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Preface

The international conference entitled “New Trends in Approximation Theory”
was held at the Fields Institute, in Toronto, from July 25 to July 29, 2016. The
conference (which received financial support from the Fields Institute and CRM)
was fondly dedicated to the memory of our unique friend and colleague André
Boivin, who gave tireless service in Canada until the very last moment of his life in
October 2014. The impact of his warm personality and his fine work on Complex
Approximation Theory was reflected by the mathematical excellence and the wide
research range of the 37 participants. In total there were 27 talks, delivered by well-
established mathematicians and young researchers. In particular, 19 invited lectures
were delivered by leading experts of the field, from 8 different countries (USA,
France, Canada, Ireland, Greece, Spain, Israel, Germany). Videos and slides of the
presentations can be found at the following link:

https://www.fields.utoronto.ca/video-archive/event/1996
The wide variety of presentations composed a mosaic of multiple aspects of

Approximation Theory and highlighted interesting connections with important
contemporary areas of analysis. In particular, the main topics that were discussed
include the following:

1. Applications of Approximation Theory (isoperimetric inequalities, construction
of entire order-isomorphisms, dynamical sampling);

2. Approximation by harmonic and holomorphic functions (and especially uniform
and tangential approximation);

3. Polynomial and rational approximation;
4. Zeros of approximants and zero-free approximation;
5. Tools used in Approximation Theory (analytic capacities, Fourier and Markov

inequalities);
6. Approximation on complex manifolds (Riemann surfaces), and approximation in

product domains;
7. Approximation in function spaces (Hardy and Bergman spaces, disc algebra, de

Branges–Rovnyak spaces);
8. Boundary behaviour and universality properties of Taylor and Dirichlet series.

v
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vi Preface

Throughout the conference there was a very creative and friendly atmosphere,
with many interesting discussions and mathematical interactions which, hopefully,
will lead to future collaborations. The last talks of the conference were devoted
to the main contributions of André Boivin in Approximation Theory and his
collaborations which are presented in the first chapter in further detail.

Montréal, QC, Canada Paul Gauthier
Tampa, FL, USA Myrto Manolaki
Québec, QC, Canada Javad Mashreghi



A Riemann surface, full of some (among many) good friends of André Boivin, during the
conference “New Trends in Approximation Theory” which was held in his memory (Fields
Institute, July 2016).
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The Life and Work of André Boivin

Paul Gauthier, Myrto Manolaki, and Javad Mashreghi

Abstract André Boivin will be fondly remembered for many reasons. We shall
attempt to convey the impact he has had on the authors of this note (and many
others) by describing his wonderful personality and his important contributions in
the field of Complex Approximation Theory.
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1 Instead of an Introduction. . .

Since “un bon croquis vaut mieux qu’un long discours”, and since André enjoyed reading comics,
we thought of describing his wonderful personality via some representative pictures.
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André Boivin, apart from being a brilliant mathematician, was also a polymath (meaning homo
universalis). Indeed, his interests were very broad, ranging from literature and golf, to travelling
and photography.
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In particular, André had a beautiful collection of nature photographs. Here, with his camera in
Winnipeg, during the CMS summer meeting (June 2014).
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André bore his name Boivin [=Drinks Wine!] well. He was one of the best wine-experts. Apart
from his very detailed knowledge about wine, he loved organizing wine and cheese parties in his
house, for his friends and colleagues.
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André Boivin was universally loved and respected by his students; not only because he was a very
inspiring teacher, but also because he treated everyone as a member of his family. This picture is
from one of the departmental parties that he used to host in his house.
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Here, André with his doctoral student, Nadya Askaripour, after her Ph.D. defence.
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André playing with his two children, Alex and Mélanie.
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André Boivin had many mathematical friends and participated in a great number of international
conferences. Here with his postdoctoral student Myrto Manolaki and Vassili Nestoridis, during the
conference “Universality weekend”, held in Kent State University, Ohio (April 2014).
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Two of the closest mathematical friends of André were Javad Mashreghi, and his doctoral advisor
Paul Gauthier. Here, Paul Gauthier, André Boivin and Javad Mashreghi, during the conference
“Complex Analysis and Potential Theory”, which was held in honour of Paul Gauthier and K. N.
GowriSankaran, at Université de Montréal (June 2011).
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André discussing with his unique vivid way with his colleague and good friend, Mashoud Khalhali.



12 P. Gauthier et al.

Boivin served with distinction as Graduate Student Chair and Chair of the Department of
Mathematics at the University of Western Ontario. His office was always full of life and positive
energy, reflecting his very generous and warm personality.



The Life and Work of André Boivin 13

The Ph.D. thesis of André, and the Ph.D. theses of his students.
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From his personal hand-written notes.
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André with his beloved wife, Yinghui Jiang.
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Our unique friend André, it was a great privilege meeting you. Thank you for infinitely many
reasons!

2 The Life of André Boivin

André Boivin was born on August 7 1955 in Montréal where he was brought up
in the warm environment of a bonded French Canadian family consisting of his
parents Simonne Emard and Léon Boivin and his siblings Diane, Jean and François.
André had a unique talent in being a true and devoted friend and it would not be
an exaggeration to say that his friends were always part of his family. In particular,
during his studies at l’Université de Montréal, he met Jacques Bélair, Jean-Pierre
Dussault, Jacques Taillon and Monique Tanguay, with all of whom he developed
a beautiful lifelong friendship. André obtained his B.Sc. in Mathematics in 1977
and, after completing his M.Sc. at the University of Toronto in 1979, he returned
to l’Université de Montréal to pursue his doctoral studies under the supervision
of Paul Gauthier. André and Paul developed a unique friendship which was based
on mutual admiration, and which led to a very fruitful collaboration (they co-
authored ten articles and they had several collaborators in common). He obtained
his Ph.D. in 1984 for his thesis entitled “Approximation uniforme harmonique
et tangentielle holomorphe ou méromorphe sur les surfaces de Riemann”, which
carved the main research path of his career. Subsequently he was awarded a 2-year
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NSERC postdoctoral fellowship which was held at the University of California,
Los Angeles (1984–1985) and at University College, London (1985–1986). During
his postdoctoral studies he had the opportunity to interact with leading experts in
Complex Analysis such as Theodore Gamelin, who influenced the directions of his
future work.

In 1986 André was hired as an Assistant Professor in the Department of
Mathematics at the University of Western Ontario and moved back to Canada along
with his first wife Johanne Giroux, from London, England to London, Ontario.
In 2004 he was promoted to Professor and in 2006 he was happily remarried to
Yinghui Jiang. Thus André spent the rest of his life in London, together with
his beloved family consisting of his wife Yinghui, his daughter Mélanie, his son
Alex and his step son JP. His house was always open to his friends, colleagues
and students. Anyone who has met André will know that as well as his passion
for Mathematics and science, he enjoyed many of the finer things in life such as
photography, cooking, music, literature and golf. Last but not least, as his surname
indicates in French, André was quite the wine connoisseur!

His engaging and generous personality made him very popular among his
colleagues and students, and he was often characterized as the heart and soul of
the department. He served with distinction as Graduate Student Chair, and in 2011
was appointed Chair of the Department of Mathematics, a post that he served with
remarkable devotion until the very last days of his life. André was, with no doubt,
one of the most conscientious academic leaders. He was always trying to create a
positive and creative atmosphere in the department, looking after every single detail.
One of his many “invisible” contributions was the departmental Analysis seminar.
Despite the small number of Analysis members in the department, André managed
to keep the Analysis seminar series alive and of high quality by inviting some of the
most prominent experts in the field to the department (and as always, by being an
excellent host).

Among his many qualities, André was regarded as one of the most dedicated and
influential lecturers and supervisors in the department and was always generous with
his time. This was reflected in the great number of graduate students he successfully
supervised. In total, he supervised more than 12 masters students, 5 Ph.D. students
and 2 postdoctoral fellows. The four students who completed a Ph.D. under his
supervision were Hua Liang Zhong (2000, “Non-harmonic Fourier series and
applications”), Baoguo Jiang (2003, “Harmonic and holomorphic approximation
on Riemann surfaces”), Chang Zhong Zhu (2005, “Complex approximation in
some weighted function spaces”) and Nadya Askaripour (2010, “Holomorphic k-
differentials and holomorphic approximation on open Riemann surfaces”). The last
(doctoral and postdoctoral) students of André were Fatemeh Sharifi and Myrto
Manolaki, for whom André has been both an inspiring mentor and an affectionate
father-figure.

As well as having a productive research career at the University of Western
Ontario, he was an active participant in various Canadian committees including
being a member of the Grant Selection Committee for Le Fonds de recherche du
Québec-Nature et technologies (FRQNT). Adding to his many contributions to his
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field, in December 2009 he organized (with Tatyana Foth) a session on Complex
Analysis at the Winter Meeting of the Canadian Mathematical Society in Windsor.
In June 2011, together with Javad Mashreghi, he organized the international
conference “Complex Analysis and Potential Theory” in honour of Paul Gauthier
and K. N. GowriSankaran, which took place at the CRM, Montréal. Finally,
André co-organized the 16th Annual Meeting of Chairs of Canadian Mathematics
Departments, which was held at the University of Western Ontario 2 weeks after he
suddenly passed away in October 2014.

André Boivin was known and respected not only for his important mathematical
contributions and his tireless academic service but also for his uniquely generous
and warm personality. He will be fondly remembered for his honesty and openness,
for his endless positive energy and clever sense of humour, for his progressive and
humanistic spirit, for being an influential teacher, a passionate mathematician, and,
above all, for being a wonderful person and friend who appreciated life in all its
dimensions. It is impossible to describe with words the impact he has had in our
lives and the size of the gap he has left behind.

3 Work on Complex Analysis and Approximation Theory

André Boivin, being the mathematical son of Paul Gauthier and the mathematical
great gra(n)dson of Constantin Carathéodory, worked in Complex Analysis and
Approximation Theory. His main topics of investigation were approximation by
holomorphic, meromorphic and harmonic functions on (open) Riemann surfaces,
and in particular on the complex plane C. Namely, he was interested in determining
conditions, under which it is possible to have certain smooth extensions or approxi-
mations in various function spaces. He also worked on non-harmonic Fourier series
and Cauchy-Riemann theory, collaborating with several leading experts. Boivin has
written about 40 influential papers in these areas, with publications in prestigious
journals (such as the Transactions of AMS and J. Anal. Math.).

3.1 Harmonic, Holomorphic and Meromorphic Approximation
on Riemann Surfaces

One of the main components of the work of André Boivin, arising from his
doctoral thesis [39], was concerned with harmonic, holomorphic and meromorphic
approximation on Riemann surfaces. He wrote many important papers in this
area [6, 13, 15, 21, 25, 28, 35–38, 40] and, in particular, he made significant
contributions in the area of Carleman (or tangential) holomorphic and meromorphic
approximation, which we shall describe below.
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In 1927, Carleman, in his attempt to generalize the classical approximation
theorem of Weierstrass, showed that, for each continuous function f on the real
line R and for each positive continuous function " on R, there exists a holomorphic
function g on C such that:

jf .z/ � g.z/j < ".z/ .z 2 R/:

This important result gave rise to the following definition:

Definition 1 Let D be a domain in C (or, more generally, in a non-compact
Riemann surface R), and let E � D be a relatively closed set.

1. E is called a set of Carleman holomorphic (respectively meromorphic)
approximation if, for each continuous function f on E which is holomorphic on
Eı and for each positive continuous function " on E, there exists a holomorphic
(respectively meromorphic) function g on D such that:

jf .z/ � g.z/j < ".z/ .z 2 E/:

2. If we replace above the phrase “each positive continuous function " on E” by
“each positive constant "”, we say that E is a set of uniform holomorphic
(respectively meromorphic) approximation.

Obviously, each set of Carleman (holomorphic or meromorphic) approximation
is a set of uniform (holomorphic or meromorphic) approximation. The characteriza-
tion of compact subsets of C which are sets of uniform holomorphic approximation,
follows by the celebrated theorem of Mergelyan: they are exactly the compact
sets with connected complement in C. In 1968, Arakelyan generalized this result,
by providing a characterization of closed subsets of C which are sets of uniform
approximation:

Theorem 1 (Arakelyan, 1968) Let D � C be a domain, and E � D be relatively
closed set. The following are equivalent:

1. E is a set of uniform holomorphic approximation.
2. D� n E is connected and locally connected (where D� is the one-point compacti-

fication of D).

It is striking that, although Runge’s theorem has an analogue for non-compact
Riemann surfaces (H. Behnke and K. Stein, Math. Ann. 120 (1949), 430–461), there
is no known analogue for Arakelyan’s theorem for a general non-compact Riemann
surface. In fact, it can be shown that there is no topological characterization of
closed sets of uniform holomorphic approximation. This difficult problem attracted
the interest of André, who spent several years of his career trying to investigate it,
and, in particular, he was working on this with his last doctoral student, Fatemeh
Sharifi.
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The contributions of Boivin in the area of Carleman approximation are of very
significant importance. In 1971, Nersessian gave a complete characterization of sets
of holomorphic Carleman approximation in the case of the complex plane, based on
previous work of Gauthier. In 1986, in his paper in Math. Ann. [36], Boivin provided
a complete characterization of the sets of holomorphic Carleman approximation on
an arbitrary open Riemann surface.

The problem of characterizing the sets of meromorphic Carleman approximation
still remains open (even in the case of the complex plane). Boivin’s work has shed
considerable light on this problem. For example he showed that the meromorphic
analogue of the sufficient condition that appears in Nersessian’s characterization of
holomorphic Carleman approximation is not sufficient to characterize the sets of
meromorphic Carleman approximation. He also provided a new sufficient condition
(in terms of the Gleason parts) and one necessary condition (in terms of the fine
topology) for sets to be sets of meromorphic Carleman approximation. Later, in a
coauthored paper with Nersessian, he showed that the sufficient condition in terms
of the Gleason parts, fails to be also necessary for this kind of approximation.

3.2 Approximation in Function Spaces

Apart from uniform approximation, Boivin also worked on approximation in various
function spaces, including weighted Hp and Lp spaces, Lip˛ , BMO, and Cm spaces
(see [3, 8, 9, 26, 29, 31]).

A representative sample of this work can be found in [31], where Boivin and
Verdera generalized to unbounded sets a wide range of important approximation
results. In particular, for closed (or measurable) sets F in the complex plane, the
authors considered AB.F/, the set of holomorphic functions on the interior of F
which belong to B, where B is any of the following function spaces: Lp.F/ (for
1 < p < 1), Lip˛.F/ (for 0 < ˛ < 1), BMO.F/ or Cm.F/. Inspired by the
classical theorem of Vitushkin, Boivin and Verdera introduced some appropriate
capacities to characterize the sets F, for which every function in AB.F/ can be
approximated, in the B-norm on F, by functions holomorphic in a neighbourhood
of F. In the same spirit, in [29], the two authors, together with Joan Mateu,
provided a Vitushkin-type theorem on approximation by holomorphic functions in
a neighbourhood of a compact set E which additionally belong to some weighted
Lp space on E. Subsequently, in [26], Boivin with Bonilla and Fariña, advanced
further the theory of weighted Lp spaces by providing analogues of some of the
most fundamental approximation theorems (Runge’s theorem, fusion lemma and
localization theorem). Finally, André Boivin investigated approximation properties
of weighted Hardy spaces, in collaboration with Changzhong Zhu and Paul Gauthier
([3, 8] and [9]). Specifically, in [9] they studied expansion, moment and interpolation
problems for Hardy spaces on the disc, with weight satisfying a certain technical
condition (known as Muckenhoupt’s condition).
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3.3 Axiomatic Approximation (Extension) for Harmonic
(Subharmonic) Functions and Elliptic Generalizations

The main thrust of André Boivin’s work in approximation theory has been directed
towards the existence of approximations more than with the computation of
approximations. That is, given a space X of functions and a “nice” subspace Y; a
fundamental question is whether, for every function f in X there exist functions in
Y which approximate f : Finding an algorithm for actually computing the approx-
imating functions has been less of a concern for him. For most programs which
actually compute approximations, there is no proof that they actually converge.
If one can prove that certain approximations do not exist, one can save engineers
from wasting their time and resources in trying to compute an approximation which
does not exist. The existence of nice approximations in Y of functions in X can be
interpreted as the density of Y in X: Most work in approximation theory is from the
point of view of functional analysis. The spaces X and Y are viewed as normed linear
spaces. Moreover, the approximation of a function f is usually on a compact set. But
in physics, unbounded models are frequently employed. Boivin has spent most of
his career in trying to approximate functions on unbounded sets, such as the real
line. One of the most natural forms of approximation is uniform approximation.
But here, there is a fundamental difficulty in trying to employ functional analysis
to approximate uniformly on unbounded sets. For example, while the space X of
continuous functions on the real line, with the topology of uniform convergence, is
a topological space and a vector space, it is not a topological vector space, because
multiplication by scalars is not continuous. Boivin and his collaborators have had
to summon considerable ingenuity to overcome this curse, but they have succeeded
in discovering fundamental properties of functions spaces X and their subspaces Y
which have allowed them to develop an axiomatic theory of approximation theory
which applies to many of the most important function spaces on unbounded sets,
for example Cm- or Lp-solutions to elliptic equations on unbounded sets. In Boivin’s
work approximating a function f by a nice function g usually means that g is defined
on a larger set. The function f ; if it is analytic, is usually not itself defined on a
larger set, because of uniqueness properties of analytic functions. Boivin and his
collaborators have also worked with subsolutions of elliptic equations. These are
more flexible and sometimes allow extensions, which are perfect approximations,
since the restriction of the approximation is actually equal to the original function.
The papers in this direction are [2, 5, 16, 19, 22], and [23].

3.4 Cauchy-Riemann Theory

An independent component of the work of André Boivin was his work on Cauchy-
Riemann (CR) Theory. In particular, he wrote three influential papers in this area
([24, 27] and [30]), co-authored with his former colleague and good friend, Roman
Dwilewicz.
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One of their papers [27], was concerned with the problem of classification of
local CR mappings between CR manifolds (a problem that goes back to Poincaré).
Moreover, they worked on uniform approximation of CR functions on tubular
submanifolds in C

n D R
n � iRn (that is manifolds of the form N � iRn, where

N � R
n is a manifold). In particular, in their first paper [30], they showed that,

if N is a compact connected manifold in R
2, then, any CR function on the tubular

submanifold N � iR2 � C
2, can be uniformly approximated, on compacts subsets,

by holomorphic polynomials. In their last paper [24], published in 1998 in the
Transactions of AMS, Boivin and Dwilewicz provided a complete generalization
for CR functions of the classical Bochner tube theorem, which states that any
holomorphic function on a tube �.˝/ D ˝ C iRn � C

n, with ˝ a domain in
R

n, can be extended holomorphically to the tube over the convex hull of ˝. In
particular, they showed the following general result, which replaces the assumption
on ˝ being a domain in R

n with a more general connected submanifold:

Theorem 2 (Boivin and Dwilewicz [30]) Let N be a connected submanifold of
R

n of class C2. Then any continuous CR function on the tube �.N/ D N C iRn

can be continuously extended to a CR function on �.ach.N// D ach.N/ C iRn,
where ach.N/ denotes the almost convex hull of N (which is the union of N with the
interior of the convex hull ch.N/ of N, taken in the smallest dimensional space which
contains ch.N/). As a consequence, any CR function on �.N/ can be uniformly
approximated on compact subsets by holomorphic polynomials.

The above theorem of Boivin-Dwilewicz, which has received 15 citations, not
only generalizes Bochner’s tube theorem; it can also be considered as a version
of the classical edge-of-the-wedge theorem of Bogolyubov (a theorem in complex
analysis, which was originally proved as a tool to solve some problems in physics
in connection with quantum field theory and dispersion relations).

3.5 Approximation by Systems of Exponentials

In recent years André Boivin became interested in the study of non-harmonic
Fourier series; that is the study of approximation properties of systems of expo-
nentials fei�ntg (for example, investigating when these systems form a basis or a
frame). Such questions are of great importance since they have intimate connections
with control theory and signal processing. Boivin investigated such (and similar)
questions and published seven papers in this area [4, 7, 11, 12, 14, 18, 20], in
collaboration with his two doctoral students, Hualiang Zhong and Changzhong Zhu,
and with Terry Peters.

A component of this work was concerned with the following general problem:

Problem 1 Given a domain ˝ in the complex plane and a set of functions fhng in
L2aŒ˝� (the Hilbert space of square area-integrable analytic functions on ˝), find
necessary and sufficient conditions on ˝, such that the system fhng is complete in



The Life and Work of André Boivin 23

L2aŒ˝� (that is, if g is a function in L2aŒ˝�, then inf kh � gkL2aŒ˝�
D 0, where the

infimum is taken over all h in the linear span in L2aŒ˝� of fhng).

For example, it is natural to ask to characterize all bounded domains ˝ for
which the monomials zn, n D 1; 2; : : : , constitute a complete system in L2aŒ˝�.
Equivalently, this means to characterize the bounded domains ˝ for which the
polynomials are dense in L2aŒ˝�. Although there is a simple topological charac-
terization of domains when we examine the density of polynomials with respect to
the uniform norm, it turns out that the case of L2aŒ˝� is a more delicate topological
and geometrical problem. In fact, a complete answer is known only in a few special
cases.

In [18], Boivin and Zhu studied the completeness of the system fz�ng in L2aŒ˝�,
where f�ng is a fixed sequence of complex numbers. In particular, for an unbounded
simply connected domain ˝, they provided sufficient conditions (on ˝ and on
the sequence f�ng), under which the system fz�ng is complete in L2aŒ˝�. Problems
of similar nature have been considered by Carleman, Dzhrbasian, Mergelyan, and
Shen. Moreover, Boivin and Zhu studied the completeness in L2aŒ˝� of more general
systems, namely, of the form ff .�nz/g, where f�ng is a sequence of complex
numbers and f is either an entire function in the complex plane (see [20]), or
an analytic function defined on the Riemann surface of the logarithm (see [20]
and [7]). They also worked with incomplete systems of functions. In particular,
in [4], they consider systems of the form fe��kxg and f k.x/g (where �k satisfies
a certain Blaschke condition and  k.x/ is given by a specific integral formula),
which are known to be incomplete and bi-orthogonal in L2.0;C1/. Using the
Fourier transform as a tool, they managed to obtain bi-orthogonal expansions of
each function in L2.0;C1/, in terms of fe��kxg and f k.x/g.

Boivin also worked on the stability of complex exponential frames fei�nxg in
the spaces L2.��; �/, where � > 0 (see [12]). Moreover, in [11], André and his
doctoral student Hualiang Zhong, studied completeness properties of exponential
systems arising from the characteristic roots of the delay-differential equation
y0.t/ D ay.t � 1/, where a is a real parameter. The main result of this paper is that
such a system is complete in L2.�1=2; 1=2/, but it does not form an unconditional
basis.

3.6 Other Topics of Research

Apart from the above five main categories, André worked in various other topics in
Analysis. For example in [17] he obtained results on the growth of entire functions
representable as (generalized) Dirichlet series, in terms of their Dirichlet coefficients
and exponents. Moreover, he worked on tensor approximation [32] and T-invariant
algebras on Riemann surfaces [33, 34], extending the theory that was developed
in the plane by Gamelin. Finally, two other independent topics that Boivin was
interested in were the study of zero sets of harmonic and real analytic functions
[1] and bounded pointwise approximation [10].
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A Note on the Density of Rational
Functions in A1.˝/
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Abstract We present a sufficient condition to ensure the density of the set of
rational functions with prescribed poles in the algebra A1.˝/.
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1 Introduction

Let K be a compact subset of C and Kı the interior of K. As usual, A.K/ denotes the
set of all analytic functions in Kı that are continuous functions on K. When A.K/ is
endowed with the supremum norm on K then A.K/ is a Banach algebra. The well-
known Mergelyan’s theorem claims that any function in A.K/ can be approximated
by polynomials in the natural topology of A.K/ if the complement of K is connected.

Many times, approximation by polynomials of a function f is replaced with
approximation by rational functions. In fact, Mergelyan’s theorem can be extended
to compact sets in C whose complement has a finite number of connected
components if we substitute approximation by polynomials with approximation by
rational functions [10, Exercise 1, Chapter 20]. The analogous multilinear version
of this result can be found in [6].
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A known way of approximating a function f by rational functions is by
considering the expansion of f as the ratio of two power series. Padé approximations
are usually superior than Taylor series when functions contain poles because the
use of rational functions allow to imitate these singularities. The theory of Padé
approximants has been deeply studied during the last years, see for instance [3, 4, 9].
For a review of the classical theory of polynomial and rational approximation of
functions in a complex domain we recommend [10, 11] and the references therein,
and for a historical treatment of the theory of the class of best rational approximating
functions called Padé approximants we recommend [1].

A natural subset of A.K/ is the set of all functions in A.K/ such that all of their
derivatives also belong to A.K/. In general, if ˝ � C is an open set in C, we say
that a holomorphic function f defined on ˝ belongs to A1.˝/ if for every l 2

f0; 1; 2; : : :g the l-th derivative f .l/ extends continuously to ˝. The natural topology
of A1.˝/ is defined by the seminorms

sup
z2˝

jzj�m

fjf .l/.z/jg;

l D 0; 1; 2; : : :, m D 1; 2; 3; : : : With this topology A1.˝/ is a Fréchet algebra.
Naturally, every rational function with poles off the closure of ˝ belongs

to A1.˝/. We denote by X1.˝/ the closure of these rational functions in A1.˝/.
Recent results, in one and several complex variables, in the study of rational

approximation in A1.˝/ with its natural topology can be find in [7–9]. Here we
continue with this study by giving sufficient conditions to ensure that X1.˝/ D

A1.˝/.
In the paper “Padé approximants, density of rational functions in A1.˝/ and

smoothness of the integration operator” by Vassili Nestoridis and Ilias Zadik,
the authors prove among other results that, under certain conditions, X1.˝/ D

A1.˝/.

Theorem 1 ([9, Theorem 5.7]) Let ˝ � C be a bounded, connected, open set,
such that:

(a) .˝/ı D ˝,
(b) f1g [

�
C n˝

�
has exactly k connected components in the topology of the

extended plane, k 2 N,
(c) There exists M > 0 such that for all a; b 2 ˝, there exists a continuous function

� W Œ0; 1� ! ˝ with �.0/ D a; �.1/ D b and Length.�/ � M.

Now pick from each connected component of f1g [
�
C n˝

�
a point ai; i D

0; 1; 2; : : : ; k � 1 and set S D fa0; : : : ; ak�1g, where a0 belongs to the unbounded
component. Then the set of all rational functions with poles only in S is dense in
A1.˝/ and therefore X1.˝/ D A1.˝/.

However, the proof of this theorem contains a gap. The proof presented in [9]
uses that under the assumptions of the theorem there exist a finite set of Jordan
curves �0; : : : ; �k�1 in ˝ with the properties that they are closed, have finite length
and
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ind.�i; aj/ D

(
1 if i D j;

0 if i ¤ j:

Here we present an example of a domain ˝ satisfying the hypothesis of the
theorem. However, there exists no such Jordan curves in ˝ satisfying the desired
conditions. We denote by D.z; r/ the open disk of center z and radius r.

Example 1 Let

Clearly, ˝ is a bounded open set with ˝
ı

D ˝ and f1g [ .C n ˝/ D

D.1=2; 1=2/ [
�
C n D.0; 1/

�
. Furthermore, any two points in ˝ can be joined by a

path in ˝ of length at most 2� . However, for any point a 2 D.1=2; 1=2/ and any
closed Jordan curve � in ˝ we have that ind.�; a/ D 0.

In the paper it is also suggested an alternative proof of Theorem 1 by using a
Laurent decomposition, see [9, Remark 5.16] and [2] for the details. However, this
alternative proof also requires the assumption of the existence of these rectifiable
Jordan curves. We refer to [2, Section 4] for the details.

In the following section we present a sufficient condition to ensure that the
theorem remains valid. We also partially answer a question asked by Nestoridis
and Zadik, see [9, Remark 5.13].

2 Main Theorem

In this section we present a sufficient condition to ensure that the conclusion of
Theorem 1 holds. This condition is weaker than the original conditions of Theorem 1
in the sense that it is not required that the open set ˝ is connected. However it
requires the existence of specific rectifiable Jordan curves. This, partially answers
the question asked by Nestoridis and Zadik in [9, Remark 5.13].

Definition 1 (Separable by Curves Set) Let ˝ be a bounded open set in C such
that ˝

ı
D ˝. Assume that f1g [ .C n ˝/ has a finite number of connected

components V0;V1; : : : ;Vk�1 in the topology of the extended plane, where V0 is
the unbounded connected component of the complement of ˝. We say that ˝
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is separable by curves if there exist a point z0 2 ˝ and rectifiable Jordan curves
�0; �1; : : : ; �k�1 � ˝ with

ind.�0; a/ D

(
1 if a D z0;

1 if a 2 V1 [ � � � [ Vk�1;
and ind.�i; a/ D

8
ˆ̂<

ˆ̂:

�1 if a 2 Vi;

0 if a D z0;

0 if a 2 Vs and s ¤ i;

for i D 1; : : : ; k � 1, s D 0; 1; : : : ; k � 1.
We note that the above curves do not have to be disjoint.

A natural example of a domain that satisfies the conditions of Definition 1 is a
bounded domain whose complement has a finite number of connected components
that are separated apart, i.e., there exists a positive number � > 0 such that the
distance between any two connected components of the complement of ˝ is bigger
than �. For the sake of completeness, we provide here the construction of appropriate
Jordan curves.

Fix any z 2 ˝. Consider a positive number Q� smaller than � and smaller than
the distance from z to any of the connected components of the complement of ˝.
Then, if we consider a subdivision of C into a grid of squares with diagonal smaller
than Q�, by the compactness of˝ and the compactness of the closure of the bounded
components of the complement of ˝ there exist simply closed contours defined by
the grid satisfying the conditions of Definition 1.

Another example of a separable by curves domain is a domain defined by a finite
set of disjoint rectifiable Jordan curves. In this case, the Jordan curves that appear in
Definition 1 can be chosen to be the same Jordan curves that define the domain, after
possibly a reorientation. We also mention that Example 1 is a separable by curves
domain.

Nestoridis and Zadik in [9, Remark 5.13] gave an example of an open set ˝ that
has more than one connected component, in which the density of rational functions
in A1.˝/ holds. Such example was the union of two open discs whose closures
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intersect on just one point. The authors used the fact that the intersection of the two
closed disks is a singleton to prove the density of rational functions in A1.˝/ for
this particular open set ˝. However, it is not known under what conditions the
density of rational functions can be ensured in A1.˝/ for non-connected open
sets ˝.

Example 2 Let consider

(a)

˝ D fz D x C iy 2 C W jzj < 1 and x2 C 2y2 > 1g:

(b)

˝ D D.�1; 1/ [ D.1; 1/ [ D.i
p
3; 1/:

Then, each ˝ is a separable by curves open set that satisfies the conditions of
Theorem 2 below.

Similar constructions to Example 2 can be done to find many examples of open
sets˝ that satisfy the hypothesis of Theorem 2 below, have finitely many connected
components and the intersection of the closures of the connected components
consists of a finite number of points. This partially answers the question of
Nestoridis and Zadik, see [9, Remark 5.13].
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To prove our main result we will need a refinement of [9, Lemma 5.8] for
functions in A1.˝/. Our proof is modeled on the proof of that lemma.

Lemma 1 Let ˝ be an open set, n 2 N and let f 2 A1.˝/. Let � be any closed
rectifiable curve in˝ such that � intersects @˝ at most at a finite number of points.
Then, for m 2 N [ f0g, 0 � m � n � 1, we have

R
�

zmf .n/.z/dz D 0.

Proof We proceed by induction on n. Let � be a closed rectifiable curve with � � ˝

such that � intersects @˝ at most at a finite number of points. Let f 2 A1.˝/;
therefore, f and all its derivatives extend continuously on ˝ closure.

For n D 1, we only need to prove that
R
�

f
0

.z/dz D 0. This follows from the fact
that if � is in ˝, then clearly the result holds. Also, if ˇ is a polygonal simple curve
parametrized by t in Œ0; 1� that only touches the boundary of˝ at most at one point,
then by continuity of f on ˝,

Z

ˇ

f 0.z/dz D f
�
ˇ.1/

�
� f
�
ˇ.0/

�
:

Therefore, by continuity of f on ˝, for any closed rectifiable curve � 2 ˝ such
that � intersects @˝ at most at a finite number of points

Z

�

f
0

.z/dz D 0:

The case n D 1 is complete.
Suppose that the statement is true for n D k. We prove it now for kC1. For m D 0

we have that
R
�

f .kC1/.z/dz D
R
�

�
f .k/
�0

dz D 0 by using the fact that f .k/ 2 A.˝/
and the same argument that we used for the case n D 1. Now, let m 2 f1; 2; : : : ; kg.
Then, integrating by parts, we have that

Z

�

zmf .kC1/.z/dz D

Z

�

zm
�
f k.z/

�0
dz D zmf .k/

ˇ
ˇ�.1/
�.0/

� m
Z

�

zm�1
�
f k.z/

�0
dz D 0

where we are using that zmf .k/
ˇ̌�.1/
�.0/

D 0 is zero because the curve � is closed and

m
R
�

zm�1
�
f k.z/

�0
dz D 0 is zero because of the hypothesis of induction. The proof is

complete.
To continue, we present a revised version of [9, Theorem 5.7]. Since condition

.d/ in Theorem 2 has been weakened with respect to Theorem 1, we also present
here the complete proof of the result, for the sake of completeness.

Theorem 2 Let ˝ � C be a bounded open set such that:

(a) .˝/ı D ˝,
(b) f1g [ .C n ˝/ has exactly k connected components in the topology of

the extended plane, V0;V1; : : : ;Vk�1, k 2 N, with V0 being the unbounded
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component, and the intersection of Vi and Vj being at most a finite number
of points, for 0 � i; j � k � 1, i ¤ j,

(c) ˝ is separable by curves,
(d) There exists M > 1 such that for all a; b 2 ˝, there exists a continuous function

�a;b W Œ0; 1� ! ˝ with �a;b.0/ D a; �a;b.1/ D b, Length.�a;b/ � M and ˝ �

B.0;M/.

Now pick from each connected component of f1g [ .C n ˝/ a point ai; i D

0; 1; 2; : : : ; k � 1 and set S D fa0; : : : ; ak�1g, where a0 belongs to the unbounded
component. Then the set of all rational functions with poles only in S is dense in
A1.˝/ and therefore X1.˝/ D A1.˝/.

Proof Let f 2 A1.˝/, � > 0 and n 2 N [ f0g D f0; 1; 2; : : :g. We need to find a
rational function r with poles in S such that,

sup
w2˝

jf .l/.w/ � r.l/.w/j < �; for l D 0; 1; : : : ; n:

First we treat the case a0 D 1. Since f 2 A1.˝/, it follows that f .n/ is analytic
in the open set˝ and continuous on˝. As a consequence of Mergelyan’s Theorem
[10, Ch. 20, Ex. 1] there exists a rational function Qrn.z/, with poles only in S,
such that

sup
w2˝

jf .n/.w/ � Qrn.w/j < min
n �
2
;

dn��

n.k � 1/.M C a/n�1M

o
;

where d D minf1; d.a1;˝/; : : : ; d.ak�1;˝/g > 0 and a D maxiD1;:::;k�1 jaij.
Since Qrn is a rational function with poles only in S, we can rewrite Qrn as

Qrn.z/ D rn.z/C

k�1X

iD1

nX

jD1

bi;j

.z � ai/j

with bi;j 2 C, i D 1; 2; : : : ; k � 1 and j D 1; 2; : : : ; n; and rn is a rational function
such that

Res
�
.z � ai/

j�1rn.z/; ai
�

D 0; for all i D 1; 2; : : : ; k � 1; j D 1; 2; : : : ; n:

By condition .c/,˝ is separable by curves, hence there exists a point z0 2 ˝ and
there exist rectifiable Jordan curves �0; �1; : : : ; �k�1 � ˝ with

ind.�0; a/ D

(
1 if a D z0;

1 if a 2 V1 [ � � � [ Vk�1;
and ind.�i; a/ D

8
ˆ̂<

ˆ̂:

�1 if a 2 Vi;

0 if a D z0;

0 if a 2 Vs for s ¤ i;

for i D 1; : : : ; k � 1, s D 0; 1; : : : ; k � 1.
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Condition .b/ ensures that the curves �0; �1; : : : ; �k�1 can be chosen to intersect
@˝ at most at a finite number of points. Without loss of generality, by increasing M
if necessary, we may assume that Length.�i/ � M for all i D 1; 2; ::; k � 1. Then,
since all the poles of Qrn are in S, by Lemma 1, we have that

jbi;jj D
ˇ̌
ˇ
1

2� i

Z

�i

.z � ai/
j�1Qrn.z/dz

ˇ̌
ˇ

D
ˇ
ˇ̌ 1
2� i

Z

�i

.z � ai/
j�1.Qrn.z/ � f .n/.z//dz

ˇ
ˇ̌

�
1

2�
.M C jaij/

j�1M sup
w2˝

jQrn.w/ � f .n/.w/j

�
dn�

2n.k � 1/
;

for i D 1; 2; : : : ; k � 1 and j D 1; 2; : : : ; n.
Therefore,

sup
w2˝

jf .n/.w/ � rn.w/j � sup
w2˝

n
jf .n/.w/ � Qrn.w/j C

k�1X

iD1

nX

jD1

bi;j

jz � aijj

o

� sup
w2˝

jf .n/.w/ � Qrn.w/j C

k�1X

iD1

nX

jD1

dn�j�

2n.k � 1/

� �:

Then, the function rn is a rational function that has a Laurent expansion around
each ai 2 S n f1g, where the coefficients of .z � ai/

l are equal to zero for l D

�n;�nC1; : : : ;�1. Thus, we can define recursively a sequence of rational functions
rn; rn�1; : : : ; r1; r0 as

rl.z/ D f .l/.z0/C

Z

�z0;z

rlC1.z/dz

were �z0;z is a path in ˝ of length at most M joining the points z0 and z. Setting
r D r0 finishes the proof for the case a0 D 1.

The case a0 ¤ 1 follows from the previous case, [5, Lemma 2.2] and the
triangular inequality. The proof is completed.

Remark 1 It is worth noting that Example 1 is a separable by curves domain that
also satisfies the conditions of Theorem 2.

We don’t know if the added condition that the open set ˝ is separable by curves
is a necessary condition to ensure that Theorem 1 holds. Furthermore, we don’t
even know if the condition that any two points of ˝ can be joined by a path in ˝
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whose length is bounded by a fixed constant M is a necessary condition to ensure the
density of rational functions in A1.˝/. We conclude this note with the following
natural question.

Question 1 Does Theorem 2 remains valid if we remove any of the conditions
(b)–(d)?

Notes and Comments A more general version of [9, Theorem 5.7] is stated in [9,
Theorem 5.9]. Even though in [9, Theorem 5.9] it is required that the connected
components of the complement of ˝ are separated apart, the proof of this result
depends on [9, Theorem 5.7]. A stronger version of [9, Theorem 5.9] can be obtained
as a consequence of Theorem 2 presented here.

Acknowledgements The fist author was supported by FNRS project T.0164.16.

References

1. Brezinski, C. History of continued fractions and Padé approximants. Springer Series in
Computational Mathematics, 12. Springer-Verlag, Berlin, 1991. vi+551 pp. ISBN: 3-540-
15286-5.

2. Costakis, G., Nestoridis, V., Papadoperakis, I. Universal Laurent series. Proc. Edinb. Math.
Soc. (2), 48(3), (2005) 571–583.

3. Daras, N., Fournodavlos, G., Nestoridis, V. Universal Padé approximants on simply connected
domains. arxiv:1501.02381 (2015) (preprint).

4. Daras, N., Nestoridis, V., Papadimitropoulos, C. Universal Padé approximants of Seleznev
type. Arch. Math. (Basel) 100 (2013), no. 6, 571–585.

5. Diamantopoulos, E., Mouratides, CH., Tsirivas, N. Universal Taylor series on unbounded open
sets, Analysis (Munich) 26 (3) (2006) 323–326.

6. Falcó, J., Nestoridis, V. A Runge type theorem for product of planar domains. RACSAM
(2016). doi:10.1007/s13398-016-0353-8.

7. Falcó, J., Nestoridis, V. Rational approximation on A1.˝/ (submitted).
8. Gauthier, P. M., Nestoridis, V. Density of polynomials in classes of functions on products of

planar domains. J. Math. Anal. Appl. 433 (2016), no. 1, 282–290.
9. Nestoridis, V., Zadik, I. Padé approximants, density of rational functions in A1.˝/ and

smoothness of the integration operator. J. Math. Anal. Appl. 423 (2015), no. 2, 1514–1539.
10. Rudin, W. Real and complex analysis. Third edition. McGraw-Hill Book Co., New York.

xiv+416 pp. (1987) ISBN: 0-07-054234-1.
11. Saff, E. B. Polynomial and rational approximation in the complex domain. Approximation

theory (New Orleans, La., 1986), 21–49, Proc. Sympos. Appl. Math., 36, AMS Short Course
Lecture Notes, Amer. Math. Soc., Providence, RI, 1986.



Approximation by Entire Functions in
the Construction of Order-Isomorphisms
and Large Cross-Sections

Maxim R. Burke

Abstract A theorem of Hoischen states that given a positive continuous function
" W R

t ! R, a sequence U1 � U2 � : : : of open sets covering R
t and a closed

discrete set T � R
t, any C1 function g W Rt ! R can be approximated by an entire

function f so that for k D 1; 2; : : : , for all x 2 R
t n Uk and for each multi-index ˛

such that j˛j � k,

(a) j.D˛f /.x/ � .D˛g/.x/j < ".x/;
(b) .D˛f /.x/ D .D˛g/.x/ if x 2 T .

This theorem has been useful in helping to analyze the existence of entire functions
restricting to order-isomorphisms of everywhere non-meager subsets of R, anal-
ogous to the Barth-Schneider theorem, which gives entire functions restricting to
order-isomorphisms of countable dense sets, and the existence of entire functions
f determining cross-sections f \ A through everywhere non-meager subsets A of
R

tC1 Š R
t � R whose projection fx 2 R

t W .x; f .x// 2 Ag onto R
t is everywhere

non-meager, analogous to the Kuratowski-Ulam theorem which gives for residual
sets A in R

tC1, points c 2 R so that the horizontal section of A determined by c
has a residual projection fx 2 R

t W .x; c/ 2 Ag in R
t. The insights gained from this

work have also led to variations on the Hoischen theorem that incorporate the ability
to require the values of the derivatives on a countable set to belong to given dense
sets or to choose the approximating function so that the graphs of its derivatives
cut a small section through a given null set or a given meager set. We discuss these
results.

Keywords Complex approximation • Interpolation • Hoischen’s theorem •
Order-isomorphism • Piecewise monotone • Kuratowski-Ulam theorem • Sup-
measurable • Oracle-cc forcing
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1 Introduction

In [11], it was shown that it is consistent with the ZFC axioms for set theory
that any two subsets A and B of the real line that have cardinality @1 and have
nonmeager intersection with each nonempty open interval are order-isomorphic via
the restriction to the real line of an entire function g. The construction was quite
flexible and the flexibility was indicated by building into the construction that if
an order-isomorphism f of the real line of class Cn is given in advance, then g
can be taken so that the derivatives of g up to order n approximate those of f
as closely as desired. The tool used for arranging the approximation is a theorem
of Hoischen [39]. Using this consistency theorem and absoluteness arguments, it
was then possible to give a version of the Hoischen theorem that incorporated the
ability to arrange for the approximating function (when increasing and onto) to
also be an order isomorphism between two given countable dense sets. The ideas
used in the one-variable setting in [11] were generalized for functions of several
variables in [10] to give the consistency of the statement that for any everywhere
nonmeager set A � R

tC1 there is an entire function g of t variables, real-valued
on R

t, so that fx 2 R
t W .x; g.x// 2 Ag is everywhere nonmeager in R

t. In
other words, g cuts a large cross-section through A. Again, absoluteness arguments
led to a version of the Hoischen theorem with new features. Subsequently the
forcing arguments were eliminated from the proofs that originally used absoluteness
arguments and a stronger version of the Hoischen theorem allowing control of the
values of the derivatives on a countable set was obtained in [15]. In the present paper,
we survey the historical context for the results and discuss the results themselves.
Section 2 contains the basic approximation tools that we require. Section 3 begins
the discussion of controlling the values of derivatives at countably many points.
Section 4 deals with order-isomorphisms of dense subsets of R. Section 5 concerns
versions of the Kuratowski-Ulam theorem. Section 6 deals with measurability of
superpositions f .x; '.x//. Section 7 briefly discusses work in progress on piecewise
monotone approximation.

We denote the ˛-th derivative of a function f of t variables by D˛f . We use
standard multi-index notation for the mixed partial derivatives of a function f WRt !

R or f WCt ! C. If ˛ D .˛1; : : : ; ˛t/ is a sequence of nonnegative integers, then we
write

j˛j D ˛1 C � � � C ˛t; D˛f D
@˛1C���C˛t f

@˛1z1 : : : @˛t zt
; z˛ D z˛11 : : : z

˛t
t .z 2 C

t/

We shall also need some standard measure theoretic and topological terminology.
In a measure space .X;B; �/, a set A � X is called thick when A \ B 6D ; for all
B 2 B such that �.B/ > 0. If X is a probability space, this is equivalent to saying
that A has outer measure one. Note that � and its completion have the same thick
sets. Null sets are sets of measure zero for the completion of �. Recall that when
X is a topological space, a set A � X is called nowhere dense if the closure of A
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has empty interior. A is said to be meager (or a first category set) if A D
S1

nD1 An,
where each An is nowhere dense. A is said to be non-meager (or a second category
set) if A is not meager. A is everywhere non-meager1 if A\U is non-meager for each
nonempty open set U. The terms meager, non-meager, and everywhere non-meager
are topological analogs of the terms (describing sets in a complete measure space)
null, non-null, and thick, respectively. There is also an analog of “measurable”. For
Lebesgue measure on R, a set A is measurable if and only if A 4 B is null for some
Borel set B. The topological analog is that A 4 B is meager for some Borel set B,
which is equivalent to saying that A 4 U is meager for some open set U. In any
topological space, sets with this property are said to have the property of Baire. For
a set A having the property of Baire, the property that A is everywhere nonmeager
is equivalent to the property that A is residual, i.e., the complement of A is meager.
For a real-valued function f on a topological space, the topological analog of the
notion of measurability is the property that f �1.U/ has the property of Baire when
U is open in R. This is equivalent to saying that f has a continuous restriction to a
residual Gı set. We shall say that f is BP-measurable when this holds.

2 Approximating Derivatives

We begin with some basic approximation tools. We first introduce a lemma of
Whitney which describes a type of approximation that we require frequently.

Lemma 2.1 ([66, Lemma 6]) Let U1 � U2 � : : : be open sets in R
t and write

U D
S1

iD1 Ui. Then if f W U ! R is of class Ck (k finite or infinite) in U, and
"W U ! R is a positive continuous function, then there is a real-analytic function
gW U ! R such that jD˛g.x/ � D˛f .x/j < ".x/ when x 2 U n Ui, j˛j � i if k is
infinite, j˛j � k if k is finite.

We have modified Whitney’s statement in two ways. Whitney requires that each
Ui is bounded with cl Ui � UiC1, and he has a sequence of positive numbers "1 �

"2 � : : : instead of our function ", the requirement on the derivatives being that
jD˛g.x/ � D˛f .x/j < "i when x 2 U n Ui and j˛j � i (when k is infinite) or
j˛j � k (when k is finite). To see that this is equivalent to our version, let (I) denote
Whitney’s original lemma, (II) our version above.

1The term is due to Lebesgue [50, p. 185] who applied it inside a “domain” D of Rn. There are
some problems with his definition associated primarily with the meaning of the word domain as
explained on pp. 143–144. If we interpret domain as meaning “open domain” then Lebesgue’s
definition of “on D, A is everywhere non-meager in E” is equivalent to saying that as long as
D \ E 6D ; then A \ D is everywhere non-meager in E \ D in the sense given here. If we
interpret domain as meaning “finite non-degenerate domain” (these are images of closed balls
under homeomorphisms of Rt), which is more in keeping with the suggestion on page 144, then
domains D with Lebesgue’s property do not exist when A D E is a perfect nowhere dense set,
contrary to his claim on p. 185.
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Proof of Equivalence of (I) and (II) (I) ) (II) The conclusion of (II) only gets
stronger if the sets Ui are smaller, so without loss of generality, we may assume that
our given sequence Ui consists of bounded open sets with the closure of each term
contained in the next.2 Since " is continuous and positive on the compact closure of
Ui, "i D inff".x/ W x 2 UiC1g is positive, and clearly "1 � "2 � : : : . If x 2 U n Ui,
then let m � i be least such that x 2 UmC1. Let the multi-index ˛ satisfy j˛j � i
(so j˛j � m) if k is infinite, j˛j � k if k is finite. The conclusion of (I) gives that
jD˛g.x/ � D˛f .x/j < "m � ".x/.

(II) ) (I) This direction follows readily as long as we can define a continuous
" so that ".x/ < "i when x 2 U n Ui. We can assume that the sequence "i is
strictly decreasing. The assumptions on the sets Ui ensure that they have disjoint
boundaries. Define " to have the value "2 on U1, and the value "iC1 on bd Ui for
i D 1; 2; : : : . For each i, apply the Tietze Extension Theorem to get a continuous
extension of " to the set cl UiC1 n Ui, with values in Œ"iC2; "iC1�. The resulting
function " is as desired. ut

In what follows, we have several theorems which assert the existence of a
(usually entire) function g with some property P such that, in addition, g can be
chosen to approximate smooth functions in the sense of Whitney’s lemma above,
sometimes additionally with interpolation on a closed discrete set. In order to
simplify the statements of these results, we introduce the following terminology.

Definition 2.2 Let U � R
t be open. A class S of functions U ! R is said to

W-approximate3 smooth functions if the following holds. Let f W U ! R and let
" W U ! R be a positive continuous function.

(A) Let k � 0 be an integer. If f is a Ck function then there exists a function g 2 S
such that jD˛g.x/ � D˛f .x/j < ".x/ for x 2 U, j˛j � k.

(B) If f is a C1 function then for each sequence U0 � U1 � : : : of open sets with
U D

S1
iD1 Ui, there exists a function g 2 S such that for all i D 0; 1; 2; : : : ,

jD˛g.x/ � D˛f .x/j < ".x/ for x 2 U n Ui, j˛j � i

We will say of the class S that it W-approximates smooth functions with interpolation
on closed discrete sets if moreover, whenever we are given a T � U which is closed
discrete in U, we can ask in the conclusion to (A) and (B) that (under the same
conditions on ˛ and x) D˛g.x/ D D˛f .x/ when x 2 T .

Using this terminology, Lemma 2.1 says that the class of real-analytic functions
W-approximates smooth functions on U. The next result, sometimes known as the

2Write U D
S

1

iD1 Vi, where V1 D ;, the sets Vi are open and bounded, and cl Vi � ViC1. Then
replace the sequence U1;U2; : : : by a sequence of the form V1; : : : ;V1;V2; : : : ;V2; : : : , where V1
is used as the nth term until the first n such that V2 � Un (which exists because cl V2 is a compact
subset of U). Then V2 is the nth term from that point until the first n such that V3 � Un, and so
on. Finally, modify this sequence by replacing each constant block Vi; : : : ;Vi by a sequence of the
form Vk

i ; : : : ;V
kCm
i ;Vi, where Vj

i D fx W d.x;Vc
i / > 1=jg, starting with k large enough so that

cl Vi�1 � Vk
i . Note that cl Vk

i � fx W d.x;Vc
i / � 1=kg � VkC1

i .
3The W is for Whitney of course.
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Walsh lemma, generalizes the well-know theorem of Weierstrass on approximation
of continuous functions on compact intervals by polynomials.

Theorem 2.3 (See [27, Corollary 1.3] for Example) Let a < b be real numbers
and let n be a nonnegative integer. Let T � Œa; b� be finite. Suppose f W Œa; b� ! R is
a function of class Cn and " > 0. Then there exists a polynomial g such that for all
k D 0; : : : ; n and all x 2 Œa; b�, jDkg.x/ � Dkf .x/j < " and moreover, if x 2 T then
Dkf .x/ D Dkg.x/.

Carleman [19] extended the Weierstrass theorem by showing that for any
continuous function f WR ! R and any continuous positive function "WR ! R, there
is an entire function gWR ! R such that jg.x/ � f .x/j < ".x/ for all x 2 R. (This
generalizes the Weierstrass theorem because the Taylor polynomials of g converge
uniformly to g on compact intervals.) This was extended further by Hoischen to
include approximation of the derivatives, when they exist.

Theorem 2.4 ([39], See also [33]) The class of functions g W Rt ! R which are
the restriction of an entire function W-approximates smooth functions.

The original statement in [39] is for approximating a complex-valued function
f WRt ! C (and the approximating function g is then also complex-valued). It can
be seen from the original proof (and was explicitly pointed out in [33]) that the
argument produces a real-valued g if f is real-valued. Note that we can also,
conversely, deduce the original version from the above version by decomposing
f .x/ D f1.x/ C if2.x/ into its real and imaginary parts and applying the version
above to f1 and f2. Similarly for Theorem 2.5 below.

