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Foreword

This volume contains a series of papers based on a workshop “Frontiers in PDE-
Constrained Optimization” held at the Institute for Mathematics and its Applications
from June 6 to 10, 2016, and organized by Harbir Antil, Drew Kouri, Martin
Lacasse, and Denis Ridzal. This workshop drew together a cohort of scientists
working in PDE-constrained optimization in a variety of disciplines, ranging
from medical imaging to geosciences. The collection of works in this volume
reflects this diversity of application and documents the recent mathematical and
computational advances in the field. We would like to especially thank the workshop
organizers, who have served as the editors of this volume. Finally, we acknowledge
ExxonMobil, which provided funding for the workshop, and the National Science
Foundation for its support of the IMA.

Minneapolis, MN, USA Daniel Spirn
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Preface

Many science and engineering applications necessitate the solution of optimization
problems constrained by physical laws that are described by systems of partial
differential equations (PDEs). As a result, PDE-constrained optimization problems
arise in a variety of disciplines including geo-physics, earth and climate science,
material science, chemical and mechanical engineering, medical imaging, and
physics. The goal of this volume is to provide a broad and uniform introduction
of PDE-constrained optimization as well as to document a number of interesting
and challenging applications.

This volume contains the proceedings of the workshop “Frontiers in PDE-
Constrained Optimization” held at the Institute for Mathematics and its Applications
from June 6 to 10, 2016. The workshop successfully provided a common forum
for networking between leaders in PDE-constrained optimization within academia,
industry, and the US national labs. The five-day workshop included two days of
tutorials and three days of invited talks. The tutorials were targeted toward students
and researchers interested in entering the field of PDE-constrained optimization
and provided an overview of the field with special emphasis on uncertainty, varia-
tional inequalities, shape optimization, inverse problems, algorithmic development,
and software implementation. The invited presentations disseminated cutting-edge
developments in theory, numerics, and applications.

This volume is divided into two parts. The first part provides a comprehensive
review of modern topics in PDE-constrained optimization. Chapter “A Brief Intro-
duction to PDE Constrained Optimization” provides a basic introduction to PDE-
constrained optimization. Chapter “Optimization of PDEs with Uncertain Inputs”
discusses optimization problems constrained by PDEs with uncertain or random
inputs. Chapter “Inexact Trust-Region Methods for PDE-Constrained Optimiza-
tion” focuses on the efficient numerical solution of PDE-constrained optimization
problems using inexact trust-region methods. Chapter “Numerical Optimization
Methods for the Optimal Control of Elliptic Variational Inequalities” provides a
theoretical and numerical overview of optimization problems constrained by elliptic
variational inequalities. Chapters “Introduction to PDE-Constrained Optimization

vii



viii Preface

in the Oil and Gas Industry” and “Full-Wavefield Inversion: An Extreme-Scale
PDE-Constrained Optimization Problem” describe a variety of theoretically and
computationally challenging inverse problems arising in the oil and gas industry.
Chapters 1–6 are organized in such a way that they can be used as a reference to
augment a graduate course in PDE-constrained optimization.

The second part of this volume focuses on applications of PDE-constrained
optimization. Chapters “Energetically Optimal Flapping Wing Motions via Adjoint-
Based Optimization and High-Order Discretizations” and “Optimization of a Frac-
tional Differential Equation” consider PDE-constrained optimal control with appli-
cations to flapping wing machines and anomalous diffusion. Chapter “Sensitivity-
Based Topology and Shape Optimization with Application to Electric Motors”
discusses a sensitivity-based approach for optimal design via topology and shape
optimization. Chapter “Distributed Parameter Estimation for the Time-Dependent
Radiative Transfer Equation” discusses the parameter estimation in time-dependent
radiative transfer equations. Following this, Chapter “On the Use of Optimal
Transport Distances for a PDE-Constrained Optimization Problem in Seismic
Imaging” discusses the use of optimal transport distances in seismic imaging. To
conclude the volume, Chapter “Exploiting Sparsity in Solving PDE-Constrained
Inverse Problems: Application to Subsurface Flow Model Calibration” describes
the role of sparsity in inverse problems with applications to subsurface flow model
calibration.

Acknowledgement As organizers and editors, we would like to acknowledge ExxonMobil, which
provided funding for the workshop, and National Science Foundation for its support of the IMA.
We are further indebted to the former and current IMA directors Fadil Santosa and Daniel Spirn for
encouraging this initiative, as well as to Danielle Walker (Springer) for her help in putting together
this volume.

Fairfax, VA, USA Harbir Antil
Albuquerque, NM, USA Drew P. Kouri
Annandale, NJ, USA Martin-D. Lacasse
Albuquerque, NM, USA Denis Ridzal
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Part I
PDE-Constrained Optimization: Tutorials



A Brief Introduction to PDE-Constrained
Optimization

Harbir Antil and Dmitriy Leykekhman

Abstract In this chapter we give a brief overview of optimization problems with
partial differential equation (PDE) constraints, i.e., PDE-constrained optimization
(PDECO). We start with three potentially different formulations of a general
PDECO problem and focus on the so-called reduced form. We present a derivation
of the optimality conditions. Later we discuss the linear and the semilinear quadratic
PDECO problems. We conclude with the discretization and the convergence rates
for these problems. For illustration, we make a MATLAB code available at

https://bitbucket.org/harbirantil/pde_constrained_opt

that solves the semilinear PDECO problem with control constraints.

1 Introduction

This volume is aimed at early-career graduate students or whoever is interested in
entering into the field of PDE-constrained optimization (PDECO), i.e., optimization
problems with PDE constraints. The purpose of this particular chapter is to provide
a brief mathematical introduction to this topic with an emphasis on optimality
conditions and finite-element discretization. Most of the material presented here
is well-known and can be found in several textbooks. In particular, we mention
[14, 53, 56, 62, 81].

PDE-constrained optimization problems arise in many applications, for instance
in flow control [42] and shape optimization [43, 80]. To name a few: controlling
pollutants in a river [5]; drug delivery using magnetic fields [8, 9]; optimal

H. Antil (�)
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4 H. Antil and D. Leykekhman

placement of droplets on electrowetting on dielectric (EWOD) devices [7]; shape
optimization of microfluidic biochips [3, 4]. In the first two examples, the control
is distributed (confined to either the entire domain or a subdomain). In the third
example, the control acts on the boundary, and in the final example, the control is
the shape of the domain. These problems range from macroscale to microscale and
contain varying levels of difficulties due to the underlying physics.

A PDE-constrained optimization problem has four or five major components: i)
a control variable z; ii) state variable u; iii) a state equation (i.e., PDE or system of
PDEs) which associates a state u with every control z; iv) a cost functional J to be
minimized which depends on z and u; and, possibly, v) constraints imposed on z

(control constraints) or/and on u (state constraints). In the most abstract form, this
amounts to

minimize J (u, z) (1)

subject to u ∈ Uad and z ∈ Zad satisfying

e(u, z) = 0. (2)

Thus we want to minimize the cost J which is a function of the state u and the
control z. The state equation is given by (2) that represents a PDE or system of
PDEs (usually in the weak form) with u in an admissible set Uad and the control z
in an admissible set Zad .

To fully understand PDECO problems, the following topics must be considered:
(i) functional analysis of the problem; (ii) solver development; (iii) discretization
and software development. We shall briefly elaborate on each next, a more detailed
discussion will be given in the subsequent chapters. By analysis, we mean

• Existence, uniqueness, and regularity of a solution to (2).
• Existence and uniqueness of a solution to the PDECO problem (1)–(2).
• First-order necessary optimality conditions using adjoint equations.
• If possible the second-order necessary/sufficient conditions.

We can carry out the solver development, typically gradient based, either at
the continuous (infinite dimensional) level [49, 50, 82] or at the discrete (finite
dimensional) level [57, 66]. The choice depends on the two options (a) “First
discretize then optimize approach” or (b) “First optimize then discretize approach.”
As the names suggest in case (a) one first discretizes the optimization problem
and then writes the optimality conditions at the finite dimensional level. On the
other hand, (b) requires first writing the optimality conditions at the continuous
level and then discretizing them. These two approaches in general are different.
For instance the discretization of the adjoint variables is tied to the state variables
if one proceeds with (a). On the other hand, (b) provides more flexibility with
respect to this particular aspect. There is no universal approach to select either
of the approaches [53, Section 3.2.4]. However, a choice should be made so that
the discrete system preserves the structure of the continuous problem. It is worth
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noting that the optimization methods can be derived directly at the continuous level.
In any event, one should avoid using off-the-shelf finite-dimensional algorithms
to solve PDECO problems. This may lead to mesh dependence,, i.e., when the
number of optimization iterations drastically increases with mesh refinement. In
order to overcome such issues, we must adapt such algorithms (if we are using them)
to incorporate functional-analytic concepts, for instance, suitable inner products.
Nevertheless, discretization and software development amounts to

• Either finite-difference, finite-volume, or finite-element discretizations of the
PDE and the control [19, 46, 70]. Other discretizations such as wavelets are
possible as well, see [30, 31, 78] and references therein.

• Analysis of discrete PDE and optimization solvers and check for mesh indepen-
dence [51, 82].

• Make the solver efficient, for instance, by using

– Adaptive finite-element methods (AFEM) [59, 67].
– Preconditioning techniques [15, 76, 84], time-parallel approaches [16, 32, 33,

83].
– Model reduction: Proper orthogonal decomposition [6, 41, 54, 55], reduced-

basis method [17, 45, 69].

• Software development, for instance, Rapid Optimization Library (ROL) [60],
Dolfin-Adjoint [36].

Our goal for this chapter is to collect the necessary ingredients to understand
basic PDECO problems. The remaining chapters of this volume provide compre-
hensive treatments of variational inequalities, algorithm development, optimization
under uncertainty, inverse problems, shape optimization, and several applications.
We introduce notation, relevant function spaces, and notions of derivatives. We
provide an abstract treatment to solve (1)–(2). Moreover, we discuss the linear
quadratic PDECO problem in detail (quadratic cost functional with linear elliptic
PDEs and control constraints), provide a flavor of the semilinear quadratic PDECO
problem, and discuss the necessary components for the numerical analysis of the
linear and semilinear quadratic PDECO problems. We also provide a MATLAB
implementation of the semilinear quadratic PDECO problem where the space
discretization is carried out using the finite-element method (FEM). We solve the
resulting optimization problem using the Newton-CG method, or LBFGS method
in the absence of the control constraints (Zad = Z) and the semismooth Newton
method in the presence of the control constraints. The code can be downloaded
using the link

https://bitbucket.org/harbirantil/pde_constrained_opt

The first part of this chapter is organized as follows: in Section 2, we first consider
a general optimization problem. We discuss existence of solutions to this problem
in Section 2.1 and provide notions of derivatives in function spaces in Section 2.2.
We conclude this section with the first-order necessary optimality conditions (cf.
Section 2.3). We apply the approach discussed in Section 2 to the general PDECO

https://bitbucket.org/harbirantil/pde{_}constrained{_}opt
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problem (1)–(2) in Section 3 and discuss the full and the reduced forms. Derivation
of optimality conditions is performed using both full and reduced forms.

In the second part of this chapter, we focus on the linear and semilinear quadratic
PDECO problems. We introduce basic Sobolev spaces in Section 4. In Section 5,
we mention the results relating to the well-posedness (existence and uniqueness
whenever possible) of linear elliptic PDEs and their regularity. Next in Section 6,
we formulate the linear quadratic PDECO problem and study its well-posedness in
the reduced form. Section 7 discusses the semilinear quadratic PDECO problem. We
conclude by introducing a finite-element discretization for the linear and semilinear
quadratic PDECO problems in Section 8.

2 Abstract Optimization Problem

The purpose of this section is to consider an abstract optimization problem and study
its well-posedness (cf. Section 2.1). We derive the first-order necessary optimality
conditions in Section 2.3. This requires the notions of derivatives in function spaces
(cf. Section 2.2). The results presented in this section will be applied to the PDECO
problems in the subsequent sections.

Let Z be a real reflexive Banach space and Zad is a closed convex subset. We
consider the minimization problem

min
z∈Zad

f (z). (3)

2.1 Existence

We first show existence of solution to the minimization problem (3) using the direct
method of calculus of variations. This is also known as the Weierstrass theorem.

Theorem 1 Suppose f : Z→ R is weakly lower semicontinuous with Z a reflexive
Banach space and Zad ⊂ Z is closed convex. Let the lower γ -level set {z ∈ Zad :
f (z) ≤ γ } of f is nonempty and bounded for some γ ∈ R. Then problem (3) has an
optimal solution, i.e., there exists z̄ ∈ Zad such that f (z̄) ≤ f (z) for all z ∈ Zad . If
f is strictly convex then the solution is unique.

Proof The proof is based on the direct method of calculus of variations. Following
the proof of [14, Theorem 3.2.1], we can construct a minimizing sequence {zn}n∈N
contained in the lower γ -level set such that f (zn)→ inf f (z) as n→∞. Since the
lower γ -level set is convex and closed, therefore it is weakly sequentially closed [81,
Theorem 2.11]. In addition, since Z is reflexive and the lower γ -level set is bounded,
therefore it is weakly sequentially compact [81, Theorem 2.11]. As a result, there
exists a subsequence (not relabeled) such that

zn ⇀ z̄ in Z
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with z̄ in the lower γ -level set. It then remains to show that z̄ is the optimal solution.
Due to the weak lower semicontinuity of f , we conclude that

f (z̄) ≤ lim inf f (zn) = inf
z∈Zad

f (z).

Finally, in order to show the uniqueness let us assume that z1 and z2 be two optimal
solutions. Using the definition of strict convexity, we have

f

(
z1 + z2

2

)
<

1

2
f (z1)+ 1

2
f (z2) = inf f (z)

which is a contradiction. This completes the proof.

After showing the existence of minimizers, a natural question to ask is what the
first-order optimality conditions are. However, we need to understand the notions of
derivatives in function spaces before we can proceed further.

2.2 Differentiation in Banach Spaces

We introduce the notions of derivatives in function spaces [18, 79]. As an example,
we shall apply the ideas to a quadratic cost functional. We will also derive the first-
order optimality conditions for the problem (3) based on the derivatives introduced
in this section.

Let L (A,B) denote the space of bounded linear operators from Banach space
A to B. Let (Z, ‖ · ‖Z), (V , ‖ · ‖V ) be real Banach spaces, Z ⊂ Z, open and
F : Z → V . Moreover, let z ∈ Z .

Definition 1 (Directional Derivative) F is said to be directionally differentiable
at z if the limit limt↓0

1
t
(F (z + th) − F(z)) exists in V for all h ∈ Z. If such limit

exists, we denote

F ′(z, h) := lim
t↓0

1

t
(F (z+ th)− F(z))

and say that F ′(z, h) is the directional derivative of F at z in the direction h.

Notice that for a given z, h 
→ F ′(z, h) is not necessarily a linear mapping but it is
positive homogeneous, we refer to [79, 81] for examples.

Definition 2 (Gâteaux Derivative) F is said to be Gâteaux differentiable at z if
it is directionally differentiable and F ′(z, h) = F ′(z)h for F ′(z) ∈ L (Z, V ). We
refer to F ′(z) as the Gâteaux derivative at z.

We next introduce a stronger notion.
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Definition 3 (Fréchet Derivative) F is said to be Fréchet differentiable at z if and
only if F is Gâteaux differentiable at z and the following holds:

F(z+ h) = F(z)+ F ′(z)h+ r(z, h) with
‖r(z, h)‖V
‖h‖Z → 0 as ‖h‖Z → 0.

We refer to F ′(z) as the Fréchet derivative at z.

Remark 1 (Few Facts)

(i) If the Fréchet derivative exists so does the Gâteaux derivative and they
coincide. However, the converse is not true in general.

(ii) We say that F is continuously Gâteaux differentiable if F ′(·) exists and F ′(·)
is continuous. In that case F is Fréchet differentiable [18, pp. 35–36].

(iii) Let E = G(F(z)) where F is Gâteaux differentiable at z and G is Fréchet
differentiable at F(z), then E is Gâteaux differentiable.1

Notice that when V = R then L (Z, V ) = Z∗. In addition if F is Gâteaux
differentiable at z then we have

F ′(z)h = 〈F ′(z), h〉Z∗,Z,

where Z∗ is the dual space of Z and 〈·, ·〉Z∗,Z denotes the duality pairing.
Before we conclude this subsection, we apply the above introduced definitions to

two prototypical quadratic functionals. The derivatives in both these examples are
Fréchet derivatives.

Example 1 Let (H, (·, ·)H ) be a real Hilbert space and F : H → R defined as
F(z) := ‖z‖2

H = (z, z)H , then for all z, h ∈ H we have

F(z+ h)− F(z) = 2(z, h)H + ‖h‖2
H .

Thus,

F ′(z)h = (2z, h)H .

Using the Riesz Representation Theorem (identify H with its dual H ∗), we can
write

(∇F(z), h)H = 〈F ′(z), h〉H ∗,H ,

where ∇F(z) ∈ H is the representative of F ′(z) ∈ H ∗. We refer to ∇F(z) ∈ H as
the gradient of F at z. In the above case, we have ∇F(z) = 2z.

1 The chain rule only requires the outer function to be Hadamard directionally differentiable and
the inner function to be Hadamard (Gâteaux) directionally differentiable [79, Proposition 3.6].
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Remark 2 (Gradient) As can be seen from the above example, the expression that
we obtain by identifying F ′(z) ∈ H ∗ with an element of H is called the gradient
of F . We will use the notation ∇F(z) to denote the gradient. We further notice that
the definition of the gradient depends on the underlying inner product.

Example 2 Let (Z, (·, ·)Z), (H, (·, ·)H ) be real Hilbert spaces and ud ∈ H be fixed.
Let S ∈ L (Z,H). Consider E : Z→ R,

E(z) = ‖Sz− ud‖2
H .

Then E(z) = G(F(z)), where G(v) = ‖v‖2
H and F(z) = Sz− ud .

Next using the chain rule, we obtain that

〈E′(z), h〉Z∗,Z = 〈G′(F (z)), F ′(z)h〉H ∗,H = (2v, F ′(z)h)H
= 2(Sz− ud, Sh)H = 2〈S∗(Sz− ud), h〉Z∗,Z,

where S∗ ∈ L (H ∗, Z∗) is the adjoint of S. Here we have assumed that S∗S and
S∗ud are well defined. Thus E′(z) = S∗(Sz − ud) ∈ Z∗. Since Z is a Hilbert
space, similar to the previous example, we can again apply the Riesz representation
theorem to get the representative ∇E(z) ∈ Z of E′(z).

2.3 First-Order Necessary Optimality Conditions

We conclude this section with the following result on the first-order necessary
optimality conditions.

Theorem 2 Let Z be a real Banach space (not necessarily reflexive). Let
f : Z → R be Gâteaux differentiable in Z , where Zad ⊂ Z ⊂ Z, Z open. If
z̄ ∈ Zad is a solution to (3) then the first-order necessary optimality conditions are

〈f ′(z̄), z− z̄〉Z∗,Z ≥ 0 ∀z ∈ Zad. (4)

In addition, if f is convex and z̄ ∈ Zad solves (4) then z̄ is a solution to (3), i.e., (4)
is necessary and sufficient.

Proof The proof of the first part is a direct consequence of the definition of Gâteaux
derivative. Let z ∈ Zad be arbitrary. By the convexity of Zad we have that z̄+ t (z−
z̄) ∈ Zad for all t ∈ [0, 1]. From the optimality of z̄ it follows that

f (z̄+ t (z− z̄))− f (z̄) ≥ 0 ∀t ∈ [0, 1].

Dividing both sides by t and taking the limit as t approaches 0+, we arrive at (4).
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Next we use the convexity of f , i.e., for all t ∈ (0, 1] f (z̄+ t (z− z̄)) ≤ (1− t)

f (z̄) + tf (z). By rearranging terms and taking the limit as t approaches 0+, we
arrive at

f (z)− f (z̄) ≥ 〈f ′(z̄), z− z̄〉Z∗,Z ∀z ∈ Zad.

We then obtain the desired sufficient condition by using (4).

Remark 3 We make the following observations:

i. Theorem 2 only requires f to be directionally differentiable and it holds after
replacing 〈f ′(z̄), z− z̄〉Z∗,Z by f ′(z, z− z̄).

ii. Notice that the existence of a z̄ ∈ Zad in Theorem 2 that solves (3) can be
satisfied under the assumptions of Theorem 1.

iii. In general, for a nonconvex f , we cannot expect to achieve a global minimum
but only a local minimum. We call z̄ ∈ Zad a local minimum to (3) if there
exists an ε > 0 such that

f (z̄) ≤ f (z) ∀z ∈ Zad ∩ Bε(z̄)

where Bε(z̄) ⊂ Z is a ball of radius ε centered at z̄.
iv. Equation (4) is known as a variational inequality.

3 Application to PDE-Constrained Optimization Problems

Let Z be a real reflexive Banach space and U, Y be real Banach spaces. We begin
by recalling the abstract problem (1)–(2)

min
(u,z)∈U×Z J (u, z) subject to e(u, z) = 0, z ∈ Zad, u ∈ Uad, (5)

where J : U ×Z→ R and e : U ×Zad → Y where Zad ⊂ Z is closed convex. We
refer to (5) as the full-space form. Before we proceed further, we remark that often
the cost functional J has two components

J (u, z) = J1(u)+ J2(z),

where J1 : U → R is the objective (to be attained) and J2 : Z → R is the control
penalty.

Another way to write (5) is by letting X := U ×Z, Xad := Uad ×Zad . Then we
seek x ∈ Xad such that

min
x∈Xad

J (x) subject to e(x) = 0. (6)

Notice that (6) does not assume splitting of the control and state variables and is a
generalization of (5).
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By eliminating the state variables, we obtain a third form of (5) and we call
it the reduced form. Specifically, this requires existence of a solution operator:
S : Z→ U , which assigns each control to a unique state

z 
→ S(z) = u(z) where u(z) satisfies e(u(z), z) = 0.

Thus we define the reduced cost functional as J : Z→ R

J (z) := J (S(z), z).

Instead of (5) we then solve

min
z∈Zad

J (z)

subject to

S(z) ∈ Uad.

(7)

We remark that the formulations (5) and (7) are not equivalent in general. For
instance, there are applications where the solution operator S does not exist, i.e.,
the problem (7) may not have a solution but (5) is still solvable.

We next state existence result for (7). For simplicity of presentation from here on
we will assume that Uad = U , i.e., no state constraints. However the discussion can
be easily adapted to this more general situation.

Corollary 1 Let the following assumptions hold

(i) Zad ⊆ Z is closed and convex.
(ii) For each z ∈ Zad , there exists a unique mapping S(z) that solves

e(S(z), z) = 0.
(iii) S is weakly continuous, i.e., if zn ⇀ z in Zad then S(zn) ⇀ S(z) in U .
(iv) The lower γ -level set {z ∈ Zad : J (z) ≤ γ } of J is nonempty and bounded

for some γ ∈ R.
(v) J1 is continuous and convex and J2 is weakly lower semicontinuous.

Then there exists a solution to (7).

Proof We notice that since J1 is continuous and convex, therefore it is weakly lower
semicontinuous [81, Theorem 2.12]. The weak continuity of S combined with the
weak lower semicontinuity of J2 implies that J is weakly lower semicontinuous.
The proof then follows using Theorem 1.

We remark that in many applications we replace the lower γ -level set by either
boundedness of Zad or the coercivity of J2. More details will be provided in the
subsequent sections.

At times it is more suitable to directly work with the full-space (5) form as the
reduced form (7) may not even exist. This requires us to use the Lagrangian func-
tional; we will discuss this in Section 3.2. Another advantage of using Lagrangian
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formulation is the ease with which it allows us to derive the first- and second-order
derivatives. This will be discussed in Section 3.2. We first consider the derivation of
first-order optimality conditions for the reduced form in Section 3.1.

3.1 Reduced Form: First-Order Necessary Optimality
Conditions

Corollary 2 Let all the assumptions of Corollary 1 hold except Z being reflexive.
Let Z be an open set in Z such that Zad ⊂ Z such that z 
→ S(z) : Z → U is
Gâteaux differentiable with derivative

S′(z) ∈ L (Z,U),

(u, z) 
→ J (u, z) : U × Z→ R is Fŕechet differentiable with

J ′(u, z) ∈ L (U × Z,R).

If z̄ is minimizer of (5) over Zad then the first-order necessary optimality conditions
are given by

〈S′(z̄)∗Ju(S(z̄), z̄)+ Jz(S(z̄), z̄), z− z̄〉Z∗,Z ≥ 0 ∀z ∈ Zad, (8)

where Ju and Jz are the partial derivatives of J . If J is convex then the
condition (8) is sufficient.

Proof The proof is a consequence of Theorem 2. Let z̄ be a solution of (5) then from
Theorem 2 we have that 〈J ′(z̄), z − z̄〉Z∗,Z ≥ 0 for all z ∈ Zad . Combining this
with the directional derivative and setting h := z− z̄, we obtain that

〈J ′(z̄), h〉Z∗,Z = J ′(S(z), z)h = 〈Ju(S(z), z), S′(z)h〉U∗,U + 〈Jz(S(z), z), h〉Z∗,Z
where we have used the chain rule for derivatives which holds under the stated
differentiability assumptions on S and J . Since S′(z)∗ is well defined, we conclude
that

〈J ′(z̄), h〉Z∗,Z = 〈S′(z)∗Ju(S(z), z), h〉Z∗,Z + 〈Jz(S(z), z), h〉Z∗,Z
This completes the proof.

To further understand the structure of S′(z̄), we assume that the PDE constraint
function e is sufficiently smooth and the conditions of the implicit function theorem
hold. Upon differentiating the state equation, we obtain that

eu(S(z̄), z̄)S
′(z̄)h = −ez(S(z̄), z̄)h.
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Subsequently, we arrive at

S′(z̄)h = −eu(S(z̄), z̄)−1 (ez(S(z̄), z̄)h) . (9)

Substituting this in (8), we obtain that

−
〈
ez(S(z̄), z̄)

∗ ((eu(S(z̄), z̄)−1)∗Ju(S(z̄), z̄)
)
, z− z̄

〉
Z∗,Z

+〈Jz(S(z̄), z̄), z− z̄〉Z∗,Z ≥ 0.

Introducing the adjoint variable p̄ and solving the adjoint equation,

eu(S(z̄), z̄)
∗p̄ = Ju(S(z̄), z̄), (10)

we arrive at the following reformulation of (8)

− 〈ez(S(z̄), z̄)∗p̄, z− z̄
〉
Z∗,Z + 〈Jz(S(z̄), z̄), z− z̄〉Z∗,Z ≥ 0. (11)

Notice that

J ′(z) = −ez(S(z), z)∗p + Jz(S(z), z) ∈ Z∗, (12)

is the derivative of J at z. We summarize the computation of J ′(z) in
Algorithm 1.

Algorithm 1 requires two PDE solvers (possibly nonlinear in Step 1, linear PDE
in Step 2).

In order to get the gradient, we can again apply the Riesz representation theorem
(under the assumption that Z is a Hilbert space or admits a representation) to get a
representative ∇J (z) satisfying

(∇J (z), v)Z = 〈J ′(z), v〉Z∗,Z ∀v ∈ Z.

Having the expression of the gradient in hand, we can develop a gradient-based
optimization solver. We will provide another derivation of the first-order optimality
conditions in Section 3.2 using the Lagrangian approach.

In order to design Newton-based methods, it is desirable to have the second-
order derivative information of the reduced functional. This can be obtained by
using either the reduced functional approach or the Lagrangian approach. We will
provide a brief discussion in the next section as well. More details will be given in
subsequent chapters, we also refer to [44, 53].

Algorithm 1 Derivative computation using adjoints
1: Given z, solve e(u, z) = 0 for the state u.
2: Solve the adjoint equation eu(u(z), z)

∗p = Ju(u(z), z) for p.
3: Compute J ′(z) = Ju(u(z), z)− ez(u(z), z)

∗p(z).
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3.2 Lagrangian Formulation

3.2.1 First-Order Optimality Conditions

The full-space form requires us to introduce Lagrangian functional: L : U ×Zad ×
Y ∗ → R,

L(u, z, p) = J (u, z)− 〈e(u, z), p〉Y,Y ∗ . (13)

where Y ∗ is the dual space of Y (recall that e : U ×Zad → Y ). Notice that if we set
u = S(z) in (13) then e(S(z), z) = 0 and we obtain that

J (z) = J (S(z), z) = L(S(z), z, p) for any p ∈ Y ∗. (14)

Now if (ū, z̄, p̄) denotes a stationary point, then the partial derivatives of
L(u, z, p) with respect to u, z, and p at (ū, z̄, p̄) vanish and as a result we obtain

Lp(ū, z̄, p̄) = 0,

which reduces to the state equation

e(ū, z̄) = 0.

Also

Lu(ū, z̄, p̄) = 0, (15)

which is just the adjoint equation (10). Indeed

〈Lu(ū, z̄, p̄), ξ 〉U∗,U = 〈Ju(ū, z̄), ξ 〉U∗,U − 〈p̄, eu(ū, z̄)ξ 〉Y ∗,Y
= 〈Ju(ū, z̄)− eu(ū, z̄)

∗p̄, ξ 〉U∗,U .

In other words

Lu(ū, z̄, p̄) = Ju(ū, z̄)− eu(ū, z̄)
∗p̄.

Finally,

〈Lz(ū, z̄, p̄), z− z̄〉Z∗,Z ≥ 0 ∀z ∈ Zad,

which is equivalent to the variational inequality for the control (11). Indeed we have
that the gradient of the reduced function J at z (12) is

J ′(z) = Lz(u, z, p),

where u and p solve the state and the adjoint equations, respectively.
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Few comments are in order, first of all the above approach provides an elegant
way to derive the first-order necessary optimality conditions and is highly recom-
mended. As we will discuss below, the above approach also allows us to easily
derive the second-order derivatives for the reduced functional. Secondly, even
though the above introduced Lagrangian L is rigorous, however, we have not yet
addressed the question of existence of the Lagrange multiplier p which makes
the approach “formal.” The existence of Lagrange multiplier p can be shown by
using the Karush–Kuhn–Tucker (KKT) theory in function spaces [81, Chapter 6].
This theory requires the Robinson’s regularity condition [71] or the Zowe–Kurcyusz
constraint qualification [85], see [53, Chapter 1]. In certain cases, in particular, in
the absence of control constraints and linear PDE constraints, one can also use the
inf-sup theory for saddle point problems [39] to show existence of the Lagrange
multipliers.

3.2.2 Second-Order Derivatives

Next we focus on deriving the expression of the second-order derivative of the
reduced functional J . The second-order derivative information can significantly
improve the convergence rates for optimization algorithms. For instance in the
absence of control constraints, the first-order necessary optimality conditions are
J ′(z̄) = 0 in Z∗. In order to solve for z, one can use Newton’s method which
is quadratically convergent (locally). Each iteration of Newton’s method requires
solving

J ′′(z)v = −J ′(z) in Z∗ (16)

for a direction v ∈ Z. In general (for large problems), it is often too expensive to
store and factorize the Hessian. Instead it is often more practical to solve (16) using
iterative methods that only require Hessian-times-vector products. We will discuss
the computation of Hessian-times-vector product next. We remark that in case of
bound constraints on the control one can use a superlinearly (locally) convergent
semismooth Newton method [48, 56, 82].

We will proceed by using the Lagrangian approach. We operate under the
assumption that J and e are twice continuously differentiable.

From (14), we recall that

J (z) = J (u(z), z) = L(u(z), z, p)

u(z) = S(z) solves the state equation and p ∈ Y ∗ is arbitrary. After differentiating
this expression in a direction h1, we obtain that

〈J ′(z), h1〉Z∗,Z = 〈Lu(u(z), z, p), u
′(z)h1〉U∗,U + 〈Lz(u(z), z, p), h1〉Z∗,Z.
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Again differentiating this expression in a direction h2 and choosing a particular p
that solves the adjoint equation (15), we arrive at

J ′′(z) = T (S(z), z)∗H(S(z), z, p)T (S(z), z),

where

T (u, z) =
(−eu(u, z)−1ez(u, z)

IZ

)

with IZ denoting the identity map on Z and H(u, z, p) is given by

H(u, z, p) =
(
Luu(u, z, p) Luz(u, z, p)

Lzu(u, z, p) Lzz(u, z, p)

)
.

Then one can compute the Hessian vector product by using Algorithm 2. Notice
that Algorithm 2 requires two linear PDE solvers in Steps 3 and 4. We refer to [53,
Chapter 1] and [44] for further details.

So far our approach has been general. For the chapter remainder, we will focus
on two particular examples where the cost functional is quadratic and the PDE
constraints are linear and semilinear elliptic PDEs. In order to develop the notion
of solutions to these PDEs, we first introduce Sobolev spaces.

4 Sobolev Spaces

In this section, we introduce the necessary function spaces to be used throughout
the chapter remainder. Let Ω ⊂ R

n be an open, bounded domain with Lipschitz
boundary ∂Ω . For 1 ≤ p <∞, we denote by Lp(Ω) the Banach space

Lp(Ω) :=
{
v : Ω → R : v is measurable and

ˆ
Ω

|v(x)|p dx <∞
}

Algorithm 2 Hessian-Times-Vector Computation
1: Given z, solve e(u, z) = 0 for u (if not done already).
2: Solve adjoint equation: eu(u, z)∗p = Ju(u, z) for p (if not done already).
3: Solve eu(u, z)w = −ez(u, z)v.
4: Solve eu(u, z)

∗q = Luu(u, z, p)w + Luz(u, z, p)v.
5: Compute

J ′′(z)v = −ez(u, z)∗q + Luz(u, z, p)w + Lzz(u, z, p)v.
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with the norm ‖v‖Lp(Ω) :=
(´

Ω
|v(x)|p dx

) 1
p . These spaces are equivalence classes

of functions equal up to a set of measure zero [37]. In particular when p = 2,
we obtain L2(Ω) which is a Hilbert space with inner product (u, v)L2(Ω) =´
Ω
u(x)v(x) dx. When p = ∞, we obtain L∞(Ω), a Banach space with norm

‖v‖L∞(Ω) := ess supΩ |v|.
Moving forward, we use multi-index notation to define partial derivatives. For a

multi-index γ = (γ1, . . . , γn) ∈ N
n
0 := (N ∪ {0})n, we let its order to be |γ | :=∑n

i=1 γi . The associated |γ |-th order partial derivative of a function u at x is

Dγu(x) := ∂ |γ |u
∂x

γ1
1 . . . ∂x

γn
n

(x).

Then we denote by Wk,p(Ω) the Sobolev spaces with the norm

‖u‖Wk,p(Ω) :=
⎧⎨
⎩
(∑

|γ |≤k
´
Ω
|Dγu|p dx

)1/p
1 ≤ p <∞∑

|γ |≤k ess supΩ |Dγu| p = ∞.

If p = 2, we write

Hk(Ω) = Wk,2(Ω), k = 0, 1, . . .

which is a Hilbert space with inner product

(u, v)Hk(Ω) =
∑
|γ |≤k

(Dγ u,Dγ v)L2(Ω).

Notice that H 0(Ω) = L2(Ω).
We denote by W

k,p

0 (Ω) the closure of C∞0 (Ω) with respect to Wk,p(Ω)-norm.

Thus u ∈ W
k,p

0 (Ω) if and only if there exist functions um ∈ C∞0 (Ω) such that
um → u in Wk,p(Ω). The space H 1

0 (Ω) consists of functions u ∈ H 1(Ω) such that

u = 0 on ∂Ω,

in the trace sense. Using the Poincaré inequality ‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω), where
C = C(Ω), we have

‖u‖H 1(Ω) ≤ C‖∇u‖L2(Ω) ∀u ∈ H 1
0 (Ω).

Finally, we denote the dual of H 1
0 (Ω) by H−1(Ω). It is easy to see that L2(Ω) is

continuously embedded in H−1(Ω). For more details, we refer to [1].
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5 Second-Order Linear Elliptic PDEs

In this section, we study the second-order elliptic PDEs. In general, we cannot
expect classical solutions to these PDEs, therefore we first introduce the notion of
weak solutions in Section 5.1. We will also study the notion of ‘strong’ solutions for
this problem in Section 5.2. This higher regularity (strong solutions) will help us to
establish the approximability of the continuous solution using the finite-element
method (cf. Section 8). Strong solutions, in addition, also play a role in other
situations, for instance, in studying the regularity of multipliers in state-constrained
problems [20] and PDECO problems with variational inequalities [49].

5.1 Existence and Uniqueness

We begin this section by making certain uniform ellipticity assumptions.

Assumption 3 (Coefficient Matrix) Let A be an n × n matrix with entries aij for
1 ≤ i, j ≤ n. We assume that aij are measurable, belong to L∞(Ω), and are
symmetric, that is, aij (x) = aji(x) for all 1 ≤ i, j ≤ n and for a.e. x ∈ Ω . We
further assume that A is positive definite and satisfy the uniform ellipticity condition

∃ β ≥ α > 0 such that α|ξ |2 ≤ A(x)ξ · ξ ≤ β|ξ |2 ∀ξ ∈ R
n, a.e. x in Ω.

(17)

Given f , we consider the following linear elliptic PDE

−div (A∇u) = f in Ω

u = 0 on ∂Ω.
(18)

We understand (18) in a weak sense, i.e., given f ∈ H−1(Ω), we seek a solution
u ∈ H 1

0 (Ω) that satisfies

ˆ
Ω

A∇u · ∇v dx = 〈f, v〉−1,1, ∀v ∈ H 1
0 (Ω), (19)

where 〈·, ·〉−1,1 denotes the duality pairing between H−1(Ω) and H 1
0 (Ω).

Theorem 4 For every f ∈ H−1(Ω), there exists a unique weak solution u ∈
H 1

0 (Ω) that fulfills

‖u‖H 1(Ω) ≤ C‖f ‖H−1(Ω), (20)

where the constant C only depends on Ω and α.
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Proof The existence and uniqueness is due to the Lax–Milgram Lemma. Moreover,
the bound (20) immediately follows by using the fact that A is uniformly positive
definite and the Poincaré inequality [38].

Remark 4 In general, for Sobolev spaces W 1,p(Ω) with p �= 2, we need the inf-
sup conditions to prove Theorem 4. The Banach–Nečas theorem then guarantees
existence and uniqueness of u [34, Theorem 2.6]. The latter is a necessary and
sufficient condition. See also [67].

5.2 Regularity

It is imperative to understand the regularity of solution u to (19). For instance,
such an understanding allows us to develop numerical schemes with optimal rate
of convergence (see Section 8). It can assist us with proving rates of convergence
for the optimization algorithms [47].

Theorem 5 Let u ∈ H 1
0 (Ω) be a weak solution of (19) and let the coefficient matrix

A satisfy Assumption 3.

• If f ∈ L2(Ω) and Ω is a convex polytope or C1,1 domain in R
n, then u ∈

H 2(Ω) ∩H 1
0 (Ω) and there exists a constant C = C(α, β,Ω) such that

‖u‖H 2(Ω) ≤ C‖f ‖L2(Ω).

• If f ∈ Lp(Ω) for 1 < p < ∞ and Ω is C1,1, then u ∈ W 2,p(Ω) ∩W
1,p
0 (Ω)

and there exists a constant C = C(α, β,Ω, p) such that

‖u‖W 2,p(Ω) ≤ C‖f ‖Lp(Ω).

If p > n , then u ∈ C1,α(Ω̄) with α = 1− n/p.

Proof If Ω is a convex polygonal/polyhedral domain, then H 2-regularity is in
[40, 3.2.1.2]. When ∂Ω is C1,1 and f ∈ Lp(Ω) for any 1 < p < ∞, the result
is due to [38, Theorem 9.15]. In the case p > n, the C1,α regularity follows from
W 2,p regularity and the Sobolev embedding.

6 Linear Quadratic PDE-Constrained Optimization Problem

Having some basic understanding of elliptic PDEs in hand, we next apply the results
of Section 3 to a linear quadratic PDECO problem (cf. Section 6.1). In Section 6.2,
we formulate it as a reduced PDECO problem only in terms of the control variable z.
This allows us to use the direct method of calculus of variations from Theorem 1 to
show the existence of solution.
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6.1 Problem Formulation

Let ud ∈ L2(Ω) and za, zb ∈ L2(Ω) with za < zb a.e. in Ω being given. Moreover,
let λ ≥ 0 denotes the penalty parameter. Then we are interested in minimizing

J (u, z) = 1

2
‖u− ud‖2

L2(Ω)
+ λ

2
‖z‖2

L2(Ω)
(21)

subject to (in the weak form)

−div (A∇u) = z in Ω,

u = 0 on ∂Ω,
(22)

and the pointwise control constraints

z ∈ Zad := {v ∈ L2(Ω) : za(x) ≤ v(x) ≤ zb(x) , a.e. x ∈ Ω}. (23)

Notice that in our formulation above we also allow za = −∞ and zb = ∞. We call
this case as an unconstrained case, i.e., Zad = L2(Ω).

For the above problem, we have (cf. Section 3)

U = H 1
0 (Ω), Y = H−1(Ω), Z = L2(Ω).

In order to understand the problem (21)–(23) similar to (7), first we condense the
variables and write J only in terms of z. We again call this as the reduced form and
the resulting cost functional as the reduced functional. We discuss this next.

6.2 Reduced PDECO Problem

For every z ∈ Y , there exists a unique solution u = u(z) ∈ U to (22). As a result,
we can define the solution operator to (22) as

S : Y → U, z 
→ u(z) = S z,

which is linear and continuous. In view of the continuous embedding, H 1
0 (Ω) ↪→

L2(Ω) ↪→ H−1(Ω) we may also consider S as a map from L2(Ω) to L2(Ω).
In other words instead of S , we consider the operator S := EuS Ez, where Ez :
L2(Ω) → H−1(Ω) and Eu : H 1

0 (Ω) → L2(Ω) denote the embedding operators
that assign to each z ∈ L2(Ω) and u ∈ H 1

0 (Ω) the functions z ∈ H−1(Ω) and
u ∈ L2(Ω) so that when these new functions are restricted to L2(Ω) and H 1

0 (Ω)

the operator yields the original functions, respectively. Notice that S : L2(Ω) →
L2(Ω). One of the main advantages of using S is the fact that the adjoint operator
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S∗ also acts on L2(Ω) (cf. Section 6.3). Using the solution map S, we arrive at the
so-called reduced cost J : L2(Ω)→ R which is defined as

J (z) := J (Sz, z),

and the minimization problem (21)–(23) is equivalent to the reduced problem:

min
z∈Zad

J (z). (24)

We notice that it is more convenient to analyze (24) in comparison to (21)–(23). In
fact, we have the following well-posedness result.

Corollary 3 Let either λ > 0 or Zad be bounded. Then there exists a solution to the
minimization problem (24). If in addition λ > 0 or S is injective then the solution is
unique.

Proof The proof is a consequence of Theorem 1. We will first show that J
is weakly lower semicontinuous. Notice that J (z) = J1(Sz) + J2(z) where
J1(Sz) := 1

2‖Sz − ud‖2
L2(Ω)

and J2(z) := λ
2‖z‖2

L2(Ω)
. Clearly J2 is weakly

lower semicontinuous (convexity and continuity imply weak lower semicontinuity
[18, Theorem 2.23]). On the other hand, due to the compact embedding of H 1

0 (Ω) in
L2(Ω), we have that S : L2(Ω)→ L2(Ω) is completely continuous, i.e., if zn ⇀ z

in L2(Ω) then Szn → Sz in L2(Ω). Thus, owing to the continuity and convexity of
J1, we conclude that J1 is weakly lower semicontinuous. Whence J is weakly
lower semicontinuous.

It then remains to characterize the lower γ -level set. Here we replace the lower
γ -level set condition by the coercivity of J (if λ > 0) or by the closed convex
bounded set Zad .

Finally uniqueness is due to strict convexity of J .

For the remainder of this section, we will consider λ > 0.

6.3 First-Order Optimality Conditions

We are now ready to derive the first-order optimality conditions by following
Section 3.1 and the expression of the gradient of the reduced objective function.
In Section 6.4, we follow Section 3.2 and consider an alternate strategy to derive the
optimality conditions using the Lagrangian formulation.

We recall that the reduced functional is

J (z) = 1

2
‖Sz− ud‖2

L2(Ω)
+ λ

2
‖z‖2

L2(Ω)
.

Using Examples 1 and 2, the gradient of J is given by

∇J (z) = S∗(Sz− ud)+ λz ∈ L2(Ω).
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Here we have S : L2(Ω)→ L2(Ω). The first-order necessary and sufficient (due to
the convexity of J ) optimality condition (4) then becomes

(∇J (z̄), z− z̄)L2(Ω) ≥ 0 ∀z ∈ Zad. (25)

In order to efficiently evaluate ∇J (z), we introduce the so-called adjoint variable
p ∈ H 1

0 (Ω) solving

−div (A∇p) = u− ud in Ω

p = 0 on ∂Ω.
(26)

We will next show that the adjoint operator S∗ : L2(Ω) → L2(Ω) can be defined
by S∗ζ := p where p solves (26) with right-hand side given by ζ . Here ζ ∈ L2(Ω)

is arbitrary. Let z ∈ L2(Ω) be an arbitrary right-hand side of the state equation and
the resulting state variable is u = Sz ∈ H 1

0 (Ω). By testing the equation for u with p

and vice versa, we obtain that (z, p)L2(Ω) = (ζ, u)L2(Ω). Since u = Sz, we deduce
that S∗ζ = p. As a result, S∗(u− ud) = p where p solves (26).

Thus the gradient computation reduces to evaluation of the following expression:

∇J (z) = p + λz ∈ L2(Ω).

Finally, we gather the first-order necessary and sufficient optimality system:

ū ∈ H 1
0 (Ω) :

ˆ
Ω

A∇ū · ∇v dx =
ˆ
Ω

z̄v dx ∀v ∈ H 1
0 (Ω) (27a)

p̄ ∈ H 1
0 (Ω) :

ˆ
Ω

A∇p̄ · ∇v dx =
ˆ
Ω

(ū− ud)v dx ∀v ∈ H 1
0 (Ω) (27b)

z̄ ∈ Zad : (p̄ + λz̄, z− z̄)L2(Ω) ≥ 0, ∀z ∈ Zad. (27c)

Notice that (27) is a coupled system, namely ū in (27a) depends on the unknown
optimal control z̄ which fulfills the inequality (27c). The latter depends on the
adjoint variable p̄ that solves the adjoint equation (27b). This in turn depends on
ū. We further remark the variational inequality (27c) for the control is equivalent to
the following projection formula (see [81]):

z̄(x) =PZad

{
−1

λ
p̄(x)

}
a.e. x ∈ Ω. (28)

Here PZad
(v) denotes projection of v onto Zad . In our case, we can further write

this as PZad
(v) := min {b(x),max {a(x), v(x)}}, x a.e. in Ω .
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6.4 Lagrange Method

An alternative approach to derive the first-order optimality system is using the
Lagrangian as described in Section 3.2. We again emphasize that even though this
approach is used formally in the following, it can be made rigorous. It provides a
systematic way of deriving the optimality system, especially for tedious problems
and this step is strongly recommended.

Introduce L : H 1
0 (Ω)× Zad ×H 1(Ω)→ R, defined as

L(u, z, p) := J (u, z)−
ˆ
Ω

(A∇u · ∇p − zp) dx.

If (ū, z̄, p̄) is a stationary point then

〈Lp(ū, z̄, p̄), h〉H−1(Ω),H 1
0 (Ω) = 0 ∀h ∈ H 1

0 (Ω),

〈Lu(ū, z̄, p̄), h〉H−1(Ω),H 1
0 (Ω) = 0 ∀h ∈ H 1

0 (Ω),

(Lz(ū, z̄, p̄), (z− z̄))L2(Ω) ≥ 0 ∀z ∈ Zad.

(29)

It is not hard to see that (29) leads to the same optimality system as in (27).

7 Semilinear Quadratic PDE-Constrained Optimization
Problem

The focus of the previous section was on the linear quadratic PDECO problem.
However, things are more delicate when we replace the linear PDE constraint by a
semilinear one. In this section, we provide a brief discussion of a PDECO problem
governed by a semilinear PDE.

Let Ω ⊂ R
n, with n ≥ 2, be a Lipschitz domain and the Assumption 3 holds.

Moreover, let ud ∈ L2(Ω) and za, zb ∈ L∞(Ω) with za(x) < zb(x) a.e. x ∈ Ω and
λ ≥ 0 be given. We then consider the following semilinear optimal control problem:

min J (u, z) := 1

2
‖u− ud‖2

L2(Ω)
+ λ

2
‖z‖2

L2(Ω)
(30)

subject to u ∈ L∞(Ω) ∩H 1
0 (Ω) solving the weak form of

−div (A∇u)+ f (·, u) = z in Ω

u = 0 on ∂Ω
(31)

and

z ∈ Zad := {v ∈ L∞(Ω) : za(x) ≤ v(x) ≤ zb(x) , a.e. x ∈ Ω}. (32)
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Notice the difference between the semilinear state equation (31) and the linear
state equation (22). The key difficulty in the above problem is due to the nonlinearity
introduced by f . The control bounds fulfill za, zb ∈ L∞(Ω). This is different than
the linear case where we assumed the bounds to be in L2(Ω). This choice enforces
the control z ∈ L∞(Ω) which in turn provides additional regularity for the state u

as we discuss next.
In order to establish existence of solution to the state equation (31), we make

certain assumptions on the nonlinearity f .

Assumption 6 For a function f : Ω × R → R we consider the following
assumption:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f (x, ·) is strictly increasing for a.e. x ∈ Ω,

f (x, 0) = 0 for a.e. x ∈ Ω,

f (x, ·) is continuous for a.e. x ∈ Ω,

f (·, t) is measurable for all t ∈ R,

limt→∞ f (x, t) = ∞ for a.e. x ∈ Ω.

Remark 5 The condition f (x, 0) = 0 in Assumption 6 is not a restriction. If this
condition on f cannot be verified, then it is enough to rewrite Equation (31) in Ω as

−div (A∇u)+ f (·, u)− f (·, 0) = z− f (·, 0) in Ω.

A typical example of f that fulfills Assumption 6 is given next (cf. [10, 11]).

Example 3 Let q ∈ [1,∞) and let b : Ω → (0,∞) be a function in L∞(Ω), that
is, b(x) > 0 for a.e. x ∈ Ω . Define the function f : Ω × R → R by f (x, t) =
b(x)|t |q−1t .

Theorem 7 (Existence and Uniqueness for Semilinear PDE) Let Assumptions 3
and 6 hold. Then for every z ∈ Lp(Ω) with p > n

2 , there exists a unique weak
solution u ∈ L∞(Ω)∩H 1

0 (Ω) to the state equation (31) and there exists a constant
C = C(α, β,Ω) > 0 such that

‖u‖H 1(Ω) + ‖u‖L∞(Ω) ≤ C‖z‖Lp(Ω). (33)

Proof The existence of solution is using the Browder–Minty theorem (cf [11,
proposition 3.2] after setting s = 1). On the other hand, the L∞(Ω) regularity
is by using a technique of Stampacchia [11, Theorem 3.5], see also [2, 21].

For the above minimization problem, we have (cf. Section 3)

U = H 1
0 (Ω) ∩ L∞(Ω), Y = H−1(Ω), Z = Lp(Ω) with p > n/2.

Notice that

Zad ⊂ L∞(Ω) ⊂ Z.
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As a result and owing to Theorem 7, the control to state map is well defined

S : L∞(Ω)→ L∞(Ω) ∩H 1
0 (Ω).

We notice that S is also well defined as a map from Z to L∞(Ω)∩H 1
0 (Ω).2 Due to

S we can write the reduced problem as

min
z∈Zad

J (z) := J (S(z), z). (34)

In order to show the existence of solution to (34), typically f is assumed to be locally
Lipschitz in the second argument to fulfill the assumptions on S in Corollary 1.
This assumption was recently weakened in [11] and was replaced by the following
growth condition on f : There exists a constant c ∈ (0, 1] such that

c|f (x, ξ − η)| ≤ |f (x, ξ)− f (x, η)| (35)

for a.e. x ∈ Ω and for all ξ, η ∈ R. Such a growth condition is fulfilled by Example 3
(cf. [11]). Under this condition, we have the following existence result for (34).

Corollary 4 Let the Assumptions of Theorem 7 hold. In addition, let f fulfills the
growth condition (35) and that

f (·, w(·)) ∈ L2(Ω) for every w ∈ L∞(Ω). (36)

Then there exists a solution to (34).

Proof Similar to Corollary 3, the proof is again a consequence of Theorem 1.
We interpret Zad as a subset of Z which is a reflexive Banach space. However,
care must be taken to show the weak lower semicontinuity of J . One has to
carefully study the convergence of the state sequence {S(zn)}n∈N. See for instance
[11, Theorem 4.2].

Notice that the condition (36) is also fulfilled by Example 3.

Remark 6 We mention that all the results given in Corollary 4 remain true if one
replaces the growth condition (35) and (36) with the following local Lipschitz
continuity condition: For all M > 0 there exists a constant LM > 0 such that f
satisfies

|f (x, ξ)− f (x, η)| ≤ LM |ξ − η| (37)

for a.e. x ∈ Ω and ξ, η ∈ R with |η|, |ξ | ≤ M .

2Note both the choices of spaces for S are motivated by the theory of Nemytskii or superposition
operators. Care must to taken to ensure their differentiability [81, Section 4.3].
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For the remainder of this section, we will assume that λ > 0. Before we proceed
further to derive the optimality conditions, we need some additional assumptions
on f . Notice that the second-order derivatives are needed if one is interested in
studying the second-order sufficient conditions.

Assumption 8 We assume the following:

(i) The function f (x, ·) is k-times, with k = 1, 2, continuously differentiable for
a.e. x ∈ Ω .

(ii) For all M > 0, there exists a constant LM > 0 such that f satisfies (37) and
∣∣∣Dk

uf (x, ξ)−Dk
uf (x, η)

∣∣∣ ≤ LM |ξ − η|, k = 1, 2,

for a.e. x ∈ Ω and ξ, η ∈ R with |ξ |, |η| ≤ M . Here Du denotes the partial
derivatives with respect to the second component.

(iii) Duf (·, 0) ∈ L∞(Ω).
(iv) Duuf (·, u(·)) ∈ L∞(Ω) whenever u(·) ∈ L∞(Ω).

Assumptions 8 help us prove that S : L∞(Ω) → L∞(Ω) ∩ H 1
0 (Ω) is not only

twice Fréchet differentiable (using the Implicit Function Theorem) but also twice
continuous Fréchet differentiability of J .

By invoking Corollary 2 the first-order necessary optimality conditions are given
as follows: For every solution z̄ of the problem (34), there exists a unique optimal
state ū = S(z̄) and an optimal adjoint state p̄ such that

ū ∈ L∞(Ω) ∩H 1
0 (Ω) :

ˆ
Ω

A∇ū · ∇v dx+
ˆ
Ω

f (x, ū)v dx

=
ˆ
Ω

z̄v dx ∀v ∈ H 1
0 (Ω)

p̄ ∈ H 1
0 (Ω) :

ˆ
Ω

A∇p̄ · ∇v dx+
ˆ
Ω

Duf (x, ū)p̄ dx

=
ˆ
Ω

(ū−ud)v dx ∀v ∈ H 1
0 (Ω)

z̄ ∈ Zad : (p̄+λz̄, z−z̄)L2(Ω) ≥ 0, ∀z ∈ Zad.

(38)

Alternatively, one can use the Lagrangian approach of Section 6.4 to derive (38).
Notice that the variational inequality in (38) again can be written using the

Projection formula as

z̄(x) =PZad

{
−1

λ
p̄(x)

}
a.e. x ∈ Ω. (39)

We further remark that since J is non-convex, in general due to the semilinear
state equation, we cannot expect a global unique solution to the PDECO problem
but only a local one. This local uniqueness can be shown by studying second order
sufficient conditions. Nevertheless, care must be taken to prove such a result. This
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is due to the fact that the penalty term on the control in the cost functional is in
L2(Ω). However, the constraints in Zad are in L∞(Ω). This leads to the so-called
L2(Ω) − L∞(Ω) norm discrepancy and should be taken into account before
considering second-order sufficient conditions. We refer to [81, Theorem 4.29] for
details. We further remark that the second-order sufficient conditions are a useful
tool to derive the discretization error estimates [13]. A further discussion is provided
in Theorem 12.

8 Discrete Optimal Control Problem

We will illustrate the main ideas of the finite-element approximation of the PDE-
constrained optimization problems in the case of linear elliptic problem with control
constraints (21)–(23). First, we briefly review the basics of the finite-element
discretization just for the state equation. For what follows, it is sufficient to take
f ∈ L2(Ω). We consider the weak form of Equation (19),

(A∇u,∇v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H 1
0 (Ω).

We partition the domain Ω into elements. For simplicity, we only discuss the case
when elements are simplices. For h ∈ (0, h0]; h0 > 0, let Th denote a quasi-uniform
triangulation of Ω with mesh size h, i.e., Th = {τ } is a partition of Ω into triangles
or tetrahedrons τ of diameter hτ such that for h = maxτ hτ ,

diam(τ ) ≤ h ≤ C|τ | 1
n , ∀τ ∈ Th,

where the constant C > 0 independent of h. For simplicity, we assume ∪τ = Ω .
Let Vh be the set of all functions in H 1

0 (Ω) that are continuous on Ω and linear
on each τ . Vh is usually called the space of conforming Lagrange piecewise linear
elements.

Now we define the finite-element Galerkin approximation uh ∈ Vh of (8), as the
unique solution of

(A∇uh,∇vh)L2(Ω) = (f, vh)L2(Ω) ∀vh ∈ Vh. (40)

Expanding uh in terms of basis functions, it is easy to see that (40) is equivalent
to a system of linear equations and since Vh ⊂ H 1

0 (Ω) the resulting matrix is
nonsingular. Notice that by construction

(A∇(u− uh),∇vh)L2(Ω) = 0 ∀vh ∈ Vh. (41)

Thus, the Galerkin solution uh is the orthogonal projection of u onto Vh with respect
to the inner-product (A∇·,∇·)L2(Ω). Almost immediately we obtain the following
key result.
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Lemma 1 (Céa Lemma) Let u and uh satisfy (41). Then the following estimate
holds

‖u− uh‖H 1(Ω) ≤ C min
χ∈Vh

‖u− χ‖H 1(Ω).

The constant C depends only on ellipticity, boundedness of the matrix A, and the
domain Ω .

The above result says that the Galerkin solution is the best approximation to u from
Vh in H 1(Ω)-norm up to a constant. We can use Cea’s lemma to derive a priori error
estimates. Let Ih : H 1(Ω)→ Vh be a projection with the approximation properties

‖u− Ihu‖Hs(Ω) ≤ Ch2−s‖u‖H 2(Ω), s = 0, 1, (42)

then from Cea’s lemma immediately follows

‖u− uh‖H 1(Ω) ≤ Ch‖u‖H 2(Ω).

Notice that the constant C > 0 above is independent of h. The error estimates in
L2(Ω)-norm are not immediate, since the Galerkin solution does not have a property
of being best approximation in L2(Ω)-norm; nevertheless, one can still establish
optimal error estimates in L2(Ω) via a duality argument, also known as Nitsche’s
trick. This result requires H 2(Ω)-regularity.

Lemma 2 Let Ω be convex or C1,1 and u and uh satisfy (41). Then there exists a
constant C independent of h such that

‖u− uh‖L2(Ω) ≤ Ch min
χ∈Vh

‖u− χ‖H 1(Ω).

Proof Let e = u− uh and consider a dual problem

(A∇w,∇v)L2(Ω) = (e, v)L2(Ω) ∀v ∈ H 1
0 (Ω).

By setting, v = e, we obtain

‖e‖2
L2(Ω)

= (A∇w,∇e)L2(Ω) = (A∇(w − wh),∇e)L2(Ω),

where the last equality is due to (41). Next using the Cauchy–Schwarz inequality
and the fact that, under given regularity of the domain ‖w‖H 2(Ω) ≤ C‖e‖L2(Ω), we
obtain the required result.

Combining Cea’s lemma and Lemma 2, we immediately establish the optimal a
priori error estimate

‖u− uh‖L2(Ω) ≤ Ch2‖u‖H 2(Ω).

Notice that the above estimate does require the convexity of Ω .
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Corollary 5 H 2 regularity also allows us to express the error in terms of data. Thus
from Lemmas 1 and 2 it follows

‖u− uh‖L2(Ω) + h‖u− uh‖H 1(Ω) ≤ Ch2‖f ‖L2(Ω).

8.1 Discrete Linear Quadratic PDE-Constrained Optimization
Problem

For the remainder chapter, we will assume that λ > 0. To discretize the problem,
we replace the state space H 1

0 (Ω) with Vh ⊂ H 1
0 (Ω) and the control space of

admissible functions Zad with Zad,h ⊂ Zad . In case of unconstrained control, we
can choose Zad,h = Vh. Theoretically, the mesh for the discretization of the state
variable and the mesh for the discretization of the control can be different. However
having two different meshes adds more technical difficulties for implementation.
For this reason, it is more convenient to work with the same mesh which is what we
assume from now on. Thus, the discretized problem (21)–(23) becomes

min
uh∈Vh, zh∈Zad,h

Jh(uh, zh) = 1

2
‖uh − ud‖2

L2(Ω)
+ λ

2
‖zh‖2

L2(Ω)
(43)

subject to

(A∇uh,∇vh) = (zh, vh) ∀vh ∈ Vh. (44)

Similar to the infinite dimensional case, we define a discrete solution operator Sh :
Zad,h → Vh to (44) and the reduced discrete problem becomes

min
zh∈Zad,h

Jh(zh) := min
zh∈Zad,h

Jh(Shzh, zh). (45)

Similar to the continuous problem, one can show that problem (45) has a unique
solution z̄h ∈ Zad,h, the corresponding discrete optimal state is ūh = Sh(z̄h), and
similar to Theorem 2 the first-order necessary and sufficient optimality condition is

J ′
h(z̄h)(zh − z̄h) ≥ 0, ∀zh ∈ Zad,h. (46)

8.2 Optimization Problem Without Control Constraints

In this situation, Zad = L2(Ω) and Zad,h = Vh and as a result (25) and (46) reduce
to equalities

z̄ = −1

λ
p̄, z̄h = −1

λ
p̄h, (47)



30 H. Antil and D. Leykekhman

correspondingly, and as a result the continuous and discrete PDECO problems are
equivalent to the systems of equations

ū = S(−1

λ
p̄)

p̄ = S∗(ū− ud)

and

ūh = Sh(−1

λ
p̄h)

p̄h = S∗h(ūh − ud).

As a result z̄, ū, p̄ ∈ H 2(Ω) and we can expect second-order convergence for the
optimal control in L2 norm. Indeed, one can establish the following result.

Theorem 9 Let z̄ and z̄h be optimal solutions to continuous and discrete PDECO
problems (21) and (43), respectively, without control constraints. Assume in addi-
tion that Ω is convex or C1,1. Then there exists a constant C independent of h such
that

‖z̄− z̄h‖L2(Ω) ≤ Ch2 (‖z̄‖L2(Ω) + ‖ud‖L2(Ω)

)
.

Proof We begin by recalling the unconstrained optimality conditions λz̄+ p̄ = 0 =
λz̄h + p̄h, which yields (λz̄ + p̄, z̄h − z̄) = 0 = (λz̄h + p̄h, z̄ − z̄h). Adding these
last two equalities, we arrive at

λ‖z̄−z̄h‖2
L2(Ω)

= (p̄−p̄h, z̄h−z̄)L2(Ω) = (S∗(Sz̄−ud)−S∗h(Shz̄h−ud), z̄h−z̄)L2(Ω),

(48)
where in the last equality we have used the representation of p̄ and p̄h. Up on
rewriting (48), we obtain

λ‖z̄−z̄h‖2
L2(Ω)

= (S∗Sz̄−S∗hShz̄h, z̄h−z̄)L2(Ω)+((S∗−S∗h)ud, z̄h−z̄)L2(Ω) = I+II.
(49)

It follows from Corollary 5 that

|II | ≤ Ch2‖ud‖L2(Ω)‖z̄− z̄h‖L2(Ω). (50)

It then remains to estimate I in (49). We add and subtract (S∗hShz̄, z̄h− z̄)L2(Ω) to I

and arrive at

I = ((S∗S − S∗hSh)z̄, z̄h − z̄)L2(Ω) + (Sh(z̄− z̄h), Sh(z̄h − z̄))L2(Ω)

≤ ((S∗S − S∗hSh)z̄, z̄h − z̄)L2(Ω), (51)
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where we have used the fact that (Sh(z̄−z̄h), Sh(z̄h−z̄))L2(Ω) = −‖Sh(z̄−z̄h)‖2 ≤ 0.
Again adding and subtracting (S∗hSz̄, , z̄h − z̄)L2(Ω) to (51), we arrive at

|I | ≤ |((S∗ − S∗h)Sz̄, z̄h − z̄)L2(Ω) + (S∗h(S − Sh)z̄, z̄h − z̄)L2(Ω)|
≤ Ch2‖z̄‖L2(Ω)‖z̄− z̄h‖L2(Ω), (52)

where we have first used the triangle inequality and have estimated the first term
using Corollary 5 and continuity of S : L2(Ω) → L2(Ω): |((S∗ − S∗h)Sz̄, z̄h −
z̄)L2(Ω)| ≤ Ch2‖Sz̄‖L2(Ω)‖z̄ − z̄h‖L2(Ω) ≤ Ch2‖z̄‖L2(Ω)‖z̄ − z̄h‖L2(Ω). The
estimate of the remaining term follows again using Corollary 5 and the continuity
of S∗h : L2(Ω)→ L2(Ω). Finally, substituting the estimates of I and II from (52)
and (50) in (49), we arrive at the asserted result.

8.3 Optimization Problem with Control Constraints

For the rest of this section, we assume constant box constraints, i.e., za, zb ∈ R,
with za < zb. We remind the reader that in this situation the optimal control is given
by a projection formula:

z̄(x) =PZad

{
−1

λ
p̄(x)

}
. (53)

If the constraints are active, z̄ /∈ H 2(Ω). However, we can still conclude z̄ ∈ H 1(Ω)

and even z̄ ∈ W 1∞(Ω) by using [58, Theorem A.1]. In light of this, the second-order
convergence cannot in general be expected. There are several approaches to treat the
problem.

8.3.1 Cell-Wise Constant Control Discretization

One idea is to consider a cellwise constant discretization of the control variable, i.e.,
we choose Zad,h = Zad ∩ Z0

h, where Z0
h is a space of piecewise constant functions

on the partition Th. This idea goes back to Falk [35]. Since we consider piecewise
constant discretization, only first-order convergence for the control can be expected.
Indeed for such discretization, one can establish the following convergence result.

Theorem 10 Let z̄ and z̄h be optimal solutions to continuous and discrete PDECO
problems (21) and (43), respectively, with control constraints (23). Let Zad,h =
Zad ∩Z0

h. Assume in addition that Ω is convex or C1,1. Then there exists a constant
C independent of h such that

‖z̄− z̄h‖L2(Ω) ≤ Ch
(‖z̄‖H 1(Ω) + ‖ud‖L2(Ω)

)
.
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Proof First we define a projection πh : Zad → Zad ∩ Z0
h by

πhv |τ= 1

|τ |
ˆ
τ

v dx, ∀τ ∈ Th. (54)

Thus the projection πh is the orthogonal projection onto Z0
h with respect to

L2-inner-product, i.e.

(v − πhv,w)L2(Ω) = 0, w ∈ Z0
h (55)

and has the following approximation property

‖v − πhv‖L2(Ω) ≤ Ch‖∇v‖L2(Ω), v ∈ H 1(Ω). (56)

Then replacing z by z̄h in (25) and zh by πhz̄ in (46), we arrive at

(λz̄+ p̄, z̄h − z̄)L2(Ω) ≥ 0, (λz̄h + p̄h, πhz̄− z̄h)L2(Ω) ≥ 0.

Adding these inequalities, we obtain that

λ‖z̄− z̄h‖2
L2(Ω)

≤ (p̄ − p̄h, z̄h − z̄)L2(Ω) + (λz̄h + p̄h, πhz̄− z̄)L2(Ω) = I + II.

(57)

The estimate of I is exactly the same as in Theorem 9, i.e.,

|I | ≤ Ch2(‖z̄‖L2(Ω) + ‖ud‖L2(Ω))‖z̄− z̄h‖L2(Ω)

≤ Cλh
4(‖z̄‖L2(Ω) + ‖ud‖L2(Ω))

2 + λ

4
‖z̄− z̄h‖2

L2(Ω)
, (58)

where we have used the Young’s inequality in addition. Next we provide estimate
for II . Using the characterization of p̄h, followed by, adding and subtracting
(S∗h(Shz̄− ud), πhz̄− z̄)L2(Ω), and using the continuity of S∗h , we obtain

II = (S∗h(Shz̄h − ud), πhz̄− z̄)L2(Ω)

= (S∗hSh(z̄h−z̄), πhz̄−z̄)L2(Ω)+(S∗h(Shz̄−ud), πhz̄−z̄)L2(Ω) =: II1+II2.

(59)

To estimate II1, we use (56) and Young’s inequality to arrive at

|II1| ≤ Cλh
2‖z̄‖2

H 1(Ω)
+ λ

4
‖z̄− z̄h‖2

L2(Ω)
. (60)
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It then remains to estimate II2 in (59). By adding and subtracting (S∗h(Sz̄ −
ud), πhz̄− z̄)L2(Ω) in II2, we obtain that

|II2| = |(S∗h(Sh − S)z̄, πhz̄− z̄)L2(Ω) + (S∗h(Sz̄− ud), πhz̄− z̄)L2(Ω)|
≤ Ch3‖z̄‖H 1(Ω) + |((S∗h − S∗)(Sz̄− ud), πhz̄− z̄)L2(Ω)|
+ |(S∗(Sz̄− ud), πhz̄− z̄)L2(Ω)| =: II2,1 + II2,2 + II2,3, (61)

where we have used Corollary 5 and (56) to estimate the first term. Moreover, we
have added and subtracted (S∗(Sz̄ − ud), πhz̄ − z̄)L2(Ω) to the second term. It then
remains to estimate II2,2 and II2,3. Again using Corollary 5 and (56), we obtain
that II2,2 ≤ Ch3(‖z̄‖L2(Ω) + ‖ud‖L2(Ω))‖z̄‖H 1(Ω). Finally, to estimate II2,3 we
first recall that S∗(Sz̄− ud) = p̄. Since πh is L2-orthogonal projection, we obtain

II2,3 = (p̄ − πhp̄, πhz̄− z̄)L2(Ω) ≤ Ch3(‖z̄‖L2(Ω) + ‖ud‖L2(Ω))‖z̄‖H 1(Ω).

(62)

Collecting all the estimates, we arrive at the asserted result.

Comparing this result with the unconstrained case, we have only first-order
convergence. This is mainly due to the choice of the discrete control space which
does not take the full advantage of the regularity of the optimal control, namely
z̄ ∈ W 1∞(Ω) . Moreover, away from the active constraints z̄ is still in H 2. Taking this
in consideration, there are some alternatives to increase the order of the convergence.

8.3.2 Cell-Wise Linear Control Discretization

To improve the convergence rate of the above result, we consider Zad,h =
Zad ∩ Vh, i.e., the control space consists of piecewise linear functions satisfying
constraints (22). The approximation properties in this setting were investigated in
a number of papers, for example [72, 74]. We will not provide all the details, only
highlight the main ideas. To take advantage of the regularity for z̄ discussed above,
we consider the following sets:

T 1
h = {τ ∈ Th | z̄ |τ= za or z̄ |τ= zb},

which is the set of active cells,

T 2
h = {τ ∈ Th | za < z̄ |τ< zb},

the set of not active cells, and the rest

T 3
h = Th\(T 1

h ∪T 2
h ).
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Then under the assumption that

meas(T 3
h ) ≤ Ch, (63)

which is valid, for example, if the boundary of the active set consists of a finite
number of rectifiable curves, one can establish the following result.

Theorem 11 Let z̄ and z̄h be optimal solutions to continuous and discrete PDECO
problems (21) and (43), respectively, with control constraints. Assume in addition
that Ω is convex or C1,1, ud ∈ Lp(Ω) for p > n and assumptions (63) hold. Then
there exists a constant C independent of h such that

‖z̄− z̄h‖L2(Ω) ≤ Ch
3
2
(‖p̄‖H 2(Ω) + ‖∇ z̄‖L∞(Ω)

)
.

Proof The proof of this result can be found in [73].

Remark 7 (Variational Discretization) The idea of the variational discretization
approach introduced by Hinze [52] is not to discretize the control variable, i.e.,
to choose Zad,h = Zad . This approach does give second-order convergence for the
control but requires a nonstandard implementation, especially for n > 1.

8.4 Semilinear Equations

Similar to the linear case, we discretize the problem with finite elements. Thus,
we replace the state space H 1

0 (Ω) with Vh ⊂ H 1
0 (Ω) and the control space of

admissible functions Zad with Zad,h ⊂ Zad . We additionally assume that za, zb ∈
R ∪ {±∞}, with za < zb. In case of unconstrained control, we take za = −∞ and
zb = ∞, i.e., Zad,h = Vh. The discretized problem (30)–(32) becomes

min
uh∈Vh, zh∈Zad,h

Jh(uh, zh) = 1

2
‖uh − ud‖2

L2(Ω)
+ λ

2
‖zh‖2

L2(Ω)
(64)

subject to

(A∇uh,∇vh)+ (f (·, uh), vh) = (zh, vh) ∀vh ∈ Vh. (65)

All of the above strategies for choosing Zad,h can be applied for the semilinear
problem as well and similar error estimates can be obtained. Of course the
arguments are more technical and we refer to [13, 22, 29] for details.

Theorem 12 Assume that Ω is convex domain with C1,1 boundary and let Assump-
tions 6 and 8 be satisfied. Let z̄ be a strict local solution to (30)–(32) that fulfills the
second-order optimality condition: There exist δ > 0 and τ > 0 such that

J ′′(z̄)(z, z) ≥ δ‖z‖2
L2(Ω)
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holds for all z ∈ L∞(Ω) satisfying

z(x)

⎧⎨
⎩
≥ 0 if z̄(x) = za,

≤ 0 if z̄(x) = zb,

= 0 if |λz̄+ p̄| ≥ τ > 0.
(66)

Then:

• [13, Thm. 5.1] (Cell-wise constant control) Let Zad,h = Zad ∩ Z0
h and {z̄h}

be a sequence of locally optimal piecewise constant solutions to (64)–(65) that
converges strongly in L2(Ω) to z̄. Then there exists a constant C independent of
h such that

‖z̄− z̄h‖L2(Ω) ≤ Ch.

• [29, Thm. 4.5](Cell-wise linear control) Let Zad,h = Zad ∩ Vh and {z̄h}
be a sequence of locally optimal piecewise linear solutions to (64)–(65) that
converges strongly in L2(Ω) to z̄. If in addition (63) holds, then there exists a
constant C independent of h such that

‖z̄− z̄h‖L2(Ω) ≤ Ch
3
2 .

9 Conclusion and the Current State of the Art

In this introductory chapter, we reviewed the main ideas behind the study of
PDECO. We briefly mentioned numerical approximation of such problems by the
finite-element method and showed some convergence results in the case of control
constraints. However, the subject is vast with many active research directions. In
this final section, let us mention some topics that we skipped and some active areas
of research that we did not touch.

• In the above discussion, we only touched problems with control constraints.
However, problems with state constraints are equally important. In contrast to
the control constraints, which basically amount to projection onto the feasible set,
the state constraints require much more care since the Lagrange multipliers are
not functions, only measures. We refer to [81, Chapter 6] for a nice introduction
on the subject. For such problems, the error analysis is also more subtle and one
often has to reserve to more technical pointwise error estimates to derive optimal-
order convergence. We refer to [28, 64, 65] for some recent developments of the
subject.

• All above error estimates were a priori error estimates. However, a large fraction
of the literature on finite elements is devoted to a posteriori error estimates, i.e.,
estimates where the error between the true solution and the discrete approximated
solution is expressed in terms of computable quantities. We refer to [75, 77] for
more recent development of the subject.
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• One can consider more complicated state equations or even systems, which
can be linear or nonlinear, time dependent, variational inequalities, and so on.
Currently, the theory is well developed for problems constrained by linear and
semilinear elliptic problems, but the research is very much active for nonlinear,
time dependent, and variational inequalities [61, 68].

• We only consider a quadratic cost functional in our error analysis. However, other
choices may be desired. For example, it was observed numerically that seeking
the control from the space of regular Borel measures forces the sparsity of
optimal solution, meaning that the support of solution is small. This phenomenon
was analyzed for elliptic and parabolic problems in a number of papers [23–25];
however, there are still some remaining open questions.

• In all our examples, we considered the distributed control, i.e., the control z was
acting in the interior of the domain. However, problems where the control acts
on the boundary are important in many applications. The control can enter as
Dirichlet, Neumann, or Robin boundary conditions. Because of the variational
structure of the problems, the Neumann and Robin boundary conditions naturally
enter the variational form of the state equation and as a result Neumann boundary
controls can be naturally analyzed, see [81, Chapter 2], we refer to [26, 27] for
the Robin case. Dirichlet boundary conditions do not have this property and one
has to use more sophisticated machinery to overcome technical difficulties and to
derive optimal error estimate for the optimal solution [12]. Alternatively, one can
also use the penalized Robin boundary conditions to study the Dirichlet boundary
control problems [63].
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Optimization of PDEs with Uncertain
Inputs

Drew P. Kouri and Alexander Shapiro

Abstract Uncertainty pervades nearly all science and engineering applications
including the optimal control and design of systems governed by partial differential
equations (PDEs). In many applications, it is critical to determine optimal solutions
that are resilient to the inherent uncertainty in unknown boundary conditions,
inaccurate coefficients, and unverifiable modeling assumptions. In this tutorial,
we develop a general theory for PDE-constrained optimization problems in which
inputs or coefficients of the PDE are uncertain. We discuss numerous approaches for
incorporating risk preference and conservativeness into the optimization problem
formulation, motivated by concrete engineering applications. We conclude with a
discussion of nonintrusive solution methods and numerical examples.

1 Introduction

Optimization problems constrained by partial differential equations (PDEs) arise
in a number of science and engineering applications as optimal control and design
problems. More often than not, the governing physical equations (PDEs) are fraught
with uncertainty including uncertain coefficient, unknown boundary and initial
conditions, and unverifiable modeling assumptions. When uncertainty exists, it is
critical to determine optimal solutions that account for and in some sense are
resilient to this uncertainty.
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Such problems arise for example in the topological design of elastic structures
[5, 67, 77, 78]. Recently, topology optimization has gained increased interest due
to the emergence of additive manufacturing technologies [56, 109]. There are many
uncertainties associated with additively manufactured components such as random
grain structures [2, 21], unknown internal forces due to, e.g., residual stresses [52],
and potentially variable operating conditions such as external loads. The target
then is to design a structure that is, for example, maximally stiff and in some
sense reliable given the uncertain material properties and loads. Another common
application is the secondary oil recovery phase in petroleum engineering. In this
example, an oil company may choose to inject water or other solvents into a
reservoir to increase pressure and produce more oil. Of course the subsurface rock
properties are unknown but may be estimated from core samples, flow and pressure
history [40, 73, 118], or seismic imaging [65, 101, 111]. The optimization problem
is to determine the well locations and injection rates that maximize the net present
value of the reservoir [3, 10, 102, 119]. However, the optimal rates should be resilient
to the inherent uncertainties of the subsurface.

The purpose of this chapter is to review concepts from stochastic programming
[25, 55, 75, 90, 108] that play fundamental roles in formulating PDE-constrained
optimization problems in a rigorous and physically meaningful (application rel-
evant) manner. In particular, we discuss the basic extension from deterministic
PDE-constrained optimization to optimization of PDEs with uncertain inputs by
introducing conditions on the deterministic objective function and PDE solution that
ensure a well-defined stochastic problem. When the PDE has uncertain inputs, the
associated state (PDE solution) becomes a random field. Substituting the random
field solution into the objective function results in a random objective function. In
order to solve this problem, we must replace the random objective function with
a scalar quantity. There are a number of approaches for doing this. In particular,
we discuss risk measures [4, 99, 115], probabilistic functions [76, 81, 93, 114], and
distributionally robust optimization [15, 107, 121].

In addition to problem formulation, we discuss the challenges associated with
the numerical solution of such problems. Many stochastic formulations result in
nonsmooth objective functions which motivate new research on rapidly converging
nonsmooth optimization algorithms that can exploit structures inherent to PDE-
constrained optimization. We present three classical approaches for approximating
and solving stochastic optimization problems: stochastic approximation [80, 89, 91],
sample average and quadrature approximation [61, 62, 87, 106], and the progressive
hedging algorithm [96].

The remainder of this chapter is structured as follows. We first discuss tensor
products of Banach spaces. Such spaces play a central role in the functional
analytic framework for PDE-constrained optimization under uncertainty. Next, we
provide a general problem formulation and, under certain assumptions, show the
existence of minimizers as well as first-order necessary optimality conditions. We
demonstrate these results on the standard linear-elliptic quadratic control problem.
In the following section, we discuss specific problem formulations including risk
measures, probabilistic functions, and distributionally robust optimization. We
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then introduce three basic numerical methods: stochastic approximation, sample
average and quadrature approximation, and the progressive hedging algorithm.
We briefly discuss convergence of these methods and conclude with a numerical
demonstration.

2 Tensor Product Spaces

Let (Ω,F ) be a measurable space where Ω is the set of possible outcomes and
F is a σ -algebra of events. We denote the expected value of a random variable
X : Ω → R with respect to a probability measure P : F → [0, 1] defined on the
measurable space (Ω,F ) by

EP [X] =
ˆ
Ω

X(ω) dP(ω).

We denote the usual Lebesgue space of r ∈ [1,∞) integrable real-valued functions
(defined up to a set of P -measure zero) by

Lr(Ω,F , P ) := {θ : Ω → R : θ is F -measurable, EP [|θ |r ] <∞
}
.

If r = ∞, then

L∞(Ω,F , P ) :=
{
θ : Ω → R : θ is F -measurable, ess sup

ω∈Ω
|θ(ω)| <∞

}
.

The Lebesgue spaces defined on (Ω,F , P ) are Banach spaces and serve as natural
spaces for real-valued random variables (i.e., F -measurable functions). In the
context of PDE-constrained optimization with uncertain inputs, the PDE solutions
will be Sobolev space-valued random elements, which motivate the use of tensor-
product vector spaces. Given any real Banach space V , the tensor-product vector
space associated with Lr(Ω,F , P ) and V is

Lr(Ω,F , P )⊗ V := span
{
θv : θ ∈ Lr(Ω,F , P ), v ∈ V

}
,

i.e., the linear span of all products of elements of Lr(Ω,F , P ) and V . In general,
there are many norms associated with Lr(Ω,F , P ) ⊗ V , including the natural
projective and injective norms (cf. [35] and [100]). In this work, we restrict our
attention to the so-called Bochner norms⎧⎨

⎩
‖u‖Lr(Ω,F ,P )⊗V = EP [‖u‖rV ]

1
r if 1 ≤ r <∞,

‖u‖L∞(Ω,F ,P )⊗V = ess sup
ω∈Ω

‖u(ω)‖V if r = ∞.

The space Lr(Ω,F , P ) ⊗ V endowed with the corresponding Bochner norm
is not complete and hence is not a Banach space. However, the completion of
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Lr(Ω,F , P ) ⊗ V with respect to its Bochner norm is isomorphic to the Bochner
space

Lr(Ω,F , P ;V ) := {u : Ω → V : u is strongly F -measurable, EP [‖u‖rV ] <∞
}

if r ∈ [1,∞) and

L∞(Ω,F , P ;V ) :=
{
u : Ω → V : u is strongly F -measurable, ess sup

ω∈Ω
‖u(ω)‖V <∞

}

if r = ∞ (again functions in Lr(Ω,F , P ;V ) are defined up to a set of measure
zero) [35, Sect. 7.1]. Here, a function u : Ω → V is strongly F -measurable if
there exists a sequence of V -valued simple (piecewise constant, countably-valued)
functions defined on sets in F that converges to u P -almost everywhere (P -a.e.)
[53, Def. 3.5.4].

It is worth pointing out that the tensor-product vector space Lr(Ω,F , P ) ⊗ V

consists of functions

u =
N∑
i=1

θivi, θi ∈ Lr(Ω,F , P ), vi ∈ V, i = 1, . . . , N

for some N ∈ N, and thus provides a natural approximation space for functions
in Lr(Ω,F , P ;V ). This fact is exploited by many uncertainty quantification
methods. In particular, polynomial chaos [58, 122], stochastic Galerkin [8, 9], tensor
decomposition, [47, 59] and other projection-based methods for approximating
PDEs with uncertain inputs decompose the PDE solution into sums of random and
spatial components. These two components are then approximated separately using,
e.g., polynomial approximation in Lr(Ω,F , P ) and finite elements in V .

3 Problem Formulation

In this section, we provide the general formulation of our optimization problem.
Let U and Z be real reflexive Banach spaces, and let Y be a real Banach space.
Here U denotes the deterministic state space, Z denotes the space of optimization
variables (i.e., controls, designs, etc.), and Y denotes the PDE residual space. The
optimization variables z ∈ Z are always deterministic and represent a control or
design that must be implemented prior to observing the randomness in the system.
Stochastic controls do however arise in time-dependent decision processes and
multistage stochastic programs in which case the concept of time consistency plays
a central role. Time consistency is based on the famous quotation of Bellman: “An
optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the
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state resulting from the first decision” [13]. In this review, we restrict our attention
to optimization problems constrained by steady (i.e., time-independent, stationary)
PDEs. For a more detailed discussion of dynamic stochastic programs (without
PDEs) and time consistency, we direct the interested reader to [108, Ch. 6.8].

Before describing the optimization problem, we assume that the uncertainty in
the PDE constraint is represented by a finite random vector ξ : Ω → Ξ where Ξ :=
ξ(Ω) ⊆ R

m with m ∈ N (i.e., ξ is a F -measurable vector-valued function). In the
literature, this is called the finite-dimensional noise assumption [7, 83] and facilitates
numerical approximations such as polynomial chaos and stochastic collocation
[7, 9, 58, 83]. Such a finite-dimensional representation is often achieved using a
truncated Karhunen–Loève expansion [57, 69]. More importantly, this assumption
permits a change of variables in which the PDE and objective function depend only
on the “deterministic” parameters ξ ∈ Ξ . This change of variables transforms
our original uncertainty model defined on the probability space (Ω,F , P ) to a
model defined on the probability space (Ξ,B,P) where B ⊆ 2Ξ is the σ -algebra
generated by the sets ξ−1(A) for A ∈ F and P := P ◦ ξ−1 is the probability law of
ξ . In this new setting, we define the Bochner and Lebesgue spaces analogously
to the definitions in Section 2. Throughout, we will abuse notation and let ξ

denote the random variable ξ(ω) as well as its realizations. Recently, researchers
in uncertainty quantification have developed and analyzed methods for handling
infinite-dimensional uncertainties, e.g., ξ(ω) is a sequence of real numbers for each
ω ∈ Ω . For example, see [31]. Since all practical computational methods for solving
PDEs with uncertain inputs and their corresponding optimization problems require
a finite (i.e., computer) representation of the uncertainty, we restrict our attention to
the finite-dimensional noise setting. Finally, it is worth noting that no result in this
section requires the finite-dimensional noise assumption. However, we work under
this assumption to simplify the presentation in the forthcoming sections.

Now, let Zad ⊆ Z be a closed convex subset of optimization variables, let e :
U × Zad × Ξ → Y denote, e.g., a PDE in weak form, and consider the equality
constraint

e(u, z, ξ(ω)) = 0. (1)

The goal of this article is to understand and solve general stochastic optimization
problems with the form

min
z∈Zad

{
J(z) := R(J (S(z; ξ), ξ))+ ℘(z)

}
(2)

where R is a functional that maps random variables on (Ξ,B) into the real
numbers, J : U × Ξ → R is the uncertain objective function, ℘ : Z → R

is a control penalty, and S(z; ·) : Ξ → U satisfies e(S(z; ξ), z, ξ) = 0 for
P-almost every ξ ∈ Ξ (or equivalently e(S(z; ξ(ω)), z, ξ(ω)) = 0 for P -almost
every ω ∈ Ω). Throughout, we denote the reduced uncertain objective function by
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J (z) := J (S(z; ξ), ξ). (3)

Note that J (z) is also a function of ξ and hence is viewed as a random variable
mapping Zad into a space of real-valued random variables on (Ξ,B).

To ensure the PDE constraint e(u, z, ξ) = 0 is well posed, we require that it is
uniquely solvable and the solution is in Lq(Ξ,B,P;U) for some q ∈ [1,∞]. We
make this statement rigorous in the following assumption.

Assumption 1 (Properties of the Solution Map) For each z ∈ Zad, there exists a
unique mapping S(z; ·) : Ξ → U that solves e(S(z; ξ), z, ξ) = 0 for P-almost all
ξ ∈ Ξ and satisfies the following properties:

1. Measurability: S(z; ·) : Ξ → U is strongly B-measurable for all z ∈ Zad.
2. Growth Condition: There exists q ∈ [1,∞], a nonnegative random variable

C ∈ Lq(Ξ,B,P), and a nonnegative increasing function � : [0,∞)→ [0,∞)

such that

‖S(z; ξ)‖U ≤ C(ξ)�(‖z‖Z)
for P-almost all ξ ∈ Ξ and for all z ∈ Zad.

3. Continuity: S satisfies the continuity property

zn ⇀ z in Zad �⇒ S(zn; ·) ⇀ S(z; ·) in U,P-a.e.

Assumptions 1.1–2 ensure that S : Zad → Lq(Ξ,B,P;U). Additionally,
Assumption 1 combined with the Lebesgue Dominated Convergence Theorem
ensure S is weakly continuous from Z into Lq(Ξ,B,P;U) [63, Sect. 2.2]. We
similarly assume there exists p ∈ [1,∞] such that the reduced uncertain objective
function satisfies

J (z) ∈ Lp(Ξ,B,P) ∀ z ∈ Zad.

To simplify notation, we denote the realization of J (z) at ξ , i.e., [J (z)](ξ), by
J (z, ξ). For example, the authors in [63] postulate the following assumptions on
the uncertain objective function.

Assumption 2 (Properties of the Objective Function) There exists 1 ≤ p < ∞
such that the function J : U ×Ξ → R satisfies:

1. Carathéodory: J is a Carathéodory function, i.e., J (·, ξ) is continuous for
P-almost every ξ ∈ Ξ and J (u, ·) is B-measurable for all u ∈ U .

2. Growth Condition: If q < ∞, then there exists a ∈ Lp(Ξ,B,P) with a ≥ 0
P-a.e. and c > 0 such that

|J (u, ξ)| ≤ a(ξ)+ c‖u‖q/pU ∀u ∈ U and P-almost all ξ ∈ Ξ
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If q = ∞, then for all c > 0 there exists γc ∈ Lp(Ξ,B,P) such that

|J (u, ξ)| ≤ γc(ξ) P-a.e. ξ ∀u ∈ U, ‖u‖U ≤ c.

3. Convexity: J (·, ξ) is convex for P-almost every ξ ∈ Ξ .

Assumptions 2.1–2 combined with Krasnosel’skii’s Theorem [116, Thm. 19.1]
ensure that the uncertain objective function u 
→ J (u, ·) is continuous from
Lq(Ξ,B,P;U) into Lp(Ξ,B,P).

3.1 Existence of Minimizers and Optimality Conditions

In this section, we present one set of assumptions on R that ensure the existence of
minimizers of (2). In addition, when a minimizer of (2) exists, we characterize the
first-order necessary optimality conditions that it satisfies.

Theorem 1 Let Assumptions 1 and 2 hold, and define X := Lp(Ξ,B,P) where
p ∈ [1,∞) is defined in Assumption 2. Moreover, suppose that ℘ : Z → R

is weakly lower semicontinuous and R : X → R is convex, and satisfies the
monotonicity property: for any X, X′ ∈X ,

X ≤ X′ P-a.e. �⇒ R(X) ≤ R(X′). (4)

Finally, assume that the level set {z ∈ Zad : J(z) ≤ γ } is nonempty and bounded for
some γ ∈ R. Then problem (2) has an optimal solution, i.e., there exists z� ∈ Zad
such that J(z�) ≤ J(z) for all z ∈ Zad.

Proof Since R is finite, convex, and satisfies (4), it is continuous and subdifferen-
tiable [108, Prop. 6.6]. The Fenchel–Young inequality then ensures that

R(J (z)) ≥ E[θJ (z)] −R∗(θ) ∀ z ∈ Zad, θ ∈ dom R∗ (5)

where

R∗(θ) = sup
X∈X

{E[θX] −R(X)}

is the Legendre–Fenchel transformation of R and

dom R∗ := {θ ∈X ∗ : R∗(θ) <∞}

is the effective domain of R∗. Equality in (5) holds if and only if θ ∈ ∂R(J (z))

[6, Prop. 9.5.1]. Now, owing to (4), θ ∈ dom R∗ satisfies θ ≥ 0 P-a.e. [108,
Thm. 9.3.5]. Therefore, Assumption 2 and Krasnosel’skii’s Theorem ensure that
u 
→ J (u, ·) is continuous and hence u 
→ E[θJ (u, ·)] is convex and continuous.
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Therefore, u 
→ E[θJ (u, ·)] is weakly lower semincontinuous [26, Thm. 2.23],
which when combined with the weak continuity of z 
→ S(z; ·) ensures that z 
→
E[θJ (z)] is weakly lower semicontinuous. Thus, for any sequence {zn} ⊂ Zad that
weakly converges to z ∈ Zad, we have that

lim inf
n→∞ R(J (zn)) ≥ lim inf

n→∞ E[θJ (zn)] −R∗(θ)

≥ E[θJ (z)] −R∗(θ) = R(J (z)) ∀ θ ∈ ∂R(J (z)),

which implies that z 
→ R(J (z)) is weakly lower semicontinuous. Since ℘ is
also weakly lower semicontinuous, J is as well. Moreover, the minimization is
performed over a bounded weakly closed level set in the reflexive Banach space
Z, which implies the level set is weakly compact. Under these conditions, the
direct method of the calculus of variations [6, Thm. 3.2.1] applies and ensures the
existence of a minimizer. ��

Since minimizers exist, it is natural to ask what the first-order necessary
optimality conditions are. The following theorem characterizes the optimality
conditions when J , ℘, and S are differentiable. For this result, we denote the
space of bounded linear operators from a Banach space A to a Banach space B

by L (A,B). Moreover, by TZad(z) and NZad(z), we denote the tangent and normal
cones, respectively, to the (convex) set Zad at z ∈ Zad. We say that a function
f : Z → R is continuously differentiable if it possesses a derivative f ′(·) in the
sense of Gâteaux and f ′(·) is continuous. It follows then by the mean value theorem
that f is differentiable in the sense of Fréchet, e.g., [26, pp. 35–36]. It is said that
f is (Gâteaux) directionally differentiable at z ∈ Z if the directional derivative
f ′(z, h) := limt↓0[f (z + th) − f (z)]/t exists for all h ∈ Z. Note that if f is
convex and continuous, then it is locally Lipschitz [30, Prop. 2.2.7] and f ′(z, ·) is a
Hadamard directional derivative [105, Prop. 3.5].

Theorem 2 Let the assumptions of Theorem 1 hold. In addition, suppose there
exists an open set V ⊆ Z with Zad ⊆ V such that z 
→ S(z; ·) : V →
Lq(Ξ,B,P;U) is continuously differentiable with derivative

S′(z; ·) ∈ L (Z,Lq(Ξ,B,P;U)),

u 
→ J (u, ·) : Lq(Ξ,B,P;U)→ Lp(Ξ,B,P) is continuously differentiable with
derivative

J ′(u, ·) ∈ L (Lq(Ξ,B,P;U),Lp(Ξ,B,P)),

and ℘ : Z → R is continuously differentiable with derivative ℘′(z) ∈ Z∗. Then if
z� ∈ Zad is a minimizer of J over Zad, the following first-order optimality conditions
hold: ∃ θ ∈ ∂R(J (z�)) such that

〈
E
[
θ S′(z�; ·)∗J ′(S(z�; ·), ·)

]+ ℘′(z�), h
〉
Z∗,Z ≥ 0, ∀h ∈ TZad(z�). (6)
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Proof Let us note that if z� is an optimal solution of problem (2), then necessarily
the directional derivatives J′(z�, h) ≥ 0 for all h ∈ TZad(z�). Since ℘ is
differentiable, it follows that ℘′(z�, h) =

〈
℘′(z�), h

〉
Z∗,Z . Also under the stated

assumptions, J is continuously differentiable with derivative

J ′(z) = J ′(S(z; ·), ·)S′(z; ·) ∈ L (Z,Lp(Ξ,B,P)).

Now since R is continuous, it is subdifferentiable and its (Hadamard) directional
derivatives are given by

R ′(J (z�),H) = sup
θ∈∂R(J (z�))

E[θH ] ∀H ∈X ,

cf. [108, Thm. 6.10]. By the chain rule for directional derivatives, it follows that

J′(z�, h) = sup
θ∈∂R(J (z�))

〈
E[θS′(z�; ·)∗J ′(S(z�; ·), ·)] + ℘′(z�), h

〉
Z∗,Z . (7)

The function φ(·) := J′(z�, ·) is convex and positively homogeneous. Moreover, the
condition that φ(h) ≥ 0 for all h ∈ TZad(z�) means that h = 0 is a minimizer of
φ(h) subject to h ∈ TZad(z�). This in turn means that 0 ∈ ∂φ(0)+NZad(z�), which
by (7) is equivalent to condition (6). ��

Under appropriate differentiability assumptions on the PDE constraint function
e, one can show that Λ� = S′(z�; ·)∗J ′(S(z�; ·), ·) is related to the solution to the
adjoint equation. Informally, if the assumptions of the Implicit Function Theorem
hold, then Λ� = ez(S(z�; ξ), z�, ξ)∗λ� where λ� solves the adjoint equation

eu(S(z�; ξ), z�, ξ)∗λ�(ξ) = −Ju(S(z�; ξ), ξ)
for P-almost all ξ ∈ Ξ . See [61–64] for PDE-constrained optimization examples
for which this holds.

3.2 Linear Elliptic Optimal Control

For this example, we assume Ξ is an m-fold Cartesian product of compact
intervals and P is absolutely continuous with respect to the m-dimensional Lebesgue
measure. Let D ⊂ R

d with d ∈ N be an open bounded Lipschitz domain, and define
U = H 1

0 (D), Y = U∗ = H−1(D), and Z = L2(D). Given the continuous matrix-
valued function A : Ξ → R

d×d with A(ξ) = A(ξ)� for all ξ ∈ Ξ , we define the
parametrized linear elliptic PDE as the variational problem: find u : Ξ → U that
solves

〈e(u, z, ξ), v〉U∗,U :=
ˆ
D

(A(ξ)∇u(ξ, x)) ·∇v(x) dx−
ˆ
D

z(x)v(x) dx = 0 (8)
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for all v ∈ U and fixed z ∈ Z. If there exist constants 0 < c ≤ c <∞ such that

c ≤ x�A(ξ)x
x�x

≤ c ∀ x ∈ R
d \ {0}, ξ ∈ Ξ (9)

then the Lax–Milgram Lemma [28] ensures the existence of a unique solution
S(z; ξ) to (8) for each z ∈ Z and all ξ ∈ Ξ . Additionally, (9) and Poincaré’s
inequality guarantee the existence of a positive constant C = C(D, c) such that

‖S(z; ·)‖U ≤ C‖z‖Z ∀ ξ ∈ Ξ.

This and the linearity of the PDE then imply that S(·; ξ) is a bounded linear operator
for all ξ ∈ Ξ and since Z is compactly embedded into Y [1], S(·; ξ) is completely
continuous for all ξ ∈ Ξ . Recall that an operator W mapping a Banach space X into
another Banach space Y is completely continuous if

xk ⇀ x in X �⇒ W(xk)→ W(x) in Y.

In particular, all compact operators are completely continuous [33, Prop. 3.3].
Finally, S(z; ·) is continuous and hence strongly B-measurable since A(·) is
continuous. Therefore, Assumption 1 is satisfied and since C is independent of
ξ ∈ Ξ , we have that S(z; ·) ∈ L∞(Ξ,B,P;U) for all z ∈ Z.

Now, let β > 0 and ud ∈ L2(D) be a desired profile. We consider the PDE-
constrained optimization problem

min
z∈Z R

(
1

2
‖S(z; ξ)− ud‖2

L2(D)

)
+ β

2
‖z‖2

L2(D)
(10)

where S(z; ξ) solves (8) for fixed ξ ∈ Ξ and z ∈ Z. The uncertain objective function
and control penalty are

J (u, ξ) = 1

2
‖u− ud‖2

L2(D)
and ℘(z) = β

2
‖z‖2

L2(D)
.

J clearly satisfies Assumption 2 and therefore is continuous from Lq(Ξ,B,P;U)

into Lp(Ξ,B,P) for any q ≥ 2 and p ≤ q/2. Hence, Theorem 1 holds for any
R : Lp(Ξ,B,P)→ R that is convex and satisfies the monotonicity property (4).

