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Abstract The optimal control of variational inequalities introduces a number of
additional challenges to PDE-constrained optimization problems both in terms of
theory and algorithms. The purpose of this article is to first introduce the theoretical
underpinnings and then to illustrate various types of numerical methods for the
optimal control of variational inequalities. For a generic problem class, sufficient
conditions for the existence of a solution are discussed and subsequently, the various
types of multiplier-based optimality conditions are introduced. Finally, a number
of function-space-based algorithms for the numerical solution of these control
problems are presented. This includes adaptive methods based on penalization or
regularization as well as non-smooth approaches based on tools from non-smooth
optimization and set-valued analysis. A new type of projected subgradient method
based on an approximation of limiting coderivatives is proposed. Moreover, several
existing methods are extended to include control constraints. The computational
performance of the algorithms is compared and contrasted numerically.

1 Introduction

The optimal control of variational inequalities is a natural extension of PDE-
constrained optimization in which the forward problem or underlying PDE is
replaced by a variational inequality or convex variational problem. There are a vast
number of applications in which variational inequalities or convex variational prob-
lems are used. Perhaps the most well-known disciplines are continuum mechanics
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[32, 52] and mathematical image processing [67, 70, 72]. However, one also finds
variational inequalities in such diverse areas as petroleum engineering [85], digital
microfluidics [84], and mathematical finance [51].

Just as in PDE-constrained optimization, we are interested in optimizing or
controlling the solution to variational inequalities through one or several parameters.
For example, in a packaging problem, we might be interested in determining the
optimal force distribution to apply to an elastic membrane in order to obtain a
desired shape without passing through a fixed obstacle. In the petroleum engineering
application mentioned above, one obtains a variational inequality when using the
variational formulation for the steady laminar flow of drill mud modelled as a
Bingham fluid. Here, one might wish to determine the optimal pressure needed to
affect a desired flow regime.

Due to a lack of Fréchet (or even Gâteaux) differentiability of the control-to-
state mapping, a reduced space optimization approach will require either concepts
from variational analysis or approximation theory not only to prove existence of a
solution but also to derive meaningful first-order optimality conditions and develop
efficient numerical methods.

The theoretical and algorithmic challenges remain intact when considering
a full-space approach, since the feasible set (after reformulating the variational
inequality as a complementarity problem) is both non-convex and fails to satisfy the
usual constraint qualifications. For example, in PDE-constrained optimization, one
typically uses the Slater or Robinson-Zowe-Kurcyusz constraint qualifications, cf.
[48, 77], to ensure the existence and boundedness of the set of Lagrange multipliers.
In order to handle these degenerate constraints, one may take a penalty or relaxation
approach, though recent work suggests that there are viable theoretical approaches
to this “full-space” setting that do not rely on smoothing, see [81].

We now give a brief historical development. We caution the reader that this is
only a sampling of the sizeable amount of work published over the past five decades.
The purpose is merely to provide an understanding of the current motivations in the-
ory and numerical methods, especially the ideas presented in this paper. Variational
inequalities were first introduced by Signorini and solved by Fichera [29]. For this
article, the early works by Brezis, Lions, and Stampacchia [18, 60] are perhaps the
most relevant as they provide us with a sufficient existence and regularity theory.
As a starting point for further study, we also suggest the well-known monographs
by Kinderlehrer and Stampacchia and Rodrigues [53, 71]. Perhaps the earliest
work on the optimal control of variational inequalities is due to Yvon, in which
the adaptive penalty technique for variational inequalities (see Section 4.1) was
used in order to approximate the control problem by a more tractable, parameter-
dependent problem [86, 87]. This was later used by Lions [58, 59] and fully
developed by Barbu [7]. The monograph by Barbu [7] contains many important
results and techniques that are still used today, see also related contributions in [9–
12, 50, 68, 73]. In 1976, Mignot offered an alternative to the smoothing approach
by developing concepts of generalized differentiability [63]. There, he was able to
prove and obtain an explicit formula for the Hadamard directional differentiability
of the control-to-state mapping of the variational inequality and, with this result,



Optimization Methods for Elliptic MPECs 125

derive first-order optimality conditions. This result later appeared in [64] and is
rederived in [45] using techniques from variational analysis. More recent work in
the control of variational inequalities has focused on the development of efficient,
function-space-based numerical methods and ever more complex settings as in
[2, 4, 21–23, 34–36, 39, 40, 45, 49, 56, 65, 66, 80, 83].

Parallel to the infinite-dimensional developments, a great deal of progress has
been made on theory and numerical methods for finite-dimensional mathematical
programs with equilibrium or complementarity constraints, as evidenced by the
well-known manuscripts by Luo, Pang, and Ralph [61] and Outrata, Kočvara, and
Zowe [69]. In addition to the references therein, we also mention the approaches
in [3, 74], which have since been extended to infinite dimensions and are in part
featured in this paper.

In reference to the existing finite-dimensional literature, recent works have begun
referring to the problem class considered here as elliptic mathematical programs
with equilibrium constraints (or elliptic MPECs). We will henceforth do the same
for the sake of brevity.

The article is structured as follows. After introducing some necessary notation,
data assumptions, and the canonical example in Section 2, we discuss sufficient
conditions for the existence of a solution in Section 3. Afterwards, we give several
kinds of multiplier-based first-order stationarity conditions similar to classical
Karush-Kuhn-Tucker (KKT) conditions. These may or may not be first-order
optimality conditions depending on the regularity and data of the given problem.
For a newcomer to elliptic MPECs, this potentially puzzling array of possible
stationarity conditions may seem strange. However, it is necessary to understand the
gap in what is theoretically the “best” type of KKT point and what type of stationary
point a given numerical method can theoretically guarantee (at least asymptotically).

Following the theoretical results in Section 3, we pass to the main focus of our
discussion: numerical optimization methods for elliptic MPECs. First, in Section 4,
we consider what we refer to as “regularization-based” methods. In Section 4.1,
we present a typical adaptive smoothing method that makes use of approximation
theory for variational inequalities and which is directly linked to the derivation of
first-order stationarity conditions for the elliptic MPEC. Similarly, in Section 4.2,
we use a simple penalization of the complementarity condition (in weak form)
to obtain a simpler PDE-constrained optimization problem with control and state
constraints. The numerical solution of the subproblems in the adaptive penalty
method is thoroughly discussed for a canonical example problem and the numerical
behavior is illustrated. We note that the smoothed problems become increasingly
difficult to solve as the smoothing parameter tends to zero, which in part motivates
the desire for “non-smooth” methods.

The structure of the non-smooth numerical methods section is devised to
illustrate the parallels to some popular methods for smooth PDE-constrained
optimization problems, e.g., projected-gradient methods (Section 5.1), direct solvers
for the KKT system (Section 5.2), and globalization of the direct solvers via a
line search (Section 5.3). There are obvious (and expected) limitations to these
approaches, all of which arise from the non-smooth or degenerate nature of elliptic
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MPECs. Nevertheless, they indicate the possibility of inventing new efficient
numerical methods beyond the adaptive smoothing/penalty paradigm, which often
outperform the smooth methods in practice.

In Section 5.1, we present a new subgradient method for the reduced space
problem. The choice of “subgradient” is motivated by the limiting variational
calculus found, e.g., in the book by Mordukhovich [66]. We discuss the asymptotic
behavior of this method and illustrate the potential for future study. Following this
in Section 5.2, an active-set-based solver with feasibility restoration suggested by
Hintermüller in [36] as a direct solver for the C-stationarity system is considered.
Finally, in Section 5.3, we consider the so-called bundle-free implicit programming
approach [46], which can be understood as a globalization of the active-set solver
using a line search. We extend the latter to include control constraints. The
performance of the non-smooth methods is then compared and contrasted with that
of the adaptive penalty method. All numerical examples have been solved in the
Julia programming language [14] version 0.5.0 on a 2016 MacBook Pro Intel(R)
Core(TM) i5 @ 3.1 GHz with 16 GB 2133 MHz LPDDR3 RAM.

2 Notation, Assumptions, and Preliminary Results

In this section, we fix our notation and analytical framework. Elliptic variational
inequalities and elliptic MPECs are introduced.

2.1 Norms, Inner Products, and Convergence

All spaces are based on the real number field. The Euclidean norm and scalar
product on R

m are denoted by |x| and x · y for x, y ∈ R
m, respectively. For

r ∈ R, we denote max(0, r) by (r)+. All other norms are denoted by ‖ · ‖X for
some space X. The topological dual of X is denoted by X∗ and the dual pairing
by 〈·, ·〉X,X∗ . The inner product on a Hilbert space H is denoted by (·, ·)H . Given a

sequence {xk} ⊂ X, we denote strong convergence to x ∈ X by xk
X→ x; for weak

convergence, we use xk
X
⇀ x and for weak-star convergence, xk

X

⇀∗ x. In all these
cases, we drop the sub- or superscripts if it is clear in context.

2.2 Extended Real-Valued Functionals and Convex Analysis

For a topological vector space U , the extended real-valued functional G : U → R

is proper if G(u) > −∞ for all u ∈ U and G(w) < +∞ for some w ∈ U . G is
said to be closed or lower-semicontinuous if its epigraph
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epi G := {(u, α) ∈ U × R | G(u) ≤ α }

is a closed subset in the product topology on U×R. Moreover, G is convex provided

G(λu + (1 − λ)w)) ≤ λG(u) + (1 − λ)G(w), ∀u,w ∈ U,∀λ ∈ [0, 1].

For a Banach space V and F : V → R, the (convex) subdifferential of F at some
point x ∈ V such that −∞ < F(x) < +∞ is defined by the potentially empty set:

∂F (x) := {
x∗ ∈ V ∗ ∣∣ F(y) ≥ F(x) + 〈x∗, y − x〉,∀y ∈ V

}
.

If C ⊂ V , then the indicator functional iC of C is defined by

iC(x) = 0 if x ∈ C, and iC(x) = +∞ otherwise.

If C is non-empty, closed, and convex, then NC(x) := ∂iC(x) is called the convex
normal cone to C at x ∈ C. If K ⊂ V is a non-empty, closed, convex cone, then

ξ ∈NK(x) ⇔ x ∈ K, ξ ∈ K− := {
μ ∈ V ∗ |〈μ, y〉 ≤ 0,∀y ∈ K

}
and 〈ξ, x〉 = 0.

Recall that K− referred to as the polar cone to K . For more on convex analysis, see,
e.g., [25].

2.3 Function Spaces and 2-Capacity

Unless noted, Ω ⊂ R
n, n ∈ {1, 2, 3}, is a non-empty, bounded, and open subset

with Lipschitz boundary Γ = ∂Ω . The Lebesgue measure of E ⊂ R
n is denoted

by meas(E). For p ∈ R with 1 ≤ p < +∞, we denote the usual Lebesgue space
of p-integrable functions by Lp(Ω) and the Lebesgue space of essentially bounded
functionals by L∞(Ω). The norms are given by

‖u‖Lp =
(ˆ

Ω

|u(ω)|pdω

)1/p

and ‖u‖L∞ = ess supω∈Ω |u(ω)|,

respectively. For k ∈ N, we denote the Sobolev space of Lp-functions u with
|Dαu| = |(∂α1u, . . . , ∂αnu)| ∈ Lp(Ω) by Wk,p(Ω), where α = (α1, . . . , αn) is
a multi-index with |α1|+· · ·+|αn| ≤ k and ∂αi u is the αi-th weak partial derivative
of u with respect to xi , i ∈ {1, 2, 3}. The Wk,p-norms are then defined by

‖u‖Wk,p =
⎛

⎝
∑

|α|≤k

ˆ
Ω

|Dαu(ω)|pdω

⎞

⎠

1/p

and ‖u‖Wk,∞ =
∑

|α|≤k

ess supω∈Ω |Dαu(ω)|.
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For our discussion, the most important case is when p = 2. Here, both L2(Ω) and
Hk(Ω) := Wk,2(Ω) are Hilbert spaces with inner product defined using the norms
given above. We denote the space of all H 1-functions with zero trace by H 1

0 (Ω)

and its dual by H−1(Ω). It follows from the Poincaré inequality that

‖u‖H 1
0

= ‖∇u‖L2 = (∇u,∇u)
1/2
L2 .

is an equivalent norm on H 1
0 (Ω). See, e.g., [1] for more. Finally, recall that the

2-capacity of an arbitrary subset E ⊂ Ω is given by

Cap2(E,Ω) := inf
{
‖u‖2

H 1
0

: v ∈ H 1
0 (Ω) v ≥ 1 a.e. on open neighborhood G ⊃ E

}
.

cf. [6, Prop. 5.8.3]. Note that H 1
0 -functions possess a representative that is con-

tinuous up to a set of positive capacity, cf. [26]. Moreover, there exist E ⊂ Ω with
Cap2(E,Ω) > 0 and meas(E) = 0, e.g., the boundary of a smooth open set. Hence,
an H 1

0 -function in 2D is continuous across a smooth curve in the plane, but not at
single points.

