories that enter B by time T after starting at x , one
has V (0, 0; T ) ↓ V̄∞(0) as T → ∞. Therefore, for large T , V̄∞(x) is a subsolution
with a nearly optimal value at the starting point (x, t) = (0, 0).

17.6.4 Examples

17.6.4.1 One-Dimensional Example

We first consider a one-dimensional example in which Λ = 1. The following esti-
mates for importance sampling are based on 1,000,000 samples, while the estimates
for splitting are based on only 20,000 samples. This is because for this problem, a
single importance sampling estimate is less accurate (but also less costly), so that
more samples are required for accurate estimates. We provide estimates of the rela-
tive errors (i.e., the standard deviation σ of the estimator divided by the probability
p of interest) for various combinations of n and T for both algorithms, keeping only
two significant digits. Table 17.13 gives results for importance sampling. Since V̄∞
is a classical-sense subsolution, no mollification is needed. The splitting algorithm is
the RESTART scheme, with R = 2 or R = 5 and hence Δ = (log R)/n. Results for
splitting appear in Tables 17.14 and 17.15. A result of – indicates that no “successes”
occurred in our sample.

The numerical results show that for fixed n, the splitting scheme is muchmore sta-
ble than its importance sampling counterpart as T gets large [both schemes give poor
performance for small T , since V̄∞(0) is far from V (0, 0; T )]. This does not contra-
dict the claim that importance sampling is getting closer to asymptotic optimality as
T grows, but rather points out a shortcoming of the use of asymptotic optimality as a
criterion, which is that the exponential rate of decay of the second moment does not
capture the impact of any prefactor terms. For a detailed discussion on these points
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Table 17.13 Relative errors for importance sampling, one-dimensional problem

n/T 0.25 0.5 1 1.5 2.5 10 14 18

9 720 33 5.3 2.5 1.9 18 250 150

11 – 61 6.3 2.7 1.8 18 96 180

13 – 130 7.6 2.9 1.8 16 88 84

15 – 170 9.0 3.1 1.8 14 68 140

17 – 370 11 3.3 1.7 22 45 87

Table 17.14 Relative errors for RESTART, R = 2, one-dimensional problem

n/T 0.25 0.5 1 1.5 2.5 10 14 18

9 – 74 15 9.3 4.3 1.8 1.5 1.3

11 – – 19 9.4 4.9 1.9 1.6 1.4

13 – – 27 14 5.5 2.2 1.7 1.5

15 – – 60 11 5.9 2.2 1.8 1.5

17 – – 41 13 6.2 2.3 1.8 1.6

Table 17.15 Relative errors for RESTART, R = 5, one-dimensional problem

n/T 0.25 0.5 1 1.5 2.5 10 14 18

9 – 80 25 11 5.8 2.3 2.0 1.7

11 – – 36 12 6.4 2.4 2.3 1.9

13 – – 37 16 7.7 2.7 2.2 2.0

15 – – 40 15 7.6 2.8 2.3 2.0

17 – – 55 16 9.4 3.0 2.4 2.1

as well as why they apply specifically when the event of interest allows the process
to wander in a neighborhood of a rest point, see [113].

For a more nuanced comparison, we bring in the fact that importance sampling
and splitting schemes require different computational effort for a single sample. In
order to measure the computational time required for comparable performance for
the two schemes, we use the concept of work. We remark that the notion of work
used here is designed to compare the numerical performance of the splitting scheme
with the importance sampling scheme, and it is quite different from that introduced
in Chap. 16 [see 16.11].

We define a unit of work as the time it takes to simulate one time step under the
original dynamics. We emphasize that work is determined by the original dynamics
because importance sampling requires a state-dependent change of measure that
takes additional effort to calculate. We found that when we used Matlab, a single
transition for the importance sampling scheme took approximately 35 times as long
as a single transition under the original dynamics. Thus each transition step for the
importance sampling scheme requires approximately 35 units of work. In the results
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below, we account for the additional computation cost for the importance sampling
change of measure. The splitting algorithm uses the RESTART scheme, which is
much more efficient than ordinary splitting in this context, since in the latter case,
every trajectory that does not escapemust be simulated till time T . In order to compare
the numerical results while accounting for work, we report in the next set of tables the
estimated amount of work needed to get a relative error of 1. Recall that the relative
error of a simulation based on n samples is σ(

√
n p)−1, where σ is the standard

deviation of a single sample and p is the probability of interest. Consequently, we
need n∗ = (σ/p)2 samples to get a relative error of 1, and wn∗ = w (σ/p)2 units of
work to get a relative error of 1, where w is the work required for a single sample.
Note that the quantities p and σ are estimated from the Monte Carlo results. The
work w can be approximated by tracking how many transition steps are needed on
average for a single sample and multiplying it by a factor of 35 for the importance
sampling scheme and a factor of 1 for the splitting scheme. Results are presented in
Tables 17.16, 17.17 and 17.18.

Table 17.16 Work required to obtain a relative error of 1 for importance sampling, one-dimensional
problem
n/T 0.25 0.5 1 1.5 2.5 10 14 18

9 5.5 × 107 1.9 × 105 8.8 × 103 3.0 × 103 2.2 × 103 2.2 × 105 4.6 × 107 1.7 × 107

11 – 7.9 × 105 1.5 × 104 4.1 × 103 2.6 × 103 2.8 × 105 8.4 × 106 2.9 × 107

13 – 4.1 × 106 2.6 × 104 5.6 × 103 2.9 × 103 2.8 × 105 8.6 × 106 7.8 × 106

15 – 8.4 × 106 4.3 × 104 7.3 × 103 3.3 × 103 2.7 × 105 6.0 × 106 2.7 × 107

17 – 4.3 × 107 7.1 × 104 9.5 × 103 3.8 × 103 7.1 × 105 3.0 × 106 1.1 × 107

Table 17.17 Work required to obtain a relative error of 1 for RESTART, R = 2, one-dimensional
problem
n/T 0.25 0.5 1 1.5 2.5 10 14 18

9 – 3.1 × 104 2.9 × 103 2.1 × 103 9.2 × 102 7.6 × 102 7.6 × 102 7.8 × 102

11 – – 5.7 × 103 2.7 × 103 1.5 × 103 1.2 × 103 1.2 × 103 1.2 × 103

13 – – 1.3 × 104 7.5 × 103 2.4 × 103 2.0 × 103 1.8 × 103 1.7 × 103

15 – – 7.7 × 104 5.3 × 103 3.2 × 103 2.5 × 103 2.5 × 103 2.2 × 103

17 – – 4.1 × 104 8.8 × 103 4.3 × 103 3.1 × 103 3.0 × 103 3.0 × 103

Table 17.18 Work required to obtain a relative error of 1 for RESTART, R = 5, one-dimensional
problem
n/T 0.25 0.5 1 1.5 2.5 10 14 18

9 – 3.1 × 104 3.6 × 103 2.0 × 103 1.4 × 103 1.2 × 103 9.9 × 102 1.0 × 103

11 – – 7.2 × 103 4.1 × 103 2.3 × 103 1.7 × 103 1.5 × 103 1.5 × 103

13 – – 4.8 × 104 3.8 × 103 3.2 × 103 2.3 × 103 2.2 × 103 2.1 × 103

15 – – 4.9 × 104 8.7 × 103 4.1 × 103 2.8 × 103 3.0 × 103 3.0 × 103

17 – – 5.5 × 104 1.4 × 104 7.1 × 103 3.8 × 103 3.6 × 103 3.8 × 103
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17.6.4.2 Two-Dimensional Example

The following estimates are also based on 1,000,000 samples for importance sam-
pling and 20,000 samples for splitting. We use

Λ =
[ 3

2 − 1
2− 1

2
3
2

]
=

[
1√
2

− 1√
2

1√
2

1√
2

][
1 0
0 2

][
1√
2

1√
2

− 1√
2

1√
2

]

and the escape set

B
.= {(x, y) ∈ R

2 : 2x2 ≥ 1 or 2y2 ≥ 1}.

We still use the quasipotential to define the subsolution for this example. The esti-
mates are based on 1,000,000 samples for importance sampling, while 20,000 sam-
ples are used for splitting.

We provide estimates of the relative errors for various combinations of n and T
for both algorithms, keeping only two significant digits, in Tables 17.19 and 17.20
A result of – indicates that we were unable to estimate the quantity because no
“successes” occurred in our sample.

Tables 17.21 and 17.22 provide estimates of the required work for a relative error
of 1, keeping only two significant digits.

Table 17.19 Relative errors for importance sampling, two-dimensional problem

n/T 0.25 0.5 1 1.5 2.5 10 14 18

9 26 7.7 5.3 9.9 15 66 580 83

11 110 9.6 5.1 6.5 18 56 440 68

13 94 14 5.0 5.8 15 130 120 120

15 360 17 5.5 5.8 15 500 97 130

17 520 22 5.7 5.1 12 63 68 120

Table 17.20 Relative errors for RESTART, R = 5, two-dimensional problem

n/T 0.25 0.5 1 1.5 2.5 10 14 18

9 50 15 5.9 3.7 2.3 1.0 0.84 0.75

11 – 23 6.7 5.3 2.6 1.1 0.92 0.82

13 – 27 8.8 5.5 2.8 1.2 1.0 0.87

15 – 38 10 4.8 3.1 1.3 1.2 0.92

17 – 77 11 5.6 3.3 1.3 1.1 0.96
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Table 17.21 Work required to obtain a relative error of 1 for importance sampling, two-dimensional
problem
n/T 0.25 0.5 1 1.5 2.5 10 14 18

9 7.0 × 104 1.0 × 104 7.9 × 103 3.2 × 104 7.7 × 104 1.5 × 106 1.1 × 108 2.4 × 106

11 1.3 × 106 1.9 × 104 9.1 × 103 1.7 × 104 1.4 × 105 1.4 × 106 8.3 × 107 2.0 × 106

13 1.2 × 106 4.8 × 104 1.0 × 104 1.7 × 104 1.1 × 105 9.4 × 106 7.6 × 106 7.0 × 106

15 1.8 × 107 8.3 × 104 1.5 × 104 2.0 × 104 1.3 × 105 1.5 × 108 5.8 × 106 1.1 × 107

17 4.7 × 107 1.6 × 105 1.8 × 104 1.7 × 104 9.5 × 104 2.8 × 106 3.3 × 106 1.0 × 107

Table 17.22 Work required to obtain a relative error of 1 for RESTART, R = 5, two-dimensional
problem
n/T 0.25 0.5 1 1.5 2.5 10 14 18

9 8.7 × 103 2.1 × 103 9.4 × 102 7.1 × 102 5.5 × 102 4.9 × 102 4.6 × 102 4.7 × 102

11 – 4.7 × 103 1.5 × 103 2.1 × 103 1.0 × 103 9.2 × 102 9.1 × 102 9.1 × 102

13 – 8.1 × 103 3.4 × 103 2.9 × 103 1.6 × 103 1.5 × 103 1.5 × 103 1.5 × 103

15 – 1.9 × 104 5.5 × 103 2.8 × 103 2.7 × 103 2.3 × 103 2.8 × 103 2.3 × 103

17 – 8.6 × 104 7.4 × 103 4.6 × 103 3.7 × 103 3.1 × 103 3.1 × 103 3.1 × 103

17.7 Notes

In addition to the examples presented here, subsolutions have been constructed for
many other types of problems. Queueing and related stochastic networks of various
types, which are important examples of problems with discontinuous (in the spatial
variable) statistical behavior, have been analyzed in [76, 77] (splitting) and [103,
105, 110, 117] (importance sampling). The paper [77] points out the role of the
quasipotential in constructing subsolutions for large-time or time-independent prob-
lems, and a recent paper that rigorously analyzes the performance of splitting when
the interval of interest is allowed to grow with the large deviation parameter is [49].
Importance sampling for processes with multiple scales including homogenization
and multiple time scales are considered in [112, 115]. Finally, we note that there are
important classes of problems either for which the needed subsolutions are easily
found (e.g., using the quasipotential to construct subsolutions for exit problems over
long times for reversible systems), or for which they exist already as part of the liter-
ature on deterministic optimal control (e.g., for occupancy and related combinatorial
models in probability [119]).
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Spaces of Measures

A.1 Weak Convergence of Probability Measures

Throughout this section,X is a Polish space with metric d(x, y). For certain results
we will need X also to be locally compact. In such cases, this assumption will
be made explicit. Let P(X ) denote the space of probability measures on X and
let Cb(X ) denote the space of bounded continuous functions mapping X into R.
Consider a sequence {θn}n∈N in P(X ). We say that {θn} converges weakly to θ ,
and write θn ⇒ θ , if for each g ∈ Cb(X ),

lim
n→∞

∫
X

g dθn =
∫
X

g dθ.

ThenP(X ) is made into a topological space by taking as the basic open neighbor-
hoods of γ ∈ P(X ) the sets of the form

{
θ ∈ P(X ) :

∣∣∣∣
∫
X

gi dθ −
∫
X

gi dγ

∣∣∣∣ < ε, i = 1, 2, . . . , k

}
,

where ε > 0, k is a positive integer, and g1, g2, . . . , gk are in Cb(X ). The resulting
topology is called the topology of weak convergence or simply the weak topology.

To introduce a metric on P(X ), for A ⊂ X and ε > 0 we define

A(ε) .= {x ∈ X : d(x, A) < ε}.

For γ and θ inP(X ), we then define

L (γ, θ)
.= inf{ε > 0 : γ (F) ≤ θ(F (ε)) + ε for all closed subsets F ofX }.
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Then L (γ, θ) defines a metric on P(X ), known as the Lévy–Prohorov metric
[126, p. 96].

