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Abstract Uncertainty quantification (UQ) is defined differently by different dis-
ciplines. Here, we first review an applied and computational mathematician’s
definition of UQ for complex systems, especially in the context of partial differential
equations (PDEs) with random inputs. We then discuss the types of stochastic noises
that are used as inputs to the PDEs and, for the case of infinite stochastic processes,
how those inputs are approximated so that they are amenable to computations.
We then review methods that are used to obtain approximations of solutions of
PDEs with random inputs, with special emphases given to stochastic Galerkin and
stochastic sampling methods, including sparse-grid methods in the latter case. We
close with a brief foray into where UQ in the PDE setting is going moving forwards.

1 Introduction

We begin with some general comments that serve to introduce, set up, and focus the
material presented in subsequent sections. We do not provide copious citations of the
literature; instead, we list [1–5] a few general references in that provide additional
details and more comprehensive mathematical and algorithmic expositions of what
is written about in this paper.

Uncertainty Is Everywhere Physical, biological, social, economic, financial, etc.
systems always involve uncertainties. Certainly, mathematical models of these
systems should account for uncertainty. Uncertainties are often classified into two
classes. Epistemic uncertainty is due to incomplete knowledge of the system so
that, at least in principle, uncertainty can be reduced by additional measurements,
improvements in measuring devices, etc. Although such uncertainties are, again
in principle, predictable, it may be too difficult, perhaps impossible, or too costly
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to obtain additional measurements. Subsurface media properties in oil reservoirs
or aquifers are an example of this type of uncertainty. Aleatoric uncertainty is
intrinsic in the system so that uncertainty cannot be reduced through additional
measurements, improvements in measuring devices, etc. Running an experiment
twice with exactly the same settings still results in different outcomes. The
distinction between the two is certainly fuzzy; one person’s aleatoric uncertainty
may be another’s epistemic uncertainty.

If computations are involved in uncertainty quantification (UQ), there is a third
type of uncertainty which we refer to as computational epistemic uncertainty. In this
case, not everything in the data and/or solutions can or should be resolved because
it is too difficult, perhaps impossible, or too costly to do so in a computational
simulation; turbulent flows are an example of this situation. Alternately, some scales
may not be of interest, e.g., surface roughness, hourly stock prices; in such cases,
uncertainty, e.g. randomness, is sometimes artificially introduced into the system
to model the effects that behaviors at the unresolved scales have on that can be
resolved.

Everyone realizes that laboratory experiments are not precisely repeatable which
they often (and always should) be reported with error bars. But, are computer
experiments repeatable? Running the same code with exactly the same inputs and
on exactly the same computer should result in the same outputs. This statement
can remain true even if there is randomness in the inputs because on a computer,
one uses quasi-random number generators which one can reproduce from one
computational run to the next. However, running the same code with exactly the
same inputs on different computers or using different software can result in different
outputs, not just because the two computers may use different pseudo-random
number generators, but also for other hardware and software differences. With
regards to the believability of experimentally determined data vs. data determined
computationally, one should recall the quote1

Experimental results are believed by everyone,
except by the person who ran the experiment.
Computational results are believed by no one,
except by the person who wrote the code.

Who Does Uncertainty Quantification and Why Does Everyone Now Want
to Do It? Certainly statisticians do; some statisticians even aver that statistics =
uncertainty quantification. However, below, the way we define UQ is perhaps not the
most common way UQ is thought of by statisticians. Perhaps certain philosophers
and probabilists feel the same was as do statisticians. Scientists and engineers of all
types do UQ as do some mathematicians, especially those involved in algorithmic
and mathematical model development and analysis. So, indeed, everyone does UQ,
but not all do it well or honestly.

1Some attribute this quote as a slightly modification of a quote attributed to Albert Einstein: A
theory is something nobody believes, except the person who made it. An experiment is something
everybody believes, except the person who made it.
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These days “everyone” wants to do UQ. For many it is because there is money
in it but, being less mercenary, some may genuinely believe it is interesting and
important.

What Is a Complex System? Complex system is a terminology introduced to make
it look like one is solving a difficult problem. Thus, it is very useful to write, when
you are preparing a proposal for funding, that your work deals with a complex
system; that will certainly do you more good than if you write that you work on
simple systems. Here is a working definition of what constitutes a complex system.

