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Abstract Uncertainty pervades nearly all science and engineering applications
including the optimal control and design of systems governed by partial differential
equations (PDEs). In many applications, it is critical to determine optimal solutions
that are resilient to the inherent uncertainty in unknown boundary conditions,
inaccurate coefficients, and unverifiable modeling assumptions. In this tutorial,
we develop a general theory for PDE-constrained optimization problems in which
inputs or coefficients of the PDE are uncertain. We discuss numerous approaches for
incorporating risk preference and conservativeness into the optimization problem
formulation, motivated by concrete engineering applications. We conclude with a
discussion of nonintrusive solution methods and numerical examples.

1 Introduction

Optimization problems constrained by partial differential equations (PDEs) arise
in a number of science and engineering applications as optimal control and design
problems. More often than not, the governing physical equations (PDEs) are fraught
with uncertainty including uncertain coefficient, unknown boundary and initial
conditions, and unverifiable modeling assumptions. When uncertainty exists, it is
critical to determine optimal solutions that account for and in some sense are
resilient to this uncertainty.
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Such problems arise for example in the topological design of elastic structures
[5, 67, 77, 78]. Recently, topology optimization has gained increased interest due
to the emergence of additive manufacturing technologies [56, 109]. There are many
uncertainties associated with additively manufactured components such as random
grain structures [2, 21], unknown internal forces due to, e.g., residual stresses [52],
and potentially variable operating conditions such as external loads. The target
then is to design a structure that is, for example, maximally stiff and in some
sense reliable given the uncertain material properties and loads. Another common
application is the secondary oil recovery phase in petroleum engineering. In this
example, an oil company may choose to inject water or other solvents into a
reservoir to increase pressure and produce more oil. Of course the subsurface rock
properties are unknown but may be estimated from core samples, flow and pressure
history [40, 73, 118], or seismic imaging [65, 101, 111]. The optimization problem
is to determine the well locations and injection rates that maximize the net present
value of the reservoir [3, 10, 102, 119]. However, the optimal rates should be resilient
to the inherent uncertainties of the subsurface.

The purpose of this chapter is to review concepts from stochastic programming
[25, 55, 75, 90, 108] that play fundamental roles in formulating PDE-constrained
optimization problems in a rigorous and physically meaningful (application rel-
evant) manner. In particular, we discuss the basic extension from deterministic
PDE-constrained optimization to optimization of PDEs with uncertain inputs by
introducing conditions on the deterministic objective function and PDE solution that
ensure a well-defined stochastic problem. When the PDE has uncertain inputs, the
associated state (PDE solution) becomes a random field. Substituting the random
field solution into the objective function results in a random objective function. In
order to solve this problem, we must replace the random objective function with
a scalar quantity. There are a number of approaches for doing this. In particular,
we discuss risk measures [4, 99, 115], probabilistic functions [76, 81, 93, 114], and
distributionally robust optimization [15, 107, 121].

In addition to problem formulation, we discuss the challenges associated with
the numerical solution of such problems. Many stochastic formulations result in
nonsmooth objective functions which motivate new research on rapidly converging
nonsmooth optimization algorithms that can exploit structures inherent to PDE-
constrained optimization. We present three classical approaches for approximating
and solving stochastic optimization problems: stochastic approximation [80, 89, 91],
sample average and quadrature approximation [61, 62, 87, 106], and the progressive
hedging algorithm [96].

The remainder of this chapter is structured as follows. We first discuss tensor
products of Banach spaces. Such spaces play a central role in the functional
analytic framework for PDE-constrained optimization under uncertainty. Next, we
provide a general problem formulation and, under certain assumptions, show the
existence of minimizers as well as first-order necessary optimality conditions. We
demonstrate these results on the standard linear-elliptic quadratic control problem.
In the following section, we discuss specific problem formulations including risk
measures, probabilistic functions, and distributionally robust optimization. We
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then introduce three basic numerical methods: stochastic approximation, sample
average and quadrature approximation, and the progressive hedging algorithm.
We briefly discuss convergence of these methods and conclude with a numerical
demonstration.

2 Tensor Product Spaces

Let (Ω,F ) be a measurable space where Ω is the set of possible outcomes and
F is a σ -algebra of events. We denote the expected value of a random variable
X : Ω → R with respect to a probability measure P : F → [0, 1] defined on the
measurable space (Ω,F ) by

EP [X] =
ˆ

Ω

X(ω) dP(ω).

We denote the usual Lebesgue space of r ∈ [1,∞) integrable real-valued functions
(defined up to a set of P -measure zero) by

Lr(Ω,F , P ) := {
θ : Ω → R : θ is F -measurable, EP [|θ |r ] < ∞}

.

If r = ∞, then

L∞(Ω,F , P ) :=
{
θ : Ω → R : θ is F -measurable, ess sup

ω∈Ω

|θ(ω)| < ∞
}
.

The Lebesgue spaces defined on (Ω,F , P ) are Banach spaces and serve as natural
spaces for real-valued random variables (i.e., F -measurable functions). In the
context of PDE-constrained optimization with uncertain inputs, the PDE solutions
will be Sobolev space-valued random elements, which motivate the use of tensor-
product vector spaces. Given any real Banach space V , the tensor-product vector
space associated with Lr(Ω,F , P ) and V is

Lr(Ω,F , P ) ⊗ V := span
{
θv : θ ∈ Lr(Ω,F , P ), v ∈ V

}
,

i.e., the linear span of all products of elements of Lr(Ω,F , P ) and V . In general,
there are many norms associated with Lr(Ω,F , P ) ⊗ V , including the natural
projective and injective norms (cf. [35] and [100]). In this work, we restrict our
attention to the so-called Bochner norms

⎧
⎨

⎩

‖u‖Lr(Ω,F ,P )⊗V = EP [‖u‖r
V ] 1

r if 1 ≤ r < ∞,

‖u‖L∞(Ω,F ,P )⊗V = ess sup
ω∈Ω

‖u(ω)‖V if r = ∞.

The space Lr(Ω,F , P ) ⊗ V endowed with the corresponding Bochner norm
is not complete and hence is not a Banach space. However, the completion of
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Lr(Ω,F , P ) ⊗ V with respect to its Bochner norm is isomorphic to the Bochner
space

Lr(Ω,F , P ;V ) := {
u : Ω → V : u is strongly F -measurable, EP [‖u‖r

V ] < ∞}

if r ∈ [1,∞) and

L∞(Ω,F , P ; V ) :=
{
u : Ω → V : u is strongly F -measurable, ess sup

ω∈Ω

‖u(ω)‖V < ∞
}

if r = ∞ (again functions in Lr(Ω,F , P ;V ) are defined up to a set of measure
zero) [35, Sect. 7.1]. Here, a function u : Ω → V is strongly F -measurable if
there exists a sequence of V -valued simple (piecewise constant, countably-valued)
functions defined on sets in F that converges to u P -almost everywhere (P -a.e.)
[53, Def. 3.5.4].

It is worth pointing out that the tensor-product vector space Lr(Ω,F , P ) ⊗ V

consists of functions

u =
N∑

i=1

θivi, θi ∈ Lr(Ω,F , P ), vi ∈ V, i = 1, . . . , N

for some N ∈ N, and thus provides a natural approximation space for functions
in Lr(Ω,F , P ;V ). This fact is exploited by many uncertainty quantification
methods. In particular, polynomial chaos [58, 122], stochastic Galerkin [8, 9], tensor
decomposition, [47, 59] and other projection-based methods for approximating
PDEs with uncertain inputs decompose the PDE solution into sums of random and
spatial components. These two components are then approximated separately using,
e.g., polynomial approximation in Lr(Ω,F , P ) and finite elements in V .

3 Problem Formulation

In this section, we provide the general formulation of our optimization problem.
Let U and Z be real reflexive Banach spaces, and let Y be a real Banach space.
Here U denotes the deterministic state space, Z denotes the space of optimization
variables (i.e., controls, designs, etc.), and Y denotes the PDE residual space. The
optimization variables z ∈ Z are always deterministic and represent a control or
design that must be implemented prior to observing the randomness in the system.
Stochastic controls do however arise in time-dependent decision processes and
multistage stochastic programs in which case the concept of time consistency plays
a central role. Time consistency is based on the famous quotation of Bellman: “An
optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the
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state resulting from the first decision” [13]. In this review, we restrict our attention
to optimization problems constrained by steady (i.e., time-independent, stationary)
PDEs. For a more detailed discussion of dynamic stochastic programs (without
PDEs) and time consistency, we direct the interested reader to [108, Ch. 6.8].

Before describing the optimization problem, we assume that the uncertainty in
the PDE constraint is represented by a finite random vector ξ : Ω → Ξ where Ξ :=
ξ(Ω) ⊆ R

m with m ∈ N (i.e., ξ is a F -measurable vector-valued function). In the
literature, this is called the finite-dimensional noise assumption [7, 83] and facilitates
numerical approximations such as polynomial chaos and stochastic collocation
[7, 9, 58, 83]. Such a finite-dimensional representation is often achieved using a
truncated Karhunen–Loève expansion [57, 69]. More importantly, this assumption
permits a change of variables in which the PDE and objective function depend only
on the “deterministic” parameters ξ ∈ Ξ . This change of variables transforms
our original uncertainty model defined on the probability space (Ω,F , P ) to a
model defined on the probability space (Ξ,B,P) where B ⊆ 2Ξ is the σ -algebra
generated by the sets ξ−1(A) for A ∈ F and P := P ◦ ξ−1 is the probability law of
ξ . In this new setting, we define the Bochner and Lebesgue spaces analogously
to the definitions in Section 2. Throughout, we will abuse notation and let ξ

denote the random variable ξ(ω) as well as its realizations. Recently, researchers
in uncertainty quantification have developed and analyzed methods for handling
infinite-dimensional uncertainties, e.g., ξ(ω) is a sequence of real numbers for each
ω ∈ Ω . For example, see [31]. Since all practical computational methods for solving
PDEs with uncertain inputs and their corresponding optimization problems require
a finite (i.e., computer) representation of the uncertainty, we restrict our attention to
the finite-dimensional noise setting. Finally, it is worth noting that no result in this
section requires the finite-dimensional noise assumption. However, we work under
this assumption to simplify the presentation in the forthcoming sections.