2.4 Elliptic Variational Inequalities

Let H be a Hilbert space and H ∗ its topological dual. For this subsection, (·, ·)
denotes the inner product and ‖ · ‖ the norm on H . The pairing between H and H ∗
is denoted by 〈·, ·〉. Let a : H × H → R be a bilinear form on H and A : H → H ∗
the associated bounded linear operator, i.e., a(u, v) = 〈Au, v〉, u, v ∈ H . We recall
that a is said to be coercive/elliptic, if there exists some constant c > 0 such that
a(v, v) ≥ c‖v‖2 for all v ∈ H . Clearly, the function ‖v‖a := (a(v, v))1/2 defines an
equivalent norm on H . Let K ⊂ H be non-empty, closed, and convex and w ∈ H ∗.
Then, the variational problem

Find u ∈ K : a(u, v − u) ≥ 〈w, v − u〉, for all v ∈ K (1)

is called an elliptic variational inequality. Note that problems of this type are often
referred to as variational inequalities of the first kind. They can be equivalently
written as a generalized equation:

Find u ∈ K : Au + NK(u) = Au + ∂iK(u) � w. (2)

If we replace iK by a subdifferentiable proper closed convex functional ϕ, then we
obtain a variational inequality of the second kind. The following is due to Lions and
Stampacchia [60], see also [53]:
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Theorem 1 Let a : H × H → R be a coercive bilinear form, K ⊂ H closed and
convex, and w ∈ H ∗. Then, (1) possesses a unique solution S(w). Moreover, the
solution mapping w �→ S(w) is Lipschitz continuous: For all w1, w2 ∈ H ∗, it holds
that

‖S(w1) − S(w2)‖H ≤ (1/c)‖w1 − w2‖H ∗ ,

where c is the constant of coercivity of a.

Although the solution mapping S is Lipschitz continuous, it is not necessarily
differentiable. In some special cases, S is directionally differentiable. For more
on variational inequalities, see, e.g., [53]. The conditions on A and K will be
considered standing assumptions on the variational inequality for the rest of this
article. We conclude this subsection with an example.

Example 1 In the context of (1), let H := H 1
0 (Ω) and H ∗ = H−1(Ω). Moreover,

define Ψ ∈ H 1(Ω) with Ψ |Γ ≤ 0 and K ⊂ H 1
0 (Ω) such that

K :=
{
u ∈ H 1

0 (Ω) | u(x) ≥ Ψ (x), for almost every (a.e.) x ∈ Ω
}

.

Clearly, since max(0, Ψ ) ∈ H 1
0 (Ω), K �= ∅. Moreover, one readily shows that K

is closed and convex in H 1
0 (Ω). The setting of (1) is general enough to allow for

nonsymmetric bilinear forms a(u, v), e.g.,

a(u, v) :=
ˆ

Ω

∑

i,j

aij ∂iu∂j v −
∑

i

bi(∂iu)v + cuvdx, u, v ∈ H 1
0 (Ω),

with appropriate assumptions on aij , bi, c. However, for our purposes it suffices to
consider

a(u, v) :=
ˆ

Ω

∇u · ∇vdx, u, v ∈ H 1
0 (Ω)

Letting f ∈ H−1(Ω) and combining the above, we obtain a classical obstacle
problem

Find u ∈ K :
ˆ

Ω

∇u · ∇[v − u]dx ≥ 〈f, v − u〉, for all v ∈ K.

If Ψ |Γ ≡ 0, then (without altering the boundary conditions), we obtain an
equivalent problem:

Find u ∈ K0 :
ˆ

Ω

∇u · ∇[v − u]dx ≥ 〈f + ΔΨ, v − u〉, for all v ∈ K0,

where K0 = {
u ∈ H 1

0 (Ω) | u(x) ≥ 0, a.e. x ∈ Ω
} ; see, e.g., [53, 71].
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Of course, this set K represents perhaps the easiest kind of set that one can
consider in a variational inequality. It is just one example of a so-called “polyhedric
set,” a notion introduced in the mid-1970s by Haraux [33] and Mignot [63] in the
context of sensitivity analysis of variational inequalities. See the recent detailed
study [82] for a state-of-the-art on polyhedricity. For more general closed, convex
sets, e.g.,

{
u ∈ H 1

0 (Ω) | |(∇u)(x)| ≤ Ψ (x), a.e. x ∈ Ω
}

(3)

it is possible to prove existence, uniqueness, and continuity results under weak
assumptions on Ψ . Since these sets are neither polyhedric nor cones, the differential
sensitivity analysis of the solution map and subsequent derivation of optimality
conditions or efficient numerical methods is extremely challenging. Elliptic MPECs
with this type of constraint were considered in [45]. However, we caution the reader
that the proofs for the derivation of the tangent cones are in fact erroneous. Thus,
the differential sensitivity results for the solution mapping only hold under the
assumption that the tangent cones do in fact have the form purported in the text.

2.5 Elliptic Mathematical Programs with Equilibrium
Constraints

We present an abstract framework for a class of elliptic MPECs. Let V , H , and
Z be separable Hilbert spaces such that the state space V is a dense subset of H

and V ⊂ H ⊂ V ∗ both algebraically and topologically. Moreover, assume that
f ∈ V ∗, Zad ⊂ Z is a non-empty, closed, and convex set (the set of admissible
controls/decision variables), B : Z → V ∗ is a bounded linear operator and F :
U → R and G : Z → R. We define an elliptic MPEC as follows:

min J (z, u) := F(u) + G(z) over (z, u) ∈ Z × V, (4a)

s.t. z ∈ Zad, u solves (1) with w := Bz + f. (4b)

In light of Theorem 1, we can rewrite (4) in reduced form, analogously to standard
PDE-constrained optimization problems:

min J (z) := F(S(Bz)) + G(z) over z ∈ Zad. (5)

Here, f ∈ V ∗ is fixed. Therefore, we only write S(Bz) for the solution mapping
(instead of S(Bz + f )). Obtaining a meaningful full-space formulation of the
optimization problem (4) is not always possible. However, if K in (1) is a cone,
then we can also formulate a full-space version of the elliptic MPEC by introducing
a slack variable ξ ∈ V ∗:
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min J (z, u) over (z, u, ξ) ∈ Z × V × V ∗, (6a)

s.t. z ∈ Zad, (6b)

Au − ξ = Bz + f, (6c)

u ∈ K, ξ ∈ K+, 〈ξ, u〉 = 0. (6d)

Here, K+ := −K−. This follows from (2). Due to the presence of the com-
plementarity condition (6d), problems of the type (6) are often referred to in
the finite-dimensional literature (and more recently in the infinite-dimensional
literature) as (elliptic) mathematical programs with complementarity constraints
(MPCCs); see e.g., [61, 69, 74] (finite dimensions) and the recent work [81] (infinite
dimensions).

Remark 1 We consider here the simplest case in which the control or decision
variable z appears only on the “right-hand side” of the variational inequality.
However, in many interesting applications, e.g., topology optimization [8], the
control enters nonlinearly through the differential operator A, e.g., when A(z)u =
−div(z∇u). In the context of elliptic MPECs, this case is scarcely covered in the
literature, see [36].

We finalize this section with a canonical example of an elliptic MPEC.

Example 2 In the notation of (4), we set V = H 1
0 (Ω), H = L2(Ω), V ∗ =

H−1(Ω), and Z = L2(Ω). For some ud ∈ L2(Ω), we let F be a standard tracking-
type functional and G an L2-Tikhonov regularization:

J (z, u) := F(u)+G(z) = 1

2
‖u−ud‖2

L2+α

2
‖z‖2

L2 , (z, u) ∈ L2(Ω) × H 1
0 (Ω), α > 0.

For the forward problem, we choose the simplest form of the obstacle problem with
Ψ ≡ 0. Then, the following is an elliptic MPEC:

min
1

2
‖u − ud‖2

L2 + α

2
‖z‖2

L2 , over (z, u) ∈ L2(Ω) × H 1
0 (Ω), (7a)

s.t. z ∈ Zad, u ∈ K0 solves :
ˆ
Ω

∇u · ∇[v − u]dx ≥ 〈Bz + f, v − u〉, for all v ∈ K0,

(7b)

Some possibilities for Zad are local bilateral constraints: −1 ≤ w(x) ≤ 1, a.e. x ∈
Ω or global constraints such as ‖w‖L2 ≤ 1.

3 Existence and Stationarity Conditions

We start this section in the abstract framework of Section 2.5. In order to provide
insight into the deeper meaning of the various stationarity conditions, we ultimately
restrict ourselves to the canonical example (Example 2).
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3.1 Existence of a Solution

Under suitable conditions, on F , G, Zad , and B, we can use Weierstrass’s existence
theorem, see, e.g., [6, Thm. 3.2.5] to prove that the reduced form MPEC has
a solution. For the following result, we appeal to the monograph by Barbu
[7, Chap. 3].

Theorem 2 In the context of problem (4), we assume the following:

1. F : H → R is locally Lipschitz and nonnegative.
2. G : Z → R is convex, lower-semicontinuous, and for some constants κ1 > 0,

κ2 ∈ R. G(z) ≥ κ1‖z‖Z + κ2, ∀z ∈ Z

3. B is completely continuous.

Then, (4), or equivalently (5), admits a solution.

Proof By replacing G(z) with G(z) + iZad
(z), the assertion follows from [7,

Prop. 3.1]. In particular, we note that by Barbu [7, Lem. 3.1] the mapping
(S ◦ B) : Z → V is completely continuous and, furthermore, the composite objec-
tive functional (F ◦ S ◦ B) : Z → R+ is weakly lower-semicontinuous.

Since for any z ∈ Zad, (1) has a unique solution u = S(Bz). There exists a unique
ξ ∈ NK(u) such that ξ = Au − Bz − f . Conversely, if (z, u, ξ) satisfies (6b)–(6d),
then z ∈ Zad and u = S(Bz). In other words, there is a one-to-one correspondence
between the feasible set of (5) and (6). Therefore, if (4), or equivalently (5), admits
a solution, then so does (6).

Corollary 1 Under the assumptions of Theorem 2, (6) admits a solution.

Remark 2 Ignoring Theorem 2, we could also prove this assertion by appealing to
[6, Thm. 3.2.5]. Indeed, under the hypotheses of Theorem 2, (6) can be viewed as
an unconstrained problem in which the associated objective functional is radially
unbounded, proper, and weakly lower-semicontinuous.

3.2 Primal Stationarity Conditions

In this subsection, we restrict ourselves to the setting of Example 2. As men-
tioned earlier, there are some situations in which the control-to-state mapping
S is directionally differentiable. In particular, Mignot [63] demonstrated that the
control-to-state mapping in Example 2 is directionally differentiable in the sense
of Hadamard. The next result draws the parallel to PDE-constrained optimization
problems.

Theorem 3 Let (z, u) be a solution to (7), then the following first-order necessary
optimality condition holds:

α(z,w − z) + (u − ud, S′(u;B(w − z))) ≥ 0, ∀w ∈ Zad. (8)



Optimization Methods for Elliptic MPECs 133

In the finite-dimensional literature, e.g., in [61, 74], primal first-order conditions
of the type (8) are often referred to as B-stationarity conditions. There, the “B”
comes from the fact that either the so-called Bouligand tangent cone or Bouligand
differentiability is used. This motivates the next definition.

Definition 1 If (z, u) is a feasible point of (7) that satisfies (8), then (z, u) is
B-stationary.

For the setting in (5), it is possible to derive B-stationarity conditions provided
that F , G are smooth. Clearly, the main challenge is determining directional
differentiability of S. Suppose for the sake of argument that S′(u; du) is linear in
du ∈ V ∗. Then, we can “dualize” the B-stationarity conditions (8):

α(z,w − z) + (B∗p,w − z) ≥ 0, ∀w ∈ Zad, p = S′(u)∗(u − ud).

Note that the condition “p = S′(u)∗(u − ud)” essentially means (in this ideal case)
that p solves a type of adjoint equation. Using this “adjoint state” p, we could
now develop solution algorithms. However, S′(u; du) is in general nonlinear (albeit
Lipschitz) in du and thus, the standard adjoint state p does not exist. As a result,
there are several different types of dual/multiplier-based first-order stationarity
conditions reminiscent of classical KKT conditions in nonlinear programming.