For the case t D 1, this theorem is improved in [40] to give simultaneously
approximation of the derivatives of a smooth function as well as interpolation of
the restriction of the derivatives to a closed discrete set. Hoischen’s method can be
adapted to functions of several variables. The adaptation requires some effort, but it
has been written out in detail in [13].

Theorem 2.5 ([40], See also [13]) The class of functions g W Rt ! R which are the
restriction of an entire function W-approximates smooth functions with interpolation
on closed discrete sets.

In this paper, we deal only with functions defined on all of R or Rt, but some
of the results adapt to other domains. For functions of one variable, it was pointed
out in [38, Theorem 3], that composing with natural analytic correspondences can
be useful. For our purposes it matters also that these correspondences are order-
preserving. As an example, we apply this procedure to adapt the Hoischen theorem
to a bounded interval. Here one only has to be careful in transferring the function
".x/ from a bounded interval to the real line.

Proposition 2.6 Let �1 � a < b � 1. On the interval .a; b/, the real-analytic
functions W-approximate smooth functions with interpolation on closed discrete
sets. Each real-analytic approximation g is obtained as g.x/ D Og.s.x// where Og is
the restriction to R of an entire function and s is a real-analytic order-isomorphism
.a; b/ ! R. We can take
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• s.x/ D tan.�.�=2/C �.x � a/=.b � a// if �1 < a < b < 1,
• s.x/ D log.x � a/ if �1 < a < b D 1,
• s.x/ D � log.b � x/ if �1 D a < b < 1,
• s.x/ D x if �1 D a < b D 1.

Remark 2.7 In [35, Theorem 1.3] it is shown that if f W .a; b/ ! R is a function of
class Ck, k finite, and "W .a; b/ ! R is a positive continuous function, then there
exists a function g holomorphic in C n ..�1; a� [ Œb;1// such that for all i D

0; : : : ; k and all x 2 .a; b/, jDig.x/ � Dif .x/j < ".x/. The authors mention that
Johanis [43] has shown that for each domain ˝ � R

t, there is a domain Q̋ � C
t

depending only on ˝ such that each Ck function on ˝ can be approximated, along
with its derivatives of order � k, by functions holomorphic on Q̋ . However, Q̋ is
smaller than C n ..�1; a�[ Œb;1// when t D 1 and˝ D .a; b/ is an interval of R.
Proposition 2.6 adds interpolation to the result of [35], and when .a; b/ is a bounded
interval, we have that g.z/ D Og.s.z// is holomorphic anywhere s is holomorphic. If
we take s.z/ to be the tangent function as suggested above, then g is holomorphic
except at the points a C j.b � a/, j 2 Z.

Proof Let k be a nonnegative integer or 1. Let T � .a; b/ be a closed discrete set.
If k is infinite, let U0 � U1 � : : : be an increasing sequence of open sets which
covers .a; b/. Suppose f W .a; b/ ! R is a function of class Ck and "W .a; b/ ! R is
a positive continuous function. Below, we use (A) to mark the case k finite, (B) to
mark the case k infinite.

As is well-known and easily verified by induction on i D 0; 1; : : : , there are
polynomials Pi

j.x1; : : : ; xi/ 2 ZŒx1; : : : ; xi�, j D 0; : : : ; i, such that the i-th derivative
of a composite function u ı v is given (when the required derivatives of u and v
exist) by

Di.u ı v/.x/ D
Pi

jD0 Dju.v.x//Pi
j.D

1v.x/; : : : ;Div.x//:

Fix, as in the statement, an order-preserving real-analytic bijection sW .a; b/ ! R

which has a real-analytic inverse. Fix a continuous function O"WR ! R such that for
all x 2 .a; b/,4

O".s.x// <
".x/

1C
Pi

jD0 jPi
j.D

1s.x/; : : : ;Dis.x//j
when

(
.A/ i D 0; : : : ; k

.B/ x 62 Ui; i D 0; 1; 2; : : :

Define Of WR ! R and a closed discrete set OT � R by Of .x/ D f .s�1.x//, OT D

s.T/. In (B), define an increasing sequence OU1 � OU2 � : : : of open sets covering

4If we take a`, ` 2 Z so lim`!�1 a` D a, lim`!1 a` D b, then on each Œa`; a`C1� only
finitely many values of i need to be considered and the corresponding continuous functions given
by the right-hand side of the inequality have a common lower bound ı` > 0 on this interval,
so O" can be taken, for example, to be a suitable continuous piecewise linear modification ofP

`2Z
ı`	Œs.a`/;s.a`C1//.



Approximation by Entire Functions in the Construction of Order-Isomorphisms. . . 43

R by OUi D s.Ui/. Apply Theorem 2.5 to get a function OgWR ! R which is the
restriction to R of an entire function and satisfies the conclusion (corresponding to
Definition 2.2 (A) or (B) as appropriate) of the Hoischen theorem. Of course we put
g.x/ D Og.s.x// and g is then a real-analytic function. We also have f .x/ D Of .s.x//,
so for x 2 T and i D 0; : : : ; k (for (A)) or x … Ui, i D 0; 1; 2; : : : (for (B)), we have

Dig.x/ D
Pi

jD0 Dj Og.s.x//Pi
j.D

1s.x/; : : : ;Dis.x//

D
Pi

jD0 DjOf .s.x//Pi
j.D

1s.x/; : : : ;Dis.x//

D Dif .x/

Finally, for x 2 .a; b/, when i D 0; : : : ; k (for (A)) or i D 0; 1; 2; : : : with x … Ui

(for (B)), we have that s.x/ 62 OUi (for (B)), so

jDig.x/ � Dif .x/j D jDi.Og ı s/.x/ � Di.Of ı s/.x/j

�
Pi

jD0 jDj Og.s.x// � DjOf .s.x//jjPi
j.D

1s.x/; : : : ;Dis.x//j

� O".s.x//
Pi

jD0 jPi
j.D

1s.x/; : : : ;Dis.x//j

< ".x/
ut

3 Controlling the Values of Derivatives on a Countable Set

According to Stäckel [64], Weierstrass produced in 1886 an example of a transcen-
dental entire function f which takes rational values on rational arguments, thereby
showing that a function with the latter property need not be a rational function.
Stäckel generalized Weierstrass’s result by proving the following.

Theorem 3.1 ([64]) Let A be a countable subset of C and let B be dense in C. Then
there exist transcendental entire functions f such that f .A/ � B.

As Stäckel points out, C can be replaced in both places by R. There is an
enlightening discussion of this result in the context of analyzing the values of
analytic functions at algebraic points in Chapter 3 of the text [51]. The function
f is stated there to be f .z/ D

P1
hD0 fhzh with rational coefficients fh. That statement

has a small error. If 0 2 A then we must have f .0/ 2 B which might preclude the
possibility that f0 D f .0/ is rational. That the other coefficients fh, or equivalently
the derivatives Dhf .0/, h � 1, can be taken to be rational is correct (see Theorem 3.3
below), but it does seem to go beyond what Stäckel proved.

In response to a problem [37] regarding the existence of a differentiable function
which takes rationals into rationals but whose derivative takes rationals into
irrationals, W. Rudin proved the following theorem.
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Theorem 3.2 ([59]) Suppose that

(1) A is a countable subset of Rt, and
(2) for each multi-index ˛, B˛ is a dense subset of R.

Then there exists an f 2 C1.Rt/ such that D˛f maps A into B˛ , for every ˛.
This result can be improved in a couple of ways. A minor improvement is that the

values of D˛f .p/ can be restricted separately for each point p 2 A. (The argument of
[59] already gives this with only trivial changes.) A more significant improvement
is that f can be taken to be an entire function, as in the theorem of Stäckel. For
functions of one variable, this was done in [41].

Theorem 3.3 Suppose that

(1) A is a countable subset of Rt, and
(2) for each p 2 A and each multi-index ˛, Bp;˛ is a dense subset of R.

Then there exists a function f WRt ! R which is the restriction to R
t of an entire

function C
t ! C and satisfies D˛f .p/ 2 Bp;˛ for all p 2 A and for every multi-

index ˛.
Theorem 3.6 improves on this by incorporating approximation and interpolation

and by adding a type of surjectivity condition stating that the derivatives D˛f can be
required to take on many of their allowed values.

Proof For a fixed p 2 A, list the pairs .p; ˛/, where ˛ is a multi-index, by increasing
order of j˛j D ˛1 C � � � C ˛t, without repetitions. Then interleave these orderings to
get an enumeration of the pairs .p; ˛/ consisting of a point p 2 A and a multi-index
˛ as f.pi; ˛i/ W i 2 Ng in such a way that the following condition is satisfied. (Here
˛ � ˇ means ˛k � ˇk for all k D 1; : : : ; t.)

Ifi < j and pi D pj then ˛j 6� ˛i: (1)

We shall build f as a sum

f .z/ D

1X

iD1

�igi.z/

where �i > 0 and gi.z/ is the polynomial defined as follows. Let

Si D fj < i W pj 6D pig;

and set

gi.z/ D .z � pi/˛
i Y

j2Si

 
tX

kD1

.zk � pj
k/
2

!j˛jjC1

:
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All that matters regarding gi is that

(a) D˛j
gi.pj/ D 0 for all j < i, whereas

(b) D˛i
gi.pi/ 6D 0.

For (a) when pj D pi, note that by the property (1) of our enumeration, there is at
least one coordinate k for which ˛j

k < ˛
i
k.

Write fi.z/ D
Pi

jD1 �jgj.z/. Choose the coefficients �i recursively so that the
following conditions are satisfied.

(c) When jzj � i, j�igi.z/j � 2�i.
(d) D˛i

fi.pi/ 2 Bpi;˛i .

To arrange these first choose ri > 0 so that for any z such that jzj � i, rijgi.z/j � 2�i.
Then from (b) and the fact that Bpi;˛i is dense, we see that we can easily choose �i

in the interval .0; ri/ so that D˛i
fi.pi/ D D˛i

fi�1.pi/C �iD˛i
gi.pi/ 2 Bpi;˛i .

From (c) we get that f D
P1

iD1 �igi is an entire function. For any i, by (a) and
(d) we have

D˛i
f .pi/ D D˛i

fi.p
i/C

1X

kDiC1

�kD˛i
gk.p

i/

D D˛i
fi.p

i/C 0 2 Bpi;˛i :

This completes the proof. ut

Note that f is guaranteed to not be a polynomial if for some p 2 A we remove 0
from each of the sets Bp;˛ .

We now state one of the main theorems of [15]. We require the following
definition.

Definition 3.5 A fiber-preserving local homeomorphism on R
tC1 Š R

t � R is a
homeomorphism hW G1

h ! G2
h between two open sets G1

h;G
2
h � R

tC1 such that h has
the form h.x; y/ D .x; h�.x; y// for some continuous map h�WRtC1 ! R.

Theorem 3.6 ([15, Theorem 3.2]) Let A � R
t be a countable set and for each p 2

A and multi-index ˛, let Ap;˛ � R be a countable dense set. Let H be a countable
family of fiber-preserving local homeomorphisms. There exists a function f WRt !

R which is the restriction of an entire function on C
t and such that for all k D

0; 1; 2; : : :

(a) for each p 2 A and multi-index ˛, .D˛f /.p/ 2 Ap;˛;
(b) for each multi-index ˛, for any q 2 R, h 2 H and any open ball U � R

t n T, if
.x; .D˛f /.x// 2 G1

h and q D h�.x; .D˛f /.x// for some x 2 U \ cl Yh;q;˛ , where
Yh;q;˛ D fp 2 A W for some q0 2 Ap;˛ , .p; q0/ 2 G1

h and q D h�.p; q0/g, then
q D h�.p; .D˛f /.p// for some p 2 U \ A.

Furthermore, the class of such functions f W-approximates smooth functions with
interpolation on closed discrete sets that are disjoint from A.
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To get a sense of what clause (b) is saying, consider the case where h D id is
the identity map, h�.x; y/ D y. We can write the statement of this case as follows.
(These are, in condensed form, some comments made in [15].)

Clause (b) for h D id. For each multi-index ˛, if x 62 T , q D .D˛ f /.x/, and there are points
p 2 A arbitrarily close to x for which q 2 Ap;˛ , then there are points p 2 A arbitrarily close
to x for which q D .D˛ f /.p/.

For an example where h is not the identity map, consider the case t D 2, ˛ D 0 (i.e.,
˛ D .0; 0/). Let A D Q � Q and Ap;0 D Q for all p 2 A. Consider the function f
given by the theorem. Let q 2 Q and suppose that the equation

q D x1f .x1; x2/C x1
2 C x2

2 (2)

has a solution a D .a1; a2/ with a1 6D 0 and that the fiber-preserving local
homeomorphism h given by h�.x1; x2; y/ D x1y C x12 C x22, x1 6D 0, belongs to
H. The assumption that we can find values of p 2 A arbitrarily close to a for which
there is a rational number qp satisfying q D p1qp C p12 C p22 is satisfied. (All p 2 A
with p1 6D 0 have this property.) The conclusion then says f was constructed so that
the points p 2 A which satisfy (2) are dense in the set of all solutions to (2).

4 Smooth Order-Isomorphisms

Cantor [17] characterized the rational numbers as the unique denumerable dense
linear order without endpoints. It follows that any two countable dense subsets A
and B of R are order-isomorphic. The order-isomorphism is easily seen to extend to
an order-isomorphism of R. More generally, we have the following. (Cf. the second
paragraph of [31].)

Proposition 4.1 If K;L � R are dense and hW K ! L is an order isomorphism,
then h extends to an order isomorphism of R.

Because order-isomorphisms of R are homeomorphisms, it follows that K and L
must be indistinguishable topologically as subspaces of R. In particular, if one of
them is meager then the other must be meager as well.

The extension to an order-isomorphism of R of an isomorphism between
countable dense sets as given by Cantor’s theorem is in particular a monotone
function and hence differentiable almost everywhere. The question of improving
the smoothness of the isomorphism was examined by Franklin [31] who showed
that it can be taken to be real-analytic and, on a bounded interval, can be taken to
approximate the derivatives of a given real-analytic function.

Theorem 4.2 ([31], Theorem II and Its Corollary) Given two open intervals
.a; b/ and .c; d/ of R, and any two sets A and B which are countable and dense
in .a; b/ and .c; d/, respectively, there is a real-analytic function f W .a; b/ ! .c; d/
with positive derivative and such that f .A/ D B. If a; b; c; d are finite and g is a
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real-analytic function mapping Œa; b� onto Œc; d� and having positive derivative on
Œa; b�, then f can be chosen so that its first m derivatives (m being any number)
approximate those of g uniformly.

Motivated by the problem of finding order-isomorphisms of Œ0; 1� which map
each of the sets of rational, algebraic and transcendental numbers onto themselves,
Melzak [53] observes that Franklin’s methods show that if fAigi2N and fBigi2N are
each a sequence of pairwise disjoint countable dense subsets of .0; 1/, then there
is an analytic order-isomorphism f of Œ0; 1� such that for each i 2 N the function f
maps Ai onto Bi. Moreover, given any order-preserving homeomorphism g of Œ0; 1�
of class Cn whose derivative is bounded away from zero, f can be chosen so that its
first n derivatives are uniformly approximated by those of g.

Thinking of f .x/ D y as a two-place relation, Stäckel asked in [65] whether
there is an analytic transcendental function f for which rational numbers are related
(in either direction) only to rational numbers. In a similar vein, using somewhat
ambiguous language, Erdős asked in [28, Problem 24]:

Does there exist an entire function f , not of the form f .x/ D a0 C a1x, such that the number
f .x/ is rational or irrational according as x is rational or irrational? More generally, if A and
B are two denumerable, dense sets, does there exist an entire function which maps A onto B?

The map in Franklin’s result was improved to being the restriction to R of an entire
function by Barth and Schneider [4], thereby solving Erdős’s problem if “dense” is
interpreted as meaning “dense in the real line”. They also state without proof that
their method gives the generalization to sequences of pairwise disjoint countable
dense sets as obtained by Melzak for analytic functions, but that “the massive
amount of bookkeeping involved in this proof is such as to make it impractical to
include it in this paper”. If in the problem of Erdős referred to above, we interpret
“dense” as meaning “dense in the complex plane”, then the problem was solved by
Maurer [52]. For functions of several variables we have the following theorem of
Rosay and Rudin.

Theorem 4.3 ([56, Theorem 2.2]) Given any two countable dense subsets X and
Y of Cn .n > 1/, there is an automorphism (bi-holomorphic map) F of Cn so that
F.X/ D Y (and the Jacobian of F is identically equal to 1).

An elegant proof of the Barth-Schneider result based on Maurer’s work was
given by Sato and Rankin [60]. (See also [54] which contains a variation on the
same argument.) They make no comment about the result for sequences of pairwise
disjoint countable dense sets, but their proof easily yields that version as well. Even
though it is included in Theorem 3.6, we record here a direct proof of the Barth-
Schneider theorem based on the aforementioned simplifications. These ideas were
also used in the proof of Theorem 3.6.

Theorem 4.4 ([4]) If A and B are countable dense subsets of R, then there is an
entire function f which restricts to an order-isomorphism of A onto B.

Proof Fix one-to-one enumerations A D faj W j D 1; 2; : : : g and B D fbj W j D

1; 2; : : : g. Inductively define one-to-one re-enumerations fak.n/ W n D 1; 2; : : : g and
fbl.n/ W n D 1; 2; : : : g of A and B, respectively so that letting
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• P1.z/ D 1

• Pn.z/ D .z � ak.1// : : : .z � ak.n�1//, n odd
• Pn.z/ D .z � ak.1//

2.z � ak.2// : : : .z � ak.n�1//, n � 2 even

(one factor is squared in the third clause so that Pn will have odd degree), we can
take f .z/ D limn!1 fn.z/ where

fn.z/ D c1P1.z/C � � � C cnPn.z/

for some numbers ci chosen so that f 0
2.x/ D c2P0

2.z/ D c2 > 1 and for n � 2,
0 < cn < rn where rn is chosen so that

(a) rnjPn.z/j � 2�n for jzj � n,
(b) rnP0

n.x/ > �2�n for x 2 R.

Let k.1/ D 1, l.1/ D 1, c1 D b1. We have f1.ak.1// D f1.a1/ D c1 D b1 D bl.1/ 2 B.
Let l.2/ D 2 and choose any k.2/ so that the element ak.2/ of A is such that the
solution c2 to the equation f2.ak.2// D bl.2/, namely

c2 D
bl.2/ � c1

ak.2/ � ak.1/

satisfies c2 > 1.
At a stage n � 2, choose any rn so that (a) and (b) hold. If n is even, let k.n/ be

the least natural number such that k.n/ 6D k.i/ for i < n, and then choose cn so that
0 < cn < rn and the number

fn.ak.n/ D fn�1.ak.n//C cnPn.ak.n//

belongs to B. Set bl.n/ D fn.ak.n//. Since f 0
n > 0, l.n/ 6D l.i/ for i < n.

If n is odd, let l.n/ be the least natural number such that l.n/ 6D l.i/ for i < n.
Temporarily fix any number cn such that 0 < cn < rn. Let x be the number such that

fn.x/ D fn�1.x/C cnPn.x/ D bl.n/:

Note that x is not a zero of Pn since fn�1.ak.i// D bl.i/ 6D bl.n/ for i D 1; : : : ; n � 1.
We have

cn D
bl.n/ � fn�1.x/

Pn.x/
:

Replace x by a nearby element ak.n/ of A so that the condition 0 < cn < rn is
preserved. We have

f 0
n.x/ D c1P

0
1.x/C c2P

0
2.x/C � � � C cnP0

n.x/

> 1 � 2�2 � 2�3 � � � � � 2�n > 1 � 2�1 > 0:
ut
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Cohen [24, 25] showed that @1 < c (the failure of the Continuum Hypothesis) is
consistent with the axioms of ZFC (assuming that the axioms of ZFC are consistent).
If we assume that @1 < c, then it is natural to inquire into the nature of subsets of
R having cardinality @1, into whether, for example, are they measurable or meager.
Baumgartner examined the validity of Cantor’s isomorphism theorem for countable
dense subsets of R if “countable dense” is replaced by “of cardinality @1 in every
interval”. In [7], a non-empty set S of real numbers is said to be @1-dense if S is
without endpoints and there are exactly @1 members of S between any two distinct
points of S. In particular, if S\I has cardinality @1 for every nonempty open interval
I, then S is @1-dense. We shall use the term only in this more restricted sense.
Baumgartner proved the following theorem.

Theorem 4.5 ([7]) If ZFC is consistent then so is the theory ZFC + “all @1-dense
sets of reals are order-isomorphic”.

It is shown in [1] that the functions inducing the order-isomorphisms in Baum-
gartner’s theorem cannot in general be taken to be smooth.

Proposition 4.6 ([1, Proposition 9.4]. See also [11, Proposition 1.2], [47, The-
orem 1.5]) There are @1-dense sets A;B � R such that for no nonconstant C1

function f WR ! R do we have f ŒA� � B.
(The statement in [1] is stronger, but Kunen showed in [47] that the stronger

version is false under the Proper Forcing Axiom.) The sets A and B given by the
proof of Proposition 4.6 are meager. This leaves open the possibility that there may
be a positive result for everywhere nonmeager sets. Shelah proved the following
theorem as part of the proof of [61, Theorem 4.7], which states that if ZFC is
consistent then so is ZFC + c D @2 + “There is a universal (linear) order of
power @1.”

Theorem 4.7 ([61]) If ZFC is consistent, then so is ZFC + both of the following
statements.

(a) There is a non-meager set in R of cardinality @1.
(b) Let A and B be everywhere non-meager subsets of R of cardinality @1. Then A

and B are order-isomorphic.

An examination of Shelah’s model shows that the functions witnessing (b) fail
to be differentiable at any constructible real. The main result of [11] builds on the
construction of Theorem 4.7 to produce a model where the order-isomorphisms can
be taken to be the restriction to R of an entire function.

Theorem 4.8 ([11, Theorem 1.7]) If ZFC is consistent, then so is ZFC + c D @2
+ the following statements.

(a) Every non-meager set in R has a non-meager subset of cardinality @1.
(b) For any two sequences, .A˛ W ˛ < !1/ and .B˛ W ˛ < !1/, each consisting of

pairwise disjoint dense subsets of R, if A˛ and B˛ are countable for ˛ < ! and
are everywhere non-meager sets of cardinality @1 for ! � ˛ < !1, then there
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is an order-isomorphism of R which is the restriction of an entire function and
such that f ŒA˛� D B˛ for every ˛ < !1.

(c) The class of functions satisfying the conclusion of (b) W-approximates smooth
nondecreasing surjections R ! R.

The proof uses Shelah’s oracle-cc (cc = chain condition) forcing technique [62,
Chapter IV]. The entire functions in the proof are constructed as the limit of a
sequence, uniformly converging on compact sets in C, of entire functions which
are real linear combinations of products of the form

H.z/
Y

a2A

sin
� z � a

n

�
;

where H is an entire function which on R is positive and such that H.x/ converges
rapidly to zero as x ! ˙1, and A is a nonempty finite subset of R with n � 4jAj.
The reason for choosing this particular family of functions, rather than polynomials
as in the proof of Theorem 4.4, lies in the restrictions imposed by the oracle-cc
method.

It was pointed out in [11] that from Theorem 4.8 and the Shoenfield Absoluteness
Theorem [42, Theorem 98, page 530], we can deduce a version of the Barth-
Schneider result with the ability to approximate derivatives.

Proposition 4.9 For any two sequences, hAn W n < !i and hBn W n < !i, each
consisting of pairwise disjoint countable dense subsets of R, there is an order-
isomorphism f of R which is the restriction of an entire function and is such that
f ŒAn� D Bn for every n < !. The class of such functions W-approximates smooth
nondecreasing surjections of R onto itself.

A proof that does not use forcing can be had by applying Theorem 3.6. (Take A DS1
nD1 An and for p 2 An, set Ap;0 D Bn. By making f and its derivative approximate

the identity function and its derivative, we get f so that Df > 0 and f .An/ D Bn

for all n.) Another example of a consequence of Theorem 3.6 for isomorphisms of
countable dense sets is the following.

Proposition 4.10 ([15, Corollary 1.13]) For each n D 0; 1; 2; : : : , let fAi;ng1
iD1 and

fBi;ng1
iD1 be sequences of pairwise disjoint countable dense subsets of R and .0;1/,

respectively. Let N 2 N and let U1 � U2 � : : : be a cover of R by open sets. Then
there is a function f WR ! .0;1/ which is the restriction of an entire function and
is such that

(1) For n D 0; : : : ;N and all x 2 R, Dnf .x/ > 0.
(2) For n D 0; 1; 2; : : : and all x 2 R such that x 62 Un, Dnf .x/ > 0.
(3) For n D 0; 1; 2; : : : , x 2 R, and y 2 .0;1/, if Dnf .x/ D y then x 2 Ai;n if and

only if y 2 Bi;n, i D 1; 2; : : : .
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5 Smooth Cross-Sections Through Non-meager Sets

The Kuratowski-Ulam theorem is a topological analog of the Fubini theorem for
null sets in products of measure spaces.

Theorem 5.1 ([48]) If X and Y are topological spaces and Y has a countable base,
then for each meager set A � X � Y, the vertical sections Ax, x 2 X, are meager
except for a meager set of points x 2 X.5

For the product space R
2, the converses of the Kuratowski-Ulam and Fubini

theorems are false without a measurability assumption on the set A. The converse
of the Kuratowski-Ulam theorem holds when X and Y are Polish spaces (separable
completely metrizable spaces) and A has the property of Baire. Reversing the roles
of X and Y , we have that if X and Y are Polish spaces then for each set A � X � Y
having the property of Baire, A is meager if and only if for all but a meager set of
c 2 Y , the section A \ .X � fcg/ is meager in X � fcg. By taking complements,
this can be rephrased as saying that for each set A � X � Y having the property
of Baire, A is everywhere non-meager if and only if for all but a meager set of
c 2 Y , the section A \ .X � fcg/ is everywhere non-meager in X. If A does not have
the property of Baire, then this theorem can fail dramatically. For example, using
the Axiom of Choice, it is easy to construct sets A � R

nC1, n a positive integer,
such that A is everywhere non-meager but no two points of A have a coordinate in
common, so that on any hyperplane perpendicular to one of the coordinate axes, A
has at most one point. (The set A from the proof of Proposition 5.2 below is one
example.) A natural attempt at an alternative to the Kuratowski-Ulam theorem for
subsets of RnC1 Š R

n � R not having the property of Baire involves allowing the
section to “bend” instead of having it go straight across. A section A\.Rn �fcg/ can
be thought of as the intersection of A with the (graph of the) constant function with
value c. What if we look instead at A \ f where f WRn ! R? If f is a polynomial,
then we have the following result. The idea of the proof, from [22], is to take the
coordinates of the points of A to be distinct elements of a transcendence base for R
over Q which has nonempty intersection with every uncountable Borel set.

Proposition 5.2 ([10, Proposition 1.1], cf. [5]) There is an everywhere non-
meager set A � R

nC1 such that for every polynomial function f WRn ! R, A \ f is
finite.

Another limitation on getting a Kuratowski-Ulam theorem for everywhere non-
meager sets is that, unlike the situation for sets having the property of Baire, there
are sets A for which many translations x 7! f .x/ C c of any given real-analytic

5As pointed out in [55, Chapter 15], the proof of the Kuratowski-Ulam theorem requires only a
countable �-base for Y (i.e., a countable collection of nonempty open sets so that each nonempty
open sets contains one of them). In [32], a pair of spaces .X;Y/ for which the conclusion of the
Kuratowski-Ulam theorem holds is called a K-U pair and conditions under which a pair of spaces
is a K-U pair are studied.



52 M. R. Burke

function f are disjoint from A, as in the next proposition which adapts arguments
from [22] to a multivariate context.

Proposition 5.3 ([10, Proposition 1.2], cf. [22, Theorem 1 and Corollary 2])
There is a set A � R intersecting every uncountable Borel set such that for any
real-analytic function f WRn ! R, the set fc 2 R W AnC1 \ .f C c/ D ;g intersects
every uncountable Borel set.
(It follows easily from the Kuratowski-Ulam theorem that for such a set A, AnC1 is
everywhere non-meager in R

nC1.)
Suppose there is a Lusin set L � R

nC1, i.e., a set which is uncountable but
has countable intersection with every meager set. The existence of such a set is
independent of the axioms of ZFC, but can be established, for example, using the
Continuum Hypothesis or in a model produced by adding uncountably many Cohen
reals. By replacing L with the union of its translates by the members of a countable
dense set, we can assume that L has uncountable intersection with every ball and
hence is everywhere non-meager. We have that L \ .f C c/ is countable for every
continuous function f WRn ! R and every c 2 R since the graph of f C c is a
closed nowhere dense set. Even if f is merely a Borel function, the Kuratowski-
Ulam theorem shows that the graph of f is a meager set in R

nC1 and hence the
sections L \ .f C c/ are still countable.

In spite of all these examples, it is consistent relative to ZFC that non-meager
sets must have large continuous sections. The fundamental result in this direction
was proven by Ciesielski and Shelah.

Theorem 5.4 ([21, Theorem 2]) If ZFC is consistent, then so is ZFC + the
following statement.

Writing C D f0; 1gN for the Cantor set, for every A � C � C for which the sets A
and Ac D .C�C/nA are everywhere non-meager in C�C there is a homeomorphism
f W C ! C such that the set fx 2 C W .x; f .x// 2 Ag does not have the property of
Baire in C.

Ciesielski and Natkaniec showed that for function on R, the proof of Theorem 5.4
can be adapted to produce order-isomorphisms.

Theorem 5.5 ([22, Theorem 12A]) If ZFC is consistent, then so is ZFC + c D @2
+ the following statements.

(a) Every everywhere non-meager set in R has an everywhere non-meager subset
of cardinality @1.

(b) For every family A consisting of @1 pairwise disjoint everywhere non-meager
sets in R

2, there is an increasing homeomorphism f WR ! R such that A \ f is
everywhere non-meager in f for every A 2 A.

The main result of [10] is the following theorem, which shows that consistently
for any everywhere non-meager set A � R

nC1, we can find a function f WRn ! R

which is the restriction of an entire function C
n ! C such that A \ f is everywhere

non-meager relative to the graph of f . The proof builds on the ideas in [21] and on
the argument in [11], among other things extending the techniques from the latter to
functions of several variables.
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Theorem 5.6 ([10, Theorem 1.6]) If ZFC is consistent, then so is ZFC + 2@0 D @2
+ the following statements.

(a) Every non-meager set in R has a non-meager subset of cardinality @1.
(b) For every positive integer t and any everywhere non-meager subsets E˛ of RtC1,

˛ < !1, there is a function f WRt ! R which is the restriction of an entire
function and is such that fx 2 R

t W .x; f .x// 2 E˛g is everywhere non-meager in
R

t for every ˛ < !1.
(c) Suppose that we are additionally given a countable dense set A � R

n, and
countable dense sets Bx � R, x 2 A. Then we may ask that for each x 2 A,
f .x/ 2 Bx. Moreover, for any dense A0 � A, if the sets Bx, x 2 A0, are all equal
to some B � R and for all x 2 A n A0 we have Bx \ B D ;, then f ŒA0� is an
interval of B.

(d) The class of functions f satisfying (b), or both (b) and (c), W-approximates
smooth functions.

In [14], it was shown that in (d) we can say “W-approximates smooth functions
with interpolation on closed discrete sets that are disjoint from A.” Property (c) was
also obtained in a stronger form. From Theorem 3.6 there follows a stronger result
for a single everywhere non-meager set when that set is in fact residual. In this case,
we prefer to state the result in terms of the meager complement.

Corollary 5.7 ([15, Corollary 1.9]) For a given meager set E in R
tC1, Theorem 3.6

holds with the additional clause (c) below.

(c) for every multi-index ˛, fx 2 R
t W .x;D˛f .x// 2 Eg is meager.

We do not know whether the measure theoretic analog of this result, replacing
“meager” by “of Lebesgue measure zero,” is true.

Problem 5.8 ([15, Problem 1.10]) Let E be a set of Lebesgue measure zero in the
plane. Is there an entire function f .x/ D

P1
nD0 anxn so that fx 2 R W .x; f .x// 2 Eg

has Lebesgue measure zero in R if we require

(i) f has rational coefficients?
(ii) f takes rational values on rational numbers?

In [15, Theorem 5.2], we showed that Corollary 5.7 does hold for null in the
place of meager if we weaken the requirement on the approximating functions to
say that they are C1 rather than entire. If we give up the control of the values of the
derivatives on a countable dense set (which leaves us with Hoischen’s theorem), then
we may ask that the approximating function be entire with its derivatives satisfying
that for a given null set E, for every multi-index ˛, fx 2 R

t W .x; .D˛f /.x// 2 Eg

is null. This follows essentially from Fubini’s theorem and the change of variable
formula for the Lebesgue integral. (See [15, Theorem 2.6].)

In [57], Rosłanowski and Shelah proved a measure-theoretic analog of Theo-
rem 5.4, showing that if ZFC is consistent then it remains consistent if we also
assume the following statement. Here f0; 1gN has its usual probability measure, and
f0; 1gN � f0; 1gN has the product measure.
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(RS) For any thick sets E˛ � f0; 1gN � f0; 1gN, ˛ < !1, there is a continuous
hW f0; 1gN ! f0; 1gN such that

fx 2 f0; 1gN W .x; h.x// 2 E˛g

is thick for all ˛ < !1.

For our purposes, being able to find a continuous h which gives a large section
through two sets E0;E1 simultaneously would suffice. In the model of [57], @1 < c

(specifically c D @2), and this is essential because under the Continuum Hypothesis
there are thick sets E � f0; 1gN � f0; 1gN so that E \ N is countable whenever N
is null. But the graph of a continuous (or even measurable) function h is null (by
Fubini’s theorem) so fx 2 f0; 1gN W .x; h.x// 2 Eg is countable. In Proposition 5.11,
we extend the collection of spaces to which (RS) applies, showing in particular that
it applies to subsets of Rt � R with Lebesgue measure on the factors. We shall use
the following simple modification of the Tietze Extension Theorem.

Lemma 5.9 Let F be a continuous real-valued function on a normal space X, and
let M be a closed subspace of X. If gW M ! R is continuous, " > 0, and jg.x/ �

F.x/j < "; x 2 M, then there is a continuous extension GW X ! R of g such that
jG.x/ � F.x/j < "; x 2 X.

Proof The function g � F takes values in .�"; "/ on M. Apply the Tietze Extension
Theorem to extend g � F to a continuous function kW X ! .�"; "/. Then G D F C k
is as desired. ut

The next Proposition is standard. Recall that a Polish space X is a separable
topological space which is completely metrizable. Gı subsets of a Polish space are
also Polish spaces [58, Proposition 33 p. 164]. We shall also need that the Jordan
measurable open sets (i.e., those whose boundary has measure zero) form a base for
the topology of X.6

Proposition 5.10 Let � be a non-atomic Borel probability measure on a Polish
space X. Then for each 0 < ˛ < 1, there is a Cantor set K � X such that �.K/ D ˛

and for some homeomorphism 'W f0; 1gN ! K, � on K is a scaling (by ˛) of the
image of the standard measure on f0; 1gN.

For the purposes of referring to it in the proof of the next proposition, let us
say that a Cantor set K in X is nice if it is homeomorphic to f0; 1gN in such a way
that � on K is a scaling of the standard measure on f0; 1gN. We have that � is inner
regular for the nice Cantor sets, because it is inner regular for the closed sets, and the
proposition above can be applied to closed subspaces (upon re-scaling the measure).

6This is true in any completely regular topological probability space. See [6, p. 463] for example.
For metric spaces, one can simply note that for each point p 2 X, only for countably many " > 0

can the sphere S".p/ D fx W d.x; p/ D "g have positive measure. Hence, the balls B".x/ D fx W
d.x; p/ < "g for which �.S".p// D 0 form a base for the topology.



Approximation by Entire Functions in the Construction of Order-Isomorphisms. . . 55

Proof Choosing countably many Jordan measurable open sets which form a base
for the topology of X and discarding their boundaries, we are left with a zero-
dimensional Polish space on which (the restriction of) � is a non-atomic Borel
probability measure. We now assume that X itself is zero-dimensional. Since Borel
probability measures in Polish spaces are inner regular for the compact sets [44,
Theorem 17.11], we can find a compact set L � X with �.L/ > ˛. Subtracting
from L the open sets which intersect L in a set of measure zero, we may assume that
all relatively open subsets of L have positive measure, i.e., L is self-supporting. In
particular, L has no isolated points, so L is homeomorphic to f0; 1gN (for example
see [67, Corollary 30.4]).

Now think of L as being the Cantor middle third set on R, equipped with the
image of � under any homeomorphism of L with the Cantor middle third set.
Fix positive numbers "n, n D 0; 1; : : : , so that �L D ˛ C "0, "nC1 < "n, and
limn!1 "n D 0.

The map x 7! �.L \ Œ0; x�/ is continuous since � is non-atomic. We may
therefore find closed subintervals J0 D Œ0; a� \ L, J1 D Œb; 1� \ L of L, with a
having no immediate predecessor in L, and b having no immediate successor in
L, such that �.J0/ D �.J1/ and �.J0/ C �.J1/ D ˛ C "1. Note that J0 and J1 are
disjoint. Continue, recursively choosing closed subintervals J
 of L, for finite binary
sequences 
 , so that J
 has no isolated points and the following hold.

(i) for each 
 , J
a0 and J
a1 are pairwise disjoint closed subintervals of J

(ii) for each n, the sets J
 , 
 2 f0; 1gn, are all of the same measure

(iii) �
S

fJ
 W s 2 f0; 1gng D ˛ C "n

Note that for any infinite binary sequence 
 , we must have that the diameters
of the intervals J
 jn of L converge to zero. Indeed, the properties above easily
give that the measures of the J
 jn converge to zero. If the diameters do not, thenT1

nD1 J
 jn is a nontrivial subinterval of L of measure zero, contradicting the fact
that L is self-supporting. Then under the natural homeomorphism f0; 1gN ! K DT1

nD1

S

2f0;1gn J
 , the image of the usual measure on f0; 1gN, scaled by ˛, equals�.

ut

Proposition 5.11 Assume (RS). Let X be a Polish space carrying a non-atomic 
 -
finite Borel measure �. Equip R with Lebesgue measure and let X � R have the
product measure. Let f W X ! R be continuous, " > 0. Then for any thick sets
E˛ � X � R, ˛ < !1, there is a continuous hW X ! R such that jh.x/ � f .x/j < "

for all x 2 X and

fx 2 X W .x; h.x// 2 E˛g

is thick for all ˛ < !1. If L � X is a closed set of measure zero, we may also require
that h.x/ D f .x/ when x 2 L.

Proof We shall work for simplicity with a single set E � X �R, but the general case
is proven by simply rewording each claim about E to say the same thing about all
sets E˛ simultaneously. Since the notion of a thick set depends only on which Borel
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sets have measure zero, we may replace � by a probability measure having the same
null sets as �. Hence we may assume that � is a probability measure. (If � is the
zero measure then all sets are thick. If not, then we can write X D

S1
nD1 An, where

the sets An are pairwise disjoint and 0 < �.An/ < 1. The probability measure �
given by �.S/ D

P1
nD1 2

�n�.S \ An/=�.An/ has the same null sets as �.)
We shall construct a uniformly converging sequence of continuous functions

hnW X ! R as well as an increasing sequence of closed sets Mn � X so that

(1) M0 D L, h0 D f
(2) hnC1.x/ D hn.x/, x 2 Mn

(3) jhnC1.x/ � hn.x/j < "=2nC1, x 2 X
(4) �.Mn/ > 1 � 2�n

(5) ��fx 2 Mn W .x; hn.x// 2 Eg D �.Mn/

If we achieve this, then setting h.x/ D limn!1 hn.x/ works. (3) ensures that
fhn.x/g is a Cauchy sequence and fhng converges uniformly to h.x/. By (2), h.x/ D

hn.x/ for x 2 Mn, so that

��fx 2 X W .x; h.x// 2 Eg � ��fx 2 Mn W .x; h.x// 2 Eg D �.Mn/

and by (4) it follows that ��fx 2 X W .x; h.x// 2 Eg D 1.
For the inductive step of the construction, let Un D XnMn. Let fVjg be a maximal

collection of disjoint Jordan measurable open subsets of Un on each of which the
variation of hn is less than "=2nC2 and so that �.

S
j Vj/ D �.Un/. (Cover Un by

countably many Jordan measurable Bj on each of which the variation of hn is less
than "=2nC2, and let Vj be the interior of Bj n

S
i<j Bi.)

Fix N 2 N and "j > 0, j D 1; : : : ;N. By Proposition 5.10, there are nice Cantor
sets Kj � int Vj, �.Kj/ > �.Vj/ � "j. (4) will hold for n C 1 if we set MnC1 D

Mn [
SN

jD1 Kj, as long as we take N large enough and each of the "j, j D 1; : : : ;N,
small enough. Fix any point pj 2 Kj and choose a nice Cantor set Ij � R so that
hn.pj/ 2 Ij and the diameter of Ij is less than "=2nC2.

From (RS) we get a continuous function ujW Kj ! Ij so that ��.fx 2 Kj W

.x; uj.x// 2 Eg D �Kj. We have juj.x/ � hn.x/j < "=2nC1 for each x 2 Kj, because

juj.x/ � hn.x/j � juj.x/ � hn.pj/j C jhn.pj/ � hn.x/j

and we have on the one hand that uj.x/ and hn.pj/ both belong to Ij, and on the other
hand pj and x both belong to Kj � Vj. Use Lemma 5.9 to extend .hnjM0/ [

SN
jD1 uj

to a continuous function hnC1W X ! R so that jhnC1.x/ � hn.x/j < "=2nC1 for all
x 2 X. This completes the construction. ut

Unlike the proof of Theorem 5.4, the proof of (RS) has so far resisted attempts
to produce an analog for subsets of the plane in which the functions h are smooth,
or even monotone, let alone analytic.
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Problem 5.12 Is there a thick subset E of the plane such that for no function f WR !

R which is the restriction of an entire function on C do we have that f.x; f .x// W x 2

Rg is thick in R?

6 Measurability of f.x; '.x//

One source of interest in the ability to find nice cross sections through subsets of
R � R is the study of classes of functions f .x; y/ for which the differential equation

d'.x/

dx
D f .x; '.x// (3)

has a solution in a suitable sense. The Cauchy-Peano existence theorem (see [23,
Theorem 1.3]) states that if f is continuous on an open set U � R

2 and .x0; y0/ 2 U
then there is a (not necessarily unique) function ' on an open interval I containing
x0 so that for x 2 I, we have .x; '.x// 2 U and (3) holds. Since the composition
x 7! f .x; '.x// is continuous, so is D'. Hence, ' is a C1 function. The condition
that x 7! f .x; '.x// is continuous whenever '.x/ is continuous implies that f is
continuous. (See [45, Theorem 2]) Hence, it is natural to require that f is continuous
if we want C1 solutions. The functions ' needed in the proof of continuity of f can
be taken to be C1 except at one point. The exceptional point is needed however as
it is not true that continuity of f .x; '.x// when ' is differentiable implies continuity
of f .

Example 6.2 Define f WR2 ! R by

f .x; y/ D

8
ˆ̂<

ˆ̂:

y2=jxj ifjxj � y2 and .x; y/ 6D .0; 0/

0 if .x; y/ D .0; 0/

1 otherwise

f is not continuous but the superpositions f .x; '.x// are continuous for all continu-
ous functions ' such that D'.0/ exists if '.0/ D 0.

Proof Since f .x; y/ D 1 when x D y2, except that f .0; 0/ D 0, f is not continuous
at .0; 0/. However, f is continuous on R

2 n f.0; 0/g since on this set the formulas
for f on jxj � y2 and jxj � y2 define continuous functions and they agree on the
intersection jxj D y2. Hence for continuous '.x/, f .x; '.x// is continuous at any
point x 6D 0 and even at x D 0 if '.0/ 6D 0. For any differentiable function ' such
that '.0/ D 0, let M be any positive number larger than jD'.0/j. Then for some
ı > 0 we have for 0 < jxj < ı that

j'.x/j

jxj
D

ˇ̌
ˇ̌'.x/ � '.0/

x � 0

ˇ̌
ˇ̌ < M
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and hence j'.x/j < Mjxj. Since '.x/ is also continuous at 0, by shrinking ı we can
also ensure that j'.x/j < 1=M for 0 < jxj < ı. The points .x; '.x// for 0 < jxj < ı

thus belong to the open set U D f.x; y/ W jyj < Mjxj; jyj < 1=Mg. On U we have
jxj > jyj=M � y2, so

f .x; y/ D
y2

jxj
<

M2x2

jxj
D M2jxj ! 0 as x ! 0

Hence, f is continuous on U [ f.0; 0/g and therefore f .x; '.x// is continuous at
x D 0. ut

For the function of Example 6.2, there is a continuous function '.x/ which
satisfies D'.x/ D f .x; '.x// except at x D 0 (where it is not differentiable), namely

'.x/ D

8
ˆ̂<

ˆ̂:

�1= log x if x > 0

1= log.�x/ if x < 0

0 if x D 0

Carathéodory ([18, §§576–592], [29, §1], [46, §17]) examined less restrictive
assumptions on f which are sufficient to ensure that when ' is measurable, the
function f .x; '.x// will be integrable. He shows in particular that if f .x; y/ is
continuous in y and measurable in x, then for each measurable function '.x/,
x 7! f .x; '.x// is measurable. By Lebesgue’s proof that separately continuous
functions on the plane are of Baire class one [50, page 201], it follows that f
is also Lebesgue measurable.7 If x 7! f .x; '.x// is measurable whenever ' is
measurable, we say f is superposition measurable, or sup-measurable.8 In [46,
§17], superposition is studied as a (non-linear) operator on ' for a fixed f . In [46,
§17.8], it is pointed out that, by Lusin’s theorem, measurability of x 7! f .x; '.x// for
continuous ' implies superposition measurability of f . There is a natural topological
analog of the notion of sup-measurability, namely if X is a topological space then say
that f W X � R ! R is BP-sup-measurable if whenever 'W X ! R is BP-measurable,
so is the superposition f .x; '.x//. We get an equivalent definition if we require BP-
measurability of the superposition only when ' is a Borel function, but the definition
is weaker if we require the condition only for continuous '.

7Given f .x; y/ continuous in y and measurable in x, let fn.x; y/ agree with f .x; y/ when y D k=n,
k 2 Z, and interpolate linearly between adjacent points k=n, i.e., when k=n � y � .k C 1/=n,
fn.x; y/ D f .x; k=n/ C n.y � k=n/.f .x; .k C 1/=n/ � f .x; k=n//. fn is a measurable function since
sums and products of measurable functions are measurable. Then limn!1 fn.x; y/ D f .x; y/ is
measurable.
8Carathéodory did not name the concept. The long form of the name, as “superpositionally
measurable,” is from (the Russian edition of) [46], the short form from [63]. For more on this
concept see [26, Definition 2.5.25] and the results that follow it, or the papers [36, 49].
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Example 6.3 ([3, Remark 3, p. 790]) There is a function f WR2 ! R such that the
superpositions f .x; '.x// are BP-measurable whenever 'WR ! R is continuous, but
f is not BP-sup-measurable.

In this section we discuss conditions which ensure sup-measurability in the
topological or in the measure-theoretic context. There are easy examples of
measurable functions f WR2 ! R which are not sup-measurable. Examples of
sup-measurable functions which are not measurable can be produced under the
Continuum Hypothesis and under some weaker assumptions, but in [57] a model
was constructed where all sup-measurable functions are measurable.

We begin with an observation regarding the possibility of solving a differential
equation (3) when f is very pathological function. Our treatment is adapted from
[45]. There is a thick set A � R

2 which is the graph of a one-to-one function.
Moreover, A \ ' has cardinality less than c whenever 'WR ! R is continuous.9

Since A is the graph of a function, it has inner measure zero. Letting f denote the
characteristic function of A, we have that f is a nonmeasurable function for which
the following result holds.

Theorem 6.4 (Cf. [45, Theorem 4]) With f as above, consider the differential
equation '0.x/ D f .x; '.x//.

(1) Each constant function ' satisfies the equation except possibly at one point
x 2 R.

(2) Any differentiable function ' which satisfies this equation except possibly at
less than c points of R is constant.

(3) Any locally absolutely continuous function ' which satisfies this equation
almost everywhere is constant.

There are competing meanings of a solution to a differential equation '0.x/ D

f .x; '.x// when f is discontinuous. See the introduction, as well as §4, of the text
[29], and also [8], for a discussion of this point. In the Carathéodory theory, (3)
above is the standard interpretation. (See [58, p. 108] for the theory of absolutely
continuous functions on a compact interval. Locally absolutely continuous on R

means absolutely continuous on compact subintervals of R.) Note that it follows that
if we fix a point .x0; y0/ 2 R � R then given the initial value condition '.x0/ D y0
there is a unique solution ' in the sense of (2) or (3) which satisfies the initial value
condition. This solution, by (1), satisfies the equation except possibly at one point.
(But the point x D x0 itself might be the exceptional one.)

9Here we identify ' with its graph in R
2. Sketch of construction of A: Identify the cardinal c of

the continuum with the least ordinal of cardinality c. List the compact subsets of R2 of positive
measure as .K˛ W ˛ < c/, and the continuous functions R ! R as .'˛ W ˛ < c/. By Fubini’s
Theorem, m.E˛/ > 0 where E˛ D fx 2 R W m..K˛/x/ > 0g. (m denotes Lebesgue measure on R.)
In particular, E˛ has cardinality c, and .K˛/x has cardinality c for each x 2 E˛ . Recursively choose
points .x˛; y˛/ 2 R

2 so that x˛ 2 E˛ n fxˇ W ˇ < ˛g and y˛ 2 .K˛/x˛ n .fyˇ W ˇ < ˛g [ f'� .x˛/ W
� < ˛g/. Then set A D f.x˛; y˛/ W ˛ < cg.
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Proof

(1) Fix k 2 R and let '.x/ 	 k. Since A is the graph of a one-to-one function, it
has at most one point on each horizontal line, and hence f .x; '.x// D f .x; k/ D

0 D '0.x/ except possibly for one value of x.
(2) Let ' be a differentiable function and suppose that '0.x/ D f .x; '.x// except

possibly at less than c points. By the choice of A, f .x; '.x// D 0 except for
less than c values of x. Thus, '0.x/ D 0 except at less than c points of R.
Since derivatives are Darboux functions (i.e., they satisfy the intermediate value
property), we must have '0.x/ D 0 for all x 2 R. (If '0 takes both zero and
nonzero values, then by the intermediate value property it takes on continuum
many values and hence is nonzero at continuum many points.10) Hence ' is
constant.

(3) This time ' is absolutely continuous and we have '0.x/ D f .x; '.x// holding
except on a set K of measure zero. By the choice of A, f .x; '.x// D 0 except on
a set L of cardinality less than c. This gives that M D Rnfx 2 R W '0.x/ D 0g �

K [L. But M is measurable and cannot have positive measure or else L 
 M nK
would have cardinality c. Thus, '0.x/ D 0 almost everywhere, and hence ' is
constant (since absolutely continuity implies '.x/ D '.x0/C

R x
x0
'0.t/ dt). ut

We now turn to the question of whether sup-measurable functions must be
measurable. The next proposition is a standard manipulation for which we cannot
find a suitable reference, so we give a proof. Here, � denotes Lebesgue measure on
both the unit interval and the unit square, with the context distinguishing the two.

Proposition 6.5 Let A � Œ0; 1�2 be compact.

(1) The union B of all fxg � Œa; b� where 0 � a < b � 1 and �.Ax \ .a; b// D 0 is
a Gı
 set and A \ B has measure zero.

(2) The function hW Œ0; 1�2 ! Œ0; 1�2 defined by

h.x; y/ D .x; �.Ax \ Œ0; y�//

is Borel measurable. The restriction hjA is inverse measure preserving as a map
from A onto h.A/, and maps A n B bijectively onto h.A/ n h.B/.

Note that h.A/ is the region of the square Œ0; 1�2 on and under the graph of the
Borel function x 7! �.Ax/. In particular, it is a Borel set. Then h.A n B/ and h.B/
are disjoint analytic sets which partition h.A/ and hence, by the Lusin Separation
Theorem [44, Theorem 14.7], they are Borel sets.

10Cf. Bruckner [9, Theorem 1.1]. In [20, Proposition 4] there is a direct proof that a differentiable
function whose derivative is zero except at countably many points is constant. The proof works
also for “less than c” instead of “countably many”.
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Proof

(1) If Œ0; 1�2 n A D
S1

nD1 Un � Vn, Un and Vn open intervals of Œ0; 1�, then writing
.r; y/ to mean the interval r < t < y if r < y and the interval y < t < r if y < r,
we have that

.x; y/ 2 B , there are a < b with a � y � b and �.Ax \ .a; b// D 0

, there is a rational number r 6D y with �.Ax \ .r; y// D 0

�.Ax \ .y; r// D 0 says that for each rational s > 0, there is an N such that

�

N[

nD1

fVn \ .y; r/ W x 2 Ung > jy � rj � s:

The set of .x; y/ satisfying this latter condition is open. The set of .x; y/
satisfying �.Ax \ .y; r// D 0 is therefore Gı and B is therefore Gı
 .