Now, let Zad ⊆ Z be a closed convex subset of optimization variables, let e :
U × Zad × Ξ → Y denote, e.g., a PDE in weak form, and consider the equality
constraint

e(u, z, ξ(ω)) = 0. (1)

The goal of this article is to understand and solve general stochastic optimization
problems with the form

min
z∈Zad

{
J(z) := R(J (S(z; ξ), ξ)) + ℘(z)

}
(2)

where R is a functional that maps random variables on (Ξ,B) into the real
numbers, J : U × Ξ → R is the uncertain objective function, ℘ : Z → R

is a control penalty, and S(z; ·) : Ξ → U satisfies e(S(z; ξ), z, ξ) = 0 for
P-almost every ξ ∈ Ξ (or equivalently e(S(z; ξ(ω)), z, ξ(ω)) = 0 for P -almost
every ω ∈ Ω). Throughout, we denote the reduced uncertain objective function by
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J (z) := J (S(z; ξ), ξ). (3)

Note that J (z) is also a function of ξ and hence is viewed as a random variable
mapping Zad into a space of real-valued random variables on (Ξ,B).

To ensure the PDE constraint e(u, z, ξ) = 0 is well posed, we require that it is
uniquely solvable and the solution is in Lq(Ξ,B,P;U) for some q ∈ [1,∞]. We
make this statement rigorous in the following assumption.

Assumption 1 (Properties of the Solution Map) For each z ∈ Zad, there exists a
unique mapping S(z; ·) : Ξ → U that solves e(S(z; ξ), z, ξ) = 0 for P-almost all
ξ ∈ Ξ and satisfies the following properties:

1. Measurability: S(z; ·) : Ξ → U is strongly B-measurable for all z ∈ Zad.
2. Growth Condition: There exists q ∈ [1,∞], a nonnegative random variable

C ∈ Lq(Ξ,B,P), and a nonnegative increasing function 	 : [0,∞) → [0,∞)

such that

‖S(z; ξ)‖U ≤ C(ξ)	(‖z‖Z)

for P-almost all ξ ∈ Ξ and for all z ∈ Zad.
3. Continuity: S satisfies the continuity property

zn ⇀ z in Zad 
⇒ S(zn; ·) ⇀ S(z; ·) in U,P-a.e.

Assumptions 1.1–2 ensure that S : Zad → Lq(Ξ,B,P;U). Additionally,
Assumption 1 combined with the Lebesgue Dominated Convergence Theorem
ensure S is weakly continuous from Z into Lq(Ξ,B,P;U) [63, Sect. 2.2]. We
similarly assume there exists p ∈ [1,∞] such that the reduced uncertain objective
function satisfies

J (z) ∈ Lp(Ξ,B,P) ∀ z ∈ Zad.

To simplify notation, we denote the realization of J (z) at ξ , i.e., [J (z)](ξ), by
J (z, ξ). For example, the authors in [63] postulate the following assumptions on
the uncertain objective function.

Assumption 2 (Properties of the Objective Function) There exists 1 ≤ p < ∞
such that the function J : U × Ξ → R satisfies:

1. Carathéodory: J is a Carathéodory function, i.e., J (·, ξ) is continuous for
P-almost every ξ ∈ Ξ and J (u, ·) is B-measurable for all u ∈ U .

2. Growth Condition: If q < ∞, then there exists a ∈ Lp(Ξ,B,P) with a ≥ 0
P-a.e. and c > 0 such that

|J (u, ξ)| ≤ a(ξ) + c‖u‖q/p
U ∀u ∈ U and P-almost all ξ ∈ Ξ
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If q = ∞, then for all c > 0 there exists γc ∈ Lp(Ξ,B,P) such that

|J (u, ξ)| ≤ γc(ξ) P-a.e. ξ ∀u ∈ U, ‖u‖U ≤ c.

3. Convexity: J (·, ξ) is convex for P-almost every ξ ∈ Ξ .

Assumptions 2.1–2 combined with Krasnosel’skii’s Theorem [116, Thm. 19.1]
ensure that the uncertain objective function u �→ J (u, ·) is continuous from
Lq(Ξ,B,P;U) into Lp(Ξ,B,P).

3.1 Existence of Minimizers and Optimality Conditions

In this section, we present one set of assumptions on R that ensure the existence of
minimizers of (2). In addition, when a minimizer of (2) exists, we characterize the
first-order necessary optimality conditions that it satisfies.

Theorem 1 Let Assumptions 1 and 2 hold, and define X := Lp(Ξ,B,P) where
p ∈ [1,∞) is defined in Assumption 2. Moreover, suppose that ℘ : Z → R

is weakly lower semicontinuous and R : X → R is convex, and satisfies the
monotonicity property: for any X, X′ ∈ X ,

X ≤ X′
P-a.e. 
⇒ R(X) ≤ R(X′). (4)

Finally, assume that the level set {z ∈ Zad : J(z) ≤ γ } is nonempty and bounded for
some γ ∈ R. Then problem (2) has an optimal solution, i.e., there exists z� ∈ Zad
such that J(z�) ≤ J(z) for all z ∈ Zad.

Proof Since R is finite, convex, and satisfies (4), it is continuous and subdifferen-
tiable [108, Prop. 6.6]. The Fenchel–Young inequality then ensures that

R(J (z)) ≥ E[θJ (z)] − R∗(θ) ∀ z ∈ Zad, θ ∈ domR∗ (5)

where

R∗(θ) = sup
X∈X

{E[θX] − R(X)}

is the Legendre–Fenchel transformation of R and

domR∗ := {θ ∈ X ∗ : R∗(θ) < ∞}

is the effective domain of R∗. Equality in (5) holds if and only if θ ∈ ∂R(J (z))

[6, Prop. 9.5.1]. Now, owing to (4), θ ∈ domR∗ satisfies θ ≥ 0 P-a.e. [108,
Thm. 9.3.5]. Therefore, Assumption 2 and Krasnosel’skii’s Theorem ensure that
u �→ J (u, ·) is continuous and hence u �→ E[θJ (u, ·)] is convex and continuous.
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Therefore, u �→ E[θJ (u, ·)] is weakly lower semincontinuous [26, Thm. 2.23],
which when combined with the weak continuity of z �→ S(z; ·) ensures that z �→
E[θJ (z)] is weakly lower semicontinuous. Thus, for any sequence {zn} ⊂ Zad that
weakly converges to z ∈ Zad, we have that

lim inf
n→∞ R(J (zn)) ≥ lim inf

n→∞ E[θJ (zn)] − R∗(θ)

≥ E[θJ (z)] − R∗(θ) = R(J (z)) ∀ θ ∈ ∂R(J (z)),

which implies that z �→ R(J (z)) is weakly lower semicontinuous. Since ℘ is
also weakly lower semicontinuous, J is as well. Moreover, the minimization is
performed over a bounded weakly closed level set in the reflexive Banach space
Z, which implies the level set is weakly compact. Under these conditions, the
direct method of the calculus of variations [6, Thm. 3.2.1] applies and ensures the
existence of a minimizer. ��

Since minimizers exist, it is natural to ask what the first-order necessary
optimality conditions are. The following theorem characterizes the optimality
conditions when J , ℘, and S are differentiable. For this result, we denote the
space of bounded linear operators from a Banach space A to a Banach space B

by L (A,B). Moreover, by TZad(z) and NZad(z), we denote the tangent and normal
cones, respectively, to the (convex) set Zad at z ∈ Zad. We say that a function
f : Z → R is continuously differentiable if it possesses a derivative f ′(·) in the
sense of Gâteaux and f ′(·) is continuous. It follows then by the mean value theorem
that f is differentiable in the sense of Fréchet, e.g., [26, pp. 35–36]. It is said that
f is (Gâteaux) directionally differentiable at z ∈ Z if the directional derivative
f ′(z, h) := limt↓0[f (z + th) − f (z)]/t exists for all h ∈ Z. Note that if f is
convex and continuous, then it is locally Lipschitz [30, Prop. 2.2.7] and f ′(z, ·) is a
Hadamard directional derivative [105, Prop. 3.5].

Theorem 2 Let the assumptions of Theorem 1 hold. In addition, suppose there
exists an open set V ⊆ Z with Zad ⊆ V such that z �→ S(z; ·) : V →
Lq(Ξ,B,P;U) is continuously differentiable with derivative

S′(z; ·) ∈ L (Z,Lq(Ξ,B,P;U)),

u �→ J (u, ·) : Lq(Ξ,B,P;U) → Lp(Ξ,B,P) is continuously differentiable with
derivative

J ′(u, ·) ∈ L (Lq(Ξ,B,P;U),Lp(Ξ,B,P)),

and ℘ : Z → R is continuously differentiable with derivative ℘′(z) ∈ Z∗. Then if
z� ∈ Zad is a minimizer of J over Zad, the following first-order optimality conditions
hold: ∃ θ ∈ ∂R(J (z�)) such that

〈
E

[
θ S′(z�; ·)∗J ′(S(z�; ·), ·)] + ℘′(z�), h

〉
Z∗,Z ≥ 0, ∀h ∈ TZad(z�). (6)
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Proof Let us note that if z� is an optimal solution of problem (2), then necessarily
the directional derivatives J′(z�, h) ≥ 0 for all h ∈ TZad(z�). Since ℘ is
differentiable, it follows that ℘′(z�, h) = 〈

℘′(z�), h
〉
Z∗,Z . Also under the stated

assumptions, J is continuously differentiable with derivative

J ′(z) = J ′(S(z; ·), ·)S′(z; ·) ∈ L (Z,Lp(Ξ,B,P)).

Now since R is continuous, it is subdifferentiable and its (Hadamard) directional
derivatives are given by

R ′(J (z�),H) = sup
θ∈∂R(J (z�))

E[θH ] ∀H ∈ X ,

cf. [108, Thm. 6.10]. By the chain rule for directional derivatives, it follows that

J′(z�, h) = sup
θ∈∂R(J (z�))

〈
E[θS′(z�; ·)∗J ′(S(z�; ·), ·)] + ℘′(z�), h

〉
Z∗,Z . (7)

The function φ(·) := J′(z�, ·) is convex and positively homogeneous. Moreover, the
condition that φ(h) ≥ 0 for all h ∈ TZad(z�) means that h = 0 is a minimizer of
φ(h) subject to h ∈ TZad(z�). This in turn means that 0 ∈ ∂φ(0) + NZad(z�), which
by (7) is equivalent to condition (6). ��

Under appropriate differentiability assumptions on the PDE constraint function
e, one can show that Λ� = S′(z�; ·)∗J ′(S(z�; ·), ·) is related to the solution to the
adjoint equation. Informally, if the assumptions of the Implicit Function Theorem
hold, then Λ� = ez(S(z�; ξ), z�, ξ)∗λ� where λ� solves the adjoint equation

eu(S(z�; ξ), z�, ξ)∗λ�(ξ) = −Ju(S(z�; ξ), ξ)

for P-almost all ξ ∈ Ξ . See [61–64] for PDE-constrained optimization examples
for which this holds.

