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Chapter 11
Notch Signaling in Pediatric Soft Tissue 
Sarcoma

Cristina Cossetti, Alberto Gualtieri, Silvia Pomella, Elena Carcarino, 
and Rossella Rota

Abstract Etiology, biology, response to treatment, and outcome greatly differ 
between adult and childhood cancers. Soft tissue sarcoma encompasses a hetero-
geneous group of pediatric sarcomas characterized by a high capacity to invade 
neighboring tissues. Although in the last years the overall survival in childhood 
cancers has improved to over 70% for the nonmetastatic forms, subgroups of 
young patients with metastatic and aggressive disease still show a poor outcome. 
Moreover, survivors often suffer from long-term morbidity due to the effects of 
therapy. It is widely accepted that soft tissue sarcomas of childhood develop from 
mesenchymal progenitor cells affected by chromosomal aberrations and muta-
tions in genetic and epigenetic pathways during development. Therefore, path-
ways driving tissue differentiation are particularly relevant. Among these, the 
Notch signaling pathway plays one of the major roles. Notch signaling is evolu-
tionarily conserved among species, working as a cell-to-cell communication sys-
tem strictly defining cell fate, stem cell renewal, and tissue homeostasis during 
embryo development and in postnatal life. In the present chapter, we describe 
recent insights on Notch deregulation in the most prominent pediatric soft tissue 
sarcomas: rhabdomyosarcomas, Ewing sarcomas, and synovial sarcomas. We also 
summarize the challenges and opportunities in inhibiting Notch signaling for the 
treatment of this group of tumors.
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Abbreviations

DLL1, 3, 4 Delta-like 1, 3, 4
ES Ewing sarcoma
GEMM Genetically engineered mice models
GSI Gamma secretase inhibitors
MAML1 Mastermind-like 1
NEC Notch extracellular domain
NEXT Notch extracellular truncation
NICD Notch intracellular domain
NTM Notch transmembrane domain
RMS Rhabdomyosarcoma
SS Synovial sarcoma

11.1  Introduction

11.1.1  Childhood Versus Adult Cancers

Conversely to adult tumors, whose pathogenesis is related to environment-/age- 
dependent genetic and epigenetic alterations, pediatric cancers originate from pro-
genitor cells in which developmental pathways governing embryonic life are 
deregulated. In line with this, tumors of childhood often contain a clonal population 
of presumably tumor-initiating cells expressing fusion products of genes that guide 
tissue development.

Increasing knowledge of the landscape of molecular networks involving genetic 
and epigenetic mechanisms acting in childhood cancers have opened the way to the 
discovery of novel potential approaches to treat the disease.

Crucial developmental pathways involved in pediatric tumor biology are Sonic 
Hedgehog (SHH), Wingless (WNT), and Notch signaling. These pathways are fun-
damental for proper cell differentiation and tissue lineage commitment of progeni-
tor cells and, more importantly, cooperate and cross talk each other (reviewed in 
[1–6]). Considering the crucial role of Notch signaling in developmental processes, 
it is not surprising that it has been found affected in several diseases ([7–15] and 
reviewed in [16]).

An oncogenic role of Notch signaling has been highlighted for the first time in pedi-
atric acute T-cell leukemia (T-ALL). Indeed, two groups demonstrated that (i) mutations 
of the Notch1 receptor resulted in the constitutive production of an activated form of 
Notch1, i.e., the Notch1 intracellular domain, in patients with T-ALL [17], and that (ii) 
this Notch1 constitutive activation is sufficient for tumorigenesis [18]: an observation 
confirmed later also in adult cancers [19]. In the last few years, the deregulation of Notch 
signaling has been shown to be involved in several types of pediatric solid tumors. 
Recently, we and others have shown Notch signaling abnormalities are pathogenetic 
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events in pediatric soft tissue sarcomas, a heterogeneous group of solid tumors affecting 
mainly soft tissue and bone of young patients.

As for adult cancers, where several clinical trials with Notch signaling inhibitors 
are being evaluated, the modulation of the Notch signaling is under preclinical study 
as an anticancer strategy in this type of pediatric tumors.

11.1.2  Pediatric Soft Tissue Sarcomas

Pediatric soft tissue sarcomas include a group of tumors derived from the mesen-
chymal compartment that are highly heterogeneous in terms of clinical behavior 
and genomic alterations [20].

Collectively, they represent about 8–10% of all childhood tumors and about 15% 
of tumors outside the central nervous system [21]. Multimodal approach with che-
motherapy and surgery is the usual treatment of pediatric soft tissue sarcoma, while 
radiation is rarely used in young children due to its side effects on a growing organ-
ism [22]. Advances in treatments have improved the overall survival in all childhood 
cancers to over 70% today. However, although the prognosis of soft tissue sarcoma 
has improved considerably, a group of patients still shows a dismal prognosis. 
Indeed, metastatic forms and subsets of tumors harboring specific oncogenic muta-
tions/chromosomal translocations are often incurable. Additionally, young survi-
vors often suffer from long-term side effects linked to therapy. An additional clinical 
challenge to eradicate soft tissue sarcomas is due to the high ability of tumor cells 
to invade the neighboring tissues [22].

Therefore, the scientific community is focusing on finding a therapy that is more 
specific and less toxic for these young patients. This can be achieved only through 
the knowledge of the molecular pathogenetic mechanisms responsible for the devel-
opment and maintenance of these tumors.

The three major groups of pediatric soft tissue sarcomas include rhabdomyosar-
coma (RMS), Ewing sarcoma (ES), and synovial sarcoma (SS). Although they have 
different and peculiar characteristics, experimental evidences clearly indicate that 
all can develop from mesenchymal progenitor cells affected by chromosomal aber-
rations and/or gene mutations. It is widely accepted that the dysregulation of the 
major embryonic developmental molecular pathways plays a fundamental role in 
the pathogenesis of pediatric soft tissue sarcomas. In agreement, small populations 
of cells that remain undifferentiated and maintain self-renewal capacity seem to 
represent the tumor ancestor cells unresponsive to therapy [23, 24].

Therefore, the modulation of developmental pathways regulating stem cell 
properties, such as the Notch pathway, might be a potential strategy to improve the 
clinical response of this type of tumors affecting young patients.

In the last several years, we and others have reported preclinical experimental 
proofs of principle indicating Notch signaling modulation as a potential approach to 
reduce the tumorigenesis of pediatric soft tissue sarcomas.
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11.1.3  Structure of Notch Receptors and Ligands

The Notch pathway is one of the fundamental signaling pathways strictly defining 
developmental processes regulating cell fate and tissue differentiation and homeo-
stasis in embryo and in the postnatal life. The pathway signals through cell-to-cell 
interaction between a signal-sending cell (expressing Notch ligands) and a signal- 
receiving cell (expressing Notch receptors) (Fig. 11.1) [25, 26]. This type of cell 
communication relies on the particular structure of ligands and receptors.

