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Abstract In this chapter we give a brief overview of optimization problems with
partial differential equation (PDE) constraints, i.e., PDE-constrained optimization
(PDECO). We start with three potentially different formulations of a general
PDECO problem and focus on the so-called reduced form. We present a derivation
of the optimality conditions. Later we discuss the linear and the semilinear quadratic
PDECO problems. We conclude with the discretization and the convergence rates
for these problems. For illustration, we make a MATLAB code available at

https://bitbucket.org/harbirantil/pde_constrained_opt

that solves the semilinear PDECO problem with control constraints.

1 Introduction

This volume is aimed at early-career graduate students or whoever is interested in
entering into the field of PDE-constrained optimization (PDECO), i.e., optimization
problems with PDE constraints. The purpose of this particular chapter is to provide
a brief mathematical introduction to this topic with an emphasis on optimality
conditions and finite-element discretization. Most of the material presented here
is well-known and can be found in several textbooks. In particular, we mention
[14, 53, 56, 62, 81].

PDE-constrained optimization problems arise in many applications, for instance
in flow control [42] and shape optimization [43, 80]. To name a few: controlling
pollutants in a river [5]; drug delivery using magnetic fields [8, 9]; optimal
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placement of droplets on electrowetting on dielectric (EWOD) devices [7]; shape
optimization of microfluidic biochips [3, 4]. In the first two examples, the control
is distributed (confined to either the entire domain or a subdomain). In the third
example, the control acts on the boundary, and in the final example, the control is
the shape of the domain. These problems range from macroscale to microscale and
contain varying levels of difficulties due to the underlying physics.

A PDE-constrained optimization problem has four or five major components: i)
a control variable z; ii) state variable u; iii) a state equation (i.e., PDE or system of
PDEs) which associates a state u with every control z; iv) a cost functional J to be
minimized which depends on z and u; and, possibly, v) constraints imposed on z

(control constraints) or/and on u (state constraints). In the most abstract form, this
amounts to

minimize J (u, z) (1)

subject to u ∈ Uad and z ∈ Zad satisfying

e(u, z) = 0. (2)

Thus we want to minimize the cost J which is a function of the state u and the
control z. The state equation is given by (2) that represents a PDE or system of
PDEs (usually in the weak form) with u in an admissible set Uad and the control z

in an admissible set Zad .
To fully understand PDECO problems, the following topics must be considered:

(i) functional analysis of the problem; (ii) solver development; (iii) discretization
and software development. We shall briefly elaborate on each next, a more detailed
discussion will be given in the subsequent chapters. By analysis, we mean

• Existence, uniqueness, and regularity of a solution to (2).
• Existence and uniqueness of a solution to the PDECO problem (1)–(2).
• First-order necessary optimality conditions using adjoint equations.
• If possible the second-order necessary/sufficient conditions.

We can carry out the solver development, typically gradient based, either at
the continuous (infinite dimensional) level [49, 50, 82] or at the discrete (finite
dimensional) level [57, 66]. The choice depends on the two options (a) “First
discretize then optimize approach” or (b) “First optimize then discretize approach.”
As the names suggest in case (a) one first discretizes the optimization problem
and then writes the optimality conditions at the finite dimensional level. On the
other hand, (b) requires first writing the optimality conditions at the continuous
level and then discretizing them. These two approaches in general are different.
For instance the discretization of the adjoint variables is tied to the state variables
if one proceeds with (a). On the other hand, (b) provides more flexibility with
respect to this particular aspect. There is no universal approach to select either
of the approaches [53, Section 3.2.4]. However, a choice should be made so that
the discrete system preserves the structure of the continuous problem. It is worth
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noting that the optimization methods can be derived directly at the continuous level.
In any event, one should avoid using off-the-shelf finite-dimensional algorithms
to solve PDECO problems. This may lead to mesh dependence,, i.e., when the
number of optimization iterations drastically increases with mesh refinement. In
order to overcome such issues, we must adapt such algorithms (if we are using them)
to incorporate functional-analytic concepts, for instance, suitable inner products.
Nevertheless, discretization and software development amounts to

• Either finite-difference, finite-volume, or finite-element discretizations of the
PDE and the control [19, 46, 70]. Other discretizations such as wavelets are
possible as well, see [30, 31, 78] and references therein.

• Analysis of discrete PDE and optimization solvers and check for mesh indepen-
dence [51, 82].

• Make the solver efficient, for instance, by using

– Adaptive finite-element methods (AFEM) [59, 67].
– Preconditioning techniques [15, 76, 84], time-parallel approaches [16, 32, 33,

83].
– Model reduction: Proper orthogonal decomposition [6, 41, 54, 55], reduced-

basis method [17, 45, 69].

• Software development, for instance, Rapid Optimization Library (ROL) [60],
Dolfin-Adjoint [36].

Our goal for this chapter is to collect the necessary ingredients to understand
basic PDECO problems. The remaining chapters of this volume provide compre-
hensive treatments of variational inequalities, algorithm development, optimization
under uncertainty, inverse problems, shape optimization, and several applications.
We introduce notation, relevant function spaces, and notions of derivatives. We
provide an abstract treatment to solve (1)–(2). Moreover, we discuss the linear
quadratic PDECO problem in detail (quadratic cost functional with linear elliptic
PDEs and control constraints), provide a flavor of the semilinear quadratic PDECO
problem, and discuss the necessary components for the numerical analysis of the
linear and semilinear quadratic PDECO problems. We also provide a MATLAB
implementation of the semilinear quadratic PDECO problem where the space
discretization is carried out using the finite-element method (FEM). We solve the
resulting optimization problem using the Newton-CG method, or LBFGS method
in the absence of the control constraints (Zad = Z) and the semismooth Newton
method in the presence of the control constraints. The code can be downloaded
using the link

https://bitbucket.org/harbirantil/pde_constrained_opt

The first part of this chapter is organized as follows: in Section 2, we first consider
a general optimization problem. We discuss existence of solutions to this problem
in Section 2.1 and provide notions of derivatives in function spaces in Section 2.2.
We conclude this section with the first-order necessary optimality conditions (cf.
Section 2.3). We apply the approach discussed in Section 2 to the general PDECO

https://bitbucket.org/harbirantil/pde{_}constrained{_}opt
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problem (1)–(2) in Section 3 and discuss the full and the reduced forms. Derivation
of optimality conditions is performed using both full and reduced forms.

In the second part of this chapter, we focus on the linear and semilinear quadratic
PDECO problems. We introduce basic Sobolev spaces in Section 4. In Section 5,
we mention the results relating to the well-posedness (existence and uniqueness
whenever possible) of linear elliptic PDEs and their regularity. Next in Section 6,
we formulate the linear quadratic PDECO problem and study its well-posedness in
the reduced form. Section 7 discusses the semilinear quadratic PDECO problem. We
conclude by introducing a finite-element discretization for the linear and semilinear
quadratic PDECO problems in Section 8.

2 Abstract Optimization Problem

The purpose of this section is to consider an abstract optimization problem and study
its well-posedness (cf. Section 2.1). We derive the first-order necessary optimality
conditions in Section 2.3. This requires the notions of derivatives in function spaces
(cf. Section 2.2). The results presented in this section will be applied to the PDECO
problems in the subsequent sections.

Let Z be a real reflexive Banach space and Zad is a closed convex subset. We
consider the minimization problem

min
z∈Zad

f (z). (3)

2.1 Existence

We first show existence of solution to the minimization problem (3) using the direct
method of calculus of variations. This is also known as the Weierstrass theorem.

Theorem 1 Suppose f : Z → R is weakly lower semicontinuous with Z a reflexive
Banach space and Zad ⊂ Z is closed convex. Let the lower γ -level set {z ∈ Zad :
f (z) ≤ γ } of f is nonempty and bounded for some γ ∈ R. Then problem (3) has an
optimal solution, i.e., there exists z̄ ∈ Zad such that f (z̄) ≤ f (z) for all z ∈ Zad . If
f is strictly convex then the solution is unique.

Proof The proof is based on the direct method of calculus of variations. Following
the proof of [14, Theorem 3.2.1], we can construct a minimizing sequence {zn}n∈N
contained in the lower γ -level set such that f (zn) → inf f (z) as n → ∞. Since the
lower γ -level set is convex and closed, therefore it is weakly sequentially closed [81,
Theorem 2.11]. In addition, since Z is reflexive and the lower γ -level set is bounded,
therefore it is weakly sequentially compact [81, Theorem 2.11]. As a result, there
exists a subsequence (not relabeled) such that

zn ⇀ z̄ in Z
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with z̄ in the lower γ -level set. It then remains to show that z̄ is the optimal solution.
Due to the weak lower semicontinuity of f , we conclude that

f (z̄) ≤ lim inf f (zn) = inf
z∈Zad

f (z).

Finally, in order to show the uniqueness let us assume that z1 and z2 be two optimal
solutions. Using the definition of strict convexity, we have

f

(
z1 + z2

2

)
<

1

2
f (z1) + 1

2
f (z2) = inf f (z)

which is a contradiction. This completes the proof.

After showing the existence of minimizers, a natural question to ask is what the
first-order optimality conditions are. However, we need to understand the notions of
derivatives in function spaces before we can proceed further.