In addition, since e(·, ·, ξ) is continuous and linear in u and z for all ξ ∈ Ξ ,
it is continuously Fréchet differentiable in u and z for all ξ ∈ Ξ , and again by
the Lax–Milgram Lemma the state Jacobian is boundedly invertible for all ξ ∈ Ξ .
Furthermore, the control Jacobian is a bounded linear operator for all u ∈ U , z ∈ Z

and ξ ∈ Ξ . In fact, ez(u, z, ξ) is independent of u, z, and ξ . Therefore, S(·; ξ) is
continuously Fréchet differentiable for all ξ ∈ Ξ and the derivative satisfies: For
any h ∈ Z, d = S′(z; ·)h : Ξ → U solves the sensitivity equation

ˆ
D

(A(ξ)∇d(ξ, x)) · ∇v(x) dx −
ˆ
D

h(x)v(x) dx = 0 ∀ v ∈ U
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Since the sensitivity equation is identical to (8), we have that d = S′(z; ·)h =
S(h; ·) ∈ L∞(Ξ,B,P;U) for all h ∈ Z. Returning to the objective function, J and
℘ are clearly continuously Fréchet differentiable and thus Theorem 2 holds for any
R satisfying the stated assumptions. Moreover, the adjoint equation corresponding
to (10), at fixed z ∈ Z, is: find λ : Ξ → U such that

ˆ
D

(A(ξ)∇λ(ξ, x)) · ∇v(x) dx = −
ˆ
D

(S(z; ξ)(x)− ud(x))v(x) dx ∀ v ∈ U.

Note again that the above analysis ensures λ ∈ L∞(Ξ,B,P;U).

4 Choosing the Functional R

Under the assumptions of Section 3 (or similar assumptions), the stochastic PDE-
constrained optimization problem

min
z∈Zad

R
(
J (z)

)+ ℘(z) (11)

where R : Lp(Ξ,B,P) → R is well-defined, but ambiguous since R is not
explicitly specified. In traditional stochastic programming, R is taken to be the
expected value, i.e., R = EP. This results in a risk neutral formulation of (11)
for which the optimal solutions minimize J (z) on average. The risk neutral
formulation is often not conservative enough for high-consequence applications
because the average behavior of a system does not provide a sufficient proxy
for variability or low probability and tail events. This motivates the use of risk
measures. Another popular class of cost surrogates are the probabilistic functions.
This class seeks to minimize the probability of undesirable events occurring. The
use of the expectation, risk measures, and probabilistic functions is justified when
the probability law P is known but can lead to nonsensical, even dangerous, results
if P is unknown and estimated from noisy or incomplete data. In the subsequent
sections, we will review both cases of known and unknown probability law. When
the probability law is known, we simplify notation and denote E = EP.

It is worth mentioning that (11) is only one of many meaningful problem
formulations for PDE-constrained optimization. In many applications, constraints
in addition to the objective function are uncertain. In this case, we must handle the
uncertainty in the constraints in a rigorous and physically relevant way. Popular
approaches in stochastic programming include: chance (probabilistic) constraints
(see, e.g., [81]) and stochastic dominance constraints (see, e.g., [38]). Chance
constraints seek to ensure that the probability of an uncertain quantity of interest
exceeding a prescribed threshold is below some nominal value (e.g., the probability
that a bridge collapses is smaller than 10−3 percent). Stochastic dominance con-
straints, on the other hand, aim to ensure that our uncertain quantity of interest is in
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some sense preferred over a predefined uncertain benchmark value. Since a rigorous
treatment of these concepts in PDE-constrained optimization is still an open area of
research, we restrict our attention to problems of the type (11). We do, however,
introduce and discuss the notions of stochastic orders and stochastic dominance in
the coming subsection.

4.1 Risk-Averse Optimization

When the probability law of the random vector ξ is known, we can use any of
the multitudes of risk measures to complete the problem definition in (11). A
particularly important class of risk measures is the class of coherent risk measures
[4]. To simplify notation, we denote X := Lp(Ξ,B,P). A function R : X → R

is a coherent risk measure if it satisfies:

(R1) Subadditivity: For all X, X′ ∈X , R(X +X′) ≤ R(X)+R(X′);
(R2) Monotonicity: If X, X′ ∈X satisfy X ≤ X′ P-a.e., then R(X) ≤ R(X′);
(R3) Translation Equivariance: For all X ∈X and t ∈ R, R(X+t) = R(X)+t ;
(R4) Positive Homogeneity: For all X ∈X and t ≥ 0, R(tX) = tR(X).

Note that axiom (R1) and (R4) imply convexity of R and convexity plus (R4) imply
subadditivity of R. Therefore, axiom (R1) is typically replaced by

(R1′) Convexity: For all X, X′ ∈X and t ∈ [0, 1]

R(tX + (1− t)X′) ≤ tR(X)+ (1− t)R(X′).

In the context of physical applications, R(X) should inherit the units of X. In which
case, (R4) ensures that a change of the units of X results in a consistent change of
the units of R(X). Additionally, (R3) ensures that deterministic quantities, such as
the control penalty ℘ in (11), do not contribute to the overall risk. In fact, (R3)
combined with (R4) ensure that deterministic quantities are riskless, i.e., R(t) = t

for all t ∈ R.
The axioms for coherent risk measures result in many desirable properties of R.

Any functional R : X → R satisfying axioms (R2) and (R1′) is continuous in
the norm topology of the space X = Lp(Ξ,B,P) (see Proposition 6.6 in [108]).
Therefore, the Fenchel–Moreau theorem [6, Thm. 9.3.5] ensures that R is equal to
its biconjugate function,

R(X) = sup
θ∈X ∗

{E[θX] −R∗(θ)}, (12)

where R∗ :X ∗ → R ∪ {+∞} is the Legendre–Fenchel transformation of R, i.e.,

R∗(θ) = sup
X∈X

{E[θX] −R(X)}.
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Clearly, the set X ∗ in the representation (12) can be replaced by

dom(R∗) = {θ ∈X ∗ : R∗(θ) < +∞}.

In this setting, one can further show that (R2) and (R3) hold if and only if for all
θ ∈ dom(R∗) we have that θ ≥ 0 P-a.e. and E[θ ] = 1. That is, dom(R∗) is a
subset of the probability density functions in X ∗. Finally, (R4) holds if and only if
R∗(θ) = 0 for all θ ∈ dom(R∗). See [108, Th. 6.5] for a proof of these results. In
fact, Theorem 6.7 in [108] ensures that a risk measure R is coherent if and only if
it has the equivalent form

R(X) = sup
θ∈A

E[θX] (13)

where A ⊂ X ∗ is a convex, bounded, and weakly∗ closed subset of probability
density functions, i.e., A = dom(R∗).

In addition to the axioms for coherent risk measures, a fundamentally important
property of R is law invariance. We say that two random variables are distribution-

ally equivalent, denoted X
D∼ X′, if their cumulative distribution functions (cdf)

ΨX(t) = P(X ≤ t) and ΨX′(t) = P(X′ ≤ t) are equal for all t ∈ R. A functional
R :X → R is then said to be law invariant if

X
D∼ X′ �⇒ R(X) = R(X′) (14)

for any two random variables X,X′ ∈ X . In words, property (14) ensures that
R is only a function of the cdf ΨX(t) = P(X ≤ t) for any random variable X.
For example, this excludes the scenario in which R(X) �= R(X′) where X and X′
are distributionally equivalent discrete random variables whose atoms are ordered
differently.

Another important notion in stochastic optimization is that of stochastic domi-
nance. A random variable X dominates another random variable X′ with respect to
the first stochastic order if

ΨX(t) ≤ ΨX′(t) ∀ t ∈ R. (15)

We denote the relation (15) by X �(1) X
′. Similarly, X dominates X′ with respect

to the second stochastic order if

ˆ t

−∞
ΨX(η) dη ≤

ˆ t

−∞
ΨX′(η) dη ∀ t ∈ R. (16)

Owing to Fubini’s theorem [45, Thm. 2.37], it is straightforward to show that

ˆ t

−∞
ΨX(η) dη = E

[ˆ t

−∞
1X≤η dη

]
= E[(t −X)+]
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where, for any E ∈ B, 1E(ξ) = 1 if ξ ∈ E and 1E(ξ) = 0 otherwise, and
(x)+ = max{0, x}. Therefore, (16) is equivalent to the condition

E[(t −X)+] ≤ E[(t −X′)+] ∀ t ∈ R.

We denote the relation (16) by X �(2) X′. If (Ξ,B,P) is nonatomic and R is
law invariant, then the following two results hold: (i) the implication X �(1) X′
�⇒ R(X) ≥ R(X′) holds if and only if R satisfies the monotonicity condition
(R2) [108, Th. 6.50]; (ii) if R satisfies conditions (R1′), (R2), and (R3), then
−X′ �(2) −X implies R(X) ≥ R(X′) [108, Th. 6.51]. These two properties
demonstrate that law invariant coherent risk measures R prefer dominated random
variables and thus are critical in reducing uncertainty (i.e., variability) in the
optimized system. On the other hand, as previously noted, one could define risk
aversion via stochastic dominance constraints instead of risk measures. For example,
suppose z̄ is known to produce an acceptable objective value J (z̄). One could then
incorporate a constraint of the form

J (z̄) �(1) J (z) or −J (z) �(2) −J (z̄).

For more information of stochastic dominance constraints, see [38].

Example 1 (Mean-Plus-Deviation) A common risk measure in engineering appli-
cations, motivated by Markowitz’s pioneering work in portfolio optimization [74],
is the mean-plus-deviation risk measure

R(X) = E[X] + cE[|X − E[X]|p] 1
p , c > 0

for p ∈ [1,∞). Clearly, R is naturally defined and real valued on X =
Lp(Ξ,B,P) and is law invariant, convex, positively homogeneous, and translation
equivariant. Unfortunately, R is not monotonic and can lead to the paradoxical
scenario where one position is always smaller than another, but the larger position
has smaller risk. In the context of finance, the risk measure R can lead to the
selection of portfolios that have smaller risk and smaller returns. See [108, Ex. 6.62]
for a simple example of this undesirable situation. The lack of monotonicity results
from R equally penalizing the deviation below and above the expected value. In
terms of minimization, one prefers large deviation below the expected value since
this could lead to better than expected performance. A related law-invariant risk
measure that is coherent is the mean-plus-upper-semideviation risk measure

R(X) = E[X] + cE[(X − E[X])p+]
1
p , c ∈ [0, 1].

Note that this risk measure only penalizes deviation in excess of the expected value.
Since this R is coherent, it can be represented as in (13) with risk envelope

dom(R∗) = {θ ∈X ∗ : θ = 1+ θ ′ − E[θ ′], ‖θ ′‖X ∗ ≤ c, θ ′ ≥ 0 P-a.e.
}
.

See [108, Ex. 6.23] for more details.
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Example 2 (Conditional Value-at-Risk) The conditional value-at-risk1 (CVaR) is a
coherent risk measure that has recently received much attention [64, 94, 115]. CVaR
at confidence level α ∈ (0, 1) is defined as

R(X) = CVaRα(X) := inf
t∈R

{
t + 1

1− α
E[(X − t)+]

}
, (17)

which naturally acts on random variables in X = L1(Ξ,B,P). If the random
variable X is continuously distributed, then CVaRα(X) is the expectation of X

conditioned on the event that X is larger than its α-quantile, i.e.,

CVaRα(X) = E[X|X > Ψ−1
X (α)].

In the financial literature, the quantile Ψ−1
X (α) is called the Value-at-Risk. Moreover,

when α = 0 we have that CVaR0(X) = E[X] and

lim
α↑1

CVaRα(X) = ess supX.

Since CVaR is coherent, it can be represented as in (13) with risk envelope

dom(R∗) =
{
θ ∈ L∞(Ξ,B,P) : E[θ ] = 1, 0 ≤ θ ≤ (1− α)−1

P-a.e.
}
.

See [108, Ex. 6.19] for more details.

Example 3 (Higher-Moment Coherent Risk) CVaR was extended in [66] to the
higher-moment coherent risk measure (HMCR),

R(X) = inf
t∈R

{
t + 1

1− α
E[(X − t)

p
+]

1
p

}
,

with p ∈ (1,∞). HMCR is a law-invariant coherent risk measure and is finite
for random variables in X = Lp(Ξ,B,P) (see [37] for a thorough analysis
of HMCR). Since HMCR is coherent, it can be represented as in (13) with risk
envelope

dom(R∗) =
{
θ ∈X ∗ : E[θ ] = 1, θ ≥ 0 P-a.e., ‖θ‖X ∗ ≤ 1

1− α

}
.

This risk envelope was determined in [29, Sect. 5.3.1] for the more general class of
transformed norm risk measures. Note that HMCR and CVaR coincide if p = 1 and
thus so do their risk envelopes.

1Also called Average Value-at-Risk, Expected Shortfall, Expected Tail Loss and Superquantile.
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Example 4 (Entropic Risk) The entropic risk measure is defined as

R(X) = σ−1 log
(
E[exp(σX)]), σ > 0,

and is finite for random variables in X = L∞(Ξ,B,P). The entropic risk is con-
vex, monotonic, and translation equivariant but is not positively homogeneous and
therefore is not coherent. The name entropic risk comes from the Legendre–Fenchel
transformation of R. Since the topological dual space of X = L∞(Ξ,B,P) is
difficult to handle in practice, it is natural to view X and L1(Ξ,B,P) as paired,
locally convex topological vector spaces where X is equipped with the weak∗
topology and L1(Ξ,B,P) is equipped with the norm topology (see, e.g., [108, Sect.
6.3] for a discussion of essentially bounded random variables). In this setting, one
can show that the Legendre–Fenchel transformation of R is

R∗(θ) = sup
X∈X

{E[θX] −R(X)} = σ−1
E[θ log(θ)]

when θ ∈ L1(Ξ,B,P) satisfying θ ≥ 0 P-a.e. and E[θ ] = 1. This is the negative
of Shannon’s entropy, i.e., the Kullback–Leibler divergence (up to the scaling by
σ−1). See [108, Ex. 6.20] for more details.

4.2 Probabilistic Optimization

As with risk measures, we assume in this section that P is known. In many
applications, it is extremely important that an optimal control or design reduces
the probability that the event

{
ξ ∈ Ξ : [J (z)](ξ) > τ

}
(18)

for some prescribed threshold τ ∈ R occurs. For example, the event (18) could
signify the failure of a structure. This naturally leads to the probabilistic objective
function

R(J (z)) = P(J (z) > τ) = E[1J (z)>τ ]. (19)

Recall the definition of 1E from Section 4.1. Much work has been devoted to prob-
abilistic optimization including the derivation of derivative formulas for this choice
of R [76, 98, 113, 114, 117]. The functional R is only differentiable under certain
assumptions which may be difficult to verify in the context of PDE-constrained
optimization. For example, the authors in [117] require that ξ 
→ [J (z)](ξ) is
convex with respect to ξ and that the random vector ξ is Gaussian. Moreover, many
differentiation formulas are stated in finite dimensions and it is unclear whether
or not these formulas hold in infinite dimensions. Additional complications arise
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when estimating probabilistic functions. See [93] for a detailed discussion of the
challenges associated with estimation and optimization of probabilistic functions.
Finally, R only quantifies the “number” of scenarios for which J (z) > τ but
ignores the magnitudes of these scenarios. This could lead to a situation where
the optimal controls or designs result in a small probability of (18) occurring, but
all scenarios in (18) have large magnitude. For example, (18) could represent any
failure (no matter how minor) of the system whereas large-magnitude scenarios
signal catastrophic failure.

For these reasons, the authors of [93] developed the concept of buffered proba-
bilities. Roughly speaking, the buffered probability is one minus the inverse of α 
→
CVaRα(X). Let X ∈ X = L1(Ξ,B,P) be a nondegenerate (i.e., nonconstant)
random variable, then α 
→ CVaRα(X) is continuous and nondecreasing for
α ∈ [0, 1) and strictly increasing for α ∈ [0, 1− π∞) where

π∞ = π∞(X) = P ({ξ ∈ Ξ : X(ξ) = ess supX})

[94]. Therefore, an inverse to α 
→ CVaRα(X) : [0, 1)→ [E[X], ess supX) exists.
Now, suppose X is degenerate, i.e., there exists t ∈ R such that X = t P-a.e.,
then CVaRα(X) = t for any α ∈ [0, 1) by axioms (R3) and (R4) in Section 4.1
and thus the inverse is not defined. Using these properties of CVaR, we define the
buffered probability that a nondegenerate random variable X exceeds the threshold
τ as p̄τ (X) where α = 1− p̄τ (X) solves

τ = CVaRα(X).

It is not hard to show that p̄τ (X) ≥ P(X > τ). Moreover, if X is continuously
distributed then the buffered probability is p̄τ (X) = P(X > τX) where τX solves

E[X|X > τX] = τ.

In this case, τX is the α = 1−p̄τ (X) quantile of X. One can think of τX as defining a
“buffer” or “safety” zone around the event (18) defined via the average of scenarios
in the upper tail. Figure 1 contains a comparison of the buffered probability and
the usual probability for a normally distributed random variable X. The blue line
corresponds to the cdf ΨX while the red line corresponds to the inverse of α 
→
CVaRα(X), denoted ΨX(τ).

It was shown in [71] that for τ < ess sup X the buffered probability has the
convenient optimization formulation

p̄τ (X) = inf
t≥0

E[(t (X − τ)+ 1)+]. (20)

This permits the optimization of z 
→ p̄τ (J (z)) over Zad to be reformulated as the
optimization of (z, t) 
→ E[(t (J (z)− τ)+ 1)+] over the augmented space Zad ×
[0,∞). The objective function in the later expression is the composition of a convex
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τ
0

ΨX(τ)

ΨX(τ)

1
pτ(X)

p̄τ(X)

Fig. 1 A comparison of the probability that X exceeds τ , pτ (X), and the buffered probability that
X exceeds τ , p̄τ (X). The blue line is ΨX whereas the red line is the inverse of α 
→ CVaRα(X),
denoted ΨX

function with our random variable objective function. In addition, the authors of [71]
show that X 
→ p̄τ (X) is a lower semicontinuous, quasi-convex, and monotonic
function (i.e., satisfies (R2) in Section 4.1). Finally, if X 
→ p̄τ (X) is considered
as a function on L2(Ξ,B,P), one can show that it is the minimal upper bound for
P(X > τ) among all quasi-convex, lower semicontinuous law-invariant functions
acting on elements of L2(Ξ,B,P) [71, Prop. 3.12]. This optimality result is related
to the results in [81] in which the authors seek an optimal convex approximation for
chanced constrained optimization problems.

4.3 Distributionally Robust Optimization

Often the true probability law P of the random inputs ξ is not known but estimated
from noisy and incomplete data. In this case, making a decision based solely on an
estimate of P can be catastrophic if the estimate does not accurately characterize the
statistical behavior of the true underlying distribution. In such scenarios, we must
be “averse” to the risk associated with our lack of knowledge of the true underlying
probability distribution. This motivates the distributionally robust approach to
stochastic programming of optimizing the “worst expectation”

min
z∈Zad

{
J(z) := sup

P∈M
EP

[
J (z)

]+ ℘(z)

}
, (21)

where M is a specified set of admissible probability measures defined on the
measurable space (Ξ,B) and

R(X) := sup
P∈M

EP [X] (22)
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is the associated risk functional. The set M is often called the ambiguity set.
For more information on robust optimization see, e.g., [14, 23, 41, 107] and the
references therein.

In the setting of distributionally robust optimization, we often have partial
information regarding the probability law P. Using this information, we can employ
Bayesian analysis to determine a single posterior distribution for ξ (see, e.g.,
[19]), which we can then use to formulate and solve a risk-averse (Section 4.1)
or probabilistic (Section 4.2) optimization problem. Although Bayes’ rule provides
an analytic expression for the posterior distribution, the posterior distribution often
does not have a practical (i.e., implementable on a computer) representation.
Moreover, Bayesian analysis relies on subjective beliefs encoded in the chosen
prior distribution for ξ . Therefore, if the prior distribution is chosen incorrectly, any
decision made using the posterior distribution may result in unexpected, undesirable
outcomes. There are a number of ways to circumvent this potential pitfall such as,
e.g., uninformative priors or robust Bayesian analysis. Robust Bayesian analysis
generates a family of posterior distributions using predefined families of noise and
prior distributions [18, 20]. In the context of the distributionally robust optimization
problem (21), we can incorporate this family of posterior distributions within the
ambiguity set M.

In addition to the previously described robust Bayesian approach, there are two
somewhat different methods for constructing the ambiguity set M. In one approach,
we assume that there is a specified reference probability measure P0 and that the set
M consists of probability measures in some sense close to P0. If we assume further
that M is a set of probability measures that are absolutely continuous with respect to
the reference probability measure P0, then as a consequence of the Radon–Nikodym
theorem [45], for every Q ∈ M there exists a B-measurable function θ : Ξ → R

such that dQ = θdP0. That is, with the set M is associated the set of densities
A = {θ = dQ/dP0 : Q ∈M}. Assuming that A ⊂X ∗ where X = Lp(Ξ,B,P0)

with 1 ≤ p <∞, the corresponding functional

R(X) = sup
θ∈A

E[θX] (23)

becomes a coherent risk measure defined on X . By the duality relation (13), there
is a one-to-one correspondence between coherent risk measures and distributionally
robust functionals of the form (23).

Another common approach is to define M through moment matching. This
approach was pioneered by Scarf [103]. For moment matching, we assume that
K moments of ξ are specified (e.g., estimated from data), and the ambiguity set is
defined as

M := {Q : B → [0, 1] : Q(Ξ) = 1, EQ[ψk(ξ)] ≤ mk, k = 1, . . . , K
}
,

(24)

where ψk are real-valued B-measurable functions and mk ∈ R. For example, setting
ψk(ξ) := e�k ξ where ek denotes the m-vector of zeros with one in the kth position



60 D. P. Kouri and A. Shapiro

(i.e., the kth component of ξ ) for k = 1, . . . , m would produce the mean value
in each direction of Ξ . The moment matching problem is naturally posed in the
uniform closure of the space of continuous random variables with compact support,
X = C0(Ξ), whose topological dual space, by the Riesz Representation Theorem
(see, e.g., [45, Th. 7.17] or [6, Th. 2.4.6]), is isometrically isomorphic to the Banach
space of signed regular Borel measures endowed with the total variation norm (i.e.,
Ξ ⊆ R

m is a locally compact Hausdorff space). Note that if Ξ is compact, then
C0(Ξ) = C(Ξ).

When the ambiguity set M is defined by the moment constraints (24), evaluation
of the respective functional R(X), defined as the optimal value of the maximization
problem given by the right-hand side of (22), is known as the problem of moments. It
is possible to show that it suffices to perform the maximization in (22) with respect
to probability measures P ∈M with support having at most K + 1 points [97] (see
also Proposition 6.66 and Theorem 7.37 in [108]). That is, R(J (z)) is equal to the
optimal value of the following program:

max
ξ1,...,ξK+1∈Ξ, α∈RK+1+

K+1∑
i=1

αiJ (z, ξi)

s.t.
K+1∑
i=1

αiψk(ξi) ≤ mk, k = 1, . . . , K,
K+1∑
i=1

αi = 1

(25)

where R+ := [0,+∞). Furthermore, the (Lagrangian) dual of the optimization
problem (25) can be written as the following semi-infinite program:

min
μ∈R×RK+

μ0 +
K∑
k=1

mkμk

s.t. μ0 +
K∑
k=1

μkψk(ξ) ≥J (z, ξ), ξ ∈ Ξ.

(26)

Under mild regularity conditions, there is no duality gap between problems (25)
and (26), and hence R(J (z)) is equal to the optimal value of the dual problem (26).
One such regularity condition is that the set Ξ is nonempty and compact, and the
functions ψk , k = 1, . . . , K , and J (z, ·) are continuous on Ξ . Consequently,
the respective minimax problem (21) can be written as the following semi-infinite
optimization problem:

min
z∈Zad, μ∈R×RK+

μ0 +
K∑
k=1

mkμk + ℘(z)

s.t. μ0 +
K∑
k=1

μkψk(ξ) ≥J (z, ξ), ξ ∈ Ξ.

(27)

In general, solving semi-infinite programs of the form (27) is not easy. In some
rather specific cases, (27) can be formulated as a semi-definite programming
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problem and solved efficiently [24, 36]. Also a number of specialized algorithms
were suggested to solve the moment-matching problem in, e.g., [43, 44, 46].

From the point of view of risk measures R :X → R, with X = Lp(Ξ,B,P0),
the concept of law invariance is a natural one. It ensures that R(X) can be
considered as a function of the cdf ΨX(t) = P0(X ≤ t) associated with X. In the
distributionally robust setting, it makes sense to talk about law invariance when the
ambiguity set consists of probability measures absolutely continuous with respect
to a specified reference probability measure P0 and the corresponding functional R
is defined in the form (23). It is natural to say that the respective ambiguity set A, of
density functions, is law invariant (with respect to the reference probability measure

P0) if θ ∈ A and θ ′ D∼ θ implies that θ ′ ∈ A.

Theorem 3 ([107]) Consider a set A ⊂X ∗ of density functions and the respective
functional R defined in (23). If the set A is law invariant, then the functional R is
law invariant. Conversely, if the functional R is law invariant and the set A is convex
and weakly∗ closed, then A is law invariant.

We can define a large class of law invariant ambiguity sets A using the concept of
φ-divergence [34, 79]. Consider a convex lower semicontinuous function φ : R→
R+ ∪ {+∞} such that φ(1) = 0 and φ(x) = +∞ for x < 0, and define A as the
set of density functions θ ∈ X ∗ satisfying the constraint EP0 [φ(θ)] ≤ ε for some
ε > 0. For example, let φ(x) = x ln x − x + 1 for x ≥ 0, and φ(x) = +∞ for
x < 0. Then for a probability measure Q absolutely continuous with respect to P0
and density function θ = dQ/dP0, we have that EP0 [θ ] = 1 and hence

EP0 [φ(θ)] = EP0 [θ ln θ ] = EP0

[
dQ

dP0
ln θ

]
= EQ[ln θ ]

is the Kullback–Leibler divergence of Q from P0. As another example for α ∈
[0, 1), let φ(x) = 0 for x ∈ [0, (1 − α)−1], and φ(x) = +∞ otherwise. Then
for any ε ≥ 0, the corresponding set A consists of density functions θ such that
θ ≤ (1 − α)−1. In that case, the corresponding functional R becomes the CVaRα .
For many other examples of φ-divergence functionals, we refer to [16, 70].

Employing Lagrange multipliers, it is possible to show that the functional R
associated with the φ-divergence ambiguity set can be written as

R(X) = inf
μ≥0, ν

{με + ν + EP0 [(μφ)∗(X − ν)]}, (28)

e.g., [16, 107]. Here (μφ)∗(y) = supx∈R{yx − (μφ)(x)} is the Legendre–Fenchel
transformation of (μφ). For the specific case of the Kullback–Leibler divergence,
this can be simplified to

R(X) = inf
μ≥0

{
με + μ lnEP0 [exp(μ−1X)]

}
.
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For the φ-divergence ambiguity set, the respective distributionally robust prob-
lem (21) can be written as the following stochastic programming problem:

min
z∈Zad, μ≥0, ν

με + ν + EP0[(μφ)∗(J (z)− ν)] + ℘(z). (29)

We note that the function (μφ)∗ is convex and hence problem (29) is convex
provided that J (·, ξ), ℘ and the set Zad are convex. Such problems can be solved
by, e.g., Monte Carlo randomization algorithms. We will discuss this further in
Section 5.

To conclude this discussion, we point out that the authors of [121] introduce
a specific class of ambiguity sets that permit a reformulation of the inner maxi-
mization problem to a conic programming problem. The assumptions required for
this reformulation are likely not satisfied for general nonlinear, nonconvex PDE-
constrained optimization problems, motivating the need for new approximation
techniques and optimization algorithms for solving (21).

5 Methods for Expectation-Based Optimization

In general, we cannot apply rapidly converging derivative-based optimization
algorithms to solve (2) because the functional R and hence the composite function
R ◦J are often not continuously differentiable even if the underlying uncertain
reduced objective function is. This issue is critical in determining the practicality of
solving (2) since traditional nonsmooth optimization algorithms typically require a
number of assumptions that are not satisfied in PDE-constrained optimization (e.g.,
convexity) and typically exhibit linear or sublinear convergence rates.

With these issues in mind, we restrict our attention to the expectation-based
functionals R of the form

R(X) = inf
t∈T E[v(X, t)]

where v : R × R
K → R and T ⊆ R

K , K ∈ N, is a closed convex set. This
is a sufficiently rich class of functionals R that includes risk neutral R = E,
the conditional value-at-risk (17), the probabilistic objective (19), the buffered
probability (20), and the φ-divergence distributionally robust objective (28). In
general, this class of functionals R includes the optimized certainty equivalent
risk measures [17] and the expectation quadrangle risk measures [95]. To simplify
notation, we denote x = (z, t) for z ∈ Z and t ∈ R

K , X = Z × R
K and

Xad = Zad × T . The corresponding PDE-constrained optimization problem is

min
x=(z,t)∈Xad

E[v(J (z), t)] + ℘(z). (30)
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For such problems, the composite objective function h(x) := E[v(J (z), t)]
inherits the differentiability properties of v(J (z), t) (e.g., [108, Sect. 7.2.4]).
In many cases, the function v introduces nonsmoothness into the problem. For
example, if R = CVaRα , then v(X, t) = {t + (1 − α)−1(X − t)+} with
T = R and if R is the buffered probability, then v(X, t) = (t (X − τ) + 1)+
with T = [0,∞). After fully discretizing (30), one could solve the resulting
nonsmooth nonlinear optimization problem using, e.g., bundle methods [72]. We
point out that there recently have been attempts to solve risk-averse optimization
problems by smoothing CVaR (see [88] for finite-dimensional problems and [64]
for PDE-constrained problems). One complication of smoothing approaches is that
the gradient of the smoothed risk measure may become unstable as the smoothing
is refined (i.e., as the smooth approximation approaches the original nonsmooth
quantity), potentially leading to poor convergence of derivative-based optimization
algorithms.

The growing interest in uncertainty quantification has led to the development
of a multitude of methods for approximating the solution of PDEs with uncertain
inputs. These methods can generally be partitioned into two classes: (i) intrusive
methods and (ii) nonintrusive methods. Nonintrusive methods treat the deterministic
PDE solver as a “black box,” whereas intrusive methods require a reformulation of
the deterministic PDE solver. Intrusive methods often approximate the solution of
a PDE with uncertain inputs by projecting the solution or the PDE residual onto a
finite-dimensional subspace such as a space of polynomials. Projection methods
include, e.g., stochastic Galerkin and polynomial chaos methods [8, 9, 58, 122]
(although there are nonintrusive forms of polynomial chaos [68]). On the other
hand, nonintrusive approaches propagate a finite set of samples of ξ through
the PDE. One then approximates the PDE solution field using interpolation or
approximates integrated quantities such as moments using numerical integration.
Some common choices for generating samples of ξ are (quasi) Monte Carlo [39],
stochastic collocation on, e.g., sparse grids, [48, 49, 83–86, 110] and stochastic
reduced order models [50, 51, 120]. In addition to these well-established methods,
there has been much recent work devoted to low-rank tensor decomposition for
parametrized PDE solutions [47, 59, 104]. In general, the approximation quality
for polynomial-based uncertainty quantification methods is highly dependent on the
choice of the approximation space, the dimension of Ξ , and the regularity of the
PDE solution with respect to the random inputs.

The incorporation of uncertainty quantification methods within PDE-constrained
optimization is an important and open area of research. Any feasible optimization
method should be mesh independent in the sense that the convergence behavior does
not depend on the size of the resulting discretizated problem (with respect to both the
spatial domain and Ξ ). Additionally, methods should exploit any structures inherent
to the problem such as, e.g., adjoints, differentiability, and the optimality conditions
in Theorem 2. Recently, numerous authors have applied intrusive and nonintrusive
methods to approximate risk neutral optimization problems constrained by PDEs
with uncertain inputs. Such problems were efficiently solved in [61, 62] using
a trust-region algorithm to guide adaptive sparse grids for approximating the
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objective function and its gradient. Similarly, [60] introduces a multilevel sparse
grid approach that works well for some linear-quadratic and nonlinear control
problems. Furthermore, the authors in [27] solve the risk neutral problem using
sparse grids and reduced order models, whereas the authors of [112] solve this
problem by combining nonintrusive polynomial chaos with sequential quadratic
programming (SQP). Finally, the authors of [47] develop a semismooth Newton
solver based on low-rank tensor decomposition to solve the risk neutral problem.
Unfortunately, when v in (30) is not differentiable (e.g., minimizing CVaR or
the buffered probability), the aforementioned trust-region, SQP, and semismooth
Newton algorithms do not apply.

Given the myriad of possible approximations and algorithms for solving (30),
we restrict our attention to three nonintrusive sampling approaches: the stochastic
approximation algorithm, sample average and quadrature approximation, and the
progressive hedging algorithm. We do not intend for this to be a complete list of
possible solution techniques, but rather a review of classical methods in stochastic
programming that may be applicable in PDE-constrained optimization. For each
method, we provide an overview and highlight the challenges associated with the
method in the context of PDE-constrained problems.

In the subsequent subsections, we assume X is a Hilbert space with inner
product 〈x, y〉X and norm ‖x‖X = √〈x, x〉X . Moreover, we denote the uncertain
composite objective function by H(x, ξ) = v(J (z, ξ), t) and the (deterministic)
composite objective function by h(x) = E[H(x, ·)]. We further denote the gradient
or any subgradient (when H(·, ξ) is convex) of H(·, ξ) by G(·, ξ). To simplify the
presentation, we ignore the control penalty term ℘(z). However, all algorithms and
results apply if ℘(z) is included.

5.1 Stochastic Approximation

The stochastic approximation (SA) method was originally developed by Robbins
and Monro in [91]. The method is based on the projected (sub)gradient method.
The projection operator Π : X→ Xad, onto the set Xad ⊂ X, is defined as

Π(y) := arg min
x∈Xad

‖y − x‖X.

Since X is a Hilbert space and Xad is closed and convex, Π(y) is uniquely defined
for all y ∈ X [12, Th. 3.14], and y 
→ Π(y) is nonexpansive [12, Prop. 4.8]. At the
kth step of SA with the current iteration point xk , the algorithm computes the next
iteration point as

xk+1 = Π
(
xk − γkG(xk, ξ

k)
)
. (31)
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Here γk > 0 are chosen step sizes and ξk is a realization of the random vector ξ
typically generated by Monte Carlo sampling techniques. The random samples ξk ,
k = 1, 2, . . ., are independent and generated according to the specified distribution
of the random vector ξ . Therefore, each iteration point xk is a random vector
depending on the history of random samples (ξ1, . . . , ξ k). Note that each iteration
requires a single state and adjoint solve corresponding to the random sample ξk .
Although per-iteration cost of SA is low, the convergence (which is probabilistic) is
heavily dependent on the convexity of H(·, ξ) and the choice of stepsize γk .

In the classical SA method, the step size is chosen to be γk := κ/k, where κ > 0
is a fixed constant. To analyze this method, we make the following assumptions:

(i) There exists a constant M > 0 such that

E

[
‖G(x, ·)‖2

X

]
≤ M2, x ∈ Xad. (32)

(ii) The function h(x) = E[H(x, ·)] is Fréchet differentiable and strongly convex,
i.e., there exists c > 0 such that

h(x′) ≥ h(x)+ 〈∇h(x), x′ − x〉X + 1

2
c‖x′ − x‖2

X ∀ x, x′ ∈ X.

Given these assumptions, problem (30) has a unique optimal solution x�. This
result follows from the Direct Method of the Calculus of Variations (i.e., the
strong convexity plus the continuity of h ensure the weak lower semicontinuity and
coercivity of h). It is possible to show (cf. [80] for finite dimensional X) that for
κ > 1/(2c),

E

[
‖xk − x�‖2

X

]
= O(k−1). (33)

That is, after k iterations, the expected error of the current solution in terms of the
distance to the optimal solution x� is of order O(k−1/2). Moreover, if ∇h(x) is
Lipschitz continuous and x� ∈ Xad satisfies ∇h(x�) = 0, then (as a consequence of
the Mean Value Theorem) we have

E [h(xk)− h(x�)] = O(k−1). (34)

For general convergence results of SA in Hilbert space, see [11].
Under the above assumptions (i) and (ii), the classical SA method produces

iterates converging to the optimal solution. However, the method is very sensitive
to choice of the step sizes and the convergence can be very slow. A simple example
in [80] demonstrates that minimization of a deterministic quadratic function of one
variable by the classical SA method can be extremely slow for a wrong choice of the
constant κ . Moreover without strong convexity, the step sizes γk = κ/k can result
in disastrously slow convergence for any choice of the constant κ .
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Another problem with (sub)gradient type algorithms is the possibility of different
scales for the components of the vector x. Suppose that the space X = R

n is
equipped with the standard Euclidean inner product 〈x, y〉X = x�y and consider
the minimization of the (deterministic) quadratic function h(x) = 1

2x
�Qx with Q

being an n×n symmetric positive definite matrix. If the matrix Q is ill conditioned,
then for any choice of the step sizes γk the SA algorithm will typically produce a
zigzag trajectory, resulting in very slow convergence to the optimal solution.

Further, step sizes of order O(k−1) could be too small to attain a reasonable rate
of convergence, while taking larger step sizes, say of order O(k−1/2), may result in
no convergence of the algorithm. In order to resolve this problem, it was suggested in
[82] (for finite-dimensional problems) to take larger step sizes and to use appropriate
averages of the iterates xk rather than these points themselves. It was shown in
[89] that under the assumptions (i) and (ii), this strategy of taking larger step sizes
and averaging automatically achieves the asymptotically optimal convergence rate.
We follow [80] in analysis of this approach referred to as the robust SA method.
Although the results in [80] are for finite dimensional X, it may be possible to extend
them to the more general Hilbert space setting. We assume below that the function
h(x) is convex continuous, but not necessary strongly convex or differentiable, and
that E[G(x, ·)] is a subgradient of h at x, i.e., E[G(x, ·)] ∈ ∂h(x). We also assume
that condition (32) holds and the set Xad is bounded.

For 1 < i < k, together with the iterates xk , consider the averages x̂ik :=∑k
j=i νj xj with weights ν! := (

∑k
j=i γj )−1γ!. Note that ν! > 0 and

∑k
j=i νj = 1.

We have then the following estimate: [80, p. 1580]

E
[
h(x̂ik)− h(x�)

] ≤ 4D2 +M2∑k
j=i γ 2

j

2
∑k

j=i γj
for 1 < i < k, (35)

where D := maxx∈Xad ‖x − x1‖X (since it is assumed that the set Xad is bounded,
the constant D is finite). In particular, consider the strategy of fixing in advance the
number of iterations N and the constant step sizes γk = γ , k = 1, . . . , N . Then it
follows from (35) that

E
[
h(x̂1N)− h(x�)

] ≤ 4D2 +M2Nγ

2Nγ
. (36)

Minimization of the right-hand side of (36) over γ > 0 suggests the optimal
constant step size is

γ := 2D

M
√
N
, (37)

providing the corresponding error estimate

E
[
h(x̂1N)− h(x�)

] ≤ 2DM√
N

. (38)
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Another possible strategy is to take step sizes of order O(k−1/2), specifically

γk := θD

M
√
k

(39)

for some θ > 0. Choosing i as a fixed fraction of N , i.e., setting i = "rN# for some
r ∈ (0, 1), leads to the estimate

E
[
h(x̂iN )− h(x�)

] ≤ C(r)max{θ, θ−1}DM√
N

, (40)

where C(r) is a constant depending only on r .
The estimates (38) and (40) suggest the average error of the objective function

to be of order O(N−1/2). This could be compared with the estimate (34) of order
O(N−1). However, the error bounds (38) and (40) do not require differentiability or
strong convexity of h. Additionally, scaling the step size in the robust SA algorithm
by θ > 0 has only a moderate effect on the bound (40), i.e., max{θ, θ−1}. Therefore,
the robust SA method is considerably less sensitive to the choice of step sizes than
the classical SA method. Nevertheless, the choice is still crucial for convergence
of the algorithm and, unfortunately, the stepsize formulas (37) and (39) involve
constants M , D, and the scaling factor θ that are often impossible to determine
for PDE-constrained optimization problems.

5.2 Sample Average and Quadrature Approximation

Both the sample average approximation (SAA) and the deterministic quadrature
approach result in approximations of the expectation in (30). As such, these
methods are not algorithms for solving (30). The idea of the SAA method is
to use equally probable random samples ξ1, . . . , ξN to approximate the “true”
optimization problem (30), whereas the quadrature approach aims to approximate
the expectation in (30) using deterministic quadrature defined by N abscissae
{ξ1, . . . , ξN } and their corresponding weights {w1, . . . , wN }. Both the SAA and
quadrature approximations to (30) have the form

min
x∈Xad

⎧⎨
⎩ĥN (x) :=

N∑
j=1

pjH(x, ξj )

⎫⎬
⎭ (41)

where pj = N−1 for SAA and pj = wj for the quadrature approach. In the context
of PDE-constrained optimization, (41) is a deterministic optimization problem
with N PDE constraints. Therefore, any solution method for (41) should be mesh
independent to avoid convergence issues associated with the dimension of the fully
discretized problem.
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There are advantages and disadvantages of the SA versus SAA or the quadrature
approach. In finite dimensions, estimates of the sample size N needed to attain
a specified accuracy of computed solutions are similar for both the SAA and the
SA methods (cf., [108, Ch. 5]). SA is a simple algorithm requiring evaluation of a
single (sub)gradient G(xj , ξ

j ) at each iteration step, while SAA and the quadrature
approach are not algorithms – the constructed problem (41) still has to be solved
by a numerical procedure. Depending on the choice of algorithm for solving (41),
each involved iteration can be considerably more expensive than in the SA method.
For example, evaluation of the gradient (or a subgradient) of ĥN at a given point x
requires the calculation of all G(x, ξj ), j = 1, . . . , N . On the other hand, SAA and
the quadrature approach, combined with a good numerical optimization algorithm,
may overcome the difficulties of the choice of step sizes that plagues the SA method.
Also SAA and the quadrature approach are more receptive to parallelization, e.g.,
the (sub)gradients G(x, ξj ), j = 1, . . . , N can be computed in parallel as opposed
to the sequential nature of the SA method. However, additional difficulty may arise
for the quadrature approximation if the weights wj are not all positive as with, e.g.,
sparse grids [48, 49, 85, 86, 110]. The presence of negative weights may adversely
influence a numerical optimization solver by changing the sign associated with the
objective sample H(x, ξj ).

Given the similarities between SAA and the quadrature approach, we can
characterize the error committed through the approximation of (30) using the same
techniques. For the subsequent analysis, we assume x 
→ H(x, ξ) is continuously
Fréchet differentiable for each ξ ∈ Ξ , ensuring that h and ĥN are continuously
Fréchet differentiable. If h is strongly convex, then we can characterize the errors
between the true optimal solution x� ∈ Xad and the approximate solution xN ∈ Xad.
Namely, strong convexity implies there exists c > 0 such that

c‖x� − xN‖2
X ≤ 〈∇h(x�)−∇h(xN), x� − xN 〉X.

Similar to Theorem 2, the optimality conditions for h and ĥN over Xad are

〈∇h(x�), x−x�〉X ≥ 0 ∀ x ∈ Xad and 〈∇ĥN (xN), x−xN 〉X ≥ 0 ∀ x ∈ Xad,

respectively. Since x�, xN ∈ Xad, we have that

〈∇h(x�), x� − xN 〉X ≤ 0 ≤ 〈∇ĥN (xN), x� − xN 〉X.

This relation and the Cauchy–Schwarz inequality ensure that

c‖x� − xN‖X ≤ ‖∇ĥN (xN)−∇h(xN)‖X =
∥∥∥∥

N∑
j=1

pjG(xN, ξ
j )− E[G(xN, ·)]

∥∥∥∥
X

.

(42)

Therefore, the right-hand side of (42) is simply the error associated with approxi-
mately integrating the gradient of H(xN, ·) and thus the error will be dictated by the
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approximation quality of the points (ξ1, . . . , ξN ) and weights (p1, . . . , pN). In the
context of quadrature approximation, this error depends heavily on the regularity
of, e.g., the adjoint state with respect to ξ , the dimension of Ξ , and the polynomial
order of the quadrature rule (see, for example, [83, 84, 86]). Thus, the convergence
rate of the optimal solutions for the quadrature approximation may be algebraic,
even exponential, if the gradients G are sufficiently regular with respect to ξ . On
the other hand, the convergence rate for SAA is probabilistic since (ξ1, . . . , ξN) are
random realizations of ξ and will likely recover the Monte Carlo rate of convergence
O(N−1/2) [39].

5.3 Progressive Hedging

The progressive hedging algorithm [96], originally introduced for dynamic stochas-
tic programs, employs a sample-based decomposition of (30). As in Section 5.2,
we consider the approximate optimization problem (41) where (ξ1, . . . , ξN ) are
fixed scenarios of the uncertain inputs ξ with associated probabilities (p1, . . . , pN)

(i.e., pj ≥ 0 for all j and p1 + . . . + pN = 1). As discussed in Section 5.2,
we can exploit parallelism in (41) by evaluating ĥN and its derivatives in parallel.
By assigning a separate optimization variable xj for each ξj (i.e., we allow xj

to anticipate the scenario ξj ), the progressive hedging algorithm further exploits
parallel computations at each iteration by concurrently solving a deterministic PDE-
constrained optimization problem for each scenario ξj .

To describe the progressive hedging algorithm, we first reformulate (41) as

min
xj ,x∈Xad

N∑
j=1

pjH(xj , ξ j ) subject to xj = x, j = 1, . . . , N. (43)

Here, the objective function is the sum of decoupled, scenario-specific objective
functions, whereas the constraint ensures that we recover a solution to (41). We call
the deterministic variable x an implementable solution. We then relax the equality
constraint for each j using the augmented Lagrangian penalty function

!
j
r (x

j , x, μj ) = H(xj , ξ j )+ 〈μj , xj 〉X + r

2
‖xj − x‖2

X, r > 0,

where the multipliers {μ1, . . . , μN } are called an information price system in [96]
and are required to satisfy

N∑
j=1

pjμj = 0.
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Taking the expectation of !jr then yields the full Augmented Lagrangian for (43). In
light of this, we can describe the progressive hedging algorithm as follows. Given
the kth iteration points x

j
k ∈ Xad and μ

j
k ∈ X for j = 1, . . . , N , and the current

implementable solution xk =∑N
j=1 p

jx
j
k :

1. Compute the scenario-dependent solutions x
j

k+1, j = 1, . . . , N by minimizing

!
j
r (·, xk, λjk) concurrently, i.e.,

x
j

k+1 ∈ arg min
xj∈Xad

!
j
r (x

j , xk, λ
j
k), j = 1, . . . , N; (44)

2. Aggregate x
j

k+1 to compute the current implementable solution xk+1, i.e.,

xk+1 =
N∑
j=1

pjx
j

k+1;

3. Update the multiplier estimates for fixed x = xk+1 and xj = x
j

k+1, j =
1, . . . , N , as

μ
j

k+1 = μ
j
k + r(x

j

k+1 − xk+1), j = 1, . . . , N. (45)

Clearly, all steps of this algorithm are parallelizable with the exception of the second
(i.e., aggregation) step.

The convergence theory for the progressive hedging algorithm, as set fourth in
[96], is restricted to finite dimensions. When H(·, ξ) is convex, the progressive
hedging algorithm converges under specified stopping rules for approximately
solving (44) (see Equation 5.35 and Theorem 5.4 in [96]). In fact, the convergence
theory in the convex case is based on the convergence theory for the proximal point
algorithm [92] applied to a certain saddle function. As the authors in [42] point
out, the progressive hedging algorithm can be seen as a special case of Douglas–
Rachford splitting and thus inherits the Hilbert space convergence theory. On the
other hand, Theorem 6.1 in [96] demonstrates that if H(·, ξ) is not convex and X is
finite dimensional, then if the sequences of iterates xjk and multipliers μj

k converge,

where x
j
k are only required to be δ-locally optimal for fixed δ > 0, then these

sequences converge to a stationary point of the original problem (30). Given the
relations between the progressive hedging and Augmented Lagrangian algorithms,
it may be possible to extend the convergence analysis for Augmented Lagrangian
for infinite-dimensional nonconvex problems (see, e.g., [54, Chapt. 3]).

To conclude, one potential inefficiency of the progressive hedging algorithm
is the typically slow convergence rate. For example, if X is finite dimensional,
H(·, ξ) is convex quadratic, and Xad is convex polyhedral, then Theorem 5.2 in
[96] ensures that the progressive hedging algorithm will converge at a linear rate.
One can potentially overcome this by increasing the penalty parameter r at each
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iteration (see, e.g., Theorem 2 in [92] where superlinear convergence for convex
problems is shown using the proximal point algorithm). In any case, the convergence
of the progressive hedging algorithm is strongly dependent on the penalty parameter
r which is difficult to select a priori, especially for nonconvex problems. Another
possibility to enhance the convergence rate is to replace (45) with a “second-order”
multiplier update (see, e.g., [22, Ch. 2.3.2] and [54, Chapt. 6.2] for second-order
multiplier updates in the context of the Augmented Lagrangian algorithm).

6 Numerical Example

To demonstrate the various stochastic programming formulations discussed in
Section 4, we consider the problem of optimally mitigating a contamination by
injecting chemicals at specified locations that dissolve the contaminant. We model
the contaminant transport using the steady advection diffusion equation. Clearly,
uncertainties arise in nearly all coefficients such as the velocity field (e.g., wind) and
the contaminant source locations and magnitudes. This example was first considered
in [64]. Let D = (0, 1)2 denote the physical domain and U = H 1(D) be the space
of contaminant concentrations. The target optimization problem is

min
z∈Zad

R

(
κs

2

ˆ
D

S(z; ·)2 dx

)
+ ℘(z) (46)

where κs > 0 and S(z; ·) = u : Ξ → U solves the weak form of the advection-
diffusion equation

−∇ · (ε(ξ)∇u)+ V(ξ) · ∇u = f (ξ)− Bz in D (47a)

u = 0 on Γd (47b)

−ε(ξ)∇u · n = 0 on Γn (47c)

where the Neumann boundary is Γn := {1} × (0, 1) and the Dirichlet boundary is
Γd := ∂D \Γn. The control space (the space of mitigating chemical concentrations)
is Z = R

9 with admissible control set Zad :=
{
z ∈ R

9 : 0 ≤ z ≤ 1
}

and control
cost

℘(z) := κc‖z‖1 = κc

9∑
k=1

|zk|, κc > 0.

The controls are applied using the operator B ∈ L (Z,L∞(D)) given by

(Bz)(x) =
9∑

k=1

zk exp

(
− (x − pk)

�(x − pk)

2σ 2

)
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Table 1 Predetermined contaminant mitigating control locations

Source 1 2 3 4 5 6 7 8 9

x1 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

x2 0.25 0.25 0.25 0.50 0.50 0.50 0.75 0.75 0.75

where pk are predetermined control locations and σ = 0.05. That is, we model the
control mechanism as Gaussians sources with magnitude dictated by z. The control
locations are tabulated in Table 1.

The PDE coefficients ε, V, and f are random fields. The diffusivity is given by

ε(x, ξ) = 0.5+ c exp (δ(x, ξ))

where the specific form of δ is described in [83, Sect. 4, Eqs. 4.2–4.4]. Associated
with δ are 10 random variables, (ξ1, . . . , ξ10), uniformly distributed on [−√3,

√
3].

The constant c > 0 is chosen to be the reciprocal of the maximum of exp(δ). Clearly,
ε satisfies: ∃ 0 < ε0 ≤ ε ≤ ε1 < ∞ for all x ∈ D and ξi ∈ [−

√
3,
√

3], i =
1, . . . , 10. Moreover, the velocity field V is

V(x, ξ) =
[
ξ12 − ξ11x1

ξ11x2

]

where ξ11 is uniformly distributed on [0, 5], and ξ12 is uniformly distributed on
[5, 10]. The two extreme cases of V are depicted in Figure 2. V is divergence free
and satisfies V · n ≥ 0, where n is the outward unit normal vector on the Neumann
boundary. Finally, f is the sum of five Gaussian sources whose locations, widths,
and magnitudes are random, i.e., f is described by 25 uniform random variables
(ξ13, . . . , ξ37). This results in a total of 37 random variables associated with the
PDE (47). As shown in [64], this example satisfies the assumptions of Theorems 1
and 2 and thus a minimizing control exists and it satisfies the first-order necessary
conditions in Theorem 2.

We approximate the contaminant mitigation problem using SAA with N = 800
Monte Carlo samples. For R, we chose risk neutral (RN), entropic risk (ER) with
σ = 1, CVaR with α = 0.95, a convex combination of expectation and CVaR

R(X) = βE[X] + (1− β)CVaRα(X)

with α = 0.95 and β = 0.5 (MCVaR), buffered probability with threshold
τ = 6 (BP), and KL-divergence distributionally robust optimization with threshold
ε = 0.1 (KL). Additionally, we solved the mean value problem (MV) in which we
replaced ξ with E[ξ ] and solved the corresponding deterministic control problem.
For RN, ER, KL, and MV, we solved the resulting nonlinear program using a trust-
region Newton method [32]; while for CVaR, MCVaR, and BP, we combined the
aforementioned trust-region method with an adaptation of the smoothing approach
described in [64]. Figure 3 depicts the optimal control sources and Table 2 includes
the optimal control magnitudes. We excluded the MV control from Figure 3 due
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Fig. 2 Left: The vector field V with ξ11 = 0 and ξ12 = 10. Right: The vector field V with ξ11 = 5
and ξ12 = 5

Table 2 Optimal contaminant mitigating controls using different functionals R. MV refers to
the deterministic problem in which the random inputs are replaced with their expected values. RN
refers to risk neutral and ER refers to the entropic risk with σ = 1. For CVaR, we set α = 0.95 and
for the “mixture of CVaRs” (MCVaR), we set α = 0.95 and β = 0.5. For the “buffered probability
of exceedance” (bPOE), we set the threshold τ = 6 and for the KL-divergence distributionally
robust problem, we set the threshold ε = 0.1.

R 1 2 3 4 5 6 7 8 9 Cost

MV – 0.23 – – 1.00 – – – – 1.23

RN – 0.27 – – 1.00 – – – – 1.27

CVaR 0.42 1.00 0.15 0.81 1.00 1.00 – – – 4.37

MCVaR – 1.00 – 0.33 1.00 0.59 – – – 2.92

ER 0.33 1.00 1.00 0.55 1.00 1.00 – – – 4.88

BP 0.02 1.00 – 0.56 1.00 0.91 – – – 3.49

KL – 1.00 – – 1.00 – – – – 2.00

to its similarity with the RN control. For the given parameter specifications, ER
produced the most conservative control, whereas RN and MV produce the least
conservative. However, conservativeness results in a more expensive control. This
fact is depicted in Figure 4. Figure 4 includes the cdfs of the uncertain objective
function J (z) (left) and the full objective function J (z)+ ℘(z) (right) evaluated
at the different optimal controls. The left image clearly demonstrates that more
conservative approaches reduce variability and produce uncertain objective values
that dominate (in the sense of the first stochastic order) those of the RN and MV
approaches. On the other hand, the right image emphasizes the increased cost of
being conservative. As seen in the right image, the RN and MV controls outperform
the other controls in terms of total cost for more than 60% of scenarios.
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Fig. 3 The optimal controls computed using risk neutral (RN), CVaR, a mixture of expectation and
CVaR (MCVaR), entropic risk (ER), buffered probability (BP) and KL-divergence distributionally
robust optimization (KL)
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Fig. 4 Left: Cumulative distribution functions of the random variable objective function, J (z),
evaluated at the different optimal controls. Right: Cumulative distribution functions of J (z) +
℘(z) evaluated at the different optimal controls

7 Conclusions

In this chapter, we reviewed a set of stochastic programming tools for formulating
and solving optimization problems constrained by PDEs with uncertain coeffi-
cients. For the problem formulation, we discussed risk measures, probabilistic
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optimization, and distributionally robust optimization. Each of these approaches
can be justified within the context of the physical application. When the underlying
probability law of the random coefficients is known, risk-averse and probabilistic
optimization provide a natural foundation for incorporating conservativeness in the
optimization problem formulation. However, such approaches are unjustified and
may lead to arbitrarily poor solutions if the underlying probability law is unknown.
In this scenario, one often has noisy, incomplete data describing the distribution of
uncertain coefficients which can be used to define an ambiguity set of “feasible”
distributions. This leads naturally to distributionally robust optimization in which
we minimize the worst-case expectation over the ambiguity set.

For solution approaches, we discussed stochastic approximation (SA), sample
average approximation (SAA), deterministic quadrature approximation, and the
progressive hedging algorithm. Each approach has particular downsides. The SA
approach is a simple optimization algorithm but requires convexity to guarantee
convergence, which is probabilistic. The SAA approach approximates the expected
value in the objective function using a sample average (e.g., Monte Carlo).
The resulting approximate problem is then solved using nonlinear programming
algorithms. SAA exhibits dimension-independent convergence, but the convergence
is probabilistic with rate 1/

√
N . Similar to SAA, the deterministic quadrature

approach approximates the expected value using quadrature. The resulting problem
is again solved with a nonlinear programming method. This approach requires
sufficient regularity (with respect to the random inputs) to obtain rapidly decaying
approximation error. Finally, the progressive hedging algorithm employs a sample-
based decomposition of the optimization problem and the controls which permits
the concurrent solution of deterministic PDE-constrained optimization problems at
every iteration. For convex problems, convergence is guaranteed in Hilbert space;
however, the convergence rate can be linear or worse.

Common among many stochastic optimization problems is the challenge of
minimizing a nonsmooth objective function. In particular, the typical slow con-
vergence rates of nonsmooth optimization algorithms may render the solution
of PDE-constrained optimization under uncertainty computationally infeasible.
Efficiently solving these nonsmooth problems is challenging and is an active
research topic. Additional open research topics include the formulation and analysis
for state-constrained problems; the incorporation of stochastic dominance and
chance constraints for PDE-constrained optimization; and the formulation, analysis,
and numerical solution of optimal control problems constrained by variational
inequalities with uncertain inputs as well as optimal control problems constrained
by dynamic stochastic PDEs.
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Inexact Trust-Region Methods
for PDE-Constrained Optimization

Drew P. Kouri and Denis Ridzal

Abstract Numerical solution of optimization problems with partial differential
equation (PDE) constraints typically requires inexact objective function and con-
straint evaluations, derivative approximations, and the use of iterative linear system
solvers. Over the last 30 years, trust-region methods have been extended to
rigorously, robustly, and efficiently handle various sources of inexactness in the
optimization process. In this chapter, we review some of the recent advances,
discuss their key algorithmic contributions, and present numerical examples that
demonstrate how inexact computations can be exploited to enable the solution of
large-scale PDE-constrained optimization problems.

1 Introduction

Numerical solution of optimization problems constrained by partial differential
equations (PDEs)—and, more generally, optimization problems involving large-
scale nonlinear simulations—poses a number of mathematical, algorithmic, and
computational challenges. The computational challenge often lies in the sheer size
of the discretized problem. Specifically, the computational expense of solving a
single instance of the governing PDEs can make the solution of the optimization
problem a daunting task. To make numerical solution practical, one frequently
resorts to approximating the objective function and its derivatives. Similarly, one
may use approximations of the constraint function, its derivatives, and their inverses.
In order to ensure convergence to a solution of the original infinite-dimensional
problem, however, these approximations must be intelligently managed and refined.
Trust-region methods provide a robust, globally convergent framework to handle
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multiple forms of inexactness, including inexact evaluations of the objective and
constraint functions and their derivatives, as well as the inexact linear system
solves arising in the approximate application of constraint derivative inverses.
For this reason, trust regions are a popular choice for large-scale, nonconvex
multidisciplinary optimization with simulation constraints.

Early works by Moré [29], Toint [40], and Carter [10–12] pioneered the use of
inexact gradients and objective function values within trust-region methods. Later
in the 1990s, Alexandrov, Dennis, and Torczon analyzed trust-region algorithms
as a general framework for managing approximations throughout the optimization
iteration [1–4, 15, 16]. These works laid the foundation for more recent works
on adaptive approximations, where the trust-region framework is used to manage
the accuracy of objective and constraint function evaluations, objective gradient
computations, constraint derivative operator applications, and linear system solves
[5, 8, 18, 20, 21, 24–26, 43, 44]—collectively labeled inexact trust-region methods.

In this chapter, we review two inexact trust-region algorithms, for unconstrained
and equality-constrained optimization, respectively, using PDE-constrained opti-
mization as motivation. For each algorithm, we discuss the state of the art in terms
of variable-fidelity and inexact computations. Our goal is threefold: to document
the algorithms in sufficient, “ready-to-use” detail, demonstrate them on a novel
numerical example, and provide a concise reference to other recent works on
managing inexactness in trust-region methods for large-scale optimization. The
remainder of the chapter is structured as follows. In Section 2, we introduce the
notation. In Section 3, we discuss two common problem formulations used in
PDE-constrained optimization, the reduced-space and the full-space formulation.
In Section 4, we review an inexact trust-region algorithm for unconstrained
optimization and an inexact composite-step trust-region algorithm for equality-
constrained optimization. Subsequently, in Section 5 we specialize the algorithms to
optimization problems constrained by PDEs with random coefficients. The discus-
sion of full-space methods includes a novel highly parallelizable preconditioner for
optimization under uncertainty where the statistics are evaluated through sampling,
e.g., using sparse grids [37] or Monte-Carlo methods. The preconditioner is an
extension of recent work on constraint-based “optimal” preconditioners for PDE-
constrained optimization [33] and their specialization to augmented systems [36].
In Section 6, we present new numerical results for the risk-neutral optimization of
thermal-fluid models with random inputs. Finally, we discuss our conclusions in
Section 7.

2 Notation

The norm associated with the Banach space V is ‖ · ‖V . When V is Hilbert, we
denote the inner product by 〈v,w〉V and the norm ‖v‖V = √〈v, v〉V . If V and W

are Banach spaces then we denote the space of bounded linear operators between
V and W by L(V ,W). When V = W , we denote L(V ) := L(V , V ). Moreover,
when W = R, we denote by V ∗ := L(V ,R) the topological dual space of V and
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by 〈f, v〉V ∗,V the duality pairing between f ∈ V ∗ and v ∈ V . If A ∈ L(V ,W),
we denote its adjoint by A∗ ∈ L(W ∗, V ∗). When V is a Hilbert space, we identify
V ∗ with V using the Riesz Representation Theorem. We note that the algorithms
described in this paper can be equivalently formulated using the notion of the Riesz
isomorphism R ∈ L(V ∗, V ). Finally, we denote the identity operator on the Banach
space V by IV ∈ L(V ).

3 Problem Formulations

An important feature of algorithms for PDE-constrained optimization is con-
vergence in function space, leading to mesh-independent convergence after dis-
cretization. Therefore, we consider the function space setting for the formulation
of PDE-constrained optimization problems. We will discuss their discrete forms,
enabling numerical solution, in Section 5. Let U and Z be Hilbert spaces and C be
a reflexive Banach space. U denotes the state space and u ∈ U is a state variable.
Similarly, Z is the control space and z ∈ Z is a control variable. We wish to solve
the optimization problem

min
u∈U, z∈Z J (u, z) (1a)

subject to c(u, z) = 0 , (1b)

where the objective J : U ×Z→ R and the constraint c : U ×Z→ C are smooth
functions, with the smoothness requirements made precise later.

In addition to the optimization problem (1), which we refer to as the full-space
problem, we will consider its reduced-space companion. In general, the reduced-
space problem is obtained through nonlinear elimination of the state variables.
Specifically, we assume the existence of the solution operator S : Z → U such
that

u = S(z) satisfies c(u, z) = 0 ,

and define the reduced objective function J : Z→ R by

J (z) := J (S(z), z) .

Instead of the optimization problem (1), we can then solve

min
z∈Z J (z) . (2)

We note that in general (1) and (2) are not equivalent. For example, problem (1)
may have a solution even when the solution operator S does not exist, i.e., when
problem (2) cannot be solved. Additionally, we will see later that certain types of
inexactness in J , c, and their partial derivatives are more easily handled through the
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reduced-space form, while others are better suited to the full-space form. Finally, we
consider a third problem formulation, resulting from a simple change of notation in
problem (1). We define X := U × Z, and for x ∈ X write

min
x∈X J (x) (3a)

subject to c(x) = 0 . (3b)

This formulation is a generalization of (1), in that it does not assume an explicit
splitting of variables into state and control variables, potentially resulting in
algorithmic advantages.

When discussing algorithms for the full-space problem (1), we require the
Lagrangian functional

L(u, z, λ) := J (u, z)+ 〈λ, c(u, z)〉C∗,C.

Furthermore, under standard assumptions, the reduced objective function J of (2)
is twice continuously Fréchet differentiable and the first derivative is given by

∇J (z) = cz(S(z), z)
∗Λ(S(z), z)+∇zJ (S(z), z) ∈ Z

where Λ(u, z) = λ ∈ C∗ solves the adjoint equation

cu(u, z)
∗λ = −∇uJ (u, z). (4)

Here, we denote the partial derivatives of c by cu and cz, and the partial derivatives
of J by ∇uJ and ∇zJ . A similar expression exists for the application of the Hessian
of J to a vector v ∈ Z. In particular, we can represent the action of the Hessian by

∇2J (z)v = T (S(z), z)∗H(S(z), z,Λ(S(z), z))T (S(z), z)v (5)

where the linear operator T (u, z) is defined as

T (u, z) :=
(−cu(u, z)−1cz(u, z)

IZ

)
,

and the linear operator H(u, z, λ) is defined as

H(u, z, λ) :=
(∇uuL(u, z, λ) ∇uzL(u, z, λ)

∇zuL(u, z, λ) ∇zzL(u, z, λ)

)
,

see, e.g., [22, Ch. 1]. As above, ∇uuL, ∇uzL, ∇zuL, and ∇zzL denote the second-
order partial derivatives of the Lagrangian functional.

Formulations (1), (2), and (3) of PDE-constrained optimization problems have
been studied extensively in the context of inexact trust-region methods. Before
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discussing the methods, we present a “menu” of possible assumptions on the full-
space formulation (1), which are used to establish the applicability and global
convergence of each of the methods. We note that some assumptions are shared by
all methods, while others are formulation-specific and method-specific. Throughout,
we assume the existence of a convex open set Ω ⊆ X such that the iterates xk
and trial steps sk produced by the algorithms described in the subsequent sections
satisfy xk, xk + sk ∈ Ω for all k. For the reduced space formulation, we interpret
xk = (S(zk), zk) and assume (S(zk + tσk), zk + tσk) ∈ Ω for all t ∈ [0, 1] where
σk ∈ Z denotes the trial step produced by the reduced-space algorithm.

(A1) The functional J is bounded below and finite on Ω .
(A2) The functions J and c are twice continuously Fréchet differentiable on Ω .
(A3) The Jacobian cx(x) is uniformly bounded on Ω .
(A4) The Hessians ∇xxJ (x) and cxx(x) are uniformly bounded in L(X) and

L(X,L(X,C)), respectively, on Ω .
(A5) The operator cx(x) is surjective for all x ∈ Ω .
(A6) The state Jacobian cu(x) is continuously invertible for all x ∈ Ω and the

inverse cu(x)
−1 is uniformly bounded on Ω .

(A7) The solution operator S exists and is unique for all z ∈ Z.
(A8) The operator T (x)∗H(x,Λ(x))T (x) is uniformly bounded on Ω .
(A9) The following function(al)s and operators are uniformly bounded over all x ∈

Ω: J (x), ∇xJ (x), c(x), and (cx(x)cx(x)
∗)−1.

Remark 1 When the PDE in (1) is nonlinear (e.g., semilinear), the range space of
the solution operator S typically must be more regular than the space U , in order
to ensure that c is Fréchet differentiable and that cu(u, z) has a bounded inverse.
Although this is an important issue, we focus on the stated problem setting to
simplify the presentation. We refer the interested reader to [41] for information on
handling this more general setting.

4 Inexact Trust-Region Methods

We begin with the description of an inexact trust-region approach for the reduced-
space formulation, (2), which was studied in [25, 26]. This is followed by the
discussion of a scheme for the full-space formulation (3), originally presented
in [20].

4.1 A Reduced-Space Approach

In this section, we focus on the reduced-space formulation, (2), of PDE-constrained
optimization problems. Given an iterate zk , the basic trust-region algorithm builds a
smooth local model mk : Z → R of the objective function s 
→ J (zk + s) inside
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the trust region Bk := {s ∈ Z : ‖s‖ ≤ Δk}, where Δk > 0 is the trust-region
radius. The algorithm then computes a trial step sk by approximately solving the
trust-region subproblem

min
s∈Z mk(s) subject to ‖s‖Z ≤ Δk. (6)

In order to ensure convergence, the trial step sk must satisfy the fraction of Cauchy
decrease condition

mk(0)−mk(sk) ≥ κfcd‖∇mk(0)‖Z min
{
Δk,

‖∇mk(0)‖Z
βk

}
, (7)

where κfcd > 0 is fixed and βk = 1 + sups∈Bk
‖∇2mk(s)‖L(Z). When mk in (6) is

quadratic, a number of solvers exist to compute sk that satisfies (7). For example, the
Cauchy point, (double) dogleg, truncated Conjugate Gradient and truncated Lanczos
algorithms all produce steps that satisfy (7), see [13, 17] and the references within
for more information. Once the step sk is computed, trust-region algorithms check
whether zk + sk is acceptable as the new iterate, and the trust-region radius Δk

is updated accordingly. Step acceptance and the trust-region update depend on the
ratio of actual and predicted reduction,

aredk := (J (zk)− J (zk + sk)) and predk := (mk(0)−mk(sk)),

respectively. In particular, given 0 < η1 < η2 < 1, the trial step sk is accepted if the
actual reduction is larger than a fraction of the predicted reduction, i.e.,

aredk ≥ η1predk.

If the trial step is rejected, then the trust-region radius is decreased, whereas if it is
accepted and the actual reduction is sufficiently large, i.e.,

aredk ≥ η2predk,

then the trust-region radius is increased.
Under standard assumptions, if the objective function can be evaluated exactly

for all k, the model mk is first-order consistent with J in the sense that

∇J (zk) = ∇mk(0)

for all k and the trial steps sk satisfy condition (7), then one can prove global
convergence of the trust-region scheme. However, if the objective function and
its gradient can only be approximated, i.e., are evaluated inexactly, additional
conditions are needed to ensure global convergence. We first state the condition
on gradient inexactness.
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Gradient Condition For all k the model mk must approximate the objective
function s 
→ J (zk + s) so that the true and approximate gradients at s = 0 satisfy

‖∇mk(0)−∇J (zk)‖Z ≤ κgrad min{‖∇mk(0)‖Z,Δk}. (8)

Here, κgrad > 0 is independent of k. A similar condition was originally proposed by
Carter in [11]. However, (8) is due to Heinkenschloss and Vicente [21]. ��

The definition of the actual reduction, aredk , involves the exact value of the
objective function J , which we often cannot compute. Instead, we consider a com-
putable approximation Jk , where the subscript k indicates that the approximation
may change from iteration to iteration. With this approximation, we can define the
computed reduction

credk := Jk(zk)− Jk(zk + sk). (9)

To ensure convergence of the trust-region algorithm, we must ensure that the
difference

|aredk − credk|,

is “sufficiently” small. We now state the objective function conditions.

Objective Function Conditions Assume that there exists an estimator θk =
θ(zk, sk) of the error in the objective function so that for a constant K > 0,

|aredk − credk| ≤ Kθk ∀k . (10a)

For a fixed ω ∈ (0, 1), we control the error estimator θk via the following bound:

θωk ≤ η min
{
predk, rk

}
, (10b)

where

η < min{η1, 1− η2} and {rk}∞k=1 ⊂ [0,∞) satisfies lim
k→∞ rk = 0. (10c)

Condition (10b) is due to Ziems and Ulbrich [43]; also see [13, Sec. 10.6]. ��
The basic trust-region algorithm, accounting for inexact objective function and

gradient evaluation, is listed as Algorithm 1.
To prove convergence of the inexact unconstrained trust-region algorithm, we

will use some of the problem assumptions stated in Section 3 and the following
model assumptions:

(R1) For each k, mk : Z→ R is twice continuously Fréchet differentiable.
(R2) For each k, ∇2mk is uniformly bounded on Z.
(R3) For each k, the objective function approximation Jk is bounded below.
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Algorithm 1 (Reduced-space trust-region algorithm)

Initialization: Choose initial point z0, initial trust-region radius Δ0 > 0,
constants 0 < γ1 ≤ γ2 < 1 < γ3, 0 < η1 < η2 < 1, and tol > 0.

For k=0,1,2,. . .

1. Model selection: Choose a model mk that satisfies (8).
2. Convergence check: If ‖∇mk(0)‖Z < tol, then terminate.
3. Step computation: Compute an approximate solution sk of (6) that satisfies the

fraction of Cauchy decrease condition (7).
4. Objective function update: Determine an objective function approximation Jk

such that the corresponding error estimate θk satisfies (10).
5. Step acceptance: Compute �k = credk/predk .

if �k ≥ η1 then zk+1 = zk + sk else zk+1 = zk
6. Trust-region update:

if zk+1 = zk then Δk+1 ∈ (0, γ1‖sk‖Z]
else

Δk+1 ∈

⎧⎪⎪⎨
⎪⎪⎩

(0, γ2‖sk‖Z] if ρk ≤ η1

[γ2, ‖sk‖Z,Δk] if ρk ∈ (η1, η2)

[Δk, γ3Δk] if ρk ≥ η2

End For

Theorem 1 Let Ω = U × Z. If problem assumptions (A1), (A2), (A6), (A7)
and (A8), and model assumptions (R1), (R2) and (R2) hold, then the iterates {zk}
generated by the inexact unconstrained trust-region algorithm, Algorithm 1, satisfy

lim inf
k→∞ ‖∇mk(0)‖Z = lim inf

k→∞ ‖∇J (zk)‖Z = 0.

Proof Assumptions (A2), (A6), and (A7) together with the Implicit Function
Theorem [22, Th. 1.41] ensure that J is twice continuously Fréchet differentiable.
Moreover, (A8) ensures that the Hessian of J is uniformly bounded at zk + tsk for
all t ∈ [0, 1] and for all k. The desired result then follows from assumptions (R1),
(R2), and (R3), and a slight generalization of Theorem 5.6 in [26].

4.1.1 Related Work

The above approach is described in detail in [25, 26]. The authors in [25, 26]
combine and modify conditions for inexact gradient and objective function values
from a number of sources. For example, Moré considers inexact gradients in [29]
for the case of Z = R

n. In this case, he requires
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zk → z �⇒ lim
k→∞‖∇mk(0)−∇J (zk)‖Z = 0. (11)

Similarly, in [40] Toint analyzes an algorithm in Hilbert space for bound-constrained
optimization and requires

‖∇mk(0)−∇J (zk)‖Z ≤ min{κ1, κ2Δk}
for appropriately chosen κ1, κ2 > 0. Carter, in [10], proves global convergence of
Algorithm 1 using the inexactness conditions

|aredk − credk| ≤ ζf,1predk

|aredk − credk| ≤ ζf,2|credk|
〈∇mk(0)−∇J (zk),∇mk(0)〉Z ≤ ζg‖∇mk(0)‖2

Z

for constants ζg, ζf,1 ζf,2 > 0 satisfying

ζg + ζf,1 < 1− η2 and ζf,2 < 1.

Carter further analyzes his approach in [11, 12]. In [13, Sec. 10.6], the authors
consider objective functions with dynamic accuracy for which they require

max {|J (zk)− Jk(zk)|, |J (zk + sk)− Jk(zk + sk)|} ≤ η̃ predk , (12)

for some η̃ ≤ 1
2η1. The challenge with each of these conditions (other than Moré’s

very general requirement (11)) is that the constants, e.g., ζg , ζf,1, ζf,2 and η̃,
depend explicitly on algorithmic parameters. Therefore, it is difficult to determine
a priori if these conditions can be satisfied in practice. As a practical alternative,
the inexact gradient conditions of Toint and Carter are combined by Heinkenschloss
and Vicente in [21], giving rise to the condition (8), which permits an arbitrary
constant scaling κgrad on the error bound and enables easy implementation. In a
similar vein, Ulbrich and Ziems in [43] relax the dependence of the inexact objective
function condition (12) on algorithmic parameters, motivating the more practical
conditions (10).

Kelley and Sachs in [24] take a different approach to that presented here. They
work in the setting where the value and gradient approximations are provided
by “black-box” calculations that satisfy controllable absolute and relative error
tolerances. They suggest modifications to the basic trust-region algorithm so that
the resulting algorithm performs as if there were no errors in the computation of the
value and gradient.

The authors of [25, 26] apply Algorithm 1 to PDE-constrained optimization
problems for which the governing PDE has uncertain coefficients. The inexactness
conditions (8) and (10) are used to adaptively refine sparse-grid quadrature approxi-
mations of the objective function. In [5, 18], the authors employ the inexact gradient
condition (8) to adaptively refine reduced-order models of the PDE constraint using
proper orthogonal decomposition (POD). However, they evaluate the discretized
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objective function exactly since the state equation must be solved to build the
POD model of the state and adjoint variables. Similarly, the authors of [8] use
inexact gradients to adaptively refine Monte Carlo sample sizes for mixed logit
optimization.

4.2 A Full-Space Approach

In this section, we focus on the full-space formulation (3) of PDE-constrained
optimization problems. We review a sequential quadratic programming (SQP)
approach to solving (3), originating in the composite-step trust-region scheme of
Byrd and Omojokun [32]. We assume that inexactness in solving (3) is due to the
approximate solution of a variety of subproblems, such as quadratic optimization
problems or linear systems, which comprise the SQP scheme. The handling of
inexactness is based on [20].

Remark 2 To further simplify the presentation, in this section we assume that the
constraint space C is a Hilbert space. As a reminder, we identify its dual space C∗
with C. Finally, we note that a treatment of more general constraint spaces such
as reflexive Banach spaces is possible in the context of full-space composite-step
methods, see, e.g., [28].

Recall X = U ×Z, and write the Lagrangian functional L : X×C → R for (3),

L(x, λ) = J (x)+ 〈λ, c(x)〉C .

We let xk be the k-th SQP iterate, λk the Lagrange multiplier estimate at xk , and
Bk = B(xk, λk) the Hessian ∇xxL(xk, λk) of the Lagrangian or a self-adjoint
approximation thereof. Trust-region SQP methods compute an approximate solution
of (3) by approximately solving a sequence of subproblems derived from

min
s

1

2
〈Bks, s〉X + 〈∇xL(xk, λk), s〉X + L(xk, λk) (13a)

subject to cx(xk)s + c(xk) = 0 (13b)

‖s‖X ≤ Δk. (13c)

To deal with the possible incompatibility of the constraints (13b), (13c), we apply
a composite-step approach, where the trial step sk is computed as the sum of a
quasi-normal step nk and a tangential step tk . The role of the quasi-normal step nk
is to reduce linear infeasibility. It is computed as an approximate solution of

min
n

‖cx(xk)n+ c(xk)‖2
C (14a)

subject to ‖n‖X ≤ ζΔk, (14b)
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where ζ ∈ (0, 1) is a fixed constant. To ensure global convergence of the SQP
algorithm, the quasi-normal step must satisfy two conditions.

Quasi-Normal Step Conditions The quasi-normal step, nk , must satisfy the
boundedness condition

‖nk‖X ≤ κ1‖c(xk)‖C, (15)

where κ1 > 0 is independent of k, and the fraction of Cauchy decrease condition

‖c(xk)‖2
C − ‖cx(xk)nk + c(xk)‖2

C ≥ κ2‖c(xk)‖C min {κ3‖c(xk)‖C,Δk} , (16)

where κ2, κ3 > 0 are independent of k. These conditions on the quasi-normal
step are derived by Dennis, El-Alem, and Maciel in [14]. They are adopted by
Heinkenschloss and Vicente in [21]. A more restrictive version, requiring κ2 and
κ3 to be in the interval (0, 1), is used by Ziems and Ulbrich in [43]. ��

To understand the computation of the tangential step, we consider subprob-
lem (13), where we substitute the computed quasi-normal step, i.e., s = t + nk:

min
t

1

2
〈Bk(t + nk), t + nk〉X + 〈∇xL(xk, λk), t + nk〉X (17a)

subject to cx(xk)t = 0 (17b)

‖t + nk‖X ≤ Δk. (17c)

To solve (17), one typically eliminates the constraints (17b) using a representation
of the null space of cx(xk). Several null-space representations can be considered in
the development of algorithms. Let E be a Hilbert space and let Wk : E → X be a
bounded linear operator such that

Range(Wk) = Null(cx(xk)) .

For instance, under the assumption (A6) and recalling the notation from Section 3,
one can use E = Z and define

Wk = T (xk) =
(−cu(xk)−1cz(xk)

IZ

)
.

This null-space representation is a natural choice for many PDE-constrained
optimization problems. In the context of inexact trust-region methods, it is used
by Heinkenschloss and Vicente [21] and Ziems and Ulbrich [43]. Specifically, the
authors in [21, 43] study inexact applications of the operator cu(xk)

−1. A more
general alternative, not requiring assumption (A6), i.e., the invertibility of cu(xk), is
to choose E = X and Wk = W ∗

k = W 2
k , and to compute t = Wkw by solving the

so-called augmented system
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(
IX cx(xk)

∗
cx(xk) 0

)(
t

z

)
=
(
w

0

)
. (18)

We note that in either case we can set t = Wkw and replace (17) by

min
w

1

2

〈
W ∗

k BkWkw,w
〉
X
+ 〈W ∗

k gk, w
〉
X

(19a)

subject to ‖nk +Wkw‖X ≤ Δk, (19b)

where gk = ∇xL(xk, λk) + Bknk . A potential benefit of the second null-space
representation, (18), is that the linear system can be solved using modern iterative
saddle-point and Karush-Kuhn-Tucker (KKT) system solvers, see, e.g., [9, 33].
Moreover, these methods can be used to solve not only (18), but also the full KKT
system, i.e., the system where IX in (18) is replaced by Bk , thereby circumventing
the need for preconditioning of the operator W ∗

k BkWk , which is typically very
challenging.

For the remainder of the chapter, we focus on the second null-space representa-
tion. A key source of inexactness in the application of the null-space operator Wk

is the iterative solution of the linear system (18), using Krylov methods. In this
case, the vector W ∗

k gk and the operator W ∗
k BkWk are no longer available exactly.

It is shown in [20] that the inexact solution of linear systems like (18) leads to an
approximation W̃k of Wk . While the operator Wk is self-adjoint (that is, assuming
exact linear system solves), the approximation W̃k is in general not self-adjoint and
may not even be linear. Nonetheless, it is also shown, [20, p. 1525], that there exists a
fixed linear operator that replicates the action of W̃k on the set of vectors involved in
the algorithm for solving (19). Therefore, an algorithm that computes a solution wk

of (19) with inexact applications of the operator Wk also solves

min
w

1

2

〈
W̃ ∗

k BkW̃kw,w
〉
X
+ 〈W̃ ∗

k W̃kgk, w
〉
X

(20a)

subject to ‖nk + W̃kw‖X ≤ Δk (20b)

for some fixed linear operator W̃k . We note that the vector W̃ ∗
k W̃kgk above

replaces the vector W̃ ∗
k gk . This modification is needed for the convergence proof.1

Problem (20) is equivalent to

min
t̃

1

2

〈
Bkt̃, t̃

〉
X
+ 〈W̃kgk, t̃

〉
X

(21a)

subject to t̃ ∈ Range(W̃k) (21b)

‖nk + t̃‖X ≤ Δk. (21c)

1Clearly, with exact linear system solves we have W ∗
k Wkgk = WkWkgk = Wkgk , however, in the

presence of inexactness the distinction is important.
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We call (21) the tangential subproblem. Solving (21) is the first stage of computing
the tangential step. To guarantee global convergence of the SQP algorithm, the
approximate solution t̃k of (21) must satisfy the following conditions.

Tangential Subproblem Conditions First, the quantity W̃kgk needs to satisfy

‖W̃kgk −Wkgk‖X ≤ τ1 min
{‖W̃kgk‖X,Δk

}
, (22)

for some τ1 > 0 independent of k. Second, we define the inexact quadratic model

q̃k(t) := 1

2
〈Bkt, t〉X +

〈
W̃kgk, t

〉
X
,

and impose the fraction of Cauchy decrease condition on t̃k as follows,

q̃k(0)− q̃k (̃tk) ≥ κ4‖W̃kgk‖X min
{
κ5‖W̃kgk‖X, κ6Δk

}
, (23)

for κ4, κ5, κ6 > 0, independent of k. Condition (23) is analogous to the fraction
of Cauchy decrease condition (7) in the reduced-space setting. It is an extension of
a condition discussed by Dennis, El-Alem, and Maciel in [14]; in our context, the
“inexact” quantity W̃kgk is introduced and the quadratic model is defined according
to the discussion in the previous paragraph. Condition (22) is derived from a similar
condition by Heinkenschloss and Vicente [21]. It is analogous to the inexact gradient
condition (8) in the reduced-space setting. Establishing the existence of W̃k that is
compatible with (22) and (23) is an important challenge, discussed in [20]. ��

With inexactness t̃k = W̃kwk is no longer in the null space of cx(xk), and
may destroy some of the linear feasibility gained by the quasi-normal step nk . To
compensate for this, we compute the tangential step tk from t̃k to restore linear
feasibility as needed. This computation is intimately tied to the global convergence
mechanisms used in SQP methods. Once the trial step sk = nk+ tk is computed, one
must decide whether to accept the step and how to update the trust-region radius Δk .
To perform these tasks, we use the augmented Lagrangian merit function

φ(x, λ; ρ) = J (x)+ 〈λ, c(x)〉C + ρ‖c(x)‖2
C = L(x, λ)+ ρ‖c(x)‖2

C . (24)

In a conventional trust-region SQP algorithm, the step sk is accepted or rejected and
the trust-region radius Δk is updated based on the ratio between the actual reduction

ared(sk; ρk) = φ(xk, λk; ρk)− φ(xk + sk, λk+1; ρk) (25)

and the predicted reduction

p̂red(sk; ρk) = φ(xk, λk; ρk)−
[
L(xk, λk)+ 〈∇xL(xk, λk), sk〉X + 1

2
〈Bksk, sk〉X

+ 〈λk+1 − λk, cx(xk)sk + c(xk)〉C + ρk‖cx(xk)sk + c(xk)‖2
C

]
.

(26)
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Here λk+1 is a Lagrange multiplier estimate corresponding to the trial iterate xk+sk .
To account for the inexactness in the constraint null space projection, the definition
of the predicted reduction must be modified. Using

rtk = cx(xk)tk ,

which can be interpreted as an indicator of the loss of linear feasibility, the predicted
reduction (26) is redefined,

p̂red(sk; ρk) := pred(nk, t̃k; ρk)+ rpred(rtk; ρk),

with the following components:

pred(nk, t̃k; ρk)
= − 〈W̃kgk, t̃k

〉
X
− 1

2

〈
Bkt̃k, t̃k

〉
X
− 〈∇xL(xk, λk), nk〉X − 1

2
〈Bknk, nk〉X

−〈λk+1 − λk, cx(xk)nk + c(xk)〉C
+ρk

(
‖c(xk)‖2

C − ‖cx(xk)nk + c(xk)‖2
C

)
(27)

and

rpred(rtk; ρk) = −
〈
λk+1 − λk, r

t
k

〉
C
− ρk‖rtk‖2

C − 2ρk
〈
rtk, cx(xk)nk + c(xk)

〉
C
.

(28)

The splitting of the predicted reduction into a term that only involves t̃k and a term
that only involves tk is discussed in [20, p. 1514–1515]; it is partially motivated by
the arguments made in [21, p. 292].2 In our algorithm, we first compute a penalty
parameter ρk satisfying

pred(nk, t̃k; ρk) ≥ ρk

2

(
‖c(xk)‖2

C − ‖cx(xk)nk + c(xk)‖2
C

)
,

and then “postprocess” t̃k to compute a tangential step tk that satisfies the conditions
stated below. The postprocessing can be performed by applying another null-space
projection, similar to solving (18).

Tangential Step Conditions The tangential step tk must satisfy the requirement

|rpred(rtk; ρk)| ≤ η0 pred(nk, t̃k; ρk), (29)

where η0 ∈ (0, 1− η1), and η1 ∈ (0, 1) is the smallest acceptable ratio of the actual
and predicted reduction. Additionally, to control how much the tangential step tk
can deviate from the projection Wkt̃k of t̃k we require

2For all details, see the proofs in [20, p. 1536–1538] and [21, p. 295–298].
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‖tk −Wkt̃k‖X ≤ τ3Δk min{Δk, ‖sk‖X}, (30)

for some τ3 > 0 independent of k. Finally, we impose the boundedness condition

‖̃tk‖X ≤ τ4‖sk‖X, (31)

for τ4 > 0 independent of k. These conditions are discussed in [20]. ��
So far, we discussed general conditions needed for the global convergence

of a composite-step trust-region SQP scheme where the null-space operator Wk

is applied inexactly. Following [20], we now present a concrete instance of the
algorithm, specifically designed to robustly and efficiently handle inexactness in
the iterative solution of linear systems comprising the application of Wk . This
algorithm is useful whenever iterative solvers, such as Krylov methods, are applied
to solve linear systems based on discretizations of operators cu and c∗u, i.e., the
state Jacobians and their adjoints. In PDE-constrained optimization, the matrices
resulting from, e.g., finite element discretizations of cu and c∗u are often very
large, prohibiting direct computation of matrix inverses and matrix factorizations.
Additionally, in, e.g., optimization under uncertainty, the computational challenge
is exacerbated by the dependence of the constraint equation on the random input
vector ξ , resulting in enormous linear systems that cannot be formed explicitly. This
prompts the need for matrix-free methods, where the action of a linear operator on
a vector is specified, rather than the operator (matrix) itself.

We will formulate concrete subalgorithms for the quasi-normal step computation,
the solution of the tangential subproblem, the tangential step computation, and the
Lagrange multiplier update that satisfy the previously discussed conditions. After
specifying the subalgorithms, we state the master algorithm in Section 4.2.5. The
solution of augmented systems, which are key components of the subalgorithms,
is discussed in Section 5.2, in the context of PDE-constrained optimization under
uncertainty.

4.2.1 Computation of the Quasi-Normal Step

An approximate solution of (14) can be computed using the dogleg method. Let ncpk
be the solution of min

{‖cx(xk)n+ c(xk)‖2
C : n = −αcx(xk)∗c(xk), α ≥ 0

}
, also

known as the Cauchy point. It is easy to verify that

n
cp
k = −

‖cx(xk)∗c(xk)‖2
X

‖cx(xk)cx(xk)∗c(xk)‖2
C

cx(xk)
∗c(xk). (32)

If ‖ncpk ‖X ≥ ζΔk , then we set the quasi-normal step to nk = ζΔkn
cp
k /‖ncpk ‖X.

If ‖ncpk ‖X < ζΔk , to accelerate convergence we take a step toward an
approximate minimum-norm solution nNk of min ‖cx(xk)n + c(xk)‖2

C , sometimes
called the Newton point. The quasi-normal step is then computed by moving from
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n
cp
k as far as possible toward nNk while staying within the trust region with radius

ζΔk . Specifically, we solve for δnk = nNk − n
cp
k the augmented system

Algorithm 2 (Dogleg method for the quasi-normal subproblem)

Initialization: Choose 0 < ζ, τqn < 1.

1. Compute n
cp
k as defined in (32).

2. If ‖ncpk ‖X ≥ ζΔk , then set nk = ζΔkn
cp
k /‖ncpk ‖X;

Else compute δnk via (33) so that e1 and e2 satisfy (34).
3. If ‖ncpk + δnk‖X ≤ ζΔk , then set nk = n

cp
k + δnk = nNk ;

Else compute θk ∈ (0, 1) such that ‖ncpk + θkδnk‖X = ζΔk , and set nk =
n
cp
k + θkδnk .

(
IX cx(xk)

∗
cx(xk) 0

)(
δnk

y

)
=
( −ncpk + e1

−cx(xk)ncpk − c(xk)+ e2

)
. (33)

To comply with the convergence conditions (15) and (16), the size of the residual(
e1 e2

) ∈ X × C is restricted via

‖e1‖2
X + ‖e2‖2

C ≤
(
τqn
)2 ‖cx(xk)ncpk + c(xk)‖2

C , (34)

where 0 < τqn ≤ 1. In summary, the algorithm for computing the quasi-normal
step is given as follows:

Additional algorithms that satisfy conditions (15) and (16) are discussed in [21,
p. 298–299].

4.2.2 Solution of the Tangential Subproblem

The tangential subproblem (21) is solved using a modified truncated Steihaug-
Toint conjugate gradient (STCG) method. Aside from handling the nonstandard
objective function in (21), the modifications involve a full orthogonalization of
search directions, several important tunings of the classical STCG truncation criteria
and the related exit computations, and a special termination condition related to an
estimate of the accumulated error in the constraint null-space. The latter is discussed
next.

The algorithm for the solution of the tangential subproblem (21), Algorithm 3,
repeatedly applies an inexact null-space projector W̃k by iteratively solving aug-
mented systems of type (18). We note that W̃k is not explicitly available; only the
results of its action on the vector gk and its action on the STCG residuals r̃i used in
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Algorithm 3 are known.3 We introduce the operator Ri : Ri+1 → X, given by

Ri = [gk, r̃1, . . . , r̃i] ,

Algorithm 3 (STCG method with inexact null-space projections)

Initialization: Given relative tolerance tolCG ∈ (0, 1). Given iteration maximum
iCGmax. Choose 0 < τpg, τproj ≤ 1. Let t̃k,0 = 0 ∈ X. Compute r̃0 = W̃kgk by
solving (36) with the linear solver tolerance (37). If ‖̃r0‖X = 0, stop.

For i = 0, 1, 2, . . . , iCGmax

1. If i = 0 set z̃0 = r̃0; Else compute z̃i = W̃kr̃i via (38) with the linear solver
tolerance (39).
If ‖̃zi‖X ≤ tolCG‖̃r0‖X and i > 0, return t̃k = t̃k,i and t̃

cp
k = t̃k,1, and stop.

2. Compute Ŝi defined in (35). If ‖Ŝi‖2 > 1/2, return t̃k = t̃k,i and t̃
cp
k = t̃k,1, and

stop.

3. Set p̃i = −̃zi +∑i−1
j=0

〈̃zi ,Hkp̃j 〉X〈p̃j ,Hkp̃j 〉X p̃j .

4. If 〈̃ri, p̃i〉X �= 0 and 〈p̃i , H p̃i〉X ≤ 0, compute θ such that sign(θ) =
sign(− 〈̃ri, p̃i〉X) and ‖nk + t̃k,i + θp̃i‖X = Δk , and return t̃k = t̃k,i+1 =
t̃k,i + θp̃i and t̃

cp
k = t̃k,1, and stop.

If 〈̃ri, p̃i〉X = 0 and 〈p̃i , H p̃i〉X < 0, compute θ such that ‖nk + t̃k,i + θp̃i‖ =
Δk , and return t̃k = t̃k,i+1 = t̃k,i + θp̃i and t̃

cp
k = t̃k,1, and stop.

5. If 〈̃ri, p̃i〉X = 0, return t̃k = t̃k,i and t̃
cp
k = t̃k,1, and stop.

6. Set α̃i = − 〈̃ri ,p̃i 〉X〈p̃i ,Hkp̃i 〉X .
7. Set t̃k,i+1 = t̃k,i + α̃i p̃i .
8. If ‖nk + t̃k,i+1‖X ≥ Δk , compute θ such that sign(θ) = sign(̃αi) and ‖nk +

t̃k,i + θp̃i‖X = Δk , and return t̃k = t̃k,i+1 = t̃k,i + θp̃i and t̃
cp
k = t̃k,1, and

stop.
9. Set r̃i+1 = r̃i + α̃iHkp̃i .

End For

the operator Ỹi : Ri+1 → X, given by

Ỹi = [W̃kgk, W̃kr̃1, . . . , W̃kr̃i] ,

and the diagonal matrix

Di = diag(‖W̃kgk‖X, ‖W̃kr̃1‖X, . . . , ‖W̃kr̃i‖X).

3Only the scope of the index k extends from Algorithm 4 to Algorithm 3 – indices i and j are
independent, i.e., their scope is local to each algorithm.
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Finally, we define the matrix

Ŝi = D−1
i (Ỹi

T
Ri −D2

i )D
−1
i . (35)

In [20] it is shown that ‖Ŝi‖2 can be used to control the cumulative effect of
inexactness in the projections W̃k . The modified STCG algorithm is specified next.

The augmented system residuals related to the application of the inexact projector
W̃k are controlled as follows. In Step 3 of Algorithm 3, the inexact projected gradient
r̃0 = W̃kgk is computed. The iterative linear system solver returns r̃0 satisfying

(
IX cx(xk)

∗
cx(xk) 0

) (̃
r0

y

)
=
(
gk

0

)
+
(
e1

e2

)
. (36)

The residual
(
e1 e2

) ∈ X × C must satisfy

‖e1‖X + ‖e2‖C ≤ τpg min {‖̃r0‖X,Δk, ‖gk‖X} , (37)

where 0 < τpg ≤ 1. In Step 1 in Algorithm 3, we compute z̃i = W̃kr̃i . The iterative
linear system solver returns z̃i satisfying

(
IX cx(xk)

∗
cx(xk) 0

) (̃
zi

y

)
=
(̃
ri

0

)
+
(
e1
i

e2
i

)
, (38)

where the residual
(
e1
i e2

i

) ∈ X × C is controlled by the condition

‖e1
i ‖X + ‖e2

i ‖C ≤ τproj min {‖̃zi‖X, ‖̃ri‖X} , (39)

with 0 < τproj ≤ 1.

4.2.3 Computation of the Tangential Step

Once the approximate solution t̃k of the tangential subproblem (21) has been
obtained, the tangential step tk is computed. The goal is to restore some of the linear
feasibility lost in Algorithm 3. To this end, another inexact null space projection is
performed,

(
IX cx(xk)

∗
cx(xk) 0

)(
tk

y

)
=
(̃
tk

0

)
+
(
e1

e2

)
, (40)

where the residual
(
e1 e2

) ∈ X × C must satisfy

‖e1‖X + ‖e2‖C ≤ Δk min
{
Δk, ‖nk + tk‖X, τ tang ‖̃tk‖X/Δk

}
, (41)

for 0 < τtang ≤ 1.
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4.2.4 Computation of the Lagrange Multipliers

For global convergence, we require only that the sequence of Lagrange multi-
pliers be bounded. For fast convergence, we may compute the Lagrange multi-
plier estimate λk+1 by approximately minimizing ‖∇J (̂xk) + cx (̂xk)

∗λ‖X, where
x̂k = xk + nk + tk . Specifically, we solve for Δλ = λk+1 − λk , where λk is the
previous Lagrange multiplier estimate, as follows:

(
IX cx (̂xk)

∗
cx (̂xk) 0

)(
z

Δλ

)
=
(−∇J (̂xk)− cx (̂xk)

∗λk + e1

e2

)
. (42)

The residual
(
e1 e2

) ∈ X × C must satisfy

‖e1‖X + ‖e2‖C ≤ min
{
τ lmg, τ lmh‖∇J (̂xk)+ cx (̂xk)

∗λk‖X
}
, (43)

for 0 < τlmh ≤ 1 and a fixed τ lmg > 0 independent of k. Here τ lmh governs
the relative size of the linear system residual, while τ lmg is used to enforce
boundedness of the multipliers. Clearly, there are many other ways to compute
Lagrange multipliers satisfying the boundedness condition.

4.2.5 Full-Space Trust-Region SQP Algorithm with Inexact Linear
System Solves

Here we state the complete full-space trust-region SQP algorithm with inexact linear
system solves.

To prove convergence of the inexact full-space trust-region algorithm, we use
some of the problem assumptions from Section 3 and the following algorithmic
assumptions:

(F1) The sequence {λk}k∈N is bounded.
(F2) The sequence of operators {Bk}k∈N is bounded.
(F3) For each k, the projection Wk : X → X onto Null(cx(xk)) satisfies

‖Wk‖L(X) = 1.

Theorem 2 Let Ω = X = U × Z. If problem assumptions (A2), (A3), (A4), (A5),
and (A9), and algorithmic assumptions (F1), (F2), and (F3) are satisfied, then the
sequences of iterates generated by Algorithm 4 satisfy

lim inf
k→∞ {‖W̃kgk‖X + ‖c(xk)‖C} = 0. (44)

Additionally, we have

lim inf
k→∞ {‖Wk∇xJ (xk)‖X + ‖c(xk)‖C} = 0. (45)
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Proof In [20] it is shown that Algorithm 4 is a specific instance of a more general
composite-step trust-region SQP algorithm, [20, Algorithm 3.3]. Under the given
problem assumptions and algorithmic assumptions, the global convergence result
follows directly from [20, Theorem 3.5].

Algorithm 4 (Trust-region SQP algorithm with inexact linear system solves)
Initialization: Choose initial point x0, initial trust-region radius Δ0, constants
0 < α1, η1 < 1, 0 < η0 < 1 − η1, ρ−1 ≥ 1, ρ̄ > 0, and tolSQP > 0.
Set Δmin,Δmax so that 0 < Δmin < Δmax . Set forcing parameters
τqn, τpg, τproj , τ tang, τ lmh ∈ (0, 1), τ lmg > 0 and τ4 > 1. Choose initial
Lagrange multiplier λ−1 and compute λ0 by solving (42) with linear solver
tolerance (43).