Notch receptors While in the fruit fly Drosophila melanogaster only a single Notch 
gene exists (reviewed in [27]), in mammals four Notch receptors have been iden-
tified, i.e., Notch 1–4 [28]. They are encoded by four different gene loci on chro-

Fig. 11.1 After proteolytic processing maturation, Notch receptors are expressed on the cell mem-
brane as an extracellular domain (NECD) non-covalently associated with a transmembrane portion 
and an intracellular domain (NICD). Notch signaling is initiated by a Notch receptor-Delta/
Jagged-type (DLL/JAG) ligand interaction between two neighboring cells in trans, which induces 
two successive proteolytic cleavages. The first one is operated on the S2 site by “a disintegrin and 
metalloprotease” 10 (ADAM10) or ADAM17, which is followed by an S3 cleavage by a presenilin 
complex (γ-secretase). The S3 cleavage gives rise to the NICD fragment that translocates into the 
nucleus, where it binds to a protein complex containing recombination signal-binding protein Jk 
(RBP-Jk) relieving the repressor complex (CoRep). This event modulates chromatin activity 
recruiting activators such as MAML1 and converts RBP-Jk from a transcriptional repressor to an 
activator, leading to the transcription of hairy/enhancer of split (Hes) and Hey family genes, which 
work as transcriptional repressors. Several stages of the Notch signaling pathway are prone to 
pharmacological intervention. Decoys, anti-ligand antibodies, anti-receptor-antibodies, γ-secretase 
inhibitors, and peptide inhibitors are labeled in the red boxes
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mosome (Chr) 9, Chr 1, Chr 19, and Chr 6, respectively, and are about 60% 
homologous to each other. Each Notch paralog is translated as a single-pass trans-
membrane protein that is subjected to posttranslational modifications before being 
expressed on the surface of the cells: a single-chain precursor is cleaved by furin- 
like proteases in the Golgi compartment (S1 cleavage), resulting in an N-terminal 
extracellular domain (NECD) and a C-terminal portion encompassing both a Notch 
transmembrane (NTM) and intracellular domain (NICD). The two fragments are 
non-covalently reassembled on the Golgi membranes and, then, expressed on the 
surface of the plasma membrane ([29] and reviewed in [30]).

The NECD is formed by a number of epidermal growth factor (EGF)-like 
repeats responsible for the binding of ligands [31]. Important under a functional 
point of view, a specific number of EGF repeats characterize each Notch receptor, 
Notch1 containing 36 EGF repeats [32], whereas Notch2 presenting 35 EGF 
repeats [33], Notch3 34 EGF repeats [34], and Notch4, the shorter Notch receptor, 
only 29 EGF repeats [35]. A negative regulatory region (NRR), composed of three 
cysteine-rich Lin12/Notch repeats (LNR) [36, 37], followed by a juxtamembrane 
hydrophobic region, is responsible for the heterodimerization of the NECD and 
the NTM-NICD portions of the receptor. The LNR regulates the auto-inhibition of 
the Notch receptor preventing the receptor for being cleaved without binding to 
the ligand [37, 38].

The intracellular region NICD contains a module, named RAM, which recog-
nizes the recombination signal-binding protein Jk (RBP-Jk) supporting the tran-
scriptional role for the NICD that can interact with the transcriptional coactivator 
RBP-jK in the CSL complex (RBP-jK/CBF-1/KBF2 in mammals) [39]. The RAM 
region is followed by seven ankyrin (ANK) repeats important for the interaction 
with CSL and other transcriptional regulators [40, 41], two nuclear localization sig-
nals (NLS) [42], a transactivation domain (TAD) [43], and a C-terminal PEST 
sequence (rich in proline, glutamic acid, serine, and threonine) [44]. The PEST 
sequence is highly important since it can be phosphorylated, thus regulating the 
ubiquitination of the NICD and, consequently, its stability and signaling ability 
[44]. Notably, the strength of the TAD sequence in transactivating gene transcrip-
tion is different among the paralogs being strong for Notch1, weak for Notch2, and 
strong but highly specific for Notch3, while Notch4 does not have a TAD [43, 45]. 
These differences in the structure and activity explain the diverse and somewhat 
divergent functions of the Notch receptor family.

Notch ligands Only two canonical ligands of the Delta-Serrate family are expressed 
in Drosophila, while mammalian cells express three ligands of the Delta family, 
Delta-like 1 (DLL1), DLL3, and DLL4 [46–48], and two of the Serrate family, JAG1 
and JAG2 [49, 50]. All the five mammalian ligands are type I transmembrane proteins 
containing an N-terminal region and a cysteine-rich domain (DSL for Delta, Serrate, 
and LAG-2), followed by a number of EGF-like repeats. In particular, the N-terminal 
region with DSL and the first two EGF-repeats are responsible for the interaction with 
the EGF-like repeats of Notch receptors ([51, 52] and reviewed in [25]). The structure 
of the intracellular region of the canonical ligands is not conserved among species and 
regulates ligand interactions with the cellular cytoskeleton.
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Additional noncanonical ligands can interact with and activate Notch receptors, 
either transmembrane or soluble proteins, such as DLK1, DLK2, DNER, the EGF- 
like protein7 (EGFL7), or the F3/contactin ([53, 54] and reviewed in [25, 55, 56]). 
They do not contain a DSL domain but are all characterized by the presence of 
EGF-like repeats.

Another level of complexity is added by the posttranslational modifications of 
Notch receptors, operated in the cytoplasmic compartment, which strictly regulate 
their half-life, selectivity, and activity [25, 57]. Among those are the glycosylation, 
ubiquitylation, phosphorylation, and acetylation.

Fringe glycosyltransferases, firstly identified in Drosophila, glycosylate specific 
EGF-like repeats of the Notch heterodimer in the Golgi compartment [58–60]: a 
modification that affects the affinity of the receptor for the ligands, specifically pre-
venting Jagged-dependent activation [61, 62]. Three mammalian fringe enzymes 
are known, i.e., lunatic fringe (LFNG), manic fringe (MFNG), and radical fringe 
(RFNG) [63]. It is arguable that dysregulation of these enzymes can lead to imbal-
ance in the expression/activity of Notch components since it can induce the Notch 
receptors to be cleaved with higher rate than in normal tissue (reviewed in [64]), as 
demonstrated for breast cancer cells [65].

The lysosomal degradation or, conversely, the recycling to the plasma membrane 
of the cleaved Notch is regulated by polyubiquitylation, a process governed by sev-
eral E3 ubiquitin ligases such as Deltex, β-arrestin/Kurtz, Itch, NEDD4 (neural pre-
cursor cell expressed developmentally downregulated 4), Cbl (casitas B-lineage 
lymphoma), and Fbw7/Sel-10 ([66–69] and reviewed in [70]). The inclusion of 
Notch in the early endosomes can be regulated by Numb, a cytoplasmic negative 
regulator of the pathway [71], and it is followed by proteasome-mediated degrada-
tion [72]. The phosphorylation of NICD to the ANK and/or PEST domain along 
with acetylation modulates the stability and the activity of the cleaved receptor 
[73–77]. Further, NICD can interact in the cytoplasm with several molecules among 
which Nemo-like kinase NLK, which suppresses Notch signaling [78], or Pin1, 
which conversely amplifies Notch activation [79–82].

11.1.4  Notch Signaling Pathway

The Notch signaling is critical in embryos during the differentiation of stem cells 
when a ligand-expressing cell interacts with a Notch-expressing cell and, then, the 
former undergoes differentiation while the latter remains in an undifferentiated state 
[30]. However, the results of this cell-to-cell communication highly depend on the 
molecular, cellular, and environmental contexts, making a simple mechanism 
extremely versatile [83–85].

