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Whole-Genome Alignment

Colin N. Dewey

Abstract

Whole-genome alignment (WGA) is the prediction of evolutionary relationships at the nucleotide level
between two or more genomes. It combines aspects of both colinear sequence alignment and gene
orthology prediction and is typically more challenging to address than either of these tasks due to the
size and complexity of whole genomes. Despite the difficulty of this problem, numerous methods have been
developed for its solution because WGAs are valuable for genome-wide analyses such as phylogenetic
inference, genome annotation, and function prediction. In this chapter, we discuss the meaning and
significance of WGA and present an overview of the methods that address it. We also examine the problem
of evaluating whole-genome aligners and offer a set of methodological challenges that need to be tackled in
order to make most effective use of our rapidly growing databases of whole genomes.
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1 Introduction

When the problem of biological sequence alignment was first
described and addressed in the 1970s, sequencing technology was
limited to obtaining the sequences of individual proteins or
mRNAs or short genomic intervals. As such, classical sequence
alignment (as described in Chapter 7 [1]) is typically focused on
predicting homologous positions within two or more relatively
short and colinear sequences, allowing for the edit events of substi-
tution, insertion, and deletion. Although limited in its scope, this
type of alignment remains extremely important today, with gene-
sized alignments forming the basis of most evolutionary studies.
Starting in 1995 with the sequencing of the 1.8 Mb-sized
genome of the bacterium H. influenzae [2], biologists have had
access to a different scale of biological sequences, those of whole
genomes. DNA sequencing technology has rapidly improved since
that time, and as a result, we have seen an explosion in the availabil-
ity of whole-genome sequences. As of the writing of this chapter,
there are 9071 published complete genome sequences (8380
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bacterial, 281 archaeal, and 410 eukaryotic), according to the
GOLD database [3]. Whole-genome sequencing remains popular,
with over 140,000 sequencing projects that are either ongoing or
completed.

Along with the ascertainment of these sequences, the problem
of whole-genome alignment (WGA) has arisen. As each genome is
sequenced, there is interest in aligning it against other available
genomes in order to better understand its evolutionary history and,
ultimately, the biology of its species. Like classical sequence align-
ment, WGA is about predicting evolutionarily related sequence
positions. However, aligning whole genomes is made more com-
plicated by the fact that genomes undergo large-scale structural
changes, such as duplications and rearrangements. In addition, a
set of genomes may contain pairs of sequence positions whose
evolutionary relationships can be described by any of the three
major subclasses of homology: orthology, paralogy, and xenology.
As orthologous positions are typically of primary interest, WGA
also involves the classification of homologous relationships.

In this chapter, we describe the problem of WGA and the
methods that address it. We begin with a thorough definition of
the problem and discuss the important downstream applications of
WGAs. We then categorize the WGA methods that have been
developed and describe the key computational techniques that are
used within each category. In addition to describing whole-genome
aligners, we also discuss the various approaches that have been used
for evaluating the alignments they produce. Lastly, we lay out a
number of current methodological challenges for WGA.

2 The Definition and Significance of WGA

21 WGAasa
Correspondence
Between Genomes

In imprecise terms, a WGA is a “correspondence” between gen-
omes. For each segment of a given genome, a WGA tells us where
its “corresponding” segments are in other genomes. A segment
may be one or more contiguous nucleotide positions within a
genome. What does it mean for two genomic segments to “corre-
spond” to each other? In most situations, we consider two seg-
ments to be “corresponding” if they are orthologous. Orthologous
sequences are those that are evolutionarily related (homologous)
and that diverged from their most recent common ancestor
(MRCA) due to a speciation event [4]. In contrast, paralogous
sequences are homologs that diverged from the MRCA due to a
duplication event. Thus, by definition, orthologous sequences are
the most closely related pieces of two genomes and, as is more
thoroughly discussed later and in Chapter 9 [5], are of primary
interest because they are useful for applications such as function
prediction and species tree inference. As such, WGA is most com-
monly taken to be the prediction of orthology between the
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components of entire genome sequences. When a WGA also pre-
dicts paralogy, typically only paralogs whose MRCA is at least as
recent as the MRCA of entire set of genomes are considered, as
there is extensive ancient homology within extant genomes.

It is important to note that the orthologous relationships
between two genomes do not create a one-to-one correspondence.
Duplication events that have occurred since the time of the MRCA
of the species can result in a genomic segment in one species having
multiple orthologous segments in another. This is a particularly
important issue when the genome of one lineage has undergone a
whole-genome duplication event since the time of the MRCA. In
this situation, few segments of the genome of the nonduplicated
lineage have a single ortholog in the other genome.

In many cases, WGAs do not aim to predict all orthologous
sequences. Instead, they only predict toporthology (positional
orthology), a distinguished subset of orthology [6, 7]. The concept
of toporthology captures the notion that not all orthologous rela-
tionships are equivalent in terms of the evolutionary history of the
genomic context of the orthologs. Figure 1 gives an example
scenario in which toporthology helps to distinguish between two
orthologous relationships.

The definition of toporthology relies on a classification of
duplication events. A duplication event is considered to be “sym-
metric” if the removal of either copy of the duplicated genomic
material (immediately after the event) reverts the genome to its
original (preduplication) state. Examples of symmetric duplications
are tandem and whole-genome duplications. If only one specific
copy can be removed to undo a duplication event, then the event is
considered “asymmetric.” In the asymmetric case, the removable
copy is referred to as the “target,” with the other copy referred to as
the “source.” Retrotransposition and segmental duplication both
belong to the asymmetric class.

With this classification of duplication events in hand, we can
now define toporthology. Two genomic segments are toportholo-
gous if they are orthologous and neither segment is derived from
the target of an asymmetric duplication event since the time of the
MRCA of the segments. Thus, two orthologous segments are
toporthologous if their evolutionary history (since the MRCA)
only involves symmetric duplication events or asymmetric duplica-
tions in which their ancestral segment was part of the source copy.

The important property of toporthologs is that, in the absence
of rearrangement events, they share the same ancestral genomic
context. As the context of a gene or genomic segment has func-
tional consequences, toporthologous sequences are generally
expected to be more similar in their function than orthologous
sequences that are not toporthologous (atoporthologs) [6]. How-
ever, there is no guarantee that toporthologs share a common
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Fig. 1 A hypothetical evolutionary scenario in which the relation of toporthology distinguishes between two
ortholog pairs. The bullet-like shapes indicate genomic segments. Both YB1 and YB2 are orthologous to
YA. However, only YB1 is toporthologous to YA because YB2 was derived from the target of an asymmetric
duplication since the time of the most recent common ancestor, Y, of YB2 and YA

2.3 Definition and
Representation

function or that two genomic intervals that have the same function
are toporthologs. Thus, a rigorous functional analysis of genomes
should consider all classes of homology. Nevertheless, WGAs that
focus on toporthology produce a good first approximation to a
functional correspondence between genomes.