For k = 0, 1, 2, . . .

1. Convergence check: If ‖∇xL(xk, λk)‖X < tolSQP and ‖c(xk)‖C < tolSQP ,
then stop.

2. Step computation:

a. Compute quasi-normal step nk using Algorithm 2 and linear solver toler-
ance (34).

b. Compute t̃k , t̃ cpk using Algorithm 3 and linear solver tolerances (37), (39).

3. Step acceptance:

For i = 0, 1, 2, . . .

a. For j = 0, 1, 2, . . .

i. Compute tangential step tk by solving (40) with linear solver toler-
ance (41).

ii. Compute Lagrange multiplier estimate λk+1 at xk+nk+tk by solving (42)
with linear solver tolerance (43).

iii. Update the penalty parameter: If

pred(nk, t̃k; ρk−1) ≥ ρk−1

2

(
‖c(xk)‖2

C − ‖cx(xk)nk + c(xk)‖2
C

)

then set ρk = ρk−1. Otherwise set

ρk = −2 pred(nk, t̃k; ρk−1)

‖c(xk)‖2
C − ‖cx(xk)nk + c(xk)‖2

C

+ 2ρk−1 + ρ̄.

iv. If |rpred(cx(xk)tk; ρk)| > η0 pred(nk, t̃k; ρk), set τ tang = 10−3 τ tang ,
else break.

End For (j )
Reset τ tang to its value at outer iteration i prior to Step 3a.
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b. If ‖̃tk‖X > τ4‖nk + tk‖X and t̃k = t̃
cp
k

Set τqn = 10−1 τqn, τpg = 10−1τpg , τproj = 10−1τproj ,
τ tang = 10−1 τ tang .
Recompute nk using Algorithm 2 and linear solver tolerance (34).
Recompute t̃k , t̃

cp
k using Algorithm 3 and linear solver toler-

ances (37), (39).

Else If ‖̃tk‖X > τ4‖nk + tk‖X and t̃k �= t̃
cp
k

Set t̃k = t̃
cp
k .

Else

Optional: Reset τqn, τpg , τproj , and τ tang to their values from the
Initialization step.
break

End For (i)
4. Trust-region update:

a. Compute trial step sk = nk + tk .
b. Compute ratio θk = ared(sk; ρk)/pred(nk, t̃k; ρk).
c. If θk ≥ η1, set xk+1 = xk + sk , and choose Δk+1 as follows:

If θk ≥ 0.9, set
Δk+1 = min {max {7 ‖sk‖X ,Δk,Δmin} ,Δmax}

Else If θk ≥ 0.8, set
Δk+1 = min {max {2 ‖sk‖X ,Δk,Δmin} ,Δmax}

Else set
Δk+1 = max {Δk,Δmin};

Else set xk+1 = xk , λk+1 = λk , and Δk+1 = α1‖sk‖X.

End For (k)

4.2.6 Related Work

The above approach is based on the general composite-step trust-region framework
presented by Dennis, El-Alem, and Maciel in [14]. To accommodate inexact
computations, Algorithm 4 includes several modifications of [14]: (i) the gradient
condition (22); (ii) the redefinition of the predicted reduction to evaluate progress,
given in (27) and (28); and (iii) the tangential step conditions (29), (30), and (31).
Modification (i) is derived from Heinkenschloss and Vicente [21]. It is related to
the gradient condition (8) for reduced-space (unconstrained) formulations, which
is discussed in detail in Section 4.1.1. Modifications (ii) and (iii) are related to
similar such conditions proposed in [21]. However, we note that Heinkenschloss
and Vicente assume a decomposition of optimization variables into basic and
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nonbasic (state and control) variables, i.e., solve problem (1), whereas Algorithm 4
is applied to problem (3). The latter requires a different algorithmic strategy to
enforce (ii) and (iii). Specifically, in [21] the state/control decomposition assumption
allows one to set the control component of the quasi-normal step to zero, to
formulate and solve the tangential subproblem for the control component only, and
to separately compute the state component of the tangential step. In Algorithm 4,
these computations are interconnected and therefore more involved when it comes
to specifying concrete subalgorithms. However, Algorithm 4 is more general in
the sense that it can be extended to the case where the constraint Jacobian is rank
deficient. Additionally, Algorithm 4 enables the use of efficient iterative solvers and
preconditioners for linear optimality systems.

Another composite-step trust-region approach using the basic/nonbasic decom-
position of the equality constraints is presented by Ziems and Ulbrich in [43], where
the emphasis is on an efficient management of adaptive PDE discretizations, i.e.,
control of finite element discretization error. In [44], Ziems extends the approach to
handle additional constraints, such as bounds, on the control (nonbasic) variables. To
rigorously incorporate finite element error estimates in the trust-region algorithm, in
addition to the previously reviewed concepts, Ziems and Ulbrich require the notion
of inexact actual reductions and propose implementable conditions to control such
inexactness.

5 Application to Risk-Neutral Optimization

In this section, we specialize the reviewed algorithms to optimization problems
where the governing PDEs include uncertain or random coefficients and the
objective function is an expectation. First we present a reduced-space method
that enables efficient use of dimension-adaptive sparse grids in the computation
of the (reduced) objective function and its gradient. Subsequently, we discuss the
numerical solution of augmented systems arising in the full-space approach to PDE-
constrained optimization under uncertainty.

We denote the random inputs to a PDE model by ξ , which is a random vector
defined on the probability space (Ω,F ,P). Here, Ω is the set of outcomes, F ⊂ 2Ω

is a σ -algebra of all possible events, and P : F → [0, 1] is a probability
measure. As is common in the literature, we assume finite-dimensional noise, i.e.,
Ξ := ξ(Ω) ⊂ R

m for some m ∈ N. We further assume that Ξ is the m-fold
tensor product of one-dimensional intervals Ξ!, ! = 1, . . . , m, and the components
of ξ are independent and continuously distributed with one-dimensional Lebesgue
densities ρ! : Ξ! → [0,∞). In this setting, the PDE solution operator S(z) is a
random field with realizations in U . We denote the dependence of S on the random
input ξ by S(z; ξ) for a fixed control z ∈ Z and note that u = S(z; ξ) ∈ U solves
the parametrized PDE

c(u, z; ξ) = 0 a.s.
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where c : U × Z × Ξ → C. Here “a.s.” is an abbreviation for “almost surely”;
in other words, “up to a set of probability zero.” Similarly, the objective function is
parametrized as J : U × Z × Ξ → R. As in Section 3, we consider the full space
problem

min
u∈U, z∈Z E[J (u, z; ξ)] (46a)

subject to c(u, z; ξ) = 0 a.s. , (46b)

where E[X] := ´
Ω
X(ω) dP(ω) denotes the expectation of the random variable X.

When evaluating the expectation of random variables with the form f (ξ) where f :
Ξ → R, the finite-dimensional noise assumption permits the following substitution:

E[ f (ξ) ] =
ˆ
Ξ1

ρ1(ξ1) · · ·
ˆ
Ξm

ρm(ξm)f (ξ) dξm · · · dξ1. (47)

We slightly abuse notation and use ξ = (ξ1, . . . , ξm) to denote both the random
vector of inputs and its realizations. Substituting S(z; ξ) into J produces the
random-variable objective function Ĵ (z; ξ) = J (S(z; ξ), z; ξ), leading to the
reduced problem

min
z∈Z {J (z) := E[ Ĵ (z; ξ) ]}. (48)

To approximate the expectation in (46) and (48), we employ sparse-grid quadra-
ture [6, 7, 19, 31, 37, 42]. Let {Ei

!}i≥1 be a sequence of one-dimensional quadrature
operators of increasing order in the ! = 1, . . . , m direction. That is, Ei+1

! is exact
for higher-order monomials than E

i
!. Define the 1-D difference quadrature operators

δ1
! := E

1
! and δi! := E

i
! − E

i−1
! , for i ≥ 2.

To define the m-dimensional quadrature rule on Ξ = Ξ1 × · · · × ΞM let i =
(i1, . . . , im) be a multi-index and let I ⊂ N

m be a finite multi-index set. The general
sparse-grid quadrature operator is defined as

EI :=
∑
i∈I

(δ
i1
1 ⊗ · · · ⊗ δimm ). (49)

To ensure consistency of (49), I must satisfy the following condition: if i =
(i1, . . . , im) ∈ I, j = (j1, . . . , jm) ∈ N

m, and j! ≤ i! for all ! = 1, . . . , m,
then j ∈ I. If I satisfies this condition, then we say that I is admissible. In one
dimension, admissibility guarantees that (49) is a telescoping sum and recovers Ei

1
where i denotes the maximum element of I. An example of an admissible index
set is
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I = {i ∈ N
m : |i1| + . . .+ |im| ≤ !+m− 1

}

for ! ∈ N which results in the standard isotropic sparse grid.
In general, EI [f ] for f : Ξ → R can be written as

EI [f ] =
Q∑
k=1

wkf (ξk) (50)

where wk are the quadrature weights associated with the quadrature points ξk , k =
1, . . . ,Q. The form of approximation (50) is not unique to sparse grids as virtually
all quadrature and sampling methods have this form. Applying EI for fixed index
set I to (46) and (48) results in the approximate optimization problems

min
u∈U, z∈Z

Q∑
k=1

wkJ (uk, z; ξk)] (51a)

subject to c(uk, z; ξk) = 0, k = 1, . . . ,Q , (51b)

and

min
z∈Z

Q∑
k=1

wkĴ (z; ξk) (52)

where Ĵ (z; ξk) = J (S(z; ξk), z; ξk) and S(z; ξk) = uk ∈ U solves (51b) for k =
1, . . . ,Q. When considering the full-space algorithm, we require the Lagrangian
functional associated with (51), i.e.,

L(u1, . . . , uQ, z, λ1, . . . , λQ) :=
Q∑
k=1

wkJ (uk, z; ξk)+
Q∑
k=1

vk〈λk, c(uk, z; ξk)〉C
(53)

where vk , k = 1, . . . ,Q, are fixed weights. We can choose vk to be vk = 1 or
vk = wk for k = 1, . . . ,Q. The later choice corresponds to an infinite-dimensional
view of the problem since

Q∑
k=1

wk〈λk, c(uk, z; ξk)〉C

is an approximation of the expectation

E[〈λ, c(u(ξ), z; ξ)〉C].
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5.1 Sparse-Grid Adaptivity

In the subsequent subsections, we define the adaptive sparse-grid subalgorithms
used to satisfy (8) and (10). To do so, we require the definition of the forward
neighborhood of the admissible index set I. The forward neighborhood of I is

N (I) := {i ∈ N
m \ I : I ∪ {i} is admissible}.

We employ dimension-adaptive sparse grids [19] in an attempt to satisfy (8)
and (10). The dimension-adaptive sparse grid algorithm approximates the quadra-
ture error on a subset A of the forward neighborhood of the current admissible index
set O, i.e., A ⊆ N (O).

5.1.1 Computation of Inexact Gradient

Given the current iterate zk ∈ Z, we must construct a model mk that satisfies (8). To
do so, we employ an admissible index set Ig

k ⊂ N
m and the associated quadrature

approximation of J (z) = E[ Ĵ (z; ξ) ], i.e.,

JIg
k
(z) =

∑
i∈Ig

k

(δ
i1
1 ⊗ · · · ⊗ δimm )[ Ĵ (z; ξ) ].

We then choose our model mk to satisfy the first-order condition ∇mk(0) =
∇JIg

k
(zk). Under the assumption of convergence of (49), we can write the quadra-

ture error associated with the index set Ig
k as the sum of all differential quadrature

rules (δi11 ⊗ · · · ⊗ δ
im
m ) for i �∈ Ig

k . Thus, the inexact gradient condition (8) becomes
∥∥∥∥∥∥∥
∑
i �∈Ig

k

(δ
i1
1 ⊗ · · · ⊗ δ

iM
M )[∇Ĵ (z; ξ)]

∥∥∥∥∥∥∥
Z

≤ κgrad min
{∥∥∥∇JIg

k
(zk)

∥∥∥
Z
,Δk

}
. (54)

The goal now is to determine the smallest admissible index set Ig
k such that (54)

holds. Since it is not computationally feasible to explicitly evaluate the left-hand
side of (54), we employ the dimension-adaptive approach presented in [19] to
approximately satisfy this condition. Although there is no proof that this approach
satisfies (8), numerical experience suggests that (8) is typically satisfied. The
dimension-adaptive gradient computation algorithm is listed in Algorithm 5.

5.1.2 Computation of Inexact Objective Function Value

Similar to the inexact gradient computation, we define our objective function
approximation for the computation of credk as
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Jk(z) = JIo
k
(z) =

∑
i∈Io

k

(δ
i1
1 ⊗ · · · ⊗ δimm )[Ĵ (z; ξ)].

Here, Io
k ⊂ N

m is some admissible index set. The error associated with this
approximation, in the context of (10), is

|aredk − credk| =
∣∣∣∑

i �∈Io
k

(δ
i1
1 ⊗ · · · ⊗ δimm )[Ĵ (zk + sk; ξ)− Ĵ (zk; ξ)]

∣∣∣ = θk. (55)

Algorithm 5 (Gradient computation using adaptive sparse grids)

Initialization: Set i = (1, . . . , 1), A = {i}, O = ∅, gi = (δ
i1
1 ⊗ · · · ⊗

δ
iM
M )[∇Ĵ (zk; ξ)] and β = βi = ‖gi‖Z , g = gi, and TOL = κgrad min{‖g‖Z,Δk}.

While β > TOL

1. Select i ∈ A corresponding to the largest βi
2. Set A← A \ {i} and O← O ∪ {i}
3. Update the error indicator β ← β − βi
4. For ! = 1, . . . , m

a. Set j = i+ e!
b. If O ∪ {j} is admissible

i. Set A← A ∪ {j}
ii. Set gj = (δ

j1
1 ⊗ · · · ⊗ δ

jm
m )[∇Ĵ (zk; ξ)]

iii. Set βj = ‖gj‖Z
iv. Update the gradient approximation g← g + gj
v. Update the error indicator β ← β + βj

vi. Update the stopping tolerance TOL = κgrad min{‖g‖Z,Δk}
c. EndIf

5. EndFor

EndWhile

Set Ig
k = A ∪O and ∇mk(0) = g.

Again, we use dimension-adaptive sparse grids to determine Io
k where we

estimate (55) only on a subset of the forward neighborhood of the current index set.
Similar to the gradient computation, there is no guarantee that θk will satisfy (10).
However, numerical experience suggest that this is often the case. The dimension-
adaptive objective function approximation algorithm is listed in Algorithm 6.
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5.2 Iterative Linear System Solves

In this section, we focus on the key computational component of the subalgorithms
of Algorithm 4, namely, the numerical solution of augmented systems. As men-
tioned earlier, in optimization under uncertainty these systems are enormous and
cannot be formed explicitly, requiring iterative, matrix-free methods.

Augmented systems are KKT systems for a special type of quadratic optimization
problems. Solution methods for KKT systems have received significant attention
recently in the context of PDE-constrained optimization. Efficient preconditioning

Algorithm 6 (Objective function evaluation using adaptive sparse grids)

Initialization: Set i = (1, . . . , 1), A = {i}, O = ∅, TOL = (η min{predk, rk})1/ω,
θ̃k = ϑi = (δ

i1
1 ⊗ · · · ⊗ δ

iM
M )[Ĵ (zk + sk; ξ)− Ĵ (zk; ξ)] and credk = ϑi.

While |θ̃k| > TOL

1. Select i ∈ A corresponding to the largest |ϑi|
2. Set A← A \ {i} and O← O ∪ {i}
3. Update the error indicator θ̃k ← θ̃k − ϑi
4. For ! = 1, . . . , m

a. Set j = i+ e!
b. If O ∪ {j} is admissible

i. Set A← A ∪ {j}
ii. Set ϑj = (δ

j1
1 ⊗ · · · ⊗ δ

jm
m )[Ĵ (zk + sk; ξ)− Ĵ (zk; ξ)]

iii. Update the computed reduction credk ← credk + ϑj

iv. Update the error indicator θ̃k ← θ̃k + ϑj

c. EndIf

5. EndFor

EndWhile

Return Io
k = A ∪O and credk .

approaches based on Schur complements in the constraint null space have been
developed, see, e.g., [33–35, 38, 39]. Augmented systems are treated in [36], where
it is shown that Schur-complement ideas lead to preconditioners that perform well
for a variety of physics models, i.e., constraint equations, independent of the mesh
size. A crucial difference between the KKT systems for the subproblem (13a)–
(13b) and augmented systems is that the latter do not depend at all on the
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objective function J , which lowers the bar for efficient preconditioning and affords
generality.4

Recalling the assumption in full-space methods that C is a Hilbert space
(with C∗ = C), in PDE-constrained optimization the augmented system operator
G : X × C → X × C, in general, written as

G =
(

IX cx(xk)
∗

cx(xk) 0

)
,

takes the form A : U × Z × C → U × Z × C,

A =
⎛
⎝ IU 0 cu(uk, zk)

∗
0 IZ cz(uk, zk)

∗
cu(uk, zk) cz(uk, zk) 0

⎞
⎠ =:

⎛
⎝IU 0 C∗u

0 IZ C∗z
Cu Cz 0

⎞
⎠ ,

where the latter notation is used as shorthand. Assuming the existence of
(cu(uk, zk))

−1, we consider two preconditioners for the operator A:

P � =
⎛
⎝ IU 0 0

0 IZ 0
0 0 (CuC

∗
u + CzC

∗
z )
−1

⎞
⎠ and P =

⎛
⎝ IU 0 0

0 IZ 0
0 0 C−∗u C−1

u

⎞
⎠ .

The preconditioner P � is an exact Schur-complement preconditioner, in the sense
that a P �-preconditioned Krylov solver for a system given by the operator A con-
verges in at most three iterations [30]. However, in PDE-constrained optimization
under uncertainty, the operator CuC

∗
u + CzC

∗
z is never formed explicitly, due to

its sheer size. Also, approximating the inverse of the sum of matrix products
is in general very difficult. The approximate preconditioner P is a practical
alternative. The application of P amounts to a “linearized state solve” followed by
an “adjoint solve,” which are readily available in practice. Following the notation in
problem (51), with Lagrangian (53), for a given number Q of samples and weights
the matrices Cu and Cz have special structure, namely that of a block-diagonal and
a block-column matrix with Q nonzero blocks, respectively,

Cu =

⎛
⎜⎜⎜⎝
v1C

1
u 0 . . . 0

0 v2C
2
u . . . 0

...
...

. . . 0
0 0 . . . vQC

Q
u

⎞
⎟⎟⎟⎠ and Cz =

⎛
⎜⎜⎜⎝

v1C
1
z

v2C
2
z

...

vQC
Q
z

⎞
⎟⎟⎟⎠ .

4Under the assumptions of this chapter, augmented systems can always be related to strictly
convex quadratic problems of the form min 1

2

〈
s1, s1

〉
X
−〈b1, s1

〉
X

subject to cx(xk)s
1 = b2, where

(b1 b2)T is the right-hand side vector of the augmented system and s1 is the first block of the left-
hand side vector.
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.. .

..

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

IU 0 0 0 v1(C1
u)∗ 0 0

0 IU 0 0 0 v2(C2
u)∗ 0

...
... . . . 0

...
...

... . . . 0

0 0 IU 0 0 0 vQ(CQ
u )∗

0 0 0 IZ v1(C1
z )∗ v2(C2

z )
∗ vQ(CQ

z )∗

v1C1
u 0 0 v1C1

z 0 0 0

0 v2C2
u 0 v2C2

z 0 0 0
...

... .

...

. . .

. . .

. . .

. . .

. . . ...

. . .

. .

.

0
...

...
... . . . 0

0 0 vQCQ
u vQCQ

z 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.. .

v1(C1
uCC )∗ 0 0

0 v2(C2
uCC )∗ 0

...
... . . . 0

0 0 vQ(CQ
u )∗

...

. . .

..

v1C1
uCC 0 0

0 v2C2
uCC 0

...
... .

...

. . .

. .

.

0

0 0 vQCQ
u .. .

.. .

.. .

.. .

Fig. 1 The augmented system in PDE-constrained optimization under uncertainty. The application
of the preconditioner P to this system is highly parallelizable, due to the block-diagonal structure
of the highlighted Cu and C∗u blocks

This gives rise to the augmented system depicted in Figure 1. We note that
preconditioning this system with P is highly parallelizable, due to the block-
diagonal structure of Cu and C∗u . We also note that only approximations of the
inverses C−1

u and C−∗u are needed in the application of the preconditioner, enabling
efficient iterative schemes that rely on whatever solvers are provided for the
linearized forward and adjoint systems.

6 Numerical Examples

We consider a thermal fluid application motivated by the transport process in high-
pressure chemical vapor deposition (CVD) reactors (see Section 5.2 in [23]). Such
reactors are used to produce compound semiconductors. Reactant gases are injected
into the top of the reactor and must flow down to the substrate in order to form an
epitaxial film. However, the substrate is maintained at a high temperature causing
vorticities due to buoyancy-driven convection. For this application, we control the
thermal flux on the side walls of the reactor to minimize vorticity. Let D = (0, 1)×
(0, 1) and consider the following control problem:

min
z∈Z

1

2
E

[ˆ
D

(∇ × u(z)) dx

]
+ γ

2

ˆ
Γc

|z|2 dx

where S(z) = (u(z), p(z), T (z)) = (u, p, T ) : Ω → U solves the Boussinesq flow
equations,
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−ν(ξ)∇2u+ (u · ∇)u+ ∇p + η(ξ)T g = 0, in D, a.s.,
∇ · u = 0, in D, a.s.,

−κ(ξ)ΔT + u · ∇T = 0, in D, a.s.,
u− ui = 0, T = 0, on Γi, a.s.,
u− uo = 0, κ(ξ) ∂T

∂n
= 0, on Γo, a.s.,

u = 0, T = Tb(ξ), on Γb, a.s.,
u = 0, κ(ξ) ∂T

∂n
+ h(ξ)(z− T ) = 0, on Γc, a.s.,

where Γi = [1/3, 2/3]×{1}, Γo = ([0, 1/3]∪[2/3, 1])×{1}, Γb = [0, 1]×{0}, and
Γc = {0, 1} × [0, 1]. The inflow and outflow velocities, ui and uo, are deterministic
while the coefficients ν, η, κ , h, and Tb are uncertain. In this model,

ν = 1

Re
= 100

1+ 0.01ξN+1
, η = Gr

Re2 = 0.72
1+ 0.01ξN+1

1+ 0.01ξN+2
,

and κ = 1

Re Pr
= 105 1+ 0.01ξN+3

(1+ 0.01ξN+1)2

where Re is the Reynolds number, Gr is the Grashof number, and Pr is the Prandtl
number. The offset N is the total number of random variables associated with T0
and h. The uncertainty in T0 is modeled by the expansion

T0(x, ξ) = 1+ 0.025
nb∑
k=1

ξk

√
2 sin(πkx)

πk
.

The coefficient h has a similar expansion for x = 0 and for x = 1 with n! and
nr terms, respectively. All ξk are uniformly distributed on [−1, 1]. Figure 2 depicts
the computational domain including boundary conditions (left) and the scenarios of
the uncertain substrate temperature (right). The curves on top of the computational
domain schematic (left) are the inflow and outflow profiles of the velocity, given by

u(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
(

1
3 − x

)
x if 0 ≤ x ≤ 1

3

−4
(
x − 1

3

) (
2
3 − x

)
if 1

3 < x < 2
3

2
(
x − 2

3

)
(1− x) if 2

3 ≤ x ≤ 1

.

We study both the stated reduced-space formulation of the control problem and
the corresponding full-space formulation. We use the Trilinos package Rapid Opti-
mization Library [27] and its PDE-OPT Application Development Kit, available in
the directory
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Fig. 2 Left: Computational domain for the CVD reactor. Right: Scenarios of T0

Fig. 3 Expected values of the uncontrolled velocity field (left), pressure (middle) and temperature
(right)

Trilinos/packages/rol/examples/PDE-OPT,

to implement and solve the control problem. A reproducibility statement is given in
Section 6.3.

To discretize the PDE, we use finite elements on a uniform mesh of 33×33
quadrilaterals. We note that to properly represent the boundary segments Γo and
Γi the number of mesh cells in the horizontal direction should be divisible by three.
For the velocity and pressure discretization, we use the Q2-Q1 Taylor–Hood finite
element pair, and for the temperature we use the Q2 finite element. The sparse grids
used to approximate the risk neutral objective function are built on one-dimensional
Clenshaw–Curtis quadrature rules. We set the maximum sparse grid as the level-3
isotropic Clenshaw–Curtis sparse grid. This rule has Q = 2245 points. Figure 3
shows the expected values of the uncontrolled (z = 0) velocity field (streamlines
and magnitude), pressure, and temperature.
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6.1 Reduced-Space Results with Adaptive Sparse Grids

We solve the optimal control problem using the reduced-space trust-region approach
with dimension-adaptive sparse grids described in Section 5.1. We terminate the
algorithm when the gradient of the model at zero, ‖∇mk(0)‖Z , is below tol = 10−6.
We set the initial guess to z = 0 and the initial trust-region radius to Δ0 = 10. We
solve the trust-region subproblem using truncated conjugate gradients. We terminate
the subproblem solve if the step has exceeded the trust-region radius, the algorithm
encountered negative curvative or the residual is below the minimum of 10−4 and
10−2 times the norm of the initial residual. The problem is solved using a single
computational core of a dual-socket 2.1 GHz Intel Broadwell E5-2695 compute
node with 128 GB RAM. The linearized state and adjoint equations are solved using
a direct solver. The solves are performed sequentially.

Figure 4 shows the expected values of the controlled velocity field (streamlines
and magnitude), pressure, and temperature. We see a significant reduction of
vorticity near the heated substrate. The left-wall and right-wall controls are given
in Figure 5, respectively.

Table 1 displays the iteration history for the adaptive sparse grid algorithm
described in Sections 4.1 and 5.1. The columns from left to right include the iteration
count (iter), the computed objective function value (Jk(zk)), the norm of the model
gradient (‖∇mk(0)‖Z), the trial step size (‖sk‖Z), the trust-region radius (Δk), the
number of truncated conjugate gradient iterations (cg), a Boolean corresponding
to whether the step was accepted or rejected (accept), the number of sparse-grid
points for the objective function computation (obj), and the number of sparse-grid
points for the gradient evaluation (grad). The algorithm starts with very few sparse-
grid points (i.e., state and adjoint PDE solvers) and only refines the sparse grid
as needed for global convergence. For this example, there were no “unimportant”
directions resulting in a final sparse grid that is identical to the isotropic sparse grid.
For examples with anisotropy, see [25, 26].

Fig. 4 Expected values of the controlled velocity field (left), pressure (middle), and temperature
(right), obtained using the reduced-space method with adaptive sparse grids
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Fig. 5 Optimal controls along the left vertical side wall (left image) and the right vertical side wall
(right image) of the problem domain D, obtained using the reduced-space method with adaptive
sparse grids

Table 1 Iteration history for reduced-space adaptive sparse-grid approach

iter Jk(zk) ‖∇mk(0)‖Z ‖sk‖Z Δk cg accept obj grad

0 0.07457916 5.063× 10−2 – 10.000 – – 1 3

1 0.07469930 5.063× 10−2 10.000 1.445 1 0 3 3

2 0.07469930 5.063× 10−2 1.445 0.361 1 0 3 3

3 0.05636707 4.875× 10−2 0.361 0.903 1 1 3 3

4 0.05636707 4.875× 10−2 0.903 0.226 1 0 3 3

5 0.04757099 2.059× 10−2 0.226 0.226 1 1 3 3

6 0.04680338 1.143× 10−2 0.226 0.226 2 1 103 117

7 0.04611002 3.468× 10−3 0.226 0.564 2 1 139 195

8 0.04511802 3.255× 10−3 0.564 1.411 2 1 117 233

9 0.04494516 1.085× 10−3 1.411 3.527 3 1 229 579

10 0.04499733 2.331× 10−4 2.838 8.818 6 1 579 949

11 0.04499338 6.211× 10−5 0.967 22.045 7 1 2245 1219

12 0.04499329 1.002× 10−6 0.127 55.113 8 1 2245 2245

13 0.04499327 7.034× 10−9 0.072 137.784 11 1 2245 2245

6.2 Full-Space Results with Iterative Linear System Solves

We now solve the optimal control problem using the full-space trust-region algo-
rithm with iterative augmented system solves described in Section 5.2. The param-
eters for Algorithm 4 are

tolSQP tolCG ζ Δ0 Δmin Δmax α1 η1 η0 ρ−1 ρ̄

10−6 10−2 0.8 104 10−10 108 0.5 10−8 0.5 1 10−8
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The nominal augmented system solver tolerances are set to τqn = τpg =
τproj = τ tang = τ lmh = 10−6 ; however, we note that these tolerances are
adjusted as needed by Algorithm 4. We set τ4 = 2 and τ lmg = 104. To solve
augmented systems, we use the flexible generalized minimal residual (F-GMRES)
method preconditioned with the Schur-complement preconditioner P discussed in
Section 5.2. To apply the augmented system preconditioner P , for each block
vkC

k
u, k = 1, . . . ,Q, and its adjoint, we use GMRES preconditioned with a non-

overlapping additive Schwarz domain-decomposition approach, where the domain
D is partitioned into four horizontal strips of roughly equal size (the top strip is
the largest one). For the (inner) F-GMRES stopping tolerance, we choose 10−4.
The linear solves on the subdomains are performed using a direct solver. As the
initial guess for the control variables, we use z = 0. To obtain the initial guess
for the state variables, we solve the nonlinear state equations with z = 0 for each
sparse-grid point. We choose the infinite-dimensional view of the Lagrangian for the
risk-neutral problem (51), i.e., vk = wk , for k = 1, . . . ,Q. We use a fixed level-3
Clenshaw–Curtis sparse grid with Q = 2245.

All studies were executed on the commodity cluster Serrano at Sandia National
Labs. The results were obtained using 80 dual-socket 2.1 GHz Intel Broadwell
E5-2695 nodes with 128 GB RAM. Each node has 36 cores, amounting to a total
of 2880 cores. We utilized the hierarchical parallelism afforded by the Rapid
Optimization Library, partitioning the cores into 720 groups, with each group using
four cores for linear algebra tasks such as matrix assembly and iterative solves of the
linearized state and adjoint equations needed to apply the preconditioner P . These
solves are executed concurrently across the 720 groups. Considering that we process
2245 sparse-grid points, each group performs only three or four linearized state and
adjoint solves per preconditioner application, enabling a high degree of concurrency
in the computation. Informative studies can be performed without high-performance
computing resources, using, e.g., level-2 sparse grids, which amounts to changing
the “Maximum Sparse Grid Level” parameter in the input scripts described in
Section 6.3 from 3 to 2.

Figure 6 shows the expected values of the controlled velocity field (streamlines
and magnitude), pressure, and temperature. The left-wall and right-wall controls
are given in Figure 7, respectively. As before, we see a significant reduction of
vorticity near the heated substrate. In Table 2, we observe that the final objective
value is different than in the reduced-space case. Figure 7 reveals that the optimal
controls are also different. This is not unexpected, as our optimal control problem is
nonconvex and may have multiple local minima. Substituting the full-space optimal
controls into the reduced-space method, and vice versa, confirms that these are
indeed locally optimal for both methods and that multiple numerical minima exist.

Table 2 shows the iteration history for the full-space approach. The columns
from left to right denote the iteration count (iter), the computed objective function
value (J (xk)), the norm of the constraint(‖c(xk)‖C), the norm of the gradient of the
Lagrangian (‖∇L(xk, λk)‖X), the trust-region radius (Δk), the number of projected
conjugate gradient iterations (pcg) per SQP iteration, a Boolean corresponding to
whether the step was accepted or rejected (accept), the cumulative number of
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Fig. 6 Expected values of the controlled velocity field (left), pressure (middle), and temperature
(right), obtained using the full-space method with iterative augmented system solves
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Fig. 7 Optimal controls along the left vertical side wall (left image) and the right vertical side
wall (right image) of the problem domain D, obtained using the full-space method with iterative
augmented system solves

Table 2 Iteration history for the full-space approach with iterative augmented system solves

ls ls
iter J (xk) ‖c(xk)‖C ‖∇L(xk, λk)‖X Δk pcg accept calls iters

0 0.07484675 7.820623× 10−15 8.377793× 10−3 1.00× 104 – – – –

1 0.05533699 1.661657× 10−2 3.641571× 10−4 1.00× 104 11 1 16 597

2 0.03588474 3.052458× 10−3 9.338262× 10−5 1.00× 104 13 1 33 1292

3 0.03515891 1.017679× 10−4 7.117806× 10−5 1.00× 104 20 1 56 2303

4 0.03480817 1.444319× 10−4 2.439603× 10−5 1.00× 104 15 1 75 3108

5 0.03480817 1.444319× 10−4 2.439321× 10−5 4.08× 100 20 0 98 4157

6 0.03465050 2.237452× 10−6 4.364539× 10−6 3.03× 101 2 1 104 4438

7 0.03464773 2.716452× 10−7 1.042585× 10−7 3.03× 101 8 1 116 4989

calls to F-GMRES for augmented system solves (ls calls), and the cumulative
number of F-GMRES iterations (ls iters). The first observation is that the full-
space scheme converges robustly to the desired tolerance despite inexactness in the
augmented system solves and inexactness in the Schur-complement preconditioner
applications, i.e., linearized state and adjoint solves. Second, the average number
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of P -preconditioned F-GMRES iterations per augmented system solve is roughly
43, which is encouraging considering that the size of the state space alone is
30,900,180 and that we have used fairly tight nominal tolerances for augmented
system solves. Nonetheless, opportunities exist for preconditioner research in the
context of optimization under uncertainty, and additional studies with larger nominal
tolerances for augmented system solves are necessary.

6.3 Reproducibility

The numerical studies are contained in the directory

rol/examples/PDE-OPT/published/IMAvolumes_KouriRidzal2017

of the Rapid Optimization Library. The driver source file for the reduced-space stud-
ies is example_RS.cpp, with the accompanying input script input_RS.xml.
The driver source file for the full-space studies is example_FS.cpp, with
the accompanying input script input_FS.xml. The version of the Trilinos git
repository used to generate all numerical results is labeled with the commit tag

3958350daababd03f37fc422bf6a546d2d5ab5f5,

and the branch is “develop.” We report results with the Intel 17.0.0.098 compiler;
however, we observed virtually identical results with GCC 6.1.0.

7 Conclusions

In recent years, trust-region methods have been extended to rigorously, robustly,
and efficiently handle many sources of inexactness in the optimization process,
including inexact evaluations of the objective and constraint functions and their
derivatives as well as the inexact linear system solves arising in the approxi-
mation of constraint derivative inverses. In this chapter, we reviewed in some
detail two such methods, which are particularly well suited to the solution of
large-scale PDE-constrained optimization problems. The first method tackles the
challenges of inexact objective function and gradient evaluations in unconstrained
(reduced-space) formulations of PDE-constrained optimization problems, and is
demonstrated in the context of sparse-grid adaptivity for risk-neutral optimization
of thermal fluids. The second method deals with inexact linear system solves in
constrained (full-space) formulations, and is demonstrated on large risk-neutral
thermal-fluid optimization problems with fixed sparse grids, but with iterative,
and therefore inexact, linearized state and adjoint solves. A principal remaining
challenge in inexact trust-region methods for PDE-constrained optimization is in
the handling of general inequality constraints on the control and state variables,
with research opportunities in formulation and algorithm development, large-scale
solvers for optimality systems, and efficient software implementations.
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Numerical Optimization Methods for the
Optimal Control of Elliptic Variational
Inequalities

Thomas M. Surowiec

Abstract The optimal control of variational inequalities introduces a number of
additional challenges to PDE-constrained optimization problems both in terms of
theory and algorithms. The purpose of this article is to first introduce the theoretical
underpinnings and then to illustrate various types of numerical methods for the
optimal control of variational inequalities. For a generic problem class, sufficient
conditions for the existence of a solution are discussed and subsequently, the various
types of multiplier-based optimality conditions are introduced. Finally, a number
of function-space-based algorithms for the numerical solution of these control
problems are presented. This includes adaptive methods based on penalization or
regularization as well as non-smooth approaches based on tools from non-smooth
optimization and set-valued analysis. A new type of projected subgradient method
based on an approximation of limiting coderivatives is proposed. Moreover, several
existing methods are extended to include control constraints. The computational
performance of the algorithms is compared and contrasted numerically.

1 Introduction

The optimal control of variational inequalities is a natural extension of PDE-
constrained optimization in which the forward problem or underlying PDE is
replaced by a variational inequality or convex variational problem. There are a vast
number of applications in which variational inequalities or convex variational prob-
lems are used. Perhaps the most well-known disciplines are continuum mechanics
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[32, 52] and mathematical image processing [67, 70, 72]. However, one also finds
variational inequalities in such diverse areas as petroleum engineering [85], digital
microfluidics [84], and mathematical finance [51].

Just as in PDE-constrained optimization, we are interested in optimizing or
controlling the solution to variational inequalities through one or several parameters.
For example, in a packaging problem, we might be interested in determining the
optimal force distribution to apply to an elastic membrane in order to obtain a
desired shape without passing through a fixed obstacle. In the petroleum engineering
application mentioned above, one obtains a variational inequality when using the
variational formulation for the steady laminar flow of drill mud modelled as a
Bingham fluid. Here, one might wish to determine the optimal pressure needed to
affect a desired flow regime.

Due to a lack of Fréchet (or even Gâteaux) differentiability of the control-to-
state mapping, a reduced space optimization approach will require either concepts
from variational analysis or approximation theory not only to prove existence of a
solution but also to derive meaningful first-order optimality conditions and develop
efficient numerical methods.

The theoretical and algorithmic challenges remain intact when considering
a full-space approach, since the feasible set (after reformulating the variational
inequality as a complementarity problem) is both non-convex and fails to satisfy the
usual constraint qualifications. For example, in PDE-constrained optimization, one
typically uses the Slater or Robinson-Zowe-Kurcyusz constraint qualifications, cf.
[48, 77], to ensure the existence and boundedness of the set of Lagrange multipliers.
In order to handle these degenerate constraints, one may take a penalty or relaxation
approach, though recent work suggests that there are viable theoretical approaches
to this “full-space” setting that do not rely on smoothing, see [81].

We now give a brief historical development. We caution the reader that this is
only a sampling of the sizeable amount of work published over the past five decades.
The purpose is merely to provide an understanding of the current motivations in the-
ory and numerical methods, especially the ideas presented in this paper. Variational
inequalities were first introduced by Signorini and solved by Fichera [29]. For this
article, the early works by Brezis, Lions, and Stampacchia [18, 60] are perhaps the
most relevant as they provide us with a sufficient existence and regularity theory.
As a starting point for further study, we also suggest the well-known monographs
by Kinderlehrer and Stampacchia and Rodrigues [53, 71]. Perhaps the earliest
work on the optimal control of variational inequalities is due to Yvon, in which
the adaptive penalty technique for variational inequalities (see Section 4.1) was
used in order to approximate the control problem by a more tractable, parameter-
dependent problem [86, 87]. This was later used by Lions [58, 59] and fully
developed by Barbu [7]. The monograph by Barbu [7] contains many important
results and techniques that are still used today, see also related contributions in [9–
12, 50, 68, 73]. In 1976, Mignot offered an alternative to the smoothing approach
by developing concepts of generalized differentiability [63]. There, he was able to
prove and obtain an explicit formula for the Hadamard directional differentiability
of the control-to-state mapping of the variational inequality and, with this result,
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derive first-order optimality conditions. This result later appeared in [64] and is
rederived in [45] using techniques from variational analysis. More recent work in
the control of variational inequalities has focused on the development of efficient,
function-space-based numerical methods and ever more complex settings as in
[2, 4, 21–23, 34–36, 39, 40, 45, 49, 56, 65, 66, 80, 83].

Parallel to the infinite-dimensional developments, a great deal of progress has
been made on theory and numerical methods for finite-dimensional mathematical
programs with equilibrium or complementarity constraints, as evidenced by the
well-known manuscripts by Luo, Pang, and Ralph [61] and Outrata, Kočvara, and
Zowe [69]. In addition to the references therein, we also mention the approaches
in [3, 74], which have since been extended to infinite dimensions and are in part
featured in this paper.

In reference to the existing finite-dimensional literature, recent works have begun
referring to the problem class considered here as elliptic mathematical programs
with equilibrium constraints (or elliptic MPECs). We will henceforth do the same
for the sake of brevity.

The article is structured as follows. After introducing some necessary notation,
data assumptions, and the canonical example in Section 2, we discuss sufficient
conditions for the existence of a solution in Section 3. Afterwards, we give several
kinds of multiplier-based first-order stationarity conditions similar to classical
Karush-Kuhn-Tucker (KKT) conditions. These may or may not be first-order
optimality conditions depending on the regularity and data of the given problem.
For a newcomer to elliptic MPECs, this potentially puzzling array of possible
stationarity conditions may seem strange. However, it is necessary to understand the
gap in what is theoretically the “best” type of KKT point and what type of stationary
point a given numerical method can theoretically guarantee (at least asymptotically).

Following the theoretical results in Section 3, we pass to the main focus of our
discussion: numerical optimization methods for elliptic MPECs. First, in Section 4,
we consider what we refer to as “regularization-based” methods. In Section 4.1,
we present a typical adaptive smoothing method that makes use of approximation
theory for variational inequalities and which is directly linked to the derivation of
first-order stationarity conditions for the elliptic MPEC. Similarly, in Section 4.2,
we use a simple penalization of the complementarity condition (in weak form)
to obtain a simpler PDE-constrained optimization problem with control and state
constraints. The numerical solution of the subproblems in the adaptive penalty
method is thoroughly discussed for a canonical example problem and the numerical
behavior is illustrated. We note that the smoothed problems become increasingly
difficult to solve as the smoothing parameter tends to zero, which in part motivates
the desire for “non-smooth” methods.

The structure of the non-smooth numerical methods section is devised to
illustrate the parallels to some popular methods for smooth PDE-constrained
optimization problems, e.g., projected-gradient methods (Section 5.1), direct solvers
for the KKT system (Section 5.2), and globalization of the direct solvers via a
line search (Section 5.3). There are obvious (and expected) limitations to these
approaches, all of which arise from the non-smooth or degenerate nature of elliptic
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MPECs. Nevertheless, they indicate the possibility of inventing new efficient
numerical methods beyond the adaptive smoothing/penalty paradigm, which often
outperform the smooth methods in practice.

In Section 5.1, we present a new subgradient method for the reduced space
problem. The choice of “subgradient” is motivated by the limiting variational
calculus found, e.g., in the book by Mordukhovich [66]. We discuss the asymptotic
behavior of this method and illustrate the potential for future study. Following this
in Section 5.2, an active-set-based solver with feasibility restoration suggested by
Hintermüller in [36] as a direct solver for the C-stationarity system is considered.
Finally, in Section 5.3, we consider the so-called bundle-free implicit programming
approach [46], which can be understood as a globalization of the active-set solver
using a line search. We extend the latter to include control constraints. The
performance of the non-smooth methods is then compared and contrasted with that
of the adaptive penalty method. All numerical examples have been solved in the
Julia programming language [14] version 0.5.0 on a 2016 MacBook Pro Intel(R)
Core(TM) i5 @ 3.1 GHz with 16 GB 2133 MHz LPDDR3 RAM.

2 Notation, Assumptions, and Preliminary Results

In this section, we fix our notation and analytical framework. Elliptic variational
inequalities and elliptic MPECs are introduced.

2.1 Norms, Inner Products, and Convergence

All spaces are based on the real number field. The Euclidean norm and scalar
product on R

m are denoted by |x| and x · y for x, y ∈ R
m, respectively. For

r ∈ R, we denote max(0, r) by (r)+. All other norms are denoted by ‖ · ‖X for
some space X. The topological dual of X is denoted by X∗ and the dual pairing
by 〈·, ·〉X,X∗ . The inner product on a Hilbert space H is denoted by (·, ·)H . Given a

sequence {xk} ⊂ X, we denote strong convergence to x ∈ X by xk
X→ x; for weak

convergence, we use xk
X
⇀ x and for weak-star convergence, xk

X

⇀∗ x. In all these
cases, we drop the sub- or superscripts if it is clear in context.

2.2 Extended Real-Valued Functionals and Convex Analysis

For a topological vector space U , the extended real-valued functional G : U → R

is proper if G(u) > −∞ for all u ∈ U and G(w) < +∞ for some w ∈ U . G is
said to be closed or lower-semicontinuous if its epigraph
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epiG := {(u, α) ∈ U × R | G(u) ≤ α }

is a closed subset in the product topology on U×R. Moreover, G is convex provided

G(λu+ (1− λ)w)) ≤ λG(u)+ (1− λ)G(w), ∀u,w ∈ U,∀λ ∈ [0, 1].

For a Banach space V and F : V → R, the (convex) subdifferential of F at some
point x ∈ V such that −∞ < F(x) < +∞ is defined by the potentially empty set:

∂F (x) := {x∗ ∈ V ∗
∣∣ F(y) ≥ F(x)+ 〈x∗, y − x〉,∀y ∈ V

}
.

If C ⊂ V , then the indicator functional iC of C is defined by

iC(x) = 0 if x ∈ C, and iC(x) = +∞ otherwise.

If C is non-empty, closed, and convex, then NC(x) := ∂iC(x) is called the convex
normal cone to C at x ∈ C. If K ⊂ V is a non-empty, closed, convex cone, then

ξ ∈NK(x) ⇔ x ∈ K, ξ ∈ K− := {μ ∈ V ∗ |〈μ, y〉 ≤ 0,∀y ∈ K
}

and 〈ξ, x〉 = 0.

Recall that K− referred to as the polar cone to K . For more on convex analysis, see,
e.g., [25].

2.3 Function Spaces and 2-Capacity

Unless noted, Ω ⊂ R
n, n ∈ {1, 2, 3}, is a non-empty, bounded, and open subset

with Lipschitz boundary Γ = ∂Ω . The Lebesgue measure of E ⊂ R
n is denoted

by meas(E). For p ∈ R with 1 ≤ p < +∞, we denote the usual Lebesgue space
of p-integrable functions by Lp(Ω) and the Lebesgue space of essentially bounded
functionals by L∞(Ω). The norms are given by

‖u‖Lp =
(ˆ

Ω

|u(ω)|pdω
)1/p

and ‖u‖L∞ = ess supω∈Ω |u(ω)|,

respectively. For k ∈ N, we denote the Sobolev space of Lp-functions u with
|Dαu| = |(∂α1u, . . . , ∂αnu)| ∈ Lp(Ω) by Wk,p(Ω), where α = (α1, . . . , αn) is
a multi-index with |α1|+· · ·+|αn| ≤ k and ∂αi u is the αi-th weak partial derivative
of u with respect to xi , i ∈ {1, 2, 3}. The Wk,p-norms are then defined by

‖u‖Wk,p =
⎛
⎝∑
|α|≤k

ˆ
Ω
|Dαu(ω)|pdω

⎞
⎠

1/p

and ‖u‖Wk,∞ =
∑
|α|≤k

ess supω∈Ω |Dαu(ω)|.
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For our discussion, the most important case is when p = 2. Here, both L2(Ω) and
Hk(Ω) := Wk,2(Ω) are Hilbert spaces with inner product defined using the norms
given above. We denote the space of all H 1-functions with zero trace by H 1

0 (Ω)

and its dual by H−1(Ω). It follows from the Poincaré inequality that

‖u‖H 1
0
= ‖∇u‖L2 = (∇u,∇u)1/2

L2 .

is an equivalent norm on H 1
0 (Ω). See, e.g., [1] for more. Finally, recall that the

2-capacity of an arbitrary subset E ⊂ Ω is given by

Cap2(E,Ω) := inf
{
‖u‖2

H 1
0
: v ∈ H 1

0 (Ω) v ≥ 1 a.e. on open neighborhood G ⊃ E
}
.

cf. [6, Prop. 5.8.3]. Note that H 1
0 -functions possess a representative that is con-

tinuous up to a set of positive capacity, cf. [26]. Moreover, there exist E ⊂ Ω with
Cap2(E,Ω) > 0 and meas(E) = 0, e.g., the boundary of a smooth open set. Hence,
an H 1

0 -function in 2D is continuous across a smooth curve in the plane, but not at
single points.

2.4 Elliptic Variational Inequalities

Let H be a Hilbert space and H ∗ its topological dual. For this subsection, (·, ·)
denotes the inner product and ‖ · ‖ the norm on H . The pairing between H and H ∗
is denoted by 〈·, ·〉. Let a : H ×H → R be a bilinear form on H and A : H → H ∗
the associated bounded linear operator, i.e., a(u, v) = 〈Au, v〉, u, v ∈ H . We recall
that a is said to be coercive/elliptic, if there exists some constant c > 0 such that
a(v, v) ≥ c‖v‖2 for all v ∈ H . Clearly, the function ‖v‖a := (a(v, v))1/2 defines an
equivalent norm on H . Let K ⊂ H be non-empty, closed, and convex and w ∈ H ∗.
Then, the variational problem

Find u ∈ K : a(u, v − u) ≥ 〈w, v − u〉, for all v ∈ K (1)

is called an elliptic variational inequality. Note that problems of this type are often
referred to as variational inequalities of the first kind. They can be equivalently
written as a generalized equation:

Find u ∈ K : Au+NK(u) = Au+ ∂iK(u) ) w. (2)

If we replace iK by a subdifferentiable proper closed convex functional ϕ, then we
obtain a variational inequality of the second kind. The following is due to Lions and
Stampacchia [60], see also [53]:
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Theorem 1 Let a : H × H → R be a coercive bilinear form, K ⊂ H closed and
convex, and w ∈ H ∗. Then, (1) possesses a unique solution S(w). Moreover, the
solution mapping w 
→ S(w) is Lipschitz continuous: For all w1, w2 ∈ H ∗, it holds
that

‖S(w1)− S(w2)‖H ≤ (1/c)‖w1 − w2‖H ∗ ,

where c is the constant of coercivity of a.

Although the solution mapping S is Lipschitz continuous, it is not necessarily
differentiable. In some special cases, S is directionally differentiable. For more
on variational inequalities, see, e.g., [53]. The conditions on A and K will be
considered standing assumptions on the variational inequality for the rest of this
article. We conclude this subsection with an example.

Example 1 In the context of (1), let H := H 1
0 (Ω) and H ∗ = H−1(Ω). Moreover,

define Ψ ∈ H 1(Ω) with Ψ |Γ ≤ 0 and K ⊂ H 1
0 (Ω) such that

K :=
{
u ∈ H 1

0 (Ω) | u(x) ≥ Ψ (x), for almost every (a.e.) x ∈ Ω
}
.

Clearly, since max(0, Ψ ) ∈ H 1
0 (Ω), K �= ∅. Moreover, one readily shows that K

is closed and convex in H 1
0 (Ω). The setting of (1) is general enough to allow for

nonsymmetric bilinear forms a(u, v), e.g.,

a(u, v) :=
ˆ
Ω

∑
i,j

aij ∂iu∂j v −
∑
i

bi(∂iu)v + cuvdx, u, v ∈ H 1
0 (Ω),

with appropriate assumptions on aij , bi, c. However, for our purposes it suffices to
consider

a(u, v) :=
ˆ
Ω

∇u · ∇vdx, u, v ∈ H 1
0 (Ω)

Letting f ∈ H−1(Ω) and combining the above, we obtain a classical obstacle
problem

Find u ∈ K :
ˆ
Ω

∇u · ∇[v − u]dx ≥ 〈f, v − u〉, for all v ∈ K.

If Ψ |Γ ≡ 0, then (without altering the boundary conditions), we obtain an
equivalent problem:

Find u ∈ K0 :
ˆ
Ω

∇u · ∇[v − u]dx ≥ 〈f +ΔΨ, v − u〉, for all v ∈ K0,

where K0 =
{
u ∈ H 1

0 (Ω) | u(x) ≥ 0, a.e. x ∈ Ω
} ; see, e.g., [53, 71].
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Of course, this set K represents perhaps the easiest kind of set that one can
consider in a variational inequality. It is just one example of a so-called “polyhedric
set,” a notion introduced in the mid-1970s by Haraux [33] and Mignot [63] in the
context of sensitivity analysis of variational inequalities. See the recent detailed
study [82] for a state-of-the-art on polyhedricity. For more general closed, convex
sets, e.g.,

{
u ∈ H 1

0 (Ω) | |(∇u)(x)| ≤ Ψ (x), a.e. x ∈ Ω
}

(3)

it is possible to prove existence, uniqueness, and continuity results under weak
assumptions on Ψ . Since these sets are neither polyhedric nor cones, the differential
sensitivity analysis of the solution map and subsequent derivation of optimality
conditions or efficient numerical methods is extremely challenging. Elliptic MPECs
with this type of constraint were considered in [45]. However, we caution the reader
that the proofs for the derivation of the tangent cones are in fact erroneous. Thus,
the differential sensitivity results for the solution mapping only hold under the
assumption that the tangent cones do in fact have the form purported in the text.

2.5 Elliptic Mathematical Programs with Equilibrium
Constraints

We present an abstract framework for a class of elliptic MPECs. Let V , H , and
Z be separable Hilbert spaces such that the state space V is a dense subset of H
and V ⊂ H ⊂ V ∗ both algebraically and topologically. Moreover, assume that
f ∈ V ∗, Zad ⊂ Z is a non-empty, closed, and convex set (the set of admissible
controls/decision variables), B : Z → V ∗ is a bounded linear operator and F :
U → R and G : Z→ R. We define an elliptic MPEC as follows:

min J (z, u) := F(u)+G(z) over (z, u) ∈ Z × V, (4a)

s.t. z ∈ Zad, u solves (1) with w := Bz+ f. (4b)

In light of Theorem 1, we can rewrite (4) in reduced form, analogously to standard
PDE-constrained optimization problems:

min J (z) := F(S(Bz))+G(z) over z ∈ Zad. (5)

Here, f ∈ V ∗ is fixed. Therefore, we only write S(Bz) for the solution mapping
(instead of S(Bz + f )). Obtaining a meaningful full-space formulation of the
optimization problem (4) is not always possible. However, if K in (1) is a cone,
then we can also formulate a full-space version of the elliptic MPEC by introducing
a slack variable ξ ∈ V ∗:
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min J (z, u) over (z, u, ξ) ∈ Z × V × V ∗, (6a)

s.t. z ∈ Zad, (6b)

Au− ξ = Bz+ f, (6c)

u ∈ K, ξ ∈ K+, 〈ξ, u〉 = 0. (6d)

Here, K+ := −K−. This follows from (2). Due to the presence of the com-
plementarity condition (6d), problems of the type (6) are often referred to in
the finite-dimensional literature (and more recently in the infinite-dimensional
literature) as (elliptic) mathematical programs with complementarity constraints
(MPCCs); see e.g., [61, 69, 74] (finite dimensions) and the recent work [81] (infinite
dimensions).

Remark 1 We consider here the simplest case in which the control or decision
variable z appears only on the “right-hand side” of the variational inequality.
However, in many interesting applications, e.g., topology optimization [8], the
control enters nonlinearly through the differential operator A, e.g., when A(z)u =
−div(z∇u). In the context of elliptic MPECs, this case is scarcely covered in the
literature, see [36].

We finalize this section with a canonical example of an elliptic MPEC.

Example 2 In the notation of (4), we set V = H 1
0 (Ω), H = L2(Ω), V ∗ =

H−1(Ω), and Z = L2(Ω). For some ud ∈ L2(Ω), we let F be a standard tracking-
type functional and G an L2-Tikhonov regularization:

J (z, u) := F(u)+G(z) = 1

2
‖u−ud‖2

L2+α

2
‖z‖2

L2 , (z, u) ∈ L2(Ω)×H 1
0 (Ω), α > 0.

For the forward problem, we choose the simplest form of the obstacle problem with
Ψ ≡ 0. Then, the following is an elliptic MPEC:

min
1

2
‖u− ud‖2

L2 + α

2
‖z‖2

L2 , over (z, u) ∈ L2(Ω)×H 1
0 (Ω), (7a)

s.t. z ∈ Zad, u ∈ K0 solves :
ˆ
Ω
∇u · ∇[v − u]dx ≥ 〈Bz+ f, v − u〉, for all v ∈ K0,

(7b)

Some possibilities for Zad are local bilateral constraints: −1 ≤ w(x) ≤ 1, a.e. x ∈
Ω or global constraints such as ‖w‖L2 ≤ 1.

3 Existence and Stationarity Conditions

We start this section in the abstract framework of Section 2.5. In order to provide
insight into the deeper meaning of the various stationarity conditions, we ultimately
restrict ourselves to the canonical example (Example 2).
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3.1 Existence of a Solution

Under suitable conditions, on F , G, Zad , and B, we can use Weierstrass’s existence
theorem, see, e.g., [6, Thm. 3.2.5] to prove that the reduced form MPEC has
a solution. For the following result, we appeal to the monograph by Barbu
[7, Chap. 3].

Theorem 2 In the context of problem (4), we assume the following:

1. F : H → R is locally Lipschitz and nonnegative.
2. G : Z → R is convex, lower-semicontinuous, and for some constants κ1 > 0,

κ2 ∈ R. G(z) ≥ κ1‖z‖Z + κ2, ∀z ∈ Z

3. B is completely continuous.

Then, (4), or equivalently (5), admits a solution.

Proof By replacing G(z) with G(z) + iZad
(z), the assertion follows from [7,

Prop. 3.1]. In particular, we note that by Barbu [7, Lem. 3.1] the mapping
(S ◦ B) : Z→ V is completely continuous and, furthermore, the composite objec-
tive functional (F ◦ S ◦ B) : Z→ R+ is weakly lower-semicontinuous.

Since for any z ∈ Zad, (1) has a unique solution u = S(Bz). There exists a unique
ξ ∈ NK(u) such that ξ = Au−Bz− f . Conversely, if (z, u, ξ) satisfies (6b)–(6d),
then z ∈ Zad and u = S(Bz). In other words, there is a one-to-one correspondence
between the feasible set of (5) and (6). Therefore, if (4), or equivalently (5), admits
a solution, then so does (6).

Corollary 1 Under the assumptions of Theorem 2, (6) admits a solution.

Remark 2 Ignoring Theorem 2, we could also prove this assertion by appealing to
[6, Thm. 3.2.5]. Indeed, under the hypotheses of Theorem 2, (6) can be viewed as
an unconstrained problem in which the associated objective functional is radially
unbounded, proper, and weakly lower-semicontinuous.

3.2 Primal Stationarity Conditions

In this subsection, we restrict ourselves to the setting of Example 2. As men-
tioned earlier, there are some situations in which the control-to-state mapping
S is directionally differentiable. In particular, Mignot [63] demonstrated that the
control-to-state mapping in Example 2 is directionally differentiable in the sense
of Hadamard. The next result draws the parallel to PDE-constrained optimization
problems.

Theorem 3 Let (z, u) be a solution to (7), then the following first-order necessary
optimality condition holds:

α(z,w − z)+ (u− ud, S
′(u;B(w − z))) ≥ 0, ∀w ∈ Zad. (8)
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In the finite-dimensional literature, e.g., in [61, 74], primal first-order conditions
of the type (8) are often referred to as B-stationarity conditions. There, the “B”
comes from the fact that either the so-called Bouligand tangent cone or Bouligand
differentiability is used. This motivates the next definition.

Definition 1 If (z, u) is a feasible point of (7) that satisfies (8), then (z, u) is
B-stationary.

For the setting in (5), it is possible to derive B-stationarity conditions provided
that F , G are smooth. Clearly, the main challenge is determining directional
differentiability of S. Suppose for the sake of argument that S′(u; du) is linear in
du ∈ V ∗. Then, we can “dualize” the B-stationarity conditions (8):

α(z,w − z)+ (B∗p,w − z) ≥ 0, ∀w ∈ Zad, p = S′(u)∗(u− ud).

Note that the condition “p = S′(u)∗(u− ud)” essentially means (in this ideal case)
that p solves a type of adjoint equation. Using this “adjoint state” p, we could
now develop solution algorithms. However, S′(u; du) is in general nonlinear (albeit
Lipschitz) in du and thus, the standard adjoint state p does not exist. As a result,
there are several different types of dual/multiplier-based first-order stationarity
conditions reminiscent of classical KKT conditions in nonlinear programming.

3.3 Dual Stationarity Conditions

In this subsection, we again restrict ourselves to the setting in Example 2. Further-
more, we assume that Γ is regular enough to guarantee that S(Bz) ∈ H 2(Ω) ∩
H 1

0 (Ω) for any z ∈ Zad. This is possible if, e.g., Bz + f ∈ L2(Ω) and Ω is a
convex polyhedron, cf. [18, 71]. This regularity assumption ensures that ξ ∈ L2(Ω)

and, by the Sobolev embedding theorem, S(Bz) is at least Hölder continuous on
Ω . We now introduce two multiplier-based first-order stationarity conditions taken
from [39, 40].

Definition 2 Let z ∈ Zad and u = S(Bz) with associated slack variable ξ ∈ L2(Ω).
The set Ω0 := {x ∈ Ω | u(x) = 0 } is called the active set or coincidence set and
I := {x ∈ Ω | u(x) > 0 } the inactive set. The set Ω00 := Ω0∩{x ∈ Ω | ξ(x) = 0 }
is called the biactive or weakly active set and Ω0+ := Ω0∩{x ∈ Ω | ξ(x) > 0 } the
strongly active set.

Note that the biactive and strongly active sets are only defined up to a set of
Lebesgue measure zero. In contrast, the active and inactive sets may be more finely
defined up to sets of positive capacity even in less regular settings.

Definition 3 The point (z, u, ξ) ∈ L2(Ω) × H 1
0 (Ω) × L2(Ω) is called a C-

stationary point for (7) provided that there exist p ∈ H 1
0 (Ω) and λ ∈ H−1(Ω)

such that the following system of equations is fulfilled:



134 T. M. Surowiec

α(z,w − z)+ (B∗p,w − z) ≥ 0, ∀w ∈ Zad (9a)

A∗p − λ = ud − u (9b)

Au− ξ = Bz+ f (9c)

ξ ≥ 0, a.e. x ∈ Ω (9d)

u ≥ 0, a.e. x ∈ Ω (9e)

(ξ, u) = 0 (9f)

〈λ, p〉 ≤ 0 (9g)

p = 0, a.e. x ∈ Ω0+ (9h)

〈λ, φ〉 = 0,∀φ ∈ H 1
0 (Ω) : φ = 0, a.e. Ω0 (9i)

If, in addition to (9), p and λ satisfy:

p ≤ 0, a.e. x ∈ Ω00 (10a)

〈λ, φ〉 ≥ 0,∀φ ∈ H 1
0 (Ω) : φ ≥ 0, a.e. Ω00, φ = 0, a.e. Ω \ (I ∪Ω00), (10b)

then (z, u, ξ) ∈ L2(Ω)×H 1
0 (Ω)× L2(Ω) is called an S-stationary point.

Several comments on this system are necessary. To start, we note that if K0 is
replaced by the entire space H 1

0 (Ω), then ξ , λ and the conditions (9d)–(10b)
vanish and we obtain the usual first-order system for a linear-quadratic PDE-
constrained optimization problem with convex control constraints. Moreover, if
there is no biactive set, then both (in fact all) dual stationarity concepts coincide.
Thus, biactivity is essentially the source of all difficulties in the study of MPECs.
We will see later that it also relates to the Gâteaux differentiability of the control-
to-state map.

Perhaps the most critical point here is the usage of almost everywhere ver-
sus quasi everywhere conditions for the multipliers. As defined above, these
S-stationarity conditions are not equivalent to the necessary first-order optimality
conditions in the pioneering works [63, 64]; unless certain regularity assumptions on
the active/biactive/inactive sets are made. In [63, 64] (see also [43, 80]), the notion
of capacity (in contrast to Lebesgue measure) is used. This is because capacity is
needed for the correct representation of the tangent/contingent cone and its polar.
When replacing q.e. by a.e. some conditions become stronger and others finer.

In order to see this, suppose that meas(Ω0) = 0, but Cap2(Ω
0,Ω) > 0.

Then, (9i) would imply λ = 0 ∈ H−1(Ω). However, when using capacity, since
the test functions φ admit quasi-continuous representatives, requiring φ = 0 “quasi-
everywhere” (q.e.) on Ω0 would shrink the set of test functions so that λ is not
necessarily zero. Similar problems arise by requiring a.e. instead of q.e. conditions
on the adjoint variables p. Indeed, if Ω0+ has measure zero, then (9h) is trivially
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satisfied by any p; this would not be the case if we use q.e. since p ∈ H 1
0 (Ω) admits

a quasi-continuous representative.
Therefore, the stationarity conditions of Mignot and Puel, see (29) below, should

be considered the true strong/S-stationarity conditions for our canonical MPEC as
opposed to (9)–(10). For more complex constraints in which the image space of
the constraint mapping is an Lp-space, as in, e.g.,[34, 35, 45], the problems with
defining active sets up to sets of capacity zero seem to be absent.

Nevertheless, (9)–(10) arose naturally through the limiting process of an adaptive
penalty scheme. As such, they are highly relevant for the study of numerical methods
for elliptic MPECs, especially for methods utilizing smoothing plus continuation.
In contrast, it is unclear how to properly include notions of capacity into efficient
numerical methods (without simplifying assumptions as in [46]).

Finally, in many complex real-world applications, it might be impossible to
obtain even C-stationarity conditions of this type, due to a lack of compactness
and regularity properties. For example, in the optimal control of electrowetting on
dielectrics[4], Allen-Cahn [27, 28], Cahn-Hilliard [20], or Cahn-Hilliard-Navier-
Stokes system with obstacle potentials [47], one can usually only derive an
approximation of (9g). Here, this would be equivalent to replacing (9g) by

lim sup
k→∞

〈λk, pk〉 ≤ 0

for sequences {λk} and {pk} with λk ⇀ λ and pk ⇀ p.
In conclusion, the various notions of dual stationarity and the theory needed to

derive them are still active areas of research. The main point here is that there is
a stratification of concepts that one should also be aware of when considering the
design and convergence of numerical methods. That is, it is not enough to prove
that a scheme converges but also to what kind of stationary point. Of course, many
of the issues involving capacity, weak topologies, products of weakly convergent
sequences, and weak lim-inf or lim-sup-type sign conditions will not necessarily
appear in numerical experiments.

4 Regularization-Based Methods

In this and the coming sections, we present a number of numerical optimization
methods for elliptic MPECs. These are split into two classes: Methods that
employ adaptive smoothing, relaxation, or penalization of the forward problem or
complementarity constraints (regularization-based methods) and those that do not
(non-smooth methods).

We also note that the proper discretization of elliptic MPECs using (adaptive)
finite elements schemes that take into account the additional difficulties due to
the inherent degeneracy/non-smoothness has only been considered in a handful of
papers. For example, we mention the most recent works [16, 17, 24, 37, 62]. For
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our numerical study, we make use of a simple finite difference scheme to discretize
the operators along with a nested grid approach to simulate mesh refinements. This
allows us to easily compare the methods.

The regularization-based methods all follow a similar scheme. First, the varia-
tional inequality is approximated by a parameter-dependent semilinear elliptic PDE
or the complementarity constraint is relaxed or penalized. This yields in both cases
a more tractable family of approximating optimization problems. Next, the smooth
PDE-constrained problems are solved, yielding a parameter-dependent KKT point.
Finally, continuation is performed on the regularization parameter (passing to 0
or +∞).

The non-smooth methods are rather different and there is still plenty of room for
new ideas. We only mention here that with these methods the emphasis is placed
on directly solving the original, non-smooth problem without changing the forward
problem. We postpone further details until later.

4.1 An Adaptive Penalty Method

We begin in the abstract framework of Section 2.5 and present a general approx-
imation result as found in [7, Thm. 2.2]. For a comprehensive study on the
numerical analysis and approximation of variational inequalities, see, e.g., [31]. In
the following, φε refers to some penalty functional for the constraint K .

Definition 4 For any constant ε > 0, let φε : V → R such that φε is convex and
Fréchet differentiable on V and satisfies

1. There exists a C, independent of ε, u with φε(u) ≥ −C(‖u‖V + 1) for all ε > 0,
u ∈ V .

2. φε(u)→ iK(u) as ε ↓ 0 for all u ∈ V .
3. For all u ∈ V and for all {uε} such that uε ⇀ u as ε ↓ 0, lim infε↓0 φ

ε(uε) ≥
iK(u).

Remark 3 See also [7, Thm 2.4] for functionals on H , which is more relevant
for (13).

In the abstract setting, we approximate (1) by

Au+∇φε(u) = Bz+ f (11)

We denote the approximate solution mapping by Sε . For the next result, we restrict
ourselves to the case when A is symmetric (as in Example 2), see [7, Thm. 2.2].

Theorem 4 Let wε → w in V ∗ as ε ↓ 0, then the sequence {uε} ⊂ V with uε :=
Sε(wε) converges weakly to u = S(w) as ε ↓ 0. If in addition,
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〈∇φε(y)−∇φδ(v), y − v〉 ≥ −C(1+ (‖∇φε(y)‖2
V ∗ + ‖∇φδ(v)‖2

V ∗))(ε + δ),

∀ε, δ > 0,∀y, v ∈ V, (12)

then uε → u (strongly in V ) as ε ↓ 0.

In the setting of Example 2, one possibility for φε is:

φε(u) := (2ε)−1‖(−u)+‖2
L2 . (13)

Redefining K0 for L2-functions, φε in (13) is the Moreau-Yosida regularization
of the indicator functional iK0 with respect to the L2-topology, cf. [5, Sec. 2.7].
However, in order to solve the smoothed MPECs numerically, we will require more
smoothness of φε below. We now approximate (5) by:

min Jε(z) := F(Sε(Bz))+G(z) over z ∈ Zad, (14)

Thus, the existence theory, optimality conditions, and numerical methods for (14)
reduces to results from PDE-constrained optimization.

Turning to Example 2, we employ a smoothed plus function in (11) characterized
by:

∇φε(u) =

⎧⎪⎨
⎪⎩
ε−1u− 0.5, if u ≥ ε,
u3

ε3 − u4

2ε4 , if u ∈ (0, ε),

0, else,

∇2φε(u) =

⎧⎪⎨
⎪⎩
ε−1, if u ≥ ε,
3u2

ε3 − 2u3

ε4 , if u ∈ (0, ε),

0. else.
(15)

We can then prove that the approximate solution mapping Sε is Fréchet differen-
tiable. Then, for a solution (zε, uε), there exists an adjoint state pε ∈ V such that

α(zε, w − zε)+ (B∗pε,w − zε) ≥ 0, ∀w ∈ Zad (16a)

A∗pε − λε = ud − uε, (16b)

Auε − ξε, = Bzε + f, (16c)

ξε = ∇φε(−uε), a.e. x ∈ Ω (16d)

λε = −∇2φε(−uε)pε, a.e. x ∈ Ω, (16e)

holds; cf. the techniques in [57, 77].
We note here that the case of gradient constraints mentioned in (3) can also

be treated using such a penalty method. However, using a standard quadratic
penalty/Moreau-Yosida-type approach yields a penalized state equation of the form:

−div((1+ ξε)∇uε) = Bzε + f, (17a)

ξε = 1

ε

(
1− Ψ

|∇uε |
)
+
, (17b)
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which is considerably more challenging due to the bilinear dependence on uε in the
PDE and accompanying non-smooth first-order PDE.

From (16), it is possible to derive C-stationarity conditions and, under further
assumptions, even S-stationarity conditions, cf. [39, 40], by passing to the limit
in ε. More specifically, we show that a subsequence of stationary points for (16)
converges to a point that satisfies C-stationarity for (7). Therefore, if we have a
numerical method that solves (16), then by performing continuation on ε ↓ 0 we
have a means of numerically approximating C-stationary points (or better) for (7).
This furnishes a convergence proof in function space for the “outer loop” of the
method, depicted in Algorithm 4.1. For the interested reader, we provide a short
discussion of the limiting arguments in Detail 5.

Algorithm 4.1 Adaptive penalty method: outer loop

Input: ud, f ∈ L2(Ω), β ∈ (0, 1);
1: Choose ε0 > 0, (z0, u0, ξ0, p0, λ0) ∈ L2(Ω)×H 1

0 (Ω)×L2(Ω)×H 1
0 (Ω)×L2(Ω) and set

k := 0;
2: repeat
3: Compute a stationary point (zk+1, uk+1, ξk+1, pk+1, λk+1) of (16) with ε = εk using an

iterative scheme with initial value (zk, uk, ξk, pk, λk);
4: Set εk+1 = βεk

5: until some stopping rule is satisfied.

Detail 5 (Sketch of the Limiting Technique) We first note that (16a) is equivalent
to

zε = ProjZad
(− 1

α
B∗pε). (18)

Suppose Zad is bounded, then {zε}ε>0 is bounded in Z. Let εk ↓ 0. Then, there

exists a subsequence {zl} with zl = zεkl

Z
⇀ z� ∈ Zad . Hence, Sεkl (Bzl) =: ul V→

u� = S(Bz�) by Theorem 4 due to the complete continuity of B. Therefore, ξl →
ξ� := Bz� + f −Au� ∈ −NK0(u

�), i.e., ξ�, u� satisfy. For the adjoint state pε and
multiplier λε , we test the adjoint equation (16b) with pε :

c1‖pε‖2
V ≤ 〈A∗pε − λε, pε〉 = (ud − uε, pε) ≤

‖ud − uε‖H‖pε‖H ≤ c2‖ud − uε‖H‖pε‖V

for scalars c1, c2 > 0, independent of ε. Since ul
V→ u�, {pl} is bounded in V .

Hence, there exists {plm} with plm

V
⇀ p� and, by substitution, λlm

V ∗
⇀ λ� = u� −

ud + A∗p�.
Without knowledge of the best possible system, one might stop at this point;

however, the theory indicates that a much more refined system is possible. We
quickly demonstrate (9g). The remaining conditions (9h), (9i) require lengthy
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arguments that go beyond the scope of this work. Returning to (16b), it is clear
that

〈A∗pε, pε〉 − (ud − uε, pε) = 〈λε, pε〉 = −
ˆ
Ω

∇2φε(−uε)|pε |2dx ≤ 0.

Since A is symmetric, the bilinear form a(·, ·) is weakly lower-semicontinuous.

Moreover, due to the Rellich-Kondrachov theorem, both uε
H→ u�, pε

H→ p�. Thus,

〈λ�, p�〉 = 〈A∗p�, p�〉−(ud−u�, p�) ≤ lim inf
m→+∞〈A

∗plm, plm〉−(ud−ulm, plm) ≤ 0.

(19)

In [7], a more general setting allows a similar argument. However in general, e.g., if
A is not symmetric, we only have:

lim sup
ε↓0

〈λε, pε〉 ≤ 0

as mentioned at the end of Section 3.3. ��
A possible stopping rule in Algorithm 4.1 could be the residual of the C-

stationarity system (9) or when a minimum value of εk+1 is reached, e.g., machine
precision. Obviously, the most computationally demanding part here is step 3.
Assuming that ProjZad

is relatively simple to calculate, e.g., for local bilateral
constraints, then (16) reduces to

A∗pε +∇2φε(−uε)pε = ud − uε, (20a)

Auε − ∇φε(−uε) = BProjZad
(− 1

α
B∗pε)+ f. (20b)

One could then solve (20) using, e.g., a semismooth Newton method. Alternatively,
an interior point approach for the projection might be employed. We briefly recall
the semismooth Newton method in infinite-dimensional spaces as discussed in [19,
38, 79]. Let X, Y be Banach spaces, D ⊂ X an open subset of X, and F : D→ Y .

Definition 5 The mapping F : D ⊂ X → Y is said to be Newton-differentiable
on the open subset U ⊂ D, if there exists a family of mappings G : U → L (X, Y )

such that

‖F (x + h)−F (x)− G (x + h)h‖Y = o(‖h‖X),∀x ∈ U.

G is called the Newton derivative for F on U . In [38], it is shown that
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Gδ(y)(x) =
⎧⎨
⎩

1 if y(x) > 0
0 if y(x) < 0
δ if y(x) = 0

(21)

for every y ∈ X and δ ∈ R is a Newton derivative of the max(0, ·), under the
condition that max(0, ·) : Lp(Ω)→ Lq(Ω) with 1 ≤ q < p ≤ ∞.

Therefore, if a mapping F is Newton-differentiable, then using the concepts
above leads to a generalized Newton step for the equation F (x) = 0, see, e.g.,
[19, 38].

Theorem 6 Suppose that F (x∗) = 0 and that F is Newton-differentiable on an
open neighborhood U of x∗ with Newton derivative G . If G (x) is nonsingular for
all x ∈ U and the set

{||G (x)−1||L (Y,X) : x ∈ U
}

is bounded, then the semismooth
Newton iteration

xl+1 = xl − G (xl)
−1F (xl), l = 0, 1, 2, . . . (22)

converges superlinearly to x∗, provided that ||x0 − x∗||X is sufficiently small.

Under the assumption that Zad :=
{
v ∈ L2(Ω) | a ≤ v ≤ b, a.e. x ∈ Ω

}
with

a, b ∈ L2(Ω) and a < b, we can derive a semismooth Newton step for the solution
of (20) in function space: Fix some (u, p) ∈ H 1

0 (Ω) × H 1
0 (Ω) and define the

following subsets of Ω:

Ωa :=
{
x ∈ Ω

∣∣∣a(x)+ α−1(B∗p)(x) > 0
}
,

Ωb :=
{
x ∈ Ω

∣∣∣−α−1(B∗p)(x)− b(x) > 0
}
.

Moreover, let Ωina := Ω \ (Ωa ∪Ωb) (up to a set of Lebesgue measure zero) and
define the residual Fε(u, p) of (20) by:

F 1
ε (u, p) := Au− ∇φε(−u)− BProjZad

(− 1

α
B∗p)− f,

F 2
ε (u, p) := A∗p +∇2φε(−u)p − ud + u.

Since

z = ProjZad
(−α−1B∗p) = −α−1B∗p − (−α−1B∗p − b)+ + (a + α−1B∗p)+,

(23)

we can use (21) to obtain a Newton derivative G for F :

Gε(u, p) =
[
A+∇2φε(−u) α−1χΩinaBB∗
I − ∇3φε(−u)p A∗ + ∇2φε(−u)

]
,
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where χΩina is the characteristic function for the set Ωina . If (δu, δp) denotes the
difference between the new iterate and the current iterate in the semismooth Newton
step, then at each iteration, we solve

[
A+∇2φε(−u) α−1χΩinaBB∗
I − ∇3φε(−u)p A∗ + ∇2φε(−u)

] [
δu

δp

]
= −Fε(u, p). (24)

If we can show that Gε(u, p) is invertible independently of (u, p) (for fixed ε >

0) so that the set
{||Gε(u, p)

−1|| : (u, p) ∈ H 1
0 (Ω)×H 1

0 (Ω)
}

is bounded, then we
are guaranteed to have local superlinear convergence. This leads to Algorithm 4.2.

Algorithm 4.2 Adaptive penalty method: inner loop

Input: tol > 0, a, b, ud , f ∈ L2(Ω), εk > 0, (uk0, p
k
0) ∈ H 1

0 (Ω)×H 1
0 (Ω), l := 0;

1: repeat
2: Compute a step (δukl , δp

k
l ) by solving (24) with (u, p) := (ukl , p

k
l ), ε = εk .

3: Set ukl+1 := ukl + δukl , pk
l+1 := pk

l + δpk
l , l := l + 1;

4: until ‖F (ukl , p
k
l )‖ < tol

We conclude this subsection with a numerical experiment. This is used in part to
compare to the non-smooth numerical methods in later sections.

Example 3 Let Ω = (0, 1)2, α = 1, b ≡ 0.035, a ≡ 0, and A = −Δ (associated
with H 1

0 (Ω)). Defining

y†(x1, x2) =
{

160(x3
1 − x2

1 + 0.25x1)(x3
2 − x2

2 + 0.25x2) in (0, 0.5)× (0, 0.5),
0 else,

ξ†(x1, x2) = max(0,−2|x1 − 0.8| − 2|x1x2 − 0.3| + 0.5),

we set

f = −Δy† − y† − ξ†, and ud = y† + ξ† − αΔy†.

The example is chosen due to the nontrivial biactive set and overlap of active sets for
the control and state constraints. The only change to [40, Exp. 5.1] is the addition
of control constraints, which were set to ±∞ there. Concerning the discretization
and solution, we use a standard five-point stencil to discretize the negative Laplace
operator with finite differences. The problem is solved on a uniform mesh with 5122

grid points.
We start the algorithm at (z0, u0, ξ0) = (0, 0, 0). The stopping criterion is based

on the L2-norm of the residual with stopping tolerance of 10−9. For this example,
the ε-update in 4.1 proved to be extremely sensitive, meaning that a reasonably
aggressive update strategy, e.g., εk+1 = εk/2 failed once εk = O(10−4). To be fair,
one would normally not cold-start this algorithm on such a fine grid. Opting instead
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for either an adaptive FEM strategy, multigrid scheme (as in [40]), or a nested
grid strategy (as in [39, 46]) would certainly improve the performance and allow
for a more aggressive update strategy for the smoothing parameter. Nevertheless,
we see that as the penalized problem approaches the original non-smooth non-
convex problem, the nonlinear system becomes increasingly more difficult to solve
(eventually even failing). See Table 1 for the convergence history and Figure 1 for
plots of the solution.

4.2 An �1 Penalty Method

In this subsection, we present a technique originating in the finite-dimensional
MPEC literature [3]. The extension to infinite dimensions can be found here [43].
The idea is elegant in its simplicity and allows us to approximate the elliptic MPEC
by a sequence of PDE-constrained optimization problems with control and state
constraints. Moreover, instead of a semilinear elliptic PDE, as in the previous
method, we have a linear elliptic PDE. We begin in the abstract framework of
Section 2.5 under the assumption that K is a cone and then pass to the problem
in Example 2.

Using an !1-penalty for the condition 〈u, ξ 〉 = 0, we approximate (6) by

min J (z, u)+ 1

ε
|〈u, ξ 〉| over (z, u, ξ) ∈ Z × V × V ∗, (25a)

s.t. z ∈ Zad, (25b)

Au− ξ = Bz+ f, (25c)

u ∈ K, ξ ∈ K+. (25d)

By definition of K+, 〈u, ξ 〉 ≥ 0. Hence, for (u, ξ) ∈ K ×K+, 1
ε
|〈u, ξ 〉| = 1

ε
〈u, ξ 〉,

which yields the smooth objective Jε(z, u, ξ) := J (z, u)+ 1
ε
〈u, ξ 〉.

The analysis for this problem requires several technical results. Nevertheless,
under appropriate regularity and boundedness assumptions, one can still show exis-
tence of a solution, consistency of the approximation, derive first-order conditions
and (after passing to the limit in ε) obtain a (weak) form of C-stationarity. We briefly
sketch the ideas here and refer the reader to [43, Section 2] for the detailed technical
analysis in the context of Example 2.

Detail 7 (Sketch of Existence and Consistency Arguments) In addition to the
assumptions in Theorem 2, let F be weakly lower-semicontinuous, Zad bounded,
and A symmetric.

To show that (25) has a solution, we prove the boundedness of infimizing
sequence {(zk, uk, ξk)} (despite the unboundedness of K+ and lack of coercivity
of Jε(z, u, ξ)). Let (z0, u0, ξ0) be feasible for (6). Then, for all sufficiently large
k ∈ N ,
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Fig. 1 Solution plots for adaptive penalty method Algorithms 4.1 and 4.2, clockwise from upper
left: characteristic function χΩ0

�
optimal control z�, state u�, multiplier λ�, adjoint p�, and

multiplier ξ�. Notice the nontrivial biactive set for the variational inequality and the upper and
lower active sets for the control constraints

J (z0, u0) = Jε(z0, u0, ξ0) ≥

Jε(zk, uk, ξk) = F(uk)+G(zk)+ 1

ε
〈uk, ξk〉 ≥ G(zk)+ 1

ε
〈uk, ξk〉. (26)

Hence, J (z0, u0) − G(zk) ≥ 1
ε
〈uk, ξk〉 ≥ 0. Since Zad is bounded, there exists

a weakly convergent subsequence {zkl } with zkl ⇀ z� ∈ Zad. Then, by the weak
lower-semicontinuity of G, we have

0 ≤ lim inf
l
〈ukl , ξkl 〉 ≤ lim sup

l

〈ukl , ξkl 〉 ≤ J (z0, u0)−G(z�).

Thus, testing (25c) with ukl , we first obtain the boundedness of {ukl } in V and then
{ξkl } in V ∗. Given A is symmetric, we use an argument as in (19) to prove that
(along a further subsequence {klm}) lim infm〈uklm , ξklm 〉 ≥ 〈u�, ξ�〉, where u� and
ξ� are the weak limit points. Since K and K+ are weakly closed, u� ∈ K and
ξ� ∈ K+. This suffices to prove that (25) has a solution. A proof for consistency of
the approximation, i.e., that global optimizers {(zε, uε, ξε)} converge as ε ↓ 0 (at
least along a subsequence) to a global optimizer {(z�, u�, ξ�)} of (6) can be derived
analogously using the boundedness of {zε} ⊂ Zad and subsequently, the inequality
ε(J (z0, u0)−G(zε)) ≥ 〈uε, ξε〉 ≥ 0. ��

As in Section 4.1, we restrict ourselves to the setting of Example 2 for the
derivation of stationarity conditions. Here, the derivation of first-order optimality
conditions requires the verification of a constraint qualification, in this case that
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of Robinson-Zowe-Kurcyusz, see [88]. According to Propositions 2.5 and 2.6 in
[43], we have the following ε-dependent first-order optimality conditions: For any
solution (zε, uε, ξε) to (25) (under the data assumptions of Example 2), there exists
a multiplier-tuple (pε, ϑε, τε) such that

α(zε, w − zε)+ (B∗pε,w − zε) ≥ 0, ∀w ∈ Zad (27a)

A∗pε + 1

ε
ξε − ϑε = ud − uε, (27b)

Auε − ξε = Bzε + f, (27c)

uε ∈ K0, ξε ∈ K+0 , (27d)

1

ε
uε − pε − τε = 0, (27e)

ϑε ∈ K+0 , 〈ϑε, uε〉 = 0, τε ∈ K0, 〈ξε, τε〉 = 0. (27f)

In comparison, this system is much larger than (16) and contains additional
information. Nevertheless, under certain boundedness assumptions, passing to the
limit in ε yields, in fact, a weaker C-stationarity system, see [43, Thm. 2.9]:

α(z�, w − z�)+ (B∗p�,w − z�) ≥ 0, ∀w ∈ Zad (28a)

A∗p� − λ� = ud − u�, (28b)

Au� − ξ� = Bz� + f, (28c)

u� ∈ K0, ξ � ∈ K+0 , 〈u�, ξ�〉 = 0, (28d)

〈λ�, u�〉 = 0, 〈p�, ξ�〉 = 0, 〈λ�, p�〉 ≤ 0. (28e)

To see that (28e) relates to (9h), (9i) suppose for the sake of argument that ξ�, p�, λ�

are merely vectors of length n and the conditions in (28e) are understood as the
componentwise (Hadamard) products. Then, by complementarity, ξ� ≥ 0 and
ξ�i = 0 if i is an inactive or biactive index and 〈p�, ξ�〉 = 0 in turn implies that
the strongly active components of p� are zero (as in (9h)). The same applies to the
inactive components of λ� due to 〈λ�, u�〉 = 0 (as in (9i)).

Though there is a significant gap, the derivation of (28) is related to the con-
vergence of a function-space-based numerical method. Indeed, using known results
for linear elliptic PDE-constrained optimization problems with control and state
constraints, we have viable efficient algorithms that can guarantee convergence to a
KKT point, which satisfies (27). By performing continuation on ε we can be assured
to converge (along a subsequence) to a weak C-stationary point. Furthermore,
Theorem 2.12 in [43] provides a more compelling argument.

Theorem 8 (Thm 2.12 [43]) Suppose (zε, uε, ξε, pε, ϑε, τε) satisfies (27) and that
(zε, uε, ξε) is feasible for (7). Then, (zε, uε, ξε) is strongly stationary in the sense
of Mignot and Puel, i.e., conditions (9h)–(10b) are replaced by
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p = 0, q.e. x ∈ Ω0+ (29a)

〈λ, φ〉 = 0,∀φ ∈ H 1
0 (Ω) : φ = 0, q.e. Ω0 (29b)

p ≤ 0, q.e. x ∈ Ω00 (29c)

〈λ, φ〉 ≥ 0,∀φ ∈ H 1
0 (Ω) : φ ≥ 0, q.e. Ω00, φ = 0, q.e. Ω \ (I ∪Ω00) (29d)

Since we are using an !1 penalty, which often amounts to an exact penalty function,
there is a good chance that a stationary point (zε, uε, ξε) is feasible for (7) for
sufficiently small ε.

Algorithm 4.3 !1 penalty method: outer loop

Input: ud, f ∈ L2(Ω), β ∈ (0, 1);
1: Choose ε0 > 0, (z0, u0, ξ0, p0, ϑ0, τ 0) ∈ L2(Ω)×H 1

0 (Ω)×L2(Ω)×H 1
0 (Ω)×H−1(Ω)×

H 1
0 (Ω) and set k := 0;

2: repeat
3: Compute a stationary point (zk+1, uk+1, ξk+1, pk+1, ϑk+1, τ k+1) of (27) with ε = εk using

an iterative scheme with initial value (zk, uk, ξk, pk, ϑk, τ k);
3: Set εk+1 = βεk

4: until some stopping rule is satisfied.

Again we might choose as a stopping criterion the residual of C-stationarity,
taking λ := ε−1ξ − ϑ and substituting τ = ε−1u − p. Since the theory only
guarantees ϑ ∈ H−1(Ω), one will need to treat the discrete quantities carefully,
cf. [43] for more details. In addition, the solution of the subproblems (25) does
not reduce to the solution of a system similar to (20). Therefore, the solution of
the subproblems can be more difficult than in the adaptive penalty framework.
Nevertheless, the theoretical result in Theorem 8 indicates the potential of this
algorithm to generate a better stationary point.

5 Non-Smooth Numerical Methods

In this section, we present several methods that do not require a smoothing or
penalization of the original MPEC. We present a new approximate projected
subgradient method alongside a direct solver for the C-stationarity system presented
in [36] and a recent method from [46] that may serve as a globalization of the
direct solver. In all of these methods, we need to solve the variational inequality (1).
This can be done using the semismooth Newton methods as in [38, 41] or special
monotone multigrid methods as in [55].
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5.1 An Approximate Projected Subgradient Method

The subgradient method is perhaps the simplest non-smooth optimization algorithm.
Suppose X is a real separable Hilbert space. Given a proper, convex, lower-
semicontinuous, and subdifferentiable functional f : X → R, x0 ∈ X, g0 ∈
∂f (x0), and a sequence {νk} with νk > 0, compute a sequence of iterates {xk}
according to the rule

xk+1 := xk − νkg
k, gk+1 ∈ ∂f (xk).

Here, and unless otherwise noted below, we would need to apply the Riesz map to
gk before using it in this iteration.

Similarly, given a non-empty, closed, and convex subset C ⊂ X the projected-
gradient method replaces the previous rule by

xk+1 := ProjC (xk − νkg
k), gk+1 ∈ ∂f (xk+1). (30)

The subgradient method was invented by N.Z. Shor in the 1970s, see [76], and
although it does not guarantee descent of the objective functional and can be quite
slow to converge, it still finds a wide array of applications due to its simplicity and
ability to be combined with distributed algorithm techniques, as in, e.g., [78].

Consider the reduced elliptic MPEC in (5):

min J (z) := F(S(Bz))+G(z) over z ∈ Zad.

Since S is nonlinear, the reduced objective functional is typically non-convex.
Therefore, we cannot directly apply the projected subgradient method. However,
there exist a number of generalized subdifferentials for non-convex functions. In
our case, we will initially make use of the limiting subdifferential (also known as the
Mordukhovich subdifferential) for the reduced objective. We will restrict ourselves
to the framework of Example 2. First, we recall several definitions from variational
analysis, see [66].

Definition 6 (Normal Cones to Arbitrary Sets) Let X be a Hilbert space and
C ⊂ X. Then, the multifunction N̂C : X ⇒ X∗ defined by

N̂C(x) :=
{
x∗ ∈ X∗

∣∣∣ 〈x∗, x′−x〉X ≤ o(||x′−x||X), ∀x′ X→ x, x′ ∈ C
}
, x ∈ C,

(31)

and N̂C(x) := ∅ for x /∈ C is called the regular (Fréchet) normal cone to C. The
multifunction NC : X ⇒ X∗ defined by

NC(x) :=
{
x∗ ∈ X∗

∣∣∣∣ ∃xk X→ x, ∃x∗k
X∗
⇀ x∗ : x∗k ∈ N̂C(xk), ∀k ∈ N

}
(32)

is called the limiting (Mordukhovich) normal cone to C.
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Although N̂C is convex, it fails to admit a satisfactory calculus needed for most
non-smooth, non-convex problems. In contrast, the limiting normal cone enjoys a
robust calculus. Note that for closed convex sets C, both cones agree, and in general
N̂C(x) � NC(x). We will use the limiting normal cone to define a generalized
subgradient, needed in part for our proposed numerical method.

Definition 7 (Limiting Subdifferential) Let X be a Hilbert space, φ : X → R,
and x ∈ X such that |φ(x)| < +∞. The set

∂φ(x) := {x∗ ∈ X∗
∣∣ (x∗,−1) ∈ Nepi φ(x, φ(x))

}
(33)

is called the limiting (Mordukhovich) subdifferential. If |φ(x)| = ∞, we set
∂φ(x) = ∅.

Therefore, if we know the limiting subdifferential ∂J (z) in (5), then we could
design a projected subgradient iteration along the lines of (30):

zk+1 := ProjZad
(zk − νkg

k), gk+1 ∈ ∂J (zk+1).

If J were smooth, then ∂J is just the gradient of the reduced objective functional,
which we usually calculate in PDE-constrained optimization by solving an adjoint
equation. However here, J is non-smooth and non-convex. In order to obtain a
generalized adjoint state for the reduced objective functional we require the so-
called “coderivatives.”

Definition 8 (Coderivatives) Let X be a Hilbert space, Φ : X ⇒ X∗, and y ∈
Φ(x), i.e., (x, y) ∈ GraphΦ. The regular (Fréchet) coderivative of Φ at (x, y) is
the multifunction D̂∗Φ(x, y) : Y ∗ ⇒ X∗ defined by

h∗ ∈ D̂∗Φ(x, y)(d∗)⇐⇒ (h∗,−d∗) ∈ N̂GraphΦ(x, y). (34)

The limiting (Mordukhovich) coderivative D∗Φ(x, y) of Φ at (x, y) ∈ GraphΦ is
similarly defined by

h∗ ∈ D∗Φ(x, y)(d∗)⇐⇒ (h∗,−d∗) ∈ NGraphΦ(x, y). (35)

For example, if Φ = Sε from Section 4.1, then the coderivatives coincide and we
have:

D̂∗Sε(w, u)(w∗) = D∗Sε(w, u)(w∗) = S′ε(w)∗w∗, w∗ ∈ X∗,

i.e., D̂∗Sε(w, u)(w∗) yields the usual adjoint state p obtained by solving the
associated linear elliptic PDE with −w∗ on the right-hand side.

For the tracking-type objective in Example 2, it was argued in [44, Prop. 1] that

∂J (z) ⊂ αz+ B∗D∗S(Bz, u)(u− ud). (36)
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Here, it follows from [66, Thm 4.44] that p ∈ D∗S(Bz, u)(u− ud) is a solution to
the generalized adjoint equation:

A∗p +D∗NK0(u, ξ)(p) ) ud − u, (37)

where ξ = Bz + f − Au ∈ NK0(u). Therefore, assuming that (37) were solvable,
we could fashion our projected subgradient method as in Algorithm 5.4.

Algorithm 5.4 Limiting projected subgradient algorithm

Input: {νk} with νk > 0; z0 ∈ Z; u0 = S(Bz0); ξ0 = Bz0 + f − Au0; Find a solution p0 to

A∗p +D∗NK0 (u
0, ξ0)(p) ) ud − u0.

1: for k = 0, 1, . . . do
2: Set zk+1 := ProjZad

(zk − νkg
k) with gk = αzk + B∗pk .

3: Set uk+1 := S(Bzk+1), ξk+1 := Bzk+1 + f − Auk+1.
4: Find pk+1 a solution to

A∗p +D∗NK0 (u
k+1, ξk+1)(p) ) ud − uk+1.

5: end for

Since we have no efficient means of handling D∗NK0(u
k+1, ξ k+1)(p), Algo-

rithm 5.4 is impractical, especially when we consider that subgradient meth-
ods potentially require many iterations even for favorable convex problems. We
therefore propose an alternative in Algorithm 5.5. The formal derivation for the
approximate generalized adjoint state is based on simple geometric observations for
a related finite-dimensional setting.

Consider that the (convex) normal cone NK0 is generated by the (convex) subd-
ifferential of the indicator functional iK0 . Since the functionals φε in (13) converge
in a variational sense to iK0 , they provide a viable candidate for approximating
elements of NK0 . Moreover, for any u ∈ V , ∇φε(u) = −ε−1(−u)+. Comparing
as ε ↓ 0, it appears (at least in finite dimensions) that Graph∇φε → Graph−NK0 ,
see Figure 2. This behavior transfers to N̂Graph−NK0

(u, ξ) and N̂Graph∇φε (u, ξ), cf.

Figure 2 with Θ := Graph−NR+ and Λ := Graph∇φ0.1.
Using the information in Figure 2, we can first calculate the limiting normal

cones NΘ(u, ξ), from which we obtain: D∗NΘ(1, 0)(p) = {0}, for all p, and

D∗NΘ(0, 1)(p) = R, if p = 0,

otherwise D∗NΘ(0, 1)(p) = ∅. The most interesting case is:

D∗NΘ(0, 0)(p) =
⎧⎨
⎩
{0}, for all p < 0,
R, if p = 0
R−, else.
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Fig. 2 From left to right: Graph∇φε (ε = 1, 0.5, 0.1) versus Graph NR+ ; N̂Graph−NR+ (u, ξ) for

(u, ξ) = (1, 0), (0, 1), (0, 0); N̂Graph∇φ0.1(u, ξ) for (u, ξ) = (1, 0), (0, 1), (0, 0)

Similarly, we have for all p

D∗NΛ(1, 0)(p) = {0}, D∗NΛ(0, 1)(p) = −ε−1p;
and

D∗NΛ(0, 0)(p) =
⎧⎨
⎩
{0} ∪ {−ε−1p}, for all p < 0,
{0}, if p = 0,[−ε−1p, 0

]
else.

Though certainly more tractable numerically, D∗NΛ is still a set-valued map-
ping with non-convex images. We therefore suggest the following single-valued
mapping:

D̃∗NΛ(0, 0)(p) :=
{
q : q = −ε−1χ{u=0}p

}

where χ{u=0} is the characteristic function for the active set. This mapping coincides
with the limiting coderivative D∗NΘ on the inactive set and strongly active set,
whenever D∗NΘ is non-empty. On the biactive set, it is either contained in D∗NΘ

or approaches it for ε ↓ 0, cf. Figure 3.
By extrapolating these ideas from this simple one-dimensional geometric study

to the infinite-dimensional setting, we arrive at our proposed algorithm.
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Fig. 3 Blue: D∗NΘ(0, 0)(p), Red: D∗NΛ(0, 0)(p), Black: D̃∗NΛ(0, 0)(p); ε = 0.5

Algorithm 5.5 Approximate projected subgradient algorithm
Input: {εk} such that εk ↓ 0; {νk} such that νk > 0.
Input: z0 ∈ Z; u0 = S(Bz0); ξ0 = Bz0 + f − Au0; Solve for p0:

A∗p + 1

ε0
χ{u0≤0}p = ud − u0.

1: for k = 0, 1, . . . do
2: Set zk+1 := ProjZad

(zk − νkg
k) with gk = αzk − B∗pk .

3: Set uk+1 := S(Bzk+1), ξk+1 := Bzk+1 + f − Auk+1

4: Solve for pk+1:

A∗p + 1

εk+1
χ{uk+1≤0}p = ud − uk+1.

5: end for

Remark 4 In fact, −χ{u≤0}p is nothing more than the adjoint of the Newton
derivative for the non-smooth Nemytskii operator (−·)+ : H 1

0 (Ω)→ L2(Ω).

Using the analytical techniques described throughout the text, we have the next
result.

Theorem 9 Suppose that Zad is bounded. Then, any sequence {(zk, uk, ξk,
pk, λk)} ⊂ Z × V × V ∗ × V × V ∗ generated by Algorithm 5.5 is bounded.
Here,

λk := − 1

εk
χ{uk≤0}pk.
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Moreover, any weak accumulation point of (z�, u�, ξ�, p�, λ�) will be feasible
for (7) and we have

lim
k→∞

ˆ
{uk=0}

|pk|2dx = 0, 〈λ�, p�〉 ≤ 0, 〈λ�, u�〉 = 0. (38)

Proof Since Zad is bounded, {zk} is bounded in Z. It immediately follows that {uk}
is bounded, since

c‖uk‖2
V ≤ 〈Auk, uk〉 − 〈ξk, uk〉 = 〈Bzk + f, uk〉 ⇒ c‖uk‖V ≤ ‖Bzk + f ‖V ∗

and ξk = Bzk + f − Auk . Similarly, we obtain the boundedness of {pk} in V and
{λk} in V ∗:

c‖pk‖2
V ≤ 〈A∗pk, pk〉 + 〈λk, pk〉 = 〈ud − uk, pk〉 ⇒ c‖pk‖V ≤ ‖ud − uk‖V ∗

and λk = ud − uk − A∗pk . Furthermore, since

0 ≤ εk〈A∗pk, pk〉 +
ˆ
{uk=0}

|pk|2dx = εk〈ud − uk, pk〉

the limit condition in (38) holds. Moreover, will can again show that 〈λ�, p�〉 ≤ 0
using the same argument as in (19) and by definition 〈λk, uk〉 = 0. Since B is
compact, uk → u� in V (along a subsequence). This yields 〈λ�, u�〉 = 0.