3.2 Linear Elliptic Optimal Control

For this example, we assume Ξ is an m-fold Cartesian product of compact
intervals and P is absolutely continuous with respect to the m-dimensional Lebesgue
measure. Let D ⊂ R

d with d ∈ N be an open bounded Lipschitz domain, and define
U = H 1

0 (D), Y = U∗ = H−1(D), and Z = L2(D). Given the continuous matrix-
valued function A : Ξ → R

d×d with A(ξ) = A(ξ)� for all ξ ∈ Ξ , we define the
parametrized linear elliptic PDE as the variational problem: find u : Ξ → U that
solves

〈e(u, z, ξ), v〉U∗,U :=
ˆ

D

(A(ξ)∇u(ξ, x)) ·∇v(x) dx −
ˆ

D

z(x)v(x) dx = 0 (8)



50 D. P. Kouri and A. Shapiro

for all v ∈ U and fixed z ∈ Z. If there exist constants 0 < c ≤ c < ∞ such that

c ≤ x�A(ξ)x

x�x
≤ c ∀ x ∈ R

d \ {0}, ξ ∈ Ξ (9)

then the Lax–Milgram Lemma [28] ensures the existence of a unique solution
S(z; ξ) to (8) for each z ∈ Z and all ξ ∈ Ξ . Additionally, (9) and Poincaré’s
inequality guarantee the existence of a positive constant C = C(D, c) such that

‖S(z; ·)‖U ≤ C‖z‖Z ∀ ξ ∈ Ξ.

This and the linearity of the PDE then imply that S(·; ξ) is a bounded linear operator
for all ξ ∈ Ξ and since Z is compactly embedded into Y [1], S(·; ξ) is completely
continuous for all ξ ∈ Ξ . Recall that an operator W mapping a Banach space X into
another Banach space Y is completely continuous if

xk ⇀ x in X 
⇒ W(xk) → W(x) in Y.

In particular, all compact operators are completely continuous [33, Prop. 3.3].
Finally, S(z; ·) is continuous and hence strongly B-measurable since A(·) is
continuous. Therefore, Assumption 1 is satisfied and since C is independent of
ξ ∈ Ξ , we have that S(z; ·) ∈ L∞(Ξ,B,P;U) for all z ∈ Z.

Now, let β > 0 and ud ∈ L2(D) be a desired profile. We consider the PDE-
constrained optimization problem

min
z∈Z

R

(
1

2
‖S(z; ξ) − ud‖2

L2(D)

)
+ β

2
‖z‖2

L2(D)
(10)

where S(z; ξ) solves (8) for fixed ξ ∈ Ξ and z ∈ Z. The uncertain objective function
and control penalty are

J (u, ξ) = 1

2
‖u − ud‖2

L2(D)
and ℘(z) = β

2
‖z‖2

L2(D)
.

J clearly satisfies Assumption 2 and therefore is continuous from Lq(Ξ,B,P;U)

into Lp(Ξ,B,P) for any q ≥ 2 and p ≤ q/2. Hence, Theorem 1 holds for any
R : Lp(Ξ,B,P) → R that is convex and satisfies the monotonicity property (4).

In addition, since e(·, ·, ξ) is continuous and linear in u and z for all ξ ∈ Ξ ,
it is continuously Fréchet differentiable in u and z for all ξ ∈ Ξ , and again by
the Lax–Milgram Lemma the state Jacobian is boundedly invertible for all ξ ∈ Ξ .
Furthermore, the control Jacobian is a bounded linear operator for all u ∈ U , z ∈ Z

and ξ ∈ Ξ . In fact, ez(u, z, ξ) is independent of u, z, and ξ . Therefore, S(·; ξ) is
continuously Fréchet differentiable for all ξ ∈ Ξ and the derivative satisfies: For
any h ∈ Z, d = S′(z; ·)h : Ξ → U solves the sensitivity equation

ˆ
D

(A(ξ)∇d(ξ, x)) · ∇v(x) dx −
ˆ

D

h(x)v(x) dx = 0 ∀ v ∈ U
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Since the sensitivity equation is identical to (8), we have that d = S′(z; ·)h =
S(h; ·) ∈ L∞(Ξ,B,P;U) for all h ∈ Z. Returning to the objective function, J and
℘ are clearly continuously Fréchet differentiable and thus Theorem 2 holds for any
R satisfying the stated assumptions. Moreover, the adjoint equation corresponding
to (10), at fixed z ∈ Z, is: find λ : Ξ → U such that

ˆ
D

(A(ξ)∇λ(ξ, x)) · ∇v(x) dx = −
ˆ

D

(S(z; ξ)(x) − ud(x))v(x) dx ∀ v ∈ U.

Note again that the above analysis ensures λ ∈ L∞(Ξ,B,P;U).

4 Choosing the Functional R

Under the assumptions of Section 3 (or similar assumptions), the stochastic PDE-
constrained optimization problem

min
z∈Zad

R
(
J (z)

) + ℘(z) (11)

where R : Lp(Ξ,B,P) → R is well-defined, but ambiguous since R is not
explicitly specified. In traditional stochastic programming, R is taken to be the
expected value, i.e., R = EP. This results in a risk neutral formulation of (11)
for which the optimal solutions minimize J (z) on average. The risk neutral
formulation is often not conservative enough for high-consequence applications
because the average behavior of a system does not provide a sufficient proxy
for variability or low probability and tail events. This motivates the use of risk
measures. Another popular class of cost surrogates are the probabilistic functions.
This class seeks to minimize the probability of undesirable events occurring. The
use of the expectation, risk measures, and probabilistic functions is justified when
the probability law P is known but can lead to nonsensical, even dangerous, results
if P is unknown and estimated from noisy or incomplete data. In the subsequent
sections, we will review both cases of known and unknown probability law. When
the probability law is known, we simplify notation and denote E = EP.

It is worth mentioning that (11) is only one of many meaningful problem
formulations for PDE-constrained optimization. In many applications, constraints
in addition to the objective function are uncertain. In this case, we must handle the
uncertainty in the constraints in a rigorous and physically relevant way. Popular
approaches in stochastic programming include: chance (probabilistic) constraints
(see, e.g., [81]) and stochastic dominance constraints (see, e.g., [38]). Chance
constraints seek to ensure that the probability of an uncertain quantity of interest
exceeding a prescribed threshold is below some nominal value (e.g., the probability
that a bridge collapses is smaller than 10−3 percent). Stochastic dominance con-
straints, on the other hand, aim to ensure that our uncertain quantity of interest is in
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some sense preferred over a predefined uncertain benchmark value. Since a rigorous
treatment of these concepts in PDE-constrained optimization is still an open area of
research, we restrict our attention to problems of the type (11). We do, however,
introduce and discuss the notions of stochastic orders and stochastic dominance in
the coming subsection.

4.1 Risk-Averse Optimization

When the probability law of the random vector ξ is known, we can use any of
the multitudes of risk measures to complete the problem definition in (11). A
particularly important class of risk measures is the class of coherent risk measures
[4]. To simplify notation, we denote X := Lp(Ξ,B,P). A function R : X → R

is a coherent risk measure if it satisfies:

(R1) Subadditivity: For all X, X′ ∈ X , R(X + X′) ≤ R(X) + R(X′);
(R2) Monotonicity: If X, X′ ∈ X satisfy X ≤ X′

P-a.e., then R(X) ≤ R(X′);
(R3) Translation Equivariance: For all X ∈ X and t ∈ R, R(X+t) = R(X)+t ;
(R4) Positive Homogeneity: For all X ∈ X and t ≥ 0, R(tX) = tR(X).

Note that axiom (R1) and (R4) imply convexity of R and convexity plus (R4) imply
subadditivity of R. Therefore, axiom (R1) is typically replaced by

(R1′) Convexity: For all X, X′ ∈ X and t ∈ [0, 1]

R(tX + (1 − t)X′) ≤ tR(X) + (1 − t)R(X′).

In the context of physical applications, R(X) should inherit the units of X. In which
case, (R4) ensures that a change of the units of X results in a consistent change of
the units of R(X). Additionally, (R3) ensures that deterministic quantities, such as
the control penalty ℘ in (11), do not contribute to the overall risk. In fact, (R3)
combined with (R4) ensure that deterministic quantities are riskless, i.e., R(t) = t

for all t ∈ R.
The axioms for coherent risk measures result in many desirable properties of R.

Any functional R : X → R satisfying axioms (R2) and (R1′) is continuous in
the norm topology of the space X = Lp(Ξ,B,P) (see Proposition 6.6 in [108]).
Therefore, the Fenchel–Moreau theorem [6, Thm. 9.3.5] ensures that R is equal to
its biconjugate function,

R(X) = sup
θ∈X ∗

{E[θX] − R∗(θ)}, (12)

where R∗ : X ∗ → R ∪ {+∞} is the Legendre–Fenchel transformation of R, i.e.,

R∗(θ) = sup
X∈X

{E[θX] − R(X)}.
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Clearly, the set X ∗ in the representation (12) can be replaced by

dom(R∗) = {θ ∈ X ∗ : R∗(θ) < +∞}.

In this setting, one can further show that (R2) and (R3) hold if and only if for all
θ ∈ dom(R∗) we have that θ ≥ 0 P-a.e. and E[θ ] = 1. That is, dom(R∗) is a
subset of the probability density functions in X ∗. Finally, (R4) holds if and only if
R∗(θ) = 0 for all θ ∈ dom(R∗). See [108, Th. 6.5] for a proof of these results. In
fact, Theorem 6.7 in [108] ensures that a risk measure R is coherent if and only if
it has the equivalent form

R(X) = sup
θ∈A

E[θX] (13)

where A ⊂ X ∗ is a convex, bounded, and weakly∗ closed subset of probability
density functions, i.e., A = dom(R∗).

In addition to the axioms for coherent risk measures, a fundamentally important
property of R is law invariance. We say that two random variables are distribution-

ally equivalent, denoted X
D∼ X′, if their cumulative distribution functions (cdf)

ΨX(t) = P(X ≤ t) and ΨX′(t) = P(X′ ≤ t) are equal for all t ∈ R. A functional
R : X → R is then said to be law invariant if

X
D∼ X′ 
⇒ R(X) = R(X′) (14)

for any two random variables X,X′ ∈ X . In words, property (14) ensures that
R is only a function of the cdf ΨX(t) = P(X ≤ t) for any random variable X.
For example, this excludes the scenario in which R(X) �= R(X′) where X and X′
are distributionally equivalent discrete random variables whose atoms are ordered
differently.

