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Glossary

Electrochemically active surface area (ECSA)
The surface area of Pt catalyst that is electro-
chemically active, requiring access to both pro-
tons and electrons. It is generally normalized to
Pt mass (e.g., m2/gPt), and is the primary mea-
sure of Pt dispersion.

Fuel cell catalyst Materials that catalyze the
electrochemical reactions. Pt or Pt alloy nano-
particles (3–5 nm in diameter) deposited on
carbon blacks are commonly used with the
goal of maximizing the available reaction site
surface area per Pt mass.

Hydrogen PEMFC vehicle Vehicle that uses
proton-exchange membrane fuel cell
(PEMFC) as its primary power generator, com-
monly known as fuel cell electric vehicle
(FCEV). It uses pure hydrogen gas fuel

reacting electrochemically with oxygen gas
from the atmosphere to generate electricity
and emit only water. Generally requires Pt as
electrocatalyst on both anode and cathode.

Ionomer Ion conducting polymer is used in the
membrane and electrodes. In PEMFCs, the
conducted ion is a proton, and the environment
is strongly acidic with effective pH <1.
Perfluorosulfonic acid (PFSA) such as Nafion®

(DuPont tradename) is the most common.
Local transport loss Performance (i.e., voltage)

loss due to the transport of oxygen and protons
in close (<30 nm) proximity to the Pt reaction
site. Characteristically, this loss is inversely
proportional to the Pt roughness factor (i.e.,
low m2

Pt/m
2
MEA) and is most prevalent at

high-current density.
Membrane-electrode assembly (MEA) The

MEA is at the heart of the fuel cell where the
electrochemical reactions occur. Hydrogen
oxidation reaction (HOR) occurs in the
anode. Oxygen reduction reaction (ORR)
occurs in the cathode. The polymer membrane,
sandwiched between the two electrodes, con-
ducts proton across from the anode to cathode
and acts as an electrical and reactant separator.

Oxygen reduction reaction (ORR) O2 is elec-
trochemically reduced to water on the cathode.
ORR is responsible for most of the overall
voltage (i.e., efficiency) loss in a fuel cell
even with heavy use of Pt catalyst. Therefore,
research on high-activity ORR catalyst is of
high priority. ORR kinetic activity is com-
monly expressed by either normalizing to its
Pt mass (mass activity) or to its available Pt
surface area (area-specific activity).

PGM Platinum group metals (Pt, Pd, Ir, Ru, Rh,
and Os) and other precious metals (Au, Ag, Re)
must be minimized or avoided to enable afford-
able fuel cells.

Pt roughness factor (r.f.) The Pt surface area on
an electrode for electrochemical reaction per
MEA geometric area (m2

Pt/m
2
MEA). This is a

product of Pt ECSA (m2/gPt) and the MEA Pt
loading (gPt/m

2
MEA).
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Definition of the Subject

Widespread commercialization of fuel cell elec-
tric vehicles (FCEV) relies on further reduction
of PGM (platinum group metals) usage.
Although enhancements in the activity and sta-
bility of the catalyst are necessary, those alone are
insufficient. In a fuel cell with low PGM content,
transport of reactants (oxygen and protons) to a
small area of catalyst can cause large perfor-
mance loss at high power. Because it is this
high-power point that determines the required
fuel cell area, these losses drive up the size, and
thus the cost, of the fuel cell stack. This entry
discusses fuel cell cost reduction with special
focus on the challenges and opportunity associ-
ated with Pt reduction.

Introduction

PEM fuel cells offer a zero-emission tank-to-
wheels solution for sustainable transportation,
extending to a well-to-wheels solution when
renewable hydrogen is used. Although a few auto-
motive manufacturers, notably Hyundai, Toyota,
and Honda, have begun to commercialize fuel cell
electric vehicles (FCEV), their high cost limits
market penetration. The availability of hydrogen
stations is also limited. Yet, major fuel cell devel-
opers have defined plausible pathways to reduce
the fuel cell vehicle total cost of ownership
(vehicle plus fuel cost over life) to approach that
of incumbent gasoline-engine vehicles in the long
term. Two critical elements of this roadmap
include decreasing material cost of the fuel cell
system and reducing manufacturing cost through
economies of scale.

An automotive fuel cell typically requires
about 10 m2 of electrochemically active area
which is distributed over 250–400 individual
cells in series, each with 400–250 cm2 of active
area. Each cell is a high-current (>500A) and
low-voltage (~0.6 V) device, and cells are
stacked in series to deliver high DC power
required for vehicle propulsion. The trade-off
defining the number of cells and active area is
dictated by a cost optimization involving the

power electronics that are used to interface the
fuel cell stack with the high-voltage electrical
system [1], a topic outside of the scope of this
entry. Instead, this entry focuses on the issue of
reducing overall electrochemically active area
needed to produce a given power, an issue that
is independent from the trade-off determining the
selection of the number of cells.

