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Abstract We consider a linear quadratic optimization problem where the state is
governed by a fractional ordinary differential equation. We also consider control
constraints. We show existence and uniqueness of an optimal state–control pair
and propose a method to approximate it. Due to the low regularity of the solution
to the state equation, rates of convergence cannot be proved unless problematic
assumptions are made. Instead, we appeal to the theory of Γ -convergence to show
the convergence of our scheme.

1 Introduction

In recent years, a lot of attention has been paid to the study of nonlocal problems,
of which fractional differential equations represent an instance. This is motivated
by the fact that fractional derivatives are better suited to capturing long-range
interactions, as well as memory effects. For instance, they have been used to describe
anomalous transport phenomena [9, 10], option pricing [6], porous media flow [5],
and viscoelastic materials [8], to name a few. It is only natural then, from the purely
mathematical as well as the practical points of view, to try to optimize systems that
are governed by these equations. In previous work [4], we dealt with a constrained
optimization problem where the state is governed by a differential equation that
presented nonlocal features in time as well as in space. Throughout the analysis
presented in [4], the nonlocalities in time and space were intertwined and this
required to develop several tools to analyze the nonlocal operator in space that
are, in principle, not relevant to the nonlocality in time. It is thus our feeling that
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the extensive technicalities that ensued in the analysis of [4] obscured many of the
unique features that optimization of fractional differential equations contains; for
instance, the lack of time regularity regardless of the smoothness of data. For this
reason, our main objective in this note is to present a detailed study for the case
where the state is governed by a time-fractional ordinary differential equation.

Let us be precise in our considerations. Given m, n ≥ 1, a final time T > 0, a
desired state ud ∈ L2(0, T ;Rm), and a regularization parameter μ > 0, we define
the cost functional as

J (u, z) = 1

2

ˆ T

0

(
|C u − ud |2m + μ|z|2n

)
dt, (1)

where we denote the Euclidean norm in R
s by | · |s and C ∈ M

m×n; Mm×n denotes
the set of all m–by–n matrices. The variable u is called the state, while the variable
z is the control. The control and state are related by the so-called state equation,
which we now describe. Given an initial condition ψ ∈ R

n, a forcing function f :
(0, T ] → R

n, a symmetric positive definite matrix A ∈ M
n×n, the state equation

reads

dγ
t u + A u = f + z, t ∈ (0, T ], u(0) = ψ. (2)

Here, γ ∈ (0, 1) and dγ
t denotes the so-called left-sided Caputo fractional

derivative of order γ , which is defined by [19, 28]

dγ
t v(t) = 1

Γ (1 − γ )

ˆ t

0

1

(t − ζ )γ
v̇(ζ ) dζ, (3)

where by v̇ we denote the usual derivative and Γ is the Gamma function. We
must immediately remark that, in addition to (3), there are other, not equivalent,
definitions of fractional derivatives: Riemann–Liouville, Grünwald-Letnikov, and
Marchaud derivatives. In this work, we shall focus on the Caputo derivatives since
they allow for a standard initial condition in (2); a highly desirable feature in
applications; see, for instance, the discussion in [14, Section E.4]. For further
motivation and applications, we refer the reader to [11, 14].

The problem we shall be concerned with is to find (ŭ, z̆) such that

J (ŭ, z̆) = min J (u, z) (4)

subject to the state equation (2) and the control constraints

a � z � b. (5)

Here a, b ∈ R
n which we assume satisfy that a � b. The relation v � w means

that, for all i = 1, . . . , n, we have vi ≤ wi .
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To our knowledge, the first work that was devoted to the study of (4) is [2]
where a formal Lagrangian formulation is discussed and optimality conditions are
formally derived. The author of this work also presents a numerical scheme based
on shifted Legendre polynomials. However, there is no analysis of the optimality
conditions or numerical scheme. Other discretization schemes using finite elements
[3], rational approximations [30], spectral methods [24, 32, 33], or other techniques
have been considered. Most of these works do not provide a rigorous justification
or analysis of their schemes, and the ones that do obtain error estimates under
rather strong regularity assumptions of the state variable; namely, they require that
ü ∈ L∞(0, T ;Rn) which is rather problematic; see Theorem 2 below. In contrast,
in this work, we carefully describe the regularity properties of the state equation
and on their basis provide convergence (without rates) of the numerical scheme we
propose.

Throughout our discussion, we will follow the standard notation and terminology.
Nonstandard notation will be introduced in the course of our exposition. The rest
of this work is organized as follows: Basic facts about fractional derivatives and
integrals are presented in Section 1.1. We study the state equation in Section 2
where we construct the solution to problem (2), study its regularity, and present
a somewhat new point of view for a classical scheme—the so-called L1 scheme.
More importantly, we use the right regularity to obtain rates of convergence; an
issue that has been largely ignored in the literature. With these ingredients at
hand we proceed, in Section 3, to analyze the optimization problem (4); we show
existence and uniqueness of an optimal state–control pair and propose a scheme
to approximate it. We employ a piecewise linear (in time) approximation of the
state and a piecewise constant approximation of the control. While not completely
necessary for the analysis, we identify the discrete adjoint problem and use it to
derive discrete optimality conditions. Finally, we show the strong convergence of
the discrete optimal control to the continuous one. Owing to the reduced regularity
of the solution to the state equation, this convergence, however, cannot have rates.

1.1 Fractional Derivatives and Integrals

We begin by recalling some fundamental facts about fractional derivatives and
integrals. The left-sided Caputo fractional derivative is defined in (3). The right-
sided Caputo fractional derivative of order γ is given by [19, 28]

dγ

T −t v(t) = − 1

Γ (1 − γ )

ˆ T

t

1

(ζ − t)γ
v̇(ζ ) dζ. (6)

For v ∈ L1(0, T ), the left Riemann–Liouville fractional integral of order σ ∈
(0, 1) is defined by
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Iσ
t [v](t) = 1

Γ (σ)

ˆ t

0

1

(t − ζ )1−σ
v(ζ ) dζ ; (7)

see [28, Section 2]. Young’s inequality for convolutions immediately yields that, for
p > 1, Iσ

t is a continuous operator from Lp(0, T ) into itself. More importantly, a
result by Flett [12] shows that

v ∈ L log L(0, T ) �⇒ Iσ
t [v] ∈ L

1
1−σ (0, T ). (8)

We refer the reader to [20] for the definition of the Orlicz space L log L(0, T ). This
observation will be very important in subsequent developments. Notice finally that
if v ∈ W 1

1 (0, T ), then we have that dγ
t v(t) = I

1−γ
t [v̇](t).