Another important notion in stochastic optimization is that of stochastic domi-
nance. A random variable X dominates another random variable X′ with respect to
the first stochastic order if

ΨX(t) ≤ ΨX′(t) ∀ t ∈ R. (15)

We denote the relation (15) by X �(1) X′. Similarly, X dominates X′ with respect
to the second stochastic order if

ˆ t

−∞
ΨX(η) dη ≤

ˆ t

−∞
ΨX′(η) dη ∀ t ∈ R. (16)

Owing to Fubini’s theorem [45, Thm. 2.37], it is straightforward to show that

ˆ t

−∞
ΨX(η) dη = E

[ˆ t

−∞
1X≤η dη

]
= E[(t − X)+]
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where, for any E ∈ B, 1E(ξ) = 1 if ξ ∈ E and 1E(ξ) = 0 otherwise, and
(x)+ = max{0, x}. Therefore, (16) is equivalent to the condition

E[(t − X)+] ≤ E[(t − X′)+] ∀ t ∈ R.

We denote the relation (16) by X �(2) X′. If (Ξ,B,P) is nonatomic and R is
law invariant, then the following two results hold: (i) the implication X �(1) X′

⇒ R(X) ≥ R(X′) holds if and only if R satisfies the monotonicity condition
(R2) [108, Th. 6.50]; (ii) if R satisfies conditions (R1′), (R2), and (R3), then
−X′ �(2) −X implies R(X) ≥ R(X′) [108, Th. 6.51]. These two properties
demonstrate that law invariant coherent risk measures R prefer dominated random
variables and thus are critical in reducing uncertainty (i.e., variability) in the
optimized system. On the other hand, as previously noted, one could define risk
aversion via stochastic dominance constraints instead of risk measures. For example,
suppose z̄ is known to produce an acceptable objective value J (z̄). One could then
incorporate a constraint of the form

J (z̄) �(1) J (z) or − J (z) �(2) −J (z̄).

For more information of stochastic dominance constraints, see [38].

Example 1 (Mean-Plus-Deviation) A common risk measure in engineering appli-
cations, motivated by Markowitz’s pioneering work in portfolio optimization [74],
is the mean-plus-deviation risk measure

R(X) = E[X] + cE[|X − E[X]|p] 1
p , c > 0

for p ∈ [1,∞). Clearly, R is naturally defined and real valued on X =
Lp(Ξ,B,P) and is law invariant, convex, positively homogeneous, and translation
equivariant. Unfortunately, R is not monotonic and can lead to the paradoxical
scenario where one position is always smaller than another, but the larger position
has smaller risk. In the context of finance, the risk measure R can lead to the
selection of portfolios that have smaller risk and smaller returns. See [108, Ex. 6.62]
for a simple example of this undesirable situation. The lack of monotonicity results
from R equally penalizing the deviation below and above the expected value. In
terms of minimization, one prefers large deviation below the expected value since
this could lead to better than expected performance. A related law-invariant risk
measure that is coherent is the mean-plus-upper-semideviation risk measure

R(X) = E[X] + cE[(X − E[X])p+] 1
p , c ∈ [0, 1].

Note that this risk measure only penalizes deviation in excess of the expected value.
Since this R is coherent, it can be represented as in (13) with risk envelope

dom(R∗) = {
θ ∈ X ∗ : θ = 1 + θ ′ − E[θ ′], ‖θ ′‖X ∗ ≤ c, θ ′ ≥ 0 P-a.e.

}
.

See [108, Ex. 6.23] for more details.
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Example 2 (Conditional Value-at-Risk) The conditional value-at-risk1 (CVaR) is a
coherent risk measure that has recently received much attention [64, 94, 115]. CVaR
at confidence level α ∈ (0, 1) is defined as

R(X) = CVaRα(X) := inf
t∈R

{
t + 1

1 − α
E[(X − t)+]

}
, (17)

which naturally acts on random variables in X = L1(Ξ,B,P). If the random
variable X is continuously distributed, then CVaRα(X) is the expectation of X

conditioned on the event that X is larger than its α-quantile, i.e.,

CVaRα(X) = E[X|X > Ψ −1
X (α)].

In the financial literature, the quantile Ψ −1
X (α) is called the Value-at-Risk. Moreover,

when α = 0 we have that CVaR0(X) = E[X] and

lim
α↑1

CVaRα(X) = ess sup X.

Since CVaR is coherent, it can be represented as in (13) with risk envelope

dom(R∗) =
{
θ ∈ L∞(Ξ,B,P) : E[θ ] = 1, 0 ≤ θ ≤ (1 − α)−1

P-a.e.
}

.

See [108, Ex. 6.19] for more details.

Example 3 (Higher-Moment Coherent Risk) CVaR was extended in [66] to the
higher-moment coherent risk measure (HMCR),

R(X) = inf
t∈R

{
t + 1

1 − α
E[(X − t)

p
+] 1

p

}
,

with p ∈ (1,∞). HMCR is a law-invariant coherent risk measure and is finite
for random variables in X = Lp(Ξ,B,P) (see [37] for a thorough analysis
of HMCR). Since HMCR is coherent, it can be represented as in (13) with risk
envelope

dom(R∗) =
{
θ ∈ X ∗ : E[θ ] = 1, θ ≥ 0 P-a.e., ‖θ‖X ∗ ≤ 1

1 − α

}
.

This risk envelope was determined in [29, Sect. 5.3.1] for the more general class of
transformed norm risk measures. Note that HMCR and CVaR coincide if p = 1 and
thus so do their risk envelopes.

1Also called Average Value-at-Risk, Expected Shortfall, Expected Tail Loss and Superquantile.
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Example 4 (Entropic Risk) The entropic risk measure is defined as

R(X) = σ−1 log
(
E[exp(σX)]), σ > 0,

and is finite for random variables in X = L∞(Ξ,B,P). The entropic risk is con-
vex, monotonic, and translation equivariant but is not positively homogeneous and
therefore is not coherent. The name entropic risk comes from the Legendre–Fenchel
transformation of R. Since the topological dual space of X = L∞(Ξ,B,P) is
difficult to handle in practice, it is natural to view X and L1(Ξ,B,P) as paired,
locally convex topological vector spaces where X is equipped with the weak∗
topology and L1(Ξ,B,P) is equipped with the norm topology (see, e.g., [108, Sect.
6.3] for a discussion of essentially bounded random variables). In this setting, one
can show that the Legendre–Fenchel transformation of R is

R∗(θ) = sup
X∈X

{E[θX] − R(X)} = σ−1
E[θ log(θ)]

when θ ∈ L1(Ξ,B,P) satisfying θ ≥ 0 P-a.e. and E[θ ] = 1. This is the negative
of Shannon’s entropy, i.e., the Kullback–Leibler divergence (up to the scaling by
σ−1). See [108, Ex. 6.20] for more details.

4.2 Probabilistic Optimization

As with risk measures, we assume in this section that P is known. In many
applications, it is extremely important that an optimal control or design reduces
the probability that the event

{
ξ ∈ Ξ : [J (z)](ξ) > τ

}
(18)

for some prescribed threshold τ ∈ R occurs. For example, the event (18) could
signify the failure of a structure. This naturally leads to the probabilistic objective
function

R(J (z)) = P(J (z) > τ) = E[1J (z)>τ ]. (19)

Recall the definition of 1E from Section 4.1. Much work has been devoted to prob-
abilistic optimization including the derivation of derivative formulas for this choice
of R [76, 98, 113, 114, 117]. The functional R is only differentiable under certain
assumptions which may be difficult to verify in the context of PDE-constrained
optimization. For example, the authors in [117] require that ξ �→ [J (z)](ξ) is
convex with respect to ξ and that the random vector ξ is Gaussian. Moreover, many
differentiation formulas are stated in finite dimensions and it is unclear whether
or not these formulas hold in infinite dimensions. Additional complications arise
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when estimating probabilistic functions. See [93] for a detailed discussion of the
challenges associated with estimation and optimization of probabilistic functions.
Finally, R only quantifies the “number” of scenarios for which J (z) > τ but
ignores the magnitudes of these scenarios. This could lead to a situation where
the optimal controls or designs result in a small probability of (18) occurring, but
all scenarios in (18) have large magnitude. For example, (18) could represent any
failure (no matter how minor) of the system whereas large-magnitude scenarios
signal catastrophic failure.

For these reasons, the authors of [93] developed the concept of buffered proba-
bilities. Roughly speaking, the buffered probability is one minus the inverse of α �→
CVaRα(X). Let X ∈ X = L1(Ξ,B,P) be a nondegenerate (i.e., nonconstant)
random variable, then α �→ CVaRα(X) is continuous and nondecreasing for
α ∈ [0, 1) and strictly increasing for α ∈ [0, 1 − π∞) where

π∞ = π∞(X) = P ({ξ ∈ Ξ : X(ξ) = ess sup X})

[94]. Therefore, an inverse to α �→ CVaRα(X) : [0, 1) → [E[X], ess sup X) exists.
Now, suppose X is degenerate, i.e., there exists t ∈ R such that X = t P-a.e.,
then CVaRα(X) = t for any α ∈ [0, 1) by axioms (R3) and (R4) in Section 4.1
and thus the inverse is not defined. Using these properties of CVaR, we define the
buffered probability that a nondegenerate random variable X exceeds the threshold
τ as p̄τ (X) where α = 1 − p̄τ (X) solves

τ = CVaRα(X).

It is not hard to show that p̄τ (X) ≥ P(X > τ). Moreover, if X is continuously
distributed then the buffered probability is p̄τ (X) = P(X > τX) where τX solves

E[X|X > τX] = τ.

In this case, τX is the α = 1−p̄τ (X) quantile of X. One can think of τX as defining a
“buffer” or “safety” zone around the event (18) defined via the average of scenarios
in the upper tail. Figure 1 contains a comparison of the buffered probability and
the usual probability for a normally distributed random variable X. The blue line
corresponds to the cdf ΨX while the red line corresponds to the inverse of α �→
CVaRα(X), denoted Ψ X(τ).