As we state in the next theorem, the Lévy–Prohorov metric is compatible with the
weak topology, and with respect to it,P(X ) is Polish.

Theorem A.1 ([126, pp. 101 and 108]) Let {θn}n∈N be a sequence in P(X ). Then
θn ⇒ θ ∈ P(X ) if and only if L (θn, θ) → 0. Furthermore, with respect to the
Lévy–Prohorov metric, P(X ) is complete and separable.

The next result, known as the Portmanteau theorem, gives a number of useful
conditions that are equivalent to weak convergence. For θ ∈ P(X ), a Borel set A
whose boundary ∂ A satisfies θ(∂ A) = 0 is called a θ -continuity set.

Theorem A.2 ((Portmanteau theorem). [24, p. 11]) Let {θn} and θ be proba-
bility measures on X . The following five conditions are equivalent:

(a) θn ⇒ θ .
(b) limn→∞

∫
X g dθn = ∫X g dθ for all bounded uniformly continuous functions g

mapping X into R.
(c) lim supn→∞ θn(F) ≤ θ(F) for all closed subsets F of X .
(d) lim infn→∞ θn(G) ≥ θ(G) for all open subsets G of X .
(e) limn→∞ θn(A) = θ(A) for all θ -continuity sets A.

Remark A.3 The standard proof that (b) implies (c) uses a collection of Lipschitz
continuous functions. Using this observation, we can augment the Portmanteau the-
orem with the following additional equivalent condition: θn ⇒ θ if and only if

lim
n→∞

∫
X

g dθn =
∫
X

g dθ

for all bounded Lipschitz continuous functions g mapping X into R.

We next state Prohorov’s theorem, which characterizes relatively compact subsets
of P(X ). It is one of the main results in the theory. A family Φ of probability
measures on X is said to be tight if for each ε > 0, there exists a compact set K
such that

inf
γ∈Φ

γ (K ) ≥ 1 − ε.

Theorem A.4 ((Prohorov’s theorem). [126, p. 103]) A family of probability
measures on X is relatively compact with respect to weak convergence if and only
if it is tight. In particular, if θn ⇒ θ , then {θn} is tight.

Prohorov’s theorem yields the following useful fact.

Corollary A.5 If X is a compact Polish space, then P(X ) is compact.

The notion of uniform integrability is useful in proving L1 convergence.
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Definition A.6 Asequence {μn}n∈N of probabilitymeasures onR
d (resp. a sequence

{ξn} of R
d -valued random variables) is said to be uniformly integrable if

sup
n∈N

∫
{x :‖x‖≥a}

‖x‖μn(dx) → 0 as a → ∞,

resp.
sup
n∈N

E[‖ξn‖1{‖ξn‖≥a}] → 0 as a → ∞.

The following definitions are useful for characterizing limits of sequences of
probability measures.

Definition A.7 Let V be a subset of the class of continuous and bounded functions
onX . We say that V is separating if for all μ, ν ∈ P(X ), whenever

∫
X g dμ =∫

X g dν for all g ∈ V , we must have μ = ν. The class V is said to be convergence
determining if for every sequence {θn} ⊂ P(X ) and θ ∈ P(X ), θn ⇒ θ if and
only if

∫
X g dθn → ∫

X g dθ for all g ∈ V .

Note that if V is convergence determining, then it is separating. One of the basic
results in the theory says that there exists a countable convergence determining class
V of bounded uniformly continuous (in fact Lipschitz continuous) functions (cf.
[126, Proposition 3.4.4]). Such a class can be given explicitly as follows. Let {xn} be
a countable dense set inX . For i, j ∈ N, let fi j (x)

.= 2(1 − jd(x, xi )) ∨ 0, x ∈ X .
For a finite subset Λ of N × N, let

gΛ(x)
.=
⎛
⎝ ∑

(i, j)∈Λ

fi j (x)

⎞
⎠ ∧ 1, x ∈ X .

Then for each Λ, gΛ is a bounded Lipschitz continuous function and {gΛ : Λ ⊂
N × N} defines a countable convergence determining class. Indeed, supposeμn, μ ∈
P(X ) satisfy

∫
X gΛ dμn → ∫

X gΛ dμ for every Λ, and let G ⊂ X be an open
set. For m ∈ N, define

Λm
.= {(i, j) : i, j ≤ m and B(xi , 1/j) ⊂ G}.

Then hm
.= gΛm satisfies hm ≤ 1G , and hm ↑ 1G as m → ∞. Thus

lim inf
n→∞ μn(G) ≥ lim

n→∞

∫
hmdμn =

∫
hmdμ.

Sending m → ∞, we have lim infn→∞ μn(G) ≥ μ(G). Since G is an arbitrary open
set, we have μn ⇒ μ.
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A.2 Skorohod Representation Theorem

For the proof of the following theorem we refer the reader to [167, Theorem 3.30].

Theorem A.8 (Skorohod representation theorem) Suppose ξ, ξ1, ξ2, . . . are
random variables with values in some separable metric space (S , ρ) such that
ξn ⇒ ξ as n → ∞. Then on some probability space (Ω,F , P), there exist S -
valued random variables η, η1, η2, . . . such that the distribution of ξ is the same as
the distribution of η, the distribution of ξi is same as the distribution of ηi for every
i , and ηi → η P-a.s.

A.3 Space of Finite Measures

For a Polish space X , M (X ) denotes the set of finite measures on (X ,B(X )),
i.e., the set of measures γ for which γ (X ) < ∞. Let {θn}n∈N be a sequence in
M (X ). We say that {θn} converges weakly to θ if for each g ∈ Cb(X ),

lim
n→∞

∫
X

g dθn =
∫
X

g dθ.

We next introduce a metric on M (X ) having properties analogous to those of
L (·, ·). For γ and θ inM (X ), define

m(γ, θ)
.= [γ (X ) ∧ θ(X )

] · L
(

γ

γ (X )
,

θ

θ(X )

)
+ |γ (X ) − θ(X )|.

The convention is that if γ or θ equals the zero measure onX , then the first term in
this definition is 0. Properties ofm are given in the next theorem. The straightforward
proof is omitted.

Theorem A.9 The quantity m(γ, θ) defines a metric on M (X ). The weak conver-
gence on M (X ) is equivalent to convergence under this metric. With respect to this
metric, M (X ) is complete and separable.

A.4 Space of Locally Finite Measures

For a locally compact Polish spaceX , we denote byΣ(X ) the space of all measures
ν on (X ,B(X )) satisfying ν(K ) < ∞ for every compact K ⊂ X . We endow
Σ(X ) with the weakest topology such that for every f ∈ Cc(X ) (the space of
real continuous functions on X with compact support), the function ν → 〈 f, ν〉 =
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∫
X f (u) ν(du), ν ∈ Σ(X ) is continuous. This topology can be metrized such that

Σ(X ) is a Polish space. One metric that is convenient for this purpose is given in
the following subsection.

A.4.1 Metric for Measures on a Locally Compact Polish
Space

Let ‖ f ‖∞
.= supx∈X | f (x)| and ‖ f ‖L

.= supx,y∈X | f (x) − f (y)|/d(x, y), where
d denotes the metric on X . According to [220, Theorem 9.5.21], for a locally
compact set X there exists a sequence of open sets

{
O j
}
such that Ō j ⊂ O j+1,

each Ō j is compact, and ∪∞
j=1O j = X . Let φ j (x)

.= [1 − d(x, O j )
] ∨ 0. Given

any μ ∈ Σ(X ), let μ j ∈ Σ(X ) be defined by

[
dμ j/dμ

]
(x) = φ j (x). (A.1)

Given μ, ν ∈ Σ(X ), let

d̄(μ, ν)
.=

∞∑
j=1

2− j
∥∥μ j − ν j

∥∥
BL ,

where ‖·‖BL denotes the bounded Lipschitz norm [92, Chap.11]

∥∥μ j − ν j
∥∥

BL
.= sup

f :‖ f ‖∞≤1,‖ f ‖L≤1

[∫
X

f dμ j −
∫
X

f dν j

]
.

It is straightforward to check that d̄(μ, ν) defines a metric under which Σ(X ) is a
Polish space, and that convergence in this metric is essentially equivalent to weak
convergence on each compact subset of X . Specifically, d̄(μn, μ) → 0 if and only
if for each j ∈ N, μ

j
n → μ j in the weak topology as finite nonnegative measures,

i.e., for all f ∈ Cb(X ), ∫
X

f dμ j
n →

∫
X

f dμ j .

A.4.2 Determining Convergence from a Countable Class

From the separability of X it follows that the space Cc(X ) is separable in the
uniform metric, from which it follows (see [167, Appendix A.2]) that there is a
countable collection J ⊂ Cc(X ) such that for μn, μ ∈ Σ(X ), d̄(μn, μ) → 0 if
and only if for every f ∈ J ,
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∫
X

f dμn →
∫
X

f dμ.

As an immediate consequence of this fact we have the following result.

Lemma A.10 Suppose that {Nk}k∈N and N are Σ(X )-valued random variables
defined on a probability space (Ω,F , P) and that E |〈g, Nk〉 − 〈g, N 〉| → 0 for all
g ∈ Cc(X ). Then Nk → N in probability.

A.4.3 Proof of Compactness of SN
m Defined in Chap.8

Fix T < ∞. Let X be a locally compact Polish space and let XT = [0, T ] × X .
Recall the function LT defined in (8.17):

LT (g)
.=
∫
X T

�(g(t, x)) νT (dt × dx).

Here � : [0,∞) → [0,∞) is defined by

�(r)
.= r log r − r + 1, r ∈ [0,∞),

with the convention that 0 log 0 = 0.
Let M

.= Σ(XT ). For m ∈ N, define

SN
m

.= {g : XT → [0,∞) : LT (g) ≤ m} .

A function g ∈ SN
m can be identified with a measure ν

g
T ∈ M according to ν

g
T (A) =∫

A g(s, x) νT (ds × dx), A∈B(XT ). The following lemma shows that
{
ν

g
T : g∈SN

m

}
is a compact subset of M.

Lemma A.11 For every m ∈ N, {νg
T : g ∈ SN

m } is a compact subset of M.

Proof We note that the metric d̄ onM introduced in Sect.A.4.1, whenX is replaced
withXT , will be given as follows. There is a sequence of open sets

{
O j , j ∈ N

}
such

that Ō j ⊂ O j+1, each Ō j is compact, and ∪∞
j=1O j = XT . Also, for (t, x) ∈ XT , let

φ j (t, x) = [1 − d((t, x), O j )
] ∨ 0, where d denotes the metric on XT . Given any

μ ∈ M, letμ j ∈ M be defined by
[
dμ j/dμ

]
(t, x) = φ j (t, x). Then givenμ, ν ∈ M,

we have

d̄(μ, ν)
.=

∞∑
j=1

2− j
∥∥μ j − ν j

∥∥
BL ,
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where ‖·‖BL denotes the boundedLipschitz norm onMF (XT ). Note that forμn, μ ∈
M, we have d̄(μn, μ) → 0 if and only if for each i ∈ N,

∫
X T

f dμi
n →

∫
X T

f dμi

for every continuous and bounded function on XT , where μi
n is defined according

to
[
dμi

n/dμn
]
(t, x) = φi (t, x).

Let μn
.= ν

gn

T . We first show that {μn}n∈N ⊂ M is relatively compact for every
sequence {gn}n∈N ⊂ SN . For this, using a diagonalization method, it suffices to show
that {μi

n} ⊂ M is relatively compact for every i . Next, since {μi
n} are supported on

the compact subset K i ofXT given by the closure of {(t, x) : φi (t, x) �= 0}, to show
that {μi

n} ⊂ M is relatively compact, it suffices to show that supn μi
n(XT ) < ∞. The

last property will follow from the fact that LT (gn) ≤ m for all n and the superlinear
growth of �. Specifically, let c ∈ (0,∞) be such that z ≤ c(�(z) + 1) for all z ∈
[0,∞). Then

sup
n∈N

μi
n(XT ) = sup

n∈N

∫
X T

φi (t, x)gn(t, x)νT (dt × dx)

≤ sup
n∈N

∫
K i

gn(t, x)νT (dt × dx) ≤ c(m + νT (K i )) < ∞.

Next, suppose that along a subsequence (without loss of generality, also denoted by
{n}), μn → μ. We would like to show that μ is of the form ν

g
T , where g ∈ SN

m . For
this, we will use the lower semicontinuity property of relative entropy. The result
holds trivially if μ = 0. Suppose now μ �= 0. Then there exists i0 ∈ N such that for
all i ≥ i0, infn∈N ν

gn

T (Ōi ) > 0. Introducing a slight notational inconsistency, let νi
T

be defined by
[
dνi

T /dνT
]
(t, x) = φi (t, x). For i ≥ i0, define

ci = νi
T (XT ), ν̄i

T = νi
T /ci ,

bi
n = μi

n(XT ), μ̄i
n = μi

n/bi
n,

bi = μi (XT ), μ̄i = μi/bi .

Then ν̄i
T , μ̄

i
n , and μ̄i are probability measures, and

R(μ̄i
n||ν̄i

T ) = 1

bi
n

∫
X T

[
log(gn(t, x)) + log

(
ci

bi
n

)]
gn(t, x)φi (t, x)νT (dt × dx)

= 1

bi
n

∫
X T

[�(gn(t, x)) + gn(t, x) − 1]φi (t, x)νT (dt × dx) + log

(
ci

bi
n

)

≤ 1

bi
n

m + 1 − ci

bi
n

+ log

(
ci

bi
n

)
.
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Since μi
n → μi , we have bi

n → bi . Hence by the lower semicontinuity property of
relative entropy,

R(μ̄i‖ν̄i
T ) ≤ lim inf

n→∞ R(μ̄i
n‖ν̄i

T )

≤ lim inf
n→∞

[
1

bi
n

m + 1 − ci

bi
n

+ log

(
ci

bi
n

)]

≤ 1

bi
m + 1 − ci

bi
+ log

(
ci

bi

)
(A.2)

< ∞.

