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Abstract Full waveform inversion is a PDE-constrained nonlinear least-squares
problem dedicated to the estimation of the mechanical subsurface properties with
high resolution. Since its introduction in the early 80s, a limitation of this method
is related to the non-convexity of the misfit function which is minimized when the
method is applied to the estimation of the subsurface wave velocities. Recently, the
definition of an alternative misfit function based on an optimal transport distance has
been proposed to mitigate this difficulty. In this study, we review the difficulties for
exploiting standard optimal transport techniques for the comparison of seismic data.
The main difficulty is related to the oscillatory nature of the seismic data, which
requires to extend optimal transport to the transport of signed measures. We review
three standard possible extensions relying on a decomposition of the data into its
positive and negative part. We show how the two first might not be adapted for full
waveform inversion and focus on the third one. We present a numerical strategy
based on the dual formulation of a particular optimal transport distance yielding
an efficient implementation. The interest of this approach is illustrated on the 2D
benchmark Marmousi model.
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1 Full Waveform Inversion as a PDE-Constrained Nonlinear
Optimization Problem

Full waveform inversion (FWI) is a high resolution seismic imaging technique
which aims at reconstructing subsurface mechanical properties such as wave
velocities, density, attenuation, or anisotropy parameters, from the recording of
seismic waves at the surface. Compared to conventional tomography strategies,
based on the interpretation of arrival times only, FWI should exploit the totality
of the seismic signal, which is expected to provide higher resolution estimates
of the subsurface parameters, in the limit of half the shortest wavelength of the
propagated signal following the theory of diffraction tomography [12]. A recent
review of FWI is proposed by Virieux et al. [43]. FWI is usually formulated as
the minimization over the space of the subsurface parameters of the misfit between
predicted and observed data. The predicted data is computed through the solution
of partial differential equations (PDE) describing the seismic waves propagation. In
the simplest settings, which we consider in this study, the acoustic approximation is
adopted. Using this formalism, the problem is cast as the following PDE-constrained
nonlinear optimization problem [18, 40]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
vP

J (vP ) = g(dcal, dobs) + αR(vP ), vP (x) ∈ C p(Ω), Ω ⊂ Rd

1

ρvP (x)2
∂ttu(x, t) − div

(
1

ρ(x)
∇u(x, t)

)

= s(x, t), (x, t) ∈ Ω × [0, T ],
dcal(xr , t) = H(u)(xr , t), (xr , t) ∈ Γ × [0, T ].

(1)

In the system (1), the spatial domain Ω is a subset of Rd , where d = 2 or d = 3,
while Γ denotes a subset of the border ∂Ω . The time interval is defined by [0, T ],
where T > 0. The control variable is denoted by vP (x): this is the pressure wave
(P-wave) velocity, which is supposed to be smooth up to a certain level of regularity
p ∈ N . The P-wave velocity is generally the main parameter to be reconstructed,
even if the density ρ(x) can also be included in the inverse problem yielding a
so-called multiparameter problem (see [32] for a review on multiparameter FWI).
The functional J (vP ) measures the misfit between predicted data dcal(xr , t) and
observed data dobs(xr , t) through a misfit measurement function g which is often
taken as the least-squares norm

g(dcal, dobs) = 1

2
‖dcal − dobs‖2

L2 . (2)

It shall be noted that this least-squares distance measure is local: each sample of
the observed data is compared with its synthetic counterpart at the same position in
the data space, neglecting any information which could come from the neighboring
samples. As a result, the least-squares distance is unable to detect shifted patterns
between two datasets.
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A regularization term R(vp), weighted by a positive coefficient α, is also
generally added to the misfit measurement to reduce the null space of the underlying
inverse problem. Usual choices for R(vP ) include prior information regularization,
or penalization of the first-order spatial derivatives (Tikhonov regularization)

R(vP ) = 1

2
‖vP − vP,0‖2

L2 , R(vP ) =
d∑

i=1

1

2
‖∂xivP ‖2

L2 . (3)

The calculated data dcal(xr , t) is computed from the solution u(x, t) of the acoustic
wave equation through the observation operator H(u). In practice, this observation
operator simply extracts the value of the wavefield u(x, t) at the receivers’ locations.