To be more precise, a WGA is, in general, the prediction of homol-
ogous pairs of positions between two or more genome sequences.
Often, as we have previously discussed, only orthologous or
toporthologous relations are predicted in WGAs. And while align-
ment is typically focused on homologous relationships between
sequences, whole-genome comparisons can also include alignments
within genomes, which represent paralogous sequences.

Note that we define WGA as homology prediction at the level
of nucleotides. Although the concept of homology is more com-
monly used with respect to entire genes or proteins, it is easily used
and, in fact, more naturally defined at the level of single nucleotides.
Homology of nucleotide positions is established through template-
driven nucleotide synthesis, and the definitions of orthology, paral-
ogy, and xenology for nucleotides follow those for genes [7].

While a WGA can be defined as a prediction of homology
statements, it is usually represented as a set of nucleotide-level
alignment matrices or “blocks,” each block made up by segments
of the genomes that are both homologous and colinear. Homolo-
gous genomic segments are colinear if they have not been broken
by a rearrangement event since the time of their MRCA. Since
rearrangement events, such as inversions, are common at the scale
of entire genomes, WGAs are typically made up of many blocks. In
general, a block contains two or more genomic segments, and
multiple segments in the same block may belong to the same
genome (indicating paralogous sequence). One specific WGA rep-
resentation, the “threaded blockset” [8], requires that every
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Fig. 2 An example WGA of three genomes represented as a set of alignment blocks. (a) The positions of the
genomic segments that are in the alignment blocks are shown as shaded bullet-like shapes (the direction of
the bullet indicates the orientation of the segment). In this example, not all genomic segments belong to a
block (note the unshaded intervals). (b) The alignment blocks of the WGA. Note that blocks do not need to
contain a segment from all genomes (e.g., block Y) and that some blocks can contain multiple segments from
the same genome (e.g., blocks X and Z). (c) A slice of alignment block Z, which is a nucleotide-level alignment

2.4 Comparison to
Other Homology
Prediction Tasks

position belongs to a block and thus additionally allows a block to
contain just a single segment, which would represent a unique
genomic sequence. Figure 2 depicts a hypothetical example of a
WGA, with some blocks containing both orthologous and para-
logous sequences.

As more genomes are added to an alignment or the total
evolutionary divergence between them is increased, the blocks in
a WGA decrease in size and increase in number. One might imagine
that in the limit of an infinite number of genomes or an infinite
amount of time, all blocks might have length one (a single column),
which makes the concept of an “alignment matrix” irrelevant.
However, rearrangements in certain segments of the genome are
likely to be highly deleterious to an organism and will thus never be
observed. Such segments are referred to as genomic “atoms” [9]
and prevent all blocks from becoming single alignment columns.

WGA is closely related to classical sequence alignment (the align-
ment of two or more relatively short and colinear sequences), and
most whole-genome aligners rely on classical alignment techniques
(e.g., the Needleman—-Wunsch [10] and Smith-Waterman [11]
pairwise alignment algorithms and heuristics used for multiple
alignments) as subroutines. However, there are three key differ-
ences between these two classes of alignment. First, and most
importantly, classical alignment requires sequences to be colinear,
which is often not the case for genome sequences due to rearrange-
ment events. Second, even when restricted to toporthologous rela-
tionships, the correspondences between genomes are not one to
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2.5 Significance

one, which is also a requirement of classical alignment. Due, in part,
to the complications of these first two issues, it is difficult to
formulate a useful objective function (such as the sum-of-pairs
score for classical alignment) for WGA. Thus, most genome align-
ment methods are heuristic procedures that lack an explicit objec-
tive. A last difference between classical alignment and WGA is the
scale of the problem. Classical alignment typically focuses on the
alignment of single genes, which are usually on the order of
thousands of nucleotides long. Whole genomes, in contrast, are
millions to billions of nucleotides in length. The facts that genomes
are large and are often neither colinear nor in one-to-one corre-
spondence with other genomes are what make WGA challenging.

Since WGA is often focused on orthologous relationships, it is
also related to the “orthology prediction” problem (se¢ Chapter 9
[5]). The key difference between the two problems is that orthol-
ogy prediction is traditionally cast at the level of genes, whereas
WGA operates at the level of nucleotides. For most orthology
prediction methods, a genome is treated as an unordered set of
genes. Whole-genome aligners, on the other hand, consider a
genome to be a set of DNA sequences (chromosomes) within
which genes are embedded. Thus, a WGA provides orthology
predictions for both genes and intergenic regions. Due in part to
their treatment of genomes as long nucleotide sequences, current
WGA methods rely exclusively on sequence similarity and the
ordering of nucleotides in a genome to predict orthology. In con-
trast, orthology prediction methods often use phylogenetic ana-
lyses, which can be more powerful than genome order and
sequence similarity information alone. Thus, while the problem of
WGA is broader in scope than that of orthology prediction, it is
restricted to the analysis of relatively closely related genomes, for
which homology of nongenic nucleotides is detectable and gene
order is at least partially conserved. Gene-level orthology predic-
tion is more appropriate for distantly related genomes, which may
only have detectable homology at the amino acid level and little
colinearity.

WGASs are powerful because they allow for the analysis of molecular
evolution at both large and small scales. At the large scale, one can
use such alignments to estimate the frequency and location of
rearrangement and duplication events. For example, one might
use a WGA between human and mouse to identify colinear ortho-
logous blocks, which are then given to a rearrangement analysis
method (e.g., [12]) to determine a most parsimonious set of rear-
rangement events explaining the current structures of the two
genomes. At the small scale, WGAs can be used to examine the
rates of substitutions and indels across the entire genome. For
example, one might look at alignments of ancestral repeats to
estimate the neutral rates of nucleotide evolution. Both small-
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and large-scale mutational events identified from WGAs can be
used as data for species tree inference. In combination with carefully
constructed models of genome evolution at both scales, WGAs also
enable the task of ancestral genome reconstruction [13, 14].