When a canonical ligand on a cell binds to the specific EGF-like repeats of a 
Notch receptor on a neighboring cell (in trans), the resulting mechanical stretch favors 
the cleavage (at site S2) of the heterodimeric portion just outside the plasma mem-
brane by the a disintegrin and metalloprotease 10 (ADAM10) or 17 (ADAM17) [86]. 
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A requirement for this process is the ubiquitination and subsequent endocytosis of 
the ligand (reviewed by [87]). Then, the remaining membrane-tethered intermedi-
ate, named NEXT (Notch extracellular truncation), is subsequently cleaved in an 
intracellular region (at sites S3 and S4) by a γ-secretase complex formed by four 
subunits [88–93]. This last cleavage results in an intracellular activated form, NICD, 
which translocates to the nucleus, binds the CSL complex (RBP-Jk/CBF-1/KBF2 in 
mammals) and activates the transcription of canonical Notch target genes [94]. To 
do so, the CSL/Notch complex recruits several transcriptional coactivators such as 
Mastermind-like 1 (MAML1) and the acetyltransferases CBP/p300 or PCAF/GCN5 
([41, 95–97] and reviewed in [98]). The canonical target genes belong to the basic 
helix-loop-helix (bHLH) families of hairy/enhancer of split (Hes) and Hey (subfam-
ily of Hes, related with YRPW motif) repressors [25]. The result is the transcrip-
tional repression of multiple differentiation genes. Interestingly, conversely to the 
classical view based on the recruitment of NICD by RBP-jK already bound to the 
DNA in a repressor state [83, 99], more recently the group of Tajbakhsh demon-
strates that in mammalian myoblasts (i) NICD recruits free RBP-jK to the chroma-
tin on specific enhancers, while (ii) the amount of RBP-jK constitutively bound to 
the DNA is unaffected by Notch activation [100]. This finding further highlights the 
importance of the cellular and molecular context for the regulation and effects of 
Notch signaling pathway. In addition to the Hes and Hey genes, Notch signaling can 
activate in a context-/tissue-dependent manner the transcription of, among others, 
Deltex or members of NF-kB family, the cyclin-dependent kinase inhibitor p21Cip1, 
cyclin D1 or MYC [101–106]. Notch signaling can be also activated in a noncanoni-
cal way that can be (i) independent from CSL, (ii) independent from the S3 cleav-
age, or (iii) in the absence of Notch cleavage and NICD formation (reviewed in [55, 
107, 108]). Finally, ligand-receptor interactions on the same cell can be also in cis 
and results in inhibition of the signaling [109–112]. Importantly, the structural 
molecular features of Notch components that allow several types of modifications 
concurring to the diverse mechanisms of signalization represent a platform for ther-
apeutical interventions with modulators of the pathway (Fig. 11.1). Notably, being 
Notch signaling tissue- and context-specific and paralogs similar but not identical, 
the signal triggered by different Notch receptors in different tissues is somewhat 
specific and can be even opposite (reviewed in [25]).

11.2  Notch Signaling Deregulation in Pediatric Soft Tissue 
Sarcomas

11.2.1  Notch Signaling in Rhabdomyosarcoma

Rhabdomyosarcoma (RMS) is the most common soft tissue tumor of childhood of 
myogenic origins accounting for about 8% of all pediatric tumors [113]. Despite the 
expression of the master regulators of skeletal muscle differentiation such as MYOD 
and myogenin, also used for diagnostic purposes to exclude other small round blue 
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cell tumors, RMS cells do not differentiate in multifiber structures and proliferate 
indefinitely ([114, 115] reviewed in [116]). To date, we and others have shown that 
the modulation of differentiation represents a potential approach to restore the cell 
cycle checkpoints inhibiting tumor cell proliferation [117, 118]. However, as shown 
in genetically modified mice models (GEMM) of spontaneous RMS, this sarcoma 
could originate from a heterogeneous group of mesenchymal-derived cells, even if 
mesenchymal precursors with different degrees of skeletal muscle commitment 
have been implicated as the major tumor-prone subset [119–124]. Two major histo-
logical subtypes are included in pediatric RMS: the embryonal (ERMS) and the 
alveolar (ARMS) variants. ERMS represents about 70–75% of all cases of pediatric 
RMS and primarily affects young children arising in the head and neck and retro-
peritoneum and showing, when nonmetastatic, a good prognosis with an overall 
survival of about 80% [125, 126]. ERMS is characterized by somatic gene muta-
tions in the RAS gene family, TP53, FGFR4, PIK3CA, CTNNB1, FBXW7, and 
BCOR, associated with genomic instability including loss of imprinting and loss of 
heterozygosity of specific chromosomal regions, among which the Chr. 11p.15 
region, and gain of regions of chromosomes 2, 7, 8, 11, 12, 13, and 20 [127–129]. 
Moreover, ERMS pathogenesis has been related to mutation/dysfunction of compo-
nents of one of the major developmental pathways, i.e., Hedgehog [130–133]. 
Interestingly, the MYOD gene has been shown to be mutated in a group of older 
adolescent with an aggressive form of ERMS [134]. The p.Leu122Arg substitution 
leads to a MYOD protein capable to activate gene transcription in a “MYC-like” 
manner, once more highlighting the strong involvement of malfunction of myogenic 
factors in RMS. Collectively, these findings emphasize the heterogeneous molecu-
lar features of the ERMS variant. An about 20% of ARMS behave clinically and 
show molecular alterations similar to the ERMS subtype [127, 135], whereas the 
majority of ARMS is characterized by clonal cell populations with specific chromo-
somal translocations, defining a subset of RMS clinically and molecularly different 
from fusion-negative RMS [127, 135].

The most frequent chromosomal translocations in ARMS are t(2;13) (q35;q14) 
or t(1;13) (q36;q14), which result in the expression of the two oncogenic proteins 
PAX3-FOXO1 and PAX7-FOXO1, respectively [136, 137]. Both are transcription 
factors formed by the DNA-binding domain of PAX3/7 and the transactivation 
domain of FOXO1. The result is a constitutive activation of a PAX3/7 transcrip-
tional gene profile. In addition, PAX3-FOXO1 acquires transcriptional ability that 
is absent in PAX3 alone (reviewed in [138]). Fusion-positive ARMS affects mainly 
older children and adolescents arising in legs and trunk. The expression of the fusion 
proteins is a negative prognostic factor per se independent from histology, identify-
ing a subset of patients at high risk frequently with metastatic disease at diagnosis. 
Fusion-positive ARMS but also metastatic fusion-negative RMS represent a chal-
lenge for clinicians since they are often unresponsive to treatments with a high 
chance to recur. The demonstration of the expression of the fusion products is enter-
ing the clinical practice to help in the risk stratification of patients, and, more 
recently, the Shipley group demonstrated that those patients characterized by a 
PAX3-FOXO1 protein expression are at ultrahigh risk showing a 5-year overall 
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survival (OS) less than 15% [139]. Taken together, these clinical data indicate that 
to halt the disease, it is imperative to hamper PAX3-FOXO1 activity. Despite 
improvements in the therapeutic strategies, the outcome of high-risk patients 
remains poor. Therefore, the need of a deeper knowledge of the mechanisms under-
lying the development and progression/recurrence of RMS is urgent. However, tran-
scription factors such as PAX3-FOXO1 are difficult to target. Therefore, targeting 
PAX3- FOXO1 downstream molecules could be an acceptable approach to block its 
signaling. The developmental networks appear to be good targets due to their 
involvement in the differentiation of mesenchymal cells in addition to the PAX3 
program. In particular, Notch signaling plays one of the major roles among the cru-
cial regulators of skeletal muscle differentiation, maintenance, and homeostasis, 
both in embryo and in the postnatal life [140].