Thus μi is absolutely continuous with respect to νi
T . Define gi = dμi/dνi

T and
g = gi on Ōi . It is easily checked that g is defined consistently and that μ = ν

g
T .

Also, by a direct calculation,

R(μ̄i‖ν̄i
T ) = 1

bi

∫
X T

�(g(t, x))φi (t, x)νT (dt × dx) + 1 − ci

bi
+ log

(
ci

bi

)
.

Combining the last displaywith (A.2),wehave
∫
X T

�(g(t, x))φi (t, x)νT (dt × dx) ≤
m for all i . Sending i → ∞, we see that g ∈ SN

m . The result follows. �
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B.1 Regular Conditional Probabilities

Throughout this section, (Ω,F , P) is a probability space and Y is a Polish space.
Let Y be a random variable mappingΩ intoY and G a sub-σ -field ofF . A regular
conditional distribution for Y given G is a map (ω, A) → P̂(A|G )(ω) from Ω ×
Y to [0, 1] with the following properties.

(a) For each Borel subset B of Y , the function mapping ω ∈ Ω → P̂(B|G )(ω)

is measurable with respect to G .
(b) For each Γ ∈ G and Borel subset B of Y ,

P{Γ ∩ {Y ∈ B}} =
∫

Γ

P̂(B|G )(ω) P(dω).

(c) For each ω ∈ Ω , P̂(dy|G )(ω) is a probability measure on Y .
The first two properties state that P̂(B|G )(ω) is a version of the conditional prob-

ability P{Y ∈ B|G }(ω) for every Borel set B. The issue in proving the existence of a
regular conditional distribution is to show that a version of the conditional probability
can be chosen to be a probability measure onY for each fixed value of ω. According
to part (a) of the following standard result, this is possible when Y is a Polish space.
Part (b) states the useful property that P-a.s. for ω ∈ Ω , conditional expectations
can be obtained by integrating with respect to regular conditional distributions. The
theorem is proved in Theorems 10.2.2 and 10.2.5 in [92]. If X is a random variable
mapping (Ω,F ) into a measurable space (V ,A ) and G denotes the sub-σ -algebra
ofF generated by X , then we will write P̂(dy|X)(ω) for P̂(dy|G )(ω) and call it a
regular conditional distribution for Y given X .

Theorem B.1 Let Y be a random variable mapping Ω into Y , G a sub-σ -algebra
of F , and f a measurable function mapping Y into R such that E{| f (Y )|} < ∞.
The following conclusions hold.

© Springer Science+Business Media, LLC, part of Springer Nature 2019
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(a) A regular conditional distribution P̂(dy|G )(ω) for Y given G exists. It is
unique in the sense that if Q̂(dy|G )(ω) also satisfies the definition, then the two
distributions P̂(dy|G )(ω) and Q̂(dy|G )(ω) agree P-a.s. for ω ∈ Ω .

(b) P-a.s. for ω ∈ Ω , f is integrable with respect to P̂(dy|G )(ω) and

E [ f (Y )|G ] (ω) =
∫
Y

f (y) P̂(dy|G )(ω).

Now let (V ,A ) be a measurable space and X a random variable mapping Ω

into V . A regular conditional distribution for Y given X = x is defined to be a
quantity P̂(dy|X = x) taking values in [0, 1] and having the following properties.

(a) For each Borel subset B ofY , the function mapping x ∈ X → P̂(B|X = x)

is measurable.
(b) For each measurable subset A of (V ,A ) and Borel subset B of Y ,

P{{X ∈ A} ∩ {Y ∈ B}} =
∫

A
P̂(B|X = x) P{X ∈ dx}.

(c) For each x ∈ X , P̂(dy|X = x) is a probability measure on Y .
The first two properties state that P̂(B|X = x) is a version of the conditional

probability, in that if g(x) = P̂(B|X = x), then g(X) = P{Y ∈ B|X} a.s. The next
result is an immediate consequence of Theorem B.1.

Theorem B.2 Let (V ,A ) be a measurable space, X a random variable mapping
Ω into V , and Y a random variable mapping Ω into Y . Then a regular conditional
distribution P̂(dy|X = x) for Y given X = x exists. It is unique in the sense that if
Q̂(dy|X = x) also satisfies the definition, then for almost every x, the two measures
P̂(dy|X = x) and Q̂(dy|X = x) agree with respect to the distribution of X.

Proof A regular conditional distribution P̂(dy|X) is measurable with respect to the
sub-σ -field generated by X , and so it is a measurable function of X , say ϕ(X). The
quantity ϕ(x) is a regular conditional distribution for Y given X = x . The uniqueness
follows from the uniqueness asserted in part (a) of Theorem B.1. �

B.2 Stochastic Kernels

Throughout this section, X and Y are Polish spaces and (V ,A ) is a measurable
space. Let us recall the definition of a stochastic kernel, which was introduced in
Sect. 1.4. Let τ(dy|x) be a family of probability measures on Y parametrized by
x ∈ V . We call τ(dy|x) a stochastic kernel on Y given V if for every Borel subset
E of Y , the function mapping x ∈ V → τ(E |x) ∈ [0, 1] is measurable.

In order to establish a useful equivalent condition for a stochastic kernel, we
need a preliminary fact given in the next lemma. It is a special case of Proposi-
tion 7.25 in [19].
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Lemma B.3 For E ∈ B(Y ), define fE : P(Y ) → [0, 1] by fE (θ)
.= θ(E). Then

B(P(Y )) = σ

⎡
⎣ ⋃

E∈B (Y )

f −1
E (B(R))

⎤
⎦ .

In other words, B(P(Y )) is the smallest σ -algebra with respect to which fE is
measurable for every E ∈ B(Y ).

Proof We write G
.= σ [∪E∈B (Y ) f −1

E (B(R))]. To prove that G ⊂ B(P(Y )), we
show that fE is B(P(Y ))-measurable for every E ∈ B(Y ), so that for every
A ∈ B(R), we have f −1

E (A) ∈ B(P(Y )). Let

D
.= {E ∈ BY : fE isB(P(Y ))-measurable}.

For every closed set F ∈ B(Y ) and real number α, the Portmanteau theorem (The-
orem A.2) implies that the set {θ ∈ P(Y ) : θ(F) ≥ α} is closed. Hence F ∈ D . It
is now straightforward to verify using the Dynkin class theorem [126] thatD equals
B(Y ) and thus that G ⊂ B(P(Y )). The proof thatB(P(Y )) ⊂ G is based on a
standard approximation argument. By definition of G , the function

αϕ : θ ∈ P(Y ) −→
∫
Y

ϕ dθ ∈ R

is G -measurable when ϕ
.= 1E for every E ∈ B(Y ); indeed, in this case, αϕ(θ) =

fE (θ). Thus αϕ is G -measurable when ϕ is a B(Y )-simple function. Since when
ϕ ∈ Cb(Y ) there exists a sequence ofB(Y )-simple functions {ϕn} that are uniformly
bounded below and satisfy ϕn ↑ ϕ, the monotone convergence theorem implies that
αϕn ↑ αϕ . Thus αϕ is G -measurable for every ϕ ∈ Cb(Y ). For γ ∈ P(Y ), ϕ ∈
Cb(Y ), and ε > 0, we define

N (γ, ϕ, ε)
.=
{
θ ∈ P(Y ) :

∣∣∣∣
∫
Y

ϕ dθ −
∫
Y

ϕ dγ

∣∣∣∣ < ε

}
.

Since N (γ, ϕ, ε) = α−1
ϕ (
∫
Y ϕ dγ − ε,

∫
Y ϕ dγ + ε), it follows that N (γ, ϕ, ε) is

an element of G , and since the class of sets {N (γ, ϕ, ε)} forms an open subbase
for B(P(Y )), we conclude that B(P(Y )) ⊂ G . This completes the proof of the
lemma. �

The following result, taken fromProposition 7.26 in [19], gives a useful equivalent
condition for a stochastic kernel. In the latter reference it is assumed that (V ,A )

is a Borel space. However, the proof applies without change when (V ,A ) is a
measurable space.

Theorem B.4 Let τ(dy|x) be a family of probability measures on Y parametrized
by x ∈ V . Then τ(dy|x) is a stochastic kernel if and only if the function mapping
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x ∈ V −→ τ(·|x) ∈ P(Y ) is measurable, i.e., if and only if τ(·|x) is a random
variable mapping V into P(Y ).

Proof We define g : V → P(Y ) by g(x)
.= τ(·|x), and for E ∈ B(Y ), we define

hE : V → [0, 1] by hE (x)
.= τ(E |x). For E ∈ B(Y )we also recall fE : P(Y ) →

[0, 1] defined in the previous lemma by fE (θ)
.= θ(E). These mappings are related

by hE = fE ◦ g. The assertion of the theorem is that g is A -measurable if and
only if hE is A -measurable for every E ∈ B(Y ). Lemma B.3 implies that fE is
B(P(Y ))-measurable for every E ∈ B(Y ). Since hE = fE ◦ g, it follows that if
g is A -measurable, then hE is A -measurable for every E ∈ B(Y ). Conversely, if
hE is A -measurable for every E ∈ B(Y ), then again by Lemma B.3,

g−1 (B(P(Y ))) = g−1

⎛
⎝σ

⎡
⎣ ⋃

E∈B (Y )

f −1
E (B(R))

⎤
⎦
⎞
⎠

= σ

⎡
⎣ ⋃

E∈B (Y )

g−1
(

f −1
E (B(R))

)
⎤
⎦

= σ

⎡
⎣ ⋃

E∈B (Y )

h−1
E (B(R))

⎤
⎦ ⊂ A .

We conclude that g is A -measurable. This completes the proof. �

B.3 A Stochastic Kernel Needed in Sect. 4.8.4

In Sect. 4.8.4, it was required that we find stochastic kernels γ i , i = 1, 2, onR
d given

R
d × R

d and on R
d given R

d , respectively, such that for all (ξ, β1) ∈ R
d × R

d and
β2 ∈ R

d ,

R
(
γ 1(·|ξ, β1) ‖θ(·|ξ)

) = L(ξ, β1) and
∫
Rd

yγ 1(dy|ξ, β1) = β1

and

R
(
γ 2(·|β2) ‖ρσ (·)) = 1

2σ 2
‖β2‖2 and

∫
Rd

yγ 2(dy|β2) = β2.

While part (g) of Lemma 4.16 can be directly applied to obtain γ 2, it does not directly
give γ 1, since we may have L(ξ, β1) = ∞ for some (ξ, β1). Instead, we will mollify
and obtain γ 1 as a limit. To simplify notation, we replace (ξ, β1) by (x, β).

We first note that L(x, β) is a lower semicontinuous function of (x, β) ∈ R
d ×

R
d , and thus is measurable on R

d × R
d . In particular, {(x, β) : L(x, β) = ∞} is

measurable. Fix a sequence {εn}n∈N in (0, 1) that converges to 0, and for n ∈ N,
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define

H n(x, α)
.= log

∫
Rd

exp 〈α, y〉 θn(dy|x),

H̃ n(x, α)
.= log

∫
Rd

exp 〈α, y〉 [θ(dy|x) + εnρ1(dy)],

where

θn(dy|x)
.= 1

1 + εn
[θ(dy|x) + εnρ1(dy)]

and ρ1 is the d-dimensional Gaussian distribution with covariance I . For n ∈ N and
x , α, and β in R

d , we also introduce

Ln(x, β)
.= sup

α∈Rd

[〈α, β〉 − H n(x, α)
]
.

According to part (g) of Lemma 4.16, for each n ∈ N, there is a measurable αn(x, β)

such that with

γ̄ n(dy|x, β)
.= e〈αn(x,β),y〉−H n(x,αn(x,β))θn(dy|x),

we have

R
(
γ̄ n(·|x, β)

∥∥θn(·|x)
) = Ln(x, β) and

∫
Rd

yγ̄ n(dy|x, β) = β. (B.1)

Since H n(x, α) = H̃ n(x, α) − log(1 + εn) and H̃ n(x, α) ≥ H(x, α), it follows that
if L(x, β) < ∞, then for all n ∈ N,

Ln(x, β) = sup
α∈Rd

[
〈α, β〉 − H̃ n(x, β)

]
+ log(1 + εn) ≤ L(x, β) + log 2 < ∞.

(B.2)
Also, by Condition 4.3, for each x and α in R

d ,

sup
n∈N

H n(x, α) < ∞. (B.3)

For x and β in R
d , define

γ n(dy|x, β)
.=
{

γ̄ n(dy|x, β) if L(x, β) < ∞,

δβ(dy) if L(x, β) = ∞.

Then for each n ∈ N, γ n is a stochastic kernel on R
d given R

d × R
d . We will show

that for (x, β) such that L(x, β) < ∞, γ n(dy|x, β) converges to γ (dy|x, β) that
satisfies
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R (γ (·|x, β) ‖θ(·|x) ) = L(x, β) and
∫
Rd

yγ (dy|x, β) = β, (B.4)

which will complete the proof.
We therefore consider such (x, β). Suppose that n indexes a subsequence. It fol-

lows from (B.2), (B.1), and (B.3) that the relative entropies R (γ̄ n(·|x, β) ‖θn(·|x) )

are uniformly bounded and that the moment-generating functions H n(x, α) are uni-
formly bounded for each fixed α and x . The proof of Lemma 3.9 considered an anal-
ogous situation but without the n-dependence of the moment-generating function.
However, with the uniform bound (B.3), the argument applies with only notational
changes, and it shows that {γ n(·|x, β)}n∈N is tight and uniformly integrable. Thus
by letting n index a convergent subsubsequence with limit γ (·|x, β), we have

∫
Rd

yγ n(dy|x, β) →
∫
Rd

yγ (dy|x, β).