A Lagrangian function associated with the PDE-constrained problem (1) is

L(vP , dcal, u, λ1, λ2) = g(dcal, dobs) + αR(vP )

+
ˆ

xr∈Γ

ˆ T

0
(dcal(xr , t) − Hu(xr , t)) λ2(xr , t)dxrdt

+
ˆ

x∈Ω

ˆ T

0

(
1

ρv2
P

∂ttu(x, t)

− div

(
1

ρ
∇u(x, t)

)

− s(x, t)

)

λ1(x, t)dxdt

(4)

First-order Karush-Kuhn-Tucker conditions give necessary conditions to charac-
terize the solution of (1). They are obtained by canceling the first-order partial
derivatives of the Lagrangian operator.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2

ρv3
P

ˆ T

0
∂ttu(x, t)λ1(x, t)dt + α∇R(vP ) = 0

dcal = H(u)

1

ρv2
P

∂ttu − div

(
1

ρ
∇u

)

= s

λ2 = −∂dcal
g(dcal, dobs)

∂ttλ1 − ρv2
P div

(
1

ρ
∇λ

)

= −∂uH(u)λ2

(5)

(6)

(7)

(8)

(9)

Instead of solving the Karush-Kuhn-Tucker system iteratively through a Newton
algorithm, a “reduced space” method is preferred [31] for efficiency. The misfit
function J (vP ) is minimized following iterative local optimization methods for
smooth nonlinear functions, which rely on the ability to compute its gradient
∇J (vP ). This gradient is computed from the equation
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∇J (vP ) = − 2

ρv3
P

ˆ T

0
∂ttu(x, t)λ1(x, t)dt + α∇R(vP ), (10)

where fields u(x, t) and λ1(x, t) are obtained through the solution of the Equations
from (6) to (9). In particular, using the L2 norm for the definition of the misfit
measurement function g yields the simple expression

λ2 = −(dcal − dobs). (11)

The reduced space method thus yields an efficient strategy to compute the gradient
∇J (vP ). This technique, also introduced as the adjoint-state method within the
optimal control theory [21], has been known for a long time in seismic imaging
[9] and in weather forecasting [19]. A review of the adjoint-state method and its
application in seismic imaging has been proposed by Plessix [34].

Among different minimization strategies, the nonlinear conjugate gradient
method, the quasi-Newton l-BFGS [30], or the truncated Newton approach [29]
are used to solve the FWI problem (see [25] for a review of standard minimization
algorithms used in FWI).

Since its introduction in the 80’s, one of the main challenges for FWI is related
to the non-convexity of the P -wave velocity reconstruction problem. For practical
applications, the size of the discrete problem prevents the use of global or semi-
global optimization strategies (Monte-Carlo or genetic algorithms, for instance): in
2D, the number of unknowns easily reaches O(106), in 3D this number grows up to
O(109). The use of local optimization strategies thus requires to start the iterative
process from a vP model close enough from the solution, otherwise the method
converges to a local minimum. Wave physics analysis provides useful information
to better assess what are the requirements that an initial model should satisfy to
ensure the convergence toward the global minimum.

The non-convexity of the misfit function with respect to the P -wave velocity
is related to the choice of the function g(dcal, dobs) to measure the discrepancy
between observed and calculated data. Seismic observations are in essence oscil-
latory signals. Macroscale P-wave velocity perturbation mainly affects the seismic
data by modifying the propagation time rather than the amplitude of the seismic
events [16]. As a result, observed and calculated data mainly differ through time-
shifts of the different seismic arrivals. The function g(dcal, dobs) should thus be
convex with respect to these time-shifts. This is not the case for the L2 distance
which is used in practice. This is illustrated in Figure 1 where the seismic data
is schematically represented as a periodic sinusoidal signal. When the signals are
shifted by a multiple of one period of the signal, the L2 differences between the
signals reach a local minimum: this is what is referred to a cycle skipping, or
phase ambiguity problem, in the FWI community. Avoiding these local minima thus
requires to start the minimization from less than half-a-phase shift. In other words,
the initial velocity model should be sufficiently accurate to predict the kinematic of
the wave propagation up to half-a-phase shift.
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Fig. 1 Schematic example of the cycle skipping/phase ambiguity issue on sinusoidal signals. As
soon as the initial shift is larger than half a period of the signal, the fit of the signal using a least-
squares distance is performed up to one or several phase shifts. One may try to fit the n + 1 dashed
wriggle of the top signal with the n continuous wriggle of the middle signal moving to the wrong
direction. The bottom dashed signal predicts the n wriggle in less than half-period leading to a
correct updating direction (figure from [44])

