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Abstract In many industrial applications, one is interested in finding an optimal
layout of an object, which often leads to PDE-constrained shape optimization
problems. Such problems can be approached by shape optimization methods, where
a domain is altered by smooth deformation of its boundary, or by means of topology
optimization methods, which in addition can alter the connectivity of the initial
design. We give an overview over established topology optimization methods and
focus on an approach based on the sensitivity of the cost function with respect
to a topological perturbation of the domain, called the topological derivative. We
illustrate a way to derive this sensitivity and discuss the additional difficulties
arising in the case of a nonlinear PDE constraint. We show numerical results for
the optimization of an electric motor which are obtained by a combination of two
methods: a level set algorithm which is based on the topological derivative, and
a shape optimization method together with a special treatment of the evolving
material interface which assures accurate approximate solutions to the underlying
PDE constraint as well as a smooth final design.

1 Introduction

This chapter deals with PDE-constrained topology and shape optimization and is
motivated by a concrete application from electrical engineering, namely the design
optimization of an electric motor. The goal is to identify an admissible subset Ω

of the design region Ωd of the motor which yields the best possible performance
of the motor. The performance is measured by a functional J which is related to
the smoothness of the rotation or to the torque of the motor. In shape optimization,
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the domain can be modified by a smooth deformation of the boundary, whereas the
topology optimization methods can also alter the connectivity of the domain by, e.g.,
introducing new holes.

In contrast to optimal control problems, here the set of admissible controls is a
set of subsets of Rd , which does not admit a vector space structure. Nevertheless,
we will use the notions of derivatives of the objective functional J with respect
to the control variable Ω: On the one hand, the shape derivative represents the
sensitivity of a domain-dependent functional with respect to a smooth variation of
the boundary of this domain whereas, on the other hand, the topological derivative
is the sensitivity of the functional with respect to a topological perturbation of the
set Ω , i.e., with respect to the introduction of a hole in its interior. Starting out
from an initial design, these sensitivities can be used to successively update the
shape and topology of the control Ω in order to reach an optimal design. In our
case, the set Ω is a subset of the computational domain D representing the motor,
and its boundary ∂Ω represents a material interface, e.g., the interface between a
ferromagnetic region and an air region of the motor. Both the shape derivative and
the topological derivative of this PDE-constrained optimization problem involve
the solution to the state equation u and the solution to the adjoint equation p. In
a numerical algorithm, these quantities must be computed approximately in each
iteration, which is often done by a finite element method. In order to obtain accurate
approximations uh, ph to the state and adjoint variable, one has to take care of the
material interface between the different subdomains. This interface evolves over the
iterations of the algorithm and is, in general, not aligned with the underlying finite
element mesh.

This book chapter is meant to give an overview over various aspects of topology
and shape optimization approaches and many details and proofs are omitted. For
more details and more mathematical rigor, we refer the interested reader to [20].
The rest of this chapter is organized as follows: The design optimization problem
for the electric motor, which serves as a model problem throughout this chapter,
is introduced in Section 2. In Section 3, we give an overview over established
topology optimization methods and demonstrate the main steps in the derivation of
the topological derivative for the optimization problem at hand, which is constrained
by a quasilinear PDE constraint. Section 4 deals with shape optimization and we will
derive the shape derivative for our problem. In Section 5, we give an overview over
possible ways to treat moving interfaces in the context of finite elements, before
combining all of these techniques to an efficient design tool in Section 6, where we
will also give numerical optimization results.

2 Problem Description

We consider an interior permanent magnet electric motor as depicted in Figure 1
which consists of a fixed outer part (called the stator) and a rotating inner part (the
rotor). The stator contains coils where alternating electric current is induced and
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Fig. 1 Left: computational domain D representing electric motor with different subdomains.
Right: zoom on upper left quarter (for a different rotor-to-stator constellation) with design
region Ωd and fixed ferromagnetic set Ω

f ix
f . For a given design Ω ⊂ Ωd , we have Ωf =

Ω
f ix
f ∪ Ω

the rotor holds permanent magnets which are magnetized in the directions indicated
in Figure 1. Both parts contain a ferromagnetic subdomain and they are separated
by a thin air gap. A rotation of the rotor occurs due to the interaction between the
magnetic fields produced by magnets and the electric currents in the coils. As it is
common for the simulation of electric motors at constant rotation speed, we consider
the setting of two-dimensional magnetostatics. There, the magnetic flux density B
is given as B = curl

(
(0, 0, u)�

)
where u solves the quasilinear boundary value

problem

−div (νΩ(x, |∇u|)∇u) = J3 − ν0div M⊥, x ∈ D, (1a)

u = 0, x ∈ ∂D, (1b)

on a circular hold-all domain D where J3 denotes the currents impressed in the coil
areas and M⊥ is the perpendicular of the permanent magnetization in the magnets.
Here, Ω ⊂ Ωd denotes the unknown subset of the design region that is occupied
with ferromagnetic material, and the magnetic reluctivity νΩ is a nonlinear function
ν̂ in the ferromagnetic subdomain and a constant ν0 in the rest of the motor,

νΩ(x, s) =
{

ν̂(s), x ∈ Ωf ,

ν0, x ∈ D \ Ωf .
(2)

Here, Ωf consists of the fixed ferromagnetic domain Ω
f ix
f outside the design region