3.3 Dual Stationarity Conditions

In this subsection, we again restrict ourselves to the setting in Example 2. Further-
more, we assume that Γ is regular enough to guarantee that S(Bz) ∈ H 2(Ω) ∩
H 1

0 (Ω) for any z ∈ Zad. This is possible if, e.g., Bz + f ∈ L2(Ω) and Ω is a
convex polyhedron, cf. [18, 71]. This regularity assumption ensures that ξ ∈ L2(Ω)

and, by the Sobolev embedding theorem, S(Bz) is at least Hölder continuous on
Ω . We now introduce two multiplier-based first-order stationarity conditions taken
from [39, 40].

Definition 2 Let z ∈ Zad and u = S(Bz) with associated slack variable ξ ∈ L2(Ω).
The set Ω0 := {x ∈ Ω | u(x) = 0 } is called the active set or coincidence set and
I := {x ∈ Ω | u(x) > 0 } the inactive set. The set Ω00 := Ω0 ∩{x ∈ Ω | ξ(x) = 0 }
is called the biactive or weakly active set and Ω0+ := Ω0 ∩{x ∈ Ω | ξ(x) > 0 } the
strongly active set.

Note that the biactive and strongly active sets are only defined up to a set of
Lebesgue measure zero. In contrast, the active and inactive sets may be more finely
defined up to sets of positive capacity even in less regular settings.

Definition 3 The point (z, u, ξ) ∈ L2(Ω) × H 1
0 (Ω) × L2(Ω) is called a C-

stationary point for (7) provided that there exist p ∈ H 1
0 (Ω) and λ ∈ H−1(Ω)

such that the following system of equations is fulfilled:
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α(z,w − z) + (B∗p,w − z) ≥ 0, ∀w ∈ Zad (9a)

A∗p − λ = ud − u (9b)

Au − ξ = Bz + f (9c)

ξ ≥ 0, a.e. x ∈ Ω (9d)

u ≥ 0, a.e. x ∈ Ω (9e)

(ξ, u) = 0 (9f)

〈λ, p〉 ≤ 0 (9g)

p = 0, a.e. x ∈ Ω0+ (9h)

〈λ, φ〉 = 0,∀φ ∈ H 1
0 (Ω) : φ = 0, a.e. Ω0 (9i)

If, in addition to (9), p and λ satisfy:

p ≤ 0, a.e. x ∈ Ω00 (10a)

〈λ, φ〉 ≥ 0,∀φ ∈ H 1
0 (Ω) : φ ≥ 0, a.e. Ω00, φ = 0, a.e. Ω \ (I ∪ Ω00), (10b)

then (z, u, ξ) ∈ L2(Ω) × H 1
0 (Ω) × L2(Ω) is called an S-stationary point.

Several comments on this system are necessary. To start, we note that if K0 is
replaced by the entire space H 1

0 (Ω), then ξ , λ and the conditions (9d)–(10b)
vanish and we obtain the usual first-order system for a linear-quadratic PDE-
constrained optimization problem with convex control constraints. Moreover, if
there is no biactive set, then both (in fact all) dual stationarity concepts coincide.
Thus, biactivity is essentially the source of all difficulties in the study of MPECs.
We will see later that it also relates to the Gâteaux differentiability of the control-
to-state map.

Perhaps the most critical point here is the usage of almost everywhere ver-
sus quasi everywhere conditions for the multipliers. As defined above, these
S-stationarity conditions are not equivalent to the necessary first-order optimality
conditions in the pioneering works [63, 64]; unless certain regularity assumptions on
the active/biactive/inactive sets are made. In [63, 64] (see also [43, 80]), the notion
of capacity (in contrast to Lebesgue measure) is used. This is because capacity is
needed for the correct representation of the tangent/contingent cone and its polar.
When replacing q.e. by a.e. some conditions become stronger and others finer.

In order to see this, suppose that meas(Ω0) = 0, but Cap2(Ω
0,Ω) > 0.

Then, (9i) would imply λ = 0 ∈ H−1(Ω). However, when using capacity, since
the test functions φ admit quasi-continuous representatives, requiring φ = 0 “quasi-
everywhere” (q.e.) on Ω0 would shrink the set of test functions so that λ is not
necessarily zero. Similar problems arise by requiring a.e. instead of q.e. conditions
on the adjoint variables p. Indeed, if Ω0+ has measure zero, then (9h) is trivially
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satisfied by any p; this would not be the case if we use q.e. since p ∈ H 1
0 (Ω) admits

a quasi-continuous representative.
Therefore, the stationarity conditions of Mignot and Puel, see (29) below, should

be considered the true strong/S-stationarity conditions for our canonical MPEC as
opposed to (9)–(10). For more complex constraints in which the image space of
the constraint mapping is an Lp-space, as in, e.g.,[34, 35, 45], the problems with
defining active sets up to sets of capacity zero seem to be absent.

Nevertheless, (9)–(10) arose naturally through the limiting process of an adaptive
penalty scheme. As such, they are highly relevant for the study of numerical methods
for elliptic MPECs, especially for methods utilizing smoothing plus continuation.
In contrast, it is unclear how to properly include notions of capacity into efficient
numerical methods (without simplifying assumptions as in [46]).

Finally, in many complex real-world applications, it might be impossible to
obtain even C-stationarity conditions of this type, due to a lack of compactness
and regularity properties. For example, in the optimal control of electrowetting on
dielectrics[4], Allen-Cahn [27, 28], Cahn-Hilliard [20], or Cahn-Hilliard-Navier-
Stokes system with obstacle potentials [47], one can usually only derive an
approximation of (9g). Here, this would be equivalent to replacing (9g) by

lim sup
k→∞

〈λk, pk〉 ≤ 0

for sequences {λk} and {pk} with λk ⇀ λ and pk ⇀ p.
In conclusion, the various notions of dual stationarity and the theory needed to

derive them are still active areas of research. The main point here is that there is
a stratification of concepts that one should also be aware of when considering the
design and convergence of numerical methods. That is, it is not enough to prove
that a scheme converges but also to what kind of stationary point. Of course, many
of the issues involving capacity, weak topologies, products of weakly convergent
sequences, and weak lim-inf or lim-sup-type sign conditions will not necessarily
appear in numerical experiments.

4 Regularization-Based Methods

In this and the coming sections, we present a number of numerical optimization
methods for elliptic MPECs. These are split into two classes: Methods that
employ adaptive smoothing, relaxation, or penalization of the forward problem or
complementarity constraints (regularization-based methods) and those that do not
(non-smooth methods).

We also note that the proper discretization of elliptic MPECs using (adaptive)
finite elements schemes that take into account the additional difficulties due to
the inherent degeneracy/non-smoothness has only been considered in a handful of
papers. For example, we mention the most recent works [16, 17, 24, 37, 62]. For
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our numerical study, we make use of a simple finite difference scheme to discretize
the operators along with a nested grid approach to simulate mesh refinements. This
allows us to easily compare the methods.

The regularization-based methods all follow a similar scheme. First, the varia-
tional inequality is approximated by a parameter-dependent semilinear elliptic PDE
or the complementarity constraint is relaxed or penalized. This yields in both cases
a more tractable family of approximating optimization problems. Next, the smooth
PDE-constrained problems are solved, yielding a parameter-dependent KKT point.
Finally, continuation is performed on the regularization parameter (passing to 0
or +∞).

The non-smooth methods are rather different and there is still plenty of room for
new ideas. We only mention here that with these methods the emphasis is placed
on directly solving the original, non-smooth problem without changing the forward
problem. We postpone further details until later.

4.1 An Adaptive Penalty Method

We begin in the abstract framework of Section 2.5 and present a general approx-
imation result as found in [7, Thm. 2.2]. For a comprehensive study on the
numerical analysis and approximation of variational inequalities, see, e.g., [31]. In
the following, φε refers to some penalty functional for the constraint K .

Definition 4 For any constant ε > 0, let φε : V → R such that φε is convex and
Fréchet differentiable on V and satisfies

1. There exists a C, independent of ε, u with φε(u) ≥ −C(‖u‖V + 1) for all ε > 0,
u ∈ V .

2. φε(u) → iK(u) as ε ↓ 0 for all u ∈ V .
3. For all u ∈ V and for all {uε} such that uε ⇀ u as ε ↓ 0, lim infε↓0 φε(uε) ≥

iK(u).

Remark 3 See also [7, Thm 2.4] for functionals on H , which is more relevant
for (13).

In the abstract setting, we approximate (1) by

Au + ∇φε(u) = Bz + f (11)

We denote the approximate solution mapping by Sε . For the next result, we restrict
ourselves to the case when A is symmetric (as in Example 2), see [7, Thm. 2.2].

Theorem 4 Let wε → w in V ∗ as ε ↓ 0, then the sequence {uε} ⊂ V with uε :=
Sε(wε) converges weakly to u = S(w) as ε ↓ 0. If in addition,
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〈∇φε(y) − ∇φδ(v), y − v〉 ≥ −C(1 + (‖∇φε(y)‖2
V ∗ + ‖∇φδ(v)‖2

V ∗))(ε + δ),

∀ε, δ > 0,∀y, v ∈ V, (12)

then uε → u (strongly in V ) as ε ↓ 0.

In the setting of Example 2, one possibility for φε is:

φε(u) := (2ε)−1‖(−u)+‖2
L2 . (13)

Redefining K0 for L2-functions, φε in (13) is the Moreau-Yosida regularization
of the indicator functional iK0 with respect to the L2-topology, cf. [5, Sec. 2.7].
However, in order to solve the smoothed MPECs numerically, we will require more
smoothness of φε below. We now approximate (5) by:

min Jε(z) := F(Sε(Bz)) + G(z) over z ∈ Zad, (14)

Thus, the existence theory, optimality conditions, and numerical methods for (14)
reduces to results from PDE-constrained optimization.

Turning to Example 2, we employ a smoothed plus function in (11) characterized
by:

∇φε(u) =

⎧
⎪⎨

⎪⎩

ε−1u − 0.5, if u ≥ ε,
u3

ε3 − u4

2ε4 , if u ∈ (0, ε),

0, else,

∇2φε(u) =

⎧
⎪⎨

⎪⎩

ε−1, if u ≥ ε,
3u2

ε3 − 2u3

ε4 , if u ∈ (0, ε),

0. else.
(15)

We can then prove that the approximate solution mapping Sε is Fréchet differen-
tiable. Then, for a solution (zε, uε), there exists an adjoint state pε ∈ V such that

α(zε, w − zε) + (B∗pε,w − zε) ≥ 0, ∀w ∈ Zad (16a)

A∗pε − λε = ud − uε, (16b)

Auε − ξε, = Bzε + f, (16c)

ξε = ∇φε(−uε), a.e. x ∈ Ω (16d)

λε = −∇2φε(−uε)pε, a.e. x ∈ Ω, (16e)

holds; cf. the techniques in [57, 77].
We note here that the case of gradient constraints mentioned in (3) can also

be treated using such a penalty method. However, using a standard quadratic
penalty/Moreau-Yosida-type approach yields a penalized state equation of the form:

−div((1 + ξε)∇uε) = Bzε + f, (17a)

ξε = 1

ε

(
1 − Ψ

|∇uε |
)

+
, (17b)
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which is considerably more challenging due to the bilinear dependence on uε in the
PDE and accompanying non-smooth first-order PDE.

From (16), it is possible to derive C-stationarity conditions and, under further
assumptions, even S-stationarity conditions, cf. [39, 40], by passing to the limit
in ε. More specifically, we show that a subsequence of stationary points for (16)
converges to a point that satisfies C-stationarity for (7). Therefore, if we have a
numerical method that solves (16), then by performing continuation on ε ↓ 0 we
have a means of numerically approximating C-stationary points (or better) for (7).
This furnishes a convergence proof in function space for the “outer loop” of the
method, depicted in Algorithm 4.1. For the interested reader, we provide a short
discussion of the limiting arguments in Detail 5.

Algorithm 4.1 Adaptive penalty method: outer loop

Input: ud, f ∈ L2(Ω), β ∈ (0, 1);
1: Choose ε0 > 0, (z0, u0, ξ0, p0, λ0) ∈ L2(Ω) × H 1

0 (Ω) × L2(Ω) × H 1
0 (Ω) × L2(Ω) and set

k := 0;
2: repeat
3: Compute a stationary point (zk+1, uk+1, ξk+1, pk+1, λk+1) of (16) with ε = εk using an

iterative scheme with initial value (zk, uk, ξk, pk, λk);
4: Set εk+1 = βεk

5: until some stopping rule is satisfied.

Detail 5 (Sketch of the Limiting Technique) We first note that (16a) is equivalent
to

zε = ProjZad
(− 1

α
B∗pε). (18)

Suppose Zad is bounded, then {zε}ε>0 is bounded in Z. Let εk ↓ 0. Then, there

exists a subsequence {zl} with zl = zεkl

Z
⇀ z� ∈ Zad . Hence, Sεkl

(Bzl) =: ul
V→

u� = S(Bz�) by Theorem 4 due to the complete continuity of B. Therefore, ξl →
ξ� := Bz� + f − Au� ∈ −NK0(u

�), i.e., ξ�, u� satisfy. For the adjoint state pε and
multiplier λε , we test the adjoint equation (16b) with pε :

c1‖pε‖2
V ≤ 〈A∗pε − λε, pε〉 = (ud − uε, pε) ≤

‖ud − uε‖H ‖pε‖H ≤ c2‖ud − uε‖H ‖pε‖V

for scalars c1, c2 > 0, independent of ε. Since ul
V→ u�, {pl} is bounded in V .

