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Abstract

Biological databases are growing at an exponential rate, currently being among the major producers of Big
Data, almost on par with commercial generators, such as YouTube or Twitter. While traditionally biological
databases evolved as independent silos, each purposely built by a different research group in order to answer
specific research questions; more recently significant efforts have been made toward integrating these
heterogeneous sources into unified data access systems or interoperable systems using the FAIR principles
of data sharing. Semantic Web technologies have been key enablers in this process, opening the path for new
insights into the unified data, which were not visible at the level of each independent database. In this
chapter, we first provide an introduction into two of the most used database models for biological data:
relational databases and RDF stores. Next, we discuss ontology-based data integration, which serves to
unify and enrich heterogeneous data sources. We present an extensive timeline of milestones in data
integration based on Semantic Web technologies in the field of life sciences. Finally, we discuss some of
the remaining challenges in making ontology-based data access (OBDA) systems easily accessible to a larger
audience. In particular, we introduce natural language search interfaces, which alleviate the need for
database users to be familiar with technical query languages. We illustrate the main theoretical concepts
of data integration through concrete examples, using two well-known biological databases: a gene expres-
sion database, Bgee, and an orthology database, OMA.
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Abbreviations

ABox Assertional box
Bgee dataBase for Gene Expression Evolution, https://bgee.org/
FK Foreign key in a relational database
HBB Hemoglobin unit beta gene
IRI Internationalized Resource Identifier
OBDA Ontology-based data access
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OMA Orthologous Matrix, a database for the inference of orthologs among complete
genomes.—https://omabrowser.org, SPARQL endpoint: https://sparql.
omabrowser.org/sparql

PK Primary key in a relational database
PK-FK Primary key-foreign key relationship; enables joining two tables in a relational

database
RDB Relational database
RDF Resource Description Framework
SODA Search Over Relational Databases [21]
SQL Structured Query Language
SPARQL SPARQL Protocol and RDF Query Language
TBox Terminological box
URI Uniform Resource Identifier

1 Introduction

Biological databases have grown exponentially in recent decades,
both in number and in size, owing primarily to modern high-
throughput sequencing techniques [1]. Today, the field of geno-
mics is almost on par with the major commercial generators of Big
Data, such as YouTube or Twitter, with the total amount of
genome data doubling approximately every 7 months [2]. While
most biological databases have initially evolved as independent
silos, each purposely built by a different research group in order
to collect data and respond to a specific research question, more
recently significant efforts have been made toward integrating the
different data sources, with the aim of enabling more powerful
insights from the aggregated data, which would not be visible at
the level of individual databases.

Let us consider the following example. An evolutionary biolo-
gist might want to answer the question “What are the human-rat
orthologs, expressed in the liver, that are associated with leuke-
mia?”. Getting an answer for this type of question usually requires
information from at least three different sources: an orthology
database (e.g., OMA [3], OrthoDB [4], or EggNog [5]); a gene
expression database, such as Bgee [6]; and a proteomics database
containing disease associations (e.g., UniProt [7]). In the lack of a
unified access to the three data sources, obtaining this information
is a largely manual and time-consuming process. First, the biologist
needs to know which databases to search through. Second, depend-
ing on the interface provided by these databases, he or she might
need to be familiar with a technical query language, such as SQL or
SPARQL (note: a list of acronyms is provided at the beginning of
this chapter). At the very least, the biologist is required to know the
specific identifiers (IDs) and names used by the research group that
created the database, in order to search for relevant entries. An
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integrated view, however, would allow the user to obtain this
information automatically, without knowing any of the details
regarding the structure of the underlying data sources—nor the
type of storage these databases use—and eventually not even spe-
cific IDs (such as protein or gene names).

Biological databases are generally characterized by a large het-
erogeneity, not only in the type of information they store but also in
the model of the underlying data store they use—examples include
relational databases, file-based stores, graph based, etc. Examples of
databases considered fundamental to research in the life sciences
can be found in the ELIXIR Europe’s Core Data Resources, avail-
able online at https://www.elixir-europe.org/platforms/data. In
this chapter we will mainly discuss two types of database models:
the relational model (i.e., relational databases) and a graph-based
data model, RDF (the Resource Description Framework).

Database systems have been around since arguably the same
time as computers themselves, serving initially as “digitized” copies
of tabular paper forms, for example, in the financial sector, or for
managing airline reservations. Relational databases, as well as the
mathematical formalism underlying them, namely, the relational
algebra, were formalized in the 1970s by E.F. Codd, in a founda-
tional paper that now has surpassed 10,000 citations [8]. The
relational model is designed to structure data into so-called tuples,
according to a predefined schema. Tuples are stored as rows in
tables (also called “relations”). Each table usually defines an entity,
such as an object, a class, or a concept, whose instances (the tuples)
share the same attributes. Examples of relations are “Gene”,
“Protein”, “Species”, etc. The attributes of the relation will repre-
sent the columns of the table, for example, “gene name.” Further-
more, each row has a unique identifier. The column
(or combination of columns) that stores the unique identifier is
called a primary key and can be used not only to uniquely identify
rows within a table but also to connect data betweenmultiple tables,
through a Primary Key-Foreign key relationship. Doing such a
connection is called a join. In fact, a join is only one of the opera-
tions defined by relational algebra. Other common operations
include projection, selection, and others. The operands of relational
algebra are the database tables, as well as their attributes, while the
operations are expressed through the Structured Query Language
(SQL). For a more in-depth discussion on relational algebra, we
refer the reader to the original paper by E.F. Codd [8].

This chapter is structured as follows. In Sect. 2, we give a brief
introduction to relational databases, through the concrete example
of the Bgee gene expression database. We introduce the basics of
Semantic Web technologies in Sect. 3. Readers who are already
familiar with the Semantic Web stack might skip Sect. 3 and jump
directly to Sect. 4, which presents an applied use case of Semantic
Web technologies in the life sciences: modeling the Bgee and OMA
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databases. Section 5 represents the core of this chapter. Here, we
present ontology-based data integration (Sect. 5.1) and illustrate it
through the concrete example of a unified ontology for Bgee and
OMA (Sect. 5.2), as well as the mechanisms required to further
extend the integrated system with other heterogeneous sources
such as the UniProt protein knowledge base (Sect. 5.3). We intro-
duce natural language interfaces, which enable easy data access even
for nontechnical users, in Sect. 5.4. We present an extensive time-
line of milestones in data integration based on Semantic Web
technologies in the field of life sciences in Sect. 6. Finally, we
conclude in Sect. 7.

2 Modeling a Biological Database with Relational Database Technology

In this section we will demonstrate how to model a biological
database with relational database technology.

Figure 1 illustrates the data model of a sample extracted from
the Bgee database. The sample contains five tables and their rela-
tionships, shown as arrows, where the direction of the arrow is
oriented from the foreign key of one table to the primary key of a
related one. For example, the Primary Key (PK) of the Species table
is the SpeciesID. Following the relationships highlighted in bold, we
see that the SpeciesID also appears in the two tables connected to
Species:GlobalCond andGene. In these tables, the attribute plays the

Fig. 1 Sample relational database (extracted from the gene expression database Bgee)
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role of a Foreign Key (FK). The PK-FK relationships allow com-
bining or aggregating data from related tables. For example, by
joining Species and Gene, through the SpeciesID, we can find to
which species a gene belongs. Concretely, let’s assume we want to
find the species where the gene “HBB” can be found. Given that
this information is stored in the SpeciesCommonName attribute, we
can retrieve it through the following SQL query:

SELECT SpeciesCommonName from Species JOIN Gene

WHERE Gene.GeneName = ’HBB’ and Species.SpeciesID = Gene.