To compute the measure of A \ B, note that for a given x, the union of all
open intervals .a; b/ with rational endpoints such that �.Ax \ .a; b// D 0 is an
open set, and Bx is the union of the closures of its components. Hence .A \ B/x
has measure zero. By Fubini’s theorem, �.A \ B/ D 0.

(2) Since �.Ax \ Œ0; y�/ is Borel measurable as a function of x and continuous as a
function of y, by the argument of Lebesgue mentioned in the paragraph before
Example 6.3, it is Borel measurable as a real-valued function on Œ0; 1�2. Thus,
the given function h is Borel measurable. h is fiber-preserving, and on Ax, if
y … Bx then h.y0/ < h.y/ whenever y0 < y and h.y/ < h.y0/ whenever y < y0,
so f is one-to-one on A n B. This also shows that h.A n B/ is disjoint from h.B/.
The inclusion h.A/ n h.B/ � h.A n B/ is true for any function and any sets, so
we get h.A n B/ D h.A/ n h.B/.

As noted above, h.A/ is the region of the square Œ0; 1�2 under the graph of the
Borel function x 7! �.Ax/. Given a rectangle Œ0; a� � Œ0; b�, its intersection Eab

with h.A/ has a section at x equal to the interval Œ0;min.b; �.Ax//�. Hence the
measure of this set, by Fubini’s theorem is

R a
0

min.b; �.Ax// dx. On the other
hand, the pre-image of Eab under hjA is

A \ f.x; y/ W 0 � x � a; �.Ax \ Œ0; y�/ � bg:

By the Fubini theorem its measure is
R a
0

min.b; �.Ax// dx D �Eab. Since the
collection of sets Eab is closed under intersection, contains E1;1 D h.A/, and
generates the Borel 
 -algebra of h.A/, and the collection of Borel sets E � h.A/
for which �E D �.A \ h�1.E// is a Dynkin system, hjA is inverse measure
preserving. ut

Theorem 6.6 (Cf. [57], the Proof of .�/4sup ) .�/3sup on p. 92) Assume (RS).
Let X be a Polish space carrying the completion � of a non-atomic 
 -finite Borel
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measure. Equip R with Lebesgue measure and let X�R have the (complete) product
measure. Then every sup-measurable function f W X � R ! R is measurable.

Proof It is enough to prove the case where f is the characteristic function of a set
E. (See [2, Proposition 1.5].) Suppose E is not measurable. We wish to find a Borel
function 'W X ! R so that the superposition f .x; '.x// is not measurable, i.e., the set
fx 2 X W .x; '.x// 2 Eg is not measurable. Since E is a non-measurable set, there is
a compact set A in X �R of positive measure such that E\A and AnE are both thick
in A. A has intersection of positive measure with one of the sets X � Œn; nC1�, n 2 Z,
so we may assume that A � X � Œ0; 1�. For some ı > 0, we can choose a compact
set Kı � fx 2 X W �.Ax/ > ıg of positive measure. Then by intersecting A with
Kı � R, we may assume that all nonempty vertical sections of A have measure > ı.

If we find a Borel function 'W Kı ! Œ0; 1� such that fx 2 Kı W .x; '.x// 2 Eg is
not measurable, then we are done by setting '.x/ D 0 when x 2 X n Kı . We may
take Kı to be a nice Cantor set by Proposition 5.10. We can re-scale the measure
on Kı so that it becomes homeomorphic in a measure preserving manner to f0; 1gN

with the usual product measure. Via the binary expansion map kW f0; 1gN ! Œ0; 1�

(which becomes bijective upon removing from Œ0; 1� the set D of dyadic rational
numbers and from f0; 1gN the set C of eventually constant sequences), we then
have a measure preserving continuous surjection gW Kı � Œ0; 1� ! Œ0; 1�2 given by
g.x; y/ D .k.x/; y/. A is carried to a compact set g.A/ whose vertical sections all
have measure > ı.

Let E0 D .E \ A/ n .D � Œ0; 1�/, E1 D .A n E/ n .D � Œ0; 1�/. E0 and E1 are
disjoint thick subsets of A. Also, g.E0/ and g.E1/ are disjoint thick subsets of g.A/.
Apply Proposition 6.5 to g.A/ to get hW Œ0; 1�2 ! Œ0; 1�2 and B � Œ0; 1�2. Write Fi D

g.Ei/ n B, i D 0; 1. Then h.F0/ and h.F1/ are disjoint thick subsets of h.g.A//, and
h.g.A// contains Œ0; 1� � Œ0; ı�. By Proposition 5.11, there is a continuous function
'0W Œ0; 1� ! Œ0; ı� such that the sets

fx 2 Œ0; 1� W .x; '0.x// 2 h.F0/g and fx 2 Œ0; 1� W .x; '0.x// 2 h.F1/g

are both thick in Œ0; 1�. Note that the graph of '0 almost avoids the set h.B/ because
the Borel set U D fx W .x; '0.x// 2 h.B/g and the thick set fx W .x; '0.x// 2 h.F0/g
are disjoint (the sets h.F0/ and h.B/ are disjoint as h.F0/ � h.g.A/nB/ D h.g.A//n
h.B/), so U has measure zero. Pulling '0j.Œ0; 1� n U/ back under h, we get a Borel
subset '1 of Œ0; 1�2 which is a function defined on Œ0; 1� n U (because h is fiber-
preserving and its restriction to A n B is one-to-one) and hence is a Borel function.
It has the property that

fx 2 Œ0; 1� n U W .x; '1.x// 2 F0g and fx 2 Œ0; 1� n U W .x; '1.x// 2 F1g

are both thick in Œ0; 1�. Pulling '1 back under g, we get a Borel subset '2 of Kı�Œ0; 1�
which is a function defined on a Borel set S of measure one in Kı and hence is a
Borel function. It has the property that
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S0 D fx 2 S W .x; '2.x// 2 E0g and S1 D fx 2 S W .x; '2.x// 2 E1g

are both thick in Kı . Extend '2 to Kı by setting '2.x/ D 0 when x 62 S. Since T D

fx 2 Kı W .x; '2.x// 2 Eg contains S0 and is disjoint from S1, T is not measurable.
ut

Let us introduce the following statement, which is analogous to (RS). It is similar
to the conclusion of Theorem 5.4 and holds in the model of [21] with only minor
changes to the construction. Cf. Lemma 5, p. 163 of [21].

(CS) For any everywhere non-meager sets E˛ � f0; 1gN � f0; 1gN, ˛ < !1, there is
a continuous hW f0; 1gN ! f0; 1gN such that

fx 2 f0; 1gN W .x; h.x// 2 E˛g

is everywhere non-meager for all ˛ < !1.

As for Theorem 6.6, we have the following.

Theorem 6.7 (Cf. [21], the Proof of Corollary 3 on p. 161) Assume (CS). Let X
be a perfect Polish space. Then every BP-sup-measurable function f W X �R ! R is
BP-measurable.

It is necessary to assume that X is perfect, as can be seen by considering the
case where X is a one-point space. Every function f W X � R ! R is then BP-sup-
measurable.

Proof It is enough to prove the case where f is the characteristic function of a set
E. (See [2, Proposition 1.5].) Suppose E does not have the property of Baire. We
wish to find a Borel function 'W X ! R so that the superposition f .x; '.x// is not
BP-measurable, i.e., the set fx 2 X W .x; '.x// 2 Eg does not have the property of
Baire. Since E does not have the property of Baire, there are open sets U � X and
V � R such that E and its complement are both everywhere non-meager in U � V .

Every perfect Polish space has a dense Gı copy of the Baire space N
N. (See the

proof of [16, Proposition 2.1], for example.) Because U and V are perfect Polish
spaces, there are dense Gı subspaces U0 � U and V0 � V homeomorphic to the
Baire space. Then E and its complement are everywhere non-meager in U0 � V0.
If we find a Borel function 'W U0 ! V0 such that fx 2 U0 W .x; '.x// 2 Eg and
fx 2 U0 W .x; '.x// … Eg are everywhere non-meager in U0, then we are done by
setting '.x/ D 0 when x 2 X n U0.

Upon removal of a countable set of points, the Cantor set f0; 1gN becomes
homeomorphic to the Baire space. Hence we may think of our product U0 � V0
as being a dense Gı subset of f0; 1gN � f0; 1gN. Write K for the meager complement
of this dense Gı . From (CS) we then get a continuous function 'W f0; 1gN ! f0; 1gN

such that

fx 2 f0; 1gN W .x; '.x// 2 Eg and fx 2 f0; 1gN W .x; '.x// … Eg
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are both everywhere non-meager. Note that the graph of ' almost avoids the meager
set K because fx W .x; '.x// 2 Eg and fx W .x; '.x// 2 Kg are disjoint and the first is
everywhere non-meager while the second is a Borel set, so M D fx W .x; '0.x// 2 Kg

is meager. The restriction of ' to U0 n M, extended to U0 by making it constant on
U0 \ M, is the desired function. ut

When X D R
t, we get a stronger result in the model for Theorem 5.6. From that

model we extract the following property.

.�/t For any everywhere non-meager sets E˛ � R
tC1, ˛ < !1, and any continuous

function gWRt ! R and " > 0, there is a function hWRt ! R which is the
restriction of an entire function on C

t such that jh.x/�g.x/j < " for all x 2 R
t,

and

fx 2 R
t W .x; h.x// 2 E˛g

is everywhere non-meager for all ˛ < !1.

Theorem 6.8 Assume .�/t. Let f WRt � R ! R. Suppose f .x; '.x// is BP-
measurable whenever 'WRt ! R is the restriction of an entire function. Then f
is BP-measurable.

Under .�/t, our hypothesis that f .x; '.x// is BP-measurable whenever 'WRt ! R

is an entire function thus sits between the statements that f is BP-sup-measurable
and that f is BP-measurable. By Example 6.3, we could not include in our
conclusion that f is BP-sup-measurable. (The function of Example 6.3 is easily seen
directly to be BP-measurable because it is the characteristic function of a meager
set.)

Proof If f is not BP-measurable, then for some c 2 R, the set E D f.x; y/ 2 R
t �R W

f .x; y/ < cg does not have the property of Baire. Therefore, there is a cube I in R
tC1

such that E and its complement are both everywhere non-meager in I. By translating
and scaling, we may take I to be the unit cube Œ0; 1�tC1. Apply .�/t to the everywhere
non-meager sets

.E \ Œ0; 1�tC1/ [ .RtC1 n Œ0; 1�tC1/ and .Œ0; 1�tC1 n E/ [ .RtC1 n Œ0; 1�tC1/

with g.x/ 	 1=2 and " D 1=2 to get an entire function 'WRt ! R such that when
x 2 Œ0; 1�t we have 0 < '.x/ < 1, and the sets

fx 2 Œ0; 1�t W .x; '.x// 2 Eg and fx 2 Œ0; 1�t W .x; '.x// … Eg

are everywhere non-meager in Œ0; 1�t and hence

fx 2 R
t W .x; '.x// 2 Eg D fx 2 R

t W f .x; '.x// < cg

does not have the property of Baire. Thus, f .x; '.x// is not BP-measurable. ut
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7 Piecewise Monotone Approximation

Analytic functions on an interval of R are piecewise monotone. It seems natural
that when they are being used to approximate piecewise monotone functions
the approximating function and the functions being approximated will be “co-
monotone,” i.e., increasing and decreasing on the same intervals. This problem
has been considered at length in the context of approximation by polynomials
on compact intervals. For example, see [30], or [34, Chapter 1]. For monotone
approximation, we have the following result.

Theorem 7.1 ([30, Theorem 2]) Let k1 < k2 < : : : < kp be fixed positive integers
and let "1; : : : ; "p be fixed signs (i.e., "j D ˙1). Suppose f 2 CkŒa; b� and kp � k.
Assume

"iD
ki f .x/ > 0 for a < x < b and i D 1; : : : ; p:

Suppose m C 1 points are given so that

a � x0 < x1 < � � � < xm � b:

Then for n sufficiently large there are polynomials Pn, of degree less than or equal
to n for which

"jD
kj Pn.x/ > 0 on Œa; b�; j D 1; 2; : : : ; p;

Pn.xi/ D f .xi/; i D 0; l; : : : ;m;

max
a�x�b

jf .x/ � Pn.x/j � .C=nk/!.1=n/;

where C is a constant depending only on x0; : : : ; xm, and ! is the modulus of
continuity of Dkf on Œa; b�.

In [12], the following result was obtained.

Theorem 7.2 ([12, Theorem 1.2]) Let f WR ! R be a nondecreasing continuous
function with open range. Let "WR ! R be a positive continuous function. Let
T � R be a closed discrete set on which f is strictly increasing.

(A) Suppose that for some nonnegative integer k, f is a Ck function. Then there is
a function gWR ! R which is the restriction of an entire function and is such
that the following properties hold.

(a) For all x 2 R n T (and also for x 2 T if k D 0), Dg.x/ > 0.
(b) For i D 0; : : : ; k and all x 2 R, jDif .x/ � Dig.x/j < ".x/.
(c) For i D 0; : : : ; k and all x 2 T, Dif .x/ D Dig.x/.
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(B) Suppose that f is a C1 function and U1 � U2 � : : : is a sequence of open sets
covering R. Then there is a function gWR ! R which is the restriction of an
entire function and is such that the following properties hold.

(a) For all x 2 R n T, Dg.x/ > 0
(b) For i D 0; 1; 2; : : : and all x 2 R n Ui, jDif .x/ � Dig.x/j < ".x/.
(c) For i D 0; 1; 2; : : : and all x 2 T n Ui, Dif .x/ D Dig.x/.

In [12, Corollary 1.5] we also incorporated some control over the values of g
on countable sets. The main technical challenge in the proof of Theorem 7.2 is
maintaining the positive derivative for g in a neighborhood of a point x 2 E where
f is flat in the sense that all derivatives which are known to exist are equal to zero.
This problem was handled by temporarily tilting the graph of f upwards so that the
derivative is strictly positive in a neighborhood of x, and then restoring the zero
derivative after approximation by an entire function. The approximation problem
still remains to be solved, but now the point x is no longer flat. The same method of
proof gives the following result for functions on compact intervals.

Theorem 7.3 ([12, Theorem 1.3]) Let a < b be real numbers and let k be a
nonnegative integer. Suppose f W Œa; b� ! R is a nondecreasing function of class
Ck and " > 0. Let T � R be a finite set on which f is strictly increasing. Then there
is a polynomial g such that the following properties hold.

(a) For all x 2 Œa; b� n T (and also for x 2 T if n D 0), Dg.x/ > 0.
(b) For i D 0; : : : ; k and all x 2 R, jDif .x/ � Dig.x/j < ".
(c) For i D 0; : : : ; k and all x 2 T, Dif .x/ D Dig.x/.

In work in preparation, the author has improved the technique to give a version
of Theorem 3.6 for piecewise monotone functions. (On compact intervals we do
not get the control of the derivatives on a countable set if we want polynomial
approximations of course, but via Proposition 2.6 we can get it for real-analytic
approximations.)
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Abstract In this review we present the main results jointly obtained by the authors
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1 Introduction

Let L be a homogeneous elliptic partial differential operator with constant complex
coefficients (such as powers of the Cauchy-Riemann operator @ in C or the
Laplacean � in Rn, n � 2). In [29] and [7], given a Banach space .V; k � k/ of
functions (distributions) on Rn, n � 2, the problem of approximating solutions of
the equation Lu D 0 on a closed subset F of Rn, in the norm k � k, by global (L-
analytic or L-meromorphic) solutions of the equation was studied. Approximation
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theorems of Runge-, Roth-, Nersesyan- and Arakelyan-type (see [2, 24, 32, 34])
were obtained whenever the operator L and the Banach space V satisfied certain
natural conditions.

In [3] the results of [29] and [7] were generalized to Banach spaces of functions
(distributions) defined on any domain of Rn .n � 2/ and several new results based
on recent new theorems of Vitushkin [37] type were formulated and discussed.

Using results on the solution of the Dirichlet problem for strongly elliptic
equations in bounded smooth domains [1], we found in [3] (see Proposition 2
below) that an application of our theorems gave important new results in the
theory of better-than-uniform approximation (see [3, Th. 4 (iii)]), which led to
some very interesting examples on the possible boundary behaviour of solutions
of homogeneous elliptic partial differential equations, analogous to those described
in [11, Chapter IV, §5B] for holomorphic functions and in [12, §8] for harmonic
functions.

In the present paper we also consider several settings of the Cm-subharmonic
extension problem on domains in Rn and on open Riemann surfaces. The problem
was completely solved (for all m 2 Œ0;C1/) for the so-called Runge-type
extensions. Several (in some sense sharp) sufficient conditions and counterexamples
were found also for the Walsh-type extensions. As applications, these results allowed
us to prove the existence of Cm-subharmonic extensions, automorphic with respect
to some appropriate groups of automorphisms of an open Riemann surface.

Most of our results are based on Vitushkin’s localization technique [37], gener-
alized (here we cite only [25] and [36]) for approximations by solutions of a wide
class of elliptic equations in different norms. When recalling previously published
theorems, we shall say very little regarding the proofs. While this is mostly a survey
of works closely related to the work of André Boivin, we shall also state some new
theorems and formulate several related open problems in this topic. Some of our
joint results and related problems are not included in the present survey (see [14]
and it’s extensions [15, 38]).

2 Definitions and Notations

For the reader’s convenience, we summarize the definitions and main notations of
[7, 29] and [3].

Let  be any fixed domain in Rn, n � 2. We let V D V./ stand for a Banach
space, whose norm is denoted by k k; which contains C1

0 ./, the set of test
functions in  and is contained in .C1

0 .//
�, the space of distributions on . We

make some additional assumptions on V .

Conditions 1 and 2 We assume that V is a topological C1
0 ./-submodule of

.C1
0 .//

�, which means that for f 2 V and ' 2 C1
0 ./, we have 'f 2 V with

k'f k � C.'/kf k (1)
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and

jhf ; 'ij � C.'/kf k; (2)

where hf ; 'i denotes the action in  of the distribution f on the test function ' and
C.'/ is a constant independent of f . We note that this implies that the imbeddings
C1
0 ./ ,! V and V ,! .C1

0 .//
� are continuous (see [7, section 2.1]).

Given a closed subset F in , let I.F/ be the closure in V of (the family of)
those f 2 V whose support in in the sense of distributions (which will be denoted
by supp.f /) is disjoint from F, and let V.F/ D V=I.F/. The Banach space V.F/,
endowed with the quotient norm, should be viewed as the natural (Whitney type)
version of V on F (see [35, Chapter 6]). We shall write kf kF for the norm of the
equivalence class (jet) f.F/ WD f C I.F/ in V.F/ of the distribution f 2 V:

kf kF D inffjjgjj W g 2 f.F/g :

For any open set D in , let

Vloc.D/ D ff 2 .C1
0 .D//

� W f' 2 V for each ' 2 C1
0 .D/g;

where ' and f' are extended to be identically zero innD. We endow Vloc.D/ with
the projective limit topology of the spaces V.K/ partially ordered by inclusion of the
compact sets K � D. For a closed set F in, define Vloc.F/ D Vloc./=J.F/, where
J.F/ is the closure in Vloc./ of the family of those distributions in Vloc./ whose
support is disjoint from F. The topology on Vloc.F/ will be the quotient topology.
Note that for compact sets K, the topological spaces V.K/ and Vloc.K/ are identical.

For f 2 Vloc./, we put f.F/;loc WD f C J.F/. If D is a neighbourhood of F
in , then each h 2 Vloc.D/ naturally defines an element (jet) h.F/;loc in Vloc.F/
by taking h.F/;loc to be the closure in Vloc./ of the set of f 2 Vloc./ such that
f D h (as distributions) in some neighbourhood (depending on f ) of F. In particular,
this works for each h 2 C1.D/ � Vloc.D/. For f.F/;loc 2 Vloc.F/, we shall write
f.F/;loc 2 V.F/ (or more briefly f 2 V.F/), if V \ f.F/;loc ¤ ;. We shall then write
kf.F/;lockF, or equivalently kf kF, to mean kgkF, where g 2 V \ f.F/;loc. Practically the
same proof as in [7, section 2.1] shows that V \ J.F/ D I.F/ holds for each closed
set F in , which means that kf.F/;lockF is well-defined.

For a multi-index ˛ D .˛1; : : : ; ˛n/, with ˛j 2 ZC.WD f0; 1; 2; : : : g/, we let
j˛j D ˛1 C � � � C ˛n, ˛Š D ˛1Š : : : ˛nŠ, x˛ D x˛11 : : : x

˛n
n for x D .x1; : : : ; xn/ 2 Rn

and @˛ D .@=@x1/˛1 : : : .@=@xn/
˛n .

We denote by B.a; ı/ (respectively B.a; ı/) the open (respectively closed) ball
with center a 2 Rn and radius ı > 0. If B D B.a; ı/ and � > 0 then �B D B.a; �ı/
and �B D B.a; �ı/.

Throughout this paper we let L.�/ D
P

j˛jDr a˛�˛ , � 2 Rn, be a fixed
homogeneous polynomial of degree r (r � 1) with complex constant coefficients
and which satisfies the ellipticity condition L.�/ ¤ 0 for all � ¤ 0. We associate to
L the homogeneous elliptic operator of order r
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L D L.@/ D
X

j˛jDr

a˛@
˛:

Let D be an open set in Rn and denote by L.D/ the set of distributions f in D
such that Lf D 0 in D in the sense of distributions. It is well known [17, Theorem
4.4.1] that L.D/ ,! C1.D/. Therefore if D � , then L.D/ � Vloc.D/, and if ffmg

is a sequence in L.D/ with fm ! f in Vloc.D/ as m ! 1, then f 2 L.D/, since
convergence in Vloc.D/ is stronger than convergence in the sense of distributions,
which preserves L.D/ [17, Theorem 4.4.2].

Functions from L.D/ will be called L-analytic in D. We shall also say that a
distribution g in D is L-meromorphic in D if supp.Lg/ is discrete in D and for each
a 2 supp.Lg/ .a 2 D/ there exist h, which is L-analytic in a neighbourhood of a,
k 2 ZC and �˛ 2 C, 0 � j˛j � k, �˛ ¤ 0 for some ˛ with j˛j D k, such that

g.x/ D h.x/C
X

j˛j�k

�˛@
˛ˆ.x � a/

in some neighbourhood of a, where ˆ is a special fundamental solution of L as
described in [17, Theorem 7.1.20]. The points a 2 supp.Lg/ will be called the poles
of g.

We recall (see [10, p. 239] or [36, p. 163]) that there exists a k > 1 such that if T
is a distribution with compact support contained in B.a; ı/ and f D ˆ � T , then, for
jx � aj > kı, we have the Laurent-type expansion:

f .x/ D hT.y/; ˆ.x � y/i D
X

j˛j�0

c˛@
˛ˆ.x � a/; (3)

where c˛ D .�1/j˛j.˛Š/�1hT.y/; .y � a/˛i. The series converges in C1.fjx � aj >

kıg/, which means that the series can be differentiated term by term and all such
series converge uniformly on fjx � aj � k0ıg, k0 > k.

Let ' 2 C1
0 ./. The Vitushkin localisation operator V' W .C1

0 .//
� !

.C1
0 .//

� associated to L and ' is defined as V' f D .ˆ � .'Lf //j, where in
the last equality � denotes the convolution operator in Rn.

Condition 3 We require that for each ' 2 C1
0 ./, the operator V' be invariant

on Vloc./, i.e. V' must send continuously Vloc./ into Vloc./. This means that if
K is a compact subset of  and supp.'/ � K, then for each f 2 Vloc./ one has
V' f 2 Vloc./ and

kV' f kK � Ckf kK ; (4)

where C is independent of f .
In connection with Condition 3 see the basic results [25].
We make one more assumption on V in relation with L.
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Condition 4 For each open ball B with 3B � , there exist d > 0 and C > 0 such
that for each h 2 C1.Rn/ satisfying Lh D 0 outside of B and h.x/ D O.jxj�d/ as
jxj ! 1, one can find v 2 L./ with

.h � v/ 2 V and kh � vk � Ckhk3B: (5)

In this assumption, instead of the constant 3, one can take any fixed real number
greater than 1.

Here we recall some remarks on Conditions 1–4.
All Conditions 1–4 are satisfied by classical (non-weighted) spaces on any

domain  in Rn, for example BCm./, BCmC�./, VMO./ and the Sobolev
spaces Wp

m./, 1 � p < 1. We shall give the definitions and precisely formulate
this assertion only for the spaces V D BCm./ and BCmC�./.

For m 2 ZC, let BCm./ be the space of all m - times continuously differentiable
functions f W  ! C with (finite) norm

jjf jjm; D max
j˛j�m

sup
x2

j@˛f .x/j:

If m 2 ZC and 0 < � < 1, then

BCmC�./ D ff 2 BCm./ W !m
� .f ;1/ < 1 and !m

� .f ; ı/ ! 0 as ı ! 0g;

where !m
� .f ; ı/ D sup j@˛ f .x/�@˛ f .y/j

jx�yj�
, the supremum being taken over all multi-

indices ˛ such that j˛j D m and all x; y 2  with 0 < jx � yj < ı. The norm
in this space is defined as

jjf jjmC�; D maxfjjf jjm;; !
m
� .f ;1/g:

We shall omit the index  in the latter norm whenever  D Rn. Finally, for any
m � 0, we set Cm./ D .BCm.//loc.

Proposition 1 ([3, p. 949]) Let  be a domain in Rn, n � 2, and let m � 0. Then
the pair .L;V.// with V./ D BCm./ satisfies Conditions 1, 2, 3 and satisfies
Condition 4 with v D 0.

In [7, Corollary 1] (see also the brief discussion thereafter) and [29, Theorem
4] one sees how (whenever Conditions 1–3 are satisfied) Condition 4 can affect L-
meromorphic and L-analytic approximation in the special case of weighted uniform
holomorphic approximation (n D 2, L D @).

The following proposition (see [3, p. 950]) provides us with another class of
examples for which Conditions 1–4 are satisfied. These in turn allowed us to obtain
(see Theorem 4 (iii–iv) below) new results on better-than-uniform approximation.
Given m and q in ZC, with q � m, and a bounded domain , set

BCm
q ./ D ff 2 BCm./ j for each ˛; j˛j � q; lim

x!@
@˛f .x/ D 0g;

which is a Banach space with the norm kf km;.
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Proposition 2 Let L be a strongly elliptic operator of order r D 2`, ` 2 ZC,
` � 1 (see [1, p.46]). Let m; q 2 ZC, m � ` � 1, q � ` � 1. If  is bounded
and @ is of class Cs, s D maxf2`; Œn=2�C 1C mg (see [1, p.128]), then the pair
.L;V D BCm

q .// satisfies Conditions 1–4.
In certain cases, we can weaken the restrictions on the smoothness of the domain

: Indeed, in the case L D � (` D 1) and m D q D 0 (uniform norm) the
conclusion of the previous Proposition in fact holds for every bounded regular
domain ; for L D � and m D 1; q D 0; it is sufficient that  be a Dini-Lyapunov
domain (see [39, Theorems 2.2–2.5]).

3 Approximation Theorems

For an open set W in Rn denote by W� D W [f�g the one point compactification of
W. As in [3, Section 4], a closed set F in a domain will be called a Roth-Keldysh-
Lavrent’ev set in , or simply an -RKL set, if � n F is connected and locally
connected. In this section we formulate our main approximation results [3], starting
with sufficient conditions for approximation of Runge-type on closed sets.

Theorem 1 Let  be a domain in Rn, n � 2. Let .L;V.// be a pair satisfying
Conditions 1–4, F be a (relatively) closed subset of , and f be L-analytic in some
neighbourhood of F in . Then, for each " > 0, there exists an L-meromorphic
function g on  with poles off F such that .f.F/;loc � g.F/;loc/ 2 V.F/ and

kf � gkF < ":

Moreover, if F is an -RKL set, then g can be chosen in L./.
The next theorem deals with approximation of an individual function and shows

that the problem is essentially local.

Theorem 2 Let  be a domain in Rn .n � 2/, .L;V.// be a pair satisfying
Conditions 1–4, F be a (relatively) closed subset of , and f 2 Vloc./. Then
the following are equivalent:

(i) for each positive number ", there exists an L-meromorphic function g in 
with poles off F such that .f.F/;loc � g.F/;loc/ 2 V.F/ and kf � gkF < ";

(ii) for each ball B, B �  and positive number ", there exists g such that Lg D 0

on some neighbourhood of F \ B and kf � gkF\B < ";
(iii) the previous property is satisfied by each ball from some locally finite family of

balls fB0
jg covering F, where B0

j �  for each j.

For any subset X of Rn, we let L.X/ stand for the collection of all functions f
defined and L-analytic in some neighbourhood (depending on f ) of X. For a closed
set F in  we denote by MLV.F/ (respectively ELV.F/) the space of all f.F/;loc 2

Vloc.F/ which satisfy the following property: for each " > 0 there exists an L-
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meromorphic function g in  with poles outside of F (respectively a function g 2

L./) such that f � g 2 V.F/ and jjf � gjjF < ".

Problem 1 Given L and V (under Conditions 1–4), for which closed sets F does
one have MLV.F/ D ELV.F/‹

We also introduce the space VL.F/ D Vloc.F/ \ L.Fı/, where Fı means the
interior of F. Whenever Conditions 1–4 hold, we have that by Theorem 1, MLV.F/
is the closure in Vloc.F/ of the space fh.F/;loc 2 Vloc.F/ j h 2 L.F/g. Moreover,
if F is an -RKL set, then MLV.F/ D ELV.F/. On the other hand, in our paper [4]

with Boivin, for n D 2 and L D @
2
, we give an example of a closed set F, which is

not -RKL, but MLV.F/ D ELV.F/.
So, it is reasonable to discuss the necessity of F being a -RKL set for the

equality MLV.F/ D ELV.F/ to be satisfied.
Let K be a compact set in. Denote by bK the union of K and all the (connected)

components of  n K which are pre-compact in . Obviously, the property bK D K
means precisely that � n K is connected, so that K is a -RKL set.

Define

N.K/ D NLV.K/ D fa 2 bK n K W .ˆa/.K/ 62 ELV.K/g;

where ˆa.x/ D ˆ.x � a/.

Condition N We shall say that a pair .L;V.// satisfies Condition N (“nonre-
movability of holes”) if N.K/ ¤ ; for each compact set K with “holes”, i.e. such
that K ¤ bK.

The same proof as in [7, Proposition 2] gives the following auxiliary result.

Proposition 3 A pair .L;V.// satisfies Condition N whenever all of the following
conditions hold:

(1) .L;V.// satisfies Conditions 1 and 2;
(2) n D 2 or n � 3 and L has the following symbol:

L.�/ D P2.�/Qr�2.�/; � 2 Rn;

where P2 is some homogeneous (elliptic) polynomial of order two with real
coefficients (so that P2 has constant sign in Rn n f0g), and Qr�2 is some
homogeneous polynomial of order r � 2 � 0;

(3) Ord.V/ � r � 1.

For the definition of Ord.V/ when  is Rn, see [7, Section 4.3]. Replacing
Rn by  everywhere in that definition, we get the corresponding definition of
Ord.V.// for an arbitrary domain .

One can also find in [7, Section 4.2] some informative examples concerning
Condition N.
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Problem 2 Study whether condition N holds or not for concrete pairs .L;V.//,
that do not satisfy the requirements of Proposition 3(2). Is the property (3) always
necessary?

In the proof of Proposition 3, Radó’s theorem [31] (see also [33, Theorem 12.14]
and [18]) is used. This theorem says that, if a continuous function f in a domain
D is holomorphic in D outside it’s zeros, then f is holomorphic on all of D. It is
not difficult to find appropriate analogs of this result for operators L mentioned in
Proposition 3(2).

Problem 3 To find analogues of Radó’s theorem for other operators L.

Theorem 3 If .L;V.// satisfies Conditions 1–4, then the following statements are
equivalent:

(i) for each (relatively) closed set F �  one has

MLV.F/ D ELV.F/ ” fF is a -RKL setgI

(ii) for each compact set K � ,

MLV.K/ D ELV.K/ ” f� n K is connectedgI

(iii) the pair .L;V.// satisfies Condition N.

Remark 1 Our proof of .ii/ ) .iii/ in fact shows that if for some compact set K
in  there is a function f 2 L.K/ which is not in ELV.K/, then the same is true for
some ˆa, a 2 bK n K.

3.1 Applications via Vitushkin-Type Approximation Theorems

From Theorems 2 and 3, it is not difficult to obtain the corresponding approxi-
mation (reduction) theorems for classes of functions (jets), analogous to that of
[7, Proposition 1]. In this direction, we present only the following result which
extends [7, Theorem 4]. Note that (iii) and (iv) are results on better-than-uniform
approximation.

Theorem 4 Let L (of order r) be as above,  be an arbitrary domain in Rn and F
be a closed subset of . Then

(i) for V D BCm.//, where m 2 .r �2; r �1/[ .r �1; r/ (m 2 .r �1; r/ if r D 1;
see Sect. 3), the equality VL.F/ D MLV.F/ holds if and only if there exists a
constant A 2 .0;C1/ such that for each ball B in 

Mn�rCm
� .B n Fı/ � AMn�rCm.B n F/ I
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(ii) for V D BCm./, m � r, the equality VL.F/ D MLV.F/ holds if and only if Fı

is dense in F;
(iii) let L,  and V D BCm

q ./ be as in Proposition 2, and additionally suppose
that m � r, then the equality VL.F/ D MLV.F/ holds if and only if Fı is dense
in F;

(iv) for each space V./, which is mentioned in .i/ and .ii/ with m � r � 1, and
in .iii/, and L satisfying property (2) of Proposition 3, the equality VL.F/ D

ELV.F/ holds if and only if VL.F/ D MLV.F/ and (at the same time) F is a
-RKL set.

Here and below Mn�rCm.�/ and Mn�rCm
� .�/ are the Hausdorff and lower Hausdorff

contents of order n � r C m respectively (cf. [36]).
The following result was proved in [19] for compact sets F in Rn: It is deep

and strong even for the operator @
2

in R2 (the proof basically uses the Vitushkin
technique). Our modest contribution is an additional application of Theorem 2.

Theorem 5 For any elliptic operator L in Rn (as above), an arbitrary domain in
Rn and V D BC0./ (uniform norm), the following conditions are equivalent:

(i) for every closed set F in  one has MLV.F/ D VL.F/ ;
(ii) n D 2 and L has a locally bounded fundamental solution in R2.

For each L and V under consideration we can pose the problem of approximation
in the V-norm k � k (on compacta) by polynomial solutions or (on closed sets) by
entire solutions of the equation Lu D 0. We restrict ourselves to the corresponding
problem for classes.

Problem 4 Given L and V (under Conditions 1–4), for which closed sets F does
one have VL.F/ D ELV.F/‹

By Theorem 5, for the case when n D 2 and L has a locally bounded fundamental
solution and V D BC0./, Problems 1 and 4 are equivalent for an arbitrary domain
 in R2. Under these restrictions, only partial answers are given to Problem 4: see
[4, 9, 20] and [40].

We also can apply Theorem 2 to extend individual Vitushkin-type theorems from
compact to closed sets in appropriate domains (see review [20] and the recent
paper [21]). We formulate a corresponding theorem only for the main result of

[21], regarding criteria for Cm-approximations by bianalytic (that is, L D @
2

in
C) functions on compact sets in C.

Theorem 6 Let be a domain in C, L D @
2
, m 2 .0; 1/[.1; 2/ and V D BCm./.

For a closed set F in  and f 2 Vloc./ D Cm./ the following conditions are
equivalent:

(i) f.F/ 2 MLV.F/;
(ii) there is an A > 0 and k � 1 such that for each open disk B D B.a; r/ with

B.a; kr/ �  one has
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ˇ̌
ˇ̌
Z

@B
f .z/.z � a/dz

ˇ̌
ˇ̌ � A!�Œm�B.f / r2Mm .B.a; kr/ n F/

where Œm� is the integer part of m, � D m � Œm� is the fractional part of m and

!
�

Œm�B.f / D sup
j@˛f .x/ � @˛f .y/j

jx � yj�
;

where the latter sup is taken over all x ¤ y 2 B and all 2-indices ˛ with j˛j D Œm�;

(iii) the previous condition holds with k D 1.

3.2 Applications: Asymptotic and Boundary Behaviour
of L-Analytic Functions

Let £n
r stand for the class of all homogeneous elliptic operators of order r in Rn

(n � 2, r � 1) with constant complex coefficients (see Sect. 2 above).
As the first application of our approximation results, given an arbitrary L 2 £22,

we consider entire solutions of the equation Lu D 0 for which

lim
r!1

u.rei'/ DW U.ei'/

exists for all ' 2 Œ0; 2�/ as a finite limit in C. We gave (see [8]) a complete
characterization of the possible “radial limit functions” U. This is an analog of the
work of A. Roth for entire holomorphic functions. The results seem new even for
harmonic functions.

Problem 5 Formulate and study an analog of the previous result for other L (other
£n

r ; at least for n D 2).
As the second application (see [3, Section 6.1]), given L 2 £n

r and a domain 
satisfying some mild conditions, we construct solutions in of the equation Lu D 0

having some prescribed boundary behaviour.
Let  be a domain in Rn, n � 2,  ¤ Rn, and let b 2 @. We shall say

that a (continuous) path � W Œ0; 1� ! Rn is admissible for  with end point b if
� W Œ0; 1/ !  and �.1/ D b. Given a continuous function f in , denote by C� .f /
the cluster set of f along � at b, that is:

C� .f / D fw 2 C [ f1g W there exists a sequence ftng � Œ0; 1/ such that

tn ! 1 and f .�.tn// ! w as n ! 1g:

Theorem 7 Let L 2 £n
r , and let  � Rn,  ¤ Rn, be a domain such that its

boundary @ has no (connected) components that consist of a single point. Then
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there exists g 2 L./ with the property that for each b 2 @, for each admissible
path � for  ending at b and for each ˛ 2 Zn

C, one has

C� .@˛g/ D C [ f1g:

The following propositions [3] show that, at least for L D � in Rn and L D @=@z
in R2, our theorem is close to being sharp.

Proposition 4 If  is a domain in Rn such that @ has an isolated point b 2

Rn [ f1g, then for each function f harmonic in  or (if n D 2) for each function
f holomorphic in , there exists an admissible path � for  ending at b such that
C� .f / is a single point in C [ f1g.

Proposition 5 Under the conditions of the previous proposition, for each ˛ 2 Zn
C

there exists an admissible path �˛ for  ending at b such that C�˛ .@˛f / is just a
single point in C [ f1g since the function @˛f is also harmonic (or holomorphic).

Our third application (see [3, Theorem 6]) is in some sense in the opposite
direction of the second one. Given a (smooth) domain, we would like to prescribe
(almost everywhere on @) the boundary values of an L-analytic function in ,
together with the boundary values of a fixed number of its derivatives, as we
approach the boundary of  in the normal direction (a “weakened” Dirichlet
problem).

Theorem 8 Let L 2 £n
r and let  be a domain of class CrC1 in Rn. Let hk, k D

0; 1; : : : ; r � 1, be 
 -measurable functions which are finite 
 -almost everywhere,
where 
 is the n � 1 dimensional Lebesgue measure on @. Then there exists h 2

L./ such that, for k D 0; : : : ; r � 1, and for 
 -almost all x 2 @, the limit of
.@kh=@Enk

x/.y/ is equal to hk.x/, where the derivatives are taken in the direction of the
outer normal at x, and y 2  tends to x 2 @ along that normal direction.

4 Extension of Subharmonic Functions

In this section we discuss two settings of the Cm-subharmonic extension problem on
domains in Rn, n � 2, and on arbitrary open Riemann surfaces (RS). The existence
of these extensions is connected with the possibility of representing subharmonic
functions by global Newtonian potentials of positive measures (“gravitational”
potentials for n D 3), see [5, Sect. 3].

The problem is completely solved (for all m 2 Œ0;C1/) for the so-called Runge-
type extensions, which we now present. Let  be a domain in Rn, n � 2, or an
open RS, and let W be an open subset of . Denote by SH.W/ the class of all
subharmonic functions in W.

For a fixed m � 0, one says that .W; / is a Cm-subharmonic extension Runge
pair (a Cm-SHER-pair, for short), if for each closed (in ) set X, X � W, and for
every function f 2 SH.W/ \ Cm.W/ there is an F 2 SH./ \ Cm./ such that
FjX D f jX .
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Problem 6 To describe all Cm-SHER-pairs.
This problem was completely solved in [13] and [12] for C0-extensions, in [5] for
all m and domains in Rn, and in [6] for all m and RS .

Theorem 9 Employing the previous notations, .W; / is a Cm-SHER-pair if and
only if � n W is connected.
As before, for an open set W in , by W� D W [ f�g we mean the one point
compactification of W.

By the well known Gunning and Narasimhan theorem [16], for every open RS
, there exists a holomorphic mapping � of  into the complex plane C, which is a
local homeomorphism. In what follows we fix an open RS  and the atlas, induced
by such a �, where the change of coordinates is the identity.

This result allows one to naturally define and deal with Cm-spaces and with
distributions on domains in a RS , as well as to properly define the Vitushkin
localization operator (for the Laplacean in ), which preserves the classes of
subharmonic and Cm-functions. The methods of [13] and [5] then were adapted
in [6] to an arbitrary open RS. Below we give some natural applications of these
results.

Let  be a RS and let Aut./ be the group of biholomorphic mappings of 
onto itself (the automorphism group of ). Let G be a subgroup of Aut./. Denote
by =G the space of all G-orbits in , with the quotient topology, induced by the
projection � W  ! =G (� W p ! Œp�). In what follows we require that G
act on  properly discontinuously (that is, for each compact set K in  one has
g.K/ \ K ¤ ; for at most finitely many g 2 G) and freely (when the only g 2 G
having a fixed point is the identity map on ).

It is well known that in this case =G becomes a RS, and � W  ! =G is
locally biholomorphic.

The following application of Theorem 9 gives also a reasonable motivation for
considering Cm-subharmonic extensions on RS.

Corollary 1 Suppose  and G are as just above and the RS =G is open. Let W
be an open G-invariant subset of . Then, for each m � 0 the following properties
are equivalent:

(a) for each function f 2 Cm.W/\SH.W/, which is G-invariant (that is, f .g.p// D

f .p/ for each p 2 W and g 2 G), and for each closed (in ) G-invariant set
X � W one can find a G-invariant function F 2 Cm./ \ SH./ such that
FjX D f ;

(b) .=G/� n .W=G/ is connected.

Example 1 For  D C let G be the group of translations fgs.z/ D z C s W s 2

Zg. Then G is admissible and G is open (cylindrical surface; here we can take
�.Œz�/ D exp .2� iz/). Let W be a G-invariant open subset of . So, for each m � 0

the previous corollary can be applied.
In [6] we also studied another kind of Cm-subharmonic extension problem of

Runge type closely related to that considered above. Let X be a closed subset in 
and m � 0. We say that .X; / is a mixed Cm-subharmonic extension pair of Runge
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type (a mixed Cm-SHER-pair, for short), if for each neighborhood W of X in  and
for every function f 2 SH.W/ \ Cm.W/ there is an F 2 SH./ \ Cm./ such that
F D f on some neighborhood of X.

In the next theorem we give a purely topological characterization of mixed Cm-
SHER-pairs analogous to that of [12, Chapter 6] for the case m D 0 (continuous
subharmonic strong extension of Runge type).

Theorem 10 Let X be a closed subset of an open Riemann surface. The following
are equivalent:

(a) .X; / is a mixed Cm-SHER-pair;
(b) � n X is connected and locally connected.

Now we consider the Walsh type Cm-subharmonic extension problem on an open
RS  (with fixed Gunning-Narasimhan atlas).

For an open set W in  and fixed m 2 ZC D f0; 1; 2; : : : g we can naturally
define the space Cm.W/ of all (real-valued) functions f .p/ on W that have continuous
derivatives @ˇf .p/ on W for all ˇ D .ˇ1; ˇ2/ 2 Z2C with jˇj D ˇ1 C ˇ2 � m . We
also need to consider the corresponding Banach Cm-space

BCm.W/ D ff 2 Cm.W/ W kf kmW D max
jˇj�m

k@ˇf kW < C1g ;

where kf kE D supp2E jf .p/j is the uniform norm on a set E in . Then Cm.W/
naturally becomes a Fréchet space. The Banach spaces BCm.W/ (with finite norms
kf kmW ), as well as the Fréchet spaces Cm.W/ can be defined for all m � 0 (see [6]
for details).

For a closed set X in  and fixed m � 0 we shall deal with the Whitney type
space BCm

jet.X/ which consists of all (different) elements (jets) FX D f@ˇFjXgjˇj�m ,
F 2 BCm./ , with (finite) norm

kFXkmX D inffjjF�jjm W F� 2 BCm./ ; F�
X D FXg :

One then can naturally define the Fréchet spaces Cm
jet.X/. Notice that for each jet

FX in Cm
jet.X/ the condition FX 2 SH.Xı/ is well defined. Moreover, for m 2 Œ0; 1/

or X D Xı the spaces BCm
jet.X/ and Cm

jet.X/ can be considered as usual spaces of
functions.

Given m � 0 and a closed set X in , we say that the pair .X; / is a Cm-
subharmonic extension Walsh pair (briefly, Cm-SHEW-pair), if every jet FX 2

Cm
jet.X/\ SH.Xı/ can be extended to a function F� 2 Cm./\ SH./ in the sense

that F�
X D FX .

Problem 7 To describe all Cm-SHEW-pairs (X ¤  and X ¤ ;).
This problem first appeared in [22] for C1-subharmonic extensions from closed

balls in Rn. Several (in some sense sharp) sufficient conditions and counterexamples
were found for the Walsh-type extensions from closed smooth domains onto Rn (see
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the survey [28]). Most of them are generalized and improved for RS in [6]. We shall
formulate them, beginning with examples, when .X; / is not a Cm-SHEW-pair [6].

First, if � n X is not connected then .X; / is not a Cm-SHEW-pair for any
m � 0.

Moreover, for m 2 Œ0; 1/ we know of no nontrivial Cm-SHEW-pair. For instance,
if � n X is connected and Xı has some -bounded component, then for m 2

Œ0; 1=2/ the pair .X; / is not a Cm-SHEW. If the mentioned component has smooth
boundary, then the latter assertion holds for m 2 Œ0; 1/. For any analytic Jordan arc
X in  the pair .X; / is not a Cm-SHEW.

If m � 3 then for each closed set X in  the pair .X; / is not a Cm-SHEW.
If m 2 Œ2; 3/ and X ¤ Xı then .X; / is not a Cm-SHEW-pair.
There is C1-smooth closed Jordan domain X in C such that .X;C/ is not a C1-

SHEW-pair [23].

Proposition 6 For ˛ 2 .0; �/ let

X˛ D fz 2 C W jzj � 1 ; arg.z/ 2 Œ�� C ˛=2; � � ˛=2�g :

Then, for each m 2 .1; �=˛/ the pair .X˛;C/ is not a Cm-SHEW.
So, now we concentrate on the cases when m 2 Œ1; 3/ and X D Xı. We shall

say that a closed set X in a Riemann surface  is locally Jordan, if X D Xı

and for any point q 2 @X one can find an open neighborhood U of q in  such
that U \ @X is an open Jordan arc (that is, Jordan arc without end points). The
following localization result is specifically 2-dimensional: the proof of it‘s analog
in Rn requires smoothness of @X.

Proposition 7 Let X be locally Jordan closed set in  and m 2 Œ1; 3/. Suppose
that f 2 Cm.X/ \ SH.Xı/ and for each q 2 @X one can find an (open) -bounded
neighborhood U of q and g 2 Cm.U/ \ SH.U/ with g D f on X \ U. Then there is
a neighborhood W of X in  and h 2 Cm.W/ \ SH.W/ with h D f on X.

The next theorem has an analogue for domains in Rn, n � 3, and compact sets
X in  (see [26, 27]).

Theorem 11 Let m 2 Œ1; 3/ and X D Xı be a closed subset of  with smooth
(Dini-Lyapunov-type) boundary. The following are equivalent:

(a) .X; / is a Cm-SHEW-pair;
(b) � n X is connected.

Example 2 Take  D C n f0g, J 2 Z (J � 2), and let G be the group of rotations
fgj.z/ D z exp.2� ij=J/ W j 2 f1; : : : ; Jgg on . Then G is admissible and G is
open (here one can take �.Œz�/ D zJ). (Notice that G is not admissible for  D C.)
Let X be a locally Jordan G-invariant subset of  with smooth (Dini-Lyapunov)
boundary. If �

G n XG is connected, then (by the previous Theorem) for each m 2

Œ1; 3/, any G-invariant jet FX 2 Cm
jet.X/ \ SH.Xı/ can be extended to a G-invariant

Cm-subharmonic function on .



Approximation by Solutions of Elliptic Equations. . . 85

Problem 8 Which results on Cm-subharmonic extensions (among the above) can
be generalized to higher dimensions and to solutions of other elliptic inequalities,
and in what sense?

Let  be an n-dimensional C1-manifold and assume that � W  ! Rn is a C1-
mapping which is a local C1-diffeomorphism. We call the pair f; �g a spread
N-manifold and the mapping � a spread of  over Rn: The Smale-Hirsch Theorem
[30, Cor. 8.2] asserts that an open n-dimensional C1-manifold can be spread over
Rn if and only if it is parallelizable.

Since the mapping � induces an atlas, where the change of coordinates is the
identity, any differential operator (for instance, the Laplacian�) can be well defined
in this atlas. Let L be any homogeneous elliptic operator in f; �g with constant
(complex) coefficients, and D be a domain in . A function (distribution) f in D is
called L-subelliptic if Lf � 0 in D in the distributional sense (usually one considers
only real functions f if L is real). The problems of Cm-L-subelliptic extensions
of Runge and Walsh types can then be naturally posed. (Moreover, given some
reasonable Banach space V of functions on, one can also consider V-L- subelliptic
extensions).

We believe that Theorems 9 and 11 still hold for subharmonic functions (that is,
when L D �) in all dimensions n � 3 on all open spread n-manifolds, and that
appropriate analogs of Propositions 6 and 7 can also be obtained.

On the other hand, to our knowledge, all the results obtained thus far on the
relevant problems only apply to the case of the Laplacian L D � or the Cauchy-
Riemann operator L D @=@z in C (the latter case is partially considered in [41]).
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Approximation in the Closed Unit Ball

Javad Mashreghi and Thomas Ransford

Abstract In this expository article, we present a number of classic theorems that
serve to identify the closure in the sup-norm of various sets of Blaschke products,
inner functions and their quotients, as well as the closure of the convex hulls of
these sets. The results presented include theorems of Carathéodory, Fisher, Helson–
Sarason, Frostman, Adamjan–Arov–Krein, Douglas–Rudin and Marshall. As an
application of some of these ideas, we obtain a simple proof of the Berger–Stampfli
spectral mapping theorem for the numerical range of an operator.

Keywords Approximation • Unit ball • Blaschke product • Inner function •
Convex hull
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1 Introduction

Let X be a Banach space and let E be a subset of X. The convex hull of E, denoted by
conv.E/, is the set of all elements of the form �1x1C�2x2C� � �C�nxn, where xj 2 E
and where 0 � �j � 1 with �1 C �2 C � � � C �n D 1. The closed unit ball of X is

BX D fx 2 X W kxk � 1g:

In this survey, we consider some Banach spaces of functions on the open unit disc D
or on the unit circle T, e.g., L1.T/, C.T/, H1 and the disc algebra A, and explore
the norm closure of some subsets of BX and of their convex hulls.

The unimodular elements of the above function spaces enter naturally into our
discussion. The unimodular elements of H1, denoted by I, are a celebrated family
that are called inner functions. For other function spaces we use the notation UX to
denote the family of unimodular elements of X, e.g.,

J. Mashreghi • T. Ransford (�)
Département de Mathématiques et de Statistique, Université Laval, 1045 avenue de la Médecine,
Québec, QC, Canada G1V 0A6
e-mail: javad.mashreghi@mat.ulaval.ca; thomas.ransford@mat.ulaval.ca

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Mashreghi et al. (eds.), New Trends in Approximation Theory, Fields Institute
Communications 81, https://doi.org/10.1007/978-1-4939-7543-3_5

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-7543-3_5&domain=pdf
mailto:javad.mashreghi@mat.ulaval.ca
mailto:thomas.ransford@mat.ulaval.ca
https://doi.org/10.1007/978-1-4939-7543-3_5


90 J. Mashreghi and T. Ransford

UC.T/ WD ff 2 C.T/ W jf .�/j D 1 for all � 2 Tg:

The prototype candidates for E are the set of finite Blaschke products (FBP), the
set of all Blaschke products (BP), the inner functions (I), the measurable unimodular
functions, as well as the quotients of pairs of functions in these families. We now
summarize the main results. The formal statements and attributions will be detailed
in the sections that follow.