The generalized Mittag-Leffler function with parameters α > 0 and β ∈ R is
defined by

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
, z ∈ C. (9)

We refer the reader to [14] for an account of the principal properties of the Mittag-
Leffler function.

2 The State Equation

In this section, we construct the solution to (2), thus showing its existence and
uniqueness. This shall be of uttermost importance not only when showing the
existence and uniqueness of solutions to our optimization problem, but when we
deal with the discretization, as we will study the smoothness of u. To shorten
notation, in this section we set

g = f + z,

where f is the forcing term and z is the control in (2).

2.1 Solution Representation and Regularity

Let us now construct the solution to (2) and review its main properties. We will adapt
the arguments of [26] to our setting. Since the matrix A is symmetric and positive
definite, it is orthogonally diagonalizable; meaning that there are {λ
, ξ
}n
=1 ⊂
R+ × R

n such that
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A ξ
 = λ
ξ
, ξ
1 · ξ
2 = δ
1,
2 .

This, in particular, implies that the vectors {ξ
}n
=1 form an orthonormal basis of Rn.
Moreover, for any vector v ∈ R

n, we can define |v|2A = v · A v, which turns out to
be a norm that satisfies

λ1|v|2n ≤ |v|2A ≤ λn|v|2n, ∀v ∈ R
n. (10)

We set

‖v‖2
L2
A (0,T ;Rn)

=
ˆ T

0
|v|2A dt. (11)

With these properties of the matrix A at hand, we propose the following solution
ansatz:

u(t) =
n∑


=1

u
(t)ξ
, u
(t) = u(t) · ξ
, (12)

where the coefficients u
(t) satisfy

dγ
t u
(t) + λ
u
(t) = g
(t), t ∈ (0, T ], u
(0) = ψ
, (13)

for 
 ∈ {1, · · · , n}. Here, g
(t) = g(t) · ξ
 and ψ
 = ψ · ξ
. The importance of
this orthogonal decomposition lies in the fact that we have reduced problem (2)
to a decoupled system of equations. The theory of fractional ordinary differential
equations [28] gives, for 
 ∈ {1, · · · , n}, a unique function u
 satisfying problem
(13). In addition, standard considerations, which formally entail taking the Laplace
transform of (13), yield that

u
(t) = Eγ,1(−λ
t
γ )ψ
 +

ˆ t

0
(t − ζ )γ−1Eγ,γ (−λ
(t − ζ )γ )g
(ζ ) dζ. (14)

We refer the reader to [25–27] for details. This representation shall prove rather
useful to describe the existence, uniqueness, and regularity of u. To concisely state
it, let us define

U = {w ∈ L2(0, T ;Rn) : dγ
t w ∈ L2(0, T ;Rn)}. (15)

With this notation, a specialization of the results of [26] to the substantially simpler
case when A is a positive definite matrix (and thus the spaces are finite dimensional)
yields the following result.

Theorem 1 (Existence and Uniqueness) Assume that g ∈ L2(0, T ;Rn). Problem
(2) has a unique solution u ∈ U, given by (12) and (14). Moreover, the following a
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priori estimate holds

I
1−γ
t

[
|u|2n

]
(T ) + ‖u‖2

L2
A (0,T ;Rn)

� Λ2
γ (ψ, g), (16)

where, for v ∈ R
n and h ∈ L2(0, T ;Rn) we have

Λ2
γ (v, h) = I

1−γ
t

[
|v|2n

]
(T ) + ‖h‖2

L2(0,T ;Rn)
, (17)

where we implicitly identified v with the constant function [0, T ]  t �→ v ∈ R
n. In

this estimate, the hidden constant is independent of ψ , g, and u.

Having obtained conditions that guarantee the existence and uniqueness for (2)
we now study its regularity. This is important since, as it is well known, smoothness
and rate of approximation go hand in hand. This is exactly the content of direct
and converse theorems in approximation theory [1, 17]. Consequently, any rigorous
study of an approximation scheme must be concerned with the regularity of the
solution. This, we believe, is an issue that for this problem has been largely ignored
in the literature since, essentially, the solution to (2) is not smooth. Let us now follow
[25, 26] and elaborate on this matter. The essence of the issue is already present in
the case n = 1 so that (14) is the solution. Let us, to further simplify the discussion,
set A = 1, g ≡ 0, and ψ = 1. In this case, the solution verifies the following
asymptotic estimate:

u(t) = Eγ,1(−tγ ) = 1 − 1

Γ (1 + γ )
tγ + O(t2γ ), t ↓ 0.

If this is the case we then expect that, as t ↓ 0, u̇(t) ≈ tγ−1 and ü(t) ≈ tγ−2.
Notice that, since γ ∈ (0, 1), the function ω1(t) = tγ−1 belongs to L log L(0, T )

but ω1 /∈ L1+ε(0, T ) for any ε > γ (1 + γ )−1. Similarly, the function ω2(t) = tγ−2

is not Lebesgue integrable, but

ˆ T

0
tσ |ω2(t)|2 dt =

ˆ T

0
tσ+2(γ−2) dt < ∞ ⇒ σ > 3 − 2γ,

which implies that ω2 belongs to the weighted Lebesgue space L2(tσ ; 0, T ), where
σ > 3 − 2γ > 1. The considerations given above tell us that we should expect the
following:

u̇ ∈ L log L(0, T ;Rn) ü ∈ L2(tσ ; 0, T ;Rn), σ > 3 − 2γ. (18)

The justification of this heuristic is the content of the next result. For a proof, we
refer the reader to [26, Theorem 8].
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Theorem 2 (Regularity) Assume that g ∈ H 2(0, T ;Rn). Then u, the solution to
(2), satisfies (18) and, for t ∈ (0, T ], we have the following asymptotic estimate:

(ˆ T

0
ζ σ |ü(ζ )|2n dζ

)1/2

+ t1−γ

∣∣∣∣u̇(t) − 1

t
(u(t) − ψ)

∣∣∣∣
n

� |ψ |n + ‖g‖H 2(0,T ;Rn),

where σ > 3−2γ . The hidden constant is independent of t but blows up as γ ↓ 0+.

Remark 1 (Extensions) Under the correct framework, the conclusion of Theorem 2
can be extended to the case where A is an operator acting on a Hilbert space H
and Equation (2) is understood in a Gelfand triple V ↪→ H ↪→ V ′; see [26] for
details.