Mitigating this non-convexity has been the aim of numerous methods proposed
during the past decades. Three main lines of investigation have been followed. The
first one relies on the design of hierarchical schemes. The data is interpreted through
a sequence of FWI problems, the estimation obtained from the problem i being used
as an initial guess for the problem i +1. For each FWI problem, only a subset of the
data is interpreted. The usual data decomposition is performed in the frequency
domain: the data is interpreted from low-to-high frequencies. Low frequency
components of the signal have a larger period, therefore the requirement on the
initial model to fit the observed data within half-a-period of the signal is partially
relaxed. Additional level of hierarchy can also be applied (time-windowing and
offset selection, for instance) following layer stripping approaches [8, 35, 37]. The
second line of investigation is based on the modification of the misfit measurement
function g(dcal, dobs). Cross-correlation functions have been first investigated [23],
and later on warping techniques [15], deconvolution approaches [22, 45] as well
as envelope and phase separation [6, 14]. The third line of investigation relies on
probing the consistency of the velocity model by building reflectivity images using
different subset of the data. The velocity is updated such that the different reflectivity
images become similar (see [39] and references therein for a review). These methods
are known as (extended) image-domain techniques.
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None of these approaches has completely overcome the cycle skipping or phase
ambiguity problem. Hierarchical approaches relax the constraint on the accuracy of
the initial velocity model by working first at low frequencies; however, this strategy
is limited by the lowest available frequency, which is most of the time not low
enough to sufficiently constrain the model. The different modifications of the misfit
function proposed so far also enables to start from an initial velocity model further
away from the solution; however, this is often at the expense of the resolution of
the final estimation. Image-domain techniques also exhibit interesting properties in
terms of convexity of the misfit function; however, the computation cost associated
with the repeated computation of reflectivity images seems to preclude their use to
large-scale datasets, especially in 3D configuration.

In this study, we discuss how optimal transport distances could be used to define
an alternative misfit function measurement g in the framework of FWI. In particular,
these distances provide natural tools to go beyond the point-to-point comparison
underlaid by the least-squares distance by performing global comparison. The field
of optimal transport has been very active in the last years, as testified by the number
of textbooks published on this topic recently [2, 36, 41, 42]. Recent applications
in image processing demonstrate the interest of optimal transport distance to
compare images, notably for its ability to detect shifted patterns from one image
to another [20]. We discuss what are the main difficulties when applying optimal
transport distance for the comparison of seismic data. In particular, we show that
the oscillatory nature of the seismic data requires to extend optimal transport to
the comparison of signed measures, which is a nontrivial problem. We review three
different propositions found in the literature relying on the decomposition of the
data in its positive and negative part. We show how the two first options might not be
adapted for full waveform inversion. We thus focus on the third possibility and show
how an efficient implementation can be obtained, as we have presented it in previous
studies [26, 28]. We present numerical results obtained on the 2D Marmousi case
study, a benchmark in the seismic imaging community, which illustrate the interest
of this approach.

In Section 2, we discuss the optimal transport problem formulation for positive
measures and present a state-of-the-art for its extension to the comparison of signed
measures. In Section 3, we present the alternative strategy we have promoted in
previous studies and its application to the 2D Marmousi case study. Conclusion and
perspectives are given in Section 4.

2 Optimal Transport for Full Waveform Inversion

2.1 Basics on Optimal Transport

Optimal transport has its roots in the work of a French scientist named Gaspard
Monge, in an attempt to devise the best strategy to move piles of sand to a building
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site. The aim was to minimize the volume of the sand to be displaced as well as the
distance on which it had to be displaced. In modern mathematics, an expression of
this problem is the following. Consider two probability measures μ ∈ P(X) and
ν ∈ P(Y ) (μ would represent the initial configuration of sand and ν the targeted
one). We consider the mapping T (x) from X to Y such that

{
X −→ Y

T : x −→ T (x),
(12)

The push forward distribution of μ through the mapping T is denoted by T#μ, such
that for any measurable subset A ⊂ Y , we have

(T#μ) (A) ≡ μ
(
T −1(A)

)
= ν(A). (13)

In this framework, the original Monge problem is formulated as

inf
T

{ˆ
X

||x − T (x)||dμ(x), T#μ = ν

}

. (14)

This problem has not necessarily a solution, and when the solution exists, it is
difficult to compute because of the nonlinear constraint T#μ = ν.

A relaxation of this problem has been proposed by Kantorovich [17], under the
form

inf
γ

{ˆ
X×Y

c(x, y)dγ (x, y), γ ∈ Π(μ, ν)

}

, (15)

where the ensemble of transport plans Π(μ, ν) is defined by

Π(μ, ν) = {γ ∈ P(X × Y ), (πX)# γ = μ, (πY )# γ = ν} . (16)

The operators πX and πY are the projectors on X and Y , respectively. This relaxation
is the cornerstone of modern application of optimal transport as the problem (15)
has always a solution which coincides with the one of the original Monge problems
when this one exists. The problem (15) generalizes (14) in the sense that, instead
of considering a mapping T transporting each particle of the distribution μ to the
distribution ν, it considers all pairs (x, y) of the space X × Y and for each pair
defines how many particles of μ go from x to y.