The purpose of Theorem 9 is to show that Algorithm 5.5 produces a sequence with
a weak accumulation point that satisfies a kind of limiting C-stationarity system.
However, the lag in indices prevents us from closing the argument by proving that
{zk} fulfils (9) (regardless of whether we choose fixed, bounded, or diminishing
step sizes). Nevertheless, we will see later in the bundle-free approach that a variant
of our approximate adjoint equation can under certain circumstances yield descent
directions for the reduced objective.

We now demonstrate the performance of the algorithm on an example with a
nontrivial biactive set: Example 3. In order to assure feasibility at every step, we
solve the variational inequality with the primal-dual active set (PDAS)/semismooth
Newton method from [38]. Note that although the solver for the variational
inequality is mesh dependent, the majority of the linear solves are done within the
first four iterations, see Table 2. For a graph of the behavior of the residuals as well
as plots of the solution, see Figure 4.

We again use a uniform grid with 5122 grid points and start the algorithm at
(z0, u0, ξ0) = (0, 0, 0). We choose the a priori step sizes νk := (k)−1/2 and update
εk according to εk := 10−4/2k . The inner PDAS solver stops once the residual of
the non-smooth system of equations reaches a tolerance of 10−10. Though the theory
does not provide a stopping criterion, we check the residual of strong stationarity,
which reaches O(10−9) after 30 iterations. The residual is calculated using a discrete
approximation of the following quantity:
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Table 2 Outer loop k vs. inner loop iterations “iter” for PDAS with tol = 10−10 used in
Algorithm 5.5

k 1 2 3 4 5 · · · 31 32

iter 84 9 2 1 1 · · · 1 1

Fig. 4 Clockwise from upper left: residual of strong stationarity for Algorithm 5.5, optimal
control z�, state u�, multiplier λ�, adjoint p�, and multiplier ξ�

resk := ‖zk−ProjZad
(zk−gk)‖L2+‖Auk−ξk−zk−f ‖L2+‖max(0,−uk)‖L2+

‖max(0,−ξk)‖L2 +|(ξk, uk)L2 |+‖Apk−λk+uk−ud‖L2 +|max(0, 〈λk, pk〉)|+
‖χ

Ω0+
k
pk‖L2 + ‖χIk

λk‖L2 + ‖χΩ00
k

max(0, pk)‖L2 + ‖χΩ00
k

max(0,−λk)‖L2

(39)

Despite lacking a convergence theory, the algorithm performs very well on this
large-scale nontrivial problem. Indeed, counting all the free variables (z, u, ξ, etc.)
there are over 106 degrees of freedom. Moreover, the presence of biactivity means
that the example considered is genuinely non-smooth and non-convex. This is
particularly encouraging, as the algorithm clearly outperforms the adaptive penalty
method in terms of ease of implementation, size and structure of the systems of
linear equations, and order of accuracy (almost reaching even strong stationarity). In
particular, we note the stark contrast to the “sharpness” of the solution in comparison
to the smooth method.

5.2 A Direct Solver for C-Stationarity Conditions

In this section, we adapt a method from [36] to the canonical MPEC (7). We work
in the setting of Example 2 and assume that
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Zad :=
{
v ∈ L2(Ω) | a ≤ v ≤ b, a.e. x ∈ Ω

}

with a, b ∈ L2(Ω), a < b. We first state the algorithm. Then, we motivate the steps
of the algorithm and discuss its convergence properties.

The formal derivation of Algorithm 5.6, which we describe in detail below,
follows several basic steps: Fix a control and estimate the active and inactive sets;
ignoring biactivity, use (28e) to approximate (28b)–(28e) as a system of equations;
solve the reduced system (including (28a)) to obtain an update; test the residual of
C-stationarity, if necessary, return to 1.

Algorithm 5.6 An active-set equality-constrained newton solver w. Feasibility
restoration
Input: a, b, ud , f ∈ L2(Ω), α > 0, z0 ∈ L2(Ω), p0 ∈ H 1

0 (Ω), k := 0;
1: repeat
2: Compute (uk, ξk) by solving

Au− ξ = Bzk + f, ξ = (ξ − cu)+, c > 0,

and set

Ω0
k :=

{
x ∈ Ω

∣∣∣ uk(x) = 0
}
,

Ω+k :=
{
x ∈ Ω

∣∣∣ uk(x) > 0
}
;

3: Compute

Ωa
k :=

{
x ∈ Ω

∣∣∣a(x)+ α−1(B∗pk)(x) > 0
}
,

Ωb
k :=

{
x ∈ Ω

∣∣∣−α−1(B∗pk)(x)− b(x) > 0
}
.

and Ωina
k := Ω \ (Ωa

k ∪Ωb
k ).

4: Compute (δuk, δpk) by solving

A∗δp + δu = ud − uk − A∗pk, on Ω+k ,

δp = 0, on Ω0
k ,

Aδu+ α−1BχΩina
k

B∗δp = BProjZad
(−α−1B∗pk)+ f − Auk, on Ω+k ,

δu = 0, on Ω0
k ,

and set uk+1 := uk + δuk , pk+1 := pk + δpk ,

zk+1 := zk + δz = ProjZad
(−α−1B∗pk)− α−1χΩina

k
B∗δpk

k := k + 1;
5: until some stopping criterion is satisfied
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More specifically, suppose we are in the infinite-dimensional setting. Assuming
that ξ� is sufficiently regular, then Equations (28c), (28d) can be understood as the
following system of smooth and non-smooth equations:

Au� − ξ� = Bz� + f, (40a)

ξ� = (ξ� − cu�)+, (40b)

where c > 0 is some scaling constant. Since ξ� ∈ L2(Ω), the Newton derivative for
the plus function described at the end of Section 4.1 is not valid in this setting (since
both the domain and range here must be taken as L2(Ω)). On a discrete level, this is
not an issue. For some fixed z�, solving (40) gives a pair (u�, ξ�) along with active
and inactive sets:

Ω0(u�) := {x ∈ Ω
∣∣ u�(x) = 0

}
, Ω+(u�) := {x ∈ Ω

∣∣ u�(x) > 0
}
.

As in our discussion of (28), if we treat the variables u�, λ� as finite-dimensional
vectors and the complementarity condition as the pointwise product of u� and λ�,
then the complementarity condition would indicate that λ� = 0 on the inactive
set. Analogously, we take p� = 0 on the (entire) active set, thus ignoring
biactivity. Consequently the remaining sign condition in (28) holds. Finally, using
the projection formula (23) along with a semismooth Newton step, we can handle
the variational inequality (28a). We recall the sets

Ωa :=
{
x ∈ Ω

∣∣∣a(x)+ α−1(B∗p�)(x) > 0
}
,

Ωb. :=
{
x ∈ Ω

∣∣∣−α−1(B∗p�)(x)− b(x) > 0
}
.

and Ωina := Ω \ (Ωa ∪Ωb).
Now, supposing we want a new approximation (u�, z�, p�) via u� + δu, z� + δz,

and p� + δp, we consider the reduced system by eliminating the dual variables:

δz+ α−1χΩinaB
∗δp = ProjZad

(−α−1B∗p�)− z� on Ω, (41a)

A∗δp + δu = ud − u� − A∗p�, on Ω+(u�), (41b)

δp = 0, on Ω0(u�), (41c)

Aδu− Bδz = Bz� + f − Au�, on Ω+(u�), (41d)

δu = 0, on Ω0(u�), (41e)

If we replace δz in (41d), then we get the smaller system in (δu, δp):

A∗δp + δu = ud − u� − A∗p�, on Ω+(u�), (42a)

δp = 0, on Ω0(u�), (42b)

Aδu+ α−1BχΩinaB
∗δp = BProjZad

(−α−1B∗p�)+ f − Au�, on Ω+(u�), (42c)

δu = 0, on Ω0(u�), (42d)
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Table 3 Residuals of strong stationarity for Algorithm 5.6 with stopping tolerance tol = 10−7

k 1 2 3 4 5

resk 8.7287e−2 1.6175e−3 1.1190e−5 3.8548e−7 2.2375e−8

which is remarkably similar to the semismooth Newton step in the adaptive penalty
method. Unlike the smooth methods, however, a proof of convergence remains
elusive. The main culprit here is clearly the sequence {Ω+k }, which need not
converge with respect to any notion of set convergence, e.g., Painlevé-Kuratowski
or in the sense of characteristic functions.

Note also that this formally derived system is well-defined in function space
provided that we have enough regularity. For example, provided that the sets
Ω+(u�),Ω0(u�) are sufficiently regular, we could reduce the search for (δu, δp) ∈
H ×H with H := H 1

0 (Ω
+(u�)), solve the associated weak form of (42a), (42b),

and extend the solutions by zero on Ω0(u�).
An obvious stopping criterion for Algorithm 5.6 would be the residual of (28)

up to some user-defined tolerance (as suggested in [36]). Moreover, we see that the
computational effort is roughly that of the adaptive penalty method. In fact, there is
much less nonlinearity here due to a lack of the penalty terms φε. We also mention
that the MPECs in [36] are much more challenging than (7), as the controls there
arise inside the differential operator. Nevertheless, the algorithm seems to perform
very well, even on examples with nontrivial biactive sets.

We demonstrate the performance of Algorithm 5.6 on Example 3. As expected,
Algorithm 5.6 behaves like a second-order method, see Table 3. We once again used
the PDAS/semismooth Newton method in [38] to restore feasibility at every step.
Moreover, since the multiplier λ is eliminated from the algorithm, we artificially
reintroduce it for the calculation of the residuals.

The solutions look identical to those plotted in Figure 5. We therefore only
provide images of the biactive sets for y� and upper and lower active sets for z�.
We note that this algorithm also performs quite well, reaching a residual of strong
stationarity on the order of O(10−8) within k = 5 iterations, though it never reaches
O(10−9) in contrast to the approximating subgradient algorithm. In addition, the
effort to solve each step is higher, as seen in Table 4.

Our next non-smooth method seeks to overcome the theoretical deficiencies of
Algorithm 5.5 and 5.6. In some sense, it takes a step towards bridging the gap
between this active-set-based solver and the approximate projected subgradient
method in the previous subsection.

5.3 The Bundle-Free Implicit Programming Method

We now present the bundle-free implicit programming approach from [46], which
we extend for control constraints. In contrast to the active-set method in the previous
subsection, this method is based off of B-stationarity conditions. We must therefore
assume that S is directionally differentiable.
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Fig. 5 Plot of solutions using Algorithm 5.6. Left to right: characteristic functions χΩ00
�

(set of all
indices with u�i ≤1e−8 and ξ�i ≤ 0), χΩb

�
(set of all indices with z�i ≤ bi−1e−6), and χΩa

�
(set of

all indices with z�i ≥ ai+1e−6)

Table 4 Outer loop k vs. inner loop “iter” iterations for PDAS with tol = 10−10 used in
Algorithm 5.6

k 1 2 3 4 5

iter 84 21 19 1 1

We first state the basic assumptions and the algorithm. Afterwards, we discuss
the motivations for the steps and examine the convergence properties. Throughout
this subsection, let Zad :=

{
z ∈ L2(Ω) | a ≤ z ≤ b

}
with a, b ∈ L2(Ω) and a < b

and assume that the variational inequality is defined as in (7). We otherwise work in
the abstract framework of (6), where J (z) := F(S(Bz))+G(z) and F and G are
continuously Fréchet differentiable. By assumption, ξ ∈ H .

For some constant cq > 0, let q(·) := cq‖ · ‖2/2 and for z ∈ Zad define the local
quadratic models:

M (·) := q(·)+ F ′(z; S′(Bz;B·))+G′(z; ·),
Mε(·) := q(·)+ F ′(z; dε(B·))+G′(z; ·), ε > 0,

where dε(·) is a smooth approximation of S(Bz; ·) such that dε(0) = 0. Here, we
suggest letting dε(w) = d, the solution to

Ad + ε−1χΩ0+d − χΩ0∇2φε(−d) = w,

where w ∈ V ∗, ε > 0, and u = S(Bz). This is related to the true formula for
d = S′(Bz;w) given by

Find d ∈ K (u, ξ) :
ˆ
Ω

∇d · ∇[v − d]dx ≥ 〈w, v − d〉, for all v ∈ K (u, ξ),

(43)
where K (u, ξ) := {

u ∈ H 1
0 (Ω)

∣∣ d(x) ≥ 0, q.e. x ∈ Ω0, d(x) = 0. a.e. x ∈
Ω0+ } ; see [63] (or [15, Chap. 6] for an English summary). As this formula
makes use of quasi-continuity and potentially non-negligible sets of Lebesgue
measure zero, it is unclear how to make direct use of the nonnegativity condition
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in a numerical method. To circumvent this issue, a certain regularity condition is
assumed throughout (as in [46]):

1. Ω0 = int(Ω0),

2. If m(Ω00) = 0, then cap(Ω00) = 0 or S′(Bu;Bh) = d = 0 q.e. x ∈ Ω0.

3. If m(Ω00) > 0, then ∃ν > 0, ∃γ ′ > 0 : ∀γ ≥ γ ′, dγ,ε ≥ 0, a.e.Aν \Ω0)

where Aν :=
{
x ∈ Ω

∣∣dist(x,Ω0) < ν
}
.

In light of this assumption, we speak of “negligible” biactive sets whenever
m(Ω00) = 0. Note that S is in fact Gâteaux differentiable, whenever this condition
holds. This once again highlights a fundamental difference between the optimal
control of PDEs and variational inequalities, even for the simplest variational
inequality of interest.

We also suggest the smooth approximation of the directional derivative in order
to guarantee that pε = d ′ε(0)∗w solves

A∗p + ε−1χΩ0+p = w

and that {pε}ε>0 is uniformly bounded in V . Notice the similarity to the approxi-
mating limiting subgradient suggested earlier.

Algorithm 5.7 A bundle-free implicit programming approach

Input: ε0 > 0, β, ρ, σ ∈ (0, 1), s > 0, (z0, u0, ξ0) ∈ Z × V ×H , k := 0;
1: repeat
2: Set Ω0

k :=
{
x ∈ Ω

∣∣ uk(x) = 0
}

and Ω00
k := {x ∈ Ω0

k

∣∣ ξk(x) = 0
} ;

3: if Ω00
k is negligible then

4: Compute δzk by

δz = ProjTZad (z
k)

[
−c−1

q ∇M k(0)
]
; (44)

5: Compute step size τ k using a line search;
6: Set zk+1 = zk(τ k), uk+1 := S(Bzk+1), ξk+1 := Auk+1 − Bzk+1 − f , k := k + 1;
7: else
8: Compute δzk by

δz = ProjTZad (z
k)

[
−c−1

q ∇M k
εk
(0)
]
; (45)

9: while descent criterion fails do
10: Choose εk ∈ (0, ρεk), update model M k

εk
go to 8:;

11: end while
12: Choose εk+1 ∈ (0, ρεk);
13: Compute τ k as in 5:, update (zk, uk, ξk) as in 6:;
14: end if
15: (Robustification Step), k := k + 1;
16: until some stopping criterion is satisfied

In Algorithm 5.7, TZad(z) is the tangent cone to Zad at z ∈ Zad, which is defined
by

TZad(z) := − [Nad(z)]
+ = R+(Zad − z).
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We use the generalized Armijo line search (cf. [13].): Set τ k := βmk s where mk is
the first nonnegative integer such that

J (zk)−J (zk(βms)) ≥ σ

βms
‖zk − zk(βms))‖2

L2 , (46)

where β, σ ∈ (0, 1), s > 0 and, given a step δz, we set

z(τ ) := ProjZad
(z+ τδz), τ > 0.

Since much of Algorithm 5.7 is derived from B-stationarity conditions, we restate
them here:

J ′(z;w − z) = F ′(S(Bz))S′(Bz;B(w − z))+G′(z)(w − z) ≥ 0, ∀w ∈ Zad.

(47)
From (47), it is clear that we can equivalently reformulate B-stationarity as:

J ′(z; δz) ≥ 0, ∀δz ∈ TZad(z).

Moreover, since J ′(z; δz) is positively homogeneous in δz, it follows that δz = 0
is a minimizer of J ′(z; δz) over TZad(z), whenever z is B-stationary. Finally,
given that TZad(z) is a non-empty, closed, and convex cone, we can add the
coercive quadratic form q to the definition of B-stationarity without altering the
characterization, cf. the general analysis in [46, Section 2]. Therefore, if z is
B-stationary, then 0 ∈ Z solves the auxiliary problem

min
{
M (δz) := q(δz)+J ′(z; δz) over δz ∈ TZad(z)

}
. (48)

Now, if the biactive set is negligible, then S is in fact Gâteaux differentiable. In this
case, (48) has a unique solution given by

(δz∗ + c−1
q (B∗S′(Bz)∗∇F ′(S(Bz))+ ∇G(z)), w − δz∗) ≥ 0, ∀w ∈ TZad(z),

which, noting that ∇M (0) = B∗S′(Bz)∗∇F ′(S(Bz)) + ∇G(z), is equivalent
to (45). Furthermore, in this smooth setting, we can prove the following result.

Proposition 1 Let z ∈ Zad, u = S(Bz), ξ = Au − Bz − f , and suppose that
J is Gâteaux differentiable at z. If z is not B-stationary, then (46) stops in a finite
number of steps.

Proof Suppose δz is given by the projection formula (45). Since δz is the unique
global optimum and 0 ∈ TZad(z), we have

q(δz)+J ′(z; δz) < 0 �⇒J ′(z; δz) ≤ −cq

2
‖δz‖2

L2 (49)



160 T. M. Surowiec

Moreover, for any τ > 0, we have z(τ ) := ProjZad
(z − τδz) and since ProjZad

is
non-expansive:

‖z− z(τ )‖L2 = ‖ProjZad
(z+ τδz)− ProjZad

(z)‖L2 ≤ τ‖z‖L2 . (50)

Furthermore, since z ∈ Zad, δz ∈ TZad(z), and Zad is defined by simple pointwise
bound constraints in L2(Ω), we appeal to the proof of Lemma 6.34 [15], which
shows that

τ−1(z(τ )− z)→ δz as τ ↓ 0. (51)

Finally, suppose that (46) fails for all τ > 0. Then,

τ−1(J (z(τ ))−J (z)) > −στ−2‖z− z(τ )‖2
L2 , ∀τ > 0.

On the right side of the inequality, we can estimate from below using (50):

−στ−2‖z− z(τ )‖2
L2 ≥ −σ‖δz‖2

L2

Now, letting z(τ ) = z + ττ−1(z(τ ) − z) = z + τdτ , where dτ → δz by (51), we
have by (49):

τ−1(J (z(τ ))−J (z)) = τ−1(J (z+τdτ )−J (z))→J ′(z; δz) ≤ −cq

2
‖δz‖2

L2 .

But, then

−cq

2
‖δz‖2

L2 ≥J ′(z; δz) ≥ −σ‖δz‖2
L2 ,

a contradiction, since σ ∈ (0, cq/2).

Proposition 1 provides a justification for steps 4:–6: in Algorithm 5.7. Note that the
calculation of the gradient ∇M k(0) requires the solution of an adjoint equation. For
example, in the setting of Example 2, ∇M k(0) = αzk − B∗pk , where pk solves
(here in strong form):

A∗p = ud − uk on Ω+k ,

p = 0, on Ω0
k ,

(52)

Turning now to the case when the biactive set is non-negligible, we can easily
adjust the proof of Proposition (1) for the non-smooth setting.

Corollary 2 Let z ∈ Zad, u = S(Bz), ξ = Au − Bz − f , and suppose that δz
is minimizer for (48). If z is not B-stationary, then (46) stops in a finite number of
steps.
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Nevertheless, whenever the biactive set is non-negligible, the directional derivative
is nonlinear in δz. In particular, (48) is non-convex, which was a key assumption in
the arguments. We therefore need an alternative procedure to calculate the step δz.

In Algorithm 5.7, we suggested the step δz = ProjTZad (z
k)

[
−c−1

q ∇M k
εk
(0)
]
,

which is related to the smoothed auxiliary problem using the ε-dependent
model Mε :

min
{
Mε(δz) := q(δz)+ F ′(z; dε(Bδz))+G′(z)δz over δz ∈ TZad(z)

}
. (53)

Note if the approximation was chosen so that dε → S and 0 solves (53) for all
sufficiently small ε > 0 (or at least along some null sequence), then z must be
B-stationary as 0 solves (48), as well. In fact, in the current setting, A is symmetric
so we can use the approximation results in [7] (discussed above), see also [46], to
argue that if δzε → δz weakly in L2(Ω), then

dε(Bδzε)→ S′(Bz;Bδz), as ε ↓ 0,

provided that B is completely continuous, e.g., when B is the embedding of L2(Ω)

into H−1(Ω).
On the other hand, if there exists some δz ∈ TZad(z) such that (∇Mε(0),

δz) < 0, then by continuity, there is some ηε > 0 such that Mε(ηεδz) < 0. Since
TZad(z) is a cone, ηεδz ∈ TZad(z) and 0 does not solve (53). If this persists as ε ↓ 0,
then z cannot be B-stationary.

In light of this, consider our δz update. Let w := d ′ε(0)∗F ′(z)+G′(z) = ∇Mε(0)
and note that

TZad(z) =
{
δz ∈ L2(Ω)

∣∣∣ δz ≥ 0, a.e. on Ωa, δz ≤ 0, a.e. on Ωb
}
,

where Ωa := {x ∈ Ω | z(x) = a(x) }, Ωb := {x ∈ Ω | z(x) = b(x) } and Ωina :=
Ω \ (Ωa ∪Ωb). Then, using the basic properties of ProjTZad (z)

, we have

(∇Mε(0), δz) =

− cq

[ˆ
Ωina

|δz|2 +
ˆ
Ωa∩{−c−1

q w≥0}
|δz|2 +

ˆ
Ωb∩{−c−1

q w≤0}
|δz|2

]
≤ 0.

Assuming that the latter term is nonzero and expanding Mε at zero in direction δz,
we obtain:

Mε(0+ ηδz) = η
(ηcq

2
‖δz‖2

L2 + (∇Mε(0), δz)+ o(1)
)
. (54)
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We may then choose a sufficiently small ηε > 0 such that

ηεcq

2
‖δz‖2

L2 + (∇Mε(0), δz)+ o(1) < 0.

Hence, Mε(ηεδz) ≤ 0 and by definition

F ′(z; dε(B(ηεδz)))+G′(z)(ηεδz) ≤ −η2
εq(δzε).

Therefore, if a uniform lower bound η > 0 with ηε ≥ η > 0 exists, then we can
prove that δzε is a descent direction for some sufficiently small ε > 0.

Proposition 2 Let z ∈ Zad, u = S(Bz), and ξ = Au − Bz − f and
suppose that J is only directionally differentiable at z. Furthermore, let δzε =
ProjTZad (z)

[
−c−1

q ∇Mε(0)
]

and assume that lim supε↓0(∇Mε(0), δzε) < 0. If

there exists an η > 0 such that Mε(ηδzε) ≤ 0 for all sufficiently small ε > 0,
then there exists some ε̂ > 0 such that δẑε is a descent direction for J at z.

Proof By assumption, F ′(z; dε(B(ηδzε))+G′(z)(ηδzε) ≤ −η2q(δzε). Then,

J ′(z; ηδzε) = (J ′(z; ηδzε)− F ′(z; dε(B(ηδzε)))−G′(z)(ηδzε))+
F ′(z; dε(B(ηδzε))+G′(z)(ηδzε) ≤

(J ′(z; ηδzε)− F ′(z; dε(B(ηδzε)))−G′(z)(ηδzε))− η2q(δzε) =
F ′(z; S(Bz;B(ηδzε)))− F ′(z; dε(B(ηδzε)))− η2q(δzε) =

〈∇F(z), S(Bz;B(ηδzε))− dε(B(ηδzε))〉 − η2q(δzε).

Now, since {pε} is bounded, we can show that {δzε} is bounded. Hence, there is a
subsequence (denoted still by ε) such that δzε ⇀ δz∗. Then, for sufficiently small
ε̂ > 0

〈∇F(z), S(Bz;B(ηδẑε))− d̂ε(B(ηδẑε))〉 ≤ η2q(δẑε)/2, (55)

Hence, J ′(z; δẑε) ≤ −cqη‖δẑε‖2/4, as was to be shown.

Since a direct verification of the hypotheses is potentially too expensive from a
computational standpoint, we suggest a heuristic. Fix a lower bound η > 0. If
(∇Mε(0), δz) < −q(δz) and (55) (or an approximation as in [46, Remark 3.13])
holds with η = 1 (or η = η), we use the current δz in the line search. Thus, the
“descent condition” in 9: holds. If −q(δz) ≤ (∇Mε(0), δz) < 0, then we choose
η > 0 such that ηq(δz)+ (∇Mε(0), δz) < 0, set δz := ηδz, update η := min(η, η),
and check (55) or an approximation. Here, the descent condition also holds, but
the model Mε might be failing. If (55) fails in the latter, then we go to step 10:.
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Finally, if (∇Mε(0), δz) = 0, then we go to step 10: . In practice, one might also
attempt to circumvent the verification of (55) by using a sufficiently small ε > 0
and decreasing at every step.

This heuristic has its limitations, e.g., it cannot prohibit η ↓ 0. Therefore, if
it appears that this is the case, we break the while loop and go to a “robustification
step” in 15:. This just means that if the quadratic model Mε appears to be ineffective,
then we should calculate a new control z by using an alternative method that is
guaranteed to converge and “restart” the algorithm. For instance, we could use the
adaptive penalty method in Section 4.1 (for a fixed γ , increasing each time the
robustification step is used).

Finally, we recall that in the classical projected-gradient approaches, the Lips-
chitz continuity of the gradient of the objective is essential for convergence proofs,
cf. [13]. There, one can show that the line search will always stop provided that the
step size is below a certain threshold which only depends on σ and the Lipschitz
modulus L. This is, of course, not possible for the control of variational inequalities
as the reduced objective is non-smooth (even when the biactive set is negligible we
only have Gâteaux differentiability). Therefore, we must also monitor the behavior
of the accepted step sizes at each iteration. If, as with η, the step sizes τ k appear to
be rapidly decreasing with each iteration, then we also make use of a robustification
step. For a full convergence proof in the case of the canonical MPEC (excluding
control constraints), we refer the interested reader to [46].

We conclude by demonstrating the performance of the bundle-free method on
two examples, Example 3 and the following example (adapted from [39, Ex. 6.1] by
adding control constraints).

Example 4 Here, we let a ≡ 0, b ≡ 0.8 and set α = 1. In addition, we define f and
ud as follows:

z1(x1, x2) = −4096x6
1 + 6144x5

2 − 3072x4
1 + 512x3

2,

z2(x1, x2) = −244.140625x6
1 + 585.9375x5

2 − 468.75x4
2 + 125x3

2,

y∗(x1, x2) =
{
z1(x1, x2)z2(x1, x2) (x1, x2) ∈]0, 0.5[×]0, 0.8[,
0 otherwise,

u∗=y∗, ξ∗(x1, x2)=2 max(0,−|x1−0.8|−|x1x2−0.2|−0.3+ 0.35),

f = −Δy∗ − u∗ − ξ∗, ud = y∗ + ξ∗ − αΔu∗.

In order to compare to the other methods, we again use a uniform grid with
5122 grid points and start the algorithm at (z0, u0, ξ0) = (0, 0, 0) for Example 3.
In contrast, we use a random starting point when solving Example 4. We start the
algorithm with ε0 = 10−10 and subsequently set εk+1 = εk/2.

For Example 3 we obtain the same solution as in all the previous algorithms.
Likewise, the algorithm performs very well on Example 4, see Table 5 and Figure 6.
We note, however, that Example 4 (when starting with a random initial guess) is
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Table 5 Residuals, step sizes, and number of PDAS iterations (“iter”) for Algorithm 5.7 when
used to solve Examples 3 and 4

k 1 2 3 4

Example 3

resk 0.01018 8.7843e−7 9.2082e−11

τk 1.0 1.0 1.0

iter 84 84 84

Example 4

resk 0.5388 0.00375 3.0727e−7 1.5366e−7

τk 1.0 1.0 0.5 0.00390625

iter 133 133 133 133

Fig. 6 Clockwise from upper left: characteristic functions χΩb
�

(red) and χΩa
�

(blue) (set of all
indices with z�i ≥ bi−1e−6 and z�i ≤ ai+1e−6), optimal control z�, state u�, multiplier λ�, adjoint
p�, and multiplier ξ� for Example 4

more difficult to solve. In fact, once the difference in function values becomes
negligible, i.e., on the order of O(10−13), the residual of S-stationarity stagnates
at O(10−7). Finally, one important aspect of the theory for the bundle-free method
was the relation (∇Mε(0), δz) < −q(δz). To see how the choice of εk influences
this, see Table 6. There, we observe that far from the solution, a larger value of εk
seems to yield a good approximation. However, the choice becomes critical once we
close in on the solution.
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Table 6 Behavior of Taylor expansion of Mε(0+ δzk) at each iteration in Algorithm 5.7 when
applied to Example 3

ε q(δz0)+ (∇Mε(0), δz0) q(δz1)+ (∇Mε(0)δz1) q(δz2)+ (∇Mε(0), δz2)

1e−1 −19.1512 −0.264565 −0.264625

1e−2 −18.6723 −0.0392292 −0.0392487

1e−3 −18.5176 −0.000749805 −0.000750887

1e−4 −18.5087 −8.50068e−6 −8.37251e−6

1e−5 −18.5082 −2.36252e−7 −8.53014e−8

1e−6 −18.5082 −1.5286e−7 −8.54905e−10

1e−7 −18.5081 −1.52175e−7 −8.53968e−12

1e−8 −18.5081 −1.52185e−7 −8.5597e−14

1e−9 −18.5081 −1.52187e−7 −2.26899e−15

1e−10 −18.5081 −1.52187e−7 −1.55728e−15

6 Conclusion

Despite being a topic of interest for several decades, the optimal control of varia-
tional inequalities continues to be an active field of research. The rapidly growing
interest in the past decade appears to be a result of the many theoretical, algorithmic,
and computational advances in PDE-constrained optimization to date. We have
seen here that both reduced space and full-space approaches are possible; however,
the difficulties due to either a non-smooth control-to-state mapping or degenerate
complementarity constraints persist. The various techniques for deriving optimality
conditions in the presence of non-smoothness or degeneracy have led both in finite
and infinite dimensions to a hierarchy of first-order optimality conditions. Some of
these conditions are directly related to function-space-based numerical methods (C-
stationarity) whereas other conditions (e.g., those of Mignot and Puel) are derived
using concepts of generalized differentiation and a fine analysis of the regularity
properties of the underlying functions and multipliers. These facts should therefore
always be taken into account when developing numerical optimization algorithms.

In our numerical studies, we considered two main types of solution methods:
smooth and non-smooth. Using approximation techniques for variational inequal-
ities as in [30, 31], the smooth methods are almost always available and allow us
to immediately take advantage of existing solvers for (smooth) PDE-constrained
optimization problems. For the smoothed/regularized problems, we are only limited
by our knowledge of the corresponding parameter-dependent PDE-constrained
optimization problem. In our study, we make use of a smooth continuation approach
and solve the first-order conditions directly using a semismooth Newton method.
For small penalty parameters ε, the solution of the linear system (24) needed to
calculate the updates is relatively well-behaved. However, the lower off-diagonal
block becomes increasingly problematic as we attempt to approach the limiting
problem for ε ↓ 0. Thus, we eventually pay a major price for smoothing the original
problem.
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As mentioned in the introduction, we present here several possible non-smooth
methods that mirror related approaches in smooth PDE-constrained optimization.
The first method is inspired by the classical projected subgradient methods in
[54, 76]. Just as in these classical methods, the relative cost of each iteration is
roughly as cheap as a standard projected-gradient approach sans line search: solve
the VI, then a linear elliptic PDE, and compute a pointwise projection. As with
all subgradient gradient methods, the strong convergence statements are essentially
limited to convex problems. Nevertheless, the method presented here behaves quite
well in practice and thus, warrants a deeper study in future research.

The active-set method has been taken from [36] and adapted to the setting of
the canonical example. At every iteration, the cost of solving the nonlinear system
is slightly more than in the smooth continuation approach due to the feasibility
restoration step, which requires the solution of a mixed complementarity problem.
However, the conditioning issues are now absent as the potentially problematic
perturbation in the lower off-diagonal blocks has been removed. Just as in [36], this
method performs exceptionally well, even on a problem with persistent biactivity
throughout the iterations. However, as mentioned in the text, proving convergence
of this method is rather difficult. One possibility would be to make regularity and
monotonicity arguments on the data and active sets throughout the iterations (as was
done in [42] for a related problem).

Finally, we considered the bundle-free implicit programming approach, which
can be thought of as a globalization of the active-set strategy since we typically
choose a step size of τ = 1 at the beginning of every line search. Though the
theory does contain several strong assumptions to guarantee unconditional global
convergence to a stationary point, there appear to be no other genuinely non-smooth
function-space-based algorithms for non-smooth non-convex problems currently in
the literature. As noted in [46], if one can prove a kind of semismooth property
of the reduced objective, then the convergence theory is greatly simplified. In
comparison to the other non-smooth methods, it is clearly more costly due to the
usage of the line search. The caveats for this method are the need to monitor the
step sizes (essentially restarting if they get too small) and a meaningful heuristic for
the convergence criteria. Nevertheless, the theory stands in contrast to non-convex
bundle methods as outlined in, e.g., [75]. There, in the ideal non-convex setting,
the algorithm terminates at a point at which 0 lies up to some tolerance ε > 0 in
a convex hull of certain subgradients corresponding to points yi that are not “far
away” from the current iterate xk . The connection to the various MPEC stationarity
concepts is therefore unclear.
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Introduction to PDE-Constrained
Optimization in the Oil and Gas Industry

Jeremy Brandman, Huseyin Denli, and Dimitar Trenev

Abstract This article is an expanded version of a tutorial on applications of PDE-
constrained optimization in the oil and gas industry that was given at the Frontiers in
PDE-Constrained Optimization workshop. (The workshop was held at the Institute
for Mathematics and its Applications June 6–10, 2016.) We begin with an overview
of the oil and gas supply chain that highlights the importance of PDE-constrained
optimization. Next, we take an in-depth look at two key applications: full-wavefield
inversion and reservoir history matching. For each application, we introduce a
PDE model, derive the gradient of the objective function using the adjoint-state
method, and present simple numerical results. We conclude with a discussion of
key challenges.

1 Introduction

Oil and gas1 currently provide over half of the world’s energy supply and are
expected to continue to do so in the coming decades [1]. Because of its high energy
density and ease of transport, oil meets close to 95% of global transportation energy
demand in addition to being used to make plastics, lubricants, asphalt, and other
products [1, 78]. Natural gas is the cleanest-burning major fuel; as a result, it is
commonly used for power generation and is also emerging as a fuel for heavy-duty
trucks and marine transportation.

The oil and gas supply chain can be broken down into multiple stages: explo-
ration, development, production, transportation, and processing at refineries and
chemical plants [78]. Exploration focuses on identifying subsurface hydrocarbon

1Throughout this paper, the term hydrocarbons is used interchangeably with oil and gas.

J. Brandman (�) · H. Denli · D. Trenev
Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale,
NJ 08801, USA
e-mail: jeremy.s.brandman@exxonmobil.com

© Springer Science+Business Media, LLC, part of Springer Nature 2018
H. Antil et al. (eds.), Frontiers in PDE-Constrained Optimization, The IMA
Volumes in Mathematics and its Applications 163,
https://doi.org/10.1007/978-1-4939-8636-1_5

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8636-1_5&domain=pdf
mailto:jeremy.s.brandman@exxonmobil.com
https://doi.org/10.1007/978-1-4939-8636-1_5


172 J. Brandman et al.

reservoirs. This is an indirect process since hydrocarbon deposits are typically
located thousands of meters below the ground. In this stage, multidisciplinary teams
work together to identify the presence and volume of hydrocarbons. Geophysicists
and applied mathematicians analyze the geophysical data sets available in an
effort to infer properties of the subsurface (e.g., elastic, electric, gravitational, and
magnetic properties), while geologists use these properties to interpret the large-
scale geologic features essential to the creation of hydrocarbon reservoirs.

Once a potential reservoir is identified, exploratory wells are drilled to determine
whether or not hydrocarbons are present. If hydrocarbons are found, we move on
to the development stage. In this stage, appraisal wells may be drilled to better
determine the extent of the reservoir and a depletion plan for the reservoir is
formulated. The depletion plan specifies the location and operating conditions of
the wells (e.g., injection and production rates) used to produce hydrocarbons and
is designed to maximize profitability of the reservoir. The actual extraction of
hydrocarbons occurs in the production stage.

Following production, hydrocarbons are carried by pipeline, oil tanker, truck,
or railcar to refineries and chemical plants [31]. At these facilities, hydrocarbons
are converted into finished products such as gasoline, kerosene, and petrochemicals
used in the manufacture of plastics and agricultural fertilizers [31, 78].

PDE-constrained optimization is poised to make important contributions to some
of the engineering and scientific challenges present in the oil and gas supply chain.
Specific applications of PDE-constrained optimization include: subsurface inver-
sion techniques for exploring increasingly difficult environments (e.g., deepwater
offshore) - these techniques include full-wavefield inversion, electromagnetic inver-
sion, gravity inversion, and process stratigraphy; optimal placement and operation of
wells, each of which can cost tens of millions of dollars; the calibration of subsurface
geology to production data; imaging techniques for flaw detection in pipelines to
reduce leaks; inversion of atmospheric measurements (tower, airplane, and satellite)
to identify sources of greenhouse gas emissions (e.g., carbon dioxide, and methane);
and optimization of chemical plant and refinery operations [12, 16, 18, 40, 47, 55,
68, 71].

In this paper, we focus on full-wavefield inversion and reservoir history match-
ing. Full-wavefield inversion is a PDE-constrained optimization approach to the
exploration technique known as reflection seismology. Full-wavefield inversion is
used to infer subsurface mechanical rock properties (e.g., elastic moduli) from
surface measurements of waves traveling underground which are triggered by an
applied seismic source. These rock properties are used by geologists to predict the
locations and volumes of hydrocarbons.

The second problem considered in this paper - reservoir history matching -
arises during the production stage. Reservoir history matching is the problem of
determining a model of fluid flow within the reservoir which is consistent with
the recorded production data measured at the wells (e.g., pressure and flow rates).
Such a flow model is used to predict future production within the reservoir and
guide changes in the depletion plan, including the placement of additional wells and
modifications to existing wells’ operating conditions.
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For each problem, we first describe the physical setup and the corresponding
optimization problem. We then explain how the gradient of the objective function
is computed using the adjoint-state method and show numerical results for model
problems. Numerical results for problems of industrial complexity in full-wavefield
inversion can be found in the companion paper [55]. We conclude our discussion of
each problem with a list of key challenges.

2 Full-Wavefield Inversion

In this section, we provide an introduction to full-wavefield inversion (FWI)
designed to be accessible to applied mathematicians. For an introduction focused
more on geophysics, please see [55, 87].

Hydrocarbons are typically found thousands of meters below the earth’s surface.
In order to locate these resources, the oil and gas industry heavily relies on reflection
seismology. Reflection seismology infers properties of the subsurface rocks through
the measurement of reflected waves resulting from man-made sources at the surface.
The reflection of waves, along with other, more complicated wave phenomena,
occurs as a result of layers present in the earth’s interior formed by geologic
processes such as sedimentation, faulting, and fracturing [76]. Knowledge of these
layers, as obtained by reflection seismology, is ultimately used to infer the presence
of hydrocarbon reservoirs.

Seismic surveys are carried out offshore and on land; in recent decades, offshore
developments have become increasingly important. An example of a marine seismic
survey and the accompanying reflections is shown in Figure 1(a); land surveys are
configured similarly. Sources are conventionally fired sequentially and the response
to each is recorded at the available receivers.

Apart from FWI, conventional workflows for analyzing seismic data suffer
from two shortcomings: they typically do not use all of the information present

Fig. 1 Illustration of a marine seismic survey
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in the measured data and they are labor intensive. In contrast, FWI is a PDE-
constrained optimization approach capable of fully utilizing the available seismic
data. In addition, FWI provides a framework for incorporating all prior geologic
knowledge (e.g., rock physics relationships, well logs, and bounds on rock prop-
erties). As a result, it offers the promise of producing higher resolution subsurface
images for more accurately determining hydrocarbon deposits [34].

In its simplest form, FWI seeks a subsurface model that matches all available
seismic data to it’s noise level. The selection of such a model is made through the
minimization of an objective function consisting of a least-squares data misfit and a
regularization term:

J (κ) = 1

2

∑
Sources

s

Js + R (κ)

= 1

2

∑
Sources

s

∑
Receivers

xr

ˆ t0,s+T

t0,s

|us (κ; xr , t)− ū (xr , t)|2 dt + R (κ) .

(1)

Here, κ(·) represents the unknown subsurface properties to be determined through
minimization of (1); these properties can include wave velocities, anisotropy,
attenuation parameters, and the source temporal signature in some cases [5, 30].
These terms are defined in Section 2.1. In addition, t0,s is the time at which the
source s is fired, T represents the length of the time interval during which data is
collected for each source, ū (xr , t) is the measured geophysical data at the receiver
location xr at time t , us (κ; xr , t) is data due to source s at the receiver location xr
at time t computed according to a PDE model, and R (κ) is a regularization term
used to mitigate the ill-posedness of the inversion (e.g., Tikhonov or total-variation
regularization).

Because this paper is intended to serve as a tutorial, most of our discussion of
FWI focuses on the objective function (1). However, significant modifications of (1)
are required for successful application of FWI to problems of realistic complexity.
This is due to two factors: the presence of critical points in the objective function (1)
that are not necessarily global minima and the sheer magnitude of the computational
effort required to solve the wave equation. These limitations prevented industry-
scale applications of FWI for several decades [87]; surmounting them required the
advent of innovative but still poorly understood continuation strategies [20] and
a new generation of supercomputers. We discuss these important developments in
Section 2.5.

2.1 Wave Propagation in Elastic Media

We assume that the subsurface is a linear elastic medium when modeling the
propagation of subsurface waves. This is a reasonable assumption in light of the
small displacements observed in seismic surveys away from the sources.
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Recall that a medium is elastic if it deforms when forces are applied to it
and returns to its original state when those forces are removed. Linear elasticity
represents a simplification of elasticity appropriate for a medium undergoing small
deformation. The key feature of linear elasticity is the generalized Hooke’s law,
which states that stress and strain are linearly related through a stiffness tensor. This
relationship can be written as

σ = C : ε (2)

where σ is the stress tensor, C is the fourth-order stiffness tensor, ε is the strain
tensor defined by

ε = 1/2
(
∇u+ (∇u)T

)
, (3)

and u is the vector describing the medium’s displacement from its equilibrium
configuration [6, 46].

Subsurface waves also satisfy the conservation of momentum, which can be
expressed as

ρ
∂2u
∂t2 = ∇ · σ + f, (4)

where ρ(x) denotes a time-independent density and f(x, t) is an external force
density. The system (2), (3), (4) specifies the time-dependent deformation of a linear
elastic medium once initial and boundary conditions are specified.

The stiffness tensor C has twenty-one independent components; this number is
reduced to two when the medium is isotropic. For an isotropic medium, the stiffness
tensor satisfies

C : ε = λtr(ε)I+ 2με, (5)

where λ(x) and μ(x) are the Lamé parameters. We may combine (2), (3), (4), (5), to
arrive at a simplified time-dependent PDE describing the deformation of an isotropic
medium:

ρ
∂2u
∂t2 = ∇ (λ∇ · u)+ ∇ ·

(
μ
(
∇u+ (∇u)T

))
+ f. (6)

For homogeneous materials, in which λ and μ are constant, the system (6) can
be further simplified using vector calculus identities to arrive at

ρ
∂2u
∂t2 = (λ+ μ)∇∇ · u+ μ∇2u+ f

= (λ+ 2μ)∇(∇ · u)− μ∇ × ∇ × u+ f.

(7)
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Solutions of (7) can be expressed as u = ∇φ+∇×ψ , where the scalar φ and vector
ψ potentials satisfy wave equations [29, 76, 81]. Waves corresponding to φ(x, t)

are known as longitudinal, or compressional, since they correspond to irrotational
volumetric changes (∇ × u = 0, ∇ · u �= 0) in the deformed material without shear.
These travel at a speed vP = √(λ+ 2μ)/ρ. Waves arising from ψ(x, t) are known
as transverse, or shear, since they correspond to shear deformation. These travel at
a speed vS = √μ/ρ which is slower than vP due to μ > 0 and λ+2μ/3 > 0.2 The
interested reader may consult [29, 76, 81] for derivations of (6), (7).

Next, we consider wave propagation in a fluid. In a fluid, the shear modulus of
the stress tensor σ is zero and the stress tensor becomes

σ = κ (∇ · u) I (8)

where κ is the bulk modulus. The pressure p is defined as

p = −κ∇ · u (9)

so that σ = −pI. Differentiation in time of (9) and substitution from (4) leads to an
acoustic wave equation for the pressure p in which pressure disturbances propagate

at a speed c =
√

κ
ρ

[80]:

1

κ

∂2p

∂t2 = ∇ ·
(

1

ρ
∇p
)
−∇ · f

ρ
. (10)

The approximation (10) is sometimes used to model wave propagation in solids
in order to arrive at a simpler and more computationally tractable problem. In this
case, it is common practice to filter out elastic effects from the data as much as
possible [86].

Additional aspects of wave propagation, namely anisotropy and attenuation,
must be taken into account in order to fully explain the measured seismic data.
Anisotropy is due to either the presence of materials, such as clay, which are
intrinsically anisotropic, or the presence of features at sub-seismic wavelengths,
such as rock layers and ordered fractures, whose measured response is equivalent
to that of a homogeneous anisotropic medium due to averaging of the underlying
rock properties [84, 85]. Seismic attenuation accounts for the loss of energy in the
wavefield due to conversion into other forms such as heat or fluid motion. Further
discussion of anisotropy and attenuation can be found in [55].

We conclude this section with a brief discussion of numerical methods for solving
the acoustic wave equation (10). Adopting the convention that u denotes the solution
of the acoustic wave equation on a bounded domain Ω , we have that u satisfies

2These two inequalities arise from the requirement that the quadratic form 1
2 〈C : e, e〉 defining the

elastic energy of the deformed material is positive definite [46]. In particular, the latter inequality
ensures that the bulk modulus, κ := λ+ 2μ

3 , is positive.
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1

κ

∂2u

∂t2
= ∇ · 1

ρ
∇u−∇ · f

ρ
,

u = ∂u

∂t
= 0 at t = 0 in Ω,

u = 0 on Γfree × [0,T],√
ρ

κ

∂u

∂t
+ n · ∇u = 0 on Γabsorbing × [0,T] ,

(11)

where T is the final recording time, Γfree and Γabsorbing are the free and absorbing
boundaries, and n is the normal unit vector to Γabsorbing. Typically, Γfree represents
the earth’s surface (i.e., the air-water interface in marine environments or the
air-solid interface on land) due to the approximately stress-free state there. The
remaining boundaries of the computational domain typically belong to Γabsorbing;
the boundary condition applied there is designed to prevent spurious reflected waves
due to the truncation of the physical domain [26, 53]. Finally, we approximate the
source term for a shot fired at location xs by

∇ · f
ρ
≈ f (t)

ρ
δ(x − xs) (12)

under the assumption that the source term is spherically symmetric and nonlinear
effects in the response can be neglected. The function f (t) is known as the source
temporal signature or the source wavelet.

A variety of numerical techniques exist for solving the acoustic wave equa-
tion (11). The discussion in this paper focuses on time-domain methods. When
solving (11) in the time domain, we typically discretize using the method of
lines [57]. First, we discretize in space using finite differences [64, 82], finite
volumes [56], finite elements (e.g., spectral elements [52] and the discontinuous-
Galerkin method [43, 50, 83]), or some other technique. The resulting system of
ODEs is then integrated using an appropriate time-stepping scheme (e.g., forward
Euler, and Runge-Kutta) [89]. For a discussion of alternatives to time-domain
methods, the interested reader should consult [55].

2.2 Gradient Computation for the Acoustic Wave Equation

We compute the gradient of the objective function (1) using the adjoint-state
method. The gradient is derived in the continuous setting; afterwards, we explain
how a similar approach can be taken when the forward problem is discretized. Our
derivation, inspired by Marchuk [59], aims to provide intuition but does not maintain
the mathematical rigor that can be found in more careful treatments such as [44].

The power of the adjoint-state method is its efficiency. In practice, κ(x) is
discretized, resulting in a vector κ = (κ1, . . . , κN) of unknowns. Computing the
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gradient of the objective function using finite differences requires solving O(N)

forward problems. In contrast, the cost of computing the gradient using the adjoint-
state method is approximately that of solving two forward problems.

In order to streamline the derivation presented below, we omit regularization
from the objective function (1) and compute the gradient ∇Js for the case of a
single seismic source. Due to independence of the sources, it follows that

∇J =
∑

Sources
s

∇Js .

In addition, we simplify the acoustic wave equation (11) by assuming ρ ≡ 1 and set
Ω = R

n, t0,s = 0. Under these assumptions, the acoustic wave equation takes the
form

1

κ

∂2u

∂t2 −Δu = f in R
n × [0, T ] ,

u = ∂u

∂t
= 0 at t = 0 in R

n,

(13)

where the source f is assumed to have compact support. We use the notation u(κ; f )
to refer to the solution of (13) determined by bulk modulus κ and source f .

Next, we define the forward and adjoint operators for a given bulk modulus κ(x).
The forward operator A is defined by

Af = u(κ; f ). (14)

Note that this is the inverse of the differential operator. The adjoint operator A∗,
which plays an important role in computing ∇Js , is defined by the adjoint identity

(Af, g)L2(Rn×[0,T ]) =
(
f,A∗g

)
L2(Rn×[0,T ]) ∀f, g ∈ L2 (

R
n × [0, T ]) . (15)

We will show that the adjoint operator is given by

A∗g = v(κ; g), (16)

where v(κ; g) solves the adjoint problem

1

κ

∂2v

∂t2
−Δv = g in R

n × [0,T] ,

v = ∂v

∂t
= 0 at t = T in R

n.

(17)

Equation (17) is also an acoustic wave equation but, in contrast to (13), the solution’s
final-time value is prescribed. Equation (17) can be solved by marching backwards
in time, beginning at t = T .

We will establish that the operator given by (16), (17) satisfies the adjoint
identity (15) through integration by parts. First, by definition of the forward and
adjoint problems, we have
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(Af, g)L2(Rn×[0,T ]) =
ˆ T

0

ˆ
Rn

u ·
(

1

κ

∂2v

∂t2
−Δv

)
dx dt. (18)

Next, we integrate the temporal derivatives of (18) by parts. Due to the initial- and
final-time boundary conditions of the forward and adjoint problems, respectively,
we have
ˆ T

0

ˆ
Rn

u · 1

κ

∂2v

∂t2
dx dt = −

ˆ T

0

ˆ
Rn

1

κ

∂u

∂t

∂v

∂t
dx dt =

ˆ T

0

ˆ
Rn

1

κ

∂2u

∂t2
· v dx dt.

(19)

Finally, we integrate the spatial derivatives of (18) by parts. Assuming compact
support of the sources f, g, it follows from the divergence theorem that

ˆ T

0

ˆ
Rn

u·Δv dx dt = −
ˆ T

0

ˆ
Rn

∇u·∇v dx dt =
ˆ T

0

ˆ
Rn

Δu·v dx dt. (20)

Combining (18), (19), (20) results in (15), thus demonstrating that the adjoint
operator A∗ is given by Equations (16), (17).

We now use the adjoint identity (15) to compute the L2 (Rn) gradient ∇Js with
respect to κ . The defining property of ∇Js is

Js(κ + δκ)− Js(κ) = (∇Js , δk)L2(Rn) +O
(
‖δκ‖2

L2(Rn)

)
. (21)

In order to compute ∇Js , we begin by linearizing the nonlinear map u(κ; f ) with
respect to κ . For a small perturbation δκ , we define δu by

u(κ + δκ; f ) ≈ u(κ; f )+ δu+O
(
‖δκ‖2

L2(Rn)

)
. (22)

Inserting the approximation (22) into (13), it follows that δu satisfies the linearized
forward problem

1

κ

∂2δu

∂t2
−Δδu = δκ

κ2

∂2u

∂t2
in R

n × [0,T] ,

δu = ∂δu

∂t
= 0 at t = 0 in R

n.

(23)

Observing that the right-hand side of (23) represents a source term, we rewrite (23)
using the definition (14) as

δu = A

(
δκ

κ2

∂2u

∂t2

)
. (24)

In particular, we set
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δus = A

(
δκ

κ2

∂2us

∂t2

)
. (25)

Interestingly, the quality of the linearization (24) is quite variable and depends on
several factors, including the smoothness of κ and the degree of oscillation present
in δκ [80].

We now have all of the necessary results for computing ∇Js . Using the
linearization (22), it follows that

Js(κ + δκ)− Js(κ) ≈
⎛
⎝
⎛
⎝ ∑

Receivers xr

δ(x − xr)

⎞
⎠ (us (κ)− ū) , δus

⎞
⎠

L2(Rn×[0,T ])
.

(26)

Substitution of (25) into (26), followed by an application of the adjoint identity (15),
results in

Js(κ + δκ)− Js(κ) =
⎛
⎝
⎛
⎝ ∑

Receivers xr

δ(x − xr)

⎞
⎠ (us (κ)− ū) ,

A

(
δκ

κ2

∂2us

∂t2

))
L2(Rn×[0,T ])

=
⎛
⎝A∗

⎡
⎣
⎛
⎝ ∑

Receivers xr

δ(x − xr)

⎞
⎠ (us (κ)− ū)

⎤
⎦ ,

δκ

κ2

∂2us

∂t2

)
L2(Rn×[0,T ])

.

(27)

Recalling the definition (21) of ∇J , it follows from (27) that

∇Js =
ˆ T

0

1

κ2

∂2us

∂t2 · v dt (28)

where v solves the adjoint problem

v = A∗
⎡
⎣
⎛
⎝ ∑

Receivers xr

δ(x − xr)

⎞
⎠ (us (κ)− ū)

⎤
⎦ . (29)

Equations (28), (29) indicate that computing ∇Js requires the solution of the
forward problem (13), where the source term is assumed known, and the adjoint
problem (17), in which the data misfit is injected as a source term at the receivers.
The computational cost of solving the adjoint problem is approximately the same as
the cost of the forward, since both are wave equations in the same medium.

In practice, computing the integral (28) is more complicated than it may appear
and comes at a higher cost than simply solving for u and v. One reason for this is
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that u satisfies a forward-in-time wave equation but v satisfies a backward-in-time
equation. It follows that values of either u or v must be stored. A second reason is
that, for 3D problems, insufficient memory exists to store u and v on the entire
time interval. Due to these constraints, a procedure known as check-pointing is
commonly used to compute (28). Check-pointing divides the time interval [0, T ]
into a number of subintervals, stores the values of u at the endpoints of each
subinterval, and uses these values to recompute (28) separately on each subinterval.
Computing (28) on each subinterval requires recomputing and storing the values of
u on that subinterval [8, 38]. This leads to additional computation, but the overall
cost of computing (28) using check-pointing is not greater than the solution of three
forward problems.

The derivation above assumed that κ(x) was distributed continuously in space.
In practice, the bulk modulus κ(x) is discretized, resulting in a vector κ =
(κ1, . . . , κN) of unknowns. When optimizing the objective function (1) with respect
to κ , one can either solve the adjoint equation (29) using a discretization of one’s
choice or one can determine the discrete adjoint problem [42] which ensures that
a discrete analogue of the identity (15) is satisfied . From an implementation point
of view, the first approach is easier. However, the resulting approximation of the
gradient may have significant errors. In contrast, using the discrete adjoint operator
ensures that the discrete objective function’s gradient with respect to κ is computed
correctly. The interested reader can learn more about the trade-offs between these
approaches in [39].

2.3 Optimization

Because the number of unknowns in industry-scale problems is typically large
(on the order of billions) and the cost of a forward simulation is also significant
(on the order of minutes to hours on high-performance computing platforms),
it is prohibitive to use global optimization methods except in low-dimensional
formulations [28]. Instead, local gradient-based methods are typically used to
minimize the objective function (1).

Two classes of gradient-based optimization techniques are available for solving
large-scale PDE-constrained optimization problems. The first class eliminates the
PDE constraint and directly optimizes the set of unknown parameters appearing in
the PDE; this class includes methods such as steepest descent, nonlinear conjugate
gradient, and variants of Newton’s method. The second class of methods does not
eliminate the PDE constraint but instead solves for both the unknown parameters
appearing in the PDE and the solution of the PDE itself; this class includes
techniques such as the augmented-Lagrangian method and sequential quadratic
programming. The reader may consult [51, 66] for a general introduction to
optimization and [42, 44] for a discussion of the practical issues which arise in the
context of PDE-constrained optimization.

Large-scale PDE-constrained optimization problems such as FWI and reservoir
history matching rely on the first class of methods because storing the solution of the
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entire forward problem, as required by the second class, places prohibitive demands
on memory. This class of methods iteratively update the vector of discretized
unknowns κ along a descent direction,

κ i+1 = κ i + αipi , (30)

where i is the iteration index, pi is the ith descent direction, and αi is the ith step size
determined by a line search algorithm. Within this class, trade-offs exist between the
rate of convergence, ease of implementation, and memory requirements. Steepest
descent converges at a linear rate and is straightforward to implement, the nonlinear
conjugate gradient method is more complicated but generally converges faster, and
variants of Newton’s method can achieve superlinear convergence but may involve
greater algorithmic complexity and memory requirements. A comparison of some
of these methods, in the context of FWI, was carried out in [63].

Steepest descent sets pi = −gi , where gi is the gradient of the objective function.
Newton-type methods determine pi by solving the linear system

Hipi = −gi (31)

where Hi is a positive-definite approximation to the objective function’s Hessian.
These methods rely on an approximate Hessian because, for large-scale problems,
the complete Hessian is prohibitively large to compute and store. Two of the
most commonly used methods from this family are limited-memory quasi-Newton
methods and the Gauss-Newton method. Limited-memory quasi-Newton methods
rely on a low-rank approximation to the Hessian; the Gauss-Newton method exploits
the least-squares framework present in the objective function (1) to derive an
approximate Hessian for which matrix-vector products can be computed without
explicitly storing the matrix [42]. Application of such methods to (1) is by no means
straightforward, as a variety of complications may arise; these include sensitivity of
quasi-Newton methods to the Hessian initialization and suboptimal performance of
Gauss-Newton due to poor conditioning.

In the context of the objective function (1), inequality constraints arise naturally
from physical considerations - for example, the bulk modulus must be positive
in acoustic inversion while, in anisotropic elasticity, additional constraints must
be satisfied. Due to the infinite-dimensional nature of the objective function (1),
imposing bound constraints on the control parameters presents challenges not found
in finite-dimensional analogues. For example, active-set methods may not converge
in finitely many iterations and the projected gradient method can also lead to
problems. Further discussion of these and other issues can be found in the book
[51]. Enforcing nonlinear inequality control constraints as well as state constraints
is even more challenging; the interested reader can find more information in [41, 44].
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2.4 A Synthetic Example

In this section, we consider a synthetic example based on the Marmousi model.
The example is synthetic because the data does not arise from an actual seismic
survey. Instead, it is generated by solving (11) on the Marmousi model shown in
Figure 2 [61]. The Marmousi model is commonly used as a benchmark to test FWI
codes.

Presenting this example has two goals. The first goal is to demonstrate that, for an
appropriate initial guess and source signature, acoustic FWI can successfully invert
for the subsurface bulk modulus. The second goal is to highlight the sensitivity of
the inversion to the choice of initial guess.

The Marmousi model extends 17 km horizontally and 3.1 km vertically and
assumes a homogeneous mass density of ρ = 1 g/cm3. Synthetic seismic data is
generated by performing 100 different experiments using 100 different sources and
measuring the response at the same 500 receivers. The sources and receivers are
equidistantly spaced horizontally at 3 m and 6 m below the surface, respectively. We
use the same source temporal signature for each source (as defined by Equation (12))
- the 5 Hz peak-frequency Ricker wavelet shown in Figure 3.

The acoustic wave equation (11) is solved using a spectral-element spatial
discretization and a central-difference explicit temporal discretization scheme. A
discrete version of the objective function (1) is minimized using Gauss-Newton.

Fig. 2 Marmousi acoustic wave-velocity model. The color bar displays the velocity in km/s [61]

Fig. 3 Seismic Ricker source signature in frequency (a) and time (b) domains
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Fig. 4 (a) An initial velocity model and (b) inverted velocity model starting from the initial model
given in (a)

Fig. 5 (a) An initial velocity model and (b) inverted velocity model starting from the initial model
given in (a)

First-order Tikhonov regularization is used. The same mesh and discretization are
used to both generate the synthetic data and then invert it. In general, this can lead
to misleading results and should be avoided [48].

We consider the inversion of the Marmousi model using two different initial
guesses. Our first initial guess, shown in Figure 4(a), is obtained by smoothing the
Marmousi model using a Gaussian filter. This initial guess preserves some of the
most significant large-scale trends present in the Marmousi model. Figure 5(a) is
obtained by filling in the model through linear interpolation, using only values at
the top and bottom of the first initial guess. The resulting inversions are found in
Figures 4(b) and 5(b), respectively. Both inversion experiments are terminated after
200 Gauss-Newton iterations, at which point the optimization appears to stall.

We can make two important observations based on these results. The first is that,
for an appropriate initial guess, FWI is capable of converging to a model close to
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the target model. The second is that FWI is highly sensitive to the choice of initial
guess. Further discussion of the second observation can be found in Section 2.5.

2.5 Challenges in Full-Wavefield Inversion

Despite decades of research and progress, FWI in the context of oil and gas
exploration continues to face significant obstacles. These include various com-
putational challenges - the elastic wave equation is prohibitively expensive for
many applications and the objective function (1) is non-convex - and the inherent
nonuniqueness of FWI. We discuss these in detail below.

Computational Challenges FWI applications often contain billions of unknowns
and hundreds of thousands of sources and receivers, leading to a large volume of
data - please see [55] for an illustration of this on a realistic marine streamer survey.
This high level of complexity dictates that many applications continue to use the
acoustic approximation and precludes the use of global optimization techniques.

Each formulation of the wave equation faces its own unique challenges for large-
scale problems. For example, the time-domain formulation outlined in Section 2.1
scales linearly with the number of sources, which can be in the hundreds of
thousands. For problems with a large number of sources, one strategy to reduce
the cost of time-domain methods is to simultaneously model a number of sources
through a carefully chosen encoding scheme [13, 54, 65, 74]. Further discussion of
this and other discretization issues can be found in [55, 87].

The large-scale nature of FWI dictates that local gradient-based techniques
are used to optimize the objective function (1). However, it has been observed
for decades that (1) is not convex due to the oscillatory nature of the measured
signal and the use of a least-squares data misfit. As the example in Section 2.4
demonstrates, applying gradient-based optimization methods to the non-convex
objective function (1) leads to results that are sensitive to the initial guess.

The sensitivity of FWI results to the initial guess remains unresolved, despite
decades of research. Three of the main themes of this research are continuation
strategies, alternative data misfit functionals, and model expansions. In essence,
the goal of all of these approaches is to replace a non-convex problem by one
which is closer to convex. Continuation strategies, which remain poorly understood,
selectively invert the data according to some criteria [20, 77]. For example, time
continuation initially inverts data on a small time window, which is gradually
expanded to the entire time window. Alternative data misfit functionals replace the
least-squares data misfit in the objective function (1) with a different measure of
distance between the measured and computed data [10, 25, 32, 58, 73, 88]. Model
expansions convert the original problem into a sequence of convex problems by
expanding the parameter space of unknowns [17, 27, 79]. For more information on
these and other approaches, please see [55, 87].
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Nonuniqueness Nonuniqueness is a pervasive feature of inverse problems. In the
context of FWI, specific sources of nonuniqueness include the source-receiver con-
figuration (sources and receivers are typically placed on the earth’s surface at a small
distance from one another), physical properties of subsurface wave propagation, the
range of source signatures available, and noise present in the measured data due to
nearby ships, vehicles, and other sources. For further discussion of how these factors
can impact FWI, please see [55].

Quantifying and mitigating the nonuniqueness present in FWI remain important
challenges. Rigorous uncertainty quantification in FWI is difficult due to the nonlin-
ear dependence of subsurface wave propagation on rock properties, which prevents
the use of a simple Gaussian probability distribution, and the immense size of FWI
applications, which prohibits naive application of techniques such as Markov chain
Monte Carlo designed for non-Gaussian probability distributions [62].

Mitigating the uncertainty in FWI requires additional data. One potential source
of such data is alternative seismic acquisition geometries; other sources include well
logs, gravity data, and electromagnetic measurements [3, 14, 24, 37].

3 Reservoir History Matching

Once a hydrocarbon reservoir is identified, a production plan is formulated that is
designed to maximize hydrocarbon recovery within facility limits. The production
plan specifies the location and rates of the wells used to produce hydrocarbons and
facilities for processing the extracted fluids. Production occurs in several stages,
which we outline below [2, 72].

Prior to production, the reservoir fluids (oil, gas, and water are commonly
present) are in equilibrium. This equilibrium represents a balance of various forces,
such as gravity and surface tension. Primary production occurs when a production
well is drilled and fluids flow out of the reservoir and into the well due to the
reservoir’s high pressure. The effectiveness of primary production decreases over
time as fluids flow out of the reservoir and reservoir pressure decreases. As a result,
primary production is typically responsible for producing only a small fraction of a
reservoir’s hydrocarbons.

In order to produce additional hydrocarbons, reservoir engineers rely on sec-
ondary and tertiary production strategies. During secondary production, additional
fluids (e.g., gas, and water) are injected in order to both maintain the reservoir’s
pressure and displace additional hydrocarbons. Further enhancement of production
is possible through tertiary production, which relies on chemical and thermal effects
to alter the flow properties of the fluids. Examples of tertiary production include the
injection of polymers, solvents, and heat into the reservoir.

Due to the complexity of the mechanisms underlying hydrocarbon production,
reservoir engineers use computer simulations of reservoir fluid flow to inform
production planning. The computer simulation of reservoir fluid flow, known as
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reservoir simulation, is based on the numerical solution of partial differential
equations [2, 7, 69]. Reservoir simulation requires, as input, a flow model of the
reservoir describing key physical parameters (e.g., porosity and permeability). We
define these parameters in Section 3.1.

Constructing a reliable flow model is challenging due to the nature of the
available data. Seismic data is used to infer mechanical properties of the subsurface
rocks, but these properties do not necessarily correlate with flow properties. In
addition, the limited resolution of seismic inversion prevents the identification of
reservoir features such as thin shale barriers that are critical to fluid flow. Other data
sets (e.g., reservoir cores, and well logs) can be used to infer flow properties but
are available at only a few locations and therefore provide sparse coverage of the
reservoir.

As a result, production data measured at the wells (e.g., pressure, and well rates)
may be relied on to validate a reservoir flow model. The process of adjusting the flow
model to match production data is known as reservoir history matching. Potential
outcomes include the drilling of new wells and the modification of existing wells’
operating conditions (e.g., injection and production rates).

Gradient-based algorithms for reservoir history matching, derived using the
adjoint-state method, were proposed in the 1970s [22, 23]. Since then, algorithmic
and computing advances have enabled reservoir engineers to history match flow
models of greater complexity and to begin quantifying the uncertainty inherent in
history matching [67, 91]. We discuss these recent developments and remaining
challenges in Section 3.5.

3.1 Fluid Flow in Porous Media

A hydrocarbon reservoir is a region of subsurface rock, known as reservoir rock,
containing hydrocarbons in the void space between grains. The volume fraction of
void space present in the reservoir rock, known as porosity, can range from 5%
to 30% for conventional hydrocarbon reservoirs [72]. In order for the production
of hydrocarbons to be economic, the void space within the reservoir rock must be
sufficiently well connected to permit fluid flow to a well. The connectivity of the
rock’s void space is quantified by the concept of permeability, which we define
below.

Hydrocarbons are generated when deposits of biomass (e.g., algae, and plankton)
are buried in sedimentary rock layers. As these sedimentary layers accumulate and
biomass is buried further below the surface, the biomass is exposed to temperature
and pressure conditions that transform it to hydrocarbons. The conversion of
biomass to hydrocarbons occurs in rock known as source rock. For a given reservoir,
the source rock may or may not be the same as the reservoir rock. Upwards
migration of hydrocarbons from source rock to reservoir rock (e.g., through a
fracture network created by faulting) can occur over millions of years due to
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buoyancy (since oil and gas are less dense than groundwater). A reservoir is created
when further migration of hydrocarbons is impeded due to the presence of an
impermeable seal (e.g., shale layer or salt body). Further discussion of hydrocarbon
generation and migration can be found in [60, 72, 78].

Fluid flow under the high pressure conditions typically present in the subsurface
involves complex multiphase flow behavior and fluid-structure interaction. The
equations governing the key processes of such flows at the pore scale are the
Navier-Stokes equations coupled to a model of rock deformation. However, such
a model cannot be used in practice due to its computational complexity. In addition,
our lack of knowledge of the pore-scale rock structure would make this approach
impractical. Instead, we rely on Darcy’s law, which models average fluid flow
over a neighborhood of pores. For single-phase flow, which is the focus of this
presentation, Darcy’s law describes a linear relationship between the volumetric
flow velocity v and the fluid pressure gradient ∇p expressed as

v = − k
μ
∇p, (32)

where μ is the fluid’s viscosity and k is the rock permeability tensor. Darcy’s law
represents a good approximation for weakly compressible flow and can be derived,
under certain hypotheses on the pore-scale structure and fluid properties, using
homogenization theory [35]. Further information on Darcy’s law and other aspects
of flow in porous media can be found in [15, 70].

In addition to Darcy’s law, we require that the subsurface fluid satisfy conserva-
tion of mass. When modeling secondary recovery - discussed above - conservation
of mass can be expressed as

φ
∂ρ

∂t
+∇ · (ρv) =

∑
Injection wells

xInj

ρq(xInj, t)δ
(
x − xInj

)

−
∑

Production wells
xProd

ρq(xProd, t)δ (x − xProd) . (33)

The porosity φ in (33) represents the volume fraction of the void space within the
porous medium and ρ denotes the fluid’s density. The source term in (33) models
the injection and production of fluid using point sources.

Lastly, we assume that the fluid has compressibility which is independent of
pressure and temperature:

dρ
dp

ρ
= Cf . (34)
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Substitution of (34), along with Darcy’s law (32), into (33) leads to the nonlinear
PDE

Cf φ
∂p

∂t
− Cf

(
k
μ
∇p
)
· ∇p − ∇ ·

(
k
μ
∇p
)
=

∑
Injection wells

xInj

q(xInj, t)δ
(
x − xInj

)

−
∑

Production wells
xProd

q(xProd, t)δ (x − xProd) , (35)

which heuristically simplifies to

Cf φ
∂p

∂t
−∇ ·

(
k
μ
∇p
)
=

∑
Injection wells

xInj

q(xInj, t)δ
(
x − xInj

)

−
∑

Production wells
xProd

q(xProd, t)δ (x − xProd) , (36)

under the assumption

Cf

∣∣p(xInj)− p(xProd)
∣∣. 1.

In order to complete Equation (36), we impose a no-flow boundary condition; due
to Darcy’s law, this translates to a zero Neumann boundary condition. No-flow
boundary conditions are based on the assumption that the reservoir is confined by
impermeable rocks that prevented fluid from migrating further upwards.

The above equations are sufficient to describe reservoirs containing a single fluid.
In reality, multiple phases (i.e., liquid and vapor) and chemical components (e.g.,
oil, gas, and water) can be present and are modeled using a so-called black oil
or compositional model [7, 69]. These models have four basic ingredients. First,
they rely on multiphase extensions of Darcy’s law (32). Second, they require mass
conservation of each chemical component. Third, they require that all void space in
the rock be occupied by the phases present. Fourth, they assume that the reservoir
fluids are in thermodynamic equilibrium and use this to partition the components
into phases. The resulting models are nonlinear and have greater complexity than the
single-phase model presented above. In addition, such models introduce parameters
(e.g., those describing the mixing of fluids and the surface tension at an interface
separating phases) which are themselves uncertain.

For pedagogical purposes, we consider a second, hypothetical, inverse problem in
which production data is augmented by concentration measurements throughout the
reservoir of an injected passive tracer. In reality, no such tracer exists. Despite this
lack of realism, the inversion of tracer data serves several purposes. Tracer data can
be seen as a best-case scenario for the information ever available in reservoir history
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matching. In addition, inversion of pressure and tracer data is used to illustrate the
potential of the PDE-constrained optimization framework to simultaneously invert
multiple data sets described by different physical processes.

Ignoring diffusive and dispersive effects, and assuming that the fluid injected into
the reservoir has tracer concentration one, the tracer concentration c(x, t) satisfies

φ
∂ρc

∂t
+∇ · (ρcv) =

∑
Injection wells

xInj

ρq(xInj, t)δ
(
x − xInj

)

−
∑

Production wells
xProd

ρcq(xProd, t)δ (x − xProd) . (37)

In order to simplify the gradient computation, we ignore density variations in (37),
which are assumed to be small. This leads to

φ
∂c

∂t
+∇ · (cv) =

∑
Injection wells

xInj

q(xInj, t)δ
(
x − xInj

)

−
∑

Production wells
xProd

cq(xProd, t)δ (x − xProd) . (38)

The evolution of pressure, velocity, and tracer concentration within our reservoir
is governed by the system of Equations (32), (36), (38). After nondimensionaliza-
tion, this system takes the form

k−1v+∇p = 0,

τp

τc

∂p

∂t
+∇ · v =

∑
Injection wells

xInj

q(xInj, t)δ
(
x − xInj

)

−
∑

Production wells
xProd

q(xProd, t)δ (x − xProd) ,

∂c

∂t
+ ∇ · (cv) =

∑
Injection wells

xInj

q(xInj, t)δ
(
x − xInj

)

−
∑

Production wells
xProd

cq(xProd, t)δ (x − xProd) .

(39)

Here, τp denotes an approximate timescale on which the pressure equation (36)
equilibrates, τc denotes an approximate timescale on which tracer is transported
according to (38), and all variables have been nondimensionalized.
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In order to solve the system (39) numerically, we need to accurately compute
both pressure and velocity. We accomplish this by discretizing the pressure-
velocity equations, which are parabolic, using the mixed finite-element method [19].
The distinguishing feature of the mixed finite-element method is that it solves
simultaneously for pressure and velocity. As a result, it is known to have greater
accuracy than solving first for pressure and then differentiating to compute velocity
- numerical differentiation of pressure leads to a one order loss of accuracy and
multiplication by a possibly discontinuous permeability field contributes additional
error. However, the improved accuracy of the mixed finite-element method comes
at a cost: the resulting linear system is indefinite and requires preconditioning
or hybridization. In addition, mixed finite-element formulations for multiphase
flow have proven challenging. As a result, many large-scale industrial reservoir
simulators still use finite-volume formulations [2].

The tracer transport equation is hyperbolic and is solved using an explicit-in-time
upwind finite-volume discretization [56]. First-order upwinding is commonly used
in reservoir simulation to solve transport equations [2]; higher-order discretizations
have also been considered (e.g., ENO and the discontinuous-Galerkin method)
[7, 45].

3.2 Objective Function for Reservoir History Matching

We formulate the objective function for reservoir history matching using the
regularized least-squares framework introduced in Section 2. Under the assumption
that the permeability tensor is isotropic

k(x) = k(x) · I,

reservoir history matching can be expressed as the following minimization problem:

min
k(x)>0

J (k) := 1

2

∑
Wells xw

ˆ T

0
|p(k; xw, t)− p̄(xw, t)|2 dt + R(k). (40)

In the above equation, p(k; xw, t) represents reservoir pressure at the well location
xw at time t (39), p̄ represents the measured pressure data at the wells, and R(k) is
a regularization term, such as Tikhonov or total variation, which is used to stabilize
the inversion. The positivity constraint on the permeability comes from physical
considerations and can be satisfied using, for example, an exponential transform.
Ensuring that minimizers of Equation (40) are geologically realistic remains a
challenge and requires either a well-designed regularization function or an effective
reservoir parameterization [91]. We discuss this issue further in Section 3.5.
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Incorporating tracer measurements throughout the reservoir leads to the follow-
ing least-squares problem

min
k(x)>0

J (k) := 1

2

ˆ T

0

ˆ
Ω

|c(k; x, t)− c̄(x, t)|2 dx

+β

2

∑
Wells xw

ˆ T

0
|p(k; xw, t)− p̄(xw, t)|2 + R(k), (41)

where c(k; x, t) is the tracer concentration at location x at time t , c̄(x, t) is the
measured tracer concentration there, and β is used to adjust the cost of the pressure
misfit relative to the tracer misfit.

Several changes to (41) are in order for performing industrial history matching;
for the sake of completeness, we touch on them briefly here. First, tracer data
would not be available. Second, reliable pressure data may not be available and well
rates may only be available on an aggregate basis (e.g., sub-sea floor installations
combine production from wells). Third, due to the limited information content of
such data, as outlined in Section 3.5, history matching has traditionally focused on
identifying a low-dimensional flow model that captures what are believed to be key
features of the reservoir (e.g., channels, faults, and layers).

3.3 Gradient Computation for Darcy Flow

The general strategy for computing the gradient of (40) and (41) is the same as in
Section 2.2. The key difference is in the determination of the appropriate adjoint
problems. In the following, we neglect the regularization term and focus on the
objective function with tracer data (41), which implicitly includes the objective
function (40).

We begin by defining the pressure-velocity forward and adjoint operators. The
pressure-velocity forward operator M can be expressed as

M

(
f

h

)
=
(
p

v

)
(f,h) (42)

where

(
p

v

)
(f,h) solves the pressure-velocity system

τp

τc

∂p

∂t
+∇ · v = f

k−1v+ ∇p = h

(43)
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with source term

(
f

h

)
subject to the initial and boundary conditions

p(x, 0) = 0,

v · n|∂Ω = 0.
(44)

The adjoint operator M∗ is given by

M∗
(
g

j

)
=
(
m

u

)
(g, j) (45)

where

(
m

u

)
(g, j) solves the adjoint system

−τp

τc

∂m

∂t
−∇ · u = g

k−1u− ∇m = j

(46)

with source term

(
g

j

)
subject to the end-time and boundary conditions

m(x, T ) = 0,

u · n|∂Ω = 0.
(47)

Integration by parts shows that M and M∗ satisfy the adjoint identity
(
M

(
f

h

)
,

(
g

j

))
L2(Rn×[0,T ])

=
((

f

h

)
,M∗

(
g

j

))
L2(Rn×[0,T ])

∀f, g,h, j ∈ L2 (
R
n × [0, T ]) . (48)

Next, we define the forward operator L describing tracer propagation:

Ls = c(s) (49)

where c(s) solves the PDE

∂c

∂t
+∇ · (vc)+

∑
Production wells

xProd

cq(xProd, t)δ (x − xProd) = s (50)

subject to the initial condition c(x, 0) = 0. The adjoint operator, L∗, is given by

L∗r = b(r) (51)
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where b(r) solves the adjoint PDE

− ∂b

∂t
− v · ∇b +

∑
Production wells

xProd

bq(xProd, t)δ (x − xProd) = r (52)

subject to the end-time condition b(x, T ) = 0. Integration by parts demonstrates
that L and L∗ satisfy the adjoint identity

(Ls, r)L2(Rn×[0,T ]) = (s, L∗r)L2(Rn×[0,T ]) ∀r, s ∈ L2 (
R
n × [0, T ]) . (53)

Computing the gradient ∇J of (41) follows the same structure as in Section 2.2.
First, the forward problems (42), (49) are linearized with respect to the permeabil-
ity k. Next, these linearizations are used, along with the adjoint identities (48), (53),
to identify the gradient of the objective function. The final result is

∇J =
ˆ T

0

1

k2 v · u dt, (54)

where

(
q

u

)
solves the adjoint problem

(
q

u

)
= M∗

⎛
⎝β

∑
Wells xw

δ(x − xw)(p − p̄)

c∇b

⎞
⎠ (55)

and b solves the adjoint problem

b = L∗(c − c̄). (56)

The adjoint problem (56) corresponds to injection of the tracer data misfit as a
source. The pressure equation portion of the adjoint problem (55) corresponds to
injection of pressure misfit at the wells; however, the source term for the velocity
equation does not have a clear physical interpretation.

3.4 A Synthetic Example

We consider a reservoir history matching example in which the reservoir contains
two intersecting channels of different permeabilities overlaid on a constant perme-
ability background. Reservoir permeability, normalized by the background value of
10 mD, and well locations are illustrated in Figure 6. All data is measured until the
injected tracer reaches the production well, although the pressure data equilibrates
on a much shorter timescale.
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Fig. 6 Reservoir containing two intersecting channels of different permeabilities. Left: logarithm
of the true reservoir permeability model, normalized by the background value of 10 mD, along with
well locations. Right: tracer concentration at breakthrough time t ≈ T/2. Notice that the tracer is
concentrated in the two channels, both of which have higher permeability than the background
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Fig. 7 Permeability parameter estimation using only pressure data. Left: estimate using an initial
guess k = 10 mD. Right: estimate using an initial guess k = 100 mD. Information recovery is very
limited due to the sparsity of the available data and the diffusive nature of the pressure equation

Presenting this example has two goals. The first is to highlight the nonuniqueness
of reservoir history matching. The second is to demonstrate the uplift and limitations
of incorporating tracer data into reservoir history matching.

We begin by considering the determination of permeability using only pressure
data at the wells (i.e., without using any tracer data), as given by (40). We consider
two different homogeneous initial models: k = 10 mD and k = 100 mD. The results
are displayed in Figure 7.

Due to the sparsity of the data and the diffusive nature of the pressure equation,
the resolution of the results is quite poor. This illustrates the nonuniqueness of
reservoir history matching: despite matching the well data to a prescribed tolerance,
the resulting permeability models differ substantially from the true, channelized,
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Fig. 8 Permeability parameter estimation using pressure and tracer data measured until break-
through. Left: estimate using an initial guess k = 10 mD. Right: estimate using an initial guess
k = 100 mD. Both estimates represent a significant improvement in comparison with those found
in Figure 7

model. Improving these results requires either inverting for a reduced set of
parameters (e.g., assuming a known channel geometry and inverting for the constant
permeability within each region) [4] or incorporating additional data.

Next, we augment the pressure data with tracer data and consider the PDE-
constrained optimization problem (41). We assume that the tracer data is available
throughout the reservoir while the pressure data is available only at the wells. We
consider the initial models used previously. The results are displayed in Figure 8 and
demonstrate that tracer data provides an improvement in the resolution of reservoir
permeability. For example, when an initial guess of k = 10 mD is used, the resulting
inversion provides a good reconstruction of the reservoir’s channels. This occurs
because the initial guess agrees with the background permeability while the pressure
and tracer data largely determine the channels’ permeability. In contrast, starting
with the homogeneous model k = 100 mD leads to a good estimate of the channels’
permeability but a poor estimate of the background, which is 10 mD. The inability
to determine the background permeability in this case is partially due to the fact
that, at breakthrough, very little tracer has entered the background. This can be seen
in Figure 6.

We conclude this section with a one-dimensional analytic example designed to
provide intuition behind our inability to infer permeability values using pressure
data only. It is important to keep in mind that this example does not capture the full
complexity of the 2D numerical results presented above.

As indicated in Figure 9, we assume that an incompressible fluid flows through
a one-dimensional reservoir of varying permeability k(x). In addition, we assume
that the inflow pressure p0 and the outflow velocity q are prescribed. It follows, due
to incompressibility, that v(x) ≡ q.
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q q
k (x)

Fig. 9 One-dimensional incompressible flow through a reservoir. Due to the incompressibility of
the fluid, the velocity is constant, v(x) = q, and the pressure obeys Darcy’s law q = − k(x)

μ
∂p
∂x

The pressure-velocity system in this case can be expressed as

v = − k

μ

∂p

∂x
for x ∈ (0, 1),

∂v

∂x
= 0 for x ∈ (0, 1),

p = p0 at x = 0,

v = q at x = 1.

(57)

In this simplified setting, the reservoir history matching problem is the deter-
mination of permeability from measurement of the outflow pressure. It turns out
that this problem is highly nonunique: we will show that any two permeability
distributions k(x) and k̃(x) yield the same outflow pressure whenever

k̃(x) = k(x)

1+ δk(x)
(58)

where δk is a perturbation satisfying
ˆ 1

0

δk(x)

k(x)
dx = 0. (59)

In order to establish this claim, denote by p(x) the pressure field corresponding to
k(x) and p̃(x) the field arising from k̃(x). The result follows from

p̃(1) = p0 +
ˆ 1

0

∂p̃

∂x
dx = p0 −

ˆ 1

0

qμ

k̃(x)
dx = p0 −

ˆ 1

0

qμ(1+ δk(x))

k(x)
dx

= p0 −
ˆ 1

0

qμ

k(x)
dx = p(1).

(60)
A similar result can be found in the reservoir simulation textbook [11].

3.5 Challenges in Reservoir History Matching

Reservoir history matching faces significant challenges: the results are inherently
nonunique and the complexity of the PDE models used complicates optimization
and uncertainty quantification. We discuss each of these in detail below.
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Nonuniqueness The results of Section 3.4 give the reader a sense of the nonunique-
ness of reservoir history matching. Four distinct factors contribute to this nonunique-
ness. First, the diffusive nature of the pressure equation (36) leads to a smearing
of information over time. Second, there is a stark discrepancy between the small
number of available well measurements and the potentially large number of
unknown grid permeability values. Third, permeability can attain a wide range
of values - near zero at flow barriers to extremely large at open fractures. Fourth,
many of the parameters controlling fluid flow that are assumed to be known (e.g.,
fault locations, the initial distribution of fluids, and the mixing behavior of different
fluids) are, in reality, uncertain. Incorporating additional data (e.g., geologic analogs
and seismic data) [21, 36, 90] may reduce the degree of nonuniqueness but will
likely not eliminate it.

The development of algorithms that quantify the uncertainty in reservoir per-
formance represents a significant challenge. A number of algorithms have been
proposed in recent years; these include Markov chain Monte Carlo, randomized
maximum likelihood, and the ensemble Kalman filter [67, 68]. Due to the cost
and nonlinearity of solving the forward model, the limited data available, and the
fact that many parameters in reservoir flow models are highly uncertain, successful
uncertainty quantification of reservoir performance may hinge on the identification
of low-dimensional representations of reservoir features which ensure geologic
realism and capture the most important aspects of fluid flow [91].

Complexity of Multiphase Reservoir Fluid Flow PDE models of reservoir
fluid flow possess a high degree of complexity due to the nonlinear nature of
multiphase flow and the heterogeneity of reservoir rock properties. As a result of this
complexity, numerically solving such models is costly and computing the gradients
necessary for optimization and uncertainty quantification is challenging.

In recent years, reservoir simulation has seen significant speedup due to advances
in high-performance computing, novel computer architectures, and linear solver
preconditioning. However, the cost of reservoir simulation continues to be a
bottleneck when attempting to quantify subsurface geologic uncertainty. One way
to reduce this cost is through the use of a proxy simulator that provides inexact but
sufficiently accurate estimation of the flow data relatively quickly [9, 49].

Difficulty computing gradients for realistic reservoir history matching problems
motivated the use of derivative-free optimization algorithms. These algorithms
include the ensemble Kalman filter, the ensemble Kalman smoother, evolutionary
optimization strategies, and particle swarm optimization [33, 67, 75]. In light of
these developments, it is unclear whether the value of the gradient for optimization
and uncertainty quantification outweighs its cost.

4 Summary and Outlook

This paper provided an overview of the oil and gas supply chain and introduced
two important applications of PDE-constrained optimization: FWI and reservoir
history matching. A simple model problem for each application was solved using a
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common least-squares optimization framework based on the adjoint-state method.
The quality of the results was dependent on the type of PDE (i.e., hyperbolic or
parabolic), the experimental setup (i.e., the placement of sources and receivers and
the source signature), and the initial guess.

Looking to the future, opportunities abound for the application of PDE-
constrained optimization in the oil and gas industry. These include optimal source
and receiver configuration in FWI, higher resolution geophysical imaging through
joint inversion of seismic, electromagnetic, and gravity data sets, optimization
of well placement and control, flaw detection in pipelines, and chemical reactor
design and control. In particular, algorithmic advances in FWI and reservoir
history matching (leveraged, perhaps, by developments in related fields such as data
assimilation, medical imaging, and uncertainty quantification) will play a crucial
role as the industry is confronted by ever-increasing subsurface complexity and
new environments characterized by high risks and costs. The challenges, and hence
opportunities, faced in discovering new hydrocarbon reservoirs and optimizing
production from existing fields have never been greater.
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Full-Wavefield Inversion: An
Extreme-Scale PDE-Constrained
Optimization Problem

Martin-D. Lacasse, Laurent White, Huseyin Denli, and Lingyun Qiu

Abstract Full-wavefield inversion is a geophysical method aimed at estimating the
mechanical properties of the earth subsurface. This parameter estimation problem is
solved iteratively using optimization techniques aimed at minimizing some measure
of misfit between computer-simulated data and real data measured in a seismic
survey. This PDE-constrained optimization problem poses many challenges due to
the extreme size of the surveys considered. Practical issues related to the physical
fidelity and numerical accuracy of the forward problem are presented. Also, issues
related to the inverse problem such as the limitations of the optimization methods
employed, and the many heuristic strategies used to obtain a solution are discussed.
The goal of this paper is to demonstrate some of the progress achieved over the last
decades while highlighting the many areas where further investigation could bring
this method to full technical maturity. It is our hope that this paper, together with
other contributions in this book, will motivate a new generation of researchers to
contribute to this broad and challenging research area.

1 Introduction

Reflection seismology has been instrumental to oil and gas prospecting since its first
application in Oklahoma at the beginning of the last century [9]. This technology
relies on triggering controlled artificial seismic sources at the surface of the earth
and listening for elastic waves coming back to the surface. The acquisition methods
used in reflection seismology are often referred to as multichannel seismic methods
referring to the large number of simultaneous channels used for recording elastic
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waves. Each channel is associated with one of the seismic receivers which are
typically positioned at dense regular intervals. The reflections and refractions of the
waves are caused by the presence of rocks of different types, which, as all materials,
have characteristic sound transmission properties. The contrast in these properties
causes waves to reflect and refract. Relating the reflections and refractions back
to the material properties of the subsurface requires a deep understanding of the
propagation of elastic waves in the earth, and the geological processes that created
the different sedimentary rock layers.

The ultimate goal of seismic exploration is to provide valuable input to the
identification and characterization of oil and gas reservoirs. These reservoirs are
quantified in terms of properties such as fluid saturation, rock porosity, and
permeability, properties that are only indirectly related to sound wave propagation.
This indirect relationship is based on geological interpretations and approximate
rock-physics correlations derived from field observations and lab experiments.
Being able to infer more accurate values for wave velocities can help reduce the
uncertainty in our knowledge of the subsurface and therefore enable us to build
more accurate geological models. These better models directly improve our ability
to identify and characterize hydrocarbon resources, and design optimal production
strategies.

Typical seismic surveys cover hundreds of kilometers and use different hardware
depending on whether the survey is performed on land or in a marine environment.
The size of the physical domain to be processed is set by the extent of the region of
interest and can span tens of kilometers per side and up to 10 kilometers in depth as
oil deposits are located in the shallow sedimentary layers of the earth. At the smaller
end of the length spectrum, the characteristic length scale of the problem is set by the
wavelength of the traveling wave, which depends on the source frequency and the
wave velocity. As the rock properties vary all across the physical domain, so does
the wavelength, solving the wave equation on a domain with such spatial variations
can only be achieved by using large calculators. Unlike simple problems where one
can select a set of dimensionless parameters defined over a reduced domain of unity,
the parametric representation will typically be selected to minimize the numerical
bandwidth of the calculator and thus reduce numerical round-off errors.

To give an idea of the range of values of wave velocities typically encountered
in geophysical surveys, the compressional wave velocity (vp) in water is around
1.5 km/s and will typically vary between 2 and 6 km/s for sedimentary rocks. Shear-
wave velocity (vs) in rocks is roughly half those latter values, except in some soft,
unconsolidated sediments (e.g., water bottoms) where it can be much lower.

Rocks are complex heterogeneous porous materials with features ranging in size
from the micrometer scale to hundreds of kilometers. As elastic waves travel through
them, random sub-wavelength features get homogenized and an average value
emerges. Elastodynamic homogenization will not be covered here but it has a rich
history during which many mathematical theories have been proposed to estimate
the effective properties of composite materials [67, 79, 100]. The wavelength λ,
established by the source frequency f through λ = v/f , approximately sets the
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Fig. 1 A simple yet representative marine streamer seismic survey. An area of 40 km × 40 km is
surveyed by a ship (indicated in blue and magnified 10×) towing 8 cables (only 4 shown in red) of
length of 8 km, maintained at a distance of 100 m apart. The seismic source, an air gun array towed
right behind the ship, is triggered every 50 m. Pressure sensors are located every 12.5 m along each
cable. The ship has to navigate 50 swaths to sweep the entire area of interest

minimum size of heterogeneities that can be resolved. Ideally, the source frequency
should be selected to resolve features at all scales down to a desired spatial
resolution. In practice, however, the dominant frequency fo of engineered sources
is typically designed to be between 30 Hz and 50 Hz. This is a sweet spot that
balances wave attenuation in the earth with technical and environmental limitations
of generating enough energy at high frequency to travel forth to the maximum
targeted depth and back to surface receivers.

The real-world constraints just described ultimately dictate the dimensions of the
industrial problem to be solved. From a computational perspective, the numerical
integration of the equations of motion propagating seismic waves over such a
domain is an extreme-scale problem. The inversion of the rock properties through a
PDE-constrained optimization approach is even more challenging as we will try to
demonstrate in this paper.

To better illustrate the size of problems that the industry is facing, let us consider
a realistic example of a marine streamer survey of an area of 40 km × 40 km that
is shot from a ship towing 8 cables of 8 km of length, each separated by 100 m.
This survey is shown in Figure 1.1 Each shot, triggered every 50 m while the
ship is moving, is captured for a total time duration T of 10 s by hydrophones
located at every 12.5 m along each of the cables. Each shot therefore generates 5120
seismograms, also called traces, which are time series of measured pressure vs. time.
Covering the full survey area will require 50 swaths each comprising 800 shots.

1In reality, cables will not be straight but will follow ocean currents. The hardware and controls
required to keep the cables apart and monitor their locations are a real engineering accomplishment.
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With a sampling period of 2 ms and a 24-bit amplitude representation, this survey
will have generated 3.1 terabytes of data. Assuming a source dominant frequency
of 30 Hz, our system would have a dominant wavelength λp of 50 m in water and
could have a shear wavelength λs as small as 30 m for an assumed minimum vs of
900 m/s. In comparison, if some fast rocks are present with, say, vp of 4 km/s, the
largest wavelength would be about 133 m. Rules of thumb for spatial discretization
vary by numerical method but typically dictate a bare minimum between 5 to
10 points per wavelength. Considering 6 points for the sake of our argument, a
regular grid of 5 meters could represent the shortest wavelength (30 m) and would
require, at a minimum, 64 billion grid points for the full domain with a target depth
of 5 km (i.e., 8000 × 8000 × 1000). The total experimental listening time of the
ship’s receivers is about 4.6 days of real time (50 × 800 × 10 s). Reproducing the
same experiment sequentially on a calculator by using the current generation of
algorithms and supercomputers will necessitate much more than a week.

The motivation for going through this example in detail is to help the reader
realize the magnitude of problem sizes that industry has to deal with, and that
while great ideas might have tangible benefits for small problems, scalability of the
proposed solutions must also be carefully evaluated. Moreover, when considering
the full problem from the beginning, one can sometimes exploit symmetries or
approximations that can be well justified under certain acquisition geometries, or
subsurface conditions. This simple case also exemplifies that using a regular grid
on problems with substantial variations in wave velocities might not be an optimal
strategy: despite its extra computational costs, having a mesh that can adapt with the
local wavelength can help solving larger problems [44].

Due to their large size, geophysical exploration problems have long been
challenging to compute, and industry had to rely on approximations that allowed
the problem to fit on available supercomputers. At first, only the first arrival
times and so-called convolutional models were considered, then ray theory [17]
allowed the computation of approximate synthetic seismograms and even enabled
ray tomography when imaging from real data is posed as an inverse problem. More
recently, advanced calculators allowed the computation of seismograms with better
physical fidelity, finally enabling one to perform full-waveform inversion (FWI),
which solves seismic imaging as a nonlinear parameter-estimation problem using
the minimally modified, i.e., full-waveform, observed seismograms. An additional
benefit of posing the problem of seismic tomography as an optimization problem is
that it provides a rigorous framework through which additional information can be
included in order to assist in getting more accurate parameter estimations.

Since the computation of industrial FWI problems is still very costly, some
approximations are often used in the forward model. One common approximation
involves solving the problem only for the lowest frequencies as the algorithmic
complexity of the problem can easily be shown to scale as O(f 4

o ), or even
O(f 6

o ) when denser spatial sampling of seismic sources on the earth surface
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is also considered.2 Another common approximation is the so-called acoustic
approximation which involves filtering out the effects of shear waves to the best we
can from the observed seismograms, and then assuming that the earth is a fluid. The
computational cost of the resulting problem is much lower than the original problem,
typically by at least one order of magnitude. Industry is actively investigating novel
routes to perform FWI as robustly and economically as possible, while improving
the FWI resolution over conventional imaging.

The goal of this paper is not to provide an overview of FWI; this has already
been addressed by several excellent review papers and books (e.g., [34, 104]).
This paper also does not focus on the computational methods used for generating
synthetic seismograms; readers should consult [44], which is a very good book on
that topic. Rather, our purpose is to present the reader with what we believe are
still the most important unanswered questions as to how to bring FWI technology
to full maturity. Also, from a more general perspective, there currently remain a
large number of challenges regarding the estimation of parameters of large-scale
systems using PDE-constrained optimization. It is anticipated that some of the
successful methods developed for FWI will also bring impactful benefits to other
PDE-constrained optimization problems, such as medical imaging, material design,
and nondestructive testing applications. Recognizing that many of the challenges of
FWI are common to other applications, we therefore made our best effort to avoid
using field-specific jargon with the intent of making the text accessible to a broader
audience.

For FWI, and other parameter-estimation problems constrained by PDEs, finding
the best3 earth parameters that can reproduce the measured data can be seen as
two different activities: the forward problem of generating synthetic seismograms
from a given three-dimensional (3-D) earth model, and the inverse problem of
finding the optimum model that can best match the observed data. For the forward
problem, current challenges can be grouped under two categories: physical fidelity
and computation time. For the inverse problem, all challenges can be interpreted as
“optimizing the optimizer,” i.e., finding the most effective and robust optimization
strategies. This quest includes finding the optimal parameter representation, the
most useful misfit norm and annealing heuristics, the associated initial earth
parameters that can lead to a reasonable solution, regularization, and constraints
strategies, and the most efficient minimization algorithm. Many of the strategies

2This relation can be derived as follows. For a cubic survey of dimensions L3, the number of spatial
points Nx to compute will scale as L3/h3, where h is the discretization length set by h ∼ λo =
v/fo. If using explicit time integration, the number of time integration steps Nt = T/Δt , where T

is the listening time, and Δt the time step. As Δt ∼ h/v ∼ f−1
o , then the number of operations

Nop ∼ NxNt ∼ f 4
o , and therefore O(f 4

o ). For larger fo, the distance between the different shots at
the earth surface also need to be smaller to maintain resolution, and therefore more shots are used
(and need to be computed), resulting in O(f 6

o ) when the inversion is performed separately for each
source.
3We purposely picked the word best to emphasize that the problem has nonunique solutions
and that the chosen solution might be the result of applying some additional measures of merit,
sometimes even including some subjective domain expertise.
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employed might implicitly exploit a structure of the physical problem that can guide
the inversion to plausible geophysical solutions and are often based on intuition
rather than on mathematical rigor.

This paper is structured along the ideas just presented. With the aim of being self-
contained, we will first introduce the forward model at a level of detail sufficient for
understanding the following sections. For physical fidelity, we will look in particular
at the implications of using models with higher physical accuracy, and our ability
to resolve the additional physical parameters. The computation time of the forward
model is often related to the desired numerical accuracy, which should be minimally
sufficient for the application considered. Therefore, we shall briefly present the
challenge of selecting a discretization method for solving the forward problem at
minimum computational costs for a given desired numerical accuracy. Then, we
will discuss the inverse problem and describe the adjoint-state method used to
generate the gradient of the data with respect to parameters of the earth model.
Finally, we will present a few synthetic inversion cases that exemplify some of the
challenges encountered in FWI. We assume that the reader has only limited exposure
to seismology that can be complemented by introductory [91] or more advanced [3]
textbooks. It is our hope that this paper, together with other contributions in this
book, will motivate a new generation of researchers to contribute new ideas to this
broad and challenging research area.