SpeciesID

This query enables retrieving (via the “SELECT” keyword) the
attribute corresponding to the species name (SpeciesCommon-
Name) by joining the Species and Gene tables, based on their
primary key-foreign key relationship, namely, via the SpeciesID, on
the condition that the GeneName exactly matches “HBB.” For a
more detailed introduction to the syntax and usage of SQL, we
refer the reader to an online introductory tutorial [9], as well as the
more comprehensive textbooks [10, 11].

Taking this a step further, we can imagine the case where a
second relational database also stores information about genes, but
perhaps with some additional data, such as associations with dis-
eases. Can we still combine information across these distinct data-
bases? Indeed, as long as there is a common point between the
tables in the two databases, such as the GeneID or the SpeciesID, it
is usually possible to combine them into a single, federated database
and use SQL to query it through federated joins. An example of
using federated databases for biomedical data is presented in [12].

2.1 Limitations of

Relational Databases

and Emerging

Solutions for Data

Integration

So far, we have seen that relational databases are a mature, highly
optimized technology for storing and querying structured data.
Also, combined with a powerful and expressive query language,
SQL, they allow users to federate (join) data even from different
databases.

However, there are certain relationships that are not natural for
relational databases. Let us consider the relationship “hasOrtho-
log”. Both the domain and the range of this relationship, as defined
in the Orthology Ontology [13], are the same—a gene. For exam-
ple, the hemoglobin (HBB) gene in human has the Hbb-bt ortho-
logous gene in the mouse (expressed via the relation hasOrtholog).
In the relational database world, this translates into a so-called self-
join. As the name suggests, this requires joining one table—in this
case, Gene—with itself, in order to retrieve the answer. These types
of “self-join” relations, while frequent in the real world (e.g., a
manager of an employee is also an employee, a friend of a person
is also a person, etc.), are inefficient in the context of relational
databases. While there are sometimes ways to avoid self-joins, these
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require even more advanced SQL fluency on the part of the
programmer [14].

Moreover, relational databases are typically not well-suited for
applications that require frequent schema changes. Hence, NoSQL
stores have gained widespread popularity as an alternative to tradi-
tional relational database management systems [15–17]. These sys-
tems do not impose a strict schema on the data and are therefore
more flexible than relational databases in the cases where the struc-
ture of the data is likely to change over time. In particular, graph
databases, such as Virtuoso [18], are very well suited for data
integration, as they allow easily combining multiple data sources
into a single graph. We discuss this in more detail in Sect. 3.

These and other considerations have led to the vision of the
Semantic Web, formalized in 2001 by Tim Berners Lee et al.
[19]. At a high-level, the Semantic Web allows representing the
semantics of data in a structured, easy to interlink, machine-
readable way, typically by use of the Resource Description Frame-
work (RDF)—a graph-based data model. The gradual adoption of
RDF stores, although widespread in the Web context and in the life
sciences in particular, did not replace relational databases alto-
gether, which lead to a new challenge: how will these heteroge-
neous data sources now be integrated?

Initial integration approaches in the field of biological data-
bases have been largely manual: first, many of them (either rela-
tional or graph-based) have included cross-references to other
sources. For example, UniProt contains links to more than
160 other databases. However, this raises a question for the user:
which of the provided links should be followed in order to find
relevant connections? While a user can be assumed to know the
contents of a few related databases, we can hardly expect anyone to
be familiar with more than 160 of them! To avoid this problem,
other databases have chosen an orthogonal approach: instead of
referencing links to other sources, simply copy the relevant data
from those sources into the database. This approach also has a few
drawbacks. First, it generates redundant data (which might result in
significant storage space consumption), and, most importantly, it
might lead to the use of stale, outdated results. Moreover, this
approach is contradictory to best practices of data warehousing
used widely across various domains in industry. For a discussion
on this, we refer the reader to [20].

Databases such as UniProt are highly comprehensive, with new
results being added to each release, results that may sometimes even
contradict previous results. Duplication of this data into another
database can quickly lead to missing out the most recent informa-
tion or to high maintenance efforts required to keep up with the
new changes. In the following sections, we discuss an alternative
approach: integrating heterogeneous data sources through the use
of a unifying data integration layer, namely, an integrative ontology,
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that aligns, but also enriches the existing data, with the purpose of
facilitating knowledge discovery.

Throughout the remainder of this chapter, we will combine
theoretical aspects of data integration with concrete examples,
based on our SODA project [21], as well as from our ongoing
research project, Bio-SODA [22], where we are currently building
an integrated data access system for biological databases (starting
with OMA and Bgee), using a natural language search interface. In
the context of this project, Semantic Web technologies, such as
RDF, are used to enhance interoperability among heterogeneous
databases at the semantic level (e.g., RDF graphs with predefined
semantics). Moreover, currently, several life science and biomedical
databases such as OMA [3], UniProt [7], neXtProt [22], the
European Bioinformatics Institute (EMBL-EBI) RDF data [24],
and the WorldWide Protein Data Bank [25] already provide RDF
data access, which also justifies an RDF-based approach to enable
further integration efforts to include these databases. A recent
initiative for (biological) data sharing is based on the FAIR princi-
ples [26], aiming to make data findable, accessible, interoperable,
and re-usable.

3 Semantic Web Technologies

The Semantic Web, as its name shows, emerged mainly as a means
to attach semantics (meaning) to data on the Web [19]. In contrast
to relational databases, Semantic Web technologies rely on a graph
data model, in order to enable interlinking data from disparate
sources available on the Web. Although the vision of the Semantic
Web still remains an ideal, many large datasets are currently pub-
lished based on the Linked Data principles [27] using Semantic
Web technologies (e.g., RDF). The Linked Open Data Cloud
illustrates a collection of a large number of different resources
including DBPedia, UniProt, and many others.

In this section, we will describe the Semantic Web (SW) stack,
focusing on the technologies that enhance data integration and
enrichment. For a more complete description of the SW stack, we
refer the reader to the comprehensive introductions in [28–30].

The Semantic Web stack is presented in Fig. 2. We will focus on
the following standards or layers of the stack: URI, the syntax layer
(e.g., Turtle (TTL), an RDF serialization format), RDF, OWL,
RDFS, and SPARQL. These layers are highlighted in gray in Fig. 2.

3.1 Unique Resource

Identifier (URI)

A Uniform Resource Identifier (URI) is a character sequence that
identifies an abstract or physical resource. A URI is classified as a
locator, a name, or both. The Uniform Resource Locators (URLs)
are a subset of URIs that, in addition to identifying a resource,
provide a means of locating the resource by describing its primary
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access or network “location.” For example, https://bgee.org is a
URI that identifies a resource (i.e., the Bgee gene expression web-
site), and it implies solely a representation of this resource (i.e., an
HTMLWeb page). This resource is accessible through the HTTPS
protocol.

The Uniform Resource Name (URN) is also a URI that refers
to both the “urn” scheme [32], which are URIs required to remain
globally unique and persistent even when the resource does not
exist anymore or becomes unavailable, and to any other URI with
the properties of a name. For example, the URN urn:isbn:978-1-
61779-581-7 is a URI that refers to a previous edition of this book
by using the International Standard Book Number (ISBN). How-
ever, no information about the location and how to get this
resource (book) is provided.

The URI syntax consists of a hierarchical sequence of compo-
nents referred to as the scheme, authority, path, query, and frag-
ment [33]. Figure 3 describes a UniProt URI that includes these
components.

