
Inexact Trust-Region Methods
for PDE-Constrained Optimization

Drew P. Kouri and Denis Ridzal

Abstract Numerical solution of optimization problems with partial differential
equation (PDE) constraints typically requires inexact objective function and con-
straint evaluations, derivative approximations, and the use of iterative linear system
solvers. Over the last 30 years, trust-region methods have been extended to
rigorously, robustly, and efficiently handle various sources of inexactness in the
optimization process. In this chapter, we review some of the recent advances,
discuss their key algorithmic contributions, and present numerical examples that
demonstrate how inexact computations can be exploited to enable the solution of
large-scale PDE-constrained optimization problems.

1 Introduction

Numerical solution of optimization problems constrained by partial differential
equations (PDEs)—and, more generally, optimization problems involving large-
scale nonlinear simulations—poses a number of mathematical, algorithmic, and
computational challenges. The computational challenge often lies in the sheer size
of the discretized problem. Specifically, the computational expense of solving a
single instance of the governing PDEs can make the solution of the optimization
problem a daunting task. To make numerical solution practical, one frequently
resorts to approximating the objective function and its derivatives. Similarly, one
may use approximations of the constraint function, its derivatives, and their inverses.
In order to ensure convergence to a solution of the original infinite-dimensional
problem, however, these approximations must be intelligently managed and refined.
Trust-region methods provide a robust, globally convergent framework to handle

D. P. Kouri · D. Ridzal (�)
Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185-9999,
USA
e-mail: dpkouri@sandia.gov; dridzal@sandia.gov

© National Technology & Engineering Solutions of Sandia, LLC. Under the terms
of Contract DE-NA0003525, there is a non-exclusive license for use of this work by
or on behalf of the U.S. Government 2018
H. Antil et al. (eds.), Frontiers in PDE-Constrained Optimization, The IMA
Volumes in Mathematics and its Applications 163,
https://doi.org/10.1007/978-1-4939-8636-1_3

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8636-1_3&domain=pdf
mailto:dpkouri@sandia.gov
mailto:dridzal@sandia.gov
https://doi.org/10.1007/978-1-4939-8636-1_3

84 D. P. Kouri and D. Ridzal

multiple forms of inexactness, including inexact evaluations of the objective and
constraint functions and their derivatives, as well as the inexact linear system
solves arising in the approximate application of constraint derivative inverses.
For this reason, trust regions are a popular choice for large-scale, nonconvex
multidisciplinary optimization with simulation constraints.

Early works by Moré [29], Toint [40], and Carter [10–12] pioneered the use of
inexact gradients and objective function values within trust-region methods. Later
in the 1990s, Alexandrov, Dennis, and Torczon analyzed trust-region algorithms
as a general framework for managing approximations throughout the optimization
iteration [1–4, 15, 16]. These works laid the foundation for more recent works
on adaptive approximations, where the trust-region framework is used to manage
the accuracy of objective and constraint function evaluations, objective gradient
computations, constraint derivative operator applications, and linear system solves
[5, 8, 18, 20, 21, 24–26, 43, 44]—collectively labeled inexact trust-region methods.

In this chapter, we review two inexact trust-region algorithms, for unconstrained
and equality-constrained optimization, respectively, using PDE-constrained opti-
mization as motivation. For each algorithm, we discuss the state of the art in terms
of variable-fidelity and inexact computations. Our goal is threefold: to document
the algorithms in sufficient, “ready-to-use” detail, demonstrate them on a novel
numerical example, and provide a concise reference to other recent works on
managing inexactness in trust-region methods for large-scale optimization. The
remainder of the chapter is structured as follows. In Section 2, we introduce the
notation. In Section 3, we discuss two common problem formulations used in
PDE-constrained optimization, the reduced-space and the full-space formulation.
In Section 4, we review an inexact trust-region algorithm for unconstrained
optimization and an inexact composite-step trust-region algorithm for equality-
constrained optimization. Subsequently, in Section 5 we specialize the algorithms to
optimization problems constrained by PDEs with random coefficients. The discus-
sion of full-space methods includes a novel highly parallelizable preconditioner for
optimization under uncertainty where the statistics are evaluated through sampling,
e.g., using sparse grids [37] or Monte-Carlo methods. The preconditioner is an
extension of recent work on constraint-based “optimal” preconditioners for PDE-
constrained optimization [33] and their specialization to augmented systems [36].
In Section 6, we present new numerical results for the risk-neutral optimization of
thermal-fluid models with random inputs. Finally, we discuss our conclusions in
Section 7.

2 Notation

The norm associated with the Banach space V is ‖ · ‖V . When V is Hilbert, we
denote the inner product by 〈v,w〉V and the norm ‖v‖V = √〈v, v〉V . If V and W

are Banach spaces then we denote the space of bounded linear operators between
V and W by L(V ,W). When V = W , we denote L(V) := L(V , V). Moreover,
when W = R, we denote by V ∗ := L(V ,R) the topological dual space of V and

Inexact Trust-Region Methods for PDE-Constrained Optimization 85

by 〈f, v〉V ∗,V the duality pairing between f ∈ V ∗ and v ∈ V . If A ∈ L(V ,W),
we denote its adjoint by A∗ ∈ L(W ∗, V ∗). When V is a Hilbert space, we identify
V ∗ with V using the Riesz Representation Theorem. We note that the algorithms
described in this paper can be equivalently formulated using the notion of the Riesz
isomorphism R ∈ L(V ∗, V). Finally, we denote the identity operator on the Banach
space V by IV ∈ L(V).

3 Problem Formulations

An important feature of algorithms for PDE-constrained optimization is con-
vergence in function space, leading to mesh-independent convergence after dis-
cretization. Therefore, we consider the function space setting for the formulation
of PDE-constrained optimization problems. We will discuss their discrete forms,
enabling numerical solution, in Section 5. Let U and Z be Hilbert spaces and C be
a reflexive Banach space. U denotes the state space and u ∈ U is a state variable.
Similarly, Z is the control space and z ∈ Z is a control variable. We wish to solve
the optimization problem

min
u∈U, z∈Z

J (u, z) (1a)

subject to c(u, z) = 0 , (1b)

where the objective J : U ×Z → R and the constraint c : U ×Z → C are smooth
functions, with the smoothness requirements made precise later.

In addition to the optimization problem (1), which we refer to as the full-space
problem, we will consider its reduced-space companion. In general, the reduced-
space problem is obtained through nonlinear elimination of the state variables.
Specifically, we assume the existence of the solution operator S : Z → U such
that

u = S(z) satisfies c(u, z) = 0 ,

and define the reduced objective function J : Z → R by

J (z) := J (S(z), z) .

Instead of the optimization problem (1), we can then solve

min
z∈Z

J (z) . (2)

We note that in general (1) and (2) are not equivalent. For example, problem (1)
may have a solution even when the solution operator S does not exist, i.e., when
problem (2) cannot be solved. Additionally, we will see later that certain types of
inexactness in J , c, and their partial derivatives are more easily handled through the

86 D. P. Kouri and D. Ridzal

reduced-space form, while others are better suited to the full-space form. Finally, we
consider a third problem formulation, resulting from a simple change of notation in
problem (1). We define X := U × Z, and for x ∈ X write

min
x∈X

J (x) (3a)

subject to c(x) = 0 . (3b)

This formulation is a generalization of (1), in that it does not assume an explicit
splitting of variables into state and control variables, potentially resulting in
algorithmic advantages.

When discussing algorithms for the full-space problem (1), we require the
Lagrangian functional

L(u, z, λ) := J (u, z) + 〈λ, c(u, z)〉C∗,C.

Furthermore, under standard assumptions, the reduced objective function J of (2)
is twice continuously Fréchet differentiable and the first derivative is given by

∇J (z) = cz(S(z), z)∗Λ(S(z), z) + ∇zJ (S(z), z) ∈ Z

where Λ(u, z) = λ ∈ C∗ solves the adjoint equation

cu(u, z)∗λ = −∇uJ (u, z). (4)

Here, we denote the partial derivatives of c by cu and cz, and the partial derivatives
of J by ∇uJ and ∇zJ . A similar expression exists for the application of the Hessian
of J to a vector v ∈ Z. In particular, we can represent the action of the Hessian by

∇2J (z)v = T (S(z), z)∗H(S(z), z,Λ(S(z), z))T (S(z), z)v (5)

where the linear operator T (u, z) is defined as

T (u, z) :=
(−cu(u, z)−1cz(u, z)

IZ

)
,

and the linear operator H(u, z, λ) is defined as

H(u, z, λ) :=
(∇uuL(u, z, λ) ∇uzL(u, z, λ)

∇zuL(u, z, λ) ∇zzL(u, z, λ)

)
,

see, e.g., [22, Ch. 1]. As above, ∇uuL, ∇uzL, ∇zuL, and ∇zzL denote the second-
order partial derivatives of the Lagrangian functional.

Formulations (1), (2), and (3) of PDE-constrained optimization problems have
been studied extensively in the context of inexact trust-region methods. Before

Inexact Trust-Region Methods for PDE-Constrained Optimization 87

discussing the methods, we present a “menu” of possible assumptions on the full-
space formulation (1), which are used to establish the applicability and global
convergence of each of the methods. We note that some assumptions are shared by
all methods, while others are formulation-specific and method-specific. Throughout,
we assume the existence of a convex open set Ω ⊆ X such that the iterates xk

and trial steps sk produced by the algorithms described in the subsequent sections
satisfy xk, xk + sk ∈ Ω for all k. For the reduced space formulation, we interpret
xk = (S(zk), zk) and assume (S(zk + tσk), zk + tσk) ∈ Ω for all t ∈ [0, 1] where
σk ∈ Z denotes the trial step produced by the reduced-space algorithm.

(A1) The functional J is bounded below and finite on Ω .
(A2) The functions J and c are twice continuously Fréchet differentiable on Ω .
(A3) The Jacobian cx(x) is uniformly bounded on Ω .
(A4) The Hessians ∇xxJ (x) and cxx(x) are uniformly bounded in L(X) and

L(X,L(X,C)), respectively, on Ω .
(A5) The operator cx(x) is surjective for all x ∈ Ω .
(A6) The state Jacobian cu(x) is continuously invertible for all x ∈ Ω and the

inverse cu(x)−1 is uniformly bounded on Ω .
(A7) The solution operator S exists and is unique for all z ∈ Z.
(A8) The operator T (x)∗H(x,Λ(x))T (x) is uniformly bounded on Ω .
(A9) The following function(al)s and operators are uniformly bounded over all x ∈

Ω: J (x), ∇xJ (x), c(x), and (cx(x)cx(x)∗)−1.

Remark 1 When the PDE in (1) is nonlinear (e.g., semilinear), the range space of
the solution operator S typically must be more regular than the space U , in order
to ensure that c is Fréchet differentiable and that cu(u, z) has a bounded inverse.
Although this is an important issue, we focus on the stated problem setting to
simplify the presentation. We refer the interested reader to [41] for information on
handling this more general setting.

4 Inexact Trust-Region Methods

We begin with the description of an inexact trust-region approach for the reduced-
space formulation, (2), which was studied in [25, 26]. This is followed by the
discussion of a scheme for the full-space formulation (3), originally presented
in [20].