Let us denote the system input by y and the system output by u. If we
change the system input we change the system output so that we can think of
the output u as being a function of the system input y. A complex system is one
for which determining the dependence of the output on the input requires copious
computational resources. For example, the evaluation of a known function, i.e.,
u = f (y) with f (y) a known function, or the integral over a domain D of a known
function f (y), i.e., u = ∫

D
f (y) dy with f (y) a known function, are examples of

what is not a complex system.
Differential equations, especially partial differential equations, and especially

nonlinear partial differential equations provide many examples of what qualifies
as a complex system according to our definition, For example, the Navier-Stokes
equations for fluid flow

⎧
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⎪⎪⎪⎩

ρ
(∂u

∂t
+ u · ∇u

)
− ν�u + ∇p = 0 in a domain D

∇ · u = 0 in a domain D

u = f(y) on the boundary of D

is a complex system for which the outputs (the velocity u and the pressure p) must
be solved for.

Thus, throughout this paper, it is assumed that function evaluations, i.e., deter-
mining outputs from the inputs, is an expensive proposition.

A Word About Simulations Simulation, a word we have already used without
giving its definition, is a noun derived from the verb simulate. In turn, the Oxford
English Dictionary definitions of simulate include:

1. pretend to be, have, or feel
2. imitate or counterfeit.

In other words, to simulate is to cheat. However, as a fourth definition, that
dictionary has

4. produce a computer model of (a process)

Thus, for us, a simulation is an approximation of the solution, i.e., the output, of
a mathematical model that is obtained using computers, especially in situations in
which the mathematical model itself is not exactly solvable.
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How Do Uncertainties Enter into the Mathematical Descriptions of Systems?
Before answering this question, it is useful to keep in mind what the great statistician
George Box said about models:

All models are wrong but some models are useful.

Less well known but equally powerful is another quote of George Box:

Since all models are wrong the scientist cannot obtain a “correct” one by excessive
elaboration. On the contrary, following William of Occam he should seek an economical
description of natural phenomena. Just as the ability to devise simple but evocative models
is the signature of the great scientist, so overelaboration and overparameterization is often
the mark of mediocrity.

Now, back to the question of how uncertainties enter into mathematical models.
First, the structure of model itself may not be known precisely. A trivial example

would be if all we knew about a function is that it is continuous and odd, so we
could model it as u = sin y, or u = tan y, or u = y2n+1 for some positive integer
n, or as any of the other countless possibilities. Clearly, we need more information
about the function to narrow down the choices. In reality, things are more subtle
than that, especially in the context of phenomenological models, i.e., models that
cannot be derived with mathematical precision from more basic or more generally
accepted models. We also do not often know if simplified models that are cheaper
to compute with provide good enough answers.

Even if the model form is agreed upon, it may contain parameters whose values
are not precisely known, e.g., we know we have a function of the form u = xα but
α is a number whose value is not precisely known or we know our model form is

−α d2u
dx2 = x2 but again α is not precisely known.

Beyond input parameters, the model may contain inputs functions that are
uncertain at every point in their domains, e.g., the coefficient and right-hand side
of the differential equation − d

dx

(
α(x) du

dx

) = f (x).

2 Uncertainty Quantification (UQ)

In this section, we provide definitions and discussions about UQ in its many guises
as viewed by many applied and computational mathematicians. For that community,
a general definition that is illustrated in the figure below is that

UQ is the task of determining information about the uncertainty in the outputs of a system, given
information about the uncertainty in its inputs
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Of course, a system may have additional inputs that are known with certainty.
Let’s narrow down this definition a little. We consider systems governed by partial
differential equations (PDEs) so that now

UQ is the task of determining
information about the
uncertainty in the solution of
a PDE, given information
about the uncertainty in its
inputs

The solution of the PDE defines the mapping from the input variables to
the output variables; as already mentioned, very often, PDEs do indeed model
complex systems. Determining approximate solutions of a PDE usually requires
costly computations. In fact, solving PDES was the reason modern computers were
invented in the 1940s and even today, remain a major driving force behind the
development new supercomputers.

Often, the solution of the PDE is not the primary output of interest. Of more
interest are quantities obtained by post-processing solutions of the PDE to determine
outputs of interest. Of course, one still has to obtain a solution of the PDE to
determine the output of interest. Thus, now

UQ is the task of determining information about the uncertainty in an output of interest that depends
on the solution of a PDE, given information about the uncertainty in its inputs

The desired information about the output is referred to as a quantity of interest
(QoI).