Beyond purely evolutionary studies, WGAs are valuable for
identifying functional elements within genomes. Each class of func-
tional element within the genome tends to have a unique “evolu-
tionary signature,” which can be searched for within WGAs
[15]. For example, coding sequences tend to have mutational
patterns with a predominance of substitutions at the third positions
of codons, which are unlikely to affect the amino acid sequence.
This characteristic evolutionary signature of coding sequence has
led to the development of comparative gene-finding methods,
which often use WGAs (Chapter 6 [16]). Noncoding RNA
sequences can also be identified from WGAs but have more com-
plex signatures involving compensatory mutations that maintain
base pairing within RNA secondary structures [17]. More gener-
ally, one can search for evolutionarily constrained regions within
WGAs, which can contain functional elements from a variety of
classes [18]. When combined with the knowledge of transcription
factor-binding motifs, this approach can be used to identify tran-
scription factor-binding sites with a technique called “phylogenetic
footprinting” [19]. The easiest evolutionarily constrained regions
to pick out are those of “ultraconserved elements,” which maintain
high levels of sequence identity across large evolutionary distances
and are primarily noncoding components of the genome [20].

WGAs also allow for the transfer of functional information
about specific elements from one species to another. As WGAs
typically predict orthology and orthologous sequences are likely
to have similar functions, WGAs are valuable for function predic-
tion. By aligning at the nucleotide level across the genome, they can
aid in function prediction for both genes and nongenic regions,
such as those that contain regulatory elements. For example, if we
are interested in a specific disease-associated interval in the human
genome, we might use an alignment to identify where its mouse
orthologs are located. Knowledge of the mouse orthologs would
enable us to have a better understanding of the evolutionary history
of this genomic region and could lead to genetic manipulation
experiments that can only be performed in mice.

3 Methods for WGA

3.1 A Simplistic
Approach

It is easier to understand the existing methods for performing
WGA by first appreciating the shortcomings of a simplistic
approach for comparing whole-genome sequences. One simple
approach would be to run BLAST [21], or another similar local
alignment tool, between all pairs of genomes. The WGA would
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3.2 The Two Major
Approaches to WGA

then be defined as the union of all significant pairwise local align-
ments discovered by BLAST. By using a local alignment tool, we
avoid the issues of rearrangements and duplications, as sets of local
alignments are not constrained to be colinear or in one-to-one
correspondence.

While this approach would certainly yield a large set of homol-
ogy predictions between all pairs of genomes, it has a number of
shortcomings. First, by only using a BLAST significance threshold,
it makes no distinction between orthology, paralogy, and other
refinements of homology. Second, the pairwise alignments that it
produces are not guaranteed to be consistent with each other, even
though homology, by definition, is a transitive relation. Third,
BLAST may miss some homologous sequences that have low simi-
larity but are strongly supported in their relatedness by flanking
homologous sequences. BLAST’s significance statistics are proven
for ungapped sequences and good in practice for sequences with
short indels [22], but are not designed for whole-genome compar-
isons, which often feature large-scale insertions and deletions and
heterogeneous substitution rates. Lastly, this approach is overly
computationally intensive. For example, it does not take advantage
of the fact that homology is a transitive relation, that relationships
between sequences are reasonably modeled by a tree, and that
homologous sequences between genomes are often found in long
colinear segments.

Existing WGA methods attempt to address one or more of the
weaknesses of this simple approach. These methods can be loosely
classified into two major strategies which we refer to as the “hierar-
chical” and “local” approaches. The main idea behind the hierar-
chical approach is to split the WGA problem into a set of global
multiple alignment problems. To do this, it first identifies the
colinear and homologous (typically orthologous) segments of the
genomes. Each set of colinear segments is then given to a
specialized genomic global alignment method to produce a
nucleotide-level alignment. In contrast, the first step of the
“local” approach is to produce a large set of nucleotide-level align-
ments. Later steps involve the filtering and merging of these align-
ments to produce sets of pairwise or multiple alignments of
homologous (typically orthologous) sequences. Despite their dif-
ferences, both strategies typically begin with a local alignment step
that is similar to the simplistic all-vs.-all alignment of the BLAST
approach. A summary of all of the WGA methods described in this
chapter and the role they play within one or both approaches is
given in Table 1.

Both approaches have advantages and disadvantages. The pri-
mary advantage of the hierarchical approach is that it can often be
faster and breaks a WGA into a number of independent subpro-
blems that can be solved in parallel. It is faster because the
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Table 1
A list of the WGA methods cited in this chapter

Relationships Pairwise or
Method Category predicted multiple References
BLAST Local alignment Homology Pairwise [21]
BLAT Local alignment Homology Pairwise [32]
STELLAR Local alignment Homology Pairwise [33]
LASTZ Local alignment Homology Pairwise [34]
LAST Local alignment Homology Pairwise [28]
MUMmer Local alignment Orthology Pairwise [35]
CHAOS Local alignment Homology Pairwise [36]
GRIMM-Synteny Homology mapping Toporthology Multiple [40]
DRIMM-Synteny Homology mapping Homology Multiple [45]
Mercator Homology mapping Toporthology Multiple [46]
Enredo Homology mapping Homology Multiple [47]
OSfinder Homology mapping Toporthology Multiple [48]
SuperMap Homology mapping Homology Multiple [49]
Sibelia Homology mapping Homology Multiple [50]
M-GCAT Hierarchical WGA Toporthology Multiple [51]
progressiveMauve Hierarchical WGA Toporthology Multiple [52]
MUGSY Hierarchical WGA Toporthology Multiple [53]
Cactus Hierarchical WGA Homology Multiple [54]
MAVID Global genomic Colinear homology Multiple [60]
alignment
LAGAN /Multi- Global genomic Colinear homology Pairwise/ [37]
LAGAN alignment multiple
DIALIGN Global genomic Colinear homology Multiple [36]
alignment
SeqAn::T-Coffee Global genomic Colinear homology Multiple [61]
alignment
Pecan Global genomic Colinear homology Multiple [47]
alignment
ESA Global genomic Colinear homology Multiple [62]
alignment
NUCmer/PROmer  Local WGA Orthology Pairwise [35]
MULTIZ/TBA Local WGA Homology Multiple [8]
AXTCHAIN/ Alignment chaining Orthology Pairwise [67]
CHAINNET and filtering

(continued)
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Table 1
(continued)
Relationships Pairwise or