It was shown in [71] that for τ < ess sup X the buffered probability has the
convenient optimization formulation

p̄τ (X) = inf
t≥0

E[(t (X − τ) + 1)+]. (20)

This permits the optimization of z �→ p̄τ (J (z)) over Zad to be reformulated as the
optimization of (z, t) �→ E[(t (J (z) − τ) + 1)+] over the augmented space Zad ×
[0,∞). The objective function in the later expression is the composition of a convex
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τ
0

ΨX(τ)

ΨX(τ)
1

pτ(X)

p̄τ(X)

Fig. 1 A comparison of the probability that X exceeds τ , pτ (X), and the buffered probability that
X exceeds τ , p̄τ (X). The blue line is ΨX whereas the red line is the inverse of α �→ CVaRα(X),
denoted Ψ X

function with our random variable objective function. In addition, the authors of [71]
show that X �→ p̄τ (X) is a lower semicontinuous, quasi-convex, and monotonic
function (i.e., satisfies (R2) in Section 4.1). Finally, if X �→ p̄τ (X) is considered
as a function on L2(Ξ,B,P), one can show that it is the minimal upper bound for
P(X > τ) among all quasi-convex, lower semicontinuous law-invariant functions
acting on elements of L2(Ξ,B,P) [71, Prop. 3.12]. This optimality result is related
to the results in [81] in which the authors seek an optimal convex approximation for
chanced constrained optimization problems.

4.3 Distributionally Robust Optimization

Often the true probability law P of the random inputs ξ is not known but estimated
from noisy and incomplete data. In this case, making a decision based solely on an
estimate of P can be catastrophic if the estimate does not accurately characterize the
statistical behavior of the true underlying distribution. In such scenarios, we must
be “averse” to the risk associated with our lack of knowledge of the true underlying
probability distribution. This motivates the distributionally robust approach to
stochastic programming of optimizing the “worst expectation”

min
z∈Zad

{
J(z) := sup

P∈M
EP

[
J (z)

] + ℘(z)

}
, (21)

where M is a specified set of admissible probability measures defined on the
measurable space (Ξ,B) and

R(X) := sup
P∈M

EP [X] (22)
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is the associated risk functional. The set M is often called the ambiguity set.
For more information on robust optimization see, e.g., [14, 23, 41, 107] and the
references therein.

In the setting of distributionally robust optimization, we often have partial
information regarding the probability law P. Using this information, we can employ
Bayesian analysis to determine a single posterior distribution for ξ (see, e.g.,
[19]), which we can then use to formulate and solve a risk-averse (Section 4.1)
or probabilistic (Section 4.2) optimization problem. Although Bayes’ rule provides
an analytic expression for the posterior distribution, the posterior distribution often
does not have a practical (i.e., implementable on a computer) representation.
Moreover, Bayesian analysis relies on subjective beliefs encoded in the chosen
prior distribution for ξ . Therefore, if the prior distribution is chosen incorrectly, any
decision made using the posterior distribution may result in unexpected, undesirable
outcomes. There are a number of ways to circumvent this potential pitfall such as,
e.g., uninformative priors or robust Bayesian analysis. Robust Bayesian analysis
generates a family of posterior distributions using predefined families of noise and
prior distributions [18, 20]. In the context of the distributionally robust optimization
problem (21), we can incorporate this family of posterior distributions within the
ambiguity set M.

In addition to the previously described robust Bayesian approach, there are two
somewhat different methods for constructing the ambiguity set M. In one approach,
we assume that there is a specified reference probability measure P0 and that the set
M consists of probability measures in some sense close to P0. If we assume further
that M is a set of probability measures that are absolutely continuous with respect to
the reference probability measure P0, then as a consequence of the Radon–Nikodym
theorem [45], for every Q ∈ M there exists a B-measurable function θ : Ξ → R

such that dQ = θdP0. That is, with the set M is associated the set of densities
A = {θ = dQ/dP0 : Q ∈ M}. Assuming that A ⊂ X ∗ where X = Lp(Ξ,B,P0)

with 1 ≤ p < ∞, the corresponding functional

R(X) = sup
θ∈A

E[θX] (23)

becomes a coherent risk measure defined on X . By the duality relation (13), there
is a one-to-one correspondence between coherent risk measures and distributionally
robust functionals of the form (23).

Another common approach is to define M through moment matching. This
approach was pioneered by Scarf [103]. For moment matching, we assume that
K moments of ξ are specified (e.g., estimated from data), and the ambiguity set is
defined as

M := {
Q : B → [0, 1] : Q(Ξ) = 1, EQ[ψk(ξ)] ≤ mk, k = 1, . . . , K

}
,

(24)

where ψk are real-valued B-measurable functions and mk ∈ R. For example, setting
ψk(ξ) := e�

k ξ where ek denotes the m-vector of zeros with one in the kth position
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(i.e., the kth component of ξ ) for k = 1, . . . , m would produce the mean value
in each direction of Ξ . The moment matching problem is naturally posed in the
uniform closure of the space of continuous random variables with compact support,
X = C0(Ξ), whose topological dual space, by the Riesz Representation Theorem
(see, e.g., [45, Th. 7.17] or [6, Th. 2.4.6]), is isometrically isomorphic to the Banach
space of signed regular Borel measures endowed with the total variation norm (i.e.,
Ξ ⊆ R

m is a locally compact Hausdorff space). Note that if Ξ is compact, then
C0(Ξ) = C(Ξ).

When the ambiguity set M is defined by the moment constraints (24), evaluation
of the respective functional R(X), defined as the optimal value of the maximization
problem given by the right-hand side of (22), is known as the problem of moments. It
is possible to show that it suffices to perform the maximization in (22) with respect
to probability measures P ∈ M with support having at most K + 1 points [97] (see
also Proposition 6.66 and Theorem 7.37 in [108]). That is, R(J (z)) is equal to the
optimal value of the following program:

max
ξ1,...,ξK+1∈Ξ, α∈RK+1+

K+1∑

i=1
αiJ (z, ξi)

s.t.
K+1∑

i=1
αiψk(ξi) ≤ mk, k = 1, . . . , K,

K+1∑

i=1
αi = 1

(25)

where R+ := [0,+∞). Furthermore, the (Lagrangian) dual of the optimization
problem (25) can be written as the following semi-infinite program:

min
μ∈R×R

K+
μ0 +

K∑

k=1
mkμk

s.t. μ0 +
K∑

k=1
μkψk(ξ) ≥ J (z, ξ), ξ ∈ Ξ.

(26)

Under mild regularity conditions, there is no duality gap between problems (25)
and (26), and hence R(J (z)) is equal to the optimal value of the dual problem (26).
One such regularity condition is that the set Ξ is nonempty and compact, and the
functions ψk , k = 1, . . . , K , and J (z, ·) are continuous on Ξ . Consequently,
the respective minimax problem (21) can be written as the following semi-infinite
optimization problem:

min
z∈Zad, μ∈R×R

K+
μ0 +

K∑

k=1
mkμk + ℘(z)

s.t. μ0 +
K∑

k=1
μkψk(ξ) ≥ J (z, ξ), ξ ∈ Ξ.

(27)

In general, solving semi-infinite programs of the form (27) is not easy. In some
rather specific cases, (27) can be formulated as a semi-definite programming



Optimization of PDEs with Uncertain Inputs 61

problem and solved efficiently [24, 36]. Also a number of specialized algorithms
were suggested to solve the moment-matching problem in, e.g., [43, 44, 46].

From the point of view of risk measures R : X → R, with X = Lp(Ξ,B,P0),
the concept of law invariance is a natural one. It ensures that R(X) can be
considered as a function of the cdf ΨX(t) = P0(X ≤ t) associated with X. In the
distributionally robust setting, it makes sense to talk about law invariance when the
ambiguity set consists of probability measures absolutely continuous with respect
to a specified reference probability measure P0 and the corresponding functional R
is defined in the form (23). It is natural to say that the respective ambiguity set A, of
density functions, is law invariant (with respect to the reference probability measure

P0) if θ ∈ A and θ ′ D∼ θ implies that θ ′ ∈ A.

Theorem 3 ([107]) Consider a set A ⊂ X ∗ of density functions and the respective
functional R defined in (23). If the set A is law invariant, then the functional R is
law invariant. Conversely, if the functional R is law invariant and the set A is convex
and weakly∗ closed, then A is law invariant.

We can define a large class of law invariant ambiguity sets A using the concept of
φ-divergence [34, 79]. Consider a convex lower semicontinuous function φ : R →
R+ ∪ {+∞} such that φ(1) = 0 and φ(x) = +∞ for x < 0, and define A as the
set of density functions θ ∈ X ∗ satisfying the constraint EP0 [φ(θ)] ≤ ε for some
ε > 0. For example, let φ(x) = x ln x − x + 1 for x ≥ 0, and φ(x) = +∞ for
x < 0. Then for a probability measure Q absolutely continuous with respect to P0
and density function θ = dQ/dP0, we have that EP0 [θ ] = 1 and hence

EP0 [φ(θ)] = EP0 [θ ln θ ] = EP0

[
dQ

dP0
ln θ

]
= EQ[ln θ ]

is the Kullback–Leibler divergence of Q from P0. As another example for α ∈
[0, 1), let φ(x) = 0 for x ∈ [0, (1 − α)−1], and φ(x) = +∞ otherwise. Then
for any ε ≥ 0, the corresponding set A consists of density functions θ such that
θ ≤ (1 − α)−1. In that case, the corresponding functional R becomes the CVaRα .
For many other examples of φ-divergence functionals, we refer to [16, 70].

Employing Lagrange multipliers, it is possible to show that the functional R
associated with the φ-divergence ambiguity set can be written as

R(X) = inf
μ≥0, ν

{με + ν + EP0 [(μφ)∗(X − ν)]}, (28)

e.g., [16, 107]. Here (μφ)∗(y) = supx∈R{yx − (μφ)(x)} is the Legendre–Fenchel
transformation of (μφ). For the specific case of the Kullback–Leibler divergence,
this can be simplified to

R(X) = inf
μ≥0

{
με + μ lnEP0 [exp(μ−1X)]

}
.
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For the φ-divergence ambiguity set, the respective distributionally robust prob-
lem (21) can be written as the following stochastic programming problem:

min
z∈Zad, μ≥0, ν

με + ν + EP0[(μφ)∗(J (z) − ν)] + ℘(z). (29)

We note that the function (μφ)∗ is convex and hence problem (29) is convex
provided that J (·, ξ), ℘ and the set Zad are convex. Such problems can be solved
by, e.g., Monte Carlo randomization algorithms. We will discuss this further in
Section 5.