2.2 Differentiation in Banach Spaces

We introduce the notions of derivatives in function spaces [18, 79]. As an example,
we shall apply the ideas to a quadratic cost functional. We will also derive the first-
order optimality conditions for the problem (3) based on the derivatives introduced
in this section.

Let L (A,B) denote the space of bounded linear operators from Banach space
A to B. Let (Z, ‖ · ‖Z), (V , ‖ · ‖V ) be real Banach spaces, Z ⊂ Z, open and
F : Z → V . Moreover, let z ∈ Z .

Definition 1 (Directional Derivative) F is said to be directionally differentiable
at z if the limit limt↓0

1
t
(F (z + th) − F(z)) exists in V for all h ∈ Z. If such limit

exists, we denote

F ′(z, h) := lim
t↓0

1

t
(F (z + th) − F(z))

and say that F ′(z, h) is the directional derivative of F at z in the direction h.

Notice that for a given z, h 
→ F ′(z, h) is not necessarily a linear mapping but it is
positive homogeneous, we refer to [79, 81] for examples.

Definition 2 (Gâteaux Derivative) F is said to be Gâteaux differentiable at z if
it is directionally differentiable and F ′(z, h) = F ′(z)h for F ′(z) ∈ L (Z, V ). We
refer to F ′(z) as the Gâteaux derivative at z.

We next introduce a stronger notion.
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Definition 3 (Fréchet Derivative) F is said to be Fréchet differentiable at z if and
only if F is Gâteaux differentiable at z and the following holds:

F(z + h) = F(z) + F ′(z)h + r(z, h) with
‖r(z, h)‖V

‖h‖Z

→ 0 as ‖h‖Z → 0.

We refer to F ′(z) as the Fréchet derivative at z.

Remark 1 (Few Facts)

(i) If the Fréchet derivative exists so does the Gâteaux derivative and they
coincide. However, the converse is not true in general.

(ii) We say that F is continuously Gâteaux differentiable if F ′(·) exists and F ′(·)
is continuous. In that case F is Fréchet differentiable [18, pp. 35–36].

(iii) Let E = G(F(z)) where F is Gâteaux differentiable at z and G is Fréchet
differentiable at F(z), then E is Gâteaux differentiable.1

Notice that when V = R then L (Z, V ) = Z∗. In addition if F is Gâteaux
differentiable at z then we have

F ′(z)h = 〈F ′(z), h〉Z∗,Z,

where Z∗ is the dual space of Z and 〈·, ·〉Z∗,Z denotes the duality pairing.
Before we conclude this subsection, we apply the above introduced definitions to

two prototypical quadratic functionals. The derivatives in both these examples are
Fréchet derivatives.

Example 1 Let (H, (·, ·)H ) be a real Hilbert space and F : H → R defined as
F(z) := ‖z‖2

H = (z, z)H , then for all z, h ∈ H we have

F(z + h) − F(z) = 2(z, h)H + ‖h‖2
H .

Thus,

F ′(z)h = (2z, h)H .

Using the Riesz Representation Theorem (identify H with its dual H ∗), we can
write

(∇F(z), h)H = 〈F ′(z), h〉H ∗,H ,

where ∇F(z) ∈ H is the representative of F ′(z) ∈ H ∗. We refer to ∇F(z) ∈ H as
the gradient of F at z. In the above case, we have ∇F(z) = 2z.

1 The chain rule only requires the outer function to be Hadamard directionally differentiable and
the inner function to be Hadamard (Gâteaux) directionally differentiable [79, Proposition 3.6].
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Remark 2 (Gradient) As can be seen from the above example, the expression that
we obtain by identifying F ′(z) ∈ H ∗ with an element of H is called the gradient
of F . We will use the notation ∇F(z) to denote the gradient. We further notice that
the definition of the gradient depends on the underlying inner product.

Example 2 Let (Z, (·, ·)Z), (H, (·, ·)H ) be real Hilbert spaces and ud ∈ H be fixed.
Let S ∈ L (Z,H). Consider E : Z → R,

E(z) = ‖Sz − ud‖2
H .

Then E(z) = G(F(z)), where G(v) = ‖v‖2
H and F(z) = Sz − ud .

Next using the chain rule, we obtain that

〈E′(z), h〉Z∗,Z = 〈G′(F (z)), F ′(z)h〉H ∗,H = (2v, F ′(z)h)H

= 2(Sz − ud, Sh)H = 2〈S∗(Sz − ud), h〉Z∗,Z,

where S∗ ∈ L (H ∗, Z∗) is the adjoint of S. Here we have assumed that S∗S and
S∗ud are well defined. Thus E′(z) = S∗(Sz − ud) ∈ Z∗. Since Z is a Hilbert
space, similar to the previous example, we can again apply the Riesz representation
theorem to get the representative ∇E(z) ∈ Z of E′(z).

2.3 First-Order Necessary Optimality Conditions

We conclude this section with the following result on the first-order necessary
optimality conditions.

Theorem 2 Let Z be a real Banach space (not necessarily reflexive). Let
f : Z → R be Gâteaux differentiable in Z , where Zad ⊂ Z ⊂ Z, Z open. If
z̄ ∈ Zad is a solution to (3) then the first-order necessary optimality conditions are

〈f ′(z̄), z − z̄〉Z∗,Z ≥ 0 ∀z ∈ Zad. (4)

In addition, if f is convex and z̄ ∈ Zad solves (4) then z̄ is a solution to (3), i.e., (4)
is necessary and sufficient.

Proof The proof of the first part is a direct consequence of the definition of Gâteaux
derivative. Let z ∈ Zad be arbitrary. By the convexity of Zad we have that z̄ + t (z −
z̄) ∈ Zad for all t ∈ [0, 1]. From the optimality of z̄ it follows that

f (z̄ + t (z − z̄)) − f (z̄) ≥ 0 ∀t ∈ [0, 1].

Dividing both sides by t and taking the limit as t approaches 0+, we arrive at (4).
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Next we use the convexity of f , i.e., for all t ∈ (0, 1] f (z̄ + t (z − z̄)) ≤ (1 − t)

f (z̄) + tf (z). By rearranging terms and taking the limit as t approaches 0+, we
arrive at

f (z) − f (z̄) ≥ 〈f ′(z̄), z − z̄〉Z∗,Z ∀z ∈ Zad.

We then obtain the desired sufficient condition by using (4).

Remark 3 We make the following observations:

i. Theorem 2 only requires f to be directionally differentiable and it holds after
replacing 〈f ′(z̄), z − z̄〉Z∗,Z by f ′(z, z − z̄).

ii. Notice that the existence of a z̄ ∈ Zad in Theorem 2 that solves (3) can be
satisfied under the assumptions of Theorem 1.

iii. In general, for a nonconvex f , we cannot expect to achieve a global minimum
but only a local minimum. We call z̄ ∈ Zad a local minimum to (3) if there
exists an ε > 0 such that

f (z̄) ≤ f (z) ∀z ∈ Zad ∩ Bε(z̄)

where Bε(z̄) ⊂ Z is a ball of radius ε centered at z̄.
iv. Equation (4) is known as a variational inequality.

3 Application to PDE-Constrained Optimization Problems

Let Z be a real reflexive Banach space and U, Y be real Banach spaces. We begin
by recalling the abstract problem (1)–(2)

min
(u,z)∈U×Z

J (u, z) subject to e(u, z) = 0, z ∈ Zad, u ∈ Uad, (5)

where J : U ×Z → R and e : U ×Zad → Y where Zad ⊂ Z is closed convex. We
refer to (5) as the full-space form. Before we proceed further, we remark that often
the cost functional J has two components

J (u, z) = J1(u) + J2(z),

where J1 : U → R is the objective (to be attained) and J2 : Z → R is the control
penalty.

Another way to write (5) is by letting X := U ×Z, Xad := Uad ×Zad . Then we
seek x ∈ Xad such that

min
x∈Xad

J (x) subject to e(x) = 0. (6)

Notice that (6) does not assume splitting of the control and state variables and is a
generalization of (5).
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By eliminating the state variables, we obtain a third form of (5) and we call
it the reduced form. Specifically, this requires existence of a solution operator:
S : Z → U , which assigns each control to a unique state

z 
→ S(z) = u(z) where u(z) satisfies e(u(z), z) = 0.

Thus we define the reduced cost functional as J : Z → R

J (z) := J (S(z), z).

Instead of (5) we then solve

min
z∈Zad

J (z)

subject to

S(z) ∈ Uad.

(7)

We remark that the formulations (5) and (7) are not equivalent in general. For
instance, there are applications where the solution operator S does not exist, i.e.,
the problem (7) may not have a solution but (5) is still solvable.

We next state existence result for (7). For simplicity of presentation from here on
we will assume that Uad = U , i.e., no state constraints. However the discussion can
be easily adapted to this more general situation.

Corollary 1 Let the following assumptions hold

(i) Zad ⊆ Z is closed and convex.
(ii) For each z ∈ Zad , there exists a unique mapping S(z) that solves

e(S(z), z) = 0.
(iii) S is weakly continuous, i.e., if zn ⇀ z in Zad then S(zn) ⇀ S(z) in U .
(iv) The lower γ -level set {z ∈ Zad : J (z) ≤ γ } of J is nonempty and bounded

for some γ ∈ R.
(v) J1 is continuous and convex and J2 is weakly lower semicontinuous.

Then there exists a solution to (7).