2.2 Discretization of the State Equation

Now that we have studied the state equation and the regularity properties of its
solution u, we proceed to discretize it. To do so, we denote by K ∈ N the number
of time steps. We define the (uniform) time step τ = T/K > 0 and set tk = kτ for
k = 0, . . . ,K . We denote the time partition by T = {tk}Kk=0. We define the space
of continuous and piecewise linear, over the partition T , functions as follows:

U(T ) = {
W ∈ C([0, T ];Rn) : W |(tk,tk+1] ∈ P1(R

n), k = 0, . . . ,K − 1
}
.

(19)
We also define the space of piecewise constant functions

Z(T ) = {
W ∈ BV (0, T ;Rn) : W |(tk,tk+1] ∈ P0(R

n), k = 0, . . . ,K − 1
}
,

(20)
and the L2(0, T ;Rn)-orthogonal projection onto Z(T ), that is, the operator ΠT :
L2(0, T ;Rn) → Z(T ) defined by

ˆ T

0
(r − ΠT r) · Zτ dt = 0 ∀Zτ ∈ Z(T ).

We remark that ΠT satisfies

‖r − ΠT r‖L2(0,T ;Rn) � τ‖ṙ‖L2(0,T ;Rn), (21)

where the hidden constant is independent of r and τ .
For a function φ ∈ BV (0, T ;Rn) we set φk = limε↑0 φ(tk − ε) and φτ =

{φk}Kk=0, which can be uniquely identified with either an element of U(T ) or Z(T )

by the procedures we describe now. To φτ we associate φ̄τ ∈ Z(T ) defined by

φ̄τ (0) = φ0, φ̄τ |(tk,tk+1](t) = φk+1, k = 0, . . . ,K − 1. (22)
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We also associate φ̂τ ∈ U(T ) via

φ̂τ (0) = φ0, φ̂τ |(tk,tk+1](t) = tk+1 − t

τ
φk + t − tk

τ
φk+1, k = 0, . . . ,K − 1.

(23)

Notice that

‖φ̂τ‖L∞(0,T ;Rn) = ‖φ̄τ‖L∞(0,T ;Rn) = ‖φτ‖
∞(Rn)

and that

‖φ̄τ‖2
L2(0,T ;Rn)

= τ

K∑
k=1

|φk|2n.

Finally, for a sequence φτ we also define, for k = 0, . . . ,K − 1,

dφk+1 = τ
˙̂
φτ |(tk,tk+1] = φk+1 − φk, (24)

which can be understood as a mapping d : U(T ) → Z(T ).
Having introduced this notation, we propose to discretize (2) by a collocation

method over U(T ). In other words, we seek for Û τ ∈ U(T ) such that

Û τ (0) = ψ, (25)

and, for every k = 0, . . .K − 1, it satisfies

dγ
t Û τ (tk+1) + A Û τ (tk+1) = ΠT g(tk+1). (26)

Remark 2 (Derivation of the Scheme) In the literature, (26) is commonly referred
to as the L1-scheme [16, 21, 22, 29], even though it is not presented this way.
Nevertheless, let us show that this is equivalent to the methods presented in the
literature. To see the relation it is sufficient to compute, for a function Ŵ τ ∈ U(T ),
the value of dγ

t Ŵ τ (tk+1). By definitions (3), (23), and (24), we obtain that

dγ
t Ŵ τ (tk+1) = 1

Γ (1 − γ )

ˆ tk+1

0

1

(tk+1 − ζ )γ
˙̂

W τ (ζ ) dζ

= τ−1

Γ (1 − γ )

k∑
j=0

dWj+1
ˆ tj+1

tj

1

(tk+1 − ζ )γ
dζ =

k∑
j=0

ak
j dW

j+1,

(27)

where the coefficients ak
j satisfy
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ak
j = τ−1

Γ (1 − γ )

ˆ tj+1

tj

1

(tk+1 − ζ )γ
dζ

= τ−1

Γ (2 − γ )

[
(tk+1 − tj )

1−γ − (tk+1 − tj+1)
1−γ

]

= τ−γ

Γ (2 − γ )

[
(k + 1 − j)1−γ − (k − j)1−γ

]
.

(28)

Here, in the last step, we used that the time step is uniform and of size τ . The fact
that the time step is uniform also implies that

ak
k−j = τ−γ

Γ (2 − γ )

[
(j + 1)1−γ − j1−γ

]
= a

k+j
k ,

so that, after the change of indices m = k − j , we obtain

dγ
t Ŵ τ (tk+1) = τ−γ

Γ (2 − γ )

k∑
m=0

bmdW
k+1−m

= τ−γ

Γ (2 − γ )

(
b0W

k+1 +
k∑

m=1

(bm − bm−1)W
k+1−m − bkW

0

)
,

(29)

with bm = (m+1)1−γ −m1−γ . The expression above is what is commonly referred
to as the L1 scheme.

2.2.1 Stability

Let us discuss the stability of scheme (26) as originally detailed in [26, Section
3.2.2]. We begin by exploring the properties of the coefficients ak

j .

Lemma 1 (Properties of ak
j ) Assume that the time step is given by τ > 0. For

every k = 0, . . . ,K − 1 and j = 0, . . . , k, the coefficients ak
j , defined in (28),

satisfy

0 < ak
j , ak

j < ak
j+1, ak+1

j < ak
j .

Moreover ak
k = τ−γ /Γ (2 − γ ).

Proof The positivity of the coefficients follows from the fact that, for j = 0, . . . , k

and ζ ∈ (tj , tj+1), we have that tk+1 − ζ > 0. We now show that the coefficients
are increasing in the lower index. In fact, an application of the mean value theorem
yields
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ak
j = 1

Γ (1 − γ )

 tj+1

tj

dζ

(tk+1 − ζ )γ
= 1

Γ (1 − γ )

1

(tk+1 − ζj )γ

for some ζj ∈ (tj , tj+1). Since the function ζ �→ (tk+1 − ζ )−γ is increasing for
ζ < tk+1, we conclude that ak

j < ak
j+1. To show that the coefficients are decreasing

in the upper index, we note that

tk+1 > tk �⇒ 1

(tk+1 − ζ )γ
<

1

(tk − ζ )γ
,

so that ak+1
j < ak

j . Finally, we note that

ak
k = 1

Γ (1 − γ )

 tk+1

tk

dζ

(tk+1 − ζ )γ
= τ−γ

Γ (2 − γ )
.

This concludes the proof. ��
With the results of Lemma 1 at hand, we can now show stability of the scheme.