Finite Blaschke products are elements of the disc algebra A. In particular, when
considered as functions on T, they are elements of C.T/. In this regard, for these
elements and their quotients, we shall see that:

FBP D FBP

conv.FBP/ D BA

FBP=FBP D UC.T/

conv.FBP=FBP/ D BC.T/:

Infinite Blaschke products are elements of the Hardy space H1. In particular,
when considered as functions on T, they are elements of L1.T/. For these functions
and their quotients, we shall see that:

BP D I D I

conv.BP/ D conv.I/ D BH1

BP=BP D I=I D UL1.T/

conv.BP=BP/ D conv.I=I/ D BL1.T/:

In all the results above, we consider the norm topology. For the Hardy space H1,
and thus a priori for the disc algebra A, there is a weaker topology which is obtained
via semi-norms

pr.f / WD max
jzj�r

jf .z/j:

This is referred as the topology of uniform convergence on compact subsets (UCC)
of D. Naively speaking, it is easier to converge under the latter topology. Therefore,
in some cases we will also study the UCC-closure of a set or its convex hull. We
shall see that:

FBP
UCC

D BH1 :
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Since on the one hand, FBP is the smallest approximating set in our discussion, and
on the other hand BH1 is the largest possible set that we can approximate, this last
result closes the door on any further investigation regarding the UCC-closure.

2 Approximation on D by Finite Blaschke Products

Goal W FBP D FBP

Let f 2 H1, and suppose that there is a sequence of finite Blaschke products
that converges uniformly on D to f . Then, by continuity, we also have uniform
convergence on D. Therefore f is necessarily a continuous function on D, and
moreover it is a unimodular function on T. It is an easy exercise to show that this
function is necessarily a finite Blaschke product. A slightly more general version of
this result is stated below.

Lemma 2.1 (Fatou [7]) Let f be holomorphic in the open unit disc D and suppose
that

lim
jzj!1

jf .z/j D 1:

Then f is a finite Blaschke product.

Proof Since f is holomorphic on D and jf j tends uniformly to 1 as we approach T,
it has a finite number of zeros in D. Let B be the finite Blaschke product formed
with the zeros of f . Then f=B and B=f are both holomorphic in D, and their moduli
uniformly tend to 1 as we approach T. Hence, by the maximum principle, jf=Bj �

1 and jB=f j � 1 on D. Thus f=B is constant on D, and the constant has to be
unimodular. ut

Lemma 2.1 immediately implies the following result.

Theorem 2.2 The set FBP of finite Blaschke products is a closed subset of BA (and
hence also a closed subset of BH1 ).

The following result is another simple consequence of Lemma 2.1. It will be
needed in later approximation results in this article (see Theorem 5.2).

Corollary 2.3 Let f be meromorphic in the open unit disc D and continuous on
the closed unit disc D (as a function into the Riemann sphere). Suppose that f
is unimodular on the unit circle T. Then f is the quotient of two finite Blaschke
products.

Proof Since f is unimodular on T, meromorphic in D and continuous on D, it has a
finite number of poles in D. Let B2 be the finite Blaschke product with zeros at the
poles of f . Put B1 WD B2f . Then B1 satisfies the hypotheses of Lemma 2.1, and so it
is a finite Blaschke product. Thus f D B1=B2. ut
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3 Approximation on Compact Sets by Finite Blaschke
Products

Goal W FBP
UCC

D BH1

If f is holomorphic on D and can be uniformly approximated on D by a sequence
of finite Blaschke products, we saw that, by Lemma 2.1, f is itself a finite Blaschke
product. A general element of BH1 is far from being a finite Blaschke product and
cannot be approached uniformly on D by finite Blaschke products. Nevertheless, a
weaker type of convergence does hold. The following result says that, if we equip
H1 with the topology of uniform convergence on compact subsets of D, then the
family of finite Blaschke products form a dense subset of BH1 . In a certain sense,
this theorem circumscribes all the other results in this article.

Theorem 3.1 (Carathéodory) Let f 2 BH1 . Then there is a sequence of finite
Blaschke products that converges uniformly to f on each compact subset of D.

Proof (This Proof is taken from [10, p. 5]) We construct a finite Blaschke product Bn

such that the first nC1 Taylor coefficients of f and Bn are equal. Then, by Schwarz’s
lemma, we have

jf .z/ � Bn.z/j � 2jzjn; .z 2 D/;

and thus the sequence .Bn/ converges uniformly to f on compact subsets of D.
Let c0 WD f .0/. As f lies in the unit ball, c0 2 D. If jc0j D 1, then, by the

maximum principle, f is a unimodular constant, and the result is obvious. So let us
assume that jc0j < 1. Writing

�a.z/ WD
a � z

1 � az
.a; z 2 D/;

let us set

B0.z/ WD ���c0 .z/ D
z C c0
1C c0z

; .z 2 D/: (1)

Clearly, B0 is a finite Blaschke product and its constant term is c0.
The rest is by induction. Suppose that we can construct Bn�1 for each element of

BH1 . Set

g.z/ WD
�c0 .f .z//

z
; .z 2 D/: (2)

By Schwarz’s lemma, g 2 BH1 . Hence, there is a finite Blaschke product Bn�1 such
that g � Bn�1 has a zero of order at least n at the origin. If B is a finite Blaschke
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product of degree n, and w 2 D, then it is easy to verify directly that �w ı B and
B ı �w are also finite Blaschke products of order n. Hence

Bn.z/ WD �c0 .zBn�1.z//; .z 2 D/; (3)

is a finite Blaschke product. Since

f .z/ D �c0 .zg.z//; .z 2 D/;

we naturally expect that Bn does that job. To establish this conjecture, it is enough
to observe that

�c0 .z2/ � �c0 .z1/ D
.1 � jc0j2/.z1 � z2/

.1 � c0z1/.1 � c0z2/
:

Hence, thanks to the presence of the factor z.g.z/ � Bn�1.z//, the difference

f .z/ � Bn.z/ D �c0 .zg.z// � �c0 .zBn�1.z//

is divisible by znC1. ut

Remark Equation (3) is perhaps a bit misleading, as if we have a recursive formula
for the sequence .Bn/n�0. A safer way is to write the formula as

Bn;f .z/ WD �c0 .zBn�1;g.z//; .n � 1/;

where g is related to f via (2). Let us compute an example by finding B1 WD B1;f We
know that

B1;f .z/ D �c0 .zB0;g.z//:

Write f .z/ D c0 C c1z C � � � and observe that

g.z/ D
�c0 .f .z//

z
D

�c1
1 � jc0j2

C O.z/:

Then, by (1), we have

B0;g.z/ D �� c1
1�jc0j

2
.z/;

and so we get

B1.z/ D �c0 .�z� c1
1�jc0j

2
.z//:
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One may directly verify that

B1.z/ D c0 C c1z C O.z2/;

as required.

4 Approximation on D by Convex Combinations of Finite
Blaschke Products

Goal W conv.FBP/ D BA

As we saw in Sect. 2, if a function f 2 H1 can be uniformly approximated by
a sequence of finite Blaschke products on D, then f is continuous on D. The same
result holds if we can approximate f by elements that are convex combinations of
finite Blaschke products. The only difference is that, in this case, f is not necessarily
unimodular on T. We can just say that kf k1 � 1. More explicitly, the uniform limit
of convex combinations of finite Blaschke products is a continuous function in the
closed unit ball of H1. It is rather surprising that the converse is also true.

Theorem 4.1 (Fisher [8]) Let f 2 BA, and let " > 0. Then there are finite Blaschke
products Bj and convex weights .�j/1�j�n such that

k�1B1 C �2B2 C � � � C �nBn � f k1 < ":

Proof For 0 � t � 1, let ft.z/ WD f .tz/, z 2 D. Since f is continuous on D, we have

lim
t!1

kft � f k1 D 0: (4)

By Theorem 3.1, there is a sequence of finite Blaschke products that converges
uniformly to f on compact subsets of D. Based on our notation, this means that,
given " > 0 and t < 1, there is a finite Blaschke product B such that

kft � Btk1 < "=2:

Therefore, by (4), there is a finite Blaschke product B such that

kf � Btk1 < ":

If we can show that Bt itself is actually a convex combination of finite Blaschke
products, the proof is done.
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Firstly, note that .gh/t D gtht for all g and h, and that the family of convex
combinations of finite Blaschke products is closed under multiplication. Hence it is
enough only to consider a Blaschke factor

B.z/ D
˛ � z

1 � ˛z
:

Secondly, it is easy to verify that

Bt.z/ D
˛ � tz

1 � ˛tz
D

t.1 � j˛j2/

1 � j˛j2t2
�
˛t � z

1 � ˛tz
C

j˛j.1 � t2/

1 � j˛j2t2
� ei arg˛: (5)

The combination on the right side is almost good. More precisely, it is a combination
of a Blaschke factor and a unimodular constant (a special case of a finite Blaschke
product), with positive coefficients, but the coefficients do not add up to one. Indeed,
we have

1 �
t.1 � j˛j2/

1 � j˛j2t2
�

j˛j.1 � t2/

1 � j˛j2t2
D
.1 � t/.1 � j˛j/

1C j˛jt
:

But this obstacle is easy to overcome. We can simply add

0 D
.1 � t/.1 � j˛j/

2.1C j˛jt/
� 1C

.1 � t/.1 � j˛j/

2.1C j˛jt/
� .�1/

to both sides of (5) to obtain a convex combination of finite Blaschke products. Of
course, the factor 1 in the last identity can be replaced by any other finite Blaschke
product. ut

In technical language, Theorem 4.1 says that the closed convex hull of finite
Blaschke products is precisely the closed unit ball of the disc algebra A.

5 Approximation on T by Quotients of Finite Blaschke
Products

Goal W FBP=FBP D UC.T/

If B1 and B2 are finite Blaschke products, then B1=B2 is a continuous unimodular
function on T. Helson and Sarason showed that the family of all such quotients is
uniformly dense in the set of continuous unimodular functions [11, p. 9].

To prove the Helson–Sarason theorem, we need an auxiliary lemma.
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Lemma 5.1 Let f 2 UC.T/. Then there exists g 2 UC.T/ such that either

f .�/ D g2.�/

or

f .�/ D �g2.�/

for all � 2 T.

Proof Since f W T �! T is uniformly continuous, we can take N so big that j� �

� 0j � 2�=N implies jf .ei� / � f .ei� 0

/j < 2. Now, we divide T into N arcs

Tk D

�
ei� W

2.k � 1/�

N
� � �

2k�

N

�
; .1 � k � N/:

Then f .Tk/ is a closed arc in a semicircle, and thus there is a continuous function
�k.�/ on the interval 2.k�1/�

N � � � 2k�
N such that

f .ei� / D exp.i�k.�//; .ei� 2 Tk/:

These functions are uniquely defined up to additive multiples of 2� . We adjust those
additive constants so that

�k.2k�=N/ D �kC1.2k�=N/

for k D 1; 2; : : : ;N � 1. Define �.�/ WD �k.�/ for 2.k�1/�
N � � � 2k�

N , k D

1; 2; : : : ;N. Then we get a continuous function �.�/ on Œ0; 2�� such that

f .ei� / D exp.i�.�//; .ei� 2 T/:

Since

exp.i.�.2�/ � �.0/// D f .e2� i/=f .e0i/ D 1;

�.2�/ � �.0/ is an integer multiple of 2� . If .�.2�/ � �.0//=2� is even, then set

g.ei� / WD exp.i�.�/=2/;

and if .�.2�/ � �.0//=2� is odd, then set

g.ei� / WD exp.i.�.�/ � �/=2/:

Then g is a continuous unimodular function on T such that either f .ei� / D g2.ei� /

or f .ei� / D ei�g2.ei� / for all ei� 2 T. ut



Approximation in the Closed Unit Ball 97

Theorem 5.2 (Helson–Sarason [11]) Let f 2 UC.T/ and let " > 0. Then there are
finite Blaschke products B1 and B2 such that

���
�f �

B1
B2

���
�
C.T/

< ":

Proof According to Lemma 5.1, it is enough to prove the result for unimodular
functions of the form f D g2 (note that b.ei� / WD ei� is a Blaschke factor). Without
loss of generality, assume that " < 1.

By Weierstrass’s theorem, there is a trigonometric polynomial p.z/ such that

kg � pkC.T/ < ":

The restriction " < 1 ensures that p has no zeros on T. Let p�.z/ WD p.1=z/, and
consider the quotient p=p�. Since p is a good approximation to g, we expect that
p=p� should be a good approximation to g=g� D g2 D f . More precisely, on the
unit circle T, we have

g

g�
�

p

p�
D
.g � p/p� C .p� � g�/p

g�p�
;

which gives

jf � p=p�j � jg � pj C jp� � g�j � 2":

It is enough now to note that p=p� is a meromorphic function that is unimodular and
continuous on T, and thus, according to Corollary 2.3, it is the quotient of two finite
Blaschke products. ut

If we allow approximation by quotients of general Blaschke products, then it
turns out that we can approximate a much larger class of functions. This is the
subject of the Douglas–Rudin theorem, to be established in Sect. 9 below.

6 Approximation on D by Convex Combination of Quotients
of Finite Blaschke Products

Goal W conv.FBP=FBP/ D BC.T/

The quotient of two finite Blaschke products is a continuous unimodular function
on T. Hence a convex combination of such fractions stays in the closed unit ball of
C.T/. As the first step in showing that this set is dense in BC.T/, we consider the
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larger set of all unimodular elements of C.T/, and then pass to the special subclass
of quotients of finite Blaschke products.

Lemma 6.1 Let f 2 BC.T/ and let " > 0. Then there are uj 2 UC.T/ and convex
weights .�j/1�j�n such that

k�1u1 C �2u2 C � � � C �nun � f kC.T/ < ":

Proof Let w 2 D. Then, by the Cauchy integral formula,

w D
1

2� i

Z

T

� C w

�.1C w�/
d� D

1

2�

Z 2�

0

ei� C w

1C wei�
d�:

In a sense, the integral on the right side is an infinite convex combination of
unimodular elements. We shall approximate it by a Riemann sum and thereby obtain
an ordinary finite convex combination. Since

ˇ̌
ˇ̌ ei� C w

1C wei�
�

ei� 0

C w

1C wei� 0

ˇ̌
ˇ̌ �

1C jwj

1 � jwj
j� � � 0j;

for

�N WD

ˇ̌
ˇ
ˇw �

1

N

NX

kD1

ei2k�=N C w

1C wei2k�=N

ˇ̌
ˇ
ˇ;

we obtain the estimation

�N D

ˇ̌
ˇ̌ 1
2�

Z 2�

0

ei� C w

1C wei�
d� �

1

N

NX

kD1

ei2k�=N C w

1C wei2k�=N

ˇ̌
ˇ̌

�
1

2�

NX

kD1

Z 2k�=N

2.k�1/�=N

ˇ̌
ˇ
ˇ

ei� C w

1C wei�
�

ei2k�=N C w

1C wei2k�=N

ˇ̌
ˇ
ˇ d�

�
1

2�

NX

kD1

Z 2k�=N

2.k�1/�=N

1C jwj

1 � jwj

2�

N
d�

D
1C jwj

1 � jwj

2�

N
:

As kf k1 � 1, we have jf .ei� /j � 1 for all ei� 2 T. Hence, by the estimate above,

ˇ̌
ˇ
ˇ.1 � "/f .ei� / �

1

N

NX

kD1

ei2k�=N C .1 � "/f .ei� /

1C .1 � "/f .ei� /ei2k�=N

ˇ̌
ˇ
ˇ �

1C j.1 � "/f .ei� /j

1 � j.1 � "/f .ei� /j

2�

N
:
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Thus, for each ei� 2 T,

ˇ̌
ˇ̌f .ei� / �

1

N

NX

kD1

ei2k�=N C .1 � "/f .ei� /

1C .1 � "/f .ei� /ei2k�=N

ˇ̌
ˇ̌ � "C

4�

"N
:

But, each

uk.e
i� / D

ei2k�=N C .1 � "/f .ei� /

1C .1 � "/f .ei� /ei2k�=N

is in fact a unimodular continuous function on T. Thus, given " > 0, it is enough to
choose N so large that 4�=."N/ < ", to get

ˇ̌
ˇ̌f .ei� / �

1

N

NX

kD1

uk.e
i� /

ˇ̌
ˇ̌ � 2"

for all ei� 2 T. ut

In the light of Theorem 5.2, it is now easy to pass from an arbitrary unimodular
element to the quotient of two finite Blaschke products.

Theorem 6.2 Let f 2 BC.T/ and let " > 0. Then there are finite Blaschke products
Bij, 1 � i; j � n and convex weights .�j/1�j�n such that

�����1
B11
B12

C �2
B21
B22

C � � � C �n
Bn1

Bn2
� f

����
C.T/

< ":

Proof By Lemma 6.1, there are uj 2 UC.T/ and convex weights .�j/1�j�n such that

k�1u1 C �2u2 C � � � C �nun � f kC.T/ < "=2:

For each k, by Theorem 5.2, there are finite Blaschke products Bk1 and Bk2 such that

kuk � Bk1=Bk2k1 < "=2:

Hence

����f �

nX

kD1

�kBk1=Bk2

����
1

�

����f �

nX

kD1

�kuk

����
1

C

nX

kD1

�kkuk � Bk1=Bk2k1 < ":

This completes the proof. ut
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7 Approximation on D by Infinite Blaschke Products

Goal W BP D I D I

We start to describe our approximation problem as in the beginning of Sect. 2.
But extra care is needed here, since we are dealing with infinite Blaschke products
and they are not continuous on D. Let f 2 H1 and assume that there is a sequence
of infinite Blaschke products that converges uniformly on D to f . First of all, we
surely have kf k1 � 1. But we can say more. For each Blaschke product in the
sequence, there is an exceptional set of Lebesgue measure zero such that on the
complement the product has radial limits. The union of all these exceptional sets
still has Lebesgue measure zero, and, at all points outside this union, each infinite
Blaschke product has a radial limit. Therefore, the function f itself must have
a radial limit of modulus one almost everywhere. In technical language, f is an
inner function. Hence, in short, if we can uniformly approximate an f 2 H1 by
a sequence of infinite Blaschke products, then f is necessarily an inner function.
Frostman showed that the converse is also true.

Let � be an inner function for the open unit disc. Fix w 2 D and consider �w D

�w ı �, i.e.,

�w.z/ D
w � �.z/

1 � w�.z/
; .z 2 D/:

Since �w is an automorphism of the open unit disc and � maps D into itself, then
clearly so does �w, i.e. �w is also an element of the closed unit ball of H1. Moreover,
for almost all ei� 2 T,

lim
r!1

�w.re
i� / D

w � �.ei� /

1 � w�.ei� /
D ��.ei� /

w � �.ei� /

w � �.ei� /
2 T:

Therefore, for each w 2 D, the function �w is in fact an inner function. What is
much less obvious is that �w has a good chance of being a Blaschke product. More
precisely, the exceptional set

E.�/ WD fw 2 D W �w is not a Blaschke productg

is small. Frostman showed that the Lebesgue measure of E.�/ is zero. In fact, there
is even a stronger version saying that the logarithmic capacity of E.�/ is zero. But
the simpler version with measure is enough for our approximation problem. We start
with a technical lemma.
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Lemma 7.1 Let � be an inner function in the open unit disc D. Then the limit

lim
r!1

Z 2�

0

log
ˇ̌
�.rei� /

ˇ̌
d�

exists. Moreover, � is a Blaschke product if and only if

lim
r!1

Z 2�

0

log
ˇ̌
�.rei� /

ˇ̌
d� D 0:

Proof Considering the canonical decomposition � D BS
 , where B is a Blaschke
product and S
 is a singular inner function with measure 
 , we have

log
ˇ
ˇ�.rei� /

ˇ
ˇ D log

ˇ
ˇB.rei� /

ˇ
ˇ �

1

2�

Z

T

1 � r2

1C r2 � 2r cos.� � t/
d
.t/:

Using Fubini’s theorem, we obtain

Z 2�

0

log
ˇ̌
�.rei� /

ˇ̌
d� D

Z 2�

0

log
ˇ̌
B.rei� /

ˇ̌
d� �

Z

T

d
.t/: (6)

Thus the main task is to deal with Blaschke products.
First of all, we have

1

2�

Z 2�

0

log
ˇ̌
B.rei� /

ˇ̌
d� � 0 (7)

for all r with 0 � r < 1. Now, without loss of generality, we assume that B.0/ ¤ 0,
since otherwise we can divide B by zm, where m is the order of the zero of B at the
origin, and this modification does not change the limit. Then, by Jensen’s formula,

log jB.0/j D
X

jznj<r

log

	
jznj

r



C

1

2�

Z 2�

0

log jB.rei� /j d�

for all r, 0 < r < 1. Since B.0/ D
Q1

nD1 jznj, we thus obtain

1

2�

Z 2�

0

log
ˇ
ˇB.rei� /

ˇ
ˇ d� D

X

jznj<r

log

	
r

jznj



�

1X

nD1

log

	
1

jznj



:

Given " > 0, choose N so large that

1X

nDNC1

log

	
1

jznj



< ":
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Then, for r > jzN j,

1

2�

Z 2�

0

log
ˇ
ˇB.rei� /

ˇ
ˇ d� �

NX

nD1

log

	
r

jznj



�

NX

nD1

log

	
1

jznj



� ":

Therefore,

lim inf
r!1

1

2�

Z 2�

0

log
ˇ̌
B.rei� /

ˇ̌
d� � �";

and, since " is an arbitrary positive number,

lim inf
r!1

1

2�

Z 2�

0

log
ˇ
ˇB.rei� /

ˇ
ˇ d� � 0:

Finally, (7) and the last inequality together imply that

lim
r!1

1

2�

Z 2�

0

log
ˇ̌
B.rei� /

ˇ̌
d� D 0:

Returning now to (6), we see that

lim
r!1

Z 2�

0

log
ˇ̌
�.rei� /

ˇ̌
d� D lim

r!1�

Z 2�

0

log
ˇ̌
B.rei� /

ˇ̌
d� �

Z

T

d
.t/ D �
.T/:

This formula also shows that

lim
r!1

Z 2�

0

log
ˇ̌
�.rei� /

ˇ̌
d� D 0;

if and only if 
.T/ D 0, and, since 
 is a positive measure, this holds if and only if

 	 0. Therefore, the above limit is zero if and only if � is a Blaschke product. ut

In view of the following result, the functions �w, w 2 D, are called the Frostman
shifts of �.

Lemma 7.2 (Frostman [9]) Let � be an inner function for the open unit disc. Fix
0 < � < 1, and define

E�.�/ WD fei� 2 T W ��ei� is not a Blaschke productg:

Then E�.�/ has Lebesgue measure zero.
Note that this theorem implies that the two-dimensional Lebesgue measure of

E.�/ is also zero.

Proof For each ˛ 2 D, we have
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1

2�

Z 2�

0

log

ˇ̌
ˇ̌ �ei� � ˛

1 � �e�i�˛

ˇ̌
ˇ̌ d� D max.log �; log j˛j/: (8)

Since � is inner, we can replace ˛ by �.reit/ and then integrate with respect to t.
This gives

1

2�

Z 2�

0

Z 2�

0

log

ˇ̌
ˇ̌ �ei� � �.reit/

1 � �e�i��.reit/

ˇ̌
ˇ̌ d�dt D

Z 2�

0

max.log �; log j�.reit/j/ dt:

Since � is fixed and j�j � 1, the family

fr.e
it/ D max.log �; log j�.reit/j/; .eit 2 T/;

where the parameter r runs through Œ0; 1/, is uniformly bounded in modulus by the
positive constant � log �, and

lim
r!1

fr.e
it/ D max.log �; lim

r!1
log j�.reit/j/ D max.log �; 0/ D 0

for almost all eit 2 T. Hence, by the dominated convergence theorem,

lim
r!1

Z 2�

0

fr.e
it/ dt D 0;

which we rewrite as

lim
r!1

Z 2�

0

	Z 2�

0

log

ˇ̌
ˇ̌ �ei� � �.reit/

1 � �e�i��.reit/

ˇ̌
ˇ̌ d�



dt D 0:

But, considering the fact that the integrand is negative, the Fubini theorem gives

lim
r!1

Z 2�

0

	Z 2�

0

log

ˇ̌
ˇ̌ �ei� � �.reit/

1 � �e�i��.reit/

ˇ̌
ˇ̌ dt



d� D 0:

Set

M.r; �/ WD

Z 2�

0

� log

ˇ̌
ˇ̌ �ei� � �.reit/

1 � �e�i��.reit/

ˇ̌
ˇ̌ dt:

Then M.r; �/ � 0 for all r; � , and

lim
r!1

Z 2�

0

M.r; �/ d� D 0: (9)



104 J. Mashreghi and T. Ransford

Now, we put together two facts. First, according to Lemma 7.1, we know that, for
each � ,

lim
r!1

M.r; �/

exists. Second, by Fatou’s lemma,

Z 2�

0

	
lim inf

r!1
M.r; �/



d� � lim inf

r!1

Z 2�

0

M.r; �/ d�:

Hence, by (9) and the fact that M.r; �/ � 0, we conclude that

Z 2�

0

	
lim
r!1

M.r; �/



d� D 0:

In particular, we must have limr!1 M.r; �/ D 0 for almost all � 2 Œ0; 2��, i.e.,

lim
r!1

Z 2�

0

log
ˇ̌
��ei� .reit/

ˇ̌
dt D 0

for almost all � 2 Œ0; 2��. Therefore, again by Lemma 7.1, ��ei� is indeed a Blaschke
product for almost all � 2 Œ0; 2��. In other words, E�.�/ has Lebesgue measure
zero. ut

The preceding result immediately implies the approximation theorem that we are
seeking. It shows that the set BP of Blaschke products is uniformly dense in the set
of all inner functions I.

Theorem 7.3 (Frostman [9]) Let � be an inner function in the open unit disc.
Then, given " > 0, there is a Blaschke product B such that

k� � Bk1 < ":

Proof Take � 2 .0; 1/ small enough so that 2�=.1 � �/ < ". According to
Lemma 7.2, on the circle fjzj D �g there are many candidates �ei� such that ��ei� is
a Blaschke product. Pick any one of them. Then, we have

j�.z/C ��ei� .z/j D

ˇ̌
ˇ
ˇ
�ei� � �e�i��2.z/

1 � �e�i��.z/

ˇ̌
ˇ
ˇ �

2�

1 � �
< "

for all z 2 D. This simply means that k�C��ei� k1 < ". Now take B WD ���ei� . ut

Frostman’s approximation result (Theorem 7.3) should be compared with
Carathéodory theorem (Theorem 3.1). On one hand, the approximation in
Frostman’s result is stronger. The convergence is uniform on D, and not just on
a fixed compact subset of D. But, on the other hand, it only applies to a smaller
class of functions (inner functions) in the closed unit disc of H1.
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Theorem 7.3 may also be considered as a generalization of Theorem 2.2. In the
latter, we consider a small set of Blaschke products (just finite Blaschke products)
and thus we are not able to approximate all inner functions. But Frostman says that,
if we enlarge our set and consider all Blaschke products, then we can approximate
all inner functions.

However, though this interpretation is true, it is not the whole truth. Theorem 2.2
says that the set of finite Blaschke products is a closed subset of @BH1 . Then
Theorem 7.3 says that its complement in the family of inner functions, i.e., I n FBP,
is also a closed subset of @BH1 such that infinite Blaschke products are uniformly
dense in I n FBP. In fact, by considering zeros, it is easy to see that

dist1.FBP; I n FBP/ � 1;

i.e., both parts are well separated on the boundary of BH1 .

8 Existence of Unimodular Functions in the Coset f C H1.T/

To study duality on Hardy spaces, we recall some well-known facts from functional
analysis. Let X be a Banach space, and let X� denote its dual space. Let A be a closed
subspace of X. The annihilator of A is

A? WD f� 2 X� W �.a/ D 0 for all a 2 Ag;

which is a closed subspace of X�. The canonical projection of X onto the quotient
space X=A is defined by

� W X �! X=A
x 7�! x C A:

For each x 2 X, by the definition of norm in the quotient space X=A, we have

dist.x;A/ D inf
a2A

kx � ak D k�.x/kX=A : (10)

Using the Hahn–Banach theorem from functional analysis, we have

dist.x;A/ D sup
�2A?;k�k

X�
D1

j�.x/j:

Moreover, the supremum is attained, i.e., there is �0 2 A? with k�0kX�
D 1 such

that

dist.x;A/ D �0.x/:
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Thanks to these remarks, we obtain the dual identifications

.X=A/� D A? and A� D X�=A?:

For a Banach space X of functions defined on the unit circle T, we define X0
to be the family of all functions ei� f .ei� / such that f 2 X. In all cases that we
consider below, X0 is a closed subspace of X. If f 2 X has a holomorphic extension
to the open unit disc, then the holomorphic extension of ei� f .ei� / would be zf .z/, a
function having a zero at the origin. This fact explains the notation X0.

The following lemma summarizes a number of dual identifications of interest to
us.

Lemma 8.1 ([10, §IV.1]) Let 1 � p < 1, and let 1=p C 1=q D 1. Then:

(a) .Lp=Hp/� D Hq
0 ,

(b) .Lp=Hp
0/

� D Hq,
(c) .Hp/� D Lq=Hq

0 ,
(d) .Hp

0/
� D Lq=Hq.

We can apply this method to study dist.f ;Hp.T//, where f is an element of Lp.T/

and 1 � p � 1. In the following, we just need the case p D 1.

Theorem 8.2 Let f 2 L1.T/. Then the following hold.

(a) There exists g 2 H1.T/ such that

dist.f ;H1.T// D kf � gk1:

(b) We have

dist.f ;H1.T// D sup
h2H1

0 .T/;khk1D1

ˇ̌
ˇ̌ 1
2�

Z 2�

0

f .ei� /h.ei� / d�

ˇ̌
ˇ̌:

Proof (a) By (10), there are gn 2 H1.T/, n � 1, such that

dist.f ;H1.T// D lim
n!1

kf � gnk1:

Hence, .kgnk1/n�1 is a bounded sequence in H1.T/. By Lemma 8.1(b), H1.T/

is the dual of L1.T/=H1
0.T/. Hence, looking at the sequence .gn/n�1 as a family

of uniformly bounded linear functionals on L1.T/=H1
0.T/, by the Banach–Alaoglu

theorem, we can extract a subsequence that is convergent in the weak* topology of
H1.T/. More explicitly, there exists g 2 H1.T/ and a subsequence .nk/k�1 such
that

lim
k!1

1

2�

Z 2�

0

h.ei� /gnk.e
i� / d� D

1

2�

Z 2�

0

h.ei� /g.ei� / d�
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for all h 2 L1.T/. By Hölder’s inequality,

ˇ
ˇ̌
ˇ
1

2�

Z 2�

0

h.ei� /.f .ei� / � gnk.e
i� // d�

ˇ
ˇ̌
ˇ � khk1kf � gnk k1:

Let k �! 1 to get

ˇ̌
ˇ̌ 1
2�

Z 2�

0

h.ei� /.f .ei� / � g.ei� // d�

ˇ̌
ˇ̌ � khk1 dist.f ;H1.T//

for all h 2 L1.T/.
If L1.T/ were the dual of L1.T/, then we would have been able to use duality

techniques and the reasoning would have been easier. But, since L1.T/ is a proper
subclass of the dual of L1.T/, we have to proceed differently.

If E is a measurable subset of T, then its characteristic function h D 	E is
integrable. Hence, with this choice, we obtain

ˇ̌
ˇ̌ 1
jEj

Z

E
.f .ei� / � g.ei� // d�

ˇ̌
ˇ̌ � dist.f ;H1.T//

for all measurable sets E � T with jEj D
R

E d� ¤ 0. This is enough to conclude
kf � gk1 � dist.f ;H1.T//. Note that the reverse inequality dist.f ;H1.T// �

kf � gk1 is a direct consequence of the definition of dist.f ;H1.T//.

(b) By definition,

dist.f ;H1.T// D kf C H1.T/kL1.T/=H1.T/;

and, by Lemma 8.1(d), we have L1.T/=H1.T/ D .H1
0.T//

�. Hence

dist.f ;H1.T// D kf C H1.T/k.H1
0 .T//

�

D sup
h2H1

0 .T/;khk1D1

ˇ̌
ˇ
ˇ
1

2�

Z 2�

0

f .ei� /h.ei� / d�

ˇ̌
ˇ
ˇ:

This completes the proof. ut

Let f 2 L1.T/. If the coset f C H1.T/ contains a unimodular element, then
necessarily dist.f ;H1.T// � 1. A profound result of Adamjan–Arov–Krein says
that, under the slightly more restrictive condition dist.f ;H1.T// < 1, the reverse
implication holds. In this section, we discuss this result, which will be needed in
studying the closed convex hull of Blaschke products. We start with a technical
lemma.
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Lemma 8.3 Let fn 2 H1.D/ with kfnk1 � 1, n � 1. Suppose that there is a
measurable subset E of T with jEj ¤ 0 such that

lim
n!1

Z

E
jfn.e

i� /j d� D 0:

Then

lim
n!1

fn.0/ D 0:

Proof If jEj D 2� , then the result is an immediate consequence of the identity

fn.0/ D
1

2�

Z

T

fn.e
i� / d� D

1

2�

Z

E
fn.e

i� / d�:

If 0 < jEj < 2� , then, on the one hand,

1

jEj

Z

E
log jfn.e

i� /j d� � log

	
1

jEj

Z

E
jfn.e

i� /j d�



�! �1;

as n �! 1, and, on the other hand,

1

jT n Ej

Z

TnE
log jfn.e

i� /j d� � log

	
1

jT n Ej

Z

TnE
jfn.e

i� /j d�




� log

	
kfnk1

jT n Ej



� log

	
1

jT n Ej



:

Therefore,

lim
n!1

Z 2�

0

log jfn.e
i� /j d� D �1:

Finally, since log jfnj is a subharmonic function, we have

jfn.0/j � exp

	
1

2�

Z 2�

0

log jfn.e
i� /j d�



;

and thus fn.0/ �! 0 as n �! 1. ut

The space H1.T/ contains all inner functions, which are elements of modulus
one. The following result shows that if we slightly perturb H1.T/ in L1.T/, it still
contains unimodular elements.

Theorem 8.4 (Adamjan–Arov–Krein [1–3]) Let f 2 L1.T/ be such that

dist.f ;H1.T// < 1:
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Then there exists an ! 2 f C H1.T/ with

j!.ei� /j D 1

for almost all ei� 2 T.

Proof (Garnett [13, p. 150]) The proof is long and thus we divide it into several
steps.

Step 1: Definition of ! as the solution of an extremal problem.

Since dist.f ;H1.T// < 1, the set

E WD f! W ! 2 f C H1.T/; k!k1 � 1g

is not empty. Let

˛ WD sup
!2E

ˇ̌
ˇ̌ 1
2�

Z 2�

0

!.ei� / d�

ˇ̌
ˇ̌:

We show that the supremum is attained. There are !n D f C gn 2 E , n � 1, such
that

lim
n!1

ˇ
ˇ̌
ˇ
1

2�

Z 2�

0

!n.e
i� / d�

ˇ
ˇ̌
ˇ D ˛:

Since gn 2 H1.T/ and kgnk1 � 1 C kf k1, there exist g 2 H1.T/ and a
subsequence .nk/k�1 such that

lim
k!1

1

2�

Z 2�

0

h.ei� /gnk.e
i� / d� D

1

2�

Z 2�

0

h.ei� /g.ei� / d� (11)

for all h 2 L1.T/. Indeed, since the gn are uniformly bounded, we can say that
a subsequence gnk converges weak* to an element g 2 L1.T/. But the weak*-
convergence implies Og.n/ D 0, n � �1, so in fact we have g 2 H1.T/.

Set ! WD f C g. By (11),

lim
k!1

1

2�

Z 2�

0

h.ei� /!nk.e
i� / d� D

1

2�

Z 2�

0

h.ei� /!.ei� / d�

for all h 2 L1.T/. This fact implies

k!k1 � lim inf
k!1

k!nk k1 � 1;
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which ensures that ! 2 E . Moreover, taking h 	 1, we get

ˇ
ˇ̌
ˇ
1

2�

Z 2�

0

!.ei� / d�

ˇ
ˇ̌
ˇ D ˛;

and thus we can write

1

2�

Z 2�

0

!.ei� / d� D ˛ei�0 : (12)

Step 2: k!k1 D 1.

Let !1 WD ! C .1 � k!k1/ei�0 . Thus !1 2 E and, by the definition of ˛,

ˇ̌
ˇ
ˇ
1

2�

Z 2�

0

!1.e
i� / d�

ˇ̌
ˇ
ˇ � ˛:

But, by (12),

ˇ̌
ˇ
ˇ
1

2�

Z 2�

0

!1.e
i� / d�

ˇ̌
ˇ
ˇ D j˛ei�0 C .1 � k!k1/e

i�0 j D ˛ C 1 � k!k1:

Hence k!k1 � 1. We already know that k!k1 � 1, and thus k!k1 D 1.

Step 3: dist.!;H1
0 .T// D 1.

Let " > 0, let g 2 H1
0 .T/, and set !1 WD ! � g C "ei�0 . Then !1 2 f C H1.T/,

and, by (12),

ˇ̌
ˇ̌ 1
2�

Z 2�

0

!1.e
i� / d�

ˇ̌
ˇ̌ D j˛ei�0 C "ei�0 j D ˛ C " > ˛:

Thus, according to the definition of ˛, we have !1 62 E . Thus

k! � g C "ei�0k1 > 1

for all " > 0 and all g 2 H1
0 .T/. Let " ! 0 to get

k! � gk1 � 1

for all g 2 H1
0 .T/. However, when g 	 0, we also know that k!k1 D 1. Hence

dist.!;H1
0 .T// D 1.

Before moving on to Step 4, we remark that Theorem 8.2(b), applied to the
function e�i�!.ei� /, implies that there are hn 2 H1.T/, n � 1, with khnk1 D 1,
such that
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dist.!;H1
0 .T// D lim

n!1

1

2�

Z 2�

0

!.ei� /hn.e
i� / d� D 1: (13)

The extension of hn to the open unit disc is also denoted by hn.

Step 4: For all measurable sets E � T with jEj ¤ 0, we have

lim inf
n!1

Z

E
jhn.e

i� /j d� > 0:

Since hn � hn.0/ 2 H1
0.T/, by (the easy part of) Theorem 8.2(b),

khn � hn.0/k1 dist.!;H1.T// �

ˇ̌
ˇ̌ 1
2�

Z 2�

0

!.ei� /.hn.e
i� / � hn.0// d�

ˇ̌
ˇ̌;

and, by (12),

1

2�

Z 2�

0

!.ei� /.hn.e
i� / � hn.0// d� D

1

2�

Z 2�

0

!.ei� /hn.e
i� / d� � hn.0/˛ei�0 :

Thus, we have

.1C jhn.0/j/ dist.!;H1.T// �

ˇ̌
ˇ̌ 1
2�

Z 2�

0

!.ei� /hn.e
i� / d�

ˇ̌
ˇ̌ � ˛jhn.0/j;

which yields

jhn.0/j �

ˇ̌
ˇ̌ 1
2�

R 2�
0
!.ei� /hn.ei� / d�

ˇ̌
ˇ̌ � dist.!;H1.T//

˛ C dist.!;H1.T//
:

Let n �! 1 to get, by (13),

lim inf
n!1

jhn.0/j �
1 � dist.!;H1.T//

˛ C dist.!;H1.T//
:

But dist.!;H1.T// D dist.f ;H1.T// < 1. Hence, lim infn!1 jhn.0/j > 0. Now,
apply Lemma 8.3.

Step 5: ! is unimodular.

We know that j!.ei� /j � 1 for almost all ei� 2 T. Let 0 � � < 1 and set

E� WD fei� 2 T W j!.ei� /j � �g:
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Then

ˇ̌
ˇ̌
Z 2�

0

!.ei� /hn.e
i� /d�

ˇ̌
ˇ̌ � �

Z

E�

jhn.e
i� /j d� C

Z

TnE�

jhn.e
i� /j d�:

Since khnk1 D 1,

1

2�

Z

TnE�

jhn.e
i� /j d� D 1 �

1

2�

Z

E�

jhn.e
i� /j d�;

and thus

1 � �

2�

Z

E�

jhn.e
i� /j d� � 1 �

ˇ̌
ˇ̌ 1
2�

Z 2�

0

!.ei� /hn.e
i� / d�

ˇ̌
ˇ̌:

By (13), this inequality implies that

lim
n!1

Z

E�

jhn.e
i� /j d� D 0:

Therefore, by Step 4, jE�j D 0 for all 0 � � < 1. ut

Theorem 8.4 has a geometric interpretation. Let U.T/ denote the family of all
unimodular functions in L1.T/. Then Theorem 8.4 says that the open unit ball of
L1.T/ is a subset of H1.T/C U.T/.
Corollary 8.5 Let f 2 H1.T/ with kf k1 < 1, and let ! be an inner function. Then
f C !H1.T/ contains an inner function.

Proof Consider g WD f=!. Then g 2 L1.T/ and

dist.g;H1.T// � kgk1 D kf k1 < 1:

Thus, by Theorem 8.4, gCH1.T/ contains a unimodular function. Therefore, upon
multiplying by the inner function !, the set f C!H1.T/ also contains a unimodular
function. But f C !H1.T/ � H1.T/, and thus any unimodular function in this set
has to be inner. ut

9 Approximation on T by Quotients of Inner Functions

Goal W BP=BP D I=I D UL1.T/

If !1 and !2 are inner functions, then the quotient !1=!2 is unimodular on T.
But how much of the family of all unimodular functions on T do these quotients
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Fig. 1 The elliptic function sn.z/

occupy? The Douglas–Rudin theorem provides a satisfactory answer. To study this
result, we need to examine closely some special conformal mappings.

Fix the parameter k, where 0 < k < 1. Let

K WD

Z 1

0

dt
p
.1 � t2/.1 � k2t2/

; (14)

K0 WD

Z 1

0

dt
p
.1 � t2/.1 � k02t2/

; (15)

where k0 WD
p
1 � k2.

Let ˝ WD C n .�1;�1� [ Œ1;1/. Then the Jacobi elliptic function sn.z/, or
more precisely sn.z; k/, is the conformal mapping shown in Fig. 1.

The parameter k is free to be any number in the interval .0; 1/, and thus we
have a family of elliptic functions. The elliptic function sn.z/ continuously maps
the boundaries of the rectangle to the boundary of ˝ in the Riemann sphere, i.e.
.�1;�1� [ Œ1;1/ [ f1g. We emphasize that sn continuously maps the closed
rectangle Œ�K;K�� Œ�iK0; iK0� to C[f1g. In particular, it maps ˙iK0 continuously
to 1, i.e., if we approach to ˙iK0, then sn.z/ tends to infinity. However, sn is not
injective on the boundaries of the rectangle. If we traverse the path

�iK0 �! .K � iK0/ �! K �! .K C iK0/ �! iK0

on the boundary of the rectangle (naively speaking, half of the boundary on the right
side), then its image under sn is the interval Œ1;1�, which is traversed twice in the
following manner:

1 �!
1

k
�! 1 �!

1

k
�! 1:
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Fig. 2 The main branch of logarithm

If we continue on the boundary of the rectangle on the path

iK0 �! .�K C iK0/ �! �K �! .�K � iK0/ �! �iK0;

then its image under sn is the interval Œ1;�1�, which is traversed twice as

1 �! �
1

k
�! �1 �! �

1

k
�! 1:

Let

˝ 0 WD fz W r < jzj < Rg n .�R;�r/;

where

r WD exp.��K=K0/ and R WD exp.�K=K0/:

Then g.z/ WD .K0=�/ log z maps ˝ 0 onto the rectangle Œ�K;K� � Œ�iK0; iK0�. Here,
log is the principal branch of the logarithm. To better demonstrate the behavior of
g, we put a thin slot on the interval Œ�R;�r� and study g above and below this slot.
See Fig. 2.

The conformal mapping g has a continuous extension to the closed annulus fz W

r � jzj � Rg in the following special manner. It is continuous at all points of the
circles fjzj D rg and fjzj D Rg except at z D �r and z D �R. If we start from
z D �R and traverse counterclockwise the circle fjzj D Rg until we reach this point
again, then the image of this path under g is the segment fKg � ŒK � iK0;K C iK0�.
We emphasize that

lim
�!��

g.Rei� / D K � iK0 and lim
�!�

g.Rei� / D K C iK0:
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Similarly, if we start from z D �r and traverse clockwise the circle fjzj D rg
until we reach this point again, then the image of this path under g is the segment
f�Kg � Œ�K C iK0;�K � iK0�. Note that,

lim
�!��

g.rei� / D �K � iK0 and lim
�!�

g.rei� / D �K C iK0:

Understanding the behavior of g at the points of Œ�R;�r� is very delicate. It depends
on the way we approach these points. If we approach them from the upper half
plane, then g continuously and bijectively maps Œ�R;�r� into the segment ŒK;�K��
fiK0g. But, if we approach them from the lower half plane, then g continuously and
bijectively maps Œ�r;�R� into the segment Œ�K;K� � f�iK0g. Therefore, for each
�R � x � �r, we have

lim
z!x

Im z>0

g.z/ D
K0

�
log jxj C iK0 and lim

z!x
Im z<0

g.z/ D
K0

�
log jxj � iK0:

In particular,

lim
z!�1
Im z>0

g.z/ D iK0 and lim
z!�1
Im z<0

g.z/ D �iK0:

At this point, we combine the last two mappings by defining

h WD sn ıg:

At first glance, h is a conformal mapping from˝ 0 onto˝. But h maps continuously
and bijectively .�R;�1/ onto .1=k;1/, and .�1;�r/ onto .�1;�1=k/, and it
also maps continuously f�1g to 1. Therefore, by Riemann’s theorem, h is indeed
conformal at all points of .�R;�r/with a simple pole at f�1g. Thus h is a conformal
mapping form the annulus fz W r < jzj < Rg onto C [ f1g n Œ�1=k;�1� [ Œ1; 1=k�.
See Fig. 3.

Fig. 3 The conformal mapping h
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We are now ready to define our main conformal mapping. Fix 0 < �0 < � , and
fix " with

0 < " < minf�0; � � �0g:

Pick k 2 .0; 1/ such that

.k � 1/2

4k
D

tan. �0C"
2
/

tan. �0
2
/

� 1:

Set

` WD tan.�0=2/ and `0 WD tan..�0 C "/=2/ D `

	
1C

.k � 1/2

4k



: (16)

Then the Möbius transformation

z 7�!
k.i � ˛/z C .iˇ � ˛/

k.i C ˛/z C .iˇ C ˛/
;

where

˛ D
.1C k/` tan."=2/

`.1 � k/C 2 tan."=2/
and ˇ D

�.1 � k/`C 2k tan."=2/

`.1 � k/C 2 tan."=2/
;

maps the real line into the unit circle in such a way that

�1=k 7! 1; �1 7! e�i"; 1 7! ei.�0C"/; 1=k 7! ei�0 :

Moreover,

1 7!
k.i � ˛/

k.i C ˛/
;

�.iˇ C ˛/

k.i C ˛/
7! 1:

Therefore

˚.z/ WD
k.i � ˛/h.z/C .iˇ � ˛/

k.i C ˛/h.z/C .iˇ C ˛/

is a conformal mapping from the annulus fz W r < jzj < Rg to C [ f1g n � , where
� consists of two arcs of the unit circle:

� D fei� W �" � � � 0g [ fei� W �0 � � � �0 C "g:

Figure 4 describes how the boundaries of the annulus are mapped.
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Fig. 4 The conformal mapping ˚

Note that ˚ is conformal at �1 with

˚.�1/ D
i � ˛

i C ˛
2 T;

and there is a unique point in the annulus, p say, such that

h.p/ D �
iˇ C ˛

k.i C ˛/
;

and thus ˚.p/ D 1. This point is a simple pole of ˚ . Since p is a simple pole
and since ˚ is a conformal mapping, it follows that .z � p/˚.z/ is a bounded
holomorphic function on the annulus, i.e.,

j.z � p/˚.z/j � C < 1 (17)

for all z in the annulus.
The conformal mapping˚ plays a crucial rule in the proof of the following result

of Douglas and Rudin.

Theorem 9.1 (Douglas–Rudin [5]) Let � 2 UL1.T/, i.e., a measurable unimodu-
lar function on T, and let " > 0. Then there are inner functions !1 and !2 (even
Blaschke products) such that

����� �
!1

!2

����
L1.T/

< ":

Proof First we consider a special class of unimodular functions. Let E be a
measurable subset of T, and let 0 < �0 < � . Set
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�.ei� / WD

�
ei�0 ; if ei� 2 E;
1; if ei� 2 T n E:

Thus � is a unimodular function that takes only two different values on T. Given
" > 0, pick k such that (16) holds. Then K and K0 are defined respectively by (14)
and (15). Set

u.ei� / WD

�
�K=K0; if ei� 2 E;

��K=K0; if ei� 2 T n E;

and let U D Pr �u be its harmonic extension to the open unit disc with the harmonic
conjugate V D Qr � u. Since ��K=K0 < U < �K=K0, the holomorphic function
F D exp.U C iV/ maps the unit disc into the annulus

fz W exp.��K=K0/ < jzj < exp.�K=K0/g:

Moreover,

F.ei� / D lim
r!1

F.rei� / 2 fz W jzj D exp.�K=K0/g (18)

for almost all ei� 2 E, and

F.ei� / D lim
r!1

F.rei� / 2 fz W jzj D exp.��K=K0/g (19)

for almost all ei� 2 T n E.
Let � WD ˚ ı F, where ˚ is the conformal mapping depicted in Fig. 4. Then

� is a meromorphic function with poles at the points fz 2 D W F.z/ D pg. Since
˚ has a simple pole at p, the order of � at a pole z0 is equal the order of z0 as a
zero of F.z/ � p. Moreover, since F.z/ � p 2 H1.D/, the zeros of F.z/ � p form a
Blaschke sequence in D, and, by the canonical factorization theorem, F.z/ � p can
be decomposed as

F.z/ � p D B.z/S.z/O.z/; (20)

where B is a Blaschke product, S is a singular inner function and O is an outer
function. We shall show that !.z/ WD B.z/S.z/�.z/ is an inner function (note that
the product is inner, not �.z/ alone).

First of all, since the poles of � are canceled by the zeros of B, the function ! is
holomorphic on D. Secondly,

jF.ei� / � pj D jB.ei� /S.ei� /O.ei� /j D jO.ei� /j

for almost all ei� 2 T. Moreover, by (18),
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jO.ei� /j D jF.ei� / � pj � exp.�K=K0/ � jpj > 0

for almost all ei� 2 E, and, by (19),

jO.ei� /j D jF.ei� / � pj � jpj � exp.��K=K0/ > 0

for almost all ei� 2 T n E. Thus jOj is bounded away from zero on T, which, by
Smirnov’s theorem, implies that

1

O
2 H1.D/:

Finally, by (17) and (20),

j!.z/j D jB.z/jjS.z/jj�.z/j

D jB.z/jjS.z/jj˚.F.z//j

� jB.z/jjS.z/j
C

jF.z/ � pj

�
C

jO.z/j
� C0

for all z 2 D. Thus ! 2 H1.D/. Moreover, for almost all ei� 2 T,

!.ei� / D B.ei� /S.ei� /�.ei� / 2 T:

Therefore, ! is indeed an inner function.
Turning back to � , we note that

� D
!

BS

is the quotient of two inner functions. Also, by (18) and the behavior of ˚ on the
circle fz W jzj D exp.�K=K0/g, we have

j�.ei� / � �.ei� /j D jei�0 � ˚.F.ei� //j � "

for almost all ei� 2 E, and, by (19) and the behavior of ˚ on the circle fz W jzj D

exp.��K=K0/g, we also have

j�.ei� / � �.ei� /j D j1 � ˚.F.ei� //j � "

for almost all ei� 2 T n E. This means that

k� � �k1 � ":
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To show that an arbitrary measurable unimodular function can be uniformly
approximated by the quotient of inner functions, we use a simple approximation
technique. Let � be a measurable unimodular function. Given " > 0, choose N � 1

such that 2�=N < ". Let

Ek WD fei� W 2�.k � 1/=N � arg�.ei� / < 2�k=Ng; .1 � k � N/;

and let

�k.e
i� / WD

�
ei2�k=N ; if ei� 2 Ek;

1; if ei� ¤ Ek:

Then each �k is unimodular and takes only two different values on T, and

k� � �1�2 � � ��Nk1 � ":

According to the first part of the proof, there are inner functions !k1 and !k2 such
that

k�k � !k1=!k2k1 < "=N; .1 � k � N/:

Since

� �
!11

!12

!21

!22
� � �
!N1

!N2
D � � �1�2�3 � � ��N

C .�1 �
!11

!12
/�2�3 � � ��N

C
!11

!12
.�2 �

!21

!22
/�3 � � ��N

:::

C
!11

!12

!21

!22
� � � .�N �

!N1

!N2
/;

we thus have
����� �

!11!21 � � �!N1

!12!22 � � �!N2

����
1

� 2":

In the light of Frostman’s theorem, !1 and !2 can be replaced by Blaschke products.
This concludes the proof. ut
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10 Approximation on D by Convex Combinations
of Quotients of Blaschke Products

Goal W conv.BP=BP/ D conv.I=I/ D BL1.T/

Clearly, a unimodular measurable function on T is in the closed unit ball of
L1.T/. In the first step in studying the closed convex hull of quotients of Blaschke
products, we show that the family of all unimodular measurable functions on T is a
large set in L1.T/, in the sense that the closed convex hull of this family is precisely
the closed unit ball of L1.T/. The results in this section are taken from [5].