4.1 A Reduced-Space Approach

In this section, we focus on the reduced-space formulation, (2), of PDE-constrained
optimization problems. Given an iterate zk , the basic trust-region algorithm builds a
smooth local model mk : Z → R of the objective function s �→ J (zk + s) inside

88 D. P. Kouri and D. Ridzal

the trust region Bk := {s ∈ Z : ‖s‖ ≤ Δk}, where Δk > 0 is the trust-region
radius. The algorithm then computes a trial step sk by approximately solving the
trust-region subproblem

min
s∈Z

mk(s) subject to ‖s‖Z ≤ Δk. (6)

In order to ensure convergence, the trial step sk must satisfy the fraction of Cauchy
decrease condition

mk(0) − mk(sk) ≥ κfcd‖∇mk(0)‖Z min
{
Δk,

‖∇mk(0)‖Z

βk

}
, (7)

where κfcd > 0 is fixed and βk = 1 + sups∈Bk
‖∇2mk(s)‖L(Z). When mk in (6) is

quadratic, a number of solvers exist to compute sk that satisfies (7). For example, the
Cauchy point, (double) dogleg, truncated Conjugate Gradient and truncated Lanczos
algorithms all produce steps that satisfy (7), see [13, 17] and the references within
for more information. Once the step sk is computed, trust-region algorithms check
whether zk + sk is acceptable as the new iterate, and the trust-region radius Δk

is updated accordingly. Step acceptance and the trust-region update depend on the
ratio of actual and predicted reduction,

aredk := (J (zk) − J (zk + sk)) and predk := (mk(0) − mk(sk)),

respectively. In particular, given 0 < η1 < η2 < 1, the trial step sk is accepted if the
actual reduction is larger than a fraction of the predicted reduction, i.e.,

aredk ≥ η1predk.

If the trial step is rejected, then the trust-region radius is decreased, whereas if it is
accepted and the actual reduction is sufficiently large, i.e.,

aredk ≥ η2predk,

then the trust-region radius is increased.
Under standard assumptions, if the objective function can be evaluated exactly

for all k, the model mk is first-order consistent with J in the sense that

∇J (zk) = ∇mk(0)

for all k and the trial steps sk satisfy condition (7), then one can prove global
convergence of the trust-region scheme. However, if the objective function and
its gradient can only be approximated, i.e., are evaluated inexactly, additional
conditions are needed to ensure global convergence. We first state the condition
on gradient inexactness.

Inexact Trust-Region Methods for PDE-Constrained Optimization 89

Gradient Condition For all k the model mk must approximate the objective
function s �→ J (zk + s) so that the true and approximate gradients at s = 0 satisfy

‖∇mk(0) − ∇J (zk)‖Z ≤ κgrad min{‖∇mk(0)‖Z,Δk}. (8)

Here, κgrad > 0 is independent of k. A similar condition was originally proposed by
Carter in [11]. However, (8) is due to Heinkenschloss and Vicente [21]. ��

The definition of the actual reduction, aredk , involves the exact value of the
objective function J , which we often cannot compute. Instead, we consider a com-
putable approximation Jk , where the subscript k indicates that the approximation
may change from iteration to iteration. With this approximation, we can define the
computed reduction

credk := Jk(zk) − Jk(zk + sk). (9)

To ensure convergence of the trust-region algorithm, we must ensure that the
difference

|aredk − credk|,

is “sufficiently” small. We now state the objective function conditions.

Objective Function Conditions Assume that there exists an estimator θk =
θ(zk, sk) of the error in the objective function so that for a constant K > 0,

|aredk − credk| ≤ Kθk ∀k . (10a)

For a fixed ω ∈ (0, 1), we control the error estimator θk via the following bound:

θω
k ≤ η min

{
predk, rk

}
, (10b)

where

η < min{η1, 1 − η2} and {rk}∞k=1 ⊂ [0,∞) satisfies lim
k→∞ rk = 0. (10c)

Condition (10b) is due to Ziems and Ulbrich [43]; also see [13, Sec. 10.6]. ��
The basic trust-region algorithm, accounting for inexact objective function and

gradient evaluation, is listed as Algorithm 1.
To prove convergence of the inexact unconstrained trust-region algorithm, we

will use some of the problem assumptions stated in Section 3 and the following
model assumptions:

(R1) For each k, mk : Z → R is twice continuously Fréchet differentiable.
(R2) For each k, ∇2mk is uniformly bounded on Z.
(R3) For each k, the objective function approximation Jk is bounded below.

90 D. P. Kouri and D. Ridzal

Algorithm 1 (Reduced-space trust-region algorithm)

Initialization: Choose initial point z0, initial trust-region radius Δ0 > 0,
constants 0 < γ1 ≤ γ2 < 1 < γ3, 0 < η1 < η2 < 1, and tol > 0.

For k=0,1,2,. . .

1. Model selection: Choose a model mk that satisfies (8).
2. Convergence check: If ‖∇mk(0)‖Z < tol, then terminate.
3. Step computation: Compute an approximate solution sk of (6) that satisfies the

fraction of Cauchy decrease condition (7).
4. Objective function update: Determine an objective function approximation Jk

such that the corresponding error estimate θk satisfies (10).
5. Step acceptance: Compute
k = credk/predk .

if
k ≥ η1 then zk+1 = zk + sk else zk+1 = zk

6. Trust-region update:

if zk+1 = zk then Δk+1 ∈ (0, γ1‖sk‖Z]
else

Δk+1 ∈

⎧⎪⎪⎨
⎪⎪⎩

(0, γ2‖sk‖Z] if ρk ≤ η1

[γ2, ‖sk‖Z,Δk] if ρk ∈ (η1, η2)

[Δk, γ3Δk] if ρk ≥ η2

End For

Theorem 1 Let Ω = U × Z. If problem assumptions (A1), (A2), (A6), (A7)
and (A8), and model assumptions (R1), (R2) and (R2) hold, then the iterates {zk}
generated by the inexact unconstrained trust-region algorithm, Algorithm 1, satisfy

lim inf
k→∞ ‖∇mk(0)‖Z = lim inf

k→∞ ‖∇J (zk)‖Z = 0.

Proof Assumptions (A2), (A6), and (A7) together with the Implicit Function
Theorem [22, Th. 1.41] ensure that J is twice continuously Fréchet differentiable.
Moreover, (A8) ensures that the Hessian of J is uniformly bounded at zk + tsk for
all t ∈ [0, 1] and for all k. The desired result then follows from assumptions (R1),
(R2), and (R3), and a slight generalization of Theorem 5.6 in [26].

4.1.1 Related Work

The above approach is described in detail in [25, 26]. The authors in [25, 26]
combine and modify conditions for inexact gradient and objective function values
from a number of sources. For example, Moré considers inexact gradients in [29]
for the case of Z = R

n. In this case, he requires

Inexact Trust-Region Methods for PDE-Constrained Optimization 91

zk → z �⇒ lim
k→∞ ‖∇mk(0) − ∇J (zk)‖Z = 0. (11)

Similarly, in [40] Toint analyzes an algorithm in Hilbert space for bound-constrained
optimization and requires

‖∇mk(0) − ∇J (zk)‖Z ≤ min{κ1, κ2Δk}
for appropriately chosen κ1, κ2 > 0. Carter, in [10], proves global convergence of
Algorithm 1 using the inexactness conditions

|aredk − credk| ≤ ζf,1predk

|aredk − credk| ≤ ζf,2|credk|
〈∇mk(0) − ∇J (zk),∇mk(0)〉Z ≤ ζg‖∇mk(0)‖2

Z

for constants ζg, ζf,1 ζf,2 > 0 satisfying

ζg + ζf,1 < 1 − η2 and ζf,2 < 1.

Carter further analyzes his approach in [11, 12]. In [13, Sec. 10.6], the authors
consider objective functions with dynamic accuracy for which they require

max {|J (zk) − Jk(zk)|, |J (zk + sk) − Jk(zk + sk)|} ≤ η̃ predk , (12)

for some η̃ ≤ 1
2η1. The challenge with each of these conditions (other than Moré’s

very general requirement (11)) is that the constants, e.g., ζg , ζf,1, ζf,2 and η̃,
depend explicitly on algorithmic parameters. Therefore, it is difficult to determine
a priori if these conditions can be satisfied in practice. As a practical alternative,
the inexact gradient conditions of Toint and Carter are combined by Heinkenschloss
and Vicente in [21], giving rise to the condition (8), which permits an arbitrary
constant scaling κgrad on the error bound and enables easy implementation. In a
similar vein, Ulbrich and Ziems in [43] relax the dependence of the inexact objective
function condition (12) on algorithmic parameters, motivating the more practical
conditions (10).

Kelley and Sachs in [24] take a different approach to that presented here. They
work in the setting where the value and gradient approximations are provided
by “black-box” calculations that satisfy controllable absolute and relative error
tolerances. They suggest modifications to the basic trust-region algorithm so that
the resulting algorithm performs as if there were no errors in the computation of the
value and gradient.

The authors of [25, 26] apply Algorithm 1 to PDE-constrained optimization
problems for which the governing PDE has uncertain coefficients. The inexactness
conditions (8) and (10) are used to adaptively refine sparse-grid quadrature approxi-
mations of the objective function. In [5, 18], the authors employ the inexact gradient
condition (8) to adaptively refine reduced-order models of the PDE constraint using
proper orthogonal decomposition (POD). However, they evaluate the discretized

92 D. P. Kouri and D. Ridzal

objective function exactly since the state equation must be solved to build the
POD model of the state and adjoint variables. Similarly, the authors of [8] use
inexact gradients to adaptively refine Monte Carlo sample sizes for mixed logit
optimization.

4.2 A Full-Space Approach

In this section, we focus on the full-space formulation (3) of PDE-constrained
optimization problems. We review a sequential quadratic programming (SQP)
approach to solving (3), originating in the composite-step trust-region scheme of
Byrd and Omojokun [32]. We assume that inexactness in solving (3) is due to the
approximate solution of a variety of subproblems, such as quadratic optimization
problems or linear systems, which comprise the SQP scheme. The handling of
inexactness is based on [20].

Remark 2 To further simplify the presentation, in this section we assume that the
constraint space C is a Hilbert space. As a reminder, we identify its dual space C∗
with C. Finally, we note that a treatment of more general constraint spaces such
as reflexive Banach spaces is possible in the context of full-space composite-step
methods, see, e.g., [28].

Recall X = U ×Z, and write the Lagrangian functional L : X ×C → R for (3),

L(x, λ) = J (x) + 〈λ, c(x)〉C .

We let xk be the k-th SQP iterate, λk the Lagrange multiplier estimate at xk , and
Bk = B(xk, λk) the Hessian ∇xxL(xk, λk) of the Lagrangian or a self-adjoint
approximation thereof. Trust-region SQP methods compute an approximate solution
of (3) by approximately solving a sequence of subproblems derived from

min
s

1

2
〈Bks, s〉X + 〈∇xL(xk, λk), s〉X + L(xk, λk) (13a)

subject to cx(xk)s + c(xk) = 0 (13b)

‖s‖X ≤ Δk. (13c)

To deal with the possible incompatibility of the constraints (13b), (13c), we apply
a composite-step approach, where the trial step sk is computed as the sum of a
quasi-normal step nk and a tangential step tk . The role of the quasi-normal step nk

is to reduce linear infeasibility. It is computed as an approximate solution of

min
n

‖cx(xk)n + c(xk)‖2
C (14a)

subject to ‖n‖X ≤ ζΔk, (14b)

Inexact Trust-Region Methods for PDE-Constrained Optimization 93

where ζ ∈ (0, 1) is a fixed constant. To ensure global convergence of the SQP
algorithm, the quasi-normal step must satisfy two conditions.