State-of-the-art FCEVs use about 30 g of Pt
[2, 3], the only PGM used in the fuel cell system.
At today’s (June 2017) Pt price of $30 per gram,
the cost of Pt metal itself is about $900, a small
fraction of a vehicle cost. But it is significantly
larger than what is used in the current clean
light-duty internal combustion engine (ICE)
vehicle catalytic converter (<5 g PGM, compris-
ing Pt, Pd, and Rh) [4, 5]. Pt is rare, and because
of its high resistance to corrosion, it is used in
many applications. Of the 218 tons of platinum
sold in 2014, 45% was used for vehicle emission
control devices, 34% for jewelry, and 9% for
chemical production and petroleum refining
[6]. The remainder was consumed in other indus-
tries including electronics, glass manufacturing,
and the medical and biomedical industries.
Because Pt is such a well-established commod-
ity, increase in demand will put pressure on its
availability and price. Analysis in Fig. 1 shows a
significant increase in Pt demand once FCEVs
with 10 gPt penetrate the mass market
(scenario B, assumes five million FCEVs/year,
about 5% of global vehicle market), generating
upward pressure on Pt price [7]. This supply-
demand scenario indicates the need for technol-
ogies to reduce Pt usage well below 10 g/vehicle
in the long run.

Figure 2 illustrates the relationship between
cathode Pt loading and the cost of major fuel cell
stack components assuming a 2016 state-of-the-
art current-voltage curve [2]. Although the Pt cost
is a large portion of the stack cost at 0.3 mgPt/cm

2

(~30 gPt/vehicle), reducing Pt loading below
0.2–0.1 mgPt/cm

2 results in only a marginally
lower stack cost, and decreasing to 0.05 mgPt/
cm2 actually results in a stack cost increase. This
is due to poor high-power performance of the low-
Pt cathode, to be discussed in more detail below,
making it necessary to increase stack area and
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overcoming the benefit of the Pt areal-loading
decrease. Improvement in the high-power perfor-
mance of the low-loaded cathode will minimize
stack cost and decrease the Pt loading at which the
minimum cost occurs. This analysis also indicates
that further reduction of Pt loading below
0.1 mgPt/cm

2 (~10 gPt/vehicle) must be done

with the objective of lowering the overall fuel
cell stack cost. Whereas reduction below
0.1 mgPt/cm

2 with current fuel cell performance
may not necessarily be a major vehicle-level cost
saver, it would be important to mitigate demand
on the global Pt market and thus enable high
market penetration of automotive fuel cells.

Proton-Exchange Membrane Fuel Cells with Low-Pt Content, Fig. 1 Impact of fuel cell vehicles on Pt consump-
tion (Reprinted with permission from Ref. [7]. Copyright 2013 Roland Berger LLC)

Proton-Exchange
Membrane Fuel Cells
with Low-Pt Content,
Fig. 2 Effect of cathode Pt
loading on stack cost.
Anode Pt loading is kept
constant at 0.025 mgPt/cm

2.
Cost estimated using
SA/DOE 2013 cost study,
90 kWgross system, 500 k
system/year [8] (Reprinted
with permission from Ref.
[2] Copyright 2016
American Chemical
Society)
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If 10 gPt/vehicle could suppress FCEV mass-
market penetration due to supply-demand factors,
what level is needed to eliminate this barrier?
Reductions to a level comparable to the catalytic
converter (~5 g PGM/vehicle) would largely neu-
tralize the demand increase due to the
corresponding decrease in catalytic converter
demand. Thus, 5 g PGM/vehicle is a reasonable
long-term target [2]. Other important factors could
involve broader PGM market shifts. For example,
an average wedding ring weighs about 5 g; thus,
many married couples own approximately an
FCEV equivalent of Pt. Consider this reference
point and the fact that the world is consuming
34% of total Pt consumption for jewelry. Thus, a
shift in consumer preference to use Pt to enable
emission-free future transportation and to use
other metals (tungsten, gold, etc.) for jewelry
could have a large beneficial impact on Pt avail-
ability and cost for FCEV use.

The ultimate goal of fuel cell catalyst develop-
ment is to entirely eliminate the need for PGM.
Significant progress has been made by packing as
many active sites as possible into carbon-
nitrogen-based non-PGM catalysts [9–11]. How-
ever, their stability is currently unacceptably poor
[12]. In addition, their useable power density is
only about one-tenth of the PGM catalyst system,
making vehicle packaging and cost (e.g., of other
stack components that scale with surface area)
impractical. Finally, if PGM use is successfully
reduced to a level comparable to incumbent vehi-
cle technology (~5 gPGM/vehicle), the economic
benefit of an alternative may not be favorable.