Theorem 3 (Stability) For every K ∈ N, the scheme (26) is unconditionally
stable and satisfies

I
1−γ
t

[
|Ū τ |2n

]
(T ) + ‖Ū τ‖2

L2
A (0,T ;Rn)

� Λ2
γ (ψ, g),

where the hidden constant is independent of ψ , g, Ū τ and K ; and Λγ is defined in
(17).

Proof Multiply (26), by 2Uk+1 to obtain

2 dγ
t Û τ (tk+1) · Uk+1 + 2|Uk+1|2A ≤ 2|ΠT gk+1|n|Uk+1|n, (30)

where on the right-hand side we applied the Cauchy–Schwartz inequality; | · |A is
defined in Section 2.1. We thus use (10), together with Young’s inequality, to say
that

2 dγ
t Û τ (tk+1) · Uk+1 + |Uk+1|2A ≤ λ−1

1 |ΠT gk+1|2n.

We now invoke (27) and deduce that

dγ
t Û τ (tk+1) · Uk+1 = ak

k |Uk+1|2n +
k−1∑
j=0

ak
j U

j+1 · Uk+1 −
k∑

j=1

ak
j U

j · Uk+1

− ak
0U0 · Uk+1

= ak
k |Uk+1|2n +

k∑
j=1

(ak
j−1 − ak

j )U
j · Uk+1 − ak

0U0 · Uk+1.
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With this at hand (30) reduces to

2ak
k |Uk+1|2n + |Uk+1|2A

≤ λ−1
1 |ΠT gk+1|2n + 2

k∑
j=1

(ak
j − ak

j−1)U
j · Uk+1 + 2ak

0U0 · Uk+1.

Since, as stated in Lemma 1, we have that ak
j − ak

j−1 > 0 we estimate

2
k∑

j=1

(ak
j − ak

j−1)U
j · Uk+1 ≤

k∑
j=1

(ak
j − ak

j−1)(|Uj |2n + |Uk+1|2n)

=
k∑

j=1

(ak
j − ak

j−1)|Uj |2n + (ak
k − ak

0)|Uk+1|2n,

which can be used to obtain that

ak
k |Uk+1|2n +

k∑
j=1

ak
j−1|Uj |2n +|Uk+1|2A ≤ λ−1

1 |ΠT gk+1|2n +ak
0 |ψ |2n +

k∑
j=1

ak
j |Uj |2n.

(31)

Notice now that, since ak
j are defined as in (28) and bm = (m + 1)1−γ − m1−γ ,

for every j = 0, . . . , k we have

ak
j = τ−γ

Γ (2 − γ )
bk−j .

Thus, the change of indices m = k + 1 − j on the left-hand side and l = k − j on
the right-hand side of (31), respectively, yields

τ−γ

Γ (2 − γ )

k∑
m=0

bm|Uk+1−m|2n + |Uk+1|2A ≤ λ−1
1 |ΠT gk+1|2n + ak

0 |ψ |2n

+ τ−γ

Γ (2 − γ )

k−1∑
l=0

bl |Uk−l |2n,

where the sum on the right-hand side vanishes for k = 0. Multiply by τ and add
over k to obtain

τ 1−γ

Γ (2 − γ )

K −1∑
k=0

bk|UK −k|2n + ‖Ū τ‖2
L2
A (0,T ;Rn)

≤ λ−1
1 ‖ΠT g‖2

L2(0,T ;Rn)

+τ |ψ |2n
K −1∑
k=0

ak
0, (32)
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where ‖Ū τ‖L2
A (0,T ;Rn) is defined by (11). Notice now that, since the time step is

uniform,

τ

K −1∑
k=0

ak
0 = τ 1−γ

Γ (2 − γ )

K −1∑
k=0

bk = T 1−γ

Γ (2 − γ )
= I

1−γ
t [1](T ). (33)

We now analyze the first term on the left-hand side of (32): Changing indices via
l + 1 = K − k gives

τ 1−γ

Γ (2 − γ )

K −1∑
k=0

bk|UK −k|2n = τ 1−γ

Γ (2 − γ )

K −1∑
l=0

bK −l−1|Ul+1|2n

=
K −1∑
l=0

τaK −1
l |Ul+1|2n

= 1

Γ (1 − γ )

K −1∑
l=0

ˆ tl+1

tl

1

(tK − ζ )γ
|Ū τ (ζ )|2n dζ

= I
1−γ
t

[
|Ū τ |2n

]
(T ).

(34)

Inserting (33) and (34) in (32), and using ΠT that is a projection, yields the result.
��

2.2.2 Consistency and Error Estimates

Let us now discuss the consistency of scheme (26). This will allow us to obtain error
estimates. Clearly, it suffices to control the difference dγ

t (u − ûτ ). The following
formal estimate has been shown in many references; see, for instance, [21, 22]. The
proof, essentially, is a Taylor expansion argument.

Proposition 1 (Consistency for Smooth Functions) Let w ∈ C2([0, T ];Rn),
then

‖ dγ
t (w − ŵτ )‖L∞(0,T ;Rn) � τ 2−γ ,

where the hidden constant depends on ‖w‖C2([0,T ];Rn) but is independent of τ .

We must immediately point out that this estimate cannot be used in the analysis
of (2). The reason behind this lies in Theorem 2 which shows that, in general,
the solution to the state equation is not twice continuously differentiable. For this
reason, in [26] a new consistency estimate, which takes into account the correct
regularity of the solution, has been developed. This is the content of the next result.
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Theorem 4 (Consistency) Let γ ∈ (0, 1) and u solve (2). In the setting of
Theorem 2 we have that, for any θ < 1

2 ,

‖ dγ
t (u − ûτ )‖L2(0,T ;Rn) � τ θ

(|ψ |n + ‖g‖H 2(0,T ;Rn)

)
,

where the hidden constant is independent of τ but blows up as θ ↑ 1
2 . Here θ is

independent of γ .

For a proof of this result, we refer the reader to [26, Section 3.2.1]. We just
comment that it consists of a combination of the fine regularity results of Theorem 2,
weighted estimates, and the mapping properties of the fractional integral operator
I

1−γ
t detailed in Section 1.1. Let us, however, show how from this we obtain an

error estimate.

Corollary 1 (Error Estimates) Let u solve (2) and U τ solve (26). In the setting
of Theorem 2 we have that, for any θ < 1

2 ,

I
1−γ
t

[
|ūτ − Ū τ |2n

]
(T ) + ‖ūτ − Ū τ‖2

L2
A (0,T ;Rn)

� τ 2θ
(|ψ |n + ‖g‖H 2(0,T ;Rn)

)2
,

where the hidden constant is independent of τ and the data but blows up as θ ↑ 1
2 .