It then follows from the lower semicontinuity of relative entropy (Lemma 2.4) that

L(x, β) ≤ R (γ (·|x, β) ‖θ(·|x) )

≤ lim inf
n→∞ R

(
γ̄ n(·|x, β)

∥∥θn(·|x)
)

= lim inf
n→∞ Ln(x, β)

≤ L(x, β),

where the last line is due to the fact that Ln(x, β) ≤ L(x, β) − log(1 + εn) for all
n ∈ N. According to Lemma 2.4, R (· ‖· ) is strictly convex in the first variable,
which shows that γ (·|x, β) is the unique probability measure that satisfies (B.4). An
argument by contradiction then shows that γ n(·|x, β) converges to γ (·|x, β) along
the entire sequence n ∈ N. Since this is true for every (x, β) such that L(x, β) < ∞,
this completes the proof. �



Appendix C
Further Properties of Relative Entropy

C.1 Proof of Part (e) of Lemma 2.4

We denote by Π the class of all finite measurable partitions of the Polish space X .
Part (e) of Lemma 2.4 states that for each γ and θ inP(X ),

R(γ ‖θ) = sup
π∈Π

∑
A∈π

γ (A) log
γ (A)

θ(A)
, (C.1)

where the summand equals 0 if γ (A) = 0 and equals ∞ if γ (A) > 0 and θ(A) = 0.
In addition, if A is any Borel subset of X , then

R(γ ‖θ) ≥ γ (A) log
γ (A)

θ(A)
− 1. (C.2)

We first prove that for every finite measurable partition π ofX ,

R(γ ‖θ) ≥
∑
A∈π

γ (A) log
γ (A)

θ(A)
.

If R(γ ‖θ) = ∞, there is nothing to prove, so we assume that R(γ ‖θ) < ∞. In this
case, γ � θ , and setting B

.= ∪{A∈π :γ (A)=0} A, we define for m ∈ N the bounded
measurable function

ψm(x)
.=

∑
{A∈π :γ (A)>0}

(
log

γ (A)

θ(A)

)
1A(x) − m 1B(x).

The Donsker–Varadhan variational formula stated in part (a) of Lemma 2.1 implies
that
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R(γ ‖θ) ≥
∫
X

ψm dγ − log
∫
X

eψm dθ

=
∑

{A∈π :γ (A)>0}
γ (A) log

γ (A)

θ(A)
− log(1 + e−mθ(B)).

This yields the desired formula, since limm→∞ log(1 + e−mθ(B)) = 0.
In order to complete the proof of equation (C.1), we determine a sequence {πn}n∈N

of finite measurable partitions of X having the property that

R(γ ‖θ) = lim
n→∞

∑
A∈πn

γ (A) log
γ (A)

θ(A)
. (C.3)

We carry this out via a standard technique, using unpublished notes of Barron [15].
If γ is not absolutely continuous with respect to θ , then the proof is straightforward.
Indeed, in this case there exists a Borel subset A of X having the property that
θ(A) = 0 and γ (A) > 0. We obtain formula (C.3) by setting πn

.= {A, Ac} for each
n ∈ N.

We now suppose that γ is absolutely continuous with respect to θ and let f
.=

dγ /dθ . For each n ∈ N, we then define πn to be the finite measurable partition of
X consisting of the disjoint Borel sets

An,k
.=

⎧⎪⎨
⎪⎩

{x ∈ X : log f (x) ≤ −√
n} if k = −n,{

x ∈ X : k−1√
n

< log f (x) ≤ k√
n

}
if k ∈ {−n + 1, −n + 2, . . . , n − 1, n},

{x ∈ X : log f (x) >
√

n} if k = n + 1.

For −n + 1 ≤ k ≤ n + 1,

γ (An,k) =
∫

An,k

exp(log f ) dθ ≥ exp

[
k − 1√

n

]
θ(An,k). (C.4)

The error in the approximation of the relative entropy by the sum over the partition
πn equals

R(γ ‖θ) −
∑
A∈πn

γ (A) log
γ (A)

θ(A)
=

n+1∑
k=−n

1{ j :γ (An, j )>0}(k)

∫
An,k

log

(
f

θ(An,k)

γ (An,k)

)
dγ.

Wenowbound each term in this sum.For−n + 1 ≤ k ≤ n and x ∈ An,k , ifγ (An,k) >

0, then from (C.4), the integrand satisfies

log

(
f (x)

θ(An,k)

γ (An,k)

)
≤ k√

n
− k − 1√

n
= 1√

n
,
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which implies that

n∑
k=−n+1

1{ j :γ (An, j )>0}(k)

∫
An,k

log

(
f

θ(An,k)

γ (An,k)

)
dγ ≤ 1√

n

n∑
k=−n+1

γ (An,k) ≤ 1√
n
.

For k = −n and x ∈ An,−n , if γ (An,−n) > 0, then the integrand satisfies

log

(
f (x)

θ(An,−n)

γ (An,−n)

)
≤ log

(
e−√

n 1

γ (An,−n)

)
,

and so, since s log s ≥ −e−1 for s ∈ [0,∞),
∫

An,−n

log

(
f

θ(An,−n)

γ (An,−n)

)
dγ ≤ −γ (An,−n) log

(
e
√

nγ (An,−n)
)

≤ e−√
n−1.

Finally, for k = n + 1, if γ (An,n+1) > 0, then (C.4) implies that θ(An,n+1)/γ

(An,n+1) ≤ 1. Thus
∫

An,n+1

log

(
f

θ(An,n+1)

γ (An,n+1)

)
dγ ≤

∫
An,n+1

(log f ) dγ =
∫

{log f >
√

n}
(log f ) dγ.

Combining these inequalities yields

0 ≤ R(γ ‖θ) −
∑
A∈πn

γ (A) log
γ (A)

θ(A)

≤ 1√
n

+ e−√
n−1 +

∫
{log f >

√
n}

(log f ) dγ.

If R(γ ‖θ) < ∞, then the integral in this inequality converges to 0 asn → ∞, and thus

lim
n→∞

∑
A∈πn

γ (A) log
γ (A)

θ(A)
= R(γ ‖θ).

Now assume that γ is absolutely continuous with respect to θ but that R(γ ‖θ) = ∞.
For any Borel set B, if θ(B) = 0, then γ (B) = 0 and γ (B) log[γ (B)/θ(B)] = 0,
while if θ(B) > 0, then since s log s ≥ s − 1 for s ∈ [0,∞), it follows that

γ (B) log
γ (B)

θ(B)
= θ(B)

[
γ (B)

θ(B)
log

γ (B)

θ(B)

]
≥ θ(B)

[
γ (B)

θ(B)
− 1

]
≥ −1. (C.5)

Since {An,k,−n ≤ k ≤ n} is a finite measurable partition of {log f ≤ √
n}, similar

estimates as in the case R(γ ‖θ) < ∞ yield

∫
{log f ≤√

n}
(log f ) dγ −

n∑
k=−n

γ (An,k) log
γ (An,k)

θ(An,k)
≤ 1√

n
+ e−√

n−1.



526 Appendix C: Further Properties of Relative Entropy

Thus

∑
A∈πn

γ (A) log
γ (A)

θ(A)
≥
∫

{log f ≤√
n}

(log f ) dγ − 1 − 1√
n

− e−√
n−1.

Since the right-hand side converges to∞ = R(γ ‖θ) as n → ∞, we have completed
the proof of (C.3) and thus the proof of (C.1).

We now prove formula (C.2). Given A a Borel subset of X , (C.1) yields for the
finite measurable partition π

.= {A, Ac},

R(γ ‖θ) ≥ γ (A) log
γ (A)

θ(A)
+ γ (Ac) log

γ (Ac)

θ(Ac)
.

If θ(Ac) = 0, then the last term in this display equals either 0 or ∞ depending on
whether γ (Ac) equals 0 or is positive. In either case, formula (C.2) follows. On the
other hand, if θ(Ac) > 0, then by (C.5),

R(γ ‖θ) ≥ γ (A) log
γ (A)

θ(A)
− 1.

This is what we wanted to prove. The proof of part (e) of Lemma 2.4 is
complete. �

C.2 Proof of Part (f) of Lemma 2.4

According to part (e) of Lemma 2.4,

R(Δψν‖Δψμ) = sup
π∈ΠY

∑
A∈π

Δψν(A) log
Δψν(A)

Δψμ(A)

= sup
π∈ΠY

∑
A∈π

ν(ψ−1(A)) log
ν(ψ−1(A))

μ(ψ−1(A))
,

where ΠY denotes the class of all finite measurable partitions of Y . For each π ∈
ΠY , we define ψ−1(π)

.= {ψ−1(A) : A ∈ π}, which is a finite measurable partition
ofX . Thus, denoting by ΠX the class of all finite measurable partitions ofX , we
have

R(Δψν‖Δψμ) = sup
π∈ΠY

∑
A∈π

ν(ψ−1(A)) log
ν(ψ−1(A))

μ(ψ−1(A))

≤ sup
π∈ΠX

∑
A∈π

ν(A) log
ν(A)

μ(A)

= R(ν‖μ).
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This proves the first part of the lemma. Finally, when ψ is one-to-one and ψ−1 is
measurable, each π∗ ∈ ΠX has the form ψ−1(π) for some π ∈ ΠY . In such a case,
the inequality in the above display can be replaced by an equality. This completes
the proof. �

C.3 Proof of Proposition 2.3

To prove part (a), we note that since k is bounded from below, the right-hand side of
equation (2.2) is well defined. Since for N ∈ N, k ∧ N is bounded and measurable,
part (a) of Proposition 2.2 implies that

− log
∫
X

e−(k∧N ) dθ = inf
γ∈P (X )

[
R(γ ‖θ) +

∫
X

(k ∧ N ) dγ

]

≤ inf
γ∈P (X )

[
R(γ ‖θ) +

∫
X

k dγ

]
.

Thus by the dominated convergence theorem,

− log
∫
X

e−k dθ = lim
N→∞

(
− log

∫
X

e−(k∧N ) dθ

)
≤ inf

γ∈P(X )

[
R(γ ‖θ) +

∫
X

k dγ

]
.

In order to prove that

inf
γ∈P (X )

[
R(γ ‖θ) +

∫
X

k dγ

]
≤ − log

∫
X

e−k dθ,

we assume that − log
∫
X e−k dθ < ∞, since otherwise, there is nothing to prove.

Given N ∈ N and ε > 0, there exists a probability measure γN on X such that

R(γN ‖θ) +
∫
X

(k ∧ N ) dγN ≤ inf
γ∈P (X )

[
R(γ ‖θ) +

∫
X

(k ∧ N ) dγ

]
+ ε

= − log
∫
X

e−(k∧N ) dθ + ε

≤ − log
∫
X

e−k dθ + ε < ∞.

Since k is bounded from below, it follows that supN∈N R(γN ‖θ) < ∞. This implies
that the sequence {γN }N∈N is relatively compact with respect to the weak topology
[part (c) of Lemma 2.4]. Moreover, if γN converges along a subsequence to γ̄ , then
by Lemma 2.5, for every bounded and measurable function ψ ,
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lim
N→∞

∫
X

ψ dγN =
∫
X

ψ dγ̄ .

Thus along the convergent subsequence, we have

− log
∫
X

e−k dθ + ε ≥ lim inf
N→∞

[
R(γN ‖θ) +

∫
X

(k ∧ N ) dγN

]

≥ lim inf
M→∞ lim inf

N→∞

[
R(γN ‖θ) +

∫
X

(k ∧ N ∧ M) dγN

]

≥ lim inf
M→∞

[
R(γ̄ ‖θ) +

∫
X

(k ∧ M) dγ̄

]

≥
[

R(γ̄ ‖θ) +
∫
X

k dγ̄

]

≥ inf
γ∈P (X )

[
R(γ ‖θ) +

∫
X

k dγ

]
,

where the third inequality uses the lower semicontinuity of γ → R(γ ‖θ) andLemma
2.5, and the fourth inequality follows from the monotone convergence theorem.
Sending ε → 0 completes the proof of the variational formula under the assumption
that k is bounded from below.

Next consider (b). Since the infimum is restricted to probability measures γ satis-
fying R(γ ‖θ) < ∞, the right-hand side of equation (2.3) is well defined. For N ∈ N,
k ∨ (−N ) is bounded and measurable, and so by part (a) of Proposition 2.2,

− log
∫
X

e−[k∨(−N )] dθ = inf
γ∈Δ(X )

[
R(γ ‖θ) +

∫
X

[k ∨ (−N )] dγ

]

≥ inf
γ∈Δ(X )

[
R(γ ‖θ) +

∫
X

k dγ

]
.

The monotone convergence theorem yields

− log
∫
X

e−k dθ = lim
N→∞

(
− log

∫
X

e−[k∨(−N )] dθ

)
(C.6)

≥ inf
γ∈Δ(X )

[
R(γ ‖θ) +

∫
X

k dγ

]
.

