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Abstract Inverse problems are frequently encountered in many areas of science
and engineering where observations are used to estimate the parameters of a
system. In several practical applications, the dynamic processes that take place
in a physical system are described using a set of partial differential equations
(PDEs), which are typically nonlinear and coupled. The inverse problems that arise
in those systems ought to be constrained to honour the governing PDEs. In this
chapter, we consider high-dimensional PDE-constrained inverse problems in which,
because of spatial patterns and correlations in the distribution of physical properties
of a system, the underlying parameters tend to reside in (usually unknown) low-
dimensional manifolds, thus have sparse (low-rank) representations. The sparsity of
the parameters is amenable to an effective and flexible regularization form that can
be exploited to improve the solution of such inverse problems. In applications where
prior training data are available, sparse manifold learning methods can be adopted
to tailor parameter representations to the specific requirements of the prior data.
However, a major risk in employing prior training data is the significant uncertainty
about the underlying conceptual models and assumptions used to develop the prior.
A group-sparsity formulation is discussed for addressing the uncertainty in the prior
training data when multiple distinct, but plausible, prior scenarios are encountered.
Examples from geosciences application are presented where images of rock material
properties are reconstructed from limited nonlinear fluid flow measurements.
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1 Introduction

The spatiotemporal evolution of dynamic state variables in many physical systems is
governed by coupled partial differential equations (PDEs) that are typically derived
from the balance laws of physics (mass, momentum, and energy conservation). The
observable responses of these dynamical systems can usually be described as a
function of their state variables, which in turn depend on model inputs, including
controls, initial/boundary conditions, and parameters. In general, the functional
relation between model input parameters and observable responses can be expressed
as a (typically nonlinear) mapping that involves the solution of the underlying PDEs.
Examples of these physical systems include fluid flow and heat transfer processes
[64], electromagnetic systems [65], motion of planets in solar system [60], human’s
neural mechanism [42]. The exponential increase in computing power has enabled
considerable advances in numerical simulation of complex processes in large-
scale physical systems that have high-dimensional PDEs as governing equations.
Advances in computing power have also led to development of computationally
demanding inverse modelling algorithms with potentially thousands of forward
model simulations, which was once considered infeasible.

The parameters that appear in the governing PDEs of physical systems are either
directly observable or they need to be inferred from indirect and often limited
observable quantities (outputs) of the system [52, 62, 79, 85, 89]. In some cases,
a spatially distributed physical property may only be directly observable at finite
points in space, requiring spatial interpolation techniques to predict unobserved
parameter values. In general, estimation of model parameters from limited output
measurements of the system leads to an inference or inverse problem [59, 78]. In
many cases, the inverse modelling formulations involve a minimization problem
where the objective function represents the mismatch between model predicted and
observed data as well as other terms that penalize departure from prior (explicit
or implicit) knowledge about the solution. When the system outputs depend on
the solution of the PDEs that establish physical laws (e.g. mass/momentum/energy
balance), the resulting inverse problem formulation must ensure that the PDE
constraints are honoured, thus leading to a PDE-constrained inverse problem.
Including the PDE constraints ensures that the solution of the resulting inverse
problem honours the underlying governing equations (i.e. well-established physical
laws such as mass/momentum conservation).

Inverse problems that arise in many practical applications are ill-posed, as the
measured data are not sufficient to find a unique solution [35, 63]. When there
are fewer measurements than unknown model parameters in a system, a situation
that is commonly encountered in practice, the problem is underdetermined and
cannot have a unique solution. Additional (a priori) information are needed to
constrain the solution and eliminate implausible outcomes. A common approach
to address solution non-uniqueness is to adopt a probabilistic (Bayesian) inverse
modelling framework [1, 26, 32, 51, 53, 78], where the elements of the inverse
problem (parameters, data, and forward model) are represented with their respective



PDE-Constrained Sparse Inverse Problems 401

uncertainties, typically using probability density functions (PDFs). In this chapter,
we focus on deterministic inverse problems. First, an overview of inverse modelling
formulation is presented, followed by general strategies for solving ill-posed inverse
problems that are constrained by complex PDEs. In numerical solution techniques,
the PDEs are solved by first discretizing the domain and assigning input parameters
to the discrete cells. This approach leads to a discrete ill-posed inverse problem
in which vector representations (as opposed to continuous functions) are used to
describe the unknown parameters. The main focus of this chapter is on formulation
and solution of such discrete inverse problems in which the parameters are either
inherently sparse or can have a sparse approximation.

2 Inverse Problem Formulation

To formulate a general inverse problem, consider collecting the observations of a
physical system in a vector d. These observations are related to the parameters
of the system through a (generally nonlinear) mapping, i.e. d = g(u). Here, u
contains the parameters of the system, and g(.) is the nonlinear function that maps
the parameter space onto the observation space. We assume that the observations d
and the parameters u are vectors in R

m×1 and R
n×1, respectively.

Definition (General Inverse Problem) Consider the Banach spaces U and D ,
and a mapping G : U → D . The inverse problem consists of the solution to the
equation [66]:

g(u) = d u ∈ U & d ∈ D (1)

If an exact solution is not expected (e.g. due to observation errors), the inverse
problem in (1) is expressed as a minimization of the form:

min
u

J (u) = ‖g(u) − d‖2
2 u ∈ U (2)

When the Banach space D is some �2-space, then this becomes a classical least-
squares problem [57].

The simplest form of an inverse problem is obtained when observations and
model parameters are related linearly [13, 78], i.e. d = Gu + ε. Here, u is
the parameter of interest, G is the linear mapping from parameter space to the
observation space, and ε is the observation noise, which is usually considered to
be independent of the parameters u. In the linear case, the inverse problem in
Equation (2) is expressed as:

min
u

‖Gu − d‖2
2 s.t., u ∈ U (3)
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with a simple quadratic objective function. In practical applications, when data is

noisy, the least-square term in Equation (3) is generalized to ‖C
− 1

2
ε (Gu − d)‖

2

2,
where Cε is the (usually diagonal) noise covariance matrix ε. For ill-posed linear
inverse problems, the formulation often takes the form:

min
u

J (u) s.t., ‖d − Gu‖2
2 ≤ σ 2 (4a)

min
u

J (u) + 1

λ2 (‖d − Gu‖2
2 − σ 2) (4b)

min
u

‖d − Gu‖2
2 + λ2J (u) (4c)

In Equation (4a), the constraint, i.e. ‖d − Gu‖2
2 ≤ σ 2, is added to the objective

function by the penalty method [8], and the resulting equation in (4b) is reshaped
into Equation (4c) by multiplying the objective function by λ2. In Equation (4),
J (u) is a function that restricts (regularizes) the behaviour/structure of u, and σ 2

is a bound on the observation error. For example, if u0 is a prior belief about the
parameter u, minimization of J (u) = ‖u − u0‖2

2 results in a solution with minimum
departure from u0 [78]. A classical example of regularization functions are the
Tikhonov regularization forms [81], for which J (u) is defined as the second norm
of the first or second derivatives of the parameters (to promote solution smoothness
or flatness, respectively). It is important to note that the regularization parameter λ

has a significant impact on the solution by balancing the importance of data misfit
and regularization terms. For linear problems, cross validation [31] and L-curve
[34] methods have been proposed for finding an optimal value for the regularization
parameter.

In many practical problems, the relationship between the observed data and
model parameters is nonlinear, i.e. d = g(u) + ε [74, 79]. The corresponding
nonlinear inverse problem can be expressed as:

min
u

J (u) s.t., ‖d − g(u)‖2
2 ≤ σ 2 (5a)

min
u

‖d − g(u)‖2
2 + λ2J (u) (5b)

For physical systems in which the evolution of the state variables is determined
by solving PDE systems, the resulting inverse problems include the PDEs as
constraints, that is,

min
u

‖d − g(u)‖2
2 + λ2J (u) s.t., f (u, x(u)) = 0 (6)

where f (u, x(u)) = 0 represents the PDE system. We note that the measurement
operator g(u) is usually a function of the state vector x(u), which, for compactness,
is not explicitly expressed in Equation (6). It is common to enforce the constraints
by first solving the PDE system to obtain the state variables and then using them
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to predict the measurements. In other words, the PDE system is solved to derive
the nonlinear measurements, resulting in predicted measurements that honour the
constraints.