Proof Define eτ = uτ − U τ . Subtracting (2) and (25)–(26) at t = tk+1 yields
êτ (0) = 0 and, for k = 0, . . . ,K − 1

dγ
t êτ (tk+1) + A êτ (tk+1) = dγ

t (ûτ − u)(tk+1) + (g − ΠT g)(tk+1).

Since ēτ (0) = 0, the stability estimate of Theorem 3 then yields

I
1−γ
t

[
|ēτ |2n

]
(T )+‖ēτ‖2

L2
A (0,T ;Rn)

�‖ dγ
t (u−ûτ )‖2

L2(0,T ;Rn)
+‖g−ΠT g‖2

L2(0,T ;Rn)
.

The consistency estimate of Theorem 4 gives a control of the first term. Finally,
owing to the regularity of g, we have that ‖g − ΠT g‖L2(0,T ;Rn) � τ ; see (21). This
implies the result. ��

2.3 Numerical Illustration

It is natural to wonder whether the reduced rate of convergence given in Corollary 1
is nothing but a consequence of the methods of proof. Here we show, by means of
some computational examples, that while the rate τ θ might not be sharp it is not
possible to obtain the rate of convergence suggested by Proposition 1.
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Fig. 1 Experimental rates of convergence for the solution of (2) using (25)–(26). We have set
n = 1, T = 1, λ1 = 1

2 , ψ = 1 and g = 0. The figures show the computed rates of convergence
with respect to the time step for γ = 0.3 (left), γ = 0.5 (middle), and γ = 0.8 (right). We observe
that the rate of convergence τ 2−γ is never attained

Let us set n = 1, T = 1, λ1 = 1
2 , ψ = 1 and g = 0. From (14) we then obtain

that the solution to the state equation (2) is given by

u(t) = Eγ,1

(
−1

2
tγ

)
.

We implemented, in an in-house code, the scheme (25)–(26) and used it to
approximate this function. We measured the L2(0, T ) norm of the error, where we
implemented the Mittag-Leffler function following [15]. Integration was carried out
using a composite Gaussian rule with three (3) nodes; increasing the number of
nodes produced no significant difference in the results.

The rates of convergence for various values of γ ∈ (0, 1) are presented
in Figure 1. As we can see, Corollary 1 is not sharp, but consistent with the
experimental orders. More importantly, the rates suggested by Proposition 1 are
not obtained. In fact, the experimental rate of convergence seems to be O(τ κ) <

O(τ 2−γ ) with κ = min{1, γ + 1
2 }. However, the proof of such an estimate eludes

us at the moment.

3 The Optimization Problem

Having studied the state equation, we can proceed with the study of the constrained
optimization problem (4)–(5). We will show existence and uniqueness of a solution,
along with a numerical technique to approximate it. We will also discuss the
convergence properties of the proposed approximation scheme.

3.1 Existence and Uniqueness

To precisely state the constrained optimization problem, we begin by defining the
set of admissible controls
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Zad =
{
ζ ∈ L2(0, T ;Rn) : a � ζ(t) � b, a.e. t ∈ (0, T )

}
, (35)

which is, under the assumption that a � b, a nonempty, closed, convex, and bounded
subset of L2(0, T ;Rn).

Now, as the conclusion of Theorem 1 asserts, for any z ∈ L2(0, T ;Rn) there is
a unique u = u(z) ∈ U that solves (2). This uniquely defines an affine continuous
mapping S : L2(0, T ;Rn) → U ⊂ L2(0, T ;Rn) by the rule u = Sz, where u

solves (2). With these tools at hand, we can show the existence and uniqueness of
a state–control pair, that is, a pair (ŭ, z̆) ∈ U × Zad such that ŭ = Sz̆ and satisfies
(4)–(5). The proof of the following result is standard and we include it just for the
sake of completeness.

Theorem 5 (Existence and Uniqueness) The optimization problem: Find (u, z)

such that satisfies (4) subject to (2) and (5) has a unique solution (ŭ, z̆) ∈ U× Zad.

Proof The control to state operator S allows us to introduce the so-called reduced
cost functional:

J (z) := J (Sz, z) = 1

2

ˆ T

0

(
|CSz − ud |2m + μ|z|2n

)
dt,

and to equivalently state the problem as: minimize J over Zad. Since μ > 0 and
S is affine the reduced cost J is strictly convex. Owing to the continuity of S, we
have that J is continuous as well. Existence and uniqueness then follow from the
direct method of calculus of variations [7, 23]. ��

3.2 Discretization

We now proceed to discretize the optimization problem (4)–(5). We will do so
by a piecewise constant approximation of the control and a piecewise linear
continuous approximation of the state. We will follow the notation of Section 2.2
and, additionally, define

Zad(T ) = Z(T ) ∩ Zad.

Once again, Zad(T ) is a nonempty, convex, and closed subset of Z(T ). Notice also
that, since a, b are time independent ΠT Zad ⊂ Zad(T ).

We also define the discrete cost functional JT : U(T ) × Z(T ) → R by

JT (Û τ , Zτ ) = 1

2

ˆ T

0

(
|C Ū τ − ūτ

d |2m + μ|Zτ |2n
)

dt,

where U(T ) and Z(T ) are defined in (19) and (20), respectively. We immediately
comment that, by an abuse of notation, we defined ūτ

d ⊂ R
m as the sequence of
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values uk
d = ffl tk+1

tk
ud dt . In other words, we are modifying the cost by replacing the

desired state ud by its piecewise constant approximation ūτ
d . Additionally, we have

replaced Û τ by its piecewise constant counterpart Ū τ ∈ Z(T ). For these reasons,

JT (Û τ , Zτ ) �= J (Û τ , Zτ ).

We propose the following discretization of the state equation (2): Given Zτ ∈
Z(T ), find Û τ ∈ U(T ) such that Û τ (0) = ψ and, for all k = 0, . . . ,K − 1, we
have

dγ
t Û τ (tk+1) + A Û τ (tk+1) = ΠT f (tk+1) + Zτ (tk+1), (36)

where dγ
t is defined in (3) and ΠT corresponds to the L2(0, T ;Rn)-orthogonal

projection onto Z(T ). We remark that (36) is nothing but discretization (25)–(26)
of the state equation, where the variable z is already piecewise constant in time.
Since f + Zτ ∈ L2(0, T ;Rn), we can invoke Theorem 3 to conclude that problem
(36) is stable for all τ > 0.