Alkaline membrane fuel cells (AMFC) operate
under less corrosive conditions, and low-cost
non-PGM cathode catalysts may be used
[13, 14]. However, palladium is currently still
required on the anode to achieve power density,
and thus stack size reduction, approaching that
possible with PEMFCs. Furthermore, the instabil-
ity of AMFC membrane candidates at high tem-
perature (80–100 �C) and the deactivation of its
ionic carriers due to CO2 in air are other major
technology hurdles [15–17]. These performance,
durability, and cost uncertainties have thus far
prevented AMFC technology from mounting a
serious challenge to PEMFC for automotive

applications. AMFC technology status and trajec-
tory is described in detail in a separate entry in
this volume.

In this entry, we will provide an overview of
the challenges and most promising research direc-
tions to develop automotive PEM fuel cell tech-
nology with sustainable Pt use.

PEM Fuel Cell Electrodes

The hydrogen oxidation reaction (HOR) on the
anode is so fast that less than 1 g of Pt can suffice
[18]. And when pure hydrogen is used, fast HOR
rate and diffusion minimize the voltage loss on the
anode. Therefore, the primary focus has been on
improving the sluggish oxygen reduction reaction
(ORR) on the cathode. Much progress has been
made in improving the activity and stability of the
ORR catalysts in the past 15 years. Many
advanced catalysts (e.g., shape-/size-controlled
alloy [19–24], Pt monolayer catalysts [25–27],
etc.) have shown promising activity in rotating
disk electrode (RDE) tests, although they have
not shown comparable activities in fuel cell
membrane-electrode assemblies (MEA). Fortu-
nately, a more gradual improvement using a
dealloying approach [28–31] on spherical PtNi
and PtCo to control the “Pt skin” and subsurface
composition has yielded materials that approach
the required activity and stability in a fuel cell for
a ~5 gPt/vehicle [2, 31, 32].

As shown in Fig. 3a, the ORR requires efficient
delivery of oxygen, protons, and electrons at the
same location. Facile transport of these species,
which occur through different phases, to the active
site is essential to allow high-power output. The
electrodes are generally made of mixtures of
proton-conducting polymers (ionomer, blue) and
carbon-supported Pt nanoparticle (gray and black
circles) catalysts. This design gives a porous layer
(~60% porosity) that is good for gas transport and
a large active area (roughness factors >30 cm2

Pt/
cm2

MEA) for the reaction [33, 34].
Carbon black is the preferred support to dis-

perse Pt-based nanoparticles, thanks to its high
electronic conductivity, high surface area for
nanoparticle deposition, relatively high stability,
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and low cost. The morphology and properties of
carbon play a critical role in determining the per-
formance and stability of the catalyst
[35–39]. Some popular carbons such as
KetjenBlack (KB) possess a large number of inter-
nal micropores within its carbon particles, making
it possible to achieve good Pt particle dispersion
and thus high Pt surface area [40, 41]. Figure 4
shows a transmission electron micrograph of a
Pt/KB catalyst. Tomography analysis on a section
of the catalyst reveals the location of Pt particles
in relation to the carbon particle. The red and
green coloring represent Pt particles that are
located on the surface and within the carbon,
respectively.

The presence of the internal Pt adds another set
of reactant transport considerations within a fuel cell
electrode (Fig. 5). The internal particles have been

shown to bemostly electrochemically active and are
believed to have access to proton and O2 through
small openings (1–5 nm) in the carbon micropores
[40, 41]. But it is believed that the pores are too
small for ionomer to intrude and form a direct
proton conduction path to the Pt surface
[39, 42–45]. Although it is hypothesized that
condensed water can conduct protons in these
pores, much remains unclear on the exact mecha-
nism and the magnitude of the proton conductivity
[46–48]. Additionally, ionomer can form a layer
blocking the transport of O2 and water at the open-
ing leading to increased voltage loss [49, 50]. These
complexities may make it appealing to use carbons
that do not possess internal porosity. However, it has
been shown that porous carbons could offer better Pt
dispersion, Pt alloy quality, ORR activity, and cata-
lyst stability [37–39]. Therefore, the best carbon
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Proton-Exchange
Membrane Fuel Cells
with Low-Pt Content,
Fig. 3 (a) Schematic of
transport reaction in the
fuel cell cathode. (DM =
diffusion media; BP =
bipolar plate). (b) Fuel
cell polarization curves of
PtCo/C catalyst at different
cathode Pt loadings.
Operating conditions in the
order of anode/cathode: H2/
air, 94 �C, 65/65% RH,
250/250 kPaabs,outlet,
stoichiometries of 1.5/2.
Single cell, 50 cm2 active
area (Reprinted with
permission from Ref.
[2]. Copyright 2016
American Chemical
Society)
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support for each user may vary depending on their
needs and materials-system trade-off.