Quasi-Normal Step Conditions The quasi-normal step, nk , must satisfy the
boundedness condition

‖nk‖X ≤ κ1‖c(xk)‖C, (15)

where κ1 > 0 is independent of k, and the fraction of Cauchy decrease condition

‖c(xk)‖2
C − ‖cx(xk)nk + c(xk)‖2

C ≥ κ2‖c(xk)‖C min {κ3‖c(xk)‖C,Δk} , (16)

where κ2, κ3 > 0 are independent of k. These conditions on the quasi-normal
step are derived by Dennis, El-Alem, and Maciel in [14]. They are adopted by
Heinkenschloss and Vicente in [21]. A more restrictive version, requiring κ2 and
κ3 to be in the interval (0, 1), is used by Ziems and Ulbrich in [43]. ��

To understand the computation of the tangential step, we consider subprob-
lem (13), where we substitute the computed quasi-normal step, i.e., s = t + nk:

min
t

1

2
〈Bk(t + nk), t + nk〉X + 〈∇xL(xk, λk), t + nk〉X (17a)

subject to cx(xk)t = 0 (17b)

‖t + nk‖X ≤ Δk. (17c)

To solve (17), one typically eliminates the constraints (17b) using a representation
of the null space of cx(xk). Several null-space representations can be considered in
the development of algorithms. Let E be a Hilbert space and let Wk : E → X be a
bounded linear operator such that

Range(Wk) = Null(cx(xk)) .

For instance, under the assumption (A6) and recalling the notation from Section 3,
one can use E = Z and define

Wk = T (xk) =
(−cu(xk)

−1cz(xk)

IZ

)
.

This null-space representation is a natural choice for many PDE-constrained
optimization problems. In the context of inexact trust-region methods, it is used
by Heinkenschloss and Vicente [21] and Ziems and Ulbrich [43]. Specifically, the
authors in [21, 43] study inexact applications of the operator cu(xk)

−1. A more
general alternative, not requiring assumption (A6), i.e., the invertibility of cu(xk), is
to choose E = X and Wk = W ∗

k = W 2
k , and to compute t = Wkw by solving the

so-called augmented system

94 D. P. Kouri and D. Ridzal

(
IX cx(xk)

∗
cx(xk) 0

)(
t

z

)
=
(

w

0

)
. (18)

We note that in either case we can set t = Wkw and replace (17) by

min
w

1

2

〈
W ∗

k BkWkw,w
〉
X

+ 〈W ∗
k gk, w

〉
X

(19a)

subject to ‖nk + Wkw‖X ≤ Δk, (19b)

where gk = ∇xL(xk, λk) + Bknk . A potential benefit of the second null-space
representation, (18), is that the linear system can be solved using modern iterative
saddle-point and Karush-Kuhn-Tucker (KKT) system solvers, see, e.g., [9, 33].
Moreover, these methods can be used to solve not only (18), but also the full KKT
system, i.e., the system where IX in (18) is replaced by Bk , thereby circumventing
the need for preconditioning of the operator W ∗

k BkWk , which is typically very
challenging.

For the remainder of the chapter, we focus on the second null-space representa-
tion. A key source of inexactness in the application of the null-space operator Wk

is the iterative solution of the linear system (18), using Krylov methods. In this
case, the vector W ∗

k gk and the operator W ∗
k BkWk are no longer available exactly.

It is shown in [20] that the inexact solution of linear systems like (18) leads to an
approximation W̃k of Wk . While the operator Wk is self-adjoint (that is, assuming
exact linear system solves), the approximation W̃k is in general not self-adjoint and
may not even be linear. Nonetheless, it is also shown, [20, p. 1525], that there exists a
fixed linear operator that replicates the action of W̃k on the set of vectors involved in
the algorithm for solving (19). Therefore, an algorithm that computes a solution wk

of (19) with inexact applications of the operator Wk also solves

min
w

1

2

〈
W̃ ∗

k BkW̃kw,w
〉
X

+ 〈W̃ ∗
k W̃kgk, w

〉
X

(20a)

subject to ‖nk + W̃kw‖X ≤ Δk (20b)

for some fixed linear operator W̃k . We note that the vector W̃ ∗
k W̃kgk above

replaces the vector W̃ ∗
k gk . This modification is needed for the convergence proof.1

Problem (20) is equivalent to

min
t̃

1

2

〈
Bkt̃, t̃

〉
X

+ 〈W̃kgk, t̃
〉
X

(21a)

subject to t̃ ∈ Range(W̃k) (21b)

‖nk + t̃‖X ≤ Δk. (21c)

1Clearly, with exact linear system solves we have W ∗
k Wkgk = WkWkgk = Wkgk , however, in the

presence of inexactness the distinction is important.

Inexact Trust-Region Methods for PDE-Constrained Optimization 95

We call (21) the tangential subproblem. Solving (21) is the first stage of computing
the tangential step. To guarantee global convergence of the SQP algorithm, the
approximate solution t̃k of (21) must satisfy the following conditions.

Tangential Subproblem Conditions First, the quantity W̃kgk needs to satisfy

‖W̃kgk − Wkgk‖X ≤ τ1 min
{‖W̃kgk‖X,Δk

}
, (22)

for some τ1 > 0 independent of k. Second, we define the inexact quadratic model

q̃k(t) := 1

2
〈Bkt, t〉X + 〈W̃kgk, t

〉
X

,

and impose the fraction of Cauchy decrease condition on t̃k as follows,

q̃k(0) − q̃k (̃tk) ≥ κ4‖W̃kgk‖X min
{
κ5‖W̃kgk‖X, κ6Δk

}
, (23)

for κ4, κ5, κ6 > 0, independent of k. Condition (23) is analogous to the fraction
of Cauchy decrease condition (7) in the reduced-space setting. It is an extension of
a condition discussed by Dennis, El-Alem, and Maciel in [14]; in our context, the
“inexact” quantity W̃kgk is introduced and the quadratic model is defined according
to the discussion in the previous paragraph. Condition (22) is derived from a similar
condition by Heinkenschloss and Vicente [21]. It is analogous to the inexact gradient
condition (8) in the reduced-space setting. Establishing the existence of W̃k that is
compatible with (22) and (23) is an important challenge, discussed in [20]. ��

With inexactness t̃k = W̃kwk is no longer in the null space of cx(xk), and
may destroy some of the linear feasibility gained by the quasi-normal step nk . To
compensate for this, we compute the tangential step tk from t̃k to restore linear
feasibility as needed. This computation is intimately tied to the global convergence
mechanisms used in SQP methods. Once the trial step sk = nk + tk is computed, one
must decide whether to accept the step and how to update the trust-region radius Δk .
To perform these tasks, we use the augmented Lagrangian merit function

φ(x, λ; ρ) = J (x) + 〈λ, c(x)〉C + ρ‖c(x)‖2
C = L(x, λ) + ρ‖c(x)‖2

C . (24)

In a conventional trust-region SQP algorithm, the step sk is accepted or rejected and
the trust-region radius Δk is updated based on the ratio between the actual reduction

ared(sk; ρk) = φ(xk, λk; ρk) − φ(xk + sk, λk+1; ρk) (25)

and the predicted reduction

p̂red(sk; ρk) = φ(xk, λk; ρk) −
[
L(xk, λk) + 〈∇xL(xk, λk), sk〉X + 1

2
〈Bksk, sk〉X

+ 〈λk+1 − λk, cx(xk)sk + c(xk)〉C + ρk‖cx(xk)sk + c(xk)‖2
C

]
.

(26)

96 D. P. Kouri and D. Ridzal

Here λk+1 is a Lagrange multiplier estimate corresponding to the trial iterate xk+sk .
To account for the inexactness in the constraint null space projection, the definition
of the predicted reduction must be modified. Using

rt
k = cx(xk)tk ,

which can be interpreted as an indicator of the loss of linear feasibility, the predicted
reduction (26) is redefined,

p̂red(sk; ρk) := pred(nk, t̃k; ρk) + rpred(rt
k; ρk),

with the following components:

pred(nk, t̃k; ρk)

= − 〈W̃kgk, t̃k
〉
X

− 1

2

〈
Bkt̃k, t̃k

〉
X

− 〈∇xL(xk, λk), nk〉X − 1

2
〈Bknk, nk〉X

−〈λk+1 − λk, cx(xk)nk + c(xk)〉C
+ρk

(
‖c(xk)‖2

C − ‖cx(xk)nk + c(xk)‖2
C

)
(27)

and

rpred(rt
k; ρk) = − 〈λk+1 − λk, r

t
k

〉
C

− ρk‖rt
k‖2

C − 2ρk

〈
rt
k, cx(xk)nk + c(xk)

〉
C

.

(28)

The splitting of the predicted reduction into a term that only involves t̃k and a term
that only involves tk is discussed in [20, p. 1514–1515]; it is partially motivated by
the arguments made in [21, p. 292].2 In our algorithm, we first compute a penalty
parameter ρk satisfying

pred(nk, t̃k; ρk) ≥ ρk

2

(
‖c(xk)‖2

C − ‖cx(xk)nk + c(xk)‖2
C

)
,

and then “postprocess” t̃k to compute a tangential step tk that satisfies the conditions
stated below. The postprocessing can be performed by applying another null-space
projection, similar to solving (18).

Tangential Step Conditions The tangential step tk must satisfy the requirement

|rpred(rt
k; ρk)| ≤ η0 pred(nk, t̃k; ρk), (29)

where η0 ∈ (0, 1 − η1), and η1 ∈ (0, 1) is the smallest acceptable ratio of the actual
and predicted reduction. Additionally, to control how much the tangential step tk
can deviate from the projection Wkt̃k of t̃k we require

2For all details, see the proofs in [20, p. 1536–1538] and [21, p. 295–298].

Inexact Trust-Region Methods for PDE-Constrained Optimization 97

‖tk − Wkt̃k‖X ≤ τ3Δk min{Δk, ‖sk‖X}, (30)

for some τ3 > 0 independent of k. Finally, we impose the boundedness condition

‖̃tk‖X ≤ τ4‖sk‖X, (31)

for τ4 > 0 independent of k. These conditions are discussed in [20]. ��
So far, we discussed general conditions needed for the global convergence

of a composite-step trust-region SQP scheme where the null-space operator Wk

is applied inexactly. Following [20], we now present a concrete instance of the
algorithm, specifically designed to robustly and efficiently handle inexactness in
the iterative solution of linear systems comprising the application of Wk . This
algorithm is useful whenever iterative solvers, such as Krylov methods, are applied
to solve linear systems based on discretizations of operators cu and c∗

u, i.e., the
state Jacobians and their adjoints. In PDE-constrained optimization, the matrices
resulting from, e.g., finite element discretizations of cu and c∗

u are often very
large, prohibiting direct computation of matrix inverses and matrix factorizations.
Additionally, in, e.g., optimization under uncertainty, the computational challenge
is exacerbated by the dependence of the constraint equation on the random input
vector ξ , resulting in enormous linear systems that cannot be formed explicitly. This
prompts the need for matrix-free methods, where the action of a linear operator on
a vector is specified, rather than the operator (matrix) itself.

We will formulate concrete subalgorithms for the quasi-normal step computation,
the solution of the tangential subproblem, the tangential step computation, and the
Lagrange multiplier update that satisfy the previously discussed conditions. After
specifying the subalgorithms, we state the master algorithm in Section 4.2.5. The
solution of augmented systems, which are key components of the subalgorithms,
is discussed in Section 5.2, in the context of PDE-constrained optimization under
uncertainty.

4.2.1 Computation of the Quasi-Normal Step

An approximate solution of (14) can be computed using the dogleg method. Let n
cp
k

be the solution of min
{‖cx(xk)n + c(xk)‖2

C : n = −αcx(xk)
∗c(xk), α ≥ 0

}
, also

known as the Cauchy point. It is easy to verify that

n
cp
k = − ‖cx(xk)

∗c(xk)‖2
X

‖cx(xk)cx(xk)∗c(xk)‖2
C

cx(xk)
∗c(xk). (32)

If ‖ncp
k ‖X ≥ ζΔk , then we set the quasi-normal step to nk = ζΔkn

cp
k /‖ncp

k ‖X.
If ‖ncp

k ‖X < ζΔk , to accelerate convergence we take a step toward an
approximate minimum-norm solution nN

k of min ‖cx(xk)n + c(xk)‖2
C , sometimes

called the Newton point. The quasi-normal step is then computed by moving from

98 D. P. Kouri and D. Ridzal

n
cp
k as far as possible toward nN

k while staying within the trust region with radius
ζΔk . Specifically, we solve for δnk = nN

k − n
cp
k the augmented system

Algorithm 2 (Dogleg method for the quasi-normal subproblem)

Initialization: Choose 0 < ζ, τqn < 1.