Ωd and the variable ferromagnetic subset of the design region Ω ⊂ Ωd , i.e., Ωf =
Ω

f ix
f ∪Ω , see Figure 1. Note that, in general, the nonlinear function ν̂ is not known

in a closed form but is usually approximated from measured values, see [28].
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The magnetic reluctivity νΩ , which is the reciprocal of the magnetic permeability
μΩ , is much larger in the air subdomains compared to the ferromagnetic subdo-
mains of the motor. Therefore, the distribution of ferromagnetic material inside the
design area Ωd (i.e., the shape and topology of the unknown set Ω) influences the
magnetic flux density B in Ωd and also in the rest of the motor. The magnetic flux
density B inside the air gap between rotor and stator has a big impact on the behavior
of the rotation of the motor. The goal of the optimization problem is to identify a
subset Ω which minimizes the objective function J that is related to the smoothness
of the rotation of the motor. The functional J depends on the magnetic flux density
B in the air gap and will be introduced later in Section 6. The PDE-constrained
design optimization problem reads

min
Ω

J(u,Ω) (3a)

subject to u ∈ H 1
0 (D) : ´

D
νΩ(x, |∇u|)∇u · ∇η dx = 〈F, η〉 ∀η ∈ H 1

0 (D), (3b)

where (3b) is the weak form of boundary value problem (1) with F ∈ H−1(D)

given by

〈F, η〉 =
ˆ

D

J3 η + ν0 M⊥ · ∇η dx, η ∈ H 1
0 (D).

Remark 1 In applications of electric motors, the functional J is usually supported
only in the air gap between the rotor and the stator. Since the design areas are part
of the rotor, we assume that J does not depend on Ω directly, but only via the state
variable u, J = J (u) �= J (u,Ω). Furthermore, we introduce the reduced functional
J (Ω) = J (u(Ω)) where u(Ω) is the solution to (3b) for given Ω .

3 Topology Optimization

In this chapter, we employ a topology optimization algorithm which is based on
the topological derivative. Beside this approach, there exist a number of other
approaches to topology optimization. We give an overview over the most widely
used methods in Section 3.1 before coming to the derivation of the topological
derivative for the problem at hand in Section 3.2.

3.1 Overview of Topology Optimization Methods

The concept of topology optimization originates from applications in mechanical
engineering but has been applied to a large variety of other applications such as
fluid dynamics, acoustics, or electromagnetics. This section is meant to give a brief
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overview over the most common methods of topology optimization. For a more
detailed discussion of the single approaches, we refer the reader to the review
articles [14, 29, 34] and the references therein.

The starting point of numerical topology optimization is widely considered to
be the seminal paper by Bendsøe and Kikuchi [9] introducing the homogenization
method for topology optimization, followed by the paper [8], where Bendsøe
introduced what is now known as the Solid Isotropic Material with Penalization
(SIMP) method, giving rise to the large class of density-based methods.

3.1.1 Homogenization Method

The idea of the homogenization method is to represent a domain as a periodic
microstructure (usually consisting of rectangular cells like a regular quadrilateral
finite element grid) and then to find the optimal layout for each cell. Each of these
cells is considered to consist of material and void regions (often a rectangular hole
surrounded by solid material) and the dimensions and orientations of these holes are
the design variables with respect to which the optimization is performed. Finally,
one ends up with a perforated design which can be interpreted as a microstructure.
A black-and-white structure can be obtained by setting those cells which are mostly
occupied with material to solid, and the other cells to void. The method uses several
degrees of freedom for each of the cells, resulting in a large number of degrees
of freedom, which is considered a significant drawback of this method. For more
details on the homogenization method, we refer the reader to the monograph [1]
and the references therein.

3.1.2 Density Methods

In density-based approaches to topology optimization, a design can be represented
by a function ρ which takes the value 1 in areas of material and the value
0 in void areas. We remark that, in applications of mechanical engineering, if
ρ is 0, the elasticity tensor vanishes and the global stiffness matrix becomes
singular. Therefore, it is common practice in density-based topology optimization
of mechanical structures to replace the value of 0 by a small, but positive number
ρmin > 0. The idea of density-based topology optimization approaches is to relax
this strict 0–1 nature of the problem by allowing the function ρ to attain any value
between 0 and 1. The function ρ is called a density variable. In order to enforce a 0–1
structure of the final design, the idea of [8] is to combine this idea with a penalization
of intermediate density values, i.e., to replace the density function ρ in the state
equation (and only there) by a penalized version of the density, ρ̃(ρ) = ρp for some
p > 1. In combination with a constraint on the volume of the arising structure, the
algorithm favors the use of “black” and “white” regions, i.e., regions where ρ = 1
and ρ = 0, respectively, because intermediate values “give very little stiffness at an
unreasonable cost” [8]. As remarked in [29], a constraint which limits the volume is
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important for this penalizing effect to appear. The method described in [8] together
with the choice ρ̃(ρ) = ρp for some p > 1 became well known as the SIMP
method. We remark that the method is sensitive with respect to the value of p and
that good results are usually obtained by using p = 3 or by gradually increasing the
parameter from p = 1 to higher values in the course of the optimization procedure
[29].