Performance of Low-Pt Fuel Cell

At higher power, transport phenomena (oxygen,
proton, and electron) in a fuel cell will contribute
to the voltage loss. As Pt loading and the available
Pt area for ORR are reduced, higher O2 and proton
fluxes must be delivered to the Pt surface which
can lead to noticeable and even severe voltage
losses. This is particularly noticeable below
0.1 mgPt/cm

2
MEA (Fig. 3b), corresponding to

<10 gPt/vehicle. These internal losses in energy
within the fuel cell are converted into waste heat
which must be removed from the fuel cell using
coolant and a radiator. The size of the radiator, and
thus the amount of this heat removal, is limited by
the frontal area of the vehicle. Depending on
system design and requirement, cell voltage at
the stack high-power (i.e., rating) point is gener-
ally required to be higher than 0.55–0.65 V to
allow for waste heat removal from the vehicle

and maintain sufficient hydrogen conversion effi-
ciency (>50%) [1, 51]. Assuming that the fuel cell
stack is sized at 0.58 V, one can estimate current
densities from Fig. 3b of 1.65 and 2.0 A/cm2 for
0.05 and 0.1 mgPt/cm2

MEA, respectively. This
results in power densities at these points of 0.96
and 1.16 W/cm2, translating for a 100 kWgross

stack to requirements of approximately 10.4 and
8.6 m2 of fuel cell area, respectively. This case
illustrates that although it is in principle desirable
to reduce the Pt loading, worse fuel cell perfor-
mance at the stack rating voltage translates to a
20% increase in overall stack size. Depending on
the cost of the fuel cell components that scale with
area (e.g., plates, membrane, and diffusion
media), this can result in an increase in stack
cost even with lower-Pt areal loading, as also
shown in Fig. 2 at cathode Pt loadings less than
0.1 mgPt/cm

2.
A fuel cell performance mathematical model

provides a useful tool to help understand the var-
ious internal voltage losses. One can build a
model using known physics involved in a
PEMFC that uses inputs from a number of in
situ electrochemical diagnostics and ex situ char-
acterization methods [34, 45]. Figure 6 illustrates
the voltage loss terms estimated for various com-
ponents as a function of current density. While a
realistic fuel cell is operated under a wide range of
conditions that vary over the fuel cell area, a
simplified “differential cell” (i.e., high gas flow
and constant temperature condition) is often used,
and is modeled here, for diagnostic purposes. By
far, ORR kinetic loss is the largest contributor. As
current density increases, transport phenomena
(oxygen, proton, and electron) contribute to the
voltage loss. Ohmic loss (membrane protonic
resistance and electronic resistance of other com-
ponents), O2 transport loss in the gas diffusion
layers, and proton conduction loss in the elec-
trodes are also noticeable. However, these losses
do not change with Pt amount and are thus not the
focus of this entry. More detail on these losses can
be found elsewhere [34, 45].

As Pt loading and its surface area decrease,
transport of protons and O2 to the reaction sites
becomes more challenging. Characteristically,
this type of loss increases with decreasing Pt

Proton-Exchange Membrane Fuel Cells with Low-Pt
Content, Fig. 4 Transmission electron micrograph of Pt
nanoparticles deposited on KetjenBlack carbon particles.
Color inset shows the tomography of an area of the catalyst
and the location of Pt particles. Red surface Pt. Green
internal Pt (Reprinted with permission from Ref.
[41]. Copyright 2010 American Chemical Society)
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roughness factor and is called a “local transport
loss,” postulated to be at or near the Pt surface
[52]. As will be discussed in the next section, a
portion of this loss can be attributed to the trans-
port of O2 through an ionomer thin film covering
the Pt particle (yellow area). However, there
remains voltage loss at high-current density that
has not yet been accounted for by known physics
or chemistry (orange area). Both losses grow rap-
idly as current is further increased or as Pt surface
area drops further during long-term fuel cell oper-
ation. Therefore, they must be understood and
minimized for the long-term Pt loading target to
be met.

Local Transport Resistance

As discussed in Fig. 6, the local transport resis-
tance can be divided into two components: (a) O2

transport associated with ionomer thin film
(yellow area) and (b) an unaccounted-for resis-
tance (orange area). The latter component is
hypothesized to result from proton and O2 trans-
port through nanometer-sized pores shown in
Fig. 5. Some studies constructed “agglomerate”
models, simulating impact of 50–500 nm diame-
ter spherical elements filled with water and/or
ionomer, in attempts to simulate the voltage loss
[45, 49, 50, 53]. Indeed, there are examples indi-
cating that this unaccounted-for loss (orange area)
can be largely eliminated when nonporous

carbons are used [39, 54–56]. However, due to
the complex structural heterogeneity of the elec-
trode (ionomer distribution [57, 58], Pt location
[40, 41], carbon pore morphology [42, 44, 59],
etc.) as well as engineering phenomena (e.g.,
localized water generation, drying due to local
temperature increase), such models have been
difficult to unambiguously test and validate. This
area remains in need of improved diagnostics and
modeling tools to definitively identify the source
of this unaccounted-for loss.