1. Compute n
cp
k as defined in (32).

2. If ‖ncp
k ‖X ≥ ζΔk , then set nk = ζΔkn

cp
k /‖ncp

k ‖X;
Else compute δnk via (33) so that e1 and e2 satisfy (34).

3. If ‖ncp
k + δnk‖X ≤ ζΔk , then set nk = n

cp
k + δnk = nN

k ;
Else compute θk ∈ (0, 1) such that ‖ncp

k + θkδnk‖X = ζΔk , and set nk =
n

cp
k + θkδnk .

(
IX cx(xk)

∗
cx(xk) 0

)(
δnk

y

)
=
(−n

cp
k + e1

−cx(xk)n
cp
k − c(xk) + e2

)
. (33)

To comply with the convergence conditions (15) and (16), the size of the residual(
e1 e2

) ∈ X × C is restricted via

‖e1‖2
X + ‖e2‖2

C ≤ (τqn
)2 ‖cx(xk)n

cp
k + c(xk)‖2

C , (34)

where 0 < τqn ≤ 1. In summary, the algorithm for computing the quasi-normal
step is given as follows:

Additional algorithms that satisfy conditions (15) and (16) are discussed in [21,
p. 298–299].

4.2.2 Solution of the Tangential Subproblem

The tangential subproblem (21) is solved using a modified truncated Steihaug-
Toint conjugate gradient (STCG) method. Aside from handling the nonstandard
objective function in (21), the modifications involve a full orthogonalization of
search directions, several important tunings of the classical STCG truncation criteria
and the related exit computations, and a special termination condition related to an
estimate of the accumulated error in the constraint null-space. The latter is discussed
next.

The algorithm for the solution of the tangential subproblem (21), Algorithm 3,
repeatedly applies an inexact null-space projector W̃k by iteratively solving aug-
mented systems of type (18). We note that W̃k is not explicitly available; only the
results of its action on the vector gk and its action on the STCG residuals r̃i used in

Inexact Trust-Region Methods for PDE-Constrained Optimization 99

Algorithm 3 are known.3 We introduce the operator Ri : Ri+1 → X, given by

Ri = [gk, r̃1, . . . , r̃i] ,

Algorithm 3 (STCG method with inexact null-space projections)

Initialization: Given relative tolerance tolCG ∈ (0, 1). Given iteration maximum
iCG
max. Choose 0 < τpg, τproj ≤ 1. Let t̃k,0 = 0 ∈ X. Compute r̃0 = W̃kgk by

solving (36) with the linear solver tolerance (37). If ‖̃r0‖X = 0, stop.

For i = 0, 1, 2, . . . , iCG
max

1. If i = 0 set z̃0 = r̃0; Else compute z̃i = W̃kr̃i via (38) with the linear solver
tolerance (39).
If ‖̃zi‖X ≤ tolCG‖̃r0‖X and i > 0, return t̃k = t̃k,i and t̃

cp
k = t̃k,1, and stop.

2. Compute Ŝi defined in (35). If ‖Ŝi‖2 > 1/2, return t̃k = t̃k,i and t̃
cp
k = t̃k,1, and

stop.

3. Set p̃i = −̃zi +∑i−1
j=0

〈̃zi ,Hkp̃j 〉X〈p̃j ,Hkp̃j 〉X

p̃j .

4. If 〈̃ri, p̃i〉X �= 0 and 〈p̃i , H p̃i〉X ≤ 0, compute θ such that sign(θ) =
sign(− 〈̃ri, p̃i〉X) and ‖nk + t̃k,i + θp̃i‖X = Δk , and return t̃k = t̃k,i+1 =
t̃k,i + θp̃i and t̃

cp
k = t̃k,1, and stop.

If 〈̃ri, p̃i〉X = 0 and 〈p̃i , H p̃i〉X < 0, compute θ such that ‖nk + t̃k,i + θp̃i‖ =
Δk , and return t̃k = t̃k,i+1 = t̃k,i + θp̃i and t̃

cp
k = t̃k,1, and stop.

5. If 〈̃ri, p̃i〉X = 0, return t̃k = t̃k,i and t̃
cp
k = t̃k,1, and stop.

6. Set α̃i = − 〈̃ri ,p̃i 〉X〈p̃i ,Hkp̃i 〉X .
7. Set t̃k,i+1 = t̃k,i + α̃i p̃i .
8. If ‖nk + t̃k,i+1‖X ≥ Δk , compute θ such that sign(θ) = sign(̃αi) and ‖nk +

t̃k,i + θp̃i‖X = Δk , and return t̃k = t̃k,i+1 = t̃k,i + θp̃i and t̃
cp
k = t̃k,1, and

stop.
9. Set r̃i+1 = r̃i + α̃iHkp̃i .

End For

the operator Ỹi : R
i+1 → X, given by

Ỹi = [W̃kgk, W̃kr̃1, . . . , W̃kr̃i] ,

and the diagonal matrix

Di = diag(‖W̃kgk‖X, ‖W̃kr̃1‖X, . . . , ‖W̃kr̃i‖X).

3Only the scope of the index k extends from Algorithm 4 to Algorithm 3 – indices i and j are
independent, i.e., their scope is local to each algorithm.

100 D. P. Kouri and D. Ridzal

Finally, we define the matrix

Ŝi = D−1
i (Ỹi

T
Ri − D2

i)D
−1
i . (35)

In [20] it is shown that ‖Ŝi‖2 can be used to control the cumulative effect of
inexactness in the projections W̃k . The modified STCG algorithm is specified next.

The augmented system residuals related to the application of the inexact projector
W̃k are controlled as follows. In Step 3 of Algorithm 3, the inexact projected gradient
r̃0 = W̃kgk is computed. The iterative linear system solver returns r̃0 satisfying

(
IX cx(xk)

∗
cx(xk) 0

) (̃
r0

y

)
=
(

gk

0

)
+
(

e1

e2

)
. (36)

The residual
(
e1 e2

) ∈ X × C must satisfy

‖e1‖X + ‖e2‖C ≤ τpg min {‖̃r0‖X,Δk, ‖gk‖X} , (37)

where 0 < τpg ≤ 1. In Step 1 in Algorithm 3, we compute z̃i = W̃kr̃i . The iterative
linear system solver returns z̃i satisfying

(
IX cx(xk)

∗
cx(xk) 0

) (̃
zi

y

)
=
(̃

ri

0

)
+
(

e1
i

e2
i

)
, (38)

where the residual
(
e1
i e2

i

) ∈ X × C is controlled by the condition

‖e1
i ‖X + ‖e2

i ‖C ≤ τproj min {‖̃zi‖X, ‖̃ri‖X} , (39)

with 0 < τproj ≤ 1.

4.2.3 Computation of the Tangential Step

Once the approximate solution t̃k of the tangential subproblem (21) has been
obtained, the tangential step tk is computed. The goal is to restore some of the linear
feasibility lost in Algorithm 3. To this end, another inexact null space projection is
performed,

(
IX cx(xk)

∗
cx(xk) 0

)(
tk

y

)
=
(̃

tk

0

)
+
(

e1

e2

)
, (40)

where the residual
(
e1 e2

) ∈ X × C must satisfy

‖e1‖X + ‖e2‖C ≤ Δk min
{
Δk, ‖nk + tk‖X, τ tang ‖̃tk‖X/Δk

}
, (41)

for 0 < τtang ≤ 1.

Inexact Trust-Region Methods for PDE-Constrained Optimization 101

4.2.4 Computation of the Lagrange Multipliers

For global convergence, we require only that the sequence of Lagrange multi-
pliers be bounded. For fast convergence, we may compute the Lagrange multi-
plier estimate λk+1 by approximately minimizing ‖∇J (̂xk) + cx (̂xk)

∗λ‖X, where
x̂k = xk + nk + tk . Specifically, we solve for Δλ = λk+1 − λk , where λk is the
previous Lagrange multiplier estimate, as follows:

(
IX cx (̂xk)

∗
cx (̂xk) 0

)(
z

Δλ

)
=
(−∇J (̂xk) − cx (̂xk)

∗λk + e1

e2

)
. (42)

The residual
(
e1 e2

) ∈ X × C must satisfy

‖e1‖X + ‖e2‖C ≤ min
{
τ lmg, τ lmh‖∇J (̂xk) + cx (̂xk)

∗λk‖X

}
, (43)

for 0 < τlmh ≤ 1 and a fixed τ lmg > 0 independent of k. Here τ lmh governs
the relative size of the linear system residual, while τ lmg is used to enforce
boundedness of the multipliers. Clearly, there are many other ways to compute
Lagrange multipliers satisfying the boundedness condition.

4.2.5 Full-Space Trust-Region SQP Algorithm with Inexact Linear
System Solves

Here we state the complete full-space trust-region SQP algorithm with inexact linear
system solves.

To prove convergence of the inexact full-space trust-region algorithm, we use
some of the problem assumptions from Section 3 and the following algorithmic
assumptions:

(F1) The sequence {λk}k∈N is bounded.
(F2) The sequence of operators {Bk}k∈N is bounded.
(F3) For each k, the projection Wk : X → X onto Null(cx(xk)) satisfies

‖Wk‖L(X) = 1.

Theorem 2 Let Ω = X = U × Z. If problem assumptions (A2), (A3), (A4), (A5),
and (A9), and algorithmic assumptions (F1), (F2), and (F3) are satisfied, then the
sequences of iterates generated by Algorithm 4 satisfy

lim inf
k→∞ {‖W̃kgk‖X + ‖c(xk)‖C} = 0. (44)

Additionally, we have

lim inf
k→∞ {‖Wk∇xJ (xk)‖X + ‖c(xk)‖C} = 0. (45)

102 D. P. Kouri and D. Ridzal

Proof In [20] it is shown that Algorithm 4 is a specific instance of a more general
composite-step trust-region SQP algorithm, [20, Algorithm 3.3]. Under the given
problem assumptions and algorithmic assumptions, the global convergence result
follows directly from [20, Theorem 3.5].

Algorithm 4 (Trust-region SQP algorithm with inexact linear system solves)
Initialization: Choose initial point x0, initial trust-region radius Δ0, constants
0 < α1, η1 < 1, 0 < η0 < 1 − η1, ρ−1 ≥ 1, ρ̄ > 0, and tolSQP > 0.
Set Δmin,Δmax so that 0 < Δmin < Δmax . Set forcing parameters
τqn, τpg, τproj , τ tang, τ lmh ∈ (0, 1), τ lmg > 0 and τ4 > 1. Choose initial
Lagrange multiplier λ−1 and compute λ0 by solving (42) with linear solver
tolerance (43).

For k = 0, 1, 2, . . .

1. Convergence check: If ‖∇xL(xk, λk)‖X < tolSQP and ‖c(xk)‖C < tolSQP ,
then stop.

2. Step computation:

a. Compute quasi-normal step nk using Algorithm 2 and linear solver toler-
ance (34).

b. Compute t̃k , t̃
cp
k using Algorithm 3 and linear solver tolerances (37), (39).