Let ε > 0 be given. In order to prove that

− log
∫
X

e−k dθ ≤ inf
γ∈Δ(X )

[
R(γ ‖θ) +

∫
X

k dγ

]
,
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we assume that the right-hand side is less than ∞, for otherwise, there is nothing to
prove. We choose a probability measure γ̃ ∈ Δ(X ) such that

R(γ̃ ‖θ) +
∫
X

k dγ̃ ≤ inf
γ∈Δ(X )

[
R(γ ‖θ) +

∫
X

k dγ

]
+ ε < ∞.

Then

− log
∫
X

e−[k∨(−N )] dθ = inf
γ∈Δ(X )

[
R(γ ‖θ) +

∫
X

[k ∨ (−N )] dγ

]

≤ R(γ̃ ‖θ) +
∫
X

[k ∨ (−N )] dγ̃ .

Since R(γ̃ ‖θ) < ∞, the monotone convergence theorem yields

− log
∫
X

e−k dθ = lim
N→∞

(
− log

∫
X

e−[k∨(−N )] dθ

)
(C.7)

≤ lim
N→∞

(
R(γ̃ ‖θ) +

∫
X

[k ∨ (−N )] dγ̃

)

= R(γ̃ ‖θ) +
∫
X

k dγ̃

≤ inf
γ∈Δ(X )

[
R(γ ‖θ) +

∫
X

k dγ

]
+ ε.

Sending ε → 0 completes the proof of (2.3) under the assumption that k is bounded
from above.

Nextwe consider (c), where k is not assumed bounded belowor above. To simplify
notation, we prove the equivalent claim

log
∫
Rd

ek dθ = sup
γ∈Δ(Rd )

[∫
Rd

k dγ − R(γ ‖θ)

]
. (C.8)

By assumption, there exists ζ > 0 such that
∫
Rd eζ‖x‖θ(dx) < ∞. Recalling the

inequality
ab ≤ ea + �(b) for all a, b ≥ 0, (C.9)

we have, for every γ ∈ Δ(Rd),

∫
Rd

‖x‖ dγ ≤ 1

ζ

∫
Rd

eζ‖x‖θ(dx) + 1

ζ
R(γ ‖θ) < ∞. (C.10)

Thus the right side in (C.8) is well defined.
The first issue is to show that if the left side of (C.8) is ∞, then the right side is

also. For N ∈ N, let fN (x) = k(x) ∧ N . Then fN is bounded from above, and so the
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probability measure

γN (dx) = 1

Z N
e fN (x)θ(dx), Z N

.=
∫
Rd

e fN (x)θ(dx)

is well defined, and by Fatou’s lemma, Z N → ∞ as N → ∞. With this choice of
γN , since fN (x) ≤ k(x), the right side of (C.8) is bounded below by

[∫
Rd

k dγN − R(γN ‖θ)

]
=
[∫

Rd

k dγN −
∫
Rd

log

(
e fN

Z N

)
dγN

]

= log Z N +
∫
Rd

[k − fN ] dγN

≥ log Z N .

Letting N → ∞ shows that the right side in (C.8) also equals ∞. If the left-hand
side of (C.8) is finite, then log Z N converges to that value, and in this case, sending
N → ∞ shows that

log
∫
Rd

ek dθ ≤ sup
γ∈Δ(Rd )

[∫
Rd

k dγ − R(γ ‖θ)

]
.

We now argue the reverse inequality. It suffices to show that for all γ ∈ Δ(Rd),

R(γ ‖θ) ≥
∫
Rd

k dγ − log
∫
Rd

ek dθ. (C.11)

For M ∈ N, let

FM(x)
.= k(x)1{|k(x)|≤M} + Mk(x)

|k(x)| 1{|k(x)|>M}.

From part (a) of Lemma 2.4, we have

R(γ ‖θ) ≥
∫
Rd

FM dγ − log
∫
Rd

eFM dθ. (C.12)

Next note that by the dominated convergence theorem,

lim
M→∞

∫
Rd

FM dγ =
∫
Rd

kdγ

and

lim
M→∞

∫
{k<0}

eFM dθ =
∫

{k<0}
ekdθ.
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Also by the monotone convergence theorem,

lim
M→∞

∫
{k≥0}

eFM dθ =
∫

{k≥0}
ekdθ.

Using the above three convergence properties and sending M → ∞ in (C.12), we
have (C.11), completing the proof of the reverse inequality. �



Appendix D
Martingales and Stochastic Integration

We begin with some basic definitions. Fix a finite-time horizon T ∈ (0,∞). Let
(Ω,F , P) be a probability space that is equippedwith a filtration {Ft }0≤t≤T , which
means that Fs ⊂ Ft ⊂ F for all 0 ≤ s ≤ t ≤ T . We will assume throughout that
F is P-complete and the filtration satisfies the usual conditions, namely that the
filtration is right continuous and for every t ∈ [0, T ],Ft contains all P-null sets inF .

We say that a stochastic process X = {X (t)}0≤t≤T on (Ω,F , P) with values in
some Polish space E is RCLL (resp. LCRL) if for every ω ∈ Ω , the map t →
X (t, ω) from [0, T ] to E is right continuous on [0, T ) (resp. left continuous on
(0, T ]) and has left limits on (0, T ] (resp. has right limits on [0, T )). An E -valued
stochastic process X is said to be Ft -adapted if for every t ∈ [0, T ], X (t) is Ft -
measurable. It is said to be Ft -progressively measurable if for every t ∈ [0, T ],
the mapping (s, ω) → X (s, ω) from ([0, t] × Ω,B([0, t]) ⊗ F )) to (E ,B(E )) is
measurable. Denote by PF the σ -field on [0, T ] × Ω generated by the collection
of all real Ft -adapted LCRL processes (note that this is the same σ -field as that
generated by the elementary functions or simple functions, as used, for example,
in Definition 8.2). This σ -field is called the Ft -predictable σ -field. For a Polish
space E , a PF/B(E )-measurable map X : [0, T ] × Ω → E is referred to as an
E -valued Ft -predictable process.

A [0, T ]-valued random variable τ on (Ω,F ) is said to be anFt -stopping time
if {τ ≤ t} ∈ Ft for every t ∈ [0, T ].

D.1 Martingales

Let {X (t)}0≤t≤T be a real-valued Ft -adapted process such that E |X (t)| < ∞ for
every t ∈ [0, T ]. Such a process is called an Ft -submartingale (resp. an Ft -
supermartingale) if for all 0 ≤ s ≤ t ≤ T , E[X (t) |Fs ] ≥ X (s) [resp. E[X (t) |Fs ]
≤ X (s)]. A process that is both an Ft -submartingale and an Ft -supermartingale
is an Ft -martingale. A martingale admits an RCLL modification, which is a
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martingale with respect to the same filtration, and thus without loss of generality, we
use RCLLmodifications of martingales. A real-valued stochastic process X is called
anFt -local martingale if there is a sequence ofFt -stopping times τ n increasing to
T such that {X (n)(t)

.= X (t ∧ τn)}0≤t≤T is an Ft -martingale for every n. A locally
square-integrable martingale is defined in the analogous way. For two square-
integrableFt -martingales X andY with X (0) = Y (0) = 0, their quadratic covaria-
tion, denoted by [X, Y ], is the unique adaptedRCLLprocess Awith paths of bounded
variation such that A(0) = 0, XY − A is a martingale, andΔA = ΔXΔY , where for
a real RCLL stochastic process Z , ΔZ(t) = Z(t) − Z(t−), t ∈ [0, T ]. For such a
process A, there is a unique decomposition A = M + Ã, where M(0) = Ã(0) = 0,
M is a martingale, and Ã is an Ft -predictable process with paths of bounded vari-
ation. The process Ã is called the predictable quadratic covariation of X and Y
and is denoted by 〈X, Y 〉. These definitions can be extended to local martingales (see
[210]). When X = Y , these processes are sometimes denoted by [X ] and 〈X〉, and
referred to as the quadratic variation (resp. predictable quadratic variation) of
X . When X and Y are continuous, [X, Y ] is a continuous adapted process and hence
predictable, in which case [X, Y ] coincides with 〈X, Y 〉.

The following are some of the martingale inequalities used in this book. Discrete-
time analogues of the first three are well known (see, for example, [173, Theorem
11.2] for the first two and [199] for the third). For the continuous time setting, see
[172, Theorem 1.3.8] for the first two, [210, Theorem IV.4.48] for the third, and [180,
Lemma 2.4] for the last.

Doob’s submartingale inequality. For every nonnegative submartingale X , c ∈
(0,∞), and t ∈ [0, T ],

P

[
sup
0≤s≤t

X (s) ≥ c

]
≤ 1

c
E[X (t)]. (D.1)

Doob’s maximal inequality. For every martingale M and t ∈ [0, T ],

E

[
sup
0≤s≤t

|M(s)|2
]

≤ 4E[|M(t)|2]. (D.2)

Burkholder–Davis–Gundy inequality. For every p ≥ 1, there existC p ∈ (0,∞)

such that for every locally square-integrable martingale M with M(0) = 0 and t ∈
[0, T ],

E

[
sup
0≤s≤t

|M(s)|p

]
≤ C p E[[M, M](t)]p/2. (D.3)

Lenglart–Lepingle–Pratelli inequality. For 0 < p ≤ 2, there existC p ∈ (0,∞)

such that for every locally square-integrable martingale M with M(0) = 0 and t ∈
[0, T ],

E

[
sup
0≤s≤t

|M(s)|p

]
≤ C p E[〈M, M〉(t)]p/2. (D.4)
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The notion of quadratic variation can be extended to vector-valued martingales.
Let M = (M1, . . . , Mk)

T be an R
k-valued stochastic process such that {Mi (t)}0≤t≤T

is an {Ft }-martingale for each i = 1, . . . , k. We refer to M as a k-dimensional {Ft }-
martingale. Let M and N be k-dimensional and r -dimensional {Ft }-martingales,
respectively. Then 〈〈M, N 〉〉 is the (k × r)-dimensional stochastic process given by

(〈〈M, N 〉〉 (t))i j
.= 〈Mi , N j 〉t , 1 ≤ i ≤ k, 1 ≤ j ≤ r, t ∈ [0, T ].

The martingale inequalities above can be extended to k-dimensional martingales. In
particular, the Burkholder–Davis–Gundy inequality for p = 2 and a k-dimensional
{Ft }-martingale M says that

E

[
sup
0≤s≤t

‖M(s)‖2
]

≤ C2E[tr(〈〈M, M〉〉 (t))]. (D.5)

D.2 Stochastic Integration

In this section we summarize the various types of stochastic integrals used in this
book. We begin with the setting of d-dimensional Brownian motion.

D.2.1 Brownian Motion in R
d

Let W be a d-dimensionalFt -Brownian motion as introduced in Sect. 3.2. Let ¯A as
in Definition 3.12 denote the collection of all R

d -valued Ft -progressively measur-
able processes {v(t)}0≤t≤T that satisfy E[∫ T

0 ‖v(t)‖2dt] < ∞. Then the stochastic
integral Mv(t) = ∫ t

0 v(s)dW (s) (see [172, Chap.3]) is a square-integrable continu-
ous Ft -martingale, and for v1, v2 ∈ ¯A ,

〈Mv1 , Mv2〉(t) = [Mv1 , Mv2 ](t) =
∫ t

0
〈v1(s)v2(s)〉ds.

A similar result holds when d = ∞. More precisely, let {βi }∞i=1 be a sequence of
independent one-dimensional {Ft }-Brownian motions. Let fi ∈ ¯A (with d = 1) for
each i ∈ N, and suppose that

∑∞
i=1 E[∫ T

0 | fi (t)|2dt] < ∞. Then

M(t)
.=

∞∑
i=1

∫ t

0
fi (s)dβi (s), t ∈ [0, T ]

is a continuous {Ft }-martingale and 〈M〉t =∑∞
i=1

∫ t
0 | fi (s)|2ds for t ∈ [0, T ].
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In considering discontinuous martingales, we will consider integrands v that
instead of being progressively measurable, lie in the smaller class of predictable
processes. In the setting of Brownian motions, there is not much difference between
the two classes, since for every v ∈ ¯A , there is a predictable ṽ such that v = ṽ a.s.
dt ⊗ P , and the stochastic integrals Mv and Mṽ agree a.s.

D.2.2 Point Processes

A reference for the topic of this section is [159]. Let (Ω,F , P) and {Ft }0≤t≤T be
as at the beginning of this appendix. Let X , Y , XT , YT , ν, ν̄, νT , ν̄T be as in
Sect. 8.2.1. Also let N̄ be a Poisson random measure (PRM) with respect to {Ft } on
YT with intensity measure ν̄T (see Sect. 8.2.1). Let ¯A be as introduced below (8.19),
and for ϕ ∈ ¯A , Nϕ is defined as in Sect. 8.2.1 through (8.16). We will also consider
the compensated point processes N̄c(ds × dr) = N̄ (ds × dr) − ν̄T (ds × dr) and
Nϕ

c (ds × dx) = Nϕ(ds × dx) − ϕ(s, x)νT (ds × dx). Let PF be the predictable
σ -field associated with {Ft }. For t ∈ [0, T ] and ψ : [0, T ] × Ω × Y → R, that is,
(PF ⊗ B(Y ))/B(R) measurable and satisfying

E
∫
Y T

|ψ(s, y)|ν̄T (ds × dy) < ∞,

the stochastic integral

Mψ(t)
.=
∫

[0,t]×Y
ψ(s, y)N̄c(ds × dy)

is well defined, and the stochastic process Mψ is a martingale. Thus

E
∫
Y T

ψ(s, y)N̄ (ds × dy) = E
∫
Y T

ψ(s, y)ν̄T (ds × dy). (D.6)

If in addition

E
∫
Y T

ψ(s, y)2ν̄T (ds × dy) < ∞,

then Mψ is a square-integrable martingale with quadratic variation

[Mψ ](t) =
∫

[0,t]×Y
ψ(s, y)2 N̄ (ds × dy).