We thus define the discrete optimization problem as follows: Find (
˘̂
U τ , Z̆τ ) ∈

U(T ) × Zad(T ) such that

JT (
˘̂
U τ , Z̆τ ) = min JT (Û τ , Zτ ) (37)

subject to (36). Let us briefly comment on the existence and uniqueness of a
minimizer, which closely follows Theorem 5. Indeed, for every z ∈ L2(0, T ;Rn)

there exists a unique Û τ ∈ U(T ) that solves (36) with data ΠT z. This uniquely
defines a map ST : L2(0, T ;Rn) → U(T ), which we call the discrete control to
state map. We can then define the reduced cost as

Z(T )  Zτ �→ JT (Zτ ) = JT (ŜT Zτ , Zτ )

and proceed as in Theorem 5, by using the strict convexity of JT and the continuity
of the affine map ST , which follows from Theorem 3.

3.3 Discrete Optimality Conditions

Let us derive discrete optimality conditions. This is useful not only in the practical
solution of the discrete optimization problem (36)–(37), but it will help us in ana-
lyzing its convergence properties. As stated before, problem (36)–(37) is equivalent
to the following constrained optimization problem: Find Z̆τ ∈ Zad(T ) such that

JT (Z̆τ ) = min
{
JT (Zτ ) : Zτ ∈ Zad(T )

}
,
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that is, a minimization problem over a closed, bounded, and convex set. It is
standard then (since JT is convex, coercive, and differentiable) that a necessary
and sufficient condition for optimality is

DJT (Z̆τ )
[
Zτ − Z̆τ

]
≥ 0 ∀Zτ ∈ Zad(T ), (38)

where DJT (Z)[·] is the Gâteaux derivative of JT at the point Z. Let us now
rewrite and simplify the optimality condition (38) by introducing the so-called
adjoint state that, as stated in [31, Section 1.4.3], is a simple trick that is of utmost
importance in optimal control theory.

For a given Û τ ∈ U(T ) the adjoint is the function P̂ τ ∈ U(T ) such that
P̂ τ (T ) = 0 and, for all k = K − 1, . . . , 0

dγ

T −t P̂
τ (tk) + A P̂ τ (tk) = C ᵀ (

C Ū τ (tk) − ūτ
d (tk)

)
, (39)

where dγ

T −t denotes the right-sided Caputo fractional derivative of order γ defined
in (6). The optimality conditions are as follows.

Theorem 6 (Optimality Conditions) The pair (
˘̂
U τ , Z̆τ ) ∈ U(T ) × Zad(T )

solves (37) if and only if ˘̂
U τ = ST Z̆τ and

ˆ T

0

( ¯̆
P τ + μZ̆τ

)
·
(
Zτ − Z̆τ

)
dt ≥ 0 ∀Zτ ∈ Zad(T ), (40)

where P̆ τ ∈ U(T ) solves (39) with data ˘̂
U τ .

Proof We will obtain the result by showing that (40) is nothing but a restatement of
(38). In fact, a simple calculation reveals that, for any Θτ , Ψ τ ∈ Z(T ), we have

DJT (Θτ )[Ψ τ ] =
ˆ T

0

[(
CST Θτ − ūτ

d

)
· CST Ψ τ + μΘτ · Ψ τ

]
dt.

Consequently, (38) can be equivalently rewritten as, for every Zτ ∈ Zad(T ),

ˆ T

0

[
C ᵀ

(
CST Z̆τ − ūτ

d

)
· ST (Zτ − Z̆τ ) + μZ̆τ · (Zτ − Z̆τ )

]
dt ≥ 0.

(41)

Let us focus our attention now on the first term inside the integral. Denote U τ =
ST Zτ and Ŭ τ = ST Z̆τ . Define Φτ := U τ − Ŭ τ and notice that Φ̂τ ∈ U(T )

satisfies: Φ̂τ (0) = 0 and, for every k = 0, . . . ,K − 1,

dγ
t Φ̂τ (tk+1) + A Φ̂τ (tk+1) = Zτ (tk+1) − Z̆τ (tk+1),

or, in view of (22), equivalently,
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dγ
t Φ̂τ + A Φ̄τ = Zτ − Z̆τ .

Multiply this equation by ¯̆
P τ and integrate to obtain

ˆ T

0

[
dγ
t Φ̂τ · ¯̆

P τ + A Φ̄τ · ¯̆
P τ

]
dt =

ˆ T

0

(
Zτ − Z̆τ

)
· ¯̆
P τ dt.

Now, multiply (39) by Φ̄τ and integrate to obtain

ˆ T

0

[
dγ

T −t
ˆ̆

P τ · Φ̄τ + A ¯̆
P τ · Φ̄τ

]
dt =

ˆ T

0
C ᵀ

(
C ¯̆

U τ − ūτ
d

)
· Φ̄τ dt.

Subtract these last two identities. Upon remembering the definition of Φτ , we thus
obtain

ˆ T

0

[
dγ
t Φ̂τ · ¯̆

P τ − dγ

T −t
ˆ̆

P τ · Φ̄τ

]
dt

=
ˆ T

0

[(
Zτ − Z̆τ

)
· ¯̆
P τ − C ᵀ

(
C ¯̆

U τ − ūτ
d

)
· ST (Zτ − Z̆τ )

]
dt,

where we have used that the matrix A is symmetric. Notice that the last term in this
expression is nothing but the first term on the left-hand side of (41). In other words,
if we can show that

ˆ T

0
dγ
t Φ̂τ · ¯̆

P τ dt =
ˆ T

0
dγ

T −t
ˆ̆

P τ · Φ̄τ dt (42)

we obtain the result.
To show this we realize that, since we are dealing with piecewise constants, we

can equivalently rewrite the left-hand side of this identity as

ˆ T

0
dγ
t Φ̂τ · ¯̆

P τ dt = τ

K −1∑
k=0

P̆ k+1 · dγ
t Φ̂τ (tk+1)

= τ 1−γ

Γ (2 − γ )

K −1∑
k=0

P̆ k+1 ·
k∑

m=0

bmdΦ
k+1−m,

where we used (29).
In a similar manner to the computations of Remark 2, we can obtain that

dγ

T −t
ˆ̆

P(tk) = −
K −1∑
j=k

a
j
k dP̆

j+1 = − τ−γ

Γ (2 − γ )

K −1∑
j=k

bj−kdP̆
j+1,
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consequently

ˆ T

0
dγ

T −t
ˆ̆

P τ · Φ̄τ dt = τ 1−γ

Γ (2 − γ )

K∑
k=1

Φk ·
K −1∑
j=k

bj−kdP̆
j+1.