Method Category predicted multiple References
PicolnversionMiner  Alignment refinement Orthology Pairwise [68]
Cassis Alignment refinement Orthology Pairwise [69, 70]
GenAlignRefine Alignment refinement Colinear homology Multiple [71]
PSAR-Align Alignment refinement Colinear homology Multiple [73]
Phylo Alignment refinement Colinear homology Multiple [76,77]
SLAM Alignment refinement Colinear homology Pairwise [78]
DOUBLESCAN Alignment refinement Colinear homology Pairwise [79]
CESAR Alignment refinement Colinear homology Pairwise [81]
MORPH Alignment refinement Colinear homology Pairwise [82]
EMMA Alignment refinement Colinear homology Pairwise [83]
MAFIA Alignment refinement Colinear homology Multiple [84]
SAPF Alignment refinement Colinear homology Multiple [85]
REAPR Alignment refinement Colinear homology Multiple [86]

For each method, the approach it uses or the role it plays within a larger WGA system is given in the “category” column.
Each method is labeled as either “pairwise” or “multiple” depending on whether it can be applied to generate multiple
alignments. In addition, the primary type of evolutionary relationship predicted by each method is given in the “relation-
ships predicted” column

identification of long colinear and orthologous segments in the
genomes can be accurately computed without the need for sensitive
nucleotide-level alignments. However, because hierarchical meth-
ods do not often use the most sensitive aligners for this step, they
tend to miss small rearranged or diverged segments. Thus, the
primary advantage of the local method is in its sensitivity to these
regions, although “glocal” alignment methods [23], which allow
for small rearrangements, can partially ameliorate this weakness of
hierarchical methods. Hierarchical methods also run the risk of
being overconfident of the colinearity of genomic segments and
can thus produce more false-positive aligned positions within
sequences predicted to be colinear.

3.3 Local Pairwise
Genomic Alignment

Methods for both WGA strategies generally start by finding local
alignments between, and perhaps within, the genomes. The
Smith-Waterman algorithm is the classical solution to the pairwise
local alignment problem, but is generally not used for WGA
because it runs in time quadratic in the size of the genomes,
which can be large. Instead, most methods adopt a “seed-and-
extend” approach for discovering high-scoring local alignments,
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much like BLAST. This approach first identifies short ungapped
matches between the sequences using one of a variety of data
structures. It then extends the short matches from both ends
using a variant of the Smith—-Waterman algorithm, stopping the
extension when the score of the alignment drops below a specified
threshold. In some cases, nearby and consistent (in terms of order
and orientation) local alignments are “chained” together to form
larger alignments.

There are a number of techniques used for discovering seeds at
the genomic scale for the “seed-and-extend” approach to local
alignment. A first distinction between the techniques is whether
they find exact or inexact matching seeds. Exact seed discovery is
often faster and easier to implement, whereas inexact seeds offer
better sensitivity. Seed techniques also vary in whether they use
“consecutive” or “spaced” seeds [24]. Consecutive seeds consider
matches and mismatches at all positions within a sequence interval,
whereas spaced seeds only check for matches at a subset of positions
within an interval. The specific subset of positions checked is known
as the “seed pattern,” and there has been significant work on
determining optimal sets of multiple seed patterns (e.g.,
[25, 26]). It has been shown that carefully chosen spaced seed
patterns are superior to consecutive seeds in terms of sensitivity
[27]. Lastly, seeds differ in whether their lengths are fixed or
adaptive (variable). For WGA, adaptive seeds have been shown to
allow for faster local alignment at the same level of sensitivity as
fixed seeds [28].

Seed-finding techniques can often be improved by taking
advantage of DNA evolutionary models. A generalization of spaced
seeds is “subset seeds” [29], which allow subsets of bases to be
considered equivalent when determining if there is a match at a
given position. Subset seeds are particularly useful for taking into
account that transitions are often more common than transversions
in genome comparisons. Further taking into account biologically
informed substitution patterns is the “translated” seed, which is a
match at the amino acid level after translating genomic sequences in
all six possible reading frames. Translated seeds enable increased
sensitivity in comparisons of more diverged genomes. Lastly, when
aligning a genome to a set of genomes for which a multiple WGA
has already been constructed, one can take into account the substi-
tution patterns and ancestral sequences inferred from the WGA to
devise more sensitive seeds [30, 31].

The choice of seed type is the major determinant of the data
structures used for seed discovery. For example, BLAT [32] uses a
simple index of all possible k-mers for exact and translated seeds but
uses a heuristic of indexing only nonoverlapping k-mers for mem-
ory efficiency. STELLAR [33] also uses an index of k-mers but
implements an exact algorithm based on filtration for finding all
local alignments with an error rate below a given threshold. LASTZ
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3.4 The Hierarchical
Approach

(the successor to BLASTZ [34]), which uses a carefully chosen
spaced seed pattern introduced by [24], instead uses a hash table
to find both exact and inexact matches. Not to be confused with
LASTZ is the more recently developed LAST aligner [28], which
uses adaptive seeds with highly configurable patterns that are iden-
tified via a suffix array data structure. MUMmer uses a suffix tree to
rapidly find all exact consecutive seeds with some minimum length
[35]. CHAOS [36], which is a component of the LAGAN-suite of
genome alignment tools [37], uses a related structure, a “threaded
trie,” to find exact and inexact consecutive seeds.

For computational efficiency reasons, the extension step of the
seed-and-extend approach typically only allows for ungapped align-
ments or alignments with short indels. However, genome align-
ments often feature large indels that are not discovered by
extension from a seed. Thus, many local genomic alignment tools
use a “chaining” step to link nearby and consistent local alignments
discovered by the seed-and-extend strategy. For example, MUM-
mer includes a module for chaining together nearby exact matches
using a variation of the longest increasing subsequence (LIS) prob-
lem [38]. CHAOS also uses an LIS-derived algorithm for chaining
the inexact consecutive seeds it discovers. Chaining is often fol-
lowed by more sensitive alignment between chained local align-
ments. For example, MUMmer runs a variant of Smith—-Waterman
alignment in between chained matches and LASTZ recursively
searches for alignments with more sensitive seeds in between nearby
alignments discovered in previous steps.

The hierarchical approach to WGA consists of two steps. First, a
high-level homology map between the genomes is constructed.
Second, a nucleotide-level alignment is obtained by running a
genomic global alignment tool on each homologous and colinear
set of genomic segments identified by the homology map. Hierar-
chical WGA methods vary in the exact techniques used for
each step.

The idea behind the hierarchical approach is to separate the
problem of identifying rearrangements and duplications from that
of obtaining a nucleotide-level alignment. In the absence of rear-
rangements and duplications, WGA simply reduces to classical
sequence alignment although at a much larger scale. Thus, if a
WGA problem can be broken into a set of subproblems that do
not contain these large-scale events, the numerous methods that
have been developed for classical global alignment can be utilized.