In discrete form, the Kantorovich problem becomes a linear programming
problem of the form

min
γij

∑

ij

γij cij , γ ∈ Π(μ, ν) (17)
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where

Π(μ, ν) = {γ ≥ 0,
∑

j=1

γij = μi,
∑

i=1

γij = νj } (18)

The entry γij represents how much mass should be moved from xi to yj while
cij measures the distance between xi to yj . The constraint ensures that the initial
distribution is equal to μ while the transported distribution through the transport
plan γ is equal to ν.

Of particular interest, optimal transport induces distances between distribution,
named as Wasserstein distances or earth mover’s distances (EMD). They are
defined by

Wp(μ, ν) =
⎛

⎝min
γij

∑

ij

γij‖xi − yj‖p, γ ∈ Π(μ, ν)

⎞

⎠

1/p

(19)

One interest for using such distance for signal processing applications is their ability
to detect shifted pattern from one signal to another. This property is also referred to
in the literature as the fact that Wp distances should be seen as “horizontal distances”
while Lp distances should be seen as “vertical distances” [36]. The Wp distance
between two shifted probability distributions is convex with respect to this shift,
while the Lp distance is insensitive to this shift.

2.2 Applying Optimal Transport for the Comparison of Seismic
Data: The Difficulty of Transporting Signed Measures

The existence of a solution to the optimal transport problem (16) depends on two
assumptions that shall be satisfied by the measures μ and ν

1. μ and ν shall be positive
2. μ and ν shall have the same total mass

ˆ
X

dμ(x) =
ˆ

X

dν(x). (20)

In this section, for the sake of simplicity, we assume that the two measures μ and ν

are defined on the same space X . This is the case when μ and ν represent seismic
data. Seismic data do not satisfy the positivity requirement due to its oscillatory
nature. However, the zero frequency component of each seismic trace is zero

∀xr ,

ˆ T

0
dcal(xr , t)dt =

ˆ T

0
dobs(xr , t)dt = 0. (21)
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Therefore, we have

ˆ
xr

ˆ T

0
dcal(xr , t)dtdxr =

ˆ
xr

ˆ T

0
dobs(xr , t)dtdxr = 0. (22)

Thus, interpreting seismic data as density functions, Equation (22) shows that the
seismic data satisfy the second assumption: observed and calculated data have the
same total mass, which is zero.

The main difficulty to apply optimal transport to the comparison of seismic data
thus relies on the non-positivity of the seismic data. This is a well-identified issue
in the optimal transport community. The question how to extend optimal transport
to signed measures is investigated in particular by Ambrosio et al. [2] and Mainini
[24]. Mainini makes use of the following Jordan-Hahn decomposition,

μ = μ+ − μ−, (23)

where μ+ (respectively, μ−) is the positive part of μ (respectively, the negative part
of μ). Three strategies are reviewed in [24] to extend optimal transport to signed
measures. The corresponding extension of the Wp distances to signed measures
is introduced as Wp,i(μ, ν), i = 1, 2, 3 in the following. The three strategies
proposed by Mainini are

1. Transport separately the positive and negative part of the measures

Wp,1(μ, ν) = Wp(μ+, ν+) + Wp(μ−, ν−) (24)

2. Transport the absolute value of the measures

Wp,2(μ, ν) = Wp(|μ|, |ν|) (25)

3. Perform the decomposition

Wp,3(μ, ν) = Wp(μ+ + ν−, ν+ + μ−) (26)

The first strategy, which might appear as the more intuitive, is the one proposed
originally by Engquist and Froese [13]. It is successfully applied to the comparison
of two time-shifted Ricker functions. The function W 2

2,1(μ, ν) exhibits a quadratic
convexity with respect to the time-shift between the two Ricker functions (Figure 2).
Two drawbacks can nonetheless be identified. First, the mass conservation between
positive and negative parts of the measure is not ensured. Second, there is no obvious
reason that the positive and negative parts of the seismic data should be uncorrelated.
For realistic application, the source wavelet s(x, t) is not known, and a prior source
estimation is required to perform FWI. Hence, we can expect this decomposition to
be strongly sensitive to errors in this source wavelet estimation.
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Fig. 2 Computation of the misfit function between two time-shifted Ricker signals depending
on the time-shift, using a least-squares distance and an optimal transport distance. While the
least-squares distance yields a non-convex misfit function with two local minima aside the
global minimum at zero time-shift, the optimal transport distance yields a perfectly convex misfit
function [13]

The second strategy is straightforward to apply; however, the mass conservation
between |μ| and |ν| is also not ensured. In addition, FWI misfit functions relying
on the absolute value of the data lose the sensitivity to the polarity of the signal.
As a result, positive or negative impedance contrasts cannot be distinguished. This
prevents from the correct interpretation of reflected waves.