2 Forward Problem

Simulating field-scale experiments on a computer in view of generating synthetic
seismograms is in itself an optimization problem: because of the large size of
the problem, one has to balance accuracy with the cost of computation. For wave
propagation, or any other mathematical modeling of physical phenomena, accuracy
can be separated into two distinct categories: physical fidelity, i.e., having the proper
representative equations to reproduce (most of) the complexity of the physical
phenomena observed in the real experiment, and numerical accuracy, i.e., having the
adequate numerical representation of the physical model on the calculator. Those
two activities can be thought of as validation and verification of the simulation
model, respectively [88, 89].4 We will address these two issues separately.

2.1 Physical Fidelity

The physics behind the propagation of elastic waves in a heterogeneous material
has been known since the nineteenth century thanks to Navier, Cauchy, and
Green [93]. It assumes linear elasticity, namely, that the restoring force due to a

4A third element called model qualification determines the level of adequacy of the model for the
intended application. This aspect will not be discussed here.
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small deformation is accurately represented by a simple proportionality relation
often referred to as a generalized Hooke’s law. Except near the source where
the displacements are relatively large and nonlinear effects can be important, this
approximation is well justified for the small displacements typically encountered in
reflection seismology. Also, when these equations are used in reflection seismology,
the pressure resulting from the weight of the rocks is ignored, and linear-elasticity
equations are interpreted as perturbations about an equilibrium configuration.

For a general elastic material, the stress-strain linear constitutive relationship
reads5

τij = cijklekl, (1)

where c(x) is the elastic (fourth-order) tensor, and τ (x, t) is the stress (second-
order) tensor. Notice that the elastic tensor is assumed to be independent of time
for the duration of the experiment. The strain tensor e(x, t) is obtained from the
displacement vector u(x, t) through

eij = 1

2
(∂iuj + ∂jui). (2)

By construction, the strain tensor is symmetric. While c has 81 components, it has
been shown that symmetry relations imposed by the conservation of linear and
angular momenta as well as the postulation of the existence of an elastic strain-
energy density function reduce the number of independent variables to 21.6 A full
derivation can be found in, e.g., [3, 56, 93]. For practical applications, it is common
to rewrite Equation (1) using a 6× 6 symmetric matrix c̃. Using this so-called Voigt
notation, the strain and stress tensors are now represented by 6-dimensional vectors
ẽ and τ̃ , and Equation (1) is then written as

τ̃i = c̃ij ẽj , (3)

a form much more convenient to implement on a computer. The term ẽ defines the
engineering strain where ẽi = eii (no sum) for i ≤ 3 and ẽ4 = 2e23, ẽ5 = 2e13, and
ẽ6 = 2e12.

At the macroscopic scale, most amorphous materials display isotropic properties,
and so are many sedimentary rocks, which are polycrystalline. However, rocks
made of sub-wavelength layers of isotropic sediments of different elastic moduli
can nevertheless exhibit anisotropy if the difference in properties between the
different layers is large enough [6]. This behavior can be intuitively understood
by considering stretching the material in a direction perpendicular to the layers.
The emerging “average” of elastic constants will be reminiscent of springs acting

5We will be using the Einstein convention where repeated indices imply a sum over these indices.
6It is interesting to note that Green, Cauchy, and Poisson were part of a lengthy controversy in
which the last two argued that the number of coefficients could not exceed 15. See [93] and
references therein.
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in series. If the material is stretched along those layers, however, the average will
be reminiscent of springs in parallel.7 This difference will give rise to a difference
in wave speed depending on the direction of propagation. Thin-layered isotropic
sedimentary rocks can therefore exhibit some degree of anisotropy. If the effects are
nonnegligible, anisotropy will have to be included into the physical model. However,
the additional parameters needed can introduce degeneracies preventing successful
parameter estimation from the observed data, especially if all 21 parameters are
considered. A common approach to this problem is to impose additional symmetries
on the elastic tensor. While materials can be classified into 7 general classes of
symmetry [56], only a few have broad geophysical applicability. Two classes of
particular interest are the orthorhombic class, which has three orthogonal symmetry
planes and requires 9 independent coefficients out of 12 nonzero c̃ij entries, and
the transversely isotropic class in which axial symmetry reduces the elastic tensor
to 5 independent coefficients out of 12 nonzero entries. In geophysics, the latter is
termed vertical transverse isotropic (VTI), horizontal transverse isotropic (HTI), or
tilted transverse isotropic (TTI) depending on the orientation of the symmetry axis
with respect to the earth surface.

Thomsen [97] introduced a derived set of dimensionless parameters that provides
a more intuitive connection with field-observed quantities, such as horizontal and
vertical velocities in VTI environments. Instead of dealing with the elastic moduli,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
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, (4)

the 5 independent c̃ij are expressed as 2 elastic moduli (c̃33 and c̃44, related to
vp and vs along the symmetry axis) coupled with three dimensionless measures
of anisotropy ε, γ , and δ defined as

ε ≡ c̃11 − c̃33

2c̃33
, γ ≡ c̃66 − c̃44

2c̃44
, and δ ≡ (c̃13 + c̃44)

2 − (c̃33 − c̃44)
2

2c̃33(c̃33 − c̃44)
. (5)

The first two parameters give a measure of anisotropy between the axial and
azimuthal velocities: if there is no anisotropy, those two parameters are null. The
third expression defines the ellipticity parameter δ, which has been simplified and
is only exact for weak values of anisotropy. It can be associated to how axial and
azimuthal velocities are changing from one to the other as the angle of propagation
changes. See [97] for a full derivation.

7In material science, these two end-value members for binary composite materials are termed the
Reuss and Voigt averages, respectively. For more details, see, for example, [66, 67].
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As one Cartesian coordinate axis is typically chosen to be aligned with the
vertical direction, two additional parameters are required to define the direction
of the axis of symmetry for TTI. These angles can change in space, allowing
for the representation of smoothly undulating layers, or tilted layered blocks. In
Section 4.1.2, we show synthetic results on the inversion of two-dimensional VTI
data using some of the anisotropy parameters just defined.

When material is considered macroscopically isotropic, spherical symmetry
further reduces the elastic tensor to 2 independent coefficients. For such materials,
the stress-strain relation thus simplifies to

τij = λδij ekk + 2μeij , (6)

which is often expressed as a function of displacements u, using Equation (2),

τij = λδij ∂kuk + μ(∂iuj + ∂jui). (7)

This expression, first derived by Cauchy, introduces the Lamé parameters λ(x) and
μ(x), the latter being equivalent to the shear modulus, while the bulk modulus
K = λ+ 2μ/3.

When combining constitutive stress-strain relation (1) or (7) with Newton’s
second law of motion, stating that the rate of change in linear momentum is directly
related to the forces exerted on that (infinitesimal) body, i.e.,

∂

∂t

(
�
∂ui

∂t

)
= ∂j τij + si, (8)

one obtains a system of equations describing the propagation of elastic waves in a
heterogeneous material. Here, �(x, t) is the volumetric mass density, which is often
approximated as constant in time, and s(x, t) is a body force that could be gravity,
or a seismic source term. Seismic sources are generally represented as point sources
expressed using a seismic force moment M. For each source k, a wavefield u(k)(x, t)
can be computed using Equations (1) and (8) with

s
(k)
i (x, t) = δ

(k)
i (x− x(k))w(k)(t)∂jM

(k)
ij , (9)

where δ(k) is a spatial support function, typically a spherically symmetric Dirac
delta function or a modified Gaussian approximation with compact support, x(k) is
the kth-source location, and w(k)(t) is the source temporal signature. More complex
finite sources can be modeled by an array of moment-tensor point sources [61]. The
separation of spatial and temporal variables for the sources makes it possible to treat
the source temporal signatures as unknowns as we shall see in Section 4.1.3.

Using those equations, one can model waves traveling in heterogeneous elastic
media, thus carrying energy over distance. As waves emanate from a finite source,
they expand and cover more and more volume. Because of energy conservation,
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their amplitude will naturally decrease as they cover more volume through geomet-
rical spreading. Waves traveling in rocks also exhibit intrinsic attenuation, caused
by grain friction, fluid movement, and scattering at smaller scales, all of which also
reduce wave amplitude. Because of these effects, a fraction of the energy stored at
each oscillation cycle is not fully restituted. Attenuation will therefore be stronger
for waves experiencing more cycles and transmission losses larger for waves with
higher frequencies and/or traveling longer distances. This effect causes the high-
frequency content of the seismic energy power spectrum to decay more rapidly than
the low-frequency content, as viscoelastic waves travel.

The wave amplitudes A at two distances x2 > x1 away from the source can be
related through [90]

A(x2) = A(x1)

(
x1

x2

)n

e−α(x2−x1), (10)

where α is the attenuation coefficient (in Nepers/m) and n depends on the geometry
of the problem (e.g., n = 0 for plane waves, and n = 1 for spherical waves in 3-D).8

In seismology, attenuation is commonly expressed using a dimensionless parameter
Q called the quality factor and defined as [49]

2π

Q
= 2αv

f
= ΔE

E
, (11)

where ΔE/E is the fractional energy loss per cycle, and v and f the velocity and
frequency of the wave (recall v/f = λ). Values of Q ranging from 10 to several
thousands have been measured experimentally for various rocks, and these values
tend to be independent of frequency for dry rocks and vary as Q ∼ 1/f for fluids
and water-saturated rocks [90, 99].9

For media with nearly homogeneous Q in space, it is sometimes possible to apply
techniques that boost the observed signal with the intention of eliminating the effect
of attenuation [108]. It is then possible to compare the modified experimental data
with unattenuated synthetic seismograms using a misfit function that is sensitive
to signal amplitude, such as any !p norm. Media with heterogeneous attenuation,
however, will require modeling loss effects explicitly in the forward model in order
to allow for a meaningful misfit measure between the synthetic and field-observed
data.

Modeling attenuation in anelastic solids involves an empirical formulation that
uses memory variables causing the elastic moduli cij (t) to be time-dependent. The
specific approach depends on whether the numerical solution method is formulated

8Nepers are not part of the SI units. They have dimensionless units and refer to the natural
logarithm of ratios of measurements.
9Note that ultrasonic lab measurements are typically performed in the MHz range while the
frequency bandwidth used in reflection seismology covers about 2 orders of magnitude ranging
from 1 Hz to 100 Hz.
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Fig. 2 Representation of the generalized Maxwell rheological model. Such models are used to
account for attenuation in time-domain simulations of wave propagation. Model has n rheological
mechanisms each composed of one (Hooke) spring and one (Stokes) dashpot. In this model, cr
is the relaxed modulus, while Δcl and ηl are the elastic modulus and dashpot viscosity in the lth
mechanism (l = 1, . . . , n), respectively

in the space-time or space-frequency domain. For the latter, adding an imaginary
part to the wave velocity is sufficient to account for attenuation effects and several
models have been proposed to that effect [102]. The main difference between these
phenomenological models resides in the frequency dependence of Q(f ). For some
complex-variable velocity models [35, 48, 50], the attenuation is considered constant
in the seismic frequency band, while Q varies with frequency for others [102].

In space-time formulations, a combination of simple springs and dashpots is
required for modeling anelastic effects. Each one-dimensional spring is modeled
with a (Hooke) linear response τ = ce, similar to Equation (1), while each
dashpot is a (Stokes) linear viscous term modeled as τ = ηde/dt , where η is the
viscosity. See [71] for a nice introduction. The most general formulation of those
combinations is termed the generalized Maxwell model [28], which, as its name
indicates, includes all other variants [70]. Figure 2 shows such a rheological model.
The mathematical description of this model is included in the Appendix.

In principle, each component of the elastic tensor cijkl can be represented by
a different rheological model, allowing for anisotropic attenuation. In practice,
however, attenuation is typically considered isotropic, and attenuation for compres-
sional and shear waves, Qp and Qs , are most often considered separately. As we
will demonstrate, the data sensitivity to attenuation is rather weak given that its
effect is cumulative and takes place during signal transmission. Large distances
between source and receivers (i.e., large offsets) should therefore be more favorable
to attenuation inversion.

We have seen in this section that in order to be able to reproduce the data
acquired in some surveys, it might be necessary to add effects such as anisotropy and
attenuation to the forward simulation toolbox. The computational methods needed
for producing synthetic traces for field-scale studies with this level of physical
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accuracy are currently the state of the art in computational seismology. As we
will discuss in Section 3, performing field-scale full-wavefield inversions with such
high physical fidelity models is the soon-to-be-reached grand challenge given the
upcoming generation of computers and algorithms.

The minimum level of physics required for reproducing the experimental data on
a computer involves continuum mechanics at the macroscopic scale. The behavior
of the material at the pore scale is still poorly understood and for the most part relies
on phenomenological descriptions such as the attenuation models described above.
On the engineering side of the acquisition, the details of the coupling of the receivers
and source devices to the media is often neglected, as are the ambient and acquisition
noises. Therefore, the numerical wave propagation engines that we develop are an
idealized representation of the physical phenomena observed. Fortunately, they are
a very good approximation and are believed to be able to account for the majority
of the signal measured.

2.2 Numerical Accuracy

Solving the problem of wave propagation on a computer requires first discretizing
the selected equations of motion. It is often convenient to discretize space and time
independently (commonly known as the method of lines). Regardless of the level
of physical fidelity selected, the wave equation can be represented by the following
general equation which is obtained after space has been discretized [44],

M
d2u(t)

dt2
= Ku(t)− C

du(t)
dt

+ s(t). (12)

Here, M is the so-called mass matrix, K the stiffness matrix, C the damping matrix,
and s is a source term. The size of vector u(t), often termed the number of degrees
of freedom, is the number of discrete points prescribed by the numerical method
for the spatial discretization.10 In this paper, we will use As(t) = u(t) to express
Equation (12), where A is referred to as the forward operator.

Equation (12) can be transformed in Fourier space, which will conveniently
replace every time derivative by a mere multiplication by iω, where i2 = −1, and
ω is the angular frequency. The wave equation then becomes a linear system of
equations,

− ω2Mu(ω) = Ku(ω)− iωCu(ω)+ s(ω), (13)

10To be more precise, in some cases the dimensionality of u may be higher than the number of
spatial points when the numerical method introduces additional degrees of freedom, such as in the
case of the discontinuous-Galerkin method.
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or, for many independent sources identified by index k,

u(k)(ω) = A(ω)s(k)(ω), (14)

where A(ω) = (−ω2M − K + iωC)−1 is defined as the forward discrete (and
complex) operator in frequency.

Methods for solving Equation (14) are referred to as frequency-domain methods
which, for small problems, involve performing LU (lower and upper) triangular
decomposition on A−1(ω) [83]. The LU factorization can be reused for different
sources as indicated by the lack of superscript k on operator A(ω) but needs to be
recomputed for each frequency [81]. For larger systems, however, this approach is
not practical due to the large size of matrix A, and one has to revert to iterative
methods [85]. We refer the reader to [44, 105] for an accessible overview of the
forward solvers used for seismic wave modeling, and their associated algorithmic
complexity. Frequency-domain methods remain an area of active research (e.g.,
[45]). Some of the proposed approaches explicitly exploit the sparsity and structure
of A−1 [78, 107], but these approaches still lack the ultimate scalability required by
extreme-scale problems.

Because of the size limitation of the frequency-space formulation, very large
problems are solved more efficiently when formulated in space and time (the so-
called time-domain method). One of the differences between space-frequency and
space-time methods is the trade-off between memory and CPU requirements that
is representative of many other choices that have to be made when devising a
computational strategy for solving an FWI problem. Both approaches can either
use unstructured meshes, where the local space-discretization step size h is dictated
by the smallest local wavelength, or regular grids, where h will be dictated by the
smallest wavelength over the full domain.

In the time-domain approach, time is most commonly integrated explicitly with
(typically) a global and constant time step Δt dictated by a conditional stability
criterion such as CFL11 [44]. While implicit time integration is possible (e.g., [75]),
it is generally more costly than simple time interpolation schemes and more difficult
to implement. The stability of implicit methods is better than the one associated
with explicit methods, but it often comes at the cost of losing the high-frequency
details of the solution. Moreover, implicit methods do not offer the same scalability
when implemented on parallel computing architectures due to the need of solving
large linear systems. Our strategy is to use the most economical method for solving
the problem with a fit-for-purpose accuracy. For these reasons, time integration is
most often performed through simple second-order methods such as Newmark-β,
leap-frog, or Runge-Kutta methods when higher-order schemes are required. These
schemes offer just enough precision to match the spatial discretization and can be
easily adjusted as the spatial discretization is modified. Another way to keep the
time and space discretizations consistent when higher-order spatial discretizations

11Stability criterion named after Courant, Friedrichs, and Lewy stating that vΔt ≤ h.
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are used is to use the so-called ADER (Arbitrary high-orDER) methods [27, 98]
in which the required high-order time derivatives are cleverly derived from spatial
derivatives.

The spatial discretization of Equation (12) can be performed using a variety
of numerical methods. Finite-difference methods, however, have long been the
workhorse for geophysicists. Most common variants derive from the seminal work
by Virieux [103] who proposed using a stress-velocity system of two first-order
equations on a staggered grid for stability purposes. Many other approaches have
been proposed over the years, but only the spectral-element [51, 52, 101] and
discontinuous-Galerkin methods [27, 31, 47, 76] seem to have gained broad accep-
tance and have emerged as competitive candidates for use in reflection seismology.
The main appeal of spectral-element and discontinuous-Galerkin methods is their
ability to easily accommodate unstructured meshes, the use of which is compelling
in the presence of complex topography and when local refinement is necessary for
accuracy purposes, such as near a free surface or near sources. Unstructured meshes
also have the flexibility to adapt the mesh size to local wave speeds. In doing so,
the regions of larger wave speeds would be discretized by larger elements while
still sampling the wave form richly enough (the wavelength is larger in these high-
velocity regions). In addition, the maximum allowable time step (as dictated by the
CFL stability criterion) would not be penalized as much as it would when using
regular grids.

In spite of their appeal, generating unstructured meshes over complex domains
in three dimensions is difficult and costly, and implementing numerical methods
on unstructured meshes is more complex than for their regular-grid counterparts.
The increased complexity comes from the need for extra bookkeeping and from the
requirement of computing extra terms that account for the change of coordinates
between a reference cell and any deformed cell within the mesh. Those extra
terms also increase the run-time cost of unstructured-mesh methods because the
number of floating-point operations required to compute a spatial derivative is larger
than for the case of regular grids. Parallel computations, which rely on domain-
decomposition approaches where each process is responsible for computations on
a sub-domain, bring about additional complexity when using unstructured meshes.
These sub-domains are much simpler to define, and optimal load balancing is much
easier to guarantee, when the physical domain is discretized by a regular grid.
In contrast, unstructured-mesh domain partitioning is typically based on heuristic
approaches and nonoptimal distributions of partition shapes and sizes are common
and can hamper parallel efficiency (i.e., a relatively large amount of time may
be spent communicating across partitions or waiting for processes to finish their
computations). Finally, regular grids might be much more appealing to a practitioner
who is used to performing operations that are straightforward on those grids, such
as Fourier spatial analysis and filtering. The use of unstructured meshes does not
prevent such operations, yet it requires using injection and projection operators to
enable those regular-sampling benefits.

The above discussion highlights the dilemma that one faces when deciding on
a numerical method. That dilemma is characterized by a trade-off between ease
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of implementation, raw speed, and convenience on the one hand, and accuracy on
the other hand. Therefore, and again, choosing the appropriate numerical method
is in itself an optimization problem. Its solution depends on the implementation
details of the selected algorithm, the available hardware, the type of problem
being considered, and the background of the person choosing the method. While
a geophysicist would most likely opt for ease of implementation and convenience,
and might therefore lean towards the finite-difference method, a numerical analyst
would likely choose a different method and might focus more on the convergence
properties of the method with less focus on convenience or raw speed. A more
pragmatic approach lies in between, where one seeks the most efficient method or,
in other words, the fastest method that can achieve a given level of accuracy.

Comparing the costs and benefits of the different methods is not an easy task.
In Figure 3, we show the wall time against the obtained accuracy for a series
of runs using different numerical methods. A simple standing-wave problem in a
homogeneous domain with reflecting boundaries was chosen as the test problem. A
very small time step (5 × 10−6 s) is used to integrate the acoustic wave equation
forward to final time 0.5 s. Central-difference, second-order Runge-Kutta and
leap-frog time-stepping schemes are used for the spectral-element, discontinuous-
Galerkin, and finite-difference methods, respectively. The time step is small enough
that spatial errors dominate time errors, even on fine meshes, which simplifies
the analysis of spatial-error considerations. For practical applications, time errors
could be significant as time steps are pushed towards their stability limits for
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speed reasons. An alternative analysis would consist in running the same numerical
methods on several meshes at constant CFL number. Time errors would quickly
dominate and all schemes would eventually converge quadratically (second-order
time-stepping schemes are used). However, high-order methods in space remain
useful to mitigate grid-dispersion errors, independently of their spatial-convergence
properties [1].

A few important lessons can be learned from the efficiency analysis shown in
Figure 3. The most efficient method depends on the desired accuracy. For example,
if one were to choose between a second-order (using polynomials of degree
p = 1) spectral-element method and a fourth-order (p = 3) discontinuous-Galerkin
method, the spectral-element method would be more efficient when lower accuracy
is required while the discontinuous-Galerkin method rapidly becomes more efficient
when higher accuracy is sought. For a given numerical method, high-order schemes
(p > 1) are more efficient, which is visible for both the spectral-element and the
discontinuous-Galerkin methods. The underlying reason comes from the way that
the spatial error behaves upon mesh refinement. When the mesh resolution doubles,
the run-time roughly quadruples in two spatial dimensions (the time step is fixed).
The accuracy of a second-order method also quadruples and, therefore, no efficiency
gain can be achieved. In two dimensions, any order of accuracy higher than two
leads to accuracy gains that more than offset the cost increases upon refinement,
which leads to flatter curves and the property that high-order methods achieve high
accuracies more cheaply. However, diminishing returns are observed upon reaching
orders of accuracy beyond four or five, leading to a sweet spot around p = 3
(fourth-order accuracy) for both the spectral-element and discontinuous-Galerkin
methods on classical CPUs (conclusions may be different on alternative computing
architectures). In addition, orders of accuracy higher than four would lead to meshes
that could be inappropriately coarse for representing the inverted medium, unless
material properties are also represented by higher-order polynomials, which is not
simple to do. For the spectral-element and discontinuous-Galerkin methods, and
for a given error, we observe that the cost reduction incurred by switching the
polynomial degree from p = 1 to p = 3 is much larger than the cost reduction
obtained by switching from p = 3 to p = 5. A final, though less definite, feature of
the graph presented in Figure 3 is the high overall cost of the discontinuous-Galerkin
method compared with both the spectral-element and finite-difference methods. The
higher cost is mostly driven by the discontinuous polynomial representation, which
leads to more degrees of freedom and the need for inter-element fluxes. These two
attributes, however, also constitute strengths of the discontinuous-Galerkin method
in terms of very good parallel efficiency and better dispersion properties via the use
of numerical fluxes that are formulated in terms of the characteristic variables of the
wave equation [41, 58]. Additional details on these methods can be found in [44].

An efficiency analysis, as presented in Figure 3, and the conclusions that can be
drawn therefrom heavily depend on implementation details, available hardware, on
the selected test case, and on whether runs are conducted serially or in parallel. Even
if all methods are implemented using the same software best practices while re-
using common parts of the algorithms, and using the same programming language
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(our situation), the comparison could still be unfair. Undoubtedly, a developer
could spend more time optimizing some methods and be less resolute about others
(the finite-difference method in our case). In addition, the analysis also depends
on the case considered. For a case where land topography reduces the order of
accuracy of finite-difference schemes to one because of the staircase representation
of topographical features [94], unstructured-mesh methods could easily be more
efficient due to their second-order (at least) representation of topography. And again,
we focus here on spatial errors by choosing a single time step that is small enough
(and certainly smaller than any practical time step) for time errors to be negligible.
Conclusions would be different under a regime where time-stepping schemes are
taken into consideration. Finally, all runs are conducted on one processor and
scalability properties of the methods have not been taken into account. Because
of the simplicity of the test case considered above, the efficiency analysis presented
in Figure 3 is just a starting point in the pursuit of a more thorough analysis that
would include more realistic cases. This simple case is nevertheless presented here
to illustrate the difficulty of determining the best numerical method for generating
seismograms. Due to this difficulty, many research groups maintain several codes,
each implementing a different numerical approach. Not only are these codes useful
for verification purposes, they are also important for generating synthetic data sets
to be inverted by another numerical method.

This section presented the many choices available for the forward simulation
method powering the FWI inversion. This is an important decision as the largest
fraction of the computational costs of FWI lies in running the forward (and adjoint)
wave engine. Yet, the methods used are often dated, and very few special-purpose
methods, or dedicated hardware, are available for performing this task. In most
cases reported in the literature, hardware accelerators such as GPU’s and FPGA’s12

provided speed benefits of less than an order of magnitude when considering
problems of industrial relevance. Having access to algorithms that can provide
orders of magnitude in performance gains would be a game changer for FWI,
global seismology, and the many other engineering fields heavily relying on large-
scale simulations of wave propagation. Besides computation, one can also envision
miniature technologies and additive manufacturing methods that could use physical
analogs to reproduce the experimental results.

3 Inverse Problem

In its simplest form, full-wavefield inversion formulates seismic imaging as an
unconstrained optimization problem driven by an objective functional that includes
some measure of misfit between the observed and computer-simulated data. Due
to the extreme size of this inverse problem, only gradient-based optimization

12Graphics Processing Units and Field-Programmable Gate Arrays.
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approaches are computationally affordable. A key enabling step for performing FWI
is the utilization of the adjoint-state method for efficiently computing the gradient
of the cost function with respect to the parameters of the PDE. While the adjoint-
state method for inverse problems had been known since the early 1960s [18, 64],
its application to the inverse problem posed by seismic wave propagation was
first proposed by Lailly [55], and Tarantola [95] in the 1980s. Considered too
expensive at the time, this approach generated increasing interest as the power of
supercomputers continued to double regularly (following Moore’s law) and after
limited feasibility was demonstrated for two-dimensional problems, first in the time
domain [36, 73], and then in the frequency domain [82]. Another critical step for the
success of FWI is the use of annealing strategies such as multi-scale methods [15],
in which the inverse problem is solved by gradually introducing higher frequencies
from the data, thus bringing more resolution to the earth parameter model, and
avoiding convergence to a “bad” local minimum.

In its most complex form, FWI is a family of PDE-constrained optimization
problems linked together in ways that allow the inclusion of additional information,
such as physical insights, in an orderly fashion. Solution strategies involving a
hierarchy of inversions are required for guiding the optimization towards the most
realistic solutions. Multi-scale and other strategies for partitioning and ordering the
information (e.g., offset continuation, wave decomposition, etc.), preconditioning,
regularization methods, constraints, exotic misfit functionals, are examples of the
many ways in which this can be achieved. This scientific area is very active as more
problems are amenable to solution given the current generation of high-performance
computers and the availability of high-quality open-source software. Covering all
aspects of the inverse problem is far beyond the scope of this paper. In the following,
however, we will first introduce the basics of the optimization problem and then
discuss some of the most commonly used strategies.

3.1 The Adjoint-State Method

The two main components of a gradient-based minimization algorithm are 1) a
means for obtaining a descent direction, and 2) an iterative method to drive the
minimization. For obtaining the descent direction, one could use a simple approach
in which a small perturbation is introduced around each parameter of the PDE and
its effect measured on the solution. For the acoustic wave equation, for example,
that would entail perturbing the value of the speed of sound in one specific cell of
the medium and simulating the resulting displacement field at the receivers. Given
an earth model m containing the values of the speed of sound at each cell, we use the
forward operator of the wave equation to generate the entire wavefield, or a subset
of it represented by the seismograms measured only at specific receiver locations.

It is often more convenient to represent the relationship between the data and the
model through the nonlinear mapping F(m) = d, where d is the simulated data
at all receivers and for all sources used. Note that F hides all the details about
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the acquisition geometry and the sources used, including the multiple solutions
to the wave equation, one for each of the prescribed source-receiver acquisition
geometries. For a single perturbation ε at cell i of the model, a new solution
is obtained as F(m + îε) = d(i), where î is a unit vector in the ith direction.
Then, d(i) − d is the resulting change from perturbation îε. The finite-difference
approximation

F(m+ îε)− F(m)

ε
≈ ∂d

∂mi

(15)

can then be used to construct a gradient. If one were to use this approach to compute
the gradient ∇mF, it would involve solving the wave equation as many times as the
number of independent parameters in the earth model, and this for each source used
in the survey. This approach is clearly not realistic when the earth model contains
millions of cells, each with a few parameters.13

For an inverse problem such as FWI, one is interested in perturbations that will
optimize a certain figure of merit. Typically, we seek earth models that minimize
a distance from some field-observed values d†. In its simplest form, an objective
functional

J (m) = 1

2

∣∣∣F(m)− d†
∣∣∣2 (16)

is introduced and a simple chain-rule derivative is used to assemble the gradient
g = ∇mJ (m) of the objective functional.

The adjoint-state method is a method to compute the gradient of J with respect
to the model, i.e., ∇mJ (m). For completeness, we will extend the presentation
from the joint tutorial paper [13] and derive the gradient for the elastic wave
equations (7) and (8) using the adjoint-state method. We start with the two-
dimensional isotropic elastic wave equation expressed as a system of first-order
equations. As we shall see shortly, this system brings additional complexity as only
2 of the 5 state variables are given as observables.

By introducing the time derivative of the displacement vi = ∂tui , and using
Equations (7) and (8), one obtains

∂t τxx = (λ+ 2μ)∂xvx + λ∂zvz + fτxx ,

∂t τzz = (λ+ 2μ)∂zvz + λ∂xvx + fτzz ,

∂t τxz = μ(∂zvx + ∂xvz)+ fτxz , (17)

∂tvx = (1/ρ) (∂xτxx + ∂zτxz)+ fvx ,

13This simple approach is very useful, however, for providing test cases for verifying gradient
computations.
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∂tvz = (1/ρ) (∂zτzz + ∂xτxz)+ fvz .

Here, we refer to the solution of this PDE system on a bounded domain Ω over a
time span T with w(λ, μ; f) = (τxx, τzz, τxz, vx, vz) ∈ L2(R2 × [0,T] ;R5) with a
given source term f = (fτxx , fτzz , fτxz , fvx , fvz) ∈ L2(R2 × [0,T] ;R5).14 Notice
that we have described a general source term f, which includes both acceleration and
stress-rate components in Equation (17). The first three components of the source
term, fτij , can be used to represent the stress rate generated by force couples, such as
pure explosive sources, while the last two, fvi , represent the acceleration resulting
from a single point force.

For further simplifying the derivation of the gradient, we have assumed that
the volume density ρ(x) is fixed and known. This particular case still provides
an example of a model with multiple parameters, m = (λ(x), μ(x)). It is left
as an exercise to the reader to extend this case to include density, i.e., m =
(λ(x), μ(x), ρ(x)), and derive ∇ρJ (m).

We refer to the solution obtained for the kth source by w(k)(x, t) =
(τ

(k)
xx , τ

(k)
zz , τ

(k)
xz , v

(k)
x , v

(k)
z ). The simulated data generated by triggering the kth

source is denoted by

d(k)(t) =
(
vx(x

(k)
1 , t), vz(x

(k)
1 , t), . . . , vx(x

(k)

n
(k)
r

, t), vz(x
(k)

n
(k)
r

, t)
)
∈ L2([0,T];R2n(k)r ),

as it is computed at all n(k)r receivers located at x(k)1 , . . . , x(k)
n
(k)
r

, i.e., at the same

locations as those where measurements were performed in the original survey.15

The complete data set simulated for a survey of a number of ns sources is denoted
by

d(t) = (d(1),d(2), . . . d(k), . . . d(ns)

)
.

Simulated data d(k)(t) is obtained by solving Equation (17) and then extracting the

subset of state variables {vx, vz} at the n
(k)
r receiver locations. This is achieved by

applying a restriction operator B on w, i.e.,

B(k)w =
(
vx

vz

)
{(

x(k)1 ,...,x(k)
n
(k)
r

)
×[0,T]

} , (18)

14By the notation L2(Ra × [0,T] ;Rb), we express a b-dimensional vector defined over an a-
dimensional space over a time interval [0,T], with a norm that is square-integrable over Ra×[0,T].
15Current generation of geophones uses accelerometers that can measure the three orthogonal
components of acceleration. Such receivers are termed multicomponents or 3-C.
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for the kth source. Notice that operator B(k) : L2(R2 × [0,T];R5) →
L2([0,T];R2n(k)r ) simply has the role of extracting the time series for only the
displacement rates, and only at the receiver locations.

Initial conditions are vx(x, 0) = vz(x, 0) = 0 and τxx(x, 0) = τzz(x, 0) =
τxz(x, 0) = 0, indicating that the medium is in mechanical equilibrium. Dealing
with the subtleties of the boundary conditions is beyond the scope of this paper and
therefore we will assume an infinite domain boundary onto which both the stress
and the velocity vanish.

Given the previous assumptions and notation, the objective functional given by
Equation (16) takes the following explicit form

J (λ, μ) =
ns∑

sources
k

J(k) (λ, μ)

= 1

2

ns∑
sources

k

ˆ t0(k)+T

t0(k)

∣∣∣d(k) (λ, μ; t)− d†
(k) (t)

∣∣∣2 dt.
(19)

Notice how all traces for source k share the same time interval.
We begin by deriving the gradient ∇mJ(k)(m), i.e., the gradient for only one

of the seismic sources. The final gradient is assembled by adding the contributions
from all sources. Indeed, due to the independence of the sources, and as already
exploited in (19), it follows that

∇mJ (m) =
ns∑

sources
k

∇mJ(k)(m).

Following the same approach as in [13], we define the forward and adjoint
operators for the Lamé parameters λ(x) and μ(x). The forward operator A is defined
by

Af = w(λ, μ), (20)

where we temporarily dropped the subscript notation (k) for clarity. Again, notice
that forward operator A is the inverse of the differential operator as it operates on the
source term f to yield solution w. The adjoint operator A∗, which plays an important
role in computing ∇mJ(k)(m), is defined using the adjoint identity [62, 64],16

〈Af, g〉L2(R2×[0,T];R5) =
〈
f,A∗g

〉
L2(R2×[0,T];R5)

∀ f, g ∈ L2
(
R

2 × [0,T];R5
)
,

(21)

16This relation is also referred to as the Lagrange identity.
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where 〈 , 〉 denotes a scalar product in L2
(
R

2 × [0,T];R5
)
. The adjoint operator

A∗ defines the adjoint variable w̄(λ, μ; g) through the solution of

A∗g = w̄(λ, μ), (22)

where g is an associated source to be determined. In our particular case, the adjoint
variable, w̄(λ, μ; g) = (τ̄xx, τ̄zz, τ̄xz, v̄x, v̄z), can be shown to be the solution to the
adjoint problem

∂t τ̄xx = (1/ρ) (∂xv̄x + ∂zv̄z)+ gτ̄xx ,

∂t τ̄zz = (1/ρ) (∂zv̄z + ∂xv̄x)+ gτ̄zz ,

∂t τ̄xz = (1/ρ) (∂zv̄x + ∂xv̄z)+ gτ̄xz ,

∂t v̄x = ∂x ((λ+ 2μ)τ̄xx + λv̄x)+ ∂z (μτ̄xz)+ gvx , (23)

∂t v̄z = ∂z (λτ̄xx + (λ+ 2μ)v̄z)+ ∂x (μτ̄xz)+ gvz ,

τ̄xx = τ̄zz = τ̄xz = v̄x = v̄z = 0 at t = T.

Equation (23) is also an elastic wave equation but, in contrast to Equation (17), the
solution’s final-time value is prescribed, and therefore Equation (23) must be solved
by marching backwards in time, beginning at t = T. It is also left as an exercise
to the reader to establish that the operators given by Equations (17) and (23) and
expressed as Equations (20) and (22) satisfy the adjoint identity (21). The proof
can be demonstrated through integration by parts as outlined in the joint tutorial
paper [13].

We now use the adjoint identity, Equation (21), to compute the gradient
∇mJ(k)(m) with respect to model parameters m = (λ, μ). Using the L2 norm
to project the gradient ∇mJ(k)(m) on a small model perturbation δm, one gets the
following relationship

J(k)(m+ δm)−J(k)(m) = 〈∇mJ(k), δm
〉
L2(R2;R2)

+ O
(
‖δm‖2

L2(R2;R2)

)
.

(24)

In order to compute ∇mJ(k), we begin by linearizing the nonlinear map w(m; f)
with respect to m. For a small perturbation δm = (δλ, δμ), we define δw by

w(m+ δm; f) ≈ w(m; f)+ δw+ O
(
‖δm‖2

L2(R2;R2)

)
. (25)

In particular, the same relation will hold for restricted values

d(k)(m+ δm; f) ≈ d(k)(m; f)+ δd(k) + O
(
‖δm‖2

L2(R2;R2)

)
. (26)
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Inserting the approximation (25) into (17) for both Lamé parameters, it follows that
δw satisfies the linearized forward problem

∂t δτxx = (λ+ 2μ)∂xδvx + λ∂zδvz + (δλ+ 2δμ)∂xvx + δλ∂zvz,

∂t δτzz = (λ+ 2μ)∂zδvz + λ∂xδvx + (δλ+ 2δμ)∂zvz + δλ∂xvx,

∂t δτxz = μ(∂zδvx + ∂xδvz)+ δμ(∂zvx + ∂xvz), (27)

∂t δvx = (1/ρ) (∂xδτxx + ∂zδτxz) ,

∂t δvz = (1/ρ) (∂zδτzz + ∂xδτxz) .

Using definition (20), we rewrite (27) as

δw(k) = A

⎛
⎜⎜⎜⎜⎜⎝

(δλ+ 2δμ)∂xv
(k)
x + δλ∂zv

(k)
z

(δλ+ 2δμ)∂zv
(k)
z + δλ∂xv

(k)
x

δμ(∂zv
(k)
x + ∂xv

(k)
z )

0
0

⎞
⎟⎟⎟⎟⎟⎠
, (28)

where we reintroduced our notation for source k, and where δw(k) ∈
L2
(
R

2 × [0,T];R5
)
. Now, we have all the necessary results for computing ∇J(k).

Using the linearization (26) in (19), it follows that

J(k)(m+ δm)−J(k)(m) ≈
ˆ t0(k)+T

t0(k)

(
B(k)w(k)(m)− d†

(k)

)T (
B(k)δw(k)(m)

)
,

(29)
as δd(k) = B(k)δw(k). In order to bring Equation (29) to the desired function space,
we need to introduce two new transformations. The first transformation brings the
measured traces in R

5 by defining

w†
(k) =

(
0, 0, 0, v(k)†x , v(k)†z

)
,

while the second one defines a projection operator P such that

Pw(k) =
(

0, 0, 0, v(k)x , v(k)z

)
.

Notice that w†
(k) is only defined at the receiver locations. We can then rewrite

Equation (29) as
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J(k)(m+ δm)−J(k)(m) ≈
〈

n
(k)
r∑

receivers
r

δ
(

x− xr
(k)
) (

Pw(k) − w†
(k)

)
,

δw(k)

〉
L2(R2×[0,T];R5)

. (30)

Substitution of (28) into (30), followed by an application of the adjoint identity (21),
results in

J(k)(m+ δm)−J(k)(m)

=
〈
n
(k)
r∑

r=1

δ
(

x− xr
(k)
) (

Pw(k) − w†
(k)

)
,

A

⎛
⎜⎜⎜⎜⎜⎝

(δλ+ 2δμ)∂xv
(k)
x + δλ∂zv

(k)
z

(δλ+ 2δμ)∂zv
(k)
z + δλ∂xv

(k)
x

δμ(∂zv
(k)
x + ∂xv

(k)
z )

0
0

⎞
⎟⎟⎟⎟⎟⎠

〉

L2(R2×[0,T];R5)

=
〈

A∗
⎛
⎝n

(k)
r∑

r=1

δ
(

x− xr
(k)
) (

Pw(k) − w†
(k)

)⎞⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

(δλ+ 2δμ)∂xv
(k)
x + δλ∂zv

(k)
z

(δλ+ 2δμ)∂zv
(k)
z + δλ∂xv

(k)
x

δμ(∂zv
(k)
x + ∂xv

(k)
z )

0
0

⎞
⎟⎟⎟⎟⎟⎠

〉

L2(R2×[0,T];R5)

.

(31)

Notice how adjoint equation w̄(k) = A∗g(k) contains an adjoint source term that is
composed of the misfit in the measured displacement rates as

g(k) =
n
(k)
r∑

r=1

δ
(

x− xr
(k)
) (

0, 0, 0,
[
v
(k)
x (x, t)− v

(k)†
x (x, t)

]
,
[
v
(k)
z (x, t)− v

(k)†
z (x, t)

])
.

(32)

Recalling the definition (24) of ∇mJ(k), it follows from (31) that

∇λJ(k) =
ˆ T

0
τ̄ (k)xx

(
∂xv

(k)
x + ∂zv

(k)
z

)
+ τ̄ (k)zz

(
∂zv

(k)
z + ∂xv

(k)
x

)
dt,
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∇μJ(k) =
ˆ T

0
2τ̄ (k)xx

(
∂xv

(k)
x

)
+ 2τ̄ (k)zz

(
∂zv

(k)
z

)
+ τ̄ (k)xz

(
∂zv

(k)
x + ∂xv

(k)
z

)
dt

(33)

where τ̄ ij solves the adjoint problem

w̄(k) =

⎛
⎜⎜⎜⎜⎜⎝

τ̄
(k)
xx

τ̄
(k)
zz

τ̄
(k)
xz

v̄
(k)
x

v̄
(k)
z

⎞
⎟⎟⎟⎟⎟⎠
= A∗g(k). (34)

Equation (33) indicate that computing ∇J(k) involves solving two separate,
adjoint problems. First, one must find the solution of the forward problem (17),
where the source term f(k) is given. Then, the solution of the adjoint problem,
Equation (23), must be computed, with source term g(k) as defined in Equation (32),
which injects the data misfit at the receiver locations. The computational cost of
estimating the gradient then becomes about twice the cost of a forward solution,
since the adjoint problem is approximately the same as the cost of the forward
problem, and both involve solving an elastic wave equation in the same medium.
This represents a substantial advantage over the simple finite-difference approach
outlined in Equation (15).

In certain situations (see [60] and [14]), it is possible to use a formulation that
makes the operator A self-adjoint such that A = A∗. These formulations have
the advantage of using a single forward operator to compute the direct and back-
propagated wavefields using only one forward modeling operator by only applying
a correction term to the source.

3.2 Gradient in the Time Domain

We first discuss methods for computing the gradient in the time domain as this is the
most commonly used approach for large-scale problems. After a level of physical
fidelity has been selected and implemented according to the numerical method
of one’s choice, the first step required for performing FWI is the implementation
of a solver for the associated adjoint equation. As the adjoint equation for the
wave equation is also a wave equation [19, 63], this step can reuse many of the
elements implemented in the original forward modeling engine. The mathematical
procedure required for computing the gradient using the adjoint-state method is
described in detail using continuous operators in the previous section and in a joint
tutorial paper [13]. Implementing a continuous adjoint on a computer, however,
involves additional decisions. A fair amount of practical experience in optimal
control suggests the type of adjoint to implement [10], i.e., should one implement a
discretization of the continuous adjoint, or implement the adjoint of the discrete
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forward operator? It turns out that the latter is a more robust approach as it
guarantees that the gradient remains accurate even when the numerical accuracy
of the selected forward approach is diminished due to, e.g., using too coarse a grid
for the problem.

There have been many research advances on techniques aimed at using calcula-
tors to automatically compute derivatives (e.g., [8, 39, 74]). It is only recently [32]
that powerful algorithms for generating the adjoint of transient finite-element codes
were developed and made available for a specific software platform [59]. For
many practitioners, however, the most common approach for computing the discrete
adjoint operator remains a manual procedure in which the operator is constructed by
going, block by block, through the code implementation of the forward algorithm.

In the time domain, each gradient computation requires the full wavefield of the
forward and adjoint problems for the whole duration of the simulation in d spatial
dimensions. For each source k, the continuous variable u(k)(x, t) ∈ R

d × [0,T]
and its adjoint ū(k)(x, t) ∈ R

d×[0,T] have been spatially discretized in N points in
space and Nt time steps to give variable u(k)(t) ∈ R

Nd×Nt , and its adjoint ū(k)(t) ∈
R
Nd ×Nt , obtained from the time-reversed wave propagation of the misfit residuals

at the receivers which are acting as sources. In other words, the adjoint equation
is a wave equation where the receivers are acting as sources with a time function
built from the difference between the observed signal at that receiver and the one
that was computer generated with the current model.17 Notice how the velocity v
variables in time integral equation (33) are forward propagated while the adjoint
stress τ̄ needs to be computed from a backward propagation. In discrete form, 2Nt

copies of the spatial wavefields have to be stored in order to compute the gradient,
g = ∇mJ (m), of the objective functional J , which depends on model m. By
definition, we have

J (m+ δm)−J (m) ≈ ∇mJ (m) · δm. (35)

For example, in the case of a simple acoustic equation, contribution to the gradient
coming from source k is obtained from18

g(k) =
Nt∑

nt=0

R[u(k)(ntΔt)] ū(k)(ntΔt), (36)

17See, e.g., Equation (32). A similar result is obtained for the acoustic wave equation as derived
in joint tutorial [13].
18Some authors refer to this operation as a zero-lag correlation.



FWI: An Extreme-Scale PDE-Constrained Optimization Problem 231

where Δt is the time step, and R(m) is an operator that derives from a linear
perturbation δm for the particular PDE of interest.19 We refer the reader to [13, 64]
for additional detail.

For three-dimensional problems, the storage needed for saving two wavefields
for all time steps is generally too large to fit on the current generation of fast-access
memory. By trading data storage for computing time, one can keep fewer snapshots
and reuse these as initial values for recomputing the wavefields. For a given amount
of available storage, optimal strategies for checkpointing that minimize the amount
of recomputation have been derived for general [38] and special [5, 111] cases.
Another approach is to save the values of the wavefield at the boundaries at all
times and the single snapshot of the full wavefield at the final time T from which
the simulation is time reversed using the boundaries as sources [21]. This approach
is particularly advantageous when the surface-to-volume ratio of the computational
domain is small (e.g., 3-D), and when the model does not have attenuation.

The full gradient is obtained by summing contributions from each of the sources.
While each sequential source computation is pleasingly parallel,20 it is also possible
to trigger multiple sources simultaneously in the same forward simulation by
encoding the sources and firing them simultaneously in one single or a few mega-
shots [53]. Using the linearity of the wave equation, ultimately responsible for the
wave superposition principle, the observed data can be transformed using the same
encoding, and summed the same way, so that synthetic and observed data can still
be compared meaningfully for each mega-shot. This approach provides significant
speedup with the additional benefit of showing more robust convergence when
initial models are poor [7]. This behavior derives from the stochastic perturbations
to the objective functional resulting from selecting new random encodings at regular
steps (typically ∼5) during the iterations of the minimization. Simultaneous-source
encoding algorithms, however, require that receivers for a given mega-shot be
common to all shots included. Devising a simultaneous-source encoding algorithm
for data acquired with moving receivers, such as those in marine surveys, is still an
open problem.

3.3 Gradient in the Frequency Domain

The frequency-domain approach to FWI has been pioneered by Pratt and Shin [81].
The computation of the gradient also involves a back propagation of the misfit
residuals and is therefore bound by the same limitations as those of the space-
frequency forward operator. We refer the reader to [81] for a full derivation. Space-

19In the derivation for a simple 1-D acoustic wave equation, one obtains (see, e.g., [13]) R(κ) =
1
κ2

∂2

∂t2
. In practical computations, using the linearity of the wave equation, it is more efficient to

apply this operator to the source time functions.
20Also less affectionately known as trivially or embarrassingly parallel problems.
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frequency methods offer some attractive algorithmic benefits. Modeling attenuation,
for example, is much simpler in the frequency domain, as already discussed in
Section 2. Moreover, the computation of the gradient does not require checkpointing
strategies such as those required for time-domain approaches. However, given
the current generation of algorithms for solving large linear systems of equations
on distributed-memory computers, space-frequency methods have more limited
scalability than space-time methods. But, this situation could change rapidly if a
new class of linear solvers becomes readily available.

3.4 Optimization Methods

We already mentioned that only local, gradient-based methods are affordable for
extreme-scale problems such as FWI. While all these methods derive from Taylor’s
theorem,21 there are some differences in the way the second derivative is used, if
used at all. A good introduction to unconstrained optimization algorithms can be
found in [74]. These algorithms require a starting point for the earth parameters mo
from which a series of iterates will be generated, converging to a local minimum
quadratically at best. It is therefore assumed that the problem is formulated and
solved in such a way that there exists a descending path for a series of iterates,
going from the initial model to the “final” solution, where each iterate is linked to
the next through successive local quadratic (or linear) approximations and proper
step lengths. A major challenge for FWI is therefore to generate a good starting
earth model and to devise a robust strategy connecting our starting model to the
model containing the ultimately recoverable information.

At each iteration i, the objective functional can be represented using a general
form,

J (mi) =
∣∣∣F(mi)− d†

∣∣∣+Ri (mi), (37)

where

F(mi) = di, (38)

is the nonlinear mapping between the model mi and the relevant simulated data di,
while d† is the observed data. For synthetic studies, the observed data will have been
synthesized from the test22 model m†, and in that case we can write d† = F(m†).
The regularization term Ri , which can change as iterations progress as indicated by
subscript i, will be discussed below. For completeness, if we choose an !2 norm for

21Also called Taylor’s formula with remainder or the mean-value theorem when truncated to first
order. See, e.g., [46]. At second order, it states that f (x+ h) = f (x)+∇f (x)T h+ 1

2 hT ∇2f (x+
th)h, where t ∈ (0, 1).
22Sometimes also called true model, or target model.
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the misfit of our FWI problem, we would write

J (mi) = 1

2

Ns∑
k

Nr (k)∑
r

ˆ T

0

∣∣∣Pr · u(k)(mi, t)− u†(k)
r (t)

∣∣∣2
2

dt +Ri (mi ), (39)

where Ns is the number of sources, Nr(k) is the number of receivers for source k,
Pr is a projection operator extracting data at receiver r , u†(k)

r (t) is the data measured
at receiver r for source k, and u(k)(mi, t) = A(mi)s(k)(t) is the simulated data as
defined by Equation (12). Notice that time was left continuous only to be consistent
with the formulation of Section 2, and notational convenience.

When the Newton search direction is used to generate the ith model update Δmi,
it is obtained from

Δmi = −αiHi
−1gi , (40)

which involves the gradient gi = ∇mJ (mi), the Hessian matrix Hi = ∇2
mJ (mi)

(or rather its inverse), and step length αi . The model iterates are obtained from
the cumulative changes made to the initial model, i.e., mi = mo +∑i

j=1 Δmj.
For practical problems, the full Hessian Hi = H(mi) cannot be stored in memory
and one has to resort to a menagerie of approximations. These include the Gauss-
Newton method, which involves additional forward and adjoint computations for the
benefit of more accurate Hessian approximations, and quasi-Newton methods, such
as the so-called BFGS23 method which gathers second-order information through
measuring the changes in gradients, or most likely its limited-memory version l-
BFGS [74]. One could also use Hessian-free methods such as one of the variants
of nonlinear conjugate-gradient methods. Comparing the costs and benefits of these
methods is not an easy task and comparative studies have shown that performance
can also depend on the specific problem at hand [16, 68, 72]. It is not the goal of this
paper to discuss the merits of each available algorithm. However, we would like to
emphasize the need for a better understanding of the conditions under which each
method could have benefits. Also, we cannot overstate the fact that the availability of
faster algorithms would have a major impact on the range and size of problems that
could be solved. Many of the algorithms presented here follow a one-dimensional
descent direction and therefore are often deterministic in nature. Having algorithms
that could sense larger volumes of the solution space either through statistical or
stochastic machinery could help improve the convergence speed.

23Named from its inventors Broyden, Fletcher, Goldfarb, and Shanno.
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3.5 Misfit Functional

Recall that the objective functional J (m) includes some measure of misfit between
time series of oscillatory signals. These functionals are notorious for having multiple
minima, each forming a rather narrow neighborhood of convergence whose width
depends directly on the frequency of the signal. Nevertheless, one particular
choice of misfit functional, the !2 norm, offers many mathematical and numerical
advantages such as smoothness and ease of computation.24 Not surprisingly, the
original formulation of FWI was derived using this norm. It has been widely
used in synthetic studies, where noise is well controlled, thus avoiding its known
oversensitivity to outliers.

With the desire of improving robustness of the inversion, many different misfit
measures have been proposed over the last few decades. Covering the entirety of
the topic is beyond the scope of this paper, and only a few will be mentioned as
examples.

By construction, the !p norms for the misfit of time series implies that the
amplitude of the signal is compared at each time step. If the measured signal
is reduced by attenuation and amplitude can only be restored approximately, a
normalized !2 norm, which multiplies signal amplitudes instead of subtracting them,
is more appropriate. The authors in [87] proposed such a norm for streamer data.
This norm provides more robustness to amplitude mismatch but is subject to the
same multiple-minima problems that the !p misfit (subtraction) norm is subject to.

Another approach is to relate FWI to the old-standing mathematical problem
of optimal transport. This approach essentially poses the problem as finding a
transformation to the model m that would shift material properties so that the
resulting model would better match the data. First proposed by Engquist and
Frosse[29], Engquist et al. [30] for FWI, this so-called Vešersteǐn metric25 is given
a more detailed description in a joint article of this book [69]. While the theory is
very elegant, there is no physical basis on which the elastic parameters of the earth
should follow such a conservation law, and this constraint is often relaxed.

As can be seen, defining a robust misfit function for FWI is currently an area
of active research [109]. These activities are mostly performed through physical
intuition, and trial and error. There is very limited unifying mathematical theory
that can guide these investigations. Having a machinery to characterize the response
hypersurface of a given objective functional could provide a means of comparing the
benefits of different misfit functionals, and guide the practitioner in devising better
ones.

24Including the ability to use Gauss-Newton methods for the inversion.
25Also called Wasserstein metric, or more descriptively earth mover’s distance.
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3.6 Regularization

One form of ill-posedness for FWI problems comes from having some elements
of the test model m† possibly not playing any role in creating the data d† (i.e.,
the so-called null space of the inverse problem). For example, sampling a model
in which the data acquisition geometry would leave a fraction of the model in the
dark (i.e., not illuminated) would make these zones unresolvable. Another form of
ill-posedness results from inverting a model that has been discretized too finely in
space in comparison to the wavelength of the interrogating signal.

Often, both these problems get addressed by using a regularization term Ri (m)

in Equation (37), which typically introduces a penalty on the spatial gradient of the
model. The family of functionals defined by

R(0)(mi;βi) = βi

ˆ
Ω

k(mi, x)
∣∣mi −mg

∣∣2
2 dx, (41)

where mg is some given model, and

R(1)(mi;βi) = βi

ˆ
Ω

k(mi, x) |∇xmi| dx, (42)

R(2)(mi;βi) = βi

ˆ
Ω

k(mi, x) |∇xmi|22 dx, (43)

are commonly used for that purpose.26 These functionals are given different names
across the scientific literature.27 The value of scalar βi is critical as it needs to be
large enough to dampen the free modes, and also possibly help jump over small
local minima, but not so large that it biases the final solution. The sweet spot is
often determined from experimentation rather than by theory: after solving several
cases for J (m;β) for different values of β, a value near the corner of the generated
so-called L-curve [40] is chosen as a good candidate for βo.28 To avoid biasing the
final answer, it is sometimes beneficial to use a continuation strategy reducing βi as
inversion iterations are progressing, unless the problem contains unstable modes that
require steady dampening. Parameter k(mi, x) is a weighting factor related to the
noise and/or resolution of the model. When regularization terms as Equations (41)–
(43) are used for image processing and denoising, k is set to unity as signal-to-noise
ratio is considered constant throughout the image. This is clearly not the case for
FWI, and penalty should be adjusted to the local length scale and noise level.

When degeneracies are caused by a discretization that is too fine for the ultimate
achievable resolution, numerical methods using an unstructured mesh can better
solve these problems by carefully adjusting the local mesh size as a function of

26Note that R(1) is not differentiable with respect to m. However, some differentiable approxima-
tions can be used. See [106] for more detail.
27For example, nth-order Tikhonov, Tikhonov-Miller, Phillips-Twomey, Total Variation, etc.
28These curves are log-log plots generated by plotting the misfit value

∣∣F(mn)− d†
∣∣ as a function

of the value of the residual R(mn;β)/β at the “final” nth iteration obtained with different values
of β.
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the local wavelength. This approach achieves regularization through discretization
and avoids adding a penalty term such as Equations (41)–(43) to the objective
functional. Many other regularization terms are also possible depending on the
additional insight that one chooses to impose on the problem. For example, inspired

by lessons learned from sparsity methods,
∣∣∣T̂(mi)

∣∣∣
1
, where the model is transformed

by T̂ to some other domain representation (Fourier, wavelet, Laplace, etc.), has often
been used as a way to guide the model towards sparser solutions, and drive the deaf
parts of the model towards zero.

Methods derived from Equations (41)–(43) are attractive due to the locality
of the discrete operators involved: they add minimal numerical complexity to
the inverse problem while providing some stability. The weights of the penalty
have to be carefully chosen as to avoid creating artifacts in the solution. Their
proper application requires some experimentation that makes the art of practitioners
often look more magical than mathematical. A unifying mathematical theory could
definitely help practitioners design the most effective approach.

3.7 Parameterization

Scientists having performed nonlinear data fitting know that the choice of parame-
ters often alters the feasibility and the speed of convergence of the minimization
[20, 83]. For example, consider acoustic waves propagating in constant-density
media, where only a single scalar field is involved as parameter in the equation of
motion (as the mass density is approximated to be independent of space and time).
The resulting scalar equation can be written as

∇2u(x, t)− �

K

∂2u(x, t)
∂t2 = s(x, t), (44)

where u now represents the fluid pressure and s is the source. Despite having a
single nonconstant scalar-parameter field K(x), there are a few ways this equation
could have been written. Depending on the scientific discipline, one can use, as
we did, the (isentropic) bulk modulus of the fluid, K = ρ(∂P/∂ρ)s, where the
derivative is taken at fixed entropy S. One could also have used, e.g., the wave
velocity, vp = √

K/�. These choices would not affect the results obtained for
the forward problem. For the inversion, however, it would. Performing FWI on the
Marmousi test model [12], some authors reported [22] that the speed of convergence
obtained while using steepest descent with either vp or v2

p as the inversion parameter
made a significant difference on the reduction of misfit per inversion iteration. This
behavior naturally raises the question of finding the optimal parameterization for a
given inverse problem. The answer could depend on the nature of the cost function,
the exact problem being solved, the acquisition geometry, and the algorithm that is
being used to drive the minimization. Moreover, other derived parameters, such as
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the wave velocity to the nth power, vnp, for example, can also be used instead of the
original control parameter via a simple derivative chain rule.

We will first discuss parameterization in the context of single-parameter inver-
sions and then address the additional challenges brought by multiparameter inver-
sions.29 For each inversion parameter, the practitioner faces two distinct choices
regarding the parameter to invert: a parametric representation, which can be a
nonlinear transformation of the originally chosen parameter in the PDE (e.g., vp
vs. v2

p), and a choice of units, which is sometimes called parameter scaling in
the optimization literature [74], and involves only a linear transformation. The
latter is not that critical for single-parameter inversions: we defer its discussion
to Section 4.1 related to multiparameter inversions. The choice of parametric
representation, however, can be critical as reported by Collis et al. [22].

There are a few hypotheses one can make at this point regarding the best
inversion parameter to use for performing FWI using Equation (44). One could
argue that K−1 provides a linear coefficient to the second term of Equation (44).
On the other hand, Tarantola suggested [96] that one should choose the logarithm
of the parameters such as K̃ = log(K/Ko), where Ko is some reference value. This
parameterization has the benefit of making parameters so-called Jeffreys’ invariants
in the sense that a distance function d() between two values K1 and K2 becomes
insensitive to change in units as d(K̃1, K̃2) = |log(K1/Ko)− log(K2/Ko)|.
Inspired by the Green’s function for waves in homogeneous media, one could also
suggest eK

−1
as a good choice for making the problem “more linear.” And finally,

there are those who continue to believe that having a Hessian in Equation (40)
takes care of all scaling issues. While this is the case for linear scaling, we will
demonstrate that using the Hessian does not solve the problem for nonlinear scaling.

An alternative and interesting approach is to use a local measure for nonlinearity
as proposed by Hofmann [42, 43], and find a new parameterization that reduces
its value. Simply stated, we are looking for reducing a bound on the norm of
the difference between the actual value of a nonlinear mapping F(m+ h) and the
one linearly predicted by using the first derivative (Fréchet) F′(m) near m. Using
Equation (38), and assuming a degree of nonlinearity c of mapping F(m) about
model m, we define the nonlinearity index K as the smallest positive real number
such that

∣∣(F(m+ h)− F(m))− hF′(m)
∣∣ ≤ K h2c, for all h ∈ BR, (45)

where BR is a hypersphere of radius R centered at the origin, and h = |h| is a scalar
norm. Using this definition, we devise a numerical method that can estimate the
nonlinearity index from

29By multiparameter, we refer to systems being described by multiple, distinct, spatially varying
physical parameters such as density, bulk, and shear moduli for a three-parameter inversion.
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K = max
h∈BR

∣∣(F(m+ h)− F(m))− hF′(m)
∣∣

h2c . (46)

The degree of nonlinearity c can be determined by looking at the leading orders of
the Fréchet derivatives and should remain unaffected by linear operators acting on
m and d.

This approach provides a few advantages: first, the effects of the model can be
taken into account, and second, it can provide a quantitative measure for establishing
meaningful comparisons between different parameterizations. In order to proceed
however, the problem has to be greatly simplified to be solved on a computer.
In [84], we propose transforming both the data d† and the model m using linear
transformations that reduce the computational complexity of the problem while
minimally changing the nonlinearity of the system. For that purpose, the data are
Fourier transformed and only a subset (25) of the frequencies are used. Similarly,
the models are decomposed into a small number (10) of Haar wavelets, as these
can preserve the sharp-contrast character of the original models. A standard least-
squares linear regression is used to fit this reduced system for a range of models
near the test model m† and near some initial model mo. We then use the residual
of the least-square regression as a representation of the numerator of Equation (46),
thus estimating K . Notice that this approach only requires access to a forward
engine; no gradient computations are required. Results are shown in Figure 4. When
these predictions are compared with actual inversions, the convergence speeds are
in excellent agreement. This is shown in Figure 5, and these results confirm that this
method can be used to compare parameterizations and help find the most effective
one. It is interesting to note that one of the two most effective parameterizations
corresponds to the formulation that provides a linear coefficient in Equation (44).

3.8 Initial Model

After reading the previous section, attentive readers might have a question on their
mind: as the initial model in synthetic studies is derived from the test model using
mo = Ŝλo(m

†) where Ŝλo is a (possibly linear) smoothing operator such as a low-
pass Butterworth filter, isn’t the problem made much easier? In particular, if signal
and space (i.e., data and model) are coarsened to order ωo and λo, respectively, how
close are low-pass filtered data

dωo = Ŝωo(d
†) (47)

to data synthesized from a smoothed test model

do = Fωo(mo) = Fωo(Ŝλo(m
†)), (48)
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Fig. 4 Least-squares regression analysis of a single-parameter inversion. The test model m† used
is the 2-D Marmousi model [12] with an initial mo = Ŝλo (m

†) where Ŝλo is a model smoothing
operator. The value of nonlinearity index K is shown for predicting the effectiveness of different
parameterizations (a) near the test model m†, and (b) near the mo initial model. A smaller index is
better

Fig. 5 Misfit reduction for FWI inversions involving different parameterizations. Panel (a) shows
the reduction of the normalized model misfit, while (b) shows the reduction of the normalized data
misfit as a function of Gauss-Newton iterations. Simultaneous-source encoding algorithm was used
but the same encoding sequence was shared by all cases. Parameterizations involving K−1 perform
best, while K is the worst choice amongst those shown here. See [84] for details

for well-selected values of ωo and λo? Here, Fωo(mo) represents a model-data
nonlinear mapping (including forward PDE operator Equation (12)) that has source
temporal signatures filtered with operator Ŝωo(s(t)). This problem is well known to
geophysicists who devised very creative methods to extract the ultralow frequencies
of the model from the data. This so-called background velocity model is critical
to the success of the inversion and has received considerable attention. Guided by
physical intuition, these approaches have allowed FWI practitioners to expand the
envelope of convergence for the inversion of a limited set of 2-D synthetic models
under very similar acquisition geometries. The key issue, however, is that there are
very few rigorous nonlinear-system theories that can guide the development of more
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robust methods. Homogenization theories, for example, play a role in how Fωo ,
Ŝλo , and Ŝωo are related. Understanding the commutator between operators F and
Ŝλo as well as the roughness of the response hypersurface of objective functional
J (mi) could help design better algorithms. Other very interesting approaches
for addressing ill-posedness and understand conditions for convergence have been
proposed in [19].

As one particular example, authors in [57] use information about the spectral
distribution of the wavenumbers of material properties in the earth to filter both
the data and the source wavelet signatures. This so-called spectral-shaping method
involves filtering the measured data (and source wavelets) using Equation (47) as
a proxy to condition the model. The extension of this approach to elastic data will
require a better characterization of the commutator between data filters and elastic
data-model nonlinear operators.

Another approach that offers more control over the starting model is to include
a distance penalty between the model at the current iteration and a given model,
mg. More precisely, a term βi

∣∣mi −mg
∣∣ is added to Ji (mi) and allows one to

control the prior information bias through adjusting the value of βi . This is the
regularization term in Equation (41). A different model mo can then be used to
bootstrap the series of iterates.

The importance of finding good starting models has been expressed multiple
times by practitioners of FWI. At first glance, it might seem natural to apply
more conventional and demonstrated methods to the observed data d† and obtain
a conventional result that can then be used as a starting model for FWI. This
approach, however, implicitly assumes that the only available information is already
contained in the data. Therefore, a properly crafted annealing strategy could, in
principle, achieve the same result. Unless the initial model building procedure uses
additional data, the quest of obtaining a “good” starting model from the same data
is a moot point. Moreover, the notion of “good” starting model depends on the
neighborhood of convergence of the minimization procedure which, in turn, depends
on the acquisition geometry, the model at hand, and the overall inversion strategy.
The step of building a starting model becomes equivalent to designing a robust
workflow for the inversion strategy. This conclusion naturally brings us to the next
topic.

3.9 Annealing Strategies

In reflection seismology, seismic sources and receivers are typically both located at
the earth surface. As a consequence, shallow reflections will arrive at the receivers
before deeper ones. This sequential order creates a natural time hierarchy motivating
time continuation strategies. In these approaches, the seismograms used at the i th

iteration are truncated at Ti such that 0 < t < Ti < T , and Ti < Tj , for i < j .
By introducing the data gradually, this ensures that the shallow part of the earth gets
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resolved before inverting the deeper part. Obviously, this could also be achieved
by having a moving masking filter only leaving a part of the gradient active, and
sweeping forward akin to the wave propagation front. But, truncating the data is
computationally much simpler and more efficient, particularly in the time domain.

A second continuation strategy is based around a hierarchy of length scales. Such
multi-scale strategies were proposed early on in FWI [15] as an effective way to
mitigate the nonuniqueness of the problem. The approach is based on the premise
that the radius of convergence around mi can be controlled by the frequency of the
source (see Section 3.5). The easiest and most common way to implement a multi-
scale strategy in the space-time domain is to use the linear character of the wave
equation with respect to source and displacement, and filter both data and source
time signatures with a low-pass filter. In the frequency-time domain, multi-scale
strategies come naturally by solving in increasing order of frequency and using the
output of one inversion as the initial model of the next higher frequency. These
continuation strategies are sometimes referred to as frequency sweeping.

Another continuation strategy revolves around the separation of reflected and
transmitted waves. As the sound velocity in the earth tends to increase as a function
of depth (a result of the increasing pressure and compaction caused by the weight
of the overburden), some of the waves traveling down at an angle will slowly curve
and come back at the surface. As a result, these refracted waves reach receivers
at larger distances from the source (i.e., larger offsets). Through their transmission
path, these waves contain information about some long-range average of the earth
rather than information on the specific location of reflecting interfaces. A few
continuation strategies start the inversion using the large-offset information and
then gradually include the shorter offset data. Many of these strategies include
the name tomography in their description, referring to the exploitation of the
information contained in refracted waves separately from those having information
about reflections. These strategies can also be expanded to account for the directivity
of the displacements when this type of data is available.30

When more than a single parameter is inverted (e.g., vp, vs, �, δ, ε,Qp,Qs , etc.),
continuation strategies involving the selection of a subset of the physical parameters
to invert for can also be applied. This can be referred to as physics continuation as
the introduction of parameters will be performed such as to improve the physical
fidelity of the model as the inversion progresses. Moreover, with each physical
parameter can be associated a different length-scale hierarchy and relative weight,
thus opening a wide range of possibilities. In the next section, we demonstrate the
complexity of multiparameter inversions with a few synthetic examples.

30Some receivers (termed multicomponent) can provide vectorial information on the displacement
that can be exploited through a continuation strategy.
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4 Inversions

In this section, we will briefly present selected 2-D synthetic cases that exemplify
some of the concepts presented in the previous sections. Our goal is to highlight
the current challenges encountered in FWI and the choices that practitioners
have to make, rather than to propose solutions. We believe that behind these
challenges lie many research opportunities involving an intimate collaboration
between mathematicians, physicists, and computational scientists.

Because the real subsurface is only known through outcrops, e.g., cross-sections
of the earth exposed on a cliff, or well logs, i.e., analysis of rock properties
near the walls of a drilled bore hole, inversion feasibility studies need to first
rely on synthetic studies. In these studies, representative earth models are built
on a computer and synthetic data are generated at given numerical and physical
accuracies. Then, these data, possibly combined with a priori assumptions, are
used to derive a model which can be compared with the original one. One needs
to be aware, however, that those synthetic models do not always reproduce the
subtleties of actual data, e.g., the length-scale hierarchy that the real earth contains.
Therefore, inversion success on a synthetic model is not always a guarantee of
success for a real case. This statement is especially true when the physical fidelity
of the synthetic model is poor in comparison to real systems, as can be the case
when using the acoustic approximation. Also, many studies (including this one)
rely on 2-D models. Those systems have significantly lower computational costs
but do not capture additional phenomena present in 3-D surveys. While not being
a sufficient condition, controlled synthetic studies are often a necessary condition
for demonstrating success. Moreover, they offer additional benefits to real surveys:
they are relatively less expensive, and acquisition geometry and ambient noise can
be more easily controlled.

In order to reduce numerical effects in synthetic studies, it is generally advisable
to use two discretization methods: one for generating accurate synthetic seismo-
grams, and a different one, usually faster and less accurate, for driving the inverse
problem. Too often, however, the amount of additional effort that this entails can
lead practitioners to using a single method. The practice of using the same numerical
method for both generating the synthetic data and performing the inversion is
referred to as an inverse crime [23], which authors go on to state that “it is crucial
that the synthetic data be obtained by a forward solver which has no connection to
the inverse solver.” Consequently, in the examples presented in this paper, data were
typically generated using a higher-accuracy method (discontinuous Galerkin [41]
on a very fine mesh) while the inversions were performed using a more economical
representation (spectral elements on a fit-for-purpose mesh).
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4.1 Multiparameter Inversion

The case of multiparameter inversion is more complex for several reasons. First, one
has to ensure that all inversion parameters are properly scaled and parameterized so
that the valley about the sought local minimum has a similar aspect ratio along
all dimensions of the inversion parameters, and that nonlinear effects are reduced.
Second, the set of inversion parameters must be carefully chosen so that cross-
talk31 between the parameters, i.e., the possibility that changes in two distinct
parameters produce the same effects in the data, is reduced to a minimum. Finally,
the series of inversions must be designed as to introduce the physical parameters in
sequences that are most favorable to successful results (i.e., multi-scale and physics
continuations).

Choosing an effective parameterization for multiparameter inversions can be
guided using the method described in Section 3.7. In [84], we applied this approach
to the so-called elastic Marmousi test model [65] and found that a good parameter-
ization can reduce the number of iterations required to reach a given misfit value
by up to an order of magnitude. However, one must also ensure that the selected
parameters have a minimum amount of cross-talk between them. One simple
qualitative way to detect the cross-talk between parameters is to perform inversions
using test models that had their values slightly modified by overlaying some simple
geometric perturbations, such as simple shapes (e.g., squares or triangles) or regular
checkerboard patterns over the whole domain. By carefully designing different
patterns for each parameter, the possible leakage of one parameter into the other
becomes apparent in the inverted models.

Another slightly more quantitative way to compare different parameterizations
is to compute the scattering patterns caused by a Gaussian perturbation at a fixed
point to a homogeneous-medium model (e.g., [110]). By visualizing and comparing
the radiation patterns obtained from perturbations for each parameter at the fixed
point, the practitioner selects the parameterization that has the least geometrical
overlap between the patterns for desired angles of incidence and reflection. This
approach has been used for a broad variety of physical fidelities (e.g., [4, 80]). For
example, with only two parameters � and vp, some studies [77] suggest that using
the impedance Ip = �vp, and vp gives a parameterization less prone to cross-talk
under certain acquisition geometries. As these studies use scattering effects of a
single point in a homogeneous model, the additional effects of the model being
inverted is not taken into account. In both approaches presented here, the acquisition
geometry has to be carefully reproduced, as the parameter sensitivities depend on
the scattering angle. Finally, it is worth mentioning that having access to the Hessian
can be very helpful in understanding the cross-talk between the parameters. We refer
the readers to [77] for a nice tutorial on that topic.

31Term borrowed from telecommunications describing signals transferring from one channel to
another due to unintentional coupling (e.g., poor electromagnetic insulation).
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Fig. 6 Inversion of viscoacoustic media. The test model m† is composed of (e) a compressional
velocity model [12] (vp in km/s), and (f) an attenuation model (Q−1

p , dimensionless), from which

data d† was generated using a high-accuracy forward model d† = F(m†). Data consist of traces
recorded at the free surface (top) of the model where the sources were also located. Other sides
have absorbing boundary conditions. Starting from initial model mo = Ŝλo(m†) composed of (a)
compressional velocity, and (b) a constant quality factor Qp model, the system is inverted using
a Gauss-Newton algorithm and some of the continuation strategies (time, frequency, and length
scale) described in Section 3.9. Results are shown in panels (c) and (d). System dimensions are in
km. The source time function used was a 10-Hz Ricker wavelet. More details can be found in [25]

The methods just described for detecting cross-talk between parameters are
heuristic; rigorous, quantitative mathematical methods aimed at orthogonalizing
the parameters have yet to come. And if the state of orthogonality changes as the
inversion progresses, one can already envision workflows that include continuation
strategies involving regular re-parameterization [24].

4.1.1 Inversions of Viscoacoustic Media

We now present an inversion example involving a viscoacoustic medium, i.e., an
acoustic medium that contains heterogeneous attenuation. This medium can be
described by two parameters, e.g., vp and Qp. Figure 6 shows the test model m† and
the results obtained using a Gauss-Newton optimization algorithm and an !2 norm
for the misfit functional. This study was performed using time-domain algorithms
with three different rheological mechanisms used for representing the attenuation
(see Appendix).More details on the inversion can be found in the caption.

This and other studies have demonstrated that heterogeneous attenuation can be
inverted at a coarse scale provided that the acquisition geometry includes some
transmitted information. In reflection seismology, this will be the case if the survey
includes large offsets, allowing refracted waves to bring information to wide-offset
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receivers. This behavior is apparent from the half-moon shape of the front where the
resolution is highly degraded. Also, notice the three rectangles of the Qp models
showing in the inverted vp model, resulting from the high values of attenuation in
these regions that completely absorb the signal.

This test model also showed us that despite our best efforts, we could not
successfully invert the model unless attenuation is explicitly taken into account in
the inversion [25]. In reality, this strongly heterogeneous attenuation case is limited
to zones of the subsurface where gas is often present, and this situation is well
known to experimental geophysicists. The continuation strategies used for inverting
the data were devised by trial and error, and the practitioner’s intuition. We believe
that a more unifying theory including both the physics of wave propagation and the
details of the optimization would be of great help for devising inversion strategies.

4.1.2 Inversions of Anisotropic Elastic Media

We now turn to the inversion of a 4-parameter anisotropic test model derived
from [33]. The inversion has been parameterized with vertical compressional
velocity v

↑
p , vertical shear velocity v

↑
s , and anisotropy parameters δ and ε (see

Equation (5)). The initial model is derived from the test model using a smoothing
operator that leaves a smooth background, mo = Ŝλo(m

†), while the initial values
for both δ and ε are zero. Data are composed of two components, i.e., displacements
in the vertical and horizontal directions. Test model m† is shown in panel (a) of
Figure 7. If a conventional time continuation strategy is used in concert with a
multi-scale strategy on all parameters simultaneously, the inversion fails as shown
in panel (b) of the same figure. However, if one uses a multi-scale strategy in which
each of the parameters inverted is given an associated length scale, the results are
significantly improved. Results are shown in panel (c) of the same figure. This
demonstrates that using a simple data filtering technique to achieve a multi-scale
strategy is not always adequate for inversions involving multiple parameters. In our
case, a different inversion mesh was used for each parameter, thus conditioning the
parameters separately.

In view of validating the method and detecting potential cross-talk, a simple test
model was built using a smooth model (derived from [65]) and shown in Figure 8.
Each parameter was marked with a perturbation in the form of a letter mimicking
the parameter to be inverted. The same inversion strategy using separate annealing
for each parameter was used and the results are shown in panel (b). The inversion
resolves each of the parameters and shows decreasing resolution at larger depth, as
anticipated from the larger wavelengths in these areas.

This case demonstrates that state-of-the-art inversions are still relying, in good
part, on trial and error and intuition. Unfortunately, there is no guarantee that what
works for a given model will also work for another one [72].
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Fig. 7 Inversion of a 4-parameter anisotropic elastic medium characterized by the vertical
compressional velocity v

↑
p , the vertical shear-wave velocity v

↑
s , and Thomsen parameters δ and

ε. The test model m† was derived from [33] and is shown in panel (a). Panel (b) shows the
results of an inversion that used time continuation and multi-scale continuation on all parameters
simultaneously. In panel (c), a strategy that used different multi-scale continuation schemes on
each parameter separately could resolve the parameters successfully. The starting models were the
same for both inversions and were built from smoothed models mo = Ŝλo (m

†) for velocities and
zero for δ and ε. Distances are in km, velocities in km/s, while mass density was held constant at
� = 1 kg/liter
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Fig. 8 Comparative inversion of 4-parameter anisotropic elastic model. Panel (a) shows test
model m† that was built from a smooth background model (derived from [12]) and overlaid
with perturbations describing the letters “D,” “E,” “P,” and “S” for δ, ε, v↑p , and v

↑
s , respectively.

Inversion results are shown in panel (b), where smooth background model has been subtracted
so that only perturbations are showing. While spatial resolution is decreasing with depth, figure
shows where parameters can be resolved by using the multi-scale strategies described in Figure 7.
Distances are in km, and velocities in km/s

4.1.3 Source Inversion

The physics of seismic sources is complex as many nonlinear phenomena are taking
place as energy is transferred into the solid. For controlled sources such as arrays of
air guns used in marine surveys, service companies provide an estimate of the far-
field source signature. These estimates are derived from phenomenological models
and do not always account for source variability possibly taking place during the
survey. For those reasons, it is sometimes desirable to estimate the source wavelet
w(t) (see Equation (9)) while performing FWI. Source-signature inversion can
account for the variability in the source-media mechanical coupling and the source
directivity between the different shots in the survey. Source estimation can also
improve the physical fidelity of the model by casting finite-size effects of the real
sources in the estimated wavelets triggered from a point source. Conversely, the
modified source signatures can artificially account for the lack of physical fidelity
and provide an additional avenue to explaining the observed data.

Estimating the source signature can be posed as a least-squares optimization
problem. One approach is to assume that the model is known, and use a strategy that
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alternates between source estimation and earth parameters estimation. The details of
such synthetic inversions can be found in [2], in which the authors perform the joint
inversion of source wavelets and material properties, while using a simultaneous-
source encoding algorithm. Using combined encoded seismograms, multiple source
signatures are inverted through the same iteration. Another approach is to optimize
both the model and the source time functions at once. This approach has the benefit
of allowing for adjusting the relative importance of the source inversion versus the
model inversion. Successfully performing such inversions is impressive, given that
the only information used is the locations of sources and receivers, and the observed
traces.

Another approach called the double-difference method [112] consists in defining
a misfit function built from the difference between the differences of observed and
simulated signals at two different receivers. This approach, which is designed to
cancel out the errors coming from possibly erroneous estimation of the material
properties of the subsurface, can yield measurable benefits over existing methods,
especially in land environments.

It is unclear at this time if additional dedicated receivers could provide an
uplift in source-signature inversion. This question would bring us to the topic of
experimental design, which we have not covered and can be the subject of an entire
other paper.

5 Outlook

The progress made in computing hardware opened the possibility of solving a whole
new class of FWI problems. The development of the novel algorithms necessary to
solve these problems is equally important and received more attention during the
recent years. As Bixby notes for linear programming, it is now more advantageous
to use a 1970 computer with today’s algorithms than the converse for solving these
optimization problems [11]. This is not the case for FWI. However, many of the
methods involving gradient-based optimization are dated and not always best suited
for extreme-scale transient problems. We believe that our current needs will provide
resources and purpose to revisit these algorithms, and possibly come up with a new
generation of solution methods.

For applied mathematicians, novel theories are needed to better quantify and
characterize the nonlinearities of the problem. A rigorous framework would help
guide new algorithms and generate new insights. For computer scientists, new
paradigms are needed to address the requirements of extreme-scale computing
with very large amount of data, to manage the complexity of the workflows
involved, and to provide better resiliency to large-scale computations. Designing
new solutions will require an interdisciplinary approach involving computational
scientists, computer scientists, mathematicians, and geophysicists [92].

In a very near future, the increase in availability of open-source software for FWI
will likely provide an opportunity to accelerate the development of numerical tools
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in addition to allowing a broader access to the technology. In particular, higher-level
programming languages are emerging and offer the scalability and functionality
required to explore problems in geophysics, medical imaging, and other parameter-
estimation problems related to FWI. Emerging technologies such as improved
machine learning and shape-based regularization techniques are promising new
directions that can help improve the success of FWI.

Our goal was to provide a short and motivating introduction to FWI, and explain
some of the current challenges that FWI practitioners are facing. The FWI problem
is representative of many other PDE-constrained optimization problems for which
we believe we are slowly but gradually getting closer to achieving practical and
routine solutions. Being part of a generation of scientists that take part in solving a
new class of problems is very exciting. We sincerely hope you become one of them.
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Appendix

We start the mathematical description of attenuation by considering a rheological
model composed of springs and dashpots as shown in Figure 2. The effective
modulus c(ω) of this mechanical model can be expressed as a function of auxiliary
variables representing relaxation angular frequencies ωl = 2πfl and nondimen-
sional anelastic coefficients al ,

c(ω) = cu

(
1−

n∑
l=1

alωl

ωl + iω

)
, (49)

where ωl = Δcl/ηl , al = Δcl/cu where the unrelaxed modulus cu = c(ω →
∞) = cr +∑n

l=1 Δcl , in contrast to the relaxed modulus cr = c(ω→ 0). This only
says that if one moves the system in Figure 2 very slowly, only spring cr is felt as
dashpots are relaxing and not transmitting force, while if one moves it very quickly
all springs are fully active. Anything in between depends on the frequency according
to Equation (49). This model will have an attenuation quality factor following the
ratio of real and imaginary parts of the modulus [54, 71], leading to the following
self-consistent relation

Q−1(ω) = / [c(ω)]

0 [c(ω)]
=

n∑
l=1

al
ωlω + ω2

l Q
−1(ω)

ω2
l + ω2

. (50)

The frequency dependence of Q(ω) is set by carefully picking values for ωl and al .
This task is usually achieved by sampling frequencies ωl logarithmically in the band
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Fig. 9 Frequency response of quality factor Q(f ) for generalized Maxwell solids with 1, 2, 3,
and 5 relaxation mechanisms over a frequency band ranging from 3 Hz to 40 Hz. The parameters
of the relaxation mechanisms are optimized (least-squares) to mimic a constant target quality factor
Q = 50 in the frequency band

of interest and fitting the anelastic coefficients al using a least-squares method [28,
37, 86]. In order to obtain a constant-Q attenuation, i.e., Q(ω) = Qo, we have
shown [25] that at least three such relaxation mechanisms are required to obtain a
response close to the desired behavior. Figure 9 shows the effect of using a different
number of relaxation mechanisms on the frequency response Q(f ) of a generalized
Maxwell solid. The parameters of the relaxation mechanisms are optimally tuned
over a frequency band ranging from 3 Hz to 40 Hz in view of obtaining a constant
target quality factor of Qo = 50.

Each spring and dashpot added to the relaxation model introduce an additional
anelastic function ζl(t) (sometimes called memory variable) that has to be solved as
part of the governing equations. Each equation in (1) is then replaced by

τ(e, t) = cue(t)−
n∑

l=1

alζl(t), (51)

which are coupled to n additional equations for the anelastic functions,

dζl(t)

dt
+ ωlζl(t) = ωle(t). (52)

These equations are obtained after integrating the frequency-dependent moduli
while maintaining causality (Boltzmann superposition principle). See [71] for
details.

Because of this additional complexity, viscoelastic simulations are more costly
by up to an order of magnitude, which can be reduced if special algorithms are
used [26].



FWI: An Extreme-Scale PDE-Constrained Optimization Problem 251

References

1. M. AINSWORTH AND H. A. WAJID, Dispersive and dissipative behavior of the spectral
element method, SIAM Journal on Numerical Analysis, 47 (2009), pp. 3910–3937.

2. V. AKÇELIK, H. DENLI, A. KANEVSKY, K. K. PATEL, L. WHITE, AND M.-D. LACASSE,
Multiparameter material model and source signature full waveform inversion, in SEG Tech-
nical Program Expanded Abstracts, San Antonio, 2011, Society of Exploration Geophysics,
p. 2406.

3. K. AKI AND P. G. RICHARDS, Quantitative Seismology, Theory and Methods, Freeman, San
Francisco, 1980.

4. T. ALKALIFAH AND R.-É. PLESSIX, A recipe for practical full-waveform inversion in
anisotropic media: An analytical parameter resolution study, Geophysics, 79 (2014), p. R91.

5. J. E. ANDERSON, L. TAN, AND D. WANG, Time-reversal checkpointing methods for RTM and
FWI, Geophysics, 77 (2012), p. S93.

6. G. E. BACKUS, Long-wave elastic anisotropy produced by horizontal layering, J. Geophys.
Res., 11 (1962), p. 4427.

7. R. BANSAL, J. R. KREBS, P. ROUTH, S. LEE, J. E. ANDERSON, A. BAUMSTEIN, A. MULLUR,
S. LAZARATOS, I. CHIKICHEV, AND D. MCADOW, Simultaneous-source full-wavefield
inversion, The Leading Edge, 32 (2013), p. 1100.

8. R. A. BARTLETT, D. M. GAY, AND E. T. PHIPPS, Automatic differentiation of C++ codes for
large-scale scientific computing, in Computational Science – ICCS 2006, V. N. Alexandrov,
G. D. van Albada, P. M. A. Sloot, and J. Dongarra, eds., Springer, 2006, pp. 525–532.

9. C. C. BATES, T. F. GASKELL, AND R. B. RICE, Geophysics in the Affair of Man: A
Personalized History of exploration geophysics and its allied sciences of seismology and
oceanography, Pergamon Press, Oxford, 1982.

10. J. T. BETTS AND S. L. CAMPBELL, Discretize then optimize, in Mathematics for industry:
Challenger and Frontiers — A Process Review: Practice and Theory, D. R. Fergusson and
T. J. Peters, eds., Society of Industrial and Applied Mathematics, Toronto, 2003, p. 140.

11. R. E. BIXBY, A brief history of linear and mixed-integer programming computation, in
Documenta Mathematica – Extra Volume ISMP, Berlin, 2012, 21st International Symposium
on Mathematical Programming, pp. 107–121.

12. A. BOURGEOIS, P. LAILLY, AND R. VESTEEG, The Marmousi model, in The Marmousi
experience, R. Versteeg and G. Grau, eds., Paris, 1991, IFP/Technip.

13. J. BRANDMAN, H. DENLI, AND D. TRENEV, Introduction to PDE-constrained optimization
in the oil and gas industry, in Frontiers in PDE-Constrained Optimization, H. Antil, M.-D.
Lacasse, D. Ridzal, and D. P. Kouri, eds., Berlin, 2017, Springer.

14. R. BROSSIER, L. MÉTIVIER, S. OPERTO, A. RIBODETTI, AND J. VIREUX, VTI acoustic
equations: a first-order symmetrical PDE, tech. report, 2013.

15. C. BUNKS, F. M. SALEK, S. ZALESKI, AND G. CHAVENT, Multiscale seismic waveform
inversion, Geophysics, 60 (1995), p. 1457.

16. C. BURSTEDDE AND O. GHATTAS, Algorithmic strategies for full waveform inversion: 1D
experiments, Geophysics, 74 (2009), pp. WCC37–WCC46.

17. V. CERVENY, Seismic Ray Theory, Cambridge University Press, Cambridge, 2001.
18. G. CHAVENT, Identification of functional parameters in partial differential equations, in

Identification of functional parameters in distributed systems, R. E. Goodson and M. Polis,
eds., American Society of Mechanical Engineers, 1974, p. 31.

19. G. CHAVENT, Nonlinear Least Squares for Inverse Problems, Springer, Berlin, 2006.
20. J. CLAERBOUT AND D. NICHOLS, Spectral preconditioning, Stanford Exploration Project

Report, 82 (1994), pp. 183–186.
21. R. CLAPP, Reverse-time migration: Saving the boundaries, in SEP – 138, 2009, p. 29.
22. S. S. COLLIS, C. C. OBER, AND B. G. VAN BLOEMEN WAANDERS, Unstructured

discontinuous Galerkin for seismic inversion, in SEG Technical Program Expanded Abstracts,
Denver, 2010, Society of Exploration Geophysics, p. 2767.



252 M.-D. Lacasse et al.

23. D. COLTON AND R. KRESS, Inverse acoustic and electromagnetic scattering theory, Springer,
New York, 3 ed., 2013.

24. D. DAGNINO, V. SALLARÈS, AND C. R. RANERO, Scale- and parameter-adaptive model-
based gradient pre-conditioner for elastic full-waveform inversion, Geophysical Journal
International, 198 (2014), p. 1130.

25. H. DENLI, V. AKÇELIK, A. KANEVSKY, D. TRENEV, L. WHITE, AND M.-D. LACASSE, Full-
wavefield inversion of acoustic wave velocity and attenuation, in SEG Technical Program
Expanded Abstracts, Houston, 2013, Society of Exploration Geophysics, p. 980.

26. H. DENLI AND A. KANEVSKY, Fast viscoacoustic and viscoelastic full wavefield inversion,
Dec 2015, http://www.google.com/patents/US20150362622. US Patent App. 14/693,464.

27. M. DUMBSER AND M. KÄSER, An arbitrary high-order discontinuous Galerkin method for
elastic waves on unstructured meshes — ii. the three-dimensional isotropic case, Geophys. J.
Int., 167 (2006), p. 319.

28. H. EMMERICH AND M. KORN, Incorporation of attenuation into time-domain computations
of seismic wave fields, Geophysics, 52 (1987), p. 1252.

29. B. ENGQUIST AND B. D. FROSSE, Application of the Wasserstein metric to seismic signals,
2013. arXiv 1311.4581 [math-ph].

30. B. ENGQUIST, B. D. FROSSE, AND Y. YANG, Optimal transport for seismic full waveform
inversion, 2016. arXiv:1602.01540 [physics.geo-ph].

31. V. ÉTIENNE, E. CHALJUB, J. VIRIEUX, AND N. GLINSKY, An h-p adaptive discontinuous
Galerkin finite-element method for 3-D elastic wave modeling, Geophys. J. Int., 183 (2010),
p. 941.

32. P. M. FARRELL, D. A. HAM, S. W. FUNKE, AND M. E. RUNKES, Automated derivation
of the adjoint of high-level transient finite element programs, SIAM Journal of Scientific
Computing, 35 (2013), p. C369.

33. M. FEHLER AND P. J. KELIHER, SEAM Phase I: Challenges of Subsalt Imaging in Tertiary
Basins, with Emphasis on Deepwater Gulf of Mexico, Society of Exploration Geophysicists,
Tulsa, 2011.

34. A. FICHTNER, Full Seismic Waveform Modelling and Inversion, Springer, Berlin, 2011.
35. W. I. FUTTERMAN, Dispersive body waves, J. Geophys. Res., 67 (1962), pp. 5279–5291.
36. O. GAUTHIER, J. VIRIEUX, AND A. TARANTOLA, Two-dimensional nonlinear inversion of

seismic waveforms: Numerical results, Geophysics, 5 (1986), p. 1387.
37. R. W. GRAVES AND S. M. DAY, Stability and accuracy analysis of coarse-grain viscoelastic

simulations, Bulletin Seismological Society of America, 93 (2003), p. 283.
38. A. GRIEWANK AND A. WALTHER, Revolve: An implementation of checkpointing for the

reverse or adjoint mode of computational differentiation, Trans. Math. Software, 26 (2000),
p. 19.

39. A. GRIEWANK AND A. WALTHER, Evaluating Derivatives — Principles and Techniques of
Algorithmic Differentiation, Society of Industrial and Applied Mathematics, Philadelphia,
second ed., 2008.

40. P. C. HANSEN AND D. P. O’LEARY, The use of the L-curve in the regularization of discrete
ill-posed problems, SIAM J. Sci. Comput., 14 (1993), p. 1487.

41. J. S. HESTHAVEN AND T. WARBURTON, Nodal Discontinuous Galerkin Methods, Springer,
Berlin, 2008.

42. B. HOFMANN AND O. SCHERZER, Factors influencing the ill-posedness on nonlinear
problems, Inverse Problems, 10 (1994), p. 1277.

43. B. HOFMANN AND M. YAMAMOTO, On the interplay of source conditions and variational
inequalities for nonlinear ill-posed problems, Applicable Analysis, 89 (2010), p. 1705.

44. H. IGEL, Computational Seismology: A Practical Introduction, Oxford University Press,
Oxford, 2017.

45. M. JAKOBSEN AND B. URSIN, Full waveform inversion in the frequency domain using direct
iterative t-matrix methods, J. Geophys. Engineer., 12 (2015), p. 400.

46. W. KAPLAN, Advanced Calculus, Addison Wesley, Reading, Massachusetts, second ed.,
1973.

http://www.google.com/patents/US20150362622


FWI: An Extreme-Scale PDE-Constrained Optimization Problem 253

47. M. KÄSER, J. DE LA PUENTE, A.-A. GABRIEL, AND OTHER CONTRIBUTORS, SEISOL.
http://www.seissol.org/, Retrieved March 1, 2018.

48. E. KJARTANSSON, Constant Q-wave propagation and attenuation, Journal of Geophysical
Research, 84 (1979), p. 4737.

49. L. KNOPOFF, Q, Rev. Geophysics, 2 (1964), p. 625.
50. H. KOLSKY, The propagation of stress pulses in viscoelastic solids, Phys. Mag., 1 (1956),

pp. 693–710.
51. D. KOMATITSCH, Méthodes spectrales et éléments spectraux pour l’équation de

l’élastodynamique 2D et 3D en milieu hétérogènes, PhD thesis, Institut de Physique du Globe
de Paris, France, 1997.

52. D. KOMATITSCH, J. TROMP, AND OTHER CONTRIBUTORS, SPECFEM3D. http://
geodynamics.org/cig/software/specfem3d, Retrieved March 1, 2018.

53. J. R. KREBS, J. E. ANDERSON, D. HINKLEY, R. NEELAMANI, S. LEE, A. BAUMSTEIN, AND

M.-D. LACASSE, Fast full-wavefield seismic inversion using encoded sources, Geophysics,
74 (2009), p. WCC177.

54. J. KRISTEK AND P. MOCZO, Seismic wave propagation in viscoelastic media with material
discontinuities — a 3D 4th-order staggered-grid finite-difference modeling, Bulletin Seismo-
logical Society of America, 93 (2003), p. 2273.

55. P. LAILLY, The seismic inverse problem as a sequence of before-stack migrations, in
Conference on Inverse Scattering: Theory and Applications, J. B. Bednar, R. Redner,
E. Robinson, and A. Weglein, eds., Philadelphia, 1983, Society of Industrial and Applied
Mathematics, p. 206.

56. L. D. LANDAU AND E. M. LIFSHITZ, Theory of Elasticity, Pergamon, Oxford, 1959.
57. S. LAZARATOS, I. CHIKICHEV, AND Y. WANG, Improving convergence rate of full wavefield

inversion using spectral shaping, in SEG Technical Program Expanded Abstracts, San
Antonio, 2011, Society of Exploration Geophysics, p. 2428.

58. R. J. LEVEQUE, Finite Volume Methods for Hyperbolic Problems, Cambridge University
Press, New York, 2002.

59. A. LOGG, K. A. MARDAL, AND G. N. WELLS, eds., The Fenics project, Lecture notes in
computational science and engineering, Springer, Berlin, 2012.

60. C. C. LOPEZ, Accélération et régularisation de la méthode d’inversion des formes d’ondes
complètes en exploration sismique, PhD thesis, Université de Nice-Sophia Antipolis, 2014.

61. R. MADARIAGA, Seismic source: Theory, in Encyclopedia of Earth Sciences Series –
Geophysics, C. W. Finkl, ed., Springer, Boston, MA, 1989, pp. 1129–1133.

62. G. MARCHUK, V. SHUTYAEV, AND G. BOCHAROV, Adjoint equations and analysis of
complex systems: Application to virus infection modelling, J. Computational and Applied
Mathematics, 184 (2005), pp. 177–204.

63. G. I. MARCHUK, Adjoint Equations and Analysis of Complex Systems, Springer, Netherlands,
1995.

64. G. I. MARCHUK, V. I. AGOSHKOV, AND V. P. SHUTYAEV, Adjoint equations and perturba-
tions algorithms in nonlinear problems, CRC Press, Boca Raton, 1996.

65. G. S. MARTIN, R. WILEY, AND K. J. MARFURT, Marnousi2: An elastic upgrade to
Marmousi, The Leading Edge, 25 (2006), p. 156.

66. MAVKO, Quantitative seismic interpretation, Springer, 2006.
67. G. MAVKO, T. MUKERJI, AND J. DVORKIN, The Rock Physics Handbook, Cambridge

University Press, Cambridge, 1998.
68. L. MÉTIVIER, F. BRETAUDEAU, R. BROSSIER, S. OPERTO, AND J. VIRIEUX, Full waveform

inversion and the truncated Newton method: quantitative imaging of complex subsurface
structures, Geophysical Prospecting, 62 (2014), p. 1353.

69. L. METIVIER AND J. VIRIEUX, Optimal transport theory, in Frontiers in PDE-Constrained
Optimization, H. Antil, M.-D. Lacasse, D. Ridzal, and D. P. Kouri, eds., Berlin, 2017,
Springer.

70. P. MOCZO AND J. KRISTEK, On the rheological models in the time-domain methods for
seismic wave propagation, Geophysical Review Letters, 32 (2005), p. L01306.

http://www.seissol.org/
http://geodynamics.org/cig/software/specfem3d
http://geodynamics.org/cig/software/specfem3d


254 M.-D. Lacasse et al.

71. P. MOCZO, J. KRISTEK, AND P. FRANEK, Lectures notes on rheological models. http://www.
fyzikazeme.sk/mainpage/stud_mat/Moczo_Kristek_Franek_Rheological_Models.pdf, 2006.
retrieved March 1, 2018.

72. R. MODRAK AND J. TROMP, Seismic waveform inversion best practices, Geophysical Journal
International, 206 (2016), p. 1864.

73. P. R. MORA, Non-linear two-dimensional elastic inversion of multi-offset seismic data,
Geophysics, 52 (1987), p. 1211.

74. J. NOCEDAL AND S. J. WRIGHT, Numerical optimization, Springer Series in Operations
Research and Financial Engineering, Springer, Berlin, 2006.

75. G. NOH AND S. H. ANS KLAUS-JÜRGEN BATHE, Performance of an implicit time integration
scheme in the analysis of wave propagations, Computers and Structures, 123 (2013), pp. 93–
105.

76. C. C. OBER, T. M. SMITH, J. R. OVERFELT, S. S. COLLIS, G. J. VON WINCKEL, B. G. VAN

BLOEMEN WAANDERS, N. J. DOWNEY, S. A. MITCHELL, S. D. BOND, D. F. ALDRIDGE,
AND J. R. KREBS, Visco-TTI-elastic FWI using discontinuous Galerkin, in SEG Technical
Program Expanded Abstracts, Dallas, 2016, Society of Exploration Geophysics, p. 5654.