Hence, there exists {plm} with plm

V
⇀ p� and, by substitution, λlm

V ∗
⇀ λ� = u� −

ud + A∗p�.
Without knowledge of the best possible system, one might stop at this point;

however, the theory indicates that a much more refined system is possible. We
quickly demonstrate (9g). The remaining conditions (9h), (9i) require lengthy
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arguments that go beyond the scope of this work. Returning to (16b), it is clear
that

〈A∗pε, pε〉 − (ud − uε, pε) = 〈λε, pε〉 = −
ˆ

Ω

∇2φε(−uε)|pε |2dx ≤ 0.

Since A is symmetric, the bilinear form a(·, ·) is weakly lower-semicontinuous.

Moreover, due to the Rellich-Kondrachov theorem, both uε
H→ u�, pε

H→ p�. Thus,

〈λ�, p�〉 = 〈A∗p�, p�〉−(ud −u�, p�) ≤ lim inf
m→+∞〈A∗plm, plm〉−(ud −ulm, plm) ≤ 0.

(19)

In [7], a more general setting allows a similar argument. However in general, e.g., if
A is not symmetric, we only have:

lim sup
ε↓0

〈λε, pε〉 ≤ 0

as mentioned at the end of Section 3.3. ��
A possible stopping rule in Algorithm 4.1 could be the residual of the C-

stationarity system (9) or when a minimum value of εk+1 is reached, e.g., machine
precision. Obviously, the most computationally demanding part here is step 3.
Assuming that ProjZad

is relatively simple to calculate, e.g., for local bilateral
constraints, then (16) reduces to

A∗pε + ∇2φε(−uε)pε = ud − uε, (20a)

Auε − ∇φε(−uε) = BProjZad
(− 1

α
B∗pε) + f. (20b)

One could then solve (20) using, e.g., a semismooth Newton method. Alternatively,
an interior point approach for the projection might be employed. We briefly recall
the semismooth Newton method in infinite-dimensional spaces as discussed in [19,
38, 79]. Let X, Y be Banach spaces, D ⊂ X an open subset of X, and F : D → Y .

Definition 5 The mapping F : D ⊂ X → Y is said to be Newton-differentiable
on the open subset U ⊂ D, if there exists a family of mappings G : U → L (X, Y )

such that

‖F (x + h) − F (x) − G (x + h)h‖Y = o(‖h‖X),∀x ∈ U.

G is called the Newton derivative for F on U . In [38], it is shown that
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Gδ(y)(x) =
⎧
⎨

⎩

1 if y(x) > 0
0 if y(x) < 0
δ if y(x) = 0

(21)

for every y ∈ X and δ ∈ R is a Newton derivative of the max(0, ·), under the
condition that max(0, ·) : Lp(Ω) → Lq(Ω) with 1 ≤ q < p ≤ ∞.

Therefore, if a mapping F is Newton-differentiable, then using the concepts
above leads to a generalized Newton step for the equation F (x) = 0, see, e.g.,
[19, 38].

Theorem 6 Suppose that F (x∗) = 0 and that F is Newton-differentiable on an
open neighborhood U of x∗ with Newton derivative G . If G (x) is nonsingular for
all x ∈ U and the set

{||G (x)−1||L (Y,X) : x ∈ U
}

is bounded, then the semismooth
Newton iteration

xl+1 = xl − G (xl)
−1F (xl), l = 0, 1, 2, . . . (22)

converges superlinearly to x∗, provided that ||x0 − x∗||X is sufficiently small.

Under the assumption that Zad := {
v ∈ L2(Ω) | a ≤ v ≤ b, a.e. x ∈ Ω

}
with

a, b ∈ L2(Ω) and a < b, we can derive a semismooth Newton step for the solution
of (20) in function space: Fix some (u, p) ∈ H 1

0 (Ω) × H 1
0 (Ω) and define the

following subsets of Ω:

Ωa :=
{
x ∈ Ω

∣∣∣a(x) + α−1(B∗p)(x) > 0
}

,

Ωb :=
{
x ∈ Ω

∣∣∣−α−1(B∗p)(x) − b(x) > 0
}

.

Moreover, let Ωina := Ω \ (Ωa ∪ Ωb) (up to a set of Lebesgue measure zero) and
define the residual Fε(u, p) of (20) by:

F 1
ε (u, p) := Au − ∇φε(−u) − BProjZad

(− 1

α
B∗p) − f,

F 2
ε (u, p) := A∗p + ∇2φε(−u)p − ud + u.

Since

z = ProjZad
(−α−1B∗p) = −α−1B∗p − (−α−1B∗p − b)+ + (a + α−1B∗p)+,

(23)

we can use (21) to obtain a Newton derivative G for F :

Gε(u, p) =
[

A + ∇2φε(−u) α−1χΩinaBB∗
I − ∇3φε(−u)p A∗ + ∇2φε(−u)

]
,
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where χΩina is the characteristic function for the set Ωina . If (δu, δp) denotes the
difference between the new iterate and the current iterate in the semismooth Newton
step, then at each iteration, we solve

[
A + ∇2φε(−u) α−1χΩinaBB∗
I − ∇3φε(−u)p A∗ + ∇2φε(−u)

] [
δu

δp

]
= −Fε(u, p). (24)

If we can show that Gε(u, p) is invertible independently of (u, p) (for fixed ε >

0) so that the set
{||Gε(u, p)−1|| : (u, p) ∈ H 1

0 (Ω) × H 1
0 (Ω)

}
is bounded, then we

are guaranteed to have local superlinear convergence. This leads to Algorithm 4.2.

Algorithm 4.2 Adaptive penalty method: inner loop

Input: tol > 0, a, b, ud , f ∈ L2(Ω), εk > 0, (uk
0, p

k
0) ∈ H 1

0 (Ω) × H 1
0 (Ω), l := 0;

1: repeat
2: Compute a step (δuk

l , δp
k
l ) by solving (24) with (u, p) := (uk

l , p
k
l ), ε = εk .

3: Set uk
l+1 := uk

l + δuk
l , pk

l+1 := pk
l + δpk

l , l := l + 1;

4: until ‖F (uk
l , p

k
l )‖ < tol

We conclude this subsection with a numerical experiment. This is used in part to
compare to the non-smooth numerical methods in later sections.

Example 3 Let Ω = (0, 1)2, α = 1, b ≡ 0.035, a ≡ 0, and A = −Δ (associated
with H 1

0 (Ω)). Defining

y†(x1, x2) =
{

160(x3
1 − x2

1 + 0.25x1)(x3
2 − x2

2 + 0.25x2) in (0, 0.5) × (0, 0.5),

0 else,

ξ†(x1, x2) = max(0,−2|x1 − 0.8| − 2|x1x2 − 0.3| + 0.5),

we set

f = −Δy† − y† − ξ†, and ud = y† + ξ† − αΔy†.

The example is chosen due to the nontrivial biactive set and overlap of active sets for
the control and state constraints. The only change to [40, Exp. 5.1] is the addition
of control constraints, which were set to ±∞ there. Concerning the discretization
and solution, we use a standard five-point stencil to discretize the negative Laplace
operator with finite differences. The problem is solved on a uniform mesh with 5122

grid points.
We start the algorithm at (z0, u0, ξ0) = (0, 0, 0). The stopping criterion is based

on the L2-norm of the residual with stopping tolerance of 10−9. For this example,
the ε-update in 4.1 proved to be extremely sensitive, meaning that a reasonably
aggressive update strategy, e.g., εk+1 = εk/2 failed once εk = O(10−4). To be fair,
one would normally not cold-start this algorithm on such a fine grid. Opting instead
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for either an adaptive FEM strategy, multigrid scheme (as in [40]), or a nested
grid strategy (as in [39, 46]) would certainly improve the performance and allow
for a more aggressive update strategy for the smoothing parameter. Nevertheless,
we see that as the penalized problem approaches the original non-smooth non-
convex problem, the nonlinear system becomes increasingly more difficult to solve
(eventually even failing). See Table 1 for the convergence history and Figure 1 for
plots of the solution.

4.2 An �1 Penalty Method

In this subsection, we present a technique originating in the finite-dimensional
MPEC literature [3]. The extension to infinite dimensions can be found here [43].
The idea is elegant in its simplicity and allows us to approximate the elliptic MPEC
by a sequence of PDE-constrained optimization problems with control and state
constraints. Moreover, instead of a semilinear elliptic PDE, as in the previous
method, we have a linear elliptic PDE. We begin in the abstract framework of
Section 2.5 under the assumption that K is a cone and then pass to the problem
in Example 2.

Using an �1-penalty for the condition 〈u, ξ 〉 = 0, we approximate (6) by

min J (z, u) + 1

ε
|〈u, ξ 〉| over (z, u, ξ) ∈ Z × V × V ∗, (25a)

s.t. z ∈ Zad, (25b)

Au − ξ = Bz + f, (25c)

u ∈ K, ξ ∈ K+. (25d)

By definition of K+, 〈u, ξ 〉 ≥ 0. Hence, for (u, ξ) ∈ K × K+, 1
ε
|〈u, ξ 〉| = 1

ε
〈u, ξ 〉,

which yields the smooth objective Jε(z, u, ξ) := J (z, u) + 1
ε
〈u, ξ 〉.

The analysis for this problem requires several technical results. Nevertheless,
under appropriate regularity and boundedness assumptions, one can still show exis-
tence of a solution, consistency of the approximation, derive first-order conditions
and (after passing to the limit in ε) obtain a (weak) form of C-stationarity. We briefly
sketch the ideas here and refer the reader to [43, Section 2] for the detailed technical
analysis in the context of Example 2.

Detail 7 (Sketch of Existence and Consistency Arguments) In addition to the
assumptions in Theorem 2, let F be weakly lower-semicontinuous, Zad bounded,
and A symmetric.

To show that (25) has a solution, we prove the boundedness of infimizing
sequence {(zk, uk, ξk)} (despite the unboundedness of K+ and lack of coercivity
of Jε(z, u, ξ)). Let (z0, u0, ξ0) be feasible for (6). Then, for all sufficiently large
k ∈ N ,
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Fig. 1 Solution plots for adaptive penalty method Algorithms 4.1 and 4.2, clockwise from upper
left: characteristic function χΩ0

�
optimal control z�, state u�, multiplier λ�, adjoint p�, and

multiplier ξ�. Notice the nontrivial biactive set for the variational inequality and the upper and
lower active sets for the control constraints

J (z0, u0) = Jε(z0, u0, ξ0) ≥

Jε(zk, uk, ξk) = F(uk) + G(zk) + 1

ε
〈uk, ξk〉 ≥ G(zk) + 1

ε
〈uk, ξk〉. (26)

Hence, J (z0, u0) − G(zk) ≥ 1
ε
〈uk, ξk〉 ≥ 0. Since Zad is bounded, there exists

a weakly convergent subsequence {zkl
} with zkl

⇀ z� ∈ Zad. Then, by the weak
lower-semicontinuity of G, we have

0 ≤ lim inf
l

〈ukl
, ξkl

〉 ≤ lim sup
l

〈ukl
, ξkl

〉 ≤ J (z0, u0) − G(z�).