We can invoke now the results of [4, Appendix A] to conclude that the identity
(42) holds. The theorem is thus proven. ��
Remark 3 (Discrete Fractional Integration by Parts) Notice that, during the course
of the proof of Theorem 6 we showed that, whenever V̂ τ , Ŵ τ ∈ U(T ) satisfy
V̂ τ (0) = 0 and Ŵ τ (T ) = 0, then they satisfy the following discrete fractional
integration by parts

ˆ T

0
dγ
t V̂ τ · W̄ τ dt =

ˆ T

0
dγ

T −t Ŵ
τ · V̄ τ dt.

This identity shall prove useful in the sequel.

Remark 4 (Projection) The solution to the variational inequality (40) can be
accomplished rather easily. Indeed, since all the involved functions belong to Z(T ),
it suffices to consider one time interval, say (tk−1, tk], where we must have

(
P̆ k + μZ̆k

)
·
(
Zk − Z̆k

)
≥ 0.

From this it immediately follows that

Z̆k = Pr[a,b]

(−1

μ
P̆ k

)
,

where, for w ∈ R
n, we define Pr[a,b] w as the projection onto the cube [a, b] =

{x ∈ R
n : a � x � b}, which can be easily accomplished by the formula

Pr[a,b] wi = max {ai, min {bi, wi}} , i = 1, . . . , n.

This is the main advantage of considering piecewise constant approximations of the
control and a modified cost. Other variants might yield a better approximation, but
at the cost of a more involved solution scheme.

3.4 Convergence

Let us now discuss the convergence of our approximation scheme. The main issue
here is that since, even for a smooth f , the right-hand side of (36) belongs only
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to L2(0, T ;Rn) we cannot invoke the results of Corollary 1 to establish a rate of
convergence. Notice, additionally, that we modified the cost, one of the reasons
being that this led us to the simplifications detailed in Remark 4. As a consequence
we only show convergence without rates.

We begin by noticing that, for any z ∈ L2(0, T ;Rn) we have that ST z =
S̊T z + V̂ τ , where V̂ τ ∈ U(T ) satisfies

V̂ τ (0) = ψ, dγ
t V̂ τ (tk+1) + A V̂ τ (tk+1) = ΠT f (tk+1), k = 0, . . . ,K − 1,

and the linear, continuous operator S̊T is the solution operator for the scheme: Find
Û τ

0 ∈ U(T ) such that Û τ
0 (0) = 0 and, for k = 0, . . . ,K − 1,

dγ
t Û τ

0 (tk+1) + A Û τ
0 (tk+1) = ΠT z(tk+1). (43)

Let us describe the properties of V̂ τ .

Proposition 2 (Properties of V̂ τ ) Assume that f ∈ L2(0, T ;Rn), then the family
{V̂ τ }T converges, as K → ∞, in L2(0, T ;Rn) to v ∈ U, which solves

dγ
t v + A v = f, t ∈ (0, T ], v(0) = ψ.

Proof The claimed result is obtained by a simple density argument, combined
with stability of the continuous and discrete state equations. Let ε > 0. Since
f ∈ L2(0, T ;Rn), there is a fε ∈ H 2(0, T ;Rn) such that

‖f − fε‖L2(0,T ;Rn) <
ε

4C1
,

where by C1 we denote the constant in inequality (16). Denote by vε the solution to

dγ
t vε + A vε = fε, t ∈ (0, T ], v(0) = ψ.

The smoothness of fε allows us to invoke Theorem 2 to assert that the regularity
estimates (18), with u replaced by vε , hold. In addition, invoking Theorem 1, we get
that

‖v − vε‖L2
A (0,T ;Rn) ≤ C1Λγ (0, f − fε) = C1‖f − fε‖L2(0,T ;Rn) <

ε

4
.

Let us now approximate vε via the scheme (26), over a mesh T where K
remains to be chosen. In doing so we obtain a function V̂ τ

ε ∈ U(T ). Moreover,
since vε verifies the assumptions of Theorem 2, we invoke Corollary 1 to conclude
that

‖v̄ε − V̄ τ
ε ‖L2

A (0,T ;Rn) ≤ C2τ
θ ,
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where C2 denotes a positive constant that depends on ‖fε‖H 2(0,T ;Rn). However,
since ε is fixed, we can choose K so that

C2τ
θ <

ε

4
�⇒ ‖v̄ε − V̄ τ

ε ‖L2(0,T ;Rn) <
ε

4
.

The last ingredient is to observe that the difference V τ
ε − V τ solves (25)–(26)

with zero initial condition and right-hand side ΠT (f − fε). We then invoke the
stability of the scheme, stated in Theorem 3, to obtain

‖V̄ τ
ε − V̄ τ‖L2

A (0,T ;Rn) ≤ C1Λγ (0,ΠT (f − fε)) ≤ C1‖f − fε‖L2(0,T ;Rn) <
ε

4
,

where we used that ΠT is a projection.
Combine these observations to conclude that

‖v − V̄ τ‖L2
A (0,T ,Rn) ≤ ‖v − vε‖L2

A (0,T ;Rn) + ‖vε − v̄ε‖L2
A (0,T ;Rn)

+ ‖v̄ε − V̄ τ
ε ‖L2

A (0,T ;Rn) + ‖V̄ τ
ε − V̄ τ‖L2

A (0,T ;Rn)

<
3ε

4
+ ‖vε − v̄ε‖L2

A (0,T ;Rn).

Conclude by noticing that, since vε → v, after possibly taking an even larger K
we can assert

‖vε − v̄ε‖L2
A (0,T ;Rn) <

ε

4
.

This concludes the proof. ��
The main consequence of this statement arises when we use the decomposition

of ST in the reduced cost. Namely, we get

JT (Zτ ) = 1

2

ˆ T

0

[
|C S̊T Zτ − W̄ τ |2m + μ|Zτ |2n

]
dt,

for W τ = uτ
d − CV τ , that is, the discrete desired state changes and, moreover,

W τ → ud −C v in L2(0, T ;Rm) as K → ∞. All these considerations allow us to
reduce the problem to the case when ψ = 0 and f ≡ 0 so that the discrete control
to state map is a linear operator.

In this setting we can assert the strong convergence of S̊T and its adjoint, which
will be a fundamental tool in proving convergence. Here and in what follows, we
denote by B(L2(0, T ;Rn)) the space of bounded linear operators on L2(0, T ;Rn)

endowed with the operator norm.