In practice, nonlinear inverse problems do not lend themselves to analytical
solutions, and iterative numerical optimization techniques must be employed to
find the solution. In iterative solution schemes, given the current iterate u(k), an
updated solution is sought by expanding the nonlinear function g(u) around the
current iterate, using either first- or second-order Taylor expansions. For example,
when a linear approximation is used, the resulting objective function takes the form:

u(k+1) = argmin
u

‖d − (g(u(k)) + Gu(u − u(k)))‖2
2 + λ2J (u) (7)

where Gu is the Jacobian matrix that contains the first-order derivative of multivari-
ate vector function g(u) with respect to entries of u = u(k). The linear objective
function in Equation (7) can be readily minimized to find u(k+1), and the process is
continued until the algorithm converges to a solution [78].

3 Parametrization and Regularization Techniques

Inverse problems often involve high-dimensional parameters with complex relations
that need to be estimated from low-resolution nonlinear data. In addition to
numerical stability issues (due to high-dimensional and low-rank nature of the
matrices involved) in solving such ill-posed inverse problems, several non-unique
solutions can be found that reproduce the (limited) available data, but fail to
predict the future response of the system. In some physical systems, the parameters
may represent spatially distributed material properties with specific architecture or
patterns. In such cases, in addition to dealing with high parameter dimensionality,
it is important to preserve the expected spatial structure of the parameters [6, 12,
18, 37, 47, 90]. Parametrization and regularization are two common approaches
that aim to achieve these two goals by reducing parameter dimensionality and
imparting pre-specified attributes on the solution. Techniques for regularizing the
solution of ill-posed inverse problems have been extensively studied in the literature
(e.g. see [24, 78, 81, 86]). Regularization is usually implemented by minimizing
a penalty function (e.g. J (u) in Equations (4)–(7)) that promotes an attribute of
interest in the solution, e.g. using a roughness penalty function to obtain smooth
solutions. By imposing certain patterns/attributes on the solution, regularization
creates correlation structures that, in effect, implicitly reduce the dimension of the
parameter space.

Inverse problem formulations are directly influenced by the choice of parameters
(i.e. parameterization or re-parameterization) [24, 39]. Parameterization refers to
changing the original parameters of an inverse problem to a (typically much
smaller) set of new parameters that facilitate the search for a solution. It is often
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used to explicitly reduce the number of unknown parameters, while capturing
their main characteristics, with the purpose of alleviating problem ill-posedness.
Parameterization can also provide more compact descriptions of complex parameter
structures and facilitate their reconstruction. In solving inverse problems, choosing
an appropriate domain that affords an effective description of the parameters is
complicated by the lack of complete knowledge about the solution. However, a
reasonable choice for the parameter domain may be deduced from the knowledge
about the physics of the system under analysis and/or based on the past experience.
Parameterization can be performed either in the original domain (space/time), in
which the PDEs are solved, or they can be implemented by transforming the
parameters into a different (often abstract) domain with certain desirable properties.

A linear parameterization [87] can generally be expressed as:

u = �v =
k∑

i=1

φivi (8)

where u and v are vectors of the original and transformed model parameters,
respectively; and � is the linear transformation matrix with columns corresponding
to the basis functions (i.e. φi:i=1,...,k), which are linearly combined, using the entries
of v as coefficients, to yield u. Matrix � can be viewed as a linear mapping of the
transformed parameters v onto the original parameters u. Different choices of � lead
to alternative parameterization bases (domains) with distinct properties that can be
exploited in formulating the inverse problem.

Using the linear relation u = �v, it is straightforward to rewrite the inverse
problem objective function in Equation (7) in terms of v as follows:

v(k+1) = argmin
v

‖d − (g(v(k)) + Gv(v − v(k)))‖2
2 + λ2J (v) (9)

where J (v) defines a regularization constraint on the new parameters v in the trans-
form domain (more details in subsequent sections). Note that the transformation
matrix � is assumed to be constant and dropped for brevity. Furthermore, Gv in
Equation (9) presents the Jacobian matrix of the observations with respect to the
transformed coefficients and can be simply calculated through the chain rule of
differentiation as:

Gv = ∂

∂v
g(v)|v=vk = Gu� (10)

A nonlinear parameterization can be expressed as u = φ(v), where the mapping
φ(.) represents a general nonlinear transformation. For instance, kernel functions
provide mappings that can be used to reduce parameter nonlinearity prior to
applying a linear parameterization [70, 71, 84]. Kernel-based methods use kernel
functions to operate in high-dimensional feature spaces without computing the
coordinates of the feature space. Instead, they compute the inner products of
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(training) data pairs in the feature space. Using this approach, the inner product
of the vectors in the nonlinear space is calculated by kernel functions, k(v, v

′
) =<

φ(v), φ(v
′
) >, where φ(.) is a feature map (e.g. a polynomial). The kernel k(v, v

′
)

is a function of v and v
′
, and it eliminates the need for nonlinear expansion of the

parameters. A major difficulty that arises in implementing nonlinear transformations
is the lack of unique back transformation due to the nonlinear form of the transform
function φ(.). In this chapter, linear transforms are discussed.

3.1 Parameterization/Regularization in Space

Zonation Zonation [37] is the simplest spatial parameterization technique in which
subsets of the parameter vector u are assumed to have (approximately) identical
values and can be aggregated into a single parameter. In imaging applications where
u is a spatial image (of an unknown property distribution), subsets of entries of u
that correspond to a local neighbourhood in the image form a segment or a zone
with identical parameter values. By aggregating such multiple entries into a single
parameter, zonation can significantly reduce the number of parameters. Figure 1(a)
depicts a sample parameter distribution (shown in x-y plane) that consists of k

regions or zones (R1,. . . ,Rk). If the parameter values in each region are similar,

Fig. 1 Schematic of parameter representation via linear expansion: (a) spatial zonation with
predefined regions with similar parameter values; (b) expansion with functions derived from
compressive transform
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the number of parameters can be reduced to k << n. This parameterization can be
effectively expressed using a general linear expansion representation, consisting of
basis vectors φs:1≤s≤k in which only the entries corresponding to region Rs are non-
zero (ones) and the remaining entries are zero (see Figure 1(a)). Using zonation, the
formulation of the inverse problem is reduced to:

min
v

‖d − g(u)‖2
2 + λ2J (u) s.t., u =

k∑

i=1

φivi (11a)

where with the new parameters, i.e. [v1v2 . . . vk], the problem is better posed (only
k unknowns). In many cases, zonation leads to very few zones, eliminating the need
for the regularization term, i.e. J (u) in Equation (11a). Therefore, a simpler version
of the problem can be expressed as:

min
v

‖d − g(u)‖2
2 s.t., u =

k∑

i=1

φivi (11b)

Although zonation is a simple and intuitive parameterization approach, it suffers
from a number of shortcomings. First, it is not trivial to define the zones for an
unknown map a-priori. Adaptive multi-resolution zonation techniques [33] have
been developed that allow the zones to be redefined (updated) during inversion.
Second, the sharp boundaries that separate the zones may not be realistic or plausi-
ble. Finally, eliminating the variability (heterogeneity) within each region can result
in unintended elimination of local, but important, features and introduce undesired
solution bias. Several other parameterization methods have been developed to
improve the ill-posedness of inverse problems. Examples of these methods include
transform-domain techniques such as the principal component analysis (PCA), the
Fourier-based discrete cosine transform (DCT), and the discrete wavelet transform
(DWT) (Section 3.2).