There are several approaches towards UQ, including but not limited to, fuzzy sets
and possibility theory, interval arithmetic, probabilistic approaches, evidence theory
(e.g., Dempster-Shafer theory), etc. We consider probabilistic approaches, i.e., the
uncertainty in the inputs of the PDE are described in terms of statistical quantities,
i.e., probability density functions (PDFs), expected values, variances, covariance
functions, higher moments, etc. Thus, now
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UQ is the task of determining statistical information about the uncertainty in an output of interest
that depends on the solution of a PDE, given statistical information about the uncertainty in its
inputs

For example, an input parameter α could take the form of a given value plus
noise, e.g. α = α0 + η, where α0 is a deterministic number and η is a random
number whose value is selected by sampling a given PDF.

It seems we are in business: someone from on high gives us a mathematical
model and statistical information about the inputs to the model. Then, to obtain
statistical information about an output of interest depending on the solution of the
model, all we have to do is devise a means to (perhaps approximately) solve the
model equations. There is small problem however: often that someone on high
disappoints us, i.e., often we do now know the needed statistical information about
the inputs. What can one do? The most common approach is to make an educated
(but sometimes an out-of-the-blue) guess as to what is that information. One can try
to do something better such as use field or laboratory observations to make a more
informed guess, but one should keep in mind that such observations also come with
uncertainty (a troublesome fact that is often ignored),

Model Calibration/Parameter Identification Our discussion so far has been
about the forward (or direct) problem of determining information about model
outputs, given information about model inputs. Model calibration is about the
reverse path, i.e., it is the task of determining statistical information about the inputs
of a system, given statistical information about the outputs. On could, e.g., use
experimental or field observations to determine the statistical information about the
outputs. In particular, one would like to identify the PDF of the input variables.
In case the inputs take the form of parameters appearing in the model that needs
calibration, model calibration is often referred to as parameter identification.

Of course, the system still maps the inputs to the outputs so that determining the
input PDF is an inverse problem whose solution usually requires multiple forward
simulations of the system equations.

UQ: the direct (or forward)
problem
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Model calibration/parameter identification—inverse problem

Model calibration problems are a particular case of more general stochastic
inverse, stochastic control, stochastic optimization, or stochastic design problems.

3 Types of Input Noises

We differentiate between the three types of noises that can be used as uncertain
inputs that appear in mathematical models such as PDEs.

Random Parameters The input data could depend on a finite number of random
parameters. Examples are flow rates in an HVAC system, voltages in an electric
circuit, load on a beam, and the like. One can think of the parameters as begin
“knobs” in an experiment which one has to set before running the experiment, but
which in practice cannot be set at the exact value one wants. Each parameter may
vary independently according to its own given PDF. Alternately, the parameters may
vary according to a given joint PDF or through conditional probabilities.

White Noise Random Fields The value of the input data varies randomly and
independently from one point of the physical domain to another and/or from one
time instant to another. Thus, a white noise random field can be viewed as a
function η(x, t) whose value at a point x and/or at a time t is sampled independently
according to a single given PDF from any other point and any other time. Because
the values at different times and at different times are independent of each other and
are determined by drawing from the same PDF, such fields are referred as being
independently and identically distributed, or i.i.d., for short.

In practice, white noise is by far the most used means for introducing randomness
into a system. However, white noise has infinite energy so that it cannot naturally
exist. It continuous to be in ubiquitous use because discretizations and truncations
of white noise have finite energy and are very easy to implement on a computer.
Furthermore, in many settings, the solution of the system equations driven by white
noise has finite energy and is much smoother than the input white noise, as is
illustrated in the figure below, so that the potential problems with white noise inputs
are glossed over.
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Colored or Correlated Random Fields The value of the input data varies
randomly from one point of the physical domain to another and/or from one time
instant to another and is identically distributed but is not independent from the
values at other points and other time instants. Instead, the values obey a given
(spatial/temporal) correlation structure.

Colored noises are ubiquitously present. Three well-known colored noises are
Brownian or brown noise that are continuous random processes and are related
to diffusion; Lèvy noises that are jump processes and are related to anomalous
diffusion; and Ornstein-Uhlenbeck or mean-reverting processes.

The figure below contains plots two realizations from each of three one-
dimensional random fields, one is white and the other two are colored,2 with
increasing correlation going from left to right. We see that increasing correlation
results in increasing smoothness of the field.

Approximate realizations of one-dimensional random fields

2Pink noise is “half-way” between white and brown noise; it is referred to as pink because in some
circles brown noise is referred to as red noise.
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4 Discretization of Stochastic Processes

We started with the random parameter case in which the problem inputs involve a
finite number of random numbers. If we choose values for these parameters, e.g.,
by sampling them according to their PDFs, we can then solve for the corresponding
solution of the system equations, i.e., the PDE.