Lemma 10.1 Let f 2 BL1.T/ and let " > 0. Then there are uj 2 UL1.T/ and convex
weights .�j/1�j�n such that

k�1u1 C �2u2 C � � � C �nun � f kL1.T/ < ":

Proof Proceeding precisely as in the proof of Lemma 6.1, we obtain

ˇ̌
ˇ
ˇf .e

i� / �
1

N

NX

kD1

ei2k�=N C .1 � "/f .ei� /

1C .1 � "/f .ei� /ei2k�=N

ˇ̌
ˇ
ˇ � "C

4�

"N

for each ei� 2 T. But each

uk.e
i� / D

ei2k�=N C .1 � "/f .ei� /

1C .1 � "/f .ei� /ei2k�=N

is in fact a unimodular function on T. Thus, given " > 0, it is enough to choose N
so large that 4�=."N/ < " to get

ˇ̌
ˇ̌f .ei� / �

1

N

NX

kD1

uk.e
i� /

ˇ̌
ˇ̌ � 2"

for all ei� 2 T. ut

Theorem 9.1 and Lemma 10.1 together show that the closed convex hull in
L1.T/ of the set

�
!1

!2
W !1 and !2 are inner

�

is precisely the closed unit ball of L1.T/.
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Theorem 10.2 (Douglas–Rudin [5]) Let f 2 BL1.T/ and let " > 0. Then there
are inner functions !ij, 1 � i; j � n (even Blaschke products) and convex weights
.�j/1�j�n such that

�����1
!11

!12
C �2

!21

!22
C � � � C �n

!n1

!n2
� f

����
L1.T/

< ":

Proof By Lemma 10.1, there are 0 � �1; �2; : : : ; �n � 1 with �1 C � � � C �n D 1,
and unimodular functions u1; u2; : : : ; un such that

k�1u1 C �2u2 C � � � C �nun � f k1 < "=2:

Also, for each k, by Theorem 9.1, there are inner functions !k1 and !k2 such that

kuk � !k1=!k2k1 < "=2:

Then

����f �

nX

kD1

�k!k1=!k2

����
1

�

����f �

nX

kD1

�kuk

����
1

C

nX

kD1

�kkuk � !k1=!k2k1 < ":

This completes the proof. ut

Remark Since the product of two inner functions is an inner function, in the
quotients appearing in Theorem 10.2, we can take a common denominator and
thus, without loss of generality, assume that all the !k2 are equal. Hence, under
the conditions of Theorem 10.2, there are inner functions ! and !1; : : : ; !n such
that

���
��1

!1

!
C �2

!2

!
C � � � C �n

!n

!
� f

���
�

1

< ":

The same remark obviously applies to quotients of Blaschke products.

11 Approximation on D by Convex Combination of Infinite
Blaschke Products

Goal W conv.BP/ D conv.I/ D BH1

To study convex combinations of Blaschke products, we need the following
variant of Theorem 10.2.
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Lemma 11.1 Let f 2 H1 and let " > 0. Then there are real constants aj and inner
functions ! and !j such that

a1
!1

!
C a2

!2

!
C � � � C an

!n

!
2 H1

and
��
��a1

!1

!
C a2

!2

!
C � � � C an

!n

!
� f

��
��

1

< ":

Proof The result is clear if f 	 0, so let us assume that f 6	 0. By the remark
following Theorem 10.2, there are 0 � �1; �2; : : : ; �m � 1with �1C�2C� � �C�m D

1, and inner functions !1; !2; : : : ; !m and ! such that

��
���1

!1

!
C �2

!2

!
C � � � C �m

!m

!
�

f

kf k1

��
��

1

< "0; (21)

where "0 D "=.2kf k1/. Put

F WD
1

"0

	
�1
!1

!
C �2

!2

!
C � � � C �m

!m

!



:

Then F 2 L1.T/, and the last inequality shows that

dist.F;H1.T// < 1:

Hence, by Theorem 8.4, there are G 2 H1.T/ and a unimodular function I such
that F D I C G. But, since !F is in H1.T/, the function !0 WD !I D !F � !G is
a unimodular function in H1.T/. In other words, !0 is an inner function, and thus
I D !0=! is the quotient of two inner functions. Moreover,

�1
!1

!
C �2

!2

!
C � � � C �m

!m

!
� "0!0

!
D "0.F � I/ D "0G 2 H1.T/;

and, by (21),

�����1
!1

!
C �2

!2

!
C � � � C �m

!m

!
� "0!0

!
�

f

kf k1

����
1

< 2"0:

Therefore,

��
��a1

!1

!
C a2

!2

!
C � � � C am

!m

!
C amC1

!mC1

!
� f

��
��

1

< 2kf k1"
0 D ";

where ak WD �kkf k1, for 1 � k � m, and amC1 WD �"0kf k1 and !mC1 WD !0. ut
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Now we are able to show that the closed convex hull of the family of all inner
functions on T is precisely the closed unit ball of H1.T/.

Theorem 11.2 (Marshall [14]) Let f 2 BH1 and let " > 0. Then there are inner
functions !j (even Blaschke products) and convex weights .�j/1�j�n such that

k�1!1 C �2!2 C � � � C �n!n � f k1 < ":

Proof By Lemma 11.1, there are real constants a1; : : : ; an and inner functions
!;!1; : : : ; !n such that

g WD a1
!1

!
C a2

!2

!
C � � � C an

!n

!
2 H1.T/;

and kg � .1 � 2"/f k1 < ". Hence it is enough to approximate g by convex
combination of inner functions. Note that kgk1 < 1 � ".

Set

!0 WD !1!2 � � �!n:

Since

g D a1
!1

!
C a2

!2

!
C � � � C an

!n

!
D a1

!

!1
C a2

!

!2
C � � � C an

!

!n
;

we clearly have

!0g 2 H1.T/:

This property is the main advantage of g over f . Now we follow a similar procedure
to that in the proof of Lemma 6.1.

Let w 2 D and � 2 T. Then, by the Cauchy integral formula,

w D
1

2� i

Z

T

�� C w

�.1C w��/
d� D

1

2�

Z 2�

0

�ei� C w

1C w�ei�
d�:

Since

ˇ̌
ˇ̌ �ei� C w

1C w�ei�
�
�ei� 0

C w

1C w�ei� 0

ˇ̌
ˇ̌ �

1C jwj

1 � jwj
j� � � 0j;

for

�N WD

ˇ̌
ˇ̌w �

1

N

NX

kD1

�ei2k�=N C w

1C w�ei2k�=N

ˇ̌
ˇ̌;
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we have the estimation

�N D

ˇ̌
ˇ̌ 1
2�

Z 2�

0

�ei� C w

1C w�ei�
d� �

1

N

NX

kD1

�ei2k�=N C w

1C w�ei2k�=N

ˇ̌
ˇ̌

�
1

2�

NX

kD1

Z 2k�=N

2.k�1/�=N

ˇ̌
ˇ
ˇ
�ei� C w

1C w�ei�
�
�ei2k�=N C w

1C w�ei2k�=N

ˇ̌
ˇ
ˇ d�

�
1

2�

NX

kD1

Z 2k�=N

2.k�1/�=N

1C jwj

1 � jwj

2�

N
d�

D
1C jwj

1 � jwj

2�

N
:

Hence, for almost all ei� 2 T, setting w WD g.ei� / and � WD !0.ei� /, we get

ˇ̌
ˇ
ˇg.e

i� / �
1

N

NX

kD1

!0.ei� /ei2k�=N C g.ei� /

1C g.ei� /!0.ei� /ei2k�=N

ˇ̌
ˇ
ˇ �

1C jg.ei� /j

1 � jg.ei� /j

2�

N
:

Thus, for almost all ei� 2 T,

ˇ̌
ˇ̌f .ei� / �

1

N

NX

kD1

!0.ei� /ei2k�=N C g.ei� /

1C g.ei� /!0.ei� /ei2k�=N

ˇ̌
ˇ̌ � 3"C

4�

"N
:

But, for each k,

!k.e
i� / WD

!0.ei� /ei2k�=N C g.ei� /

1C g.ei� /!0.ei� /ei2k�=N

is in fact an inner function, since in the first place it is a unimodular function, and
besides g; !0; g!0 2 H1.T/ and j1 C g.ei� /!0.ei� /ei2k�=N j � ", for almost all
ei� 2 T. Therefore, given " > 0, it is enough to choose N so large that 4�=."N/ < "
to get

ˇ̌
ˇ̌f .ei� / �

1

N

NX

kD1

!k.e
i�

ˇ̌
ˇ̌ � 4"

for almost all ei� 2 T.
By Frostman’s theorem, there are Blaschke products B1; : : : ;Bn such that k!k �

Bkk1 < "=2, for each 1 � k � n. Hence
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�
���f �

nX

kD1

�kBk

�
���

1

�

�
���f �

nX

kD1

�k!k

�
���

1

C

nX

kD1

�kkBk � !kk1 < ":

This completes the proof. ut

12 An Application: The Halmos Conjecture

Let H be a complex Hilbert space and T be a bounded linear operator on H. The
numerical range of T is defined by

W.T/ WD fhTx; xi W x 2 H; kxk D 1g:

It is a convex set whose closure contains the spectrum of T . If dim H < 1, then
W.T/ is compact. The numerical radius of T is defined by

w.T/ WD supfjhTx; xij W x 2 H; kxk D 1g:

It is related to the operator norm via the double inequality

kTk=2 � w.T/ � kTk: (22)

If further T is self-adjoint, then w.T/ D kTk. In contrast with spectra, it is not true in
general that W.p.T// D p.W.T// for polynomials p, nor is it true if we take convex
hulls of both sides. However, some partial results do hold. Perhaps the most famous
of these is the power inequality: for all n � 1, we have

w.Tn/ � w.T/n:

This was conjectured by Halmos and, after several partial results, was established
by Berger using dilation theory. An elementary proof was given by Pearcy in [15].
A more general result was established by Berger and Stampfli in [4]. They showed
that, if w.T/ � 1, then, for all f in the disc algebra with f .0/ D 0, we have

w.f .T// � kf k1:

Again their proof used dilation theory. We give an elementary proof of this result
along the lines of Pearcy’s proof of the power inequality.

We require two folklore lemmas about finite Blaschke products.

Lemma 12.1 Let B be a finite Blaschke product. Then �B0.�/=B.�/ is real and
strictly positive for all � 2 T.

Proof We can write
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B.z/ D c
nY

kD1

ak � z

1 � akz
;

where a1; : : : ; an 2 D and c 2 T. Then

B0.z/

B.z/
D

nX

kD1

1 � jakj
2

.z � ak/.1 � akz/
:

In particular, if � 2 T, then

�B0.�/

B.�/
D

nX

kD1

1 � jakj
2

j� � akj2
;

which is real and strictly positive. ut

Lemma 12.2 Let B be a Blaschke product of degree n such that B.0/ D 0. Then,
given � 2 T, there exist �1; : : : ; �n 2 T and c1; : : : ; cn > 0 such that

1

1 � �B.z/
D

nX

kD1

ck

1 � �kz
: (23)

Proof Given � 2 T, the roots of the equation B.z/ D � lie on the unit circle, and
by Lemma 12.1 they are simple. Call them �1; : : : ; �n. Then 1=.1 � �B/ has simple
poles at the �k. Also, as B.0/ D 0, we have B.1/ D 1 and so 1=.1� �B/ vanishes
at 1. Expanding it in partial fractions gives (23), for some choice of c1; : : : ; cn 2 C.

The coefficients ck are easily evaluated. Indeed, from (23) we have

ck D lim
z!�k

1 � �kz

1 � �B.z/
D lim

z!�k

.�k � z/=�k

.B.�k/ � B.z//=B.�k/
D

B.�k/

�kB0.�k/
:

In particular ck > 0 by Lemma 12.1. ut

Theorem 12.3 (Berger–Stampfli [4]) Let H be a complex Hilbert space, let T be
a bounded linear operator on H with w.T/ � 1, and let f be a function in the disc
algebra such that f .0/ D 0. Then w.f .T// � kf k1.

Proof (Klaja–Mashreghi–Ransford [12]) Suppose first that f is a finite Blaschke
product B. Suppose also that the spectrum 
.T/ of T lies within the open unit disc
D. By the spectral mapping theorem 
.B.T// D B.
.T// � D as well. Let x 2 H
with kxk D 1. Given � 2 T, let �1; : : : ; �n 2 T and c1; : : : ; cn > 0 as in Lemma 12.2.
Then we have

1 � �hB.T/x; xi D h.I � �B.T//x; xi

D hy; .I � �B.T//�1yi where y WD .I � �B.T//x
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D
D
y;

nX

kD1

ck.I � �kT/�1y
E

by (23)

D

nX

kD1

ckh.I � �kT/zk; zki where zk WD .I � �kT/�1y

D

nX

kD1

ck.kzkk
2 � �khTzk; zki/:

Since w.T/ � 1, we have Re .kzkk
2 � �khTzk; zki/ � 0, and as ck > 0 for all k, it

follows that

Re .1 � �hB.T/x; xi/ � 0:

As this holds for all � 2 T and all x of norm 1, it follows that w.B.T// � 1.
Next we relax the assumption on f , still assuming that 
.T/ � D. We can suppose

that kf k1 D 1. Then, by Carathéodory’s theorem (Theorem 3.1), there exists a
sequence of finite Blaschke products Bn that converges locally uniformly to f in D.
Moreover, as f .0/ D 0, we can also arrange that Bn.0/ D 0 for all n. By what we
have proved, w.Bn.T// � 1 for all n. Also Bn.T/ converges in norm to f .T/, because

.T/ � D. It follows that w.f .T// � 1, as required.

Finally we relax the assumption that 
.T/ � D. By what we have already proved,
w.f .rT// � kf k1 for all r < 1. Interpreting f .T/ as limr!1� f .rT/, it follows that
w.f .T// � kf k1, provided that this limit exists. In particular this is true when f
is holomorphic in a neighborhood of D. To prove the existence of the limit in the
general case, we proceed as follows. Given r; s 2 .0; 1/, the function grs.z/ WD

f .rz/ � f .sz/ is holomorphic in a neighborhood of D and vanishes at 0, so, by what
we have already proved, w.grs.T// � kgrsk1. Therefore,

kf .rT/ � f .sT/k D kgrs.T/k � 2w.grs.T// � 2kgrsk1:

The right-hand side tends to zero as r; s ! 1�, so, by the usual Cauchy-sequence
argument, f .rT/ converges as r ! 1�. This completes the proof. ut

Remark The assumption that f .0/ D 0 is essential in the Berger–Stampfli theorem.
Without this assumption, the situation becomes more complicated. The best result
in this setting is Drury’s teardrop theorem [6]. See also [12] for an alternative proof.
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A Thought on Approximation by
Bi-Analytic Functions

Dmitry Khavinson

Dedicated to the memory of André Boivin, a kind and gentle
friend.

Abstract A different approach to the problem of uniform approximations by the
module of bi-analytic functions is outlined. This note follows the ideas from
Khavinson (On a geometric approach to problems concerning Cauchy integrals
and rational approximation. PhD thesis, Brown University, Providence, RI (1983),
Proc Am Math Soc 101(3):475–483 (1987), Michigan Math J 34(3):465–473
(1987), Contributions to operator theory and its applications (Mesa, AZ, 1987).
Birkhäuser, Basel (1988)), Gamelin and Khavinson (Am Math Mon 96(1):18–
30 (1989)) and the more recent paper (Abanov et al. A free boundary problem
associated with the isoperimetric inequality. arXiv:1601.03885, 2016 preprint),
regarding approximation of z by analytic functions.

2010 Mathematics Subject Classification. 30E10, 30E99

1 Introduction

The ideas sketched in this note were inspired by the talk of J. Verdera at the
Approximation Theory Conference dedicated to A. Boivin held at the Fields Insti-
tute in Toronto in July 2016. Denote by R2.K/ the uniformly closed rational module
generated by functions f .�/ C Nzg.�/, with f and g analytic in the neighborhood of
a compact set K in C. Equivalently, R2.K/ is the uniform closure on K of functions
f .�/C Nz.�/, with f ; g being rational functions with poles off K, i.e., f ; g 2 R.K/.

The bi-analytic rational module R2, and more generally RN.K/ generated by
f1.�/C Nzf2.�/C � � � C NzN�1fN.�/; fj 2 R.K/ have been studied intensely in the 1970s
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and 1980s—cf., e.g., [3, 15–20]. The subject remained dormant after that for almost
two decades until a remarkable and deep paper of Mazalov [14].

Here, we want to suggest a different point of view on the approximation by bi-
analytic functions based on extending the notion of “analytic content” in [1, 2, 7, 10]
to this setting. Namely, let us accept the following definition:

Definition 1 Let �2.K/ WD inf
'2R2.K/

��
� Nz2

2
� '

��
�

C.K/
, and call �2 the bi-analytic content

of K.
(From now on, k � k D k � kC.K/ unless otherwise specified.) The analogy

with �.K/, the analytic content defined first in [12], is clear. Indeed, �.K/ WD

inf
'2R.K/

kNz � '.z/k, R.K/ D Ker N@k�k while @
@ Nz .Nz/ D 1, making z the simplest non-

analytic function. R2.K/ D Ker N@2
k�k

and N@2
�

Nz2

2

�
D 1.

2 An “Analogue” of the Stone–Weierstrass Theorem

The following simple proposition supports the introduction of �2.K/—cf. [9, 11].

Proposition 1 �2.K/ D 0 iff R2.K/ D C.K/.

Proof (Sketch) The necessity is obvious. To see the sufficiency, note that �2.K/ D 0

yields Nz2 2 R2.K/. Hence one can approximate Nz2 by functions r1.z/ C Nz r2.
Thus, for any r 2 R.K/ we have rNz2 � rr1 C Nzrr2, where we put “�” for
“approximate uniformly”. Hence, Nz3 � Nz .r1 C Nz r2/ � Nzr1 C .r3 C r4 Nz/ 2 R2.K/,
where all rj 2 R.K/. Hence, Nz3 � r5 C Nzr6 and then Nz2 .r7 C Nz r8/ 2 R2.K/ since
Nz3r8 � .r5 C Nz r6/ r8 2 R2.K/. A straightforward induction yields that all monomials
Nznzm are approximable by R2.K/. Weierstrass’ approximation theorem finishes the
argument.

3 Green’s Formula and Duality

As is well-known, the fundamental solution for N@2 is 1
�

Nz
z . Hence, Green’s formula

yields immediately the following (cf. [17]).

Lemma 1 For any ' 2 C1
0 and any z 2 C, we have

'.z/ D �
1

�

Z

C

@2'.�/

@ �
2

� � z

� � z
dA.�/: (1)

(Here and onward, dA.�/ denotes the normalized area measure 1
�

dx dy.)
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Lemma 2

�2.K/ D max
z2K

ˇ̌
ˇ̌
ˇ

Z

K

� � z

� � z
dA.�/

ˇ̌
ˇ̌
ˇ
: (2)

Proof (A Sketch, Since the Argument is Standard, cf., e.g., [7]) Extend 1
2

z2 to '0 2

C1
0 with the support in a fixed disk D D fz W jzj � R < 1g. For � > 0, let ˝� be

a smoothly bounded �-neighborhood of K. For z 2 K, split the integral in (1) into
three parts:

Z

Dn˝�

C

Z

˝�nK
C

Z

K
DW I C II C III:

I 2 R2.K/; kIIk � const.'0/Area.˝� n K/, and the statement follows since @
2

z'0 	

1 on K.
Set

F.z/ WD

Z

K

� � z

� � z
dA.�/: (3)

Clearly, F.z/ 2 C1
�
R
2
�
. Thus, max

z2K
jF.z/j occurs somewhere on K.

Let Ra D Ra.K/ D

q
Area.K/

�
denote the “area radius” of a disk with the same

area as K.

Lemma 3 �2.K/ � R2a. Moreover, sup f�2.K/ W Area.K/ is fixedg D R2a, although
there is no “extremal” set K for which equality occurs.

Proof The first statement follows from Lemma 2 since the integrand in (3) is
bounded by 1. The rest follows at once if one considers a sequence of “cigar-shaped”
domains˝n with a fixed area symmetric with respect to the x-axis and tangent to the

y-axis at the origin. Then, F.0/ ! R2a since
N�
�

! 1 pointwise on ˝n and is bounded
by 1, so the Lebesgue bounded convergence theorem applies.

Remark 1 Recall that unlike the bi-analytic content, the analytic content .�.K/ WD

distC.K/ .Nz;R.K// is bounded above by Ra and the equality holds for disks and only
for disks modulo sets of area zero(cf. [2, 7]).

4 Bi-Analytic Content of Disks

Proposition 2 Let D D fz W jzj � Rg. Then, �2
�
D
�

D 1
2

R2.

Proof By taking ' 	 0 � R2
�
D
�
, we see that �2

�
D
�

� 1
2

R2. To obtain the
converse inequality, note that for any polynomials P1;P2 we have
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����
1

2
Nz2 � P1 � Nz P2

����
D

�

����
1

2
Nz2 � P1 � Nz P2

����
@D

� inf
P1;P2

1

R2

����
1

2
R4 � z2P1 � P2R

2z

����
@D

D inf
PWP.0/D0

���
�
1

2
R2 � P.z/

���
�
@D

D
1

2
R2:

(4)

(The latter infimum is a trivial extremal problem in H1.D/-setting (cf. [4], [13,
Ch. 8]) and is easily computable, e.g., by duality:

inf
f 2H1.D/

f .0/D0

kC � f k@D D C sup
f 2H1.D/
kf kH1D1

ˇ
ˇ̌
ˇ

Z

@D
f ds

ˇ
ˇ̌
ˇ D C;

for any constant C > 0.) Since P1;P2 were arbitrary, the proposition follows.

5 Bounds for �2

The following statement is obvious.

Corollary 1 Let K be a compact subset of C and the outer and inner radii Ro;Ri

denote, respectively, the minimal radius of a disk containing K .i. e., Ro/, and the
maximal radius of a disk contained in K. Then,

1

2
R2i � �2.K/ �

1

2
R2o: (5)

(Of course, here, we tacitly used Runge’s theorem in its simplest form: R
�
D
�

D

uniform closure of polynomials, for any disk D.)

Corollary 2 ([17]) R2.K/ D C.K/ if and only if K is nowhere dense.
The necessity follows at once from the lower bound in (5) and Proposition 1.

The proof of sufficiency, given by Trent and Wang in [17], cannot be shortened
or simplified any further. Thus, for the reader’s convenience, we only indicate the
outline.

(i) By the Hahn–Banach theorem it suffices to check that � annihilating R2.K/
must be zero, i.e., annihilates all C1

0 -functions.
(ii) By Lemma 1 and Fubini’s theorem, it suffices to check that an R2-analogue of

the Cauchy transform for �

L�.z/ WD

Z

C

� � z

� � z
d�.�/ (6)

vanishes a.e. wrt dA.
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(iii) The Lebesgue bounded convergence theorem yields that L� is continuous in C

except at atoms of �, i.e., at at most countably many points.
(iv) If K is nowhere dense, L� vanishes in C n K, and by (iii) in all of C except for

a countable set and the proof is finished.

6 Concluding Remarks

1. The referee suggested an elegant short cut in the proof of Proposition 2: in the
second term in .4/ use for the lower bound the L2-norm on the circle and apply
the Pythagoras’ theorem. This simplification might prove useful in more general
domains.

2. Undoubtedly, the above scheme can be extended to more general “rational

modules” associated with the operator @z
N

, i.e., to RN.K/.
3. Most likely, one may consider the bi-analytic content or, more generally, N-

analytic content for other norms than the uniform norm, e.g., Bergman Lp-norms,
Hardy norms, etc. The recent results in that direction for the analytic content
[5, 6, 8] yield some interesting connections and the latter continue forthcoming.

4. It would be interesting to tighten the inequality (5), perhaps obtaining sharper
bounds that might involve deeper geometric characteristics of K, e.g., perimeter,
capacity, torsional rigidity. For the analytic content this line of inquiry proved to
be quite fruitful (cf. [5, 6, 8], cited above).

Acknowledgements The author is indebted to the anonymous referee for several insightful
remarks and references.
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Chebyshev Polynomials Associated
with a System of Continua

Isaac DeFrain

Abstract We establish estimates from above for the uniform norm of the Cheby-
shev polynomials associated with a system of continua K � C by constructing
monic polynomials with small norms on K. The estimates are exact (up to a constant
factor) in the case where K has a piecewise quasiconformal boundary and its
complement ˝ D C n K has no outward pointing cusps.

Keywords Chebyshev polynomials • Equilibrium measure • Green’s function •
Quasiconformal curve • System of continua

Msc codes: 30C10, 30C20, 30C62, 30C85, 31A15, 31A20

1 Introduction and Results

For a compact set K � C with infinitely many points, the n-th Chebyshev
polynomial on K is the monic polynomial of degree n, Tn.z;K/ D Tn.z/ D

zn C an�1zn�1 C � � � C a0, aj 2 C, which minimizes the supremum norm, jjpjjK WD

supz2K jp.z/j, among all monic polynomials p.z/ of degree n.
It is well known [9, p. 155,Theorem 5.5.4 and Corollary 5.5.5] that for every

n 2 N, we have

jjTnjjK � cap.K/n and lim
n!1

jjTnjj
1=n
K D cap.K/;

where cap.K/ is the logarithmic capacity of K.
Throughout this paper, we assume that K � C is a compact set consisting of

finitely many disjoint nonempty closed connected sets (continua) Kj; j D 1; : : : ;m,
i.e.

K D [m
jD1K

jI Kj \ Kk D ;; for j ¤ kI diam.Kj/ > 0;

where diam.S/ WD supu;v2S ju � vj, S � C. We call such K a system of continua.
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Since the maximum modulus principle implies that jTn.z/j takes its maximum
value on K on the outer boundary of K, we may assume that K coincides with its
polynomially convex hull. Let C WD C [ f1g denote the extended complex plane.
Let˝ WD CnK denote the complement of K in C. Then˝ is a domain with 1 2 ˝

and cap.K/ > 0, so there exists a Borel probability measure � supported on @K and
a function

g.z/ D

Z
log jz � �j d�.�/ � log cap.K/ D log jzj � log cap.K/C O

�
jzj�1

�

which is subharmonic in C and harmonic in ˝ n f1g [8, p. 205,Theorem 9.7]. This
is the Green’s function of ˝ with logarithmic pole at 1 and � is the equilibrium
measure of K (see [9]).

To study the relationship between jjTnjjK and cap.K/n we consider the Widom
factors of K

Wn D Wn.K/ WD
jjTnjjK

cap.K/n
:

It is not known if the Widom factors are bounded for an arbitrary system of
continua, but several examples of classes of sets with bounded Widom factors are
known. Widom [18] showed that Wn is bounded for a system of smooth Jordan
arcs/curves and Andrievskii [3] showed that Wn is bounded for a system of continua
with quasismooth boundary. For the complete survey of results concerning this
problem and further citations, see [3, 6, 10–12], and [14–18].

We establish estimates from above for the Widom factors of a system of continua.
Our estimates are exact (up to a constant factor) in the case where each Kj has a
piecewise quasiconformal boundary and its complement C n Kj is a John domain.

The sequence .Wn/
1
nD1 is logarithmically subadditive, i.e. WnCm � WnWm. To

establish an upper bound for all n 2 N, we find an arithmetic subsequence .nk/ for
which Wnk is bounded.

1.1 Localization and Conformal Mappings

For s > 0, we denote the s-level set of the Green’s function by

Ks WD fz 2 ˝ W g.z/ D sg:

Since K is contained in the interior of the polynomially convex hull of Ks,
Frostman’s theorem [9, p. 59, Theorem 3.3.4] implies



Chebyshev Polynomials Associated with a System of Continua 139

log cap.Ks/ D

Z
log j� � zj d�s.�/; z 2 K;

where �s is the equilibrium measure of Ks.
We choose 0 < s0 < 1 so small that Ks D [m

jD1K
j
s where the Kj

s are mutually
disjoint smooth Jordan curves and

dist.�;K/ D dist.�;Kj/; � 2 Kj
s; 0 < s � s0;

where dist.S; S0/ WD inf
2S;
 02S0 j
 � 
 0j is the distance from S � C to S0 � C.
We let Qg.z/ be the (multiple-valued) harmonic conjugate of g.z/ [1, p. 250,

Lemma 3] and define the analytic function ˚ W ˝ ! D
� WD fw 2 C W jwj > 1g by

˚.z/ WD exp.g.z/C iQg.z//:

The total change in argument of˚ around the curve Kj
s is given by the net-change

of Qg around Kj
s, which by Gauss’ theorem [13, p. 83] equals

�
K

j
s
Qg WD

Z

K
j
s

@Qg

@t�
jd�j D

Z

K
j
s

@g

@n�
jd�j D 2��.Kj/ DW 2�!j;

where jd�j is the linear (arc length) measure on the curve Kj
s. For future reference,

we note that 0 < !j � 1 D
Pm

jD1 !j.
Following [3], we consider the conformal and univalent mapping 'j.z/ WD

˚1=!j.z/ of˝ j
0 WD inn.Kj

s0 /nKj onto the annulus Aj
0 WD fw 2 D

� W 1 < jwj < es0=!jg

where inn.Kj
s0 / denotes the Jordan domain with boundary curve Kj

s0 . Thus, we have

Kj
s D fz 2 ˝

j
0 W j'j.z/j D es=!jg; 0 < s < s0:

We denote by  j WD '�1
j the inverse mapping.

For technical reasons, we choose 0 < s1 < b log. 1
2
.es0 C 1// so small that for

� 2 Kj
s, 0 < s � s1, we simultaneously have

dist.�; @˝ j
0/ D dist.�;K/ and dist.'j.�/; @Aj

0/ D j'j.�/j � 1:

We will use the following terminology throughout.
A Jordan arc L � C is called a quasiconformal arc [8, p. 107] if there is a

constant �L > 0, depending only on L, such that for any z1; z2 2 L,

diam .L.z1; z2// � �Ljz1 � z2j; (1)

where L.z1; z2/ � L is the subarc joining z1 and z2.



140 I. DeFrain

A simply connected domain G � C is called a John domain [8, p. 96] if there is
a constant M > 0 such that for any crosscut � of G,

diam.H/ � Mdiam.�/ (2)

holds for one of the components H of G n � .
We call K D [m

jD1K
j a piecewise quasiconformal system if it is a system

of continua such that each Kj has a piecewise quasiconformal boundary and the
complement C n Kj is a John domain.

Throughout, we let c1; c2; : : : denote positive constants that are either absolute
or depend only on K; otherwise, the dependence on other parameters is explicitly
stated. We will use the conventions

a WD 3240�=b; b WD min
j
!j log 2:

1.2 Results for Widom Factors

The main objective of this paper is to prove the following results.

Theorem 1 Let K be a system of continua. For n D Nq, N; q 2 N, aq < Ns1, we
have

Wn.K/ � exp

 

c1q
2 C

c2q

2q
max
z2K

Z

Kaq=N

dist.�;K/q

jz � �jqC1
jd�j

!

: (3)

This estimate appears in [3] with q D 1.

Theorem 2 Let K be a piecewise quasiconformal system. Then for every n 2 N we
have

jjTnjjK � c3cap.K/n: (4)

Our constructions below are based on the discretization of the equilibrium
measure due to Totik [14–16], representation of the Green’s function via special
conformal mappings due to Widom [18], distortion properties of conformal map-
pings near the boundary of their domains, [5] or [8], and the special polynomials
associated with a continuum due to Andrievskii and Nazarov.

For the remainder of this paper, we will write A  B to mean that A � 0 and
B � 0 are real-valued functions such that A � c4B. We write A � B when A  B
and B  A simultaneously.
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2 System of Continua

We begin by partitioning each Kj
s uniformly into Nj subarcs Ij

k according to the
equilibrium measure �s of Ks. For N 2 N, N > 1=b, j D 1; : : : ;m, we define

Nj WD ŒN!j� or ŒN!j�C 1; so that N D

mX

jD1

Nj:

Let Ij
k WD  j.J

j
k/, k D 1; : : : ;Nj, and

Jj
k WD

�
es=!jCi� W

2�k

Nj
� � �

2�.k C 1/

Nj

�
:

Denote the endpoints of these arcs by �
j
k WD  j.w

j
k/ and wj

k WD es=!jC2� ik=Nj ,

respectively. Then, Kj
s D [

Nj

kD1I
j
k and we have for j D 1; : : : ;m, k D 1; : : : ;Nj,

�s.I
j
k/ D

!j

Nj
�
1

N
: (5)

2.1 Main Lemma

We will use the following lemma to prove our general estimate (3). This lemma
appears in [3] with q D 1.

Lemma 1 Let s D aq
N , where N; q 2 N, 0 < s < s1. Then for j D 1; : : : ;m,

k D 1; : : : ;Nj, we have

dist.Ij
k;K/

q
 j�

j
kC1 � �

j
kj � diam.Ij

k/ � jIj
kj �

dist.Ij
k;K/

10q
; (6)

where jIj
kj WD

R
I
j
k
jd�j is the linear (arc length) measure of Ij

k.

Proof By an immediate consequence of Koebe’s one-quarter theorem [5, p. 23,
Lemma 2.3], for s D aq

N < s1;w 2 Aj
0; jwj � es=!j , and � D  j.w/, we have

dist.�;K/

4.jwj � 1/
� j 0

j .w/j �
4dist.�;K/

jwj � 1
: (7)

Moreover, if ju � wj � .jwj � 1/=2 and � D  j.u/, then

ju � wj

16.jwj � 1/
�

j� � �j

dist.�;K/
�
16ju � wj

jwj � 1
: (8)
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Let w 2 Jj
k. Since wj

k, wj
kC1 are the endpoints of the circular arc Jj

k, we have

jw � wj
kj � jwj

kC1 � wj
kj �

s

90q
: (9)

For � WD  j.w/ 2 Ij
k, (8) together with (9) implies

j� � �
j
kj

dist.� j
k;K/

�
16s

90q.es=!j � 1/
<
1

2
:

We denote by �� any point of Kj such that j� � ��j D dist.�;K/. Then, we obtain

dist.� j
k;K/ � j�

j
k � ��j � j� � ��j C j�

j
k � �j � dist.�;K/C

1

2
dist.� j

k;K/;

which implies

dist.�;K/ �
3

2
dist.� j

k;K/ � 3dist.Ij
k;K/: (10)

Then by (7), we have

j 0
j .w/j �

4dist. j.w/;K/

es=!j � 1
�
4dist. j.w/;K/

s
: (11)

Combining (10) and (11), we get the last inequality in (6)

jIj
kj D

Z

J
j
k

j 0
j .w/jjdwj �

8

s

Z 2�.kC1/
Nj

2�k
Nj

dist. j.e
s=!jCi� /;K/ d� �

dist.Ij
k;K/

10q
:

The first inequality in (6) follows from (8) and trivial estimates

j�
j
kC1 � �

j
kj

dist.Ij
k;K/

�
j�

j
kC1 � �

j
kj

dist.� j
k;K/

�
jwj

kC1 � wj
kj

16.es=!j � 1/
�

!j

8sNj
�
1

q
:

2.2 Proof of Theorem 1

Proof We let N; q 2 N, s D aq
N < s1, and Nj as above. We use the uniform partition

according to �s, Kj
s D [

Nj

kD1I
j
k, as above. For p D 1; : : : ; q, define the quantities

mj
k;p WD

1

�s.I
j
k/

Z

I
j
k

.� � �
j
k/

p d�s.�/:
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Now consider the numbers rj
k;l D rj

k;l.I
j
k/, l D 1; : : : ; q, the solutions of the system

qX

lD1

.rj
k;l/

p D qmj
k;p DW Qmj

k;p; p D 1; : : : ; q;

defined as the zeros of the monic polynomial of degree q,

zq C aq�1z
q�1 C � � � C a0 D 0; (12)

with coefficients satisfying Newton’s identities

Qmj
k;p C aq�1 Qmj

k;p�1 C � � � C aq�pC1 Qmj
k;1 D �paq�p; p D 1; : : : ; q: (13)

Since jmj
k;pj � .dj;k/

p and thus j Qmj
k;pj � q.dj;k/

p, where dj;k WD diam.Ij
k/, we can use

induction and (13) to obtain

jaq�pj � .qdj;k/
p; p D 1; : : : ; q: (14)

As a consequence, if rj
k;l ¤ 0, using (12) and (14), we have

1 �
jaq�1j

jrj
k;lj

C � � � C
ja0j

jrj
k;lj

q
�

qdj;k

jrj
k;lj

C � � � C

 
qdj;k

jrj
k;lj

!q

�

1X

pD1

 
qdj;k

jrj
k;lj

!p

;

which implies for l D 1; : : : ; q,

jrj
k;lj � 2qdj;k: (15)

We define the numbers

�
j
k;l WD �

j
k C rj

k;l

and for n D Nq D q
P

j Nj, we construct the monic polynomial of degree n

Pn.z/ D

mY

jD1

NjY

kD1

qY

lD1

.z � �
j
k;l/:



144 I. DeFrain

Fix z 2 @K. First, we estimate the expression

N log cap.Ks/ D

mX

jD1

NjX

kD1

	
N �

Nj

!j


Z

I
j
k

log jz � �j d�s.�/

C

mX

jD1

NjX

kD1

1

�s.I
j
k/

Z

I
j
k

log jz � �j d�s.�/

by defining the quantities

˙1.z/ WD

mX

jD1

NjX

kD1

	
N �

Nj

!j


Z

I
j
k

log jz � �j d�s.�/;

˙2.z/ WD

mX

jD1

NjX

kD1

1

�s.I
j
k/

Z

I
j
k

log jz � �j d�s.�/:

By (5), we have N �
Nj

!j
 1; j D 1; : : : ;m. Thus, we have the following estimate

j˙1.z/j 

Z

Ks

j log jz � �jj d�s.�/

� j log diam.Ks/j C

Z

Ks

log
diam.Ks/

jz � �j
d�s.�/

� 2 logC diam.Ks/ � log cap.Ks/  1:

This gives an estimate for the main quantity of interest

log jPn.z/j � n log cap.Ks/ D log jPn.z/j � qN log cap.Ks/

 q C log jPn.z/j � q˙2.z/:
(16)

We need to estimate the following expression

log jPn.z/j � q˙2.z/ D
X

j;k;l

1

�s.I
j
k/

Z

I
j
k

log

ˇ̌
ˇ̌
ˇ
z � �

j
k;l

z � �

ˇ̌
ˇ̌
ˇ

d�s.�/: (17)

To this end, we consider the expansion (for any local branch of the logarithm we
have R log.1 � u/ D log j1 � uj)
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log

 
z � �

j
k;l

z � �

!

D log

 

1 �
�

j
k;l � �

j
k

z � �
j
k

!

� log

 

1 �
� � �

j
k

z � �
j
k

!

D

qX

pD1

1

p

  
� � �

j
k

z � �
j
k

!p

�

 
�

j
k;l � �

j
k

z � �
j
k

!p!

C Bj
k.�/:

(18)

By (15), the error term is bounded by

jBj
k.�/j D jBj

k.z; �; �
j
k;l/j 

1

q

 
2qdj;k

dist.z; Ij
k/

!qC1

: (19)

Now using (18), (19), and the definition of the rj
k;l, we can estimate (17) by

X

j;k;l

1

�s.I
j
k/

Z

I
j
k

log

ˇ̌
ˇ̌
ˇ
z � �

j
k;l

z � �

ˇ̌
ˇ̌
ˇ

d�s.�/ 
X

j;k

 
2qdj;k

dist.z; Ij
k/

!qC1

: (20)

Combining (16) and (20), we get

log jPn.z/j � n log cap.Ks/  q C
X

j;k

 
2qdj;k

dist.z; Ij
k/

!qC1

:

Noting that cap.Ks/ D escap.K/, we obtain

j log jPn.z/j � n log cap.K/j � ns C j log jPn.z/j � n log cap.Ks/j

 q2 C
X

j;k

 
2qdj;k

dist.z; Ij
k/

!qC1

:
(21)

Applying (6), we can bound the sum by an integral over Kj
s as follows

Z

K
j
s

dist.�;K/q

j� � zjqC1
jd�j �

NjX

kD1

.10qdj;k/
qjIj

kj

.dist.z; Ij
k/C dj;k/qC1

�
2q

2q

NjX

kD1

 
2qdj;k

dist.z; Ij
k/

!qC1

:

Finally, by the last inequality and (21), we get (3)

Wn.K/ �
jjPnjjK

cap.K/n
� exp

	
c1q

2 C
c2q

2q
max
z2K

Z

Ks

dist.�;K/q

j� � zjqC1
jd�j



:
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3 Piecewise Quasiconformal System

All necessary background material can be found in [2, 5, 7], and [8]. A crucial fact
for our method is that every conformal mapping onto a quasidisk (domain with
quasiconformal boundary) can be extended to a quasiconformal homeomorphism
C ! C whose maximal dilatation depends only on the quasidisk [8, p. 114,
Theorem 5.17].

In this section, we assume K D [jKj is a piecewise quasiconformal system.
By (2),  j extends continuously to the unit circle T. By Kj having a piecewise

quasiconformal boundary, we mean that there is a partition fei�
j
k g
˛j

kD1 of T with
�

j
1 < � � � < �

j
˛j < �

j
˛jC1

WD �
j
1 C 2� so that Lj

k WD  j.T
j
k/ � @Kj is a quasiconformal

arc, k D 1; : : : ; ˛j, where Tj
k WD fei� W �

j
k � � � �

j
kC1g � T.

Once and for all, we fix 0 < s < s1. We will use the following notations in what
follows:

Aj WD fw 2 D
� W 1 < jwj < es=!jg; Aj

k WD fw 2 Aj W �
j
k < arg.w/ < � j

kC1g;

Q�
j

k WD fes=!jCi� W �
j
k � � � �

j
kC1g; Q�

j
k WD Œ�

j
k;w

j
k�;

�
j
k WD ei�

j
k 2 Tj

k; wj
k WD es=!jCi�

j
k 2 Q�

j
k ;

˝ j WD  j.A
j/; ˝

j
k WD  j.A

j
k/; �

j
k WD  j. Q�

j
k /;

�
j
k WD  j. Q�

j
k/; zj

k WD  j.�
j
k/ 2 Lj

k; �
j
k WD  j.w

j
k/ 2 �

j
k :

Note that � j
k D ˝

j
k \ Kj

s and fzj
kg D �

j
k \ Lj

k. Also @Aj
k D Q�

j
k [ Q�

j
k [ Q�

j
kC1 [ Tj

k and

@˝
j
k D �

j
k [ �

j
k [ �

j
kC1 [ Lj

k.
By [4, Lemma 2, (4.14)], it follows that

j� � zj
kj  dist.�;K/; � 2 �

j
k; (22)

and

j�
j
k.�1; �2/j  j�1 � �2j; �1; �2 2 �

j
k:

Thus, by the Ahlfors criterion [7, p. 100], � j
k and � j

k are quasiconformal arcs which
do not meet at a cusp. By (22), � j

k and Lj
k do not meet at a cusp point and by

assumption, Lj
k is a quasiconformal arc. Hence, @˝ j

k is a quasiconformal curve.
Thus, we can extend  jjAj

k
to a Qj

k�quasiconformal homeomorphism  j;k W C ! C

for some Qj
k � 1 [7, p. 98] such that ˝ j

k D  j;k

�
Aj

k

�
. The inverse mapping 'j;k WD
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 �1
j;k is also Qj

k-quasiconformal. Each 'j;k,  j;k is a Q-quasiconformal automorphism

of C, where Q WD max1�j�m;1�k�˛j Qj
k. The following result describes the distortion

properties of Q-quasiconformal automorphisms of C.

Lemma 2 ([5], p. 29) Suppose the function � D F.�/ is a Q-quasiconformal
mapping of the extended plane onto itself with F.1/ D 1. Let �j 2 C, �j D F.�j/,
j D 1; 2; 3. Then:

(i) the conditions j�1 � �2j  j�1 � �3j and j�1 ��2j  j�1 ��3j are equivalent and
the constants are mutually dependent and depend on Q but not on the �j; �j;

(ii) if j�1 � �2j  j�1 � �3j, then

ˇ̌
ˇ̌�1 � �3

�1 � �2

ˇ̌
ˇ̌
1=Q



ˇ̌
ˇ̌�1 � �3

�1 � �2

ˇ̌
ˇ̌ 

ˇ̌
ˇ̌�1 � �3

�1 � �2

ˇ̌
ˇ̌
Q

; (23)

where the constants are mutually dependent and depend on Q but not on the �j; �j.
Now consider � 2 �

j
k and let �� 2 K be such that j� � ��j D dist.�;K/. Using

Lemma 2 with the quasiconformal mapping 'j;k and the points �; ��; zj
l, l D k or k C

1, we conclude that

j� � zj
lj  j� � ��j D dist.�;K/; � 2 �

j
k ; l D k or l D k C 1: (24)

We claim that

dist.z;Lj
k/  dist.z; ˝ j

k/; z 2 @Kj n Lj
k: (25)

Indeed, let z0 D z0.j; k/ 2 @˝
j
k D �

j
k [ �

j
k [ �

j
kC1 [ Lj

k be such that jz � z0j D

dist.z; ˝ j
k/. The nontrivial cases occur when z0 62 Lj

k, i.e. z0 2 �
j
l , l D k, k C 1, or

z0 2 �
j

k . By (22) or (24), we have

dist.z;Lj
k/ � jz � zj

lj � jz � z0j C jz0 � zj
lj  jz � z0j D dist.z; ˝ j

k/;

which implies (25).
For z 2 @Kj we denote by z�

j;k any point of Lj
k satisfying the property:

jz � z�
j;kj D dist.z;Lj

k/:

We claim that

j� � z�
j;kj  j� � zj; � 2 ˝

j
k; z 2 @Kj n Lj

k: (26)
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Indeed, for � 2 ˝
j
k, (25) implies

j� � z�
j;kj � j� � zj C jz � z�

j;kj  j� � zj C dist.z; ˝ j
k/  j� � zj;

and (26) follows.

For � 2 ˝
j
k, we consider the point �K 2 Lj

k defined by

� 7! �K WD  j;k

	
'j;k.�/

j'j;k.�/j



:

Now take any � 2 �
j

k and z 2 Lj
k. Using Lemma 2, we have

j'j;k.�/ � 'j;k.z/j  j'j;k.�/ � 'j;k.�K/j;

and (23) implies

dist.�;K/

j� � zj
�

ˇ̌
ˇ̌� � �K

� � z

ˇ̌
ˇ̌ 

	
j'j.�/j � 1

j'j;k.�/ � 'j;k.z/j


1=Q

: (27)

3.1 Proof of Theorem 2

Proof Fix q D Q. Let z 2 @Kj n Lj
k, z�

j;k as above, ��
j;k WD 'j;k.z�

j;k/ 2 Tj
k, and

s D aq
N < s1. We rewrite the integral (3) using the above decomposition of Ks

Z

Ks

dist.�;K/q

j� � zjqC1
jd�j D

mX

jD1

˛jX

kD1

Z

�
j

k

dist.�;K/q

j� � zjqC1
jd�j:

Since  j;k.�
�
j;k/ D z�

j;k, by (7), (26), (27), and a change of variables, we obtain

Z

�
j

k

dist.�;K/q

j� � zjqC1
jd�j 

Z

�
j

k

dist.�;K/q

j� � z�
j;kj

qC1
jd�j


1

s

Z

j� jDes=!j

 
dist. j;k.�/;K/

j j;k.�/ �  j;k.�
�
j;k/j

!qC1

jd� j


1

s

Z

j� jDes=!j

s.qC1/=Qjd� j

j� � ��
j;kj

.qC1/=Q

 s.qC1/=Q�1

Z 2�

0

jes=!jCi� � 1j�.qC1/=Q d�  1

As N ! 1 (s ! 0) the integrals in (3) remain bounded. This proves (4).
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6. A. Goncharov, B. Hartinoğlu: Widom Factors. Potential Anal., 42:671–680 (2015)
7. O. Lehto, K. I. Virtanen: Quasiconformal Mappings in the Plane. New York: Springer-Verlag

(1973)
8. Ch. Pommerenke: Boundary Behaviour of Conformal Mappings. Berlin/New York: Springer-

Verlag (1992)
9. T. Ransford: Potential Theory in the Plane. Cambridge: Cambridge University Press. (1995)

10. V. I. Smirnov, N. A. Lebedev: Functions of a Complex Variable: Constructive Theory. Constr.
Theory, Cambridge: M.I.T. (1968)

11. M. L. Sodin, P. M. Yuditskii: Functions Least Deviating from Zero on Closed Subsets of the
Real Line. St. Petersburg Math. J., 4:201–249 (1993)

12. P. K. Suetin: Series of Faber Polynomials (in Russian). Naukova Dumka, Kiev (1998)
13. V. Totik, E. B. Saff: Logarithmic Potentials with External Fields. Berlin/New York: Springer-

Verlag (1997)
14. V. Totik: Chebyshev Polynomials on a System of Curves. Journal D’Analyse Mathématique,

118:317–338 (2012)
15. V. Totik: Chebyshev Polynomials on Compact Sets. Potential Anal., 40:511–524 (2013)
16. V. Totik: Asymptotics of Christoffel Functions on Arcs and Curves. Adv. Math., 252:114–149

(2014)
17. V. Totik, T. Varga: Chebyshev and Fast Decreasing Polynomials. Proc. London Math. Soc.

(2015). doi: 10.1112/plms/pdv014
18. H. Widom: Extremal Polynomials Associated with a System of Curves in the Complex Plane.

Adv. Math., 3:127–232 (1969)



Constrained L2-Approximation by
Polynomials on Subsets of the Circle

Laurent Baratchart, Juliette Leblond, and Fabien Seyfert

Abstract We study best approximation to a given function, in the least square sense
on a subset of the unit circle, by polynomials of given degree which are pointwise
bounded on the complementary subset. We show that the solution to this problem,
as the degree goes large, converges to the solution of a bounded extremal problem
for analytic functions which is instrumental in system identification. We provide a
numerical example on real data from a hyperfrequency filter.

2010 Mathematics Subject Classification. 30E10, 30E25, 41A10, 46N10, 47A52,
93B30

1 Introduction

This paper deals with best approximation to a square summable function, on a finite
union I of arcs of the unit circle T, by a polynomial of fixed degree which is bounded
by 1 in modulus on the complementary system of arcs J D T n I. This we call,
for short, the polynomial problem. We are also concerned with the natural limiting
version when the degree goes large, namely best approximation in L2.I/ by a Hardy
function of class H2 which is bounded by 1 on J. To distinguish this issue from
the polynomial problem, we term it the analytic problem. The latter is a variant,
involving mixed norms, of constrained extremal problems for analytic functions
considered in [2, 3, 12, 13, 18]. As we shall see, solutions to the polynomial problem
converge to those of the analytic problem as the degree tends to infinity, in a sense to
be made precise below. This is why solving for high degree the polynomial problem
(which is finite-dimensional) is an interesting way to regularize and approximately
solve the analytic problem (which is infinite-dimensional). This is the gist of the
present work.

Constrained extremal problems for analytic functions, in particular the analytic
problem defined above, can be set up more generally in the context of weighted
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approximation, i.e. seeking best approximation in L2.I;w/ where w is a weight on
I. In fact, that kind of generalization is useful for applications as we shall see. As
soon as w is invertible in L1.I/, though, such a weighted problem turns out to be
equivalent to another one with unit weight, hence the present formulation warrants
most practical situations. This property allows one to carry the analytic problem
over to more general curves than the circle. In particular, in view of the isomorphism
between Hardy spaces of the disk and the half-plane arising by composition with a
Möbius transform [10, ch. 10], best approximation in L2.I/ from H2 of the disk
can be converted to weighted best approximation in L2.I;w/ from the Hardy space
h2 of a half-plane with I a finite union of bounded intervals on the line and w a
weight arising from the derivative of the Möbius transform. Since this weight is
boundedly invertible on I, it follows that the analytic problem on the circle and its
analog on the line are equivalent. One may also define another Hardy space H2,
say of the right half-plane as the space of analytic functions whose L2-means over
vertical lines are uniformly bounded. Then, best approximation in L2.I/ from H2 is
equivalent to best approximation from H2 in L2.I/, i.e. weight is no longer needed.
Of course, such considerations hold for many other domains and boundary curves
than the half-plane and the line, but the latter are of special significance to us as we
now explain.