An individual scheme does not have to be classified as being just
one of “name” or “locator.” Instances of URIs from any given
scheme may have the characteristics of names (URN) or locators

Fig. 2 The Semantic Web stack modified from [31]

Fig. 3 An example of a UniProt URI with a fragment
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(URL) or both (URN + URL). Further examples of URIs with
variations in their syntax components are:

l ftp://ftp.bgee.org/current/download/calls/expr_calls/Sus_
scrofa_expr_simple_development.tsv.zip

l http://www.ensembl.org/Multi/Search/Results?q¼BRCA2

l mailto:Bgee@sib.swiss

l urn:miriam:pubmed:26615188

l https://www.ncbi.nlm.nih.gov/pubmed/26615188

3.2 Resource

Description

Framework (RDF)

The Resource Description Framework (RDF) is a framework for
describing information about resources in the World Wide Web,
which are identified with URIs. In the previous section, we have
seen that data in relational databases is organized into tables,
according to some predefined schema. In contrast, in RDF stores,
data is mainly organized into triples, namely, <subject, predicate,
object>, similarly to how sentences in natural language are
structured. An informal example would be: <Bob, isFriendOf,
Alice>. A primer on triples and the RDF data model, using this
simple example, is available online [34]. Figure 4 illustrates the
RDF triple: the subject represents the resource being described,
the predicate is a property of that resource, and finally the object is
the value of the property (i.e., an attribute of the subject).

Triples can be defined using the RDF. The data store for RDF
data is also called a “triple store.” Moreover, in analogy to the data
model (or the schema) of a relational database, the high-level
structure of data in a triple store can be described using an ontology.
According to Studer et al. [35], an ontology is a formal, explicit
specification of a shared conceptualization. “Formal” refers to the
fact that the expressions must be machine readable: hence, natural
language is excluded. In this context, we can mention description
logic (DL)-based languages [36], such as OWL 2 DL (see Sect. 3.3
for further details) to define ontologies. A DL ontology is the
equivalent of a knowledge base (KB). A KB is mainly composed
of two components that describe different statements in ontolo-
gies: the terminological box (TBox, i.e., the schema) and the
assertional box (ABox, i.e., the data). Therefore, the conceptual
statements form the set of TBox axioms, whereas the instance level
statements form the set of ABox assertions. To exemplify this, we
can mention the following DL axioms: Man � Human u Male

Fig. 4 An RDF graph with two nodes (subject and object) and an edge connecting
them (predicate)
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(a TBox axiom that states a man is a human and male) and john:
Man (an ABox assertion that states john is an instance of man).

Given that one of the goals of the Semantic Web is to assign
unambiguous names to resources (URIs), an ontology should be
more than a simple description of data in a particular triple store.
Rather, it should more generally serve as a description of a domain,
for instance, genomics (see Gene Ontology [37]) or orthology (see
Orth Ontology [13]). Different instantiations of this domain, for
example, by different research groups, should reuse and extend this
ontology. Therefore, constructing good ontologies requires careful
consideration and agreement between domain specialists, with the
goal of formally representing knowledge in their field. As a conse-
quence, ontologies are usually defined in the scope of consor-
tiums—such as the Gene Ontology Consortium [38] or the
Quest for Orthologs Consortium [39]. A notable collaborative
effort is the Open Biological and Biomedical Ontology (OBO)
Foundry [40]. It established principles for ontology development
and evolution, with the aim of maximizing cross-ontology coordi-
nation and interoperability, and provides a repository of life science
ontologies, currently, including about 140 ontologies.

To give an example of RDF data in a concrete life sciences use
case, let us consider the following RDF triples, which illustrate a
few of the assertions used in the OMA orthology database to
describe the human hemoglobin protein (“HBB”), using the first
version of the ORTH ontology [13]:

oma:PROTEIN_HUMAN04027 rdf:type orth:Protein.

oma:PROTEIN_HUMAN04027 oma:geneName “HBB”.

oma:PROTEIN_HUMAN04027 biositemap:description “Hemoglobin

subunit beta".

oma:PROTEIN_HUMAN04027 obo:RO_0002162 <http://www.uniprot.

org/taxonomy/9606>.

This simple example already illustrates most of the basics of
RDF. The instance that is being defined—the HBB protein in
human—has the following URI in the OMA RDF store: http://
omabrowser.org/ontology/oma#PROTEIN_HUMAN04027

The URI is composed of the OMA prefix, http://omabrowser.
org/ontology/oma# (abbreviated here as “oma:”), and a fragment
identifier, PROTEIN_HUMAN04027. The first triple describes
the type of this resource—namely, an orth:Protein—based on the
Orthology Ontology, prefixed here as “orth:,” http://purl.org/
net/orth#. As mentioned previously, this is a higher-level ontology,
which OMA reuses and instantiates. It is important to note that
other ontologies are used as well in the remaining assertions: for
example, the last triple references the UniProt taxonomy ID 9606.
This is based on the National Center for Biotechnology Informa-
tion (NCBI) organismal taxonomy [41]. If we follow the link in a
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Web browser, we see that it identifies the “Homo sapiens” species,
while the property obo:RO_0002162 (i.e., http://purl.obolibrary.
org/obo/RO_0002162) simply denotes “in taxon” in OBO
[40]. Lastly, the concept also has a human-readable description,
“Hemoglobin subunit beta.”

3.3 RDF Schema

(RDFS)

RDF Schema (RDFS) provides a vocabulary for modeling RDF
data and is a semantic extension of RDF. It provides mechanisms
for describing groups (i.e., classes) of related resources and the
relationships between these resources. The RDFS is defined in
RDF. The RDFS terms are used to define attributes of other
resources such as the domains (rdfs:domain) and ranges (rdfs:
range) of properties. Moreover, the RDFS core vocabulary is
defined in a namespace informally called rdfs here, and it is conven-
tionally associated with the prefix rdfs:. That namespace is identified
by the URI http://www.w3.org/2000/01/rdf-schema#.

In this section, we will mostly focus on the RDF and RDFS
terms used in this chapter. Further information about RDF/RDFS
terms is available in [42].

l Classes

– rdfs:Resource—all things described by RDF are called
resources, which are instances of the class rdfs:Resource (i.e.,
rdfs:Resource is an instance of rdfs:Class).

– rdfs:Class is the class of resources that are RDF classes.
Resources that have properties (attributes) in common may
be divided into classes. The members of a class are instances.

– rdf:Property is a relation between subject and object
resources, i.e., a predicate. It is the class of RDF properties.

– rdfs:Literal is the class of literal values such as textual strings
and integers. rdfs:Literal is a subclass of rdfs:Resource.

l Properties
– rdfs:range is an instance of rdf:Property. It is used to state

that the values of a property are instances of one or more
classes. For example, orth:hasHomolog rdfs:range orth:Sequen-
ceUnit (see Fig. 5a). This statement means that the values of
orth:hasHomolog property can only be instances of orth:
SequenceUnit class.

– rdfs:domain is an instance of rdf:Property. It is used to state
that any resource that has a given property is an instance of
one or more classes. For example, orth:hasHomolog rdfs:
domain orth:SequenceUnit (see Fig. 5b). This statement
means that resources that assert the orth:hasHomolog prop-
erty must be instances of orth:SequenceUnit class.

– rdf:type is an rdf:Property that is used to state that a resource
is an instance of a class.
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– rdfs:subClassOf is an rdf:Property to assert that all instances
of one class are instances of another. For example, if C1 rdfs:
subClassOf C2 then an instance ofC1 is also an instance ofC2
but not vice versa.

– rdfs:subPropertyOf is used to state that all resources related
by one property (i.e., the subject of rdfs:subPropertyOf) are
also related by another (i.e., the object of rdfs:subProper-
tyOf, the “super-property”). For example, all orthologous
relations are also homologous relations. Because of this, in
the latest release candidate of the Orthology Ontology [13],
it is stated that orth:hasOrtholog is a sub-property of orth:
hasHomolog. Figure 5c illustrates this statement.