White noise fields are defined by a given PDF (usually a Gaussian PDF) and are
easy to evaluate at a given point and/or at a given instant in time because the values
may be chosen independently from the values previously sampled at other points
and time instants; one merely samples from a given PDF.

Colored noise (correlated random fields) are usually defined in terms of a PDF
and correlation function. One is usually not given a “formula” that allows one to
evaluate the random field at a given point and/or at a given instant in time. However,
spatially and/or time-dependent random fields, whether the are correlated or white,
can also be described in terms of parameters. But, because they are infinite stochastic
processes, it requires an infinite number of random parameters to describe them.

Of course, on a computer one can only solve problems involving a finite number
of random parameters. In the white and colored noise cases, one discretizes the noise
so that the noise is approximated in terms of a finite number of parameters.

Discretizing White Noise The most common means for discretizing white noise is
to draw independent samples from its PDF and use those samples to assign values
of the field at each grid point (or in each grid cell) and/or each time interval used
in discretizing the PDE. In this case, if J denotes the number of grid points (or
grid cells) and K denotes the number of time intervals used to solve the PDEs,
then the number of independent samples drawn is J for steady-state problems and
JK for time-dependent problems. Thus, if one refines the spatial or temporal grids,
the number of random samples increases. For example, in three dimensions, it one
halves the spatial grid size, one would increase the number of parameters by a factor
of 8. The following figures illustrate realizations of discretized white noise. Note
that discretized white noise is a piecewise constant function in space and time; a
piecewise constant function is much smoother than the white noise random field it
approximates.

Realizations of discretized white noise at a same time interval in a square subdivided into 32, 128,
and 512 triangles
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Realizations of discretized white noise at two different time intervals in a square subdivided into
the same number of triangles

Discretizing Colored Noise In the colored noise case, one can use grid-based
discretizations as well, but more often one takes advantage of the fact that one
can express the random field in terms of infinite expansions in terms of orthogonal
functions. There is more one way to do this, the most commonly used being
Karhunen-Loève expansions that use the eigenvalues and eigenfunctions of the
correlation function. As a result, the random fields are approximated by truncating
the infinite expansions so that the approximate field then involves a finite number
of parameters. In the case of colored noise, the number of parameters has a weaker
dependence, compared to the white noise case, on the spatial/temporal grid sizes.
The figure below provides an illustration of a realization of an approximated colored
random field.

Realization of an
approximated colored random
field

A Little Sweeping-Under-the-Rug Part 1 We have tacitly assumed, as is often
done, that we know the PDFs or other statistical information about the input
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parameters. Actually, in practice, one usually does not know much about the
statistics of the input variables. One is lucky if one knows a range of values,
e.g., maximum and minimum values, for an input parameter in which case one
often assumes that the parameter is uniformly distributed over that range. If one
is luckier, one knows the mean and variance for the input parameter in which case
one often assumes that the parameter is normally distributed. Of course, one may be
completely wrong in assuming such simple probability distributions for a parameter
as the figure below illustrates. This, as we have already noted, leads to the need to
solve stochastic model calibration problems.

Two PDFs with the same mean and variance

A Little Sweeping-Under-the-Rug Part 2 Input variables could be distributed
independently or jointly and could be correlated or uncorrelated. Without proper
justification and sometimes incorrectly, it is often assumed that the parameters
are independent. Based on empirical evidence, sometimes this is a justifiable
assumption in the parameters-are-“knobs” case. But often, independence is a
simplifying assumption that is invoked for the sake of convenience, e.g., because
of a lack of knowledge.

Let us consider the case of correlated random fields. The Karhunen-Loève
expansion does two wonderful things. First, it gives us a formula, albeit one with
an infinite number of terms, that enables us to evaluate the random field at any
point. Second, it expresses a correlated random field in terms of uncorrelated
parameters. Unfortunately, what KL does not necessarily do is give us a formula
involving independent parameters because although independence implies uncor-
related, uncorrelated does not necessarily imply independence as the following
well-known example shows.

Let y1 be uniformly distributed on [−1, 1] so that the expected values E(y1) =∫ 1
−1 y1 dy1 = 0 and E(y3

1) = ∫ 1
−1 y3

1 dy1 = 0. Now, let y2 = 3
2y

2
1. We have that

the correlation C12 = E(y1y2) − E(y1)E(y2) = 3
2E(y3

1) = 0 so that {y1, y2} are
uncorrelated. However, clearly {y1, y2} are not independent. In fact, uncorrelated
guarantees independence if and only if the variables follow a multivariate Gaussian
distribution.