Proof We notice that since J1 is continuous and convex, therefore it is weakly lower
semicontinuous [81, Theorem 2.12]. The weak continuity of S combined with the
weak lower semicontinuity of J2 implies that J is weakly lower semicontinuous.
The proof then follows using Theorem 1.

We remark that in many applications we replace the lower γ -level set by either
boundedness of Zad or the coercivity of J2. More details will be provided in the
subsequent sections.

At times it is more suitable to directly work with the full-space (5) form as the
reduced form (7) may not even exist. This requires us to use the Lagrangian func-
tional; we will discuss this in Section 3.2. Another advantage of using Lagrangian
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formulation is the ease with which it allows us to derive the first- and second-order
derivatives. This will be discussed in Section 3.2. We first consider the derivation of
first-order optimality conditions for the reduced form in Section 3.1.

3.1 Reduced Form: First-Order Necessary Optimality
Conditions

Corollary 2 Let all the assumptions of Corollary 1 hold except Z being reflexive.
Let Z be an open set in Z such that Zad ⊂ Z such that z 
→ S(z) : Z → U is
Gâteaux differentiable with derivative

S′(z) ∈ L (Z,U),

(u, z) 
→ J (u, z) : U × Z → R is Fŕechet differentiable with

J ′(u, z) ∈ L (U × Z,R).

If z̄ is minimizer of (5) over Zad then the first-order necessary optimality conditions
are given by

〈S′(z̄)∗Ju(S(z̄), z̄) + Jz(S(z̄), z̄), z − z̄〉Z∗,Z ≥ 0 ∀z ∈ Zad, (8)

where Ju and Jz are the partial derivatives of J . If J is convex then the
condition (8) is sufficient.

Proof The proof is a consequence of Theorem 2. Let z̄ be a solution of (5) then from
Theorem 2 we have that 〈J ′(z̄), z − z̄〉Z∗,Z ≥ 0 for all z ∈ Zad . Combining this
with the directional derivative and setting h := z − z̄, we obtain that

〈J ′(z̄), h〉Z∗,Z = J ′(S(z), z)h = 〈Ju(S(z), z), S′(z)h〉U∗,U + 〈Jz(S(z), z), h〉Z∗,Z

where we have used the chain rule for derivatives which holds under the stated
differentiability assumptions on S and J . Since S′(z)∗ is well defined, we conclude
that

〈J ′(z̄), h〉Z∗,Z = 〈S′(z)∗Ju(S(z), z), h〉Z∗,Z + 〈Jz(S(z), z), h〉Z∗,Z

This completes the proof.

To further understand the structure of S′(z̄), we assume that the PDE constraint
function e is sufficiently smooth and the conditions of the implicit function theorem
hold. Upon differentiating the state equation, we obtain that

eu(S(z̄), z̄)S′(z̄)h = −ez(S(z̄), z̄)h.
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Subsequently, we arrive at

S′(z̄)h = −eu(S(z̄), z̄)−1 (ez(S(z̄), z̄)h) . (9)

Substituting this in (8), we obtain that

−
〈
ez(S(z̄), z̄)∗

(
(eu(S(z̄), z̄)−1)∗Ju(S(z̄), z̄)

)
, z − z̄

〉
Z∗,Z

+〈Jz(S(z̄), z̄), z − z̄〉Z∗,Z ≥ 0.

Introducing the adjoint variable p̄ and solving the adjoint equation,

eu(S(z̄), z̄)∗p̄ = Ju(S(z̄), z̄), (10)

we arrive at the following reformulation of (8)

− 〈
ez(S(z̄), z̄)∗p̄, z − z̄

〉
Z∗,Z + 〈Jz(S(z̄), z̄), z − z̄〉Z∗,Z ≥ 0. (11)

Notice that

J ′(z) = −ez(S(z), z)∗p + Jz(S(z), z) ∈ Z∗, (12)

is the derivative of J at z. We summarize the computation of J ′(z) in
Algorithm 1.

Algorithm 1 requires two PDE solvers (possibly nonlinear in Step 1, linear PDE
in Step 2).

In order to get the gradient, we can again apply the Riesz representation theorem
(under the assumption that Z is a Hilbert space or admits a representation) to get a
representative ∇J (z) satisfying

(∇J (z), v)Z = 〈J ′(z), v〉Z∗,Z ∀v ∈ Z.

Having the expression of the gradient in hand, we can develop a gradient-based
optimization solver. We will provide another derivation of the first-order optimality
conditions in Section 3.2 using the Lagrangian approach.

In order to design Newton-based methods, it is desirable to have the second-
order derivative information of the reduced functional. This can be obtained by
using either the reduced functional approach or the Lagrangian approach. We will
provide a brief discussion in the next section as well. More details will be given in
subsequent chapters, we also refer to [44, 53].

Algorithm 1 Derivative computation using adjoints
1: Given z, solve e(u, z) = 0 for the state u.
2: Solve the adjoint equation eu(u(z), z)∗p = Ju(u(z), z) for p.
3: Compute J ′(z) = Ju(u(z), z) − ez(u(z), z)∗p(z).
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3.2 Lagrangian Formulation

3.2.1 First-Order Optimality Conditions

The full-space form requires us to introduce Lagrangian functional: L : U × Zad ×
Y ∗ → R,

L(u, z, p) = J (u, z) − 〈e(u, z), p〉Y,Y ∗ . (13)

where Y ∗ is the dual space of Y (recall that e : U ×Zad → Y ). Notice that if we set
u = S(z) in (13) then e(S(z), z) = 0 and we obtain that

J (z) = J (S(z), z) = L(S(z), z, p) for any p ∈ Y ∗. (14)

Now if (ū, z̄, p̄) denotes a stationary point, then the partial derivatives of
L(u, z, p) with respect to u, z, and p at (ū, z̄, p̄) vanish and as a result we obtain

Lp(ū, z̄, p̄) = 0,

which reduces to the state equation

e(ū, z̄) = 0.

Also

Lu(ū, z̄, p̄) = 0, (15)

which is just the adjoint equation (10). Indeed

〈Lu(ū, z̄, p̄), ξ 〉U∗,U = 〈Ju(ū, z̄), ξ 〉U∗,U − 〈p̄, eu(ū, z̄)ξ 〉Y ∗,Y

= 〈Ju(ū, z̄) − eu(ū, z̄)∗p̄, ξ 〉U∗,U .

In other words

Lu(ū, z̄, p̄) = Ju(ū, z̄) − eu(ū, z̄)∗p̄.

Finally,

〈Lz(ū, z̄, p̄), z − z̄〉Z∗,Z ≥ 0 ∀z ∈ Zad,

which is equivalent to the variational inequality for the control (11). Indeed we have
that the gradient of the reduced function J at z (12) is

J ′(z) = Lz(u, z, p),

where u and p solve the state and the adjoint equations, respectively.
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Few comments are in order, first of all the above approach provides an elegant
way to derive the first-order necessary optimality conditions and is highly recom-
mended. As we will discuss below, the above approach also allows us to easily
derive the second-order derivatives for the reduced functional. Secondly, even
though the above introduced Lagrangian L is rigorous, however, we have not yet
addressed the question of existence of the Lagrange multiplier p which makes
the approach “formal.” The existence of Lagrange multiplier p can be shown by
using the Karush–Kuhn–Tucker (KKT) theory in function spaces [81, Chapter 6].
This theory requires the Robinson’s regularity condition [71] or the Zowe–Kurcyusz
constraint qualification [85], see [53, Chapter 1]. In certain cases, in particular, in
the absence of control constraints and linear PDE constraints, one can also use the
inf-sup theory for saddle point problems [39] to show existence of the Lagrange
multipliers.

3.2.2 Second-Order Derivatives

Next we focus on deriving the expression of the second-order derivative of the
reduced functional J . The second-order derivative information can significantly
improve the convergence rates for optimization algorithms. For instance in the
absence of control constraints, the first-order necessary optimality conditions are
J ′(z̄) = 0 in Z∗. In order to solve for z, one can use Newton’s method which
is quadratically convergent (locally). Each iteration of Newton’s method requires
solving

J ′′(z)v = −J ′(z) in Z∗ (16)

for a direction v ∈ Z. In general (for large problems), it is often too expensive to
store and factorize the Hessian. Instead it is often more practical to solve (16) using
iterative methods that only require Hessian-times-vector products. We will discuss
the computation of Hessian-times-vector product next. We remark that in case of
bound constraints on the control one can use a superlinearly (locally) convergent
semismooth Newton method [48, 56, 82].

We will proceed by using the Lagrangian approach. We operate under the
assumption that J and e are twice continuously differentiable.

From (14), we recall that

J (z) = J (u(z), z) = L(u(z), z, p)

u(z) = S(z) solves the state equation and p ∈ Y ∗ is arbitrary. After differentiating
this expression in a direction h1, we obtain that

〈J ′(z), h1〉Z∗,Z = 〈Lu(u(z), z, p), u′(z)h1〉U∗,U + 〈Lz(u(z), z, p), h1〉Z∗,Z.
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Again differentiating this expression in a direction h2 and choosing a particular p

that solves the adjoint equation (15), we arrive at

J ′′(z) = T (S(z), z)∗H(S(z), z, p)T (S(z), z),

where

T (u, z) =
(−eu(u, z)−1ez(u, z)

IZ

)

with IZ denoting the identity map on Z and H(u, z, p) is given by

H(u, z, p) =
(

Luu(u, z, p) Luz(u, z, p)

Lzu(u, z, p) Lzz(u, z, p)

)
.