While the penalization of intermediate density values yields designs with a 0–1
structure, these problems usually lack existence of a solution, a fact which often
results in a mesh dependence of the optimized designs. For a detailed survey on
the numerical problems resulting from the ill-posedness of such problems, we refer
the reader to [30]. The most widely used approach to regularizing these ill-posed
problems is by applying a filter to the density variable ρ. This means that one
replaces the actual density at a point by an average over the density values in a
neighborhood of a certain radius R, called the filter radius. Other approaches include
a filtering of the sensitivities, adding a bound on the perimeter of the arising structure
or on the gradient of the density variable ρ, see [29, 30].

A more detailed overview of density-based topology optimization methods can
be found in, e.g., [10, 29].

3.1.3 Phase-Field Method

The phase-field method for topology optimization is a density-based method using
a linear material interpolation, ρ̃(ρ) = ρ. A regularization is achieved by adding
a term to the cost functional which approximates the total variation of the density
variable. This term is a Cahn-Hilliard type functional, which itself is a weighted
sum of two terms. One of these two terms causes a regularizing effect whereas the
other term penalizes intermediate density values. We mention that the choices of the
weighting factor between these two parts, as well as the weight of the Cahn-Hilliard
type functional relative to the objective function, are often crucial for obtaining good
results. The phase-field method has been applied to many topology optimization
problems, see, e.g., [12, 22].

3.1.4 Level Set Methods

In the level set method [27], a material interface is represented by the zero level set
of an evolving function ψ = ψ(x, t) which attains positive values in one subdomain
and negative values in the other. The evolution of ψ is given by the solution to the
Hamilton-Jacobi equation

∂

∂t
ψ + V · ∇ψ = 0,
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where t is a pseudo-time variable and V determines the direction of the evolution.
In applications from shape optimization, this vector field is given according to shape
sensitivities. For a thorough overview over level set methods, we refer the reader to
the review papers [29, 34].

3.1.5 Topological Derivative

The concept of the topological derivative was introduced in [17] as a means to allow
for changes of the topology in the course of a classical shape optimization method.
The topological derivative of a domain-dependent functional at an interior point of
the domain describes its sensitivity with respect to the introduction of a hole around
that point. We will deal with the topological derivative in detail in Section 3.2.

3.2 Topological Derivative for Nonlinear Magnetostatics

The topological derivative of a domain-dependent functional J = J (Ω) was
introduced in a mathematically rigorous way in [31]. Given a domain Ω , an interior
point x0 ∈ Ω , and a bounded domain ω which contains the origin, let ωε = x0 +ε ω

represent the hole of radius ε around x0 and let Ωε := Ω \ ωε denote the perturbed
domain. Then, the topological derivative of J at the point x0 is defined as the
quantity G(x0) satisfying a topological asymptotic expansion of the form

J (Ωε) − J (Ω) = f (ε)G(x0) + o(f (ε)),

where f is a positive function which tends to zero with ε, most often f (ε) = εd with
d the space dimension. In many situations such as in the context of electromagnetics,
one is not interested in a perturbation of the domain where a hole is excluded from
the computational domain, but rather in a local perturbation of a material coefficient.
In fact, in the context of magnetostatics, introducing a “hole” in the ferromagnetic
subdomain corresponds to the introduction of a different material, namely air. Then,
one is interested in an expansion of the form

Jε(uε) − J0(u0) = f (ε)G(x0) + o(f (ε)). (4)

Here, uε is the solution to the state equation where the material coefficient is
perturbed within a radius ε around x0, and u0 is the solution to the unperturbed
state equation. Likewise, Jε and J0 denote the objective functional in the perturbed
and unperturbed configuration, respectively. We remark that this interpretation is
possible in the context of electromagnetics where air is just a different material
with a different, positive material coefficient, whereas in mechanical engineering
an inclusion of void would lead to a loss of the ellipticity of the perturbed bilinear
form.
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It can be seen from the expansion (4) that, at points x0 where G(x0) < 0, for
ε > 0 small enough, the objective value for the perturbed configuration is smaller
than that in the unperturbed configuration, Jε(uε) − J0(u0) < 0. Thus, in order
to minimize a given functional J , it is beneficial to change the material in areas
where the topological derivative is negative. Using this information for the iterative
introduction of holes at the most favorable positions is one possible topology
optimization algorithm using the topological derivative. A different algorithm that
is based on the topological derivative is the level set algorithm introduced in [5].
As opposed to the classical level set method for shape optimization, the updates are
based on the topological derivative rather than on the shape derivative. Therefore,
this algorithm can also nucleate new holes in the interior. More details on the
algorithm can be found in [4].

3.2.1 Preliminaries

We show the main steps in the derivation of the topological derivative according
to (4) in the context of two-dimensional magnetostatics. We consider a simplified
version of the PDE constraint (3b) where, in the unperturbed configuration, the
entire computational domain is occupied with ferromagnetic material. Let F ∈
H−1(D) denote the sources on the right-hand side of the PDE constraint and let
Ωd denote the design subdomain which we assume to be compactly contained in
D \ supp(F ), i.e., Ωd ⊂⊂ D \ supp(F ). Let x0 ∈ Ωd denote a fixed interior point
around which the material coefficient is perturbed. Given a smooth bounded domain
ω containing the origin, which represents the shape of the material perturbation, let
ωε = x0 + ε ω for small ε > 0. Then, the ferromagnetic subdomain in the perturbed
configuration is given by Ωε = Ω \ ωε. For ε > 0 and W ∈ R