Revisiting Quantities of Interest We now can assume that we are given a
random input parameterized in terms of a finite number of random parameters
{y1, y2, . . . , yN }; we use the abbreviation y = {y1, y2, . . . , yN }. These parameters
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can be actual parameters appearing in the specification of the PDE or could arise
from approximations of random field inputs.

The solution of the PDE is not only a function of the spatial variable x and
perhaps also time t , it also a function of the random parameters y. A realization
is a solution u(x, t; y) of a PDE for a specific choice y = {yn}Nn=1 of the random
parameters.

There almost never is any interest in individual realizations. Instead, one is
interested in statistical information, e.g., expected values, variances, standard
deviations, higher moments, PDFs, CDFs. Most often one is not interested in such
statistical information about the solution of the PDE itself. Instead, one is interested
in statistical information about outputs depending on the solution of the PDE. The
outputs of interest are often functionals of the solution of the PDE. For example, one
is not interested in the velocity of a flow around a wing at points in the flow field
but rather one is interested in things like the drag and lift on the wing. Again, one is
almost never interested in individual realizations of such outputs but are interested
in statistical information about such outputs which are referred to as quantities of
interest.

The Curse of Dimensionality Applied and computational mathematicians live in
one or two or three dimensions, with very rare excursions to higher dimensions.
They think three dimensions is hard enough; even using today’s supercomputers,
some three dimensional problems cannot be addressed, e.g., the direct numerical
simulations of practical turbulent flows. But, they are not well prepared to deal with
the shock of having to find approximations of solutions u(x, t, y) of parameterized
PDEs. Discretization has to be effected with respect to all three arguments so that
one has to discretize in parameter space as well as in physical space and time and,
moreover, the dimension of the parameter space, i.e., the number of parameters, may
be large and certainly often much larger than three.

Statisticians are familiar with high-dimensional problems but they are not so used
to dealing with problems for which realizations are very costly, as is the case when
a realization involves the solution of a discretized PDE.

Let us leave PDEs alone for a minute and consider interpolation in N dimensions
using polynomials of total degree at most p, e.g., for N = 2 and p = 1 we have the
linear polynomial a + by1 + cy2 and also consider interpolation in N dimensions
using tensor product polynomials of degree at most p in each direction, e.g., for
N = 2, p = 1 we have the bilinear polynomial a + by1 + cy2 + dy1y2. For the
same p, both types have same the approximation properties, i.e., for interpolating
sufficiently smooth functions, the rate of convergence is the same.

What about the complexity? In the next table, one sees the explosive growth in
the number degrees of freedom one needs for both types of approximations as the
number N of parameters and the degree p of the polynomials increase. Note that,
for the same rate of convergence, total degree interpolation is relatively much more
economical compared to total tensor product interpolation but that even total degree
interpolation suffers the explosive growth in the number of degrees of freedom, i.e.,
suffers from the curse of dimensionality.
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Returning to the PDE setting, M in the table is the number of PDE solves
one needs to determine the polynomial approximation. The curse of dimensionality
refers to the explosive growth in the number of parameter degrees of freedom and
therefore in the number of (costly) PDE solves needed for a certain accuracy as the
number of parameters N and the degree p of the polynomials increases.

5 Approximation of Solutions of PDEs with Random Inputs

Stochastic finite element methods refer to the use of finite element methods (FEMs)
to spatially discretize a PDE with random inputs. Of course, spatial discretization
may be effected by any of a number of other methods, e.g., finite difference, finite
volume, spectral, radial basis function, etc., so that, e.g., when using the first of
these, one can also use the terminology “stochastic finite difference methods.”

With respect to discretizing the parameter dependence of the problem, we discuss
two approaches.

Global polynomial approximation in parameter space

M = number of
N = p = degrees of freedom

number of maximal degree Using total degree Using tensor
variables of polynomials polynomial basis product basis

3 3 20 64

5 56 216

5 3 56 1024

5 252 7776

10 3 286 1,048,576

5 3003 60,046,176

20 3 1771 >1×1012

5 53,130 >3×1015

100 3 176,851 >1×1060

5 96,560,646 >6×1077

⇑ ⇑
(N + p)!