The first step of the hierarchical strategy is to construct a
homology map between the genomes of interest. A homology
map is a collection of sets of genomic intervals, where each set of
intervals is required to be homologous and colinear (i.e., free of
rearrangements and duplications). Each set represents the
sequences that will ultimately form a block within a WGA.
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Homology maps generally have the property that each genomic
position belongs to at most one set and has all of its homologs
contained within that set. For WGA, homology maps are often
restricted in the evolutionary relationships that are captured, as
only a subset of homologous relationships may be of interest.
Typically, only orthologous relationships are captured, forming an
“orthology map.” When orthology maps are restricted to predict-
ing one-to-one relationships, they are more likely to be representa-
tive of toporthology.

The concept of a homology map is closely related to the con-
cepts of “conserved segments” and “syntenic blocks,” which gen-
erally refer to sets of genomic intervals containing multiple
homologous markers (e.g., genes) and featuring conserved orien-
tations and adjacencies of these markers [39, 40]. Unfortunately,
these concepts have long been poorly defined, and, as a result,
methods for syntenic block identification differ markedly in their
output [41]. In addition, methods for identifying syntenic blocks
(or closely related concepts) are often focused on identifying sets of
genomic intervals that exhibit levels of conservation of marker
content or colinearity that exceed what one would expect if markers
were randomly shuffled between genomes (e.g., [42—44]). This is
in contrast to homology maps, which are concerned with colinear
homology, regardless of biological significance. And, in practice,
homology maps are intermediate objects in the process of WGA,
whereas syntenic block predictions are often of direct interest.

Homology maps are most commonly constructed from local
alignments, such as those computed by methods discussed in the
previous section. As only a high-level correspondence is desired,
these methods are often run in faster but less sensitive configura-
tions. For example, local alignments between just the coding inter-
vals of the genomes can be computed quickly and used for the
construction of homology maps that are at least accurate with
respect to protein-coding genes.

Although numerous pairwise homology mapping methods
exist, in this chapter, we restrict our attention to methods that
scale to more than two genomes, as the problem is significantly
more challenging in the multiple genome case. Examples of multi-
ple genome homology map methods include GRIMM-Synteny
[40], its successor DRIMM-Synteny [45], Mercator [46], Enredo
[47], OSfinder [48], SuperMap [49], and Sibelia [50]. The WGA
programs M-GCAT [51], progressiveMauve [52], MUGSY [53],
and Cactus [54] are integrated hierarchical methods that contain a
homology mapping stage.

Many of these methods use graph-based data structures to find
a mapping between multiple genomes simultaneously. Kehr et al.
[55] characterized the relationships between four commonly used
types of graphs: alignment graphs [56], A-Bruijn graphs [57, 58],
Enredo graphs [47], and Cactus graphs [59]. The most
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straightforward graph is the alignment graph, which is a mixed
graph with vertices representing genomic segments, directed
edges representing adjacent segments, and undirected edges repre-
senting homologous segments. In an A-Bruijn graph, vertices
instead represent sets of homologous segments, and directed
edges represent adjacencies between pairs of segments (one from
each set represented by the connected vertices). Relative to align-
ment graphs, A-Bruijn graphs are more compact and readily reveal
the content of each genome. An Enredo graph is very similar to an
A-Bruijn graph, but has a pair of vertices instead of a single vertex
for each set of homologous segments, which captures information
regarding the directionality of each segment within a homologous
set. Lastly, cactus graphs flip the representation of adjacencies, with
vertices corresponding to sets of adjacencies and edges
corresponding to sets of homologous segments. Cactus graphs
have a natural decomposition that provides advantages for analysis
and visualization of WGAs.

Graph-based homology mapping methods generally produce
an initial WGA graph using one of the four representations we have
discussed and then refine the graph via modifications. Of the
homology mapping methods we have listed, GRIMM-Synteny,
Mercator, and MUGSY use alignment graphs. DRIMM-Synteny
and OSfinder use A-Bruijn graphs and Sibelia uses de Bruijn
graphs, of which A-Bruijn graphs are a generalization. And, as
their names suggest, Enredo and Cactus use Enredo and cactus
graphs, respectively. These methods use a variety of techniques for
graph refinement. For example, MUGSY is unique in its use of flow
network algorithms to identify breaks in colinearity. OSfinder uses a
novel probabilistic model to determine a maximum likelihood
multiple genome orthology map. And Cactus uses a simulated
annealing-style algorithm, the Cactus alignment filter, to refine an
initial cactus graph representing a homology map.

Unlike the graph-based methods that build a map between all
genomes simultaneously, the SuperMap and progressiveMauve
methods build a multiple genome map by progressively building
pairwise maps up a guide tree. The pairwise SuperMap algorithm is
essentially a symmetric version of the chaining method used by
Shuffle-LAGAN [23], which allows for rearrangements and dupli-
cations in its chains of orthologous segments. The progressive-
Mauve mapping method instead uses a “breakpoint elimination”
algorithm to find colinear segments and does not allow for duplica-
tions, thus producing output indicative of one-to-one toporthol-
ogy. This algorithm greedily removes local alignments one by one
with the goal of maximizing an objective function that takes into
account both the number of breakpoints implied by an alignment
and substitution scores.

Once a homology map has been created, any one of a number
of genomic global alignment methods can be used to align the
orthologous and colinear segments identified by the map. As for
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our discussion of homology mapping methods, we restrict our
attention to global aligners that can handle multiple genomes.
Examples of such methods are MAVID [60], MLAGAN [37],
DIALIGN [36], SeqAn:: T-Coftee [61], PECAN [47], FSA [62],
and the base-level alignment refinement (BAR) algorithm of Cactus
[54]. For colinear sequences, the genomic alignment problem is
the same as that of classical global alignment but is made more
difficult by the fact that the sequences are long (possibly millions of
nucleotides in length). Thus, global genomic aligners employ heur-
istics to speed up the process. By far, the most common heuristic
used is to first identify short local alignments, or anchors, between
the sequences, identity a chain of these anchors, and then perform
global alignment between the adjacent chained anchors. This tech-
nique is similar to the strategy for hierarchical WGA, but is simpler,
due to the fact that rearrangements and duplications do not need to
be taken into account. MLAGAN and DIALIGN use the CHAOS
local aligner, PECAN and FSA use Exonerate [63], and MAVID
and SeqAn::T-Coftee use suffix trees or arrays to find anchors.