Then one can compute the Hessian vector product by using Algorithm 2. Notice
that Algorithm 2 requires two linear PDE solvers in Steps 3 and 4. We refer to [53,
Chapter 1] and [44] for further details.

So far our approach has been general. For the chapter remainder, we will focus
on two particular examples where the cost functional is quadratic and the PDE
constraints are linear and semilinear elliptic PDEs. In order to develop the notion
of solutions to these PDEs, we first introduce Sobolev spaces.

4 Sobolev Spaces

In this section, we introduce the necessary function spaces to be used throughout
the chapter remainder. Let Ω ⊂ R

n be an open, bounded domain with Lipschitz
boundary ∂Ω . For 1 ≤ p < ∞, we denote by Lp(Ω) the Banach space

Lp(Ω) :=
{
v : Ω → R : v is measurable and

ˆ
Ω

|v(x)|p dx < ∞
}

Algorithm 2 Hessian-Times-Vector Computation
1: Given z, solve e(u, z) = 0 for u (if not done already).
2: Solve adjoint equation: eu(u, z)∗p = Ju(u, z) for p (if not done already).
3: Solve eu(u, z)w = −ez(u, z)v.
4: Solve eu(u, z)∗q = Luu(u, z, p)w + Luz(u, z, p)v.
5: Compute

J ′′(z)v = −ez(u, z)∗q + Luz(u, z, p)w + Lzz(u, z, p)v.
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with the norm ‖v‖Lp(Ω) := (´
Ω

|v(x)|p dx
) 1

p . These spaces are equivalence classes
of functions equal up to a set of measure zero [37]. In particular when p = 2,
we obtain L2(Ω) which is a Hilbert space with inner product (u, v)L2(Ω) =´
Ω

u(x)v(x) dx. When p = ∞, we obtain L∞(Ω), a Banach space with norm
‖v‖L∞(Ω) := ess supΩ |v|.

Moving forward, we use multi-index notation to define partial derivatives. For a
multi-index γ = (γ1, . . . , γn) ∈ N

n
0 := (N ∪ {0})n, we let its order to be |γ | :=∑n

i=1 γi . The associated |γ |-th order partial derivative of a function u at x is

Dγ u(x) := ∂ |γ |u
∂x

γ1
1 . . . ∂x

γn
n

(x).

Then we denote by Wk,p(Ω) the Sobolev spaces with the norm

‖u‖Wk,p(Ω) :=
⎧⎨
⎩

(∑
|γ |≤k

´
Ω

|Dγ u|p dx
)1/p

1 ≤ p < ∞∑
|γ |≤k ess supΩ |Dγ u| p = ∞.

If p = 2, we write

Hk(Ω) = Wk,2(Ω), k = 0, 1, . . .

which is a Hilbert space with inner product

(u, v)Hk(Ω) =
∑
|γ |≤k

(Dγ u,Dγ v)L2(Ω).

Notice that H 0(Ω) = L2(Ω).
We denote by W

k,p

0 (Ω) the closure of C∞
0 (Ω) with respect to Wk,p(Ω)-norm.

Thus u ∈ W
k,p

0 (Ω) if and only if there exist functions um ∈ C∞
0 (Ω) such that

um → u in Wk,p(Ω). The space H 1
0 (Ω) consists of functions u ∈ H 1(Ω) such that

u = 0 on ∂Ω,

in the trace sense. Using the Poincaré inequality ‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω), where
C = C(Ω), we have

‖u‖H 1(Ω) ≤ C‖∇u‖L2(Ω) ∀u ∈ H 1
0 (Ω).

Finally, we denote the dual of H 1
0 (Ω) by H−1(Ω). It is easy to see that L2(Ω) is

continuously embedded in H−1(Ω). For more details, we refer to [1].
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5 Second-Order Linear Elliptic PDEs

In this section, we study the second-order elliptic PDEs. In general, we cannot
expect classical solutions to these PDEs, therefore we first introduce the notion of
weak solutions in Section 5.1. We will also study the notion of ‘strong’ solutions for
this problem in Section 5.2. This higher regularity (strong solutions) will help us to
establish the approximability of the continuous solution using the finite-element
method (cf. Section 8). Strong solutions, in addition, also play a role in other
situations, for instance, in studying the regularity of multipliers in state-constrained
problems [20] and PDECO problems with variational inequalities [49].

5.1 Existence and Uniqueness

We begin this section by making certain uniform ellipticity assumptions.

Assumption 3 (Coefficient Matrix) Let A be an n × n matrix with entries aij for
1 ≤ i, j ≤ n. We assume that aij are measurable, belong to L∞(Ω), and are
symmetric, that is, aij (x) = aji(x) for all 1 ≤ i, j ≤ n and for a.e. x ∈ Ω . We
further assume that A is positive definite and satisfy the uniform ellipticity condition

∃ β ≥ α > 0 such that α|ξ |2 ≤ A(x)ξ · ξ ≤ β|ξ |2 ∀ξ ∈ R
n, a.e. x in Ω.

(17)

Given f , we consider the following linear elliptic PDE

−div (A∇u) = f in Ω

u = 0 on ∂Ω.
(18)

We understand (18) in a weak sense, i.e., given f ∈ H−1(Ω), we seek a solution
u ∈ H 1

0 (Ω) that satisfies

ˆ
Ω

A∇u · ∇v dx = 〈f, v〉−1,1, ∀v ∈ H 1
0 (Ω), (19)

where 〈·, ·〉−1,1 denotes the duality pairing between H−1(Ω) and H 1
0 (Ω).

Theorem 4 For every f ∈ H−1(Ω), there exists a unique weak solution u ∈
H 1

0 (Ω) that fulfills

‖u‖H 1(Ω) ≤ C‖f ‖H−1(Ω), (20)

where the constant C only depends on Ω and α.
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Proof The existence and uniqueness is due to the Lax–Milgram Lemma. Moreover,
the bound (20) immediately follows by using the fact that A is uniformly positive
definite and the Poincaré inequality [38].

Remark 4 In general, for Sobolev spaces W 1,p(Ω) with p �= 2, we need the inf-
sup conditions to prove Theorem 4. The Banach–Nečas theorem then guarantees
existence and uniqueness of u [34, Theorem 2.6]. The latter is a necessary and
sufficient condition. See also [67].

5.2 Regularity

It is imperative to understand the regularity of solution u to (19). For instance,
such an understanding allows us to develop numerical schemes with optimal rate
of convergence (see Section 8). It can assist us with proving rates of convergence
for the optimization algorithms [47].

Theorem 5 Let u ∈ H 1
0 (Ω) be a weak solution of (19) and let the coefficient matrix

A satisfy Assumption 3.

• If f ∈ L2(Ω) and Ω is a convex polytope or C1,1 domain in R
n, then u ∈

H 2(Ω) ∩ H 1
0 (Ω) and there exists a constant C = C(α, β,Ω) such that

‖u‖H 2(Ω) ≤ C‖f ‖L2(Ω).

• If f ∈ Lp(Ω) for 1 < p < ∞ and Ω is C1,1, then u ∈ W 2,p(Ω) ∩ W
1,p

0 (Ω)

and there exists a constant C = C(α, β,Ω, p) such that

‖u‖W 2,p(Ω) ≤ C‖f ‖Lp(Ω).

If p > n , then u ∈ C1,α(Ω̄) with α = 1 − n/p.

Proof If Ω is a convex polygonal/polyhedral domain, then H 2-regularity is in
[40, 3.2.1.2]. When ∂Ω is C1,1 and f ∈ Lp(Ω) for any 1 < p < ∞, the result
is due to [38, Theorem 9.15]. In the case p > n, the C1,α regularity follows from
W 2,p regularity and the Sobolev embedding.

6 Linear Quadratic PDE-Constrained Optimization Problem

Having some basic understanding of elliptic PDEs in hand, we next apply the results
of Section 3 to a linear quadratic PDECO problem (cf. Section 6.1). In Section 6.2,
we formulate it as a reduced PDECO problem only in terms of the control variable z.
This allows us to use the direct method of calculus of variations from Theorem 1 to
show the existence of solution.
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6.1 Problem Formulation

Let ud ∈ L2(Ω) and za, zb ∈ L2(Ω) with za < zb a.e. in Ω being given. Moreover,
let λ ≥ 0 denotes the penalty parameter. Then we are interested in minimizing

J (u, z) = 1

2
‖u − ud‖2

L2(Ω)
+ λ

2
‖z‖2

L2(Ω)
(21)

subject to (in the weak form)

−div (A∇u) = z in Ω,

u = 0 on ∂Ω,
(22)

and the pointwise control constraints

z ∈ Zad := {v ∈ L2(Ω) : za(x) ≤ v(x) ≤ zb(x) , a.e. x ∈ Ω}. (23)

Notice that in our formulation above we also allow za = −∞ and zb = ∞. We call
this case as an unconstrained case, i.e., Zad = L2(Ω).

For the above problem, we have (cf. Section 3)

U = H 1
0 (Ω), Y = H−1(Ω), Z = L2(Ω).

In order to understand the problem (21)–(23) similar to (7), first we condense the
variables and write J only in terms of z. We again call this as the reduced form and
the resulting cost functional as the reduced functional. We discuss this next.