Indeed, on the line, constrained extremal problems for analytic functions natu-
rally arise in Engineering when studying deconvolution issues, in particular those
pertaining to system identification and design. This motivation is stressed in
[2, 4, 5, 12, 19], whose results are effectively used today to identify microwave
devices [1, 14]. More precisely, recall that a linear time-invariant dynamical system
is just a convolution operator, hence the Fourier-Laplace transform of its output
is that of its input times the Fourier-Laplace transform of its kernel. The latter is
called the transfer-function. Now, by feeding periodic inputs to a stable system,
one can essentially recover the transfer function pointwise on the line, but typically
in a restricted range of frequencies only, corresponding to the passband of the
system, say I [9]. Here, the type of stability under consideration impinges on the
smoothness of the transfer function as well as on the precise kind of recovery that
can be achieved, and we refer the reader to [6, Appendix 2] for a more thorough
analysis. For the present discussion, it suffices to assume that the system is stable in
the L2 sense, i.e. that it maps square summable inputs to square summable outputs.
Then, its transfer function lies in H1 of the half-plane [15], and to identify it we
are led to approximate the measurements on I by a Hardy function with a bound
on its modulus. Still, on I, a natural criterion from the stochastic viewpoint is
L2.I;w/, where the weight w is the reciprocal of the pointwise covariance of the
noise assumed to be additive [16]. Since this covariance is boundedly invertible
on I, we face an analytic problem on the line upon normalizing the bound on
the transfer function to be 1. This stresses how the analytic problem on the line,
which can be mapped back to the circle, connects to system identification. Now, this
analytic problem is convex but infinite-dimensional. Moreover, as Hardy functions
have no discontinuity of the first kind on the boundary [11, ch. II, ex. 7] and
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since the solution to an analytic problem generically has exact modulus 1 on J,
as we prove later on, it will typically oscillate at the endpoints of I, J which is
unsuited. One way around these difficulties is to solve the polynomial problem
for sufficiently high degree, as a means to regularize and approximately solve the
analytic one. This was an initial motivation by the authors to write the present
paper, and we provide the reader in Sect. 5 with a numerical example on real data
from a hyperfrequency filter. It must be said that the polynomial problem itself
has numerical issues: though it is convex in finitely many variables, bounding
the modulus on J involves infinitely many convex constraints which makes it of
so-called semi-infinite programming type. A popular technique to handle such
problems is through linear matrix inequalities, but we found it easier to approximate
from below the polynomial problem by a finite-dimensional one with finitely many
constraints, in a demonstrably convergent manner as the number of these constraints
gets large.

The organization of the paper is as follows. In Sect. 2 we set some notation and
we recall standard properties of Hardy spaces. We state the polynomial and analytic
problems in Sect. 3, where we also show they are well-posed. Section 4 deals with
the critical point equations characterizing the solutions, and with convergence of
the polynomial problem to the analytic one. Finally, we report on some numerical
experiment in Sect. 5.

2 Notations and Preliminaries

Throughout we let T be the unit circle and I � T a finite union of nonempty open
arcs whose complement J D TnI has nonempty interior. If h1 (resp. h2) is a function
defined on a set containing I (resp. J), we put h1 _ h2 for the concatenated function,
defined on the whole of T, which is h1 on I and h2 on J.

For E � T, we let @E and
ı

E denote respectively the boundary and the interior
of E when viewed as a subset of T; we also let 	E for the characteristic function of
E and hjE for the restriction of h to E. Lebesgue measure on T is just the image of
Lebesgue measure on Œ0; 2�/ under the parametrization � 7! ei� . We denote by jEj

the measure of a measurable subset E � T, and if 1 � p � 1 we write Lp.E/ for the
familiar Lebesgue space of (equivalence classes of a.e. coinciding) complex-valued
measurable functions on E with norm

kf kLp.E/ D

	
1

2�

Z

E
jf .ei� /jp d�


1=p

< 1 if 1 � p < 1;

kf kL1.E/ D ess: sup
�2E

jf .ei� /j < 1:

We sometimes indicate by Lp
R
.E/ the real subspace of real-valued functions. We also

set
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hf ; giE D
1

2�

Z

E
f .ei� /g.ei� / d� (1)

whenever f 2 Lp.E/ and g 2 Lq.E/ with 1=p C 1=q D 1. If f and g are defined on
a set containing E, we write for simplicity hf ; giE to mean < fjE ; gjE > and kf kLp.E/

to mean kfjE kLp.E/. Hereafter C.E/ stands for the space of bounded complex-valued
continuous functions on E endowed with the sup norm, while CR.E/ indicates real-
valued continuous functions.

Recall that the Hardy space Hp is the closed subspace of Lp.T/ consisting of
functions whose Fourier coefficients of strictly negative index do vanish. We refer
the reader to [11] for standard facts on Hardy spaces, in particular those recorded
hereafter. Hardy functions are the nontangential limits a.e. on T of functions
holomorphic in the unit disk D having uniformly bounded Lp means over all circles
centered at 0 of radius less than 1:

kf kHp D sup
0�r<1

	
1

2�

Z 2�

0

jf .rei� /jp d�


1=p

if 1 � p < 1; kf kH1 D sup
z2D

jf .z/j:

(2)
The correspondence between such a holomorphic function f and its non tangential
limit f ] is one-to-one and even isometric, namely the supremum in (2) is equal to
kf ]kp, thereby allowing us to identify f and f ] and to drop the superscript ]. Under
this identification, we regard members of Hp both as functions in Lp.T/ and as
holomorphic functions in the variable z 2 D, but the argument (which belongs to
T in the former case and to D in the latter) helps preventing confusion. It holds in
fact that fr.ei� / D f .rei� / converges as r ! 1� to f .ei� / in Lp.T/ when f 2 Hp and
1 � p < 1. It follows immediately from (2) and Hölder’s inequality that, whenever
g1 2 Hp1 and g2 2 Hp2 , we have g1g2 2 Hp3 if 1=p1 C 1=p2 D 1=p3.

Given f 2 Hp, its values on D are obtained from its values on T through a Cauchy
as well as a Poisson integral [17, ch. 17, thm 11], namely:

f .z/D
1

2 i�

Z

T

f .�/

� � z
d�; and also f .z/ D

1

2�

Z

T

Re

�
ei� C z

ei� � z

�
f .ei� / d�; z 2 D;

(3)
where the right hand side of the first equality in (3) is a line integral. The latter
immediately implies that the Fourier coefficients of a Hardy function on the circle
are the Taylor coefficients of its power series expansion at 0 when viewed as a
holomorphic function on D. In this connection, the space H2 is especially simple to
describe: it consists of those holomorphic functions g in D whose Taylor coefficients
at 0 are square summable, namely

g.z/ D

1X

kD0

akzk W kgk2H2 WD

1X

kD0

jakj
2 < C1; g.ei� / D

1X

kD0

akeik� ; (4)
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where the convergence of the last Fourier series holds in L2.T/ by Parseval’s
theorem (and also pointwise a.e. by Carleson’s theorem but we do not need this
deep result). Incidentally, let us mention that for no other value of p is it known how
to characterize Hp in terms of the size of its Fourier coefficients.

By the Poisson representation (i.e. the second integral in (3)), a Hardy function g
is also uniquely represented, up to a purely imaginary constant, by its real part h on
T according to:

g.z/ D iImg.0/ C
1

2�

Z

T

ei� C z

ei� � z
h.ei� / d� ; z 2 D: (5)

The integral in (5) is called the Riesz-Herglotz transform of h and, whenever
h 2 L1

R
.T/, it defines a holomorphic function in D which is real at 0 and whose

nontangential limit exists a.e. on T with real part equal to h. Hence the Riesz-
Herglotz transform (5) assumes the form h.ei� / C ieh.ei� / a.e. on T, where the
real-valued function eh is said to be conjugate to h. It is a theorem of M. Riesz
[11, chap. III, thm 2.3] that if 1 < p < 1, theneh 2 Lp

R
.T/ when h 2 Lp

R
.T/. This

neither holds for p D 1 nor for p D 1.
A nonzero f 2 Hp can be uniquely factored as f D jw where

w.z/ D exp

�
1

2�

Z 2�

0

ei� C z

ei� � z
log jf .ei� /j d�

�
(6)

belongs to Hp and is called the outer factor of f , while j 2 H1 has modulus 1 a.e.
on T and is called the inner factor of f . That w.z/ in (6) is well-defined rests on the
fact that log jf j 2 L1 if f 2 H1 n f0g; it entails that a Hp function cannot vanish on
a subset of strictly positive Lebesgue measure on T unless it is identically zero. For
simplicity, we often say that a function is outer (resp. inner) if it is equal, up to a
unimodular multiplicative constant, to its outer (resp. inner) factor.

Closely connected to Hardy spaces is the Nevanlinna class NC, consisting of
holomorphic functions in D that can be factored as jE, where j is an inner function
and E an outer function of the form

E.z/ D exp

�
1

2�

Z 2�

0

ei� C z

ei� � z
log �.ei� / d�

�
; (7)

with � a positive function such that log � 2 L1.T/ (though � itself may not be
summable). Such a function has nontangential limits of modulus � a.e. on T. The
Nevanlinna class is instrumental in that NC \ Lp.T/ D Hp, see [10, thm 2.11] or
[11, 5.8, ch.II]. Thus, formula (7) defines a Hp-function if and only if � 2 Lp.T/.

Let OC D C [ f1g be the Riemann sphere. The Hardy space NHp of OC n D can be
given a treatment parallel to Hp upon changing z into 1=z. Specifically, NHp consists
of functions in Lp.T/ whose Fourier coefficients of strictly positive index do vanish;
these are, a.e. on T, the complex conjugates of Hp-functions, and they can also
be viewed as nontangential limits of functions analytic in OC n D having uniformly
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bounded Lp means over all circles centered at 0 of radius bigger than 1. We further
single out the subspace NHp

0 of NHp, consisting of functions vanishing at infinity or,
equivalently, having vanishing mean on T. Thus, a function belongs to NHp

0 if, and

only if it is of the form e�i�g.ei� / for some g 2 Hp. For G 2 NHp
0 , the Cauchy formula

assumes the form :

G.z/ D
1

2 i�

Z

T

G.�/

z � �
d� ; z 2 OC n D: (8)

It follows at once from the Cauchy formula that the duality product h ; iT makes
Hp and NHq

0 orthogonal to each other, and it reduces to the familiar scalar product
when p D q D 2. In particular, we have the orthogonal decomposition :

L2.T/ D H2 ˚ NH2
0 : (9)

For f 2 C.T/ and � 2 M, the space of complex Borel measures on T, we set

�:f D

Z

T

f .ei� / d�.�/ (10)

and this pairing induces an isometric isomorphism between M (endowed with the
norm of the total variation) and the dual of C.T/ [17, thm 6.19]. If we let A � H1

designate the disk algebra of functions analytic in D and continuous on D, and if
A0 indicates those functions in A vanishing at zero, it is easy to see that A0 is the
orthogonal space under (10) to those measures whose Fourier coefficients of strictly
negative index do vanish. Now, it is a fundamental theorem of F. and M. Riesz that
such measures are absolutely continuous, that is have the form d�.�/ D g.ei� / d�
with g 2 H1. The Hahn-Banach theorem implies that H1 is dual via (10) to the
quotient space C.T/=A0 [11, chap. IV, sec. 1]. Equivalently, NH1

0 is dual to C.T/=A
under the pairing arising from the line integral :

.Pf ;F/ D
1

2i�

Z

T

f .�/F.�/ d� ; (11)

where F belongs to NH1
0 and Pf indicates the equivalence class of f 2 C.T/ modulo

A. Therefore, contrary to L1.T/, the spaces H1 and NH1
0 enjoy a weak-* compactness

property of their unit ball.
We define the analytic and anti-analytic projections PC and P� on Fourier series

by :

PC

 
1X

nD�1

anein�

!

D

1X

nD0

anein� ; P�

 
1X

nD�1

anein�

!

D

�1X

nD�1

anein� :

It is a theorem of M. Riesz theorem [11, ch. III, sec, 1] that PC W Lp ! Hp and
P� W Lp ! NHp

0 are bounded for 1 < p < 1, in which case they coincide with the
Cauchy projections:
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PC.h/.z/ D
1

2i�

Z

T

h.�/

� � z
d�; z 2 D; P�.h/.s/ D

1

2i�

Z

T

h.�/

s � �
d�; s 2 OCnD:

(12)
When restricted to L2.T/, the projections PC and P� are just the orthogonal
projections onto H2 and NH2

0 respectively. Although P˙.h/ needs not be the Fourier
series of a function when h is merely in L1.T/, it is Abel summable almost
everywhere to a function lying in Ls.T/ for 0 < s < 1 and it can be interpreted
as a function in the Hardy space of exponent s that we did not introduce [10, cor.
to thm 3.2]. To us it will be sufficient, when h 2 L1, to regard P˙.f / as the Fourier
series of a distribution.

Finally, we let Pn denote throughout the space of complex algebraic polynomials
of degree at most n. Clearly, Pn � Hp for all p.

3 Two Extremal Problems

We first state the polynomial problem discussed in Sect. 1. We call it PBEP.n/ for
“Polynomial Bounded Extremal Problem”:

PBEP(n)
For f 2 L2.I/, find kn 2 Pn such that jkn.ei� /j � 1 for a.e. ei� 2 J and

kf � knkL2.I/ D inf
g2Pn

jgj�1a.e. on J

kf � gkL2.I/ : (13)

Next, we state the analytic problem from Sect. 1 that we call ABEP for “Analytic
Bounded Extremal Problem”:

ABEP
Given f 2 L2.I/, find g0 2 H2 such that jg0.ei� /j � 1 a.e. on J and

kf � g0kL2.I/ D inf
g2H2

jgj�1a.e. on J

kf � gkL2.I/ : (14)

Note that, in ABEP, the constraint jgj � 1 on J could be replaced by jgj � �

where � is a positive function in L2.J/. For if log � 2 L1.J/ then, denoting by
w1_.1=�/ the outer factor having modulus 1 on I and 1=� on J, we find that g 2

H2 satisfies jgj � � on J if and only if h D gw1_.1=�/ lies in H2 and satisfies
jhj � 1 on J. It is so because, for g as indicated, h lies in the Nevanlinna class
by construction and jhjjI D jgjjI while jhjjJ D jgjjJ=�. If, however, log � … L1.J/,
then we must have

R
J log � D �1 because � 2 L2.J/, consequently the set of

candidate approximants reduces to f0g anyway because a nonzero Hardy function
has summable log-modulus. Altogether, it is thus equivalent to consider ABEP for
the product f times .w1_��1 /

jI
. A similar argument shows that we could replace



158 L. Baratchart et al.

the error criterion k:kL2.I/ by a weighted norm k:kL2.I;w/ for some weight w which
is non-negative and invertible in L1.I/. Then, the problem reduces to ABEP for
f .w�1=2_0/I .

Such equivalences do not hold for PBEP.n/ because the polynomial character of
kn is not preserved under multiplication by outer factors. Still, the results to come
continue to hold if we replace in PBEP.n/ the constraint jknj � 1 by jknj � � on J
and the criterion k:kL2.I/ by k:kL2.I;w/, provided that � 2 C.J/ and that w is invertible
in L1.I/. Indeed, we leave it to the reader to check that proofs go through with
obvious modifications.

After these preliminaries, we are ready to state a basic existence and uniqueness
result.

Theorem 1 Problems PBEP.n/ and ABEP have a unique solution. Moreover, the
solution g0 to ABEP satisfies jg0j D 1 almost everywhere on J, unless f D gjI for
some g 2 H2 such that kgkL1.J/ � 1.

Proof Consider the sets

En D fgjI W g 2 Pn; kgkL1.J/ � 1g;

F D fgjI W g 2 H2; kgkL1.J/ � 1g:

Clearly En � F are convex and nonempty subsets of L2.I/, as they contain 0. To
prove existence and uniqueness, it is therefore enough to show they are closed, for
we can appeal then to well-known properties of the projection on a closed convex set
in a Hilbert space. Since En D Pn \ F, it is enough in fact to show that F is closed.
For this, let gm be a sequence in H2 with jgmjjJ � 1 and such that .gm/jI converges
in L2.I/. Obviously gm is a bounded sequence in L2.T/, some subsequence of which
converges weakly to h 2 H2. We continue to denote this subsequence with gm. The
restrictions .gm/jI a fortiori converge weakly to hjI in L2.I/, and since the strong
and the weak limit must coincide when both exist we find that .gm/jI converges to
hjI in L2.I/. Besides, .gm/jJ is contained in the unit ball of L1.J/ which is dual
to L1.J/, hence some subsequence (again denoted by .gm/jJ ) converges weak-* to
some h1 2 L1.J/ with kh1kL1.J/ � 1. But since .gm/jJ also converges weakly to
hjJ in L2.J/, we have that

hh1; 'iJ D lim
m!1

hgm; 'iJ D hhjJ ; 'iJ

for all ' 2 L2.J/ which is dense in L1.J/. Consequently h1 D hjJ , thereby showing
that khkL1.J/ � 1, which proves that F is closed.

Assume now that f is not the trace on I of an H2-function which is less than
1 in modulus on I. To prove that jg0j D 1 a.e. on J, we argue by contradiction.
If not, there is a compact set K of positive measure, lying interior to J, such that
kg0kL1.K/ � 1 � ı for some 0 < ı < 1; it is so because, by hypothesis, J
must consist of finitely many closed arcs, of which one at least has nonempty
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interior. For K0 an arbitrary subset of K, consider the Riesz-Herglotz transform of
its characteristic function:

hK0.z/ D
1

2�

Z

K0

ei� C z

ei� � z
d� ; z 2 D; (15)

and put wt D exp.thK0/ for t 2 R, which is the outer function with modulus exp t
on K0 and 1 elsewhere. By construction, g0wt is a candidate approximant in ABEP
for all t < � log.1 � ı/. Thus, the map t 7! kf � g0wtk

2
L2.I/

attains a minimum at
t D 0. Because K is at strictly positive distance from I, we may differentiate this
expression with respect to t under the integral sign and equate the derivative at t D 0

to zero which gives us 2Rehf � g0; hK0g0iI D 0. Replacing g0wt by ig0wt, which is a
candidate approximant as well, we get a similar equation for the imaginary part so
that

0 D hf � g0 ; hK0g0iI D h.f � g0/Ng0 ; hK0iI : (16)

Let eit0 be a density point of K and Il the arc centered at eit0 of length l, so that
jIl \ K/j=l ! 1 as l ! 0. Since

ˇ
ˇ̌
ˇ
eit C ei�

eit � ei�
�

eit0 C ei�

eit0 � ei�

ˇ
ˇ̌
ˇ �

2l

dist2.K; I/
for eit 2 Il \ K; ei� 2 I; (17)

it follows by dominated convergence that

lim
l!0

1

jIl \ Kj

Z

Il\K

ˇ̌
ˇ
ˇ
eit C ei�

eit � ei�
�

eit0 C ei�

eit0 � ei�

ˇ̌
ˇ
ˇ dt D 0; uniformly w.r. to ei� 2 I;

and therefore that

lim
l!0

hIl\K.ei� /

jIl \ Kj
D

eit0 C ei�

eit0 � ei�
uniformly w.r. to ei� 2 I:

Applying now (16) with K0 D Il \ K and taking into account that .eit0 C ei� /=.eit0 �

ei� / is pure imaginary on I, we find in the limit, as l ! 0 that

1

2�

Z

I

eit0 C ei�

eit0 � ei�

�
.f � g0/Ng0

�
.ei� / d� D 0: (18)

Next, let us consider the function

F.z/ D
1

2�

Z

I

ei� C z

ei� � z

�
.f � g0/Ng0

�
.ei� / d�
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D �
1

2�

Z

I

�
.f � g0/Ng0

�
.ei� /d� C

1

i�

Z

I

�
.f � g0/Ng0

�
.�/d�

� � z

which is the sum of a constant and of twice the Cauchy integral of .f �.g0/jI /.Ng0/jI 2

L1.I/, hence is analytic in OCnI. Equation (18) means that F vanishes at every density
point of K, and since a.e. point in K is a density point F must vanish identically
because its zeros accumulate in the interior of J. Denoting by FC and F� the
nontangential limits of F from sequences of points in D or C n D respectively, we
now get from the Plemelj-Sokhotski formulas [11, ch. III] that

0 D FC.�/ � F�.�/ D .f � g0/.�/g0.�/; a:e: � 2 I:

Thus, either g0 is nonzero a.e. on I, in which case f D .g0/jI and we reach the desired
contradiction, or else g0 	 0. In the latter case, if we put id for the identity map on
T, we find that t 7! kf � t idkk2

L2.I/
has a minimum at t D 0 for each integer k � 0,

since ei� 7! teik� is a candidate approximant for t 2 Œ�1; 1�. Differentiating with
respect to t and expressing that the derivative at t D 0 is zero, we deduce that all
Fourier coefficients of non-negative index of .f � .g0/jI / _ 0 do vanish. This means
this last function lies in NH2, but as it vanishes on J it is identically zero, therefore
f D .g0/jI in all cases. �

Remark the theorem shows that the constraint jg0j � 1 on J is saturated in a very
strong sense for problem ABEP, namely jg0j D 1 a.e. on J unless f is already the
trace of the solution on I. In contrast, it is not true that kknkL1.J/ D 1 unless f D gjI

for some g 2 Pn such that kgkL1.J/ < 1. To see this, observe that the set En is
not only closed but compact. Indeed, if we pick distinct points �1; � � � ; �nC1 in J
and form the Lagrange interpolation polynomials Lj 2 Pn such that Lj.�j/ D 1 and
Lj.�`/ D 0 if ` ¤ j, we get a basis of Pn in which the coordinates of every g 2 Pn

meeting kgkL1.J/ � 1 are bounded by 1 in modulus. Hence En is bounded in Pn,
and since it is closed by the proof of Theorem 1 it is compact. Thus, each f 2 L2.I/
has a best approximant from En, and if .pn/I is a best approximant to f with pn 2 Pn,
then for � > kpnkL1.J/ we find that pn=� is a best approximant to f=� in L2.I/
which is strictly less than 1 on J. This justifies the remark.

4 Critical Point Equations and Convergence
of Approximants

At this point, it is worth recalling informally some basic principles from convex
optimization, for which the reader may consult [7]. The solution to a strictly
convex minimization problem is characterized by a variational inequality expressing
that the criterium increases under admissible increments of the variable. If the
problem is smooth enough, such increments admit a tangent space at the point under
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consideration (i.e. the solution) in the variable space. We term it the tangent space to
the constraints, and its orthogonal in the dual space to the variable space is called the
orthogonal space to the constraints (at the point under consideration). The variation
of the objective function must vanish on the tangent space to the constraints to the
first order, thereby giving rise to the so-called critical point equation. It says that
the gradient of the objective function, viewed as an element of the dual space to the
variable space, lies in the orthogonal space to the constraints. If a basis of the latter
is chosen, the coordinates of the gradient in this basis are known as the Lagrange
parameters. More generally, one can form the Lagrangian which is a function of the
variable and of the Lagrange parameters, not necessarily optimal ones. It is obtained
by adding the gradient of the criterion, at the considered value of the variable,
with the member of the orthogonal space to the constraints defined by the chosen
Lagrange parameters. By what precedes, the Lagrangian must vanish at the solution
for appropriate values of the Lagrange parameters. One can further define a function
of the Lagrange parameters only, by minimizing the Lagrangian with respect to the
variable. This results in a concave function which gets maximized at the optimal
value of the Lagrange parameters for the original problem. This way, one reduces
the original constrained convex minimization problem to an unsconstrained concave
maximization problem, called the dual problem. In an infinite-dimensional context,
the arguments needed to put this program to work may be quite subtle.

Below we derive the critical point equation for PBEP.n/ described in (13). For
g 2 Pn define

E.g/ D fx 2 J; jg.x/j D jjgjjL1.J/g;

which is the set of extremal points of g on J.

Theorem 2 A polynomial g 2 Pn is the solution to PBEP.n/ iff the following two
conditions hold:

• jjgjjL1.J/ � 1,
• there exists a set of r distinct points x1; � � � ; xr 2 E.g/ and non-negative real

numbers �1; � � � ; �r, with 0 � r � 2n C 2, such that

hg � f ; hiI C

rX

jD1

�jg.xj/h.xj/ D 0; 8h 2 Pn: (19)

Moreover the �j’s meet the following bound

rX

jD1

�j � 2jjf jj2L2.I/: (20)

We emphasize that the set of extremal points fxj; j D 1; : : : ; rg is possibly empty (i.e
r D 0).
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Proof Suppose g verifies the two conditions and differs from the solution kn. Set
h D kn � g 2 Pn and observe that

Re
�

g.xi/h.xi/
�

D Re
�

g.xi/kn.xi/ � 1
�

� 0; i D 1 : : : r: (21)

From the uniqueness and optimality of kn we deduce that

jjkn � f jj2L2.I/ D jjg � f C hjj2L2.I/

D jjg � f jj2L2.I/ C jjhjj2L2.I/ C 2Rehg � f ; hiI

< jjg � f jj2L2.I/:

Consequently Rehg � f ; hiL2.I/ < 0 which, combined with (21), contradicts (19).
Conversely, suppose that g is the solution to PBEP.n/ and let �0 be the R-linear

forms on Pn given by

�0.h/ D Rehg � f ; hiI ; h 2 Pn:

For each extremal point x 2 E.g/, define further a R-linear form �x by

�x.h/ D Re
�

g.x/h.x/
�
; h 2 Pn:

Put K for the union of these forms:

K D f�0g [ f�x; x 2 E.g/g:

If we let PR

n indicate Pn viewed as a real vector space, K is a subset of the dual
.PR

n /
�. As J is closed by definition, simple inspection shows that K is closed and

bounded in .PR

n /
� (it is in fact finite unless g is a constant), hence it is compact and

so is its convex hull OK as .PR

n /
� is finite-dimensional. Suppose for a contradiction

that 0 62 OK. Then, since .PR

n /
�� D PR

n because PR

n is finite-dimensional, there exists
by the Hahn-Banach theorem an h0 2 Pn such that,

�.h0/ � � > 0; 8� 2 OK:

The latter and the continuity of g and h0 ensure the existence of a neighborhood V of

E.g/ on T such that for x in U D J \ V we have Re
�

g.x/h0.x/
�

� �
2
> 0, whereas

for x in JnU it holds that jg.x/j � 1 � ı for some ı > 0. Clearly, for � > 0 with
�jjh0jjL1.J/ < ı, we get that

sup
JnU

jg.x/ � �h0.x/j � 1: (22)
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Moreover, assuming without loss of generality that � < 1, it holds for x 2 U that

jg.x/ � �h0.x/j
2 D jg.x/j2 � 2Re

�
g.x/h0.x/

�
C �2jh0.x/j

2

� jg.x/j2 � 2Re
�
�g.x/h0.x/

�
C �2jh0.x/j

2

� 1 � �� C �2jjh0jj
2
L1.J/:

The latter combined with (22) shows that, for � sufficiently small, we have

jjg � �h0jjL1.J/ � 1: (23)

However, since

jjf � g � �h0jj
2
L2.J/ D jjf � gjj2L2.J/ � 2��0.h0/C �2jjh0jj

2
L2.J/

� jjf � gjj2L2.J/ � 2�� C �2jjh0jj
2
L2.J/;

(24)

we deduce in view of (23) that for � small enough the polynomial g � �h0 performs
better than g in FBEP, thereby contradicting optimality. Hence 0 2 OK, therefore by
Carathedory’s theorem [8, ch. 1, sec. 5] there are r0 elements �j of K, with 1 � r0 �

2.n C 1/C 1 (the real dimension of PR

n plus one), such that

r0X

jD1

˛j�j D 0 (25)

for some positive ˛j satisfying
P
˛j D 1. Of necessity �0 is a �j, otherwise

evaluating (25) at g yields the absurd conclusion that

0 D

r0X

jD1

˛j�j.g/ D

r0X

jD1

˛jjg.xj/j
2 D 1:

Equation (25) can therefore be rewritten as

˛1Rehf � g; hiI C

r0X

jD2

˛jRe.g.xj/h.xj// D 0 8h 2 Pn; ˛1 ¤ 0:

Dividing by ˛1 and noting that the last equation is also true with ih instead of h
yields (19) with r D r0 � 1. Finally, replacing h by g in (19) we obtain



164 L. Baratchart et al.

rX

jD1

j�jj D

rX

jD1

�jj D hf � g; giI � hf � g; f � giI C jhf � g; f iIj

� jjf � gjj2L2.I/ C jjf � gjjL2.I/jjf jjL2.I/

� 2jjf jj2L2.I/

where the next to last majorization uses the Schwarz inequality and the last that 0 is
a candidate approximant for PBEP.n/ whereas g is the optimum. �

The next result describes the behavior of kn when n goes to infinity, in connection
with the solution g0 to ABEP.

Theorem 3 Let kn be the solution to PBEP.n/ defined in (13), and g0 the solution
to ABEP described in (14). When n ! 1, the sequence .kn/jI converges to .g0/jI in
L2.I/ , and the sequence .kn/jJ converges to .g0/jJ in the weak-* topology of L1.J/,
as well as in Lp.J/-norm for 1 � p < 1 if f is not the trace on I of a H2-function
which is at most 1 in modulus on J. Altogether this amounts to:

lim
n!1

jjg0 � knjjLp.T/ D 0; 1 � p � 2; (26)

lim
n!1

hkn; hiJ D hg0; hiJ 8h 2 L1.J/; (27)

if f ¤ g0 on I; lim
n!1

jjg0 � knjjLp.J/ D 0; 1 � p < 1: (28)

Proof Our first objective is to show that g0 can be approximated arbitrary close in
L2.I/ by polynomials that remain bounded by 1 in modulus on J. By hypothesis I is
the finite union of N � 1 open disjoint sub-arcs of T. Without loss of generality, it
can thus be written as

I D

N[

iD1

.eiai ; eibi/; 0 D a1 � b1 � a2 � � � � bN � 2�:

Let .�n/ be a sequence of positive real numbers decreasing to 0. We define a
sequence .vn/ in H2 by

vn.z/D g0.z/ exp

 

�
1

2�

 
NX

iD1

Z aiC�n

ai

eit C z

eit � z
log jg0jdt C

Z bi

bi��n

eit C z

eit � z
log jg0jdt

!!

Note that indeed vn 2 H2 for n large enough because then it has the same modulus
as g0 except over the arcs .ai; ai C �n/ and .bi � �n; bi/ where it has modulus 1. We
claim that .vn/jI converges to g0 in L2.I/ as n ! 1. To see this, observe that vn

converges a.e. on I to g0, for each z 2 I remains at some distance from the sub-
arcs .ai; ai C �n/ and .bi; bi C �n/ for all n sufficiently large, hence the argument
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of the exponential in (29) converges to zero as n ! 1 by absolute continuity of
log jg0jdt. Now, we remark that by construction jvnj � jg0jC1, hence by dominated
convergence, we get that

lim
n!1

jjg0 � vnjjL2.I/ D 0:

This proves the claim. Now, let � > 0 and 0 < ˛ < 1 such that jjg0 �˛g0jjL2.I/ � �
4
.

Let also n0 be so large that jjvn0 � g0jjL2.I/ � �
4
. For 0 < r < 1 define ur 2 A (the

disk algebra) by ur.z/ D vn0 .rz/ so that, by Poisson representation,

ur.e
i� / D

Z

T

Pr.� � t/vn0 .re
it/dt;

where Pr is the Poisson kernel. Whenever ei� 2 J, we note by construction that
jvnj D 1 a.e on the sub-arc .ei.���n0 /; ei.�C�n0 //. This is to the effect that

jur.e
i�/j �

Z

T

Pr.� � t/jvn0 .re
it/jdt

� Pr.�n0 /

Z

T

jvn0 .re
it/jdt C

Z C�n0

��n0

Pr.t/dt

� Pr.�n0 /jjvn0 jjL1.T/ C 1 � Pr.�n0 /jjvn0 jjL2.T/ C 1

by Hölder’s inequality. Hence, for r sufficiently close to 1, we certainly have that
jurj � 1=˛2 on J and otherwise that jjur � vn0 jj

2
L2.I/

� �
4

since ur ! vn0 in H2.
Finally, call q the truncated Taylor expansion of ur (which converges uniformly to
the latter on T), where the order of truncation has been chosen large enough to
ensure that jqj � 1=˛ on J and that jjq � urjj

2
L2.I/

� �
4
. Then, we have that

jj˛q � g0jjL2.I/ � ˛
�
jjq � urjjL2.I/ C jjur � vn0 jjL2.I/ C jjvn0 � g0jjL2.I/

�

C jjg0 � ˛g0jjL2.I/ � �:

Thus, we have found a polynomial (namely ˛q) which is bounded by 1 in modulus
on J and close by � to g0 in L2.I/. By comparison, this immediately implies that

lim
n!1

jjf � knjjL2.I/ D jjf � g0jjL2.I/; (29)

from which (26) follows by Hölder’s inequality. Moreover, being bounded in H2,
the sequence .kn/ has a weakly convergent sub-sequence. The traces on J of
this subsequence are in fact bounded by 1 in L1.J/-norm, hence up to another
subsequence we obtain .knm/ converging also in the weak-* sense on J. Let g be the
weak limit (H2 sense) of knm , and observe that gjJ is necessarily the weak-* limit
of .knm/jJ in L1.J/, as follows by integrating against functions from L2.J/ which is
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dense in L1.J/. Since balls are weak-* closed in L1.J/, we have that jjgjjL1.J/ � 1,
and it follows from (29) that jjf � gjjL2.I/ D jjf � g0jjL2.I/. Thus, g D g0 by the
uniqueness part of Theorem 1. Finally, if f ¤ g0 on J, then we know from Theorem 1
that jg0j D 1 a.e. on J. In this case, (29) implies that lim sup jjknm jjL2.T/ � jjg0jjL2.T/,
and since the norm of the weak limit is no less than the limit of the norms it follows
that .knm/jJ converges strongly to .g0/jJ in the strictly convex space L2.J/. The same
reasoning applies in Lp.J/ for 1 < p < 1. Finally we remark that the preceding
arguments hold true when kn is replaced by any subsequence of itself; hence kn

contains no subsequence not converging to g0 in the sense stated before, which
achieves the proof. �

We come now to an analog of Theorem 2 in the infinite dimensional case. We
define H2;1

J and H2;1
I to be the following vector spaces:

H2;1
J D fh 2 H2; jjhjjL1.J/ < 1g;

H2;1
I D fh 2 H1; jjhjjL2.I/ < 1g;

endowed with the natural norms. We begin with an elementary lemma.

Lemma 1 Let v 2 L1.J/ such that PC.0 _ v/ 2 H2;1
I . Then:

8h 2 H2;1
J ; hPC.0 _ v/; hiT D hv; hiJ :

Proof Let u be the function defined on T by

u D .0 ^ v/ � PC.0 _ v/:

By assumption u 2 L1.T/, and by its very definition all Fourier coefficients of u of
non-negative index vanish. Hence u 2 NH1

0 , and since it is L2 integrable on I where it
coincides with �PC.0 _ v/, .we conclude that u 2 H2;1

I and that u.0/ D 0 Now, for
h 2 H2;1

J we have that

hv	J; hiT D hu; hiT C hPC.0 _ v/; hiT

D u.0/h.0/C hPC.0 _ v/; hiT

D hPC.0 _ v/; hiT

(30)

where the second equality follows from the Cauchy formula because .uh/ 2 H1. �

Theorem 4 Suppose that f 2 L2.I/ is not the trace on I of a H2-function of modulus
less or equal to 1 a.e on J. Then, g 2 H2 is the solution to ABEP iff the following
two conditions hold.

• jg.ei� /j D 1 for a.e. ei� 2 J,
• there exists a nonnegative real function � 2 L1

R
.J/ such that,
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8h 2 H2;1
J ; hg � f ; hiI C h�g; hiJ D 0: (31)

Proof Suppose g verifies the two conditions and differs from g0. Set h D .g0� g/ 2

H2;1
J and observe that

Reh�g; hiJ D
1

2�

Z

J
�.Re.gg0/ � 1/ � 0: (32)

In another connection, since �h is an admissible increment from g0, the variational
inequality characterizing the projection onto a closed convex set gives us (cf.
Theorem 1) Rehg0 � f ; hiI � 0, whence

Rehg � f ; hiI D Rehg0 � f ; hiI � hh; hiI < 0

which, combined with (32), contradicts (31).
Suppose now that g is the solution of ABEP. The property that jgj D 1 on J has

been proven in Theorem 1. In order to let n tend to infinity, we rewrite (19) with
self-explaining notations as

hkn � f ; eim� iI C

r.n/X

jD1

�n
j kn.e

i�n
j /eim�n

j D 0; 8m 2 f0 : : : ng; : (33)

We define .�n/; n 2 N; to be a family of linear forms on C.J/ defined as

�n.u/ D

r.n/X

jD1

�n
j kn.e

i�n
j /u.e�

n
j /; 8u 2 C.J/:

Equation (20) shows that .�n/ is a bounded sequence in the dual C.J/� which by
the Banach-Alaoglu theorem admits a weak-* converging subsequence whose limit
we call �. Moreover, the Riesz representation theorem ensures the existence of a
complex measure � to represent � so that, appealing to Theorem 3 and taking the
limit in (33), we obtain

hg0 � f ; eim� iI C

Z

J
eim�d� D 0; 8m 2 N:: (34)

Now, the F. and M. Riesz theorem asserts that the measure which is � on J and
.g0 � f /d� on I is absolutely continuous with respect to Lebesgue measure, because
its Fourier coefficients of nonnegative index do vanish, by (34). Therefore there is
v 2 L1.J/ such that,

hg0 � f ; eim� iI C hv; eim� iJ D 0; 8m 2 N ;
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which is equivalent to

hg0 � f ; eim� iI C h�g0; e
im� iJ D 0; 8m 2 N; (35)

where we have set �.z/ D v.z/g0.z/ 8z 2 J. Equation (35) means that

PC..g0 � f /	I/ D �PC.0 _ �g0/;

which indicates that PC.0 _ �g0/ lies in H2. Thus, thanks to Lemma 1, we get that

hg0 � f ; uiI C h�g0; uiJ D 0; 8u 2 H2;1
J : (36)

In order to prove the realness as well as the nonnegativity of �, we pick h 2 C1
c;R.I/,

the space of smooth real-valued functions with compact support on I, and we
consider its Riesz-Herglotz transform

b.z/ D
1

2�

Z

I

eit C z

eit � z
h.eit/ dt D

1

2�

Z

T

eit C z

eit � z
	I.e

it/ h.eit/ dt : (37)

It is standard that b is continuous on D [11, ch. III, thm. 1.3]. For t 2 R, define
!t D exp.tb/ which is the outer function whose modulus is equal to exp th on I
and 1 on J. The function g0 !� is a candidate approximant in problem ABEP, hence
t 7! kf � g0 !tk

2
L2.I/

reaches a minimum at t D 0. By the boundedness of b, we may
differentiate this function with respect to t under the integral sign, and equating the
derivative to 0 at t D 0 yields

0 D Reh.f � g0/g0; biI D Reh.f � g0/; bg0iI :

In view of (36), it implies that

0 D Reh�g0; bg0iJ D Reh�; biJ;

where we used that jg0j 	 1 on J. Remarking that b is pure imaginary on J, this
means

hIm.�/; biL2.J/ D 0; 8h 2 C1
c;R.I/:

Letting h D hm range over a sequence of smooth positive functions which
are approximate identies, namely of unit L1.I/-norm and supported on the arc
Œ� � 1=m; � C 1=m� with ei� 2 I, we get in the limit, as m ! 1, that

hIm.�/; .ei� C :/=.ei� � :/iJ D 0; ei� 2 I:

Then, appealing to he Plemelj-Sokhotski formulas as in the proof of Theorem 1, this
time on J, we obtain that Im.�/ D 0which proves that � is real-valued. Note that the
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argument based on the Plemelj-Sokhotski formulas and the Hahn-Banach theorem
together imply that the space generated by � 7! .ei� C �/=.ei� � �/, as ei� ranges
over an infinite compact subset lying interior to J, is dense in Lp.I/ for 1 < p < 1.
In fact using the F. and M. Riesz theorem and the Plemelj-Sokhoski formulas, it is
easy to see that such functions are also uniformly dense in C.I/. Then, using that
ABEP is a convex problem, we obtain upon differentiating once more that

Reh.g0 � f /Ng0; b
2iI � 0;

which leads us by (36) to

Reh�; ..ei� C :/=.ei� � ://2iJ D Reh�g0; g0..e
i� C :/=.ei� � ://2iJ � 0; ei� 2 I:

By the density property just mentioned this implies that ..ei� C :/=.ei� � ://2
jNI

is

dense in the set of nonpositive continuous functions on I, therefore � � 0. Note also
that (35) implies .f � g0/ _ �g0 2 NH1, hence it cannot vanish on a subset of T of
positive measure unless it is the zero function. But this would imply f D g a.e on I
which contradicts the hypothesis. This yields � > 0 a.e on J. �

5 A Numerical Example

For practical applications the continuous constraint of PBEP on the arc J is
discretized in m C 1 points. Suppose that J D feit; t 2 Œ��; ��g, for some � 2 Œ0; ��.
Call Jm the discrete version of the arc J defined by

Jm D feit; t 2 f�� C
2k�

m
; k 2 f0 : : :mgg

we define following auxiliary extremal problem:

DBEP(n,m)
For f 2 L2.I/, find kn;m 2 Pn such that 8t 2 Jmjkn;m.t/j � 1 and

kf � kn;mkL2.I/ D min
g2Pn

jgj�1a.e. on Jm

kf � gkL2.I/ : (38)

For the discretized problem DBEP(n,m), the following holds.

Theorem 5 For � D .�0; : : : ; �m/ 2 R
mC1 and g 2 Pn define the Lagrangian

L.�; g/ D kf � gkL2.I/ C

mX

kD0

�k.jg.e
i.��C 2k�

m /j2 � 1/;
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then

• Problem DBEP(n,m) has a unique solution kn;m,
• kn;m is also the unique solution of the concave maximisation problem:

to find gopt and �opt solving for max
��0

min
g2Pn

L.�; g/; (39)

where � � 0 means that each component of � is non negative.
• For a fixed n, limm!1 kn;m D kn in Pn.

The proof of Theorem 5 follows from standard convex optimization theory, using
in addition that the sup-norm of the derivative of a polynomial of degree n
on T is controlled by the values it assumes at a set of n C 1 points. This
depends on Bernstein’s inequality and on the argument using Lagrange interpolation
polynomials used in the Remark after Theorem 1.

In the minmax problem (39) , the minimization is a quadratic convex problem.
It can be tackled efficiently by solving the critical point equation which is a linear
system of equations similar to (19). Eventually, an explicit expression of the gradient
and of the hessian of the concave maximization problem (39) allows us for a fast
converging computational procedure to estimate kn;m.

Figure 1 represents a solution to problem DBEP(n,m), where f is obtained
from partial measurement of the scattering reflexion parameter of a wave-guide
microwave filter by the CNES (French Space Agency). The problem is solved for
n D 400 and m D 800, while the constraint on J has been renormalized to 0:96
(instead of 1). The modulus of k400;800 is plotted as a blue continuous line while the
measurements jf j appear as red dots. As the reader can see, the fit is extremely good.

Fig. 1 Solution of DBEP at hand of partial scattering measurements of a microwave filter
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Extremal Bounds of
Teichmüller-Wittich-Belinskiı̆ Type for
Planar Quasiregular Mappings

Anatoly Golberg

Abstract The theorems of TWB (Teichmüller-Wittich-Belinskiı̆) type imply the
local conformality (or weaker properties) of quasiconformal mappings at a pre-
scribed point under assumptions of the finiteness of appropriate integral averages
of the quantity K�.z/� 1; where K�.z/ stands for the real dilatation coefficient. We
establish the extremal bounds for distortions of the moduli of annuli in terms of
integrals in TWB theorems under quasiconformal and quasiregular mappings and
illustrate their sharpness by several examples. Some local conditions weaker than
the conformality are also discussed.

Keywords Module of families of curves • Moduli of annuli • Local conformal-
ity • Local weak conformality • Quasiconformal and quasiregular mappings •
Extremal bounds

Msc codes: Primary 30C62, 30C75; Secondary 30C65

1 Introduction

The notions of quasiconformality and quasiregularity in a domain are natural
extensions of the notion of conformality. The homeomorphic mapping f .z/ D

z.
p

jzj C 1/ provides a simple example of quasiconformality at any domain,
and this mapping is conformal at the origin. The interest to a question whether
global quasiconformality or its generalizations can guarantee for a mapping to be
conformal at a prescribed point has been raised about 80 years ago starting from the
papers by Menshoff [28] and Teichmüller [34].

There exist several equivalent definitions of quasiconformal and quasiregular
mappings. Each of them involves certain tools. Among the most powerful methods
for studying geometric features of quasiconformal and of quasiregular mappings is
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the method of extremal lengths (moduli) which goes back to the classical work of
Ahlfors-Beurling. The goal of our paper is to present new inequalities for moduli
of the families of curves (paths) involving the integrals containing measurable
functions and arbitrary admissible metrics. We simultaneously use the families
of joining and separating curves and establish extremal bounds for the moduli
of annuli. The main new results are Theorems 7 and 9, and the inequalities (12)
and (13) which lead to improvements of an estimate of Belinskiı̆ (Theorem 4). The
proofs of these inequalities and Theorem 9 related to nonhomeomorphic case are
here sketched. An additional purpose of the paper is to discuss the local conditions
that are weaker than conformal and present a wide spector of illustrating examples.
All such results can be regarded as Teichmüller-Wittich-Belinskiı̆ type theorems.

1.1 Quasiconformality in the Plane

The analytic definition of quasiconformality implies that if f is K-quasiconformal in
a domain G � C, then it has L2-derivatives, jfz.z/j > 0 almost everywhere in G and
therefore the complex dilatation �f .z/ D fNz.z/=fz.z/ is a well-defined measurable
function in G. The definition of the complex dilatation naturally leads us to the first
order linear elliptic partial differential equation fNz.z/ D �.z/fz.z/; where �.z/ is a
measurable function satisfying jj�jj1 D ess supj�.z/j � k < 1. This equation,
known as the Beltrami equation, has a rich history; see e.g. [21], [22].

The quantity

K�.z/ D
1C j�j

1 � j�j

is called the real characteristic of quasiconformality (Lavrentiev’s characteristic) or
the maximal dilatation of the mapping f :

1.2 Quasiregularity in the Plane

Quasiregular mappings lie in the core of Geometry and Analysis and have strong
connections to certain differential equations; see, e.g. [4, 10]. Stoilow’s decomposi-
tion theorem says that any quasiregular (nonhomeomorphic) mapping in the plane
is a composition f D g ı h; where g is the analytic function and h is quasiconformal.
Thus, any analytic function in C is simply a two dimensional quasiregular mapping
whose dilatation coefficient equals 1. Branching of the covering mappings involves
the existence of sets on which the mappings fail to be locally homeomorphic, and
this causes topological complication and a strong difference between quasiregularity
and quasiconfomality.
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2 Theorems of Teichmüller-Wittich-Belinskiı̆ Type

The theorems of TWB (Teichmüller-Wittich-Belinskiı̆) type play an important
role in various questions of Complex Analysis. They provide the conformality of
mappings from the integral closeness of their real dilatation of quasiconformality
to 1.

2.1 Teichmüller-Wittich-Belinskiı̆ Theorem

The first result relates to Teichmüller [34], who established

Theorem 1 Let w D f .z/ be a quasiconformal mapping such that K�.z/ � c.jzj/
and

Z

jzj>r0

c.jzj/ � 1

jzj2
dxdy < 1

Then there exists a number 0 < A < 1 such that

jf .z/j D Ajzj.1C ".jzj//; with lim
jzj!1

".jzj/ D 0:

In his proof Teichmüller used a notion of the module set introduced by himself.
Ten years later, using quite different methods, namely Ahlfors’ method of differen-
tial inequalities, Wittich [37] published a slightly weaker form of Theorem 1.

Theorem 2 Let w D f .z/ be a quasiconformal mapping and

Z

jzj>r0

K�.z/ � 1

jzj2
dxdy < 1:

Then there exists a number 0 < A < 1 such that

jf .z/j D Ajzj.1C ".jzj//; with lim
jzj!1

".jzj/ D 0:

The existence of lim.jf .z/j=jzj/ provides a necessary condition of conformality
for the mapping f .z/: It is called asymptotic dilation of f : Six years after Wittich’s
paper, Belinskiı̆ [6] established that the finiteness of the integrals in the TW
(Teichmüller-Wittich) theorems implies the conformality of mappings.

Theorem 3 Let w D f .z/ be a quasiconformal mapping of a punctured disc 0 <
jzj � 1 such that
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Z

0<jzj�1

K�.z/ � 1

jzj2
dxdy D A < 1:

Then there exist both

lim
z!0

w D w0; and lim
z!0

w � w0
z

¤ 0;1:

Reich and Walczak [30] extended TW theorems using the directional dilatations
in two appropriate directions. Let us also mention the results of the TWB theorems
by Lehto [24], Martio and Gutlyanskiı̆ [17], Brakalova and Jenkins [9] and others.

2.2 Grötzsch and Belinskiı̆’s Estimates

The main ingredient in Belinskiı̆’s result on conformality is the following statement;
see e.g. [7].

Theorem 4 Let an annulus fr � jzj � 1g .0 < r < 1/ be mapped quasiconformally
on another annulus f� � jwj � 1g .0 < � < 1/. Then the following double
inequality

�
1

2�

“

r�jzj�1

K�.z/ � 1

jzj2
dxdy � log

�

r
�

log �

2� log r

“

r�jzj�1

K�.z/ � 1

jzj2
dxdy (1)

holds.
This estimate generalizes an inequality of Grötzsch [15], which holds for K-

quasiconformal mappings (K�.z/ � K < 1) and states the following sharp estimate
for bounded dilatations,

rK � � � r
1
K : (2)

In both estimates (1) and (2), the bounds are attained by the radial stretchings
f .z/ D zjzjK�1 and f .z/ D zjzj1=K�1;K > 1: For refined versions of such inequalities
we refer to the monographs [23, 25].

A point is that the quantity log �=r measures the distortion of module of annuli
in both image and inverse image under K-quasiconformal mappings that plays a
crucial role in studying various properties of mappings. One of fruitful applications
relates to Picard type theorems and the value distribution theory as well; see [11, 32].
In order to get sharper estimates we have to consider much flexible tools and
establish extremal bounds in estimates of a Grötzsch-Belinskiı̆ type. For recent
results concerning the extremal estimates of such a type we refer to [5, 13].
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3 Directional Dilatations and Corresponding Estimates
for Moduli

Let us first mention that various directional dilatations for the planar mappings have
been exploited by Andreian Cazacu [2], Reich and Walczak [30], Gutlyanskiı̆ et
al. [18], Ryazanov et al. [33]. We recall these quantities following the authors of
the indicated papers. Consider, for example, the tangential and radial dilatations
provided, respectively, by

KT
�.z; z0/ D

ˇ̌
ˇ1 � z�z0

z�z0
�.z/

ˇ̌
ˇ
2

1 � j�.z/j2
; (3)

and

Kr
�.z; z0/ D

1 � j�.z/j2
ˇ̌
ˇ1C z�z0

z�z0
�.z/

ˇ̌
ˇ
2
:

Here z0 is an arbitrary point of C, while z runs over a given domain.
The idea to use the complex dilatation � instead of j�j goes back to Andreian

Cazacu [1]. She introduced the following quantity

d.z/ D
j@� f .z/j2

Jf .z/
; (4)

where @� f .z/ denotes the derivative of f in the tangential direction � at a regular
point z, i.e. f is differentiable and its Jacobian Jf .z/ is positive at z (see [2]).

The quantity d is represented by the Lavrentiev characteristics K� and ˛ at z as
follows:

d.z/ D
cos2 ˛.z/

K�.z/
C K�.z/ sin2 ˛.z/:

Recall that K�.z/ is equal to the ratio of the greatest to the smallest semi-axes of the
characteristic ellipse centered at z, and ˛.z/ denotes the angle between its greatest
axis and the direction � .

The function d is defined almost everywhere (a.e.) in G and is measurable.
Obviously,

1

K�.z/
� d.z/ � K�.z/

a.e. in G; and the both bounds are attained.
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The quantity

D�;z0 .z/ D KT
�.z; z0/

where KT
� is defined by (3), was regarded in Gutlyanskiı̆-Martio-Sugawa-Vuorinen

[18] as a dilatation of � at z with respect to z0 2 OC.
This dilatation D�;z0 .z/ is called the angular dilatation and arises from the

following relation: if f 2 W1;1
loc satisfies the Beltrami equation and z D z0 C rei� ,

then for almost all z we have the equality

ˇ̌
ˇ̌ @f

@�
.z/

ˇ̌
ˇ̌
2

D r2D�;z0 .z/Jf .z/:

In the view of the relation

ˇ̌
ˇ̌@f

@r
.z/

ˇ̌
ˇ̌
2

D D��;z0 .z/Jf .z/;

the quantity D��;z0 is called the radial dilatation of � at z0.
Both quantities D�;z0 .z/ and D��;z0 .z/ are called the directional dilatations.