The third strategy comes from the decomposition

μ − ν = (
μ+ + ν−) − (

ν+ + μ−)
. (27)

This method seems appealing as, for any μ and ν satisfying the mass conservation
assumption, one has

ˆ
X

dμ+ − dμ−(x) =
ˆ

X

dν+(x) − dν−(x), (28)

therefore ˆ
X

dμ+ + dν−(x) =
ˆ

X

dν+(x) + dμ−(x), (29)

and the mass conservation is ensured for the distance Wp,3.
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We thus see that the mass conservation assumption is not satisfied in the
definition of Wp,1,Wp,2. This might not be a shortcoming as severe as the one
associated with the transport of signed measures as several possibilities exist to
extend optimal transport to situation where the mass conservation is not ensured,
known as partial optimal transport. However, the correlation between the negative
and positive part of the seismic data is not accounted for using Wp,1. The sensitivity
to the polarity of the seismic data is lost using Wp,2. These two drawbacks are
severe. On the other hand, Wp,3 is based on a formulation for which the mass
conservation is ensured and only positive measures are compared. For this reason,
we are interested in investigating the use of this strategy for FWI.

2.3 A Strategy Using the W1 Distance in Its Dual Form

2.3.1 Link Between the Dual W1 Distance and the Mainini Decomposition

As the size of seismic data easily reaches several millions of discrete parameters for
realistic FWI applications, we need to design a numerical strategy for large-scale
optimal transport problem with at most quasi-linear complexity.

Standard approaches for fast optimal transport computation encompass

• the direct solution of the Monge-Ampère equations [33]
• the solution of a fluid dynamic problem following the Benamou-Brenier formu-

lation [3]
• the solution of a regularized optimal transport problem following an entropic

regularization strategy [4, 11]

The last of this strategy can be applied for the computation of general Wp distances,
while the two first strategies are dedicated to the computation of the W2 distance.

Instead of relying on these developments, we rather propose another fast optimal
transport computation technique, dedicated to a particular instance of the W1
distance. The reason we focus on the W1 distance is related to the Mainini technique,
described in the previous paragraph, we want to apply. We explain it in the
following.

The very important duality result due to [17] states that the Kantorovich optimal
transport problem (16) is equivalent to the maximization problem

max
ϕ,ψ

ˆ
X

ϕ(x)dμ(x) +
ˆ

X

ψ(x)dν(x), ϕ(x) + ψ(x′) ≤ c(x, x′). (30)

In the particular case of the W1 distance, the dual problem (30) can be expressed
using a single potential function ϕ(x) as

max
ϕ∈Lip1(X)

ˆ
X

ϕ(x)d(μ − ν)(x), (31)
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where the space of 1-Lipschitz function over X is denoted by Lip1(X). This
simplification comes from the fact that for W1, we have

c(x, y) = |x − y| (32)

which is itself a distance over X × X (see [36] for a complete proof). Note that this
is not the case for Wp distances with p > 1.

Interestingly, using this duality result, we see that

W1,3(μ, ν) = W1(μ
+ + ν−, ν+ + μ−)

= max
ϕ∈Lip1(X)

ˆ
X

ϕ(x)d(μ+ + ν− − ν+ + μ−)(x),

= max
ϕ∈Lip1(X)

ˆ
X

ϕ(x)d(μ − ν)(x)

= W1(μ, ν)

(33)

This equality is important, as it reveals that through its particular dual formula-
tion, the distance W1 (31) can be computed for signed measures satisfying the mass
conservation assumption (22). Indeed, as it is mentioned in [20] and [5, 8.10.viii],
the problem

max
ϕ∈Lip(X)

ˆ
X

ϕxdμ(x), (34)

defines the norm ‖μ‖∗
KR on the space of signed measures with first-order moment

equal to zero

ˆ
X

dμ(x) = 0. (35)

We have mentioned that for seismic data, the measure μ− ν satisfies (35), therefore
we have

{

max
ϕ∈Lip1(X)

ˆ
X

ϕ(x)d(μ − ν)(x),

}

= ‖μ − ν‖∗
KR (36)

In addition, this shows that the Mainini decomposition is directly embedded in the
dual formulation of W1 as soon as signed measures are involved.