77. S. OPERTO, Y. GHOLAMI, V. PRIEUX, A. RIBODETTI, R. BROSSIER, L. METIVIER, AND

J. VIRIEUX, A guided tour of multiparameter full waveform inversion with multicomponent
data: from theory to practice, The Leading Edge, 32 (2013), p. 936.

78. S. OPERTO, J. VIRIEUX, P. AMESTOY, J.-Y. L’EXCELLENT, L. GIRAUD, AND

H. BEN HADJ ALI, 3D finite-difference frequency-domain modeling of visco-acoustic wave
propagation using a massively parallel direct solver: A feasibility study, Geophysics, 72
(2007), p. SM195.

79. W. J. PARNELL AND I. D. ABRAHAMS, New integral equation approach to elastodynamic
homogenization, Proceedings of the Royal Society A, 464 (2008), p. 1461.

80. R.-É. PLESSIX AND Q. CAO, A parametrization study for surface seismic full waveform
inversion in an acoustic vertical transversely isotropic medium, Geophys J Int, 185 (2011),
p. 539.

81. R. G. PRATT, C. SHIN, AND G. J. HICKS, Gauss-newton and full newton methods in
frequency-space seismic waveform inversion, Geophys. J. Int, 133 (1998), p. 341.

82. R. G. PRATT AND M. H. WORTHINGTON, Inverse theory applied to multi-source cross-hole
tomography. Part I: acoustic wave-equation method, Geophys. Prospect., 38 (1990), p. 287.

83. W. H. PRESS, S. A. TEUKOLSKY, W. T. VETTERLING, AND B. P. FLANNERY, Numerical
Recipes 3rd Edition: The Art of Scientific Computing, Cambridge University Press, New York,
third ed., 2007.

84. L. QIU AND M.-D. LACASSE, Effects of parameterization on non-linear parameter estimation
problems, to be submitted.

85. C. D. RIYANTI, Y. A. ERLANGGA, R.-É. PLESSIX, W. A. MULDER, C. VUIK, AND

C. OOSTERLEE, New iterative solver for the time-harmonic wave equation, Geophysics, 71
(2006), p. E57.

86. J. O. A. ROBERTSSON, J. O. BLANCH, AND W. W. SYMES, Viscoelastic finite-difference
modeling, Geophysics, 59 (1994), p. 1444.

87. P. S. ROUTH, J. R. KREBS, S. LAZARATOS, AND J. E. ANDERSON, Encoded simultaneous-
source full-wavefield inversion for spectrally shaped marine streamer data, in SEG Technical
Program Expanded Abstracts, San Antonio, 2011, Society of Exploration Geophysics,
p. 2433.

88. R. SARGENT, Progress in modelling and simulation, in Verification and Validation of
Simulation Models, F. Celier, ed., Academic Press, London, 1982, p. 159.

89. S. SCHESLINGER, R. E. CROSBY, R. E. GAGNÉ, G. S. INNIS, C. S. LALWANI, J. LOCH, R. J.
SYLVESTER, R. D. WRIGHT, N. KHEIR, AND D. BARTOS, Terminology for model credibility,
Simulation, (1979), pp. 103–104.

90. J. H. SCHÖN, Physical properties of rocks — Fundamentals and principles of petrophysics, in
Handbook of Geophysical Exploration, K. Helbig and S. Treitel, eds., vol. 18, Elsevier, 2004,
p. 583.

http://www.fyzikazeme.sk/mainpage/stud_mat/Moczo_Kristek_Franek_Rheological_Models.pdf
http://www.fyzikazeme.sk/mainpage/stud_mat/Moczo_Kristek_Franek_Rheological_Models.pdf


FWI: An Extreme-Scale PDE-Constrained Optimization Problem 255

91. P. M. SHEARER, Introduction to Seismology, Cambridge University Press, Cambridge, 1999.
92. SIAM WORKING GROUP ON CSE EDUCATION, Graduate education in computational

science and engineering, SIAM Review, 43 (2001), p. 163.
93. I. S. SOKOLNIKOV, Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.
94. W. W. SYMES, I. S. TERENTYEV, AND T. W. VDOVINA, Gridding requirements for accurate

finite difference simulation, in SEG Technical Program Expanded Abstracts, Las Vegas, 2008,
Society of Exploration Geophysics, pp. 2077–2081.

95. A. TARANTOLA, Inversion of seismic reflection data in the acoustic approximation, Geo-
physics, 49 (1984), p. 1259.

96. A. TARANTOLA, Inverse Problem Theory And Methods For Model Parameter Estimation,
Society of Applied and Industrial Mathematics, Philadelphia, 2005.

97. L. THOMSEN, Weak elastic anisotropy, Geophysics, 51 (1986), p. 1954.
98. V. A. TITAREV AND E. F. TORO, ADER: Arbitrary high-order Godunov approach, J. Sci.

Comput., 17 (2002), pp. 609–18.
99. M. N. TOKSOZ, D. H. JOHNSTON, AND A. TIMUR, Attenuation of seismic waves in dry and

saturated rocks: I. Laboratory measurements, Geophysics, 44 (1979), p. 681.
100. S. TORQUATO, Random Heterogeneous Materials: Microstructure and Macroscopic Proper-

ties, vol. 16 of Interdisciplinary applied mathematics, Springer-Verlag, New York, 2002.
101. J. TROMP, D. KOMATITSCH, AND Q. LIU, Spectral elements and adjoint methods in

seismology, Communications in Computational Physics, 3 (2008), p. 1.
102. B. URSIN AND T. TOVERUD, Comparison of seismic dispersion and attenuation models, Stud.

Geophys. Geod., 46 (2002), p. 293.
103. J. VIRIEUX, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference

method, Geophysics, 51 (1986), p. 889.
104. J. VIRIEUX AND S. OPERTO, An overview of full-waveform inversion in exploration

geophysics, Geophysics, 74 (2009), p. WCC127.
105. J. VIRIEUX, S. OPERTO, H. BEN HADJ ALI, R. BROSSIER, V. ETIENNE, F. S. AMD

L. GIRAUD, AND A. HAIDAR, Seismic wave modeling for seismic imaging, The Leading
Edge, 28 (2009), p. 538.

106. C. VOGEL, Computational methods for inverse problems, Society for Industrial and Applied
Mathematics, Philadelphia, 2002.

107. S. WANG, M. V. DE HOOP, AND J. XIA, On 3D modeling of seismic wave propagation via a
structured parallel multifrontal direct Helmholtz solver, Geophysical Prospecting, 59 (2011),
p. 857.

108. Y. WANG, Seismic Inverse Q Filtering, John Wiley and Sons, New York, 2009.
109. M. WARNER AND L. GUASCH, Adaptive waveform inversion: Theory, Geophysics, 81 (2016),

pp. R429–R445.
110. R. WU AND K. AKI, Scattering characteristics of elastic waves by an elastic heterogeneity,

Geophysics, 50 (1985), p. 582.
111. P. YANG, R. BROSSIER, L. MÉTIVIER, AND J. VIRIEUX, Wavefield reconstruction in

attenuating media: A checkpointing-assisted reverse-forward simulation method, Geophysics,
81 (2016), pp. R349–R362.

112. Y. O. YUAN, F. J. SIMONS, AND J. TROMP, Double-difference adjoint seismic tomography,
Geophys. J. Int., 206 (2017), pp. 1599–1618.



Part II
PDE-Constrained Optimization:

Applications



Energetically Optimal Flapping Wing
Motions via Adjoint-Based Optimization
and High-Order Discretizations

Matthew J. Zahr and Per-Olof Persson

Abstract A globally high-order numerical discretization of time-dependent con-
servation laws on deforming domains, and the corresponding fully discrete adjoint
method, is reviewed and applied to determine energetically optimal flapping
wing motions subject to aerodynamic constraints using a reduced space PDE-
constrained optimization framework. The conservation law on a deforming domain
is transformed to one on a fixed domain and discretized in space using a high-order
discontinuous Galerkin method. An efficient, high-order temporal discretization is
achieved using diagonally implicit Runge-Kutta schemes. Quantities of interest,
such as the total energy required to complete a flapping cycle and the integrated
forces produced on the wing, are discretized in a solver-consistent way, that is,
via the same spatiotemporal discretization used for the conservation law. The fully
discrete adjoint method is used to compute discretely consistent gradients of the
quantities of interest and passed to a black-box, gradient-based nonlinear opti-
mization solver. This framework successfully determines an energetically optimal
flapping trajectory such that the net thrust of the wing is zero to within 9 digits after
only 12 optimization iterations.

1 Introduction

Flapping flight has been a subject of intense interest and research over the past
several decades due to its relevance in designing micro-aerial vehicles (MAVs)
– unmanned aerial vehicles measuring no more than 15 cm in any dimension,
envisioned in a number of civilian and military applications, including surveillance
and reconnaissance [32, 43] – and in the understanding of biological systems. The
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basic goal of any system, whether biological or manmade, that relies on flapping
propulsion is to adjust the kinematics of the flapping wing, and possibly its shape,
to minimize the energy required to complete a given mission. The problem of
determining the flapping kinematics that lead to an energetically optimal motion,
while satisfying various mission constraints, leads to a nonlinearly constrained PDE-
constrained optimization problem

minimize
U , μ

J (U , μ) := 1

T

ˆ T

0

ˆ
Γ

j (U(x, t), μ, t) dS dt

subject to C(U , μ) := 1

T

ˆ T

0

ˆ
Γ

c(U(x, t), μ, t) dS dt ≤ 0

∂U

∂t
+∇ · F (U , ∇U) = 0 in v(μ, t),

(1)

where U(x, t) ∈ R
NU is the spatiotemporal solution of the conservation law,

i.e., the last constraint in the optimization problem, in the domain x ∈ v(μ, t),
t ∈ (0, T ], μ ∈ R

Nμ is a vector of parameters controlling the kinematics of the
wing, T is the period of the flapping motion, j (U , μ, t) is the pointwise (in space
and time) contribution to energy added to the flow and J (U , μ) is the corresponding
quantity integrated over space and time, i.e., the time-averaged work done by
the surface Γ (μ, t) on the flow, and c(U , μ, t) and C(U , μ) are pointwise and
integrated, respectively, mission-specific constraints. In the context of MAV design,
the constraints will likely correspond to bounds on the thrust, lift, and stability of
the vehicle [19, 49].

Due to the unsteady governing equations, most attempts to solve the PDE-
constrained optimization problem in (1) in the context of flapping flight utilize a
reduced space approach, also known as nested analysis and design, whereby the
state variable U is treated as an implicit function of the parameters μ, i.e., U(μ)

is obtained by solving the (discretized) conservation law. This removes the state
variable from the set of optimization variables and eliminates the PDE constraint to
reduce the optimization problem in (1) to

minimize
μ

J (μ) := J (U(μ), μ)

subject to C(μ) := C(U(μ), μ) ≤ 0.
(2)

Due to the relatively large expense of high-fidelity methods that model the flow
using the Navier-Stokes equations, a number of low- and multi-fidelity methods
have been proposed to approximately solve the optimization problem in (2) or gain
insight into the physics of flapping. Among these low-fidelity methods include:
potential flow methods that assume that the flow is irrotational, inviscid, and
incompressible such as wake only and panel methods [56], lifting line methods,
and unsteady vortex-lattice methods [20, 46] that assume that the flow is inviscid
and incompressible and use global vorticity circulation balance and the Biot-Savart
law to construct a 3D velocity field.
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While low- and multi-fidelity methods have been popular in the study of flapping
flight [7, 9, 19, 20, 24, 46, 56], the need for high-fidelity computational tools has
been recognized [43] due to the complex flow features that occur, and are critical
for performance, in low Reynolds number flapping. In particular, these flows are
highly vortical and subject to separation [2, 6, 22, 44] that will violate many of the
critical assumptions of low-fidelity methods [56]. The generation and shedding of
a leading-edge vortex, possibly through rapid changes in angle of attack (dynamic
stall), have been shown to be important to efficient lift generation [6, 7, 42, 44] and
a computational method should possess minimal dissipation to ensure that these
critical structures are preserved. Furthermore, a realistic study of flapping at scales
relevant to the design of MAVs should be performed in three dimensions due to the
importance of three-dimensional effects such as stabilization of the leading-edge
vortex [5–7, 13, 27, 50] and to include out-of-plane flapping kinematics that are
relevant to thrust production and control [4].

In this work, we extend the globally high-order method and corresponding fully
discrete adjoint method presented in [63] for the discretization and optimization of
general nonlinear, unsteady conservation laws to address the challenges of three-
dimensional flapping, such as the parametrization of three-dimensional flapping
and robust deformation of the three-dimensional geometry. The conservation law
on a parametrized, deforming domain is transformed to a fixed domain using an
Arbitrary Lagrangian-Eulerian (ALE) formulation and the resulting equations are
discretized in space and time using a discontinuous Galerkin method and diagonally
implicit Runge-Kutta scheme, respectively. Relevant details are provided on using
the ALE formulation to move a curved mesh, whereby the reference mesh is taken as
straight-sided and the ALE mapping encapsulates the curving as well as the domain
deformation. In contrast to most computational approaches that only integrate
quantities of interest (QoIs), that will eventually define the objective and constraints
of the flapping optimization problem, to second order using the trapezoidal rule,
this work discretizes the QoI to exactly the same order as the governing equation
using the solver-consistent approach of [63]. High-order methods are an emphasis
of this work since they are well suited to model the highly vortical flow around
a flapping wing due to the small amount of numerical dissipation they introduce
[35]. An alternative to high-order methods that has been proposed and demonstrated
in the context of flapping to limit numerical dissipation associated with low-order
methods is a kinetic energy preserving finite volume scheme [2, 11]. However, we
also commit to high-order methods because they have been shown to require fewer
spatial degrees of freedom [54, 63] and time steps [30, 61] compared to low-order
counterparts.

Given the large computational cost of objective and constraint queries that
require high-order computational fluid dynamics (CFD) simulations, and the high-
dimensional design space required to sufficiently parametrize three-dimensional
flapping, which may include parameters for the flapping kinematics, fixed or
actively morphed [20, 63] shape, flexibility of the wing [22, 42, 43, 47, 48, 65],
gradient-based optimization methods are used to solve the optimization problem
in (2) due to their fast convergence properties. Also, since the optimization problems
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considered in this work involve more parameters than constraints, the gradients of
the optimization functionals are computed via the adjoint method since the cost
scales very weakly with the number of parameters. Since a black-box optimizer
is used to solve the constrained optimization problem in (2) with the underlying
high-order discretization, the fully discrete variant of the adjoint method is used to
ensure that the computed gradients are consistent with the functionals to which they
correspond.

The proposed numerical method for simulation and optimization of conservation
laws on parametrized, deforming domains is used to determine energetically optimal
flapping subject to a thrust constraint. The chosen optimization formulation is
similar to that studied in [19], which differs from the unconstrained thrust or
propulsive efficiency maximization problem that is usually chosen to study optimal
flapping [40, 49, 55]. The optimization problem considered in this work is closer
to the optimization problem instinctively solved in-flight by biological systems [43]
and relevant in the design of MAVs.

The remainder of this document is organized as follows. Section 2 introduces the
governing conservation law considered in this work, the isentropic Navier-Stokes
equations, and an Arbitrary Lagrangian-Eulerian method that transforms it from
a deforming, parametrized domain to a fixed one. Section 3 introduces the high-
order discretization of the conservation law and its quantities of interest, with special
attention paid to high-order representation of the geometry in the ALE framework
and Section 4 introduces the fully discrete adjoint method that was derived in [63].
Finally, Section 5 applies this high-order simulation and optimization framework
to energetically optimal, three-dimensional flapping flight under lift and thrust
constraints and Section 6 offers conclusions.

2 Governing Equations

This section presents a formulation of general conservation laws on a parametrized,
deforming domain using an Arbitrary Lagrangian-Eulerian (ALE) formulation,
which summarizes the work in [38]. Given that this work is concerned with
energetically optimal flapping flight, the compressible Navier-Stokes equations are
taken as the governing equations; however, the primal and adjoint numerical scheme
is presented for the case of a general, nonlinear, vector-valued conservation law.

2.1 Compressible Navier-Stokes Equations

The compressible Navier-Stokes equations are written as:

∂ρ

∂t
+ ∂

∂xi
(ρui) = 0, (3)
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∂

∂t
(ρui)+ ∂

∂xi
(ρuiuj + p) = ∂τij

∂xj
for i = 1, 2, 3, (4)

∂

∂t
(ρE)+ ∂

∂xj

(
uj (ρE + p)

) = −∂qj

∂xj
+ ∂

∂xj
(uiτij ), (5)

where ρ is the fluid density, u1, u2, u3 are the velocity components, and E is the
total energy. The viscous stress tensor and heat flux are given by

τij = μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3

∂uk

∂xk
δij

)
and qj = − μ

Pr

∂

∂xj

(
E + p

ρ
− 1

2
ukuk

)
.

(6)

Here, μ is the viscosity coefficient and Pr = 0.72 is the Prandtl number which we
assume to be constant. For an ideal gas, the pressure p has the form

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
, (7)

where γ is the adiabatic gas constant. In this work, the entropy is assumed constant,
that is to say the flow is adiabatic and reversible. This makes the energy equation
redundant and effectively reduces the square system of PDEs of size nsd + 2 to one
of size nsd + 1, where nsd is the number of spatial dimensions. It can be shown,
under suitable assumptions, that the solution of the isentropic approximation of the
Navier-Stokes equations converges to the solution of the incompressible Navier-
Stokes equations as the Mach number goes to 0 [12, 17, 29].

2.2 Arbitrary Lagrangian-Eulerian Formulation of
Conservation Laws

Consider a general system of conservation laws, defined on a parametrized,
deforming domain, v(μ, t),

∂U

∂t
+∇ · F (U , ∇U) = 0 in v(μ, t) (8)

where the physical flux is decomposed into an inviscid and a viscous part
F (U , ∇U) = F inv(U) + F vis(U , ∇U), U(x,μ, t) is the solution of the system
of conservation laws, t ∈ (0, T ] represents time, and μ ∈ R

Nμ is a vector of
parameters. This work will focus on the case where the domain is parametrized
by μ.

The conservation law on the physical, deforming domain v(μ, t) ⊂ R
nsd is

transformed into one on a fixed reference domain V ⊂ R
nsd through the introduction
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X1
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x2

nda

v
x=x(X)

Fig. 1 Time-dependent mapping between reference and physical domains

of a time-dependent diffeomorphism between the physical and reference domains:
x(X,μ, t) = G (X,μ, t) (Figure 1). In this setting, nsd is the number of spatial
dimensions, X ∈ V is a point in the reference domain, and x(X,μ, t) ∈ v(μ, t) is
the corresponding point in the physical domain at time t and parameter configuration
μ. The transformed system of conservation laws takes the form

∂UX

∂t

∣∣∣∣
X

+∇X · FX(UX, ∇XUX) = 0 in V (9)

where ∇X denotes spatial derivatives with respect to the reference variables, X. The
transformed state vector, UX, and its corresponding spatial gradient with respect to
the reference configuration take the form

UX = gU , ∇XUX = g−1UX
∂g

∂X
+ g∇U ·G, (10)

where G = ∇XG , g = det(G), vG = ∂x

∂t
= ∂G

∂t
. The transformed fluxes are

FX(UX,∇XUX) = F inv
X (UX)+ F vis

X (UX,∇XUX),

F inv
X (UX) = gF inv(g−1UX)G

−T − UX ⊗G−1vG,

F vis
X (UX,∇XUX) = gF vis

(
g−1UX, g

−1
[
∇XUX − g−1UX

∂g

∂X

]
G−1

)
G−T .

(11)

For details regarding the derivation of the transformed equations, the reader is
referred to [38].
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When integrated using inexact numerical schemes, this ALE formulation does
not satisfy the geometric conservation law (GCL) [15, 38]. This is overcome by
introduction of an auxiliary variable ḡ, defined as the solution of

∂ḡ

∂t
−∇X ·

(
gG−1vG

)
= 0. (12)

The auxiliary variable, ḡ, is used to modify the transformed conservation law
according to

∂UX̄

∂t

∣∣∣∣
X

+ ∇X · FX̄(UX̄, ∇XUX̄) = 0 (13)

where the GCL-transformed state variables are

UX̄ = ḡU , ∇XUX̄ = ḡ−1UX̄

∂ḡ

∂X
+ ḡ∇U ·G (14)

and the corresponding fluxes

FX̄(UX̄,∇XUX̄) = F inv

X̄
(UX̄)+ F vis

X̄
(UX̄,∇XUX̄),

F inv

X̄
(UX̄) = gF inv(ḡ−1UX̄)G

−T − UX̄ ⊗G−1vG,

F vis

X̄
(UX̄,∇XUX̄) = gF vis

(
ḡ−1UX̄, ḡ

−1
[
∇XUX̄ − ḡ−1UX̄

∂ḡ

∂X

]
G−1

)
G−T .

(15)

It was shown in [38] that the transformed equations (13) satisfy the GCL.

2.3 Uniform Flow Initial Condition

A number of initial conditions can be used to initialize an unsteady CFD simulation,
including uniform flow [21, 23], the steady-state solution [26, 28, 63], and the state
that leads to periodic flow [64]. In this work, the unsteady simulation is initialized
from uniform flow for the sake of simplicity. Nonphysical transients that result
from using an initial condition that is incompatible with the boundary conditions
will be dissipated by simulating multiple periods of the flapping motion and only
integrating the quantity of interest over the final period. The ALE-transformed state
corresponding to uniform flow takes the form

UX̄(X, μ, 0) = g0(X, μ) Ū(X)

ḡ(X, μ, 0) = g0(X, μ)
(16)
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where Ū(X) defines the desired uniform initial condition on the reference domain
and g0(X, μ) := g(X, μ, 0) is the determinant of the deformation gradient at time
t = 0.

3 High-Order Numerical Discretization

This section discusses a globally high-order numerical discretization of the govern-
ing equations presented in the previous section. It summarizes the work in [1, 3, 63].

3.1 Spatial Discretization: Discontinuous Galerkin Method

To proceed, the second-order system of partial differential equations in (12)–(13) is
converted to first-order form

∂ḡ

∂t

∣∣∣∣
X

+∇X ·
(
gG−1vG

)
= 0

∂UX̄

∂t

∣∣∣∣
X

+∇X · FX̄(UX̄, QX̄) = 0

QX̄ −∇XUX̄ = 0,

(17)

where QX̄ is introduced as an auxiliary variable to represent the spatial gradient
of the UX̄. Equation (17) is discretized using a standard nodal discontinuous
Galerkin finite element method [3, 10], which, after local elimination of the auxiliary
variables QX̄, leads to the following system of ODEs

M
∂u

∂t
= r(u, μ, t), (18)

where M is the block-diagonal, symmetric, fixed mass matrix (state- and parameter-

independent), u is the vectorization of
[
UT

X̄
ḡ
]T

at all nodes in the mesh, and r is

the nonlinear function defining the DG discretization of the inviscid and viscous
fluxes. See [63] for an efficient treatment of ḡ that does not lead to an enlarged
system of ODEs.

To achieve high-order accuracy, the geometry must be represented to high-order,
which calls for a curved mesh. Since a curved mesh is usually defined as a nonlinear
mapping, e.g., based on nonlinear elasticity or some optimality criteria, applied
to an underlying linear or straight-sided mesh, two options exist for defining the
ALE mapping. First, the curved mesh can be taken as the reference domain and the
ALE mapping must only account for the mapping between the curved mesh and the
physical domain. In this case, the ALE mapping takes the form
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x(X, μ, t) = ϕ(X, μ, t) (19)

where X are coordinates in the domain defined by the curved mesh and ϕ maps the
curved mesh into the physical domain. Alternatively, the straight-sided mesh can
be taken as the reference mesh and the ALE mapping constructed as a composition
of maps that takes the straight-sided mesh into the physical domain with curved
boundaries to represent the geometry to high-order. In this case, the ALE mapping
takes the form

x(X, μ, t) = ϕ(φ(X), μ, t) (20)

where X are coordinates in the domain defined by the linear mesh, φ maps the linear
mesh to the curved mesh, and ϕ maps the curved mesh into the physical domain.
Even though these options are mathematically equivalent, the latter option is chosen
in this work as it leads to a simpler implementation, particularly in the definition of
derivative terms required for the adjoint method, but also because all integrals are
calculated on straight-sided elements.

This section closes with a discussion of how the domain deformation terms
that arise in the ALE formulation will be defined at the semi-discrete level. If
the mapping from the reference to physical domain is known analytically, all
domain deformation terms, i.e., x, ẋ, G, g, can be computed exactly and used
in (15). However, there are many cases where this is not the case, e.g., the
domain deformation is the result of a numerical procedure [14, 16, 39, 58]. An
alternative that closely aligns with finite element ideology is to interpolate the ALE
mapping onto the finite element shape functions and compute spatial gradients by
differentiating the shape functions. In this setting, the action of the mapping and its
time derivative are computed on the nodal coordinates of the reference mesh, i.e.,

xe(X, μ, t) := x(X, μ, t)|X∈Ee
=

∑
i∈N (e)

Ni(X)xi (μ, t)

ẋe(X, μ, t) := ẋ(X, μ, t)|X∈Ee
=

∑
i∈N (e)

Ni(X)ẋi (μ, t),

(21)

where Ee is element e in the reference mesh, N (e) are the nodes associated with
element e, Ni(X) are the DG shape functions on the reference mesh, and xe are
the coordinates of the nodes of element e in the physical domain. An implication
of defining the ALE mapping with the DG shape function is that the mapping is
discontinuous between elements, which does not present a problem for the DG
method. The expression for the mapping in (21) implies that the deformation
gradient and its determinant can be easily computed as

Ge(X, μ, t) := G(X, μ, t)|Ee
=

∑
i∈N (e)

xi (μ, t)
∂Ni

∂X
(X),

ge(X, μ, t) = det Ge(X, μ, t). (22)
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Therefore, once the nodal coordinates of the mapping and its time derivatives
are known, all the remaining terms directly follow. The implications of such a
dependence in the implementation of the adjoint method were discussed in [63]
and will be further detailed in Section 5.1.

3.2 Temporal Discretization: Diagonally Implicit Runge-Kutta

The system of ODEs in (18) are discretized in time using diagonally implicit
Runge-Kutta (DIRK) schemes. These schemes are capable of achieving high-order
accuracy with the desired stability properties (unlike high-order multistep schemes
that are only stable up to second order), without requiring the solution of an enlarged
system of equations like general implicit Runge-Kutta (IRK) schemes (see [36]
for an efficient solver for DG-IRK discretizations). DIRK schemes are defined by
a lower triangular Butcher tableau (Table 1) and take the following form when
applied to (18)

u0 = ū(μ)

un = un−1 +
s∑

i=1

bikn,i

Mkn,i = Δtnr
(
un,i , μ, tn−1 + ciΔtn

)
,

(23)

for n = 1, . . . , Nt and i = 1, . . . , s, where Nt are the number of time steps in
the temporal discretization and s is the number of stages in the DIRK scheme. The
initial condition, ū(μ), corresponds to the vectorization of the ALE-transformed
uniform flow state in (16). The temporal domain, (0, T ], is discretized into
Nt segments with endpoints {t0, t1, . . . , tNt }, with the nth segment having length
Δtn = tn − tn−1 for n = 1, . . . , Nt . Additionally, in (23), un,i is used to denote the
approximation of un at the ith stage of time step n

un,i = un,i(un−1, kn,1, . . . , kn,s) = un−1 +
i∑

j=1

aijkn,j . (24)

From (23), a complete time step requires the solution of a sequence of s nonlinear
systems of equation of size Nu.

Table 1 Butcher tableau for
s-stage diagonally implicit
Runge-Kutta scheme

c1 a11

c2 a21 a22
.
.
.

.

.

.
.
.
.

. . .

cs as1 as2 · · · ass

b1 b2 · · · bs
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3.3 Solver-Consistent Discretization of Quantities of Interest

In this work, quantities of interest that take the form of space-time integrals of
nonlinear functions that depend on the solution of the conservation law are dis-
cretized in a solver-consistent manner [63], i.e., using the same spatial and temporal
discretization used for the conservation law. This ensures that the truncation error
of the quantities of interest exactly match that of the governing equations.

Consider a quantity of interest of the form

F (U ,μ, t) =
ˆ t

0

ˆ
Γ

w(x, τ )f (U(x, τ ),μ, τ ) dS dτ. (25)

In the context of the optimization problem in (1), F corresponds to either
the objective or a constraint function. Define f h as the approximation

of
ˆ

Γ

w(x, t)f (U(x, t),μ, t) dS using the DG shape functions from the

spatial discretization of the governing equations. The solver-consistent spatial
discretization of (25) becomes

F h(u,μ, t) =
ˆ t

0
f h(u,μ, τ ) dτ, (26)

which ensures that the spatial integration error in the quantity of interest exactly
matches that of the governing equations. Solver-consistent temporal discretization
requires the semi-discrete functional in (26) be converted to an ODE, which is
accomplished via differentiation of (26) with respect to t

Ḟ h(u,μ, t) = f h(u,μ, t). (27)

Augmenting the semi-discrete governing equations with this ODE (27) yields the
system of ODEs

[
M 0
0 1

] [
u̇

Ḟ h

]
=
[

r(u,μ, t)

f h(u,μ, t)

]
. (28)

Application of the DIRK temporal discretization introduced in Section 3.2 yields the
fully discrete governing equations and corresponding solver-consistent discretiza-
tion of the quantity of interest (25)

un = un−1 +
s∑

i=1

bikn,i

F h
n = F h

n−1 +Δtn

s∑
i=1

bif
h
(
un,i , μ, tn−1 + ciΔtn

)

Mkn,i = Δtnr
(
un,i , μ, tn−1 + ciΔtn

)
,

(29)
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for n = 1, . . . , Nt , i = 1, . . . , s, and un,i is defined in (24). Finally, the functional
in (25) is evaluated at time t = T to yield the solver-consistent approximation of
F (u,μ, T )

F (u0, . . . ,uNt , k1,1, . . . , kNt ,s) := F h
Nt
≈ F (u,μ, T ). (30)

Unlike most methods used in the literature for integrating quantities of interest in
time, e.g., trapezoidal rule [25, 33, 34, 51, 57], the proposed method relies on the
low-order, intermediate RK stages. These stages are combined in such a way that
the temporal integral in (26) is approximated to high-order. The dependence of the
quantity of interest on these stages must be accounted for in the adjoint equations
[63, 64], which will be seen in Section 4.1.

4 Fully Discrete Adjoint Method

4.1 Fully Discrete, Time-Dependent Adjoint Equations

This section summarizes the work in [63] and begins by posing the adjoint equations
corresponding to the fully discrete system of conservation laws in (23) and the
adjoint method for computing the total derivative of the fully discrete quantity of

interest without requiring solution sensitivities,
∂un

∂μ
and

∂kn,i

∂μ
. Each of the Nμ

solution sensitivities is the solution of the following linear evolution equations

∂u0

∂μ
= ∂ū

∂μ
(μ)

∂un

∂μ
= ∂un−1

∂μ
+

s∑
i=1

bi
∂kn,i

∂μ

∂un,i

∂μ
= ∂un−1

∂μ
+

i∑
j=1

aij
∂kn,i

∂μ

M
∂kn,i

∂μ
= Δtn

∂r

∂u

(
un,i , μ, tn−1 + ciΔtn

) ∂un,i

∂μ
+ ∂r

∂μ

(
un,i , μ, tn−1 + ciΔtn

)
(31)

for n = 1, . . . , Nt and i = 1, . . . , s. These equations are solved forward-in-time
and therefore the sensitivity simulation can be performed simultaneously with the
primal simulation, which eliminates the need to store the primal solution. However,
when Nμ is large, this approach becomes intractable due to the large number of
linear evolution equations that must be solved. To avoid the computational burden
of computing the state sensitivities, the adjoint equations corresponding to the
functional F and the corresponding dual variables are introduced to eliminate the
state sensitivities from the expression for the total derivative of F with respect to the
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parameters, μ. From the derivation of the adjoint equations, an expression for the
reconstruction of the gradient of F , independent of the state variable’s sensitivities,
follows naturally. At this point, it is emphasized that F represents any quantity of
interest whose gradient is desired, such as the optimization objective function or a
constraint.

Let λn for n = 0, . . . , Nt be the adjoint variables corresponding to the state
update equation in (23) and let κn,i for n = 1, . . . , Nt and i = 1, . . . , s be those
corresponding to the stage update equations in (23). The adjoint equations are

λNt =
∂F

∂uNt

T

λn−1 = λn + ∂F

∂un−1

T

+
s∑

i=1

Δtn
∂r

∂u

(
un,i , μ, tn−1 + ciΔtn

)T
κn,i

MT κn,i = ∂F

∂kn,i

T

+ biλn +
s∑

j=i
ajiΔtn

∂r

∂u

(
un,j , μ, tn−1 + cjΔtn

)T
κn,j

(32)

for n = 1, . . . , Nt and i = 1, . . . , s and the expression for dF/dμ, independent of
state sensitivities, is

dF

dμ
= ∂F

∂μ
+ λ0

T ∂ū

∂μ
+

Nt∑
n=1

Δtn

s∑
i=1

κn,i
T ∂r

∂μ
(un,i , μ, tn−1 + ciΔtn). (33)

Unlike the sensitivity equations in (31), the adjoint equations must be solved
backward-in-time and the adjoint simulation cannot begin until the primal sim-
ulation completes. This implies that the entire primal time history, including
intermediate stages, must be stored. In our setting, this I/O cost is negligible in
comparison to the cost of a linear solve with the Jacobian matrix. Furthermore,
in contrast to the sensitivity equations, the derivative of the quantity of interest
with respect to the state variable appears as a forcing term in (32), which requires
a separate set of adjoint variables for each quantity of interest whose derivative
is sought. In a gradient-based optimization setting, this implies Nc + 1, where
Nc is the number of state-dependent constraints, adjoint solves are required to
compute the gradient of the objective function and all constraint functions. While
the number of adjoint solves depends on the number of functionals to differentiate,
it is independent of the number of parameters. Since the application in this work is
in the regime where Nμ > Nc + 1, the adjoint method is more desirable.

For the derivation of Equations (32)–(33), the reader is referred to [62, 63]. For
the adjoint equations that explicitly enforce time periodicity of the solution of the
partial differential equation, see [64]. From inspection of (33), it is clear that the

initial condition sensitivity
∂ū

∂μ
is the only sensitivity term required to reconstruct

dF

dμ
. The derivation of this term for the uniform flow initial condition introduced in
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Section 2.3 is provided in the next section. From the expression for the fully discrete
quantity of interest in (30), it is clear that F is independent of uNt , which implies

λNt =
∂F

∂uNt

T

= 0. (34)

Furthermore, the partial derivatives of the fully discrete quantities of interest are

∂F

∂un

= Δtn

s∑
i=1

bi
∂f h

∂u
(un,i , μ, tn−1 + ciΔtn) n = 0, . . . , Nt − 1

∂F

∂kn,j

= Δtn

s∑
i=j

aij bi
∂f h

∂u
(un,i , μ, tn−1 + ciΔtn) n = 1, . . . , Nt , j = 1, . . . , s

(35)

See [63] for a discussion of the benefits of the fully discrete adjoint framework
over the continuous or semi-discrete ones in the context of optimization or when a
Runge-Kutta temporal discretization is used.

4.2 Parametrization of the Initial Condition

Recall the form of the ALE-transformed uniform flow initial condition in (16). Since
the physical uniform flow state Ū(X) is parameter-independent, the sensitivity of
the initial condition will be due solely to the sensitivity of the determinant of the
deformation gradient. That is,

∂UX̄

∂μ
(X, μ, 0) = Ū(X)

∂g0

∂μ
(X, μ)

∂ḡ

∂μ
(X, μ, 0) = ∂g0

∂μ
(X, μ)

(36)

The initial condition sensitivity at the semi-discrete or fully discrete level is then the
appropriate vectorization of this quantity over the DG mesh.

4.3 Parametrization of the Residual and Quantities of Interest

In addition to the initial condition sensitivity, the equation to reconstruct the total
derivative of F with respect to μ requires the partial derivatives of the residual
and quantity of interest with respect to the μ. For this purpose, we assume that
the parameter vector μ purely controls the domain deformation, e.g., it does not
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affect the boundary conditions or material properties. Then, given the discussion in
Section 3.1 that completely defines the ALE map based on its action and the action
of its time derivative on the nodes of the mesh, the parameter dependence of the
residual and quantity of interest can be written in terms of x(μ) and ẋ(μ). That is,

∂r

∂μ
= ∂r

∂x

∂x

∂μ
+ ∂r

∂ẋ

∂ẋ

∂μ

∂f h

∂μ
= ∂f h

∂x

∂x

∂μ
+ ∂f h

∂ẋ

∂ẋ

∂μ

(37)

The form of the ALE map, i.e., x(μ) and ẋ(μ), will be described in the next section.
Our implementation uses the Maple software [31] to compute all required partial
derivatives.

5 Application to Energetically Optimal Flapping Flight

In this section, the high-order numerical discretization of the isentropic, com-
pressible Navier-Stokes equations and corresponding adjoint method are applied
to determine the energetically optimal flapping motion of a three-dimensional wing
geometry using gradient-based optimization in the low Reynolds number regime of
Re = 1000. For a physically relevant mission, a requirement is placed on the time-
averaged thrust, which leads to an optimization problem with a nonlinear constraint.
As a result, two adjoint equations must be solved at each optimization iteration to
compute the gradient of the objective function and the nonlinear constraint.

5.1 Flapping Wing Geometry and Kinematics

The wing geometry considered in this work is an extruded NACA0012 airfoil with
a rounded tip to accurately capture three-dimensional effects. In the reference con-
figuration, the NACA0012 airfoil is contained in the X1 − X3 plane corresponding
to X2 = 0, facing the −X1 direction (flow in the +X1 direction), and extruded in
the +X2 direction for the span-to-chord ratio of 2. A symmetry plane is included
to consider an isolated wing without a fuselage. The fluid domain is discretized
using a curved mesh with tetrahedral elements of degree p = 3. Figure 2 visualizes
the mesh and the corresponding geometry is taken as the reference domain in ALE
setting.

The flapping motion is parametrized using three angles: the flapping angle
θ(μ, t) (rotation about the X1-axis), the pitching angle α(μ, t) (rotation about the
X2-axis), and the sweeping angle β(μ, t) (rotation about the X3-axis). The origin
of the flapping angle is taken as the intersection of the X2 = s1 and X3 = 0 planes,
where s1 > 0 is a parameter that defines a shoulder away from the symmetry plane.
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Fig. 2 Surface mesh of the wing and the symmetry plane, and some of the tetrahedral elements in
the wake. All elements are curved by polynomials of degree p = 3

The origin of the pitching and sweeping angles are taken as the intersection of the
X1 = 0, X3 = 0, and X1 = 0, X2 = 0 planes, respectively. The combination of
these motions takes the form

x′1(X, μ, t) = X1 cos(α(μ, t))+ (X2 − s1) sin(β(μ, t))−X3 sin(α(μ, t))

x′2(X, μ, t) = s1 +X2 cos(θ(μ, t)) cos(β(μ, t))−X3 sin(θ(μ, t))

−X1 sin(β(μ, t))

x′3(X, μ, t) = X3 cos(θ(μ, t)) cos(α(μ, t))+ (X2 − s1) sin(θ(μ, t))

+X1 sin(α(μ, t)),
(38)

where we set the parameter s1 = 0.5. While this kinematic description encodes
exactly the desired motion of the wing itself, it cannot be applied to the entire fluid
domain as it will not preserve the symmetry plane and the rotations will lead to large
velocities at the far field. To avoid these issues, the domain deformation is smoothly
blended to zero near the symmetry plane and away from the wing, following the
work in [38, 63].

The deformation blending away from the wing is defined as a composition of a
radial blending, bxz(X), in the X1−X3 plane and a unidirectional blending, by(X),
in the +X2 direction. These blendings take the form

bxz(X)=

⎧⎪⎪⎨
⎪⎪⎩

0 d(X) ≤ r1

1 d(X) ≥ r1 + r2

q
(
d(X)−r1

r2

)
otherwise

, by(X)=

⎧⎪⎪⎨
⎪⎪⎩

0 X2 ≤ y1

1 X2 ≥ y1 + y2

q
(
X2−y1

y2

)
otherwise

,

(39)
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where d(X) =
√
X2

1 +X2
3 is the radial distance from the X2 axis (the axis through

the center of the wing in the spanwise direction) and q(s) = 3s2 − 2s3 is the cubic
blending introduced in [38]. For smoother spatial blendings, the quintic expression
q(s) = 10s3 − 15s4 + 6s5 could be used instead. See Figure 3 for the blendings
bxz(X) and by(X) with the values of the blending parameters used in this work:
r1 = 0.6, r2 = 5, y1 = 2.6, y2 = 5.

Suppose we want to compose two blendings, b1(X) and b2(X), in serial, that is,
blend a deformed domain x′ with an undeformed domain X via b1(X) and blend
the result with the undeformed domain via b2(X) as follows

x′′ = (1− b1(X))x′ + b1(X)X

x = (1− b2(X))x′′ + b2(X)X.
(40)

This can be compactly expressed as a single blending b12(X) as x = (1 −
b12(X))x′ + b12(X)X, where

b12(X) = b1(X)+ b2(X)− b1(X)b2(X). (41)

Therefore, the composition of the radial and unidirectional blending in (39) leads to
a cylindrical blending that takes the form

bcyl(X) = bxz(X)+ by(X)− bxz(X)by(X). (42)

To ensure that the symmetry plane remains motionless, the mapping in (38) must
be smoothly blended to 0 at the X2 = 0 plane. The blending at the symmetry plane,
bsym(X), is chosen to be infinitely smooth and the rate of decay decreases with
increasing radial distance from the X2 axis to prevent mesh entanglement, i.e.,

bsym(X) = e−(X2/(s2+s3d(X)))2
. (43)
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(

)XX X XX X

Fig. 3 Left: radial blending bxz(X) corresponding to r1 = 0.6, r2 = 5. Right: unidirectional
blending by(X) corresponding to y1 = 2.6, y2 = 5
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The blending parameter s2 is set to 1 for geometrical considerations since this affects
the geometry of the wing during the flapping motion. The blending parameter s3 is
free in the sense that it has little effect on the wing itself and is solely used to improve
mesh quality in the fluid domain. A brute force, unidimensional search is performed
to determine the value of s3 = 0.3 that maximizes the mesh quality. See Figure 4
for a plot of bsym(X) with these blending parameters at various radial positions.

The composition of the cylindrical blending bcyl(X) and symmetry blending
bsym(X) using the formula in (41) leads to the final form of the spatial blending

b(X) = bcyl(X)+ bsym(X)− bcyl(X)bsym(X) (44)

and the expression for the deformed domain

x′′(X, μ, t) = (1− b(φ(X)))x′(φ(X), μ, t)+ b(φ(X))φ(X). (45)

The above expression uses φ(X), the coordinates in the domain with curved
boundaries, in place of X, the coordinates in the straight-sided domain, due to
the choice discussed in Section 3.1 that incorporates the curving of the domain
boundaries in the ALE map. Spatial blending of this form ensures that the desired
physical motion of the body, x′(X, μ, t), is exactly achieved near the surface of the
wing, there is no deformation far from the surface or at the symmetry plane, and the
domain deformation smoothly varies between these extremes.

The expression for the deformed domain, x′(X, μ, t), in (38) will have a
nontrivial deformation and velocity at t = 0. This may cause difficulty in initializing
the simulation from uniform flow as violent transients will result that may prevent
convergence of the nonlinear solvers. For this reason, following the work in
[51, 63], the deformation is smoothly blended to zero at t = 0 using the infinitely
differentiable blending

bt (t) = e−(t/Tc)2
. (46)
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Fig. 4 Left: blending at symmetry plane bsym(X) corresponding to s2 = 1.0, s3 = 0.3 at radial
position d(X) = 0 ( ), d(X) = 1 ( ), d(X) = 5 ( ), d(X) = 8 ( ). Right: temporal
blending bt (t) corresponding to Tc = 1
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Temporal blendings have also been used in experimental studies involving flapping
wings [18], where a quintic blending was used. The final form of the deformed
domain is

x(X, μ, t) := (1− bt (t))x
′′(φ(X), μ, t)+ bt (t)φ(X) (47)

and the domain velocity ẋ(X, μ, t) can be computed analytically. It can easily
be verified that this temporal blending guarantees x(X, μ, 0) = φ(X) and
ẋ(X, μ, 0) = 0. In this work, Tc = T/5, where T is the period of the flapping
motion, to ensure that x, ẋ are effectively equal to x′′, ẋ′′ (within 0.1%) by
1/2 a period (see Figure 4). This blending limits the transients that result from
initializing the flow with incompatible boundary conditions at the viscous wall.
Another implication of this temporal blending is that the sensitivity of the initial
condition is zero, i.e., ∂u0

∂μ
= 0, since x(X, μ, 0) = φ(X). Finally, as discussed

in Section 3.1, once the ALE-mapped domain x(X, μ, t) and velocity ẋ(X, μ, t)

are computed, the remaining quantities required for the ALE formulation of the
governing equations, namely G(X, μ, t) and g(X, μ, t), can be computed through
differentiation of the underlying shape functions, as in (22).

Given this kinematic description of the flapping motion in (47), all that remains to
completely specify the domain deformation and its parametrization is the functional
form of the pitching, sweeping, and flapping angles. In this work, these angles are
parametrized through a single harmonic function each as

α(μ, t) = μ1 + μ2 sin(2πf t + μ3)

β(μ, t) = μ4 + μ5 sin(2πf t + μ6)

θ(μ, t) = μ7 + μ8 sin(2πf t + μ9),

(48)

where f = 1/T is the flapping frequency. Even though the flapping frequency
is an important design consideration, it will not be taken as a parameter in this
work as properly accounting for frequency perturbations in the fully discrete adjoint
framework is still a research issue [53] and will be the subject of future work.
An example of a typical flapping motion is shown in Figure 5. The same flapping
motion is shown in Figures 5, 6, 7, and 8, where the various views of an unstructured
volumetric mesh with 10805 p = 3 elements are provided to show the impact of the
blending and the high-quality elements that are maintained.

5.2 Energetically Optimal Flapping Under a Thrust Constraint

The high-order numerical discretization of the isentropic, compressible Navier-
Stokes equations and corresponding adjoint method are applied to determine the
energetically optimal flapping motion of the geometry introduced in the previous
section using gradient-based optimization techniques in the low Reynolds number
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Fig. 5 Snapshots of the flapping motion in (47) with μ1 = μ4 = μ7 = μ9 = 0, μ3 = −μ6 =
−π/3, μ2 = 60◦, μ5 = −μ8 = −25◦

Fig. 6 Snapshots of a slice of the volumetric mesh in the X1 − X3 and X2 − X3 planes
corresponding to the flapping motion in (47) with μ1 = μ4 = μ7 = μ9 = 0, μ3 = −μ6 = −π/3,
μ2 = 60◦, μ5 = −μ8 = −25◦. The top left figure corresponds to the curved mesh with no other
deformation applied, i.e., x = φ(X). The remaining figures correspond to snapshots (top to bottom,
left to right) taken at equally spaced time increments during the second period that correspond to
times t = 5.0, 6.0, 7.0, 8.0, 9.0
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Fig. 7 Snapshots of a slice of the volumetric mesh in the X1 − X3 plane corresponding to the
flapping motion in (47) with μ1 = μ4 = μ7 = μ9 = 0, μ3 = −μ6 = −π/3, μ2 = 60◦,
μ5 = −μ8 = −25◦. The top left figure corresponds to the curved mesh with no other deformation
applied, i.e., x = φ(X). The remaining figures correspond to snapshots (top to bottom, left to
right) taken at equally spaced time increments during the second period that correspond to times
t = 5.0, 6.0, 7.0, 8.0, 9.0

regime of Re = 1000. For a physically relevant mission, requirements are placed
on the time-averaged thrust leading to an optimization problem with a nonlinear
constraint. As a result, two adjoint equations must be solved at each optimization
iteration to compute the gradient of the objective function and nonlinear constraint.
From (32), it is clear that the linear system that arises at each stage of each time step
is the same for each functional; the only difference is the right-hand side, which
presents an opportunity to use some fast multiple right-hand side solver [8, 45];
however, this was not done in this work.

The DG-ALE scheme introduced in Section 2 is used for the spatial discretization
of the system of conservation laws with polynomial order p = 3 (for both
the geometry and solution representation) and a diagonally implicit Runge-Kutta
scheme for the temporal discretization. The DG-ALE scheme uses the Roe flux
[41] for the inviscid numerical flux and the Compact DG flux [37] for the viscous
numerical flux. The Butcher tableau for the three-stage, third-order DIRK scheme
considered in this work is given in Table 2. Since the present study looks to find
the energetically optimal flapping motion subject to a constraint on the thrust,
the quantities of interest for the optimization problem are the average work done
on the fluid by the wing, W (U , μ), and thrust, Tx(U , μ), over one flapping
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Fig. 8 Snapshots of a slice of the volumetric mesh in the X1 − X2 plane corresponding to the
flapping motion in (47) with μ1 = μ4 = μ7 = μ9 = 0, μ3 = −μ6 = −π/3, μ2 = 60◦,
μ5 = −μ8 = −25◦. The top left figure corresponds to the curved mesh with no other deformation
applied, i.e., x = φ(X). The remaining figures correspond to snapshots (top to bottom, left to
right) taken at equally spaced time increments during the second period that correspond to times
t = 5.0, 6.0, 7.0, 8.0, 9.0

Table 2 Butcher tableau for 3-stage, 3rd order DIRK scheme [1] α = 0.435866521508459, γ =
− 6α2−16α+1

4 , ω = 6α2−20α+5
4

α α
1+α

2
1+α

2 − α α

1 γ ω α

γ ω α

period. To ensure that the transients that result from initializing the simulation
from nonperiodic flow (uniform flow in this case) do not pollute the time-averaged
quantities, two full periods of the flapping motion are simulated and the quantities
are averaged over only the final period. Therefore, the time-averaged quantities are
defined as

W (U ,μ) = − 1

T

ˆ 2T

T

ˆ
Γ

f (U ,μ) · ẋ dS dt

Tx(U ,μ) = − 1

T

ˆ 2T

T

ˆ
Γ

f (U ,μ) · e1 dS dt

(49)

where Γ is the surface of the wing, f ∈ R
3 is the force imparted by the fluid on the

body, ei ∈ R
3 is the ith canonical basis vector, and ẋ is the velocity of each point
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on Γ . The negative sign in the definition of the thrust is required since the flow is in
the +X1-direction and, therefore, a positive thrust is directed in the −X1-direction.

The initialization and integration strategy described is a commonly used and
crude approximation to the ideal situation of initializing the simulation with the
state that will induce a time-periodic flow, which will ensure that the simulation is
completely free of unphysical initial transients. A method to initialize a simulation
with this state was introduced in [64] as well as the corresponding adjoint method
to allow for optimization under a time-periodicity constraint.

Finally, let the fully discrete, high-order approximation of the integrated quan-
tities of interest (DG in space, DIRK in time) in (25) be denoted with the
corresponding Roman symbol, e.g., W(u(0), . . . ,u(Nt ), k

(n)
1 , . . . , k(n)

s ,μ) is the
fully discrete approximation of W (U ,μ) and similarly for Tx . Then, the fully
discrete optimization problem of interest takes the form

minimize
u(0), ..., u(Nt )∈RNu ,

k
(1)
1 , ..., k

(Nt )
s ∈RNu ,

μ∈RNμ

W(u(0), . . . , u(Nt ), k
(1)
1 , . . . , k(Nt )

s , μ)

subject to Tx(u
(0), . . . , u(Nt ), k

(1)
1 , . . . , k(Nt )

s , μ) ≥ T̄x

u(0) = u0

u(n) = u(n−1) +
s∑

i=1

bik
(n)
i

Mk
(n)
i = Δtnr

(
u
(n)
i , μ, tn−1 + ciΔtn

)
,

(50)

where T̄x is a lower bound on the thrust. In this work, T̄x = 0 is taken to ensure that
the flapping motion generates sufficient thrust to overcome the induced drag on the
wing. In this section, the parameters μ1 = μ4 = μ7 = 0 and μ9 = π/2 are frozen,
which leads to a 5-parameter optimization problem in the all the amplitudes (μ2,
μ5, μ8) and pitch and sweep phases (μ3, μ6).

The optimization solver used in this work is IPOPT [52], a nonlinearly con-
strained interior point method. Figure 9 contains the trajectory of α, β, θ that define
initial guess and solution of the optimization problem in (50). The initial guess for
the optimization problem is a pure flapping motion, i.e., α(μ0, t) = β(μ0, t) = 0.
In general, a quality initial guess is important since the solution of non-convex
optimization problems, such as this one, is dependent on the starting point. In
a practical design setting, the goal is to improve an existing or baseline design,
which will usually constitute a reasonable starting guess for the optimizer. Another
strategy for generating reasonable initial guesses is to perform homotopy on the
thrust constraint. The optimal solution increases the flapping amplitude from 15◦
to 32.1◦, increases the pitch amplitude from 0◦ to 31.3◦, and only incorporates a
negligible amount of dynamic sweeping (0.02◦). The optimal phase angle between
the flapping and pitch motions is determined to be 87.1◦.
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Fig. 9 Trajectories of α(t), β(t), and θ(t), in degrees, at the initial guess ( ) and solution ( )
of the optimization problem in (50)

The instantaneous quantities of interest for the nominal motion and solution
of (50) are included in Figure 10. It is clear that the optimal motion requires more
work than the nominal motion to overcome the induced drag on the wing and satisfy
the thrust constraint.

Figure 11 shows the convergence of the integrated quantities of interest with
iterations in the optimization solver. It can be seen that, initially, the thrust constraint
is violated and after only 2 optimization iterations, the flapping motion has become
sufficient to overcome the induced drag and satisfy the thrust constraint, at the
cost of additional energy that must be input to the system. After 10 iterations, the
thrust constraint is satisfied and reduction of the work has essentially ceased. At the
optimal solution, the thrust constraint is active and satisfied to 9 digits of accuracy.

The trajectory of the wing and isosurfaces of the surrounding flow are shown
in Figure 12 (nominal) and Figure 13 (optimal). The flow around the nominal
trajectory is fairly benign in that there is little flow separation, does not require
much energy, and the generated thrust is not sufficient to overcome the induced
drag. In contrast, the optimal trajectory flaps “harder” (larger flapping and pitching
amplitudes) in order to generate sufficient thrust to satisfy the constraint. The result
is more separation, even though the additional pitching helps streamline the flow,
and more required energy.
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Fig. 11 Convergence of quantities of interest, W and Tx , with optimization iteration. Each
iteration requires a primal and adjoint flow computation to compute the quantities of interest and
their gradients, respectively

6 Conclusion

This work presents a framework for using high-order numerical discretizations
to solve optimization problems constrained by deforming domain conservation
laws and demonstrates its potential on the large-scale application of determining
energetically optimal flapping motions of a three-dimensional wing. The high-
order numerical method employs a discontinuous Galerkin spatial discretization
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Fig. 12 Visualization of the flow field around wing with flapping motion corresponding to the
initial guess for the optimization problem in (50). The color shows the pressure field on the wing
surface as well as on an isosurface of the streamwise vorticity. Snapshots (top to bottom, left to
right) taken at equally spaced time increments during the second period that correspond to times
t = 5.0, 5.83, 6.67, 7.5, 8.33, 9.17

and diagonally implicit Runge-Kutta temporal discretization for both the ALE-
transformed conservation law and its quantities of interest. The fully discrete adjoint
method was used to compute gradients of quantities of interest to ensure that they
are discretely consistent and the cost of computing them only scales weakly with the
number of parameters. This framework only required 12 iterations when coupled
with the nonlinear optimizer IPOPT to solve the relevant problem of finding a
thrust-neutral flapping trajectory that minimizes the energy required to complete
the motion.

The framework presented is sufficiently general to handle a number of relevant
generalizations such as shape optimization of the wing cross-section and planform,
more general spline-based parametrizations, and the inclusion of other aerodynamic
constraints. The ALE framework is capable of handling completely general domain
deformations, which includes static changes to the shape of the wing in a shape-
only or combined shape and trajectory optimization setting. A more general
parametrization can also easily be included by using a spline-based parametrization
of the flapping angles in (48) and the expanded design space would likely lead to
better designs. Finally, other aerodynamic constraints can easily be incorporated in
the optimization problem in (50) at the cost of an additional adjoint solve for each
additional constraint (that depends on the PDE solution).
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Fig. 13 Visualization of the flow field around wing with flapping motion corresponding to the
solution of the optimization problem in (50). The color shows the pressure field on the wing surface
as well as on an isosurface of the streamwise vorticity. Snapshots (top to bottom, left to right)
taken at equally spaced time increments during the second period that correspond to times t =
5.0, 5.83, 6.67, 7.5, 8.33, 9.17

While this work is one step toward solving optimization problems of engineering
and scientific relevance, further development is required to have an impact in
practice. This work has considered a pure fluid problem and treats the structure
as rigid, which is not realistic, particularly in the regime of MAVs. Additionally,
as noted in [22, 42, 43, 47, 48, 65], more efficient flapping motions may be
realized from a flexible structure. As such, extending the high-order discretization
and corresponding adjoint method to fluid-structure interaction problems or, more
generally, multiphysics problems coupled along an interface, will be the subject of
future work. Furthermore, for larger scale applications the cost of repeatedly solving
the conservation law becomes a challenge and calls for more efficient solvers such
as those developed in [36] or a globally convergent optimization framework that
incorporates fast and reliable adaptive reduced-order models [59, 60].
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Optimization of a Fractional Differential
Equation

Enrique Otárola and Abner J. Salgado

Abstract We consider a linear quadratic optimization problem where the state is
governed by a fractional ordinary differential equation. We also consider control
constraints. We show existence and uniqueness of an optimal state–control pair
and propose a method to approximate it. Due to the low regularity of the solution
to the state equation, rates of convergence cannot be proved unless problematic
assumptions are made. Instead, we appeal to the theory of Γ -convergence to show
the convergence of our scheme.

1 Introduction

In recent years, a lot of attention has been paid to the study of nonlocal problems,
of which fractional differential equations represent an instance. This is motivated
by the fact that fractional derivatives are better suited to capturing long-range
interactions, as well as memory effects. For instance, they have been used to describe
anomalous transport phenomena [9, 10], option pricing [6], porous media flow [5],
and viscoelastic materials [8], to name a few. It is only natural then, from the purely
mathematical as well as the practical points of view, to try to optimize systems that
are governed by these equations. In previous work [4], we dealt with a constrained
optimization problem where the state is governed by a differential equation that
presented nonlocal features in time as well as in space. Throughout the analysis
presented in [4], the nonlocalities in time and space were intertwined and this
required to develop several tools to analyze the nonlocal operator in space that
are, in principle, not relevant to the nonlocality in time. It is thus our feeling that
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the extensive technicalities that ensued in the analysis of [4] obscured many of the
unique features that optimization of fractional differential equations contains; for
instance, the lack of time regularity regardless of the smoothness of data. For this
reason, our main objective in this note is to present a detailed study for the case
where the state is governed by a time-fractional ordinary differential equation.

Let us be precise in our considerations. Given m, n ≥ 1, a final time T > 0, a
desired state ud ∈ L2(0, T ;Rm), and a regularization parameter μ > 0, we define
the cost functional as

J (u, z) = 1

2

ˆ T

0

(
|C u− ud |2m + μ|z|2n

)
dt, (1)

where we denote the Euclidean norm in R
s by | · |s and C ∈M

m×n; Mm×n denotes
the set of all m–by–n matrices. The variable u is called the state, while the variable
z is the control. The control and state are related by the so-called state equation,
which we now describe. Given an initial condition ψ ∈ R

n, a forcing function f :
(0, T ] → R

n, a symmetric positive definite matrix A ∈ M
n×n, the state equation

reads

dγt u+A u = f + z, t ∈ (0, T ], u(0) = ψ. (2)

Here, γ ∈ (0, 1) and dγt denotes the so-called left-sided Caputo fractional
derivative of order γ , which is defined by [19, 28]

dγt v(t) =
1

Γ (1− γ )

ˆ t

0

1

(t − ζ )γ
v̇(ζ ) dζ, (3)

where by v̇ we denote the usual derivative and Γ is the Gamma function. We
must immediately remark that, in addition to (3), there are other, not equivalent,
definitions of fractional derivatives: Riemann–Liouville, Grünwald-Letnikov, and
Marchaud derivatives. In this work, we shall focus on the Caputo derivatives since
they allow for a standard initial condition in (2); a highly desirable feature in
applications; see, for instance, the discussion in [14, Section E.4]. For further
motivation and applications, we refer the reader to [11, 14].

The problem we shall be concerned with is to find (ŭ, z̆) such that

J (ŭ, z̆) = min J (u, z) (4)

subject to the state equation (2) and the control constraints

a 3 z 3 b. (5)

Here a, b ∈ R
n which we assume satisfy that a 3 b. The relation v 3 w means

that, for all i = 1, . . . , n, we have vi ≤ wi .
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To our knowledge, the first work that was devoted to the study of (4) is [2]
where a formal Lagrangian formulation is discussed and optimality conditions are
formally derived. The author of this work also presents a numerical scheme based
on shifted Legendre polynomials. However, there is no analysis of the optimality
conditions or numerical scheme. Other discretization schemes using finite elements
[3], rational approximations [30], spectral methods [24, 32, 33], or other techniques
have been considered. Most of these works do not provide a rigorous justification
or analysis of their schemes, and the ones that do obtain error estimates under
rather strong regularity assumptions of the state variable; namely, they require that
ü ∈ L∞(0, T ;Rn) which is rather problematic; see Theorem 2 below. In contrast,
in this work, we carefully describe the regularity properties of the state equation
and on their basis provide convergence (without rates) of the numerical scheme we
propose.

Throughout our discussion, we will follow the standard notation and terminology.
Nonstandard notation will be introduced in the course of our exposition. The rest
of this work is organized as follows: Basic facts about fractional derivatives and
integrals are presented in Section 1.1. We study the state equation in Section 2
where we construct the solution to problem (2), study its regularity, and present
a somewhat new point of view for a classical scheme—the so-called L1 scheme.
More importantly, we use the right regularity to obtain rates of convergence; an
issue that has been largely ignored in the literature. With these ingredients at
hand we proceed, in Section 3, to analyze the optimization problem (4); we show
existence and uniqueness of an optimal state–control pair and propose a scheme
to approximate it. We employ a piecewise linear (in time) approximation of the
state and a piecewise constant approximation of the control. While not completely
necessary for the analysis, we identify the discrete adjoint problem and use it to
derive discrete optimality conditions. Finally, we show the strong convergence of
the discrete optimal control to the continuous one. Owing to the reduced regularity
of the solution to the state equation, this convergence, however, cannot have rates.

1.1 Fractional Derivatives and Integrals

We begin by recalling some fundamental facts about fractional derivatives and
integrals. The left-sided Caputo fractional derivative is defined in (3). The right-
sided Caputo fractional derivative of order γ is given by [19, 28]

dγT−t v(t) = −
1

Γ (1− γ )

ˆ T

t

1

(ζ − t)γ
v̇(ζ ) dζ. (6)

For v ∈ L1(0, T ), the left Riemann–Liouville fractional integral of order σ ∈
(0, 1) is defined by
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Iσt [v](t) =
1

Γ (σ)

ˆ t

0

1

(t − ζ )1−σ v(ζ ) dζ ; (7)

see [28, Section 2]. Young’s inequality for convolutions immediately yields that, for
p > 1, Iσt is a continuous operator from Lp(0, T ) into itself. More importantly, a
result by Flett [12] shows that

v ∈ L logL(0, T ) �⇒ Iσt [v] ∈ L
1

1−σ (0, T ). (8)

We refer the reader to [20] for the definition of the Orlicz space L logL(0, T ). This
observation will be very important in subsequent developments. Notice finally that
if v ∈ W 1

1 (0, T ), then we have that dγt v(t) = I
1−γ
t [v̇](t).

The generalized Mittag-Leffler function with parameters α > 0 and β ∈ R is
defined by

Eα,β(z) =
∞∑
k=0

zk

Γ (αk + β)
, z ∈ C. (9)

We refer the reader to [14] for an account of the principal properties of the Mittag-
Leffler function.

2 The State Equation

In this section, we construct the solution to (2), thus showing its existence and
uniqueness. This shall be of uttermost importance not only when showing the
existence and uniqueness of solutions to our optimization problem, but when we
deal with the discretization, as we will study the smoothness of u. To shorten
notation, in this section we set

g = f + z,

where f is the forcing term and z is the control in (2).

2.1 Solution Representation and Regularity

Let us now construct the solution to (2) and review its main properties. We will adapt
the arguments of [26] to our setting. Since the matrix A is symmetric and positive
definite, it is orthogonally diagonalizable; meaning that there are {λ!, ξ!}n!=1 ⊂
R+ × R

n such that
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A ξ! = λ!ξ!, ξ!1 · ξ!2 = δ!1,!2 .

This, in particular, implies that the vectors {ξ!}n!=1 form an orthonormal basis of Rn.
Moreover, for any vector v ∈ R

n, we can define |v|2A = v ·A v, which turns out to
be a norm that satisfies

λ1|v|2n ≤ |v|2A ≤ λn|v|2n, ∀v ∈ R
n. (10)

We set

‖v‖2
L2

A (0,T ;Rn)
=
ˆ T

0
|v|2A dt. (11)

With these properties of the matrix A at hand, we propose the following solution
ansatz:

u(t) =
n∑

!=1

u!(t)ξ!, u!(t) = u(t) · ξ!, (12)

where the coefficients u!(t) satisfy

dγt u!(t)+ λ!u!(t) = g!(t), t ∈ (0, T ], u!(0) = ψ!, (13)

for ! ∈ {1, · · · , n}. Here, g!(t) = g(t) · ξ! and ψ! = ψ · ξ!. The importance of
this orthogonal decomposition lies in the fact that we have reduced problem (2)
to a decoupled system of equations. The theory of fractional ordinary differential
equations [28] gives, for ! ∈ {1, · · · , n}, a unique function u! satisfying problem
(13). In addition, standard considerations, which formally entail taking the Laplace
transform of (13), yield that

u!(t) = Eγ,1(−λ!tγ )ψ! +
ˆ t

0
(t − ζ )γ−1Eγ,γ (−λ!(t − ζ )γ )g!(ζ ) dζ. (14)

We refer the reader to [25–27] for details. This representation shall prove rather
useful to describe the existence, uniqueness, and regularity of u. To concisely state
it, let us define

U = {w ∈ L2(0, T ;Rn) : dγt w ∈ L2(0, T ;Rn)}. (15)

With this notation, a specialization of the results of [26] to the substantially simpler
case when A is a positive definite matrix (and thus the spaces are finite dimensional)
yields the following result.

Theorem 1 (Existence and Uniqueness) Assume that g ∈ L2(0, T ;Rn). Problem
(2) has a unique solution u ∈ U, given by (12) and (14). Moreover, the following a
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priori estimate holds

I
1−γ
t

[
|u|2n

]
(T )+ ‖u‖2

L2
A (0,T ;Rn)

� Λ2
γ (ψ, g), (16)

where, for v ∈ R
n and h ∈ L2(0, T ;Rn) we have

Λ2
γ (v, h) = I

1−γ
t

[
|v|2n
]
(T )+ ‖h‖2

L2(0,T ;Rn)
, (17)

where we implicitly identified v with the constant function [0, T ] ) t 
→ v ∈ R
n. In

this estimate, the hidden constant is independent of ψ , g, and u.

Having obtained conditions that guarantee the existence and uniqueness for (2)
we now study its regularity. This is important since, as it is well known, smoothness
and rate of approximation go hand in hand. This is exactly the content of direct
and converse theorems in approximation theory [1, 17]. Consequently, any rigorous
study of an approximation scheme must be concerned with the regularity of the
solution. This, we believe, is an issue that for this problem has been largely ignored
in the literature since, essentially, the solution to (2) is not smooth. Let us now follow
[25, 26] and elaborate on this matter. The essence of the issue is already present in
the case n = 1 so that (14) is the solution. Let us, to further simplify the discussion,
set A = 1, g ≡ 0, and ψ = 1. In this case, the solution verifies the following
asymptotic estimate:

u(t) = Eγ,1(−tγ ) = 1− 1

Γ (1+ γ )
tγ + O(t2γ ), t ↓ 0.

If this is the case we then expect that, as t ↓ 0, u̇(t) ≈ tγ−1 and ü(t) ≈ tγ−2.
Notice that, since γ ∈ (0, 1), the function ω1(t) = tγ−1 belongs to L logL(0, T )
but ω1 /∈ L1+ε(0, T ) for any ε > γ (1+ γ )−1. Similarly, the function ω2(t) = tγ−2

is not Lebesgue integrable, but

ˆ T

0
tσ |ω2(t)|2 dt =

ˆ T

0
tσ+2(γ−2) dt <∞⇒ σ > 3− 2γ,

which implies that ω2 belongs to the weighted Lebesgue space L2(tσ ; 0, T ), where
σ > 3 − 2γ > 1. The considerations given above tell us that we should expect the
following:

u̇ ∈ L logL(0, T ;Rn) ü ∈ L2(tσ ; 0, T ;Rn), σ > 3− 2γ. (18)

The justification of this heuristic is the content of the next result. For a proof, we
refer the reader to [26, Theorem 8].
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Theorem 2 (Regularity) Assume that g ∈ H 2(0, T ;Rn). Then u, the solution to
(2), satisfies (18) and, for t ∈ (0, T ], we have the following asymptotic estimate:

(ˆ T

0
ζ σ |ü(ζ )|2n dζ

)1/2

+ t1−γ
∣∣∣∣u̇(t)− 1

t
(u(t)− ψ)

∣∣∣∣
n

� |ψ |n + ‖g‖H 2(0,T ;Rn),

where σ > 3−2γ . The hidden constant is independent of t but blows up as γ ↓ 0+.

Remark 1 (Extensions) Under the correct framework, the conclusion of Theorem 2
can be extended to the case where A is an operator acting on a Hilbert space H
and Equation (2) is understood in a Gelfand triple V ↪→ H ↪→ V ′; see [26] for
details.

2.2 Discretization of the State Equation

Now that we have studied the state equation and the regularity properties of its
solution u, we proceed to discretize it. To do so, we denote by K ∈ N the number
of time steps. We define the (uniform) time step τ = T/K > 0 and set tk = kτ for
k = 0, . . . ,K . We denote the time partition by T = {tk}Kk=0. We define the space
of continuous and piecewise linear, over the partition T , functions as follows:

U(T ) = {W ∈ C([0, T ];Rn) : W |(tk,tk+1] ∈ P1(R
n), k = 0, . . . ,K − 1

}
.

(19)
We also define the space of piecewise constant functions

Z(T ) = {W ∈ BV (0, T ;Rn) : W |(tk,tk+1] ∈ P0(R
n), k = 0, . . . ,K − 1

}
,

(20)
and the L2(0, T ;Rn)-orthogonal projection onto Z(T ), that is, the operator ΠT :
L2(0, T ;Rn)→ Z(T ) defined by

ˆ T

0
(r −ΠT r) · Zτ dt = 0 ∀Zτ ∈ Z(T ).

We remark that ΠT satisfies

‖r −ΠT r‖L2(0,T ;Rn) � τ‖ṙ‖L2(0,T ;Rn), (21)

where the hidden constant is independent of r and τ .
For a function φ ∈ BV (0, T ;Rn) we set φk = limε↑0 φ(tk − ε) and φτ =

{φk}Kk=0, which can be uniquely identified with either an element of U(T ) or Z(T )

by the procedures we describe now. To φτ we associate φ̄τ ∈ Z(T ) defined by

φ̄τ (0) = φ0, φ̄τ |(tk,tk+1](t) = φk+1, k = 0, . . . ,K − 1. (22)
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We also associate φ̂τ ∈ U(T ) via

φ̂τ (0) = φ0, φ̂τ |(tk,tk+1](t) =
tk+1 − t

τ
φk + t − tk

τ
φk+1, k = 0, . . . ,K − 1.

(23)

Notice that

‖φ̂τ‖L∞(0,T ;Rn) = ‖φ̄τ‖L∞(0,T ;Rn) = ‖φτ‖!∞(Rn)

and that

‖φ̄τ‖2
L2(0,T ;Rn)

= τ

K∑
k=1

|φk|2n.

Finally, for a sequence φτ we also define, for k = 0, . . . ,K − 1,

dφk+1 = τ
˙̂
φτ |(tk,tk+1] = φk+1 − φk, (24)

which can be understood as a mapping d : U(T )→ Z(T ).
Having introduced this notation, we propose to discretize (2) by a collocation

method over U(T ). In other words, we seek for Û τ ∈ U(T ) such that

Û τ (0) = ψ, (25)

and, for every k = 0, . . .K − 1, it satisfies

dγt Û
τ (tk+1)+A Û τ (tk+1) = ΠT g(tk+1). (26)

Remark 2 (Derivation of the Scheme) In the literature, (26) is commonly referred
to as the L1-scheme [16, 21, 22, 29], even though it is not presented this way.
Nevertheless, let us show that this is equivalent to the methods presented in the
literature. To see the relation it is sufficient to compute, for a function Ŵ τ ∈ U(T ),
the value of dγt Ŵ

τ (tk+1). By definitions (3), (23), and (24), we obtain that

dγt Ŵ
τ (tk+1) = 1

Γ (1− γ )

ˆ tk+1

0

1

(tk+1 − ζ )γ
˙̂
W τ (ζ ) dζ

= τ−1

Γ (1− γ )

k∑
j=0

dWj+1
ˆ tj+1

tj

1

(tk+1 − ζ )γ
dζ =

k∑
j=0

akj dW
j+1,

(27)

where the coefficients akj satisfy
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akj =
τ−1

Γ (1− γ )

ˆ tj+1

tj

1

(tk+1 − ζ )γ
dζ

= τ−1

Γ (2− γ )

[
(tk+1 − tj )

1−γ − (tk+1 − tj+1)
1−γ ]

= τ−γ

Γ (2− γ )

[
(k + 1− j)1−γ − (k − j)1−γ ] .

(28)

Here, in the last step, we used that the time step is uniform and of size τ . The fact
that the time step is uniform also implies that

akk−j =
τ−γ

Γ (2− γ )

[
(j + 1)1−γ − j1−γ ] = a

k+j
k ,

so that, after the change of indices m = k − j , we obtain

dγt Ŵ
τ (tk+1) = τ−γ

Γ (2− γ )

k∑
m=0

bmdW
k+1−m

= τ−γ

Γ (2− γ )

(
b0W

k+1 +
k∑

m=1

(bm − bm−1)W
k+1−m − bkW

0

)
,

(29)

with bm = (m+1)1−γ −m1−γ . The expression above is what is commonly referred
to as the L1 scheme.

2.2.1 Stability

Let us discuss the stability of scheme (26) as originally detailed in [26, Section
3.2.2]. We begin by exploring the properties of the coefficients akj .

Lemma 1 (Properties of akj ) Assume that the time step is given by τ > 0. For

every k = 0, . . . ,K − 1 and j = 0, . . . , k, the coefficients akj , defined in (28),
satisfy

0 < akj , akj < akj+1, ak+1
j < akj .

Moreover akk = τ−γ /Γ (2− γ ).

Proof The positivity of the coefficients follows from the fact that, for j = 0, . . . , k
and ζ ∈ (tj , tj+1), we have that tk+1 − ζ > 0. We now show that the coefficients
are increasing in the lower index. In fact, an application of the mean value theorem
yields
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akj =
1

Γ (1− γ )

 tj+1

tj

dζ

(tk+1 − ζ )γ
= 1

Γ (1− γ )

1

(tk+1 − ζj )γ

for some ζj ∈ (tj , tj+1). Since the function ζ 
→ (tk+1 − ζ )−γ is increasing for
ζ < tk+1, we conclude that akj < akj+1. To show that the coefficients are decreasing
in the upper index, we note that

tk+1 > tk �⇒ 1

(tk+1 − ζ )γ
<

1

(tk − ζ )γ
,

so that ak+1
j < akj . Finally, we note that

akk =
1

Γ (1− γ )

 tk+1

tk

dζ

(tk+1 − ζ )γ
= τ−γ

Γ (2− γ )
.

This concludes the proof. ��
With the results of Lemma 1 at hand, we can now show stability of the scheme.

Theorem 3 (Stability) For every K ∈ N, the scheme (26) is unconditionally
stable and satisfies

I
1−γ
t

[
|Ū τ |2n

]
(T )+ ‖Ū τ‖2

L2
A (0,T ;Rn)

� Λ2
γ (ψ, g),

where the hidden constant is independent of ψ , g, Ū τ and K ; and Λγ is defined in
(17).

Proof Multiply (26), by 2Uk+1 to obtain

2 dγt Û
τ (tk+1) · Uk+1 + 2|Uk+1|2A ≤ 2|ΠT gk+1|n|Uk+1|n, (30)

where on the right-hand side we applied the Cauchy–Schwartz inequality; | · |A is
defined in Section 2.1. We thus use (10), together with Young’s inequality, to say
that

2 dγt Û
τ (tk+1) · Uk+1 + |Uk+1|2A ≤ λ−1

1 |ΠT gk+1|2n.

We now invoke (27) and deduce that

dγt Û
τ (tk+1) · Uk+1 = akk |Uk+1|2n +

k−1∑
j=0

akjU
j+1 · Uk+1 −

k∑
j=1

akjU
j · Uk+1

− ak0U
0 · Uk+1

= akk |Uk+1|2n +
k∑

j=1

(akj−1 − akj )U
j · Uk+1 − ak0U

0 · Uk+1.
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With this at hand (30) reduces to

2akk |Uk+1|2n + |Uk+1|2A

≤ λ−1
1 |ΠT gk+1|2n + 2

k∑
j=1

(akj − akj−1)U
j · Uk+1 + 2ak0U

0 · Uk+1.

Since, as stated in Lemma 1, we have that akj − akj−1 > 0 we estimate

2
k∑

j=1

(akj − akj−1)U
j · Uk+1 ≤

k∑
j=1

(akj − akj−1)(|Uj |2n + |Uk+1|2n)

=
k∑

j=1

(akj − akj−1)|Uj |2n + (akk − ak0)|Uk+1|2n,

which can be used to obtain that

akk |Uk+1|2n+
k∑

j=1

akj−1|Uj |2n+|Uk+1|2A ≤ λ−1
1 |ΠT gk+1|2n+ak0 |ψ |2n+

k∑
j=1

akj |Uj |2n.
(31)

Notice now that, since akj are defined as in (28) and bm = (m+ 1)1−γ −m1−γ ,
for every j = 0, . . . , k we have

akj =
τ−γ

Γ (2− γ )
bk−j .

Thus, the change of indices m = k + 1− j on the left-hand side and l = k − j on
the right-hand side of (31), respectively, yields

τ−γ

Γ (2− γ )

k∑
m=0

bm|Uk+1−m|2n + |Uk+1|2A ≤ λ−1
1 |ΠT gk+1|2n + ak0 |ψ |2n

+ τ−γ

Γ (2− γ )

k−1∑
l=0

bl |Uk−l |2n,

where the sum on the right-hand side vanishes for k = 0. Multiply by τ and add
over k to obtain

τ 1−γ

Γ (2− γ )

K −1∑
k=0

bk|UK −k|2n + ‖Ū τ‖2
L2

A (0,T ;Rn)
≤ λ−1

1 ‖ΠT g‖2
L2(0,T ;Rn)

+τ |ψ |2n
K −1∑
k=0

ak0, (32)
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where ‖Ū τ‖L2
A (0,T ;Rn) is defined by (11). Notice now that, since the time step is

uniform,

τ

K −1∑
k=0

ak0 =
τ 1−γ

Γ (2− γ )

K −1∑
k=0

bk = T 1−γ

Γ (2− γ )
= I

1−γ
t [1](T ). (33)

We now analyze the first term on the left-hand side of (32): Changing indices via
l + 1 = K − k gives

τ 1−γ

Γ (2− γ )

K −1∑
k=0

bk|UK −k|2n =
τ 1−γ

Γ (2− γ )

K −1∑
l=0

bK −l−1|Ul+1|2n

=
K −1∑
l=0

τaK −1
l |Ul+1|2n

= 1

Γ (1− γ )

K −1∑
l=0

ˆ tl+1

tl

1

(tK − ζ )γ
|Ū τ (ζ )|2n dζ

= I
1−γ
t

[
|Ū τ |2n

]
(T ).

(34)

Inserting (33) and (34) in (32), and using ΠT that is a projection, yields the result.
��

2.2.2 Consistency and Error Estimates

Let us now discuss the consistency of scheme (26). This will allow us to obtain error
estimates. Clearly, it suffices to control the difference dγt (u − ûτ ). The following
formal estimate has been shown in many references; see, for instance, [21, 22]. The
proof, essentially, is a Taylor expansion argument.

Proposition 1 (Consistency for Smooth Functions) Let w ∈ C2([0, T ];Rn), then

‖ dγt (w − ŵτ )‖L∞(0,T ;Rn) � τ 2−γ ,

where the hidden constant depends on ‖w‖C2([0,T ];Rn) but is independent of τ .

We must immediately point out that this estimate cannot be used in the analysis
of (2). The reason behind this lies in Theorem 2 which shows that, in general,
the solution to the state equation is not twice continuously differentiable. For this
reason, in [26] a new consistency estimate, which takes into account the correct
regularity of the solution, has been developed. This is the content of the next result.
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Theorem 4 (Consistency) Let γ ∈ (0, 1) and u solve (2). In the setting of
Theorem 2 we have that, for any θ < 1

2 ,

‖ dγt (u− ûτ )‖L2(0,T ;Rn) � τ θ
(|ψ |n + ‖g‖H 2(0,T ;Rn)

)
,

where the hidden constant is independent of τ but blows up as θ ↑ 1
2 . Here θ is

independent of γ .

For a proof of this result, we refer the reader to [26, Section 3.2.1]. We just
comment that it consists of a combination of the fine regularity results of Theorem 2,
weighted estimates, and the mapping properties of the fractional integral operator
I

1−γ
t detailed in Section 1.1. Let us, however, show how from this we obtain an

error estimate.

Corollary 1 (Error Estimates) Let u solve (2) and U τ solve (26). In the setting of
Theorem 2 we have that, for any θ < 1

2 ,

I
1−γ
t

[
|ūτ − Ū τ |2n

]
(T )+ ‖ūτ − Ū τ‖2

L2
A (0,T ;Rn)

� τ 2θ (|ψ |n + ‖g‖H 2(0,T ;Rn)

)2
,

where the hidden constant is independent of τ and the data but blows up as θ ↑ 1
2 .

Proof Define eτ = uτ − U τ . Subtracting (2) and (25)–(26) at t = tk+1 yields
êτ (0) = 0 and, for k = 0, . . . ,K − 1

dγt ê
τ (tk+1)+A êτ (tk+1) = dγt (û

τ − u)(tk+1)+ (g −ΠT g)(tk+1).

Since ēτ (0) = 0, the stability estimate of Theorem 3 then yields

I
1−γ
t

[
|ēτ |2n

]
(T )+‖ēτ‖2

L2
A (0,T ;Rn)

�‖ dγt (u−ûτ )‖2
L2(0,T ;Rn)

+‖g−ΠT g‖2
L2(0,T ;Rn)

.

The consistency estimate of Theorem 4 gives a control of the first term. Finally,
owing to the regularity of g, we have that ‖g−ΠT g‖L2(0,T ;Rn) � τ ; see (21). This
implies the result. ��

2.3 Numerical Illustration

It is natural to wonder whether the reduced rate of convergence given in Corollary 1
is nothing but a consequence of the methods of proof. Here we show, by means of
some computational examples, that while the rate τ θ might not be sharp it is not
possible to obtain the rate of convergence suggested by Proposition 1.
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Fig. 1 Experimental rates of convergence for the solution of (2) using (25)–(26). We have set
n = 1, T = 1, λ1 = 1

2 , ψ = 1 and g = 0. The figures show the computed rates of convergence
with respect to the time step for γ = 0.3 (left), γ = 0.5 (middle), and γ = 0.8 (right). We observe
that the rate of convergence τ 2−γ is never attained

Let us set n = 1, T = 1, λ1 = 1
2 , ψ = 1 and g = 0. From (14) we then obtain

that the solution to the state equation (2) is given by

u(t) = Eγ,1

(
−1

2
tγ
)
.

We implemented, in an in-house code, the scheme (25)–(26) and used it to
approximate this function. We measured the L2(0, T ) norm of the error, where we
implemented the Mittag-Leffler function following [15]. Integration was carried out
using a composite Gaussian rule with three (3) nodes; increasing the number of
nodes produced no significant difference in the results.

The rates of convergence for various values of γ ∈ (0, 1) are presented
in Figure 1. As we can see, Corollary 1 is not sharp, but consistent with the
experimental orders. More importantly, the rates suggested by Proposition 1 are
not obtained. In fact, the experimental rate of convergence seems to be O(τ κ) <

O(τ 2−γ ) with κ = min{1, γ + 1
2 }. However, the proof of such an estimate eludes

us at the moment.

3 The Optimization Problem

Having studied the state equation, we can proceed with the study of the constrained
optimization problem (4)–(5). We will show existence and uniqueness of a solution,
along with a numerical technique to approximate it. We will also discuss the
convergence properties of the proposed approximation scheme.

3.1 Existence and Uniqueness

To precisely state the constrained optimization problem, we begin by defining the
set of admissible controls
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Zad =
{
ζ ∈ L2(0, T ;Rn) : a 3 ζ(t) 3 b, a.e. t ∈ (0, T )

}
, (35)

which is, under the assumption that a 3 b, a nonempty, closed, convex, and bounded
subset of L2(0, T ;Rn).

Now, as the conclusion of Theorem 1 asserts, for any z ∈ L2(0, T ;Rn) there is
a unique u = u(z) ∈ U that solves (2). This uniquely defines an affine continuous
mapping S : L2(0, T ;Rn) → U ⊂ L2(0, T ;Rn) by the rule u = Sz, where u

solves (2). With these tools at hand, we can show the existence and uniqueness of
a state–control pair, that is, a pair (ŭ, z̆) ∈ U × Zad such that ŭ = Sz̆ and satisfies
(4)–(5). The proof of the following result is standard and we include it just for the
sake of completeness.

Theorem 5 (Existence and Uniqueness) The optimization problem: Find (u, z)

such that satisfies (4) subject to (2) and (5) has a unique solution (ŭ, z̆) ∈ U×Zad.

Proof The control to state operator S allows us to introduce the so-called reduced
cost functional:

J (z) := J (Sz, z) = 1

2

ˆ T

0

(
|CSz− ud |2m + μ|z|2n

)
dt,

and to equivalently state the problem as: minimize J over Zad. Since μ > 0 and
S is affine the reduced cost J is strictly convex. Owing to the continuity of S, we
have that J is continuous as well. Existence and uniqueness then follow from the
direct method of calculus of variations [7, 23]. ��

3.2 Discretization

We now proceed to discretize the optimization problem (4)–(5). We will do so
by a piecewise constant approximation of the control and a piecewise linear
continuous approximation of the state. We will follow the notation of Section 2.2
and, additionally, define

Zad(T ) = Z(T ) ∩ Zad.

Once again, Zad(T ) is a nonempty, convex, and closed subset of Z(T ). Notice also
that, since a, b are time independent ΠT Zad ⊂ Zad(T ).

We also define the discrete cost functional JT : U(T )× Z(T )→ R by

JT (Û τ , Zτ ) = 1

2

ˆ T

0

(
|C Ū τ − ūτ

d |2m + μ|Zτ |2n
)

dt,

where U(T ) and Z(T ) are defined in (19) and (20), respectively. We immediately
comment that, by an abuse of notation, we defined ūτ

d ⊂ R
m as the sequence of
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values ukd =
ffl tk+1
tk

ud dt . In other words, we are modifying the cost by replacing the
desired state ud by its piecewise constant approximation ūτ

d . Additionally, we have
replaced Û τ by its piecewise constant counterpart Ū τ ∈ Z(T ). For these reasons,

JT (Û τ , Zτ ) �= J (Û τ , Zτ ).

We propose the following discretization of the state equation (2): Given Zτ ∈
Z(T ), find Û τ ∈ U(T ) such that Û τ (0) = ψ and, for all k = 0, . . . ,K − 1, we
have

dγt Û
τ (tk+1)+A Û τ (tk+1) = ΠT f (tk+1)+ Zτ (tk+1), (36)

where dγt is defined in (3) and ΠT corresponds to the L2(0, T ;Rn)-orthogonal
projection onto Z(T ). We remark that (36) is nothing but discretization (25)–(26)
of the state equation, where the variable z is already piecewise constant in time.
Since f + Zτ ∈ L2(0, T ;Rn), we can invoke Theorem 3 to conclude that problem
(36) is stable for all τ > 0.

We thus define the discrete optimization problem as follows: Find (
˘̂
U τ , Z̆τ ) ∈

U(T )× Zad(T ) such that

JT (
˘̂
U τ , Z̆τ ) = min JT (Û τ , Zτ ) (37)

subject to (36). Let us briefly comment on the existence and uniqueness of a
minimizer, which closely follows Theorem 5. Indeed, for every z ∈ L2(0, T ;Rn)

there exists a unique Û τ ∈ U(T ) that solves (36) with data ΠT z. This uniquely
defines a map ST : L2(0, T ;Rn) → U(T ), which we call the discrete control to
state map. We can then define the reduced cost as

Z(T ) ) Zτ 
→JT (Zτ ) = JT (ŜT Zτ , Zτ )

and proceed as in Theorem 5, by using the strict convexity of JT and the continuity
of the affine map ST , which follows from Theorem 3.

3.3 Discrete Optimality Conditions

Let us derive discrete optimality conditions. This is useful not only in the practical
solution of the discrete optimization problem (36)–(37), but it will help us in ana-
lyzing its convergence properties. As stated before, problem (36)–(37) is equivalent
to the following constrained optimization problem: Find Z̆τ ∈ Zad(T ) such that

JT (Z̆τ ) = min
{
JT (Zτ ) : Zτ ∈ Zad(T )

}
,
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that is, a minimization problem over a closed, bounded, and convex set. It is
standard then (since JT is convex, coercive, and differentiable) that a necessary
and sufficient condition for optimality is

DJT (Z̆τ )
[
Zτ − Z̆τ

]
≥ 0 ∀Zτ ∈ Zad(T ), (38)

where DJT (Z)[·] is the Gâteaux derivative of JT at the point Z. Let us now
rewrite and simplify the optimality condition (38) by introducing the so-called
adjoint state that, as stated in [31, Section 1.4.3], is a simple trick that is of utmost
importance in optimal control theory.

For a given Û τ ∈ U(T ) the adjoint is the function P̂ τ ∈ U(T ) such that
P̂ τ (T ) = 0 and, for all k = K − 1, . . . , 0

dγT−t P̂
τ (tk)+A P̂ τ (tk) = C ᵀ (C Ū τ (tk)− ūτ

d (tk)
)
, (39)

where dγT−t denotes the right-sided Caputo fractional derivative of order γ defined
in (6). The optimality conditions are as follows.

Theorem 6 (Optimality Conditions) The pair (
˘̂
U τ , Z̆τ ) ∈ U(T ) × Zad(T )

solves (37) if and only if ˘̂U τ = ST Z̆τ and

ˆ T

0

( ¯̆
P τ + μZ̆τ

)
·
(
Zτ − Z̆τ

)
dt ≥ 0 ∀Zτ ∈ Zad(T ), (40)

where P̆ τ ∈ U(T ) solves (39) with data ˘̂U τ .

Proof We will obtain the result by showing that (40) is nothing but a restatement of
(38). In fact, a simple calculation reveals that, for any Θτ , Ψ τ ∈ Z(T ), we have

DJT (Θτ )[Ψ τ ] =
ˆ T

0

[(
CST Θτ − ūτ

d

)
· CST Ψ τ + μΘτ · Ψ τ

]
dt.

Consequently, (38) can be equivalently rewritten as, for every Zτ ∈ Zad(T ),

ˆ T

0

[
C ᵀ
(
CST Z̆τ − ūτ

d

)
·ST (Zτ − Z̆τ )+ μZ̆τ · (Zτ − Z̆τ )

]
dt ≥ 0.

(41)

Let us focus our attention now on the first term inside the integral. Denote U τ =
ST Zτ and Ŭ τ = ST Z̆τ . Define Φτ := U τ − Ŭ τ and notice that Φ̂τ ∈ U(T )

satisfies: Φ̂τ (0) = 0 and, for every k = 0, . . . ,K − 1,

dγt Φ̂
τ (tk+1)+A Φ̂τ (tk+1) = Zτ (tk+1)− Z̆τ (tk+1),

or, in view of (22), equivalently,
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dγt Φ̂τ +A Φ̄τ = Zτ − Z̆τ .

Multiply this equation by ¯̆P τ and integrate to obtain

ˆ T

0

[
dγt Φ̂τ · ¯̆P τ +A Φ̄τ · ¯̆P τ

]
dt =

ˆ T

0

(
Zτ − Z̆τ

)
· ¯̆P τ dt.

Now, multiply (39) by Φ̄τ and integrate to obtain

ˆ T

0

[
dγT−t

ˆ̆
P τ · Φ̄τ +A ¯̆

P τ · Φ̄τ

]
dt =

ˆ T

0
C ᵀ
(
C ¯̆U τ − ūτ

d

)
· Φ̄τ dt.

Subtract these last two identities. Upon remembering the definition of Φτ , we thus
obtain

ˆ T

0

[
dγt Φ̂τ · ¯̆P τ − dγT−t

ˆ̆
P τ · Φ̄τ

]
dt

=
ˆ T

0

[(
Zτ − Z̆τ

)
· ¯̆P τ − C ᵀ

(
C ¯̆U τ − ūτ

d

)
·ST (Zτ − Z̆τ )

]
dt,

where we have used that the matrix A is symmetric. Notice that the last term in this
expression is nothing but the first term on the left-hand side of (41). In other words,
if we can show that

ˆ T

0
dγt Φ̂τ · ¯̆P τ dt =

ˆ T

0
dγT−t

ˆ̆
P τ · Φ̄τ dt (42)

we obtain the result.
To show this we realize that, since we are dealing with piecewise constants, we

can equivalently rewrite the left-hand side of this identity as

ˆ T

0
dγt Φ̂τ · ¯̆P τ dt = τ

K −1∑
k=0

P̆ k+1 · dγt Φ̂
τ (tk+1)

= τ 1−γ

Γ (2− γ )

K −1∑
k=0

P̆ k+1 ·
k∑

m=0

bmdΦ
k+1−m,

where we used (29).
In a similar manner to the computations of Remark 2, we can obtain that

dγT−t
ˆ̆
P(tk) = −

K −1∑
j=k

a
j
k dP̆

j+1 = − τ−γ

Γ (2− γ )

K −1∑
j=k

bj−kdP̆ j+1,
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consequently

ˆ T

0
dγT−t

ˆ̆
P τ · Φ̄τ dt = τ 1−γ

Γ (2− γ )

K∑
k=1

Φk ·
K −1∑
j=k

bj−kdP̆ j+1.

We can invoke now the results of [4, Appendix A] to conclude that the identity
(42) holds. The theorem is thus proven. ��
Remark 3 (Discrete Fractional Integration by Parts) Notice that, during the course
of the proof of Theorem 6 we showed that, whenever V̂ τ , Ŵ τ ∈ U(T ) satisfy
V̂ τ (0) = 0 and Ŵ τ (T ) = 0, then they satisfy the following discrete fractional
integration by parts

ˆ T

0
dγt V̂ τ · W̄ τ dt =

ˆ T

0
dγT−t Ŵ τ · V̄ τ dt.

This identity shall prove useful in the sequel.

Remark 4 (Projection) The solution to the variational inequality (40) can be accom-
plished rather easily. Indeed, since all the involved functions belong to Z(T ), it
suffices to consider one time interval, say (tk−1, tk], where we must have

(
P̆ k + μZ̆k

)
·
(
Zk − Z̆k

)
≥ 0.

From this it immediately follows that

Z̆k = Pr[a,b]

(−1

μ
P̆ k

)
,

where, for w ∈ R
n, we define Pr[a,b]w as the projection onto the cube [a, b] =

{x ∈ R
n : a 3 x 3 b}, which can be easily accomplished by the formula

Pr[a,b]wi = max {ai,min {bi, wi}} , i = 1, . . . , n.

This is the main advantage of considering piecewise constant approximations of the
control and a modified cost. Other variants might yield a better approximation, but
at the cost of a more involved solution scheme.

3.4 Convergence

Let us now discuss the convergence of our approximation scheme. The main issue
here is that since, even for a smooth f , the right-hand side of (36) belongs only
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to L2(0, T ;Rn) we cannot invoke the results of Corollary 1 to establish a rate of
convergence. Notice, additionally, that we modified the cost, one of the reasons
being that this led us to the simplifications detailed in Remark 4. As a consequence
we only show convergence without rates.

We begin by noticing that, for any z ∈ L2(0, T ;Rn) we have that ST z =
S̊T z+ V̂ τ , where V̂ τ ∈ U(T ) satisfies

V̂ τ (0) = ψ, dγt V̂
τ (tk+1)+A V̂ τ (tk+1) = ΠT f (tk+1), k = 0, . . . ,K − 1,

and the linear, continuous operator S̊T is the solution operator for the scheme: Find
Û τ

0 ∈ U(T ) such that Û τ
0 (0) = 0 and, for k = 0, . . . ,K − 1,

dγt Û
τ
0 (tk+1)+A Û τ

0 (tk+1) = ΠT z(tk+1). (43)

Let us describe the properties of V̂ τ .

Proposition 2 (Properties of V̂ τ ) Assume that f ∈ L2(0, T ;Rn), then the family
{V̂ τ }T converges, as K →∞, in L2(0, T ;Rn) to v ∈ U, which solves

dγt v +A v = f, t ∈ (0, T ], v(0) = ψ.

Proof The claimed result is obtained by a simple density argument, combined
with stability of the continuous and discrete state equations. Let ε > 0. Since
f ∈ L2(0, T ;Rn), there is a fε ∈ H 2(0, T ;Rn) such that

‖f − fε‖L2(0,T ;Rn) <
ε

4C1
,

where by C1 we denote the constant in inequality (16). Denote by vε the solution to

dγt vε +A vε = fε, t ∈ (0, T ], v(0) = ψ.

The smoothness of fε allows us to invoke Theorem 2 to assert that the regularity
estimates (18), with u replaced by vε , hold. In addition, invoking Theorem 1, we get
that

‖v − vε‖L2
A (0,T ;Rn) ≤ C1Λγ (0, f − fε) = C1‖f − fε‖L2(0,T ;Rn) <

ε

4
.

Let us now approximate vε via the scheme (26), over a mesh T where K
remains to be chosen. In doing so we obtain a function V̂ τ

ε ∈ U(T ). Moreover,
since vε verifies the assumptions of Theorem 2, we invoke Corollary 1 to conclude
that

‖v̄ε − V̄ τ
ε ‖L2

A (0,T ;Rn) ≤ C2τ
θ ,
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where C2 denotes a positive constant that depends on ‖fε‖H 2(0,T ;Rn). However,
since ε is fixed, we can choose K so that

C2τ
θ <

ε

4
�⇒ ‖v̄ε − V̄ τ

ε ‖L2(0,T ;Rn) <
ε

4
.

The last ingredient is to observe that the difference V τ
ε − V τ solves (25)–(26)

with zero initial condition and right-hand side ΠT (f − fε). We then invoke the
stability of the scheme, stated in Theorem 3, to obtain

‖V̄ τ
ε − V̄ τ‖L2

A (0,T ;Rn) ≤ C1Λγ (0,ΠT (f − fε)) ≤ C1‖f − fε‖L2(0,T ;Rn) <
ε

4
,

where we used that ΠT is a projection.
Combine these observations to conclude that

‖v − V̄ τ‖L2
A (0,T ,Rn) ≤ ‖v − vε‖L2

A (0,T ;Rn) + ‖vε − v̄ε‖L2
A (0,T ;Rn)

+ ‖v̄ε − V̄ τ
ε ‖L2

A (0,T ;Rn) + ‖V̄ τ
ε − V̄ τ‖L2

A (0,T ;Rn)

<
3ε

4
+ ‖vε − v̄ε‖L2

A (0,T ;Rn).

Conclude by noticing that, since vε → v, after possibly taking an even larger K
we can assert

‖vε − v̄ε‖L2
A (0,T ;Rn) <

ε

4
.

This concludes the proof. ��
The main consequence of this statement arises when we use the decomposition

of ST in the reduced cost. Namely, we get

JT (Zτ ) = 1

2

ˆ T

0

[
|C S̊T Zτ − W̄ τ |2m + μ|Zτ |2n

]
dt,

for W τ = uτ
d − CV τ , that is, the discrete desired state changes and, moreover,

W τ → ud −C v in L2(0, T ;Rm) as K →∞. All these considerations allow us to
reduce the problem to the case when ψ = 0 and f ≡ 0 so that the discrete control
to state map is a linear operator.

In this setting we can assert the strong convergence of S̊T and its adjoint, which
will be a fundamental tool in proving convergence. Here and in what follows, we
denote by B(L2(0, T ;Rn)) the space of bounded linear operators on L2(0, T ;Rn)

endowed with the operator norm.