2, we define

T (W) = ν̂(|W |)W and Tε(x,W) = νΩε (x, |W |)W,

where νΩε is defined according to (2). For the rest of this chapter, we will use ω =
B(0, 1) the unit disk in R

2. For more details about a possible extension of the results
to ellipse-shaped inclusions, see [20].

Let ε > 0 small enough such that ωε ⊂ Ωd . Using the notation introduced
above, the state equation in the unperturbed and in the perturbed setting read

Find u0 ∈ H 1
0 (D) :

ˆ

D

T (∇u0) · ∇η dx = 〈F, η〉 ∀η ∈ H 1
0 (D), (5)

Find uε ∈ H 1
0 (D) :

ˆ

D

Tε(x,∇uε) · ∇η dx = 〈F, η〉 ∀η ∈ H 1
0 (D), (6)

respectively. Note that the right-hand sides coincide since we assumed that x0 ∈
Ωd ⊂⊂ D\supp(F ). We will be interested in the behavior of the difference between
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the solution to these two boundary value problems in terms of ε. By subtracting (5)
from (6), we get the boundary value problem defining the variation of the direct state
ũε := uε − u0,

Find ũε ∈ H 1
0 (D) :

ˆ

D

(Tε(x,∇u0 + ∇ũε) − Tε(x,∇u0)) · ∇η dx

= −
ˆ

ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇η dx ∀η ∈ H 1
0 (D).

(7)

Furthermore, for simplicity, we assume that the objective functional is the same
in the perturbed and in the unperturbed configuration, Jε = J0 = J . Note that this
is satisfied for functionals which are supported only outside the design area like in
the case of electric motors, cf. Remark 1. For deriving the topological derivative, we
make the following assumption on the objective function:

Assumption 1 For ε > 0, there exist G̃ ∈ H−1(D) and δJ ∈ R such that

J (uε) − J (u0) = 〈G̃, uε − u0〉 + δJ ε2 + o(ε2). (8)

Note that this assumption is satisfied, e.g., for quadratic functionals which are
supported only outside the design region.

Moreover, we introduce the following adjoint equations in the unperturbed and
perturbed configurations:

Find p0 ∈ H 1
0 (D) :

ˆ

D

DT (∇u0)∇p0 · ∇ηdx = −〈G̃, η〉 ∀η ∈ H 1
0 (D),

Find pε ∈ H 1
0 (D) :

ˆ

D

DTε(x,∇u0)∇pε · ∇ηdx = −〈G̃, η〉 ∀η ∈ H 1
0 (D). (9)

Here, G̃ is according to Assumption 1 and DT , DTε denote the Jacobians of the
operators T , Tε, respectively. Also here, we introduce the difference between the
solutions to the two problems above, called the variation of the adjoint state p̃ε :=
pε − p0, which is the solution to

Find p̃ε ∈ H 1
0 (D) :

ˆ

D

DTε(x,∇u0)∇p̃ε · ∇η dx

= −
ˆ

ωε

(ν0 I − DT (∇u0))∇p0 · ∇η dx ∀η ∈ H 1
0 (D).

(10)

For the rest of this section, we will drop the differential dx in the volume integrals
as there is no danger of confusion.
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3.2.2 Derivation of Topological Derivative

By virtue of Assumption 1, choosing f (ε) = ε2, it remains to show that there exists
G0 ∈ R such that 〈G̃, ũε〉 = ε2G0+o(ε2). Testing the perturbed adjoint equation (9)
with η = ũε and exploiting the symmetry of DTε, we get

〈G̃, ũε〉 = −
ˆ

D

DTε(x,∇u0)∇ũε · ∇pε

= −
ˆ

D

DTε(x,∇u0)∇ũε · ∇pε

+
ˆ

D

(Tε(x,∇u0 + ∇ũε) − Tε(x,∇u0)) · ∇pε

+
ˆ

ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇pε,

where we added the left- and right-hand side of (7) tested with η = pε. For ε > 0,
V,W ∈ R

2, we introduce the operator

Sε
V (x,W) := Tε(x, V + W) − Tε(x, V ) − DTε(x, V )W, (11)

which characterizes the nonlinearity of the operator Tε. Then, we get

〈G̃, ũε〉 =
ˆ

ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇pε +
ˆ

D

Sε∇u0
(x,∇ũε) · ∇pε.

Noting that pε = p0 + p̃ε, and defining

j1(ε) :=
ˆ

ωε

(ν0 − ν̂(|∇u0|))∇u0 · (∇p0 + ∇p̃ε),

j2(ε) :=
ˆ

D

Sε∇u0
(x,∇ũε) · (∇p0 + ∇p̃ε),

we get from Assumption 1 that

Jε(uε) − J0(u0) = j1(ε) + j2(ε) + δJ ε2 + o(ε2).

In view of (4), it remains to show that there exist numbers J1, J2 such that

j1(ε) = ε2 J1 + o(ε2), and (12)

j2(ε) = ε2 J2 + o(ε2). (13)

Then, the topological derivative is given by G(x0) = J1 + J2 + δJ .
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In what follows, we will first sketch the procedure to obtain the topological
derivative in the case of a linear model, i.e., in the case where the nonlinear
function ν̂ introduced in (2) is replaced by a constant ν1 < ν0, before discussing the
additional difficulties in the case of nonlinear material behavior in the ferromagnetic
subdomain.