This has the following important advantage for our application: there is no need
to numerically perform the Jordan-Han decomposition into positive and negative
part of the data to compute our misfit function. This could be problematic as we
minimize this misfit function through local optimization strategies for differentiable
functions, relying on the gradient and the Hessian of this function. As the Jordan-
Han decomposition is not differentiable (by definition), the resulting misfit function
would not be differentiable, and we would need to use optimization strategies for
non-smooth misfit functions.
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Note that in the case the mass conservation assumption is not satisfied, the norm
‖.‖∗

KR can be easily extended to the Kantorovich-Rubinstein norm, defined by

‖μ−ν‖KR =
{

max
ϕ

ˆ
X

ϕ(x)d(μ − ν)(x), ϕ(x) ∈ Lip1(X), ‖ϕ‖∞ < 1

}

(37)

This problem admits a solution even in the case μ − ν does not satisfy (35). It
might be more flexible to use for realistic application as the mass conservation is
satisfied only at machine precision, which might occur instabilities when using the
formulation (31).

In a series of articles [26–28], we have investigated the use of this Kantorovich-
Rubinstein norm for realistic FWI applications. In the following, we summarize the
numerical method developed in these studies to compute this norm.

2.3.2 Numerical Method

We consider in the following the computation of the Kantorovich-Rubinstein norm
for dobs(xr , t) − dcal(xr , t). In discrete form, this is equivalent to the solution of the
problem

max
ϕrn

Nr∑

r=1

Nt∑

n=1

ϕrn ((dobs)rn − (dcal)rn) ,

∀r, n, r ′, n′ |ϕrn − ϕr ′n′ | ≤ ‖(xr , tn) − (x′
r , t

′
n)‖,

∀r, n, |ϕrn| ≤ 1

(38)

where the integer r is the index associated with the receiver coordinate xr and the
integer n is the index associated with the time coordinate t .

We denote by N = Nr × Nt the total number of discrete samples associated
with one dataset. In this framework, the computation of the Kantorovich-Rubinstein
norm is a linear programming problem with O(N) unknowns and O(N2) con-
straints. For realistic application, N easily reaches O(106), already for 2D problems.
It is therefore important to reduce the number of constraints of the problem to reach
feasible complexity algorithms.

With this purpose, we focus on the particular case where, instead of the Euclidean
distance ‖.‖, we use the �1 distance we denote by |.| to measure the distance between
(xr , tn) and (x′

r , t
′
n). In [28], we show that satisfying the N2 constraints

∀r, n, r ′, n′ |ϕrn − ϕr ′n′ | ≤ |(xr , tn) − (x′
r , t

′
n)| = |xr − x′

r | + |tn − t ′n| (39)

is equivalent to satisfying the 2N constraints

∀r, n |ϕrn − ϕr+1,n| ≤ |xr − xr+1| |ϕrn − ϕr,n+1| ≤ |tn − tn+1| (40)
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This is simply due to the “Manhattan” property of the �1 norm. This yields the
following �1 Kantorovich-Rubinstein problem

max
ϕrn

Nr∑

r=1

Nt∑

n=1

ϕrn ((dobs)rn − (dcal)rn) , ∀r, n

|ϕrn − ϕr+1,n| ≤ |xr − xr+1|

|ϕrn − ϕr,n+1| ≤ |tn − tn+1|

|ϕrn| ≤ 1

(41)

which is a linear programming problem with O(N) unknowns and O(N) con-
straints.

In [28], we have detailed how this problem can be recast as the convex non-
smooth optimization problem

max
ϕ

f1(ϕ) + f2(Aϕ), (42)

where

f1(ϕ) =
Nr∑

r=1

Nt∑

n=1

ϕrn ((dobs)rn − (dcal)rn) , f2(ψ) = iK(ψ). (43)

The function iK is the indicator function on the unit hypercube K such that

iK(x) =
∣
∣
∣
∣
0 if x ∈ K

+∞ if x /∈ K,
(44)

The operator A is the rectangular real matrix

A = [
Dxr Dt IN

]T
, (45)

where IN is the real identity matrix of size N and Dxr , Dt are the forward finite-
difference operators

⎧
⎪⎨

⎪⎩

(
Dxr ϕ

)

rn
= ϕr+1,n − ϕrn

Δxr

,

(Dtϕ)rn = ϕr,n+1 − ϕrn

Δt
,

(46)