These dilatations coincide with the dilatation (4) for � D � C �=2 and � D � ,
respectively, z � z0 D r exp i� . As was mentioned above, the relation (3) yields a
representation of the directional dilatation D�;z0 in terms of the Beltrami coefficient
�:

Note that D�;z0 .z/ is also a measurable function in G and satisfies a.e. for each
point z0 2 OC the inequalities

1

K�.z/
� D�;z0 .z/ � K�.z/:

It is proved in [18] that D�;0.z/ D K�.z/ holds a.e. if and only if �.z/ has the form
��.z/z=z, where � is a non-negative measurable function.

Using these dilatations, the authors of [18] proved the existence theorem in the
case, when the usual dilatation K� fails to satisfy the known integrability conditions,
and describe sufficient conditions which ensure Hölder continuity of f .

Another new dilatation was introduced in [33]. Let a mapping f W G ! C be
differentiable at z, and Jf .z/ ¤ 0. Given ! 2 C, with j!j D 1, the derivative in the
direction ! of the mapping f at the point z is defined by

@! f .z/ D lim
t!0C

f .z C t!/ � f .z/

t
:

Accordingly, the radial direction at a point z 2 G with respect to the center z0 2 C,
z0 ¤ z, is
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!0 D !0.z; z0/ D
z � z0

jz � z0j
:

The radial and tangential dilatations of f at z with respect to z0 are defined by

Kr.z; z0; f / D
jJf .z/j

j@z0
r f .z/j2

; KT.z; z0; f / D
j@z0
� f .z/j2

jJf .z/j
;

respectively; here @z0
r f .z/ and @z0

� f .z/ denote the derivatives of f at z in the directions
!0 and in � D i!0, respectively.

The big radial dilatation of f at z with respect to z0 is defined by

KR.z; z0; f / D
jJf .z/j

j@z0
R f .z/j2

;

where

j@z0
R f .z/j D min

j!jD1

j@! f .z/j

j<.!!0/j
:

It is not hard to verify that

Kr.z; z0; f / � KR.z; z0; f / � K�.z/:

The following result of [33] describes the relations between the directional
dilatations.

Theorem 5 Let z be a regular point of a homeomorphism f W G ! C with complex
dilatation �.z/ such that j�.z/j < 1. Then

Kr.z; z0; f / D Kr
�.z; z0/; KT.z; z0; f / D KT

�.z; z0/ D KR.z; z0; f /:

If, in addition, f and f �1 belong to W1;2
loc , then f is a Q-homeomorphism at every

point z0 2 G with Q.z/ D KT
�.z; z0/.

For the main features of Q-homeomorphisms, we refer to the book [27].
Now consider the multidimensional case. The classical dilatations of quasicon-

formality (inner and outer) at a regular point x 2 R
n are defined by

Lf .x/ D
jJf .x/j

ln.f 0.x//
; Kf .x/ D

jjf 0.x/jjn

jJf .x/j
:

Here

jjf 0.x/jj D max
jhjD1

jf 0.x/hj; l.f 0.x// D min
jhjD1

jf 0.x/hj; Jf .x/ D det f 0.x/:
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Two directional characteristics in R
n, using the derivative of f in a direction

h; h ¤ 0, at x, given by

@hf .x/ D lim
t!0C

f .x C th/ � f .x/

t
;

have been introduced in [16] and [12].
For a point x0 2 R

n, the angular dilatation of the mapping f at the point x ¤ x0
with respect to x0 is defined by

Df .x; x0/ D
jJf .x/j

`n
f .x; x0/

respectively, the normal dilatation

Tf .x; x0/ D

	
L n

f .x; x0/

jJf .x/j


 1
n�1

:

Here

`f .x; x0/ D min
jhjD1

j@hf .x/j

jhh; uij
; Lf .x; x0/ D max

jhjD1

�
j@hf .x/jjhh; uij

�
;

and u D .x�x0/=jx�x0j. The dilatations Df .x; x0/ and Tf .x; x0/ both are measurable
in a domain G � R

n; and one concludes from the relations

l.f 0.x// � `f .x; x0/ � j@uf .x/j � Lf .x; x0/ � jjf 0.x/jj;

(which are true for each x0) that

K�1
f .x/ � Df .x; x0/ � Lf .x/:

The normal dilatation Tf .x; x0/ has the same bounds as Df .x; x0/, since

K�1
f .x/ � L

� 1
n�1

f .x/ � Tf .x; x0/ � K
1

n�1

f .x/ � Lf .x/:

In the case of mapping of planar domains,

K�1
� .z/ � Df .z; z0/ � K�.z/; K�1

� .z/ � Tf .z; z0/ � K�.z/:

Note that both angular and normal dilatations range between 0 and 1, while the
classical dilatations (including the multidimensional case) are always greater than
or equal to 1.
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In the case when z0 D 0, we will write Df .z/ and Tf .z/ instead of Df .z; 0/ and
Tf .z; 0/:

Let A D fz 2 C W a < jzj < b g be an annulus centered at the origin. Denote
by �A and by ˙A the families of all curves which join and separate the boundary of
A in A, respectively. In addition to a standard admissibility condition for a family
of curves � (� 2 adm� ) defining for the conformal module, we also use the
extended admissibility (� 2 extadm� ) which means that � is admissible except
for a subfamily Q� whose conformal module vanishes (M . Q� / D 0).

The following result formulated now for the planar case can be found in [14].

Theorem 6 Let f W D ! C be a quasiconformal mapping. Suppose that the
directional dilatations Df .z/ and Tf .z/ are locally integrable in the annulus A � G:
Then the following double inequalities

inf
�2extadm�A

Z

A

T�1
f .z/�2.jzj/ dxdy � M .f .�A//

� inf
�2adm�A

Z

A

Df .z/%
2.jzj/ dxdy ;

(5)

inf
�2extadm˙A

Z

A

D�1
f .z/�2.z=jzj/ dxdy � M .f .˙A//

� inf
�2adm˙A

Z

A

Tf .z/%
2.z=jzj/ dxdy ;

(6)

hold.
The following statement can be regarded as a Grötzsch-Belinskiı̆ type estimate.

Theorem 7 Let f W D ! C be a quasiconformal mapping. Suppose that the
directional dilatations Df .z/ and Tf .z/ are locally integrable in the annulus A � G:
Then

�
1

2�

Z

A

Tf .z/ � 1

jzj2
dxdy � mod A � mod f .A/

�
log b

aR

A

Df .z/
jzj2

dxdy

Z

A

Df .z/ � 1

jzj2
dxdy :

(7)

Proof The functions

�1.z/ D
1

jzj log b
a

and �2.z/ D
1

2�jzj
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are admissible for the families �A and˙A; respectively. Substituting these functions
into the right-hand sides of (5) and (6) using the relation

mod f .A/ D
2�

M .f .�A//
D 2�M .f .˙A//;

one derives

2� log b
aR

A

Df .z/
jzj2

dxdy
� mod f .A/ �

1

2�

Z

A

Tf .z/

jzj2
dxdy :

Now taking into account that mod A D log b
a ; we arrive at (7). ut

4 Extremal Bounds for Moduli Under Homeomorphic
Mappings

The following double inequality provides a slightly different variant of the inequal-
ity (7) whose right-hand side can be obtained similarly to the inequality (2.15) in
[8],

�
1

2�

“

r�jzj�1

Tf .z/ � 1

jzj2
dxdy � log

�

r
�

log �

2� log r

“

r�jzj�1

Df .z/ � 1

jzj2
dxdy: (8)

It also provides an improvement of (1) that will be illustrated by several examples.
It is interesting to compare with the inequality which involves the dilatations D�.z/
and D��.z/

�
1

2�

“

r�jzj�1

D��.z/ � 1

jzj2
dxdy � mod A � mod f .A/

�
mod f .A/

mod A
�
1

2�

“

r�jzj�1

D�.z/ � 1

jzj2
dxdyI

(9)

see [20].
Two more estimates

�
1

2�

“

r�jzj�1

Tf .z/ � 1

jzj2
dxdy � log

�

r
�

1

2�

“

r�jzj�1

Df .z/ � 1

Df .z/jzj2
dxdy; (10)
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and

�
log 1

r’

r�jzj�1

dxdy
Tf .z/jzj2

“

r�jzj�1

Tf .z/ � 1

Tf .z/jzj2
dxdy � log

�

r

�
log 1

r’

r�jzj�1

Df .z/dxdy
jzj2

“

r�jzj�1

Df .z/ � 1

jzj2
dxdy

(11)
essentially refine Belinskiı̆’s estimate (1). All these inequalities are obtained from
the right inequalities (5) and (6) choosing suitable admissible functions. But the
sharpness of these estimates remains still open. Moreover, in the left inequalities (5)
and (6) the infima cannot be removed by substitution of arbitrary admissible metrics.
So, we only must use the functions on which these infima are attained.

To this end, we apply the results of [27]. Namely, for the families of curves that
join the boundary components of the annulus A; one obtains

2�

bR

a

d�

�
2�R

0

T�1
f .z/d�

� M .f .�A// �
2�

bR

a

d�

�
2�R

0

Df .z/d�

:

This estimate is based on the assertions of Lemma 7.4 in [27] for the integrals which
are involved in (5).

Next, we apply the relationship between the conformal moduli of �A and ˙A,
and obtain

1

2�

bZ

a

d�

�
2�R

0

Df .z/d�

� M .f .˙A// �
1

2�

bZ

a

d�

�
2�R

0

T�1
f .z/d�

:

Thus,

bZ

a

d�

�
2�R

0

Df .z/d�

� mod f .A/ �

bZ

a

d�

�
2�R

0

T�1
f .z/d�

;

which finally yields

bZ

a

1
2�

2�R

0

T�1
f .z/d� � 1

1
2�

2�R

0

T�1
f .z/d�

d�

�
� mod A � mod f .A/ �

bZ

a

1
2�

2�R

0

Df .z/d� � 1

1
2�

2�R

0

Df .z/d�

d�

�
:

(12)
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For the family of separating curves, we apply Theorem 2 from [27] and rewrite
the inequality (6) by

2�Z

0

bZ

a

Df .z/ d�d�

�

 
2�R

0

Df .z/d�

!2 � M .f .˙A// �

2�Z

0

bZ

a

d�d�

�Tf .z/

 
2�R

0

T�1
f .z/d�

!2 ;

or in the terms of moduli,

2�

2�Z

0

bZ

a

Df .z/ d�d�

�

 
2�R

0

Df .z/d�

!2 � mod f .A/ � 2�

2�Z

0

bZ

a

d�d�

�Tf .z/

 
2�R

0

T�1
f .z/d�

!2 :

Finally, in the terms of Belinskiı̆’s estimate, it takes the form

1

2�

2�Z

0

bZ

a

Tf .z/

 
1
2�

2�R

0

T�1
f .z/d�

!2
� 1

Tf .z/

 
1
2�

2�R

0

T�1
f .z/d�

!2
d�d�

�

� mod A � mod f .A/ �
1

2�

2�Z

0

bZ

a

 
1
2�

2�R

0

Df .z/d�

!2
� Df .z/

 
1
2�

2�R

0

Df .z/d�

!2
d�d�

�
:

(13)

5 Local Weak Conformality Conditions

In this section, we discuss several local conditions that are weaker than the con-
formality at a point. Let us assume (for convenience) the following normalization
f .0/ D 0:

5.1 Conformality

The conformality at the origin is characterized by existence of the limit

lim
z!0

f .z/

z
D C ¤ 0;1:
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5.2 Asymptotic Homogeneity

A mapping f is called asymptotically homogeneous at the origin [19] if

f .�z/ � �f .z/; 8� 2 C; z ! 0:

5.3 Asymptotic Dilation

The quantity

lim
jzj!0

jf .z/j

jzj
D jCj; C ¤ 0;1

is called asymptotic dilation at the origin.

5.4 Circle-Like

A mapping is called circle-like at the origin if

lim
r!0

max
jzjDr

jf .z/j

min
jzjDr

jf .z/j
D 1:

This notion was introduced by Teichmüller [34]; see also [28]. Due to Menshoff’s
paper [28], such a mapping is said to preserve infinitesimal circles at the origin.

5.5 Weak Conformality

A mapping preserves angles on circles at the point z D 0 if for an appropriate
choice of a branch of the argument

arg f .rei�2/ � arg f .rei�1/ � .�2 � �1/ ! 0 as r ! 0;

uniformly in �1, �2. Following [17], a homeomorphism f W B ! B, which is both
circle-like and preserves angles on circles at z D 0, is called weakly conformal at 0.
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5.6 Local Quasiconformality

A mapping is H-locally quasiconformal (H � 1) at the origin if

lim sup
r!0

max
jzjDr

jf .z/j

min
jzjDr

jf .z/j
� H:

The classes of mappings obeying the conditions mentioned in the corresponding
Sect. 5.i by Fi. Thus the narrowest class, i.e. of mappings conformal at the origin,
is denoted by F1, whereas the widest one (locally quasiconformal at 0) corresponds
to F6: The following statements describe the relations between the classes Fi.

Theorem 8 There are the following relations between the classes Fi:

(1) F1 � F3 � F4 � F6I

(2) F1 � F2 � F5 � F6:

Proof Almost all relations given in the theorem are trivial. Let us show that every
mapping of class F2 asymptotically preserves angles on circles and is circle-like,
and therefore belongs to F5: Indeed, given two points z1; z2; such that jz1j D jz2j D

r; or equivalently z1 D rei�1 ; z2 D rei�2 ; one can write by the definition of the
asymptotic homogeneity

f
�
rei�2

�
� ei.�2��1/f

�
rei�1

�
for r ! 0:

This implies arg f
�
rei�2

�
� arg f

�
rei�1

�
� .�2 � �1/ ! 0 as r ! 0:

To show the second implication, we note by the continuity of f that both the
minimum and maximum of jf .z/j are attained on jzj D r at say z1 and z2;
respectively. Then

max
jzjDr

jf .z/j D
ˇ̌
f
�
rei�2

�ˇ̌
D
ˇ̌
f
�
rei�1ei.�2��1/

�ˇ̌
�
ˇ̌
f
�
rei�1

�ˇ̌
D min

jzjDr
jf .z/j:

ut

6 Examples

The purpose of this section is both to provide a wide range of examples of qua-
siconformal and quasiregular mappings which satisfy the weakened conformality
conditions described in Sect. 5 and to illustrate the sharpness of estimates given in
Sect. 4.
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6.1 Example

The radial stretching

f .z/ D zjzj

can be rewritten in the form f .z/ D z
3
2 Nz

1
2 ; and therefore,

fz D
3

2
z
1
2 Nz

1
2 ; fNz D

1

2
z
3
2 Nz� 1

2 ; �.z/ D
z

3Nz
:

Further,

j@fh.z/j D jfzh C fNz Nhj D jfzjj1C �.z/e�2i� j D
3

2
jzj

ˇ̌
ˇ̌1C

1

3
e�2i.���/

ˇ̌
ˇ̌;

j@fh.z/j � 2jzj D jjf 0.z/jj; j@fh.z/j � jzj D l.f 0.z//; Jf .z/ D 2jzj2;

and

`f .z; 0/ D min
�

j@fh.z/j

j cos � j
D min

�

3
2

ˇ̌
1C 1

3
e�2i�

ˇ̌
jzj

j cos � j
D 3jzj min

�

ˇ̌
1C 1

3
e�2i�

ˇ̌

j1C e�2i� j

D jzj min
�

j3C e�2i� j

j1C e�2i� j
D jzjh2; 1i D 2jzj:

In a similar way, we obtain

Lf .z; 0/ D max
�

j@fh.z/jj cos � j D max
�

3

2
jzj
ˇ̌
1C

1

3
e�2i�

ˇ̌
j cos � j

D max
�

3

4
jzj
ˇ
ˇ1C

1

3
e�2i�

ˇ
ˇj1C e�2i� j D

3

4
jzj2

�
1C

1

3

�
D 2jzj:

By (3),

D�.z/ D

ˇ̌
1 � �.z/ Nz

z

ˇ̌2

1 � j�.z/j2
D

ˇ̌
1 � 1

3

ˇ̌2

1 � 1
9

D
1

2
; D��.z/ D

ˇ̌
1C �.z/ Nz

z

ˇ̌2

1 � j�.z/j2

D

ˇ̌
1C 1

3

ˇ̌2

1 � 1
9

D 2:

Thus,

K�.z/ D 2; Df .z; 0/ D
1

2
; Tf .z; 0/ D 2; D�.z/ D

1

2
; D��.z/ D 2:
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Note that this mapping carries out the annulus with radii r and 1 onto annulus
with radii r2 and 1: Thus, the Belinskiı̆ double inequality (1) becomes

� log
1

r
� log r � 2 log

1

r
;

i.e. only the left bound is attained, although all the estimates (8)–(11), which involve
the directional dilatations, became equalities

� log
1

r
� log r � � log

1

r
; or � log

b

a
� � log

b

a
� � log

b

a
:

The extremal estimates (12) and (13) are both sharp, since the left and right bounds
coincide

� log
b

a
D � log

b

a
D � log

b

a
:

Using the definitions of Sect. 5, one concludes that this mapping preserves angles
on circles, is circle-like and weakly conformal at the origin, and therefore belongs
to F6: But it fails to be conformal and asymptotic homogeneous at 0 as well.

6.2 Example

The homeomorphism

f .z/ D ze�i log jzj

can be regarded as a “quick rotation” around the origin. For this mapping

f .z/ D ze� 1
2 i.log zClog Nz/; fz D

�
1 �

i

2

�
e�i log jzj; fNz D �

iz

2Nz
e�i log jzj; �.z/ D

1

1C 2i

z

Nz
;

j@fh.z/j D jfzh C fNz Nhj D jfzjj1C �.z/e�2i� j D

ˇ
ˇ̌
ˇ1 �

i

2

ˇ
ˇ̌
ˇ

ˇ
ˇ̌
ˇ1C

1

1C 2i
e�2i.���/

ˇ
ˇ̌
ˇ;

and the stretchings and Jacobian are equal to

j@fh.z/j �

p
5C 1

2
D jjf 0.z/jj; j@fh.z/j �

p
5 � 1

2
D l.f 0.z//; Jf .z/ D 1:

Next we get
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D�.z/ D

ˇ
ˇ1 � �.z/ Nz

z

ˇ
ˇ2

1 � j�.z/j2
D

ˇ
ˇ1 � 1

1C2i

ˇ
ˇ2

1 �
ˇ̌

1
1C2i

ˇ̌2 D 1; D��.z/ D

ˇ
ˇ1C �.z/ Nz

z

ˇ
ˇ2

1 � j�.z/j2

D

ˇ̌
1C 1

1C2i

ˇ̌2

1 �
ˇ̌

1
1C2i

ˇ̌2 D 2;

`f .z; 0/ D min
�

j@fh.z/j

j cos � j
D min

�

p
5
2

ˇ̌
1C 1

1C2i
z
Nz e�2i�

ˇ̌

j cos � j
D min

�

ˇ
ˇ1C 2i C "2

ˇ
ˇ

jRe "j

D min
jwjD1

j1C 2i C wj

j1C wj
D h .1/;ni D h1C i; ii D 1;

Lf .z; 0/D max
�

j@fh.z/jj cos � j D max
�

p
5

2

ˇ̌
1C

1

1C2i

z

Nz
e�2i�

ˇ̌
j cos � j

D max
jwjD1

1

4
j1C 2i C wjj1C wj D

1

2
max
˛

p
.3C cos˛C2 sin˛/.1C cos˛/

D

p
1C

3
p
4

2C
3

p
4 � 2

3
p
2
;

where  .z/ D .cCz/=.1Cz/;n D .c�1/=jc�1j, " D e�2i.���/; h D ei� ; z D jzjei� .
Finally, we have

K�.z/ D
.
p
5C 1/2

4
; Df .z; 0/ D 1; Tf .z; 0/ D

1C
3

p
4

.2C
3

p
4 � 2

3
p
2/2

� 2:27;

D�.z/ D 1; D��.z/ D 2:

This homeomorphism preserves any annulus centered at the origin, therefore
both quantities log �=r and mod A � mod f .A/ vanish. By (1), one obtains

�1:62 log
1

r
� 0 � 1:62 log

1

r
:

The estimates (8)–(11) are sharper than (1) since the right bound is attained in all of
them. The same situation occurs with the extremal bounds (12) and (13), namely

�1:27 log
b

a
� 0 � 0:

This mapping belongs to all classes Fi except for F2 (asymptotic homoge-
neous), and obviously is not conformal at the origin.
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6.3 Example

Consider another rotation

f .z/ D jzjei2� :

For this mapping,

f .z/ D z
3
2 Nz� 1

2 ; fz D
3

2
z
1
2 Nz� 1

2 ; fNz D �
1

2
z
3
2 Nz� 3

2 ; �.z/ D �
1

3

z

Nz
;

j@fh.z/j D jfzh C fNz Nhj D jfzjj1C �.z/e�2i� j D
3

2

ˇ̌
ˇ̌1 �

1

3
e�2i.���/

ˇ̌
ˇ̌;

j@fh.z/j � 2 D jjf 0.z/jj; j@fh.z/j � 1 D l.f 0.z//; Jf .z/ D 2;

D�.z/ D

ˇ
ˇ1 � �.z/ Nz

z

ˇ
ˇ2

1 � j�.z/j2
D

ˇ̌
1C 1

3

ˇ̌2

1 � 1
9

D 2; D��.z/ D

ˇ̌
1C �.z/ Nz�Nz0

z�z0

ˇ̌2

1 � j�.z/j2

D

ˇ̌
1 � 1

3

ˇ̌2

1 � 1
9

D
1

2
:

`f .z; 0/ D min
�

j@fh.z/j

j cos � j
D min

�

1
2

ˇ̌
1 � 1

3
z
Nz e�2i�

ˇ̌

j cos � j
D min

�

ˇ̌
�3C "2

ˇ̌

jRe "j

D min
jwjD1

j � 3C wj

j1C wj
D h .1/;ni D h�1;�1i D 1;

Lf .z; 0/ D max
�

j@fh.z/jj cos � j D max
�

p
3

2

ˇ̌
1 �

1

3

z

Nz
e�2i�

ˇ̌
j cos � j

D max
jwjD1

1

4
j3 � wjj1C wj D

1

4
max
˛

p
.10 � 6 cos˛/.2C 2 cos˛/

D
2

p
3
;

where  .z/ D .cCz/=.1Cz/;n D .c�1/=jc�1j, " D e�2i.���/; h D ei� ; z D jzjei� .
Thus,

K�.z/ D 2; Df .z; 0/ D 2; Tf .z; 0/ D
2

3
; D�.z/ D 2; D��.z/ D

1

2
:
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This mapping f is not homeomorphic; it belongs to F3; F4; F6 but f … F1;

F2;F5:

Regarding the estimates (8)–(13) related to the directional dilatations, they do
not hold (including the extremal bounds). Only Belinskiı̆’s inequality (1) is valid,
however, it is not sharp,

� log
1

r
� 0 � log

1

r
:

This mapping carries out any annulus centered at the origin onto itself.

6.4 Example

Consider now a homeomorphism of the unit disc B;

f .z/ D jzj.sin � C 2/ei� :

This mapping can be written in the form

f .z/ D
1

2i
z
3
2 Nz� 1

2 �
1

2i
z
1
2 Nz

1
2 C 2z;

and by a direct calculation,

fz D
3

4i
z
1
2 Nz� 1

2 �
1

4i
z� 1

2 Nz
1
2 C 2; fNz D �

1

4i
z
3
2 Nz� 3

2 �
1

4i
z
1
2 Nz� 1

2 ;

and

jfzj D
j3ei� � e�i� C 8ij

4
; jfNzj D

je2i� C 1j

4
;

K�.z/ D
j3ei� � e�i� C 8ij C je2i� C 1j

j3ei� � e�i� C 8ij � je2i� C 1j
:

Obviously, this mapping preserves angles on circles but it does not be even circle-
like. However, f 2 F6 with H D 3; but f … F1; F2; F3 F4; F6:

6.5 Example

A “slow rotation” (see, e.g. [7])

f .z/ D zei
p

� log jzj
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is not conformal at the origin, but f 2 Fi for all i D 2; 3; 4; 5; 6: A direct calculation
yields

jfzj D

s
�16 log jzj C 1

�16 log jzj
; jfNzj D

1

4
p

� log jzj

and

K�.z/ D
�8 log jzj C 1C

p
�16 log jzj C 1

�8 log jzj
:

6.6 Example

Another “slow rotation”

f .z/ D zei log log e
jzj ;

with

�.z/ D
1

1C 2i log.e=jzj/

z

Nz

is also not conformal at the origin, but f 2 Fi for all i D 2; 3; 4; 5; 6: For this
mapping,

K�.z/ D
3
p

jzj C 2

2
p

jzj C 2
:

6.7 Example

The stretching

f .z/ D z.
p

jzj C 1/ D z
5
4 Nz

1
4 C z

provides a quasiconformal mapping of the unit disc jzj < 1; which is conformal at
the origin. Thus, f 2 Fi for all i D 1; 2; : : : ; 6: Indeed, by a direct calculation,

fz D
5

4
z
1
4 Nz

1
4 C 1; fNz D

1

4
z
5
4 Nz� 3

4 ;



Extremal Bounds of TWB Type for Planar Quasiregular Mappings 193

and hence,

�.z/ D

p
jzj

5
p

jzj C 4

z

Nz
:

6.8 Example

The stretching

f .z/ D z

	
log

1

jzj


2

defined in a punctured unit disc has the derivatives

fz D log
1

jzj

	
log

1

jzj
� 1



; fNz D � log

1

jzj

z

Nz
;

and

�.z/ D
1

1 � log 1
jzj

z

Nz
:

It does not have a finite asymptotic dilation at the origin, and, therefore, is not
conformal at 0, although f 2 F2;F4;F5;F6:

6.9 Example

The mapping

f .z/ D zei" log.1=jzj/

transforms any ray rei� , 0 < r < 1, into the logarithmic spiral with wind about the
origin infinitely many times. The limit lim

z!0
arg f .z/=z does not exist and hence f is

not conformal at the origin, nevertheless jf .z/j D jzj in any neighborhood of 0. Note
that f is also not asymptotically homogeneous.
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6.10 Example

Consider a mapping

f .z/ D zei'.�/

with a nonlinear real-valued continuously differentiable function ' satisfying
'.0/ D 0 and '.2�/ D 2�: This mapping fails to be conformal, asymptotically
homogeneous, preserving angles on circles and, therefore, is not weakly conformal.
But it has asymptotic dilation which equal to 1 and hence f 2 F4; F6:

6.11 Example

Consider the radial stretching od the unit disc B defined by

f .z/ D z.1 � log jzj/; z ¤ 0; f .0/ D 0:

Its derivatives are equal to fz D .1 � 2 log jzj/=2, fNz D �z=2Nz and

j@hf j D
1

2

	
1C 2 log

1

jzj


ˇ̌
ˇ
ˇ1 �

z

Nz

e�2i�

1C 2 log 1
jzj

ˇ̌
ˇ
ˇ:

Letting z D rei and h D ei� , one derives

j@hf j � 1C log
1

jzj
D jjf 0.z/jj; j@hf j � log

1

jzj
D l.f 0.z//I

the equalities here occur for  D � C �=2 and  D � , respectively. Thus,

Jf .z/ D
�
1C log

1

r

�
log

1

r
; K�.z/ D 1C

1

log 1
r

:

A calculation of the directional dilatations is much more complicated. We first
find the quantity Lf .z/:

Lf .z/ D max
�

j@fh.r/ cos � j D max
�

�
j@fz.r/jj1C �.r/e�2i� jj cos � j

�

D
1C 2 log 1

r

4
max
�

j.1C ke�2i� /.1C e�2i� /j;



Extremal Bounds of TWB Type for Planar Quasiregular Mappings 195

where �.z/ D fNz=fz D kz=Nz, jfz.r/j D .1C 2 log.1=r//=2, k D �1=.1C 2 log.1=r//.
A straightforward computation implies

Lf .z; 0/ D log
1

r
for log

1

r
� 1C

p
2;

Lf .z; 0/ D

�
1C log 1

r

�2

2

q
1C 2 log 1

r

for log
1

r
� 1C

p
2:

Thus,

Tf .z/ D
log 1

r

1C log 1
r

; log
1

r
� 1C

p
2;

Tf .z/ D

�
1C log 1

r

� nC1
n�1

2
n

n�1

�
log 1

r

� 1
n�1
�
1C 2 log 1

r

� n
2.n�1/

; log
1

r
� 1C

p
2:

The dilatation Df .z/ can be calculated using a technique related to functions of
one complex variable and presented in [16]. The result is

Df .z/ D 1C
1

log 1
r

Indeed,

`f .z; 0/ D min
�

j@fh.r/j

j cos � j
D min

�

j@fz.r/jj1C �.r/e�2i� j

j cos � j

D
�
1C 2 log

1

r

�
min
�

j1C ke�2i� j

j1C e�2i� j

D
�
1C 2 log

1

r

�˝1C k

2
; 1
˛
D log

1

r
:

Finally, let us remark that f is not conformal and does not have asymptotic
dilation at the origin, but f 2 F2;F4;F5, and, therefore, f 2 F6:

6.12 Example

For the radial stretch in C of the form

f .z/ D zjzjK�1; K � 1;
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all the dilatations have been calculated in [12, 16] (also for higher dimensions).
Regarding to the plane, we obtain

K�.z/ D K; Df .z/ D
1

K
; Tf .z/ D K:

On the estimates and relationship of this mappings with the classes Fi; we refer to
Sect. 6.1, since it relates to this example with K D 2:

6.13 Example

Consider the radial stretch in C of the form

f .z/ D zjzj
1
K �1; K � 1 f .0/ D 0 :

For this mapping, the calculations similar to above imply

K�.z/ D K; Df .z/ D KI

see, e.g. [12, 16]. The computation of Tf .z/ splits into two cases K �
p
2 and

K �
p
2 and results in

Tf .z/ D
1

K
; K �

p
2 and Tf .z/ D

K3

4.K2 � 1/
; K �

p
2:

This homeomorphism maps any annulus with radii a and b onto the annulus with
the radii a1=K�1 and b1=K�1: By (1) the right bound is sharp,

�.K � 1/ log
1

r
�

	
1

K
� 1



log r �

K � 1

K
log

1

r
:

The inequalities (8), (10)–(13) become sharp,

K � 1

K
log

b

a
� log

b

a
�
1

K
log

b

a
�

K � 1

K
log

b

a
:

The relations with the classes Fi remain the same as in the previous example.
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7 Extremal Bounds for Moduli Under Nonhomeomorphic
Mappings

We have mentioned in Sect. 6.3 that the estimates (12) and (13) do not hold if the
mapping is not homeomorphic. In order to correct these inequalities we have to
involve the multiplicity function.

For A � G and y 2 Rn; we write

N.y; f ;A/ D card f �1.y/ \ A and N.f ;A/ D sup
y

N.y; f ;A/:

The estimates for spatial quasiregular mappings with classical dilatation coefficients
can be found in [29, 31, 32, 35, 36].

The following result provides an extension of the estimate (5) to the class of
planar quasiregular mappings.

Theorem 9 Let f W D ! C be a quasiregular mapping. Suppose that the
directional dilatations Df .z/ and Tf .z/ are locally integrable in the annulus A � G:
Then the following double inequality

1

N.f ;A/
inf

�2extadm�A

Z

A

T�1
f .z/�2.jzj/ dxdy � M .f .�A//

� inf
�2adm�A

Z

A

Df .z/%
2.jzj/ dxdy

(14)

hold.

Proof We sketch the proof; it is valid also for higher dimensions. The function

�.x/ D ��.f .x//Lf .x; x0/

is admissible for the family �A (of curves joining the boundary components of the
spherical ring with radii a and b and centered at x0); see [14].

Now arguing similarly to [3, 26] and [14], one can obtain

Z

Rn

��n
.y/ dm.y/ D

Z

A

�.x/

N.y; f ;A/

jJf .x/j

L n
f .x; x0/

dm.x/ �
1

N.f ;A/

Z

A

�n.x/

Tn�1
f .x; x0/

dm.x/:

Taking the infimum over all � 2 extadm�A; we have

M .f .�A// �
1

N.f ;A/
inf

�2extadm�A

Z

A

�n.x/

Tn�1
f .x; x0/

dm.x/;
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which completes the proof, since the right-hand side of the inequality (14) remains
the same as in (5); cf. [29] and [32]. ut

Applying the arguments given in the proof of the double inequality (12), we
similarly arrive at the following extremal bounds

bZ

a

1
2�

2�R

0

T�1
f .z/d� � N.f ;A/

1
2�

2�R

0

T�1
f .z/d�

d�

�
� mod A � mod f .A/

�

bZ

a

1
2�

2�R

0

Df .z/d� � 1

1
2�

2�R

0

Df .z/d�

d�

�
:

(15)

Now it not hard to see that the double inequality (15) holds for the rotation
defined in Sect. 6.3. Indeed, by a direct calculation we obtain

�
1

3
log

b

a
� 0 �

1

2
log

b

a
:
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Families of Universal Taylor Series
Depending on a Parameter

Evgeny Abakumov, Jürgen Müller, and Vassili Nestoridis

Abstract We construct families of universal Taylor series on  depending on a
parameter w 2 G, where  and G are planar simply connected domains. The
functions to be approximated depend on the parameter w, w 2 G. The partial sums
implementing the universal approximation are one variable partial sums with respect
to z 2  for each fixed value of the parameter w 2 G. The universal approximation
extends to mixed partial derivatives. This phenomenon is generic in H. � G/.

Keywords Universal Taylor series • Baire’s Theorem • Runge’s Theorem •
Generic property • Mixed partial derivatives
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1 Introduction

The first result concerning the existence of universal Taylor series was established
before 1914 by Fekete (see [18]). He proved the existence of a real power seriesP1

nD1 anxn, whose partial sums approximate uniformly on Œ�1; 1� every continuous
function h W Œ�1; 1� ! R with h.0/ D 0. In the early 1950s Seleznev proved
the existence of complex power series

P1
nD0 anzn with radius of convergence 0,
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whose partial sums approximate every polynomial uniformly on each compact set
K � C n f0g with connected complement [21]. In the early 1970s Luh [9] and
independently Chui and Parnes [2] proved the existence of universal Taylor series
with positive radius of convergence defining a function holomorphic in a simply
connected domain  � C and whose partial sums approximate every polynomial
uniformly on each compact set K � C with connected complement such that K \

 D ;.
In the latter result the universal approximation does not necessarily hold on the

boundary of the domain of definition . In 1996 a stronger result was obtained,
where the universal approximation was valid on the boundary @, as well [15]. The
universal approximation was initially implemented by partial sums of the Taylor
expansion of the universal function with respect to a fixed center � 2 . However,
it was soon realized that the result persists when the center in  is varied [16].
After some years [12, 14] it was proved that the class of universal functions remains
unchanged, whether the center of expansion in a simply connected domain  is
varied or not. Thus, possible definitions of universal Taylor series are the following
[12, 16].

Definition 1.1 Let  � C be a domain and f W  ! C a holomorphic function.

1. For �0 2  fixed, the function f belongs to the class U.; �0/ if the sequence of
the partial sums

SN.f ; �0/.z/ D

NX

jD0

f .j/.�0/

jŠ
.z � �0/

j;

N D 0; 1; 2; : : :, of the Taylor development of f with center �0 satisfies the
following: For every compact set K � C;K\ D ; with connected complement
Kc and for every function h W K ! C continuous on K and holomorphic in Kı,
there exists a sequence .�n/ of positive integers such that

sup
z2K

ˇ̌
S�n.f ; �0/.z/ � h.z/

ˇ̌
! 0; as n ! C1:

2. The function f belongs to the class U./, if the partial sums

SN.f ; �/.z/ D

NX

jD0

f .j/.�/

jŠ
.z � �/j;

� 2 ;N D 0; 1; 2; : : : satisfy the following condition: For every compact
set K � C n  with connected complement and every function h W K ! C

continuous on K and holomorphic in Kı, there exists a sequence .�n/ of positive
integers such that for every compact set L �  we have

sup
�2L

sup
z2K

ˇ̌
S�n.f ; �/.z/ � h.z/

ˇ̌
! 0 as n ! C1:
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Obviously U.; �0/ � U./. Further, if  is simply connected, both classes
U.; �0/ and U./ are Gı and dense in H./ endowed with the topology of
uniform convergence on compact subsets of  [12, 16]. Actually, in this case
U.; �0/ D U./ ([14], see also [12]).

In this paper, we consider a parameter w 2 G, where G is some simply connected
domain in C, and for every w 2 G we find functions f .�;w/ in U./ having the
property that a function h.�;w/ defined on a compact set K � C and depending on
the parameter w 2 G can be approximated by the partial sums of f .�;w/ with the
same sequence .�n/ for all w 2 G. Furthermore, the approximation extends to partial
derivatives with respect to the parameter w and to mixed partial derivatives with
respect to z and w (cf. [17]). It is possible to consider one fixed center of expansion
b.w/ for every w 2 , which is given by a holomorphic function b W G ! , or
one may consider all possible centers � 2 . In the latter case, partial derivatives
with respect to � are also allowed. In this way, functions f holomorphic in  � G
can be constructed in such a way that for every fixed w 2 G, the partial sums
implementing the universal approximation are those of the functions of one variable
 3 z ! f .z;w/ 2 C.

We prove that the corresponding universality phenomenon is generic in the space
H.�G/ of holomorphic functions on�G endowed with the topology of uniform
convergence on compacta. Towards this end, we use Baire’s Category Theorem. For
the role of Baire’s theorem in Analysis we refer to [4] and [7].

2 Main Results

Let .�n/ be a strictly increasing sequence of positive integers and .cj/ a sequence of
complex numbers. We say that .cj/ has Ostrowski-gaps relative to .�n/ if a sequence
.qn/ exists with 0 < qn ! 0 as n ! 1 and so that

sup
qn�n�j��n

jcjj
1=j ! 0 .n ! 1/

(see e.g. [13], cf. also [6, p. 311]). Moreover, if .�n/ is a sequence of positive
integers with �n D qn�n as above, we say that the sequence .cj/ has Ostrowski-
gaps .�n; �n/.

The starting point of our considerations is the following observation:

Proposition 2.1 Let � C be a simply connected domain, f 2 U./ D U.; �0/,
K a compact set in C n  with connected complement, and h W K ! C a function
continuous on K and holomorphic in Kı. Let .�n/ be a sequence as in Definition 1.1.
Then for every fixed z 2 K we have

@

@�
S�n.f ; �/.z/ ! 0 D

@

@�
h.z/ as n ! C1
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uniformly on compact subsets of . Furthermore, the sequence .�n/ may be chosen
so that in addition for every compact set L �  we have

sup
�2L

sup
z2K

ˇ
ˇ̌ @
@�

S�n.f ; �/.z/
ˇ
ˇ̌

! 0 as n ! C1:

Proof a) For fixed z 2 K the function  3 � ! S�n.f ; �/.z/ 2 C is holomorphic
in . According to Definition 1.1 this sequence of elements of H./ converges
uniformly on compacta (with respect to � 2 ) to the constant function h.z/.
Weierstrass’ theorem implies that @

@�
S�n.f ; �/.z/ ! @h

@�
.z/ D 0 for each � 2 

and even uniformly in each compact subset of . Thus we have

sup
�2L

ˇ̌
ˇ
@

@�
S�n.f ; �/.z/

ˇ̌
ˇ ! 0; as n ! C1

for every fixed z 2 K.
b) By a straightforward computation we find

@

@�
S�n.f ; �/.z/ D S�n.f

0; �/.z/ � S�n�1.f
0; �/.z/

D
..f 0/.�n/.�/

�nŠ
.z � �/�n DW A�n.�; z/:

It is known [3, 12, 14] that for any f 2 U.; �0/ D U./ the sequence of Taylor
coefficients of f 0 with center �0 has Ostrowski gaps relative to some sequence
.�n/ and that the sequence .�n/ may be chosen so that qn�n D �n � 1. Then

ˇ
ˇ̌ .f 0/.�n/.�0/

�nŠ

ˇ
ˇ̌1=�n

! 0 .n ! 1/

and therefore, since �n ! C1, we have supz2K

ˇ̌
A�n.�0; z/

ˇ̌
! 0, as n ! C1.

It follows that

sup
z2K

ˇ̌
S�n.f

0; �0/.z/ � S�n�1.f
0; �0/.z/

ˇ̌
! 0; as n ! C1:

Since the sequence of Taylor coefficients of f 0 with center �0 has Ostrowski gaps
.�n; �n/ and .�n �1; �n/, it follows from [12, Lemma 9.2] that for every compact
subset L of  we have

sup
�2L

sup
z2K

ˇ
ˇS�n.f

0; �0/.z/ � S�n.f
0; �/.z/

ˇ
ˇ ! 0
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and

sup
�2L

sup
z2K

ˇ̌
S�n�1 .f

0; �0/.z/ � S�n�1.f
0; �/.z/

ˇ̌
! 0

as n ! C1. Putting things together it is easily seen that

sup
�2L

sup
z2K

ˇ̌
ˇ
@

@�
S�n.f ; �/.z/

ˇ̌
ˇ ! 0; as n ! C1:

This completes the proof.
Let  and G be two simply connected domains in C. For f 2 H. � G/ and w 2

G; � 2  and z 2 C we denote

eSN.f ;w; �/.z/ D

NX

jD0

@jf

@uj
.u;w/

ˇ̌
ˇ
uD�

�
1

jŠ
.z � �/j

and we consider the following classes of functions.

Definition 2.2 Let b W G !  be a holomorphic function. The class U.;G; b/
contains all functions f 2 H. � G/ such that the sequence eSN.f ;w; �/ satisfies
the following: For every compact set K � C;K \  D ;, Kc connected, and any
holomorphic function h in an open neighborhood of K � G .h 2 H.K � G/), there
exists a sequence .�n/ of positive integers such that for every compact set F � G

sup
w2F

sup
z2K

ˇ
ěS�n

�
f ;w; b.w/

�
.z/ � h.z;w/

ˇ
ˇ ! 0; as n ! C1:

Definition 2.3 The class U.;G/ contains all functions f 2 H. � G/ such that
the sequenceeSN.f ;w; �/ satisfies the following.

For every compact set K � C;K \ D ;; Kc connected and any h 2 H.K � G/,
there exists a sequence .�n/ of positive integers such that for all compact sets F � G,
L � 

sup
w2F

sup
�2L

sup
z2K

ˇ̌
eS�n.f ;w; �/.z/ � h.z;w/

ˇ̌
! 0; as n ! C1:

Theorem 2.4 For all holomorphic functions b W G !  we have

U.;G/ D U.;G; b/:

We need parameter modifications of several known results. For potential theoretic
notions as for example that of Green’s functions and (non-)thinness, we refer to
[19]. Let jjf jjM denote the sup-norm of a bounded function f on M.
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Lemma 2.5 Let F � C compact and let Pn W C � F ! C be continuous and such
that Pn.�;w/ is a polynomial of degree � �n. If E � C is closed and non-thin at 1

with

lim sup
n!1

.jjPn.z; �/jjF/
1=�n � 1 for all z 2 E;

then

lim sup
n!1

.jjPnjjM�F/
1=�n � 1 for all compact M � C:

For sake of completeness, we sketch the proof which is based on Bernstein’s lemma
(see e.g. [19, Theorem 5.5.7]) and the following characterization of non-thinness at
1 in terms of Green’s functions (see [13, Lemma 1]).

Let E � C be closed and suppose that ER WD fw 2 E W jwj � Rg has positive
capacity for R > 0 sufficiently large. If DR denotes the component of C1 n ER

containing 1 then E is non-thin at 1 if and only if the Green’s functions gDR for
DR satisfy

gDR.z;1/ ! 0 as R ! 1:

In the first step, one can reduce the proof to the case of C n E having no bounded
components (cf. [13], proof of Lemma 1). The functions vn W C ! C, defined by

vn.z/ WD max

	
1

�n
log jjPn.z; �/jjF; 0



for z 2 C;

are subharmonic in C [19, Theorem 2.4.7] and from Bernstein’s lemma it can be
deduced that

lim sup
n!1

vn.z/ � gDR.z;1/ for z 2 DR

(cf. [13], proof of Lemma 1). Then, from the above characterization of non-thinness
at 1, we obtain that vn ! 0 in C n E, as n ! 1. According to the assumption, this
implies vn ! 0 in C, where the convergence turns out to be locally uniformly in C.
This is equivalent to the statement of Lemma 2.5.

For F � G compact and j D 0; 1; : : : we define

aj.F/ WD
1

jŠ
sup
w2F

ˇ̌
ˇ
@jf

@uj
.u;w/

ˇ̌
uDb.w/

ˇ̌
ˇ:

As an application of Cauchy’s estimates we then get (cf. for example the proof of
the Lemma in [3])
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Lemma 2.6 Let F � G be compact. If .�n/ is a sequence of integers with

lim sup
n!1

sup
w2F
.jjQS�n.f ;w; b.w//jjM/

1=�n � 1

for all compact M � C, then the sequence .cj/ D .aj.F// has Ostrowski-gaps
relative to .�n/.
A more sophisticated application of Cauchy’s estimates in conjunction with the
three circles theorem or the two constants theorem yields

Lemma 2.7 Suppose that .aj.F// has Ostrowski-gaps .�n; �n/. Then

sup
w2F

sup
�2L

jjQS�n.f ;w; �/ � QS�n.f ;w; b.w//jjM ! 0 as n ! 1;

for all compact L �  and all compact M � C.
The proof is similar to the proof of Theorem 1 of [10]; see also [12, Lemma 9.2].

Proof of Theorem 2.4 Obviously, we have U.;G/ � U.;G; b/. Let f 2

U.;G; b/. We show that f 2 U.;G/. To this aim consider h 2 H.K � G/,
where K is as in Definition 2.2, and F � G compact. Moreover, suppose that .Kn/ is
an increasing sequence of compact sets in c with Kc

n connected, K \ Kn D ; and
so that E WD

S
n Kn is closed and non-thin at 1 (such a sequence exists; cf. Lemma

1 in [14]). We define gn W K [ Kn ! C by

gn.z:w/ WD

(
h.z;w/; .z;w/ 2 K � G

0; .z;w/ 2 Kn � G
:

The definition of U.;G; b/ implies that a (strictly increasing) sequence .�n/ exists
with

sup
w2F

sup
z2K[Kn

jeS�n

�
f ;w; b.w/

�
.z/ � gn.z;w/j < 1=n

for all n. Then

Pn.z;w/ WDeS�n

�
f ;w; b.w/

�
.z/

satisfies the assumptions of Lemma 2.5. Thus, from Lemmas 2.5 and 2.6 we obtain
that .aj.F// has Ostrowski-gaps .�n; �n/. From the definition of Ostrowski-gaps it
follows that

sup
w2F

sup
z2K

ˇ̌
eS�n.f ;w; b.w//.z/ �eS�n.f ;w; b.w//.z/

ˇ̌
! 0; as n ! C1:
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But then the equiconvergence property of Lemma 2.7 implies that

sup
w2F

sup
�2L

sup
z2K

ˇ̌
eS�n.f ;w; �/.z/ � h.z;w/

ˇ̌
! 0; as n ! C1:

This shows that f 2 U.;G/. �

Remark 2.8 We consider the class eU.;G/. Its definition is the same as the
definition of the class U.;G/ but in addition we require the following: For all
compact sets R �  and S � G we have

sup
z2R

sup
w2S

sup
�2R

ˇ̌
eS�n.f ;w; �/.z/ � f .z;w/

ˇ̌
! 0 as n ! C1:

As in [14, Corollary 1] it is seen that from Ostrowski’s classical results on
overconvergence and the above proof of Theorem 2.4 it follows that also

eU.;G/ D U.;G/:

We shall show that the class eU.;G/ is residual in H.�G/. Actually, we prove
this for a subclass of U.;G/.

Definition 2.9 Let b W G !  be a holomorphic function. The class U0.;G; b/
contains all functions f 2 H. � G/ such that the sequence eSN.f ;w; �/ satisfies
the following: For every compact set K � C;K \  D ;, Kc connected, and any
holomorphic function h in an open neighborhood of K � G .h 2 H.K � G/), there
exists a sequence .�n/ of positive integers such that the following holds: For every
compact set F � G and every differential operator D˛1;˛2 D @˛1

@z˛1
@˛2

@w˛1 , ˛1; ˛2 2

f0; 1; 2; : : :g it holds

sup
w2F

sup
z2K

ˇ̌
D˛1;˛2

eS�n

�
f ;w; b.w/

�
.z/ � D˛1;˛2h.z;w/

ˇ̌
! 0; as n ! C1:

Definition 2.10 The class U0.;G/ contains all functions f 2 H. � G/ such that
the sequenceeSN.f ;w; �/ satisfies the following: For every compact set K � C;K \

 D ;; Kc connected and any h 2 H.K�G/, there exists a sequence .�n/ of positive
integers such that the following holds: For all compact sets F � G, L �  and for
every differential operator D˛1;˛2;˛3 D @˛1

@z˛1
@˛2

@w˛2
@˛3

@�˛2
, ˛1; ˛2; ˛3 2 f0; 1; 2; : : :g, it

holds

sup
w2F

sup
�2L

sup
z2K

ˇ̌
D˛1;˛2;˛3

eS�n.f ;w; �/.z/ � D˛1;˛2;˛3h.z;w/
ˇ̌

! 0; as n ! C1:

Proposition 2.11 For all holomorphic functions b W G !  we have

U0.;G/ � U0.;G; b/:
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Proof Let f 2 U0.;G/. Then, according to the Proposition 2.1 we have

sup
w2F

sup
�2L

sup
z2K

ˇ
ˇD˛1;˛2;˛3

eS�n.f ;w; �/.z/
ˇ
ˇ ! 0; as n ! C1;

provided that ˛3 6D 0.
We choose L compact such that b.F/ � L � . Then,

D˛1;1
eS�n

�
f ;w; b.w/

�
.z/

D D˛1;1;0
eS�n.f ;w; b.w//.z/C D˛1;0;1

eS�n.f ;w; b.w//.z/ � b0.w/

! D˛1;1;0h.z;w/C 0 	 D˛1;1h.z;w/;

as n ! C1, uniformly on F � K, because b0 is bounded on the compact set L
containing b.F/.

For general ˛2 the proof follows by induction.

Theorem 2.12 The class U0.;G/ is a residual subset of H.� G/ endowed with
the topology of uniform convergence on compacta.

Proof It is known (see e.g. [5]) that polynomials in two variables are dense in the
space of holomorphic functions defined on the product of two simply connected
planar open sets endowed with the topology of uniform convergence on compacta.
Thus, the function h can be taken to be a polynomial of two variables.
For compact sets K � C;F � G;L � , a polynomial h, a finite subset
I of f0; 1; 2; : : :g3, s 2 f1; 2; : : :g and n 2 f0; 1; 2; : : :g we consider the set
E.K;F;L; h; I; s; n/ of all g 2 H. � G/ such that

sup
w2F

sup
�2L

sup
z2K

ˇ̌
D˛1;˛2;˛3

eSn.g;w; �/.z/ � D˛1;˛2;˛3h.z;w/
ˇ̌
<
1

s

for all .˛1; ˛2; ˛3/ 2 I:
It is known [12] that there exists a sequence Km;m D 1; 2; : : :, of compact subsets

of C n  with Kc
m connected, such that for every compact set K � C n  with Kc

connected there exists m 2 f1; 2; : : :g so that K � Km.
We also consider F� , � D 1; 2; : : : and L�, � D 1; 2; : : :, two exhausting families

of compact sets in G and , respectively. Since G and  are simply connected we
may assume that F� and L� have connected complements [20]. Finally, let hj; j D

1; 2; : : :, be an enumeration of the polynomials in two variables with coefficients in
Q C iQ.

One can easily see that

U0.;G/ D
\

I;m;�;�;j;s

[

n

E.Km;F� ;L�; hj; I; s; n/

where I varies in the set of finite subsets of f0; 1; 2; : : :g3, which is a denumer-
able set.
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If we show that each E.K;F;L; h; I; s; n/ is open in H. � G/, then it
will follow that U.;G/ is a Gı set. Further, if we show in addition thatS

n E.Km;F� ;L�; hj; I; s; n/ is dense in H. � G/ for every fixed m; �; �; j; I and s
then Baire’s Category Theorem would imply that U.;G/ is a dense Gı subset of
the Fréchet space H. � G/.

We consider compact sets M;M1;T and T1, such that L � Mı � M � Mı
1 �

M1 �  and F � Tı � T � Tı
1 � T1 � G. Let also V be an open set in C

containing K. We consider another two compact sets S and S1 such that K � Sı �

S � Sı
1 � S1 � V . Then dist.M � T � S; .Mı

1 � Tı
1 � Sı

1/
c/ > r for some r > 0.

Suppose g 2 E.K;F;L; h; I; s; n/. We show that each ' 2 H. � G/ which is
sufficiently (uniformly) close to g on the compact set M1 � T1 �  � G belongs to
E.K;F;L; h; I; s; n/.