3.4 Web Ontology

Language (OWL)

The first level above RDF/RDFS in the Semantic Web stack (see
Fig. 2) is an ontology language that can formally describe the
meaning of resources. If machines are expected to perform useful
reasoning tasks on RDF data, the language must go beyond the
basic semantics of RDF Schema [43]. Because of this, OWL and
OWL 2 (i.e., Web Ontology languages) include more terms for
describing properties and classes, such as relations between classes
(e.g., disjointness, owl:disjointWith), cardinality (e.g., “exactly 2,”
owl:cardinality), equality (i.e., owl:equivalentClass), richer typing
of properties, characteristics of properties (e.g., symmetry, owl:
SymmetricProperty), and enumerated classes (i.e., owl:oneOf). The
owl: prefix replaces the following URI namespace: http://www.w3.
org/2002/07/owl#.

As a full description of OWL andOWL 2 is beyond the scope of
this chapter, we refer the interested reader to [44, 45]. In the
following, we focus solely on some essential modeling features
that the OWL languages offer in addition to RDF/RDFS
vocabularies.

l owl:Class is a subclass of rdfs:Class. Like rdfs:Class, an owl:Class
groups instances that share common properties. However, this
new OWL term is defined due to the restrictions on DL-based

Fig. 5 Examples of RDF/RDFS statements
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OWL languages (e.g., OWLDL and OWL Lite; OWL 2DL and
its syntactic fragments EL, QL, and RL). These restrictions
imply that not all RDFS classes are legal OWL DL/OWL
2 DL classes. For example, the orth:SequenceUnit entity in the
ORTH ontology is stated as an OWL class (i.e., orth:SequenceU-
nit rdf:type owl:Class—Fig. 5d illustrates this axiom). Therefore,
orth:SequenceUnit is also an RDFS class since owl:Class is a
subclass of rdfs:Class.

l owl:ObjectProperty is a subclass of rdf:Property. The instances
of owl:ObjectProperty are object properties that link individuals to
individuals (i.e., members of an owl:Class). For example, the
orth:hasHomolog object property (see Fig. 5e) relates one orth:
SequenceUnit individual to another one. Figure 5a illustrates this
example.

l owl:DatatypeProperty is a subclass of rdf:Property. The
instances of owl:DatatypeProperty are datatype properties that
link individuals to data values. To illustrate a datatype property,
we can mention the oma:ensemblGeneId (see Figs. 5f and 6b).
This property asserts a gene identifier to an instance of an orth:
Gene.

Further information about OWL languages are available as
World Wide Web Consortium (W3C) recommendations in [46]
and [47].

3.5 RDF Serialization

Formats

RDF is a graph-based data model which provides a grammar for its
syntax. Using this grammar, RDF syntax can be written in various
concrete formats which are called RDF serialization formats. For
example, we can mention the following formats: Turtle [48],
RDF/XML (an XML syntax for RDF) [49], and JSON-LD
(a JSON syntax for RDF) [50]. In this section, we will solely
focus on the Turtle format.

Turtle language (TTL) allows for writing an RDF graph in a
compact textual form. To exemplify this serialization format, let us
consider the following turtle document that defines the homolo-
gous and orthologous relations:

Fig. 6 Examples of instances of orth:SequenceUnit and orth:Gene and object and datatype property assertions
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@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix orth: <http://purl.org/net/orth#> .

# http://purl.org/net/orth#SequenceUnit

orth:SequenceUnit rdf:type owl:Class .

orth:hasHomolog rdf:type owl:ObjectProperty ;

rdf:type owl:SymmetricProperty ;

rdfs:domain orth:SequenceUnit ;

rdfs:range orth:SequenceUnit .

orth:hasOrtholog rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf orth:hasHomolog .

This example introduces many of features of the Turtle lan-
guage: @prefix and prefixed names (e.g., @prefix rdfs:
http://www.w3.org/2000/01/rdf-schema#), predicate lists
separated by “;” (e.g., orth:hasOrtholog rdf:type owl:
ObjectProperty; rdfs:subPropertyOf orth:hasHomo-
log.), comments prefixed with “#” (e.g., # http://purl.org/net/
orth#SequenceUnit), and a simple triple where the subject, predi-
cate, and object are separated by white spaces and ended with a “.”
(e.g., orth:SequenceUnit rdf:type owl:Class).

Further details about TTL serialization are available as a W3C
recommendation in [48]

3.6 Querying the

Semantic Web with

SPARQL

Once we have defined the knowledge base (TBox and ABox), how
can we use it to retrieve relevant data? Similar to SQL for relational
databases, data in RDF stores can be accessed by using a query
language. One of the main RDF query languages, especially used
in the field of life sciences, is SPARQL [51]. A SPARQL query
essentially consists of a graph pattern, namely, conjunctive RDF
triples, where the values that should be retrieved (the unknowns—
either subjects, predicates, or objects) are replaced by variable names,
prefixed by “?”. Looking again at the previous example, if we want to
get the description of the “HBB” protein from OMA, we would
simply use a graph pattern, where the value of the “description”—
the one we want to retrieve—is replaced by a variable as follows:

SELECT ?description WHERE {

?protein oma:geneName “HBB”.

?protein biositemap:description ?description.

}

The choice of variable name itself is not important (we could
have used “?x”, “?var”, etc., albeit with a loss of readability).
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Essentially, we are interested in the description of a protein about
which we only know a name—“HBB.”

In order to get a sense of how large bioinformatics databases
currently are, but also to get a hands-on introduction into how they
can be queried using SPARQL, we propose to retrieve the total
number of proteins in UniProt in Exercise A at the end of this
chapter. Furthermore, Exercise C will allow trying out and refining
the OMA query introduced above, but also writing a new one,
using the OMA SPARQL endpoint.

4 Modeling Biological Databases with Semantic Web Technologies

In this section we show a concrete example of how we can use
Semantic Web technologies to model the two biology databases
Bgee and OMA.

Figure 7 illustrates a fragment of a candidate ontology describ-
ing the relational database sample from Bgee (see Fig. 1). The
ellipses illustrate classes of the ontology, either specific to the
Bgee ontology, such as AnatomicEntity (the equivalent of the
anatEntity table in the relational view), or classes from imported
ontologies, such as the Taxon class (the prefix “up:” denoting the
UniProt ontology, http://purl.uniprot.org/core/). The advantage
of using external (i.e., imported) classes is that integration with
other databases which also instantiate these classes will be much
simpler. For example, we will see that the class Gene serves as the
“join point” between OMA and Bgee. Arrows define properties of
the ontology: either datatype properties (similar to attributes of a
table in the relational world), such as the speciesName or the stage-
Name, or object properties, which are similar to primary key-foreign
key relationships, given that they link instances of one class to those
of another. If we compare Fig. 7 (the ontology view) against Fig. 1
(the relational view), we notice that the object properties isExpres-
sedIn and isAbsentIn only appear explicitly in the ontology. This is
because the values of these properties will actually be calculated
on-the-fly, frommultiple attributes in the relational database. Given
that Bgee is mainly used to query gene expressions, these properties
are exposed as new semantic properties in the domain ontology,
namely, expression or absence of expression of a gene in a particular
anatomic entity. This is one of the means through which the
semantic layer can not only describe but also enrich the data avail-
able in the underlying layers (in this case, in the relational database).
The domain of both the isExpressedIn and isAbsentIn properties is
in this case a gene, while the range is an anatomic entity, such that
triples that instantiate this relationship will have the structure:
<Gene, isExpressedIn, AnatomicEntity>.

Given that the OMA ontology is significantly larger than the
one for Bgee, we only show here the class hierarchy in Fig. 8. The
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most important concepts in the ontology are shown in the top right
corner, namely, the cluster of orthologs and the cluster of paralogs,
which store information about gene orthology (or paralogy) in a
hierarchical tree structure (the gene-tree node). Similarly to the
Bgee ontology, the Gene class in OMA is external. Arrows indicate
the “rdfs:subClassOf” relationship—for example, both the “Clus-
ter of Orthologs” and the “Cluster of Paralogs” classes—are

Fig. 7 A portion of the ontology defined over the relational database sample from Bgee. For readability
purposes, we omitted the namespace (“bgee:”) for the ontology properties

Fig. 8 The class hierarchy of the OMA ontology. Ellipses indicate class labels, while arrows indicate the “rdfs:
subClassOf ” property. Further details are available in [13]
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subclasses of the “Cluster of Homologs” class. For a description of
the ontology, as well as a discussion regarding its design within the
Quest for Orthologs Consortium, we point the reader to [13]. Fur-
thermore, the ontology can be explored or visualized in Web-
VOWL [52] using the Web page of the OMA SPARQL endpoint
[53] available online at https://sparql.omabrowser.org/sparql.