6.2 Reduced PDECO Problem

For every z ∈ Y , there exists a unique solution u = u(z) ∈ U to (22). As a result,
we can define the solution operator to (22) as

S : Y → U, z 
→ u(z) = S z,

which is linear and continuous. In view of the continuous embedding, H 1
0 (Ω) ↪→

L2(Ω) ↪→ H−1(Ω) we may also consider S as a map from L2(Ω) to L2(Ω).
In other words instead of S , we consider the operator S := EuSEz, where Ez :
L2(Ω) → H−1(Ω) and Eu : H 1

0 (Ω) → L2(Ω) denote the embedding operators
that assign to each z ∈ L2(Ω) and u ∈ H 1

0 (Ω) the functions z ∈ H−1(Ω) and
u ∈ L2(Ω) so that when these new functions are restricted to L2(Ω) and H 1

0 (Ω)

the operator yields the original functions, respectively. Notice that S : L2(Ω) →
L2(Ω). One of the main advantages of using S is the fact that the adjoint operator
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S∗ also acts on L2(Ω) (cf. Section 6.3). Using the solution map S, we arrive at the
so-called reduced cost J : L2(Ω) → R which is defined as

J (z) := J (Sz, z),

and the minimization problem (21)–(23) is equivalent to the reduced problem:

min
z∈Zad

J (z). (24)

We notice that it is more convenient to analyze (24) in comparison to (21)–(23). In
fact, we have the following well-posedness result.

Corollary 3 Let either λ > 0 or Zad be bounded. Then there exists a solution to the
minimization problem (24). If in addition λ > 0 or S is injective then the solution is
unique.

Proof The proof is a consequence of Theorem 1. We will first show that J
is weakly lower semicontinuous. Notice that J (z) = J1(Sz) + J2(z) where
J1(Sz) := 1

2‖Sz − ud‖2
L2(Ω)

and J2(z) := λ
2 ‖z‖2

L2(Ω)
. Clearly J2 is weakly

lower semicontinuous (convexity and continuity imply weak lower semicontinuity
[18, Theorem 2.23]). On the other hand, due to the compact embedding of H 1

0 (Ω) in
L2(Ω), we have that S : L2(Ω) → L2(Ω) is completely continuous, i.e., if zn ⇀ z

in L2(Ω) then Szn → Sz in L2(Ω). Thus, owing to the continuity and convexity of
J1, we conclude that J1 is weakly lower semicontinuous. Whence J is weakly
lower semicontinuous.

It then remains to characterize the lower γ -level set. Here we replace the lower
γ -level set condition by the coercivity of J (if λ > 0) or by the closed convex
bounded set Zad .

Finally uniqueness is due to strict convexity of J .

For the remainder of this section, we will consider λ > 0.

6.3 First-Order Optimality Conditions

We are now ready to derive the first-order optimality conditions by following
Section 3.1 and the expression of the gradient of the reduced objective function.
In Section 6.4, we follow Section 3.2 and consider an alternate strategy to derive the
optimality conditions using the Lagrangian formulation.

We recall that the reduced functional is

J (z) = 1

2
‖Sz − ud‖2

L2(Ω)
+ λ

2
‖z‖2

L2(Ω)
.

Using Examples 1 and 2, the gradient of J is given by

∇J (z) = S∗(Sz − ud) + λz ∈ L2(Ω).
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Here we have S : L2(Ω) → L2(Ω). The first-order necessary and sufficient (due to
the convexity of J ) optimality condition (4) then becomes

(∇J (z̄), z − z̄)L2(Ω) ≥ 0 ∀z ∈ Zad. (25)

In order to efficiently evaluate ∇J (z), we introduce the so-called adjoint variable
p ∈ H 1

0 (Ω) solving

−div (A∇p) = u − ud in Ω

p = 0 on ∂Ω.
(26)

We will next show that the adjoint operator S∗ : L2(Ω) → L2(Ω) can be defined
by S∗ζ := p where p solves (26) with right-hand side given by ζ . Here ζ ∈ L2(Ω)

is arbitrary. Let z ∈ L2(Ω) be an arbitrary right-hand side of the state equation and
the resulting state variable is u = Sz ∈ H 1

0 (Ω). By testing the equation for u with p

and vice versa, we obtain that (z, p)L2(Ω) = (ζ, u)L2(Ω). Since u = Sz, we deduce
that S∗ζ = p. As a result, S∗(u − ud) = p where p solves (26).

Thus the gradient computation reduces to evaluation of the following expression:

∇J (z) = p + λz ∈ L2(Ω).

Finally, we gather the first-order necessary and sufficient optimality system:

ū ∈ H 1
0 (Ω) :

ˆ
Ω

A∇ū · ∇v dx =
ˆ

Ω

z̄v dx ∀v ∈ H 1
0 (Ω) (27a)

p̄ ∈ H 1
0 (Ω) :

ˆ
Ω

A∇p̄ · ∇v dx =
ˆ

Ω

(ū − ud)v dx ∀v ∈ H 1
0 (Ω) (27b)

z̄ ∈ Zad : (p̄ + λz̄, z − z̄)L2(Ω) ≥ 0, ∀z ∈ Zad. (27c)

Notice that (27) is a coupled system, namely ū in (27a) depends on the unknown
optimal control z̄ which fulfills the inequality (27c). The latter depends on the
adjoint variable p̄ that solves the adjoint equation (27b). This in turn depends on
ū. We further remark the variational inequality (27c) for the control is equivalent to
the following projection formula (see [81]):

z̄(x) = PZad

{
−1

λ
p̄(x)

}
a.e. x ∈ Ω. (28)

Here PZad
(v) denotes projection of v onto Zad . In our case, we can further write

this as PZad
(v) := min {b(x), max {a(x), v(x)}}, x a.e. in Ω .
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6.4 Lagrange Method

An alternative approach to derive the first-order optimality system is using the
Lagrangian as described in Section 3.2. We again emphasize that even though this
approach is used formally in the following, it can be made rigorous. It provides a
systematic way of deriving the optimality system, especially for tedious problems
and this step is strongly recommended.

Introduce L : H 1
0 (Ω) × Zad × H 1(Ω) → R, defined as

L(u, z, p) := J (u, z) −
ˆ

Ω

(A∇u · ∇p − zp) dx.

If (ū, z̄, p̄) is a stationary point then

〈Lp(ū, z̄, p̄), h〉H−1(Ω),H 1
0 (Ω) = 0 ∀h ∈ H 1

0 (Ω),

〈Lu(ū, z̄, p̄), h〉H−1(Ω),H 1
0 (Ω) = 0 ∀h ∈ H 1

0 (Ω),

(Lz(ū, z̄, p̄), (z − z̄))L2(Ω) ≥ 0 ∀z ∈ Zad.

(29)

It is not hard to see that (29) leads to the same optimality system as in (27).

7 Semilinear Quadratic PDE-Constrained Optimization
Problem

The focus of the previous section was on the linear quadratic PDECO problem.
However, things are more delicate when we replace the linear PDE constraint by a
semilinear one. In this section, we provide a brief discussion of a PDECO problem
governed by a semilinear PDE.

Let Ω ⊂ R
n, with n ≥ 2, be a Lipschitz domain and the Assumption 3 holds.

Moreover, let ud ∈ L2(Ω) and za, zb ∈ L∞(Ω) with za(x) < zb(x) a.e. x ∈ Ω and
λ ≥ 0 be given. We then consider the following semilinear optimal control problem:

min J (u, z) := 1

2
‖u − ud‖2

L2(Ω)
+ λ

2
‖z‖2

L2(Ω)
(30)

subject to u ∈ L∞(Ω) ∩ H 1
0 (Ω) solving the weak form of

−div (A∇u) + f (·, u) = z in Ω

u = 0 on ∂Ω
(31)

and

z ∈ Zad := {v ∈ L∞(Ω) : za(x) ≤ v(x) ≤ zb(x) , a.e. x ∈ Ω}. (32)
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Notice the difference between the semilinear state equation (31) and the linear
state equation (22). The key difficulty in the above problem is due to the nonlinearity
introduced by f . The control bounds fulfill za, zb ∈ L∞(Ω). This is different than
the linear case where we assumed the bounds to be in L2(Ω). This choice enforces
the control z ∈ L∞(Ω) which in turn provides additional regularity for the state u

as we discuss next.
In order to establish existence of solution to the state equation (31), we make

certain assumptions on the nonlinearity f .

Assumption 6 For a function f : Ω × R → R we consider the following
assumption:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f (x, ·) is strictly increasing for a.e. x ∈ Ω,

f (x, 0) = 0 for a.e. x ∈ Ω,

f (x, ·) is continuous for a.e. x ∈ Ω,

f (·, t) is measurable for all t ∈ R,

limt→∞ f (x, t) = ∞ for a.e. x ∈ Ω.

Remark 5 The condition f (x, 0) = 0 in Assumption 6 is not a restriction. If this
condition on f cannot be verified, then it is enough to rewrite Equation (31) in Ω as

−div (A∇u) + f (·, u) − f (·, 0) = z − f (·, 0) in Ω.

A typical example of f that fulfills Assumption 6 is given next (cf. [10, 11]).

Example 3 Let q ∈ [1,∞) and let b : Ω → (0,∞) be a function in L∞(Ω), that
is, b(x) > 0 for a.e. x ∈ Ω . Define the function f : Ω × R → R by f (x, t) =
b(x)|t |q−1t .