In addition to the specific local alignment technique used to
speed up the alignment process, global genomic aligners also vary
with respect to how they combine local pairwise alignments to
build a multiple global alignment. First;, MAVID, MLAGAN,
SeqAn::T-Coffee, and Pecan all belong to the class of progressive
alignment methods, which use a phylogenetic tree to guide their
algorithms (see Chapter 7 [1]). For the alignment of non-leaf
sequences during progressive alignment, MAVID uses maximum
likelihood ancestral sequence inference, while MLAGAN, SeqAn::
T-Coftee, and Pecan use a sum-of-pairs objective function. Both
SeqAn::T-Coffee and Pecan use a “consistency” technique, which
adjusts the score between pairs of positions (or segments) based on
the consistency of triplets of pairwise alignments. The nonprogres-
sive methods, DIALIGN, FSA, and BAR, instead put together a
multiple alignment by greedily merging consistent local pairwise
alignments. While differing in their use of a tree, the FSA, Pecan,
and BAR methods take advantage of probabilistic models of
sequence alignment and attempt to maximize statistically grounded
objective functions, as opposed to the heuristic score-based func-
tions used by the other methods. BAR is unique in its ability to
predict breakpoints when aligning groups of sequences that may
contain the boundaries of rearrangement events.

Although the hierarchical approach breaks the WGA problem
into a large number of subproblems (one per colinear segment set)
that can be computed in parallel, it is still a significant computa-
tional effort to produce a WGA with this approach, particularly for
large eukaryotic genomes. Thus, a number of Web sites host pre-
computed hierarchical WGAs. Alignments produced by the combi-
nation of Pecan with either Enredo or Mercator are hosted at the
Ensembl Web site [64]. Similarly, the VISTA Web site [65] hosts
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3.5 The Local
Approach

WGAs generated by SuperMap and the LAGAN-suite of genomic
aligners. Both sites offer visualizations of the WGAs, which are
useful for looking at levels of conservation across genomes.

The local approach to WGA bypasses the high-level homology map
construction phase of the hierarchical approach and instead begins
by identifying a comprehensive set of nucleotide-level pairwise local
alignments. The second step of this approach is to combine the
pairwise local alignments into a cohesive WGA by filtering out
nonorthologous relationships and merging pairwise alignments
into multiple alignments. Because there is typically no additional
pairwise nucleotide-level alignment performed in the second step,
the local alignments generated by the first step are obtained with a
more sensitive aligner than that used by hierarchical methods for
homology map building. The two primary examples of local WGA
methods are MUMmer, a pairwise genome aligner, and MULTIZ/
TBA, a multiple genome aligner [8].

MUMmer was one of the first pairwise WGA methods to be
developed and was initially targeted at the alignment of
prokaryotic-sized genomes. The WGA ability of MUMmer is
achieved through a combination of smaller modules that is orche-
strated by the NUCmer or PROmer scripts. The first module
identifies maximum unique matches (MUMs) between a pair of
genomes with a suffix tree data structure. Nearby matches are
clustered together, and a high-scoring colinear chain of matches is
identified within each cluster. Finally, the matches within the chains
are extended with a variant of the Smith-Waterman algorithm, and
the resulting extended chains are output as a WGA. The raw WGA
output by MUMmer can, in general, include all classes of homolo-
gous relationships. However, the chains are typically filtered to
leave only those that are highest scoring or that result in a reference
position being overlapped by only a single chain. Thus, a filtered
WGA from MUMmer is usually representative of orthology.

MULTIZ/TBA, which was instead designed for large eukary-
otic genomes, starts by using LASTZ to generate sensitive local
pairwise alignments between all pairs of genomes or between a
reference genome and all others. MULTIZ is then used to identify
local alignment blocks of subsets of genomes that should be com-
bined and to merge these blocks using a banded variant of the
Smith-Waterman algorithm. TBA is the program that is used to
coordinate this entire process when all pairs of genomes are com-
pared. Thus far, it does not appear that TBA has been used at the
whole-genome scale, although MULTIZ is regularly used for
reference-based WGAs hosted by the UCSC Genome Browser
[66]. For these reference-based WGAs, the ungapped segments of
LASTZ alignments are first processed with a chaining program
(AXTCHAIN) to establish large colinear alignments between the
reference and another genome. In contrast to the output of
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chaining methods discussed in Subheading 3.3, a chain produced
by AXTCHAIN is an ordered set of pairwise local alignments rather
than a single long alignment that explicitly aligns between the short
local alignments that form the chain. AXTCHAIN chains are typi-
cally filtered by the CHAINNET program to retain only the
highest-scoring alignment at each position within the reference
genome [67]. The remaining alignments, which most likely reflect
orthologous relationships, are then combined into multiple align-
ments with MULTIZ.

Because of the computational complexity of multiple alignment,
particularly at the whole-genome scale, methods of both
approaches to WGA use heuristics and simplified models to make
WGA feasible. For example, most of the methods described in this
chapter do not distinguish between different classes of genomic
sequence (e.g., genic and intergenic) while constructing
nucleotide-level alignments. And many methods disregard small,
marginally significant, local alignments for the sake of speed. As a
result, at a local level, the results of current WGA methods often
leave room for improvement.

To remedy this situation, a number of methods have been
developed that may be used to refine WGAs. These methods take
as input either a WGA, a single WGA block, or the set of homolo-
gous and colinear sequences that make up a WGA block. They can
be generally grouped into one of three categories. The first is
composed of methods that refine the local structure of a WGA.
That is, they redefine the boundaries, or “breakpoints,” of the
homologous and colinear blocks in the WGA. A secondary cate-
gory of methods focuses on optimizing individual WGA blocks
with respect to an objective function. The last category includes
methods that perform alignment while taking into account the
structure and evolutionary dynamics of certain classes of genomic
elements.