Until here we have explored a few relatively simple examples in
order to get familiar with the basics of Semantic Web technologies
(URIs, RDF triples, and SPARQL). However, we can now intro-
duce a more complex query that will better illustrate the expressiv-
ity of the SPARQL query language for accessing RDF stores—that
is, for integrating and joining data across different databases.

Since all RDF stores structure data using the same standard
model for data interchange, the main requirements in order to
efficiently join multiple sources are:

1. That they each expose data through a SPARQL endpoint that
supports federation (SPARQL 1.1)

2. That the sources share URIs or ontologies

This is the reason why already today we can jointly query, for
example, OMA and UniProt—essentially, integrating the two data-
bases by means of executing a federated SPARQL query.

To illustrate this, let us consider the following example: what
are the human genes available in the OMA database that have a
known association with leukemia? OMA does not contain any
information related to diseases, however, UniProt does. In this
case, since OMA already cross-references UniProt with the oma:
xrefUniprot property, we can write the following federated
SPARQL query, which will be running at the OMA SPARQL
endpoint:

select distinct ?proteinOMA ?proteinUniProt

where {

service <http://sparql.uniprot.org/sparql> {

?proteinUniProt a up:Protein .

?proteinUniProt up:organism taxon:9606 . # Homo Sapiens

?proteinUniProt up:annotation ?annotation . # annotations of this protein

entry

?annotation rdfs:comment ?text

filter( regex(str(?text), "leukemia") ) # only those containing the

text "leukemia"

}

?proteinOMA a orth:Protein.

?proteinOMA oma:xrefUniprot ?proteinUniProt.

}

We skip the details regarding the prefixes used in the example
and focus on the new elements in the query. The main part to point

Semantic Integration and Enrichment of Heterogeneous Biological Databases 671

https://sparql.omabrowser.org/sparql


out is the “service<http://sparql.uniprot.org/sparql>” block, delim-
ited between the inner brackets. This enables using the SPARQL
endpoint of UniProt remotely, as a service. Through this mecha-
nism, the query will first fetch from UniProt all instances of pro-
teins that are annotated with a text that contains “leukemia” (this is
achieved by the filter keyword in the service block). Then, using the
cross-reference oma:xrefUniprot property, the query will return all
the equivalent entries from OMA. From here, the user can explore,
either in the OMA browser or by further refining the SPARQL
query, other properties of these proteins: for example, their ortho-
logs in a given species available in the database. In Exercise D at the
end of this chapter, we encourage the reader to try this out in the
OMA SPARQL endpoint. Note that the same results can be
obtained by writing this query in the UniProt SPARQL endpoint
and referencing the OMA one as a service. For an overview of
federation techniques for RDF data, we refer the reader to the
survey [54].

The mechanisms illustrated so far, while indeed powerful for
federating distinct databases, have a major drawback: they require
the user to know the schema of the databases (otherwise, how
would we know which properties to query in the previous exam-
ples?), and, more importantly, they require all users to be familiar
with a technical query language, such as SPARQL. While very
expressive, formulating such queries can quickly become over-
whelming for non-programmer users. In the following, we will
look at techniques that aim to overcome these limitations.

5 Ontology-Based Integration of Heterogeneous Data Stores

So far we have seen some of the alternatives available for storing
biological data—relational databases and triple stores. In this sec-
tion, we look at how these heterogeneous sources can be integrated
and accessed in a unified, user-friendly manner that does not
require knowledge of the location or structure of the underlying
data nor of the technical language (SQL or SPARQL) used to
retrieve the data. The architecture we present is inspired by work
presented in [21], which focused strictly on keyword search in
relational databases.

5.1 A System’s

Perspective

We start with a bottom-up description of the layers that make up an
integrated data access system, followed by a concrete example using
the two bioinformatics databases introduced above: the orthology
database OMA and the gene expression database Bgee.

The main four layers of an integrated data access system, as
shown in Fig. 9, are:
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5.1.1 Base Data Layer This represents the physical storage layer, where all the actual data,
for example, experimental results, annotations, etc., are kept.
Figure 9 illustrates only a few of the possible storage types, namely,
relational databases, hierarchical data stores (e.g., HDF5), and
RDF stores. At this low-level layer, the data are usually structured
so as to optimize machine parameters, such as storage space, com-
plexity of joins required to answer physical queries, etc. Therefore,
it is not designed for human readability. Furthermore, tables, col-
umn names, or even IDs may not match any real terms. For exam-
ple, the Bgee relational database uses the table name “anatEntity”
to refer to the term “anatomic entity,” while others may be even
further away from the original terms.

5.1.2 Data Model Layer This layer is used to describe, at a higher level of abstraction, the
data contained in the physical storage. Here, for example, original
names for terms are recovered while also creating a mapping
between these higher-level terms (“Anatomical Entity”) and their
corresponding physical layer location (table “anatEntity” in schema
Bgee). The data model layer can be viewed as the first semantic layer
in the system, as it allows representing the actual terms referred to
in the underlying physical storage while abstracting away the details
of the actual structure of the physical storage. The data model layer
can be understood as an ontology, however, only applicable to the
level of an individual database.

5.1.3 Integration Layer The integration layer performs a similar task to the data model
layer, in that it defines a mapping between high-level concepts
(“Anatomical Entity”) and all the occurrences where these concepts
can be found in the physical storage (table “anatEntity” in schema
Bgee, class “Anatomic Entity” in UniProt, etc.). In doing so, the
integration layer also aligns the different data models, by defining

Fig. 9 Integrated data access system
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which identifiers from one data model correspond to which ones
from the others. In the case of biological databases, this is usually
done by taking into account cross-references, which already exist
between most databases, as we have seen in the SPARQL query in
Sect. 5.

While the data model layer can be seen as a local ontology, the
integration layer will serve as a global ontology. The integration
layer can be queried using, for example, SPARQL. However, in
order to get the results from the underlying sources, the SPARQL
query needs be translated in the native query languages of the
underlying sources (e.g., SQL for relational databases). This is
achieved by using the mappings defined in the global ontology.
For example, the keyword “expressed in” does not have a direct
correspondence in Bgee, but it can be translated into an SQL
procedure (in technical terms, it represents an SQL view of the
data). Without going into details, at a high level, the property
“gene A expressed in anatomic entity B” will be computed by
looking at the number of experiments stored in the database,
showing the expression of A in B. It is conceivable that in another
database, which could also form part of the integrated system, this
information is available explicitly. In this case the mapping would
simply be a 1-to-1 correspondence to the property value stored in
the database. The role of the integration layer is to capture all the
occurrences where a certain concept (entity or property) can be
found, along with a mapping for each of the occurrences, defining
how information about this concept can be computed from the
base data.

To summarize, the integration layer abstracts away the location
and structure of data in the underlying sources, providing users a
unified access through a global ontology. One of the drawbacks of
this approach is that, in the lack of a presentation layer, such as a
user-friendly query interface (e.g., a visual query builder or a
keyword-based search interface), the data represented in the global
ontology is accessible mainly through a technical query language,
such as SPARQL. Therefore, in order to be able to access the data,
users are required to become fluent in the respective query
language.

It is worth at this point mentioning that most data integration
systems available at the time of this writing only offer the three
layers presented so far. Examples of such systems, generically
denoted as ontology-based data access (OBDA) systems, are
Ontop [55], Ultrawrap [56], or D2RQ [57].