The “O2 local” component in Fig. 6 can be
characterized by a resistance called RO2

Pt, and this
can be quantified by operating an MEA under O2

transport-limiting conditions [52, 60]. In this
so-called O2 limiting-current measurement, both
the Fickian (pressure-dependent component
representing bulk gas transport,RF) and non-Fickian
(pressure-independent component representing
Knudsen or through-film transport, RNF) compo-
nents of the O2 transport resistance can be deter-
mined. Fickian transport represents bulk gas
transports in gas-diffusion media and large pores in
the microporous layer and electrode. Fickian trans-
port resistance does not change with Pt loading. It is
the RNF that strongly correlates with high-current-
density (HCD) performance of low-Pt electrodes.
Physically, RNF is made up of three transport
resistances – one from the small pores in the micro-
porous layer (MPL), another from the small pores in
the cathode catalyst layer (CCL), and the third for a
region close to the Pt surface [52]:

Proton-Exchange Membrane Fuel Cells with Low-Pt
Content, Fig. 5 Illustration showing transport of proton,
O2, and water at different length scales in the cathode

electrode (Reprintedwith permission fromRef. [42]. Copy-
right 2011 Elsevier)
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RNF � RMPL
NF þ RCCL

NF þ RPt
O2

r:f :
(1)

Figure 7a summarizes the RNF as a function of
Pt roughness factor (r.f.) for a variety of cathode
catalysts [61]. Electrodes with low r.f. (low Pt
loading) show high RNF because more O2 must
be delivered to a smaller Pt surface resulting in a
higher apparent electrode O2 transport resistance.
As shown in Eq. 1, one can determine the RO2

Pt by
plotting RNF vs 1/r.f. (inset). In this case, the RO2

Pt

is determined to be 11.2 s/cm from the slope. In
Fig. 7b, we summarize the fuel cell performance
at 1.75 A/cm2 as a function of roughness factor.
The fuel cell voltage drops precipitously once the
r.f. is below about 50, as the shrinking available
surface area drives up the local reactant flux.

In contrast to the dispersed carbon-supported
catalysts discussed above, the 3M nanostructured
thin-film (NSTF, blue squares) catalyst shows
impressive fuel cell performance despite its very
low-Pt r.f. [62–64]. The majority of the 3M NSTF
surface is free of ionomer and therefore relies on

proton conduction on the Pt surface. However,
when a thin (2–4 nm) ionomer film was coated
on the NSTF surface, the catalyst exhibited simi-
lar behavior to that of the carbon-supported Pt
nanoparticle-based (and presumably thin ionomer
film coated) catalysts [61, 65, 66].

Ionomer Thin Film and Ionomer-Pt
Interface

The above results strongly indicate that ionomer
thin film (<5 nm) on the Pt surface contributes to
the rise of the “local O2” resistance (yellow
shaded area in Fig. 6). In this section, we discuss
potential mechanisms by which the ionomer
induces this resistance. Known O2 permeability
of a thick membrane (e.g., a 10–20 mmmembrane
such as typically used in the fuel cell) cannot
explain the large O2 transport loss observed in
the fuel cell electrodes, as there is a factor of
3–10 increase in the apparent resistivity of a thin
film [52]. In bulk perfluorosulfonic acid (PFSA)

Proton-Exchange Membrane Fuel Cells with Low-Pt
Content, Fig. 6 Voltage loss terms in a low-Pt PEMFC
operated under differential cell conditions (i.e., high gas
flow and constant temperature): H2/air, 150 kPaabs, 80 �C,
and 100% RH. The symbols represent the experimental
data. The lines are the thermodynamic equilibrium cell

voltage (Erev) subtracting various voltage losses calculated
based on the measured component material and transport
properties and electrode kinetics. MEAs: Pt/C anode and
Pt/KB cathode (0.025 and 0.056 mgPt/cm

2, respectively)
coated on an 18 mm thick composite membrane
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membrane, the ionomer phase segregates into
hydrophobic regions and water-containing
domains with 2–5 nm diameter channels. This
efficiently segregated two-phase morphology is
believed to be an important feature responsible
for the superior proton conductivity as well as
increased water and O2 transport rates as com-
pared to non-PFSA membranes [67–69]. In a
fuel cell electrode where ionomer exists as a
1–5 nm thin film on Pt and carbon, the dimensions

are too small to allow development of the two-
phase morphology present in thicker films. The
resulting increased importance of interfacial prop-
erties and interactions with solid substrates are
expected to induce changes in its structure and
transport properties (Fig. 8).