N !p! (p + 1)N

Stochastic Galerkin Methods (SGMs) refer to effecting the discretization with
respect to the random parameters using a Galerkin method. Galerkin methods are
variational or projection methods which are commonly used for FEM and spectral
method spatial discretization of the PDE.

The good news about SGMs is that only a single discrete system has to be
solved to determine both the spatial/temporal and parameter dependencies of the
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approximate solution. In particular, no parameter sampling is needed. As a result,
one obtains an approximation that can be evaluated at any point in the parameter
domain, e.g., to determine a quantity of interest.

The bad news is that the physical and parameter degrees of freedom are coupled.
Thus if J denotes the number of finite element degrees of freedom and if M denotes
the number of degrees of freedom used for parameter approximation, then the
size of the discrete system that has to be solved is JM × JM . Given than in a
practical calculations J could be in the millions and we already saw that M could
be gazillions, one can quickly get to systems of formidable size when using SGMs.

Another disadvantage of SGMs are that their implementation requires extensive
recoding of a deterministic PDE solver because the discretizations of the spatial
and parameter dependences are tightly coupled. For this reason, such methods are
referred to as being intrusive.

The usual choice for effecting parameter approximations are orthogonal polyno-
mials; in such cases, in the mathematical UQ community, the method unfortunately3

goes by the name polynomial chaos. To take advantage of the high-accuracy of
orthogonal polynomial approximations, whatever is approximated has be smooth
with respect to the parameters.

Stochastic Sampling Methods (SSMs) refer to methods in which the PDE is solved
at each member of a set of sample points in the parameter domain. Here, any spatial
discretization of the PDE can be used because that discretization is uncoupled from
how the parameter dependence is treated. For this reason, a deterministic PDE solver
can be used as a black box for determining approximate solution at the selected
parameter points. For this reason, SSMs are referred as being non-intrusive.

Stochastic sampling methods proceed as follows:

– sample M points {ym}Mm=1 in the parameter domain �;
– for m = 1, . . . ,M , solve the spatial/temporal discretized PDE for each of the

sample points;
– then use the M solutions so obtained to build ensemble averages or other

statistical information about the approximate output of interest that depends on
the approximate solution of the PDE.

Thus, to determine statistical information in the sampling setting one solves M

discrete systems, each of size J × J , compared to the stochastic Galerkin case for
which one solves a single discrete system of size JM × JM .

3Polynomial chaos was a term coined by Norbert Weiner when he studied PDEs driven by white
noise and whose solution displayed chaotic behaviors. He expressed white noise random fields by
truncated expansions in terms of orthogonal polynomials. In the mathematical and engineering
UQ communities, polynomial chaos is used as a substitute name for orthogonal polynomial
approximation, even though very few of the problems addressed by those communities have
solutions that display any chaotic tendencies. We ourselves eschew the use of “polynomial chaos”
and instead call it by what it actually is, namely, orthogonal polynomial approximation.
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The list of possible sampling schemes is, of course, very, very, very long.4

Obfuscating the situation is that what makes a set of points in parameter space
“good or bad” depends on whether the points are used for quadrature, interpolation,
regression, or some other purpose.

Sampling + Simple Averaging Methods for Quadrature By far, the most used
sampling method for parameter domain quadrature is the Monte Carlo (MC) method
for which one randomly chooses the set of sample points and simply averages
the values of the integrand over those points. There is a lot of good news about
MC. Perhaps uniquely among sampling strategies (and other approaches to UQ),
the convergence rate of MC is independent of the number N of parameters so in
this sense it does not suffer from the curse of dimensionality. Also, MC does not
care about the smoothness of the integrand in the sense that the convergence rate is
unaffected by smoothness. In addition, MC does not care much about the shape of
the domain of integration. However, there is also bad news about MC. Convergence
(which is in expectation) is very slow, with a rate 1/

√
M , where M denotes the

number of sample points. Furthermore, that remains the convergence rate regardless
of how smooth is the integrand, i.e., MC cannot take advantage of any smoothness
the integrand possesses.

The slow convergence of MC has spawned a huge industry aimed at devising
alternative quadrature schemes that are “better” than MC, i.e., that converge faster,
but which still are simple sampling and averaging schemes. Both deterministic and
probabilistic, some sequential and some not, alternative sampling strategies have
been invented. A non-exhaustive list includes variance reduction techniques, quasi-
Monte Carlo sequences (e.g., Halton, Sobol, Faure, . . . ad infinitum), Hammersley,
Latin hypercube, importance sampling, stratified sampling, lattice sampling, orthog-
onal arrays, multilevel Monte Carlo, etc. For several of these methods, the error is

proportional to (ln M)N+s

M
for some s > 0. For a “small” number of parameters N , one

can ignore the logarithmic term and obtain close to linear convergence, i.e., 1/M ,
which is a decided improvement over the 1/

√
M convergence rate of MC. However,

for “large” N , the logarithmic term dominates so that the curse of dimensionality
bites us again.