To date, several recent experimental findings by our group and other laboratories 
demonstrate that Notch signaling pathway is deregulated in RMS (Table 11.1). The 
first evidence of an implication of a Notch component in RMS stems from the work 
of Sang et al. [151] showing that the Notch target gene HES1, encoding for a tran-
scriptional repressor, was able to halt the muscle-like differentiation when expressed 
in fibroblasts engineered with a plasmid encoding MYOD. This effect was reversed 
by treatment with a γ-secretase inhibitor (GSI), which blocks the cleavage of Notch 
receptors, or by silencing a corepressor working with HES1, i.e., TLE1/groucho. 
HES1 transcripts were then shown to be overexpressed in RMS tumors and cell 
lines compared to normal skeletal muscle tissue. Then, the authors elegantly dem-
onstrated that inhibition of the HES1 function using either a mutant HES1, defective 

Table 11.1 Notch signaling in STS

Tumor Notch deregulated component Functions Ref.

Synovial sarcoma Notch1, JAG1, and TLEs Oncogenic [141]
TLE1 Oncogenic [142, 143]
TLE1 Oncogenic [144]

Ewing sarcoma MFNG [145]
MNFG and Notch1 Regulator of differentiation [146]
JAG1 and HEY1 Onco-suppressor [147]
Notch1 and Notch3 Onco-suppressor [148]
HEY1 and Notch1 Onco-suppressor [149]
DLL1, Notch1, and Notch3 Oncogenic [150]

Rhabdomyosarcoma HES1 Oncogenic [151]
Notch2 and HEY1 Oncogenic [152]
Notch1 and HEY1 Oncogenic [153]
Notch3 and HES1 Oncogenic [154]
RBP-jK Oncogenic [155]
DLL1, JAG1, Notch3 Oncogenic [156]
JAG1 Oncogenic [157]
Dll1 Oncogenic [123]
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in the DNA binding, or a dominant-negative HES1 form, lacking the domain that 
mediates the interaction between HES1 and its corepressors, halted cell prolifera-
tion and facilitated muscle-like differentiation of fusion-positive ARMS cell lines 
[151]. Similar results, associated to a diminution of the levels of HES1, were 
obtained inhibiting Notch signaling with a GSI, establishing that the effects seen 
were, at least in part, dependent from the Notch signaling activation.

Subsequently, the group of Gallego published a report showing a general deregu-
lation in transcripts of the Notch pathway in 37 primary RMS samples, irrespective 
of the fusion status [152]. The authors showed significant upregulation of Notch2 
and HEY1 compared to normal muscles. No overt difference in the levels of Notch4 
and Notch1 transcripts in RMS compared to control tissues was seen, while HES1 
transcripts resulted modestly overexpressed in ERMS. However, the expression of 
the HES1 protein by immunohistochemistry was more elevated in RMS either 
fusion-negative or fusion-positive compared to muscle tissues. Interestingly, HES1 
expression levels well correlated with the invasive capabilities of RMS cells with 
the lowest expression in low-invasive ERMS cell lines, and highest expression in 
PAX3-FOXO1 cells, which are the most invasive subtype [152]. The importance of 
Notch signaling in the invasive features of RMS cells was then confirmed either (i) 
inhibiting the γ-secretase-dependent cleavage of Notch receptors with several GSIs 
or (ii) transfecting RMS cells with a dominant-negative form of MAML1 
(dnMAML1), which forms inactive RBP-jK/NICD/MAML1 complexes on DNA 
[158]. In both cases, HES1 transcript and protein levels were negatively affected by 
each of the two approaches, supporting the view of a Notch-dependent direct or 
indirect mechanism for HES1 overexpression. In a more recent work, Belyea et al. 
[153], interrogating previously published gene expression datasets [135], showed a 
marked upregulation of HEY1 transcripts in ERMS compared not only to muscle 
tissues but also to ARMS samples. The results were confirmed in ERMS cell lines 
with respect to fusion-positive ARMS cells. The authors investigated the protein 
levels of HEY1 along with those of nuclear Notch1 in primary samples by immuno-
histochemistry and found that both were remarkably higher in ERMS compared to 
ARMS or to normal muscle tissue. HEY1 or Notch1 genetic depletion through shR-
NAs led to impaired ERMS cell proliferation in vitro and enhanced expression of 
the differentiation gene myogenin, particularly when cells were cultured in differen-
tiation medium (low serum). However, despite the  upregulation of myogenin and 
the phenotypic changes from round- to spindle-shaped cells, only a few myofiber-
like structures were formed in these experimental conditions. Since Notch1 down-
regulation induced HEY1 decrease, suggesting that HEY1 was directly or indirectly 
targeted by Notch1 signaling in ERMS cells, the Notch1- HEY1 axis seems to be a 
regulator of cell cycle rather than of terminal differentiation in the ERMS context 
[153]. These effects were phenocopied by two GSIs and, more importantly, rescued 
in GSI-treated cells by vector-induced N1ICD forced expression, supporting the 
hypothesis of a Notch1-specific effect. Moreover, these approaches worked also in 
in vivo models of ERMS xenografts, which showed reduced tumor growth for those 
formed by cells depleted of Notch1 or in animals treated with a GSI [153]. This last 
treatment resulted in the reduction of Notch1 levels in tumor samples, confirming 
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the involvement of the Notch paralog signaling in the development of tumor masses 
[153]. Recently, the RBP-jK transcription factor has been shown to indicate a trend 
for a bad prognosis in RMS patients [135], and its modulation in ERMS cells clari-
fied that Notch signaling aberrant functions in ERMS relies partly on a canonical 
signaling [155]. In fact, RBP-jK knockdown in ERMS cells downregulated HES1 
expression and reduced colony formation in soft agar, while its overexpression 
behaved in the opposite manner [155]. ERMS cells depleted of RBP-jK formed 
smaller tumors in  vivo and showed downregulation of pro-proliferative markers 
associated with upregulation of the cyclin- dependent inhibitor p21Cip1 [155].

The metastatic behavior is recognized as extremely important for the response to 
therapy and outcome of RMS patients, and metastasis formation has been related to 
Notch activation in cancer [159–161]. Therefore, starting from the findings of a cor-
relation of HES1 or HEY1 levels with cell invasion in vitro in RMS cell lines, the 
Rome group further clarified the role of Notch1 and HES1  in the invasiveness of 
RMS cells [162]. Pharmacological treatment with a GSI of one fusion-negative- and 
one PAX7-FOXO1- and one PAX3-FOXO1-positive cell line led to a marked 
decrease of cell adhesion on two different substrates and negatively modulated 
N-cadherin and α9-integrin transcriptional expression, together with those of the 
Notch target gene HES1, resulting in the lowering of protein levels [162]. These find-
ings were in agreement with the observation that Notch1 and Notch3 upregulate 
N-cadherin in melanoma cells [163, 164]. In patients with RMS, a positive correla-
tion between N-cadherin and α9-integrin with HES1 was seen. In line with the 
hypothesis of an involvement of Notch signaling in this phenomenon, RMS cells 
transfected with a plasmid expressing a dominant-negative form of MAML1 [152] 
showed a response similar to that of cells treated with a GSI. Conversely, RMS cells 
in which an exogenous DLL1 was forcedly overexpressed, thus leading to Notch 
signaling over-activation, enhanced the expression of all the three genes. These 
effects appeared quite specific since the level of the usual partner of α9-integrin, i.e., 
β1-integrin, was unaffected. Interestingly from a translational point of view, the 
authors showed that cell adhesion on fibronectin and the invasive capabilities of the 
cells in vitro were markedly reduced using an anti-N-cadherin-blocking antibody, 
whereas anti-α9-integrin- blocking antibody was able to impair only the tumor cell 
adhesive properties. Chromatin-immunoprecipitation assays demonstrated a possi-
ble direct regulation of Notch1 on the two gene promoters. However, HES1 seemed 
also to bind those promoters, but its role in regulating these genes should be clarified 
in future studies. This pro-invasive role of Notch signaling in RMS seems to be coun-
teracted by the restoration of the expression of miR-203, a microRNA often down-
regulated epigenetically by promoter hypermethylation in RMS primary samples and 
cell lines and re-expressed after treatment with the DNA methyltransferase 1 inhibi-
tor 5-AZA [157]. When miR-203 was re-expressed in vitro in one ERMS and one 
PAX3-FOXO1 ARMS cell line, it inhibited cell proliferation inducing the myogenic 
conversion of the tumor cells, decreasing the levels of the transcription factor p63, an 
inducer of JAG1 and of HES1. Similar results were obtained silencing p63. These 
findings suggest that the promyogenic role of miR-203 relies, at least in part, on its 