To conclude this discussion, we point out that the authors of [121] introduce
a specific class of ambiguity sets that permit a reformulation of the inner maxi-
mization problem to a conic programming problem. The assumptions required for
this reformulation are likely not satisfied for general nonlinear, nonconvex PDE-
constrained optimization problems, motivating the need for new approximation
techniques and optimization algorithms for solving (21).

5 Methods for Expectation-Based Optimization

In general, we cannot apply rapidly converging derivative-based optimization
algorithms to solve (2) because the functional R and hence the composite function
R ◦ J are often not continuously differentiable even if the underlying uncertain
reduced objective function is. This issue is critical in determining the practicality of
solving (2) since traditional nonsmooth optimization algorithms typically require a
number of assumptions that are not satisfied in PDE-constrained optimization (e.g.,
convexity) and typically exhibit linear or sublinear convergence rates.

With these issues in mind, we restrict our attention to the expectation-based
functionals R of the form

R(X) = inf
t∈T

E[v(X, t)]

where v : R × R
K → R and T ⊆ R

K , K ∈ N, is a closed convex set. This
is a sufficiently rich class of functionals R that includes risk neutral R = E,
the conditional value-at-risk (17), the probabilistic objective (19), the buffered
probability (20), and the φ-divergence distributionally robust objective (28). In
general, this class of functionals R includes the optimized certainty equivalent
risk measures [17] and the expectation quadrangle risk measures [95]. To simplify
notation, we denote x = (z, t) for z ∈ Z and t ∈ R

K , X = Z × R
K and

Xad = Zad × T . The corresponding PDE-constrained optimization problem is

min
x=(z,t)∈Xad

E[v(J (z), t)] + ℘(z). (30)
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For such problems, the composite objective function h(x) := E[v(J (z), t)]
inherits the differentiability properties of v(J (z), t) (e.g., [108, Sect. 7.2.4]).
In many cases, the function v introduces nonsmoothness into the problem. For
example, if R = CVaRα , then v(X, t) = {t + (1 − α)−1(X − t)+} with
T = R and if R is the buffered probability, then v(X, t) = (t (X − τ) + 1)+
with T = [0,∞). After fully discretizing (30), one could solve the resulting
nonsmooth nonlinear optimization problem using, e.g., bundle methods [72]. We
point out that there recently have been attempts to solve risk-averse optimization
problems by smoothing CVaR (see [88] for finite-dimensional problems and [64]
for PDE-constrained problems). One complication of smoothing approaches is that
the gradient of the smoothed risk measure may become unstable as the smoothing
is refined (i.e., as the smooth approximation approaches the original nonsmooth
quantity), potentially leading to poor convergence of derivative-based optimization
algorithms.

The growing interest in uncertainty quantification has led to the development
of a multitude of methods for approximating the solution of PDEs with uncertain
inputs. These methods can generally be partitioned into two classes: (i) intrusive
methods and (ii) nonintrusive methods. Nonintrusive methods treat the deterministic
PDE solver as a “black box,” whereas intrusive methods require a reformulation of
the deterministic PDE solver. Intrusive methods often approximate the solution of
a PDE with uncertain inputs by projecting the solution or the PDE residual onto a
finite-dimensional subspace such as a space of polynomials. Projection methods
include, e.g., stochastic Galerkin and polynomial chaos methods [8, 9, 58, 122]
(although there are nonintrusive forms of polynomial chaos [68]). On the other
hand, nonintrusive approaches propagate a finite set of samples of ξ through
the PDE. One then approximates the PDE solution field using interpolation or
approximates integrated quantities such as moments using numerical integration.
Some common choices for generating samples of ξ are (quasi) Monte Carlo [39],
stochastic collocation on, e.g., sparse grids, [48, 49, 83–86, 110] and stochastic
reduced order models [50, 51, 120]. In addition to these well-established methods,
there has been much recent work devoted to low-rank tensor decomposition for
parametrized PDE solutions [47, 59, 104]. In general, the approximation quality
for polynomial-based uncertainty quantification methods is highly dependent on the
choice of the approximation space, the dimension of Ξ , and the regularity of the
PDE solution with respect to the random inputs.

The incorporation of uncertainty quantification methods within PDE-constrained
optimization is an important and open area of research. Any feasible optimization
method should be mesh independent in the sense that the convergence behavior does
not depend on the size of the resulting discretizated problem (with respect to both the
spatial domain and Ξ ). Additionally, methods should exploit any structures inherent
to the problem such as, e.g., adjoints, differentiability, and the optimality conditions
in Theorem 2. Recently, numerous authors have applied intrusive and nonintrusive
methods to approximate risk neutral optimization problems constrained by PDEs
with uncertain inputs. Such problems were efficiently solved in [61, 62] using
a trust-region algorithm to guide adaptive sparse grids for approximating the



64 D. P. Kouri and A. Shapiro

objective function and its gradient. Similarly, [60] introduces a multilevel sparse
grid approach that works well for some linear-quadratic and nonlinear control
problems. Furthermore, the authors in [27] solve the risk neutral problem using
sparse grids and reduced order models, whereas the authors of [112] solve this
problem by combining nonintrusive polynomial chaos with sequential quadratic
programming (SQP). Finally, the authors of [47] develop a semismooth Newton
solver based on low-rank tensor decomposition to solve the risk neutral problem.
Unfortunately, when v in (30) is not differentiable (e.g., minimizing CVaR or
the buffered probability), the aforementioned trust-region, SQP, and semismooth
Newton algorithms do not apply.

Given the myriad of possible approximations and algorithms for solving (30),
we restrict our attention to three nonintrusive sampling approaches: the stochastic
approximation algorithm, sample average and quadrature approximation, and the
progressive hedging algorithm. We do not intend for this to be a complete list of
possible solution techniques, but rather a review of classical methods in stochastic
programming that may be applicable in PDE-constrained optimization. For each
method, we provide an overview and highlight the challenges associated with the
method in the context of PDE-constrained problems.

In the subsequent subsections, we assume X is a Hilbert space with inner
product 〈x, y〉X and norm ‖x‖X = √〈x, x〉X . Moreover, we denote the uncertain
composite objective function by H(x, ξ) = v(J (z, ξ), t) and the (deterministic)
composite objective function by h(x) = E[H(x, ·)]. We further denote the gradient
or any subgradient (when H(·, ξ) is convex) of H(·, ξ) by G(·, ξ). To simplify the
presentation, we ignore the control penalty term ℘(z). However, all algorithms and
results apply if ℘(z) is included.

5.1 Stochastic Approximation

The stochastic approximation (SA) method was originally developed by Robbins
and Monro in [91]. The method is based on the projected (sub)gradient method.
The projection operator Π : X → Xad, onto the set Xad ⊂ X, is defined as

Π(y) := arg min
x∈Xad

‖y − x‖X.

Since X is a Hilbert space and Xad is closed and convex, Π(y) is uniquely defined
for all y ∈ X [12, Th. 3.14], and y �→ Π(y) is nonexpansive [12, Prop. 4.8]. At the
kth step of SA with the current iteration point xk , the algorithm computes the next
iteration point as

xk+1 = Π
(
xk − γkG(xk, ξ

k)
)

. (31)
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Here γk > 0 are chosen step sizes and ξk is a realization of the random vector ξ

typically generated by Monte Carlo sampling techniques. The random samples ξk ,
k = 1, 2, . . ., are independent and generated according to the specified distribution
of the random vector ξ . Therefore, each iteration point xk is a random vector
depending on the history of random samples (ξ1, . . . , ξ k). Note that each iteration
requires a single state and adjoint solve corresponding to the random sample ξk .
Although per-iteration cost of SA is low, the convergence (which is probabilistic) is
heavily dependent on the convexity of H(·, ξ) and the choice of stepsize γk .

In the classical SA method, the step size is chosen to be γk := κ/k, where κ > 0
is a fixed constant. To analyze this method, we make the following assumptions:

(i) There exists a constant M > 0 such that

E

[
‖G(x, ·)‖2

X

]
≤ M2, x ∈ Xad. (32)

(ii) The function h(x) = E[H(x, ·)] is Fréchet differentiable and strongly convex,
i.e., there exists c > 0 such that

h(x′) ≥ h(x) + 〈∇h(x), x′ − x〉X + 1

2
c‖x′ − x‖2

X ∀ x, x′ ∈ X.

Given these assumptions, problem (30) has a unique optimal solution x�. This
result follows from the Direct Method of the Calculus of Variations (i.e., the
strong convexity plus the continuity of h ensure the weak lower semicontinuity and
coercivity of h). It is possible to show (cf. [80] for finite dimensional X) that for
κ > 1/(2c),

E

[
‖xk − x�‖2

X

]
= O(k−1). (33)

That is, after k iterations, the expected error of the current solution in terms of the
distance to the optimal solution x� is of order O(k−1/2). Moreover, if ∇h(x) is
Lipschitz continuous and x� ∈ Xad satisfies ∇h(x�) = 0, then (as a consequence of
the Mean Value Theorem) we have

E [h(xk) − h(x�)] = O(k−1). (34)

For general convergence results of SA in Hilbert space, see [11].
Under the above assumptions (i) and (ii), the classical SA method produces

iterates converging to the optimal solution. However, the method is very sensitive
to choice of the step sizes and the convergence can be very slow. A simple example
in [80] demonstrates that minimization of a deterministic quadratic function of one
variable by the classical SA method can be extremely slow for a wrong choice of the
constant κ . Moreover without strong convexity, the step sizes γk = κ/k can result
in disastrously slow convergence for any choice of the constant κ .
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Another problem with (sub)gradient type algorithms is the possibility of different
scales for the components of the vector x. Suppose that the space X = R

n is
equipped with the standard Euclidean inner product 〈x, y〉X = x�y and consider
the minimization of the (deterministic) quadratic function h(x) = 1

2x�Qx with Q

being an n×n symmetric positive definite matrix. If the matrix Q is ill conditioned,
then for any choice of the step sizes γk the SA algorithm will typically produce a
zigzag trajectory, resulting in very slow convergence to the optimal solution.

Further, step sizes of order O(k−1) could be too small to attain a reasonable rate
of convergence, while taking larger step sizes, say of order O(k−1/2), may result in
no convergence of the algorithm. In order to resolve this problem, it was suggested in
[82] (for finite-dimensional problems) to take larger step sizes and to use appropriate
averages of the iterates xk rather than these points themselves. It was shown in
[89] that under the assumptions (i) and (ii), this strategy of taking larger step sizes
and averaging automatically achieves the asymptotically optimal convergence rate.
We follow [80] in analysis of this approach referred to as the robust SA method.
Although the results in [80] are for finite dimensional X, it may be possible to extend
them to the more general Hilbert space setting. We assume below that the function
h(x) is convex continuous, but not necessary strongly convex or differentiable, and
that E[G(x, ·)] is a subgradient of h at x, i.e., E[G(x, ·)] ∈ ∂h(x). We also assume
that condition (32) holds and the set Xad is bounded.