Efficient strategies based on proximal splitting can be used to solve problems
such as (42), where the functions fi might not be differentiable. Among several
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γ > 0, y0
1 = 0, y0

2 = 0, z0
1 = 0, z0

2 = 0;
for n = 0, 1, . . . do

ϕk = (
IN + AT A

)−1 [(
yk

1 − zk
1

) + AT
(
yk

2 − zk
2

)]
;

yk+1
1 = proxγf1

(
ϕk + zk

1

)
;

zk+1
1 = zk

1 + ϕk − yk+1
1 ;

yk+1
2 = proxγ iK

(
Aϕk + zk

2

)
;

zk+1
2 = zk

2 + Aϕk − yk+1
2 ;

end
Algorithm 1: SDMM method for the solution of the problem (42)

possibilities, we choose the simultaneous direction method of multipliers (SDMM),
which is well described in [10], for its good convergence properties. The method
can be summarized as the Algorithm 1. The proximity operator can be seen as
the generalization of the convex projection operator. For a given function f , it is
defined as

proxf (x) = arg min
y

f (y) + 1

2
‖x − y‖2

2, (47)

For the particular case of the function f1 and f2, closed-form formulations exist

proxγf1
(ϕ) = ϕ − γ (dobs − dcal), (48)

∀i = 1, . . . , P ,
(
proxγf2

(x)
)

i
= (

proxiK
(x)

)

i
=

∣
∣
∣
∣
∣
∣

xi if −1 ≤ xi ≤ 1
1 if xi > 1

−1 if xi < −1.

(49)

The closed-form formulations (48) and (49) are inexpensive to compute with an
overall complexity in O(N) operations. However, the SDMM algorithm requires
the solution of a linear system involving the matrix I + AT A. In [28], we show that
the matrix AT A is a second-order finite-difference discretization of the Laplacian
operator with homogeneous Neumann boundary conditions. Therefore, these linear
systems can be solved in O(NlogN) complexity using fast Fourier transform-
based algorithms [38], or in O(N) complexity using multigrid strategies [1, 7].
The combination of the reduction of the number of constraints using the property
of the �1 distance and the observation that the matrix I + AT A appearing in the
SDMM strategy actually corresponds to the discretization of the Poisson’s equation
offers the possibility to design an efficient numerical method to compute the �1
Kantorovich-Rubinstein norm for large-scale problems.

Following the notations used in Section 1, the use of the �1 Kantorovich-
Rubinstein as the misfit measurement function for FWI implies that

g(dobs, dcal) = ‖dcal − dobs‖KR (50)
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The computation of the gradient of the resulting misfit function only requires the
definition of the source of the adjoint field λ1(x, t) through

∂‖dcal − dobs‖KR

∂dcal

(51)

Interestingly, following the definition of ‖dcal − dobs‖KR , if we denote by ϕ the
solution of the maximization problem (42), we have

∂‖dcal − dobs‖KR

∂dcal

= ϕ (52)

As a consequence, the computation of the solution to the problem (42) yields
simultaneously the value of the misfit function, through the value of the criterion
at the maximum, as well as the quantity ϕ required to compute the gradient of the
misfit function through the adjoint-state approach. The solution of a single optimal
transport problem per seismic source is thus required at each iteration of FWI.

3 Example of Application of the Kantorovich-Rubinstein
Norm to FWI

In order to illustrate the property of the Kantorovich-Rubinstein norm for the
interpretation of seismic data, we first reproduce the experiment proposed in [13]
where the distance between shifted in time Ricker signal is computed using the L2

distance and the W2 distance applied to the positive and negative part of the Ricker
separately. Here, instead of the W2 distance, we compute directly the Kantorovich-
Rubinstein distance without separating positive and negative parts of the signal. The
results are presented in Figure 3. Compared to the least-squares distance, a single
minimum is recovered. However, the convexity of the misfit function with respect to
the time-shift is lost. The loss of convexity is due to the signed nature of the Ricker
signal (presence of negative values). One could expect optimal transport to be able
to detect that the same pattern is shifted when comparing the Ricker, and that the
W1 distance would be proportional to this shift. This is not the case, which results
from the presence of negative values. However, an important feature is preserved,
with respect to the L2 distance: a single minimum is obtained, while the L2 distance
displays two local minima aside the global minimum. This prompts us to test the
use of the Kantorovich-Rubinstein norm to a more realistic case study.