Tikhonov Regularization Tikhonov regularization [81] is achieved by minimizing
the zeroth-/first-/second-order derivative of the solution to promote minimum-
length/smooth/flat solutions, respectively. Tikhonov regularization has been widely
applied to inverse problems in several imaging applications, where the parameters
are expected to show some degree of continuity. The reason for this attribute is that
images that represent the parameters are often related to physical properties that
naturally follow certain continuity in their formation. To illustrate how Tikhonov
regularization works, consider the local operator that approximates the first-order
directional derivative for entry ui,j of the parameter vector u (defined on a two-

dimensional x-y coordinates), i.e. (∇u)i,j ≈
[
ui,j − 1

2 (ui−1,j + ui+1,j )

ui,j − 1
2 (ui,j−1 + ui,j+1)

]
. This

notation is used to demonstrate the central point finite difference approxima-
tion to the first-order directional derivative. Minimizing

´ ‖∇u‖2
2du ≈ Δ ×
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∑
i,j ‖(∇u)i,j‖2

2, where Δ denotes a small spatial perturbation, corresponds to
solutions that exhibit smooth transition (in parameter values) from ui,j to its
neighbouring grid cells. With the first-order Tikhonov regularization, the inverse
problem objective function takes the form:

min
u

‖d − g(u)‖2
2 + λ2

ˆ
‖∇u‖2

2du (12)

For discrete problems, the spatial derivatives and the regularization function can be
written as a linear operator W; that is, the regularization term can be simplified to´ ‖∇u‖2

2du = ‖Wu‖2
2.

Total Variation Total variation [27, 50, 69] is a regularization technique that is
used to promote piecewise smooth solutions. Hence, the regularization penalty is
lenient to solutions that are generally smooth but can have discontinuity in certain
parts. This form of regularization is implemented by applying a milder penalty to
spatial derivatives of the parameters. In Total Variation, the �1-norm (instead of the
�2-norm) of the first-order derivative of the solution is minimized. The �1-norm is
less sensitive to larger entries and tends to tolerate discontinuity, which is often
exhibited through large directional derivatives. In implementing the total variation,
one seeks to minimize the following regularized least-squares form:

min
u

‖d − g(u)‖2
2 + λ2

ˆ √√√√
∑

j

(∇j u)2du (13)

where the index j is the number of directional derivatives, and ∇j u calculates the
derivative of u at a direction specified by index j . The total variation regularization
can be implemented for any specified direction. In its standard implementation, the
directions j are the three Cartesian coordinates.

3.2 Transform-Domain Parameter Representations

Compressive transforms are used to compactly represent/approximate the most
salient features of images and signals. In inverse problems, it may be possible to
apply a transformation to the original parameters to achieve an effective low-rank
representation. Examples of transform-domain representation techniques are those
that are used in image compression, e.g. Wavelet [55] or Fourier [9] transforms.
These transforms use predefined basis functions with strong compression property
to provide compact (low-rank) description of natural images. The compression
property of a basis directly corresponds to the decay rate of the transformed
coefficients. The main steps in transform-domain low-rank representation include (i)
choosing an appropriate transformation basis (expansion functions), (ii) performing
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the forward transformation to obtain the transformed representation of the original
parameters, (iii) identifying and retaining only significant coefficients of the trans-
formed representation, and (iv) back transformation to the original domain using
only the retained coefficients. The compressive nature of the transforms implies
that the transformed representation is sparse, that is, very few of the transformed
coefficients are significant. In this section, we present some of the important
compressive transforms that have been used for parameterization. The discussion on
identifying and retaining the significant elements in the transformed representation
is presented in Section 4.

The choice of an appropriate basis to compactly represent model parameters is
intimately related to the prior knowledge about the characteristics of the underlying
properties of the model, e.g. existing correlation/connectivity structures or possible
discontinuous features. In fact, when specific prior models are available, one could
construct a specialized transformation that is learned from those models and training
data. Examples of specialized transform basis functions that are learned from prior
information include the principal component analysis (PCA) [41] and the k-SVD
[2] for sparse dictionary learning, which are discussed in this section. In many
situations, however, explicit prior models or training data may not be available.
In those cases, generic transforms that are used in image compression provide
an attractive option for parameterization. We briefly discuss two popular generic
transformation methods, namely Fourier transform [9] and its practical and efficient
variation known as the discrete cosine transform (DCT) [3, 39] and the wavelet
transform [55, 77].

3.2.1 Generic Compressive Transforms

Generic compressive transforms consist of n linearly independent basis vectors in
R

n that can be used to span any length-n vector (or vectorized image). While a
complete representation of a length-n parameter vector is possible in a compressive
basis, the objective is to obtain an approximate representation by only retaining
k << n significant basis elements. Suppose that the set {φi:i=1,...,n} contains all
the basis vectors that are needed for perfect representation in R

n , and a subset
� = {φi:i=1,...,k}, with no particular order, provides an acceptable approximation
for a vector of interest u. Selection of the subset with k elements depends on the
original vector to be approximated and the basis used.

Fourier and Wavelet Transforms Fourier basis functions describe a signal in
terms of its frequency content. In this case, if an n = ∏

ni dimensional signal u
is defined in R

n1×n2×...×nd , the FT at frequency (f1, . . . , fnd
) will be calculated as:

v(f1, . . . , fnd
) =

n1−1∑

i1=0

. . .

nd−1∑

ind
=0

u(i1, . . . , ind
)e

−i2π(
∑nd

t=1
ft it
nt

) (14)
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The back transformation that returns u can be expressed as:

u(i1, . . . , ind
) = 1

n

n1−1∑

f1=0

. . .

nd−1∑

fnd
=0

v(f1, . . . , fnd
)e

i2π(
∑nd

t=1
ft it
nt

) (15)

If the main features in u are captured by low-frequency elements, which is especially
true for smooth and correlated vectors, one could approximate u by truncating the
basis elements with frequencies exceeding a certain threshold. The (n-k) coefficients
corresponding to frequencies higher than the specified threshold are then set to zero.

The DCT is a special case of the Fourier transform that only considers the real

part of e
−i2π(

∑nd
t=1

ft it
nt

), which is cos{2π(
∑nd

t=1
ft it
nt

)}. Hence, the transformation
takes the form:

v(f1, . . . , fnd
) =

n1−1∑

i1=0

. . .

nd−1∑

ind
=0

u(i1, . . . , ind
) cos{2π(

nd∑

t=1

ft it

nt

)} (16)

Similar to Fourier transform, an approximation of the original signal u is obtained
by truncating the frequencies above a certain threshold. Fourier-based transforms
can only represent information either in space or frequency domains. This means
that once a signal is transformed to Fourier domain, it loses the spatial information
and vice versa. Hence, the Fourier basis elements are global and do not encode local
information.

Unlike the Fourier transform, the basis elements in Wavelet transform contain
both space and frequency information. This implies that each basis vector is
localized in space and represents a certain frequency content. Therefore, for any
spatial location, one can retain (truncate) specific frequency components that are
significant (insignificant). Figure 2(a) and (b) shows 64 sample basis elements for
the DCT and Haar wavelet transforms in R

64×64, respectively. As can be verified,
the basis images for the DCT transform are not localized in space while those for the
discrete Haar wavelet clearly exhibit localized patterns. While generic compressive
transforms have useful properties that make them very desirable when explicit prior
knowledge is not available, in applications where prior knowledge about the solution
(e.g. a training dataset) is available, one may be able to construct more specialized
transforms with better performance.

3.2.2 Learned Compressive Transforms

Pre-constructed compressive bases achieve good compression performance in
representing smooth and piecewise smooth images when specific knowledge about
the image to be compressed is not available. For most natural images only a small
subset of the transformed coefficients is sufficient to capture the main features
of an image. This implies that most natural images have sparse approximations



410 A. Golmohammadi et al.

Fig. 2 Examples of generic (pre-computed) compressive transform bases: (a) sample low-
frequency basis elements from the DCT basis; (b) sample basis elements from the discrete Haar
wavelet. Example is shown for a 64×64 two-dimensional image. The basis elements are separated
with black boxes

in these compressive transform domains. However, compressed representation of
complex image features with generic transforms may require too many coefficients,
which is not desirable for parameterization. Hence, a more sophisticated approach
is needed to capture complex features in certain applications. In general, when a
specific type of image (e.g. human face) is to be compressed, transforms that are
specialized to represent the underlying features are more efficient. For example,
in subsurface modelling, where extensive efforts go into data collection and site
surveys to construct prior models, specialized transform-domain representations
that are tailored to the information in the prior knowledge are more suitable.