Lemma 2 (Strong Convergence) The family of solution operators {S̊T }T and

of their adjoints
{
S̊�

T

}
T

is uniformly bounded in B(L2(0, T ;Rn)) and strongly
convergent.
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Proof We begin by realizing that the uniform boundedness, in B(L2(0, T ;Rn)),
of {S̊T }T is a restatement of Theorem 3, see [13, 18]. Moreover, the error
estimates of Corollary 1 are valid for a collection of right-hand sides that is
dense in L2(0, T ;Rn). This means, by an argument similar to the one provided
in Proposition 2, that for every z ∈ L2(0, T ;Rn) the family {S̊T z}T converges;
see [13, Proposition 5.17].

Let us now prove the same statements for the family of adjoints. To do so we
must first identify it. Let z, η ∈ L2(0, T ;Rn) and Û τ

0 solve (43). In addition, let
P̂ τ ∈ U(T ) be the solution to (39) but with the right-hand side replaced by ΠT η.
Multiply the aforementioned equations by P̄ τ and Ū τ

0 , integrate and subtract to
obtain

ˆ T

0

[
dγt Û

τ
0 · P̄ τ − dγT−t P̂ τ · Ū τ

0

]
dt =

ˆ T

0

[
ΠT z · P̄ τ −ΠT η · S̊T z

]
dt

where we used that the matrix A is symmetric. We now invoke Remark 3 to
conclude that the right-hand side of the previous expression vanishes, which implies
that

ˆ T

0
z · S̊�

T η dt =
ˆ T

0
ΠT z · S̊�

T η dt =
ˆ T

0
ΠT η · S̊T z dt

=
ˆ T

0
ΠT z · P̄ τ dt =

ˆ T

0
z · P̄ τ dt,

where the first and last equalities hold by the definition of ΠT . Since the last identity
holds for every z ∈ L2(0, T ;Rn), we thus have that P τ = S̊�

T η.
It now remains to realize that P τ is a discretization of the problem

dγT−tp +A p = η, t ∈ [0, T ), p(T ) = 0.

Repeating the arguments that led to Theorem 3 and Corollary 1, we get that P τ

is a stable and consistent approximation, so we can, again, conclude the uniform

boundedness and convergence of the family
{
S̊�

T

}
T

. ��
We are now ready to establish convergence of our scheme.

Theorem 7 (Convergence) The family {Z̆τ }T of optimal controls is uniformly
bounded and contains a subsequence that converges strongly to z̆, the solution to (4).

Proof Boundedness is a consequence of optimality. Indeed, if z0 ∈ Zad then

μ

2
‖Z̆τ‖2

L2(0,T ;Rn)
≤JT (Z̆τ ) ≤JT (ΠT z0) � ‖z0‖2

L2(0,T ;Rn)
+‖ud‖2

L2(0,T ;Rm)
,

where we used the continuity of ST and ΠT . This implies the existence of a (not
relabeled) weakly convergent subsequence.
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To show convergence of this sequence to z̆, we invoke the theory of Γ -
convergence [7], so that we must verify three assumptions:

1. Lower bound: We must show that, whenever Zτ ⇀ z then J (z) ≤
lim inf JT (Zτ ). To do so, let η ∈ L2(0, T ;Rn) and notice that

ˆ T

0

[
ST Zτ −Sz

]
· η dt =

ˆ T

0

[
ST z−Sz

]
· η dt +

ˆ T

0
ST (Zτ − z) · η dt

= A+ B.

The pointwise convergence of {S̊T }T shows that A → 0, while the pointwise
convergence of the adjoints shows that B → 0. In conclusion, ST Zτ ⇀ Sz.
Now, owing to the weak lower semicontinuity of norms, and the fact that ūτ

d →
ud in L2(0, T ;Rm) we conclude

J (z) ≤ lim inf JT (Zτ ).

2. Existence of a recovery sequence: We must show that, for every z ∈ Zad there
is Zτ ∈ Zad(T ) such that Zτ ⇀ z and J (z) ≥ lim sup JT (Zτ ). To do so, it
suffices to set Zτ = ΠT z. Indeed, we even have strong convergence so that we
can say ST ΠT z→ Sz. Continuity of norms and the convergence of ūτ

d allow
us to conclude the inequality for the costs.

3. Equicoerciveness: We must show that, for every r ∈ R, there is a weakly closed
and weakly compact Kr ⊂ L2(0, T ;Rn) such that, for all T , the r-sublevel set
of JT is contained in Kr . To do so it suffices to notice that

JT (Zτ ) ≥ μ

2
‖Zτ‖2

L2(0,T ;Rn)
.

Thus, invoking [7, Proposition 7.7], we can immediately conclude.

With these three ingredients, we can now show convergence. Indeed, the lower
bound inequality and recovery sequence property allow us to say that

JT
Γ→J

so that minimizers of JT converge to minimizers of J . Equicoerciveness and
the uniqueness of z̆ are the conditions of the so-called fundamental lemma of Γ -
convergence [7, Corollary 7.24] which allow us to conclude that Z̆τ ⇀ z̆.

We finalize the proof by showing strong convergence. To do so we first note that,
by Dal Maso [7, equation (7.32)], we have JT (Z̆τ )→J (z̆). Therefore
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1

2

ˆ T

0

[∣∣∣ST Z̆τ −Sz

∣∣∣2
n
+ μ

∣∣∣ ¯̆Zτ − z̆

∣∣∣2
n

]2

dt =JT (Z̆τ )+J (z̆)

−
ˆ T

0
ST Z̆τ · (Sz̆− ūτ

d

)
dt

+
ˆ T

0
ud ·

(
Sz̆− ūτ

d

)
dt

− μ

ˆ T

0
Z̆τ · z̆ dt

→J (z̆)+J (z̆)− 2J (z̆) = 0,

where we, again, used the convergence of the adjoint.
This concludes the proof of convergence. ��
We conclude by showing weak convergence of the state.

Corollary 2 (State Convergence) In the setting of Theorem 7 we have that Ŭ τ ⇀

ŭ in L2(0, T ;Rn).

Proof This follows from the strong convergence of Z̆τ and of the adjoints S̊�
T .

Indeed, let v ∈ L2(0, T ;Rn) and notice that

ˆ T

0
S̊T Z̆τ · v dt =

ˆ T

0
Z̆τ · S̊�

T v dt →
ˆ T

0
z̆ · S̊�v dt.

Since Ŭ τ = S̊T Z̆τ + V τ , we obtain the result by invoking Proposition 2. ��
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Sensitivity-Based Topology and Shape
Optimization with Application to Electric
Motors

Peter Gangl

Abstract In many industrial applications, one is interested in finding an optimal
layout of an object, which often leads to PDE-constrained shape optimization
problems. Such problems can be approached by shape optimization methods, where
a domain is altered by smooth deformation of its boundary, or by means of topology
optimization methods, which in addition can alter the connectivity of the initial
design. We give an overview over established topology optimization methods and
focus on an approach based on the sensitivity of the cost function with respect
to a topological perturbation of the domain, called the topological derivative. We
illustrate a way to derive this sensitivity and discuss the additional difficulties
arising in the case of a nonlinear PDE constraint. We show numerical results for
the optimization of an electric motor which are obtained by a combination of two
methods: a level set algorithm which is based on the topological derivative, and
a shape optimization method together with a special treatment of the evolving
material interface which assures accurate approximate solutions to the underlying
PDE constraint as well as a smooth final design.

1 Introduction

This chapter deals with PDE-constrained topology and shape optimization and is
motivated by a concrete application from electrical engineering, namely the design
optimization of an electric motor. The goal is to identify an admissible subset Ω
of the design region Ωd of the motor which yields the best possible performance
of the motor. The performance is measured by a functional J which is related to
the smoothness of the rotation or to the torque of the motor. In shape optimization,
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the domain can be modified by a smooth deformation of the boundary, whereas the
topology optimization methods can also alter the connectivity of the domain by, e.g.,
introducing new holes.

In contrast to optimal control problems, here the set of admissible controls is a
set of subsets of Rd , which does not admit a vector space structure. Nevertheless,
we will use the notions of derivatives of the objective functional J with respect
to the control variable Ω: On the one hand, the shape derivative represents the
sensitivity of a domain-dependent functional with respect to a smooth variation of
the boundary of this domain whereas, on the other hand, the topological derivative
is the sensitivity of the functional with respect to a topological perturbation of the
set Ω , i.e., with respect to the introduction of a hole in its interior. Starting out
from an initial design, these sensitivities can be used to successively update the
shape and topology of the control Ω in order to reach an optimal design. In our
case, the set Ω is a subset of the computational domain D representing the motor,
and its boundary ∂Ω represents a material interface, e.g., the interface between a
ferromagnetic region and an air region of the motor. Both the shape derivative and
the topological derivative of this PDE-constrained optimization problem involve
the solution to the state equation u and the solution to the adjoint equation p. In
a numerical algorithm, these quantities must be computed approximately in each
iteration, which is often done by a finite element method. In order to obtain accurate
approximations uh, ph to the state and adjoint variable, one has to take care of the
material interface between the different subdomains. This interface evolves over the
iterations of the algorithm and is, in general, not aligned with the underlying finite
element mesh.

This book chapter is meant to give an overview over various aspects of topology
and shape optimization approaches and many details and proofs are omitted. For
more details and more mathematical rigor, we refer the interested reader to [20].
The rest of this chapter is organized as follows: The design optimization problem
for the electric motor, which serves as a model problem throughout this chapter,
is introduced in Section 2. In Section 3, we give an overview over established
topology optimization methods and demonstrate the main steps in the derivation of
the topological derivative for the optimization problem at hand, which is constrained
by a quasilinear PDE constraint. Section 4 deals with shape optimization and we will
derive the shape derivative for our problem. In Section 5, we give an overview over
possible ways to treat moving interfaces in the context of finite elements, before
combining all of these techniques to an efficient design tool in Section 6, where we
will also give numerical optimization results.

2 Problem Description

We consider an interior permanent magnet electric motor as depicted in Figure 1
which consists of a fixed outer part (called the stator) and a rotating inner part (the
rotor). The stator contains coils where alternating electric current is induced and
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Fig. 1 Left: computational domain D representing electric motor with different subdomains.
Right: zoom on upper left quarter (for a different rotor-to-stator constellation) with design
region Ωd and fixed ferromagnetic set Ω

f ix
f . For a given design Ω ⊂ Ωd , we have Ωf =

Ω
f ix
f ∪Ω

the rotor holds permanent magnets which are magnetized in the directions indicated
in Figure 1. Both parts contain a ferromagnetic subdomain and they are separated
by a thin air gap. A rotation of the rotor occurs due to the interaction between the
magnetic fields produced by magnets and the electric currents in the coils. As it is
common for the simulation of electric motors at constant rotation speed, we consider
the setting of two-dimensional magnetostatics. There, the magnetic flux density B
is given as B = curl

(
(0, 0, u)�

)
where u solves the quasilinear boundary value

problem

−div (νΩ(x, |∇u|)∇u) = J3 − ν0divM⊥, x ∈ D, (1a)

u = 0, x ∈ ∂D, (1b)

on a circular hold-all domain D where J3 denotes the currents impressed in the coil
areas and M⊥ is the perpendicular of the permanent magnetization in the magnets.
Here, Ω ⊂ Ωd denotes the unknown subset of the design region that is occupied
with ferromagnetic material, and the magnetic reluctivity νΩ is a nonlinear function
ν̂ in the ferromagnetic subdomain and a constant ν0 in the rest of the motor,

νΩ(x, s) =
{
ν̂(s), x ∈ Ωf ,

ν0, x ∈ D \Ωf .
(2)

Here, Ωf consists of the fixed ferromagnetic domain Ω
f ix
f outside the design region

Ωd and the variable ferromagnetic subset of the design region Ω ⊂ Ωd , i.e., Ωf =
Ω

f ix
f ∪Ω , see Figure 1. Note that, in general, the nonlinear function ν̂ is not known

in a closed form but is usually approximated from measured values, see [28].
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The magnetic reluctivity νΩ , which is the reciprocal of the magnetic permeability
μΩ , is much larger in the air subdomains compared to the ferromagnetic subdo-
mains of the motor. Therefore, the distribution of ferromagnetic material inside the
design area Ωd (i.e., the shape and topology of the unknown set Ω) influences the
magnetic flux density B in Ωd and also in the rest of the motor. The magnetic flux
density B inside the air gap between rotor and stator has a big impact on the behavior
of the rotation of the motor. The goal of the optimization problem is to identify a
subset Ω which minimizes the objective function J that is related to the smoothness
of the rotation of the motor. The functional J depends on the magnetic flux density
B in the air gap and will be introduced later in Section 6. The PDE-constrained
design optimization problem reads

min
Ω

J(u,Ω) (3a)

subject to u ∈ H 1
0 (D) : ´

D
νΩ(x, |∇u|)∇u · ∇η dx = 〈F, η〉 ∀η ∈ H 1

0 (D), (3b)

where (3b) is the weak form of boundary value problem (1) with F ∈ H−1(D)

given by

〈F, η〉 =
ˆ
D

J3 η + ν0 M
⊥ · ∇η dx, η ∈ H 1

0 (D).

Remark 1 In applications of electric motors, the functional J is usually supported
only in the air gap between the rotor and the stator. Since the design areas are part
of the rotor, we assume that J does not depend on Ω directly, but only via the state
variable u, J = J (u) �= J (u,Ω). Furthermore, we introduce the reduced functional
J (Ω) = J (u(Ω)) where u(Ω) is the solution to (3b) for given Ω .

3 Topology Optimization

In this chapter, we employ a topology optimization algorithm which is based on
the topological derivative. Beside this approach, there exist a number of other
approaches to topology optimization. We give an overview over the most widely
used methods in Section 3.1 before coming to the derivation of the topological
derivative for the problem at hand in Section 3.2.

3.1 Overview of Topology Optimization Methods

The concept of topology optimization originates from applications in mechanical
engineering but has been applied to a large variety of other applications such as
fluid dynamics, acoustics, or electromagnetics. This section is meant to give a brief
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overview over the most common methods of topology optimization. For a more
detailed discussion of the single approaches, we refer the reader to the review
articles [14, 29, 34] and the references therein.

The starting point of numerical topology optimization is widely considered to
be the seminal paper by Bendsøe and Kikuchi [9] introducing the homogenization
method for topology optimization, followed by the paper [8], where Bendsøe
introduced what is now known as the Solid Isotropic Material with Penalization
(SIMP) method, giving rise to the large class of density-based methods.

3.1.1 Homogenization Method

The idea of the homogenization method is to represent a domain as a periodic
microstructure (usually consisting of rectangular cells like a regular quadrilateral
finite element grid) and then to find the optimal layout for each cell. Each of these
cells is considered to consist of material and void regions (often a rectangular hole
surrounded by solid material) and the dimensions and orientations of these holes are
the design variables with respect to which the optimization is performed. Finally,
one ends up with a perforated design which can be interpreted as a microstructure.
A black-and-white structure can be obtained by setting those cells which are mostly
occupied with material to solid, and the other cells to void. The method uses several
degrees of freedom for each of the cells, resulting in a large number of degrees
of freedom, which is considered a significant drawback of this method. For more
details on the homogenization method, we refer the reader to the monograph [1]
and the references therein.

3.1.2 Density Methods

In density-based approaches to topology optimization, a design can be represented
by a function ρ which takes the value 1 in areas of material and the value
0 in void areas. We remark that, in applications of mechanical engineering, if
ρ is 0, the elasticity tensor vanishes and the global stiffness matrix becomes
singular. Therefore, it is common practice in density-based topology optimization
of mechanical structures to replace the value of 0 by a small, but positive number
ρmin > 0. The idea of density-based topology optimization approaches is to relax
this strict 0–1 nature of the problem by allowing the function ρ to attain any value
between 0 and 1. The function ρ is called a density variable. In order to enforce a 0–1
structure of the final design, the idea of [8] is to combine this idea with a penalization
of intermediate density values, i.e., to replace the density function ρ in the state
equation (and only there) by a penalized version of the density, ρ̃(ρ) = ρp for some
p > 1. In combination with a constraint on the volume of the arising structure, the
algorithm favors the use of “black” and “white” regions, i.e., regions where ρ = 1
and ρ = 0, respectively, because intermediate values “give very little stiffness at an
unreasonable cost” [8]. As remarked in [29], a constraint which limits the volume is
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important for this penalizing effect to appear. The method described in [8] together
with the choice ρ̃(ρ) = ρp for some p > 1 became well known as the SIMP
method. We remark that the method is sensitive with respect to the value of p and
that good results are usually obtained by using p = 3 or by gradually increasing the
parameter from p = 1 to higher values in the course of the optimization procedure
[29].

While the penalization of intermediate density values yields designs with a 0–1
structure, these problems usually lack existence of a solution, a fact which often
results in a mesh dependence of the optimized designs. For a detailed survey on
the numerical problems resulting from the ill-posedness of such problems, we refer
the reader to [30]. The most widely used approach to regularizing these ill-posed
problems is by applying a filter to the density variable ρ. This means that one
replaces the actual density at a point by an average over the density values in a
neighborhood of a certain radius R, called the filter radius. Other approaches include
a filtering of the sensitivities, adding a bound on the perimeter of the arising structure
or on the gradient of the density variable ρ, see [29, 30].

A more detailed overview of density-based topology optimization methods can
be found in, e.g., [10, 29].

3.1.3 Phase-Field Method

The phase-field method for topology optimization is a density-based method using
a linear material interpolation, ρ̃(ρ) = ρ. A regularization is achieved by adding
a term to the cost functional which approximates the total variation of the density
variable. This term is a Cahn-Hilliard type functional, which itself is a weighted
sum of two terms. One of these two terms causes a regularizing effect whereas the
other term penalizes intermediate density values. We mention that the choices of the
weighting factor between these two parts, as well as the weight of the Cahn-Hilliard
type functional relative to the objective function, are often crucial for obtaining good
results. The phase-field method has been applied to many topology optimization
problems, see, e.g., [12, 22].

3.1.4 Level Set Methods

In the level set method [27], a material interface is represented by the zero level set
of an evolving function ψ = ψ(x, t) which attains positive values in one subdomain
and negative values in the other. The evolution of ψ is given by the solution to the
Hamilton-Jacobi equation

∂

∂t
ψ + V · ∇ψ = 0,
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where t is a pseudo-time variable and V determines the direction of the evolution.
In applications from shape optimization, this vector field is given according to shape
sensitivities. For a thorough overview over level set methods, we refer the reader to
the review papers [29, 34].

3.1.5 Topological Derivative

The concept of the topological derivative was introduced in [17] as a means to allow
for changes of the topology in the course of a classical shape optimization method.
The topological derivative of a domain-dependent functional at an interior point of
the domain describes its sensitivity with respect to the introduction of a hole around
that point. We will deal with the topological derivative in detail in Section 3.2.

3.2 Topological Derivative for Nonlinear Magnetostatics

The topological derivative of a domain-dependent functional J = J (Ω) was
introduced in a mathematically rigorous way in [31]. Given a domain Ω , an interior
point x0 ∈ Ω , and a bounded domain ω which contains the origin, let ωε = x0+ε ω

represent the hole of radius ε around x0 and let Ωε := Ω \ ωε denote the perturbed
domain. Then, the topological derivative of J at the point x0 is defined as the
quantity G(x0) satisfying a topological asymptotic expansion of the form

J (Ωε)−J (Ω) = f (ε)G(x0)+ o(f (ε)),

where f is a positive function which tends to zero with ε, most often f (ε) = εd with
d the space dimension. In many situations such as in the context of electromagnetics,
one is not interested in a perturbation of the domain where a hole is excluded from
the computational domain, but rather in a local perturbation of a material coefficient.
In fact, in the context of magnetostatics, introducing a “hole” in the ferromagnetic
subdomain corresponds to the introduction of a different material, namely air. Then,
one is interested in an expansion of the form

Jε(uε)− J0(u0) = f (ε)G(x0)+ o(f (ε)). (4)

Here, uε is the solution to the state equation where the material coefficient is
perturbed within a radius ε around x0, and u0 is the solution to the unperturbed
state equation. Likewise, Jε and J0 denote the objective functional in the perturbed
and unperturbed configuration, respectively. We remark that this interpretation is
possible in the context of electromagnetics where air is just a different material
with a different, positive material coefficient, whereas in mechanical engineering
an inclusion of void would lead to a loss of the ellipticity of the perturbed bilinear
form.
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It can be seen from the expansion (4) that, at points x0 where G(x0) < 0, for
ε > 0 small enough, the objective value for the perturbed configuration is smaller
than that in the unperturbed configuration, Jε(uε) − J0(u0) < 0. Thus, in order
to minimize a given functional J , it is beneficial to change the material in areas
where the topological derivative is negative. Using this information for the iterative
introduction of holes at the most favorable positions is one possible topology
optimization algorithm using the topological derivative. A different algorithm that
is based on the topological derivative is the level set algorithm introduced in [5].
As opposed to the classical level set method for shape optimization, the updates are
based on the topological derivative rather than on the shape derivative. Therefore,
this algorithm can also nucleate new holes in the interior. More details on the
algorithm can be found in [4].

3.2.1 Preliminaries

We show the main steps in the derivation of the topological derivative according
to (4) in the context of two-dimensional magnetostatics. We consider a simplified
version of the PDE constraint (3b) where, in the unperturbed configuration, the
entire computational domain is occupied with ferromagnetic material. Let F ∈
H−1(D) denote the sources on the right-hand side of the PDE constraint and let
Ωd denote the design subdomain which we assume to be compactly contained in
D \ supp(F ), i.e., Ωd ⊂⊂ D \ supp(F ). Let x0 ∈ Ωd denote a fixed interior point
around which the material coefficient is perturbed. Given a smooth bounded domain
ω containing the origin, which represents the shape of the material perturbation, let
ωε = x0+ ε ω for small ε > 0. Then, the ferromagnetic subdomain in the perturbed
configuration is given by Ωε = Ω \ ωε. For ε > 0 and W ∈ R

2, we define

T (W) = ν̂(|W |)W and Tε(x,W) = νΩε (x, |W |)W,

where νΩε is defined according to (2). For the rest of this chapter, we will use ω =
B(0, 1) the unit disk in R

2. For more details about a possible extension of the results
to ellipse-shaped inclusions, see [20].

Let ε > 0 small enough such that ωε ⊂ Ωd . Using the notation introduced
above, the state equation in the unperturbed and in the perturbed setting read

Find u0 ∈ H 1
0 (D) :

ˆ
D

T (∇u0) · ∇η dx = 〈F, η〉 ∀η ∈ H 1
0 (D), (5)

Find uε ∈ H 1
0 (D) :

ˆ
D

Tε(x,∇uε) · ∇η dx = 〈F, η〉 ∀η ∈ H 1
0 (D), (6)

respectively. Note that the right-hand sides coincide since we assumed that x0 ∈
Ωd ⊂⊂ D\supp(F ). We will be interested in the behavior of the difference between



Topology and Shape Optimization with Application to Electric Motors 325

the solution to these two boundary value problems in terms of ε. By subtracting (5)
from (6), we get the boundary value problem defining the variation of the direct state
ũε := uε − u0,

Find ũε ∈ H 1
0 (D) :

ˆ
D

(Tε(x,∇u0 +∇ũε)− Tε(x,∇u0)) · ∇η dx

= −
ˆ
ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇η dx ∀η ∈ H 1
0 (D).

(7)

Furthermore, for simplicity, we assume that the objective functional is the same
in the perturbed and in the unperturbed configuration, Jε = J0 = J . Note that this
is satisfied for functionals which are supported only outside the design area like in
the case of electric motors, cf. Remark 1. For deriving the topological derivative, we
make the following assumption on the objective function:

Assumption 1 For ε > 0, there exist G̃ ∈ H−1(D) and δJ ∈ R such that

J (uε)− J (u0) = 〈G̃, uε − u0〉 + δJ ε2 + o(ε2). (8)

Note that this assumption is satisfied, e.g., for quadratic functionals which are
supported only outside the design region.

Moreover, we introduce the following adjoint equations in the unperturbed and
perturbed configurations:

Find p0 ∈ H 1
0 (D) :

ˆ
D

DT (∇u0)∇p0 · ∇ηdx = −〈G̃, η〉 ∀η ∈ H 1
0 (D),

Find pε ∈ H 1
0 (D) :

ˆ
D

DTε(x,∇u0)∇pε · ∇ηdx = −〈G̃, η〉 ∀η ∈ H 1
0 (D). (9)

Here, G̃ is according to Assumption 1 and DT , DTε denote the Jacobians of the
operators T , Tε, respectively. Also here, we introduce the difference between the
solutions to the two problems above, called the variation of the adjoint state p̃ε :=
pε − p0, which is the solution to

Find p̃ε ∈ H 1
0 (D) :

ˆ
D

DTε(x,∇u0)∇p̃ε · ∇η dx

= −
ˆ
ωε

(ν0 I − DT (∇u0))∇p0 · ∇η dx ∀η ∈ H 1
0 (D).

(10)

For the rest of this section, we will drop the differential dx in the volume integrals
as there is no danger of confusion.
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3.2.2 Derivation of Topological Derivative

By virtue of Assumption 1, choosing f (ε) = ε2, it remains to show that there exists
G0 ∈ R such that 〈G̃, ũε〉 = ε2G0+o(ε2). Testing the perturbed adjoint equation (9)
with η = ũε and exploiting the symmetry of DTε, we get

〈G̃, ũε〉 = −
ˆ
D

DTε(x,∇u0)∇ũε · ∇pε

= −
ˆ
D

DTε(x,∇u0)∇ũε · ∇pε

+
ˆ
D

(Tε(x,∇u0 +∇ũε)− Tε(x,∇u0)) · ∇pε

+
ˆ
ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇pε,

where we added the left- and right-hand side of (7) tested with η = pε. For ε > 0,
V,W ∈ R

2, we introduce the operator

Sε
V (x,W) := Tε(x, V +W)− Tε(x, V )− DTε(x, V )W, (11)

which characterizes the nonlinearity of the operator Tε. Then, we get

〈G̃, ũε〉 =
ˆ
ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇pε +
ˆ
D

Sε∇u0
(x,∇ũε) · ∇pε.

Noting that pε = p0 + p̃ε, and defining

j1(ε) :=
ˆ
ωε

(ν0 − ν̂(|∇u0|))∇u0 · (∇p0 +∇p̃ε),

j2(ε) :=
ˆ
D

Sε∇u0
(x,∇ũε) · (∇p0 +∇p̃ε),

we get from Assumption 1 that

Jε(uε)− J0(u0) = j1(ε)+ j2(ε)+ δJ ε
2 + o(ε2).

In view of (4), it remains to show that there exist numbers J1, J2 such that

j1(ε) = ε2 J1 + o(ε2), and (12)

j2(ε) = ε2 J2 + o(ε2). (13)

Then, the topological derivative is given by G(x0) = J1 + J2 + δJ .



Topology and Shape Optimization with Application to Electric Motors 327

In what follows, we will first sketch the procedure to obtain the topological
derivative in the case of a linear model, i.e., in the case where the nonlinear
function ν̂ introduced in (2) is replaced by a constant ν1 < ν0, before discussing the
additional difficulties in the case of nonlinear material behavior in the ferromagnetic
subdomain.

3.2.3 Linear Case

It can be seen from the definition of the operator Sε in (11) that, in the linear case,
the second term j2(ε) vanishes. Thus, we only have to consider the term

j1(ε) = (ν0 − ν1)

ˆ
ωε

∇u0 · (∇p0 +∇p̃ε)

= (ν0 − ν1)

ˆ
ωε

∇u0 · ∇p0 −
ˆ
D

νε∇ũε · ∇p̃ε, (14)

where we used (7) with η = p̃ε and introduced νε(x) = χD\ωε (x) ν1 + χωε (x) ν0
with χS denoting the characteristic function of a set S.

Assuming enough regularity for the unperturbed direct and adjoint state, it can
be seen that, for the first term in (14), we have

(ν0 − ν1)

ˆ
ωε

∇u0 · ∇p0 = |ω|ε2 (ν0 − ν1)∇u0(x0) · ∇p0(x0)+ o(ε2) (15)

as ε approaches zero.
In order to treat the second term in (14), we define ν̃(x) = χR2\ω(x)ν1+χω(x)ν0

for x ∈ R
2, and introduce ε-independent approximations to boundary value

problems (7) and (10). After a change of scale, we get the transmission problem
defining the variation of the direct state at scale 1,

Find H ∈H such thatˆ
R2

ν̃ ∇H · ∇η + (ν0 − ν1)

ˆ
ω

∇u0(x0) · ∇η = 0 ∀η ∈H , (16)

approximating (7), and the problem defining the variation of the adjoint state at
scale 1,

Find K ∈H such thatˆ
R2

ν̃ ∇η · ∇K + (ν0 − ν1)

ˆ
ω

∇p0(x0) · ∇η = 0 ∀η ∈H , (17)
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as an approximation of (10), where H is a suitable weighted Hilbert space over R2.
The solutions H , K are approximations to ũε and p̃ε, respectively, at scale 1 and it
holds

ũε(x) ≈ εH(ε−1x) and p̃ε(x) ≈ εK(ε−1x),

for almost every x ∈ D. An important ingredient for deriving an expansion of the
form (12) is to show that these ε-independent approximations of ũε and p̃ε have a
sufficiently fast decay as |x| approaches infinity. This would imply that the impact
of the local variation of the material is small “far away” from the inclusion. In the
case of a linear state equation, this sufficiently fast decay can be established by
convolution of the right-hand side of problems (16) and (17) with the fundamental
solution of the Laplace equation. Exploiting these sufficiently fast decays allows us
to show that

ˆ
D

νε∇ũε · ∇p̃ε = ε2
ˆ
R2

ν̃ ∇H · ∇K + o(ε2),

which, by means of (16) tested with η = K , together with the term (15), yields (12)
with

J1 = (ν0 − ν1)

ˆ
ω

∇u0(x0) · (∇K +∇p0(x0)).

It can be seen from (17) that K depends linearly on ∇p0(x0) and, therefore, J1 can
be represented by means of a matrix M . Finally, in the linear case we get

J1 = ∇u0(x0)
�M ∇p0(x0),

J2 = 0.

Here, M = ν1P(ω, ν0/ν1) where the matrix P(ω, ν0/ν1) only depends on the
shape of the inclusion ω and the contrast ν0/ν1 and is called a polarization matrix,
see, e.g., [2]. Explicit formulas for these matrices are available if ω is a disk or
ellipse in two space dimensions, or a ball or ellipsoid in three space dimensions,
see also [2, 3]. We mention that in the case where ω is the unit disk in R

2, the
polarization matrix in the linear setting reads

Pω,ν0/ν1 = 2π
ν0/ν1 − 1

ν0/ν1 + 1
I,

where I is the identity matrix. A more detailed derivation of the topological
derivative in the linear setting can be found in [3].
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3.2.4 Nonlinear Case

In the nonlinear case, the procedure to treat the term j1(ε) is similar. However, one
big difference is that in the nonlinear setting a sufficiently fast decay of the variation
of the direct state H cannot be shown by convolution, but other, more technical tools
must be used, see [6, 20]. Furthermore, the term j2(ε) does not vanish here and an
estimate of the type (13) has to be established. Under certain assumptions on the
nonlinearity of the function ν̂, this was done in [20]. If those assumptions on the
ferromagnetic material are fulfilled, the result is the following:

Theorem 1 ([20]) Let ω = B(0, 1). Assume that the functional J fulfills
Assumption 1 and that, for the unperturbed direct and adjoint state, it holds
u0, p0 ∈ C1,β(D) for some β > 0. For V,W ∈ R

2, let S̃V (x,W) =
χR2\ω(x) (T (V +W)− T (V )− DT (V )W). Then, the topological derivative of the

PDE-constrained optimization problem (3) according to (4) at point x0 ∈ Ωd reads

G(x0) = ∇u0(x0)
�M∇p0(x0)+

ˆ
R2

S̃∇u0(x0)(x,∇H) · (∇p0(x0)+∇K)+ δJ

(18)
with M =M (ω,DT (∇u0(x0))) ∈ R

2×2 and H and K being the variations of the
direct and adjoint state at scale 1, respectively.

Remark 2 In order to make use of this formula in numerical optimization algo-
rithms, the following aspects are treated in [20]:

• An explicit formula for the matrix M is computed. This matrix is related to the
concept of polarization matrices.

• The term

J2 =
ˆ
R2

S̃∇u0(x0)(x,∇H) · (∇p0(x0)+ ∇K)

seems to be computationally extremely costly since H depends on ∇u0(x0) via
(16) and, thus, the (nonlinear) transmission problem (16) defining H would have
to be solved for every point x0 in order to evaluate the term J2. This problem
was overcome by exploiting a rotational invariance property of J2 with respect to
a simultaneous rotation of the quantities ∇u0(x0) and ∇p0(x0). This property
allows to precompute a range of typical values of J2 in a computationally
expensive offline stage and to look up the precomputed values during the
optimization procedure.

• The formula of Theorem 1 represents the sensitivity of the objective function
with respect to the introduction of an inclusion of air around a point x0. In order
to be able to employ bidirectional optimization algorithms which are capable of
both removing and reintroducing material at the most favorable positions such as
the algorithm introduced in [5], also the topological derivative for the reverse
scenario must be computed. We refer to these two topological derivatives as
Gf→air and Gair→f .
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4 Shape Optimization

In contrast to topology optimization, in shape optimization the connectivity of a
domain is assumed to be fixed. Here, one is interested in finding the shape of a
domain or subdomain which is optimal with respect to a given criterion by means
of smooth variations of the boundary or of a material interface. In this section, we
are concerned with finding the optimal shape of the ferromagnetic part Ω within
the design area Ωd of the electric motor introduced in Section 2. An essential tool
for gradient-based shape optimization is the notion of the sensitivity of a shape
functional J = J (Ω) with respect to a smooth perturbation of the boundary of
the shape Ω , called the shape derivative. A shape functional J is said to be shape
differentiable if the limit

dJ (Ω;V ) = lim
t↘0

J (Ωt )−J (Ω)

t

exists and the mapping V 
→ dJ (Ω;V ) is linear and continuous with respect to
the topology of C∞c (D,R2). Here, Ωt = Tt (Ω) denotes the transformed domain
under the flow Tt generated by a smooth vector field V .

We mention that there are two ways to define this flow given a smooth vector
field V . In the perturbation of identity method, the transformation is given by
Tt (X) = X + t V (X) for all X ∈ R

d and t ≥ 0, whereas in the velocity or speed
method, it is given as Tt (X) = x(t, X) with x(t, X) the solution to the initial value
problem

d

dt
x(t, X) = V (x(t, X)), 0 < t < τ,

x(0, X) = X,

which, for small τ > 0, has a unique solution, see [16, 32]. Note that, for simplicity,
we assumed the vector field V to be autonomous. We remark that both approaches
are equivalent for the derivation of first-order shape derivatives but differ by an
acceleration term in the case of second-order shape derivatives [16].

4.1 Representation of Shape Derivative

There are basically two ways how one can represent the shape derivative of a
functional depending on a domain Ω: either as a distribution on the boundary
∂Ω which only depends on the normal component of the perturbation, called the
Hadamard form, or in a more general volume form, also called the distributed shape
derivative. If the shape Ω is regular enough, the Hadamard form can be rewritten as
an integral over the boundary,

dJ (Ω;V ) =
ˆ
∂Ω

gΓ V · n ds, (19)
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with an integrable function gΓ . The volume form can be written as

dJ (Ω;V ) =
ˆ
Ω

g(V,DV ) dx, (20)

for some function g.
One obvious advantage of the boundary-based form (19) is that a descent

direction V = −gΓ n is readily available. However, in many situations this choice
of V might not be regular enough and has to be regularized. Furthermore, in many
numerical procedures for shape optimization, it is not enough to have a descent
direction that is only defined on the material interface and it has to be extended to a
neighborhood or to the entire computational domain.

On the other hand, in the case where the shape derivative is given in the dis-
tributed form (20), the extraction of a descent direction V such that dJ (Ω;V ) < 0
can also be achieved easily but requires the solution of an auxiliary boundary value
problem of the form

Find V : b(V,W) = −dJ (Ω;W) ∀W, (21)

where V,W are elements of a suitable function space and b(·, ·) is a positive definite
bilinear form on the same space. Obviously, a solution V to (21) is a descent
direction since dJ (Ω;V ) = −b(V, V ) < 0. One benefit of the volume form is
that it is more general, meaning that for shapes with lower regularity the distributed
shape derivative (20) may be well defined whereas the Hadamard form (19) is not. A
different aspect favoring the volume-based form (20) is concerned with numerical
accuracy of the approximation of the shape derivative when the underlying state
and adjoint equations are solved by the finite element method. In [24], the authors
show that the finite element approximation to the volume-based form converges
quadratically to the “true” shape derivative on the continuous level as the mesh size
tends to zero, whereas the boundary-based form converges only linearly.

We mention that, in the case of the Hadamard form of the shape derivative (19),
the auxiliary boundary value problem (21) with b(·, ·) defined on ∂Ω can be used
to compute a regularized gradient descent velocity for the case where the choice
V = −gΓ n is not smooth enough.

A more detailed comparison between these two possible representations can be
found in [25].

4.2 Shape Derivative for Nonlinear Magnetostatics

For the reasons mentioned above, we restrict ourselves to the shape derivative
in its volume-based representation (20). The rigorous derivation of the shape
derivative for the model problem involving the quasilinear PDE of two-dimensional
magnetostatics, which was introduced in Section 2, can be found in [21]. There,
the shape derivative was computed using the averaged adjoint method introduced
in [33].
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The shape derivative of the model problem (3) reads

dJ (Ω;V ) = −
ˆ
D

(J3div(V )+∇J3 · V )p dx −
ˆ
Ωmag

ν0P
′(0)∇p ·M⊥ dx

+
ˆ
D

νΩ(x, |∇u|)Q′(0)∇u · ∇p dx (22)

−
ˆ
Ωf

ν̂′(x, |∇u|)
|∇u| (DV �∇u · ∇u)(∇u · ∇p) dx,

where P
′(0) = (divV )I −DV �, Q′(0) = (divV )I −DV � −DV , I ∈ R

2×2 is the
identity matrix, and u, p ∈ H 1

0 (D) are the state and adjoint state, respectively.

5 Interface Handling

Both the topological derivative (18) and the shape derivative (22) involve the
solution to the state equation (3b) and to the adjoint equation in the current
configuration. These two quantities are usually computed approximately by means
of the finite element method. In the course of the numerical optimization algorithm,
the interface between the ferromagnetic and the air subdomain evolves. In order
to get accurate solutions using standard finite element methods, this material
interface must be resolved by the underlying mesh. We give an overview over the
possible approaches to deal with evolving material interfaces in Section 5.1, before
introducing our method in Section 5.2.

5.1 Finite Element Methods for Interface Problems

One way to deal with evolving interfaces in the context of finite elements is to
create a new triangulation in each step of the algorithm, which is computationally
very costly. Another approach, which is often used in shape optimization, is to start
with a mesh that resolves the interface and to advect all nodes of the mesh in the
direction of the descent vector field V – provided that V is defined on the whole
computational domain. This procedure has the limitation that it does not allow for
topological changes and can become problematic when more complex geometries
with geometric constraints are involved, as it is the case for our model problem.
Here, fixed parts of the electric motor like the circular air gap should not be altered
under any circumstances.

The idea of the extended finite element method (XFEM) is to enrich the finite
element basis by additional basis functions which are modified versions of the
standard basis functions. The solution is seeked in the enriched space V Γ

h = Vh⊕V x
h
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where Vh is a standard finite element space, and V x
h the space of standard finite

element functions which are supported at the interface, multiplied with a so-called
enrichment function, see, e.g., [7, 19].

The idea of the immersed finite element method [26] is similar to that of the
XFEM. However, rather than adding basis functions to the basis, existing basis
functions of the finite element space which are supported across the interface are
modified in such a way that the interface jump conditions are satisfied.

In the unfitted Nitsche method introduced in [23], a discontinuity or kink of the
solution across an interface is enforced in a weak sense. This way of treating the
interface conditions is often used in combination with XFEM, called the Nitsche-
XFEM. In this method, just like in all other methods mentioned above, a crucial task
is to establish stability of the method with respect to the location of the interface
relative to the mesh. Generally, if an element of the underlying unfitted background
mesh is cut by the interface very close to one of the vertices, the condition of the
system becomes very bad. This issue is treated in the CutFEM [13], which is a
stabilized version of the Nitsche-XFEM.

An alternative to these fixed mesh approaches is to modify the mesh and always
work with a fitted discretization while still guaranteeing a certain quality of the
mesh. We mention the deformable simplicial complex (DSC) method [15].

In [18], an interface finite element method on a fixed mesh is introduced where
the interface is resolved by locally modifying the finite element basis functions.
Optimal order of convergence and also, when choosing a special hierarchical basis,
optimal conditioning of the system matrix are shown. We note that this parametric
approach can be equivalently interpreted as a fitted finite element method where
some of the mesh nodes close to the interface are moved in such a way that the
interface is resolved by the mesh. In the next section, we will follow the approach
of [18] and translate it to the case of triangular finite elements.

5.2 A Local Mesh Modification Strategy

We adapt the method presented in [18] for quadrilateral meshes to the case of
piecewise linear finite elements on a triangular grid. Our method is based on the
assumption that the mesh has a one-level hierarchy, i.e., that always four triangles of
the mesh Th can be combined to one triangle of a coarser mesh T2h. We will refer to
this bigger triangle as a macro triangle and call T2h the macro mesh. Furthermore,
we assume that each element of the macro mesh which is cut by the interface is
intersected either in two distinct edges or in one vertex and the opposite edge. Note
that this assumption can be enforced by choosing a fine enough macro mesh T2h.

The idea of the method is the following: If a macro element is not cut by the
material interface, it is left unchanged. For those macro elements which are cut by
the interface in two distinct edges, two of the three vertices lying on the edges of the
macro element are moved along these edges to the intersection points of the interface
and the macro edge, see Figure 2. If necessary, the vertex lying on the third edge
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Fig. 2 Left: modification of one macro element that is cut by the material interface (blue). Right:
mesh modification strategy for circular material interface

can be moved along that edge in order to avoid some angle to become too close to
180◦. The vertices of the macro element remain unchanged. Similarly, if the macro
element is cut in one vertex and the opposite edge, the vertex lying on the intersected
macro edge is moved to meet the intersection point and the other two vertices may
be moved such that a maximum angle condition is satisfied. More details on this
procedure can be found in [20] where also the optimal order of convergence of the
finite element solution to the true solution in the L2(D) and in the H 1(D) norm is
shown.

6 Numerical Optimization Results

In this section, we combine the results of Sections 3 and 4 and the method introduced
in Section 5.2 to one efficient design tool. We describe the procedure in Section 6.1
before applying it to the model problem introduced in Section 2 in Section 6.2.

6.1 Combined Topology and Shape Optimization
with Interface Handling

We present a two-stage algorithm where topology optimization is performed in
the first stage in order to find the optimal connectivity of the design domain,
followed by shape optimization in combination with the interface resolution method
of Section 5.2 as a post-processing in order to obtain smoother designs.

In the first stage, topology optimization is performed using the level set algo-
rithm [5]. In order to apply this algorithm, it is important to have the topological
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derivative for both directions, i.e., the sensitivity of the objective function with
respect to the nucleation of a hole of air inside ferromagnetic material, Gf→air , and
the sensitivity for the creation of ferromagnetic material in an air region, Gair→f .

The shape optimization is done by means of a gradient descent algorithm.
Starting out from an initial design, the interface between the ferromagnetic and
the air subdomain of the design area Ωd is moved a certain distance in a descent
direction V which was obtained from (21). The step size is chosen in such a way that
a decrease of the objective functional is achieved. Note that, for the evaluation of the
shape derivative on the right-hand side of (21), the state and adjoint equations have
to be solved, which is done by the finite element method. In order to obtain accurate
finite element solutions, the mesh modification strategy of Section 5.2 should be
applied whenever the interface is updated.

The proposed optimization procedure is summarized in the following algorithm:

Algorithm 1 (Combined topology and shape optimization with interface handling)

Stage I: Apply the algorithm [5] to find an optimal topology.
Stage II: Use the final design of Stage I as an initial design and perform gradient-
based shape optimization where for each solve of the state and adjoint equations,
the local mesh adaptation strategy of Section 5.2 is applied.

A more detailed description of the algorithm can be found in [20].

6.2 Minimizing Total Harmonic Distortion

The goal of the model problem introduced in Section 2 was to achieve a smooth
rotation of the rotor. This can be achieved by ensuring a smooth radial component
of the magnetic flux density Br = B ·n = ∇u ·τ in the air gap between the rotor and
the stator when the electric current is switched off (J3 = 0). Here, n and τ denote
the unit normal and tangential vectors on a circular path in the air gap, respectively.
For that purpose, we consider Br along this circular curve inside the air gap as a
periodic signal and decompose it into its Fourier coefficients,

Br(u)(ϕ) =
∞∑
k=1

Ak sin (ω k ϕ)+ Bk cos (ω k ϕ), (23)

where Ak , Bk ∈ R, ϕ ∈ [0, 2π ], and ω denotes the number of pole pairs of the motor.
In the motor introduced in Section 2, we have eight magnetic poles, thus ω = 4. Due
to the geometry of the motor, the coefficients Ak are approximately zero and will
be neglected. The total harmonic distortion (THD) measures the contributions of
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higher harmonics (i.e., k > 1) to the total signal, see [11]. For practical purposes,
we only consider the first N = 20 harmonics. Then, the total harmonic distortion of
Br reads

THD(Br) =
√√√√∑N

k=2 B
2
k∑N

k=1 B
2
k

,

where the coefficients Bk are according to (23). The minimization of the THD filters
out all higher harmonics. In order to make sure that the first harmonic does not
become too small, we minimize the functional

J (u) = THD(Br(u))
2

B1(Br(u))
,

where B1(Br(u)) denotes the coefficient B1 in (23). In our implementation, we
computed the Fourier coefficients by a least square approach.

Figure 3 shows the evolution of the design by using Algorithm 1 starting from
an initial design. The final design of Stage I obtained after a total of 47 iterations
is approximated by an explicit polygonal interface, which serves as an initial guess
for the shape optimization. The final design after the shape optimization procedure
together with the local mesh modification strategy introduced in Section 5.2 can be
seen in the bottom row of Figure 3. Figure 4 shows the curve Br for the initial and
the final design of both stages of the optimization procedure, and Figure 5 the final
design together with the magnetic field.

7 Conclusion

This book chapter was motivated by a concrete application from electrical engineer-
ing, the design optimization of an electric motor. We addressed the problem by a
two-stage algorithm. In the first stage, we used a topology optimization approach
which is based on the mathematical concept of the topological derivative. Here,
the derivation and efficient implementation of the topological derivative for the
optimization problem at hand, which is constrained by a nonlinear PDE, turned out
to be particularly challenging. The second stage of the global algorithm is a shape
optimization algorithm where we additionally took care to accurately resolve the
evolving material interfaces by means of a mesh modification strategy. Finally, we
showed numerical results obtained by applying the introduced algorithm to find a
motor design which exhibits very smooth rotation properties.
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Fig. 3 Top left: initial design. Top right: design after two iterations of topology optimization by
algorithm [5]. Center left: final design of topology optimization after 47 iterations. Center right:
initial design for shape optimization by approximation of topology optimization result. Bottom
left: final design of shape optimization with mesh adaptation strategy after 10 iterations. Bottom
right: zoom on modified mesh
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Fig. 4 Radial component of magnetic flux density along the air gap for initial and final designs.
Left: Stage I (topology optimization). Right: Stage II (shape optimization)

Fig. 5 Final designs after Stage II together with magnetic field lines
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Distributed Parameter Estimation for the
Time-Dependent Radiative Transfer
Equation

Oliver Dorn

Abstract The time-dependent radiative transfer equation (RTE), also called a
linear transport equation, is an integro-differential equation that is frequently used
for modeling transport processes of “particles” (or “wave packages”) through a
medium where the trajectories of the particles are affected by random absorption
and scattering processes at any location inside the medium. The probabilities that
such absorption and scattering events take place at a given location are quantified
by two parameters of the RTE, namely the absorption and scattering cross section,
which are usually unknown in many practical applications and need to be estimated
as space-dependent functions from the same set of measurements or observations.
This is the so-called inverse problem or distributed parameter estimation problem
for the RTE, which has close links to the field of PDE-constrained optimization.
Due to the complex structure and high dimensionality of the RTE, often PDE-
approximations to the RTE are employed for obtaining these estimates where
however the two distributed parameters of the RTE appear in transformed form.
In this contribution we describe some typical practical approaches for solving such
distributed parameter estimation problems for the time-dependent RTE including
some of its approximations. We highlight some difficulties encountered in the
simultaneous reconstruction of two independent distributed parameters from the
same data set.

1 Introduction

In 1905, Schuster [72] proposed a radiative transfer model for describing the
propagation of light through a foggy atmosphere. Since then the Radiative Transfer
Equation (RTE), often also called a linear transport equation or radiative transport
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equation, has been applied to a wide range of situations where energy is propagating
through a scattering environment. Examples are the propagation of light through the
atmospheres of remote stars [17, 74], the propagation of neutrons inside a nuclear
reactor [9, 24, 32, 79, 80], the coda-analysis in seismology [1, 69], the simulation
of special light effects in computer graphics [41], the radiation therapy planning
problem [11], and the imaging of optical properties inside the human body with
near-infrared light in Diffuse Optical Tomography (DOT) [5, 6]. The RTE model
is extremely versatile and powerful and is capable of describing a large variety of
physical effects. Accordingly, it is also quite complex and difficult to implement
numerically for studying such physical effects. It contains a certain number of
physical parameters related to absorption and scattering of energy packages when
propagating in the environment that need to be known a priori when doing this
modeling. Often, these physical parameters, defined over the entire domain, can
only be inferred indirectly from few observations at discrete locations that are
accessible by measurement equipment. This process of inferring medium properties
in the entire domain from few indirect observations constitutes a so-called inverse
problem or distributed parameter estimation problem which is in many cases
under-determined and ill-posed. Adding any form of a priori information into this
estimation process helps to stabilize the solution of the inverse problem and is called
regularization. We will concentrate here mainly on one particular inverse problem
which arises in DOT, with a special emphasis on the simultaneous estimation of the
absorption and the scattering cross section from the same data set. We will, however,
try to emphasize throughout the text that many of the techniques and strategies
developed in this particular application will directly apply also to many of the other
above mentioned fields where the RTE is applicable.

The remainder of this chapter is organized as follows. In Section 2, we outline
some general properties of the RTE and formulate the corresponding inverse
problem considered in this text. In Section 3, we formulate then the particular
RTE problem encountered in the specific application of DOT, and derive several
approximations to that model that can be used (and in practice often are used) for
obtaining estimates of the unknown model parameters. In particular, we outline in
this section how the parameters transform into derived parameters governing the
inverse problems of these approximations. Section 4 presents some 2-D Monte
Carlo simulations visualizing the propagation of particle populations in some
typical regimes of the RTE and thereby illustrating the validity of some of these
approximations. In Section 5, we briefly outline the derivation of the gradients
corresponding to the various models introduced in Section 3. Section 6 then briefly
mentions some alternative regularization and nonstandard optimization techniques
for the DOT inverse problem that have been addressed in the literature using this
RTE model. Section 7 finally summarizes and provides some outlook on possible
future research and open problems. We conclude by providing a list of references
for further reading, which is by far not intended to be complete. However, this list
should contain sufficient material to provide the reader with a useful starting point
for further investigations.
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2 General Results for the RTE

2.1 The Cauchy Problem of the RTE

We present first the RTE in a sufficiently general form which applies to a large
number of applications outlined above. In the time-dependent case, the RTE can be
studied conveniently using concepts of semi-group theory [22, 62]. We will outline
some general results in the following.

Let u(x, ζ, t) denote the density of particles (photons, phonons, neutrons . . . ) at
location x ∈ Ω ⊂ R3 propagating with velocity ζ ∈ V ⊂ R3 at time t ∈ [0, τ [ in a
compact domain Ω . The Cauchy Problem for the RTE is described by the evolution
equation

∂u

∂t
(x, ζ, t) + ζ · ∇u(x, ζ, t) + a(x, ζ )u(x, ζ, t) (1)

−
ˆ
V

f (x, ζ
′
, ζ )u(x, ζ

′
, t)dζ

′ = q(x, ζ, t) in Ω × V×]0, τ [

with initial condition

u(x, ζ, 0) = u0(x, ζ ) in Ω × V (2)

and boundary condition

u(x, ζ, t) = g(x, ζ, t) at Γ−. (3)

The set Γ± is defined as

Γ± := { (x, ζ, t) ∈ ∂Ω × V×]0, τ [ , ±ν(x) · ζ > 0 }, (4)

where ν(x) is the outer normal to ∂Ω at boundary point x. Similarly we obtain Γ0
by replacing ‘>’ by ‘=’. Therefore we have

∂Ω × V×]0, τ [=: Γ = Γ− ∪ Γ+ ∪ Γ0.

Often we write ζ = υθ with υ = |ζ | and θ = ζ/|ζ | ∈ S2 with S2 being the unit
sphere in R3. This has the interpretation that the particle propagates with speed υ

in direction θ . In the special case (usually assumed in DOT where scattering events
do not change the energy of the photons) that the speed is given and fixed, we also
write |ζ | =: c =const instead of υ. In this case

V = Sc := { ζ ∈ R3 , |ζ | = c = const > 0 },
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which is the sphere of radius c centered in the origin. However, when energy is lost
in scattering events the velocity is usually not constant such that we can use instead

V = Bρ := { ζ ∈ R3 , |ζ | ≤ ρ }

where ρ indicates a maximally permitted velocity (energy) in the system. In some
applications also, the situation can occur that energy or velocity is increased in a
scattering event. We will not consider such situations here.

The above defined Cauchy problem can be analyzed theoretically using Lp

spaces, p ∈ [1,∞[, for the photon density u [23]. More precisely, we introduce
the Sobolev spaces

W̃p :=
{
u ∈ Lp(Ω × V×]0, τ [), ∂u

∂t
+ ζ · ∇u ∈ Lp(Ω × V×]0, τ [),

u( . , . , 0) ∈ Lp(Ω × V ), u|Γ− ∈ Lp(Γ−, |ζ · ν| dγ dμdt)
}

where dγ is a surface measure on ∂Ω . Using these spaces, existence and uniqueness
of the solution of the Cauchy problem can be shown using semi-group theory
under certain assumptions on the physical parameters involved. For example, in the
classical theory the following assumptions are listed [23]:

a(x, ζ ) ∈ L∞(Ω × V ) with a(x, ζ ) ≥ 0,

and f (x, ζ
′
, ζ ) in (1) is a positive function with

ˆ
V

f (x, ζ
′
, ζ ) dμ(ζ ) ≤ Ma ∀(x, ζ ′) ∈ Ω × V,

ˆ
V

f (x, ζ
′
, ζ ) dμ(ζ

′
) ≤ Mb ∀(x, ζ ) ∈ Ω × V,

with positive constants Ma , Mb. The source q and initial particle distribution u0 are
assumed to satisfy

q ∈ Lp(Ω × V×]0, τ [) and u0 ∈ Lp(Ω × V )

for p ∈ [1,∞[. Existence and uniqueness of the solution (in the weak sense) of the
forward problem are then shown in [23]. Furthermore it is shown that under certain
conditions a strong solution exists. Choosing p = 1 is the most natural choice since
the 1-norm of u physically represents the total number of photons contained in the
domain at a given time. However, when solving the underlying inverse problem
often p = 2 is preferred since it imposes a convenient Hilbert space structure on the
functions spaces. For more details, we refer to [23].
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2.2 Physical Interpretation of the RTE in Applications

The time-dependent RTE stated above models the propagation of particles along
straight paths (“rays”) where also scattering is involved. A slight modification of it
can also capture propagation along curved paths [46, 54, 66, 69], which however
will not be considered here. The RTE is a balance equation which looks at an
infinitesimal volume and describes the density of particles u(x, ζ, t) as they pass
at time t through such a volume centered at position x. “Particles” can be any
countable quantity such as photons, phonons, neutrons, energy wave packages,
or vector descriptions of those, where any phase information is neglected. In its
continuous setting, though, it describes real-valued (usually positive) densities of
particles instead of an integer number of particles. The RTE model is used in a
large variety of applications such as seismology, biomedical optics, radar, neutron
physics, computer graphics, and others. Particles can have an “energy” which
is represented by the magnitude υ (sometimes called “speed”) of the “velocity”
vector ζ . By introducing the normalized direction vector θ , we can then write
ζ = υθ as already mentioned above. In a 3-D environment, both the position x

and the velocity ζ are three-dimensional, whereas time is one-dimensional, such
that particle propagation is modeled in a seven-dimensional phase space.

Scattering of particles can take place at any location in the domain with position-
dependent probabilities. Scattering is only considered as interaction with the internal
material of the volume but not with other particles, which renders the RTE being
linear. Therefore, the RTE is inappropriate for modeling the propagation of charged
particles or the modeling in gas dynamics, where the interactions with other particles
introduce nonlinearities in the model [16, 39, 40, 76]. The specific rules of what
happens in a given scattering event are application-dependent, but in principle a
particle will change the direction of propagation θ as well as energy (speed υ)
in such an event. At every location in the domain, particles are entering in an
infinitesimal volume centered at that location from all possible directions according
to the incoming flux density, can be scattered inside the volume or alternatively pass
through the volume without being affected at all by the internal structure, and then
leave the volume after an infinitesimal time step into directions specified by these
interaction laws. Particles can usually also be “absorbed” inside the infinitesimal
volume, which means they disappear completely, such that particle conservation
might not be granted. On the other hand, source terms can be contained inside
this volume which produce new particles also contributing to the outflux from
this volume. By combining the contribution of all these physical events, a balance
equation can be formulated which essentially is the time-dependent RTE. We have
described its mathematical form above in (1)–(3) and will discuss specific examples
further below.

Notice that some applications actually use time-harmonic source terms in time-
independent background media, which transforms the time-domain RTE into a
frequency-domain or time-harmonic RTE. Also, in some applications, a continu-
ously working source term is employed, such that after some short transition period
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the time-dependence might disappear and the process becomes stationary. This is
then described better by the stationary RTE. In the following, we will focus mainly
on time-dependent phenomena where the full-time-dependent RTE is necessary for
the modeling. Nevertheless, historically the stationary and time-harmonic RTE have
often been the methods of choice in many applications since the dimensionality of
the RTE in these situations is reduced. Some background on these alternative models
can be found for example in [5, 7, 57].

2.3 Integral Form of the RTE and Neumann Series Solution

Existence and uniqueness of the solutions of the RTE can also be addressed by using
its integral formulation instead of resorting to semi-group theory. This formulation
also leads directly to a number of numerical approaches for solving the RTE, and
provides valuable physical insight. We follow here [15].

By integrating (1)–(3) along characteristics we arrive at the following integral
representation of the RTE

u(x, ζ, t) = Q(x, ζ, t) +
ˆ t

0

ˆ
V

f [x − ζ(t − t
′
), ζ

′
, ζ ] · (5)

· u(x − ζ(t − t
′
), ζ, t

′
) exp

{
−
ˆ t

t
′ a[x − ζ(t − t

′′
), ζ ] dt ′′

}
dμ(ζ

′
)dt

′

with

Q(x, ζ, t) = u(x− ζ t, ζ, 0) exp
{
−
ˆ t

0
a[x− ζ(t − t

′
), ζ ] dt ′

}
(6)

+
ˆ t

0
q(x − ζ(t − t

′
), ζ, t

′
) exp

{
−
ˆ t

t
′ a[x − ζ(t − t

′′
), ζ ] dt ′′

}
dt
′
.

Any boundary condition (3) is represented here by an equivalent surface source [15]

qs(xs, ζ, t) := |ζ · ν(xs)| g(xs, ζ, t) δ(zν(xs)), (7)

where zν is a local coordinate which is perpendicular to ∂Ω in xs ∈ ∂Ω and
δ denotes the one-dimensional Dirac delta distribution. We assume that any such
qs(xs, ζ, t) is already contained in q(x, ζ, t) of (6). Equation (5) can be written in
operator form as

u(x, ζ, t) = Q(x, ζ, t) + Ku(x, ζ, t), (8)
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where K is given by the integral expression in (5). Mathematically, (5) or (8) are
examples for Volterra integral equations of the second kind. Such equations are well
known and can be solved formally by expansion in a Neumann series [15, 32]

u(x, ζ, t) =
∞∑
k=0

uk(x, ζ, t), (9)

with u0(x, ζ, t) := Q(x, ζ, t), (10)

and uk(x, ζ, t) := Kuk−1(x, ζ, t) for k ≥ 1. (11)

Certainly, criteria need to be established for when this series converges [15, 26, 63].
Physically, uk(x, ζ, t) represents the part of the flux which has been “scattered”
exactly k times.

2.4 Distributed Parameter Estimation and the Inverse Problem

The above RTE model contains two distributed parameters m1 = a and m2 = f

which are indicators of the medium properties in which the particles propagate. In
many applications, these medium properties are unknown and are the main focus
of interest. In the distributed parameter estimation problem or inverse problem
of the RTE data G (consisting for example of influx–outflux pairs related by the
albedo operator A to be defined further below) are gathered at locations accessible
to measurement equipment and then the mathematical goal is to find m1 and m2
as space-dependent functions that honor these data. Depending on the physical
and mathematical setup, it might be possible or not to reconstruct uniquely both
parameters simultaneously from the measured data. We first treat in this section the
case where uniqueness results for the inverse problem are available that come with
a constructive procedure for estimating those parameters. In later sections, we will
then outline some situations where explicit formulas for the unique recovery of two
distributed parameters are not known so far (or might not exist at all) and where
instead optimization approaches are employed for estimating those parameters
(possibly under some uncertainty) from the given data.

The theoretical analysis of inverse problems often starts with defining some kind
of “scattering operator” following general concepts introduced in [65]. This operator
maps incoming to outgoing radiation for a given bounded volume Ω and depends on
the parameter distribution inside this volume. In the framework of linear transport
theory usually, the related “albedo operator” A is used instead which is given as

A [a, f ] : u|Γ− 
→ u|Γ+ (12)

with Γ± defined in (4). This operator is mapping incoming flux to outgoing flux
through ∂Ω , and its dependence on the internal parameters a and f is indicated
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by the notation A [a, f ]. Using appropriate function spaces for u|Γ− , we can
“probe” the medium by applying a variety of incoming fluxes and measuring the
corresponding outgoing fluxes u|Γ+ .

The albedo-operator can be defined in different settings, whose technical dif-
ferences are not of much importance for our general introduction. We refer the
interested reader to [3, 7, 19, 33] and follow in the following mainly [3, 33]
neglecting some of the technical details in our brief exposition.

Some physical restrictions on the variables and parameters are necessary for
obtaining a well-defined albedo operator. Let V be an open set in R3 and let Ω
be a convex set in R3 with C 1-regular boundary. Adopting terminology from [65]
we call a pair (a, f ) admissible and regular if the following four conditions are
satisfied:

(i) 0 ≤ a ∈ L∞(R3 × V );
(ii) 0 ≤ f (x, ζ

′
, . ) ∈ L1(V ) for a.e. (x, ζ

′
) ∈ R3 × V ;

(iii) σp(x, ζ
′
) :=

ˆ
V

f (x, ζ
′
, ζ ) dζ ∈ L∞(R3 × V ).

(iv) a and f vanish for x /∈ Ω

Let similar to before Γ̃± be

Γ̃± = { (x, ζ ) ∈ ∂Ω × V , ±ν(x) · ζ > 0 }. (13)

On Γ̃± we have the measure dξ = |ν(x) · ζ |dμ(x)dζ where dμ(x) is the
corresponding measure on ∂Ω . Let u(x, ζ, t) be the solution of the evolution
problem

( ∂
∂t
− T

)
u = 0 in [0,∞[×Ω × V, (14)

u|]0,∞[×Γ̃− = g, (15)

u|t=0 = 0, (16)

where T := −ζ · ∇ − a(x, ζ ) + ´
V
f (x, ζ

′
, ζ ) . dζ

′
is treated as an operator on

Ω × V . Then the albedo operator can be defined by

A g = u|[0,∞[×Γ̃+ . (17)

Depending on assumptions on g (amongst others), A from (17) can be considered as
an operator from C 0([0,∞[;L1(Γ̃−, dξ)) to C 0([0,∞[;L1(Γ̃+, dξ)) (or suitable
L1 spaces, for details we refer to [3, 7, 12, 19, 23, 33]).

Whereas the (linear) albedo operator is mapping influxes to outfluxes at ∂Ω ,
its dependence on the parameters (m1,m2) = (a, f ) gives rise to the idealistic
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nonlinear forward mapping

Ã
RTE

: (a, f ) 
→ A [a, f ] (18)

which maps a given parameter pair (a, f ) to all possible influx–outflux pairs belong-
ing to the above described function spaces that are produced by the corresponding
albedo operator for this particular parameter choice (a, f ).

In practice not the idealistic forward map A [a, f ] is accessible via physical
measurements but only a small part of it, corresponding to a finite set of influx–
outflux pairs, which we call G(a, f ). This means, in practice, we want to determine
(m1,m2) = (a, f ) from the realistic nonlinear forward mapping

A
RTE

: (a, f ) 
→ G(a, f ) (19)

where G defines a restriction of the albedo operator to certain experimentally
feasible subsets of all possible influxes where possibly also the corresponding
outfluxes might be observed only partially depending on the available measurement
equipment. These two mappings Ã

RTE
and A

RTE
define inverse problems for the

linear transport equation, the former in an idealistic and the latter in a more practical
setting.

We will demonstrate in this contribution that practically very often the RTE is
approximated by a simpler model which has the consequence that also the idealistic
and realistic forward mappings Ã

RTE
and A

RTE
will have to be modified in order to

accommodate the assumptions inherent in those approximations.
In [19] the following uniqueness result for the inverse problem of the RTE is

stated and proven for suitable function spaces.
Let (a, f ) and (â, f̂ ) be two admissible pairs with ζ -independent a,â. Let

further Ω be an open bounded set with C 1-regular boundary such that a, â, f, f̂
vanish outside Ω̄ . If in this case the corresponding albedo operators coincide on
∂Ω then it follows a = â, f = f̂ .

Notice that this statement refers to the idealistic albedo operator (18) rather than
its realistic counterpart (19). In [19] (as well as in [12, 73]), the singular structure
of the fundamental solution of the linear transport equation is used for obtaining
constructive expressions for determining (a, f ) from complete knowledge of the
albedo operator. Thus, a practical algorithm can be derived from complete obser-
vations for uniquely calculating the unknown scattering and absorption parameters
from an idealized data set. In the terminology of the previous section, it amounts
to using the lowest-order terms of the Neumann series for the inversion making use
of the singular structure of the fundamental solution of the RTE. Physically these
singular terms correspond to unscattered and single-scattered particles only. Higher-
order terms in the Neumann series tend to be increasingly regular.

In some applications of imaging with the RTE, it is possible to extract some of
these singular parts of the fundamental solution, at least approximately, from the
measured data. This is, for example, the case in X-ray tomography where only few
scattering events take place and singularities in the source terms can survive with
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sufficient strength to be separated in the measurements from the more regular parts.
Also collimators or energy filters can be used in order to isolate certain parts of the
radiation. The standard approach is then to use the inversion of the Radon Transform
(or X-ray transform in 3-D) for uniquely estimating the attenuation distribution a(x)

inside the domain of interest from the unscattered data [55]. Information on the
scattering parameter f can then, if desired, be obtained from the additional analysis
of once or multiple scattered radiation. See, for example, [7, 12, 55] for more details
and additional information on practical aspects of this approach.

3 Forward Modeling of Transport Processes in DOT

3.1 The RTE in Biomedical Imaging

In most practical scenarios of imaging in highly scattering media, the unscattered
and single-scattered contributions highlighted in the previous section are hidden in
the noise and are dominated by the multiple scattered more regular terms. Therefore,
separating data by the number of scattering events is impossible and different
techniques need to be employed for the inversion. In particular, it is not clear in those
cases whether a unique reconstruction of two independent distributed parameters
is still possible. To make things worse, in most practical applications, only a
finite set of measurements can be taken such that the complete albedo operator
cannot be assumed known. The standard approach is here the use of optimization
techniques where parameters of the RTE or of a related forward model are estimated
as space-dependent functions from the measured data. This distributed parameter
estimation problem with two different parameters interfering with each other during
the inversion is a challenging problem where standard techniques of optimization
often fail to yield satisfactory results due to the high degree of ill-posedness of the
inverse problem and due to a strong cross talk between these two parameters. We
will outline in the following a few of the approaches that have been followed so far in
the literature and describe some of the challenges encountered in these approaches.

In DOT [4–6], the domain of interest Ω is irradiated by low-energy laser light
in the near-infrared regime which travels through this domain following the model
of an RTE. The outgoing light around the boundary of the domain of interest is
measured and defines the data of the inverse problem. It is usually assumed that
particles (photons) are propagating with constant speed c and that scattering events
will not change the speed. Moreover, it is assumed that the scattering phase function
f separates into a product of a spatial scattering cross section b and an angular
component η which only depends on the cosine of the scattering angle. We will
follow this approach and divide the RTE considered above by c to obtain the RTE
for DOT in the form
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1

c

∂u

∂t
+θ ·∇u(x, θ, t)+a(x)u(x, θ, t) = b(x)

ˆ
S2

η(θ ·θ ′)u(x, θ ′ , t)dθ ′ +q(x, θ, t),

(20)
with initial condition

u(x, θ, 0) = 0 in Ω × S2, (21)

and boundary condition

u(x, θ, t) = 0 on Γ−. (22)

Here again S2 denotes the unit sphere in R3 and we choose to model the incoming
boundary flux in (3)

g(xs, ts) :=
ˆ
S2−

u(xs, θ, ts)ν(xs) · θ dθ on ∂Ω × [0, T ] (23)

as an equivalent surface source term q in (20) instead of an incoming boundary
condition in (22) using expression (7). Here S2± denotes the subset of direction
vectors θ ∈ S2 for which±ν(xr) · θ > 0. Furthermore, (x, θ, t) ∈ R3×S2×R and

a(x), b(x), η(θ · θ ′) ≥ 0, a(x) ≥ b(x), c > 0, (24)

as well as
ˆ
S2

η(θ · θ ′)dθ ′ = 1. (25)

In many biomedical applications, the scattering phase function η(θ · θ ′) is highly
forward peaked. A popular model for these applications is the Henyey–Greenstein
(HG) scattering function in 3-D

η(θ · θ ′) = 1− g2

4π(1+ g2 − 2gθ · θ ′) 3
2

=
∞∑
n=0

2n+ 1

4π
gnPn(θ · θ ′), (26)

where Pn is the n-th order Legendre polynomial. The anisotropy factor−1 ≤ g ≤ 1
in this function has the meaning of a mean scattering cosine. g = 0 indicates
isotropic scattering, g > 0 primarily forward scattering, and g < 0 primarily
backward scattering. In biomedical applications, we have approximately 0.9 < g <

0.95 or higher which indicates highly peaked forward scattering.
Motivated by (24) we denote further

σa(x) = a(x)− b(x) ≥ 0 (27)
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which measures the probability at a given location that a particle is absorbed and
disappears completely. Obviously knowledge of a and b entails that of σa and b

and vice versa, such that we can search for any of these two parameter pairs in the
inverse problem. By introducing the scattering operator L as

L u = −u+
ˆ
S2

η(θ · θ ′)u(x, θ ′ , t)dθ ′ (28)

we can write (20) in shorter form as

1

c

∂u

∂t
+ θ · ∇u+ σa(x)u− b(x)L u = q. (29)

The outgoing flux across the boundary ∂Ω at receiver position xr and receiving time
tr for given parameters (σa, b) is given by

G[σa, b](xr , tr ) :=
ˆ
S2+

u(xr , θ, tr )ν(xr ) · θ dθ on ∂Ω × [0, T ], (30)

where u is the solution of the RTE (20)–(22) for the source q and parameters
(σa, b). Expression (30) typically corresponds to the expected measurements given
a parameter pair (σa, b). We obtain therefore the following variant of (19) for the
application in DOT

A
RTE

: (a, b) 
→ G(a, b) (31)

which due to (27) can also be formulated as (using the same symbol as before)

A
RTE

: (σa, b) 
→ G(σa, b) . (32)

When physically measured (or independently simulated) data G̃ are available for
a given source q, then we can define the corresponding residuals R[σa, b] as

R[σa, b](xr , tr ) = G[σa, b](xr , tr )− G̃(xr , tr ), (33)

describing the mismatch between predicted and measured data. One standard way
to proceed now is to write down the least-squares data misfit functional

J (m1,m2) = J (σa, b) := 1

2
‖R[σa, b]‖2

2 , (34)

and adding suitable regularization terms in order to obtain the so-called “cost
functional” of the underlying optimization problem.

Similar expressions to (34) and equivalent regularization terms are obtained for
the approximations to the RTE discussed below where (m1,m2) = (σa, b) are
replaced by the two parameters that appear in the corresponding approximation.
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Gradient-based optimization techniques then require to calculate ∇m1,m2J in each
step of an iteration. The practical calculation of these gradients clearly has an impact
on the convergence properties of each method but also on the way how different
distributed parameters are separated from each other in the inversion. We will
discuss further below some of these gradient calculation techniques and highlight
some specific features of them. Before doing so, we will outline the most common
approximations applied to this RTE-constrained optimization problem using partial
differential equations (PDEs) or systems of those instead.

We notice that those derivations as presented here are mainly based on formal
calculations, and validity of each of these approximate models, including the choice
of appropriate function spaces, needs to be justified by doing additional quantitative
analysis. In fact, for example, the diffusion approximation stated further below
comes in different flavors whose details depend on details of its formal derivation
technique. Starting point for this particular model can be either the above introduced
RTE or more fundamental models such as Maxwell’s equations, linear elasticity or
general wave equations. These aspects have been studied intensively in the literature
and we refer the reader to the list of references, for example [5, 7, 40, 61, 66, 70, 76].
We will restrict ourselves to outline just one of these different derivations, which is
based on an expansion in spherical harmonics.

3.2 The P1 Approximation

In some applications, the solution of the RTE can be approximated by systems of
PDEs considering certain lower-order angular moments of the flux density. The
PN -approximation is such a system where the positive integer N > 0 describes
the level of approximation. It can be derived from the RTE by using a spherical
harmonics expansion of the angularly dependent quantities. In this approach, we
expand

u(x, θ, t) =
∞∑
l=0

+l∑
m=−l

(
2l + 1

4π

) 1
2

ψlm(x, t)Ylm(θ), (35)

q(x, θ, t) =
∞∑
l=0

+l∑
m=−l

(
2l + 1

4π

) 1
2

qlm(x, t)Ylm(θ), (36)

η(θ · θ ′) =
∞∑
l=0

2l + 1

4π
flPl(θ · θ ′) =

∞∑
l=0

+l∑
m=−l

flY
∗
lm(θ

′)Ylm(θ) (37)

where Ylm(θ) are the (complex-valued) spherical harmonics, the Pl are Legendre
polynomials, and ∗ means “complex conjugate.” By inserting (35)–(37) into (20)
we obtain an infinite hierarchical sequence of coupled PDEs for the expansion
coefficients ψlm(x, t), qlm(x, t) and fl which can be truncated at an arbitrary level
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N > 0 in order to obtain computable approximations to the RTE. This yields
the PN -approximation to the RTE. The expressions obtained in the general PN -
approximation are lengthy such that we omit their presentation here. Instead we
refer to the detailed discussions in [5, 15, 27, 43, 81]. The lowest-order truncation
terms with N = 1 yield the P1-approximation which then can be used for deriving
the telegraph approximation and the diffusion approximation by applying further
simplifications. This will be outlined in the following.

We introduce the combined parameter

σtr (x) := a(x)− μ̄0b(x) (38)

with the “mean scattering cosine”

μ̄0 =
ˆ
S2

θ ′ · θη(θ ′ · θ)dθ ′ . (39)

We will consider in the following the three angular density moments

Φ(x, t) :=
ˆ
S2

u(x, θ, t)dθ , (40)

J (x, t) :=
ˆ
S2

θ u(x, θ, t)dθ , (41)

T (x, t) :=
ˆ
S2

θ ⊗ θ u(x, θ, t)dθ (42)

and also will make use of the angular source moments

q0(x, t) :=
ˆ

q(x, θ, t) dθ, (43)

q1(x, t) :=
ˆ
S2

θq(x, θ, t)dθ . (44)

Notice that Φ(x, t) is a scalar quantity which describes the (direction-independent)
photon density at location x and time t , whereas the vectorial term J (x, t) physically
describes a photon flux density. The symbol ⊗ denotes the tensor product of two
vectors. There is no direct physical meaning associated with the tensor T . It can be
described component-wise by

T = (Tij )i,j=1,...,n = (

ˆ
S2

θiθjudθ)i,j=1,...,n ,

where θi, θj are the cartesian components of θ , see [43]. Truncating the above
described infinite expansion at level N = 1 and using the expressions (27) and
(38) for σa and σtr , we obtain the lowest-order terms



Distributed Parameter Estimation for the Time-Dependent Radiative Transfer Equation 355

1

c

∂Φ

∂t
+∇ · J + σaφ = q0, (45)

1

c

∂J

∂t
+ ∇ · T + σtrJ = q1. (46)

In (45), (46) we have identified the lowest-order coefficients of (35) as ψ0,0 = Φ

and J = (Jx, Jy, Jz) with

Jx = 1√
2

[
ψ1,−1 − ψ1,1

]
, Jy = − i√

2

[
ψ1,−1 + ψ1,1

]
, Jz = ψ1,0 ,

where i is the imaginary unit. A similar relationship holds for (36) with respect
to q0, q1. The system (45), (46) so far does not contain any approximation and
needs to be satisfied by any solution of (20). However, it is not closed and would
refer to coefficients of degree higher than N = 1 in order to uniquely determine
the tensor T . Therefore it cannot be solved for all unknowns in a unique way. We
can formally close the system by expressing the higher order moment T (x, t) as a
linear combination of the two lower-order moments Φ, J . This can be achieved by
assuming that u(x, θ, t) depends only linearly on the angle θ . Using a projection
approach, this assumption gets the form

u(x, θ, t)
.= 1

4π
Φ(x, t)+ 3

4π
J(x, t) · θ (47)

where we introduced the notation
.= (also used in the following) to indicate that a

given quantity is replaced by a model-dependent approximation (or representation)
of it. Plugging this into the definition of T (x, t) yields then ∇ · T .= 1

3∇Φ which
eliminates the T -dependence in (45), (46). In a similar way, we can approximate

q(x, θ, t)
.= 1

4π
q0 + 3

4π
q1 · θ

assuming that the source term only linearly depends on the direction θ . Also here
q1 is a vectorial quantity analogous to J in the expansion of u. Combining these
approximations, we arrive at the (real-valued) P1-approximation of the RTE

1

c

∂Φ

∂t
+ ∇ · J + σaΦ = q0, (48)

1

c

∂J

∂t
+ 1

3
∇Φ + σtrJ = q1. (49)

(48) is a scalar equation, whereas (49) is vectorial with three components. Therefore,
the P1-approximation is a system of four PDEs in four unknowns which formally is
closed and can be solved analytically or numerically. Notice that the inverse problem
of the P1-approximation would look for σa(x) and σtr (x) instead of σa(x) and b(x)
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(or alternatively a(x) and b(x)) of the RTE using P1-interpretations of the applied
sources and measured data:

A
P 1(m1,m2) = A

P 1(σa, σtr ).

An optimization scheme would require gradient directions with respect to these two
parameters, which are actually combinations of a(x) and b(x) as seen in (27) and
(38). This will affect in particular the simultaneous reconstruction of a(x) and b(x)

from a given data set.

3.3 Approximation by a Telegraph Equation

From the P1-system (48), (49) for Φ and J a scalar second-order PDE model can
be extracted which describes the behavior of Φ(x, t) only. This PDE has the form
of a telegraph approximation. For this purpose, we define the diffusion coefficient
D by

D(x) = 1

3σtr (x)
= 1

3(a − μ̄0b)
. (50)

Using this definition (48) and (49) write as

∂Φ

∂t
+ c∇ · J + cσaΦ = cq0, (51)

3D

c

∂J

∂t
+D∇Φ + J = 3Dq1. (52)

Formal differentiation of (51) with respect to time yields

∂2Φ

∂t2
+ c∇ · ∂J

∂t
+ cσa

∂Φ

∂t
= c

∂q0

∂t
. (53)

Inserting now (52) into (53) gives

∂2Φ

∂t2 +
c2

3D
∇ · [3Dq1 −D∇Φ − J ]+ cσa

∂Φ

∂t
= c

∂q0

∂t
, (54)

such that

3D

c2

∂2Φ

∂t2 + 3D∇ · q1 −∇ ·D∇Φ −∇ · J + 3Dσa

c

∂Φ

∂t
= 3D

c

∂q0

∂t
.

By using again (51) we can furthermore eliminate ∇ · J obtaining the telegraph
approximation to the RTE
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3D

c2

∂2Φ

∂t2
−∇ ·D∇Φ + 1

c
(1+ 3Dσa)

∂Φ

∂t
+ σaΦ = q

TA
(55)

with the effective source term

q
TA
= 3D

c

∂q0

∂t
− 3D∇ · q1 + q0. (56)

It describes some form of damped wave which at the same time shows diffusive
behavior (see [22] for some general aspects of such telegraph equation models). The
front of this damped wave propagates with finite speed c in the scattering medium.
As pointed out in [79], the group velocity of the wave is however smaller than the
speed of individual particles, namely c√

3
, due to the added diffusive component.

Notice that the inverse problem of the telegraph equation would attempt to
reconstruct σa(x) and D(x) instead of σa(x) and b(x) (or alternatively a(x) and
b(x)) of the RTE:

A
TE

(m1,m2) = A
TE

(σa,D).

An optimization scheme would require gradient directions with respect to these two
parameters, which are actually combinations of a(x) and b(x) as seen in (27) and
(50). Observe also that the combination (1 + 3Dσa) in front of the first-order time
derivative term introduces a complicated structure into the inverse problem. This
will affect in particular the simultaneous reconstruction of a(x) and b(x) from a
given data set.

The telegraph equation in its complexity is not necessary in DOT once it is
accepted that only an equation for the scalar angular-independent quantity Φ(x, t)

is desired. Diffusion becomes dominant in DOT due to the physically considered
range of parameters (see the numerical simulations shown in Section 4). The wave
propagation feature is hardly observable in this application such that a much simpler
approximation is usually employed, namely a diffusion approximation, which is
described next.

3.4 Approximation by a Diffusion Equation

When putting in (52)

3D

c

∂J

∂t
≡ 0 , q1 ≡ 0 (57)

then a simpler PDE can be derived for modeling photon propagation in tissue. (57)
essentially amounts to the assumptions that the source term is fully isotropic and
that the speed of particle propagation is much larger than the diffusion coefficient
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(or, alternatively, that J varies very slowly over time). Combining the assumptions
(57) with (52) yields directly Fick’s diffusion law

J (x, t) = −D(x)∇Φ(x, t). (58)

Plugging this into (51) we obtain the diffusion equation

1

c

∂Φ

∂t
− ∇ ·D(x)∇Φ(x, t)+ σa(x)Φ(x, t) = q0(x, t). (59)

We still need to equip this new model with appropriate initial and boundary
conditions, and take care of a suitable model for the measurements, in order to
finally obtain the diffusion approximation (DA) of the RTE. This will be done in the
following section.

As already mentioned, alternative derivations of the diffusion approximation
might yield slightly different representations for the diffusion coefficient D(x). See,
for example, [5, 7, 40, 61, 66, 70, 76].

According to our assumptions, the diffusion model uses an infinite speed of
signal propagation, and furthermore is unable to model correctly the propagation of
singularities which might be contained in the applied source terms or which might
occur close to interfaces or the boundary. Therefore, sometimes a Neumann series
expansion is employed for separating unscattered and single-scattered particles
(carrying any singular behavior of the sources) from the more regular higher-order
terms, and only the higher-order terms are then represented by a diffusion model.
Also boundary regions and regions of low scattering coefficient (if present) can be
modeled by adjusting some terms in the diffusion approximation up to a certain
degree of accuracy (which is not always satisfactory, though). We refer for details
to the general references given in the introduction and the next section.

Finally we mention that, similar to the telegraph model, the inverse problem of
the diffusion approximation attempts to reconstruct σa(x) and D(x) from the given
data:

A
DA

(m1,m2) = A
DA

(σa,D).

Once these are obtained, in principle the corresponding parameters σa(x) and b(x)

of the RTE model can be deduced using (27) and (50). Practically difficulties might
arise though due to the ill-posedness and non-uniqueness of the inverse problem and
the slightly more complicated structure of (50). Moreover, standard regularization
strategies focus on σa(x) and D(x) rather than σa(x) and b(x) which might have a
negative impact on the separation of the latter parameters from each other.
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3.5 Measurements and Boundary Conditions in the Diffusion
Approximation

Any approximation used for the forward modeling of radiative transport phenomena
still needs to be able to approximate the measured data (30) reasonably well if we
want to have a chance of reconstructing the distributed parameters from measured
data in a reliable way. We will outline in the following briefly how this can be
achieved in the diffusion approximation (DA) and refer the reader for more details
to [10, 36, 40, 44, 45, 52, 53, 67].

In (47) we have seen that in the P1-approximation the flux u(x, θ, t) is linearly
approximated by

udiff (x, θ, t) := 1

4π
Φ(x, t)+ 3

4π
J(x, t) · θ . (60)

The incoming radiation I−(x, t) at position x ∈ ∂Ω and time t is then described in
the DA by

I−(x, t) =
ˆ
ν(x)·θ<0

ν(x) · θ
[

1

4π
Φ(x, t)+ 3

4π
J(x, t) · θ

]
dθ. (61)

Replacing J (x, t) in this expression by using (58) and performing the integration
the free boundary condition (22) obtains in the DA the form

I−(x, t) = −1

4
[Φ(x, t)+ 2Dν(x) · ∇Φ] = 0 (62)

or, equivalently,

Φ(x, t)+ 2D
∂Φ

∂ν
= 0 (63)

with ( ∂
∂ν
= outer normal derivative). This is a Marshak- or Robin boundary

condition. Other approximations are possible as well, see [15].
Similarly, recall that the detector measurements are given as

g(x, t) =
ˆ
S2+

ν(x) · θ u(x, θ, t)dθ (64)

for (x, t) ∈ ∂Ω ×R+. With the same approach as before and using (22) we obtain
here

g(x, t)
.=
ˆ
S2

ν(x) · θ [ 1

4π
Φ(x, t)+ 3

4π
J(x, t) · θ ] dθ.
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Applying again Fick’s law, we obtain after integration

g(x, t)
.= −Dν(x) · ∇Φ(x, t) = −D∂Φ

∂ν
(x, t). (65)

For more details see [5, 27, 57]

3.6 Fokker–Planck and δ-Eddington Approximations

We follow here closely [35]. We mentioned that in biomedical applications the
mean scattering cosine of the Henyey–Greenstein phase function (26) takes values
of approximately 0.9 < g < 0.95 or higher, which indicates highly peaked
forward scattering. These situations are difficult to model numerically with the RTE
[48] such that specific approximations have been developed in the literature for
simplifying such situations of highly peaked forward scattering. Assuming in the
following the HG scattering function in 3-D, the Fokker-Planck (FP) approximation
replaces the scattering operator L given in (28) by the easier to evaluate FP-
scattering operator

L u ≈ LFP u = 1

2
(1− g)Δθu (66)

where Δθ denotes the spherical Laplacian. Likewise, in the δ-Eddington (δE)
approximation L is replaced by

L u≈LδEu=−(1−g2)u+1− g2

4π

ˆ
S2

[
P0(θ · θ ′)+ 3g

1+ g
P1(θ · θ ′)

]
u(x, θ ′, t)dθ ′.

(67)
In both approximations, the cumbersome scattering integral of the RTE (20) is
replaced by simpler expressions, which simplifies the numerical modeling. Notice
that the unknowns of the inverse problems are still σa(x) and b(x):

A
FP

(m1,m2) = A
FP

(σa, b).

No transformation is necessary after solving the inverse problem of these approxi-
mations to obtain the original parameters of the RTE.

3.7 Monte Carlo Methods

Monte Carlo (MC) methods for modeling particle propagation in scattering media
have a long history. Using statistical sampling, the goal in these methods is to
track a large number of particles in an equivalent reference medium in order to
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find statistical estimates of the quantities of interest, for example of measured data.
The unknown parameters in the inverse problem are here probability densities of
absorption and scattering events which can be estimated using statistical estimation
theory. The MC method is extremely versatile and not limited by regularity
assumptions compared to the other models discussed so far. Moreover, it is possible
to make a direct link between quantities in the RTE and the probabilities needed
in a MC simulation such that several concepts of parameter estimation from the
theory of RTE can be applied also to the parameter estimation problem arising in
MC strategies. For more details, see [8, 18, 37, 50, 51, 71, 75, 78].

4 Numerical Simulations

We mentioned in the introduction that the RTE can model a large variety of
phenomena and we have introduced different approximations to the RTE describing
particle propagation by quite different-looking PDEs. The tool of MC simulations
(see Section 3.7) allows us to demonstrate that indeed different combinations of
parameters lead to different-looking propagation patterns of particles in the domain.
In the following figures (Figures 1, 2, 3, 4, and 5) we present some 2-D snapshots
of time evolutions that have been generated by an in-house 2-D MC simulator using
in total 5 × 107 particles doing a random walk through a rectangular domain Ω of
size 4 cm× 6 cm. For more details on the setup of this simulator, we refer to [27].

All simulations have in common that both the absorption cross section σa and
the scattering cross section b have been chosen constant over Ω . The absorption
cross section is chosen to be the same in all figures, namely σa = 0.001 cm−1,
but both the scattering cross section b as well as the scattering parameter g in a
2-D adaptation of the Henyey–Greenstein phase function (26) are varied between
different simulations. The choice g = 0 amounts here to isotropic scattering, and
g = 0.9 indicates highly forward peaked scattering.

The particle speed c has been normalized to c = 1 cm s−1. The ten snapshots
show ten different equidistant time steps t1 < t2 < . . . < t10 of the particle density
Φ(x, t) calculated by a MC version of (40). The source is an ultrashort pulse of
particles injected at time t = 0 at the center of the upper straight boundary in
the direction perpendicular to ∂Ω into this rectangular domain Ω . In the bottom
row images of the figures, different vertical cross sections of particle densities
are shown that are indicated by (coloured) lines in the corresponding snapshots at
times t2, t4, t6, t8, t10, respectively. The left-hand cross sections are taken through
the line defined by the incoming source direction which contains (amongst others)
“ballistic” (i.e., unscattered) components of the particle density. The right-hand side
images show cross sections taken slightly off this “ballistic” line. Further details are
given in the caption of each figure.

Finally, Figure 6 shows a data set obtained by running the MC simulation code
for a 2-D version of a typical DOT application. The source here is similar to
before but now located at one of the longer sides of the domain Ω . The bottom
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Fig. 1 b = 0.05 cm−1, g = 0.0. Here the ballistic (unscattered) contribution is dominant (bottom
left image) and only a small scattered side-lobe appears (bottom right image)

left figure shows the MC simulated data (30) arranged such that the vertical axis
corresponds to the boundary position (clearly showing one main lobe and three side
lobes corresponding to the four sides of Ω) and the horizontal axis corresponds
to time (increasing from left to right). The boundary position where the source is
located can be easily identified as the position where data are available immediately
at time t ≈ 0. Two cross sections are indicated in this data set by (green) lines, and
the corresponding data curves are shown on the two right-hand side plots. The upper
plot corresponds to a receiver position close to the source where a high number
of photons is detected due to its proximity to the source position. The lower plot
corresponds to a receiver position at one of the adjacent (shorter) sides of the domain
Ω which shows a relatively low number of detected photons due to the increased
distance from the source position.
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Fig. 2 b = 0.5 cm−1, g = 0.0. The scattered part becomes stronger but the ballistic contribution is
still is visible. A more spread-out “wave front” becomes visible and increased isotropic scattering
contributions give rise to more significant particle densities “behind” this wave front

5 Gradient Calculation

When solving inverse problems using gradient-based techniques, an important
question to be answered is whether we want to follow the rule “first optimize then
discretize” or “first discretize then optimize.” In the first case, some form of Fréchet
derivative or Gateaux derivative of the forward model needs to be calculated first,
usually based on so-called adjoint techniques, and then both the forward and the
adjoint continuous model (both represented by RTEs or PDEs) are discretized and
combined in order to arrive at a discretization of a “continuous descent direction.”
These obtained descent directions are closely related to so-called “sensitivities”
of the parameter-to-data maps, which play a major role in many applications
[29, 47, 49, 56]. In the second approach, first the forward problem is discretized
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Fig. 3 b = 2.5 cm−1, g = 0.9. Now scattering becomes more dominant with a highly forward
peaked scattering phase function. The corresponding photon density distribution resembles now
more a damped wave propagating inside Ω which might be well approximated by a telegraph
equation

arriving at a discrete optimization problem. Then, a gradient of the resulting finite-
dimensional problem is calculated using standard rules from optimization. Also in
this second approach, adjoint techniques are often employed, which usually lead to
matrix-based adjoints. Unfortunately, there is no guarantee that these matrix-based
adjoints coincide with the discretized version of the continuous adjoints obtained in
the first approach. In this contribution, we will only follow the first approach (“first
optimize then discretize”) and refer to general explanations regarding the second
approach to [58]. Moreover, we will only state practical expressions for derivatives
or gradients without actually proving differentiability and without (except for the
RTE itself) stating specific function spaces. Many of those details are discussed in
the cited literature.
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Fig. 4 b = 25.0 cm−1, g = 0.9. Now scattering dominates the particle propagation but due to the
highly forward peaked scattering phase function the penetration depth of the particles is still good.
The diffusion approximation seems a good model for this situation

5.1 Gradient for the RTE

Following [27, 28], we denote the function space

W∞ :=
{
z ∈ L∞(Ω × S2× [0, T ]), (∂t + θ · ∇)z ∈ L∞(Ω × S2× [0, T ]),

z|Γ+ ∈ L∞(Γ+, ν · θdσdθdt), z(x, θ, T ) = 0 at Ω × S2
}
.

Let z ∈ W∞ be the solution of the adjoint RTE

−∂z

∂t
− θ ·∇z(x, θ, t) + (σa(x)+b(x)) z(x, θ, t) − b(x)

ˆ
S2

η(θ ·θ ′) z(x, θ ′, t)dθ ′

= 0 in Ω × S2 × [0, T ], (68)
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Fig. 5 b = 25.0 cm−1, g = 0.0. This situation is similar to the one in Figure 4 but now, due to
the isotropic scattering, the penetration depth of the particles is smaller. Also here the diffusion
approximation seems a good model for this situation

with the final condition

z(x, θ, T ) = 0 on
◦
Ω ×S2 (69)

and boundary condition

z|Γ+ = z̃(x, t) := λ(x, t) ∈ L∞(∂Ω × [0, T ]) (70)

with λ(x, t) = R[σa, b](x, t). In (69) the symbol
◦
Ω denotes the open interior of the

region Ω and in (70) the residuals λ(x, t) are assumed to be applied uniformly into
all directions with θ · ν > 0. This adjoint RTE models some form of back-transport
where virtual photon densities proportional to the residual values are applied at
receiver positions and then propagated backward in time and direction into the
medium. This concept is well known in many fields and has a long history in neutron
transport, see, for example, [47].
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Fig. 6 σa = 0.025 cm−1, b = 100.0 cm−1, g = 0.9. Shown are the MC-simulated data as
explained in the text

The gradient ∇σa,bJ is now given as

∇σa,bJ (x) =
[
R
′ (σa

b

)∗
λ

]
(x) :=

( −I1(u, z; x)
I2(u, z; x) − I1(u, z; x)

)
, (71)

I1(u, z; x) :=
ˆ
[0,T ]

ˆ
S2

u(x, θ, t)z(x, θ, t) dθdt, (72)

I2(u, z; x) :=
ˆ
[0,T ]

ˆ
S2

( ˆ
S2

η(θ · θ ′)u(x, θ ′, t)dθ ′) z(x, θ, t) dθdt (73)

where u is the solution of the forward problem (20)–(22). Using the operator L
defined in (28) we can also write

∇σa,bJ (x) =
[
R
′ (σa

b

)∗
λ

]
(x) :=

⎛
⎝ − ´

[0,T ]
´
S2 uzdθdt

´
[0,T ]

´
S2(L u)zdθdt

⎞
⎠ (74)
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where the adjoint equation (68) can be written as

− 1

c

∂z

∂t
− θ · ∇z+ σa(x)z− b(x)L z = 0. (75)

The adjoint linearized residual operator R
′ (σa

b

)∗ defined by (71) or (74) is linear.
Notice that the forward and adjoint photon densities are only integrated in (71)

and (74) but not differentiated such that no strong regularity assumptions are made
on u and z. These expressions can be evaluated even if u or z are not differentiable
but contain certain singularities. For more details and numerical results see [5, 26–
29, 47, 56, 57].

5.2 Gradient for the P1 Approximation

Gradient expressions for the general PN approximation to the RTE can be obtained
either directly from the infinite system or alternatively from (71) by plugging the
PN expansions (35) of u and z into (72), (73). For more details, we refer to
[81] where numerical reconstructions are presented for N = 1, 3, 5 from data
simulated with the N = 7 model (using a frequency-domain RTE). The telegraph
approximation can be dealt with directly as well but as such it shows quite a complex
structure with respect to the unknown parameters as mentioned in Section 3.3. Due
to its close relationship to the P1 approximation, it seems easier to address the
inverse problem by the P1 approximation, or alternatively to resort to the diffusion
approximation as described next.

5.3 Gradient for the Diffusion Approximation

We consider the diffusion approximation to the RTE

∂Φ

∂t
+ σaΦ −∇ · (D∇Φ) = Q, (76)

Φ(x, 0) = 0 in Ω, (77)

Φ(x, t)+ 2D
∂Φ

∂ν
(x, t) = 0 at ∂Ω × [0, T ] (78)

with Robin boundary condition (63)

I−(Φ)(x, t) = 0 at ∂Ω . (79)
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Data G(x, t) are given by (65) as

G(x, t) = −D∂Φ̃

∂ν
(x, t) at ∂Ω × [0, T ]. (80)

We define the residual operator by

R(σa,D)(x, t) = −D∂Φ

∂ν
(x, t)−G(x, t), (81)

with Fréchet derivative denoted by R
′
(σa,D). Let furthermore g(x, t) =

R(σa,D)(x, t). Then the gradient ∇σa,DJ is given by

∇σa,DJ (x) =
(
[R′(σa,D)]∗g

)
(x) = −

ˆ T

0

(
Φz

∇Φ · ∇z
)

dt. (82)

Here [R′(σa,D)]∗ denotes the adjoint of [R′(σa,D)] and z is solution of

− ∂z

∂t
+ σaz− ∇ · (D∇z) = 0, (83)

with the final condition

z(x, T ) = 0 in Ω, (84)

and mixed boundary condition

z(x, t)+ 2D
∂z

∂ν
(x, t) = g at ∂Ω × [0, T ]. (85)

Notice that the adjoint diffusion equation mimics “back-diffusion” as an approx-
imation to “back-transport” described by the adjoint RTE in (68)–(70). It looks
backward in time the same way as the adjoint RTE does. The mixed boundary
condition (85) is similar to (70) in this approximation. Notice also that (82) contains
derivatives of u and z which require these quantities to be sufficiently smooth. These
assumptions are usually well-approximated in large parts of the computational
domain for situations with small mean free path. However, close to singular sources
or initial conditions as well as close to the boundaries of the domain, the “true”
photon distribution might not be that smooth such that sensitivities are estimated
incorrectly in those regions. Also, the presence of clear (low-scattering) regions in
the domain of interest renders these updates incorrect. For more details and some
numerical results, see [5, 6, 27, 29, 56, 57].
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5.4 Gradient for the Fokker-Planck Approximation

The gradient of the Fokker–Planck or δ-Eddington model is given as in (74) by
replacing the scattering operator L by the corresponding approximation LFP and
LδE , respectively. For more details and numerical results, see [35].

5.5 Gradient by the Monte Carlo Method

As mentioned above, a MC-based approach would suggest directly the use of
statistical estimation techniques for obtaining the corresponding parameters (prob-
abilities) of absorption and scattering events. However, due to the direct link to
concepts of the RTE, it is as well possible to proceed in a similar way as in
the optimization problem of the RTE model. The adjoint RTE can be modeled
by a so-called adjoint MC simulation which is well known from importance
sampling in nuclear reactor theory [47]. When following this approach, advantages
and disadvantages are similar as those seen when using the RTE approach. The
computational cost of MC modeling might however become quickly prohibitive if
no sophisticated computing techniques are employed (such as parallel computing
or the use of graphics processors [2]). This approach has been taken for example in
[18, 38].