When the ionomer film thickness approaches
the characteristic domain size of the ionomer,
structure and transport properties of the ionomer
can change due to the so-called confinement
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Proton-Exchange
Membrane Fuel Cells
with Low-Pt Content,
Fig. 7 (a) Non-Fickian O2

transport resistance (RNF) as
a function of total Pt area on
an MEA cathode
(roughness factor is defined
as the product of Pt loading
and ECSA of the catalyst)
for different catalysts. Inset
is a plot of RNF vs 1/r.f.. Pt/C
(�), PtCo/C (○), Pt-ML/
Pd/C (+), NSTF (■), NSTF
with 2–4 nm ionomer
coatings (~) (Reprinted
with permission from Ref.
[2]. Copyright 2016
American Chemical Society
(b) Voltage at 1.75 A/cm2

showing the impact of
r.f. and ionomer)

Proton-Exchange Membrane Fuel Cells with Low-Pt Content 331



effect. Many ex situ techniques such as X-ray
scattering, neutron and X-ray reflectivity, TEM,
XPS, AFM, and FTIR were employed to study
this effect [57, 71–78]. Some effects include a
formation of multilamellar nanostructure and

reduced transport properties such as lower water
uptake and uptake rate [59, 72, 74–77,
79–82]. These effects are highly dependent on
treatment condition, substrate type, and operating
environments [76, 83]. These findings corroborate

Proton-Exchange Membrane Fuel Cells with Low-Pt Content, Fig. 8 Thickness dependence and substrate inter-
action of ionomer thin film (Reprinted with permission from Ref. [70]. Copyright 2017 American Chemical Society)
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the notion based on domain-size arguments that
transport properties of ionomer in a fuel cell elec-
trode are very different from those in bulk mem-
branes. A comprehensive discussion can be found
in the PFSA ionomer thin-film entry in this vol-
ume and a review by Kusoglu and Weber [70].

Sulfonate groups on the ionomer can adsorb on
Pt and reduce ORR activity [84, 85]. The adsorp-
tion of the acid group immobilizes the ionomer
chain reducing its degrees of freedom
[86–88]. Electrodes with higher acid group con-
centration (lower equivalent weight ionomer)
were shown to have higher apparent local O2

resistance [89]. Some studies showed that differ-
ent ionomer acid groups and ionic liquid additives
can improve ORR activity [24, 90–92]. Further-
more, ex situ O2 permeability measurement by
Litster and coworkers showed that there was no
such increase in thin ionomer O2 resistance when
as low as 50 nm thick ionomer films were coated
on a polycarbonate substrate and placed in the
diffusion path, but not in direct contact with the
Pt surface [93]. This result indicates that ionomer
interaction with the Pt surface is associated with
the increase of the local O2 resistance.

As an alternative consideration to sulfonate
group interaction with Pt, molecular dynamics
and DFT simulation by Jinnouchi et al. indicated
that it is energetically preferable for the large
number of CF2 groups on the ionomer backbone
to fold on the Pt surface [94]. Such a dense layer
adjacent to Pt can reduce the O2 concentration and
may be a root cause for the local O2 resistance.

Published studies using alternative ionomer
structures in the electrodes are limited. In general,
use of hydrocarbon ionomers results in poor fuel
cell performance [95–99]. This is primarily due to
their characteristically lower gas permeability
which, although favorable when used as a mem-
brane, is detrimental in the electrodes. Among the
PFSA ionomers, decrease in the ionomer equiva-
lent weight (increase in the acid group concentra-
tion per mass of ionomer) was shown to worsen
HCD performance in one study [89]. Ionomers
with short side chain or rigid backbone have
been shown to mitigate reversible degradation of
the electrode [92]. Some acid groups are found to
adsorb less strongly to the Pt surface which might
translate to higher activity and improved transport
properties, although its HCD benefits were not
confirmed in actual fuel cell performance
[90]. The most significant impact observed is
when a small cyclical ring is inserted into the
ionomer backbone in order to create a sterically
enhanced O2 permeability through a more open
structure (Fig. 9) [100–102]. This results in a
substantial improvement in HCD voltage as
shown in Fig. 7b (green triangle). These are very
encouraging initial results. However, stability and
processability concerns still remain.

Altering the process when forming the catalyst
layer by changing the solvent system or mixing
procedure was shown to improve HCD perfor-
mance [103–105]. However, it is uncertain
whether these enhancements are due to local
transport (characteristically scales with Pt
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loading) or optimization of ionomer distribution
in the electrode.