For 1 < i < k, together with the iterates xk , consider the averages x̂ik :=∑k
j=i νj xj with weights ν� := (

∑k
j=i γj )

−1γ�. Note that ν� > 0 and
∑k

j=i νj = 1.
We have then the following estimate: [80, p. 1580]

E
[
h(x̂ik) − h(x�)

] ≤ 4D2 + M2 ∑k
j=i γ 2

j

2
∑k

j=i γj

for 1 < i < k, (35)

where D := maxx∈Xad ‖x − x1‖X (since it is assumed that the set Xad is bounded,
the constant D is finite). In particular, consider the strategy of fixing in advance the
number of iterations N and the constant step sizes γk = γ , k = 1, . . . , N . Then it
follows from (35) that

E
[
h(x̂1N) − h(x�)

] ≤ 4D2 + M2Nγ

2Nγ
. (36)

Minimization of the right-hand side of (36) over γ > 0 suggests the optimal
constant step size is

γ := 2D

M
√

N
, (37)

providing the corresponding error estimate

E
[
h(x̂1N) − h(x�)

] ≤ 2DM√
N

. (38)



Optimization of PDEs with Uncertain Inputs 67

Another possible strategy is to take step sizes of order O(k−1/2), specifically

γk := θD

M
√

k
(39)

for some θ > 0. Choosing i as a fixed fraction of N , i.e., setting i = !rN" for some
r ∈ (0, 1), leads to the estimate

E
[
h(x̂iN ) − h(x�)

] ≤ C(r) max{θ, θ−1}DM√
N

, (40)

where C(r) is a constant depending only on r .
The estimates (38) and (40) suggest the average error of the objective function

to be of order O(N−1/2). This could be compared with the estimate (34) of order
O(N−1). However, the error bounds (38) and (40) do not require differentiability or
strong convexity of h. Additionally, scaling the step size in the robust SA algorithm
by θ > 0 has only a moderate effect on the bound (40), i.e., max{θ, θ−1}. Therefore,
the robust SA method is considerably less sensitive to the choice of step sizes than
the classical SA method. Nevertheless, the choice is still crucial for convergence
of the algorithm and, unfortunately, the stepsize formulas (37) and (39) involve
constants M , D, and the scaling factor θ that are often impossible to determine
for PDE-constrained optimization problems.

5.2 Sample Average and Quadrature Approximation

Both the sample average approximation (SAA) and the deterministic quadrature
approach result in approximations of the expectation in (30). As such, these
methods are not algorithms for solving (30). The idea of the SAA method is
to use equally probable random samples ξ1, . . . , ξN to approximate the “true”
optimization problem (30), whereas the quadrature approach aims to approximate
the expectation in (30) using deterministic quadrature defined by N abscissae
{ξ1, . . . , ξN } and their corresponding weights {w1, . . . , wN }. Both the SAA and
quadrature approximations to (30) have the form

min
x∈Xad

⎧
⎨

⎩
ĥN (x) :=

N∑

j=1

pjH(x, ξj )

⎫
⎬

⎭
(41)

where pj = N−1 for SAA and pj = wj for the quadrature approach. In the context
of PDE-constrained optimization, (41) is a deterministic optimization problem
with N PDE constraints. Therefore, any solution method for (41) should be mesh
independent to avoid convergence issues associated with the dimension of the fully
discretized problem.
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There are advantages and disadvantages of the SA versus SAA or the quadrature
approach. In finite dimensions, estimates of the sample size N needed to attain
a specified accuracy of computed solutions are similar for both the SAA and the
SA methods (cf., [108, Ch. 5]). SA is a simple algorithm requiring evaluation of a
single (sub)gradient G(xj , ξ

j ) at each iteration step, while SAA and the quadrature
approach are not algorithms – the constructed problem (41) still has to be solved
by a numerical procedure. Depending on the choice of algorithm for solving (41),
each involved iteration can be considerably more expensive than in the SA method.
For example, evaluation of the gradient (or a subgradient) of ĥN at a given point x

requires the calculation of all G(x, ξj ), j = 1, . . . , N . On the other hand, SAA and
the quadrature approach, combined with a good numerical optimization algorithm,
may overcome the difficulties of the choice of step sizes that plagues the SA method.
Also SAA and the quadrature approach are more receptive to parallelization, e.g.,
the (sub)gradients G(x, ξj ), j = 1, . . . , N can be computed in parallel as opposed
to the sequential nature of the SA method. However, additional difficulty may arise
for the quadrature approximation if the weights wj are not all positive as with, e.g.,
sparse grids [48, 49, 85, 86, 110]. The presence of negative weights may adversely
influence a numerical optimization solver by changing the sign associated with the
objective sample H(x, ξj ).

Given the similarities between SAA and the quadrature approach, we can
characterize the error committed through the approximation of (30) using the same
techniques. For the subsequent analysis, we assume x �→ H(x, ξ) is continuously
Fréchet differentiable for each ξ ∈ Ξ , ensuring that h and ĥN are continuously
Fréchet differentiable. If h is strongly convex, then we can characterize the errors
between the true optimal solution x� ∈ Xad and the approximate solution xN ∈ Xad.
Namely, strong convexity implies there exists c > 0 such that

c‖x� − xN‖2
X ≤ 〈∇h(x�) − ∇h(xN), x� − xN 〉X.

Similar to Theorem 2, the optimality conditions for h and ĥN over Xad are

〈∇h(x�), x−x�〉X ≥ 0 ∀ x ∈ Xad and 〈∇ĥN (xN), x−xN 〉X ≥ 0 ∀ x ∈ Xad,

respectively. Since x�, xN ∈ Xad, we have that

〈∇h(x�), x� − xN 〉X ≤ 0 ≤ 〈∇ĥN (xN), x� − xN 〉X.

This relation and the Cauchy–Schwarz inequality ensure that

c‖x� − xN‖X ≤ ‖∇ĥN (xN) − ∇h(xN)‖X =
∥∥∥∥

N∑

j=1

pjG(xN, ξj ) − E[G(xN, ·)]
∥∥∥∥

X

.

(42)

Therefore, the right-hand side of (42) is simply the error associated with approxi-
mately integrating the gradient of H(xN, ·) and thus the error will be dictated by the
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approximation quality of the points (ξ1, . . . , ξN ) and weights (p1, . . . , pN). In the
context of quadrature approximation, this error depends heavily on the regularity
of, e.g., the adjoint state with respect to ξ , the dimension of Ξ , and the polynomial
order of the quadrature rule (see, for example, [83, 84, 86]). Thus, the convergence
rate of the optimal solutions for the quadrature approximation may be algebraic,
even exponential, if the gradients G are sufficiently regular with respect to ξ . On
the other hand, the convergence rate for SAA is probabilistic since (ξ1, . . . , ξN) are
random realizations of ξ and will likely recover the Monte Carlo rate of convergence
O(N−1/2) [39].

5.3 Progressive Hedging

The progressive hedging algorithm [96], originally introduced for dynamic stochas-
tic programs, employs a sample-based decomposition of (30). As in Section 5.2,
we consider the approximate optimization problem (41) where (ξ1, . . . , ξN ) are
fixed scenarios of the uncertain inputs ξ with associated probabilities (p1, . . . , pN)

(i.e., pj ≥ 0 for all j and p1 + . . . + pN = 1). As discussed in Section 5.2,
we can exploit parallelism in (41) by evaluating ĥN and its derivatives in parallel.
By assigning a separate optimization variable xj for each ξj (i.e., we allow xj

to anticipate the scenario ξj ), the progressive hedging algorithm further exploits
parallel computations at each iteration by concurrently solving a deterministic PDE-
constrained optimization problem for each scenario ξj .

To describe the progressive hedging algorithm, we first reformulate (41) as

min
xj ,x∈Xad

N∑

j=1

pjH(xj , ξ j ) subject to xj = x, j = 1, . . . , N. (43)

Here, the objective function is the sum of decoupled, scenario-specific objective
functions, whereas the constraint ensures that we recover a solution to (41). We call
the deterministic variable x an implementable solution. We then relax the equality
constraint for each j using the augmented Lagrangian penalty function

�
j
r (x

j , x, μj ) = H(xj , ξ j ) + 〈μj , xj 〉X + r

2
‖xj − x‖2

X, r > 0,

where the multipliers {μ1, . . . , μN } are called an information price system in [96]
and are required to satisfy

N∑

j=1

pjμj = 0.
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Taking the expectation of �
j
r then yields the full Augmented Lagrangian for (43). In

light of this, we can describe the progressive hedging algorithm as follows. Given
the kth iteration points x

j
k ∈ Xad and μ

j
k ∈ X for j = 1, . . . , N , and the current

implementable solution xk = ∑N
j=1 pjx

j
k :

1. Compute the scenario-dependent solutions x
j

k+1, j = 1, . . . , N by minimizing

�
j
r (·, xk, λ

j
k) concurrently, i.e.,

x
j

k+1 ∈ arg min
xj ∈Xad

�
j
r (x

j , xk, λ
j
k), j = 1, . . . , N; (44)

2. Aggregate x
j

k+1 to compute the current implementable solution xk+1, i.e.,

xk+1 =
N∑

j=1

pjx
j

k+1;

3. Update the multiplier estimates for fixed x = xk+1 and xj = x
j

k+1, j =
1, . . . , N , as

μ
j

k+1 = μ
j
k + r(x

j

k+1 − xk+1), j = 1, . . . , N. (45)

Clearly, all steps of this algorithm are parallelizable with the exception of the second
(i.e., aggregation) step.

The convergence theory for the progressive hedging algorithm, as set fourth in
[96], is restricted to finite dimensions. When H(·, ξ) is convex, the progressive
hedging algorithm converges under specified stopping rules for approximately
solving (44) (see Equation 5.35 and Theorem 5.4 in [96]). In fact, the convergence
theory in the convex case is based on the convergence theory for the proximal point
algorithm [92] applied to a certain saddle function. As the authors in [42] point
out, the progressive hedging algorithm can be seen as a special case of Douglas–
Rachford splitting and thus inherits the Hilbert space convergence theory. On the
other hand, Theorem 6.1 in [96] demonstrates that if H(·, ξ) is not convex and X is
finite dimensional, then if the sequences of iterates x

j
k and multipliers μ

j
k converge,

where x
j
k are only required to be δ-locally optimal for fixed δ > 0, then these

sequences converge to a stationary point of the original problem (30). Given the
relations between the progressive hedging and Augmented Lagrangian algorithms,
it may be possible to extend the convergence analysis for Augmented Lagrangian
for infinite-dimensional nonconvex problems (see, e.g., [54, Chapt. 3]).