3. Step acceptance:

For i = 0, 1, 2, . . .

a. For j = 0, 1, 2, . . .

i. Compute tangential step tk by solving (40) with linear solver toler-
ance (41).

ii. Compute Lagrange multiplier estimate λk+1 at xk+nk+tk by solving (42)
with linear solver tolerance (43).

iii. Update the penalty parameter: If

pred(nk, t̃k; ρk−1) ≥ ρk−1

2

(
‖c(xk)‖2

C − ‖cx(xk)nk + c(xk)‖2
C

)

then set ρk = ρk−1. Otherwise set

ρk = −2 pred(nk, t̃k; ρk−1)

‖c(xk)‖2
C − ‖cx(xk)nk + c(xk)‖2

C

+ 2ρk−1 + ρ̄.

iv. If |rpred(cx(xk)tk; ρk)| > η0 pred(nk, t̃k; ρk), set τ tang = 10−3 τ tang ,
else break.

End For (j)
Reset τ tang to its value at outer iteration i prior to Step 3a.

Inexact Trust-Region Methods for PDE-Constrained Optimization 103

b. If ‖̃tk‖X > τ4‖nk + tk‖X and t̃k = t̃
cp
k

Set τqn = 10−1 τqn, τpg = 10−1τpg , τproj = 10−1τproj ,
τ tang = 10−1 τ tang .
Recompute nk using Algorithm 2 and linear solver tolerance (34).
Recompute t̃k , t̃

cp
k using Algorithm 3 and linear solver toler-

ances (37), (39).

Else If ‖̃tk‖X > τ4‖nk + tk‖X and t̃k �= t̃
cp
k

Set t̃k = t̃
cp
k .

Else

Optional: Reset τqn, τpg , τproj , and τ tang to their values from the
Initialization step.
break

End For (i)
4. Trust-region update:

a. Compute trial step sk = nk + tk .
b. Compute ratio θk = ared(sk; ρk)/pred(nk, t̃k; ρk).
c. If θk ≥ η1, set xk+1 = xk + sk , and choose Δk+1 as follows:

If θk ≥ 0.9, set
Δk+1 = min {max {7 ‖sk‖X ,Δk,Δmin} ,Δmax}

Else If θk ≥ 0.8, set
Δk+1 = min {max {2 ‖sk‖X ,Δk,Δmin} ,Δmax}

Else set
Δk+1 = max {Δk,Δmin};

Else set xk+1 = xk , λk+1 = λk , and Δk+1 = α1‖sk‖X.

End For (k)

4.2.6 Related Work

The above approach is based on the general composite-step trust-region framework
presented by Dennis, El-Alem, and Maciel in [14]. To accommodate inexact
computations, Algorithm 4 includes several modifications of [14]: (i) the gradient
condition (22); (ii) the redefinition of the predicted reduction to evaluate progress,
given in (27) and (28); and (iii) the tangential step conditions (29), (30), and (31).
Modification (i) is derived from Heinkenschloss and Vicente [21]. It is related to
the gradient condition (8) for reduced-space (unconstrained) formulations, which
is discussed in detail in Section 4.1.1. Modifications (ii) and (iii) are related to
similar such conditions proposed in [21]. However, we note that Heinkenschloss
and Vicente assume a decomposition of optimization variables into basic and

104 D. P. Kouri and D. Ridzal

nonbasic (state and control) variables, i.e., solve problem (1), whereas Algorithm 4
is applied to problem (3). The latter requires a different algorithmic strategy to
enforce (ii) and (iii). Specifically, in [21] the state/control decomposition assumption
allows one to set the control component of the quasi-normal step to zero, to
formulate and solve the tangential subproblem for the control component only, and
to separately compute the state component of the tangential step. In Algorithm 4,
these computations are interconnected and therefore more involved when it comes
to specifying concrete subalgorithms. However, Algorithm 4 is more general in
the sense that it can be extended to the case where the constraint Jacobian is rank
deficient. Additionally, Algorithm 4 enables the use of efficient iterative solvers and
preconditioners for linear optimality systems.

Another composite-step trust-region approach using the basic/nonbasic decom-
position of the equality constraints is presented by Ziems and Ulbrich in [43], where
the emphasis is on an efficient management of adaptive PDE discretizations, i.e.,
control of finite element discretization error. In [44], Ziems extends the approach to
handle additional constraints, such as bounds, on the control (nonbasic) variables. To
rigorously incorporate finite element error estimates in the trust-region algorithm, in
addition to the previously reviewed concepts, Ziems and Ulbrich require the notion
of inexact actual reductions and propose implementable conditions to control such
inexactness.

5 Application to Risk-Neutral Optimization

In this section, we specialize the reviewed algorithms to optimization problems
where the governing PDEs include uncertain or random coefficients and the
objective function is an expectation. First we present a reduced-space method
that enables efficient use of dimension-adaptive sparse grids in the computation
of the (reduced) objective function and its gradient. Subsequently, we discuss the
numerical solution of augmented systems arising in the full-space approach to PDE-
constrained optimization under uncertainty.

We denote the random inputs to a PDE model by ξ , which is a random vector
defined on the probability space (Ω,F ,P). Here, Ω is the set of outcomes, F ⊂ 2Ω

is a σ -algebra of all possible events, and P : F → [0, 1] is a probability
measure. As is common in the literature, we assume finite-dimensional noise, i.e.,
Ξ := ξ(Ω) ⊂ R

m for some m ∈ N. We further assume that Ξ is the m-fold
tensor product of one-dimensional intervals Ξ�, � = 1, . . . , m, and the components
of ξ are independent and continuously distributed with one-dimensional Lebesgue
densities ρ� : Ξ� → [0,∞). In this setting, the PDE solution operator S(z) is a
random field with realizations in U . We denote the dependence of S on the random
input ξ by S(z; ξ) for a fixed control z ∈ Z and note that u = S(z; ξ) ∈ U solves
the parametrized PDE

c(u, z; ξ) = 0 a.s.

Inexact Trust-Region Methods for PDE-Constrained Optimization 105

where c : U × Z × Ξ → C. Here “a.s.” is an abbreviation for “almost surely”;
in other words, “up to a set of probability zero.” Similarly, the objective function is
parametrized as J : U × Z × Ξ → R. As in Section 3, we consider the full space
problem

min
u∈U, z∈Z

E[J (u, z; ξ)] (46a)

subject to c(u, z; ξ) = 0 a.s. , (46b)

where E[X] := ´
Ω

X(ω) dP(ω) denotes the expectation of the random variable X.
When evaluating the expectation of random variables with the form f (ξ) where f :
Ξ → R, the finite-dimensional noise assumption permits the following substitution:

E[f (ξ)] =
ˆ

Ξ1

ρ1(ξ1) · · ·
ˆ

Ξm

ρm(ξm)f (ξ) dξm · · · dξ1. (47)

We slightly abuse notation and use ξ = (ξ1, . . . , ξm) to denote both the random
vector of inputs and its realizations. Substituting S(z; ξ) into J produces the
random-variable objective function Ĵ (z; ξ) = J (S(z; ξ), z; ξ), leading to the
reduced problem

min
z∈Z

{J (z) := E[Ĵ (z; ξ)]}. (48)

To approximate the expectation in (46) and (48), we employ sparse-grid quadra-
ture [6, 7, 19, 31, 37, 42]. Let {Ei

�}i≥1 be a sequence of one-dimensional quadrature
operators of increasing order in the � = 1, . . . , m direction. That is, Ei+1

� is exact
for higher-order monomials than E

i
�. Define the 1-D difference quadrature operators

δ1
� := E

1
� and δi

� := E
i
� − E

i−1
� , for i ≥ 2.

To define the m-dimensional quadrature rule on Ξ = Ξ1 × · · · × ΞM let i =
(i1, . . . , im) be a multi-index and let I ⊂ N

m be a finite multi-index set. The general
sparse-grid quadrature operator is defined as

EI :=
∑
i∈I

(δ
i1
1 ⊗ · · · ⊗ δim

m). (49)

To ensure consistency of (49), I must satisfy the following condition: if i =
(i1, . . . , im) ∈ I, j = (j1, . . . , jm) ∈ N

m, and j� ≤ i� for all � = 1, . . . , m,
then j ∈ I. If I satisfies this condition, then we say that I is admissible. In one
dimension, admissibility guarantees that (49) is a telescoping sum and recovers Ei

1
where i denotes the maximum element of I. An example of an admissible index
set is

106 D. P. Kouri and D. Ridzal

I = {i ∈ N
m : |i1| + . . . + |im| ≤ � + m − 1

}

for � ∈ N which results in the standard isotropic sparse grid.
In general, EI [f] for f : Ξ → R can be written as

EI [f] =
Q∑

k=1

wkf (ξk) (50)

where wk are the quadrature weights associated with the quadrature points ξk , k =
1, . . . ,Q. The form of approximation (50) is not unique to sparse grids as virtually
all quadrature and sampling methods have this form. Applying EI for fixed index
set I to (46) and (48) results in the approximate optimization problems

min
u∈U, z∈Z

Q∑
k=1

wkJ (uk, z; ξk)] (51a)

subject to c(uk, z; ξk) = 0, k = 1, . . . , Q , (51b)

and

min
z∈Z

Q∑
k=1

wkĴ (z; ξk) (52)

where Ĵ (z; ξk) = J (S(z; ξk), z; ξk) and S(z; ξk) = uk ∈ U solves (51b) for k =
1, . . . ,Q. When considering the full-space algorithm, we require the Lagrangian
functional associated with (51), i.e.,

L(u1, . . . , uQ, z, λ1, . . . , λQ) :=
Q∑

k=1

wkJ (uk, z; ξk) +
Q∑

k=1

vk〈λk, c(uk, z; ξk)〉C
(53)

where vk , k = 1, . . . , Q, are fixed weights. We can choose vk to be vk = 1 or
vk = wk for k = 1, . . . ,Q. The later choice corresponds to an infinite-dimensional
view of the problem since

Q∑
k=1

wk〈λk, c(uk, z; ξk)〉C

is an approximation of the expectation

E[〈λ, c(u(ξ), z; ξ)〉C].

Inexact Trust-Region Methods for PDE-Constrained Optimization 107

5.1 Sparse-Grid Adaptivity

In the subsequent subsections, we define the adaptive sparse-grid subalgorithms
used to satisfy (8) and (10). To do so, we require the definition of the forward
neighborhood of the admissible index set I. The forward neighborhood of I is

N (I) := {i ∈ N
m \ I : I ∪ {i} is admissible}.

We employ dimension-adaptive sparse grids [19] in an attempt to satisfy (8)
and (10). The dimension-adaptive sparse grid algorithm approximates the quadra-
ture error on a subset A of the forward neighborhood of the current admissible index
set O, i.e., A ⊆ N (O).

5.1.1 Computation of Inexact Gradient

Given the current iterate zk ∈ Z, we must construct a model mk that satisfies (8). To
do so, we employ an admissible index set Ig

k ⊂ N
m and the associated quadrature

approximation of J (z) = E[Ĵ (z; ξ)], i.e.,

JIg
k
(z) =

∑
i∈Ig

k

(δ
i1
1 ⊗ · · · ⊗ δim

m)[Ĵ (z; ξ)].

We then choose our model mk to satisfy the first-order condition ∇mk(0) =
∇JIg

k
(zk). Under the assumption of convergence of (49), we can write the quadra-

ture error associated with the index set Ig
k as the sum of all differential quadrature

rules (δ
i1
1 ⊗ · · · ⊗ δ

im
m) for i �∈ Ig

k . Thus, the inexact gradient condition (8) becomes
∥∥∥∥∥∥∥
∑
i �∈Ig

k

(δ
i1
1 ⊗ · · · ⊗ δ

iM
M)[∇Ĵ (z; ξ)]

∥∥∥∥∥∥∥
Z

≤ κgrad min
{∥∥∥∇JIg

k
(zk)

∥∥∥
Z

,Δk

}
. (54)

The goal now is to determine the smallest admissible index set Ig
k such that (54)

holds. Since it is not computationally feasible to explicitly evaluate the left-hand
side of (54), we employ the dimension-adaptive approach presented in [19] to
approximately satisfy this condition. Although there is no proof that this approach
satisfies (8), numerical experience suggests that (8) is typically satisfied. The
dimension-adaptive gradient computation algorithm is listed in Algorithm 5.