Theorem 7 (Existence and Uniqueness for Semilinear PDE) Let Assumptions 3
and 6 hold. Then for every z ∈ Lp(Ω) with p > n

2 , there exists a unique weak
solution u ∈ L∞(Ω)∩H 1

0 (Ω) to the state equation (31) and there exists a constant
C = C(α, β,Ω) > 0 such that

‖u‖H 1(Ω) + ‖u‖L∞(Ω) ≤ C‖z‖Lp(Ω). (33)

Proof The existence of solution is using the Browder–Minty theorem (cf [11,
proposition 3.2] after setting s = 1). On the other hand, the L∞(Ω) regularity
is by using a technique of Stampacchia [11, Theorem 3.5], see also [2, 21].

For the above minimization problem, we have (cf. Section 3)

U = H 1
0 (Ω) ∩ L∞(Ω), Y = H−1(Ω), Z = Lp(Ω) with p > n/2.

Notice that

Zad ⊂ L∞(Ω) ⊂ Z.
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As a result and owing to Theorem 7, the control to state map is well defined

S : L∞(Ω) → L∞(Ω) ∩ H 1
0 (Ω).

We notice that S is also well defined as a map from Z to L∞(Ω)∩H 1
0 (Ω).2 Due to

S we can write the reduced problem as

min
z∈Zad

J (z) := J (S(z), z). (34)

In order to show the existence of solution to (34), typically f is assumed to be locally
Lipschitz in the second argument to fulfill the assumptions on S in Corollary 1.
This assumption was recently weakened in [11] and was replaced by the following
growth condition on f : There exists a constant c ∈ (0, 1] such that

c|f (x, ξ − η)| ≤ |f (x, ξ) − f (x, η)| (35)

for a.e. x ∈ Ω and for all ξ, η ∈ R. Such a growth condition is fulfilled by Example 3
(cf. [11]). Under this condition, we have the following existence result for (34).

Corollary 4 Let the Assumptions of Theorem 7 hold. In addition, let f fulfills the
growth condition (35) and that

f (·, w(·)) ∈ L2(Ω) for every w ∈ L∞(Ω). (36)

Then there exists a solution to (34).

Proof Similar to Corollary 3, the proof is again a consequence of Theorem 1.
We interpret Zad as a subset of Z which is a reflexive Banach space. However,
care must be taken to show the weak lower semicontinuity of J . One has to
carefully study the convergence of the state sequence {S(zn)}n∈N. See for instance
[11, Theorem 4.2].

Notice that the condition (36) is also fulfilled by Example 3.

Remark 6 We mention that all the results given in Corollary 4 remain true if one
replaces the growth condition (35) and (36) with the following local Lipschitz
continuity condition: For all M > 0 there exists a constant LM > 0 such that f

satisfies

|f (x, ξ) − f (x, η)| ≤ LM |ξ − η| (37)

for a.e. x ∈ Ω and ξ, η ∈ R with |η|, |ξ | ≤ M .

2Note both the choices of spaces for S are motivated by the theory of Nemytskii or superposition
operators. Care must to taken to ensure their differentiability [81, Section 4.3].
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For the remainder of this section, we will assume that λ > 0. Before we proceed
further to derive the optimality conditions, we need some additional assumptions
on f . Notice that the second-order derivatives are needed if one is interested in
studying the second-order sufficient conditions.

Assumption 8 We assume the following:

(i) The function f (x, ·) is k-times, with k = 1, 2, continuously differentiable for
a.e. x ∈ Ω .

(ii) For all M > 0, there exists a constant LM > 0 such that f satisfies (37) and
∣∣∣Dk

uf (x, ξ) − Dk
uf (x, η)

∣∣∣ ≤ LM |ξ − η|, k = 1, 2,

for a.e. x ∈ Ω and ξ, η ∈ R with |ξ |, |η| ≤ M . Here Du denotes the partial
derivatives with respect to the second component.

(iii) Duf (·, 0) ∈ L∞(Ω).
(iv) Duuf (·, u(·)) ∈ L∞(Ω) whenever u(·) ∈ L∞(Ω).

Assumptions 8 help us prove that S : L∞(Ω) → L∞(Ω) ∩ H 1
0 (Ω) is not only

twice Fréchet differentiable (using the Implicit Function Theorem) but also twice
continuous Fréchet differentiability of J .

By invoking Corollary 2 the first-order necessary optimality conditions are given
as follows: For every solution z̄ of the problem (34), there exists a unique optimal
state ū = S(z̄) and an optimal adjoint state p̄ such that

ū ∈ L∞(Ω) ∩ H 1
0 (Ω) :

ˆ
Ω

A∇ū · ∇v dx+
ˆ

Ω

f (x, ū)v dx

=
ˆ

Ω

z̄v dx ∀v ∈ H 1
0 (Ω)

p̄ ∈ H 1
0 (Ω) :

ˆ
Ω

A∇p̄ · ∇v dx+
ˆ

Ω

Duf (x, ū)p̄ dx

=
ˆ

Ω

(ū−ud)v dx ∀v ∈ H 1
0 (Ω)

z̄ ∈ Zad : (p̄+λz̄, z−z̄)L2(Ω) ≥ 0, ∀z ∈ Zad.

(38)

Alternatively, one can use the Lagrangian approach of Section 6.4 to derive (38).
Notice that the variational inequality in (38) again can be written using the

Projection formula as

z̄(x) = PZad

{
−1

λ
p̄(x)

}
a.e. x ∈ Ω. (39)

We further remark that since J is non-convex, in general due to the semilinear
state equation, we cannot expect a global unique solution to the PDECO problem
but only a local one. This local uniqueness can be shown by studying second order
sufficient conditions. Nevertheless, care must be taken to prove such a result. This
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is due to the fact that the penalty term on the control in the cost functional is in
L2(Ω). However, the constraints in Zad are in L∞(Ω). This leads to the so-called
L2(Ω) − L∞(Ω) norm discrepancy and should be taken into account before
considering second-order sufficient conditions. We refer to [81, Theorem 4.29] for
details. We further remark that the second-order sufficient conditions are a useful
tool to derive the discretization error estimates [13]. A further discussion is provided
in Theorem 12.

8 Discrete Optimal Control Problem

We will illustrate the main ideas of the finite-element approximation of the PDE-
constrained optimization problems in the case of linear elliptic problem with control
constraints (21)–(23). First, we briefly review the basics of the finite-element
discretization just for the state equation. For what follows, it is sufficient to take
f ∈ L2(Ω). We consider the weak form of Equation (19),

(A∇u,∇v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H 1
0 (Ω).

We partition the domain Ω into elements. For simplicity, we only discuss the case
when elements are simplices. For h ∈ (0, h0]; h0 > 0, let Th denote a quasi-uniform
triangulation of Ω with mesh size h, i.e., Th = {τ } is a partition of Ω into triangles
or tetrahedrons τ of diameter hτ such that for h = maxτ hτ ,

diam(τ ) ≤ h ≤ C|τ | 1
n , ∀τ ∈ Th,

where the constant C > 0 independent of h. For simplicity, we assume ∪τ = Ω .
Let Vh be the set of all functions in H 1

0 (Ω) that are continuous on Ω and linear
on each τ . Vh is usually called the space of conforming Lagrange piecewise linear
elements.

Now we define the finite-element Galerkin approximation uh ∈ Vh of (8), as the
unique solution of

(A∇uh,∇vh)L2(Ω) = (f, vh)L2(Ω) ∀vh ∈ Vh. (40)

Expanding uh in terms of basis functions, it is easy to see that (40) is equivalent
to a system of linear equations and since Vh ⊂ H 1

0 (Ω) the resulting matrix is
nonsingular. Notice that by construction

(A∇(u − uh),∇vh)L2(Ω) = 0 ∀vh ∈ Vh. (41)

Thus, the Galerkin solution uh is the orthogonal projection of u onto Vh with respect
to the inner-product (A∇·,∇·)L2(Ω). Almost immediately we obtain the following
key result.
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Lemma 1 (Céa Lemma) Let u and uh satisfy (41). Then the following estimate
holds

‖u − uh‖H 1(Ω) ≤ C min
χ∈Vh

‖u − χ‖H 1(Ω).

The constant C depends only on ellipticity, boundedness of the matrix A, and the
domain Ω .

The above result says that the Galerkin solution is the best approximation to u from
Vh in H 1(Ω)-norm up to a constant. We can use Cea’s lemma to derive a priori error
estimates. Let Ih : H 1(Ω) → Vh be a projection with the approximation properties

‖u − Ihu‖Hs(Ω) ≤ Ch2−s‖u‖H 2(Ω), s = 0, 1, (42)

then from Cea’s lemma immediately follows

‖u − uh‖H 1(Ω) ≤ Ch‖u‖H 2(Ω).

Notice that the constant C > 0 above is independent of h. The error estimates in
L2(Ω)-norm are not immediate, since the Galerkin solution does not have a property
of being best approximation in L2(Ω)-norm; nevertheless, one can still establish
optimal error estimates in L2(Ω) via a duality argument, also known as Nitsche’s
trick. This result requires H 2(Ω)-regularity.

Lemma 2 Let Ω be convex or C1,1 and u and uh satisfy (41). Then there exists a
constant C independent of h such that

‖u − uh‖L2(Ω) ≤ Ch min
χ∈Vh

‖u − χ‖H 1(Ω).