Principal Component Analysis (PCA) The PCA [41] is widely used for dimen-
sionality reduction in a wide range of applications. The PCA basis functions
capture the main variability and structures in multivariate datasets, which can be
exploited in compactly representing/approximating them with minimum loss of
information. When the PCA is applied to the covariance matrix of a stochastic
process, it diagonalizes the covariance and can be used to define a new (often
more desirable) uncorrelated random process. In this case, the PCA provides
an orthogonal transformation matrix with decorrelating power that contains, in
its columns, the eigenvectors of the covariance matrix. The strong decorrelating
property of the PCA basis is advantageous in eliminating parameter correlations
(redundancies) to reduce dimensionality. In fact, the PCA sets the standard for
dimension reduction with linear transforms as it gives the minimum error (in least-
squares sense) in approximating an n-dimensional signal with S << n basis
elements (for a fixed S).

The parameterization with PCA follows the same format as in Equation (8), i.e.
u = �v = ∑k

i=1 φivi , where the basis functions φi’s are the eigenvectors of the
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covariance matrix of u. Denoting an n × 1-dimensional random variable as u and
its covariance matrix as Cu, the eigenvalue decomposition of the covariance matrix
provides the following diagonalization form:

Cu = ���T (17)

where � is a diagonal matrix (with eigenvalues of Cu in its diagonal entries) and
� is an orthonormal (transformation) matrix that has the eigenvectors of Cu in
its columns. If sample realizations of u are collected into a data matrix Un×L =
[u1 . . . ui . . . uL], the sample covariance matrix Cu can be computed as:

Cu = 1

L − 1
(U − u11×L)(U − u11×L)T (18)

where u denotes the mean of U, that is u = 1
L

∑L
i=1 ui . The term 1√

L−1
(U−u11×L)

can be expressed in terms of its singular value decomposition (SVD) as [48, 72]:

1√
L − 1

(U − u11×L) = ��VT (19)

where � and V are orthonormal matrices that contain the left- and right-singular
vectors of 1√

L−1
(U − u11×L), respectively. Combining (18) and (19) yields

Cu = (��VT )(��VT )T = ��VT V��T = ��2�T (20)

which reveals � = �; that is, the left-singular vectors of 1√
L−1

(U − u11×L) are

identical to the eigenvectors of the sample covariance matrix Cu. This relation shows
that for high-dimensional variables the PCA transformation matrix can be more
efficiently computed by obtaining the left-singular vectors of 1√

L−1
(U − u11×L),

which is computationally more efficient for large n. One could therefore see the
correspondence between the left-singular vectors of the sample data matrix and the
eigenvectors of the data covariance [30]. It can be shown that amongst all S-term
(rank-S) linear approximations of U the expansion using its S leading left-singular
vectors (denoted as �n×S) gives the smallest root-mean-square error (RMSE).

Sparse Dictionary Learning (k-SVD) While PCA offers a very efficient decor-
relating basis for compact representations, it is a linear transform in which the
significant basis elements are predetermined and fixed. Recent developments in
sparse signal processing have led to growing interest in sparse dictionary learning
algorithms. A major distinction between PCA and sparse dictionaries is in the way
the significant elements are selected. In sparse reconstruction, the significant ele-
ments are neither predetermined (ranked) nor fixed; rather, they must be identified
independently for each instance of the parameter vector.
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For construction of sparse dictionaries from a training dataset with L elements,
Un×L = [u1 . . . ui . . . uL], one can solve either of the following optimization
problems [2, 44, 82]:

min[v1v2...vL],� ‖vi‖0 s.t.,
L∑

i=1

‖ui − �vi‖2
2 ≤ ε for i ∈ 1 : L

(21a)

min[v1v2...vL],�
L∑

i=1

‖ui − �vi‖2
2 s.t., ‖vi‖0 ≤ S for i ∈ 1 : L

(21b)

where ‖vi‖0 refers to the number of non-zero entries in vi (i.e. S). Equations (21a)
and (21b) are alternative formulations for sparse dictionary learning. In Equa-
tion (21a), a maximum allowable representation error is used as a constraint while
the level of sparsity for each realization of the prior model is minimized. In Equa-
tion (21b), the level of sparsity is constrained while minimizing the approximation
error to represent each realization. Finding the exact solution to the problems
in (21) is intractable. However, heuristic methods, such as the k-SVD algorithm,
provide practical approximate solutions. We note that in our notation S refers to
the sparsity level (number of significant elements retained in the approximation),
and k is the dictionary size (total number of dictionary elements), with S << k.
We briefly describe the k-SVD algorithm as one approach to learn sparse geologic
dictionaries from a set of prior training models (more details can be found in the
original publications [2]). The k-SVD algorithm takes its name from the k-means
clustering algorithm. While the latter computes k mean values at each iteration, the
former applies k SVD operations at each iteration. The k-SVD algorithm constructs
a dictionary � with size n × k from L samples of ui , while ensuring that the
projection of each ui on � is S-sparse, a problem that is formalized in Equation (21).
We also note that for model reduction and approximation purposes, we consider
under-complete dictionaries, where exact representation may not be achievable.
However, the resulting representation can provide close approximations in a very
low-dimensional space.

To construct � and V from U, the k-SVD algorithm iteratively solves the problem
specified in (21). Each iteration of the algorithm consists of two steps: Step 1, sparse
coding, used to find the sparse representations (i.e. V) for the entire prior library by
fixing �; and Step 2, dictionary updating, which finds a new � after fixing the sparse
representation V from Step 1. These two basic steps in the k-SVD algorithm are
summarized in Appendix 1. While no formal convergence proof has been given for
this algorithm, numerical experiments show that it is generally robust [2, 44, 45].
It is important to note that the k-SVD algorithm is computationally demanding,
especially when the dimension of the dictionary increases. Each iteration of the k-
SVD algorithm requires k orthogonal matching pursuit (OMP) [83] sparse coding
and k rank-one SVD operations, both are computationally expensive operations.
However, the computations related to construction of a sparse dictionary are
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Fig. 3 Examples of learned expansion images using prior training data: (a) prior (training) models
used for constructing linear expansion images; (b) S = 20 leading PCA basis elements; and (c)
sample k-SVD dictionary elements with S = 20 and k = 200. Examples are shown for nx × ny =
100 × 100 two-dimensional model. The images are separated using white borders

performed offline and can be considered as part of the training step. In addition, the
original k-SVD algorithm is typically applied to obtain over-complete dictionaries
for small image segments [2]. For large-scale inverse problems, the method has been
used to obtain under-complete dictionaries [44, 45].

Figure 3 shows an example of dictionary learning in geosciences applications.
Figure 3(a) depicts samples from the training data that represent two-dimensional
fluvial channel configurations (generated using SNESIM conditional simulation
algorithm [75]). In this figure, the red regions represent fluvial channels that are
composed of sandstone with very high rock permeability (to fluid flow) values
while the blue regions describe shale or mudstone with very low-permeability
values. The high-permeability values manifest their importance in fluid flow and
displacement patterns by creating preferential flow patterns within the channel
regions. Figure 3(b) presents the first S = 20 PCA basis (Eigen) images that
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Fig. 4 Compression performance of the PCA and k-SVD: (a) a sample image similar to the
training data; (b1)–(b2) results of compressed representation with S = 20 leading PCA basis
images and the corresponding PCA coefficients, respectively; and (c1)–(c2) results of compressed
representation using the k-SVD with S = 20 and k = 200 and the corresponding k-SVD
coefficients

correspond to this training data, and Figure 3(c) shows the corresponding sample
elements from the k-SVD dictionary, using S = 20 and k = 200. To illustrate the
approximation performance of the PCA and k-SVD, Figure 4(a) depicts a model
that is structurally similar to those in the training data, along with its PCA and
k-SVD approximations in Figure 4(b1) and (c1), respectively, using S = 20. The
corresponding transform coefficients for each case are shown in the second row
(Figure 4(b2) and (c2)). Figure 4(b2) and (c2) shows a major difference between
the PCA and k-SVD representations, which is the sorting of the PCA elements
that leads to identification of S = 20 fixed elements. In case of k-SVD, the
significant elements are not predetermined. Instead, the significant elements and
their corresponding coefficients are identified by searching through a larger set
(k = 200) of dictionary elements. However, the selection of significant dictionary
elements is not trivial and is usually accomplished through a sparsity-promoting
optimization algorithm, generally known as sparse reconstruction.