Thus, testing (25c) with ukl
, we first obtain the boundedness of {ukl

} in V and then
{ξkl

} in V ∗. Given A is symmetric, we use an argument as in (19) to prove that
(along a further subsequence {klm}) lim infm〈uklm

, ξklm
〉 ≥ 〈u�, ξ�〉, where u� and

ξ� are the weak limit points. Since K and K+ are weakly closed, u� ∈ K and
ξ� ∈ K+. This suffices to prove that (25) has a solution. A proof for consistency of
the approximation, i.e., that global optimizers {(zε, uε, ξε)} converge as ε ↓ 0 (at
least along a subsequence) to a global optimizer {(z�, u�, ξ�)} of (6) can be derived
analogously using the boundedness of {zε} ⊂ Zad and subsequently, the inequality
ε(J (z0, u0) − G(zε)) ≥ 〈uε, ξε〉 ≥ 0. ��

As in Section 4.1, we restrict ourselves to the setting of Example 2 for the
derivation of stationarity conditions. Here, the derivation of first-order optimality
conditions requires the verification of a constraint qualification, in this case that
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of Robinson-Zowe-Kurcyusz, see [88]. According to Propositions 2.5 and 2.6 in
[43], we have the following ε-dependent first-order optimality conditions: For any
solution (zε, uε, ξε) to (25) (under the data assumptions of Example 2), there exists
a multiplier-tuple (pε, ϑε, τε) such that

α(zε, w − zε) + (B∗pε,w − zε) ≥ 0, ∀w ∈ Zad (27a)

A∗pε + 1

ε
ξε − ϑε = ud − uε, (27b)

Auε − ξε = Bzε + f, (27c)

uε ∈ K0, ξε ∈ K+
0 , (27d)

1

ε
uε − pε − τε = 0, (27e)

ϑε ∈ K+
0 , 〈ϑε, uε〉 = 0, τε ∈ K0, 〈ξε, τε〉 = 0. (27f)

In comparison, this system is much larger than (16) and contains additional
information. Nevertheless, under certain boundedness assumptions, passing to the
limit in ε yields, in fact, a weaker C-stationarity system, see [43, Thm. 2.9]:

α(z�, w − z�) + (B∗p�,w − z�) ≥ 0, ∀w ∈ Zad (28a)

A∗p� − λ� = ud − u�, (28b)

Au� − ξ� = Bz� + f, (28c)

u� ∈ K0, ξ � ∈ K+
0 , 〈u�, ξ�〉 = 0, (28d)

〈λ�, u�〉 = 0, 〈p�, ξ�〉 = 0, 〈λ�, p�〉 ≤ 0. (28e)

To see that (28e) relates to (9h), (9i) suppose for the sake of argument that ξ�, p�, λ�

are merely vectors of length n and the conditions in (28e) are understood as the
componentwise (Hadamard) products. Then, by complementarity, ξ� ≥ 0 and
ξ�
i = 0 if i is an inactive or biactive index and 〈p�, ξ�〉 = 0 in turn implies that

the strongly active components of p� are zero (as in (9h)). The same applies to the
inactive components of λ� due to 〈λ�, u�〉 = 0 (as in (9i)).

Though there is a significant gap, the derivation of (28) is related to the con-
vergence of a function-space-based numerical method. Indeed, using known results
for linear elliptic PDE-constrained optimization problems with control and state
constraints, we have viable efficient algorithms that can guarantee convergence to a
KKT point, which satisfies (27). By performing continuation on ε we can be assured
to converge (along a subsequence) to a weak C-stationary point. Furthermore,
Theorem 2.12 in [43] provides a more compelling argument.

Theorem 8 (Thm 2.12 [43]) Suppose (zε, uε, ξε, pε, ϑε, τε) satisfies (27) and that
(zε, uε, ξε) is feasible for (7). Then, (zε, uε, ξε) is strongly stationary in the sense
of Mignot and Puel, i.e., conditions (9h)–(10b) are replaced by
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p = 0, q.e. x ∈ Ω0+ (29a)

〈λ, φ〉 = 0,∀φ ∈ H 1
0 (Ω) : φ = 0, q.e. Ω0 (29b)

p ≤ 0, q.e. x ∈ Ω00 (29c)

〈λ, φ〉 ≥ 0,∀φ ∈ H 1
0 (Ω) : φ ≥ 0, q.e. Ω00, φ = 0, q.e. Ω \ (I ∪ Ω00) (29d)

Since we are using an �1 penalty, which often amounts to an exact penalty function,
there is a good chance that a stationary point (zε, uε, ξε) is feasible for (7) for
sufficiently small ε.

Algorithm 4.3 �1 penalty method: outer loop

Input: ud, f ∈ L2(Ω), β ∈ (0, 1);
1: Choose ε0 > 0, (z0, u0, ξ0, p0, ϑ0, τ 0) ∈ L2(Ω)×H 1

0 (Ω)×L2(Ω)×H 1
0 (Ω)×H−1(Ω)×

H 1
0 (Ω) and set k := 0;

2: repeat
3: Compute a stationary point (zk+1, uk+1, ξk+1, pk+1, ϑk+1, τ k+1) of (27) with ε = εk using

an iterative scheme with initial value (zk, uk, ξk, pk, ϑk, τ k);
3: Set εk+1 = βεk

4: until some stopping rule is satisfied.

Again we might choose as a stopping criterion the residual of C-stationarity,
taking λ := ε−1ξ − ϑ and substituting τ = ε−1u − p. Since the theory only
guarantees ϑ ∈ H−1(Ω), one will need to treat the discrete quantities carefully,
cf. [43] for more details. In addition, the solution of the subproblems (25) does
not reduce to the solution of a system similar to (20). Therefore, the solution of
the subproblems can be more difficult than in the adaptive penalty framework.
Nevertheless, the theoretical result in Theorem 8 indicates the potential of this
algorithm to generate a better stationary point.

5 Non-Smooth Numerical Methods

In this section, we present several methods that do not require a smoothing or
penalization of the original MPEC. We present a new approximate projected
subgradient method alongside a direct solver for the C-stationarity system presented
in [36] and a recent method from [46] that may serve as a globalization of the
direct solver. In all of these methods, we need to solve the variational inequality (1).
This can be done using the semismooth Newton methods as in [38, 41] or special
monotone multigrid methods as in [55].
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5.1 An Approximate Projected Subgradient Method

The subgradient method is perhaps the simplest non-smooth optimization algorithm.
Suppose X is a real separable Hilbert space. Given a proper, convex, lower-
semicontinuous, and subdifferentiable functional f : X → R, x0 ∈ X, g0 ∈
∂f (x0), and a sequence {νk} with νk > 0, compute a sequence of iterates {xk}
according to the rule

xk+1 := xk − νkg
k, gk+1 ∈ ∂f (xk).

Here, and unless otherwise noted below, we would need to apply the Riesz map to
gk before using it in this iteration.

Similarly, given a non-empty, closed, and convex subset C ⊂ X the projected-
gradient method replaces the previous rule by

xk+1 := ProjC (xk − νkg
k), gk+1 ∈ ∂f (xk+1). (30)

The subgradient method was invented by N.Z. Shor in the 1970s, see [76], and
although it does not guarantee descent of the objective functional and can be quite
slow to converge, it still finds a wide array of applications due to its simplicity and
ability to be combined with distributed algorithm techniques, as in, e.g., [78].

Consider the reduced elliptic MPEC in (5):

min J (z) := F(S(Bz)) + G(z) over z ∈ Zad.

Since S is nonlinear, the reduced objective functional is typically non-convex.
Therefore, we cannot directly apply the projected subgradient method. However,
there exist a number of generalized subdifferentials for non-convex functions. In
our case, we will initially make use of the limiting subdifferential (also known as the
Mordukhovich subdifferential) for the reduced objective. We will restrict ourselves
to the framework of Example 2. First, we recall several definitions from variational
analysis, see [66].

Definition 6 (Normal Cones to Arbitrary Sets) Let X be a Hilbert space and
C ⊂ X. Then, the multifunction N̂C : X ⇒ X∗ defined by

N̂C(x) :=
{
x∗ ∈ X∗

∣∣∣ 〈x∗, x′−x〉X ≤ o(||x′−x||X), ∀x′ X→ x, x′ ∈ C
}

, x ∈ C,

(31)

and N̂C(x) := ∅ for x /∈ C is called the regular (Fréchet) normal cone to C. The
multifunction NC : X ⇒ X∗ defined by

NC(x) :=
{
x∗ ∈ X∗

∣∣∣∣ ∃xk
X→ x, ∃x∗

k

X∗
⇀ x∗ : x∗

k ∈ N̂C(xk), ∀k ∈ N

}
(32)

is called the limiting (Mordukhovich) normal cone to C.
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Although N̂C is convex, it fails to admit a satisfactory calculus needed for most
non-smooth, non-convex problems. In contrast, the limiting normal cone enjoys a
robust calculus. Note that for closed convex sets C, both cones agree, and in general
N̂C(x) � NC(x). We will use the limiting normal cone to define a generalized
subgradient, needed in part for our proposed numerical method.

Definition 7 (Limiting Subdifferential) Let X be a Hilbert space, φ : X → R,
and x ∈ X such that |φ(x)| < +∞. The set

∂φ(x) := {
x∗ ∈ X∗ ∣∣ (x∗,−1) ∈ Nepi φ(x, φ(x))

}
(33)

is called the limiting (Mordukhovich) subdifferential. If |φ(x)| = ∞, we set
∂φ(x) = ∅.

Therefore, if we know the limiting subdifferential ∂J (z) in (5), then we could
design a projected subgradient iteration along the lines of (30):

zk+1 := ProjZad
(zk − νkg

k), gk+1 ∈ ∂J (zk+1).

If J were smooth, then ∂J is just the gradient of the reduced objective functional,
which we usually calculate in PDE-constrained optimization by solving an adjoint
equation. However here, J is non-smooth and non-convex. In order to obtain a
generalized adjoint state for the reduced objective functional we require the so-
called “coderivatives.”

Definition 8 (Coderivatives) Let X be a Hilbert space, Φ : X ⇒ X∗, and y ∈
Φ(x), i.e., (x, y) ∈ Graph Φ. The regular (Fréchet) coderivative of Φ at (x, y) is
the multifunction D̂∗Φ(x, y) : Y ∗ ⇒ X∗ defined by

h∗ ∈ D̂∗Φ(x, y)(d∗) ⇐⇒ (h∗,−d∗) ∈ N̂Graph Φ(x, y). (34)

The limiting (Mordukhovich) coderivative D∗Φ(x, y) of Φ at (x, y) ∈ Graph Φ is
similarly defined by

h∗ ∈ D∗Φ(x, y)(d∗) ⇐⇒ (h∗,−d∗) ∈ NGraph Φ(x, y). (35)

For example, if Φ = Sε from Section 4.1, then the coderivatives coincide and we
have:

D̂∗Sε(w, u)(w∗) = D∗Sε(w, u)(w∗) = S′
ε(w)∗w∗, w∗ ∈ X∗,

i.e., D̂∗Sε(w, u)(w∗) yields the usual adjoint state p obtained by solving the
associated linear elliptic PDE with −w∗ on the right-hand side.

For the tracking-type objective in Example 2, it was argued in [44, Prop. 1] that

∂J (z) ⊂ αz + B∗D∗S(Bz, u)(u − ud). (36)
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Here, it follows from [66, Thm 4.44] that p ∈ D∗S(Bz, u)(u − ud) is a solution to
the generalized adjoint equation:

A∗p + D∗NK0(u, ξ)(p) � ud − u, (37)

where ξ = Bz + f − Au ∈ NK0(u). Therefore, assuming that (37) were solvable,
we could fashion our projected subgradient method as in Algorithm 5.4.

Algorithm 5.4 Limiting projected subgradient algorithm

Input: {νk} with νk > 0; z0 ∈ Z; u0 = S(Bz0); ξ0 = Bz0 + f − Au0; Find a solution p0 to

A∗p + D∗NK0 (u
0, ξ0)(p) � ud − u0.

1: for k = 0, 1, . . . do
2: Set zk+1 := ProjZad

(zk − νkg
k) with gk = αzk + B∗pk .

3: Set uk+1 := S(Bzk+1), ξk+1 := Bzk+1 + f − Auk+1.
4: Find pk+1 a solution to

A∗p + D∗NK0 (u
k+1, ξk+1)(p) � ud − uk+1.

5: end for

Since we have no efficient means of handling D∗NK0(u
k+1, ξ k+1)(p), Algo-

rithm 5.4 is impractical, especially when we consider that subgradient meth-
ods potentially require many iterations even for favorable convex problems. We
therefore propose an alternative in Algorithm 5.5. The formal derivation for the
approximate generalized adjoint state is based on simple geometric observations for
a related finite-dimensional setting.

Consider that the (convex) normal cone NK0 is generated by the (convex) subd-
ifferential of the indicator functional iK0 . Since the functionals φε in (13) converge
in a variational sense to iK0 , they provide a viable candidate for approximating
elements of NK0 . Moreover, for any u ∈ V , ∇φε(u) = −ε−1(−u)+. Comparing
as ε ↓ 0, it appears (at least in finite dimensions) that Graph ∇φε → Graph −NK0 ,
see Figure 2. This behavior transfers to N̂Graph −NK0

(u, ξ) and N̂Graph ∇φε (u, ξ), cf.