Recent studies on ionomer thin films have
identified many changes in the microstructure
and physical properties of the ionomer; however,
large gaps still remain in understanding how these
changes affect its transport properties (oxygen,
proton, and water) within the cathode as well as
how the ionomer structure might change with
operating conditions in a fuel cell. These topics
are critical future research areas that could have
significant positive impact on cathode perfor-
mance and durability.

Catalyst Roadmap

Themathematical model discussed above can also
be used to create catalyst roadmaps that consider
the impact of the local transport resistance,

indicating critical ex situ measured parameter
requirements needed to achieve performance tar-
gets. Figure 10 shows catalyst requirements, ORR
mass activity, and Pt surface area (ECSA), needed
for acceptable performance (>0.58 V) at 1.5 and
2.0 A/cm2 for cathode catalyst loadings of 0.05
and 0.1 mgPt/cm

2. Requirements with (parabolic
dashed lines) and without the local resistance
(horizontal dotted lines) are shown. Parameters
must be higher than the dashed parabolic lines in
order to meet the associated requirement, and
materials with values in the upper right-hand por-
tion of the plot are most desirable. Some experi-
mental data are also shown on the map – open
symbols are representative MEA data before and
after durability tests for four well-known catalyst
families. The arrows show significant deleterious
impact of degradation during operation,
representing a large opportunity if catalyst behav-
ior could be stabilized close to beginning-of-life
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Content, Fig. 10 ORR mass activity and Pt ECSA tar-
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lyst loadings. Local resistance of 12 s/cm was used in the
analysis. Dashed lines and dotted lines show the minimum
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resistance, respectively. Catalysts that are above and to

the right of a given boundary are sufficient to meet or
exceed the voltage requirement. Data points from MEAs
before (arrow start) and after (arrow end) accelerated
durability tests are shown for various catalyst systems
[31, 106, 107], and shaded areas indicate estimate of
achievable targets (Reprinted with permission from Ref.
[2]. Copyright 2016 American Chemical Society)
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values. The shaded ovals represent an optimistic
expectation of what each approach may achieve in
the next 10 years.

Pt alloy catalysts are the most mature. The
Toyota Mirai FCEV, introduced to the market in
2014, already uses this type of catalyst although at
a higher Pt loading [3, 108]. The high ORR mass
activity and moderate Pt surface area suggest that
the current catalysts can meet requirement at
10 gPt/vehicle (red dashed line) but fall short of
5 gPt/vehicle (blue-dashed line) [31, 32]. Increase
in both ORR activity and Pt surface area over
operating life is required. Other promising
advanced catalysts (e.g., shape-/size-controlled
alloy [19–24], Pt monolayer catalysts [25–27],
etc.) have shown some encouraging initial results
but have generally not yet shown competitive
stability in fuel cell MEA testing. Furthermore,
they are still made in small quantities at lab scale,
and processes amenable to high-volume produc-
tion remain to be developed.

The Pt monolayer catalyst family pioneered by
Brookhaven National Laboratory, shown toward
the upper right-hand portion of Fig. 10, is concep-
tually appealing in that it places essentially all Pt
atoms on the particle surface and does not waste Pt
atoms in the particle core [25, 26]. This construc-
tion gives the highest Pt surface area possible, and
representative data are shown in Fig. 11. On a Pt
content basis, this catalyst outperforms other types
of catalyst, thanks to its high Pt ECSA [27]. How-
ever, at the current stage, a relatively large amount
of Pd is needed to form Pt monolayer shell, and Pd
is subject to leaching out from the core resulting in
destabilization of the Pt monolayer [26, 27,
109]. Furthermore, global tightening of automotive
emissions standards has raised the price of Pd in
recent years to the point that economical advantage
of Pd over Pt is minimal. (Both are about $30/g in
June 2017.) Some early work on platinum-
monolayer shell on palladium-tungsten-nickel
core catalyst (Pt-ML/PdWNi), in which half the
Pd core has been replaced by less expensive mate-
rials, has shown promising performance and dura-
bility (middle of Fig. 10). Further work along these
lines, pursuing reduction of Pd use and stabilization
of the core materials, appears to be a worthwhile
development direction.

Durability of Low-Pt Fuel Cell

Usable performance of the fuel cell must extend
over the lifetime of the vehicle (>12 years). Auto-
motive producers generally aim to allow less than
10–20% performance degradation over its life. In
the context of Fig. 10, one will need at the end of
expected life a catalyst that remains higher than
the required ORR activity and Pt ECSA. Charac-
teristics of the degradation of the catalyst and
electrode can be observed through decrease in
ORR activity and Pt ECSA and loss of transport
properties. These losses can be either permanent
or reversible. The major degradation mechanisms
include Pt and transition metal dissolution, parti-
cle migration and coalescence, carbon corrosion,
and contaminant adsorption. An extensive review
of this topic is available in Ref. [110].