4 Sparse Reconstruction

Selecting a small subset of dictionary elements out of a large set is posed as a sparse
reconstruction problem. A signal v ∈ R

k is considered sparse if a large fraction of
its entries are (approximately) zero [5]. A signal is S-sparse if it has at most S non-
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zero entries. A signal that may not appear as sparse (in space or time) may have a
sparse representation in a different (transform) domain. For instance, in many cases
a parameter vector u may not be sparse but can have a sparse representation v after
transformation through �, that is u = �v.

Depending on the application, identification of significant dictionary elements
can be based either on complete (e.g. image compression [80]) or incomplete
knowledge (inverse problem) about the unknown parameters. In inverse problems,
often limited measurements are available for identification of the significant dic-
tionary elements, and estimation of their corresponding expansion coefficients.
Compressed sensing (also called compressive sensing or compressive sampling)
[4, 11, 21] is a relatively new paradigm that provides an alternative to the well-
known Shannon sampling theory. Compressed sensing adopts sparsity as prior
knowledge about signals, while Shannon theory was designed for frequency band-
limited signals. The widespread application of compressed sensing is, in part, due to
the universality of the sparsity property that is encountered in a wide range of natural
phenomena (especially images). In many cases, sparsity may not be immediately
apparent and certain manipulation (e.g. transformations) of the original parameters
may be necessary for their sparsity to emerge. For instance, natural images that
have various elements with spatial correlations in them do not exhibit sparsity in
the space domain but are highly compressible and are well-known to have sparse
representation in the Wavelet or DCT domains. One of the main contributors to the
widespread application of compressed sensing is its direct application to solving
underdetermined inverse problems, such as tomographic image reconstruction [15].

Compressed sensing gives a strong theoretical support and an efficient solution
algorithm (under appropriate conditions) for solving otherwise intractable (NP-
hard) inverse problems that have sufficiently sparse solutions. To recover a sparse
solution v from a set of linear measurements d = Gv, one can solve the following
minimization problem:

min
v

‖v‖0 s.t., d = Gv (22)

where ‖v‖0 is the �0-norm (note that �0 does not conform to norm definition and
is often loosely referred to as a norm) of vector v and represents its cardinality. In
this formulation, the optimization problem searches for a solution that reproduces
the observed data (constraint) while having a minimum number of non-zero entries
(support). The �0-norm is not a differentiable function and does not lend itself
to solution with standard gradient-based optimization methods. In practice, two
types of approximate algorithms have been developed to solve (22): (i) greedy
pursuit algorithms, such as OMP [83], COSAMP [61], IHT [7], or IMAT [56],
and (ii) convex approximations, in which the non-convex �0-norm is replaced with
its convex relaxations, e.g. �1-norm in basis pursuit [17] or a heuristically defined
exponential norm in [58].

Compressed sensing derives the solution by replacing the �0-norm with �1-norm
and offers conditions under which an exact solution to the original problem is
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guaranteed (see [10, 21] for details). In this case, the optimization problem takes
the form:

min
v

‖v‖1 s.t., d = Gv (23)

The fundamental importance of this formulation is that it converts the problem
from an NP-hard problem to a linear programming problem, which can be solved
efficiently. In practice, it can be demonstrated that the �p-norm, for 0 ≤ p ≤ 1,
while non-convex, has a similar sparsity-promoting property; however, in addition
to solution complexity, the mathematical proof and the required conditions for this
case are not well understood.

In many applications, the conditions required to guarantee exact solution may
not be met. A particular example of departure from those conditions, which is often
encountered in physical systems, is when the measurements are not adequate or
the measurement operator is nonlinear. In those cases, it may still be possible to
exploit the sparsity-promoting property of the �1-norm to formulate and solve an
inverse problem. The selection property of the �1-norm penalty offers an important
regularization form that can be used to enhance the solution of nonlinear inverse
problems when applicable. When the measurement equations are nonlinear, the
resulting sparse reconstruction problem takes the form:

min
v

‖v‖1 s.t., ‖d − g(v)‖2
2 ≤ σ 2 (24)

where g(v) is a nonlinear operator. Appendix 2 discusses an iteratively reweighted
least-squares (IRLS) algorithm for solving the �1-norm regularized minimization
problem. In the next section, we discuss the application of sparsity regularization
under nonlinear measurements in subsurface flow and transport inverse problems.
In addition to �1-norm regularization, we will also present the use of a mixed
�1/�2-norm [23, 40], which is known as group sparsity. When the signal of interest
v has block-sparse behaviour, the �1/�2-norm can have a superior reconstruction
performance compared to the standard �1-norm. In block-sparse signals, the entries
are collected in predefined groups and the sparsity penalty is applied across the
groups. In this case, the �2-norm is applied to the elements inside each group to
quantify the group contribution, and the �1-norm operates on the computed �2-
norm of the groups to impart sparsity. Mathematically, if vi’s are subsets of v and⋃

i vi = v, then the �1/�2-norm is defined as ‖v‖1,2 = ∑
i ‖vi‖2 . In this case,

the inverse problem formulation minimizes the �1/�2-norm of the solution while
honouring the measurement constraint, that is:

min
v

‖v‖1,2 s.t., d = Gv linear (25a)

min
v

‖v‖1,2 s.t., d = g(v) nonlinear (25b)
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An example application of group sparsity is presented in the next section. In this
case, the objective is to select a small set of the groups within v that have significant
contribution to the solution. In other words, the sparsity is applied to the groups and
not individual entries.

5 Subsurface Flow Inverse Modelling

Fluid flow and transport in underground porous rock formations plays a key role in
developing the related energy and water resources in these systems. Mathematical
modelling of the underlying physical processes is commonly used to predict the
response of these systems to perturbations (forcing) introduced during resource
development (extraction or injection of fluids). The description of the physical
processes that take place in these systems leads to high-dimensional and coupled
nonlinear PDEs, which include various rock properties as spatially distributed
unknown parameters. It is common to formulate inverse problems to estimate the
unknown parameters of these PDEs from observations of the dynamical response
of these systems. In this section, we describe the formulation of the related PDE-
constrained inverse problem and provide examples to demonstrate their practical
application.

5.1 Subsurface Flow Forward Modelling

An important example of PDE-constrained inverse problems is the multi-phase flow
equations in the subsurface environments. The spatiotemporal evolution of multi-
phase fluid flow can be expressed as a special form of the Navier-Stokes equations
[19, 20]. Conservation of mass, momentum, and energy are three fundamental prin-
ciples in the Navier-Stokes equations, which yield the following PDEs, respectively:

∂ρ

∂t
+ ∇.(ρv) = 0 (26a)

∂v
∂t

+ (v.∇)v = − 1

ρ
∇P + F + μ

ρ
∇2v (26b)

ρ(
∂E

∂t
+ v.∇E) − ∇.(KH ∇T ) + ρP∇.v = 0 (26c)

where v, E, P , T , ρ, μ, KH , and F correspond to velocity, internal thermodynamic
energy, pressure, temperature, density, viscosity, heat conduction coefficient, and
external forces per unit mass. Here, we consider a special case involving two-phase
incompressible and immiscible fluid flow system, for which the governing PDE
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Table 1 A summary of physical properties and their definition

Property Definition

Phase mobility The ratio of effective permeability to phase viscosity

Phase density The density of fluids, i.e. oil or water

Formation volume
factor

Volume of the phase at the in-situ pressure to its volume at standard
surface condition