11 Notch Signaling in Pediatric Soft Tissue Sarcoma



288

ability to down-modulate p63. Moreover, miR-203 forced expression blocked both 
cell migration and invasion. Tumor growth in vivo was also hampered in RMS cells 
overexpressing miR-203 or in ERMS-xenografted mice treated with 5-AZA. It could 
be interesting to evaluate whether the re-expression of miR-203 could have similar 
effects in  vivo also in PAX3-FOXO1 ARMS cells, which are less prone to 
differentiate.

Previously, our findings unveiled a role for Notch3 in RMS [154]. Genetic down-
regulation of Notch3 by silencing in fusion-negative and fusion-positive RMS cell 
lines overexpressing nuclear Notch1–3-activated forms compared to myoblasts 
resulted in a blockade of cell cycle in the G1 phase and formation of myofiber-like 
structures even when the cells were cultured in medium containing serum. In agree-
ment with this phenotype, p21 was upregulated together with members of the dif-
ferentiation machinery such as myogenin, MHC, and troponin. Moreover, 
p38MAPK, AKT, and mTOR were activated as  during myogenesis. In parallel, 
HES1 levels were decreased suggesting that Notch3 can have a direct or indirect 
effect on its expression.  Concordantly, HES1 depletion mimicked, as already 
reported by Sang et al. [151], as well as reinforced the effects of Notch3 silencing, 
while, conversely, its forced overexpression partially overcame them. Moreover, 
silencing Notch3 even in a fraction of cells inhibited tumor growth in  vivo. 
Interestingly, (i) the depletion of Notch1, which was also hyperactivated in RMS 
cell lines, reduced the proliferation of the cells and, only in fusion-negative cells, 
favored the formation of some myotube-like structures, but was ineffective in 
fusion-positive cells; and (ii) the knockdown of Notch2, whose levels were higher 
in myoblasts, reduced the expression of myogenin and led to HES1 levels 
upregulation.

Consistent with a role of Notch3 in RMS, tumor cells forcedly expressing an 
exogenous N3ICD form proliferated faster in vitro and formed more colonies in soft 
agar irrespective of their fusion status [156]. Notably, the antiproliferative effects of 
a GSI were counteracted by N3ICD overexpression. We also confirmed that N3ICD 
influences tumor growth in vivo showing that PAX3-FOXO1/N3ICD xenografted 
cells produced bigger masses with a higher expression of Ki67 and HES1 [156]. Of 
note, we also showed that HES1 and Notch3 protein levels correlated with those of 
Ki67 in samples from RMS patients [156].

Since a very low number of mutations of Notch paralogs have been found in 
RMS primary samples [128, 129, 165], it is arguable that the hyperactivation of 
Notch receptors in tumor cells could be due to other reasons such as to the binding 
to the Notch ligands. As a matter of fact, downregulating DLL1 and JAG1, whose 
transcripts were found expressed in RMS cell lines [153] and primary specimens 
[135, 155], led to the inhibition of cell proliferation of ERMS and PAX3-FOXO1 
ARMS cells associated with the lowering of N3ICD and HES1 levels [154, 156]. 
Summarizing all these results, it appears clear that a general dysregulation of the 
Notch signaling characterizes the RMS setting opening the way to potential targeted 
therapy for this sarcoma.

One of the characteristics of Notch signaling is the capacity to cross talk with 
several key pathways that regulate stem cell fate and are involved in cancer pathogen-
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esis and maintenance. The Hedgehog pathway is one of the major regulators of the 
myogenesis in vertebrates, by maintaining the expression of the myogenic regulatory 
factors (MRFs) such as MYF5 and modulating survival and proliferation of develop-
ing myoblasts [166]. In particular, it supports the proliferation of myogenic precur-
sors repressing terminal differentiation and apoptosis [167–169]. A dysregulation of 
Hedgehog seems to be one of the drivers of ERMS development, as highlighted by 
studies in humans and GEMM [170–173]. Recently, alterations of Hedgehog signal-
ing have been recently shown to be interconnected to that of Notch in the pathogen-
esis of ERMS [132]. In this work the authors demonstrated that in mice heterozygous 
for the negative regulator of Hedgehog signaling ptch1, which spontaneously develop 
ERMS, the cells of origin of the tumor are derived from those expressing the Notch 
ligand Dll1 and concomitantly negative for Myf5, myogenin, and Pax3 expression 
[132]. This type of cells is prone to undergo myogenic differentiation but is not yet 
stably committed. These results, on one hand, imply that Hedgehog and Notch cross 
talk to define the fate of some cells during myogenesis, and on another hand highlight 
the importance of the molecular degree of differentiation and commitment for sub-
sets of cells to behave as tumor- initiating RMS cells, as already demonstrated by the 
group of Keller [122, 174]. Importantly under a translational point of view, Hedgehog 
signaling activation is able to induce HES1 expression in both mesodermal and neu-
ral cells independently from Notch, suggesting combinatorial inhibition of the two 
pathways [175].

Several points on the impact of Notch signaling deregulation in RMS remain to 
be investigated among which the expression of protein levels of Notch ligands in 
RMS patients, its role in the invasiveness and metastasis in in vivo models, and its 
effects in GEMM of RMS. However, it appears evident that this signaling pathway 
could be activated in both ARMS and ERMS thus representing a potential target for 
therapy in both RMS variants.