For ψi , i = 1, 2, as above,

〈Mψ1 , Mψ2〉(t) =
∫

[0,t]×Y
ψ1(s, y)ψ2(s, y)ν̄T (ds × dy).
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Similarly, ifψ : [0, T ] × Ω × X → R is (PF ⊗ B(X ))/B(R)-measurable and

E
∫
X T

(|ψ(s, x)| ∨ |ψ(s, x)|2)ϕ(s, x)νT (ds × dx) < ∞,

then the stochastic integral

Mψ(t)
.=
∫

[0,t]×X
ψ(s, x)Nϕ

c (ds × dx)

is well defined, and the stochastic process Mψ is a square-integrable martingale with
quadratic variation

[Mψ ](t) =
∫

[0,t]×X
ψ(s, x)2Nϕ(ds × dx).

For two such integrands ψ1, ψ2, we have

〈Mψ1 , Mψ2〉(t) =
∫

[0,t]×X
ψ1(s, x)ψ2(s, x)ϕ(s, x)νT (ds × dx).

D.2.3 Hilbert Space Valued Brownian Motion

Let (H , 〈·, ·〉)be a real separableHilbert space. LetΛbe a strictly positive symmetric
trace class operator on H . Let {W (t)}0≤t≤T be a Λ-Wiener process with respect to
{Ft }0≤t≤T as introduced in Definition 8.1. Also let (H0, 〈·, ·〉0) be the Hilbert space
introduced in Sect. 8.1, i.e.,H0

.= ΛH and 〈h, k〉0 .= 〈Λ−1/2h,Λ−1/2k〉. Let ¯A be
the class of H0-valued Ft -predictable processes v that satisfy

P

{∫ T

0
‖v(s)‖20ds < ∞

}
= 1,

as introduced below (8.2). Then for every ψ ∈ ¯A and t ∈ [0, T ], the stochastic
integral Mt

.= ∫ t
0 〈ψ(s), dW (s)〉0 is defined as in [69, Sect. 4.2]. Furthermore, M is

a continuous {Ft }-local martingale, which is a martingale if E
∫ T
0 ‖ψ(s)‖20ds < ∞,

in which case 〈M〉t = ∫ t
0 ‖ψ(s)‖20 ds for t ∈ [0, T ].

D.2.4 Brownian Sheet

Let O be a bounded open subset of R
d . Let {B(t, x), (t, x) ∈ [0, T ] × O} be a

Brownian sheet on (Ω,F , P) with respect to the filtration {Ft } as introduced in
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Definition 11.5. Let ¯A be, as introduced below Definition 11.7, the class of all
{Ft }-predictable processes f such that

∫
[0,T ]×O f 2(s, x)dsdx < ∞ a.s. Then the

stochastic integral Mt ( f )
.= ∫[0,t]×O f (s, u)B(ds × du), t ∈ [0, T ], is defined as in

Chap.2 of [243]. Furthermore, {Mt ( f )} is a continuous {Ft }-local martingale, which
is amartingale if E

∫
[0,T ]×O f 2(s, x)dsdx < ∞, inwhich case the quadratic variation

is given by 〈M( f )〉t = ∫[0,t]×O f 2(s, x)dsdx .

D.3 Girsanov’s Theorem

In this section we summarize some variations of Girsanov’s theorem, in addition to
those already presented in Chap. 8, that are appealed to in this book. We begin with
the classical setting of a finite dimensional Brownian motion. A proof can be found
in [172, Sect. 3.5].

Theorem D.1 Let W be a d-dimensional Ft -Brownian motion and {v(t)}0≤t≤T a
R

d -valued Ft -progressively measurable process that satisfies E[∫ T
0 ‖v(t)‖2dt] <

∞. Suppose

E

[
exp

{∫ T

0
v(s) dW (s) − 1

2

∫ T

0
‖v(s)‖2ds

}]
= 1.

Then the process

W̃ (t)
.= W (t) −

∫ t

0
v(s)ds,

t ∈ [0, T ], is an {Ft }-Brownian motion on (Ω,F , Q), where Q is the probability
measure defined by

d Q

d P
= exp

{∫ T

0
v(s) dW (s) − 1

2

∫ T

0
‖v(s)‖2ds

}
.

A similar result holds for d = ∞ (see [69, Theorem 10.14]). For that case, W
is replaced by a sequence {βi }∞i=1 of independent one-dimensional {Ft }-Brownian
motions, v with a sequence fi ∈ ¯A (with ¯A as in Definition 3.12 and d = 1) such
that E[∫ T

0

∑∞
i=1 | fi (t)|2dt] < ∞, and the integrals

∫ T
0 v(s) dW (s) and

∫ T
0 ‖v(s)‖2ds

replaced by
∑∞

i=1

∫ T
0 fi (t)dβi (t) and

∑∞
i=1

∫ T
0 | fi (t)|2dt , respectively. We omit the

precise statement.
Girsanov’s theorem for a Brownian sheet takes the following form (see [206,

Proposition 1.6].

Theorem D.2 Let O be a bounded open subset of R
d and suppose that {B(t, x),

(t, x) ∈ [0, T ] × O} is a Brownian sheet on (Ω,F , P) with respect to the filtra-
tion {Ft }. Let f be {Ft }-predictable in the sense of Definition 11.7 and satisfy
E
∫
[0,T ]×O f 2(s, x)ds dx < ∞. Suppose that
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E

[
exp

{∫
[0,T ]×O

f (s, u)B(ds × du) − 1

2

∫
[0,T ]×O

f 2(s, x)dsdx

}]
= 1.

Then the random field
{

B̃(t, x), (t, x) ∈ [0, T ] × O
}

defined by

B̃(t, x)
.= B(t, x) −

∫ t

0

∫
(−∞,x]∩O

f (s, y)dyds

is a Brownian sheet with respect to {Ft } on (Ω,F , Q), where Q is the probability
measure defined by

d Q

d P
= exp

{∫
[0,T ]×O

f (s, u)B(ds × du) − 1

2

∫
[0,T ]×O

f 2(s, x)dsdx

}
.

Finally, we present a version of Girsanov’s theorem for systems with both Brow-
nian and Poisson noise. We will not aim for maximum generality but rather state
the result in the form in which it is used in the book. The result follows from the
independence of the Brownianmotion and PRM, and their corresponding versions of
Girsanov’s theorem (cf. [161, Theorem III.3.24]). We consider only a finite dimen-
sional Brownian motion here; extensions to settings with an infinite dimensional
Brownian motion can be written similarly.

Theorem D.3 With notation and processes W and N that satisfy the conditions of
Sect.8.3, let u = (ψ, ϕ) ∈ ¯Ab. Let

E ε
1 (t)

.= exp

[∫
X t ×[0,∞)

1[0,ε−1ϕ(s,y)](r) log(ϕ̃(s, y))N̄ (ds × dy × dr)

+
∫
X t ×[0,∞)

1[0,ε−1ϕ(s,y)](r)(−ϕ̃(s, y) + 1)ν̄T (ds × dy × dr)

]
,

E ε
2 (t)

.= exp

[
− 1√

ε

∫ t

0
ψ(s)dW (s) − 1

2ε

∫ t

0
‖ψ(s)‖2ds

]
,

and E ε(t)
.= E ε

1 (t)E ε
2 (t). Then {E ε(t)}0≤t≤T is anFt -martingale, and consequently,

Q̄ε(A) =
∫

A
E ε(T )d P, A ∈ F

defines a probability measure on (Ω,F ). Furthermore,

(
W + 1√

ε

∫ ·

0
ψ(s)ds, εNϕ/ε

)

under Q̄ε has the same probability law as (W, εN 1/ε) under P.
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D.4 Criteria for Tightness

The next result, due to Aldous [3], considers tightness of a sequence of random
variables {Xn}n∈N with values in D([0, T ] : E ). For a proof, see [179, Theorem
2.7]. To simplify notation, it is assumed that all processes are defined on a common
probability space (Ω,F , P). Recall that τ is an Ft -stopping time if {τ ≤ t} ∈ Ft

for all t ∈ [0, T ].
Theorem D.4 Let {Xn}n∈N be a sequence of processes with paths in D([0, T ] :
E ) and let F n

t be the σ -algebra generated by {Xn(s), 0 ≤ s ≤ t}. Suppose that
{Xn(t)}n∈N is tight for each rational t ∈ [0, T ], and that for every sequence of F n

t -
stopping times {τn} such that τn ≤ T and every sequence of nonnegative numbers
{δn} converging to zero as n → ∞,

d(Xn(τn + δn), Xn(τn)) → 0

in probability as n → ∞. Then {Xn}n∈N is tight.

The theorem is also true if D([0, T ] : E ) is replaced by C ([0, T ] : E ).

D.5 Diffeomorphic Properties of Solutions of Itô SDEs

The following is [178, Theorem 4.6.5].

Theorem D.5 Suppose that the local characteristic (a, b) of a C k,ν-Brownian
motion {Φ(t)}t≥0 satisfies Condition 12.2 with some δ > ν. Then the solution of Itô’s
stochastic differential equation based on the Brownian motion Φ has a modification
{φs,t }0≤s≤t≤T that is a forward stochastic flow of C k-diffeomorphisms.
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E.1 Measure Theory

The following result is well known. A proof can be found in [167].

Lemma E.1 Let X1,X2 be Polish spaces and let X be an X1-valued Borel mea-
surable map defined on some measurable space (Ω,F ). Let G = σ {X}. Suppose
Y is an X2-valued Borel measurable map given on (Ω,F ) that is G -measurable.
Then there is a Borel measurable map g : X1 → X2 such that Y = g(X).

E.2 Gronwall’s Inequality

Lemma E.2 (Gronwall’s lemma) Let f, g be measurable maps from [0,∞) to
[0,∞). Suppose that for some a ∈ [0,∞),

f (t) ≤ a +
∫ t

0
f (s)g(s)ds for all t ∈ [0,∞). (E.1)

Also suppose that sup0≤s≤t f (s) < ∞ for each fixed t ∈ [0,∞). Then

f (t) ≤ ae
∫ t
0 g(s)ds for all t ∈ [0,∞).

Proof Fix t ∈ [0,∞). We assume without loss of generality that
∫ t
0 g(s)ds < ∞.

Iterating (E.1) n times, we get

f (t) ≤ a + a
n∑

k=1

∫ t

0
g(s1)

∫ s1

0
g(s2) · · ·

∫ sk−1

0
g(sk) dsk · · · ds1 + Rn(t), (E.2)
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where

Rn(t) =
∫ t

0
g(s1)

∫ s1

0
g(s2) · · ·

∫ sn−1

0
g(sn)

∫ sn

0
f (sn+1)g(sn+1) dsn+1dsn · · · ds1.

Note that

Rn(t) ≤
(∫ t

0
g(s) f (s)ds

) (∫ t
0 g(s)ds

)n

n! ≤
(

sup
0≤s≤t

f (s)

)(∫ t

0
g(s)ds

) (∫ t
0 g(s)ds

)n

n! .

Using the fact that
∫ t
0 g(s)ds < ∞, we see that Rn(t) → 0 as n → ∞. Sending

n → ∞ in (E.2), we have

f (t) ≤ a + a
∞∑

k=1

∫ t

0
g(s1)

∫ s1

0
g(s2) · · ·

∫ sk−1

0
g(sk)dsk · · · ds1

= a
∞∑

k=0

1

k!
(∫ t

0
g(s)ds

)k

= ae
∫ t
0 g(s)ds .

This completes the proof of the lemma. �

E.3 Measurable Selection and Approximation
of Measurable Functions

Let (X2, ρ2) be a complete and separable metric space and let (X1, ρ1) be a
metric space. Suppose that for each x ∈ X1, Γx ⊂ X2. A measurable selection
of {Γx }x∈X 1 is a B(X1)\B(X2)-measurable function f : X1 → X2 such that
f (x) ∈ Γx for every x ∈ X1. The following result is proved in Corollary 10.3 in
Appendix 10 of [126].

Corollary E.3 Suppose that if yn ∈ Γxn for n ∈ N and xn → x as n → ∞, then
{yn}n∈N has a limit point in Γx . Then a measurable selection of {Γx }x∈X 1 exists.

We next state an approximation result (see [90, Theorem V.16a]).

Theorem E.4 Let X be a Polish space and suppose λ ∈ P(X ). Let f : X → R

be a Borel measurable function. Then there is a sequence of continuous functions
{ f j } j∈N, f j : X → R, such that

f j → f λ-a.e.

as j → ∞. If the function f is bounded in absolute value by B, then all the approx-
imating functions can be taken to be bounded in absolute value by B as well.
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E.4 Hilbert Spaces

The definitions in this section are taken from [66, 226].
A real vector space H is called an inner product space if for each pair x, y ∈ H

there is a real number 〈x, y〉 such that the following properties hold for every x, y, z ∈
H and α ∈ R: (a) 〈x, y〉 = 〈y, x〉, (b) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉, (c) 〈αx, y〉 =
α〈x, y〉, (d) 〈x, x〉 ≥ 0, (e) 〈x, x〉 = 0 if and only if x = 0. Such a space can be
normed by defining ‖x‖2 .= 〈x, x〉. If the resulting metric space is complete, we call
it a Hilbert space.

A subset H0 of a Hilbert space H is a said to be an orthonormal set if (a) for
every h ∈ H0, ‖h‖ = 1; (b) if h1, h2 ∈ H0 are such that h1 �= h2, then 〈h1, h2〉 = 0.
A maximal orthonormal set is said to be a complete orthonormal system (CONS).
Every separable Hilbert space has a countable CONS.