Proof Let e = u − uh and consider a dual problem

(A∇w,∇v)L2(Ω) = (e, v)L2(Ω) ∀v ∈ H 1
0 (Ω).

By setting, v = e, we obtain

‖e‖2
L2(Ω)

= (A∇w,∇e)L2(Ω) = (A∇(w − wh),∇e)L2(Ω),

where the last equality is due to (41). Next using the Cauchy–Schwarz inequality
and the fact that, under given regularity of the domain ‖w‖H 2(Ω) ≤ C‖e‖L2(Ω), we
obtain the required result.

Combining Cea’s lemma and Lemma 2, we immediately establish the optimal a
priori error estimate

‖u − uh‖L2(Ω) ≤ Ch2‖u‖H 2(Ω).

Notice that the above estimate does require the convexity of Ω .
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Corollary 5 H 2 regularity also allows us to express the error in terms of data. Thus
from Lemmas 1 and 2 it follows

‖u − uh‖L2(Ω) + h‖u − uh‖H 1(Ω) ≤ Ch2‖f ‖L2(Ω).

8.1 Discrete Linear Quadratic PDE-Constrained Optimization
Problem

For the remainder chapter, we will assume that λ > 0. To discretize the problem,
we replace the state space H 1

0 (Ω) with Vh ⊂ H 1
0 (Ω) and the control space of

admissible functions Zad with Zad,h ⊂ Zad . In case of unconstrained control, we
can choose Zad,h = Vh. Theoretically, the mesh for the discretization of the state
variable and the mesh for the discretization of the control can be different. However
having two different meshes adds more technical difficulties for implementation.
For this reason, it is more convenient to work with the same mesh which is what we
assume from now on. Thus, the discretized problem (21)–(23) becomes

min
uh∈Vh, zh∈Zad,h

Jh(uh, zh) = 1

2
‖uh − ud‖2

L2(Ω)
+ λ

2
‖zh‖2

L2(Ω)
(43)

subject to

(A∇uh,∇vh) = (zh, vh) ∀vh ∈ Vh. (44)

Similar to the infinite dimensional case, we define a discrete solution operator Sh :
Zad,h → Vh to (44) and the reduced discrete problem becomes

min
zh∈Zad,h

Jh(zh) := min
zh∈Zad,h

Jh(Shzh, zh). (45)

Similar to the continuous problem, one can show that problem (45) has a unique
solution z̄h ∈ Zad,h, the corresponding discrete optimal state is ūh = Sh(z̄h), and
similar to Theorem 2 the first-order necessary and sufficient optimality condition is

J ′
h(z̄h)(zh − z̄h) ≥ 0, ∀zh ∈ Zad,h. (46)

8.2 Optimization Problem Without Control Constraints

In this situation, Zad = L2(Ω) and Zad,h = Vh and as a result (25) and (46) reduce
to equalities

z̄ = −1

λ
p̄, z̄h = −1

λ
p̄h, (47)
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correspondingly, and as a result the continuous and discrete PDECO problems are
equivalent to the systems of equations

ū = S(−1

λ
p̄)

p̄ = S∗(ū − ud)

and

ūh = Sh(−1

λ
p̄h)

p̄h = S∗
h(ūh − ud).

As a result z̄, ū, p̄ ∈ H 2(Ω) and we can expect second-order convergence for the
optimal control in L2 norm. Indeed, one can establish the following result.

Theorem 9 Let z̄ and z̄h be optimal solutions to continuous and discrete PDECO
problems (21) and (43), respectively, without control constraints. Assume in addi-
tion that Ω is convex or C1,1. Then there exists a constant C independent of h such
that

‖z̄ − z̄h‖L2(Ω) ≤ Ch2 (‖z̄‖L2(Ω) + ‖ud‖L2(Ω)

)
.

Proof We begin by recalling the unconstrained optimality conditions λz̄+ p̄ = 0 =
λz̄h + p̄h, which yields (λz̄ + p̄, z̄h − z̄) = 0 = (λz̄h + p̄h, z̄ − z̄h). Adding these
last two equalities, we arrive at

λ‖z̄−z̄h‖2
L2(Ω)

= (p̄−p̄h, z̄h−z̄)L2(Ω) = (S∗(Sz̄−ud)−S∗
h(Shz̄h−ud), z̄h−z̄)L2(Ω),

(48)
where in the last equality we have used the representation of p̄ and p̄h. Up on
rewriting (48), we obtain

λ‖z̄−z̄h‖2
L2(Ω)

= (S∗Sz̄−S∗
hShz̄h, z̄h−z̄)L2(Ω)+((S∗−S∗

h)ud, z̄h−z̄)L2(Ω) = I+II.

(49)
It follows from Corollary 5 that

|II | ≤ Ch2‖ud‖L2(Ω)‖z̄ − z̄h‖L2(Ω). (50)

It then remains to estimate I in (49). We add and subtract (S∗
hShz̄, z̄h − z̄)L2(Ω) to I

and arrive at

I = ((S∗S − S∗
hSh)z̄, z̄h − z̄)L2(Ω) + (Sh(z̄ − z̄h), Sh(z̄h − z̄))L2(Ω)

≤ ((S∗S − S∗
hSh)z̄, z̄h − z̄)L2(Ω), (51)



A Brief Introduction to PDE-Constrained Optimization 31

where we have used the fact that (Sh(z̄−z̄h), Sh(z̄h−z̄))L2(Ω) = −‖Sh(z̄−z̄h)‖2 ≤ 0.
Again adding and subtracting (S∗

hSz̄, , z̄h − z̄)L2(Ω) to (51), we arrive at

|I | ≤ |((S∗ − S∗
h)Sz̄, z̄h − z̄)L2(Ω) + (S∗

h(S − Sh)z̄, z̄h − z̄)L2(Ω)|
≤ Ch2‖z̄‖L2(Ω)‖z̄ − z̄h‖L2(Ω), (52)

where we have first used the triangle inequality and have estimated the first term
using Corollary 5 and continuity of S : L2(Ω) → L2(Ω): |((S∗ − S∗

h)Sz̄, z̄h −
z̄)L2(Ω)| ≤ Ch2‖Sz̄‖L2(Ω)‖z̄ − z̄h‖L2(Ω) ≤ Ch2‖z̄‖L2(Ω)‖z̄ − z̄h‖L2(Ω). The
estimate of the remaining term follows again using Corollary 5 and the continuity
of S∗

h : L2(Ω) → L2(Ω). Finally, substituting the estimates of I and II from (52)
and (50) in (49), we arrive at the asserted result.

8.3 Optimization Problem with Control Constraints

For the rest of this section, we assume constant box constraints, i.e., za, zb ∈ R,
with za < zb. We remind the reader that in this situation the optimal control is given
by a projection formula:

z̄(x) = PZad

{
−1

λ
p̄(x)

}
. (53)

If the constraints are active, z̄ /∈ H 2(Ω). However, we can still conclude z̄ ∈ H 1(Ω)

and even z̄ ∈ W 1∞(Ω) by using [58, Theorem A.1]. In light of this, the second-order
convergence cannot in general be expected. There are several approaches to treat the
problem.

8.3.1 Cell-Wise Constant Control Discretization

One idea is to consider a cellwise constant discretization of the control variable, i.e.,
we choose Zad,h = Zad ∩ Z0

h, where Z0
h is a space of piecewise constant functions

on the partition Th. This idea goes back to Falk [35]. Since we consider piecewise
constant discretization, only first-order convergence for the control can be expected.
Indeed for such discretization, one can establish the following convergence result.

Theorem 10 Let z̄ and z̄h be optimal solutions to continuous and discrete PDECO
problems (21) and (43), respectively, with control constraints (23). Let Zad,h =
Zad ∩Z0

h. Assume in addition that Ω is convex or C1,1. Then there exists a constant
C independent of h such that

‖z̄ − z̄h‖L2(Ω) ≤ Ch
(‖z̄‖H 1(Ω) + ‖ud‖L2(Ω)

)
.
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Proof First we define a projection πh : Zad → Zad ∩ Z0
h by

πhv |τ= 1

|τ |
ˆ

τ

v dx, ∀τ ∈ Th. (54)

Thus the projection πh is the orthogonal projection onto Z0
h with respect to

L2-inner-product, i.e.

(v − πhv,w)L2(Ω) = 0, w ∈ Z0
h (55)

and has the following approximation property

‖v − πhv‖L2(Ω) ≤ Ch‖∇v‖L2(Ω), v ∈ H 1(Ω). (56)

Then replacing z by z̄h in (25) and zh by πhz̄ in (46), we arrive at

(λz̄ + p̄, z̄h − z̄)L2(Ω) ≥ 0, (λz̄h + p̄h, πhz̄ − z̄h)L2(Ω) ≥ 0.

Adding these inequalities, we obtain that

λ‖z̄ − z̄h‖2
L2(Ω)

≤ (p̄ − p̄h, z̄h − z̄)L2(Ω) + (λz̄h + p̄h, πhz̄ − z̄)L2(Ω) = I + II.