Although one might expect the degradation of
a catalyst to be relatively independent of Pt load-
ing, more systematic study is warranted. And even
if degradation mechanisms and rates in a low-Pt
electrode are the same as in a higher-Pt electrode,
the impact on voltage loss will be higher in the
low-Pt case. This is because, as discussed in
Figs. 7b and 10, the voltage drops precipitously
at low r.f. since the resistance (and thus loss) is
inversely proportional to this factor. Therefore,
research to develop and implement low-Pt
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catalysts that start and end life with high ECSA
and specific activity is critical to the pursuit of
affordable automotive fuel cells.

As the total Pt surface area is reduced in a low-
Pt fuel cell, the electrodes becomemore susceptible
to contamination. Some chemical degradation is
reversible, and performance can be recovered dur-
ing normal vehicle operating modes. On the anode,
H2 fuel quality is critical to allow Pt reduction
(<0.025 mgPt/cm

2), where contaminants such as
CO and H2S must be carefully controlled. On the
cathode side, a chemical air filter may be required
to remove potential contaminants (SOx, H2S, NOx,
volatile organic compounds, etc.) from intake air
[111, 112]. In addition to external contaminants,
degradation products (sulfate and organic com-
pounds from the membrane [66, 113–115]; cobalt
from the catalyst [116, 117]) from within the fuel
cell MEA can also decrease fuel cell cathode per-
formance. Development of more stableMEA com-
ponents and strategies to mitigate degradation are

needed to enable low-Pt fuel cells under real-world
application.

Other Challenges

In this entry, we have focused on the performance
of the catalyst and cathode electrode. However,
for further improvement other components in the
fuel cell must also be developed. Figure 12 breaks
down the sources of the voltage loss at high-
current density for the near-term target of
0.1 mgPt/cm

2 at 2 A/cm2 (upper left, about
10 gPt/vehicle) and possible paths toward further
improvement. For further Pt and cost reduction,
one can reduce the Pt loading or increase the
maximum current density. To decrease Pt loading
(mgPt/cm

2) at the same current density (move to
right in Fig. 12), improvement in ORR activity
and local transport are key enablers. To increase
current density at the same Pt loading

Proton-Exchange Membrane Fuel Cells with Low-Pt Content, Fig. 12 Two pathways to reducing cost further [1]:
decreasing Pt loading and [2] increasing current density. Losses are estimated using a fuel cell voltage loss model
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(move downward in Fig. 12), improvement in
ORR activity and local transport remain of highest
priority, but important issues broaden to include
ohmic loss reduction, bulk O2 transport, and cath-
ode proton conduction in the cathode. This down-
ward path can have higher cost reduction impact
since smaller stack size will also reduce the
amount of bipolar plate, membrane, electrode,
and diffusion media material required.

Finally, in order to realize a truly sustainable
technology, more precious metals must be
recycled. Although growing in recently years,
recycling currently only accounts for 30% of the
global PGM supply [6]. Pt global recycling rates
(60–70%) are better than those of other PGMs
thanks to its favorable recycling economics. How-
ever, in the automotive sector, the recycling rate
only reaches 50–55% [118]. Recycling of PGM is
not only technically feasible and environmental
friendly but also profitable. Recycling rates can be
increased through improved waste collection
mechanisms, as well as shifting public perspective
from “waste management” to “resource manage-
ment” [119]. Management of PGM life cycle ulti-
mately needs to expand across many markets and
applications including automotive, jewelry, and
electronics. For this to occur, strong support will
likely be needed from policy makers at state,
federal, and international levels.

Future Directions

Fuel cell electric vehicles with about 30 g of Pt are
now on the road [2, 3], and next-generation
FCEVs are expected to use about 10–25 g of
PGM. These are significant accomplishments
and encouraging progress toward commercializ-
ing this sustainable transportation technology.
However, considering commercial factors as
well as promising catalyst technologies early in
the pipeline, a long-term PGM target is warranted
at a level comparable to that used in automotive
catalytic convertors (~5 gPGM). Progress in
Pt-based catalysts in recent years has been due to
alloy optimization resulting in notable activity
gains, but opportunities remain to achieve better
Pt surface area (ECSA) and alloy stability over

operating life. In addition to these structure and
kinetics considerations, fundamental understand-
ing of the origin of the local transport resistance is
needed in order to optimally engineer the nano-
structure near the catalyst active surfaces. Devel-
opment of ionomer specifically designed for this
purpose is a promising research direction, as
encouraging early data exists. New issues will be
encountered as the use of low-Pt roughness factor
increases contamination susceptibility, and funda-
mental studies to conclusively identify poisoning
mechanisms and mitigations approaches will also
be needed. Judging from the steady progress made
in the past decades, we are optimistic that the
concerted efforts of materials developers and elec-
trode designers can resolve these issues, enabling
fuel cell vehicles that are affordable for the mass
market.
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