For the rest of this section, H will be a separable Hilbert space with inner product
〈·, ·〉 and norm ‖ · ‖. A linear mapping A : H → H is called a bounded linear
operator on H if

‖A‖ .= sup
x∈H :‖x‖≤1

‖Ax‖ < ∞.

In this case, the mapping is continuous, and ‖A‖ is called the norm of A.
For every bounded linear operator A on H , A∗ is the unique bounded linear

operator on H , referred to as the adjoint of A, with the property that

〈Ax, y〉 = 〈x, A∗y〉 for all x, y ∈ H.

A bounded linear operator A on H is called self-adjoint or symmetric if A = A∗.
It is called positive if 〈Ax, x〉 ≥ 0 for all x ∈ H , and it is called strictly positive if
〈Ax, x〉 > 0 for all nonzero x ∈ H . A positive and self-adjoint operator has a unique
positive square root S, which is a positive operator satisfying S2 = A.

Let A be a bounded linear operator on H . Let {ei }i∈N be a CONS in H . Define
‖A‖2 .= [∑i∈N ‖Aei‖2]1/2. It can be checked that ‖A‖2 thus defined does not depend
on the choice of the CONS.We say that A is a Hilbert–Schmidt operator if ‖A‖2 <

∞, and we refer to ‖A‖2 as the Hilbert–Schmidt norm of A.
A bounded linear operator A on H is called a trace class operator if A = BC ,

where B, C are Hilbert–Schmidt operators. For such an operator,
∑

i∈N |〈Aei , ei 〉| <

∞ for every CONS {ei }, and the sum∑i∈N〈Aei , ei 〉 is independent of the choice of
the CONS. This quantity is referred to as the trace of the operator A.
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Conventions. The following conventions are used throughout the book.

1. The infimum of the empty set is ∞.
2. 0 log(0/x) = 0 and y log(y/0) = ∞ for x ∈ [0,∞) and y ∈ (0,∞).
3. Sigma fields on topological spaces will always be taken to be Borel σ -fields. A

set in a Borel σ -field will be referred to as a Borel set. Mappings on a topological
space are Borel measurable.

4. Two types of constants are used. Meaningful constants, such as Lipschitz con-
stants, are denoted by uppercase letters, and constants that are used only in the
course of a proof are set lowercase; they take values in (0,∞).

Standard notation, terminology, and abbreviations. The following standard nota-
tion is used throughout the book. A list of more specialized notation is given in the
list of Specialized Symbols that follows this section.

General

B(S) the Borel σ -algebra on a Polish space S.
(H , 〈·, ·〉) a real separable Hilbert space.
P(S) the probability measures on the measurable space (S,F ).
1A the indicator function of the set A.
δx the probability measure with mass 1 at the point x .
γ � θ the measure γ is absolutely continuous with respect to θ .
dγ

dθ
theRadon–Nikodymderivative ofγ with respect to θ when
the measure γ is absolutely continuous with respect to θ .

θn ⇒ θ for {θn}n∈N ∪ {θ} ⊂ P(S), with S ametric space,
∫

S f dθn

→ ∫
S f dθ for all f ∈ Cb(S) and called weak conver-

gence; for random variables {Xn}n∈N, X , Xn ⇒ X means
that the induced measures converge weakly, also called
convergence in distribution.
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d(x, F) inf{d(x, y) : y ∈ F}, the distance from the point x to the
set F in a metric space with distance d(·, ·)

x ∨ y, x ∧ y maximum (resp. minimum) of two real numbers x, y.
x+, x− the positive part (resp. the negative part) of a real number

x , equivalently x ∨ 0 (resp. (−x) ∨ 0).
�x� integer part of x .(a

i

) ∏i−1
j=0(a− j)

i ! , for a ∈ R, a �= 0 and i ∈ N.
B(x, δ) {y : d(y, x) < δ}, the open ball of radius δ centered at x

in a metric space with distance d(·, ·)
B̄, B◦, ∂ B closure, interior, and boundary of a set B, respectively.
fn ↑ f for functions fn, f : S → R, fn(x) increases monotoni-

cally f (x) for all x ∈ S.
f ◦ g composition of two functions f and g.
θ × σ for θ ∈ P(X ) and σ ∈ P(Y ), (X ,F ) and (Y ,G )

measurable spaces, the unique probability measure on the
product space X × Y that satisfies [θ × σ ](A × B) =
θ(A)σ (B) for all A ∈ F , B ∈ G .

σ(dy|x) with x ∈ V , y ∈ Y ,V ameasurable space andY a Polish
space, a stochastic kernel onY given V : σ(·|x) ∈ P(Y )

for all x ∈ V and x → σ(A|x) is measurable for every
A ∈ B(Y ).

θ ⊗ σ for θ ∈ P(X ), (X ,F ) ameasurable space, andσ(dy|x)

a stochastic kernel on Y given X , Y a Polish space, the
unique probability measure on the product space X ×
Y obtained from a probability measure θ on X and a
stochastic kernel σ(dy|x) on Y given X that satisfies
[θ × σ ](A × B) = ∫A θ(dx)σ (B|x) for all A ∈ F , B ∈
B(Y ).

[α]i , [α] j |i for α ∈ P(X1 × · · · × Xk) with each Xi a Polish space
and the product σ -algebra used, [α]i is the marginal distri-
bution on Xi , and [α] j |i is the conditional distribution on
X j given a point in Xi ; [α]i1,...,im and [α] ji ,..., jl |i1,...,im are
defined in an analogous way.

Distribution of X The probability measure induced by a random variable
X on the space S in which X takes values, also called
distribution induced by X .

F/G -measurable map for f : X → Y , (X ,F ) and (Y ,G )measurable spaces,
{x : f (x) ∈ B} ∈ F for all B ∈ G .

Level set for F : S → [0,∞], a set of the form {x ∈ S : F(x) ≤ M}
α → f (α) the function on space S that maps points α ∈ S to f (α).
σ T the transpose of a vector or a matrix.
tr(A)

∑k
i=1 aii , the trace of a square k × k matrix A = (ai j )

k
i, j=1.
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Spaces of functions (with S a metric space)

A C ([0, T ] : R
d) the space of absolutely continuous functions from [0, T ] toR

d ,
a subspace of C ([0, T ] : R

d).
A C x ([0, T ] : R

d) the subset ofA C ([0, T ] : R
d)with initial conditionφ(0) = x .

C ([0, T ] : S) the space of continuous functions from [0, T ] to S with the
supremum norm.

Cb(S) the space of bounded continuous functions from S to R.
Cc(S) the space of continuous functions with compact support from

S to R.
D([0, T ] : S) the space of functions that are right continuouswith limits from

the left for all t ∈ (0, T ], with the Skorohod metric.
L 1([0, T ] : R+) the space of integrable functions from [0, T ] to R+.
L 2([0, T ] : R

d) the space of square integrable functions from [0, T ] to R
d .

L 0([0, T ] : R+) the space of Borel measurable functions from [0, T ] to [0,∞).
Mb(S) the space of bounded measurable functions from S to R.

Controls and Spaces of Controls

In Chaps. 3 and 8–13, many different spaces of controls are used, and frequently
several different spaces are given the same notation. In presenting representations
for functionals of a finite dimensional Brownian motion in Sect. 3.2, spaces A and

¯A are introduced. These denote the collection of all Gt -progressively [resp. Ft -
progressively] measurable processes {v(t)}0≤t≤T that satisfy the integrability condi-
tion E[∫ T

0 ‖v(t)‖2dt] < ∞. HereFt is a general filtration, and Gt is the (augmenta-
tion of the) filtration generated by the Brownian motion. This section also introduces
the subsets of A denoted by Ab,M and Ab. The first consists of v ∈ A such that∫ T
0 ‖v(t)‖2dt ≤ M a.s. and Ab = ∪∞

M=1Ab,M .
In Sect. 3.3, in the study of a process, the same notation is used for somewhat dif-

ferent spaces. Specifically,A is the collection of nonnegative predictable processes,
whileAb,M is the subset ofA consisting of ϕ such that

∫ T
0 �(ϕ(s))ds ≤ M a.s. and

for some K ∈ (0,∞) (possibly depending on ϕ), K −1 ≤ ϕ ≤ K a.s. Once more,
Ab = ∪∞

M=1Ab,M .
In Chap.8, we begin with the general theory for continuous time processes. In

Sect. 8.1, ¯A denotes the class of H0-valued Ft -predictable processes v that satisfy

P

{∫ T

0
‖v(s)‖20ds < ∞

}
= 1,

and A denotes the subset comprising those that are predictable with respect to
{Gt }0≤t≤T , whereH0 is a Hilbert space with norm ‖ · ‖0 andFt and Gt are similar to
their counterparts inChap. 3.Also,Ab,M consists ofv ∈ A such that

∫ T
0 ‖v(s)‖20ds ≤

M andAb
.= ∪M∈NAb,M . Also,As denotes the subset ofAb consisting of all simple

processes. The spaces ¯Ab,M [resp. ¯Ab] are defined exactly like Ab,M [resp. Ab],
except that {Gt } is replaced by {Ft }.



548 Conventions and Standard Notation

In Sect. 8.2, we turn to a representation for a Poisson random measure (PRM).
In this section, A is the class of all (PF ⊗ B(X ))\B[0,∞)-measurable maps
ϕ : XT × M̄ → [0,∞). Here X is the point space associated with the PRM, and
PF is the predictable σ -field. Also,

Ab,M
.= {ϕ ∈ A : LT (ϕ) ≤ M a.e. and for some n ∈ N, n ≥ ϕ(t, x, ω) ≥ 1/n

and ϕ(t, x, ω) = 1 if x ∈ K c
n , for all (t, ω) ∈ [0, T ] × M̄},

(E.3)
where

LT (ϕ)(ω)
.=
∫
X T

�(ϕ(t, x, ω)) νT (dt × dx), ω ∈ M̄

and {Kn}n∈N is an increasing sequence of compact subsets ofX such that∪∞
n=1Kn =

X . As before, Ab = ∪∞
M=1Ab,M . Once more, we let ¯Ab,M , ¯A , and ¯Ab denote the

analogous spaces of controls when the canonical filtration {Gt } is replaced by {Ft }. In
this section, we also consider simple processes. A process ϕ ∈ Ab,M is in the setAs,M

if the following holds. There exist n, �, n1, . . . , n� ∈ N; a partition 0 = t0 < t1 <

· · · < t� = T ; for each i = 1, . . . , �, a disjoint measurable partition Ei j of Kn, j =
1, . . . , ni ; Gti−1 -measurable random variables Xi j , i = 1, . . . , �, j = 1, . . . , ni , such
that 1/n ≤ Xi j ≤ n; and

ϕ(t, x, m̄) = 1{0}(t) +
�∑

i=1

ni∑
j=1

1(ti−1,ti ](t)Xi j (m̄)1Ei j (x) + 1K c
n
(x)1(0,T ](t). (E.4)

We define As
.= ∪∞

M=1As,M .
In Sect. 8.3, we consider a representation for functionals of both PRM and Brown-

ianmotion. This representation involves both types of controls appearing in Sects. 8.1
and 8.2, and therefore we need to modify the notation. We denote by ¯A W and ¯A W

b

the collections of controls for the Wiener process that were denoted by ¯A and ¯Ab

in Sect. 8.1, and by ¯A N , ¯A N
b the controls for the PRM that were denoted by ¯A

and ¯Ab in Sect. 8.2. Similarly, the classes ¯A N
b,M and ¯A W

b,M , which give uniform (in
ω) bounds, are defined as they were in Sects. 8.1 and 8.2, respectively. Also we let

¯Ab,M
.= ¯A W

b,M× ¯A N
b,M , ¯Ab

.= ¯A W
b × ¯A N

b and ¯A
.= ¯A W × ¯A N .

The notation in Chaps. 9 and 10 for control spaces is same as that in Sect. 8.3,
since we work here with systems that have both types of noise terms. Section 9.2.2,
which studies a moderate deviation principle, introduces also a new specialized type
of control space U ε

n,+ (see (9.8)) that is the class of controls for both types of noise
for which the cost scales proportionally with a(ε)2.

In Chap.11, we consider systems with different types of infinite dimensional
Brownian motions, and therefore the superscript W in the notation of control spaces
is dropped. In considering Brownian sheet-driven systems, we consider the class
of control ¯A analogous to those in Sect. 8.1 as the class of all {Ft }-predictable
processes f such that

∫
[0,T ]×O f 2(s, x)ds dx < ∞ a.s. Here predictable processes

are functions of (t, x, ω) (see Definition 11.7). Classes Ab,A and ¯Ab are defined
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similarly. In this chapter, we also use controls associated with a Hilbert space valued
Brownian motion with H0 = l2. The spaces of these controls, as in Sect. 8.1, are
denoted once more byAb,A , ¯A , and ¯Ab. It is made clear at each place they appear
which space is intended.

Chapter 12 uses the notation ¯A and ¯Ab (and ¯Ab,M ) for controls as in Sect. 8.1
withH0 = l2.

In Chap.13, we consider systems driven by a PRM, and therefore in denoting
spaces of controls, we drop the superscript N . Thus the spaceA and its variants are
as in Sect. 8.2. In studying a moderate deviation principle, the space U ε

n,+, which
was introduced in Sect. 9.2.2, also makes an appearance in Sect. 13.3.2.