Permeability Ability for fluids (gas or liquid) to flow through porous rocks

Porosity Ratio of void space to total rock volume

Phase saturation Ratio of pore volume occupied by specific fluid phase

Flux Flow rate per unit area

Pore volume Total void volume of reservoir

Wetting phase The phase with more tendency to maintain contact with the solid
surface

equations are expressed by combining mass balance and Darcy’s law (representing
the momentum balance) [16, 22] as:

∇.(
λw

Bw
u(∇Pw − γw∇Z)) = ∂

∂t
(φ

Sw

Bw
) + qw (27a)

∇.(
λn

Bn
u(∇Pn − γn∇Z)) = ∂

∂t
(φ

Sn

Bn
) + qn (27b)

In the above equations, w and n represent the wetting and non-wetting phases,
and λ, γ , B, u, φ, Z, S, and q correspond to the phase mobility, phase density,
formation volume factor, intrinsic rock permeability, rock porosity, gravity potential,
phase saturation, and flux, respectively (see Table 1 for definitions). The governing
equations in Equation (27) involve four unknown dynamic state variables: Pn, Sn,
Pw, and Sw. Two additional equations are needed to close the PDE system. These
two equations are the constitutive equations on the pressures and saturations and are
typically expressed as:

Pn − Pw = Pc(Sw) (28)

Sw + Sn = 1 0 ≤ Sw, Sn ≤ 1 (29)

The first equation describes the capillary pressure (difference between non-wetting
and wetting phase pressures) as a function of the wetting phase saturation (see
Table 1 for definition) [49], while the second equation imposes a physical constraint
on the saturation of two phases in a fully saturated porous medium.

With specified rock and fluid properties, initial and boundary conditions, and
other input parameters and control forcing, the coupled PDE system can be
discretized and solved numerically. In practice, the resulting discretized system
can be high-dimensional (∼106−7 unknowns) and computationally demanding to
solve. A simple example of immiscible two-phase flow, in which water is injected
to displace oil, is depicted in Figure 5. Figure 5(a) shows a two-dimensional
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Fig. 5 The forward simulation model used in Example 1: (a) schematic of a reservoir with
injection (production) wells on the left (right) side of the domain; (b) the intrinsic permeability
distribution in the reference model consisting of high-permeability fluvial channels (red) and low-
permeability background shale (blue); and snapshots of pressure (c) and saturation (d) profiles after
10, 20, and 30 months

(1000 × 1000 m2) reservoir, which is discretized into 100 × 100 cells of the same
size. A series of water injection wells are placed on the left side of the domain to
displace the hydrocarbons toward a similar array of production wells placed on the
right side. In this example, the capillary pressure is set to zero everywhere, that
is Pn(x, t) = Pw(x, t). Figure 5(b) depicts the intrinsic permeability distribution
for this model, which shows a fluvial channel system with high-permeability (red)
channels embedded in low-permeability (blue) background shale. As shown in the
saturation plots of Figure 5(c), fluids move faster in the high-permeability channel
sections. Figure 5(c) and (d) displays the solution of the PDE system as snapshots of
pressure and saturation (Sn) fields at different times within the first 30 months of the
simulation. In our example, the configuration includes the production wells (on the
right) that produce water and oil, and injection wells (on the left) that inject water
into the reservoir. Initially, the reservoir is fully saturated with the non-wetting phase
(oil). Water injection into the reservoir displaces the oil from the left side toward the
production wells on the right side, where the mixture of oil and water is extracted.

The forward simulation described above is used to predict the spatiotemporal
evolution of the dynamical states (pressure and saturation distributions) of the
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system for a given set of input parameters and controls. The state variables of
the system are only observable through indirect measurements (e.g. flowrates and
pressures) at scattered well locations. The related inverse problem can then be
posed to find the unknown parameters (e.g. rock flow properties) from their limited,
indirect, and nonlinear measurements.

5.2 Subsurface Flow Inverse Problem

Calibration of subsurface flow forward models against nonlinear dynamic data, i.e.
data that are measured at different times and are nonlinearly related to parameters of
interest, is commonly used to update model parameters and improve future model
predictions [36]. Examples of dynamic data include time series of pressure or fluid
flowrate measurements made at the well locations and differential images of fluid
saturations typically obtained from seismic surveillance. In particular, dynamic
data carry important information about heterogeneous rock flow properties, such
as permeability distribution. The difficulty and cost associated with direct sampling
from deep geologic formations necessitate the use of subjective assumptions and
interpolations, which introduce significant uncertainty in the constructed rock
properties. Calibration against dynamic data is a routine task performed to improve
the description of these models (e.g. [44, 46]) and the related future forecasts.
Dynamic flow data from scattered wells often contain spatially averaged information
and offer limited resolution. Therefore, using high-resolution detailed models for
unknown parameters can lead to discrepancy between data and model resolutions, a
major contributor to the problem ill-posedness.

Prior models of parameters play a significant role in subsurface flow inverse
modelling and are commonly used to constrain the inverse modelling solution. Of
particular prominence in describing rock flow properties is the type and connectivity
of geologic patterns that are expected in a given formation [75, 88]. Even qualitative
knowledge about the depositional environment and the type of geologic features
can be useful in eliminating implausible solutions. However, in solving the related
inverse problems, it is important to acknowledge and reflect the uncertainty in the
conceptual models of geologic continuity [25, 28, 43]. In this section, we present
subsurface flow inverse modelling formulations that are developed by exploiting
the selection property of the sparsity-promoting formulations that were discussed
above.

We first consider the same setup in the forward model of Figure 5 and use
the PCA and k-SVD representations to solve the corresponding inverse problem.
A total of 2000 prior model realizations are generated using geostatistical simulation
(Figure 3(a) shows 20 samples). The corresponding PCA and k-SVD basis images
are shown in Figure 3(b) and (c), respectively. The �1-norm regularized formulation
is applied to the k-SVD representation while a traditional parameterization using 20
leading basis elements is used for the PCA solution. More specifically, in the case
of k-SVD the regularization term J (v) = ‖v‖1 is minimized along with the data
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Fig. 6 Solution of the inverse problem in Example 1: (a) initial log-permeability distribution
before data integration; (b) estimated log-permeability distribution using the PCA parameterization
with S = 20; and (c) reconstructed log-permeability distribution using k-SVD with S = 20 and
k = 200. The reference model is shown in Figure 5(b)

mismatch norm ‖d − g(u)‖2
2. In the case of PCA, the leading S = 20 basis elements

are selected a-priori and used as parameterization basis vectors; hence, during
inversion the coefficients corresponding to these elements are estimated without
using the �1-norm regularization term. The initial model for the inversion is shown
in Figure 6(a). The reconstruction results using the PCA and k-SVD descriptions are
shown in Figure 6(b) and (c), respectively. The results show better estimation quality
with the k-SVD representation and sparse reconstruction algorithm. The improved
performance can be attributed to several factors, including flexibility in identifying
the low-rank subspace during inversion (PCA provides a predetermined subspace),
and better representation of geologic patterns that are not amenable to covariance-
based description used in the PCA parameterization. Figure 7 depicts the data match
and predictions obtained from the two methods, which seem to be comparable. It is
important to note that while the two methods produce similar data matches, the
solution from the k-SVD algorithm is visibly superior. This can be understood by
recognizing the ill-posed nature of the problem, which implies that many solutions
can be found to match the observed data. In this case, the k-SVD representation is
better able to capture the connectivity structure in the prior model and the sparse
reconstruction algorithm can recover the correct structure more accurately.