3.2.3 Linear Case

It can be seen from the definition of the operator Sε in (11) that, in the linear case,
the second term j2(ε) vanishes. Thus, we only have to consider the term

j1(ε) = (ν0 − ν1)

ˆ

ωε

∇u0 · (∇p0 + ∇p̃ε)

= (ν0 − ν1)

ˆ

ωε

∇u0 · ∇p0 −
ˆ

D

νε∇ũε · ∇p̃ε, (14)

where we used (7) with η = p̃ε and introduced νε(x) = χD\ωε (x) ν1 + χωε (x) ν0
with χS denoting the characteristic function of a set S.

Assuming enough regularity for the unperturbed direct and adjoint state, it can
be seen that, for the first term in (14), we have

(ν0 − ν1)

ˆ

ωε

∇u0 · ∇p0 = |ω|ε2 (ν0 − ν1)∇u0(x0) · ∇p0(x0) + o(ε2) (15)

as ε approaches zero.
In order to treat the second term in (14), we define ν̃(x) = χR2\ω(x)ν1 +χω(x)ν0

for x ∈ R
2, and introduce ε-independent approximations to boundary value

problems (7) and (10). After a change of scale, we get the transmission problem
defining the variation of the direct state at scale 1,

Find H ∈ H such that
ˆ

R2
ν̃ ∇H · ∇η + (ν0 − ν1)

ˆ

ω

∇u0(x0) · ∇η = 0 ∀η ∈ H , (16)

approximating (7), and the problem defining the variation of the adjoint state at
scale 1,

Find K ∈ H such that
ˆ

R2
ν̃ ∇η · ∇K + (ν0 − ν1)

ˆ

ω

∇p0(x0) · ∇η = 0 ∀η ∈ H , (17)
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as an approximation of (10), where H is a suitable weighted Hilbert space over R2.
The solutions H , K are approximations to ũε and p̃ε, respectively, at scale 1 and it
holds

ũε(x) ≈ εH(ε−1x) and p̃ε(x) ≈ εK(ε−1x),

for almost every x ∈ D. An important ingredient for deriving an expansion of the
form (12) is to show that these ε-independent approximations of ũε and p̃ε have a
sufficiently fast decay as |x| approaches infinity. This would imply that the impact
of the local variation of the material is small “far away” from the inclusion. In the
case of a linear state equation, this sufficiently fast decay can be established by
convolution of the right-hand side of problems (16) and (17) with the fundamental
solution of the Laplace equation. Exploiting these sufficiently fast decays allows us
to show that

ˆ

D

νε∇ũε · ∇p̃ε = ε2
ˆ

R2
ν̃ ∇H · ∇K + o(ε2),

which, by means of (16) tested with η = K , together with the term (15), yields (12)
with

J1 = (ν0 − ν1)

ˆ

ω

∇u0(x0) · (∇K + ∇p0(x0)).

It can be seen from (17) that K depends linearly on ∇p0(x0) and, therefore, J1 can
be represented by means of a matrix M . Finally, in the linear case we get

J1 = ∇u0(x0)
� M ∇p0(x0),

J2 = 0.

Here, M = ν1P(ω, ν0/ν1) where the matrix P(ω, ν0/ν1) only depends on the
shape of the inclusion ω and the contrast ν0/ν1 and is called a polarization matrix,
see, e.g., [2]. Explicit formulas for these matrices are available if ω is a disk or
ellipse in two space dimensions, or a ball or ellipsoid in three space dimensions,
see also [2, 3]. We mention that in the case where ω is the unit disk in R

2, the
polarization matrix in the linear setting reads

Pω,ν0/ν1 = 2 π
ν0/ν1 − 1

ν0/ν1 + 1
I,

where I is the identity matrix. A more detailed derivation of the topological
derivative in the linear setting can be found in [3].
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3.2.4 Nonlinear Case

In the nonlinear case, the procedure to treat the term j1(ε) is similar. However, one
big difference is that in the nonlinear setting a sufficiently fast decay of the variation
of the direct state H cannot be shown by convolution, but other, more technical tools
must be used, see [6, 20]. Furthermore, the term j2(ε) does not vanish here and an
estimate of the type (13) has to be established. Under certain assumptions on the
nonlinearity of the function ν̂, this was done in [20]. If those assumptions on the
ferromagnetic material are fulfilled, the result is the following:

Theorem 1 ([20]) Let ω = B(0, 1). Assume that the functional J fulfills
Assumption 1 and that, for the unperturbed direct and adjoint state, it holds
u0, p0 ∈ C1,β(D) for some β > 0. For V,W ∈ R

2, let S̃V (x,W) =
χR2\ω(x) (T (V + W) − T (V ) − DT (V )W). Then, the topological derivative of the

PDE-constrained optimization problem (3) according to (4) at point x0 ∈ Ωd reads

G(x0) = ∇u0(x0)
�M∇p0(x0) +

ˆ

R2
S̃∇u0(x0)(x,∇H) · (∇p0(x0) + ∇K) + δJ

(18)
with M = M (ω, DT (∇u0(x0))) ∈ R

2×2 and H and K being the variations of the
direct and adjoint state at scale 1, respectively.

Remark 2 In order to make use of this formula in numerical optimization algo-
rithms, the following aspects are treated in [20]:

• An explicit formula for the matrix M is computed. This matrix is related to the
concept of polarization matrices.