PicolnversionMiner [68] and Cassis [69, 70] are two methods
tor refining the local structure of a WGA. PicolnversionMiner
identifies very small “inplace” inversions between two genomes
that are left undetected by an initial WGA. Such inversions are
represented by alignments that would typically not have statistically
significant scores at the genome level but can be detected via
probabilistic models of local sequence evolution. In contrast to
PicolnversionMiner, which identifies novel rearrangement events,
Cassis refines the coordinates of breakpoints. The refinements pro-
duced by Cassis are the result of identifying weak similarities
between sequences adjacent to segments of an initial orthology
map and extending the boundaries of segments based on these
similarities. The BAR algorithm of Cactus, which we have previ-
ously discussed in the context of hierarchical WGA, is also an
alignment refinement method that identifies breakpoints.
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Other methods for refining WGAs focus on improving local
colinear multiple alignments with respect to a given objective func-
tion. For example, GenAlignRefine [71] attempts to optimize
WGA blocks according to the COFFEE objective function [72]
using a genetic algorithm. The PSAR-Align method [73] instead
realigns blocks to optimize an expected accuracy objective function
[74] using pairwise alignment probabilities estimated by the PSAR
tool [75] and the sequencing annealing algorithm of the FSA
multiple alignment method [62]. Lastly, the Phylo project
[76, 77] refines WGAs by “crowd sourcing” the task of optimizing
colinear alignment blocks, according to one of a number of objec-
tive functions. Phylo casts the multiple alignment problem as a
casual game that may be played by “citizen scientists” at the pro-
ject’s website (http://phylo.cs.mcgill.ca/).

Lastly, a number of methods have been developed that can
improve the alignments of specific classes of genomic elements,
such as gene structures. The primary goal of these methods is
generally to improve prediction of genomic elements, but a more
accurate alignment often results as a side product. Among the
oldest of such methods are comparative gene finders that perform
protein-coding gene prediction and pairwise alignment simulta-
neously. These include SLAM [78] and DOUBLESCAN [79],
both of which use pair hidden Markov models [80]. A related
method, CESAR [81], was specifically designed for realignment
and targets individual coding exons rather than full gene structures.
Other methods focus on improving the alignment of noncoding
regulatory regions by modeling the evolution of sets of transcrip-
tion factor-binding sites with known motifs (e.g., MORPH [82],
EMMA [83], and MAFIA [84]). Like the comparative gene finders,
these methods also use statistical alignment techniques but with
models extended to take into the account the conservation of
binding sites instead of gene structures. SAPF [85] is also a method
aimed at alignment of noncoding regulatory regions but more
generally models sequences that are mixtures of “slow” and “fast”
evolving elements without knowledge of binding motifs. Lastly,
REAPR [86] focuses on the realignment and detection of noncod-
ing RNAs by using alignment models that take into account the
conserved secondary structures of such RNAs.

4 Evaluation of WGAs

Just as for small-scale alignment (Chapter 7, [1]), assessing the
accuracy of WGAs is hard because we rarely know the true evolu-
tionary history of a set of genome sequences. In fact, the evaluation
of WGAs is even harder than that of protein alignments. While
protein aligners can be evaluated with “gold standard” benchmark-
ing databases where the truth is established through protein
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structural information, genome aligners have no benchmarks of
real data. In addition, WGAs must be assessed not only for whether
they align truly homologous sequences but also for whether they
correctly predict orthologous (or toporthologous) relationships.
Thus, the evaluation of WGAs is related to that of gene orthology
prediction, which is discussed in Chapter 9 [5]. Despite these
challenges, a number of creative approaches have been used for
determining the accuracy of WGA methods. The approaches gen-
erally fall into four categories: (1) simulation, (2) analysis of align-
ments to annotated regions, (3) comparison with predictions from
other methods, and (4) alignment statistics.

Simulated data are appealing for evaluation as we know the
entire evolutionary history of the simulated sequences and can
thus thoroughly evaluate the accuracy of an alignment. Many of
the WGA methods described in this chapter have used simulations
for assessing their accuracies [8, 47, 52, 54, 62]. The Alignathon
[87], one of the most comprehensive evaluations of WGA methods
to date, relied heavily on simulated data sets. This study called
attention to one potential pitfall of simulation-based evaluation,
which is that the performance of a WGA method may be over-
estimated when that method was developed or trained with respect
to the same simulator used for the assessment.

Simulating the evolution of whole genomes is a challenging
task, and it is unclear if the current models used for simulation are
close to reality. Such models are highly complex, as they have to
account for many different types of evolutionary events, at both the
small and large scales. For example, they need to model the random
mutations of both single-nucleotide substitutions and megabase-
sized inversions. In addition, they also need to model natural
selection, which alters the probability of these random mutations
becoming fixed within a population. For example, an inversion that
cuts an essential gene in half might have a much lower probability of
becoming fixed than an inversion with both end points in inter-
genic regions. Despite these challenging model details, a number of
genomic evolution simulators have been developed. Currently, only
three simulators model both small-scale events (e.g., substitutions
and indels) and large-scale rearrangements and duplications
[88-90]. Other simulators focus only on nonrearranging events
[8, 91-98] and are thus good for evaluating colinear genomic
aligners but not homology mapping methods.

A second class of approaches to evaluating WGAS leverages our
knowledge of various classes of elements within the genome. For
example, with our understanding that most coding regions are
conserved across closely related genomes, the fraction of exons in
a genome “covered” by an alignment is an indirect measure of the
sensitivity of a WGA [37, 49, 60, 99]. Specificity can also be
roughly assessed with coding regions, either by counting the num-
ber of coding bases that are aligned to noncoding bases in other
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genomes [36, 100] or by checking that alignments in coding
regions exhibit periodicities in their substitution patterns [99]. A
related approach that instead assesses the accuracy of eukaryotic
orthology maps is to check if exons from the same gene are mapped
in the same order and orientation to other genomes [47]. For the
subset of protein-coding and noncoding RNA genes that have
curated “gold standard” alignments, the accuracy of a WGA with
respect to those genes may be assessed [101]. However, the fact
that genic regions are often highly conserved is also a disadvantage
of using them for evaluation; the most conserved regions are the
easiest to align, and some aligners use exon annotation information
or translated matches. Because of these issues, repeat sequences,
which are believed to evolve more neutrally, have been used for
alignment evaluation [47, 99]. For example, in [99], sensitivity was
assessed by alignments of ancestral repetitive elements, and speci-
ficity was inferred from the number of alignments to lineage-
specific repeat elements (in this study, primate-specific Alu repeats).

Another common evaluation technique is to compare whole-
genome aligners against other related methods. For example, a
WGA produced by one method can be used as the “truth” with
which to evaluate the sensitivity and specificity of other WGAs
[53]. This technique is useful for judging the similarity of different
WGAs but, unfortunately, does not provide much information
about accuracy. Another technique is to compare with the results
from gene orthology prediction programs [48, 49]. The advantage
of this approach is that it provides a more independent test of
accuracy, since gene orthology prediction programs generally use
different algorithms and information sources to infer orthology.
The disadvantages of this approach are that it only provides a gene-
level measure of accuracy and does not evaluate alignments of
noncoding regions. In addition, since WGA and gene orthology
prediction share similar goals, we might expect that future methods
will blend techniques from both and thus that this evaluation
approach will decrease in usefulness.