5.1.2 Computation of Inexact Objective Function Value

Similar to the inexact gradient computation, we define our objective function
approximation for the computation of credk as

108 D. P. Kouri and D. Ridzal

Jk(z) = JIo
k
(z) =

∑
i∈Io

k

(δ
i1
1 ⊗ · · · ⊗ δim

m)[Ĵ (z; ξ)].

Here, Io
k ⊂ N

m is some admissible index set. The error associated with this
approximation, in the context of (10), is

|aredk − credk| =
∣∣∣∑

i �∈Io
k

(δ
i1
1 ⊗ · · · ⊗ δim

m)[Ĵ (zk + sk; ξ) − Ĵ (zk; ξ)]
∣∣∣ = θk. (55)

Algorithm 5 (Gradient computation using adaptive sparse grids)

Initialization: Set i = (1, . . . , 1), A = {i}, O = ∅, gi = (δ
i1
1 ⊗ · · · ⊗

δ
iM
M)[∇Ĵ (zk; ξ)] and β = βi = ‖gi‖Z , g = gi, and TOL = κgrad min{‖g‖Z,Δk}.

While β > TOL

1. Select i ∈ A corresponding to the largest βi
2. Set A ← A \ {i} and O ← O ∪ {i}
3. Update the error indicator β ← β − βi
4. For � = 1, . . . , m

a. Set j = i + e�

b. If O ∪ {j} is admissible

i. Set A ← A ∪ {j}
ii. Set gj = (δ

j1
1 ⊗ · · · ⊗ δ

jm
m)[∇Ĵ (zk; ξ)]

iii. Set βj = ‖gj‖Z
iv. Update the gradient approximation g ← g + gj
v. Update the error indicator β ← β + βj

vi. Update the stopping tolerance TOL = κgrad min{‖g‖Z,Δk}
c. EndIf

5. EndFor

EndWhile

Set Ig
k = A ∪ O and ∇mk(0) = g.

Again, we use dimension-adaptive sparse grids to determine Io
k where we

estimate (55) only on a subset of the forward neighborhood of the current index set.
Similar to the gradient computation, there is no guarantee that θk will satisfy (10).
However, numerical experience suggest that this is often the case. The dimension-
adaptive objective function approximation algorithm is listed in Algorithm 6.

Inexact Trust-Region Methods for PDE-Constrained Optimization 109

5.2 Iterative Linear System Solves

In this section, we focus on the key computational component of the subalgorithms
of Algorithm 4, namely, the numerical solution of augmented systems. As men-
tioned earlier, in optimization under uncertainty these systems are enormous and
cannot be formed explicitly, requiring iterative, matrix-free methods.

Augmented systems are KKT systems for a special type of quadratic optimization
problems. Solution methods for KKT systems have received significant attention
recently in the context of PDE-constrained optimization. Efficient preconditioning

Algorithm 6 (Objective function evaluation using adaptive sparse grids)

Initialization: Set i = (1, . . . , 1), A = {i}, O = ∅, TOL = (η min{predk, rk})1/ω,
θ̃k = ϑi = (δ

i1
1 ⊗ · · · ⊗ δ

iM
M)[Ĵ (zk + sk; ξ) − Ĵ (zk; ξ)] and credk = ϑi.

While |θ̃k| > TOL

1. Select i ∈ A corresponding to the largest |ϑi|
2. Set A ← A \ {i} and O ← O ∪ {i}
3. Update the error indicator θ̃k ← θ̃k − ϑi
4. For � = 1, . . . , m

a. Set j = i + e�

b. If O ∪ {j} is admissible

i. Set A ← A ∪ {j}
ii. Set ϑj = (δ

j1
1 ⊗ · · · ⊗ δ

jm
m)[Ĵ (zk + sk; ξ) − Ĵ (zk; ξ)]

iii. Update the computed reduction credk ← credk + ϑj

iv. Update the error indicator θ̃k ← θ̃k + ϑj

c. EndIf

5. EndFor

EndWhile

Return Io
k = A ∪ O and credk .

approaches based on Schur complements in the constraint null space have been
developed, see, e.g., [33–35, 38, 39]. Augmented systems are treated in [36], where
it is shown that Schur-complement ideas lead to preconditioners that perform well
for a variety of physics models, i.e., constraint equations, independent of the mesh
size. A crucial difference between the KKT systems for the subproblem (13a)–
(13b) and augmented systems is that the latter do not depend at all on the

110 D. P. Kouri and D. Ridzal

objective function J , which lowers the bar for efficient preconditioning and affords
generality.4

Recalling the assumption in full-space methods that C is a Hilbert space
(with C∗ = C), in PDE-constrained optimization the augmented system operator
G : X × C → X × C, in general, written as

G =
(

IX cx(xk)
∗

cx(xk) 0

)
,

takes the form A : U × Z × C → U × Z × C,

A =
⎛
⎝ IU 0 cu(uk, zk)

∗
0 IZ cz(uk, zk)

∗
cu(uk, zk) cz(uk, zk) 0

⎞
⎠ =:

⎛
⎝IU 0 C∗

u

0 IZ C∗
z

Cu Cz 0

⎞
⎠ ,

where the latter notation is used as shorthand. Assuming the existence of
(cu(uk, zk))

−1, we consider two preconditioners for the operator A:

P � =
⎛
⎝ IU 0 0

0 IZ 0
0 0 (CuC

∗
u + CzC

∗
z)−1

⎞
⎠ and P =

⎛
⎝ IU 0 0

0 IZ 0
0 0 C−∗

u C−1
u

⎞
⎠ .

The preconditioner P � is an exact Schur-complement preconditioner, in the sense
that a P �-preconditioned Krylov solver for a system given by the operator A con-
verges in at most three iterations [30]. However, in PDE-constrained optimization
under uncertainty, the operator CuC

∗
u + CzC

∗
z is never formed explicitly, due to

its sheer size. Also, approximating the inverse of the sum of matrix products
is in general very difficult. The approximate preconditioner P is a practical
alternative. The application of P amounts to a “linearized state solve” followed by
an “adjoint solve,” which are readily available in practice. Following the notation in
problem (51), with Lagrangian (53), for a given number Q of samples and weights
the matrices Cu and Cz have special structure, namely that of a block-diagonal and
a block-column matrix with Q nonzero blocks, respectively,

Cu =

⎛
⎜⎜⎜⎝

v1C
1
u 0 . . . 0

0 v2C
2
u . . . 0

...
...

. . . 0
0 0 . . . vQC

Q
u

⎞
⎟⎟⎟⎠ and Cz =

⎛
⎜⎜⎜⎝

v1C
1
z

v2C
2
z

...

vQC
Q
z

⎞
⎟⎟⎟⎠ .

4Under the assumptions of this chapter, augmented systems can always be related to strictly
convex quadratic problems of the form min 1

2

〈
s1, s1

〉
X

−〈b1, s1
〉
X

subject to cx(xk)s
1 = b2, where

(b1 b2)T is the right-hand side vector of the augmented system and s1 is the first block of the left-
hand side vector.

Inexact Trust-Region Methods for PDE-Constrained Optimization 111

.. .

..

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

IU 0 0 0 v1(C1
u)

∗ 0 0

0 IU 0 0 0 v2(C2
u)

∗ 0
...

... . . . 0
...

...
... . . . 0

0 0 IU 0 0 0 vQ(C
Q
u)∗

0 0 0 IZ v1(C1
z)

∗ v2(C2
z)

∗ vQ(C
Q
z)∗

v1C1
u 0 0 v1C1

z 0 0 0

0 v2C2
u 0 v2C2

z 0 0 0
...

... .

...

. . .

. . .

. . .

. . .

.

. . .

. .

.

0
...

...
... . . . 0

0 0 vQC
Q
u vQC

Q
z 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.. .

v1(C1
uCC)∗ 0 0

0 v2(C2
uCC)∗ 0

...
... . . . 0

0 0 vQ(C
Q
u)∗

...

. . .

..

v1C1
uCC 0 0

0 v2C2
uCC 0

...
... .

...

. . .

. .

.

0

0 0 vQC
Q
u .. .

.. .

.. .

.. .

Fig. 1 The augmented system in PDE-constrained optimization under uncertainty. The application
of the preconditioner P to this system is highly parallelizable, due to the block-diagonal structure
of the highlighted Cu and C∗

u blocks

This gives rise to the augmented system depicted in Figure 1. We note that
preconditioning this system with P is highly parallelizable, due to the block-
diagonal structure of Cu and C∗

u . We also note that only approximations of the
inverses C−1

u and C−∗
u are needed in the application of the preconditioner, enabling

efficient iterative schemes that rely on whatever solvers are provided for the
linearized forward and adjoint systems.

6 Numerical Examples

We consider a thermal fluid application motivated by the transport process in high-
pressure chemical vapor deposition (CVD) reactors (see Section 5.2 in [23]). Such
reactors are used to produce compound semiconductors. Reactant gases are injected
into the top of the reactor and must flow down to the substrate in order to form an
epitaxial film. However, the substrate is maintained at a high temperature causing
vorticities due to buoyancy-driven convection. For this application, we control the
thermal flux on the side walls of the reactor to minimize vorticity. Let D = (0, 1) ×
(0, 1) and consider the following control problem:

min
z∈Z

1

2
E

[ˆ
D

(∇ × u(z)) dx

]
+ γ

2

ˆ

Γc

|z|2 dx

where S(z) = (u(z), p(z), T (z)) = (u, p, T) : Ω → U solves the Boussinesq flow
equations,

112 D. P. Kouri and D. Ridzal

−ν(ξ)∇2u + (u · ∇)u + ∇p + η(ξ)T g = 0, in D, a.s.,
∇ · u = 0, in D, a.s.,

−κ(ξ)ΔT + u · ∇T = 0, in D, a.s.,
u − ui = 0, T = 0, on Γi, a.s.,
u − uo = 0, κ(ξ) ∂T

∂n
= 0, on Γo, a.s.,

u = 0, T = Tb(ξ), on Γb, a.s.,
u = 0, κ(ξ) ∂T

∂n
+ h(ξ)(z − T) = 0, on Γc, a.s.,

where Γi = [1/3, 2/3]×{1}, Γo = ([0, 1/3]∪[2/3, 1])×{1}, Γb = [0, 1]×{0}, and
Γc = {0, 1} × [0, 1]. The inflow and outflow velocities, ui and uo, are deterministic
while the coefficients ν, η, κ , h, and Tb are uncertain. In this model,

ν = 1

Re
= 100

1 + 0.01ξN+1
, η = Gr

Re2 = 0.72
1 + 0.01ξN+1

1 + 0.01ξN+2
,

and κ = 1

Re Pr
= 105 1 + 0.01ξN+3

(1 + 0.01ξN+1)2

where Re is the Reynolds number, Gr is the Grashof number, and Pr is the Prandtl
number. The offset N is the total number of random variables associated with T0
and h. The uncertainty in T0 is modeled by the expansion

T0(x, ξ) = 1 + 0.025
nb∑

k=1

ξk

√
2 sin(πkx)

πk
.