• The term

J2 =
ˆ

R2
S̃∇u0(x0)(x,∇H) · (∇p0(x0) + ∇K)

seems to be computationally extremely costly since H depends on ∇u0(x0) via
(16) and, thus, the (nonlinear) transmission problem (16) defining H would have
to be solved for every point x0 in order to evaluate the term J2. This problem
was overcome by exploiting a rotational invariance property of J2 with respect to
a simultaneous rotation of the quantities ∇u0(x0) and ∇p0(x0). This property
allows to precompute a range of typical values of J2 in a computationally
expensive offline stage and to look up the precomputed values during the
optimization procedure.

• The formula of Theorem 1 represents the sensitivity of the objective function
with respect to the introduction of an inclusion of air around a point x0. In order
to be able to employ bidirectional optimization algorithms which are capable of
both removing and reintroducing material at the most favorable positions such as
the algorithm introduced in [5], also the topological derivative for the reverse
scenario must be computed. We refer to these two topological derivatives as
Gf →air and Gair→f .



330 P. Gangl

4 Shape Optimization

In contrast to topology optimization, in shape optimization the connectivity of a
domain is assumed to be fixed. Here, one is interested in finding the shape of a
domain or subdomain which is optimal with respect to a given criterion by means
of smooth variations of the boundary or of a material interface. In this section, we
are concerned with finding the optimal shape of the ferromagnetic part Ω within
the design area Ωd of the electric motor introduced in Section 2. An essential tool
for gradient-based shape optimization is the notion of the sensitivity of a shape
functional J = J (Ω) with respect to a smooth perturbation of the boundary of
the shape Ω , called the shape derivative. A shape functional J is said to be shape
differentiable if the limit

dJ (Ω;V ) = lim
t↘0

J (Ωt ) − J (Ω)

t

exists and the mapping V �→ dJ (Ω;V ) is linear and continuous with respect to
the topology of C∞

c (D,R2). Here, Ωt = Tt (Ω) denotes the transformed domain
under the flow Tt generated by a smooth vector field V .

We mention that there are two ways to define this flow given a smooth vector
field V . In the perturbation of identity method, the transformation is given by
Tt (X) = X + t V (X) for all X ∈ R

d and t ≥ 0, whereas in the velocity or speed
method, it is given as Tt (X) = x(t, X) with x(t, X) the solution to the initial value
problem

d

dt
x(t, X) = V (x(t, X)), 0 < t < τ,

x(0, X) = X,

which, for small τ > 0, has a unique solution, see [16, 32]. Note that, for simplicity,
we assumed the vector field V to be autonomous. We remark that both approaches
are equivalent for the derivation of first-order shape derivatives but differ by an
acceleration term in the case of second-order shape derivatives [16].

4.1 Representation of Shape Derivative

There are basically two ways how one can represent the shape derivative of a
functional depending on a domain Ω: either as a distribution on the boundary
∂Ω which only depends on the normal component of the perturbation, called the
Hadamard form, or in a more general volume form, also called the distributed shape
derivative. If the shape Ω is regular enough, the Hadamard form can be rewritten as
an integral over the boundary,

dJ (Ω;V ) =
ˆ

∂Ω

gΓ V · n ds, (19)
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with an integrable function gΓ . The volume form can be written as

dJ (Ω;V ) =
ˆ

Ω

g(V, DV ) dx, (20)

for some function g.
One obvious advantage of the boundary-based form (19) is that a descent

direction V = −gΓ n is readily available. However, in many situations this choice
of V might not be regular enough and has to be regularized. Furthermore, in many
numerical procedures for shape optimization, it is not enough to have a descent
direction that is only defined on the material interface and it has to be extended to a
neighborhood or to the entire computational domain.

On the other hand, in the case where the shape derivative is given in the dis-
tributed form (20), the extraction of a descent direction V such that dJ (Ω;V ) < 0
can also be achieved easily but requires the solution of an auxiliary boundary value
problem of the form

Find V : b(V,W) = −dJ (Ω;W) ∀W, (21)

where V,W are elements of a suitable function space and b(·, ·) is a positive definite
bilinear form on the same space. Obviously, a solution V to (21) is a descent
direction since dJ (Ω;V ) = −b(V, V ) < 0. One benefit of the volume form is
that it is more general, meaning that for shapes with lower regularity the distributed
shape derivative (20) may be well defined whereas the Hadamard form (19) is not. A
different aspect favoring the volume-based form (20) is concerned with numerical
accuracy of the approximation of the shape derivative when the underlying state
and adjoint equations are solved by the finite element method. In [24], the authors
show that the finite element approximation to the volume-based form converges
quadratically to the “true” shape derivative on the continuous level as the mesh size
tends to zero, whereas the boundary-based form converges only linearly.

We mention that, in the case of the Hadamard form of the shape derivative (19),
the auxiliary boundary value problem (21) with b(·, ·) defined on ∂Ω can be used
to compute a regularized gradient descent velocity for the case where the choice
V = −gΓ n is not smooth enough.

A more detailed comparison between these two possible representations can be
found in [25].