Lemma 2 (Strong Convergence) The family of solution operators {S̊T }T and

of their adjoints
{
S̊�

T

}
T

is uniformly bounded in B(L2(0, T ;Rn)) and strongly
convergent.
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Proof We begin by realizing that the uniform boundedness, in B(L2(0, T ;Rn)),
of {S̊T }T is a restatement of Theorem 3, see [13, 18]. Moreover, the error
estimates of Corollary 1 are valid for a collection of right-hand sides that is
dense in L2(0, T ;Rn). This means, by an argument similar to the one provided
in Proposition 2, that for every z ∈ L2(0, T ;Rn) the family {S̊T z}T converges;
see [13, Proposition 5.17].

Let us now prove the same statements for the family of adjoints. To do so we
must first identify it. Let z, η ∈ L2(0, T ;Rn) and Û τ

0 solve (43). In addition, let
P̂ τ ∈ U(T ) be the solution to (39) but with the right-hand side replaced by ΠT η.
Multiply the aforementioned equations by P̄ τ and Ū τ

0 , integrate and subtract to
obtain

ˆ T

0

[
dγ
t Û τ

0 · P̄ τ − dγ

T −t P̂
τ · Ū τ

0

]
dt =

ˆ T

0

[
ΠT z · P̄ τ − ΠT η · S̊T z

]
dt

where we used that the matrix A is symmetric. We now invoke Remark 3 to
conclude that the right-hand side of the previous expression vanishes, which implies
that

ˆ T

0
z · S̊�

T η dt =
ˆ T

0
ΠT z · S̊�

T η dt =
ˆ T

0
ΠT η · S̊T z dt

=
ˆ T

0
ΠT z · P̄ τ dt =

ˆ T

0
z · P̄ τ dt,

where the first and last equalities hold by the definition of ΠT . Since the last identity
holds for every z ∈ L2(0, T ;Rn), we thus have that P τ = S̊�

T η.
It now remains to realize that P τ is a discretization of the problem

dγ

T −tp + A p = η, t ∈ [0, T ), p(T ) = 0.

Repeating the arguments that led to Theorem 3 and Corollary 1, we get that P τ

is a stable and consistent approximation, so we can, again, conclude the uniform

boundedness and convergence of the family
{
S̊�

T

}
T

. ��
We are now ready to establish convergence of our scheme.

Theorem 7 (Convergence) The family {Z̆τ }T of optimal controls is uniformly
bounded and contains a subsequence that converges strongly to z̆, the solution to (4).

Proof Boundedness is a consequence of optimality. Indeed, if z0 ∈ Zad then

μ

2
‖Z̆τ‖2

L2(0,T ;Rn)
≤ JT (Z̆τ ) ≤ JT (ΠT z0) � ‖z0‖2

L2(0,T ;Rn)
+‖ud‖2

L2(0,T ;Rm)
,

where we used the continuity of ST and ΠT . This implies the existence of a (not
relabeled) weakly convergent subsequence.
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To show convergence of this sequence to z̆, we invoke the theory of Γ -
convergence [7], so that we must verify three assumptions:

1. Lower bound: We must show that, whenever Zτ ⇀ z then J (z) ≤
lim infJT (Zτ ). To do so, let η ∈ L2(0, T ;Rn) and notice that

ˆ T

0

[
ST Zτ − Sz

]
· η dt =

ˆ T

0

[
ST z − Sz

]
· η dt +

ˆ T

0
ST (Zτ − z) · η dt

= A + B.

The pointwise convergence of {S̊T }T shows that A → 0, while the pointwise
convergence of the adjoints shows that B → 0. In conclusion, ST Zτ ⇀ Sz.
Now, owing to the weak lower semicontinuity of norms, and the fact that ūτ

d →
ud in L2(0, T ;Rm) we conclude

J (z) ≤ lim infJT (Zτ ).

2. Existence of a recovery sequence: We must show that, for every z ∈ Zad there
is Zτ ∈ Zad(T ) such that Zτ ⇀ z and J (z) ≥ lim supJT (Zτ ). To do so, it
suffices to set Zτ = ΠT z. Indeed, we even have strong convergence so that we
can say ST ΠT z → Sz. Continuity of norms and the convergence of ūτ

d allow
us to conclude the inequality for the costs.

3. Equicoerciveness: We must show that, for every r ∈ R, there is a weakly closed
and weakly compact Kr ⊂ L2(0, T ;Rn) such that, for all T , the r-sublevel set
of JT is contained in Kr . To do so it suffices to notice that

JT (Zτ ) ≥ μ

2
‖Zτ‖2

L2(0,T ;Rn)
.

Thus, invoking [7, Proposition 7.7], we can immediately conclude.

With these three ingredients, we can now show convergence. Indeed, the lower
bound inequality and recovery sequence property allow us to say that

JT
Γ→ J

so that minimizers of JT converge to minimizers of J . Equicoerciveness and
the uniqueness of z̆ are the conditions of the so-called fundamental lemma of Γ -
convergence [7, Corollary 7.24] which allow us to conclude that Z̆τ ⇀ z̆.

We finalize the proof by showing strong convergence. To do so we first note that,
by Dal Maso [7, equation (7.32)], we have JT (Z̆τ ) → J (z̆). Therefore
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1

2

ˆ T

0

[∣∣∣ST Z̆τ − Sz

∣∣∣
2

n
+ μ

∣∣∣ ¯̆
Zτ − z̆

∣∣∣
2

n

]2

dt = JT (Z̆τ ) + J (z̆)

−
ˆ T

0
ST Z̆τ · (

Sz̆ − ūτ
d

)
dt

+
ˆ T

0
ud · (

Sz̆ − ūτ
d

)
dt

− μ

ˆ T

0
Z̆τ · z̆ dt

→ J (z̆) + J (z̆) − 2J (z̆) = 0,

where we, again, used the convergence of the adjoint.
This concludes the proof of convergence. ��
We conclude by showing weak convergence of the state.

Corollary 2 (State Convergence) In the setting of Theorem 7 we have that Ŭ τ ⇀

ŭ in L2(0, T ;Rn).

Proof This follows from the strong convergence of Z̆τ and of the adjoints S̊�
T .

Indeed, let v ∈ L2(0, T ;Rn) and notice that

ˆ T

0
S̊T Z̆τ · v dt =

ˆ T

0
Z̆τ · S̊�

T v dt →
ˆ T

0
z̆ · S̊�v dt.

Since Ŭ τ = S̊T Z̆τ + V τ , we obtain the result by invoking Proposition 2. ��
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