The coefficient h has a similar expansion for x = 0 and for x = 1 with n� and
nr terms, respectively. All ξk are uniformly distributed on [−1, 1]. Figure 2 depicts
the computational domain including boundary conditions (left) and the scenarios of
the uncertain substrate temperature (right). The curves on top of the computational
domain schematic (left) are the inflow and outflow profiles of the velocity, given by

u(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
(

1
3 − x

)
x if 0 ≤ x ≤ 1

3

−4
(
x − 1

3

) (
2
3 − x

)
if 1

3 < x < 2
3

2
(
x − 2

3

)
(1 − x) if 2

3 ≤ x ≤ 1

.

We study both the stated reduced-space formulation of the control problem and
the corresponding full-space formulation. We use the Trilinos package Rapid Opti-
mization Library [27] and its PDE-OPT Application Development Kit, available in
the directory

Inexact Trust-Region Methods for PDE-Constrained Optimization 113

D

0 0.5 1
0.8

0.9

1

1.1

1.2

Gb

Gc

Gi

Go Go

Gc

Fig. 2 Left: Computational domain for the CVD reactor. Right: Scenarios of T0

Fig. 3 Expected values of the uncontrolled velocity field (left), pressure (middle) and temperature
(right)

Trilinos/packages/rol/examples/PDE-OPT,

to implement and solve the control problem. A reproducibility statement is given in
Section 6.3.

To discretize the PDE, we use finite elements on a uniform mesh of 33×33
quadrilaterals. We note that to properly represent the boundary segments Γo and
Γi the number of mesh cells in the horizontal direction should be divisible by three.
For the velocity and pressure discretization, we use the Q2-Q1 Taylor–Hood finite
element pair, and for the temperature we use the Q2 finite element. The sparse grids
used to approximate the risk neutral objective function are built on one-dimensional
Clenshaw–Curtis quadrature rules. We set the maximum sparse grid as the level-3
isotropic Clenshaw–Curtis sparse grid. This rule has Q = 2245 points. Figure 3
shows the expected values of the uncontrolled (z = 0) velocity field (streamlines
and magnitude), pressure, and temperature.

114 D. P. Kouri and D. Ridzal

6.1 Reduced-Space Results with Adaptive Sparse Grids

We solve the optimal control problem using the reduced-space trust-region approach
with dimension-adaptive sparse grids described in Section 5.1. We terminate the
algorithm when the gradient of the model at zero, ‖∇mk(0)‖Z , is below tol = 10−6.
We set the initial guess to z = 0 and the initial trust-region radius to Δ0 = 10. We
solve the trust-region subproblem using truncated conjugate gradients. We terminate
the subproblem solve if the step has exceeded the trust-region radius, the algorithm
encountered negative curvative or the residual is below the minimum of 10−4 and
10−2 times the norm of the initial residual. The problem is solved using a single
computational core of a dual-socket 2.1 GHz Intel Broadwell E5-2695 compute
node with 128 GB RAM. The linearized state and adjoint equations are solved using
a direct solver. The solves are performed sequentially.

Figure 4 shows the expected values of the controlled velocity field (streamlines
and magnitude), pressure, and temperature. We see a significant reduction of
vorticity near the heated substrate. The left-wall and right-wall controls are given
in Figure 5, respectively.

Table 1 displays the iteration history for the adaptive sparse grid algorithm
described in Sections 4.1 and 5.1. The columns from left to right include the iteration
count (iter), the computed objective function value (Jk(zk)), the norm of the model
gradient (‖∇mk(0)‖Z), the trial step size (‖sk‖Z), the trust-region radius (Δk), the
number of truncated conjugate gradient iterations (cg), a Boolean corresponding
to whether the step was accepted or rejected (accept), the number of sparse-grid
points for the objective function computation (obj), and the number of sparse-grid
points for the gradient evaluation (grad). The algorithm starts with very few sparse-
grid points (i.e., state and adjoint PDE solvers) and only refines the sparse grid
as needed for global convergence. For this example, there were no “unimportant”
directions resulting in a final sparse grid that is identical to the isotropic sparse grid.
For examples with anisotropy, see [25, 26].

Fig. 4 Expected values of the controlled velocity field (left), pressure (middle), and temperature
(right), obtained using the reduced-space method with adaptive sparse grids

Inexact Trust-Region Methods for PDE-Constrained Optimization 115

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Left Controls

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Right Controls

Fig. 5 Optimal controls along the left vertical side wall (left image) and the right vertical side wall
(right image) of the problem domain D, obtained using the reduced-space method with adaptive
sparse grids

Table 1 Iteration history for reduced-space adaptive sparse-grid approach

iter Jk(zk) ‖∇mk(0)‖Z ‖sk‖Z Δk cg accept obj grad

0 0.07457916 5.063 × 10−2 – 10.000 – – 1 3

1 0.07469930 5.063 × 10−2 10.000 1.445 1 0 3 3

2 0.07469930 5.063 × 10−2 1.445 0.361 1 0 3 3

3 0.05636707 4.875 × 10−2 0.361 0.903 1 1 3 3

4 0.05636707 4.875 × 10−2 0.903 0.226 1 0 3 3

5 0.04757099 2.059 × 10−2 0.226 0.226 1 1 3 3

6 0.04680338 1.143 × 10−2 0.226 0.226 2 1 103 117

7 0.04611002 3.468 × 10−3 0.226 0.564 2 1 139 195

8 0.04511802 3.255 × 10−3 0.564 1.411 2 1 117 233

9 0.04494516 1.085 × 10−3 1.411 3.527 3 1 229 579

10 0.04499733 2.331 × 10−4 2.838 8.818 6 1 579 949

11 0.04499338 6.211 × 10−5 0.967 22.045 7 1 2245 1219

12 0.04499329 1.002 × 10−6 0.127 55.113 8 1 2245 2245

13 0.04499327 7.034 × 10−9 0.072 137.784 11 1 2245 2245

6.2 Full-Space Results with Iterative Linear System Solves

We now solve the optimal control problem using the full-space trust-region algo-
rithm with iterative augmented system solves described in Section 5.2. The param-
eters for Algorithm 4 are

tolSQP tolCG ζ Δ0 Δmin Δmax α1 η1 η0 ρ−1 ρ̄

10−6 10−2 0.8 104 10−10 108 0.5 10−8 0.5 1 10−8

116 D. P. Kouri and D. Ridzal

The nominal augmented system solver tolerances are set to τqn = τpg =
τproj = τ tang = τ lmh = 10−6 ; however, we note that these tolerances are
adjusted as needed by Algorithm 4. We set τ4 = 2 and τ lmg = 104. To solve
augmented systems, we use the flexible generalized minimal residual (F-GMRES)
method preconditioned with the Schur-complement preconditioner P discussed in
Section 5.2. To apply the augmented system preconditioner P , for each block
vkC

k
u, k = 1, . . . ,Q, and its adjoint, we use GMRES preconditioned with a non-

overlapping additive Schwarz domain-decomposition approach, where the domain
D is partitioned into four horizontal strips of roughly equal size (the top strip is
the largest one). For the (inner) F-GMRES stopping tolerance, we choose 10−4.
The linear solves on the subdomains are performed using a direct solver. As the
initial guess for the control variables, we use z = 0. To obtain the initial guess
for the state variables, we solve the nonlinear state equations with z = 0 for each
sparse-grid point. We choose the infinite-dimensional view of the Lagrangian for the
risk-neutral problem (51), i.e., vk = wk , for k = 1, . . . ,Q. We use a fixed level-3
Clenshaw–Curtis sparse grid with Q = 2245.

All studies were executed on the commodity cluster Serrano at Sandia National
Labs. The results were obtained using 80 dual-socket 2.1 GHz Intel Broadwell
E5-2695 nodes with 128 GB RAM. Each node has 36 cores, amounting to a total
of 2880 cores. We utilized the hierarchical parallelism afforded by the Rapid
Optimization Library, partitioning the cores into 720 groups, with each group using
four cores for linear algebra tasks such as matrix assembly and iterative solves of the
linearized state and adjoint equations needed to apply the preconditioner P . These
solves are executed concurrently across the 720 groups. Considering that we process
2245 sparse-grid points, each group performs only three or four linearized state and
adjoint solves per preconditioner application, enabling a high degree of concurrency
in the computation. Informative studies can be performed without high-performance
computing resources, using, e.g., level-2 sparse grids, which amounts to changing
the “Maximum Sparse Grid Level” parameter in the input scripts described in
Section 6.3 from 3 to 2.

Figure 6 shows the expected values of the controlled velocity field (streamlines
and magnitude), pressure, and temperature. The left-wall and right-wall controls
are given in Figure 7, respectively. As before, we see a significant reduction of
vorticity near the heated substrate. In Table 2, we observe that the final objective
value is different than in the reduced-space case. Figure 7 reveals that the optimal
controls are also different. This is not unexpected, as our optimal control problem is
nonconvex and may have multiple local minima. Substituting the full-space optimal
controls into the reduced-space method, and vice versa, confirms that these are
indeed locally optimal for both methods and that multiple numerical minima exist.

Table 2 shows the iteration history for the full-space approach. The columns
from left to right denote the iteration count (iter), the computed objective function
value (J (xk)), the norm of the constraint(‖c(xk)‖C), the norm of the gradient of the
Lagrangian (‖∇L(xk, λk)‖X), the trust-region radius (Δk), the number of projected
conjugate gradient iterations (pcg) per SQP iteration, a Boolean corresponding to
whether the step was accepted or rejected (accept), the cumulative number of

Inexact Trust-Region Methods for PDE-Constrained Optimization 117

Fig. 6 Expected values of the controlled velocity field (left), pressure (middle), and temperature
(right), obtained using the full-space method with iterative augmented system solves

-1.5

-1

-0.5

0

0.5

1
Left Controls

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1
Right Controls

Fig. 7 Optimal controls along the left vertical side wall (left image) and the right vertical side
wall (right image) of the problem domain D, obtained using the full-space method with iterative
augmented system solves

Table 2 Iteration history for the full-space approach with iterative augmented system solves

ls ls
iter J (xk) ‖c(xk)‖C ‖∇L(xk, λk)‖X Δk pcg accept calls iters

0 0.07484675 7.820623 × 10−15 8.377793 × 10−3 1.00 × 104 – – – –

1 0.05533699 1.661657 × 10−2 3.641571 × 10−4 1.00 × 104 11 1 16 597

2 0.03588474 3.052458 × 10−3 9.338262 × 10−5 1.00 × 104 13 1 33 1292

3 0.03515891 1.017679 × 10−4 7.117806 × 10−5 1.00 × 104 20 1 56 2303

4 0.03480817 1.444319 × 10−4 2.439603 × 10−5 1.00 × 104 15 1 75 3108

5 0.03480817 1.444319 × 10−4 2.439321 × 10−5 4.08 × 100 20 0 98 4157

6 0.03465050 2.237452 × 10−6 4.364539 × 10−6 3.03 × 101 2 1 104 4438

7 0.03464773 2.716452 × 10−7 1.042585 × 10−7 3.03 × 101 8 1 116 4989

calls to F-GMRES for augmented system solves (ls calls), and the cumulative
number of F-GMRES iterations (ls iters). The first observation is that the full-
space scheme converges robustly to the desired tolerance despite inexactness in the
augmented system solves and inexactness in the Schur-complement preconditioner
applications, i.e., linearized state and adjoint solves. Second, the average number

118 D. P. Kouri and D. Ridzal

of P -preconditioned F-GMRES iterations per augmented system solve is roughly
43, which is encouraging considering that the size of the state space alone is
30,900,180 and that we have used fairly tight nominal tolerances for augmented
system solves. Nonetheless, opportunities exist for preconditioner research in the
context of optimization under uncertainty, and additional studies with larger nominal
tolerances for augmented system solves are necessary.