4.2 Shape Derivative for Nonlinear Magnetostatics

For the reasons mentioned above, we restrict ourselves to the shape derivative
in its volume-based representation (20). The rigorous derivation of the shape
derivative for the model problem involving the quasilinear PDE of two-dimensional
magnetostatics, which was introduced in Section 2, can be found in [21]. There,
the shape derivative was computed using the averaged adjoint method introduced
in [33].
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The shape derivative of the model problem (3) reads

dJ (Ω;V ) = −
ˆ

D

(J3div(V ) + ∇J3 · V )p dx −
ˆ

Ωmag

ν0P
′(0)∇p · M⊥ dx

+
ˆ

D

νΩ(x, |∇u|)Q′(0)∇u · ∇p dx (22)

−
ˆ

Ωf

ν̂′(x, |∇u|)
|∇u| (DV �∇u · ∇u)(∇u · ∇p) dx,

where P
′(0) = (div V )I − DV �, Q′(0) = (div V )I − DV � − DV , I ∈ R

2×2 is the
identity matrix, and u, p ∈ H 1

0 (D) are the state and adjoint state, respectively.

5 Interface Handling

Both the topological derivative (18) and the shape derivative (22) involve the
solution to the state equation (3b) and to the adjoint equation in the current
configuration. These two quantities are usually computed approximately by means
of the finite element method. In the course of the numerical optimization algorithm,
the interface between the ferromagnetic and the air subdomain evolves. In order
to get accurate solutions using standard finite element methods, this material
interface must be resolved by the underlying mesh. We give an overview over the
possible approaches to deal with evolving material interfaces in Section 5.1, before
introducing our method in Section 5.2.

5.1 Finite Element Methods for Interface Problems

One way to deal with evolving interfaces in the context of finite elements is to
create a new triangulation in each step of the algorithm, which is computationally
very costly. Another approach, which is often used in shape optimization, is to start
with a mesh that resolves the interface and to advect all nodes of the mesh in the
direction of the descent vector field V – provided that V is defined on the whole
computational domain. This procedure has the limitation that it does not allow for
topological changes and can become problematic when more complex geometries
with geometric constraints are involved, as it is the case for our model problem.
Here, fixed parts of the electric motor like the circular air gap should not be altered
under any circumstances.

The idea of the extended finite element method (XFEM) is to enrich the finite
element basis by additional basis functions which are modified versions of the
standard basis functions. The solution is seeked in the enriched space V Γ

h = Vh⊕V x
h
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where Vh is a standard finite element space, and V x
h the space of standard finite

element functions which are supported at the interface, multiplied with a so-called
enrichment function, see, e.g., [7, 19].

The idea of the immersed finite element method [26] is similar to that of the
XFEM. However, rather than adding basis functions to the basis, existing basis
functions of the finite element space which are supported across the interface are
modified in such a way that the interface jump conditions are satisfied.

In the unfitted Nitsche method introduced in [23], a discontinuity or kink of the
solution across an interface is enforced in a weak sense. This way of treating the
interface conditions is often used in combination with XFEM, called the Nitsche-
XFEM. In this method, just like in all other methods mentioned above, a crucial task
is to establish stability of the method with respect to the location of the interface
relative to the mesh. Generally, if an element of the underlying unfitted background
mesh is cut by the interface very close to one of the vertices, the condition of the
system becomes very bad. This issue is treated in the CutFEM [13], which is a
stabilized version of the Nitsche-XFEM.

An alternative to these fixed mesh approaches is to modify the mesh and always
work with a fitted discretization while still guaranteeing a certain quality of the
mesh. We mention the deformable simplicial complex (DSC) method [15].

In [18], an interface finite element method on a fixed mesh is introduced where
the interface is resolved by locally modifying the finite element basis functions.
Optimal order of convergence and also, when choosing a special hierarchical basis,
optimal conditioning of the system matrix are shown. We note that this parametric
approach can be equivalently interpreted as a fitted finite element method where
some of the mesh nodes close to the interface are moved in such a way that the
interface is resolved by the mesh. In the next section, we will follow the approach
of [18] and translate it to the case of triangular finite elements.

5.2 A Local Mesh Modification Strategy

We adapt the method presented in [18] for quadrilateral meshes to the case of
piecewise linear finite elements on a triangular grid. Our method is based on the
assumption that the mesh has a one-level hierarchy, i.e., that always four triangles of
the mesh Th can be combined to one triangle of a coarser mesh T2h. We will refer to
this bigger triangle as a macro triangle and call T2h the macro mesh. Furthermore,
we assume that each element of the macro mesh which is cut by the interface is
intersected either in two distinct edges or in one vertex and the opposite edge. Note
that this assumption can be enforced by choosing a fine enough macro mesh T2h.

The idea of the method is the following: If a macro element is not cut by the
material interface, it is left unchanged. For those macro elements which are cut by
the interface in two distinct edges, two of the three vertices lying on the edges of the
macro element are moved along these edges to the intersection points of the interface
and the macro edge, see Figure 2. If necessary, the vertex lying on the third edge
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Fig. 2 Left: modification of one macro element that is cut by the material interface (blue). Right:
mesh modification strategy for circular material interface

can be moved along that edge in order to avoid some angle to become too close to
180◦. The vertices of the macro element remain unchanged. Similarly, if the macro
element is cut in one vertex and the opposite edge, the vertex lying on the intersected
macro edge is moved to meet the intersection point and the other two vertices may
be moved such that a maximum angle condition is satisfied. More details on this
procedure can be found in [20] where also the optimal order of convergence of the
finite element solution to the true solution in the L2(D) and in the H 1(D) norm is
shown.