11.2.2  Notch Signaling in Ewing Sarcoma

Ewing sarcoma (ES) is the second most common bone and soft tissue sarcoma of 
childhood. It arises most commonly in adolescents showing a median age of 
15 years, even if cases of ES in neonates and infants have been reported [176, 177]. 
The most frequently affected sites are the lower extremities and pelvis for bone and 
the trunk and extremities for soft tissue disease. It is an aggressive malignancy, met-
astatic at diagnosis in about 25% of young patients [176]. Improvements in therapy 
have enhanced the survival rates for localized forms, but the outcome and disease- 
free survival of patients with metastatic disease remain poor [178–180]. ES often 
shows gains of chromosomes 8, 12, 20, and 1q, losses of 1p36 and 16q, and homo-
zygous deletion of CDKN2A, but the mutation rate is low and mostly involves 
STAG2 or TP53 (5–20% of cases), making finding actionable therapeutic targets 
difficult ([181–183] and reviewed in [180]). In about 90% of cases, ES is character-
ized by typical chromosomal translocations t(11;22)(q24;q12) resulting in the fusion 
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of the amino-terminal-encoding portion of EWSR1 to the carboxyl-terminal DNA-
binding domain of the FLI1 gene of the ETS family genes, generating the EWS-
FLI1 fusion product with transcriptional regulatory functions ([184, 185] and 
reviewed in [186]). The translocation can involve several different portions of the 
genes, due to different breakpoints in each of the sequences, but without effects on 
the prognosis [187, 188]. Variants of fusion products involving or not EWS have 
also been observed in a number of cases (reviewed in [186]). When expressed in a 
“permissive” cell of origin context, i.e., mesenchymal- and neural crest-derived pro-
genitors, EWS-FLI1 shows transforming capacity [185, 189–192]. EWS-FLI1 is a 
transcription factor with higher potency compared to FLI1 that binds to ETS consen-
sus sequences across the genome [185, 193] and whose mechanism of action has 
been recently unraveled. It binds several types of chromatin regions, from promoters 
to intra- and intergenic regions, repressing but also inducing a high number of genes 
[194–197] with a function that can be context-dependent [198]. When exogenously 
expressed in murine fibroblasts, EWS-FLI1 induced the transcription of the Notch 
signaling enzymatic component Mfng [145], a result in agreement with transcript 
MNFG upregulation found in ES patients (Table 11.1) [146], even if in human ES 
cells, the transcriptional effect on MNFG is weaker [199]. Recently, the group of 
Kovar unveiled the mechanism through which EWS-FLI1 was able to overcome cell 
cycle arrest in a context of wild-type TP53 [147]. The authors demonstrated that, by 
repressing the expression of the Notch ligand JAG1, EWS-FLI1 reduced the activa-
tion of Notch3 necessary for the induction of the Notch target gene HEY1 that, in 
turn, stabilized and activated p53 [147]. Indeed, in TP53 wild-type ES cell lines, (i) 
EWS-FLI1 silencing promoted p53 and p21Cip1 expression followed by cell cycle 
arrest; (ii) this effect was associated with the induction of JAG1 and HEY1, often 
barely expressed in ES primary samples; (iii) Notch2 and Notch3 were expressed in 
both ES cell lines and primary samples, and Notch3 resulted activated only in TP53 
wild-type cells by JAG1; and (iv) in EWS-FLI1-depleted cells, JAG1 or HEY1 
silencing, treatment with a GSI, or expression of the negative regulator of Notch, 
NUMB, prevented p53 and p21Cip1 induction, while forced expression of either 
exogenous JAG1, HEY1, or N3ICD reversed the effects. Therefore, in ES cells with 
wild-type TP53, Notch signaling seems to act as an onco-suppressor stabilizing p53 
with an unknown mechanism involving HEY1. Interestingly, when Notch signaling 
was inhibited in the presence of EWS-FLI1, no HEY1 expression was observed, 
suggesting that the pathway could be inactive under these cell conditions [147]. This 
was consistent with the observation of a lack of nuclear expression of NICD and 
HES1 in ES tumors, despite the mRNA upregulation of the latter [148]. Moreover, 
the transcriptional overexpression of HES1 was independent from Notch activation 
and also from EWS-FLI1 expression.

ES pathogenesis implies an aberrant chromatin remodeling due to the influence of 
the fusion proteins on epigenetic machinery (reviewed in [186]). Accordingly, phar-
macological inhibition of the lysine demethylase LSD1 (or KDM1A), upregulated in 
a large cohort of sarcomas including ES, led to p53 expression in ES cell lines 
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through the methylation of Lys 4 on histone H3 (H3K4) followed by cell cycle arrest 
[200]. In other cell systems, LSD1 is able, as a component of a corepressor complex 
with the deacetylase SIRT1, to inhibit Notch signaling by recruiting the RBP-jK 
complexes and repressing the expression of Notch target genes, including HEY1 
[201–203]. Starting from this observation, the same group sheds light on the mecha-
nism of p53 induction after EWS-FLI1 depletion showing that ectopically expressed 
HEY1 prevented the expression of the deacetylase SIRT1, which in turn was respon-
sible for the posttranslational modification that leads to p53 destabilization and deac-
tivation [149]. This effect was obtained also by ectopic expression of NICD, 
demonstrating that it is Notch-dependent, and also demonstrated in other cell con-
texts in which Notch signaling can act similarly, such as B-cell tumors and primary 
human keratinocytes lacking HEY1 expression. Consistently, genetic and pharmaco-
logic inhibition of SIRT1 was sufficient to increase p53 acetylation and target genes 
activation, in ES cells in the presence of EWS-FLI1, resulting in tumor cell death, 
while its overexpression reverted the phenotype [149]. An antitumorigenic effect 
was also seen in vivo after pharmacological treatment of xenografted zebrafish mod-
els. Finally, the screening of about 400 ES human tumor samples by immunohisto-
chemistry showed that SIRT1 expression could be correlated to disseminated disease 
due to the highest levels of staining in metastatic patients. Thus, on one hand, this 
work unveils a novel epigenetic Notch-dependent mechanism to regulate cell cycle 
and on the other hand points to SIRT1 as a pharmacologically targetable factor in 
ES. Although EWS-FLI1 is necessary for tumorigenesis, it requires a “permissive” 
cellular background for transformation. Among the involved adjuvant molecules is 
CD99 [204], a cell surface protein involved in cell migration, proliferation, and dif-
ferentiation [205, 206]. As a matter of fact, EWS-FLI1 is able to upregulate CD99 
that, in turn, facilitates the oncogenic function of the fusion protein [204, 207, 208]. 
However, although CD99 contributes to the oncogenic phenotype defined by the 
fusion gene, EWS-FLI1 is able to induce a neuroblastic phenotype while CD99 
counteracts this effect [204]. Since ES cells are unable to completely differentiate, a 
recent work demonstrates that a network CD99-miR-34a-Notch-NF-kB underpins 
the mechanism underlying the anti-differentiative phenotype and suggests novel 
avenues for intervention [150].

The work showed that CD99, by inducing the expression of the Notch ligand DLL1, 
resulted in Notch1 and Notch3 activation paralleled by a concomitant activation of 
NF-kB, all effects prevented by CD99 depletion or GSI treatment. In turn, the CD99-
dependent activity of NF-kB, or NF-kBp65 forced overexpression in a CD99 knock-
down context, affected the neural phenotype due to the presence of EWS-FLI1, whereas, 
conversely, its silencing enhanced the proneural differentiation [150]. Elegantly, the 
authors then demonstrate that all the molecular and phenotypic effects of CD99 deple-
tion, including Notch components regulation, can be phenocopied by a microRNA pre-
viously involved in ES and able to regulate Notch signaling, i.e., miR-34a [209–212], 
which was induced by CD99 knockdown. Thus, the presence of CD99 prevented miR-
34a expression thus allowing Notch and NF-kB activation [150]. Interestingly, Notch 
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and NF-kB pathways cross talk in several systems mainly in a noncanonical way 
(reviewed in [213]), which is in agreement with the inactivation of canonical Notch 
signaling found in ES, despite the expression of Notch receptors [147]. Strikingly, the 
effects of CD99 expression spread to neighboring cells through exosomes bearing 
CD99 from ES cells, and, consequently, when CD99 was depleted, exosomes lacking 
CD99 and containing high levels of the induced miR-34a carried a proneural signal to 
the target cells. These important results are in agreement with a previous report showing 
that Notch signaling inhibition induced neuroectodermal differentiation of tumor xeno-
grafts in ES with low impact on tumor cell proliferation [146]. Taken together, the 
reported findings further complicate the scenario of an role of Notch signaling in ES, 
showing an antiproliferative but also anti-differentiative role for this pathway. The pre-
dominance of a canonical versus noncanonical Notch signaling activation depends on 
the molecular context of the cells and deserves further investigations.