6.3 Reproducibility

The numerical studies are contained in the directory

rol/examples/PDE-OPT/published/IMAvolumes_KouriRidzal2017

of the Rapid Optimization Library. The driver source file for the reduced-space stud-
ies is example_RS.cpp, with the accompanying input script input_RS.xml.
The driver source file for the full-space studies is example_FS.cpp, with
the accompanying input script input_FS.xml. The version of the Trilinos git
repository used to generate all numerical results is labeled with the commit tag

3958350daababd03f37fc422bf6a546d2d5ab5f5,

and the branch is “develop.” We report results with the Intel 17.0.0.098 compiler;
however, we observed virtually identical results with GCC 6.1.0.

7 Conclusions

In recent years, trust-region methods have been extended to rigorously, robustly,
and efficiently handle many sources of inexactness in the optimization process,
including inexact evaluations of the objective and constraint functions and their
derivatives as well as the inexact linear system solves arising in the approxi-
mation of constraint derivative inverses. In this chapter, we reviewed in some
detail two such methods, which are particularly well suited to the solution of
large-scale PDE-constrained optimization problems. The first method tackles the
challenges of inexact objective function and gradient evaluations in unconstrained
(reduced-space) formulations of PDE-constrained optimization problems, and is
demonstrated in the context of sparse-grid adaptivity for risk-neutral optimization
of thermal fluids. The second method deals with inexact linear system solves in
constrained (full-space) formulations, and is demonstrated on large risk-neutral
thermal-fluid optimization problems with fixed sparse grids, but with iterative,
and therefore inexact, linearized state and adjoint solves. A principal remaining
challenge in inexact trust-region methods for PDE-constrained optimization is in
the handling of general inequality constraints on the control and state variables,
with research opportunities in formulation and algorithm development, large-scale
solvers for optimality systems, and efficient software implementations.

Inexact Trust-Region Methods for PDE-Constrained Optimization 119

Acknowledgements This work was supported by DARPA EQUiPS grant SNL 014150709 and
the DOE NNSA ASC ATDM program.

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. This paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the paper do not necessarily represent the
views of the U.S. Department of Energy or the United States Government.

References

1. N. Alexandrov. Robustness properties of a trust-region framework for managing approximation
models in engineering optimization. In Proceedings from the AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Work-in-progress Paper AIAA–
96–4102-CP, pages 1056–1059, 1996.

2. N. Alexandrov. A trust–region framework for managing approximations in constrained
optimization problems. In Proceedings of the First ISSMO/NASA Internet Conference on
Approximation and Fast Reanalysis Techniques in Engineering Optimization, June 14–27,
1998, 1998.

3. N. Alexandrov and J. E. Dennis. Multilevel algorithms for nonlinear optimization. In
J. Borggaard, J. Burkardt, M. D. Gunzburger, and J. Peterson, editors, Optimal Design and
Control, pages 1–22, Basel, Boston, Berlin, 1995. Birkhäuser Verlag.

4. N. Alexandrov, J. E. Dennis Jr., R. M. Lewis, and V. Torczon. A trust region framework
for managing the use of approximation models in optimization. Structural Optimization, 15:
16–23, 1998. Appeared also as ICASE report 97–50.

5. E. Arian, M. Fahl, and E. W. Sachs. Trust–region proper orthogonal decomposition for flow
control. Technical Report 2000–25, ICASE, NASA Langley Research Center, Hampton VA
23681–2299, 2000.

6. I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial
differential equations with random input data. SIAM Rev., 52(2):317–355, 2010.

7. V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpolation on sparse
grids. Adv. Comput. Math., 12(4):273–288, 2000. Multivariate polynomial interpolation.

8. F. Bastin, C. Cirillo, and Ph. L. Toint. An adaptive Monte Carlo algorithm for computing mixed
logit estimators. Comput. Manag. Sci., 3(1):55–79, 2006.

9. M. Benzi, G. H Golub, and J. Liesen. Numerical solution of saddle point problems. Acta
Numerica, 14(1):1–137, 2005.

10. R. G. Carter. Numerical optimization in Hilbert space using inexact function and gradient
evaluations. Technical Report 89–45, ICASE, Langley, VA, 1989.

11. R. G. Carter. On the global convergence of trust region algorithms using inexact gradient
information. SIAM J. Numer. Anal., 28:251–265, 1991.

12. R. G. Carter. Numerical experience with a class of algorithms for nonlinear optimization using
inexact function and gradient information. SIAM Journal on Scientific Computing, 14(2):368–
388, 1993.

13. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust–Region Methods. SIAM, Philadelphia,
2000.

14. J. E. Dennis, M. El-Alem, and M. C. Maciel. A Global Convergence Theory for General Trust–
Region–Based Algorithms for Equality Constrained Optimization. SIAM J. Optimization,
7:177–207, 1997.

15. J. E. Dennis and V. Torczon. Approximation model managemet for optimization. In
Proceedings from the AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, Work-in-progress Paper AIAA–96–4099-CP, pages 1044–1046, 1996.

120 D. P. Kouri and D. Ridzal

16. J. E. Dennis and V. Torczon. Managing approximation models in optimization. In
N. Alexandrov and M. Y. Hussaini, editors, Multidisciplinary Design Optimization. State of
the Art, pages 330–347, Philadelphia, 1997. SIAM.

17. J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Nonlinear Equations and
Unconstrained Optimization. SIAM, Philadelphia, 1996.

18. M. Fahl and E.W. Sachs. Reduced order modelling approaches to PDE–constrained
optimization based on proper orthogonal decompostion. In L. T. Biegler, O. Ghattas,
M. Heinkenschloss, and B. van Bloemen Waanders van Bloemen Waanders, editors, Large-
Scale PDE-Constrained Optimization, Lecture Notes in Computational Science and Engineer-
ing, Vol. 30, Heidelberg, 2003. Springer-Verlag.

19. T. Gerstner and M. Griebel. Dimension-adaptive tensor-product quadrature. Computing,
71(1):65–87, 2003.

20. M. Heinkenschloss and D. Ridzal. A matrix-free trust-region SQP method for equality
constrained optimization. SIAM Journal on Optimization, 24(3):1507–1541, 2014.

21. M. Heinkenschloss and L. N. Vicente. Analysis of inexact trust–region SQP algorithms. SIAM
J. Optimization, 12:283–302, 2001.

22. M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with Partial Differential
Equations, volume 23 of Mathematical Modelling, Theory and Applications. Springer Verlag,
Heidelberg, New York, Berlin, 2009.

23. K. Ito and S. S. Ravindran. Optimal control of thermally convected fluid flows. SIAM J. on
Scientific Computing, 19:1847–1869, 1998.

24. C.T. Kelley and E.W. Sachs. Truncated newton methods for optimization with inaccurate
functions and gradients. Journal of Optimization Theory and Applications, 116(1):83–98,
2003.

25. D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders. A trust-region
algorithm with adaptive stochastic collocation for PDE optimization under uncertainty. SIAM
Journal on Scientific Computing, 35(4):A1847–A1879, 2013.

26. D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders. Inexact
objective function evaluations in a trust-region algorithm for PDE-constrained optimization
under uncertainty. SIAM Journal on Scientific Computing, 36(6):A3011–A3029, 2014.

27. D. P. Kouri, G. von Winckel, and D. Ridzal. ROL: Rapid Optimization Library. https://trilinos.
org/packages/rol, 2017.

28. L. Lubkoll, A. Schiela, and M. Weiser. An affine covariant composite step method for optimiza-
tion with PDEs as equality constraints. Optimization Methods and Software, 32(5):1132–1161,
2017.

29. J. J. Moré. Recent developments in algorithms and software for trust region methods. In
A. Bachem, M. Grötschel, and B. Korte, editors, Mathematical Programming, The State of
The Art, pages 258–287. Springer Verlag, Berlin, Heidelberg, New-York, 1983.

30. M. F. Murphy, G. H. Golub, and A. J. Wathen. A note on preconditioning for indefinite linear
systems. SIAM Journal on Scientific Computing, 21(6):1969–1972, 2000.

31. E. Novak and K. Ritter. High-dimensional integration of smooth functions over cubes. Numer.
Math., 75(1):79–97, 1996.

32. E. O. Omojokun. Trust region algorithms for optimization with nonlinear equality and
inequality constraints. PhD thesis, Department of Computer Science, University of Colorado,
Boulder, Colorado, 1989.

33. T. Rees, H. S. Dollar, and A. J. Wathen. Optimal Solvers for PDE-Constrained Optimization.
SIAM Journal on Scientific Computing, 32(1):271–298, 2010.

34. T. Rees, M. Stoll, and A. Wathen. All-at-once preconditioning in PDE-constrained optimiza-
tion. Kybernetika, 46(2):341–360, 2010.

35. T. Rees and A. J. Wathen. Preconditioning iterative methods for the optimal control of the
Stokes equation. SIAM J. Sci. Comput, 33(5), 2010.

36. D. Ridzal. Preconditioning of a Full-Space Trust-Region SQP Algorithm for PDE-constrained
Optimization. In Report No. 04/2013: Numerical Methods for PDE Constrained Optimization
with Uncertain Data. Mathematisches Forschungsinstitut Oberwolfach, 2013.

https://trilinos.org/packages/rol
https://trilinos.org/packages/rol

Inexact Trust-Region Methods for PDE-Constrained Optimization 121

37. S. A. Smoljak. Quadrature and interpolation formulae on tensor products of certain function
classes. Soviet Math. Dokl., 4:240–243, 1963.

38. M. Stoll. One-shot solution of a time-dependent time-periodic PDE-constrained optimization
problem. IMA Journal of Numerical Analysis, 34(4):1554–1577, 2014.

39. M. Stoll and A. Wathen. All-at-once solution of time-dependent Stokes control. Journal of
Computational Physics, 232(1):498–515, 2013.

40. Ph. L. Toint. Global convergence of a class of trust-region methods for nonconvex minimiza-
tion in Hilbert space. IMA Journal of Numerical Analysis, 8:231–252, 1988.

41. S. Ulbrich and J. C. Ziems. Adaptive multilevel trust-region methods for time-dependent PDE-
constrained optimization. Portugaliae Mathematica, 74(1):37–67, 2017.

42. D. Xiu and J. S. Hesthaven. High-order collocation methods for differential equations with
random inputs. SIAM J. Sci. Comput., 27(3):1118–1139 (electronic), 2005.

43. J. C. Ziems and S. Ulbrich. Adaptive multilevel inexact SQP methods for PDE-constrained
optimization. SIAM Journal on Optimization, 21(1):1–40, 2011.

44. J. Carsten Ziems. Adaptive Multilevel Inexact SQP-Methods for PDE-Constrained Optimiza-
tion with Control Constraints. SIAM Journal on Optimization, 23(2):1257–1283, 2013.

	Inexact Trust-Region Methods for PDE-Constrained Optimization
	1 Introduction
	2 Notation
	3 Problem Formulations
	4 Inexact Trust-Region Methods
	4.1 A Reduced-Space Approach
	4.1.1 Related Work

	4.2 A Full-Space Approach
	4.2.1 Computation of the Quasi-Normal Step
	4.2.2 Solution of the Tangential Subproblem
	4.2.3 Computation of the Tangential Step
	4.2.4 Computation of the Lagrange Multipliers
	4.2.5 Full-Space Trust-Region SQP Algorithm with Inexact Linear System Solves
	4.2.6 Related Work

	5 Application to Risk-Neutral Optimization
	5.1 Sparse-Grid Adaptivity
	5.1.1 Computation of Inexact Gradient
	5.1.2 Computation of Inexact Objective Function Value

	5.2 Iterative Linear System Solves

	6 Numerical Examples
	6.1 Reduced-Space Results with Adaptive Sparse Grids
	6.2 Full-Space Results with Iterative Linear System Solves
	6.3 Reproducibility

	7 Conclusions
	References