To this purpose, we consider the Marmousi model presented in Figure 4(a).
A synthetic dataset is computed in the 2D acoustic constant-density approximation.
A fixed-spread surface acquisition is used, with 128 sources each 125 m and 168
receivers each 100 m, at 50 m depth. A Ricker source function centered on 5 Hz is
used to generate the synthetic dataset. The frequency content of the source is high-
pass filtered below 3 Hz to mimic realistic seismic data. In practical application,
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Fig. 3 Computation of the misfit function between two time-shifted Ricker signals depending
on the time-shift, using a least-squares distance (black) and the Kantorovich-Rubinstein distance
(red). We recover a single minimum; however, compared to the optimal transport distance used by
Engquist and Froese [13], the convexity of the misfit function is lost

Fig. 4 Marmousi model case study. Exact model (a), initial model 1 (b), initial model 2 (c), results
obtained with the L2 distance starting from model 1 (d), from model 2 (e), results obtained with
the �1 Kantorovich-Rubinstein distance starting from model 1 (f), from model 2 (g)

this frequency band is contaminated by noise, and therefore filtered out before
inversion. Two initial P-wave velocity models are considered: the first contains
the main features of the exact model, only with smoother interfaces (Figure 4(b)).
The second is a strongly smoothed version of the exact model with very weak
lateral variations and underestimated growth of the velocity in depth (Figure 4(c)).
Starting from these two initial models, we compare the FWI results obtained
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using a least-squares distance and the �1 Kantorovich-Rubinstein distance. The
minimization is performed using the l-BFGS algorithm [30] implemented in the
SEISCOPE optimization toolbox [25].

These results are presented in Figure 4(d–g). Starting from the first initial model,
a correct estimation of the P-wave velocity model is obtained, using both the L2

distance (Figure 4(d)) and the �1 Kantorovich-Rubinstein distance (Figure 4(f)).
The estimation of the low velocity zone at x = 11 km, z = 2.5 km is slightly
improved using the �1 Kantorovich-Rubinstein distance, as a high velocity artifact
located in this zone is computed using the L2 estimation. Starting from the second
initial model, only the results obtained using �1 Kantorovich-Rubinstein distance
are meaningful (Figure 4(g)). The poor initial approximation of the P-wave velocity
is responsible for the cycle skipping effect and the L2 estimation corresponds to a
local minimum of the misfit function (Figure 4(f)). The estimation obtained with
the �1 Kantorovich-Rubinstein distance is significantly closer from the true model,
despite low velocity artifacts in the shallow part at x = 1.5 km, z = 1 km and in
depth at x = 12 km, z = 3.4 km. This example illustrates the potential of optimal
transport for FWI: starting from a very crude approximation of the P-wave velocity,
a meaningful estimation is computed. In the same configuration, FWI based on the
least-squares distance fails and produces a heavily cycle skipped estimation.

4 Conclusion and Perspectives

The use of optimal transport distances for seismic imaging is promising. Comparing
seismic data through these distances should yield more convex misfit functions
with respect to the P-wave velocity parameter. However, the application of optimal
transport to the comparison of seismic data requires the extension of the standard
optimal transport problem to the transport of signed measures, which is not
straightforward. Standard decomposition techniques proposed in [24], which are
based on the negative and the positive part of the data, either are not adapted to FWI
(separate transport of the positive and negative part, transport of the absolute value
of the data) or lose the convexity property with respect to time-shifts which is one
of the key properties one would like to satisfy for FWI.

Nonetheless, in the particular case of the dual formulation of the W1 distance,
the optimal transport distance can be related to a norm in the space of signed
measure, the Kantorovich-Rubinstein norm. Hence, it can be directly use to compare
seismic data. This is the strategy we have followed in previous works and which is
summarized in this study. The results are encouraging. The resulting misfit function
is not convex with respect to time-shifts, however, it already allows to start the FWI
process from more crude initial velocity model, which denotes a wider valley of
attraction of the misfit function. This method has been already successfully applied
to 2D synthetic datasets in the context of deep water salt structures imaging (BP
2004 case study) and reflection dominated data (Chevron 2014 case study) [27] as
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well as to a 3D synthetic dataset (SEG/EAGE overthrust model) [28]. The method
should now be applied to 2D and 3D real datasets to further investigate the interest
of this strategy for FWI.

Despite the interesting results provided by the Kantorovich-Rubinstein norm, the
convexity property of the optimal transport distance with respect to shifted patterns
on the data one could expect is lost. Further investigations are thus required to
assess the feasibility of the design of a misfit function, based on optimal transport,
adapted to the comparison of seismic data, which would benefit from this convexity
property. Among different possibilities, one could think of the construction of
positive observable from the seismic data, such as its envelope, which could thus
be compared through Wp distances.
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