11.2.3  Notch Signaling in Synovial Sarcoma

Synovial sarcoma (SS) is a soft tissue sarcoma developing most commonly in the 
lower limbs of adolescents and young adults and showing a high metastatic potential 
([214]; and reviewed in [215, 216]). It accounts for about 10–20% of all soft tissue 
sarcomas in young patients [217]. SS includes three histological subtypes: monopha-
sic (only spindle cells), biphasic (both spindle and epithelial cells), and poorly differ-
entiated. In addition to the soft tissue adjacent to the joints (i.e., synovial), it can 
develop in extra-synovial tissues. Localized disease can be treated by surgical inter-
vention followed by adjuvant radiotherapy, but it often shows early and even late 
recurrences with 50% 10-year disease-free survival [218]. Molecularly, SS is charac-
terized by the chromosomal translocation t(X,18; p11,q11) involving SS18 (previ-
ously SYT) on chromosome 18q11 and either SSX1, SSX2, or very rarely SSX4 on 
chromosome Xp11. The results are fusion proteins formed by almost all the SS18 
sequence with the C-terminal portion of the SSX paralogs. That SS18-SSX proteins 
are the oncogenic drivers of the malignancy was demonstrated by the observations 
that their expression in vitro is sufficient to transform the cells, while their silencing 
reverts the malignant phenotype [219, 220]. SS is considered to be derived from mes-
enchymal stem cells in which the fusion proteins behave as oncogenes [221, 222]. In 
agreement with the importance of a specific cell of origin for tumorigenesis, the SS1-
SSX oncoproduct induces spontaneous SS in transgenic mice in vivo with 100% pen-
etrance when expressed in mesenchymal-derived progenitors expressing Myf5 [223]. 
However, conversely to myogenic sarcomas, no expression of myogenic markers has 
been unveiled in SS murine models or in SS patients. The evidence of the presence of 
the fusion both in primary and metastatic lesions and the apoptotic effects linked to its 
depletion concur to suggest a master role for SS18- SSX in the development of SS 
[220, 224]. Although SS18 is a transcriptional activator and SSX functions as a repres-
sor and both bind several partners, SS18-SSX does not contain a DNA-binding domain 
making difficult the identification of direct target genes [219]. However, it acts as a 
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transcriptional regulator controlling gene expression by chromatin remodeling 
(reviewed in [225]). Indeed, both SS18 and SS18-SSX associate with the SWI/SNF 
chromatin remodeling complex, which in normal cells/tissues facilitates gene tran-
scriptional programs creating nucleosome- depleted regions at core promoters and 
regulatory regions [226–229]. The inclusion of SS18-SSX fusion products in the SWI/
SNF complex dysregulates the function of the complex [229]. This is due to the 
repressor intrinsic properties of the SSX portion that can interact with gene repressor 
complexes, thus behaving in an opposite manner compared to SS18 itself [230]. SS 
shows no additional chromosomal imbalance in young patients; however it is charac-
terized by a high expression of components of molecular pathways strictly involved in 
early embryogenesis. Among these are WNT, Hedgehog, BMP, and Notch pathways. 
Studies aimed at unveiling binding partners for the SS18-SSX factor demonstrated an 
interaction of the SSX portion with the corepressor TLE1 (Table 11.1) [144]. TLE 
genes encode for TLE1–4 proteins that are corepressors and, in particular TLE1, com-
ponents of the Notch signaling the regulate stemness of embryonic progenitors during 
development. As a matter of fact, TLE1 is recruited by the Notch target HES1 on 
promoters to prevent gene expression [231]. SS18-SSX/TLE1 complex was found 
linked to ATF2, a transcriptional activator and DNA-binding protein, and was able to 
turn the ATF2 activator program in a repressor program [144]. The ultimate result is 
the repression of apoptotic/cell cycle blocker genes EGR1, p21Cip1, and ATF3 and 
the promotion of tumor cell survival, which was impaired by SS18-SSX silencing. 
The intrinsic mechanism of this effect on ATF2 was related to the interaction of SS18- 
SSX with the polycomb repressor complexes PRC2 and PRC1 [232], whose repressor 
activity was further enhanced by the presence of TLE1 in the complex. A deregulated 
transcript expression of TLE1 has been found by expression profiling experiments in 
primary SS [141] and the nuclear expression of the protein confirmed by immunohis-
tochemistry [142, 233]. To date, the evidence of an overexpression of TLE1 has cur-
rently entered the clinical use to discriminate among other soft tissue sarcomas [143]. 
In addition to TLE1, also other Notch-related factors have been shown to be upregu-
lated in SS, such as Notch1 and JAG1 [141], although no evidence for functional roles 
for these proteins in SS pathogenesis has been described so far. However, results from 
a randomized Phase I/II clinical trial using the GSI RO4229097 in association with the 
Hedgehog inhibitor vismodegib for adult and adolescent patients with advanced and 
metastatic sarcomas, among which SS (Table 11.2), will give some information about 
the potentiality of Notch signaling inhibition in SS.

11.3  Approaches to Inhibit Notch Signaling

Considering the structure, regulation, and function of Notch components, several 
steps of the signaling pathway can be targeted for inhibition.
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11.3.1  γ-Secretase Inhibitors (GSI)

The most widely used approach to hamper Notch signaling is based on the inhibi-
tion of γ-secretase activity resulting in Notch cleavage blockade. GSI showed anti-
tumorigenic activities in various cancer cells in preclinical models, and some of 
them are currently in clinical trials for oncologic diseases, mostly for adult patients. 
However, over the last years, several Phase I/II studies have been started involving 
also pediatric and adolescent oncologic patients (Table 11.2).

MK-0752 is a clinical GSI that was evaluated in several Phase I clinical trials for 
treatment in pediatric and adult malignancies (Table 11.2) [234–236]. Another GSI, 
RO4929097 [237], was evaluated in several NCI-sponsored Phase I/II clinical trials 
for treatment of solid tumors and T-ALL (Table 11.2). RO4929097 has been used in 
combinatorial adjuvant regimens with other anticancer drugs, and it is recently in 
Phase I/II associated with vismodegib, an inhibitor of Hedgehog signaling, for treat-
ment of advanced and metastatic sarcomas for adults and pediatric patients 
(Table 11.2).

The Phase II clinical trial with the GSI PF-03084014 for pediatric patients is 
ongoing for desmoid tumors and aggressive fibromatosis and is progressing to a 
Phase II for T-ALL and solid tumors (Table 11.2) [238]. In preclinical models, GSIs 
have shown also anti-angiogenic effects that could contribute to their efficacy 
in vivo. However, (i) GSI are unable to discriminate among Notch receptors and (ii) 
γ-secretase have a plethora of targets, and, thus, these chemicals can have off- target 
effects in vivo [239]. Among these, the most evident is the goblet cell metaplasia of 
the small intestine due to Notch2 inhibition in the intestinal epithelial stem cells 
compartment. Even if this effect can be partly prevented by coadministration of 
glucocorticoids, often the treatment with GSI) requires a lowering in the doses and 
intermittent administration. Moreover, the evidence of Notch target inhibition in 
tumor tissue, to decide the dose escalation, is often difficult since the modulated 
clinical targets not always are the Notch targets found in preclinical studies but can 
depend on the tissue-context of the patient.