6 Alternative Optimization Strategies

6.1 Shape and Topology Optimization

In some applications, additional prior knowledge about the parameter distributions
of the RTE inside a medium is available in form of structural information. For
example, in biomedical imaging, it might be known that regions of different
tissue types (indicating organs, blood vessels, muscles, etc.) are separated by sharp
interfaces and that both parameters of the RTE (or their approximations) change
values at those interfaces and might be either slowly varying or constant inside
each of these regions. In geophysical applications, these regions might indicate
geological structures such as salt domes, ancient rivers, rock structures, etc. In
those applications, it is possible to apply a region-based model to the inverse
problem where the interfaces as well as some simple internal structures need
to be reconstructed from the given data set. Such situations have been studied
intensively during the last twenty years in the inverse problems community, see,
for example, [13, 30, 31]. In these approaches, the forward model can be either
one of the above described RTE approximations or the RTE itself. The gradient
however will be replaced by a shape derivative (or shape sensitivity) that moves
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an initial shape during the optimization process into a descent direction with
respect to the chosen cost functional [25]. We refer for more details to the above
mentioned references, and in particular for applications to the time-dependent RTE
to [64]. Since additional prior information is implicitly used in those approaches,
the reconstruction task will be better posed due to the corresponding regularization
effect.

Practically, in these approaches the topology of the final shapes is unknown.
When using only shape derivatives or shape sensitivities, it is still difficult to
model the necessary changes in topology theoretically and computationally. Here
the recently developed concept of a topological derivative or topological sensitivity
provides a way of circumventing some of the related difficulties [14, 34]. This can
be combined with the shape sensitivity analysis for improving results.

A practically convenient tool for modeling the shape evolution as part of
these optimization approaches is the level set technique which has been originally
proposed in [59] in the framework of computational physics and image processing
and then was introduced into the inverse problems community in [68]. This
technique allows for a straightforward implementation of both, shape evolution and
topological changes, following the theory provided by the above mentioned con-
cepts of shape and topology optimization. For more details and further references,
see [13, 30, 31].

6.2 Sparsity-Promoting Reconstruction and
Non-Differentiable Optimization

During the last ten years or so also sparsity-promoting regularization techniques
have been developed in the literature that differ from the more classical gradient-
based scheme in that the cost functional is not differentiable [21, 42]. Also the
well-known total-variation regularization technique has been applied with good
success to a variety of inverse problems [60, 77]. Often concepts from convex
analysis are involved when solving those problems practically. Sparsity-promoting
and total variation-based regularization have been applied to the time-dependent
RTE for example in [63, 64]. We refer the reader to those publications for more
details. So far it is not clear how well these novel regularization approaches
will help to distinguish different distributed parameters from each other in the
reconstructions. However, first numerical results look promising [20, 64].

7 Summary and Suggestions for Further Research

We have outlined several approaches for estimating two distributed parameters
of the time-dependent RTE simultaneously from the same data set. Most current
approaches make use of certain approximations of the RTE when practically solving
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this task. However, the two parameters of the RTE, the absorption and the scattering
cross section, occur in transformed form in those approximations, where also
some specific characteristics (e.g., the mean scattering cosine) of the scattering
phase function might be involved, which often is inaccurately known. The general
structure of the gradients or sensitivities depends strongly on the forward model
used. This has an impact on the task of separating the corresponding two parameters
from each other in the reconstructions. So far it is not clear which approach is best
suitable for practical applications. A trade-off between practicality, computational
cost, physical or biological significance of individual parameters and mathematical
complexity of the forward problem as well as the corresponding inversion strategies
needs to be found here.

We also mention that extensions of the RTE model as outlined here to more
general situations have as well been discussed recently in the literature which
provide interesting paths for further research. For example, some structures in
the domain of interest (such as muscle fibers in the human body or fractures
and sedimentary layering in the earth) might suggest the presence of anisotropic
effects in the individual parameters of the RTE such that they cannot be modeled
as scalars anymore. Tensors need to be used and reconstructed instead. Also, the
propagation of particles might not follow straight lines but curved paths, which
renders the computational modeling more difficult. Sometimes more complicated
matching conditions at interfaces between different physical regions in the domain
of interest have to be taken into account. This includes mode conversion at interfaces
in geophysical applications where a vector-version of the RTE is employed for
modeling the propagation of elastic waves in the scattering earth, or a mismatch of
refractive index between different optical regions in DOT. Also the scattering cross
section η might be unknown or might follow more complicated physical laws than
used here. A large variety of local and global optimization techniques can be applied
to the resulting inverse problems, including statistical approaches that include the
estimation of uncertainties. Finally, there are also applications where the unknown
physical parameters might change at time scales which are in the order of magnitude
of the measurement time, which renders the inverse problem time-dependent. All the
above make this topic an interesting and broadly still open area of current and future
research.
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Abstract Full waveform inversion is a PDE-constrained nonlinear least-squares
problem dedicated to the estimation of the mechanical subsurface properties with
high resolution. Since its introduction in the early 80s, a limitation of this method
is related to the non-convexity of the misfit function which is minimized when the
method is applied to the estimation of the subsurface wave velocities. Recently, the
definition of an alternative misfit function based on an optimal transport distance has
been proposed to mitigate this difficulty. In this study, we review the difficulties for
exploiting standard optimal transport techniques for the comparison of seismic data.
The main difficulty is related to the oscillatory nature of the seismic data, which
requires to extend optimal transport to the transport of signed measures. We review
three standard possible extensions relying on a decomposition of the data into its
positive and negative part. We show how the two first might not be adapted for full
waveform inversion and focus on the third one. We present a numerical strategy
based on the dual formulation of a particular optimal transport distance yielding
an efficient implementation. The interest of this approach is illustrated on the 2D
benchmark Marmousi model.
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1 Full Waveform Inversion as a PDE-Constrained Nonlinear
Optimization Problem

Full waveform inversion (FWI) is a high resolution seismic imaging technique
which aims at reconstructing subsurface mechanical properties such as wave
velocities, density, attenuation, or anisotropy parameters, from the recording of
seismic waves at the surface. Compared to conventional tomography strategies,
based on the interpretation of arrival times only, FWI should exploit the totality
of the seismic signal, which is expected to provide higher resolution estimates
of the subsurface parameters, in the limit of half the shortest wavelength of the
propagated signal following the theory of diffraction tomography [12]. A recent
review of FWI is proposed by Virieux et al. [43]. FWI is usually formulated as
the minimization over the space of the subsurface parameters of the misfit between
predicted and observed data. The predicted data is computed through the solution
of partial differential equations (PDE) describing the seismic waves propagation. In
the simplest settings, which we consider in this study, the acoustic approximation is
adopted. Using this formalism, the problem is cast as the following PDE-constrained
nonlinear optimization problem [18, 40]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
vP

J (vP ) = g(dcal, dobs)+ αR(vP ), vP (x) ∈ C p(Ω), Ω ⊂ Rd

1

ρvP (x)2
∂ttu(x, t)− div

(
1

ρ(x)
∇u(x, t)

)
= s(x, t), (x, t) ∈ Ω × [0, T ],

dcal(xr , t) = H(u)(xr , t), (xr , t) ∈ Γ × [0, T ].
(1)

In the system (1), the spatial domain Ω is a subset of Rd , where d = 2 or d = 3,
while Γ denotes a subset of the border ∂Ω . The time interval is defined by [0, T ],
where T > 0. The control variable is denoted by vP (x): this is the pressure wave
(P-wave) velocity, which is supposed to be smooth up to a certain level of regularity
p ∈ N . The P-wave velocity is generally the main parameter to be reconstructed,
even if the density ρ(x) can also be included in the inverse problem yielding a
so-called multiparameter problem (see [32] for a review on multiparameter FWI).
The functional J (vP ) measures the misfit between predicted data dcal(xr , t) and
observed data dobs(xr , t) through a misfit measurement function g which is often
taken as the least-squares norm

g(dcal, dobs) = 1

2
‖dcal − dobs‖2

L2 . (2)

It shall be noted that this least-squares distance measure is local: each sample of
the observed data is compared with its synthetic counterpart at the same position in
the data space, neglecting any information which could come from the neighboring
samples. As a result, the least-squares distance is unable to detect shifted patterns
between two datasets.
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A regularization term R(vp), weighted by a positive coefficient α, is also
generally added to the misfit measurement to reduce the null space of the underlying
inverse problem. Usual choices for R(vP ) include prior information regularization,
or penalization of the first-order spatial derivatives (Tikhonov regularization)

R(vP ) = 1

2
‖vP − vP,0‖2

L2 , R(vP ) =
d∑

i=1

1

2
‖∂xivP ‖2

L2 . (3)

The calculated data dcal(xr , t) is computed from the solution u(x, t) of the acoustic
wave equation through the observation operator H(u). In practice, this observation
operator simply extracts the value of the wavefield u(x, t) at the receivers’ locations.

A Lagrangian function associated with the PDE-constrained problem (1) is

L(vP , dcal, u, λ1, λ2) = g(dcal, dobs)+ αR(vP )

+
ˆ
xr∈Γ

ˆ T

0
(dcal(xr , t)−Hu(xr , t)) λ2(xr , t)dxrdt

+
ˆ
x∈Ω

ˆ T

0

(
1

ρv2
P

∂ttu(x, t)

− div

(
1

ρ
∇u(x, t)

)
− s(x, t)

)
λ1(x, t)dxdt

(4)

First-order Karush-Kuhn-Tucker conditions give necessary conditions to charac-
terize the solution of (1). They are obtained by canceling the first-order partial
derivatives of the Lagrangian operator.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2

ρv3
P

ˆ T

0
∂ttu(x, t)λ1(x, t)dt + α∇R(vP ) = 0

dcal = H(u)

1

ρv2
P

∂ttu− div

(
1

ρ
∇u
)
= s

λ2 = −∂dcal g(dcal, dobs)

∂ttλ1 − ρv2
P div

(
1

ρ
∇λ
)
= −∂uH(u)λ2

(5)

(6)

(7)

(8)

(9)

Instead of solving the Karush-Kuhn-Tucker system iteratively through a Newton
algorithm, a “reduced space” method is preferred [31] for efficiency. The misfit
function J (vP ) is minimized following iterative local optimization methods for
smooth nonlinear functions, which rely on the ability to compute its gradient
∇J (vP ). This gradient is computed from the equation
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∇J (vP ) = − 2

ρv3
P

ˆ T

0
∂ttu(x, t)λ1(x, t)dt + α∇R(vP ), (10)

where fields u(x, t) and λ1(x, t) are obtained through the solution of the Equations
from (6) to (9). In particular, using the L2 norm for the definition of the misfit
measurement function g yields the simple expression

λ2 = −(dcal − dobs). (11)

The reduced space method thus yields an efficient strategy to compute the gradient
∇J (vP ). This technique, also introduced as the adjoint-state method within the
optimal control theory [21], has been known for a long time in seismic imaging
[9] and in weather forecasting [19]. A review of the adjoint-state method and its
application in seismic imaging has been proposed by Plessix [34].

Among different minimization strategies, the nonlinear conjugate gradient
method, the quasi-Newton l-BFGS [30], or the truncated Newton approach [29]
are used to solve the FWI problem (see [25] for a review of standard minimization
algorithms used in FWI).

Since its introduction in the 80’s, one of the main challenges for FWI is related
to the non-convexity of the P -wave velocity reconstruction problem. For practical
applications, the size of the discrete problem prevents the use of global or semi-
global optimization strategies (Monte-Carlo or genetic algorithms, for instance): in
2D, the number of unknowns easily reaches O(106), in 3D this number grows up to
O(109). The use of local optimization strategies thus requires to start the iterative
process from a vP model close enough from the solution, otherwise the method
converges to a local minimum. Wave physics analysis provides useful information
to better assess what are the requirements that an initial model should satisfy to
ensure the convergence toward the global minimum.

The non-convexity of the misfit function with respect to the P -wave velocity
is related to the choice of the function g(dcal, dobs) to measure the discrepancy
between observed and calculated data. Seismic observations are in essence oscil-
latory signals. Macroscale P-wave velocity perturbation mainly affects the seismic
data by modifying the propagation time rather than the amplitude of the seismic
events [16]. As a result, observed and calculated data mainly differ through time-
shifts of the different seismic arrivals. The function g(dcal, dobs) should thus be
convex with respect to these time-shifts. This is not the case for the L2 distance
which is used in practice. This is illustrated in Figure 1 where the seismic data
is schematically represented as a periodic sinusoidal signal. When the signals are
shifted by a multiple of one period of the signal, the L2 differences between the
signals reach a local minimum: this is what is referred to a cycle skipping, or
phase ambiguity problem, in the FWI community. Avoiding these local minima thus
requires to start the minimization from less than half-a-phase shift. In other words,
the initial velocity model should be sufficiently accurate to predict the kinematic of
the wave propagation up to half-a-phase shift.
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Fig. 1 Schematic example of the cycle skipping/phase ambiguity issue on sinusoidal signals. As
soon as the initial shift is larger than half a period of the signal, the fit of the signal using a least-
squares distance is performed up to one or several phase shifts. One may try to fit the n+ 1 dashed
wriggle of the top signal with the n continuous wriggle of the middle signal moving to the wrong
direction. The bottom dashed signal predicts the n wriggle in less than half-period leading to a
correct updating direction (figure from [44])

Mitigating this non-convexity has been the aim of numerous methods proposed
during the past decades. Three main lines of investigation have been followed. The
first one relies on the design of hierarchical schemes. The data is interpreted through
a sequence of FWI problems, the estimation obtained from the problem i being used
as an initial guess for the problem i+1. For each FWI problem, only a subset of the
data is interpreted. The usual data decomposition is performed in the frequency
domain: the data is interpreted from low-to-high frequencies. Low frequency
components of the signal have a larger period, therefore the requirement on the
initial model to fit the observed data within half-a-period of the signal is partially
relaxed. Additional level of hierarchy can also be applied (time-windowing and
offset selection, for instance) following layer stripping approaches [8, 35, 37]. The
second line of investigation is based on the modification of the misfit measurement
function g(dcal, dobs). Cross-correlation functions have been first investigated [23],
and later on warping techniques [15], deconvolution approaches [22, 45] as well
as envelope and phase separation [6, 14]. The third line of investigation relies on
probing the consistency of the velocity model by building reflectivity images using
different subset of the data. The velocity is updated such that the different reflectivity
images become similar (see [39] and references therein for a review). These methods
are known as (extended) image-domain techniques.
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None of these approaches has completely overcome the cycle skipping or phase
ambiguity problem. Hierarchical approaches relax the constraint on the accuracy of
the initial velocity model by working first at low frequencies; however, this strategy
is limited by the lowest available frequency, which is most of the time not low
enough to sufficiently constrain the model. The different modifications of the misfit
function proposed so far also enables to start from an initial velocity model further
away from the solution; however, this is often at the expense of the resolution of
the final estimation. Image-domain techniques also exhibit interesting properties in
terms of convexity of the misfit function; however, the computation cost associated
with the repeated computation of reflectivity images seems to preclude their use to
large-scale datasets, especially in 3D configuration.

In this study, we discuss how optimal transport distances could be used to define
an alternative misfit function measurement g in the framework of FWI. In particular,
these distances provide natural tools to go beyond the point-to-point comparison
underlaid by the least-squares distance by performing global comparison. The field
of optimal transport has been very active in the last years, as testified by the number
of textbooks published on this topic recently [2, 36, 41, 42]. Recent applications
in image processing demonstrate the interest of optimal transport distance to
compare images, notably for its ability to detect shifted patterns from one image
to another [20]. We discuss what are the main difficulties when applying optimal
transport distance for the comparison of seismic data. In particular, we show that
the oscillatory nature of the seismic data requires to extend optimal transport to
the comparison of signed measures, which is a nontrivial problem. We review three
different propositions found in the literature relying on the decomposition of the
data in its positive and negative part. We show how the two first options might not be
adapted for full waveform inversion. We thus focus on the third possibility and show
how an efficient implementation can be obtained, as we have presented it in previous
studies [26, 28]. We present numerical results obtained on the 2D Marmousi case
study, a benchmark in the seismic imaging community, which illustrate the interest
of this approach.

In Section 2, we discuss the optimal transport problem formulation for positive
measures and present a state-of-the-art for its extension to the comparison of signed
measures. In Section 3, we present the alternative strategy we have promoted in
previous studies and its application to the 2D Marmousi case study. Conclusion and
perspectives are given in Section 4.

2 Optimal Transport for Full Waveform Inversion

2.1 Basics on Optimal Transport

Optimal transport has its roots in the work of a French scientist named Gaspard
Monge, in an attempt to devise the best strategy to move piles of sand to a building
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site. The aim was to minimize the volume of the sand to be displaced as well as the
distance on which it had to be displaced. In modern mathematics, an expression of
this problem is the following. Consider two probability measures μ ∈ P(X) and
ν ∈ P(Y ) (μ would represent the initial configuration of sand and ν the targeted
one). We consider the mapping T (x) from X to Y such that

{
X −→ Y

T : x −→ T (x),
(12)

The push forward distribution of μ through the mapping T is denoted by T#μ, such
that for any measurable subset A ⊂ Y , we have

(T#μ) (A) ≡ μ
(
T −1(A)

)
= ν(A). (13)

In this framework, the original Monge problem is formulated as

inf
T

{ˆ
X

||x − T (x)||dμ(x), T#μ = ν

}
. (14)

This problem has not necessarily a solution, and when the solution exists, it is
difficult to compute because of the nonlinear constraint T#μ = ν.

A relaxation of this problem has been proposed by Kantorovich [17], under the
form

inf
γ

{ˆ
X×Y

c(x, y)dγ (x, y), γ ∈ Π(μ, ν)

}
, (15)

where the ensemble of transport plans Π(μ, ν) is defined by

Π(μ, ν) = {γ ∈P(X × Y ), (πX)# γ = μ, (πY )# γ = ν} . (16)

The operators πX and πY are the projectors on X and Y , respectively. This relaxation
is the cornerstone of modern application of optimal transport as the problem (15)
has always a solution which coincides with the one of the original Monge problems
when this one exists. The problem (15) generalizes (14) in the sense that, instead
of considering a mapping T transporting each particle of the distribution μ to the
distribution ν, it considers all pairs (x, y) of the space X × Y and for each pair
defines how many particles of μ go from x to y.

In discrete form, the Kantorovich problem becomes a linear programming
problem of the form

min
γij

∑
ij

γij cij , γ ∈ Π(μ, ν) (17)
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where

Π(μ, ν) = {γ ≥ 0,
∑
j=1

γij = μi,
∑
i=1

γij = νj } (18)

The entry γij represents how much mass should be moved from xi to yj while
cij measures the distance between xi to yj . The constraint ensures that the initial
distribution is equal to μ while the transported distribution through the transport
plan γ is equal to ν.

Of particular interest, optimal transport induces distances between distribution,
named as Wasserstein distances or earth mover’s distances (EMD). They are
defined by

Wp(μ, ν) =
⎛
⎝min

γij

∑
ij

γij‖xi − yj‖p, γ ∈ Π(μ, ν)

⎞
⎠

1/p

(19)

One interest for using such distance for signal processing applications is their ability
to detect shifted pattern from one signal to another. This property is also referred to
in the literature as the fact that Wp distances should be seen as “horizontal distances”
while Lp distances should be seen as “vertical distances” [36]. The Wp distance
between two shifted probability distributions is convex with respect to this shift,
while the Lp distance is insensitive to this shift.

2.2 Applying Optimal Transport for the Comparison of Seismic
Data: The Difficulty of Transporting Signed Measures

The existence of a solution to the optimal transport problem (16) depends on two
assumptions that shall be satisfied by the measures μ and ν

1. μ and ν shall be positive
2. μ and ν shall have the same total mass

ˆ
X

dμ(x) =
ˆ
X

dν(x). (20)

In this section, for the sake of simplicity, we assume that the two measures μ and ν

are defined on the same space X . This is the case when μ and ν represent seismic
data. Seismic data do not satisfy the positivity requirement due to its oscillatory
nature. However, the zero frequency component of each seismic trace is zero

∀xr ,
ˆ T

0
dcal(xr , t)dt =

ˆ T

0
dobs(xr , t)dt = 0. (21)
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Therefore, we have

ˆ
xr

ˆ T

0
dcal(xr , t)dtdxr =

ˆ
xr

ˆ T

0
dobs(xr , t)dtdxr = 0. (22)

Thus, interpreting seismic data as density functions, Equation (22) shows that the
seismic data satisfy the second assumption: observed and calculated data have the
same total mass, which is zero.

The main difficulty to apply optimal transport to the comparison of seismic data
thus relies on the non-positivity of the seismic data. This is a well-identified issue
in the optimal transport community. The question how to extend optimal transport
to signed measures is investigated in particular by Ambrosio et al. [2] and Mainini
[24]. Mainini makes use of the following Jordan-Hahn decomposition,

μ = μ+ − μ−, (23)

where μ+ (respectively, μ−) is the positive part of μ (respectively, the negative part
of μ). Three strategies are reviewed in [24] to extend optimal transport to signed
measures. The corresponding extension of the Wp distances to signed measures
is introduced as Wp,i(μ, ν), i = 1, 2, 3 in the following. The three strategies
proposed by Mainini are

1. Transport separately the positive and negative part of the measures

Wp,1(μ, ν) = Wp(μ
+, ν+)+Wp(μ

−, ν−) (24)

2. Transport the absolute value of the measures

Wp,2(μ, ν) = Wp(|μ|, |ν|) (25)

3. Perform the decomposition

Wp,3(μ, ν) = Wp(μ
+ + ν−, ν+ + μ−) (26)

The first strategy, which might appear as the more intuitive, is the one proposed
originally by Engquist and Froese [13]. It is successfully applied to the comparison
of two time-shifted Ricker functions. The function W 2

2,1(μ, ν) exhibits a quadratic
convexity with respect to the time-shift between the two Ricker functions (Figure 2).
Two drawbacks can nonetheless be identified. First, the mass conservation between
positive and negative parts of the measure is not ensured. Second, there is no obvious
reason that the positive and negative parts of the seismic data should be uncorrelated.
For realistic application, the source wavelet s(x, t) is not known, and a prior source
estimation is required to perform FWI. Hence, we can expect this decomposition to
be strongly sensitive to errors in this source wavelet estimation.
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Fig. 2 Computation of the misfit function between two time-shifted Ricker signals depending
on the time-shift, using a least-squares distance and an optimal transport distance. While the
least-squares distance yields a non-convex misfit function with two local minima aside the
global minimum at zero time-shift, the optimal transport distance yields a perfectly convex misfit
function [13]

The second strategy is straightforward to apply; however, the mass conservation
between |μ| and |ν| is also not ensured. In addition, FWI misfit functions relying
on the absolute value of the data lose the sensitivity to the polarity of the signal.
As a result, positive or negative impedance contrasts cannot be distinguished. This
prevents from the correct interpretation of reflected waves.

The third strategy comes from the decomposition

μ− ν = (μ+ + ν−
)− (ν+ + μ−

)
. (27)

This method seems appealing as, for any μ and ν satisfying the mass conservation
assumption, one has

ˆ
X

dμ+ − dμ−(x) =
ˆ
X

dν+(x)− dν−(x), (28)

therefore ˆ
X

dμ+ + dν−(x) =
ˆ
X

dν+(x)+ dμ−(x), (29)

and the mass conservation is ensured for the distance Wp,3.
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We thus see that the mass conservation assumption is not satisfied in the
definition of Wp,1,Wp,2. This might not be a shortcoming as severe as the one
associated with the transport of signed measures as several possibilities exist to
extend optimal transport to situation where the mass conservation is not ensured,
known as partial optimal transport. However, the correlation between the negative
and positive part of the seismic data is not accounted for using Wp,1. The sensitivity
to the polarity of the seismic data is lost using Wp,2. These two drawbacks are
severe. On the other hand, Wp,3 is based on a formulation for which the mass
conservation is ensured and only positive measures are compared. For this reason,
we are interested in investigating the use of this strategy for FWI.

2.3 A Strategy Using the W1 Distance in Its Dual Form

2.3.1 Link Between the Dual W1 Distance and the Mainini Decomposition

As the size of seismic data easily reaches several millions of discrete parameters for
realistic FWI applications, we need to design a numerical strategy for large-scale
optimal transport problem with at most quasi-linear complexity.

Standard approaches for fast optimal transport computation encompass

• the direct solution of the Monge-Ampère equations [33]
• the solution of a fluid dynamic problem following the Benamou-Brenier formu-

lation [3]
• the solution of a regularized optimal transport problem following an entropic

regularization strategy [4, 11]

The last of this strategy can be applied for the computation of general Wp distances,
while the two first strategies are dedicated to the computation of the W2 distance.

Instead of relying on these developments, we rather propose another fast optimal
transport computation technique, dedicated to a particular instance of the W1
distance. The reason we focus on the W1 distance is related to the Mainini technique,
described in the previous paragraph, we want to apply. We explain it in the
following.

The very important duality result due to [17] states that the Kantorovich optimal
transport problem (16) is equivalent to the maximization problem

max
ϕ,ψ

ˆ
X

ϕ(x)dμ(x)+
ˆ
X

ψ(x)dν(x), ϕ(x)+ ψ(x′) ≤ c(x, x′). (30)

In the particular case of the W1 distance, the dual problem (30) can be expressed
using a single potential function ϕ(x) as

max
ϕ∈Lip1(X)

ˆ
X

ϕ(x)d(μ− ν)(x), (31)
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where the space of 1-Lipschitz function over X is denoted by Lip1(X). This
simplification comes from the fact that for W1, we have

c(x, y) = |x − y| (32)

which is itself a distance over X ×X (see [36] for a complete proof). Note that this
is not the case for Wp distances with p > 1.

Interestingly, using this duality result, we see that

W1,3(μ, ν) = W1(μ
+ + ν−, ν+ + μ−)

= max
ϕ∈Lip1(X)

ˆ
X

ϕ(x)d(μ+ + ν− − ν+ + μ−)(x),

= max
ϕ∈Lip1(X)

ˆ
X

ϕ(x)d(μ− ν)(x)

= W1(μ, ν)

(33)

This equality is important, as it reveals that through its particular dual formula-
tion, the distance W1 (31) can be computed for signed measures satisfying the mass
conservation assumption (22). Indeed, as it is mentioned in [20] and [5, 8.10.viii],
the problem

max
ϕ∈Lip(X)

ˆ
X

ϕxdμ(x), (34)

defines the norm ‖μ‖∗KR on the space of signed measures with first-order moment
equal to zero

ˆ
X

dμ(x) = 0. (35)

We have mentioned that for seismic data, the measure μ− ν satisfies (35), therefore
we have

{
max

ϕ∈Lip1(X)

ˆ
X

ϕ(x)d(μ− ν)(x),

}
= ‖μ− ν‖∗KR (36)

In addition, this shows that the Mainini decomposition is directly embedded in the
dual formulation of W1 as soon as signed measures are involved.

This has the following important advantage for our application: there is no need
to numerically perform the Jordan-Han decomposition into positive and negative
part of the data to compute our misfit function. This could be problematic as we
minimize this misfit function through local optimization strategies for differentiable
functions, relying on the gradient and the Hessian of this function. As the Jordan-
Han decomposition is not differentiable (by definition), the resulting misfit function
would not be differentiable, and we would need to use optimization strategies for
non-smooth misfit functions.
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Note that in the case the mass conservation assumption is not satisfied, the norm
‖.‖∗KR can be easily extended to the Kantorovich-Rubinstein norm, defined by

‖μ−ν‖KR =
{

max
ϕ

ˆ
X

ϕ(x)d(μ− ν)(x), ϕ(x) ∈ Lip1(X), ‖ϕ‖∞ < 1

}
(37)

This problem admits a solution even in the case μ − ν does not satisfy (35). It
might be more flexible to use for realistic application as the mass conservation is
satisfied only at machine precision, which might occur instabilities when using the
formulation (31).

In a series of articles [26–28], we have investigated the use of this Kantorovich-
Rubinstein norm for realistic FWI applications. In the following, we summarize the
numerical method developed in these studies to compute this norm.

2.3.2 Numerical Method

We consider in the following the computation of the Kantorovich-Rubinstein norm
for dobs(xr , t)− dcal(xr , t). In discrete form, this is equivalent to the solution of the
problem

max
ϕrn

Nr∑
r=1

Nt∑
n=1

ϕrn ((dobs)rn − (dcal)rn) ,

∀r, n, r ′, n′ |ϕrn − ϕr ′n′ | ≤ ‖(xr , tn)− (x′r , t ′n)‖,

∀r, n, |ϕrn| ≤ 1

(38)

where the integer r is the index associated with the receiver coordinate xr and the
integer n is the index associated with the time coordinate t .

We denote by N = Nr × Nt the total number of discrete samples associated
with one dataset. In this framework, the computation of the Kantorovich-Rubinstein
norm is a linear programming problem with O(N) unknowns and O(N2) con-
straints. For realistic application, N easily reaches O(106), already for 2D problems.
It is therefore important to reduce the number of constraints of the problem to reach
feasible complexity algorithms.

With this purpose, we focus on the particular case where, instead of the Euclidean
distance ‖.‖, we use the !1 distance we denote by |.| to measure the distance between
(xr , tn) and (x′r , t ′n). In [28], we show that satisfying the N2 constraints

∀r, n, r ′, n′ |ϕrn − ϕr ′n′ | ≤ |(xr , tn)− (x′r , t ′n)| = |xr − x′r | + |tn − t ′n| (39)

is equivalent to satisfying the 2N constraints

∀r, n |ϕrn − ϕr+1,n| ≤ |xr − xr+1| |ϕrn − ϕr,n+1| ≤ |tn − tn+1| (40)



390 L. Métivier et al.

This is simply due to the “Manhattan” property of the !1 norm. This yields the
following !1 Kantorovich-Rubinstein problem

max
ϕrn

Nr∑
r=1

Nt∑
n=1

ϕrn ((dobs)rn − (dcal)rn) , ∀r, n

|ϕrn − ϕr+1,n| ≤ |xr − xr+1|

|ϕrn − ϕr,n+1| ≤ |tn − tn+1|

|ϕrn| ≤ 1

(41)

which is a linear programming problem with O(N) unknowns and O(N) con-
straints.

In [28], we have detailed how this problem can be recast as the convex non-
smooth optimization problem

max
ϕ

f1(ϕ)+ f2(Aϕ), (42)

where

f1(ϕ) =
Nr∑
r=1

Nt∑
n=1

ϕrn ((dobs)rn − (dcal)rn) , f2(ψ) = iK(ψ). (43)

The function iK is the indicator function on the unit hypercube K such that

iK(x) =
∣∣∣∣ 0 if x ∈ K

+∞ if x /∈ K,
(44)

The operator A is the rectangular real matrix

A = [Dxr Dt IN
]T

, (45)

where IN is the real identity matrix of size N and Dxr , Dt are the forward finite-
difference operators

⎧⎪⎨
⎪⎩
(
Dxr ϕ

)
rn
= ϕr+1,n − ϕrn

Δxr
,

(Dtϕ)rn =
ϕr,n+1 − ϕrn

Δt
,

(46)

Efficient strategies based on proximal splitting can be used to solve problems
such as (42), where the functions fi might not be differentiable. Among several
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γ > 0, y0
1 = 0, y0

2 = 0, z0
1 = 0, z0

2 = 0;
for n = 0, 1, . . . do

ϕk = (IN + AT A
)−1 [(

yk1 − zk1

)+ AT
(
yk2 − zk2

)]
;

yk+1
1 = proxγf1

(
ϕk + zk1

)
;

zk+1
1 = zk1 + ϕk − yk+1

1 ;
yk+1

2 = proxγ iK
(
Aϕk + zk2

)
;

zk+1
2 = zk2 + Aϕk − yk+1

2 ;
end

Algorithm 1: SDMM method for the solution of the problem (42)

possibilities, we choose the simultaneous direction method of multipliers (SDMM),
which is well described in [10], for its good convergence properties. The method
can be summarized as the Algorithm 1. The proximity operator can be seen as
the generalization of the convex projection operator. For a given function f , it is
defined as

proxf (x) = arg min
y

f (y)+ 1

2
‖x − y‖2

2, (47)

For the particular case of the function f1 and f2, closed-form formulations exist

proxγf1
(ϕ) = ϕ − γ (dobs − dcal), (48)

∀i = 1, . . . , P ,
(
proxγf2

(x)
)
i
= (proxiK (x)

)
i
=
∣∣∣∣∣∣
xi if −1 ≤ xi ≤ 1
1 if xi > 1
−1 if xi < −1.

(49)

The closed-form formulations (48) and (49) are inexpensive to compute with an
overall complexity in O(N) operations. However, the SDMM algorithm requires
the solution of a linear system involving the matrix I +ATA. In [28], we show that
the matrix ATA is a second-order finite-difference discretization of the Laplacian
operator with homogeneous Neumann boundary conditions. Therefore, these linear
systems can be solved in O(NlogN) complexity using fast Fourier transform-
based algorithms [38], or in O(N) complexity using multigrid strategies [1, 7].
The combination of the reduction of the number of constraints using the property
of the !1 distance and the observation that the matrix I + ATA appearing in the
SDMM strategy actually corresponds to the discretization of the Poisson’s equation
offers the possibility to design an efficient numerical method to compute the !1
Kantorovich-Rubinstein norm for large-scale problems.

Following the notations used in Section 1, the use of the !1 Kantorovich-
Rubinstein as the misfit measurement function for FWI implies that

g(dobs, dcal) = ‖dcal − dobs‖KR (50)
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The computation of the gradient of the resulting misfit function only requires the
definition of the source of the adjoint field λ1(x, t) through

∂‖dcal − dobs‖KR

∂dcal
(51)

Interestingly, following the definition of ‖dcal − dobs‖KR , if we denote by ϕ the
solution of the maximization problem (42), we have

∂‖dcal − dobs‖KR

∂dcal
= ϕ (52)

As a consequence, the computation of the solution to the problem (42) yields
simultaneously the value of the misfit function, through the value of the criterion
at the maximum, as well as the quantity ϕ required to compute the gradient of the
misfit function through the adjoint-state approach. The solution of a single optimal
transport problem per seismic source is thus required at each iteration of FWI.

3 Example of Application of the Kantorovich-Rubinstein
Norm to FWI

In order to illustrate the property of the Kantorovich-Rubinstein norm for the
interpretation of seismic data, we first reproduce the experiment proposed in [13]
where the distance between shifted in time Ricker signal is computed using the L2

distance and the W2 distance applied to the positive and negative part of the Ricker
separately. Here, instead of the W2 distance, we compute directly the Kantorovich-
Rubinstein distance without separating positive and negative parts of the signal. The
results are presented in Figure 3. Compared to the least-squares distance, a single
minimum is recovered. However, the convexity of the misfit function with respect to
the time-shift is lost. The loss of convexity is due to the signed nature of the Ricker
signal (presence of negative values). One could expect optimal transport to be able
to detect that the same pattern is shifted when comparing the Ricker, and that the
W1 distance would be proportional to this shift. This is not the case, which results
from the presence of negative values. However, an important feature is preserved,
with respect to the L2 distance: a single minimum is obtained, while the L2 distance
displays two local minima aside the global minimum. This prompts us to test the
use of the Kantorovich-Rubinstein norm to a more realistic case study.

To this purpose, we consider the Marmousi model presented in Figure 4(a).
A synthetic dataset is computed in the 2D acoustic constant-density approximation.
A fixed-spread surface acquisition is used, with 128 sources each 125 m and 168
receivers each 100 m, at 50 m depth. A Ricker source function centered on 5 Hz is
used to generate the synthetic dataset. The frequency content of the source is high-
pass filtered below 3 Hz to mimic realistic seismic data. In practical application,
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Fig. 3 Computation of the misfit function between two time-shifted Ricker signals depending
on the time-shift, using a least-squares distance (black) and the Kantorovich-Rubinstein distance
(red). We recover a single minimum; however, compared to the optimal transport distance used by
Engquist and Froese [13], the convexity of the misfit function is lost

Fig. 4 Marmousi model case study. Exact model (a), initial model 1 (b), initial model 2 (c), results
obtained with the L2 distance starting from model 1 (d), from model 2 (e), results obtained with
the !1 Kantorovich-Rubinstein distance starting from model 1 (f), from model 2 (g)

this frequency band is contaminated by noise, and therefore filtered out before
inversion. Two initial P-wave velocity models are considered: the first contains
the main features of the exact model, only with smoother interfaces (Figure 4(b)).
The second is a strongly smoothed version of the exact model with very weak
lateral variations and underestimated growth of the velocity in depth (Figure 4(c)).
Starting from these two initial models, we compare the FWI results obtained
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using a least-squares distance and the !1 Kantorovich-Rubinstein distance. The
minimization is performed using the l-BFGS algorithm [30] implemented in the
SEISCOPE optimization toolbox [25].

These results are presented in Figure 4(d–g). Starting from the first initial model,
a correct estimation of the P-wave velocity model is obtained, using both the L2

distance (Figure 4(d)) and the !1 Kantorovich-Rubinstein distance (Figure 4(f)).
The estimation of the low velocity zone at x = 11 km, z = 2.5 km is slightly
improved using the !1 Kantorovich-Rubinstein distance, as a high velocity artifact
located in this zone is computed using the L2 estimation. Starting from the second
initial model, only the results obtained using !1 Kantorovich-Rubinstein distance
are meaningful (Figure 4(g)). The poor initial approximation of the P-wave velocity
is responsible for the cycle skipping effect and the L2 estimation corresponds to a
local minimum of the misfit function (Figure 4(f)). The estimation obtained with
the !1 Kantorovich-Rubinstein distance is significantly closer from the true model,
despite low velocity artifacts in the shallow part at x = 1.5 km, z = 1 km and in
depth at x = 12 km, z = 3.4 km. This example illustrates the potential of optimal
transport for FWI: starting from a very crude approximation of the P-wave velocity,
a meaningful estimation is computed. In the same configuration, FWI based on the
least-squares distance fails and produces a heavily cycle skipped estimation.

4 Conclusion and Perspectives

The use of optimal transport distances for seismic imaging is promising. Comparing
seismic data through these distances should yield more convex misfit functions
with respect to the P-wave velocity parameter. However, the application of optimal
transport to the comparison of seismic data requires the extension of the standard
optimal transport problem to the transport of signed measures, which is not
straightforward. Standard decomposition techniques proposed in [24], which are
based on the negative and the positive part of the data, either are not adapted to FWI
(separate transport of the positive and negative part, transport of the absolute value
of the data) or lose the convexity property with respect to time-shifts which is one
of the key properties one would like to satisfy for FWI.

Nonetheless, in the particular case of the dual formulation of the W1 distance,
the optimal transport distance can be related to a norm in the space of signed
measure, the Kantorovich-Rubinstein norm. Hence, it can be directly use to compare
seismic data. This is the strategy we have followed in previous works and which is
summarized in this study. The results are encouraging. The resulting misfit function
is not convex with respect to time-shifts, however, it already allows to start the FWI
process from more crude initial velocity model, which denotes a wider valley of
attraction of the misfit function. This method has been already successfully applied
to 2D synthetic datasets in the context of deep water salt structures imaging (BP
2004 case study) and reflection dominated data (Chevron 2014 case study) [27] as
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well as to a 3D synthetic dataset (SEG/EAGE overthrust model) [28]. The method
should now be applied to 2D and 3D real datasets to further investigate the interest
of this strategy for FWI.

Despite the interesting results provided by the Kantorovich-Rubinstein norm, the
convexity property of the optimal transport distance with respect to shifted patterns
on the data one could expect is lost. Further investigations are thus required to
assess the feasibility of the design of a misfit function, based on optimal transport,
adapted to the comparison of seismic data, which would benefit from this convexity
property. Among different possibilities, one could think of the construction of
positive observable from the seismic data, such as its envelope, which could thus
be compared through Wp distances.
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Exploiting Sparsity in Solving
PDE-Constrained Inverse Problems:
Application to Subsurface Flow Model
Calibration
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Abstract Inverse problems are frequently encountered in many areas of science
and engineering where observations are used to estimate the parameters of a
system. In several practical applications, the dynamic processes that take place
in a physical system are described using a set of partial differential equations
(PDEs), which are typically nonlinear and coupled. The inverse problems that arise
in those systems ought to be constrained to honour the governing PDEs. In this
chapter, we consider high-dimensional PDE-constrained inverse problems in which,
because of spatial patterns and correlations in the distribution of physical properties
of a system, the underlying parameters tend to reside in (usually unknown) low-
dimensional manifolds, thus have sparse (low-rank) representations. The sparsity of
the parameters is amenable to an effective and flexible regularization form that can
be exploited to improve the solution of such inverse problems. In applications where
prior training data are available, sparse manifold learning methods can be adopted
to tailor parameter representations to the specific requirements of the prior data.
However, a major risk in employing prior training data is the significant uncertainty
about the underlying conceptual models and assumptions used to develop the prior.
A group-sparsity formulation is discussed for addressing the uncertainty in the prior
training data when multiple distinct, but plausible, prior scenarios are encountered.
Examples from geosciences application are presented where images of rock material
properties are reconstructed from limited nonlinear fluid flow measurements.
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1 Introduction

The spatiotemporal evolution of dynamic state variables in many physical systems is
governed by coupled partial differential equations (PDEs) that are typically derived
from the balance laws of physics (mass, momentum, and energy conservation). The
observable responses of these dynamical systems can usually be described as a
function of their state variables, which in turn depend on model inputs, including
controls, initial/boundary conditions, and parameters. In general, the functional
relation between model input parameters and observable responses can be expressed
as a (typically nonlinear) mapping that involves the solution of the underlying PDEs.
Examples of these physical systems include fluid flow and heat transfer processes
[64], electromagnetic systems [65], motion of planets in solar system [60], human’s
neural mechanism [42]. The exponential increase in computing power has enabled
considerable advances in numerical simulation of complex processes in large-
scale physical systems that have high-dimensional PDEs as governing equations.
Advances in computing power have also led to development of computationally
demanding inverse modelling algorithms with potentially thousands of forward
model simulations, which was once considered infeasible.

The parameters that appear in the governing PDEs of physical systems are either
directly observable or they need to be inferred from indirect and often limited
observable quantities (outputs) of the system [52, 62, 79, 85, 89]. In some cases,
a spatially distributed physical property may only be directly observable at finite
points in space, requiring spatial interpolation techniques to predict unobserved
parameter values. In general, estimation of model parameters from limited output
measurements of the system leads to an inference or inverse problem [59, 78]. In
many cases, the inverse modelling formulations involve a minimization problem
where the objective function represents the mismatch between model predicted and
observed data as well as other terms that penalize departure from prior (explicit
or implicit) knowledge about the solution. When the system outputs depend on
the solution of the PDEs that establish physical laws (e.g. mass/momentum/energy
balance), the resulting inverse problem formulation must ensure that the PDE
constraints are honoured, thus leading to a PDE-constrained inverse problem.
Including the PDE constraints ensures that the solution of the resulting inverse
problem honours the underlying governing equations (i.e. well-established physical
laws such as mass/momentum conservation).

Inverse problems that arise in many practical applications are ill-posed, as the
measured data are not sufficient to find a unique solution [35, 63]. When there
are fewer measurements than unknown model parameters in a system, a situation
that is commonly encountered in practice, the problem is underdetermined and
cannot have a unique solution. Additional (a priori) information are needed to
constrain the solution and eliminate implausible outcomes. A common approach
to address solution non-uniqueness is to adopt a probabilistic (Bayesian) inverse
modelling framework [1, 26, 32, 51, 53, 78], where the elements of the inverse
problem (parameters, data, and forward model) are represented with their respective
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uncertainties, typically using probability density functions (PDFs). In this chapter,
we focus on deterministic inverse problems. First, an overview of inverse modelling
formulation is presented, followed by general strategies for solving ill-posed inverse
problems that are constrained by complex PDEs. In numerical solution techniques,
the PDEs are solved by first discretizing the domain and assigning input parameters
to the discrete cells. This approach leads to a discrete ill-posed inverse problem
in which vector representations (as opposed to continuous functions) are used to
describe the unknown parameters. The main focus of this chapter is on formulation
and solution of such discrete inverse problems in which the parameters are either
inherently sparse or can have a sparse approximation.

2 Inverse Problem Formulation

To formulate a general inverse problem, consider collecting the observations of a
physical system in a vector d. These observations are related to the parameters
of the system through a (generally nonlinear) mapping, i.e. d = g(u). Here, u
contains the parameters of the system, and g(.) is the nonlinear function that maps
the parameter space onto the observation space. We assume that the observations d
and the parameters u are vectors in R

m×1 and R
n×1, respectively.

Definition (General Inverse Problem) Consider the Banach spaces U and D ,
and a mapping G : U → D . The inverse problem consists of the solution to the
equation [66]:

g(u) = d u ∈ U & d ∈ D (1)

If an exact solution is not expected (e.g. due to observation errors), the inverse
problem in (1) is expressed as a minimization of the form:

min
u

J (u) = ‖g(u)− d‖2
2 u ∈ U (2)

When the Banach space D is some !2-space, then this becomes a classical least-
squares problem [57].

The simplest form of an inverse problem is obtained when observations and
model parameters are related linearly [13, 78], i.e. d = Gu + ε. Here, u is
the parameter of interest, G is the linear mapping from parameter space to the
observation space, and ε is the observation noise, which is usually considered to
be independent of the parameters u. In the linear case, the inverse problem in
Equation (2) is expressed as:

min
u

‖Gu− d‖2
2 s.t., u ∈ U (3)
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with a simple quadratic objective function. In practical applications, when data is

noisy, the least-square term in Equation (3) is generalized to ‖C−
1
2

ε (Gu− d)‖
2

2,
where Cε is the (usually diagonal) noise covariance matrix ε. For ill-posed linear
inverse problems, the formulation often takes the form:

min
u

J (u) s.t., ‖d−Gu‖2
2 ≤ σ 2 (4a)

min
u

J (u)+ 1

λ2 (‖d−Gu‖2
2 − σ 2) (4b)

min
u

‖d−Gu‖2
2 + λ2J (u) (4c)

In Equation (4a), the constraint, i.e. ‖d−Gu‖2
2 ≤ σ 2, is added to the objective

function by the penalty method [8], and the resulting equation in (4b) is reshaped
into Equation (4c) by multiplying the objective function by λ2. In Equation (4),
J (u) is a function that restricts (regularizes) the behaviour/structure of u, and σ 2

is a bound on the observation error. For example, if u0 is a prior belief about the
parameter u, minimization of J (u) = ‖u− u0‖2

2 results in a solution with minimum
departure from u0 [78]. A classical example of regularization functions are the
Tikhonov regularization forms [81], for which J (u) is defined as the second norm
of the first or second derivatives of the parameters (to promote solution smoothness
or flatness, respectively). It is important to note that the regularization parameter λ
has a significant impact on the solution by balancing the importance of data misfit
and regularization terms. For linear problems, cross validation [31] and L-curve
[34] methods have been proposed for finding an optimal value for the regularization
parameter.

In many practical problems, the relationship between the observed data and
model parameters is nonlinear, i.e. d = g(u) + ε [74, 79]. The corresponding
nonlinear inverse problem can be expressed as:

min
u

J (u) s.t., ‖d− g(u)‖2
2 ≤ σ 2 (5a)

min
u

‖d− g(u)‖2
2 + λ2J (u) (5b)

For physical systems in which the evolution of the state variables is determined
by solving PDE systems, the resulting inverse problems include the PDEs as
constraints, that is,

min
u

‖d− g(u)‖2
2 + λ2J (u) s.t., f (u, x(u)) = 0 (6)

where f (u, x(u)) = 0 represents the PDE system. We note that the measurement
operator g(u) is usually a function of the state vector x(u), which, for compactness,
is not explicitly expressed in Equation (6). It is common to enforce the constraints
by first solving the PDE system to obtain the state variables and then using them
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to predict the measurements. In other words, the PDE system is solved to derive
the nonlinear measurements, resulting in predicted measurements that honour the
constraints.

In practice, nonlinear inverse problems do not lend themselves to analytical
solutions, and iterative numerical optimization techniques must be employed to
find the solution. In iterative solution schemes, given the current iterate u(k), an
updated solution is sought by expanding the nonlinear function g(u) around the
current iterate, using either first- or second-order Taylor expansions. For example,
when a linear approximation is used, the resulting objective function takes the form:

u(k+1) = argmin
u

‖d− (g(u(k))+Gu(u− u(k)))‖2
2 + λ2J (u) (7)

where Gu is the Jacobian matrix that contains the first-order derivative of multivari-
ate vector function g(u) with respect to entries of u = u(k). The linear objective
function in Equation (7) can be readily minimized to find u(k+1), and the process is
continued until the algorithm converges to a solution [78].

3 Parametrization and Regularization Techniques

Inverse problems often involve high-dimensional parameters with complex relations
that need to be estimated from low-resolution nonlinear data. In addition to
numerical stability issues (due to high-dimensional and low-rank nature of the
matrices involved) in solving such ill-posed inverse problems, several non-unique
solutions can be found that reproduce the (limited) available data, but fail to
predict the future response of the system. In some physical systems, the parameters
may represent spatially distributed material properties with specific architecture or
patterns. In such cases, in addition to dealing with high parameter dimensionality,
it is important to preserve the expected spatial structure of the parameters [6, 12,
18, 37, 47, 90]. Parametrization and regularization are two common approaches
that aim to achieve these two goals by reducing parameter dimensionality and
imparting pre-specified attributes on the solution. Techniques for regularizing the
solution of ill-posed inverse problems have been extensively studied in the literature
(e.g. see [24, 78, 81, 86]). Regularization is usually implemented by minimizing
a penalty function (e.g. J (u) in Equations (4)–(7)) that promotes an attribute of
interest in the solution, e.g. using a roughness penalty function to obtain smooth
solutions. By imposing certain patterns/attributes on the solution, regularization
creates correlation structures that, in effect, implicitly reduce the dimension of the
parameter space.

Inverse problem formulations are directly influenced by the choice of parameters
(i.e. parameterization or re-parameterization) [24, 39]. Parameterization refers to
changing the original parameters of an inverse problem to a (typically much
smaller) set of new parameters that facilitate the search for a solution. It is often
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used to explicitly reduce the number of unknown parameters, while capturing
their main characteristics, with the purpose of alleviating problem ill-posedness.
Parameterization can also provide more compact descriptions of complex parameter
structures and facilitate their reconstruction. In solving inverse problems, choosing
an appropriate domain that affords an effective description of the parameters is
complicated by the lack of complete knowledge about the solution. However, a
reasonable choice for the parameter domain may be deduced from the knowledge
about the physics of the system under analysis and/or based on the past experience.
Parameterization can be performed either in the original domain (space/time), in
which the PDEs are solved, or they can be implemented by transforming the
parameters into a different (often abstract) domain with certain desirable properties.

A linear parameterization [87] can generally be expressed as:

u = v =
k∑

i=1

φivi (8)

where u and v are vectors of the original and transformed model parameters,
respectively; and  is the linear transformation matrix with columns corresponding
to the basis functions (i.e. φi:i=1,...,k), which are linearly combined, using the entries
of v as coefficients, to yield u. Matrix  can be viewed as a linear mapping of the
transformed parameters v onto the original parameters u. Different choices of  lead
to alternative parameterization bases (domains) with distinct properties that can be
exploited in formulating the inverse problem.

Using the linear relation u = v, it is straightforward to rewrite the inverse
problem objective function in Equation (7) in terms of v as follows:

v(k+1) = argmin
v

‖d− (g(v(k))+Gv(v− v(k)))‖2
2 + λ2J (v) (9)

where J (v) defines a regularization constraint on the new parameters v in the trans-
form domain (more details in subsequent sections). Note that the transformation
matrix  is assumed to be constant and dropped for brevity. Furthermore, Gv in
Equation (9) presents the Jacobian matrix of the observations with respect to the
transformed coefficients and can be simply calculated through the chain rule of
differentiation as:

Gv = ∂

∂v
g(v)|v=vk = Gu (10)

A nonlinear parameterization can be expressed as u = φ(v), where the mapping
φ(.) represents a general nonlinear transformation. For instance, kernel functions
provide mappings that can be used to reduce parameter nonlinearity prior to
applying a linear parameterization [70, 71, 84]. Kernel-based methods use kernel
functions to operate in high-dimensional feature spaces without computing the
coordinates of the feature space. Instead, they compute the inner products of
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(training) data pairs in the feature space. Using this approach, the inner product
of the vectors in the nonlinear space is calculated by kernel functions, k(v, v

′
) =<

φ(v), φ(v
′
) >, where φ(.) is a feature map (e.g. a polynomial). The kernel k(v, v

′
)

is a function of v and v
′
, and it eliminates the need for nonlinear expansion of the

parameters. A major difficulty that arises in implementing nonlinear transformations
is the lack of unique back transformation due to the nonlinear form of the transform
function φ(.). In this chapter, linear transforms are discussed.

3.1 Parameterization/Regularization in Space

Zonation Zonation [37] is the simplest spatial parameterization technique in which
subsets of the parameter vector u are assumed to have (approximately) identical
values and can be aggregated into a single parameter. In imaging applications where
u is a spatial image (of an unknown property distribution), subsets of entries of u
that correspond to a local neighbourhood in the image form a segment or a zone
with identical parameter values. By aggregating such multiple entries into a single
parameter, zonation can significantly reduce the number of parameters. Figure 1(a)
depicts a sample parameter distribution (shown in x-y plane) that consists of k

regions or zones (R1,. . . ,Rk). If the parameter values in each region are similar,

Fig. 1 Schematic of parameter representation via linear expansion: (a) spatial zonation with
predefined regions with similar parameter values; (b) expansion with functions derived from
compressive transform
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the number of parameters can be reduced to k << n. This parameterization can be
effectively expressed using a general linear expansion representation, consisting of
basis vectors φs:1≤s≤k in which only the entries corresponding to region Rs are non-
zero (ones) and the remaining entries are zero (see Figure 1(a)). Using zonation, the
formulation of the inverse problem is reduced to:

min
v

‖d− g(u)‖2
2 + λ2J (u) s.t., u =

k∑
i=1

φivi (11a)

where with the new parameters, i.e. [v1v2 . . . vk], the problem is better posed (only
k unknowns). In many cases, zonation leads to very few zones, eliminating the need
for the regularization term, i.e. J (u) in Equation (11a). Therefore, a simpler version
of the problem can be expressed as:

min
v

‖d− g(u)‖2
2 s.t., u =

k∑
i=1

φivi (11b)

Although zonation is a simple and intuitive parameterization approach, it suffers
from a number of shortcomings. First, it is not trivial to define the zones for an
unknown map a-priori. Adaptive multi-resolution zonation techniques [33] have
been developed that allow the zones to be redefined (updated) during inversion.
Second, the sharp boundaries that separate the zones may not be realistic or plausi-
ble. Finally, eliminating the variability (heterogeneity) within each region can result
in unintended elimination of local, but important, features and introduce undesired
solution bias. Several other parameterization methods have been developed to
improve the ill-posedness of inverse problems. Examples of these methods include
transform-domain techniques such as the principal component analysis (PCA), the
Fourier-based discrete cosine transform (DCT), and the discrete wavelet transform
(DWT) (Section 3.2).

Tikhonov Regularization Tikhonov regularization [81] is achieved by minimizing
the zeroth-/first-/second-order derivative of the solution to promote minimum-
length/smooth/flat solutions, respectively. Tikhonov regularization has been widely
applied to inverse problems in several imaging applications, where the parameters
are expected to show some degree of continuity. The reason for this attribute is that
images that represent the parameters are often related to physical properties that
naturally follow certain continuity in their formation. To illustrate how Tikhonov
regularization works, consider the local operator that approximates the first-order
directional derivative for entry ui,j of the parameter vector u (defined on a two-

dimensional x-y coordinates), i.e. (∇u)i,j ≈
[
ui,j − 1

2 (ui−1,j + ui+1,j )

ui,j − 1
2 (ui,j−1 + ui,j+1)

]
. This

notation is used to demonstrate the central point finite difference approxima-
tion to the first-order directional derivative. Minimizing

´ ‖∇u‖2
2du ≈ Δ ×
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∑
i,j ‖(∇u)i,j‖2

2, where Δ denotes a small spatial perturbation, corresponds to
solutions that exhibit smooth transition (in parameter values) from ui,j to its
neighbouring grid cells. With the first-order Tikhonov regularization, the inverse
problem objective function takes the form:

min
u

‖d− g(u)‖2
2 + λ2

ˆ
‖∇u‖2

2du (12)

For discrete problems, the spatial derivatives and the regularization function can be
written as a linear operator W; that is, the regularization term can be simplified to´ ‖∇u‖2

2du = ‖Wu‖2
2.

Total Variation Total variation [27, 50, 69] is a regularization technique that is
used to promote piecewise smooth solutions. Hence, the regularization penalty is
lenient to solutions that are generally smooth but can have discontinuity in certain
parts. This form of regularization is implemented by applying a milder penalty to
spatial derivatives of the parameters. In Total Variation, the !1-norm (instead of the
!2-norm) of the first-order derivative of the solution is minimized. The !1-norm is
less sensitive to larger entries and tends to tolerate discontinuity, which is often
exhibited through large directional derivatives. In implementing the total variation,
one seeks to minimize the following regularized least-squares form:

min
u

‖d− g(u)‖2
2 + λ2

ˆ √√√√∑
j

(∇ju)2du (13)

where the index j is the number of directional derivatives, and ∇ju calculates the
derivative of u at a direction specified by index j . The total variation regularization
can be implemented for any specified direction. In its standard implementation, the
directions j are the three Cartesian coordinates.

3.2 Transform-Domain Parameter Representations

Compressive transforms are used to compactly represent/approximate the most
salient features of images and signals. In inverse problems, it may be possible to
apply a transformation to the original parameters to achieve an effective low-rank
representation. Examples of transform-domain representation techniques are those
that are used in image compression, e.g. Wavelet [55] or Fourier [9] transforms.
These transforms use predefined basis functions with strong compression property
to provide compact (low-rank) description of natural images. The compression
property of a basis directly corresponds to the decay rate of the transformed
coefficients. The main steps in transform-domain low-rank representation include (i)
choosing an appropriate transformation basis (expansion functions), (ii) performing
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the forward transformation to obtain the transformed representation of the original
parameters, (iii) identifying and retaining only significant coefficients of the trans-
formed representation, and (iv) back transformation to the original domain using
only the retained coefficients. The compressive nature of the transforms implies
that the transformed representation is sparse, that is, very few of the transformed
coefficients are significant. In this section, we present some of the important
compressive transforms that have been used for parameterization. The discussion on
identifying and retaining the significant elements in the transformed representation
is presented in Section 4.

The choice of an appropriate basis to compactly represent model parameters is
intimately related to the prior knowledge about the characteristics of the underlying
properties of the model, e.g. existing correlation/connectivity structures or possible
discontinuous features. In fact, when specific prior models are available, one could
construct a specialized transformation that is learned from those models and training
data. Examples of specialized transform basis functions that are learned from prior
information include the principal component analysis (PCA) [41] and the k-SVD
[2] for sparse dictionary learning, which are discussed in this section. In many
situations, however, explicit prior models or training data may not be available.
In those cases, generic transforms that are used in image compression provide
an attractive option for parameterization. We briefly discuss two popular generic
transformation methods, namely Fourier transform [9] and its practical and efficient
variation known as the discrete cosine transform (DCT) [3, 39] and the wavelet
transform [55, 77].

3.2.1 Generic Compressive Transforms

Generic compressive transforms consist of n linearly independent basis vectors in
R
n that can be used to span any length-n vector (or vectorized image). While a

complete representation of a length-n parameter vector is possible in a compressive
basis, the objective is to obtain an approximate representation by only retaining
k << n significant basis elements. Suppose that the set {φi:i=1,...,n} contains all
the basis vectors that are needed for perfect representation in R

n , and a subset
 = {φi:i=1,...,k}, with no particular order, provides an acceptable approximation
for a vector of interest u. Selection of the subset with k elements depends on the
original vector to be approximated and the basis used.

Fourier and Wavelet Transforms Fourier basis functions describe a signal in
terms of its frequency content. In this case, if an n = ∏

ni dimensional signal u
is defined in R

n1×n2×...×nd , the FT at frequency (f1, . . . , fnd ) will be calculated as:

v(f1, . . . , fnd ) =
n1−1∑
i1=0

. . .

nd−1∑
ind=0

u(i1, . . . , ind )e
−i2π(∑nd

t=1
ft it
nt

) (14)
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The back transformation that returns u can be expressed as:

u(i1, . . . , ind ) =
1

n

n1−1∑
f1=0

. . .

nd−1∑
fnd=0

v(f1, . . . , fnd )e
i2π(

∑nd
t=1

ft it
nt

) (15)

If the main features in u are captured by low-frequency elements, which is especially
true for smooth and correlated vectors, one could approximate u by truncating the
basis elements with frequencies exceeding a certain threshold. The (n-k) coefficients
corresponding to frequencies higher than the specified threshold are then set to zero.

The DCT is a special case of the Fourier transform that only considers the real

part of e
−i2π(∑nd

t=1
ft it
nt

), which is cos{2π(∑nd
t=1

ft it
nt

)}. Hence, the transformation
takes the form:

v(f1, . . . , fnd ) =
n1−1∑
i1=0

. . .

nd−1∑
ind=0

u(i1, . . . , ind ) cos{2π(
nd∑
t=1

ft it

nt
)} (16)

Similar to Fourier transform, an approximation of the original signal u is obtained
by truncating the frequencies above a certain threshold. Fourier-based transforms
can only represent information either in space or frequency domains. This means
that once a signal is transformed to Fourier domain, it loses the spatial information
and vice versa. Hence, the Fourier basis elements are global and do not encode local
information.

Unlike the Fourier transform, the basis elements in Wavelet transform contain
both space and frequency information. This implies that each basis vector is
localized in space and represents a certain frequency content. Therefore, for any
spatial location, one can retain (truncate) specific frequency components that are
significant (insignificant). Figure 2(a) and (b) shows 64 sample basis elements for
the DCT and Haar wavelet transforms in R

64×64, respectively. As can be verified,
the basis images for the DCT transform are not localized in space while those for the
discrete Haar wavelet clearly exhibit localized patterns. While generic compressive
transforms have useful properties that make them very desirable when explicit prior
knowledge is not available, in applications where prior knowledge about the solution
(e.g. a training dataset) is available, one may be able to construct more specialized
transforms with better performance.

3.2.2 Learned Compressive Transforms

Pre-constructed compressive bases achieve good compression performance in
representing smooth and piecewise smooth images when specific knowledge about
the image to be compressed is not available. For most natural images only a small
subset of the transformed coefficients is sufficient to capture the main features
of an image. This implies that most natural images have sparse approximations
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Fig. 2 Examples of generic (pre-computed) compressive transform bases: (a) sample low-
frequency basis elements from the DCT basis; (b) sample basis elements from the discrete Haar
wavelet. Example is shown for a 64×64 two-dimensional image. The basis elements are separated
with black boxes

in these compressive transform domains. However, compressed representation of
complex image features with generic transforms may require too many coefficients,
which is not desirable for parameterization. Hence, a more sophisticated approach
is needed to capture complex features in certain applications. In general, when a
specific type of image (e.g. human face) is to be compressed, transforms that are
specialized to represent the underlying features are more efficient. For example,
in subsurface modelling, where extensive efforts go into data collection and site
surveys to construct prior models, specialized transform-domain representations
that are tailored to the information in the prior knowledge are more suitable.

Principal Component Analysis (PCA) The PCA [41] is widely used for dimen-
sionality reduction in a wide range of applications. The PCA basis functions
capture the main variability and structures in multivariate datasets, which can be
exploited in compactly representing/approximating them with minimum loss of
information. When the PCA is applied to the covariance matrix of a stochastic
process, it diagonalizes the covariance and can be used to define a new (often
more desirable) uncorrelated random process. In this case, the PCA provides
an orthogonal transformation matrix with decorrelating power that contains, in
its columns, the eigenvectors of the covariance matrix. The strong decorrelating
property of the PCA basis is advantageous in eliminating parameter correlations
(redundancies) to reduce dimensionality. In fact, the PCA sets the standard for
dimension reduction with linear transforms as it gives the minimum error (in least-
squares sense) in approximating an n-dimensional signal with S << n basis
elements (for a fixed S).

The parameterization with PCA follows the same format as in Equation (8), i.e.
u = v = ∑k

i=1 φivi , where the basis functions φi’s are the eigenvectors of the
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covariance matrix of u. Denoting an n × 1-dimensional random variable as u and
its covariance matrix as Cu, the eigenvalue decomposition of the covariance matrix
provides the following diagonalization form:

Cu = �T (17)

where � is a diagonal matrix (with eigenvalues of Cu in its diagonal entries) and
 is an orthonormal (transformation) matrix that has the eigenvectors of Cu in
its columns. If sample realizations of u are collected into a data matrix Un×L =
[u1 . . . ui . . . uL], the sample covariance matrix Cu can be computed as:

Cu = 1

L− 1
(U− u11×L)(U− u11×L)T (18)

where u denotes the mean of U, that is u = 1
L

∑L
i=1 ui . The term 1√

L−1
(U−u11×L)

can be expressed in terms of its singular value decomposition (SVD) as [48, 72]:

1√
L− 1

(U− u11×L) = ��VT (19)

where � and V are orthonormal matrices that contain the left- and right-singular
vectors of 1√

L−1
(U− u11×L), respectively. Combining (18) and (19) yields

Cu = (��VT )(��VT )T = ��VT V��T = ��2�T (20)

which reveals � = ; that is, the left-singular vectors of 1√
L−1

(U − u11×L) are

identical to the eigenvectors of the sample covariance matrix Cu. This relation shows
that for high-dimensional variables the PCA transformation matrix can be more
efficiently computed by obtaining the left-singular vectors of 1√

L−1
(U − u11×L),

which is computationally more efficient for large n. One could therefore see the
correspondence between the left-singular vectors of the sample data matrix and the
eigenvectors of the data covariance [30]. It can be shown that amongst all S-term
(rank-S) linear approximations of U the expansion using its S leading left-singular
vectors (denoted as n×S) gives the smallest root-mean-square error (RMSE).

Sparse Dictionary Learning (k-SVD) While PCA offers a very efficient decor-
relating basis for compact representations, it is a linear transform in which the
significant basis elements are predetermined and fixed. Recent developments in
sparse signal processing have led to growing interest in sparse dictionary learning
algorithms. A major distinction between PCA and sparse dictionaries is in the way
the significant elements are selected. In sparse reconstruction, the significant ele-
ments are neither predetermined (ranked) nor fixed; rather, they must be identified
independently for each instance of the parameter vector.
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For construction of sparse dictionaries from a training dataset with L elements,
Un×L = [u1 . . . ui . . . uL], one can solve either of the following optimization
problems [2, 44, 82]:

min[v1v2...vL], ‖vi‖0 s.t.,
L∑
i=1

‖ui −vi‖2
2 ≤ ε for i ∈ 1 : L

(21a)

min[v1v2...vL],
L∑
i=1

‖ui −vi‖2
2 s.t., ‖vi‖0 ≤ S for i ∈ 1 : L

(21b)

where ‖vi‖0 refers to the number of non-zero entries in vi (i.e. S). Equations (21a)
and (21b) are alternative formulations for sparse dictionary learning. In Equa-
tion (21a), a maximum allowable representation error is used as a constraint while
the level of sparsity for each realization of the prior model is minimized. In Equa-
tion (21b), the level of sparsity is constrained while minimizing the approximation
error to represent each realization. Finding the exact solution to the problems
in (21) is intractable. However, heuristic methods, such as the k-SVD algorithm,
provide practical approximate solutions. We note that in our notation S refers to
the sparsity level (number of significant elements retained in the approximation),
and k is the dictionary size (total number of dictionary elements), with S << k.
We briefly describe the k-SVD algorithm as one approach to learn sparse geologic
dictionaries from a set of prior training models (more details can be found in the
original publications [2]). The k-SVD algorithm takes its name from the k-means
clustering algorithm. While the latter computes k mean values at each iteration, the
former applies k SVD operations at each iteration. The k-SVD algorithm constructs
a dictionary  with size n × k from L samples of ui , while ensuring that the
projection of each ui on  is S-sparse, a problem that is formalized in Equation (21).
We also note that for model reduction and approximation purposes, we consider
under-complete dictionaries, where exact representation may not be achievable.
However, the resulting representation can provide close approximations in a very
low-dimensional space.

To construct  and V from U, the k-SVD algorithm iteratively solves the problem
specified in (21). Each iteration of the algorithm consists of two steps: Step 1, sparse
coding, used to find the sparse representations (i.e. V) for the entire prior library by
fixing ; and Step 2, dictionary updating, which finds a new  after fixing the sparse
representation V from Step 1. These two basic steps in the k-SVD algorithm are
summarized in Appendix 1. While no formal convergence proof has been given for
this algorithm, numerical experiments show that it is generally robust [2, 44, 45].
It is important to note that the k-SVD algorithm is computationally demanding,
especially when the dimension of the dictionary increases. Each iteration of the k-
SVD algorithm requires k orthogonal matching pursuit (OMP) [83] sparse coding
and k rank-one SVD operations, both are computationally expensive operations.
However, the computations related to construction of a sparse dictionary are
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Fig. 3 Examples of learned expansion images using prior training data: (a) prior (training) models
used for constructing linear expansion images; (b) S = 20 leading PCA basis elements; and (c)
sample k-SVD dictionary elements with S = 20 and k = 200. Examples are shown for nx × ny =
100× 100 two-dimensional model. The images are separated using white borders

performed offline and can be considered as part of the training step. In addition, the
original k-SVD algorithm is typically applied to obtain over-complete dictionaries
for small image segments [2]. For large-scale inverse problems, the method has been
used to obtain under-complete dictionaries [44, 45].

Figure 3 shows an example of dictionary learning in geosciences applications.
Figure 3(a) depicts samples from the training data that represent two-dimensional
fluvial channel configurations (generated using SNESIM conditional simulation
algorithm [75]). In this figure, the red regions represent fluvial channels that are
composed of sandstone with very high rock permeability (to fluid flow) values
while the blue regions describe shale or mudstone with very low-permeability
values. The high-permeability values manifest their importance in fluid flow and
displacement patterns by creating preferential flow patterns within the channel
regions. Figure 3(b) presents the first S = 20 PCA basis (Eigen) images that
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Fig. 4 Compression performance of the PCA and k-SVD: (a) a sample image similar to the
training data; (b1)–(b2) results of compressed representation with S = 20 leading PCA basis
images and the corresponding PCA coefficients, respectively; and (c1)–(c2) results of compressed
representation using the k-SVD with S = 20 and k = 200 and the corresponding k-SVD
coefficients

correspond to this training data, and Figure 3(c) shows the corresponding sample
elements from the k-SVD dictionary, using S = 20 and k = 200. To illustrate the
approximation performance of the PCA and k-SVD, Figure 4(a) depicts a model
that is structurally similar to those in the training data, along with its PCA and
k-SVD approximations in Figure 4(b1) and (c1), respectively, using S = 20. The
corresponding transform coefficients for each case are shown in the second row
(Figure 4(b2) and (c2)). Figure 4(b2) and (c2) shows a major difference between
the PCA and k-SVD representations, which is the sorting of the PCA elements
that leads to identification of S = 20 fixed elements. In case of k-SVD, the
significant elements are not predetermined. Instead, the significant elements and
their corresponding coefficients are identified by searching through a larger set
(k = 200) of dictionary elements. However, the selection of significant dictionary
elements is not trivial and is usually accomplished through a sparsity-promoting
optimization algorithm, generally known as sparse reconstruction.

4 Sparse Reconstruction

Selecting a small subset of dictionary elements out of a large set is posed as a sparse
reconstruction problem. A signal v ∈ R

k is considered sparse if a large fraction of
its entries are (approximately) zero [5]. A signal is S-sparse if it has at most S non-
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zero entries. A signal that may not appear as sparse (in space or time) may have a
sparse representation in a different (transform) domain. For instance, in many cases
a parameter vector u may not be sparse but can have a sparse representation v after
transformation through , that is u = v.

Depending on the application, identification of significant dictionary elements
can be based either on complete (e.g. image compression [80]) or incomplete
knowledge (inverse problem) about the unknown parameters. In inverse problems,
often limited measurements are available for identification of the significant dic-
tionary elements, and estimation of their corresponding expansion coefficients.
Compressed sensing (also called compressive sensing or compressive sampling)
[4, 11, 21] is a relatively new paradigm that provides an alternative to the well-
known Shannon sampling theory. Compressed sensing adopts sparsity as prior
knowledge about signals, while Shannon theory was designed for frequency band-
limited signals. The widespread application of compressed sensing is, in part, due to
the universality of the sparsity property that is encountered in a wide range of natural
phenomena (especially images). In many cases, sparsity may not be immediately
apparent and certain manipulation (e.g. transformations) of the original parameters
may be necessary for their sparsity to emerge. For instance, natural images that
have various elements with spatial correlations in them do not exhibit sparsity in
the space domain but are highly compressible and are well-known to have sparse
representation in the Wavelet or DCT domains. One of the main contributors to the
widespread application of compressed sensing is its direct application to solving
underdetermined inverse problems, such as tomographic image reconstruction [15].

Compressed sensing gives a strong theoretical support and an efficient solution
algorithm (under appropriate conditions) for solving otherwise intractable (NP-
hard) inverse problems that have sufficiently sparse solutions. To recover a sparse
solution v from a set of linear measurements d = Gv, one can solve the following
minimization problem:

min
v

‖v‖0 s.t., d = Gv (22)

where ‖v‖0 is the !0-norm (note that !0 does not conform to norm definition and
is often loosely referred to as a norm) of vector v and represents its cardinality. In
this formulation, the optimization problem searches for a solution that reproduces
the observed data (constraint) while having a minimum number of non-zero entries
(support). The !0-norm is not a differentiable function and does not lend itself
to solution with standard gradient-based optimization methods. In practice, two
types of approximate algorithms have been developed to solve (22): (i) greedy
pursuit algorithms, such as OMP [83], COSAMP [61], IHT [7], or IMAT [56],
and (ii) convex approximations, in which the non-convex !0-norm is replaced with
its convex relaxations, e.g. !1-norm in basis pursuit [17] or a heuristically defined
exponential norm in [58].

Compressed sensing derives the solution by replacing the !0-norm with !1-norm
and offers conditions under which an exact solution to the original problem is
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guaranteed (see [10, 21] for details). In this case, the optimization problem takes
the form:

min
v

‖v‖1 s.t., d = Gv (23)

The fundamental importance of this formulation is that it converts the problem
from an NP-hard problem to a linear programming problem, which can be solved
efficiently. In practice, it can be demonstrated that the !p-norm, for 0 ≤ p ≤ 1,
while non-convex, has a similar sparsity-promoting property; however, in addition
to solution complexity, the mathematical proof and the required conditions for this
case are not well understood.

In many applications, the conditions required to guarantee exact solution may
not be met. A particular example of departure from those conditions, which is often
encountered in physical systems, is when the measurements are not adequate or
the measurement operator is nonlinear. In those cases, it may still be possible to
exploit the sparsity-promoting property of the !1-norm to formulate and solve an
inverse problem. The selection property of the !1-norm penalty offers an important
regularization form that can be used to enhance the solution of nonlinear inverse
problems when applicable. When the measurement equations are nonlinear, the
resulting sparse reconstruction problem takes the form:

min
v

‖v‖1 s.t., ‖d− g(v)‖2
2 ≤ σ 2 (24)

where g(v) is a nonlinear operator. Appendix 2 discusses an iteratively reweighted
least-squares (IRLS) algorithm for solving the !1-norm regularized minimization
problem. In the next section, we discuss the application of sparsity regularization
under nonlinear measurements in subsurface flow and transport inverse problems.
In addition to !1-norm regularization, we will also present the use of a mixed
!1/!2-norm [23, 40], which is known as group sparsity. When the signal of interest
v has block-sparse behaviour, the !1/!2-norm can have a superior reconstruction
performance compared to the standard !1-norm. In block-sparse signals, the entries
are collected in predefined groups and the sparsity penalty is applied across the
groups. In this case, the !2-norm is applied to the elements inside each group to
quantify the group contribution, and the !1-norm operates on the computed !2-
norm of the groups to impart sparsity. Mathematically, if vi’s are subsets of v and⋃

i vi = v, then the !1/!2-norm is defined as ‖v‖1,2 =
∑

i ‖vi‖2 . In this case,
the inverse problem formulation minimizes the !1/!2-norm of the solution while
honouring the measurement constraint, that is:

min
v

‖v‖1,2 s.t., d = Gv linear (25a)

min
v

‖v‖1,2 s.t., d = g(v) nonlinear (25b)
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An example application of group sparsity is presented in the next section. In this
case, the objective is to select a small set of the groups within v that have significant
contribution to the solution. In other words, the sparsity is applied to the groups and
not individual entries.

5 Subsurface Flow Inverse Modelling

Fluid flow and transport in underground porous rock formations plays a key role in
developing the related energy and water resources in these systems. Mathematical
modelling of the underlying physical processes is commonly used to predict the
response of these systems to perturbations (forcing) introduced during resource
development (extraction or injection of fluids). The description of the physical
processes that take place in these systems leads to high-dimensional and coupled
nonlinear PDEs, which include various rock properties as spatially distributed
unknown parameters. It is common to formulate inverse problems to estimate the
unknown parameters of these PDEs from observations of the dynamical response
of these systems. In this section, we describe the formulation of the related PDE-
constrained inverse problem and provide examples to demonstrate their practical
application.

5.1 Subsurface Flow Forward Modelling

An important example of PDE-constrained inverse problems is the multi-phase flow
equations in the subsurface environments. The spatiotemporal evolution of multi-
phase fluid flow can be expressed as a special form of the Navier-Stokes equations
[19, 20]. Conservation of mass, momentum, and energy are three fundamental prin-
ciples in the Navier-Stokes equations, which yield the following PDEs, respectively:

∂ρ

∂t
+ ∇.(ρv) = 0 (26a)

∂v
∂t
+ (v.∇)v = − 1

ρ
∇P + F+ μ

ρ
∇2v (26b)

ρ(
∂E

∂t
+ v.∇E)−∇.(KH∇T )+ ρP∇.v = 0 (26c)

where v, E, P , T , ρ, μ, KH , and F correspond to velocity, internal thermodynamic
energy, pressure, temperature, density, viscosity, heat conduction coefficient, and
external forces per unit mass. Here, we consider a special case involving two-phase
incompressible and immiscible fluid flow system, for which the governing PDE
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Table 1 A summary of physical properties and their definition

Property Definition

Phase mobility The ratio of effective permeability to phase viscosity

Phase density The density of fluids, i.e. oil or water

Formation volume
factor

Volume of the phase at the in-situ pressure to its volume at standard
surface condition

Permeability Ability for fluids (gas or liquid) to flow through porous rocks

Porosity Ratio of void space to total rock volume

Phase saturation Ratio of pore volume occupied by specific fluid phase

Flux Flow rate per unit area

Pore volume Total void volume of reservoir

Wetting phase The phase with more tendency to maintain contact with the solid
surface

equations are expressed by combining mass balance and Darcy’s law (representing
the momentum balance) [16, 22] as:

∇.( λw

Bw
u(∇Pw − γw∇Z)) = ∂

∂t
(φ

Sw

Bw
)+ qw (27a)

∇.( λn

Bn
u(∇Pn − γn∇Z)) = ∂

∂t
(φ

Sn

Bn
)+ qn (27b)

In the above equations, w and n represent the wetting and non-wetting phases,
and λ, γ , B, u, φ, Z, S, and q correspond to the phase mobility, phase density,
formation volume factor, intrinsic rock permeability, rock porosity, gravity potential,
phase saturation, and flux, respectively (see Table 1 for definitions). The governing
equations in Equation (27) involve four unknown dynamic state variables: Pn, Sn,
Pw, and Sw. Two additional equations are needed to close the PDE system. These
two equations are the constitutive equations on the pressures and saturations and are
typically expressed as:

Pn − Pw = Pc(Sw) (28)

Sw + Sn = 1 0 ≤ Sw, Sn ≤ 1 (29)

The first equation describes the capillary pressure (difference between non-wetting
and wetting phase pressures) as a function of the wetting phase saturation (see
Table 1 for definition) [49], while the second equation imposes a physical constraint
on the saturation of two phases in a fully saturated porous medium.

With specified rock and fluid properties, initial and boundary conditions, and
other input parameters and control forcing, the coupled PDE system can be
discretized and solved numerically. In practice, the resulting discretized system
can be high-dimensional (∼106−7 unknowns) and computationally demanding to
solve. A simple example of immiscible two-phase flow, in which water is injected
to displace oil, is depicted in Figure 5. Figure 5(a) shows a two-dimensional



PDE-Constrained Sparse Inverse Problems 419

Fig. 5 The forward simulation model used in Example 1: (a) schematic of a reservoir with
injection (production) wells on the left (right) side of the domain; (b) the intrinsic permeability
distribution in the reference model consisting of high-permeability fluvial channels (red) and low-
permeability background shale (blue); and snapshots of pressure (c) and saturation (d) profiles after
10, 20, and 30 months

(1000 × 1000 m2) reservoir, which is discretized into 100 × 100 cells of the same
size. A series of water injection wells are placed on the left side of the domain to
displace the hydrocarbons toward a similar array of production wells placed on the
right side. In this example, the capillary pressure is set to zero everywhere, that
is Pn(x, t) = Pw(x, t). Figure 5(b) depicts the intrinsic permeability distribution
for this model, which shows a fluvial channel system with high-permeability (red)
channels embedded in low-permeability (blue) background shale. As shown in the
saturation plots of Figure 5(c), fluids move faster in the high-permeability channel
sections. Figure 5(c) and (d) displays the solution of the PDE system as snapshots of
pressure and saturation (Sn) fields at different times within the first 30 months of the
simulation. In our example, the configuration includes the production wells (on the
right) that produce water and oil, and injection wells (on the left) that inject water
into the reservoir. Initially, the reservoir is fully saturated with the non-wetting phase
(oil). Water injection into the reservoir displaces the oil from the left side toward the
production wells on the right side, where the mixture of oil and water is extracted.

The forward simulation described above is used to predict the spatiotemporal
evolution of the dynamical states (pressure and saturation distributions) of the
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system for a given set of input parameters and controls. The state variables of
the system are only observable through indirect measurements (e.g. flowrates and
pressures) at scattered well locations. The related inverse problem can then be
posed to find the unknown parameters (e.g. rock flow properties) from their limited,
indirect, and nonlinear measurements.

5.2 Subsurface Flow Inverse Problem

Calibration of subsurface flow forward models against nonlinear dynamic data, i.e.
data that are measured at different times and are nonlinearly related to parameters of
interest, is commonly used to update model parameters and improve future model
predictions [36]. Examples of dynamic data include time series of pressure or fluid
flowrate measurements made at the well locations and differential images of fluid
saturations typically obtained from seismic surveillance. In particular, dynamic
data carry important information about heterogeneous rock flow properties, such
as permeability distribution. The difficulty and cost associated with direct sampling
from deep geologic formations necessitate the use of subjective assumptions and
interpolations, which introduce significant uncertainty in the constructed rock
properties. Calibration against dynamic data is a routine task performed to improve
the description of these models (e.g. [44, 46]) and the related future forecasts.
Dynamic flow data from scattered wells often contain spatially averaged information
and offer limited resolution. Therefore, using high-resolution detailed models for
unknown parameters can lead to discrepancy between data and model resolutions, a
major contributor to the problem ill-posedness.

Prior models of parameters play a significant role in subsurface flow inverse
modelling and are commonly used to constrain the inverse modelling solution. Of
particular prominence in describing rock flow properties is the type and connectivity
of geologic patterns that are expected in a given formation [75, 88]. Even qualitative
knowledge about the depositional environment and the type of geologic features
can be useful in eliminating implausible solutions. However, in solving the related
inverse problems, it is important to acknowledge and reflect the uncertainty in the
conceptual models of geologic continuity [25, 28, 43]. In this section, we present
subsurface flow inverse modelling formulations that are developed by exploiting
the selection property of the sparsity-promoting formulations that were discussed
above.

We first consider the same setup in the forward model of Figure 5 and use
the PCA and k-SVD representations to solve the corresponding inverse problem.
A total of 2000 prior model realizations are generated using geostatistical simulation
(Figure 3(a) shows 20 samples). The corresponding PCA and k-SVD basis images
are shown in Figure 3(b) and (c), respectively. The !1-norm regularized formulation
is applied to the k-SVD representation while a traditional parameterization using 20
leading basis elements is used for the PCA solution. More specifically, in the case
of k-SVD the regularization term J (v) = ‖v‖1 is minimized along with the data
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Fig. 6 Solution of the inverse problem in Example 1: (a) initial log-permeability distribution
before data integration; (b) estimated log-permeability distribution using the PCA parameterization
with S = 20; and (c) reconstructed log-permeability distribution using k-SVD with S = 20 and
k = 200. The reference model is shown in Figure 5(b)

mismatch norm ‖d− g(u)‖2
2. In the case of PCA, the leading S = 20 basis elements

are selected a-priori and used as parameterization basis vectors; hence, during
inversion the coefficients corresponding to these elements are estimated without
using the !1-norm regularization term. The initial model for the inversion is shown
in Figure 6(a). The reconstruction results using the PCA and k-SVD descriptions are
shown in Figure 6(b) and (c), respectively. The results show better estimation quality
with the k-SVD representation and sparse reconstruction algorithm. The improved
performance can be attributed to several factors, including flexibility in identifying
the low-rank subspace during inversion (PCA provides a predetermined subspace),
and better representation of geologic patterns that are not amenable to covariance-
based description used in the PCA parameterization. Figure 7 depicts the data match
and predictions obtained from the two methods, which seem to be comparable. It is
important to note that while the two methods produce similar data matches, the
solution from the k-SVD algorithm is visibly superior. This can be understood by
recognizing the ill-posed nature of the problem, which implies that many solutions
can be found to match the observed data. In this case, the k-SVD representation is
better able to capture the connectivity structure in the prior model and the sparse
reconstruction algorithm can recover the correct structure more accurately.

5.3 Uncertainty in Initial Geologic Scenario

Prior models of geologic continuity describe the type of geologic patterns and their
connectivity. When used as prior model, geologic connectivity carries important
weight in finding a solution to subsurface flow inverse problems. However, describ-
ing the exact form of connectivity from limited available data is a subjective process
and depends on the geologist’s interpretation. In generating a subsurface flow model,
the connectivity patterns are typically constructed by integrating quantitative (well
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Fig. 7 Sample well data match (first four years) and prediction (last two years) results for Example
1. The BHP and watercut observations at two sample production wells are shown (the producers
are under total production rate control)

log, core analysis, and seismic data) and qualitative information (e.g. outcrops) with
expert knowledge and interpretation as well as process-based geologic modelling of
the depositional environment. Traditionally, a single conceptual model of continuity
(e.g. variogram model) is constructed and used to constrain the solution of the
inverse problem, assuming perfect knowledge about the continuity model. However,
a major source of uncertainty is related to the adopted conceptual model of
geologic continuity. Adhering to a single conceptual geologic scenario can lead to
underestimation of the initial uncertainty in the prior models and result in solutions
that depend heavily on the quality of the adopted prior model (which can be
questionable) [25, 28, 38, 43, 46, 67, 68, 73, 76].

Another important implication of adopting a single geologic scenario is elimi-
nating the opportunity to confirm, reject, or correct a proposed geologic scenario
based on dynamic data. In generating or selecting the prior geologic scenario,
dynamic data is typically not included (usually dynamic data are obtained at later
stages). A simple way to address this issue is to include multiple plausible geologic
scenarios as possible prior models [25, 28, 38, 43]. These alternative geologic
scenarios could be developed as independent interpretation of existing data by
different geologists (experts), or they could be derived from a stochastic process-
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based geologic modelling framework. Inverse modelling can then be applied to
evaluate the plausibility of the proposed geologic scenarios based on available
dynamic data. Inversion methods that can incorporate multiple geologic scenarios
are not widely studied in the literature. In this section, we present one such inversion
method by exploiting the selection property of sparsity-promoting regularization
techniques, or more specifically the group-sparsity regularization.

The group-sparsity regularization is implemented by minimizing the !1/!2-
norm to identify relevant geologic scenarios (from a list of proposed scenarios)
based on dynamic flow-related data. Consider p alternative geologic scenarios,
each used to generate L different realizations as prior models; that is, U1 =
[u11u12 . . . u1L], . . . ,Up = [up1up2 . . . upL] are p sets of prior model realizations
in which the columns of Ui = [ui1ui2 . . . uiL] represent L realizations from the
ith geologic scenarios. If the prior model realizations for each scenario are used
to generate p different PCA bases, then a hybrid dictionary can be constructed to
include all the bases  = [12 . . .p]. Here, the realizations Ui for each geologic
scenario are used to generate a corresponding PCA basis i = [φi1 . . .φisi

],
where si is the size of low-rank representation. Using this hybrid dictionary, the
parameter of interest u is approximated through a linear expansion of the form
u = v = [12 . . .p][v1; v2; . . . ; vp]. This formulation implies that all prior
geologic scenarios have a chance to represent the solution. However, the underlying
assumption is that many of the included prior scenarios are not relevant and should
not contribute to reconstruction of the solution. Hence, only very few (if not just
one) of the groups are expected to have non-zero weights.

Using a mixed !1/!2-norm for group sparsity [29, 54], the regularized objective
function of the inverse problem can be expressed as:

min
v

J (v) =
p∑

i=1

‖vi‖2 s.t., ‖d− g(u)‖2
2 ≤ σ 2

and u = v = [12 . . .p][v1; v2; . . . ; vp]
(30)

After solving this inverse problem, the solution u and the geologic scenario(s)
that significantly contribute to constructing it are identified simultaneously (for
more details, see [28]). Appendix 3 presents the details of solving the optimization
problem in Equation (30).

The example in this section consists of a numerical two-phase flow in a
heterogeneous reservoir for which the intrinsic permeability values in the entire
field are unknown. The reservoir model has a dimension of 1000 × 1000 × 10 m3,
which is discretized into a 100× 100× 1 uniform grid system. Figure 8(a) depicts
the configuration of this water-flooding example. An injection well is placed in the
middle of the field and eight producers are located along the edges of the reservoir
to build a traditional 9-spot water-flooding scheme. A total of 0.8 pore volume (PV)
(see Table 1 for definition) of water is injected into the formation during the first 4
years of water flooding. Also, 0.4 PV of water is injected in the following two years,
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Fig. 8 The forward simulation model used in Example 2: (a) schematic of a reservoir with one
injection well in the centre and eight production wells symmetrically distributed along the edges
of the domain; (b) the intrinsic log-permeability distribution in the reference model; (c) the best
achievable log-permeability estimate when the correct prior geologic scenario is known (Scenario
6); (d) the initial log-permeability distribution, assuming equal contributions from each prior
variogram model; and snapshots of pressure (e) and saturation (f) profiles after 10, 20, and 30
months

during the prediction phase. The porosity of the field is assumed to be 0.25 for the
entire field, and oil/water viscosity ratio is set to 1. The pressure at the injection well
and the total (water and oil) flowrates at the production wells are measured every
40 days and used for inversion. The reference log-permeability map along with its
best achievable PCA approximation, and the initial log-permeability map before
inversion are shown in Figure 8(b)–(d), respectively. The initial log-permeability
map considers equal weight given to all 12 groups. Figure 8(e) and (f) displays the
pressure and saturation profiles, respectively, after 10, 20 and 30 months.

To reflect the uncertainty in the prior variogram model, the direction of maximum
continuity and the minimum and maximum variogram ranges are assumed to be
uncertain. The variogram parameters for these prior models and four samples from
the corresponding realizations are shown in Figure 9. Comparing the reference
model with the realizations generated using these 12 different prior geologic
models reveals that the consistent model belongs to Scenario 6. The projection of
the reference map onto the PCA basis corresponding to Scenario 6 is shown in
Figure 8(c). Other models either present different directions of global continuity
or inaccurate ranges. The realizations from these 12 variogram models are used to
build 12 different PCA bases, which are combined to form a hybrid dictionary.
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Fig. 9 Alternative prior training data derived from 12 different variogram models; each box
contains four sample realization from the training data corresponding to a variogram model;
the alternative variogram models are obtained by using three variogram range combinations
(amax = 300m, amin = 240m), (amax = 600m, amin = 300m), and (amax = 100m, amin = 60m)
and four different azimuth values . The reference model is consistent with Scenario 6 with training
data U6

Figure 10 depicts the inversion solution at different iterations. The initial model
(Figure 8(d) and the top row of Figure 10) is projected onto all elements of the
hybrid dictionary, and all the prior geologic scenarios equally contribute to the
representation of the initial model. The global continuity in the permeability field
is captured within the first few iterations. At later iterations, the regularization
term fine-tunes the solution by selecting the geologic scenarios that best represent
the estimated parameter. Group 6, which has the correct variogram model, has
been identified as the most significant prior model (with largest !2-norm) after
convergence of the group-sparsity inversion algorithm. Figure 11 shows a summary
of the data match and forecast performance of the solution compared to the initial
and reference models in two production wells. The data match and prediction results
clearly show the improvements achieved after model calibration.



426 A. Golmohammadi et al.

Fig. 10 Results of group-sparsity inversion iterations for Example 2: (a) the coefficients of the
expansion using 12 different groups (PCA bases); (b) reconstructed log-permeability map; and (c)
the !2-norm of the coefficients of the PCA representation in each group. Groups with larger !2-
norm have greater contributions to the solution and persist during the iterations, whereas irrelevant
groups are assigned insignificant group !2-norm. Group 6 in this example stay active with a large
!2-norm while other groups disappear during inversion iterations

Two alternative ways may also be used to formulate and solve the above inverse
problem: (i) by using the same parameterization, i.e.  = [12 . . .p], with
!1-norm regularization (without group sparsity), and (ii) by combining all the
prior models and generating a single PCA parameterization. However, both of
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Fig. 11 The pressure and watercut data match (first four years) and forecasts (last two years)
for sample production wells. The group-sparsity regularization not only identifies the correct
variogram model, it also provides a calibrated model at convergence

these approaches provide inferior solutions. In the first case, the group sparsity, by
formulation, has been shown to be more effective in reconstructing the solution
as it imposes a stronger constraint on the problem. In the second case, a simple
least-square formulation is solved to search for the PCA coefficients in the low-rank
subspace defined by the leading PCs, which are not representative of any particular
prior (as they represent an aggregate of all prior models).

6 Conclusion

In this chapter, we discussed a general formulation for solving sparse PDE-
constrained inverse problems. In particular, we presented sparse inverse problem
formulations that use sparsity to regularize ill-posed problems that can arise in
various applications. Sparsity is an inherent property of many types of natural
images and can be used to improve the solution of ill-posed inverse problems
in which the solutions have sparse representations. Examples from multiphase
fluid flow in subsurface rock formations, which involve the solution of coupled
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PDEs to describe the underling physical processes, were used to demonstrate the
effectiveness of the method. To calibrate heterogeneous subsurface flow models
against dynamic data, scattered nonlinear measurements of flowrate and pressure
are often used. Spatially distributed rock flow properties are known to have a
sparse representation in a properly designed basis. High-resolution grid-based
description of these properties leads to over-parameterization. When combined with
data scarcity, over-parameterized descriptions often lead to problem ill-posedness,
introducing great difficulty in solving these inverse problems. Furthermore, prior
geologic scenarios that are typically used to regularize these ill-posed inverse
problems often involve significant uncertainty that should be taken into account
in formulating and solving these problems. We propose the use of learned sparse
geologic dictionaries and sparsity-promoting regularization functions as powerful
and robust approaches to address these issues. Specifically, we present a formulation
in which prior models are used as training data to learn sparse representations of
rock flow properties. We show that by promoting sparsity through minimization
of regular !1-norm of the solution in the learned k-SVD dictionary (along with
minimization of the predicted and observed data mismatch term) a better-posed
inverse problem can be obtained to reconstruct complex geologic patterns. In
addition, group-sparsity regularization that minimizes a mixed !1/!2-norm was
used to discriminate against multiple prior geologic scenarios using flow data. An
important implication of the latter is that it allows the use of dynamic flow data in
selecting, rejecting, and correcting prior geologic scenarios, a novel concept that
can improve traditional subsurface flow model calibration workflows.

Acknowledgements The content of this chapter is based on research partially funded by the US
Department of Energy, Foundation CMG, and American Chemical Society.

Appendix 1: k-SVD Dictionary Learning

The k-SVD algorithm is used to construct learned sparse dictionaries from a training
dataset. The algorithm is similar to the k-means clustering method and is designed to
find a dictionary  ∈ R

n×k containing k elements that sparsely represent each of the
training samples in Un×L = [u1 . . . ui . . . uL]. To achieve this goal, the algorithm
attempts to solve the following minimization problem:

V̂, ̂ = argminV,

L∑
i=1

‖ui −vi‖2
2 s.t., ‖vi‖0 ≤ S for i ∈ 1 : L

(31)

where Vk×L = [v1 . . . vi . . . vL] are the expansion coefficients corresponding to the
training data. Given the NP-hard nature of the problem, the k-SVD algorithm uses a
heuristic greedy solution technique by dividing the above optimization problem into
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Table 2 k-SVD algorithm

Initialization: Initialize dictionary with (0) ∈ R
n×k . Set j = 1.

REPEAT until stopping criteria is met

a. Sparse Coding Step:

-Using a pursuit algorithm (e.g. OMP) compute V(j)
k×L = [v1v2 . . . vL] as the solution of

V(j) = argminvi ‖ui −(j−1)vi‖2
2 s.t., ‖vi‖0 ≤ S for i ∈ 1 : L

b. Dictionary Update Step:

For each column c = 1, 2, . . . , k in (j−1)

-Define the group of prior model instances that use this element

ωc = {i|1 ≤ i ≤ L,V(j)(c, i) �= 0}
-Compute the residual matrix Ec = U−∑i �=c φivc

T , where vcT is the cth row of V(j)

-Restrict Ec by choosing columns corresponding to ωc , i.e. find Eω
c

-Apply rank-1 SVD decomposition Eω
c = A�B

-Update the dictionary element φc = a1 and the sparse representation vc by vωc = �b1

-END

two subproblems: (i) sparse coding and (ii) dictionary update. In the sparse coding
step, for the current dictionary, a basis pursuit algorithm is used to find the sparse
representation for each member of the training dataset. In the dictionary update
step, the sparse representation obtained in the first step is fixed and the dictionary
elements are updated to reduce the sparse approximation error. These two steps
are repeated until convergence. Table 2 summarizes the k-SVD algorithm. Further
details about the k-SVD algorithm may be found in [2]. We note that for high-
dimensional training data the k-SVD dictionary learning can be computationally
expensive. The computational complexity of each iteration of k-SVD is O(L(2nk+
S2k + 7Sk + S3 + 4Sn) + 5nk2), where S is the sparsity level. One strategy to
improve the computational efficiency of the algorithm includes using segmentation
or approximate low-rank representations of the training data (to reduce n).

Appendix 2: IRLS Algorithm

We use the IRLS algorithm [14] to solve the !1-norm regularized least-square
minimization problem, that is:

min
v

J (v) = ‖v‖1 + λ2‖d− g(v)‖2
2 (32)

At iteration n of the IRLS algorithm, the !1-norm is approximated using a weighted
!2-norm as follows:

min
v(n)

J (v(n)) =
∑
i

w
(n)
i v

(n)
i

2 + λ2‖d− g(v(n))‖2
2 (33)
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where w(n)
i = 1

(v
(n−1)
i

2+ε(n))0.5
, (n) stands for the iteration n, and ε(n) is a sequence of

small numbers (that converge to zero with increasing n). Using this approximation
of the objective function, and a first-order Taylor expansion for g(v(n)), the
objective function in (33) takes the form:

min
v(n)

J (v(n)) =
∑
i

w
(n)
i v

(n)
i

2 + λ2‖d− g(v(n−1))−Gv
(n)(v(n) − v(n−1))‖2

2

(34)
Here, Gv

(n) is the Jacobian matrix of g(.) with respect to v at v = v(n−1). The
updated solution at iteration n can be easily found by taking the derivative of the
above convex function w.r.t. v(n) and setting it to zero.

Appendix 3: Group-Sparsity Inversion

The objective function for group-sparsity regularization can be expressed as:

min
v

J (v) =
p∑

i=1

‖vi‖2 + λ2‖d− g(v)‖2
2 (35)

where the notations are discussed in the text. At iteration n, using the Gauss-Newton
method and the first-order Taylor series for g(v), the linearized version of the
above function takes the form:

min
v(n)

J (v(n)) =
p∑

i=1

(

si∑
j=1

(v
j
i

(n)
)2)

1
2+λ2‖d− g(v(n−1))−Gv

(n)(v(n) − v(n−1))‖2
2

(36)
where Gv

(n) is the Jacobian matrix of g(v), and v
j
i is the j th basis in the ith group.

Denoting �d(n) = d− g(v(n−1))+Gv
(n)v(n−1), (36) can be simplified to:

min
v(n)

J (v(n)) =
p∑

i=1

(

si∑
j=1

(v
j
i

(n)
)2)

1
2 + λ2‖�d(n) −Gv

(n)v(n)‖2
2 (37)

The derivative of the regularization term with respect to v
j
i

(n)
can be approxi-

mated as:

v
j
i

(n)

(
∑si

k=1(v
k
i

(n)
)2)

1
2

≈ v
j
i

(n)

(
∑si

k=1(v
k
i

(n−1)
)2 + εi (n))

1
2

(38)

where εi
(n) is a small positive number that is used to avoid zero denominators. Note

that vki
(n)

in the denominator is approximated as vki
(n−1)

. Choosing ε such that 0 <

εi
(n) < εi

(n−1) and lim
n→∞εi

(n) = 0, it can be shown that this approximation does
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not change the solution of the original minimization problem. The iterative solution
of (37) can now be derived as:

(�(n) + αGv
(n)T Gv

(n))v(n) = αGv
(n)T �d(n) (39)

where α = 2λ2, and �(n) is a diagonal matrix with diagonal entries
1

(
∑si

k=1(v
k
i

(n−1)
)2+εi (n))

1
2

.
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