5.3 Uncertainty in Initial Geologic Scenario

Prior models of geologic continuity describe the type of geologic patterns and their
connectivity. When used as prior model, geologic connectivity carries important
weight in finding a solution to subsurface flow inverse problems. However, describ-
ing the exact form of connectivity from limited available data is a subjective process
and depends on the geologist’s interpretation. In generating a subsurface flow model,
the connectivity patterns are typically constructed by integrating quantitative (well
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Fig. 7 Sample well data match (first four years) and prediction (last two years) results for Example
1. The BHP and watercut observations at two sample production wells are shown (the producers
are under total production rate control)

log, core analysis, and seismic data) and qualitative information (e.g. outcrops) with
expert knowledge and interpretation as well as process-based geologic modelling of
the depositional environment. Traditionally, a single conceptual model of continuity
(e.g. variogram model) is constructed and used to constrain the solution of the
inverse problem, assuming perfect knowledge about the continuity model. However,
a major source of uncertainty is related to the adopted conceptual model of
geologic continuity. Adhering to a single conceptual geologic scenario can lead to
underestimation of the initial uncertainty in the prior models and result in solutions
that depend heavily on the quality of the adopted prior model (which can be
questionable) [25, 28, 38, 43, 46, 67, 68, 73, 76].

Another important implication of adopting a single geologic scenario is elimi-
nating the opportunity to confirm, reject, or correct a proposed geologic scenario
based on dynamic data. In generating or selecting the prior geologic scenario,
dynamic data is typically not included (usually dynamic data are obtained at later
stages). A simple way to address this issue is to include multiple plausible geologic
scenarios as possible prior models [25, 28, 38, 43]. These alternative geologic
scenarios could be developed as independent interpretation of existing data by
different geologists (experts), or they could be derived from a stochastic process-
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based geologic modelling framework. Inverse modelling can then be applied to
evaluate the plausibility of the proposed geologic scenarios based on available
dynamic data. Inversion methods that can incorporate multiple geologic scenarios
are not widely studied in the literature. In this section, we present one such inversion
method by exploiting the selection property of sparsity-promoting regularization
techniques, or more specifically the group-sparsity regularization.

The group-sparsity regularization is implemented by minimizing the �1/�2-
norm to identify relevant geologic scenarios (from a list of proposed scenarios)
based on dynamic flow-related data. Consider p alternative geologic scenarios,
each used to generate L different realizations as prior models; that is, U1 =
[u11u12 . . . u1L], . . . , Up = [up1up2 . . . upL] are p sets of prior model realizations
in which the columns of Ui = [ui1ui2 . . . uiL] represent L realizations from the
ith geologic scenarios. If the prior model realizations for each scenario are used
to generate p different PCA bases, then a hybrid dictionary can be constructed to
include all the bases � = [�1�2 . . . �p]. Here, the realizations Ui for each geologic
scenario are used to generate a corresponding PCA basis �i = [φi1 . . . φisi

],
where si is the size of low-rank representation. Using this hybrid dictionary, the
parameter of interest u is approximated through a linear expansion of the form
u = �v = [�1�2 . . . �p][v1; v2; . . . ; vp]. This formulation implies that all prior
geologic scenarios have a chance to represent the solution. However, the underlying
assumption is that many of the included prior scenarios are not relevant and should
not contribute to reconstruction of the solution. Hence, only very few (if not just
one) of the groups are expected to have non-zero weights.

Using a mixed �1/�2-norm for group sparsity [29, 54], the regularized objective
function of the inverse problem can be expressed as:

min
v

J (v) =
p∑

i=1

‖vi‖2 s.t., ‖d − g(u)‖2
2 ≤ σ 2

and u = �v = [�1�2 . . . �p][v1; v2; . . . ; vp]
(30)

After solving this inverse problem, the solution u and the geologic scenario(s)
that significantly contribute to constructing it are identified simultaneously (for
more details, see [28]). Appendix 3 presents the details of solving the optimization
problem in Equation (30).

The example in this section consists of a numerical two-phase flow in a
heterogeneous reservoir for which the intrinsic permeability values in the entire
field are unknown. The reservoir model has a dimension of 1000 × 1000 × 10 m3,
which is discretized into a 100 × 100 × 1 uniform grid system. Figure 8(a) depicts
the configuration of this water-flooding example. An injection well is placed in the
middle of the field and eight producers are located along the edges of the reservoir
to build a traditional 9-spot water-flooding scheme. A total of 0.8 pore volume (PV)
(see Table 1 for definition) of water is injected into the formation during the first 4
years of water flooding. Also, 0.4 PV of water is injected in the following two years,
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Fig. 8 The forward simulation model used in Example 2: (a) schematic of a reservoir with one
injection well in the centre and eight production wells symmetrically distributed along the edges
of the domain; (b) the intrinsic log-permeability distribution in the reference model; (c) the best
achievable log-permeability estimate when the correct prior geologic scenario is known (Scenario
6); (d) the initial log-permeability distribution, assuming equal contributions from each prior
variogram model; and snapshots of pressure (e) and saturation (f) profiles after 10, 20, and 30
months

during the prediction phase. The porosity of the field is assumed to be 0.25 for the
entire field, and oil/water viscosity ratio is set to 1. The pressure at the injection well
and the total (water and oil) flowrates at the production wells are measured every
40 days and used for inversion. The reference log-permeability map along with its
best achievable PCA approximation, and the initial log-permeability map before
inversion are shown in Figure 8(b)–(d), respectively. The initial log-permeability
map considers equal weight given to all 12 groups. Figure 8(e) and (f) displays the
pressure and saturation profiles, respectively, after 10, 20 and 30 months.

To reflect the uncertainty in the prior variogram model, the direction of maximum
continuity and the minimum and maximum variogram ranges are assumed to be
uncertain. The variogram parameters for these prior models and four samples from
the corresponding realizations are shown in Figure 9. Comparing the reference
model with the realizations generated using these 12 different prior geologic
models reveals that the consistent model belongs to Scenario 6. The projection of
the reference map onto the PCA basis corresponding to Scenario 6 is shown in
Figure 8(c). Other models either present different directions of global continuity
or inaccurate ranges. The realizations from these 12 variogram models are used to
build 12 different PCA bases, which are combined to form a hybrid dictionary.
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Fig. 9 Alternative prior training data derived from 12 different variogram models; each box
contains four sample realization from the training data corresponding to a variogram model;
the alternative variogram models are obtained by using three variogram range combinations
(amax = 300m, amin = 240m), (amax = 600m, amin = 300m), and (amax = 100m, amin = 60m)
and four different azimuth values . The reference model is consistent with Scenario 6 with training
data U6

Figure 10 depicts the inversion solution at different iterations. The initial model
(Figure 8(d) and the top row of Figure 10) is projected onto all elements of the
hybrid dictionary, and all the prior geologic scenarios equally contribute to the
representation of the initial model. The global continuity in the permeability field
is captured within the first few iterations. At later iterations, the regularization
term fine-tunes the solution by selecting the geologic scenarios that best represent
the estimated parameter. Group 6, which has the correct variogram model, has
been identified as the most significant prior model (with largest �2-norm) after
convergence of the group-sparsity inversion algorithm. Figure 11 shows a summary
of the data match and forecast performance of the solution compared to the initial
and reference models in two production wells. The data match and prediction results
clearly show the improvements achieved after model calibration.
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Fig. 10 Results of group-sparsity inversion iterations for Example 2: (a) the coefficients of the
expansion using 12 different groups (PCA bases); (b) reconstructed log-permeability map; and (c)
the �2-norm of the coefficients of the PCA representation in each group. Groups with larger �2-
norm have greater contributions to the solution and persist during the iterations, whereas irrelevant
groups are assigned insignificant group �2-norm. Group 6 in this example stay active with a large
�2-norm while other groups disappear during inversion iterations

Two alternative ways may also be used to formulate and solve the above inverse
problem: (i) by using the same parameterization, i.e. � = [�1�2 . . . �p], with
�1-norm regularization (without group sparsity), and (ii) by combining all the
prior models and generating a single PCA parameterization. However, both of
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Fig. 11 The pressure and watercut data match (first four years) and forecasts (last two years)
for sample production wells. The group-sparsity regularization not only identifies the correct
variogram model, it also provides a calibrated model at convergence

these approaches provide inferior solutions. In the first case, the group sparsity, by
formulation, has been shown to be more effective in reconstructing the solution
as it imposes a stronger constraint on the problem. In the second case, a simple
least-square formulation is solved to search for the PCA coefficients in the low-rank
subspace defined by the leading PCs, which are not representative of any particular
prior (as they represent an aggregate of all prior models).