5.1.4 Presentation Layer The three layers presented so far already achieve data integration,
but with a significant drawback, which is that the user is required to
know a technical query language, such as SPARQL. The role of the
presentation layer is to expose data from all integrated resources in
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an easy to access, user-friendly manner. The presentation layer
abstracts away the structure of the integration layer and exposes
data through a search interface that users (including
non-programmers) are familiar with, such as keyword search
[21, 58] or even full natural language search [59, 60].

The challenges in building the presentation layer are manyfold:
first, human language is inherently ambiguous. As an example, let
us assume a user asks: “Is the HBB gene expressed in the blood?”
What does the user mean? The hemoglobin gene (HBB) in general?
Or just in the human? The system should be proactive in helping
the user clarify the semantics or intents of the question, before
trying to compute the underlying SPARQL query. Second, the
presentation layer should provide not only raw results but also an
explanation—for example, what sources were queried, how many
items from each source have been processed in order to generate
the response, etc. This enables the user to validate the generated
results or to otherwise continue refining the question. Third, the
presentation layer must also rank the results according to some
relevance metric, similarly to how search results are scored in Web
search engines. Given that the number of results retrieved from the
underlying sources can easily become overwhelming (e.g., search-
ing for “HBB” in Bgee returns over 200 results), it is important
that the most relevant ones are shown first.

From a technical point of view, the presentation layer maintains
an index (i.e., the vocabulary) of all keywords stored in the lower
layers, both data and metadata (descriptions, labels, etc.), such that
each keyword in a user query can be mapped to existing data in the
lower layers. An important observation is that the presentation
layer highly relies on the quality of the annotations available in the
lower layers. In the lack of human-readable labels and descriptions
in the global ontology, the vocabulary collected by the presentation
layer will miss useful terms that the user might search for. One way
to detect and fix this problem is to always log user queries and
improve the quality of the annotations “on demand,” whenever the
queries cannot be solved due to missing items in the vocabulary.
For a more extended discussion on the topic of labels and their role
in the Semantic Web, refer to [61].

Finally, it is worth noting that none of these layers need to be
centralized—indeed, even in the case of the integration layer,
although its role is to build a common view of all data in the physical
storage, it can be distributed across multiple machines, just as long
as the presentation layer knows which machine holds which part of
the unified view.

5.2 A Concrete

Example: A Global

Ontology to Unify OMA

and Bgee

So far we have seen an abstract view of a system for data integration
across heterogeneous databases. It is time to look at how this
translates into a real-world example, using the Bgee relational
database and the OMA RDF database.
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The top part of Fig. 10, the terminological box, illustrates part
of the global ontology (layer 3, integration layer) for the two
databases, with most of the terms being part of OMA, except for
Anatomic Entity, which is specific to Bgee. As mentioned previ-
ously, OMA extends the ORTH ontology, which is why the
corresponding terms in the ontology are prefixed with “orth:.”
The Gene concept can actually be found in both Bgee and OMA;
therefore the global ontology will define mappings to both sources.
As we can see in the ontology, the Gene is the common point that
joins together OMA and Bgee. The gene IDs used in both data-
bases are Ensembl IDs [62], stored in the ensemblGeneId string
property. For example, the human hemoglobin gene, “HBB,”
which we previously showed as an example entry in OMA, corre-
sponds to the ENSG00000244734 Ensemble ID and can also be
found in Bgee.

Fig. 10 A sample global ontology for integrating OMA and Bgee and an example assertion
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The lower part of Fig. 10, the assertional box, illustrates an
example assertion—in this case, that the protein HUMAN22168
in OMA is orthologous to the protein HORSE13872 and that,
furthermore, this protein is encoded by the gene with the Ensemble
ID ENSG000001639936. Moreover, this gene is expressed in the
brain (the Uberon ID for this being “UBERON:0000955”). The
human-readable description is stored in the String literal label—as,
for example, the name of the anatomic entity, “brain,” shown in the
bottom-right corner in the figure. Without labels, much of the
available data would not be easily searchable by a human user nor
by an information retrieval system.

Note that with this sample ontology, we can already answer
questions related to orthology and gene expression jointly, such as
the first part of our introductory query: “What are the human-rat
orthologs, expressed in the liver. . .?”. This question essentially
refers to pairs of orthologous Genes (those in human and rat) and
their expression in a given Anatomic Entity (the liver). Apart from
the Species class, which is not explicitly shown, all of the information
is already captured by the ontology in Fig. 10. A similar mechanism
can be used to further extend this to UniProt (for instance, based
again on gene IDs as the “join point,” or by using existing cross-
references, as we have shown in the previous section), therefore
enabling users to ask even more complex queries.

5.3 How to Link a

Database with an

Ontology?

One of the main challenges in implementing technologies for the
Semantic Web was recognized from early on (see the study pub-
lished in 2001 by Calvanese et al. [63]) to be the problem of
integrating heterogeneous sources. In particular, one of the observa-
tions made was that integrating legacy data will not be feasible
through a simple 1-to-1 mapping of the underlying sources into
an integrative ontology (e.g., mapping all attributes of tables in
relational databases to properties of classes in an ontology), but
rather through more complex transformations, that map views of
the data into elements of the global ontology [63].

To illustrate this with a concrete example, let us consider again
the unified ontology for OMA and Bgee that we introduced in the
previous section. Although Figure 10 shows properties such as
“gene isExpressedIn” or “gene hasOrtholog,” this data is actually
not explicitly stored in the underlying databases but rather needs to
be computed on-the-fly based on the available data. For example,
the “isExpressedIn” property can be computed based on the num-
ber of experiments which show the expression of a gene in a certain
anatomic entity in Bgee. Deciding the exact threshold for when a
gene is considered as “expressed” according to the data available is
not straightforward and needs to be agreed upon by domain spe-
cialists. Therefore, the integration layer will also serve to enrich the
data available in the underlying layers, by defining new concepts
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based on this data (e.g., the presence or absence of gene expression
in an anatomic entity).

At this point it is worth clarifying an important question: why
are mappings necessary? Why is it not enough to replicate the data
in the different underlying formats into a single, uniform way (e.g.,
translate all RDB data into RDF)? The answer is that not only
would such a translation require a lot of engineering effort, but
more importantly, it would transform the data from a format that is
highly optimized for data access, into a format that is optimized for
different purposes (data integration and reasoning). Querying rela-
tional databases still is, today, the most efficient means of accessing
very large quantities of structured data. Transforming all of it into
RDF would in many cases mean downgrading the overall perfor-
mance of the system. In some cases storing RDF data in the
relational format was proven to be more efficient [64].

So how are mappings then created? One of the main mechan-
isms to achieve this is currently the W3C standard R2RML, avail-
able as a W3C recommendation online [65]. R2RML enables
mapping relational data to the RDF model, as chosen by the
programmer. For a concrete example of how mappings can be
defined and what are the advantages of this approach, we refer the
reader to [66]. A mapping essentially defines a view of the data,
which is a query (in this case, an SQL query) that allows retrieving a
relevant portion of the underlying data, in order to answer a higher-
level question (e.g., what is “expressed in”?). The materialization of
this query (the answer) will be returned in RDF format, on
demand, according to the mapping. This avoids duplicating or
translating data in advance from the underlying relational database
into RDF until it is really needed, in order to answer a user query.

For a discussion regarding the limitations of R2RML and
alternative approaches to define mappings from relational data to
RDF, we refer the reader to the survey [67].