Figure 2 with Θ := Graph −NR+ and Λ := Graph ∇φ0.1.
Using the information in Figure 2, we can first calculate the limiting normal

cones NΘ(u, ξ), from which we obtain: D∗NΘ(1, 0)(p) = {0}, for all p, and

D∗NΘ(0, 1)(p) = R, if p = 0,

otherwise D∗NΘ(0, 1)(p) = ∅. The most interesting case is:

D∗NΘ(0, 0)(p) =
⎧
⎨

⎩

{0}, for all p < 0,

R, if p = 0
R−, else.
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Fig. 2 From left to right: Graph ∇φε (ε = 1, 0.5, 0.1) versus GraphNR+ ; N̂Graph −NR+ (u, ξ) for

(u, ξ) = (1, 0), (0, 1), (0, 0); N̂Graph ∇φ0.1(u, ξ) for (u, ξ) = (1, 0), (0, 1), (0, 0)

Similarly, we have for all p

D∗NΛ(1, 0)(p) = {0}, D∗NΛ(0, 1)(p) = −ε−1p;
and

D∗NΛ(0, 0)(p) =
⎧
⎨

⎩

{0} ∪ {−ε−1p}, for all p < 0,

{0}, if p = 0,[−ε−1p, 0
]

else.

Though certainly more tractable numerically, D∗NΛ is still a set-valued map-
ping with non-convex images. We therefore suggest the following single-valued
mapping:

D̃∗NΛ(0, 0)(p) :=
{
q : q = −ε−1χ{u=0}p

}

where χ{u=0} is the characteristic function for the active set. This mapping coincides
with the limiting coderivative D∗NΘ on the inactive set and strongly active set,
whenever D∗NΘ is non-empty. On the biactive set, it is either contained in D∗NΘ

or approaches it for ε ↓ 0, cf. Figure 3.
By extrapolating these ideas from this simple one-dimensional geometric study

to the infinite-dimensional setting, we arrive at our proposed algorithm.
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Fig. 3 Blue: D∗NΘ(0, 0)(p), Red: D∗NΛ(0, 0)(p), Black: D̃∗NΛ(0, 0)(p); ε = 0.5

Algorithm 5.5 Approximate projected subgradient algorithm
Input: {εk} such that εk ↓ 0; {νk} such that νk > 0.
Input: z0 ∈ Z; u0 = S(Bz0); ξ0 = Bz0 + f − Au0; Solve for p0:

A∗p + 1

ε0
χ{u0≤0}p = ud − u0.

1: for k = 0, 1, . . . do
2: Set zk+1 := ProjZad

(zk − νkg
k) with gk = αzk − B∗pk .

3: Set uk+1 := S(Bzk+1), ξk+1 := Bzk+1 + f − Auk+1

4: Solve for pk+1:

A∗p + 1

εk+1
χ{uk+1≤0}p = ud − uk+1.

5: end for

Remark 4 In fact, −χ{u≤0}p is nothing more than the adjoint of the Newton
derivative for the non-smooth Nemytskii operator (−·)+ : H 1

0 (Ω) → L2(Ω).

Using the analytical techniques described throughout the text, we have the next
result.

Theorem 9 Suppose that Zad is bounded. Then, any sequence {(zk, uk, ξk,

pk, λk)} ⊂ Z × V × V ∗ × V × V ∗ generated by Algorithm 5.5 is bounded.
Here,

λk := − 1

εk

χ{uk≤0}pk.
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Moreover, any weak accumulation point of (z�, u�, ξ�, p�, λ�) will be feasible
for (7) and we have

lim
k→∞

ˆ
{uk=0}

|pk|2dx = 0, 〈λ�, p�〉 ≤ 0, 〈λ�, u�〉 = 0. (38)

Proof Since Zad is bounded, {zk} is bounded in Z. It immediately follows that {uk}
is bounded, since

c‖uk‖2
V ≤ 〈Auk, uk〉 − 〈ξk, uk〉 = 〈Bzk + f, uk〉 ⇒ c‖uk‖V ≤ ‖Bzk + f ‖V ∗

and ξk = Bzk + f − Auk . Similarly, we obtain the boundedness of {pk} in V and
{λk} in V ∗:

c‖pk‖2
V ≤ 〈A∗pk, pk〉 + 〈λk, pk〉 = 〈ud − uk, pk〉 ⇒ c‖pk‖V ≤ ‖ud − uk‖V ∗

and λk = ud − uk − A∗pk . Furthermore, since

0 ≤ εk〈A∗pk, pk〉 +
ˆ

{uk=0}
|pk|2dx = εk〈ud − uk, pk〉

the limit condition in (38) holds. Moreover, will can again show that 〈λ�, p�〉 ≤ 0
using the same argument as in (19) and by definition 〈λk, uk〉 = 0. Since B is
compact, uk → u� in V (along a subsequence). This yields 〈λ�, u�〉 = 0.

The purpose of Theorem 9 is to show that Algorithm 5.5 produces a sequence with
a weak accumulation point that satisfies a kind of limiting C-stationarity system.
However, the lag in indices prevents us from closing the argument by proving that
{zk} fulfils (9) (regardless of whether we choose fixed, bounded, or diminishing
step sizes). Nevertheless, we will see later in the bundle-free approach that a variant
of our approximate adjoint equation can under certain circumstances yield descent
directions for the reduced objective.

We now demonstrate the performance of the algorithm on an example with a
nontrivial biactive set: Example 3. In order to assure feasibility at every step, we
solve the variational inequality with the primal-dual active set (PDAS)/semismooth
Newton method from [38]. Note that although the solver for the variational
inequality is mesh dependent, the majority of the linear solves are done within the
first four iterations, see Table 2. For a graph of the behavior of the residuals as well
as plots of the solution, see Figure 4.

We again use a uniform grid with 5122 grid points and start the algorithm at
(z0, u0, ξ0) = (0, 0, 0). We choose the a priori step sizes νk := (k)−1/2 and update
εk according to εk := 10−4/2k . The inner PDAS solver stops once the residual of
the non-smooth system of equations reaches a tolerance of 10−10. Though the theory
does not provide a stopping criterion, we check the residual of strong stationarity,
which reaches O(10−9) after 30 iterations. The residual is calculated using a discrete
approximation of the following quantity:
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Table 2 Outer loop k vs. inner loop iterations “iter” for PDAS with tol = 10−10 used in
Algorithm 5.5

k 1 2 3 4 5 · · · 31 32

iter 84 9 2 1 1 · · · 1 1

Fig. 4 Clockwise from upper left: residual of strong stationarity for Algorithm 5.5, optimal
control z�, state u�, multiplier λ�, adjoint p�, and multiplier ξ�

resk := ‖zk−ProjZad
(zk−gk)‖L2 +‖Auk−ξk−zk−f ‖L2 +‖ max(0,−uk)‖L2+

‖ max(0,−ξk)‖L2 +|(ξk, uk)L2 |+‖Apk −λk +uk −ud‖L2 +| max(0, 〈λk, pk〉)|+
‖χ

Ω0+
k

pk‖L2 + ‖χIk
λk‖L2 + ‖χΩ00

k
max(0, pk)‖L2 + ‖χΩ00

k
max(0,−λk)‖L2

(39)

Despite lacking a convergence theory, the algorithm performs very well on this
large-scale nontrivial problem. Indeed, counting all the free variables (z, u, ξ, etc.)
there are over 106 degrees of freedom. Moreover, the presence of biactivity means
that the example considered is genuinely non-smooth and non-convex. This is
particularly encouraging, as the algorithm clearly outperforms the adaptive penalty
method in terms of ease of implementation, size and structure of the systems of
linear equations, and order of accuracy (almost reaching even strong stationarity). In
particular, we note the stark contrast to the “sharpness” of the solution in comparison
to the smooth method.

5.2 A Direct Solver for C-Stationarity Conditions

In this section, we adapt a method from [36] to the canonical MPEC (7). We work
in the setting of Example 2 and assume that
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Zad :=
{
v ∈ L2(Ω) | a ≤ v ≤ b, a.e. x ∈ Ω

}

with a, b ∈ L2(Ω), a < b. We first state the algorithm. Then, we motivate the steps
of the algorithm and discuss its convergence properties.

The formal derivation of Algorithm 5.6, which we describe in detail below,
follows several basic steps: Fix a control and estimate the active and inactive sets;
ignoring biactivity, use (28e) to approximate (28b)–(28e) as a system of equations;
solve the reduced system (including (28a)) to obtain an update; test the residual of
C-stationarity, if necessary, return to 1.

Algorithm 5.6 An active-set equality-constrained newton solver w. Feasibility
restoration
Input: a, b, ud , f ∈ L2(Ω), α > 0, z0 ∈ L2(Ω), p0 ∈ H 1

0 (Ω), k := 0;
1: repeat
2: Compute (uk, ξk) by solving

Au − ξ = Bzk + f, ξ = (ξ − cu)+, c > 0,

and set

Ω0
k :=

{
x ∈ Ω

∣∣∣ uk(x) = 0
}

,

Ω+
k :=

{
x ∈ Ω

∣∣∣ uk(x) > 0
}

;

3: Compute

Ωa
k :=

{
x ∈ Ω

∣∣∣a(x) + α−1(B∗pk)(x) > 0
}

,

Ωb
k :=

{
x ∈ Ω

∣∣∣−α−1(B∗pk)(x) − b(x) > 0
}

.

and Ωina
k := Ω \ (Ωa

k ∪ Ωb
k ).

4: Compute (δuk, δpk) by solving

A∗δp + δu = ud − uk − A∗pk, on Ω+
k ,

δp = 0, on Ω0
k ,

Aδu + α−1BχΩina
k

B∗δp = BProjZad
(−α−1B∗pk) + f − Auk, on Ω+

k ,

δu = 0, on Ω0
k ,

and set uk+1 := uk + δuk , pk+1 := pk + δpk ,

zk+1 := zk + δz = ProjZad
(−α−1B∗pk) − α−1χΩina

k
B∗δpk

k := k + 1;
5: until some stopping criterion is satisfied
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More specifically, suppose we are in the infinite-dimensional setting. Assuming
that ξ� is sufficiently regular, then Equations (28c), (28d) can be understood as the
following system of smooth and non-smooth equations:

Au� − ξ� = Bz� + f, (40a)

ξ� = (ξ� − cu�)+, (40b)

where c > 0 is some scaling constant. Since ξ� ∈ L2(Ω), the Newton derivative for
the plus function described at the end of Section 4.1 is not valid in this setting (since
both the domain and range here must be taken as L2(Ω)). On a discrete level, this is
not an issue. For some fixed z�, solving (40) gives a pair (u�, ξ�) along with active
and inactive sets:

Ω0(u�) := {
x ∈ Ω

∣∣ u�(x) = 0
}
, Ω+(u�) := {

x ∈ Ω
∣∣ u�(x) > 0

}
.

As in our discussion of (28), if we treat the variables u�, λ� as finite-dimensional
vectors and the complementarity condition as the pointwise product of u� and λ�,
then the complementarity condition would indicate that λ� = 0 on the inactive
set. Analogously, we take p� = 0 on the (entire) active set, thus ignoring
biactivity. Consequently the remaining sign condition in (28) holds. Finally, using
the projection formula (23) along with a semismooth Newton step, we can handle
the variational inequality (28a). We recall the sets

Ωa :=
{
x ∈ Ω

∣∣∣a(x) + α−1(B∗p�)(x) > 0
}

,

Ωb. :=
{
x ∈ Ω

∣∣∣−α−1(B∗p�)(x) − b(x) > 0
}

.

and Ωina := Ω \ (Ωa ∪ Ωb).
Now, supposing we want a new approximation (u�, z�, p�) via u� + δu, z� + δz,

and p� + δp, we consider the reduced system by eliminating the dual variables:

δz + α−1χΩinaB
∗δp = ProjZad

(−α−1B∗p�) − z� on Ω, (41a)

A∗δp + δu = ud − u� − A∗p�, on Ω+(u�), (41b)

δp = 0, on Ω0(u�), (41c)

Aδu − Bδz = Bz� + f − Au�, on Ω+(u�), (41d)

δu = 0, on Ω0(u�), (41e)

If we replace δz in (41d), then we get the smaller system in (δu, δp):

A∗δp + δu = ud − u� − A∗p�, on Ω+(u�), (42a)

δp = 0, on Ω0(u�), (42b)

Aδu + α−1BχΩina B
∗δp = BProjZad

(−α−1B∗p�) + f − Au�, on Ω+(u�), (42c)

δu = 0, on Ω0(u�), (42d)
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Table 3 Residuals of strong stationarity for Algorithm 5.6 with stopping tolerance tol = 10−7

k 1 2 3 4 5

resk 8.7287e−2 1.6175e−3 1.1190e−5 3.8548e−7 2.2375e−8

which is remarkably similar to the semismooth Newton step in the adaptive penalty
method. Unlike the smooth methods, however, a proof of convergence remains
elusive. The main culprit here is clearly the sequence {Ω+

k }, which need not
converge with respect to any notion of set convergence, e.g., Painlevé-Kuratowski
or in the sense of characteristic functions.

Note also that this formally derived system is well-defined in function space
provided that we have enough regularity. For example, provided that the sets
Ω+(u�),Ω0(u�) are sufficiently regular, we could reduce the search for (δu, δp) ∈
H ×H with H := H 1

0 (Ω+(u�)), solve the associated weak form of (42a), (42b),
and extend the solutions by zero on Ω0(u�).