Interpolation and “better” Quadrature Rules It is well known that in one dimen-
sion and for smooth integrands one can do “better” compared to simple averaging
rules 1

M

∑M
m=1 f (ym) by using weighted quadrature rules

∑M
m=1 wmf (ym), where

the quadrature points {ym}Mm=1 and weights {wm}Mm=1 are judiciously chosen. In one
dimension, Gauss rules are beautiful examples of how to define “better” rules. This
is why for a (very!) small number N of parameters, tensor products of Gauss rules
have proven to be very useful. But, as we have seen, tensor products should be
avoided like the plague, even for moderate N .

4There is even a non-intrusive version of SGMs, but that version is better viewed as a sampling
method.
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We consider interpolatory quadrature rules which are constructed by first
constructing an interpolation method and the approximating an integral of a function
by the integral of the interpolant of the function. Thus, the discussion here applies
to both interpolation and to quadrature. In particular, we focus on polynomial
interpolation and the quadrature rules that they engender.

Interpolants are built by requiring that they match the value of a function at
sample points that, in this context, are referred to as interpolation points. When
interpolants are used to define quadrature rules, the interpolation points become
the quadrature points. Thus, we first must define “good” interpolants. Without any
knowledge about the function being interpolated other than its smoothness, total
degree interpolation requires the least number of interpolation points (i.e., in our
context, the least number of PDE solves) to achieve the best rate of convergence
possible by polynomial interpolation. Unfortunately, “good” interpolation points
for total degree interpolation in as simple domain as a hypercube are not known,
even in three dimensions, and there is some controversy about them even in two
dimensions.5 Fortunately, the along came Sergey Smolyak.

Stochastic Collocation or Sparse Grid Methods Smolyak (or sparse)6 grids7

are a judiciously chosen subset of tensor product grids. For the same precision,
i.e., for integrating the same polynomial space exactly, sparse-grid quadrature
rules require more points that do interpolatory quadrature rules based on total
degree interpolation but require substantially fewer points than does tensor product
interpolation or quadrature; see the table below. Note that as N and/or p increase,
the gap between the number of total degree and sparse grid points grows quickly,
but still at a much slower pace compared to the gap between sparse grids and tensor
product grids. Note also that because total degree quadrature rules suffer from the
curse of dimensionality, so do sparse grids rules.

5It is well known that in one dimension, evenly spaced points are “bad” interpolation points for
general smooth function, bad because the interpolation error can get can get worse as the degree of
the polynomial increase and the point spacing decreases. On the other hand, the unevenly spaced
Chebyshev points are known to be ideal for the interpolation of smooth function in one dimension.
6In truth, any sampling method can be referred to as being a stochastic collocation methods because
“stochastic” simply refers to the fact that we are dealing with random variables within some domain
in parameter space and “collocation” simply means that we are evaluating the function, in our case
the solution of the PDE, at points in the domain, ergo, we are sampling the solution at points in
the parameter domain. However, stochastic collocation methods is now thought of as referring
to a class of methods for which deterministic sampling is done on a structured set of points that
are much fewer, e.g., much sparser, than, e.g., a tensor product of points, ergo, the synonymous
moniker “sparse grids.”
7The quadrature rules that use Smolyak of sparse grids as the quadrature points are not always
interpolatory quadrature rules, but they are all built using combinations such rules.
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For three types of grids in N -dimensional hypercubes, the degrees of
freedom for quadrature rules having the same convergence behavior as total
degree quadrature using polynomials of degree at most p

Total Sparse Tensor
degree grid product

Degrees of freedom
(N + p)!

N !p! < O
(
p(ln p)N−1) � (p + 1)N

The figure below is an illustration of a sparses grid. Note the big holes in the
grid, i.e., the large areas containing no points. If the function being interpolated
or integrated is very smooth, the big holes do not matter. For moderate parameter
dimension and polynomial degree, sparse grids beat Monte Carlo, quasi-Monte
Carlo, etc. but, of course, the curse of dimensionality rather quickly kicks in so
that for quadrature,8 sparse grids start losing to MC sampling because, as we have
already mentions, MC does not suffer from the curse.