5.4 Putting Things

Together

So far we have seen how individual sources can be represented into
a single, unified ontology, and we had a high-level view of a data
access system that enables users to ask queries and get responses in a
unified way, without knowledge of where data is located or how it is
structured. In this section we finally look at how all of these com-
ponents can work together in answering natural language queries
on biological databases. Although there are multiple alternatives to
natural language interfaces, including visual query interfaces or
keyword-based search interfaces, it has been shown that natural
language interfaces are the most appropriate means to query
Semantic Web data for non-technical end-users [68]. As a conse-
quence, natural language querying, based on Semantic Web tech-
nologies, is currently one of the active areas of research, examples of
recent systems implementing an ontology-based natural language
interface including the Athena [59] and TRDiscover [60] systems.
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First, recall the user question we formulated in the beginning of
this chapter: “What are the human-rat orthologs, expressed in the
liver, that are associated with leukemia?” Let us assume the
resources at hand to answer this question are the biological data-
bases OMA, Bgee, and UniProt. The four main steps required to
translate the natural language question into the underlying query
languages of OMA, Bgee, and UniProt will be:

(a) Identify entities in the query
This is the natural language processing step that extracts

the main concepts the user is interested in, based on the key-
words of the input query: orthologs, human, rat, expressed,
liver, associated, and leukemia.

(b) Identify matches of the entities in the integrative ontology
The extracted keywords will be searched for in the vocabu-

lary of the presentation layer, resulting in one ormultipleURIs,
given that a keyword can match multiple concepts. For exam-
ple, the keyword “orthologs” can match either the entity
“OrthologCluster” or the property “hasOrtholog” of a gene
inOMA. The index of the presentation layer will also return the
location the URI originates from (OMA or Bgee or UniProt).

(c) Construct subqueries for each of the matches
The extracted URIs will be used to construct subqueries

on each of the underlying data sources. This step requires
translating the original query into the native language of
each underlying database, with specific mechanisms for each
type of database (relational or triple store). At a high level, the
translation process involves finding the minimal sub-schema
(or subgraph in the case of RDF data) that covers all the
keywords matched from the input query. Taking the example
previously shown in Fig. 10, the minimal subgraph that con-
tains “orthologs” and “expressed” will essentially contain only
two nodes of the entire graph:Gene (which is both the domain
and the range of the “hasOrtholog” property in the Orthol-
ogy Ontology) and AnatomicEntity (which is the range of the
“isExpressedIn” property in the Bgee ontology). All the
unknowns of the query (e.g., which ortholog genes) are
replaced by variables. The final subqueries for OMA and
Bgee might therefore (informally) look like this:

OMA: select ?gene1 ?gene2 where {

?protein1 a Protein.

?protein1 inTaxon “Homo sapiens”.

?protein1 isEncodedBy ?gene1.

?protein1 hasOrtholog ?protein2.

?protein2 inTaxon “Rattus norvegicus”.

?protein2 isEncodedBy ?gene2.

}
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Note that we have simplified the actual query for readabil-
ity purposes (using the literals “Homo sapiens” and “Rattus
norvegicus” instead of their corresponding URIs). This sub-
query will cover the keywords: ortholog, human, and rat.
Notice that the query should return genes, not proteins,
because the join point between OMA and Bgee is the Gene
class.

Bgee: select ?gene where {

?gene a Gene.

?gene isExpressedIn ?anatomicEntity.

?anatomicEntity rdfs:label “liver”.

}

This subquery will therefore cover the expressed and liver
keywords. The final step will be then to get the similar sub-
query for UniProt (which we omit here for brevity) and to
compute the joint result, namely, the intersection between all
the sets returned by the subqueries.

(d) Join the results from each of the subqueries
This final step is essential in keeping the performance of

the system to an acceptable level. Joining (federating) the
results of several subqueries into a unified result is not an
easy task and requires a careful ordering of the operations
from all subqueries. To understand this problem, let us con-
sider again our example and try to see how many results each
of the subqueries will return. First, if we take a look at the
OMA browser and try to find all orthologs between human
and rat, this will amount to more than 21,000 results. How-
ever, is the user really interested in all of them? Certainly not,
as the input query shows—the user is only interested in a small
fraction of the orthologs, namely, those that are expressed in
the liver and have an association with leukemia (according to
the data stored in Bgee and UniProt). How many are these? If
we now refer to UniProt and look for the disease leukemia, we
will find that there are only 20 entries which illustrate the
association with this disease. Clearly, getting only the ortho-
logs of these 20 entries will be much more efficient than
retrieving all 21,000 pairs from OMA first and then removing
most of them to only keep relevant ones.

However, note that in this case, we only know this infor-
mation because we constructed the queries and tried them out
by hand first. How should the system estimate the number of
results (i.e., the cardinality of each subquery) in advance? This
question has been an active area of research for a long time.
Some of the methods used to tackle this problem are either to
precompute statistics regarding the number of results available
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in different tables of the underlying sources [69] or to use
statistics regarding previously asked queries to optimize the
new ones, for example, via statistical machine learning [70]. In
the first case, we would, for instance, store the individual
counts of different orthologous pairs while also keeping statis-
tics about diseases if we expect these types of questions to be
asked frequently, whereas in the second case, we would simply
look at the number of results similar subqueries generated in
the past, to optimize which results to fetch first. For a recent
study of optimization methods for federated SPARQL
queries, see [71].

(e) Present the user the final results
Finally, the joined results are returned to the user, along

with an explanation regarding the constructed query and the
entities that were matched in order to construct it. In this way,
the user has the opportunity to validate the correctness of the
answer or otherwise to further refine the question.

For a more in-depth discussion regarding natural lan-
guage query interfaces in ontology-based data access systems,
we refer the reader to Athena [59] and TRDiscover [60].

6 Timeline of Semantic Web Technologies and Ontology-Based Data Integration in
Life Sciences

The field of life sciences has been an early adopter of Semantic Web
technologies, due to the need of interoperability and integration of
biological data spread across different databases. In this section, we
provide a brief timeline (see Fig. 11), including the example ontol-
ogies introduced in this chapter.

– 1995: Davidson et al. [72] suggest basic steps to integrate
bioinformatics data (common data model, match semantically
related objects, schema integration, transform data into feder-
ated database, match semantically equivalent data).

– 2000: TAMBIS (Transparent Access to Multiple Bioinfor-
matics Information Sources) [73] proposes a unified ontology
covering many aspects of the bioinformatics knowledge space.

– 2000: The “Gene Ontology—a tool for the unification of
biology” [37] is the first significant milestone in unifying
diverse biological databases, focusing on gene functions. Even
before the publication of the Semantic Web paper by Tim Ber-
ners Lee (in the following year), the GO highlighted the benefits
of controlled vocabularies and standardized naming, both pre-
cursors of Semantic Web technologies, which were adopted in
the GO in the year 2002 [74]. Today it is, arguably, the most
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comprehensive resource of computable knowledge regarding
gene functions and products.

– 2001: Launch of the BioMoby project [75] providing a unified
registry of Web services for life scientists using a consensus-
driven approach. It listed, for instance, all services converting
gene names to GO terms or all databases accepting GO terms.
The registry is currently no longer maintained.

– 2003: A Nature Reviews Genetics article on Integrating
Biological Databases [76] highlights the “database-surfing”
problem (i.e., the time-consuming process of manually visiting
multiple databases to answer complex biological research ques-
tions) and argues for standardized naming of biological objects to
overcome the problem. Link integration, view integration, and
data warehousing are proposed for data integration. Arguably,
link integration has since become the most adopted solution.

– 2003: Launch of UniProt [77] by the UniProt Consortium, a
collaboration between the Swiss Institute of Bioinformatics
(SIB), the European Bioinformatics Institute (EBI), and the
Protein Information Resource (PIR). UniProt is the world’s
most comprehensive freely accessible resource on protein
sequences and functional annotation. Since 2008 the data is

Fig. 11 A selective timeline of data integration efforts in life sciences
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published in RDF, and since 2013 a SPARQL endpoint is
provided [78].