11.3.2  Antibodies Against Notch Signaling Components

Although all Notch paralogs have similar mechanisms of signalization, paralog- 
specific and even opposite downstream effects have been reported [154, 240–246]. 
Therefore, specific monoclonal antibodies against individual receptors or ligands 
have been developed so far. Although no Notch monoclonal antibody has been evalu-
ated in pediatric tumors, some of them are being evaluated in clinical trials for adult 
tumors. The binding of the Notch component by the antibody results in the blockade 
of interaction between the receptor and the ligand and hampers the activation of the 
signaling. Among the antibodies against DLL4, the ligands responsible for the sprout-
ing of endothelial cells and formation of new vessels that have been evaluated in 

C. Cossetti et al.



295

Table 11.2 Completed and ongoing clinical trials with γ-secretase inhibitors in pediatric/young 
adult oncologic patients

Compound Combined
Clinical trials.
Gov Identifier

Clinical 
studies Cancer type

Patients 
age

MK0752 NCT00106145 Phase I Breast and 
advanced solid 
tumors

18 years 
and older

MK0752 NCT00100152 Phase I T-ALL 12 monthsa 
and older

PF- 
03084014

NCT01981551 Phase II Desmoid tumors/
aggressive 
fibromatosis

18 yearsa 
and older

PF- 
03084014

NCT00878189 Phase I Advanced solid 
tumors
T-ALL

16 years 
and older

RO4929097 NCT01269411 Phase I Gliomas 18 years 
and older

RO4929097 WBRT SRS NCT01217411 Phase I/
II

Breast cancer, 
lung cancer, 
melanoma

18 years 
and older

RO4929097 Dexamethasone NCT01088763 Phase I Leukemia, solid 
tumors, 
lymphoma

1 year toa 
21 years

RO4929097 Vismodegib NCT01154452 Phase I/
II

Advanced or 
metastatic 
sarcoma

18 years 
and older

RO4929097 Carboplatin/paclitaxel NCT01238133 Phase I Breast cancer 18 years 
and older

RO4929097 Cisplatin, vinblastine, 
and temozolomide

NCT01196416 Phase I/
II

Recurrent or 
metastatic 
melanoma

18 years 
and older

RO4929097 Cediranib maleate NCT01131234 Phase I Advanced solid 
tumors

18 years 
and older

RO4929097 NCT01232829 Phase II Metastatic 
pancreas cancer

18 years 
and older

RO4929097 Gemcitabine 
hydrochloride

NCT01145456 Phase I Advanced solid 
tumors

18 years 
and older

RO4929097 Temozolomide and 
radiation therapy

NCT01119599 Phase 1 Malignant 
glioma

19 years 
and older

RO4929097 Ketoconazole, rifampin 
midazolam, 
hydrochloride, 
omeprazole, 
tolbutamide, 
dextromethorphan, 
hydrobromide

NCT01218620 Phase I Adult solid 
neoplasm

18 years 
and older

RO4929097 Bicalutamide NCT01200810 Phase II Prostate cancer 18 years 
and older

(continued)
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Table 11.2 (continued)

Compound Combined
Clinical trials.
Gov Identifier

Clinical 
studies Cancer type

Patients 
age

RO4929097 NCT01141569 Phase II Renal cell 
carcinoma

18 years 
and older

RO4929097 NCT01192763 Phase I Pancreatic 
cancer

18 years 
and older

RO4929097 Letrozole NCT01208441 Phase I Breast cancer 18 years 
and older

RO4929097 Exemestane, goserelin 
acetate

NCT01149356 Phase I Metastatic breast 
cancer

18 years 
and older

RO4929097 NCT01175343 Phase II Metastatic 
epithelial ovarian 
cancer, fallopian 
tube cancer, and 
primary 
peritoneal cancer

18 years 
and older

RO4929097 Capecitabine NCT01158274 Phase I Solid tumors 18 years 
and older

RO4929097 NCT01116687 Phase II Colon cancer, 
rectal cancer

18 years 
and older

RO4929097 Cetuximab NCT01198535 Phase I Metastatic 
colorectal cancer

18 years 
and older

RO4929097 NCT01070927 Phase II Non-squamous 
non-small cell 
lung cancer

18 years 
and older

RO4929097 Bevacizumab NCT01189240 Phase I/
II

Glioma 18 years 
and older

RO4929097 Erlotinib hydrochloride NCT01193881 Phase I Lung cancer 18 years 
and older

RO4929097 Vismodegib NCT01071564 Phase I Breast cancer 18 years 
and older

RO4929097 NCT01193868 Phase II Advanced 
non-small cell 
lung cancer

18 years 
and older

RO4929097 Temsirolimus NCT01198184 Phase I Advanced solid 
tumors

18 years 
and older

RO4929097 NCT01096355 Phase I Solid 
malignancies

18 years 
and older

http://clinicaltrials.gov
T-ALL T-cell acute lymphoblastic leukemia/lymphoma
aEnrollment of children

clinical trials for adult malignancies are MEDI0639 (NCT01577745, recruiting Phase 
I), OMP-21M18 (NCT01189929; NCT01952249; NCT01189942; NCT01189968 
Phase I and Ib), and REGN421 (Phase I completed, showing good tolerability and 
two partial responses [247]). The specific antibody OMP-52M51 against Notch1 is in 
clinical trial Phase I, NCT01778439; NCT01703572) and the antibody OMP- 59R5 
against Notch2/3 in Phase I/II trials (NCT01647828; NCT01859741).
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11.3.3  Blocking Peptides

Preclinical studies demonstrated that it is possible to interfere with the transcriptional 
machinery of Notch signaling with inhibitory peptides. This is the case of a dnMAML1 
used to block the RBP-jK-dependent transcription due to Notch activation. Stapled 
peptides competing with MAML are able to prevent gene transcription in murine 
models of T-ALL [248, 249]. One characteristic of this stapled peptide is the ability to 
bind also to preassembled Notch1–CSL complexes to inhibit the binding of the endog-
enous MAML1 [249]. These peptides have relatively small size and are highly cell-
permeable. However, if they target only the transcriptional activity of Notch signaling, 
they can be ineffective in cancers in which the Notch pathway works in a noncanoni-
cal way. Nonetheless, dnMAML peptides could act also sequestering NICD in the 
cytoplasm, thus hampering also noncanonical roles of the cleaved protein.

11.3.4  Decoys

Soluble forms of the extracellular domains of Notch receptors and their ligands 
have been studied as decoys to inhibit the signaling. Decoys function by binding to 
endogenous ligands or receptors preventing the endogenous counterpart to be 
bound, and, since it lacks intracellular domains, the signaling of the pathway is 
completely abrogated [250–252]. Interestingly, endogenous soluble Notch ligands 
can be produced by metalloproteases, but their physiologic role still needs to be 
clarified [253, 254].

11.4  Conclusions

In conclusion, we summarized the role of Notch signaling in pediatric soft tissue 
sarcomas, giving an overview of the potentiality in targeting the pathway. Notch 
signaling plays a major role in the determination and homeostasis of tissues of mes-
enchymal origin in the embryo and postnatal life. Here we highlighted a role of 
Notch signaling deregulation in pediatric soft tissue sarcomas in the preclinical set-
ting, reporting evidence that Notch modulation regulates cell proliferation, differen-
tiation, and motility/invasion of tumor cells. To date, the majority of approaches 
against Notch signaling activation rely on the use of GSI even if promising mono-
clonal antibodies and cell-permeable small molecules are being developed for adult 
cancers. It is arguable that the pharmacokinetics properties and the biodistribution 
of decoys and antibodies are the limiting factors for their therapeutic application. 
Interestingly, for those patients with tumors in which Notch pathway works as a 
tumor suppressor, such as in EWS, agents stimulating its activity or downstream 
effects should be considered. In summary, potentially a Notch-based therapy might 
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represent one of the future personalized strategies for young patients with soft tissue 
sarcomas.
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