Togetherwith the spaces of randomcontrols such asA ,we also usemany spaces of
deterministic controls, employing once again the same notation for several different
spaces. In Sect. 3.2, wherewe consider representations for a k-dimensional Brownian
motion, the notation SM is used for the space

{
φ ∈ L 2([0, T ] : R

k) :
∫ T

0
‖φ(s)‖2 ds ≤ M

}
,

while in Sect. 3.3, in the study of a process, we have

SM =
{
φ ∈ L 0([0, T ] : R+) :

∫ T

0
�(φ(s))ds ≤ M

}
.

In Sect. 8.1, where we consider a Hilbert space valued Brownian motion, we use the
notation SM for the space

{
u ∈ L 2([0, T ] : H0) :

∫ T

0
‖u(s)‖20ds ≤ M

}
.

In Chap.9, where we consider systems that have both types of noise terms, we
need to distinguish the two types of control spaces. The space Sn from Sect. 8.1 is
denoted here by SW

n , and we define

SN
n

.= {g : XT → [0,∞) : L N
T (g) ≤ n

}
,

where L N
T is as in (9.1). We define Sn

.= SW
n × SN

n and S
.= ∪n∈NSn . This chapter

also uses two other specialized deterministic control spaces. The first corresponds
to controls that hit a target φ for a given z in the abstract large deviation principle of
Sect. 9.2.1, namely

SG
z,φ

.=
{
( f, g) ∈ S : φ = G 0(z,

∫ ·

0
f (s)ds, νg

T )

}
,

while the second is a similar space in the abstract moderate deviation principle of
Sect. 9.2.2,
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SK
z,η

.= {q = ( f1, f2) ∈ L 2 : η = K 0(z, q)},

where L 2 is introduced below (9.8).
Section 9.2.2 introduces three additional spaces of controls that are needed for

the proof of the moderate deviation principle. These are

SN ,ε
n,+

.= {g : XT → R+ such that L N
T (g) ≤ na2(ε)},

SN ,ε
n

.= { f : XT → R such that f = (g − 1)/a(ε), with g ∈ SN ,ε
n,+},

and
Ŝn

.= {( f1, f2) ∈ L 2 : ‖ f1‖2W,2 + ‖ f2‖2N ,2 ≤ n},

where a(ε) is the scaling sequence in (9.6), and the norms ‖ · ‖W,2 and ‖ · ‖N ,2 are
introduced below (9.8).

Chapter 10uses the samenotation asChap.9 for the various spaces of deterministic
controls.

In Chap.11, where we consider systems with different types of infinite dimen-
sional Brownian motions, the superscript W in the notation SW

n is dropped. In par-
ticular, either, the space Sn denotes the space in Sect. 8.1 with H0 = l2, or it is the
space {

φ ∈ L 2([0, T ] × O) :
∫

[0,T ]×O
φ2(s, r)dsdr ≤ n

}
,

where O is the open set from Sect. 11.1. The precise space that is being referred to
is clear from the context.

In Chap.12, Sn is the space in Sect. 8.1 withH0 = l2.
The spaces of Sect. 9.2.2 appear in Sect. 13.3.2 once more. However, since there is

no Brownian motion in the dynamics, the spaces and notations are slightly different.
Specifically,

Ŝn
.=
{

f = { fi }K
i=1 : fi ∈ L 2([0, 1] × R+) and

K∑
i=1

∫
[0,1]×R+

f 2i (s, y)dyds ≤ n

}

and

Sε
n,+

.=
{

g = {gi }K
i=1 : gi : [0, 1] × R+ → R+

and
K∑

i=1

∫
[0,1]×R+

�(gi (s, y))dyds ≤ na2(ε)

}
.

Norms and Distances

‖x‖ (
∑d

i=1 x2
i )1/2 for x ∈ R

d .
‖F‖∞ supx∈S ‖F(x)‖ for F : S → R

d .
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‖F‖∞,T sup0≤t≤T ‖F(s)‖ for F : [0, T ] → R
d .

‖γ ‖TV for a signed measure γ on a measurable space (S,F ), sup
∣∣∫

S f (x)

γ (dx)|, where the supremum is over f ∈ Mb(S) with ‖ f ‖∞ ≤ 1,
called the total variation norm of γ .

dBL(ν1, ν2) for probability measures ν1 and ν2 on a Polish space (X , d), sup∣∣∫
X f (x)ν1(dx) − ∫X f (x)ν2(dx)

∣∣, where the supremum is over f
with ‖ f ‖∞ ≤ 1 and | f (x) − f (y)| ≤ d(x, y) for all x, y ∈ X , called
the Dudley metric or bounded-Lipschitz metric.

‖ f ‖1 for measurable f on a measure space (S,F , λ),
∫

S | f | dλ, called the
L 1-norm.

‖Λ‖ for a bounded linear operator Λ on a Hilbert space H , suph∈H :‖h‖=1
‖Λh‖, called the operator norm.

‖ψ‖α for α ∈ (0, 1) and ψ : S → R, (S, d) a metric space, sup{|ψ(x)−
ψ(y)|α /d(x, y), x, y ∈ S}, called the α-Hölder norm.



Abbreviations

a.s. almost surely
CONS complete orthonormal sequence
DPR direct probability redistribution
iid independent and identically distributed
HJB Hamilton–Jacobi–Bellman
IS importance sampling
LLN law of large numbers
LDP large deviation principle
MDP moderate deviation principle
PDE partial differential equation
PRM Poisson random measure
RCLL right continuous with left limits
RESTART repetitive simulation trials after reaching threshold
r.c.p.d. regular conditional probability distribution
SDE stochastic differential equation
SPDE stochastic partial differential equation
w.p.1 with probability 1
WSLQ weighted serve the longer queue
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Specialized Symbols

Dm group of C m diffeomorphisms, page 311
(−∞, x] {y : yi ≤ xi for all i = 1, . . . , d}, page 289
(H , 〈·, ·〉) a real separable Hilbert space, page 202
V̄ δ mollification of V̄ , page 389
δ̄Zi a random measure associated with branching processes,

page 427
ν̄T λT × ν × λ∞, page 215
L̄n controlled empirical measure on X̄ n

i , i = 1, . . . , n,
page 47

l̄2 a weighted l2 space, page 283
L̄T (u) LW

T (ψ) + L N
T (ϕ), page 231

M̄n(dw × dt) randommeasures used in the analysis of aMDP, page 121
N̄ an augmented PRM, page 215
r̄(x, t; v) controlled feedback jump rates in WSLQ, page 343
Ū (x) jΔ if x ∈ C j\C j−1, page 428
Ūk Ū (x) if σ(x) = k, page 428
w̄n(t) mean of control measure μ̄n

i for t ∈ [1/n, 1/n + 1/n),
page 121

X̄ n
i controlled random variables whose conditional distribu-

tion is μ̄n
i , page 46

κ1(β), κ̄1(β), κ2(β), κ3 quantities used to describe properties of �, page 238
Δ(X ) {γ ∈ P(X ) : R(γ ‖θ) < ∞}, page 31
Δψ the mapping from P(X ) into P(Y ) defined by β =

Δψα when β(A) = α(x : ψ(x) ∈ A) for Borel sets A,
page 34

� the function �(b) = b log b − b + 1, b ≥ 0, page 54
γ (dy |x , β) exponentially tilted version of θ(dy |x ), page 93
Ŵm C

([0, T ] : Dm
)
, page 311

Âb a collection of bounded predictable processes, page 219
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κ(t) max{0 ≤ k ≤ K : tk ≤ t}, page 344
Λ urn type index for occupancy models, page 177
λk(l) initializing distribution for splitting, page 433
〈h, k〉0 inner product on H0, page 202
‖α‖2A 〈α, Aα〉, page 117{
μ̄n

i

}
random control probability measures, page 46

{vi (x)} iid random vector fields, page 77
M̄ Σ(YT ), sample space for an augmented PRM, page 215
V̄ W × M̄, page 234
B

T
0 space of all continuous maps from [0, T ] × Ō to R

endowed with the sup–norm, page 293
Bα Banach space of α-Hölder functions on O , page 293
Bα([0, T ] × O), BT

α Banach space of α-Hölder functions on [0, T ] × O ,
page 293

H(p) −H(−p), page 382
H(x, p) −H(x,−p), page 384
M Σ(XT ), sample space for a PRM, page 215
R

∞ space of real valued sequences equipped with product
topology, page 282

U range space for the abstract LD and MD results of
Chap.9, page 236

V W × M, page 234
W C ([0, T ] : H0), page 234
Da feasible domain for an occupancy problem, page 190
E ϕ(t) an exponentialmartingale associatedwithPRM,page218
F (x, t;ω, T ) a collection of probability vectorswith certain properties,

page 192
G ε measurable maps used in the abstract LDP of Chap.9,

page 236
H0 Λ1/2H , withΛ a symmetric, strictly positive, trace class

operator, page 202
K ε measurable maps used in the abstract MDP of Chap. 9,

page 238
Lexp ∩ρ∈(0,∞)L ρ

exp, page 251
L ρ

exp functions that satisfy an exponential integrability assump-
tion, page 251

N a collection of simple form absolutely continuous paths,
page 341

P(Λ) the probabilities on 0, 1, . . . , J + 1, identified with the
simplex in R

J+2, page 176
PF predictable σ -field, page 202
V set of possible jump vectors for the WSLQ model,

page 332
Wm C

([0, T ] : C m(Rd)
)
, page 311

X space of types for a PRM, page 214
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XT [0, T ] × X , page 214
Y augmented space of types for a controlled PRM, page 215
YT [0, T ] × Y , page 215
Sn(V̄ ) second moment of an estimator based on V̄ , page 388
Int(u) integrated version of a control u, page 289
ν measure on the space of types for a PRM, page 214
νT λT × ν, page 214
ν

g
T measure definedby

∫
A g(s, x) νT (ds × dx), A ∈ B(XT ),

page 235
ω(x, δ) modulus of continuity, page 300
π(x) indices that maximize the weighted queue length,

page 332
ρδ

j weights in the implementation of schemes based on mol-
lified piecewise smooth subsolutions, page 389

ρk(x, t) probabilities for ball placement in occupancy models,
page 176

Σ(S ) measures ν on (S ,B(S )) satisfying ν(K ) < ∞ for
every compact K ⊂ S , page 214

σ(x) unique integer j such that x ∈ C j\C j−1, page 428
τ(dy |x ) a stochastic kernel in dy given x , page 32
θ(· |x ) distribution of iid random vector fields {vi (x)}, page 77
θ ⊗ σ(A × B)

∫
A×B θ(dx) σ (dy |x ) = ∫A σ(B |x ) θ(dx), page 38

‖ f ‖∞,t sup0≤s≤t ‖ f (s)‖, page 252
‖ · ‖0 norm on the Hilbert space H0, page 202
‖ · ‖N ,2 norm in the Hilbert space L 2(νT ), page 239
‖ · ‖W,2 norm inL 2([0, T ] : H0), page 239
{Ft } a general filtration, page 56
{Gt } a filtration generated by driving noises, page 56
{U (t, s)} a two parameter semigroup, page 292
A(μ) the probability measures on S × S with both marginals

μ, page 149
a(ε) and κ(ε) functions used in the statement of the abstract MDP of

Chap.9, page 238
a(n) scaling sequence used in an MDP, page 115
A−1

κ (x) matrix obtained by truncating the eigenvalues of A−1(x)

at κ2, page 139
C j splitting thresholds, page 425
Cx,T collection of paths starting from x and reaching a set B

before reaching A, by time T , page 373
Cx ∪T ∈(0,∞)Cx,T , page 373
Db(x) matrix of first order partial derivatives, page 119
G(t, s, r, q) kernel of a two parameter semigroup, page 292
H(α) a log moment generating function, page 52
H(x, α) log moment generating function of iid random vector

fields {vi (x)}, page 78
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H (i)(α) μi (e−αi − 1) +∑d
j=1 λ j (eα j − 1), page 333

H∗(x, β) the Legendre-Fenchel transform of H(x, α), also some-
times denoted as L(x, β), page 90

H A maxi∈A H (i), page 334
Hc(x, α) the centered log cumulant generating function, page 117
I (A) inf x∈A I (x), page 3
IM rate function in a moderate deviation principle, page 119
L(β) the Legendre-Fenchel transform of H(α), page 55
L(x, β) the Legendre-Fenchel transform of H(x, α), also some-

times denoted as H∗(x, β), page 81
L(i) L A when A = {i}, page 334
L A Legendre transform of H A, page 334
Ln the empirical measure on Xi , i = 1, . . . , n, page 47
l2 Hilbert space of square summable sequences, page 283
Lc(x, β) the Legendre-Fenchel transform of Hc(x, α), page 119
Li,m support threshold of particle m at time i , page 433
Nϕ Poisson random measure with controlled intensity gov-

erned by ϕ, page 215
N 1

c the compensated version of N 1, page 218
Q( j, k) random vector defined in terms of ql( j, k), page 439
Q(t) vector of queue lengths at time t , page 332
q(k)(x, dy) k-step transitionprobability kernel forq(x, dy), page150
ql( j, k) splitting vectors, page 430
R(γ ‖θ) relative entropy of γ with respect to θ , page 29
r(x, v) jump rate for the WSLQ model, page 332
Rn({Y n

i , wn
i }i=0,...,T n−1) likelihood ratio in an importance sampling estimator,

page 389
R j splitting rates, page 425
sn(t) �nt� /n, page 124
W ψ(t) controlledBrownianmotionW (t) + ∫ t

0 ψ(s)ds, page231
wn(δ) modulus of continuity, page 85
wn(t) rescaledmean of controlmeasure μ̄n

i for t ∈ [1/n, 1/n +
1/n), page 121

L N
T (ϕ) cost function for a PRM, page 231

LW
T (ψ) cost function for aHilbert spacevaluedBrownianmotion,

page 231
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