An obvious stopping criterion for Algorithm 5.6 would be the residual of (28)
up to some user-defined tolerance (as suggested in [36]). Moreover, we see that the
computational effort is roughly that of the adaptive penalty method. In fact, there is
much less nonlinearity here due to a lack of the penalty terms φε. We also mention
that the MPECs in [36] are much more challenging than (7), as the controls there
arise inside the differential operator. Nevertheless, the algorithm seems to perform
very well, even on examples with nontrivial biactive sets.

We demonstrate the performance of Algorithm 5.6 on Example 3. As expected,
Algorithm 5.6 behaves like a second-order method, see Table 3. We once again used
the PDAS/semismooth Newton method in [38] to restore feasibility at every step.
Moreover, since the multiplier λ is eliminated from the algorithm, we artificially
reintroduce it for the calculation of the residuals.

The solutions look identical to those plotted in Figure 5. We therefore only
provide images of the biactive sets for y� and upper and lower active sets for z�.
We note that this algorithm also performs quite well, reaching a residual of strong
stationarity on the order of O(10−8) within k = 5 iterations, though it never reaches
O(10−9) in contrast to the approximating subgradient algorithm. In addition, the
effort to solve each step is higher, as seen in Table 4.

Our next non-smooth method seeks to overcome the theoretical deficiencies of
Algorithm 5.5 and 5.6. In some sense, it takes a step towards bridging the gap
between this active-set-based solver and the approximate projected subgradient
method in the previous subsection.

5.3 The Bundle-Free Implicit Programming Method

We now present the bundle-free implicit programming approach from [46], which
we extend for control constraints. In contrast to the active-set method in the previous
subsection, this method is based off of B-stationarity conditions. We must therefore
assume that S is directionally differentiable.
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Fig. 5 Plot of solutions using Algorithm 5.6. Left to right: characteristic functions χΩ00
�

(set of all
indices with u�

i ≤1e−8 and ξ�
i ≤ 0), χΩb

�
(set of all indices with z�

i ≤ bi−1e−6), and χΩa
�

(set of
all indices with z�

i ≥ ai+1e−6)

Table 4 Outer loop k vs. inner loop “iter” iterations for PDAS with tol = 10−10 used in
Algorithm 5.6

k 1 2 3 4 5

iter 84 21 19 1 1

We first state the basic assumptions and the algorithm. Afterwards, we discuss
the motivations for the steps and examine the convergence properties. Throughout
this subsection, let Zad := {

z ∈ L2(Ω) | a ≤ z ≤ b
}

with a, b ∈ L2(Ω) and a < b

and assume that the variational inequality is defined as in (7). We otherwise work in
the abstract framework of (6), where J (z) := F(S(Bz)) + G(z) and F and G are
continuously Fréchet differentiable. By assumption, ξ ∈ H .

For some constant cq > 0, let q(·) := cq‖ · ‖2/2 and for z ∈ Zad define the local
quadratic models:

M (·) := q(·) + F ′(z; S′(Bz;B·)) + G′(z; ·),
Mε(·) := q(·) + F ′(z; dε(B·)) + G′(z; ·), ε > 0,

where dε(·) is a smooth approximation of S(Bz; ·) such that dε(0) = 0. Here, we
suggest letting dε(w) = d, the solution to

Ad + ε−1χΩ0+d − χΩ0∇2φε(−d) = w,

where w ∈ V ∗, ε > 0, and u = S(Bz). This is related to the true formula for
d = S′(Bz;w) given by

Find d ∈ K (u, ξ) :
ˆ

Ω

∇d · ∇[v − d]dx ≥ 〈w, v − d〉, for all v ∈ K (u, ξ),

(43)
where K (u, ξ) := {

u ∈ H 1
0 (Ω)

∣∣ d(x) ≥ 0, q.e. x ∈ Ω0, d(x) = 0. a.e. x ∈
Ω0+ } ; see [63] (or [15, Chap. 6] for an English summary). As this formula
makes use of quasi-continuity and potentially non-negligible sets of Lebesgue
measure zero, it is unclear how to make direct use of the nonnegativity condition
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in a numerical method. To circumvent this issue, a certain regularity condition is
assumed throughout (as in [46]):

1. Ω0 = int(Ω0),

2. If m(Ω00) = 0, then cap(Ω00) = 0 or S′(Bu;Bh) = d = 0 q.e. x ∈ Ω0.

3. If m(Ω00) > 0, then ∃ν > 0, ∃γ ′ > 0 : ∀γ ≥ γ ′, dγ,ε ≥ 0, a.e.Aν \ Ω0)

where Aν := {
x ∈ Ω

∣∣dist(x,Ω0) < ν
}
.

In light of this assumption, we speak of “negligible” biactive sets whenever
m(Ω00) = 0. Note that S is in fact Gâteaux differentiable, whenever this condition
holds. This once again highlights a fundamental difference between the optimal
control of PDEs and variational inequalities, even for the simplest variational
inequality of interest.

We also suggest the smooth approximation of the directional derivative in order
to guarantee that pε = d ′

ε(0)∗w solves

A∗p + ε−1χΩ0+p = w

and that {pε}ε>0 is uniformly bounded in V . Notice the similarity to the approxi-
mating limiting subgradient suggested earlier.

Algorithm 5.7 A bundle-free implicit programming approach

Input: ε0 > 0, β, ρ, σ ∈ (0, 1), s > 0, (z0, u0, ξ0) ∈ Z × V × H , k := 0;
1: repeat
2: Set Ω0

k := {
x ∈ Ω

∣∣ uk(x) = 0
}

and Ω00
k := {

x ∈ Ω0
k

∣∣ ξk(x) = 0
} ;

3: if Ω00
k is negligible then

4: Compute δzk by

δz = ProjTZad (zk)

[
−c−1

q ∇M k(0)
]
; (44)

5: Compute step size τ k using a line search;
6: Set zk+1 = zk(τ k), uk+1 := S(Bzk+1), ξk+1 := Auk+1 − Bzk+1 − f , k := k + 1;
7: else
8: Compute δzk by

δz = ProjTZad (zk)

[
−c−1

q ∇M k
εk (0)

]
; (45)

9: while descent criterion fails do
10: Choose εk ∈ (0, ρεk), update model M k

εk go to 8:;
11: end while
12: Choose εk+1 ∈ (0, ρεk);
13: Compute τ k as in 5:, update (zk, uk, ξk) as in 6:;
14: end if
15: (Robustification Step), k := k + 1;
16: until some stopping criterion is satisfied

In Algorithm 5.7, TZad(z) is the tangent cone to Zad at z ∈ Zad, which is defined
by

TZad(z) := − [Nad(z)]
+ = R+(Zad − z).
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We use the generalized Armijo line search (cf. [13].): Set τ k := βmk s where mk is
the first nonnegative integer such that

J (zk) − J (zk(βms)) ≥ σ

βms
‖zk − zk(βms))‖2

L2 , (46)

where β, σ ∈ (0, 1), s > 0 and, given a step δz, we set

z(τ ) := ProjZad
(z + τδz), τ > 0.

Since much of Algorithm 5.7 is derived from B-stationarity conditions, we restate
them here:

J ′(z;w − z) = F ′(S(Bz))S′(Bz;B(w − z)) + G′(z)(w − z) ≥ 0, ∀w ∈ Zad.

(47)
From (47), it is clear that we can equivalently reformulate B-stationarity as:

J ′(z; δz) ≥ 0, ∀δz ∈ TZad(z).

Moreover, since J ′(z; δz) is positively homogeneous in δz, it follows that δz = 0
is a minimizer of J ′(z; δz) over TZad(z), whenever z is B-stationary. Finally,
given that TZad(z) is a non-empty, closed, and convex cone, we can add the
coercive quadratic form q to the definition of B-stationarity without altering the
characterization, cf. the general analysis in [46, Section 2]. Therefore, if z is
B-stationary, then 0 ∈ Z solves the auxiliary problem

min
{
M (δz) := q(δz) + J ′(z; δz) over δz ∈ TZad(z)

}
. (48)

Now, if the biactive set is negligible, then S is in fact Gâteaux differentiable. In this
case, (48) has a unique solution given by

(δz∗ + c−1
q (B∗S′(Bz)∗∇F ′(S(Bz)) + ∇G(z)), w − δz∗) ≥ 0, ∀w ∈ TZad(z),

which, noting that ∇M (0) = B∗S′(Bz)∗∇F ′(S(Bz)) + ∇G(z), is equivalent
to (45). Furthermore, in this smooth setting, we can prove the following result.

Proposition 1 Let z ∈ Zad, u = S(Bz), ξ = Au − Bz − f , and suppose that
J is Gâteaux differentiable at z. If z is not B-stationary, then (46) stops in a finite
number of steps.

Proof Suppose δz is given by the projection formula (45). Since δz is the unique
global optimum and 0 ∈ TZad(z), we have

q(δz) + J ′(z; δz) < 0 �⇒ J ′(z; δz) ≤ −cq

2
‖δz‖2

L2 (49)
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Moreover, for any τ > 0, we have z(τ ) := ProjZad
(z − τδz) and since ProjZad

is
non-expansive:

‖z − z(τ )‖L2 = ‖ProjZad
(z + τδz) − ProjZad

(z)‖L2 ≤ τ‖z‖L2 . (50)

Furthermore, since z ∈ Zad, δz ∈ TZad(z), and Zad is defined by simple pointwise
bound constraints in L2(Ω), we appeal to the proof of Lemma 6.34 [15], which
shows that

τ−1(z(τ ) − z) → δz as τ ↓ 0. (51)

Finally, suppose that (46) fails for all τ > 0. Then,

τ−1(J (z(τ )) − J (z)) > −στ−2‖z − z(τ )‖2
L2 , ∀τ > 0.

On the right side of the inequality, we can estimate from below using (50):

−στ−2‖z − z(τ )‖2
L2 ≥ −σ‖δz‖2

L2

Now, letting z(τ ) = z + ττ−1(z(τ ) − z) = z + τdτ , where dτ → δz by (51), we
have by (49):

τ−1(J (z(τ ))−J (z)) = τ−1(J (z+τdτ )−J (z)) → J ′(z; δz) ≤ −cq

2
‖δz‖2

L2 .

But, then

−cq

2
‖δz‖2

L2 ≥ J ′(z; δz) ≥ −σ‖δz‖2
L2 ,

a contradiction, since σ ∈ (0, cq/2).

Proposition 1 provides a justification for steps 4:–6: in Algorithm 5.7. Note that the
calculation of the gradient ∇M k(0) requires the solution of an adjoint equation. For
example, in the setting of Example 2, ∇M k(0) = αzk − B∗pk , where pk solves
(here in strong form):

A∗p = ud − uk on Ω+
k ,

p = 0, on Ω0
k ,

(52)

Turning now to the case when the biactive set is non-negligible, we can easily
adjust the proof of Proposition (1) for the non-smooth setting.

Corollary 2 Let z ∈ Zad, u = S(Bz), ξ = Au − Bz − f , and suppose that δz

is minimizer for (48). If z is not B-stationary, then (46) stops in a finite number of
steps.
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Nevertheless, whenever the biactive set is non-negligible, the directional derivative
is nonlinear in δz. In particular, (48) is non-convex, which was a key assumption in
the arguments. We therefore need an alternative procedure to calculate the step δz.

In Algorithm 5.7, we suggested the step δz = ProjTZad (zk)

[
−c−1

q ∇M k
εk (0)

]
,

which is related to the smoothed auxiliary problem using the ε-dependent
model Mε :

min
{
Mε(δz) := q(δz) + F ′(z; dε(Bδz)) + G′(z)δz over δz ∈ TZad(z)

}
. (53)

Note if the approximation was chosen so that dε → S and 0 solves (53) for all
sufficiently small ε > 0 (or at least along some null sequence), then z must be
B-stationary as 0 solves (48), as well. In fact, in the current setting, A is symmetric
so we can use the approximation results in [7] (discussed above), see also [46], to
argue that if δzε → δz weakly in L2(Ω), then

dε(Bδzε) → S′(Bz;Bδz), as ε ↓ 0,

provided that B is completely continuous, e.g., when B is the embedding of L2(Ω)

into H−1(Ω).
On the other hand, if there exists some δz ∈ TZad(z) such that (∇Mε(0),

δz) < 0, then by continuity, there is some ηε > 0 such that Mε(ηεδz) < 0. Since
TZad(z) is a cone, ηεδz ∈ TZad(z) and 0 does not solve (53). If this persists as ε ↓ 0,
then z cannot be B-stationary.