– 2004: The first International Workshop on Data Integration
in the Life Sciences, held in Leipzig, promotes “a Bioinformat-
ics Semantic Web” and highlights solutions for heterogeneous
data integration. The workshop continues to be held every year,
and its proceedings (e.g., [79]) provide a good overview of
advances in the field.

– 2005: The W3C Consortium launches the Semantic Web
Health Care and Life Sciences Interest Group (HCLS IG)
to develop the use of Semantic Web technologies to improve
health care and life sciences research. Today, the HCLS Linked
Data Guide [80] provides best practices for publication of
biological Linked Data on the Web.

– 2006: TheOBO Foundry [40] establishes principles for ontol-
ogy development and evolution to support biomedical data
integration through a suite of orthogonal interoperable refer-
ence ontologies.

– 2006: Publication of the Ontology Lookup Service (OLS), a
repository for biomedical ontologies with the aim to provide a
single point of access (with controlled vocabulary queries) to the
latest ontology versions. It allows interactive browsing, as well as
programmatic access [81].

– 2007: Launch of the National Center for Biomedical Ontol-
ogy (NCBO) BioPortal [82], a web portal to biomedical
ontologies. OBO ontologies are a central component. The por-
tal started with 50 ontologies; to date it is the most comprehen-
sive repository with currently 852 biomedical ontologies and
more than eight million classes.

– 2008: Launch of the BioMoby Consortium [83] and the first
release of the BioMoby Semantic Web Service, at the time
providing interoperable access to over 1400 bioinformatics
resources worldwide.

– 2008: BioGateway [84] provides a single SPARQL entry point
to all OBO candidate ontologies, the GO annotation files, the
SWISS-PROT protein set, the NCBI taxonomy, and several
in-house ontologies.

– 2008: The Briefings in Bioinformatics journal launches a
special issue dedicated to Database Integration in Life
Sciences [85], acknowledging the major challenge of integrat-
ing data scattered over millions of publications and thousands of
heterogeneous databases.

– 2008: Bio2RDF [86] applies Semantic Web technology to
various publicly available databases (converting them into RDF
format and linking with normalized URIs and a common
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ontology). Updates continue to be provided for increased inter-
operability among bioinformatics databases [87, 88].

– 2009: Briefings in Bioinformatics publishes a review on
Biological Knowledge Management [89], highlighting the
transforming role of ontologies and Semantic Web technologies
in enabling knowledge representation and extraction from het-
erogeneous bioinformatics databases.

– 2010: NCBO launches a SPARQL endpoint, available at
http://sparql.bioontology.org/.

– 2012: Publication of a survey highlighting the benefits of inte-
gration using Semantic Web technologies in the field of Inte-
grative Biology [90].

– 2016: Publication of the Orthology Ontology [13].

7 Conclusions and Outlook

Data integration is arguably one of the most important enablers of
new scientific discoveries, given that research data is currently
growing at an unprecedented rate. This is especially true in the
case of biological databases. While data integration poses many
challenges, the emergence of standards, integrative ontologies, as
well as the availability of cross-references between many of the
biological databases make the problem easier to tackle. This chapter
has provided a brief introduction to the methods that can be used
to integrate heterogeneous databases using Semantic Web technol-
ogies while also providing a concrete example of achieving this goal
for three well-known existing biological databases: OMA, Bgee,
and UniProt.

Although there would be many more aspects to cover and
much of the work for achieving wide-scale data integration still
remains to be done, we would like to end this chapter by reinfor-
cing the following conclusion, extracted from a study of Biological
Ontologies for Biodiversity Knowledge Discovery [91]:

We hope that current work will spur interest and feedback from scientists and
bioinformaticians who see data integration, interoperability, and reuse as the
solution to bringing the past 300 years of biological exploration of the planet
into currency for science and society.

8 Exercises

A. Querying UniProt with SPARQL

The goal of this warm-up exercise is to get familiar with a SPARQL
endpoint and to write your first SPARQL query. For this purpose,
open the link to the UniProt SPARQL endpoint, http://sparql.
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uniprot.org/ in a Web browser. Howmany entries do you think are
available in UniProt? To find out, simply check the bottom-left
corner of the Web page—you will notice that the total number of
triples is always kept up to date there. How many of these entries
describe proteins? To find out, try running the following SPARQL
query that counts all instances of the database that belong to the
protein class. What is the result?

PREFIX up:<http://purl.uniprot.org/core/>

SELECT (count(?protein) as ?count)

WHERE

{ ?protein a up:Protein. }

Notice that the UniProt SPARQL web page includes many
examples on the right-hand side—in order to get more familiar
with UniProt and SPARQL, try further some of the sample queries
provided there.

B. Exploring Biological Ontologies Through Keyword Search in
the Ontology Lookup Service

We have seen in Sect. 3.6 an example assertion about the
“HBB” gene in the human, including the following triple:

oma:PROTEIN_HUMAN04027 obo:RO_0002162 <http://www.uniprot.

org/taxonomy/9606> .

This triple essentially asserts that the gene is located in the
Homo sapiens taxon. However, as a regular user, how could you
know what the URIs for “in taxon” and Homo sapiens are? One of
the possible ways to get these identifiers is by searching for the
keywords of interest in the Ontology Lookup Service (OLS). To do
this, go to the Web page of the service https://www.ebi.ac.uk/ols/
index, and try to enter first “in taxon”. What is the result? Try also
Homo sapiens. What about “human”?

C. Querying OMA with SPARQL

Recall from Sect. 3.6 the sample query we presented for retriev-
ing the description of the human hemoglobin gene fromOMA.We
provide it in a more explicit form here:

SELECT ?description WHERE {

?protein oma:geneName "HBB".

?protein <http://bioontology.org/ontologies/biositemap.owl#description> ?de-

scription.

}

First try to think about possible information that is missing
from this query. For example, is this query guaranteed to return a
single result (remember we are using an orthology database)?
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Try to look again at how the human “HBB” protein is defined
in Sect. 3. Then, try to run the SPARQL query as-is in the OMA
SPARQL endpoint: https://sparql.omabrowser.org/sparql. What
do you get? What is the reason? Try to print out more information
about the protein, not just its description. For example, add
another triple pattern to capture the oma:hasOMAId property
value as well (don’t forget to add it to the selected variables in the
first line!), perhaps also the taxon ID in UniProt. What can you
deduce? Can you correct the query so that it only gets the descrip-
tion we were originally interested in?

D. Federated Queries Using SPARQL (OMA and UniProt)

In Sect. 4 we presented an example Federated Query using the
SPARQL endpoint of OMA and the remote SPARQL endpoint of
UniProt, as a service. We recall the query here:

prefix up:<http://purl.uniprot.org/core/>

prefix taxon:<http://purl.uniprot.org/taxonomy/>

select distinct ?proteinOMA ?proteinUniProt

where {

service <http://sparql.uniprot.org/sparql> {

?proteinUniProt a up:Protein .

?proteinUniProt up:organism taxon:9606 . # Homo Sapiens

?proteinUniProt up:annotation ?annotation . # annotations of this

protein entry

?annotation rdfs:comment ?text

filter( regex(str(?text), "leukemia") ) # only those containing

the text "leukemia"

}

?proteinOMA a orth:Protein.

?proteinOMA oma:xrefUniprot ?proteinUniProt.

}

Try running this query in the OMA SPARQL endpoint,
https://sparql.omabrowser.org/sparql. You might need to wait a
couple of minutes to get the remote results. Next, try to look at the
examples provided in the right side of the page to see how to get
more properties of the proteinOMA variable—for example, try
getting the description or the OMA ID. Next, try modifying this
query so that it can run in the UniProt SPARQL endpoint, invok-
ing the OMA one as a service. Remember to get the relevant
prefixes and define them in the header of the query first (“oma,”
“orth”). You can get these by looking at “Namespace prefixes” in
the OMA SPARQL Web page. Finally, test your modifications
using UniProt, http://sparql.uniprot.org/.
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