A last class of evaluation techniques involves the computation
of statistics for WGAs. These statistics can be subdivided into
simple descriptive statistics and measures computed via statistical
or sampling techniques. One of the most straightforward descrip-
tive statistics of a WGA 1is the “coverage” or the fraction of the
genomes included in an alignment or orthology map block [45,47,
49,53, 87]. Generally, the higher the coverage, the more sensitive
the WGA is believed to be, although one can easily create high-
coverage WGAs with poor sensitivity. As a check of large-scale
specificity in mammalian WGAs, the authors of [47] checked the
fraction of the X chromosome that was covered by alignments to
autosomal chromosomes in other genomes (the assumption being
that translocations into and out of the X chromosome are rare in
mammals). Some more detailed nucleotide-level statistics of WGAs
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include the total number of “core” positions [53], which are
gap-free alignment columns containing all genomes, and the aver-
age level of sequence identity in aligned columns [61].

More sophisticated statistics related to WGA accuracy are com-
puted through the use of statistical or sampling techniques. Just as
they are used for BLAST, Karlin and Altschul statistics [ 102 ] may
be used to assess the significance of local pairwise alignments
between genomes. StatSigMA extends these statistics to multiple
alignments [ 103], and StatSigMA-w further extends this technique
to detect dubiously aligned regions in WGAs of multiple genomes
[104]. Whereas a given local pairwise alignment may be highly
significant, the flanks of that alignment may be spurious, and a
p-value may be computed assessing the possible “over-alignment”
of a flank [105]. Within a multiple alignment, a number of techni-
ques have been developed for estimating the accuracy of the align-
ment of pairs of residues or entire columns, including simply
computing an alignment of reversed sequences [106], computing
alignments with bootstrapped guide trees [107], sampling subop-
timal multiple alignments [75], and evaluating consistency within a
library of alternative alignments [108].

5 Future Challenges

Despite the substantial progress made in WGA methodology devel-
opment, there are a number of challenges that remain unsolved.
First, we are in need of WGA methods that can scale to hundreds or
thousands of genomes. Along with ever-improving sequencing
technology, we are accumulating whole-genome sequences at an
increasing rate. Projects such as the Genome 10K Community of
Scientists [ 109], which aims to collect and sequence the genomes
01'10,000 vertebrate species, will further push the WGA problem to
new scales. While most WGA algorithms have been made efficient
for long genomes, very few are practical for large numbers of
genomes. Encouragingly, we are beginning to see methods capable
of scaling to thousands of genomes for the simpler task of “core-
genome alignment” of highly similar microbial-sized genomes
[110]. However, methods scaling to thousands of genomes for
the full WGA task or for mammalian-sized genomes do not cur-
rently exist. In addition to algorithmic advances, we will also be in
need of novel approaches for storing and representing WGAs of
thousands of genomes.

Second, advances are needed in the parameterization of WGA
methods. Current methods are littered with large numbers of
parameters that are often heuristic in nature and not easily deter-
mined. In some cases, the default parameters for a WGA method
may be markedly suboptimal [111]. One solution to this problem is
to adopt probabilistic models, which offer principled approaches to
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parameter estimation, such as maximum likelihood. In fact, proba-
bilistic models of sequence evolution have already been adopted for
the alignment of colinear genomic segments and have been shown
to offer improved accuracy [47, 62]. However, we have yet to see a
method that integrates probabilistic models of both small- and
large-scale changes that is capable of constructing an entire WGA,
although the recently introduced “split-alignment” pairwise WGA
method is a promising step in this direction [112]. In addition,
most WGA alignments use models or scoring schemes that assume
homogenous rates of evolution across the genome. This assump-
tion is obviously violated in real data, and new methods will need to
be developed that take this into account. Simulated noncoding
genomic alignments that represent a heterogeneous mix of evolu-
tionary rates have been developed and should be useful for the
development of new WGA methodology [97].

Lastly, more attention must be paid to the fact that a WGA is
typically just a single estimate of the evolutionary history of a set of
genomes and portions of this estimate may be highly uncertain.
Encouragingly, methods for colinear genomic alignment have
brought light to this issue at the nucleotide level [62, 113]. How-
ever, the issue of uncertainty at the large-scale orthology map level
has not been sufficiently studied, perhaps due to the lack of proba-
bilistic models for that level of the WGA problem. In addition,
most efforts to address uncertainty in alignments simply assign
levels of confidence to the components of a single alignment. It
may be more useful to be presented with a set of near-optimal
alignments so that alternative evolutionary histories can be exam-
ined by downstream analyses [114]. The determination and repre-
sentation of uncertainty for all scales of a WGA will likely remain a
challenging problem as the number of genomes included in align-
ments increases.

6 Exercises

1. Download the whole-genome aligner MUMmer (http: //mum
mer.sourceforge.net) and FASTA-formatted genome sequences for
the species Helicobacter pylovi J99 and Helicobacter pylori B38 from
GenBank (http: //www.ncbi.nlm.nih.gov/genbank/, accessions
NC000921 and NC012973, respectively). Run the NUCmer or
PROmer programs on the two genome sequences. Visualize the
resulting alignment with the mummerplot program. How many
colinear blocks are there in the alignment? How many inversion
events are implied by the alignment?

2. Visit the UCSC Genome Browser (http://genome.ucsc.
edu) and browse the human genome version GRCh38/hg38.
Search for and view the CFTR gene, mutations in which cause the
disease cystic fibrosis. Turn on the Net tracks for alignments to
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Fig. 3 The evolutionary scenario to be considered for Exercise 3. Each bullet-like shape corresponds to a
genomic segment, with the direction of the bullet indicating the orientation of the segment

genomes of non-primate placental mammals by clicking on the
“Placental Chain/Net” link (in the “Comparative Genomics” sec-
tion) and choosing the appropriate configuration. Examine the
Mouse Net track in the visualization and note the color of the
mouse net alignments. Using the “Chromosome Color Key”
(located in between the browser visualization and the track config-
uration section), identify the chromosome on which the mouse
ortholog of CFTR is located. Looking at the net alignments for
all of the placental mammals, does it appear that CFTR has been
conserved across this clade?

3. Consider the evolutionary scenario giving rise to the gen-
omes of three species shown in Fig. 3. For each of the relations
listed below, give the pairs of genomic segments with that relation.

(a) Orthology
(b) Paralogy
(¢) Toporthology
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