In light of this, consider our δz update. Let w := d ′
ε(0)∗F ′(z)+G′(z) = ∇Mε(0)

and note that

TZad(z) =
{
δz ∈ L2(Ω)

∣∣∣ δz ≥ 0, a.e. on Ωa, δz ≤ 0, a.e. on Ωb
}

,

where Ωa := {x ∈ Ω | z(x) = a(x) }, Ωb := {x ∈ Ω | z(x) = b(x) } and Ωina :=
Ω \ (Ωa ∪ Ωb). Then, using the basic properties of ProjTZad (z), we have

(∇Mε(0), δz) =

− cq

[ˆ
Ωina

|δz|2 +
ˆ

Ωa∩{−c−1
q w≥0}

|δz|2 +
ˆ

Ωb∩{−c−1
q w≤0}

|δz|2
]

≤ 0.

Assuming that the latter term is nonzero and expanding Mε at zero in direction δz,
we obtain:

Mε(0 + ηδz) = η
(ηcq

2
‖δz‖2

L2 + (∇Mε(0), δz) + o(1)
)

. (54)
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We may then choose a sufficiently small ηε > 0 such that

ηεcq

2
‖δz‖2

L2 + (∇Mε(0), δz) + o(1) < 0.

Hence, Mε(ηεδz) ≤ 0 and by definition

F ′(z; dε(B(ηεδz))) + G′(z)(ηεδz) ≤ −η2
εq(δzε).

Therefore, if a uniform lower bound η > 0 with ηε ≥ η > 0 exists, then we can
prove that δzε is a descent direction for some sufficiently small ε > 0.

Proposition 2 Let z ∈ Zad, u = S(Bz), and ξ = Au − Bz − f and
suppose that J is only directionally differentiable at z. Furthermore, let δzε =
ProjTZad (z)

[
−c−1

q ∇Mε(0)
]

and assume that lim supε↓0(∇Mε(0), δzε) < 0. If

there exists an η > 0 such that Mε(ηδzε) ≤ 0 for all sufficiently small ε > 0,
then there exists some ε̂ > 0 such that δẑε is a descent direction for J at z.

Proof By assumption, F ′(z; dε(B(ηδzε)) + G′(z)(ηδzε) ≤ −η2q(δzε). Then,

J ′(z; ηδzε) = (J ′(z; ηδzε) − F ′(z; dε(B(ηδzε))) − G′(z)(ηδzε))+
F ′(z; dε(B(ηδzε)) + G′(z)(ηδzε) ≤

(J ′(z; ηδzε) − F ′(z; dε(B(ηδzε))) − G′(z)(ηδzε)) − η2q(δzε) =
F ′(z; S(Bz;B(ηδzε))) − F ′(z; dε(B(ηδzε))) − η2q(δzε) =

〈∇F(z), S(Bz;B(ηδzε)) − dε(B(ηδzε))〉 − η2q(δzε).

Now, since {pε} is bounded, we can show that {δzε} is bounded. Hence, there is a
subsequence (denoted still by ε) such that δzε ⇀ δz∗. Then, for sufficiently small
ε̂ > 0

〈∇F(z), S(Bz;B(ηδẑε)) − d̂ε(B(ηδẑε))〉 ≤ η2q(δẑε)/2, (55)

Hence, J ′(z; δẑε) ≤ −cqη‖δẑε‖2/4, as was to be shown.

Since a direct verification of the hypotheses is potentially too expensive from a
computational standpoint, we suggest a heuristic. Fix a lower bound η > 0. If
(∇Mε(0), δz) < −q(δz) and (55) (or an approximation as in [46, Remark 3.13])
holds with η = 1 (or η = η), we use the current δz in the line search. Thus, the
“descent condition” in 9: holds. If −q(δz) ≤ (∇Mε(0), δz) < 0, then we choose
η > 0 such that ηq(δz)+ (∇Mε(0), δz) < 0, set δz := ηδz, update η := min(η, η),
and check (55) or an approximation. Here, the descent condition also holds, but
the model Mε might be failing. If (55) fails in the latter, then we go to step 10:.
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Finally, if (∇Mε(0), δz) = 0, then we go to step 10: . In practice, one might also
attempt to circumvent the verification of (55) by using a sufficiently small ε > 0
and decreasing at every step.

This heuristic has its limitations, e.g., it cannot prohibit η ↓ 0. Therefore, if
it appears that this is the case, we break the while loop and go to a “robustification
step” in 15:. This just means that if the quadratic model Mε appears to be ineffective,
then we should calculate a new control z by using an alternative method that is
guaranteed to converge and “restart” the algorithm. For instance, we could use the
adaptive penalty method in Section 4.1 (for a fixed γ , increasing each time the
robustification step is used).

Finally, we recall that in the classical projected-gradient approaches, the Lips-
chitz continuity of the gradient of the objective is essential for convergence proofs,
cf. [13]. There, one can show that the line search will always stop provided that the
step size is below a certain threshold which only depends on σ and the Lipschitz
modulus L. This is, of course, not possible for the control of variational inequalities
as the reduced objective is non-smooth (even when the biactive set is negligible we
only have Gâteaux differentiability). Therefore, we must also monitor the behavior
of the accepted step sizes at each iteration. If, as with η, the step sizes τ k appear to
be rapidly decreasing with each iteration, then we also make use of a robustification
step. For a full convergence proof in the case of the canonical MPEC (excluding
control constraints), we refer the interested reader to [46].

We conclude by demonstrating the performance of the bundle-free method on
two examples, Example 3 and the following example (adapted from [39, Ex. 6.1] by
adding control constraints).

Example 4 Here, we let a ≡ 0, b ≡ 0.8 and set α = 1. In addition, we define f and
ud as follows:

z1(x1, x2) = −4096x6
1 + 6144x5

2 − 3072x4
1 + 512x3

2,

z2(x1, x2) = −244.140625x6
1 + 585.9375x5

2 − 468.75x4
2 + 125x3

2,

y∗(x1, x2) =
{

z1(x1, x2)z2(x1, x2) (x1, x2) ∈]0, 0.5[×]0, 0.8[,
0 otherwise,

u∗=y∗, ξ∗(x1, x2)=2 max(0,−|x1−0.8|−|x1x2−0.2|−0.3 + 0.35),

f = −Δy∗ − u∗ − ξ∗, ud = y∗ + ξ∗ − αΔu∗.

In order to compare to the other methods, we again use a uniform grid with
5122 grid points and start the algorithm at (z0, u0, ξ0) = (0, 0, 0) for Example 3.
In contrast, we use a random starting point when solving Example 4. We start the
algorithm with ε0 = 10−10 and subsequently set εk+1 = εk/2.

For Example 3 we obtain the same solution as in all the previous algorithms.
Likewise, the algorithm performs very well on Example 4, see Table 5 and Figure 6.
We note, however, that Example 4 (when starting with a random initial guess) is
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Table 5 Residuals, step sizes, and number of PDAS iterations (“iter”) for Algorithm 5.7 when
used to solve Examples 3 and 4

k 1 2 3 4

Example 3

resk 0.01018 8.7843e−7 9.2082e−11

τk 1.0 1.0 1.0

iter 84 84 84

Example 4

resk 0.5388 0.00375 3.0727e−7 1.5366e−7

τk 1.0 1.0 0.5 0.00390625

iter 133 133 133 133

Fig. 6 Clockwise from upper left: characteristic functions χΩb
�

(red) and χΩa
�

(blue) (set of all
indices with z�

i ≥ bi−1e−6 and z�
i ≤ ai+1e−6), optimal control z�, state u�, multiplier λ�, adjoint

p�, and multiplier ξ� for Example 4

more difficult to solve. In fact, once the difference in function values becomes
negligible, i.e., on the order of O(10−13), the residual of S-stationarity stagnates
at O(10−7). Finally, one important aspect of the theory for the bundle-free method
was the relation (∇Mε(0), δz) < −q(δz). To see how the choice of εk influences
this, see Table 6. There, we observe that far from the solution, a larger value of εk

seems to yield a good approximation. However, the choice becomes critical once we
close in on the solution.
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Table 6 Behavior of Taylor expansion of Mε(0 + δzk) at each iteration in Algorithm 5.7 when
applied to Example 3

ε q(δz0) + (∇Mε(0), δz0) q(δz1) + (∇Mε(0)δz1) q(δz2) + (∇Mε(0), δz2)

1e−1 −19.1512 −0.264565 −0.264625

1e−2 −18.6723 −0.0392292 −0.0392487

1e−3 −18.5176 −0.000749805 −0.000750887

1e−4 −18.5087 −8.50068e−6 −8.37251e−6

1e−5 −18.5082 −2.36252e−7 −8.53014e−8

1e−6 −18.5082 −1.5286e−7 −8.54905e−10

1e−7 −18.5081 −1.52175e−7 −8.53968e−12

1e−8 −18.5081 −1.52185e−7 −8.5597e−14

1e−9 −18.5081 −1.52187e−7 −2.26899e−15

1e−10 −18.5081 −1.52187e−7 −1.55728e−15

6 Conclusion

Despite being a topic of interest for several decades, the optimal control of varia-
tional inequalities continues to be an active field of research. The rapidly growing
interest in the past decade appears to be a result of the many theoretical, algorithmic,
and computational advances in PDE-constrained optimization to date. We have
seen here that both reduced space and full-space approaches are possible; however,
the difficulties due to either a non-smooth control-to-state mapping or degenerate
complementarity constraints persist. The various techniques for deriving optimality
conditions in the presence of non-smoothness or degeneracy have led both in finite
and infinite dimensions to a hierarchy of first-order optimality conditions. Some of
these conditions are directly related to function-space-based numerical methods (C-
stationarity) whereas other conditions (e.g., those of Mignot and Puel) are derived
using concepts of generalized differentiation and a fine analysis of the regularity
properties of the underlying functions and multipliers. These facts should therefore
always be taken into account when developing numerical optimization algorithms.

In our numerical studies, we considered two main types of solution methods:
smooth and non-smooth. Using approximation techniques for variational inequal-
ities as in [30, 31], the smooth methods are almost always available and allow us
to immediately take advantage of existing solvers for (smooth) PDE-constrained
optimization problems. For the smoothed/regularized problems, we are only limited
by our knowledge of the corresponding parameter-dependent PDE-constrained
optimization problem. In our study, we make use of a smooth continuation approach
and solve the first-order conditions directly using a semismooth Newton method.
For small penalty parameters ε, the solution of the linear system (24) needed to
calculate the updates is relatively well-behaved. However, the lower off-diagonal
block becomes increasingly problematic as we attempt to approach the limiting
problem for ε ↓ 0. Thus, we eventually pay a major price for smoothing the original
problem.
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As mentioned in the introduction, we present here several possible non-smooth
methods that mirror related approaches in smooth PDE-constrained optimization.
The first method is inspired by the classical projected subgradient methods in
[54, 76]. Just as in these classical methods, the relative cost of each iteration is
roughly as cheap as a standard projected-gradient approach sans line search: solve
the VI, then a linear elliptic PDE, and compute a pointwise projection. As with
all subgradient gradient methods, the strong convergence statements are essentially
limited to convex problems. Nevertheless, the method presented here behaves quite
well in practice and thus, warrants a deeper study in future research.

The active-set method has been taken from [36] and adapted to the setting of
the canonical example. At every iteration, the cost of solving the nonlinear system
is slightly more than in the smooth continuation approach due to the feasibility
restoration step, which requires the solution of a mixed complementarity problem.
However, the conditioning issues are now absent as the potentially problematic
perturbation in the lower off-diagonal blocks has been removed. Just as in [36], this
method performs exceptionally well, even on a problem with persistent biactivity
throughout the iterations. However, as mentioned in the text, proving convergence
of this method is rather difficult. One possibility would be to make regularity and
monotonicity arguments on the data and active sets throughout the iterations (as was
done in [42] for a related problem).

Finally, we considered the bundle-free implicit programming approach, which
can be thought of as a globalization of the active-set strategy since we typically
choose a step size of τ = 1 at the beginning of every line search. Though the
theory does contain several strong assumptions to guarantee unconditional global
convergence to a stationary point, there appear to be no other genuinely non-smooth
function-space-based algorithms for non-smooth non-convex problems currently in
the literature. As noted in [46], if one can prove a kind of semismooth property
of the reduced objective, then the convergence theory is greatly simplified. In
comparison to the other non-smooth methods, it is clearly more costly due to the
usage of the line search. The caveats for this method are the need to monitor the
step sizes (essentially restarting if they get too small) and a meaningful heuristic for
the convergence criteria. Nevertheless, the theory stands in contrast to non-convex
bundle methods as outlined in, e.g., [75]. There, in the ideal non-convex setting,
the algorithm terminates at a point at which 0 lies up to some tolerance ε > 0 in
a convex hull of certain subgradients corresponding to points yi that are not “far
away” from the current iterate xk . The connection to the various MPEC stationarity
concepts is therefore unclear.
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