6 Conclusion

In this chapter, we discussed a general formulation for solving sparse PDE-
constrained inverse problems. In particular, we presented sparse inverse problem
formulations that use sparsity to regularize ill-posed problems that can arise in
various applications. Sparsity is an inherent property of many types of natural
images and can be used to improve the solution of ill-posed inverse problems
in which the solutions have sparse representations. Examples from multiphase
fluid flow in subsurface rock formations, which involve the solution of coupled
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PDEs to describe the underling physical processes, were used to demonstrate the
effectiveness of the method. To calibrate heterogeneous subsurface flow models
against dynamic data, scattered nonlinear measurements of flowrate and pressure
are often used. Spatially distributed rock flow properties are known to have a
sparse representation in a properly designed basis. High-resolution grid-based
description of these properties leads to over-parameterization. When combined with
data scarcity, over-parameterized descriptions often lead to problem ill-posedness,
introducing great difficulty in solving these inverse problems. Furthermore, prior
geologic scenarios that are typically used to regularize these ill-posed inverse
problems often involve significant uncertainty that should be taken into account
in formulating and solving these problems. We propose the use of learned sparse
geologic dictionaries and sparsity-promoting regularization functions as powerful
and robust approaches to address these issues. Specifically, we present a formulation
in which prior models are used as training data to learn sparse representations of
rock flow properties. We show that by promoting sparsity through minimization
of regular �1-norm of the solution in the learned k-SVD dictionary (along with
minimization of the predicted and observed data mismatch term) a better-posed
inverse problem can be obtained to reconstruct complex geologic patterns. In
addition, group-sparsity regularization that minimizes a mixed �1/�2-norm was
used to discriminate against multiple prior geologic scenarios using flow data. An
important implication of the latter is that it allows the use of dynamic flow data in
selecting, rejecting, and correcting prior geologic scenarios, a novel concept that
can improve traditional subsurface flow model calibration workflows.

Acknowledgements The content of this chapter is based on research partially funded by the US
Department of Energy, Foundation CMG, and American Chemical Society.

Appendix 1: k-SVD Dictionary Learning

The k-SVD algorithm is used to construct learned sparse dictionaries from a training
dataset. The algorithm is similar to the k-means clustering method and is designed to
find a dictionary � ∈ R

n×k containing k elements that sparsely represent each of the
training samples in Un×L = [u1 . . . ui . . . uL]. To achieve this goal, the algorithm
attempts to solve the following minimization problem:

V̂, �̂ = argminV,�

L∑

i=1

‖ui − �vi‖2
2 s.t., ‖vi‖0 ≤ S for i ∈ 1 : L

(31)

where Vk×L = [v1 . . . vi . . . vL] are the expansion coefficients corresponding to the
training data. Given the NP-hard nature of the problem, the k-SVD algorithm uses a
heuristic greedy solution technique by dividing the above optimization problem into
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Table 2 k-SVD algorithm

Initialization: Initialize dictionary with �(0) ∈ R
n×k . Set j = 1.

REPEAT until stopping criteria is met

a. Sparse Coding Step:

-Using a pursuit algorithm (e.g. OMP) compute V(j)
k×L = [v1v2 . . . vL] as the solution of

V(j) = argminvi
‖ui − �(j−1)vi‖2

2 s.t., ‖vi‖0 ≤ S for i ∈ 1 : L

b. Dictionary Update Step:

For each column c = 1, 2, . . . , k in �(j−1)

-Define the group of prior model instances that use this element

ωc = {i|1 ≤ i ≤ L, V(j)(c, i) �= 0}
-Compute the residual matrix Ec = U − ∑

i �=c φivc
T , where vc

T is the cth row of V(j)

-Restrict Ec by choosing columns corresponding to ωc , i.e. find Eω
c

-Apply rank-1 SVD decomposition Eω
c = A�B

-Update the dictionary element φc = a1 and the sparse representation vc by vω
c = �b1

-END

two subproblems: (i) sparse coding and (ii) dictionary update. In the sparse coding
step, for the current dictionary, a basis pursuit algorithm is used to find the sparse
representation for each member of the training dataset. In the dictionary update
step, the sparse representation obtained in the first step is fixed and the dictionary
elements are updated to reduce the sparse approximation error. These two steps
are repeated until convergence. Table 2 summarizes the k-SVD algorithm. Further
details about the k-SVD algorithm may be found in [2]. We note that for high-
dimensional training data the k-SVD dictionary learning can be computationally
expensive. The computational complexity of each iteration of k-SVD is O(L(2nk +
S2k + 7Sk + S3 + 4Sn) + 5nk2), where S is the sparsity level. One strategy to
improve the computational efficiency of the algorithm includes using segmentation
or approximate low-rank representations of the training data (to reduce n).

Appendix 2: IRLS Algorithm

We use the IRLS algorithm [14] to solve the �1-norm regularized least-square
minimization problem, that is:

min
v

J (v) = ‖v‖1 + λ2‖d − g(�v)‖2
2 (32)

At iteration n of the IRLS algorithm, the �1-norm is approximated using a weighted
�2-norm as follows:

min
v(n)

J (v(n)) =
∑

i

w
(n)
i v

(n)
i

2 + λ2‖d − g(�v(n))‖2
2 (33)
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where w
(n)
i = 1

(v
(n−1)
i

2+ε(n))0.5
, (n) stands for the iteration n, and ε(n) is a sequence of

small numbers (that converge to zero with increasing n). Using this approximation
of the objective function, and a first-order Taylor expansion for g(�v(n)), the
objective function in (33) takes the form:

min
v(n)

J (v(n)) =
∑

i

w
(n)
i v

(n)
i

2 + λ2‖d − g(�v(n−1)) − Gv
(n)(v(n) − v(n−1))‖2

2

(34)
Here, Gv

(n) is the Jacobian matrix of g(.) with respect to v at v = v(n−1). The
updated solution at iteration n can be easily found by taking the derivative of the
above convex function w.r.t. v(n) and setting it to zero.

Appendix 3: Group-Sparsity Inversion

The objective function for group-sparsity regularization can be expressed as:

min
v

J (v) =
p∑

i=1

‖vi‖2 + λ2‖d − g(�v)‖2
2 (35)

where the notations are discussed in the text. At iteration n, using the Gauss-Newton
method and the first-order Taylor series for g(�v), the linearized version of the
above function takes the form:

min
v(n)

J (v(n)) =
p∑

i=1

(

si∑

j=1

(v
j
i

(n)
)2)

1
2 +λ2‖d − g(�v(n−1)) − Gv

(n)(v(n) − v(n−1))‖2
2

(36)
where Gv

(n) is the Jacobian matrix of g(v), and v
j
i is the j th basis in the ith group.

Denoting �d(n) = d − g(�v(n−1)) + Gv
(n)v(n−1), (36) can be simplified to:

min
v(n)

J (v(n)) =
p∑

i=1

(

si∑

j=1

(v
j
i

(n)
)2)

1
2 + λ2‖�d(n) − Gv

(n)v(n)‖2
2 (37)

The derivative of the regularization term with respect to v
j
i

(n)
can be approxi-

mated as:

v
j
i

(n)

(
∑si

k=1(v
k
i

(n)
)2)

1
2

≈ v
j
i

(n)

(
∑si

k=1(v
k
i

(n−1)
)2 + εi

(n))
1
2

(38)

where εi
(n) is a small positive number that is used to avoid zero denominators. Note

that vk
i

(n)
in the denominator is approximated as vk

i

(n−1)
. Choosing ε such that 0 <

εi
(n) < εi

(n−1) and lim
n→∞εi

(n) = 0, it can be shown that this approximation does
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not change the solution of the original minimization problem. The iterative solution
of (37) can now be derived as:

(�(n) + αGv
(n)T Gv

(n))v(n) = αGv
(n)T �d(n) (39)

where α = 2λ2, and �(n) is a diagonal matrix with diagonal entries
1

(
∑si

k=1(v
k
i

(n−1)
)2+εi

(n))
1
2

.
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