A 65 point sparse grid

The need for smoothness in sparse grid quadrature and the lack of such need for
Monte Carlo quadrature is illustrated in the table below.

Comparison of sparse grid
and Monte Carlo
approximations of the integral
of a discontinuous function

M SG estimate SG error MC estimate MC error

1 4.000 1.167 0.00000 5.16771

13 64.000 58.832 0.00000 5.16771

85 −42.667 47.834 3.01176 2.15595

389 −118.519 123.686 4.77121 0.39650

1457 148.250 143.082 5.15216 0.01555

Exact 5.16771 – 5.16771 –

8MC and QMC points are useless for interpolation.
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6 Quo Vadis Uncertainty Quantification?

It is clear the what we have written above does not completely exorcize the curse
of dimensionality, although in some situations, e.g., for smooth dependences on the
random parameters, progress has been made in reducing the cost of UQ in the PDE
setting, at least for a moderate number of parameters. However, there are efforts
out there devoted to make further progress towards defeating the curse. In addition,
there are other important aspects of UQ that we have not touched upon. We close
by giving some very brief comments about some of these topics, with the comments
ordered in decreasing length but not necessarily in decreasing importance.

Informed Sampling In the algorithms discussed so far, the sample points can be
pre-selected to yield useful, i.e., efficient and accurate, approximations of function
belonging to certain classes of functions such as functions with a certain number of
continuous derivatives. However, they do not take into account any features of the
specific function, e.g., an approximation of the solution of the PDE, that one wishes
to integrate or approximate.

If one has some information about that function, as one often does, one can take
advantage of that information to lessen the cost of integration or interpolation. For
example, if one knows that some parameters are more influential than others, one
can do anisotropic sampling so that there is a lower density of points in directions in
parameter space that correspond to less important parameters compared to that for
more important parameters.

Even before that, there are techniques available, e.g., screening methods, sen-
sitivity analyses, etc., that can be used to determine the relative importance of the
parameters.

Adaptive point selection is another promising approach. Here, one sequentially
samples the point, with the position of a new point in parameter space selected
so that it minimizes some function that can be computed from the current set of
points and which in some (approximate) way represents the error that the use of the
augmented set of points would induce.

Surrogates Our focus has been on becoming more efficient in approximating in
parameter space. However, the large cost of approximate PDE solves, e.g., function
evaluations in our setting, also contributes to the curse of dimensionality. The idea
here is to use a relatively few approximate solutions of the PDE to construct a
cheap-to-evaluate surrogate that can be used, instead of additional PDE solves,
to provide the huge number of PDE solutions needed to do UQ. Actually, it
is even more efficient to directly build surrogates for output of interest. Many
types of surrogates approaches have been studied, including interpolation, least-
squares approximation (regression), greedy algorithms, reduced-basis methods,
proper orthogonal decomposition, etc.

Risk Assessment As has already been mentioned more than once, with the possible
exception of simple sampling and averaging methods, what we have talked about,
including orthogonal polynomial and sparse grid collocation methods, requires
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smooth dependences on the parameter. As a result, these approaches have limited
usefulness for quantifying risk assessment because that often involves integration
of discontinuous functions. This includes, e.g., most approaches for determining
probabilities of failure. In the UQ for PDE setting, little has been successfully done
to move away from sampling and simple averaging approaches.

Compressed Sensing Compressed sensing is one of several approaches that try to
determine the least number of terms that are needed in a polynomial approximation
to achieve a certain accuracy. Of course, this has to be done without first having
to compute all the terms in the polynomial and then throwing out those that are
insignificant. Instead, a priori estimates for the coefficients are used to determine
which terms to not include. The idea behind approaches such as compressed sensing
is to reduce the number of terms below that needed for total degree interpolation
without sacrificing accuracy.

Inverse Problems We have already mentioned stochastic optimization, identifica-
tion, calibration, and control problems, all of which are obviously of great interest.
Often these problems suffer from an even worse curse because of the possible need
to compute the quantities of interest several times during a control or optimization
process. Still, inverse problems constrained by PDEs with random inputs is a quickly
growing industry. Baysean approaches are quite seductive and enjoy widespread
popularity, but direct optimization approaches are also used.

Rare Events Quantifying rare events is another task for which not much progress
has been made in the UQ for PDEs setting, a setting in which function evaluations
are very expensive. The techniques being used are mostly standard, well-known
ones in the statistics community.
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