(57)

The estimate of I is exactly the same as in Theorem 9, i.e.,

|I | ≤ Ch2(‖z̄‖L2(Ω) + ‖ud‖L2(Ω))‖z̄ − z̄h‖L2(Ω)

≤ Cλh
4(‖z̄‖L2(Ω) + ‖ud‖L2(Ω))

2 + λ

4
‖z̄ − z̄h‖2

L2(Ω)
, (58)

where we have used the Young’s inequality in addition. Next we provide estimate
for II . Using the characterization of p̄h, followed by, adding and subtracting
(S∗

h(Shz̄ − ud), πhz̄ − z̄)L2(Ω), and using the continuity of S∗
h , we obtain

II = (S∗
h(Shz̄h − ud), πhz̄ − z̄)L2(Ω)

= (S∗
hSh(z̄h−z̄), πhz̄−z̄)L2(Ω)+(S∗

h(Shz̄−ud), πhz̄−z̄)L2(Ω) =: II1+II2.

(59)

To estimate II1, we use (56) and Young’s inequality to arrive at

|II1| ≤ Cλh
2‖z̄‖2

H 1(Ω)
+ λ

4
‖z̄ − z̄h‖2

L2(Ω)
. (60)
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It then remains to estimate II2 in (59). By adding and subtracting (S∗
h(Sz̄ −

ud), πhz̄ − z̄)L2(Ω) in II2, we obtain that

|II2| = |(S∗
h(Sh − S)z̄, πhz̄ − z̄)L2(Ω) + (S∗

h(Sz̄ − ud), πhz̄ − z̄)L2(Ω)|
≤ Ch3‖z̄‖H 1(Ω) + |((S∗

h − S∗)(Sz̄ − ud), πhz̄ − z̄)L2(Ω)|
+ |(S∗(Sz̄ − ud), πhz̄ − z̄)L2(Ω)| =: II2,1 + II2,2 + II2,3, (61)

where we have used Corollary 5 and (56) to estimate the first term. Moreover, we
have added and subtracted (S∗(Sz̄ − ud), πhz̄ − z̄)L2(Ω) to the second term. It then
remains to estimate II2,2 and II2,3. Again using Corollary 5 and (56), we obtain
that II2,2 ≤ Ch3(‖z̄‖L2(Ω) + ‖ud‖L2(Ω))‖z̄‖H 1(Ω). Finally, to estimate II2,3 we
first recall that S∗(Sz̄ − ud) = p̄. Since πh is L2-orthogonal projection, we obtain

II2,3 = (p̄ − πhp̄, πhz̄ − z̄)L2(Ω) ≤ Ch3(‖z̄‖L2(Ω) + ‖ud‖L2(Ω))‖z̄‖H 1(Ω).

(62)

Collecting all the estimates, we arrive at the asserted result.

Comparing this result with the unconstrained case, we have only first-order
convergence. This is mainly due to the choice of the discrete control space which
does not take the full advantage of the regularity of the optimal control, namely
z̄ ∈ W 1∞(Ω) . Moreover, away from the active constraints z̄ is still in H 2. Taking this
in consideration, there are some alternatives to increase the order of the convergence.

8.3.2 Cell-Wise Linear Control Discretization

To improve the convergence rate of the above result, we consider Zad,h =
Zad ∩ Vh, i.e., the control space consists of piecewise linear functions satisfying
constraints (22). The approximation properties in this setting were investigated in
a number of papers, for example [72, 74]. We will not provide all the details, only
highlight the main ideas. To take advantage of the regularity for z̄ discussed above,
we consider the following sets:

T 1
h = {τ ∈ Th | z̄ |τ= za or z̄ |τ= zb},

which is the set of active cells,

T 2
h = {τ ∈ Th | za < z̄ |τ< zb},

the set of not active cells, and the rest

T 3
h = Th\(T 1

h ∪ T 2
h ).
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Then under the assumption that

meas(T 3
h ) ≤ Ch, (63)

which is valid, for example, if the boundary of the active set consists of a finite
number of rectifiable curves, one can establish the following result.

Theorem 11 Let z̄ and z̄h be optimal solutions to continuous and discrete PDECO
problems (21) and (43), respectively, with control constraints. Assume in addition
that Ω is convex or C1,1, ud ∈ Lp(Ω) for p > n and assumptions (63) hold. Then
there exists a constant C independent of h such that

‖z̄ − z̄h‖L2(Ω) ≤ Ch
3
2
(‖p̄‖H 2(Ω) + ‖∇ z̄‖L∞(Ω)

)
.

Proof The proof of this result can be found in [73].

Remark 7 (Variational Discretization) The idea of the variational discretization
approach introduced by Hinze [52] is not to discretize the control variable, i.e.,
to choose Zad,h = Zad . This approach does give second-order convergence for the
control but requires a nonstandard implementation, especially for n > 1.

8.4 Semilinear Equations

Similar to the linear case, we discretize the problem with finite elements. Thus,
we replace the state space H 1

0 (Ω) with Vh ⊂ H 1
0 (Ω) and the control space of

admissible functions Zad with Zad,h ⊂ Zad . We additionally assume that za, zb ∈
R ∪ {±∞}, with za < zb. In case of unconstrained control, we take za = −∞ and
zb = ∞, i.e., Zad,h = Vh. The discretized problem (30)–(32) becomes

min
uh∈Vh, zh∈Zad,h

Jh(uh, zh) = 1

2
‖uh − ud‖2

L2(Ω)
+ λ

2
‖zh‖2

L2(Ω)
(64)

subject to

(A∇uh,∇vh) + (f (·, uh), vh) = (zh, vh) ∀vh ∈ Vh. (65)

All of the above strategies for choosing Zad,h can be applied for the semilinear
problem as well and similar error estimates can be obtained. Of course the
arguments are more technical and we refer to [13, 22, 29] for details.

Theorem 12 Assume that Ω is convex domain with C1,1 boundary and let Assump-
tions 6 and 8 be satisfied. Let z̄ be a strict local solution to (30)–(32) that fulfills the
second-order optimality condition: There exist δ > 0 and τ > 0 such that

J ′′(z̄)(z, z) ≥ δ‖z‖2
L2(Ω)
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holds for all z ∈ L∞(Ω) satisfying

z(x)

⎧⎨
⎩

≥ 0 if z̄(x) = za,

≤ 0 if z̄(x) = zb,

= 0 if |λz̄ + p̄| ≥ τ > 0.

(66)

Then:

• [13, Thm. 5.1] (Cell-wise constant control) Let Zad,h = Zad ∩ Z0
h and {z̄h}

be a sequence of locally optimal piecewise constant solutions to (64)–(65) that
converges strongly in L2(Ω) to z̄. Then there exists a constant C independent of
h such that

‖z̄ − z̄h‖L2(Ω) ≤ Ch.

• [29, Thm. 4.5](Cell-wise linear control) Let Zad,h = Zad ∩ Vh and {z̄h}
be a sequence of locally optimal piecewise linear solutions to (64)–(65) that
converges strongly in L2(Ω) to z̄. If in addition (63) holds, then there exists a
constant C independent of h such that

‖z̄ − z̄h‖L2(Ω) ≤ Ch
3
2 .

9 Conclusion and the Current State of the Art

In this introductory chapter, we reviewed the main ideas behind the study of
PDECO. We briefly mentioned numerical approximation of such problems by the
finite-element method and showed some convergence results in the case of control
constraints. However, the subject is vast with many active research directions. In
this final section, let us mention some topics that we skipped and some active areas
of research that we did not touch.

• In the above discussion, we only touched problems with control constraints.
However, problems with state constraints are equally important. In contrast to
the control constraints, which basically amount to projection onto the feasible set,
the state constraints require much more care since the Lagrange multipliers are
not functions, only measures. We refer to [81, Chapter 6] for a nice introduction
on the subject. For such problems, the error analysis is also more subtle and one
often has to reserve to more technical pointwise error estimates to derive optimal-
order convergence. We refer to [28, 64, 65] for some recent developments of the
subject.

• All above error estimates were a priori error estimates. However, a large fraction
of the literature on finite elements is devoted to a posteriori error estimates, i.e.,
estimates where the error between the true solution and the discrete approximated
solution is expressed in terms of computable quantities. We refer to [75, 77] for
more recent development of the subject.
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• One can consider more complicated state equations or even systems, which
can be linear or nonlinear, time dependent, variational inequalities, and so on.
Currently, the theory is well developed for problems constrained by linear and
semilinear elliptic problems, but the research is very much active for nonlinear,
time dependent, and variational inequalities [61, 68].

• We only consider a quadratic cost functional in our error analysis. However, other
choices may be desired. For example, it was observed numerically that seeking
the control from the space of regular Borel measures forces the sparsity of
optimal solution, meaning that the support of solution is small. This phenomenon
was analyzed for elliptic and parabolic problems in a number of papers [23–25];
however, there are still some remaining open questions.

• In all our examples, we considered the distributed control, i.e., the control z was
acting in the interior of the domain. However, problems where the control acts
on the boundary are important in many applications. The control can enter as
Dirichlet, Neumann, or Robin boundary conditions. Because of the variational
structure of the problems, the Neumann and Robin boundary conditions naturally
enter the variational form of the state equation and as a result Neumann boundary
controls can be naturally analyzed, see [81, Chapter 2], we refer to [26, 27] for
the Robin case. Dirichlet boundary conditions do not have this property and one
has to use more sophisticated machinery to overcome technical difficulties and to
derive optimal error estimate for the optimal solution [12]. Alternatively, one can
also use the penalized Robin boundary conditions to study the Dirichlet boundary
control problems [63].
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