To conclude, one potential inefficiency of the progressive hedging algorithm
is the typically slow convergence rate. For example, if X is finite dimensional,
H(·, ξ) is convex quadratic, and Xad is convex polyhedral, then Theorem 5.2 in
[96] ensures that the progressive hedging algorithm will converge at a linear rate.
One can potentially overcome this by increasing the penalty parameter r at each
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iteration (see, e.g., Theorem 2 in [92] where superlinear convergence for convex
problems is shown using the proximal point algorithm). In any case, the convergence
of the progressive hedging algorithm is strongly dependent on the penalty parameter
r which is difficult to select a priori, especially for nonconvex problems. Another
possibility to enhance the convergence rate is to replace (45) with a “second-order”
multiplier update (see, e.g., [22, Ch. 2.3.2] and [54, Chapt. 6.2] for second-order
multiplier updates in the context of the Augmented Lagrangian algorithm).

6 Numerical Example

To demonstrate the various stochastic programming formulations discussed in
Section 4, we consider the problem of optimally mitigating a contamination by
injecting chemicals at specified locations that dissolve the contaminant. We model
the contaminant transport using the steady advection diffusion equation. Clearly,
uncertainties arise in nearly all coefficients such as the velocity field (e.g., wind) and
the contaminant source locations and magnitudes. This example was first considered
in [64]. Let D = (0, 1)2 denote the physical domain and U = H 1(D) be the space
of contaminant concentrations. The target optimization problem is

min
z∈Zad

R

(
κs

2

ˆ
D

S(z; ·)2 dx

)
+ ℘(z) (46)

where κs > 0 and S(z; ·) = u : Ξ → U solves the weak form of the advection-
diffusion equation

−∇ · (ε(ξ)∇u) + V(ξ) · ∇u = f (ξ) − Bz in D (47a)

u = 0 on Γd (47b)

−ε(ξ)∇u · n = 0 on Γn (47c)

where the Neumann boundary is Γn := {1} × (0, 1) and the Dirichlet boundary is
Γd := ∂D \Γn. The control space (the space of mitigating chemical concentrations)
is Z = R

9 with admissible control set Zad := {
z ∈ R

9 : 0 ≤ z ≤ 1
}

and control
cost

℘(z) := κc‖z‖1 = κc

9∑

k=1

|zk|, κc > 0.

The controls are applied using the operator B ∈ L (Z,L∞(D)) given by

(Bz)(x) =
9∑

k=1

zk exp

(
− (x − pk)

�(x − pk)

2σ 2

)
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Table 1 Predetermined contaminant mitigating control locations

Source 1 2 3 4 5 6 7 8 9

x1 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

x2 0.25 0.25 0.25 0.50 0.50 0.50 0.75 0.75 0.75

where pk are predetermined control locations and σ = 0.05. That is, we model the
control mechanism as Gaussians sources with magnitude dictated by z. The control
locations are tabulated in Table 1.

The PDE coefficients ε, V, and f are random fields. The diffusivity is given by

ε(x, ξ) = 0.5 + c exp (δ(x, ξ))

where the specific form of δ is described in [83, Sect. 4, Eqs. 4.2–4.4]. Associated
with δ are 10 random variables, (ξ1, . . . , ξ10), uniformly distributed on [−√

3,
√

3].
The constant c > 0 is chosen to be the reciprocal of the maximum of exp(δ). Clearly,
ε satisfies: ∃ 0 < ε0 ≤ ε ≤ ε1 < ∞ for all x ∈ D and ξi ∈ [−√

3,
√

3], i =
1, . . . , 10. Moreover, the velocity field V is

V(x, ξ) =
[

ξ12 − ξ11x1

ξ11x2

]

where ξ11 is uniformly distributed on [0, 5], and ξ12 is uniformly distributed on
[5, 10]. The two extreme cases of V are depicted in Figure 2. V is divergence free
and satisfies V · n ≥ 0, where n is the outward unit normal vector on the Neumann
boundary. Finally, f is the sum of five Gaussian sources whose locations, widths,
and magnitudes are random, i.e., f is described by 25 uniform random variables
(ξ13, . . . , ξ37). This results in a total of 37 random variables associated with the
PDE (47). As shown in [64], this example satisfies the assumptions of Theorems 1
and 2 and thus a minimizing control exists and it satisfies the first-order necessary
conditions in Theorem 2.

We approximate the contaminant mitigation problem using SAA with N = 800
Monte Carlo samples. For R, we chose risk neutral (RN), entropic risk (ER) with
σ = 1, CVaR with α = 0.95, a convex combination of expectation and CVaR

R(X) = βE[X] + (1 − β)CVaRα(X)

with α = 0.95 and β = 0.5 (MCVaR), buffered probability with threshold
τ = 6 (BP), and KL-divergence distributionally robust optimization with threshold
ε = 0.1 (KL). Additionally, we solved the mean value problem (MV) in which we
replaced ξ with E[ξ ] and solved the corresponding deterministic control problem.
For RN, ER, KL, and MV, we solved the resulting nonlinear program using a trust-
region Newton method [32]; while for CVaR, MCVaR, and BP, we combined the
aforementioned trust-region method with an adaptation of the smoothing approach
described in [64]. Figure 3 depicts the optimal control sources and Table 2 includes
the optimal control magnitudes. We excluded the MV control from Figure 3 due
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Fig. 2 Left: The vector field V with ξ11 = 0 and ξ12 = 10. Right: The vector field V with ξ11 = 5
and ξ12 = 5

Table 2 Optimal contaminant mitigating controls using different functionals R. MV refers to
the deterministic problem in which the random inputs are replaced with their expected values. RN
refers to risk neutral and ER refers to the entropic risk with σ = 1. For CVaR, we set α = 0.95 and
for the “mixture of CVaRs” (MCVaR), we set α = 0.95 and β = 0.5. For the “buffered probability
of exceedance” (bPOE), we set the threshold τ = 6 and for the KL-divergence distributionally
robust problem, we set the threshold ε = 0.1.

R 1 2 3 4 5 6 7 8 9 Cost

MV – 0.23 – – 1.00 – – – – 1.23

RN – 0.27 – – 1.00 – – – – 1.27

CVaR 0.42 1.00 0.15 0.81 1.00 1.00 – – – 4.37

MCVaR – 1.00 – 0.33 1.00 0.59 – – – 2.92

ER 0.33 1.00 1.00 0.55 1.00 1.00 – – – 4.88

BP 0.02 1.00 – 0.56 1.00 0.91 – – – 3.49

KL – 1.00 – – 1.00 – – – – 2.00

to its similarity with the RN control. For the given parameter specifications, ER
produced the most conservative control, whereas RN and MV produce the least
conservative. However, conservativeness results in a more expensive control. This
fact is depicted in Figure 4. Figure 4 includes the cdfs of the uncertain objective
function J (z) (left) and the full objective function J (z) + ℘(z) (right) evaluated
at the different optimal controls. The left image clearly demonstrates that more
conservative approaches reduce variability and produce uncertain objective values
that dominate (in the sense of the first stochastic order) those of the RN and MV
approaches. On the other hand, the right image emphasizes the increased cost of
being conservative. As seen in the right image, the RN and MV controls outperform
the other controls in terms of total cost for more than 60% of scenarios.
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Fig. 3 The optimal controls computed using risk neutral (RN), CVaR, a mixture of expectation and
CVaR (MCVaR), entropic risk (ER), buffered probability (BP) and KL-divergence distributionally
robust optimization (KL)
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Fig. 4 Left: Cumulative distribution functions of the random variable objective function, J (z),
evaluated at the different optimal controls. Right: Cumulative distribution functions of J (z) +
℘(z) evaluated at the different optimal controls

7 Conclusions

In this chapter, we reviewed a set of stochastic programming tools for formulating
and solving optimization problems constrained by PDEs with uncertain coeffi-
cients. For the problem formulation, we discussed risk measures, probabilistic
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optimization, and distributionally robust optimization. Each of these approaches
can be justified within the context of the physical application. When the underlying
probability law of the random coefficients is known, risk-averse and probabilistic
optimization provide a natural foundation for incorporating conservativeness in the
optimization problem formulation. However, such approaches are unjustified and
may lead to arbitrarily poor solutions if the underlying probability law is unknown.
In this scenario, one often has noisy, incomplete data describing the distribution of
uncertain coefficients which can be used to define an ambiguity set of “feasible”
distributions. This leads naturally to distributionally robust optimization in which
we minimize the worst-case expectation over the ambiguity set.

For solution approaches, we discussed stochastic approximation (SA), sample
average approximation (SAA), deterministic quadrature approximation, and the
progressive hedging algorithm. Each approach has particular downsides. The SA
approach is a simple optimization algorithm but requires convexity to guarantee
convergence, which is probabilistic. The SAA approach approximates the expected
value in the objective function using a sample average (e.g., Monte Carlo).
The resulting approximate problem is then solved using nonlinear programming
algorithms. SAA exhibits dimension-independent convergence, but the convergence
is probabilistic with rate 1/

√
N . Similar to SAA, the deterministic quadrature

approach approximates the expected value using quadrature. The resulting problem
is again solved with a nonlinear programming method. This approach requires
sufficient regularity (with respect to the random inputs) to obtain rapidly decaying
approximation error. Finally, the progressive hedging algorithm employs a sample-
based decomposition of the optimization problem and the controls which permits
the concurrent solution of deterministic PDE-constrained optimization problems at
every iteration. For convex problems, convergence is guaranteed in Hilbert space;
however, the convergence rate can be linear or worse.

Common among many stochastic optimization problems is the challenge of
minimizing a nonsmooth objective function. In particular, the typical slow con-
vergence rates of nonsmooth optimization algorithms may render the solution
of PDE-constrained optimization under uncertainty computationally infeasible.
Efficiently solving these nonsmooth problems is challenging and is an active
research topic. Additional open research topics include the formulation and analysis
for state-constrained problems; the incorporation of stochastic dominance and
chance constraints for PDE-constrained optimization; and the formulation, analysis,
and numerical solution of optimal control problems constrained by variational
inequalities with uncertain inputs as well as optimal control problems constrained
by dynamic stochastic PDEs.
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