6 Numerical Optimization Results

In this section, we combine the results of Sections 3 and 4 and the method introduced
in Section 5.2 to one efficient design tool. We describe the procedure in Section 6.1
before applying it to the model problem introduced in Section 2 in Section 6.2.

6.1 Combined Topology and Shape Optimization
with Interface Handling

We present a two-stage algorithm where topology optimization is performed in
the first stage in order to find the optimal connectivity of the design domain,
followed by shape optimization in combination with the interface resolution method
of Section 5.2 as a post-processing in order to obtain smoother designs.

In the first stage, topology optimization is performed using the level set algo-
rithm [5]. In order to apply this algorithm, it is important to have the topological
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derivative for both directions, i.e., the sensitivity of the objective function with
respect to the nucleation of a hole of air inside ferromagnetic material, Gf →air , and
the sensitivity for the creation of ferromagnetic material in an air region, Gair→f .

The shape optimization is done by means of a gradient descent algorithm.
Starting out from an initial design, the interface between the ferromagnetic and
the air subdomain of the design area Ωd is moved a certain distance in a descent
direction V which was obtained from (21). The step size is chosen in such a way that
a decrease of the objective functional is achieved. Note that, for the evaluation of the
shape derivative on the right-hand side of (21), the state and adjoint equations have
to be solved, which is done by the finite element method. In order to obtain accurate
finite element solutions, the mesh modification strategy of Section 5.2 should be
applied whenever the interface is updated.

The proposed optimization procedure is summarized in the following algorithm:

Algorithm 1 (Combined topology and shape optimization with interface handling)

Stage I: Apply the algorithm [5] to find an optimal topology.
Stage II: Use the final design of Stage I as an initial design and perform gradient-
based shape optimization where for each solve of the state and adjoint equations,
the local mesh adaptation strategy of Section 5.2 is applied.

A more detailed description of the algorithm can be found in [20].

6.2 Minimizing Total Harmonic Distortion

The goal of the model problem introduced in Section 2 was to achieve a smooth
rotation of the rotor. This can be achieved by ensuring a smooth radial component
of the magnetic flux density Br = B ·n = ∇u ·τ in the air gap between the rotor and
the stator when the electric current is switched off (J3 = 0). Here, n and τ denote
the unit normal and tangential vectors on a circular path in the air gap, respectively.
For that purpose, we consider Br along this circular curve inside the air gap as a
periodic signal and decompose it into its Fourier coefficients,

Br(u)(ϕ) =
∞∑

k=1

Ak sin (ω k ϕ) + Bk cos (ω k ϕ), (23)

where Ak , Bk ∈ R, ϕ ∈ [0, 2π ], and ω denotes the number of pole pairs of the motor.
In the motor introduced in Section 2, we have eight magnetic poles, thus ω = 4. Due
to the geometry of the motor, the coefficients Ak are approximately zero and will
be neglected. The total harmonic distortion (THD) measures the contributions of
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higher harmonics (i.e., k > 1) to the total signal, see [11]. For practical purposes,
we only consider the first N = 20 harmonics. Then, the total harmonic distortion of
Br reads

T HD(Br) =
√√√√

∑N
k=2 B2

k∑N
k=1 B2

k

,

where the coefficients Bk are according to (23). The minimization of the THD filters
out all higher harmonics. In order to make sure that the first harmonic does not
become too small, we minimize the functional

J (u) = T HD(Br(u))2

B1(Br(u))
,

where B1(Br(u)) denotes the coefficient B1 in (23). In our implementation, we
computed the Fourier coefficients by a least square approach.

Figure 3 shows the evolution of the design by using Algorithm 1 starting from
an initial design. The final design of Stage I obtained after a total of 47 iterations
is approximated by an explicit polygonal interface, which serves as an initial guess
for the shape optimization. The final design after the shape optimization procedure
together with the local mesh modification strategy introduced in Section 5.2 can be
seen in the bottom row of Figure 3. Figure 4 shows the curve Br for the initial and
the final design of both stages of the optimization procedure, and Figure 5 the final
design together with the magnetic field.

7 Conclusion

This book chapter was motivated by a concrete application from electrical engineer-
ing, the design optimization of an electric motor. We addressed the problem by a
two-stage algorithm. In the first stage, we used a topology optimization approach
which is based on the mathematical concept of the topological derivative. Here,
the derivation and efficient implementation of the topological derivative for the
optimization problem at hand, which is constrained by a nonlinear PDE, turned out
to be particularly challenging. The second stage of the global algorithm is a shape
optimization algorithm where we additionally took care to accurately resolve the
evolving material interfaces by means of a mesh modification strategy. Finally, we
showed numerical results obtained by applying the introduced algorithm to find a
motor design which exhibits very smooth rotation properties.
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Fig. 3 Top left: initial design. Top right: design after two iterations of topology optimization by
algorithm [5]. Center left: final design of topology optimization after 47 iterations. Center right:
initial design for shape optimization by approximation of topology optimization result. Bottom
left: final design of shape optimization with mesh adaptation strategy after 10 iterations. Bottom
right: zoom on modified mesh
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Fig. 4 Radial component of magnetic flux density along the air gap for initial and final designs.
Left: Stage I (topology optimization). Right: Stage II (shape optimization)

Fig. 5 Final designs after Stage II together with magnetic field lines
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