By Cauchy estimates on discs with radius r centered on points of M � T �

Mı � Tı we conclude thateSn.';w; �/.z/ andeSn.g;w; �/.z/ are close on the open set
Mı �Tı �Sı if ' is uniformly close to g on the compact set M1�T1. Since D˛1;˛2;˛3

is a continuous operator on H.Mı � Tı � Sı/ it follows that D˛1;˛2;˛3
eSn.';w; �/.z/

and D˛1;˛2;˛3
eSn.g;w; �/.z/ are uniformly close on the compact set L � F � K �

Mı � Tı � Sı. Therefore, ' 2 E.K;F;L; h; I; s; n/ and this set is open.
Next we will show that the sets

S
n E.Km;F� ;L�; hj; I; s; n/ are dense in

H. � G/.
Let f 2 H.� G/, leteL �  a compact set,eF � G another compact set and " >

0. Without loss of generality we may assume that L� � eL and thateLc is connected
and F� � eF. We have to find n 2 f0; 1; 2; : : :g and g 2 E.Km;F� ;L�; hj; I; s; n/ such
that

sup
z2eL

sup
w2eF

ˇ
ˇg.z;w/ � f .z;w/

ˇ
ˇ < ":

We consider the setseL �eF and Km � F� . SinceeL and Km are disjoint compact sets
in C with connected complements we can find two disjoint simply connected open
sets 1 and 2 such thateL � 1 �  and Km � 2 � C. We also recall that the
open set G containseF and G is simply connected. The open sets1� G and2� G
in C

2 are disjoint and .1 � G/ [ .2 � G/ D .1 [2/ � G is a product of two
simply connected planar open sets. Therefore, Runge’s theorem (see e.g. [5]) can be
applied to this set.

We consider the holomorphic function ' W .1 [ 2/ � G ! C defined
by '.z;w/ D f .z;w/ on 1 � G and '.z;w/ D hj.z;w/ on 2 � G. Runge’s
theorem yields a sequence of polynomials g�.z;w/; � D 1; 2; : : : converging to
'.z;w/ uniformly on each compact set of the open set .1 [2/� G. Weierstrass’
theorem implies that D˛1;˛2g�.z;w/ �!

�!1
D˛1;˛2'.z;w/ uniformly on compacta of

.1 [2/ � G. Thus, we can find � so that, if we set g D g�, we have

sup
z2eL

sup
w2eF

ˇ̌
g.z;w/ � f .z;w/

ˇ̌
< "
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and

sup
w2F�

sup
z2Km

ˇ̌
D˛1;˛2g.z;w/ � D˛1;˛2h.z;w/

ˇ̌
< 1=s

for all ˛1; ˛2 with .˛1; ˛2; 0/ 2 I. Now, since g is a polynomial

eSn.g;w; �/.z/ D g.w; z/ for all �;

provided n is bigger than the degree of g. Thus

D˛1;˛2;0
eSn.g;w; �/.z/ D D˛1;˛2g.z;w/

and therefore, since D˛1;˛2;0h.z;w/ D Da1;a2h.z;w/,

sup
w2F�

sup
z2Km

sup
�2L�

ˇ̌
ˇD˛1;˛2;0

eSn.g;w; �/.z/ � D˛1;˛2;0h.z;w/
ˇ̌
ˇ <

1

s
:

If ˛3 6D 0 then D˛1;˛2;˛3
eSn.g;w; �/.z/ D D˛1;˛2;˛3g.z;w/ D 0 as well as

D˛1;˛2;˛3h.z;w/ D 0. It follows that

sup
w2F�

sup
z2Km

sup
�2L�

ˇ̌
ˇD˛1;˛2;˛3

eSn.g;w; �/.z/ � D˛1;˛2;˛3h.z;w/
ˇ̌
ˇ D 0 <

1

s
:

Therefore
S

n E.Km;F� ;L�; hj; I; s; n/ is open and dense in the complete metrizable
space H. � G/. Baire’s theorem yields that their denumerable intersection is also
Gı and dense. This proves that U0.;G/ is Gı and dense.

Remark 2.13

• The classes U0.;G; b/ and U0.;G/ are subsets of H.� G/. We can consider
analogous classes in A1.�G/ (see also [8, 11]). We remind that a holomorphic
function f 2 H.;G/ belongs to A1. � G/, iff D˛1;˛2 f extends continuously
to � G for all differential operators D˛1;˛2 D @˛1

@z˛1
@˛2

@w˛2 , ˛1; ˛2 2 f0; 1; 2; : : : ; g.
The topology of A1. � G/ is defined by the seminorms

sup
.z;w/2�G;k.z;w/k�n

ˇ̌
D˛1;˛2 f .z;w/

ˇ̌
; n; ˛1; ˛2 2 f0; 1; 2; : : :g:

In the new definitions the supremuma with respect to z;w; � will be calculated
on compact subsets of ;G and  respectively, but the universal approximation
will be required on compact subsets K �G, K \ 6D ;, Kc connected only. These
new classes will be residual in A1. � G/. The proof is similar to the proof of
Theorem 2.12 mainly because the function g, which is a polynomial, obviously
belongs to A1. � G/.
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• In all the above results the set�G can be replaced by�G1�� � ��Gd, where
;G1; : : : ;Gd are planar simply connected domains. The proofs are largely the
same, because every function f 2 H. � G1;� : : : � Gd/ can be approximated
uniformly on compacta by polynomials [5].

• Consider any infinite subset� of the set of natural numbers. Then in the definition
of the class U.;G/ if we require that �j 2 � for all j D 1; 2; : : :, then we find
another class U�.;G/. This class is also residual. The proof is similar to the
proof of the main result of Theorem 2.12. It suffices to mention two points. First,
in the description of the class as intersection of a union, the union this time will be
taken only for n 2 �. Second, in the density argument we find a polynomial g.�; �/
and then we choose a natural number n greater than the degree of g. Certainly we
can choose n 2 �, because � is an infinite subset of the set of natural numbers.
Thus U�.;G/ is also residual and hence dense. This implies in a standard way
[1] algebraic genericity. That is, U.;G/[ f0g contains a vector subspace dense
in H. � G/.
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Interpolation by Bounded Analytic
Functions and Related Questions

Arthur A. Danielyan

Abstract The paper investigates some interpolation questions related to the
Khinchine–Ostrowski theorem, Zalcman’s theorem on bounded approximation,
and Rubel’s problem on bounded analytic functions.

Keywords Bounded analytic functions • Bounded approximation • Fatou’s inter-
polation theorem • Gı set of measure zero

Mathematics Subject Classification: 30H05, 30H10

1 Introduction

Let C.K/ be the set of all continuous complex valued functions on a given subset K
of C. Let D and T be the open unit disk and the unit circle, respectively. As usual,
H1 is the space of all bounded analytic functions on D, and the familiar disc algebra
A is the set of all elements of H1 that can be continuously extended to the closed
unit disc.

The formulation and the proof of the following theorem of Khinchine and
Ostrowski (in an even more general version) can be found in Privalov’s book [9,
p. 118].

Theorem A (Khinchine–Ostrowski) Let ffkg be a sequence of functions analytic
on D which satisfy the following conditions:

(a) there exists M > 0 such that jfk.z/j � M on D, k D 1; 2; : : : , and
(b) the sequence

˚
fk
�
ei�
��

of radial boundary values of fk.z/ converges at each
point of some subset E � T of positive measure.
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Then ffkg converges uniformly on compact subsets of D to a bounded analytic
function f ; and

˚
fk
�
ei�
��

converges almost everywhere on E to the radial boundary
values f

�
ei�
�

of f .
The following theorem of Zalcman [10] is related to Theorem A.

Theorem B Let � be a proper closed arc on T. A function f 2 C.� / is uniformly
approximable (on � ) by polynomials Pn satisfying jPn.z/j � M on D, n D 1; 2; : : : ,
if and only if there exists a function g analytic on D, jg.z/j � M on D, such that

f
�
ei�
�

D lim
r!1

g
�
rei�

�
; ei� 2 �:

When the arc � is replaced by an arbitrary closed subset F of T, we have (see
[3]):

Theorem C Let F be a closed subset of T. In order that a function f 2 C.F/ be
uniformly approximable on F by polynomials Pn such that jPn.z/j � M on D, n D

1; 2; : : : , it is necessary and sufficient that the following conditions be satisfied:

(i) jf .z/j � M, z 2 F, and
(ii) There exists a function g analytic on D, jg.z/j � M on D, such that

f
�
ei�
�

D lim
r!1

g
�
rei�

�

for almost all ei� 2 F.

Note that Theorem B is for proper arcs. Even Theorem C does not formally
assume that the closed set F is proper, it becomes trivial when F D T (that is,
together with Poisson integral representation formula, it gives the following well
known fact: f 2 C.T/ is uniformly approximable by polynomials if and only if f is
in the disc algebra A).

Of course, Theorem A implies the necessity part of Theorem C, but it does not
imply the necessity part of Theorem B. Indeed, the necessity part of Theorem B
provides the equation

f
�
ei�
�

D lim
r!1

g
�
rei�

�

everywhere on � including its endpoints, while Theorem A does not imply the same
equation at the end points of � . Thus, the necessity part of Theorem B can be
considered as a certain strengthening of the conclusion of Theorem A.

We are interested in particular in closed subsets of T which “behave” like closed
arcs of T. In this direction one can formulate the following open problem.

Problem 1 Describe all closed subsets F on T such that whenever f 2 C.F/ is
uniformly approximable on F by a sequence of polynomials, uniformly bounded on
T, then there exists a function g 2 H1 with radial limits existing and coinciding
with f everywhere on F.
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Note that the Rudin–Carleson theorem immediately implies that also the closed
subsets of T of measure zero have the property mentioned in Problem 1.

The following recent (unpublished) theorem of Gardiner [Gardiner, S.J.:
Response to a question of A. Danielyan. Private communication.] provides an
answer to a question asked by the author.

Theorem 1 Let E � T be a closed set that has positive lower Lebesgue density
at every constituent point. If a function f 2 C.E/ is uniformly approximable by
polynomials Pn satisfying jPn.z/j � M on D, n D 1; 2; : : : , then there exists an
analytic function g on D satisfying jg.z/j � M on D and

f
�
ei�
�

D lim
r!1

g
�
rei�

� �
ei� 2 E

�
: (1)

If f 2 C.E/ and there exists an analytic function g on D satisfying jg.z/j � M on
D and

f
�
ei�
�

D lim
r!1

g
�
rei�

� �
ei� 2 E

�

then, by Theorem C, the function f is uniformly approximable by polynomials Pn

satisfying jPn.z/j � M on D, n D 1; 2; : : : .
Thus we have the following corollary (of Theorem C and Theorem 1) providing

a new subclass of the class of sets which Problem 1 requires us to describe.

Corollary 1 Let E � T be a closed set that has positive lower Lebesgue density
at every constituent point. A function f 2 C.E/ is uniformly approximable by
polynomials Pn satisfying jPn.z/j � M on D, n D 1; 2; : : : , if and only if there
is an analytic function g on D satisfying jg.z/j � M on D and

f
�
ei�
�

D lim
r!1

g
�
rei�

� �
ei� 2 E

�
:

In Sect. 2 below we recall the definition of lower Lebesgue density. Such standard
sets as closed (or open) intervals, of course, have positive lower Lebesgue density
at every constituent point. As Buczolich [2] has shown there exist also Cantor sets
with the same property.

If f 2 C.F/ is uniformly approximable by a sequence of polynomials, uniformly
bounded on T, then by Theorem C (or by Theorem A) there exists a function g 2

H1 the radial limits of which are equal to f a.e. on F. This brings us to the following
formulation:

Problem 2 Describe all closed subsets F on T such that whenever f 2 C.F/
coincides a.e. on F with the radial limits of a function g 2 H1, then the radial
limits of g exist on F and coincide with f at each point of F.

A further generalization of Problem 2 is the following problem.
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Problem 3 Describe all Gı subsets F on T such that whenever f 2 C.F/ coincides
a.e. on F with the radial limits of a function g 2 H1, then the radial limits of g exist
on F and coincide with f at each point of F.

A simpler (still open) problem for a restricted set of functions defined on F is:

Problem 4 Describe all Gı subsets F on T such that whenever f 2 C.T/ coincides
a.e. on F with the radial limits of a function g 2 H1, then the radial limits of g exist
on F and coincide with f at each point of F.

It is easy to see that a closed subset of T of zero measure does not belong to the
class of sets which Problem 2 (or, Problem 3 or 4) is requiring to describe as the
class of sets mentioned contains “massive” sets only.1

However, for sets of measure zero too one can formulate appropriate interpola-
tion problems. The most famous such problems have been solved, of course, by the
classical Fatou (Theorem E below) and the Rudin–Carleson interpolation theorems.
A further such interpolation problem proposed by Rubel (see [6, p. 168]) has been
solved by the following recent result of the author [4].

Theorem D Let F be a Gı set of measure zero on T. Then there exists a function
g 2 H1 non-vanishing in D such that the radial limits of g exist everywhere on T

and vanish precisely on F.
If F is merely closed, the following result provides a more precise conclusion

(see [7, p. 80]).

Theorem E Let F be closed and of measure zero on T. Then there exists an element
in the disc algebra which vanishes precisely on F.

It is well known that the existences of radial and angular limits of a function g 2

H1 at a point t 2 T are equivalent. But, of course, the existence of the unrestricted
limit at t 2 T is a stronger requirement than the existence of the angular limit at
t 2 T. (We say that g has an unrestricted limit at t 2 T if the limit of g exists when
z 2 D approaches to t arbitrarily in D.)

In the general case the function g in Theorem D cannot belong to the disc algebra.
However, Gı sets are sets of points of continuity, and this brings us to the idea of
making the function g continuous on the set F at least. Below we show that this
indeed is possible; we have the following new complement of Theorem D.

Theorem 2 Let F be a Gı set of measure zero on T. Then there exists a function
g 2 H1 non-vanishing in D such that:

1) g has non-zero radial limits everywhere on T n F; and
2) g has vanishing unrestricted limits at each point of F.

1If a closed set E is of positive measure but has a portion of measure zero, then even such a set
cannot belong to the class of sets which Problem 2 requires to describe. See Sect. 2 below for the
definition of a portion of E.
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The condition on F is not only sufficient, but necessary (cf. [4]). Both Theo-
rems D and 2 extend Theorem E from closed sets to Gı sets. The conclusion (2)
makes Theorem 2 a better analogue of Theorem E.

As we noted, the condition on F in Theorem 2 is necessary as well. Thus,
Theorem 2 describes all such sets F (on T) for each of which there exists some
f 2 H1 having vanishing unrestricted limits on F and non-zero radial limits on
T n F (the description is that F is a Gı of measure zero).

Note that an arbitrary Gı set on T is precisely the set of unrestricted limits for
some f 2 H1 as Brown et al. [1] have shown (see [1, p. 52]). Their result is:

Theorem F Let E be a Gı set on T. Then there exists a function f 2 H1 which has
unrestricted limits at each point of E and at no point of T n E.

Theorem E is a base for the Rudin–Carleson theorem; cf. [7, pp. 80–81]. (Note
that the paper [5] derives the Rudin–Carleson theorem merely from Theorem E.)
Similarly Theorems D and 2 bring us to the questions on the possibility of
proving the appropriate versions of the Rudin–Carleson theorem for Gı sets. The
corresponding problem can be formulated in two parts as follows.

Problem 5

a) Let F be a Gı set of measure zero on T and let either f 2 C.T/ or, more generally,
f 2 C.F/. Then does there exist a function g 2 H1 such that the radial limits of
g exist everywhere on T and coincide with f on F?

b) In addition to the requirement of part a), is it possible that g has unrestricted
limits at each point of F?

Theorem 1 requires a closed set to be of positive lower Lebesgue density at
every constituent point. In an attempt to relax this requirement, one can ask: Does
any closed set with no portion2 of measure zero belong to the class of sets which
Problem 1 is asking to describe? The following result gives a negative answer to this
question.

Theorem 3 There exists a closed set F � T having no portion of measure zero
and a function f 2 C.F/ uniformly approximable on F by polynomials which are
uniformly bounded on T, such that no function g 2 H1 has radial limits equal to
f at every point of F.

2 Some Definitions, Auxiliary Results, and Remarks

The terminology used above is known, but we quickly mention some details just in
case to avoid any possible confusion. Let F � T be closed; if J � T is an open arc
containing a point of F, we call the intersection F \ J a portion of F. Buczolich [2]

2See Sect. 2 for the definition of portion of a closed set.
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calls a nowhere dense perfect set with no portion of measure zero a fat Cantor set,
but we do not use this term.

Let m be the (normalized) Lebesgue measure on T. The lower density of F at
t 2 T, denoted by D.t;F/, is defined as

D.t;F/ D lim inf
h!0

m.It.h/ \ F/

2h
;

where It.h/ is an open arc on T of length 2h and of midpoint at t (cf. [2, p. 497]).
For a closed F, of course, D.t;F/ D 0 at all t 2 T n F.

If a closed set F has a portion of measure zero, then obviously D.t;F/ D 0

at any t 2 F of that portion. But there are many closed sets which have positive
lower Lebesgue density at every constituent point. In particular, as Buczolich [2, p.
499] has shown, there exist Cantor sets with lower Lebesgue density � 0:5 at every
constituent point; for any such set on T the above Theorem 1 is applicable.

The proof of Theorem 1 uses the standard lemma below (formulated in [? ]),
which follows from the classical theory (cf., e.g., Zygmund’s book [11]).

For a Lebesgue integrable function u on T we denote by Hu the Poisson integral
of u.

Lemma 1 Let u W T ! Œ�1;1� be Lebesgue integrable. Then the Poisson integral
Hu in D satisfies

lim inf
r!1

Hu.re
i� / � lim inf

t!0C

1

2t

Z

Œ�t;t�
u.ei.�C�//d� .0 � � � 2�/:

For the convenience of the reader we present the proof of Lemma 1 in the next
section.

The following lemma of Kolesnikov [8] is important for Theorem 2 (and
Theorem D).

Lemma 2 Let G be an open subset on T and let F � G be a set of measure zero on
T. For any � > 0 there exists an open set O, F � O � G, and a function g 2 H1

such that:

1) jg.z/j < 2, 0 < <g.z/ < 1 for z 2 D;
2) the function g has a finite radial limit g.�/ at each point � 2 T;
3) at the points � 2 O the function g is analytic and <g.�/ D 1;
4) jg.z/j � � on every radius R�0 with end-point at �0 2 T n G.

3 Proofs

Proof (Lemma 1) The proof follows from Fatou’s classical results presented in [11,
pp. 99–101].
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In this proof we identify the point ei� 2 T with � 2 Œ0; 2�� as usual. Let u be
Lebesgue integrable function on Œ0; 2�� (as in Lemma 1) and let U be the indefinite
integral of u. Recall that the first symmetric derivative of U at x0 is

D1U.x0/ WD lim
h!0C

U.x0 C h/ � U.x0 � h/

2h
:

The appropriate upper and lower limits are called the upper and lower first
symmetric derivatives, and are denoted by D1U.x0/ and D1U.x0/, respectively (cf.
[11, p. 99]).

The direct calculations imply

D1U.�/ D lim inf
t!0C

1

2t

Z t

�t
u.� C �/d� .0 � � � 2�/:

Since the right side of this equation is nothing else but the right side of the inequality
in Lemma 1, to prove Lemma 1 one needs to verify that

lim inf
r!1

Hu
�
rei�

�
� D1U.�/ .0 � � � 2�/: (2)

Consider the Fourier series SŒu� of the function u. As Zygmund notes immediately
after the formulation of Theorem 7.9 in [11, p. 101], we may suppose that SŒu� D

S0ŒU�, where S0ŒU� is the formally differentiated Fourier series of U. Thus for the
series SŒu�, part (i) of Theorem 7.9 of [11], can be strengthened by the second part
of Theorem 7.2 (from [11, pp. 99–100]). The second part of Theorem 7.2 simply
states that the limits of indetermination of Abel summation of S0ŒU� as r ! 1 are
contained between D1U.�/ and D1U.�/ for all 0 � � � 2� . Since SŒu� D S0ŒU�,
the same is true for the limits of indetermination of Abel summation of SŒu�. Thus

D1U.�/ � lim sup
r!1

Hu
�
rei�

�
� lim inf

r!1
Hu
�
rei�

�
� D1U.�/ .0 � � � 2�/;

which obviously implies (2). Lemma 1 is proved.
We present the original proof of Theorem 1 from [? ].

Proof (Theorem 1) Suppose Pn ! f uniformly on E and jPn.z/j � M on D for each
n. Then, by subharmonicity,

log jPn � Pmj � HlogjPn�Pmj � logC.2M/C HlogjPn�Pmj	E on D: (3)

Since E has positive measure, fPng is locally uniformly convergent on D to some
analytic function g. (This follows from (3) using the estimate of HlogjPn�Pmj	E in
terms of the harmonic measure of E; cf. [10, p. 379–380]. Of course, the same
conclusion also follows from Theorem A.)
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If ei� 2 E, then by hypothesis

˛� WD lim inf
t!0C

1

2t

Z

Œ�t;t�
	E
�
ei.�C�/

�
d� > 0:

By Lemma 1 we can choose r� 2 .0; 1/ such that

H	E

�
rei�

�
�
˛�

2
.r� � r < 1/ :

For large m; n it follows from (3) that

log jPn � Pmj
�
rei�

�
� logC.2M/C

˛�

2
max

E
log jPn � Pmj .r� � r � 1/ :

Thus fPng converges uniformly on
˚
rei� W r� � r � 1

�
, and (1) follows.

Theorem 1 is proved. ut

Proof (Theorem 2) This proof is completely parallel to the proof of Theorem D in
[4], and only contains an additional argument (observation), which we will indicate
here. In [4] the above Lemma 2 has been used for the proof of Theorem D, which
yields a function g 2 H1 with all needed properties except the property of having
unrestricted vanishing limits at each point of F (the function g merely has vanishing
radial limits at the points of F).

Without repeating the proof of Theorem D, we refer the reader to this proof in [4],
where analytic (on D) functions gk are constructed such that their sum

P1
kD1 gk.z/ D

h.z/ is analytic as well.
As indicated in [4], the functions gk in particular have such properties: <gk.z/ >

0 for z 2 D; at the points � 2 Ok the function gk is analytic and <gk.�/ D 1, where
Ok is an open set on T containing F (k D 1; 2; : : : /.

We conclude that <h.z/ > 0 for z 2 D. Also, since <gk.�/ D 1 on Ok and
F � Ok, obviously, not only the radial limit, but also the unrestricted limit of <h.z/
is C1 at each point of F.

The analytic function f D 1=.1C h/ is bounded by 1. Obviously it has vanishing
unrestricted limits at each point of F, and as in [4], the function f also has all other
necessary properties.

Theorem 2 is proved. ut

Proof (Theorem 3) Let D be the “outer snake” domain (also known as the
cornucopia) in the w-plane (D is a spiral domain around the unit circle jwj D 1). The
circle jwj D 1 is an impression of a prime end R of the simply connected domain
D. Let w D '.z/ be the Riemann mapping function of D onto D. By Carathéodory’s
theorem, under the mapping w D '.z/, the prime end R corresponds to a point A of
the unit circle T. Without loss of generality, we may assume A is 1. Then the radial
limit of '.z/ at the point 1 does not exist, because the image of the radius ending at
1 is a spiral surrounding the circle jwj D 1 infinitely many times. On the other hand,
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0 1

L1L2L3L4L5L6

D

Fig. 1 The “outer snake” domain

at each point of the set T n f1g, the function '.z/ has a radial limit; it can be defined
by its radial limits on the set T n f1g, and the extended function is then continuous
on T n f1g.

The inverse mapping function z D '�1.w/ can be extended continuously at each
boundary point of D which does not belong to jwj D 1. This follows from the fact
that each such point is an accessible boundary point of D.

In the w-plane consider an acute angle with vertex at w D 1 and such that the
half line Œ1;1/ is a bisector for the angle; thus the angle lies outside of jwj D 1, and
only its vertex is on the circle (see Fig. 1). This angle “cuts” countably many Jordan
arcs on the boundary of the domain D, which we denote by L1;L2;L3; : : : in the
order from the right to left (so that L1 is the farthest from jwj D 1/. We take the set
Ln to be closed so that Ln contains its endpoints. Under the mapping z D '�1.w/,
the image of Ln is a closed arc �n on T. Clearly the arcs �n are disjoint.

Recalling that the prime end R of D corresponds to the point 1 2 T, we conclude
that the arcs �n on T accumulate to 1 from either side (for this we also use the fact
that the arcs Ln lie on “both” sides of the spiral domain D and they approach the
circle jwj D 1). Thus, the set F WD

S1
nD1 �n [ f1g is a closed set (on T) and has

no portion of measure zero. Let f .z/ D '.z/ if z 2 F n f1g and f .1/ D 1. Then
f is continuous on F. Continuity on the arcs �n is obvious, while continuity at the
point 1 follows from the construction of the arcs Ln. Indeed, if a sequence fzkg � F
approaches 1, then zk 2 �nk for certain natural numbers nk approaching infinity.
Thus f .zk/ 2 Lnk ; and because the arcs Lnk approach the point 1 (the vertex of the
above described angle), f .zk/ approaches 1 as k tends to 1.
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The function f is equal to the radial limits of '.z/ at all points of F except
the point 1. Thus, by Theorem C, the function f is uniformly approximable on F
by polynomials that are uniformly bounded on D. On the other hand, no bounded
analytic function can have radial limits equal to f at all points of F. Indeed, by the
boundary uniqueness theorem, any such function must be identical with the function
'.z/, while as we have already seen, the radial limit of '.z/ does not exist at 1 2 F.
This completes the proof of Theorem 3. ut
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On Two Interpolation Formulas for
Complex Polynomials

Richard Fournier and Stephan Ruscheweyh

Abstract We discuss, from various points of view (for example the unicity of
nodes), two recent interpolation formulas for algebraic polynomials leading to
various Bernstein-Markov type inequalities. We also show that each formula
contains, as a special case, the Marcel Riesz interpolation formula for trigonometric
polynomials.

Keywords Interpolation formulas for polynomials • Bernstein-Markov inequalities

2000 Mathematics Subject Classification: 30H05, 30H10

1 Introduction and Statement of the Results

Let D denote the unit disc of the complex plane and let Pn be the class of complex
polynomials of degree at most n. In this note we compare two general interpolation
formulas for the class Pn.

Given a system of angles

� WD f�j W 0 � �0 < �1 < : : : �n�1 < �n � �g (1)

we define

w.z/ WD

nY

jD0

.z � cos �j/
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and

Lj.z/ D
w.z/

.z � cos �j/w0.cos �j/
WD

nX

kD0

ak;jTk.z/; j D 0; : : : ; n;

where Tk stands for the k-th Chebyshev polynomial. We also set

lj.z/ WD

nX

kD0

ak;jz
k; j D 0; : : : ; n:

1.1 The First Interpolation Formula

It has been shown in [3] that for any linear functional L over Pn we have

L.p/ D

nX

jD0

L.lj/
p.ei�j/C p.e�i�j/

2
; p 2 Pn: (2)

The known proofs of (2) depend on quadrature formulae or else on the Lagrange
interpolation formula, see [1–3] for details.

1.2 A Special Case

The functionals

St.p/ WD
p.eit/ � p.e�it/

eit � e�it
; 0 � t � �; p 2 Pn;

are of particular interest. In [1–3] it has been shown that

St.p/ D

nX

jD0

c.t; j/
p.eij�=n/C p.e�ij�=n/

2
; (3)

where

c.t; j/ D

8
ˆ̂<

ˆ̂:

.�1/j

n

cos.j�/ � cos.nt/

cos.j�=n/ � cos.t/
; 1 � j � n � 1;

.�1/j

2n

cos.j�/ � cos.nt/

cos.j�=n/ � cos.t/
; j 2 f0; ng;
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and

nX

jD0

jc.t; j/j � n; 0 � t � �: (4)

Remark Equation (3) at t D 0 for arbitrary p 2 Pn but applied to the polynomial
p.eitz/ combined with (4) contains the inequality

ˇ̌
ˇeitp0.eit/ �

n

2
p.eit/

ˇ̌
ˇ �

n

4
max
0�j�n

j odd

ˇ̌
p.ei.tCj�=n//C p.ei.t�j�=n//

ˇ̌
; t 2 R;

which refines the famous Bernstein inequality for complex polynomials in D. It
has also been shown in [1, 2] that (3) contains the Duffin-Schaeffer improvement
of Markov’s inequality for the first derivative of polynomials p 2 Pn on the unit
interval Œ�1; 1�. We refer the reader to the book of Rahman and Schmeisser [6]
concerning polynomial inequalities and interpolation formulae.

For an arbitrary set of nodes � as in (1) we write

St.p/ D

nX

jD0

d.t; j/
p.ei�j/C p.e�i�j/

2
; p 2 Pn: (5)

The following result has been established in [3].

Theorem 1 Let n be an odd integer and d.t; j/ as in (5). Then

max
0�t��

nX

jD0

jd.t; j/j � n (6)

if, and only if, � D fj�=n; j D 0; : : : ; ng.
The following theorem fills a gap left by Theorem 1.

Theorem 2 For n even the conclusion of Theorem 1 is not generally valid.
This result is implied by the following

Counterexample
Let n D 4 and � D f0; �=4; 2�=5; 3�=4; �g. Then

d.t; 0/ D
.1C cos.t// cos.t/.�1C

p
5 � 4 cos.t//

�5C
p
5

d.t; 1/ D
.�2 �

p
8C

p
20/ cos.t/C .�4 �

p
2C

p
10/ cos.2t/ �

p
8 cos.3t/

2C
p
32 �

p
20

d.t; 2/ D .8 �
24
p
5
/ cos.t/ sin.t/2
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0.5 1.0 1.5 2.0 2.5 3.0
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3.5

4.0

Fig. 1 S.t/ . 0 � t � �/; S.0/ D S.�/ D 4

d.t; 3/ D
.�2C

p
8C

p
20/ cos.t/C .�4C

p
2 �

p
10/ cos.2t/C

p
8 cos.3t/

�2C
p
32C

p
20

d.t; 4/ D
.1 � cos.t// cos.t/.�1C

p
5 � 4 cos.t//

3C
p
5

and

S.t/ WD

nX

jD0

jd.t; j/j � 4; 0 � t � �;

with equality if t D 0 and t D � , see Fig. 1.
However, the following result gives a necessary condition on � for the rela-

tion (6) to hold.

Theorem 3 Let � be as in (1) and let the d.t; j/; 0 � j � n; be as in (5). Then (6)
can hold only if

fcos.
j�

n
/ W 0 � j � ng � fcos.�j ˙ �k/ W 0 � j; k � ng: (7)
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Note that (2) can also be written in the form

.p � H/.z/ D

nX

jD0

.lj � H/.1/
p.ei�j z/C p.e�i�j z/

2
(8)

where � denotes the Hadamard product and H is an arbitrary member of Pn.

1.3 The Second Interpolation Formula

Let P denote the class of analytic functions f in the unit disk D satisfying f .0/ D 1

and Re f .z/ > 1
2
. We wish to compare (8) with the following identity:

.p � Q/.z/ D

2nX

jD1

�jp.wj�
1=nz/; (9)

which holds for all z; � 2 @D; p 2 Pn and Q 2 P \Pn�1, and where wj WD eij�=n and

�j WD
1

2n

�
2Re Q.wj�1=n/ � 1

�
� 0;

2nX

jD1

�j D 1:

This interpolation formula is due to Frappier et al. [5] and is, as has recently been
shown (see [4]), actually equivalent to an older result (see [7, Cor. 4.3]), namely

j.p � Q/.z/j C j.p � QQ/.z/j � jjpjj; z 2 D; (10)

for p 2 Pn and Q 2 P \Pn�1. Here QQ.z/ WD znQ.1=z/ and jj � jj denotes the uniform
norm in D.

We note in passing that (9) contains a discrete refinement of the Bernstein
polynomial inequality on the unit disk:

jjp0jj � n max
1�j�2n

jp.wj/j; p 2 Pn: (11)

On the other hand the formulas (8) and (9) are of a very different nature since (9)
contains � 2 @D as an essentially free parameter which is the key to obtain (11) by
setting Q.z/ WD

Pn
kD0.1 � k

n /z
k so that Q satisfies the conditions set for Q in the

context of (9).
In spite of some similarity the identities (8) and (9) do not seem to be comparable.

For instance (8) does not seem to contain (11) while (8) is more flexible in other
ways. Still there is some overlap between these two formulas:
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Theorem 4 For n even both the formulas (3) and (9) imply the Marcel Riesz
interpolation formula for trigonometric polynomials.

Another property of the coefficients in formula (9) concerns the uniqueness of
the interpolating nodes under certain circumstances

Theorem 5 Let � 2 @D;Q 2 Pn�1 \ P and assume that for some k � 2n a set of
distinct nodes fVj W j D 1; : : : ; kg � @D has the property that

.Q � p/.z/ D

kX

jD1

�j p.�1=nVjz/; p 2 Pn; z 2 D; (12)

for complex coefficients f�j W j D 1; : : : ; kg. Then all coefficients �j are positive
and V2n

j D 1 for j D 1; : : : ; k.
We mention that the cases 1 � k < 2n of Theorem 5 with equally spaced nodes

fVj W j D 1; : : : ; kg � @D follow from previous work of Frappier et al. [5, Thm. 8].

2 Proof of Theorem 3

With a polynomial P.z/ D
Pn

kD0 akTk.z/ we associate p.z/ D
Pn

kD0 ak zk; the
identification P $ p is an isomorphism of Pn with

P.cos �/ D
1

2
.p.ei� /C p.e�i� //:

Let

S� .p/ D
p.ei� / � p.e�i� /

ei� � e�i�
D

nX

jD0

d.�; j/
p.ei�j/C p.e�i�j/

2
; p 2 Pn:

with

max
�

nX

jD0

jd.�; j/j � n:

Then

p0.1/ D

nX

jD0

d.0; j/
p.ei�j/C p.e�i�j/

2
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and, more generally, for any real '

ei'p0.ei'/ D

nX

jD0

d.0; j/
p.ei.'C�j//C p.ei.'��j//

2
:

Hence

P0.cos'/ D
ei'p.ei'/ � e�i'p.e�i'/

ei' � e�i'

D
1

2

nX

jD0

d.0; j/

	
p.ei.�jC'// � p.ei.�j�'//

ei' � e�i'

C
p.ei.��jC'// � p.ei.��j�'//

ei' � e�i'




D
1

2

nX

j;kD0

d.0; j/d.'; k/

	
p.ei.�jC�k//C p.e�i.�jC�k//

2

C
p.ei.�j��k//C p.ei.��jC�k//

2




and therefore, for arbitrary ',

jP0.cos'/j �
1

2

nX

j;kD0

jd.0; j/d.'; k/jjP.cos.�j C �k//C P.cos.�j � �k//j

� n2 max
0�j;k�n

jP.cos.�j ˙ �k//j:

Since the last inequality holds for any P 2 Pn it follows by the unicity result of
Duffin and Schaeffer (see [6, p. 574]) that

fcos.
j�

n
/ W 0 � j � ng � fcos.�j ˙ �k/ W 0 � j; k � ng;

and the proof is complete. ut
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3 Proof of Theorem 4

We first deal with formula (3). For N 2 N let n D 2N and p 2 Pn. Then (3) with
t D 0 gives

S0.p/ D p0.1/ �
n

2
p.1/

D

n�1X

jD1
j odd

.�1/j

n

cos.j�/ � 1

cos.j�=n/ � 1

p.eij�=n/C p.e�ij�=n/

2

D
�1

N

2N�1X

jD1
j odd

p.eij�=.2N//C p.e�ij�=.2N//

2.1 � cos.j�=.2N//
:

(13)

Let also u.�/ be a trigonometric polynomial of degree at most N. Then the
polynomial p.ei� / WD eiN�u.�/ belongs to Pn with

�iu0.0/ D p0.1/ � Np.1/

D
�1

N

2N�1X

jD1
j odd

eij�=2u.j�=.2N//C e�ij�=2u.�j�=.2N//

2.1 � cos.j�=.2N//

D
�1

N

NX

kD1

i.�1/k�1.u..2k � 1/�=.2N// � u.�.2k � 1/�=.2N///

2.1 � cos..2k � 1/�=.2N///
;

and finally

u0.0/ D

NX

kD1

.�1/k�1

4N sin2..2k � 1/�=.4N//

	
u.
.2k � 1/�

2N
/ � u.

4N � 2k C 1

2N
�/




D

2NX

kD1

.�1/k�1

4N sin2..2k � 1/�=.4N//
u.
.2k � 1/�

2N
/:

This is of course (compare [6, p. 559]) the important Marcel Riesz interpolation
formula.

Let us now consider formula (9) with n D 2N even, � D 1, and Q.z/ D
Pn

kD0.1�
k
n /z

k. It is a well-known property of the Fejér kernel that Re Q.ei� / � 1
2

for all � and
therefore Q 2 Pn�1 \ P . It follows from (9) that for any p 2 P2N we have

.p � Q/.1/ D p.1/ �
p0.1/

2N
D

4NX

jD1

2Re Q.wj/ � 1

4N
p.wj/



Two Interpolation Formulas for Complex Polynomials 233

with wj D eij�=.2N/; j D 1; : : : ; 4N; and

2 Re Q.wj/ � 1

4N
D

1

8N2

	
sin.j�=2/

sin.j�=.4N//


2
:

We therefore obtain

p.1/ �
p0.1/

2N
D

4N�1X

jD1

1

8N2

	
sin.j�=2/

sin.j�=.4N//


2
p.wj/C

p.1/

2

and

p0.1/ � N p.1/ D

4N�1X

jD1
j odd

�1

4N

1

sin2.j�=.4N/
p.eij�=.2N//

D

2N�1X

jD1
j odd

�1

N

1

1 � cos.j�=.2N//

p.eij�=.2N//

2

C

4N�1X

jD2NC1
j odd

�1

N

1

1 � cos.j�=.2N//

p.eij�=.2N//

2
:

It is easy to see that this last identity coincides with (13) and therefore formula (9)
also contains the Marcel Riesz interpolation formula.

4 Proof of Theorem 5

Assume that (12) holds. Then p ! Q � p is a bound preserving operator on Pn and
we have the representation

.Q � p/.z/ D

kX

jD1

�jp.�
1=nVjz/ D

Z

@D

p.t�1=nz/d�.t/; p 2 Pn;

where � is a complex Borel measure with
R
@D

jd�.t/j � 1: Setting p 2 P0 we obtain

1 D

Z

@D

d�.t/ D

ˇ̌
ˇ̌
Z

@D

d�.t/

ˇ̌
ˇ̌ �

Z

@D

jd�.t/j � 1
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so that equality must hold everywhere in this chain of (in)equalities. In other words
� is a probability measure on @D with jumps steps�j � 0; j D 1; : : : ; k: For jzj D 1

it follows that

.Q � Qp/.z/ D B. QQ � p/.z/ D zn. QQ � p/.z/ D

kX

jD1

�jVj
n�znp.Vj�

1=nz/

i.e.,

� . QQ � p/.z/ D

kX

jD1

�jVj
n
p.Vj�

1=nz/

and

..Q C � QQ/ � p/.z/ D

kX

jD1

�j.1C Vj
n
/p.Vj�

1=nz/

is valid for jzj � 1. By (10) we conclude that the operator p ! .Q C � QQ/.p/ is
bound preserving over Pn with ..Q C � QQ// � p.0/ D p.0/ for p 2 Pn. As before we
conclude that for the coefficients

�j.1C Vj
n
/ � 0; j D 1; : : : ; k;

so that Vj
n

can only equal ˙1, the assertion.
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Operators with Simple Orbital Behavior

Gabriel T. Prǎjiturǎ

Abstract In this paper we consider two similarity-invariant classes of operators
on a complex Hilbert space. A complete description, in terms of properties of
various parts of the spectrum, is obtained for the operators in the closure and for
the operators in the interior of each of these classes.

Keywords Orbital behavior • Fredholm • Closure • Interior

Msc codes: Primary 47A58; Secondary 47A56, 47L30

1 Introduction

Throughout this paper H will denote an infinite dimensional complex Hilbert space
and B.H/ the algebra of all bounded linear operators on H. For an operator T 2

B.H/we will use 
.T/ to denote the spectrum of T , 
e.T/ for the essential spectrum
of T , and 
p.T/ for the point spectrum of T (that is, the set of eigenvalues of T). For
an operator T we will denote by 
lre.T/ the left and right essential spectrum of T ,
that is the intersection of the right essential spectrum and left essential spectrum. It
is also known as the Wolf spectrum.

Recall that T 2 B.H/ is called a semi-Fredholm operator if it has closed range
and either nul T D dim ker T or nul T� D dim ker T� is finite. When this is the case
we define the Fredholm index of T by

ind T D nul T � nul T�:

We will use

�SF.T/ D f� 2 C W T � � is semi - Fredholm g
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for the semi-Fredholm domain of T . We refer to the last chapter in [5] for the basics
of Fredholm theory. We only point that the semi-Fredholm domain is an open set, it
contains the resolvent set of the operator and parts of the spectrum. On the resolvent
set the Fredholm index is 0 but it may be 0 on some parts of the spectrum as well.
It may also contain parts of the essential spectrum, in which case the index will be
either 1 or �1.

We will use �sFC.T/ for the semi Fredholm domain with strictly positive
Fredholm index, �sF�.T/ for the semi Fredholm domain with strictly negative
Fredholm index, and �sF.T/ for the semi Fredholm domain inside the spectrum.

We will denote by 
p0.T/ the set of normal eigenvalues of T (i.e. the set of
isolated eigenvalues of T with the property that the corresponding Riesz spectral
invariant subspace is of finite dimension). We want to point out the fact that the
elements of 
p0.T/ are boundary points of 
.T/ which do not belong to 
e.T/ but
to the Fredholm domain and having, in fact, Fredholm index 0. Thus if an operator
has an one-point spectrum which also happens to be an eigenvalue then that point
is not a normal eigenvalue regardless of the dimension of the corresponding kernel.
We will use �sF�.T/ for the semi Fredholm domain inside the spectrum except for
the normal eigenvalues. Finally, �sF0�.T/ will stand for the semi Fredholm domain
inside the spectrum with index zero except for the normal eigenvalues.

In this way we are seeing the spectrum of an operator as the disjoint union


.T/ D �sFC.T/ [ �sF�.T/ [ �sF0�.T/ [ 
p0.T/ [ 
lre.T/

out of which only the last one is necessarily non empty.
We also have

�sF�.T/ D �sFC.T/ [ �sF�.T/ [ �sF0�.T/

all sets being open and the first two in the union being stable under small
perturbations.

We will denote by D the open unit disc in the complex plane and by D its closure.
For a class C of operators in B.H/we will use cl C to denote its closure and int C

to denote its interior.

2 The Classes

In [9] we started the study of orbital behavior of operators in terms of the oscillation
properties of the norms of the vectors in the orbit. There are many classes of
operators that can be defined in terms of this behavior. We will start with the simplest
two:

C1.H/ D fT 2 B.H/ W Tnx ! 0 for all x 2 Hg
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and

C2.H/ D fT 2 B.H/ W jjTnxjj ! 1 for all x 2 H; x ¤ 0g:

It is simple to see that both classes are similarity invariant.
The following proposition lists some of the properties of C1.H/ (or its comple-

ment).

Proposition 1 Let H be a Hilbert space.

(i) If 
.T/ � D then T 2 C1.H/.
(ii) If 
.T/ n D ¤ ; then T … C1.H/.

(iii) If 
p.T/ n D ¤ ; then T … C1.H/.

Proof

(i) This follows from the spectral radius formula which implies that

lim
n

jjTnjj D 0:

(ii) See [8]
(iii) Let

� 2 
p.T/ n D

and x ¤ 0 a corresponding eigenvalue.
Since

jjTnxjj D j�jnjjxjj � jjxjj

this orbit does not have limit 0. ut

We have a similar statement for C2.

Proposition 2 Let H be a Hilbert space.

(i) If 
.T/ \ D D ; then T 2 C2.H/
(ii) If 
p.T/ \ D ¤ ; then T … C2.H/.

(iii) If � 2 
p.T�/ and x is not orthogonal on ker.T� � �/, then

lim
n

jjTnxjj D 1:

Proof

(i) In this case T is invertible and 
.T�1/ � D which implies, as above, that

lim
n

jjT�njj D 0
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Then, for x 2 H,

jjxjj D jjT�nTnx � jjT�njjjjTnxjj H)
jjxjj

jjT�njj
� jjTnxjj

from where the result is obvious.
(ii) Similar to (iii) in the previous proposition.

(iii) Let

T� D

	
� A
0 B




with respect to H D ker.T� � �/˚ ker.T� � �/?.
Then, with respect to the same decomposition of H, x D x1 ˚ x2, with

x1 ¤ 0, and

T D

	
N� 0

A� B�



and Tn D

	
N�n 0

� �




Therefore

jjTnxjj � j�jnjjx1jj ! 1:

ut

Proposition 3 Let 2 � m � 1, .Hk/
m
kD1 be Hilbert spaces and T a bounded linear

operator on H D ˚m
kD1Hk.

(i) If m < 1, T has an upper triangular form with respect to the decomposition
H D ˚m

kD1Hk and if each diagonal entry of T has all nonzero orbits with limit
infinity then so does T.

(ii) If T has a lower triangular form with respect to the decomposition H D

˚m
kD1Hk and if each diagonal entry of T has all nonzero orbits with limit

infinity then so does T.

Proof

(i) Let x ¤ 0 2 H. Then x D ˚m
kD1xk, with xk 2 Hk. There is 1 � j � m such

that xj is the last nonzero component of x. Let Tj be the diagonal entry of T
corresponding to Hj. Then

jjTnxjj � jjTn
j xjjj ! 1

(ii) Goes about the same way except that this time j is chosen to correspond to the
first non zero component of x.

ut
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Remark 1 If, in (i) of the previous proposition, the direct sum of spaces is infinite
then the implication is not necessarily true.

Proof Let

T D

0

BB
BBBB
@

p
2 �1 � 1p

2
� 1
2

1p
8
: : :

0
p
2 �1 � 1p

2
� 1
2
: : :

0 0
p
2 �1 � 1p

2
: : :

0 0 0
p
2 �1 : : :

: : :

1

CC
CCCC
A

Since

T D
p
2I � S �

1
p
2

S2 �
1

2
S3 �

1
p
8

S4 � : : :

where S is the backward shift, it is easy to see that T is bounded.
All nonzero orbits of the diagonal entries are going to infinity. In the same time,

if

x D

	
1;

1
p
2
;
1

2
;
1

p
8
; : : :


t

then Tx D 0 and thus

jjTnxjj ! 0:

ut

3 Apostol-Morrel Simple Models

Apostol-Morrel simple models were developed in [4] based on earlier work on
Constantin Apostol [1, 2] and were a byproduct of the work to solve Problem 7
in [6]. Section 6.1 in [7] has a simplified version of the construction and also has
some comments after the Corollary 6.2 (on page 160) and in Remark 6.3 (on page
162) about the possibility of replacing each of the pieces of the original construction
by other types of operators.

Roughly speaking, an Apostol-Morrel simple model is a diagonal operator with
a simple spectral picture, having a spectrum with a finite number of components,
each a nice set (topologically speaking), and whose similarity orbit gets close to any
operator with a close enough spectral picture.
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Thus, in order to characterize the closure of a similarity invariant class of
operators in terms of spectral properties it suffices to build Apostol-Morrel simple
models that are in the closure and have the required spectral properties.

One can build custom Apostol-Morrel simple models starting from the Closure
of similarity orbit theorem (Theorem 9.2 in [3]). We agree that the Theorem is
hard to grasp and even harder to use, but we invite the reader to notice that the
theorem becomes quite simple in the case of operators for which the essential
spectrum has no isolated points. This, combined with the general principle that one
does not have to approximate something in a certain way but only to approximate
an approximation of it in that way will give us the possibility of avoiding all the
technicalities of the special cases of the theorem and take advantage of its full force.

If K is a compact set of complex numbers and " > 0 we will denote by

.K/" D fz 2 C W d.z;K/ � "g

If T is an operator then, as the normal eigenvalues can only accumulate near
the left and right essential spectrum, there are only at most a finite number of such
eigenvalues that will not belong to .
lre.T//". If there are none, we skip this step, but
if there are some, then we first use Riesz spectral decomposition theorem to write T
as T D T1 ˚ T0, where T0 is an operator on a finite dimensional space with


.T0/ D 
p0.T/ n .
lre.T//" :

Then, rather than applying Theorem 6.1 in [7] to T , we will apply it to T1. That
will give us the possibility of making better and from a wider pool choices for one
of the pieces of the approximant.

Notice that by enlarging 
lre.T/we were left not only with at most a finite number
of normal eigenvalues but also with at most a finite number of components of the
semi Fredholm domain, slightly smaller. Moreover, the set .
lre.T//" has only a
finite number of components.

To each component of the .
lre.T//" we will associate either a point belonging to
it or a closed disc included in it.

The next step will be to make a slight enlargement of each former component of
the semi Fredholm domain by placing an analytic Cauchy domain in between the
original component U and the remains of it in U n .
lre.T//" which will not contain
the points chosen above (if that is what we chose) and will not intersect the closed
discs chosen above (if that is what we chose).

The points may be on the boundary of the Cauchy domains and that boundary
may go along the boundary of a disc if that is convenient. This can always be
arranged by making the discs large enough or replacing them by closures on analytic
Cauchy domains.

We will ignore the analytic Cauchy domains corresponding to components of
index 0.

To each remaining analytic Cauchy domain we will associate either an inflation
of the Bergman shift on the Bergaman space of the domain (if the index was strictly
negative), an inflation of the adjoint of the Bergman shift on the Bergaman space of
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the domain (if the index was strictly positive). In each case the number of summands
in the direct sum is equal to the Fredholm index.

To each disc in a component we will associate any operator having that disks as
spectrum and such that the spectrum is entirely left and right essential spectrum. For
example we can use the multiplication by z operator on L2 of the disk, if we do not
want eigenvalues, or we can choose a countably dense set of complex numbers from
the disc and consider an infinite inflation of the diagonal operator with diagonal
entries those numbers, if eigenvalues are desirable.

To all points selected we will associate a normal operator with spectrum exactly
those points and with the spectrum equal the left and right essential spectrum. It can
be even refined to be algebraic.

Let MC be the direct sum of all adjoints of the Bergman shifts operators from
above, if any, M� the direct sum of all Bergman shifts operators from above, M the
direct sum of all operators on closed discs from above, if any, and N the normal
operator with finite spectrum, if any. The first two may be absent but at least one of
the last two should exist. Of course all these operators will depend on " and T .

The following result is a combination of Proposition 2.1 and Theorem 2.3 in [4]
and the way they are presented in Section 6.1 in [7].

Theorem 1 Let T be an operator as above. For every ı > 0 there is an operator S
similar to

MC ˚ M� ˚ M ˚ N ˚ T0

such that

jjT � Sjj < ı

The actual construction above is done with " D ı
8
.

An operator of the type

MC ˚ M� ˚ M ˚ N ˚ T0

is called a simple model. Thus the theorem says that operators similar to simple
models are dense in B.H/.

Notice that

�sFC.S/ � �sFC.T/ �sF�.S/ � �sFC.T/ and 
p0.S/ � 
p0.T/:

The theorem can be modified to get an operator S similar only to MC ˚ M� ˚

M ˚ N such that

jjT � S ˚ T0jj < ı:

Moreover, T0 can be replaced by a finite dimensional operator obtained by
perturbating the eigenvalues of T0 by numbers less than ı.
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The general form of the models can be changed in different ways and it can
include direct sums of operators with overlapping spectra. As far as we know, this
is the first time when such models are used.

In order to use such models we need the Closure of similarity orbit theorem. The
reduced form, Theorem 9.1 in [3] will be sufficient.

For this we need to introduce the concept of spectral domination and of spectral
equivalence. We refer to the top of page 5 in [3] for the full definition of the concept.
Since we will only use it for operators without normal eigenvalues and no isolated
points in the essential spectrum we will only give a particular form of the concept.

In this case spectral equivalence means that the two operators have the same semi
Fredholm domain, the same index and the same minimal index. Recall that for an
operator T and � 2 �sF.T/, the minimal index is

minfdim ker.T � �/; dim ker.T � �/�g:

4 Closures and Interiors

We will start by describing the closure of C1.

Theorem 2 cl C1 consists of all operators T 2 B.H/ such that

(a) �sF.T/ � D

(b) 
p0.T/ � D

and
(c) If K is a component of 
lre.T/ then K \ D ¤ ;.

Proof We will show first that the condition are necessary.
If (b) or (c) are not satisfied then 
.T/ has a component outside D and so will

have all operators in some neighborhood of T . Therefore, by (iii) of Proposition 1,
T cannot be in cl C1.

If (a) is not satisfied then, since �sF.T/ is an open set, there is z 2 �sF.T/ such
that jzj > 1. Then, because the semi Fredholm domain is stable, z 2 �sF.S/ for all S
in some neighborhood of T and the conclusion follows as above.

To see that the conditions are sufficient we will construct an Apostol Morrel
simple model which is the closure of the class and such that something similar to it
is close to T .

Condition (a) ensures that the spectra of MC and M� are in the open unit disc.
Condition (c) implies the possibility of choosing M or N (no need for both) with
spectrum in the open unit disc. Finally,

	
1 �

1

n



T0

also has the spectrum in the open unit disc. ut

The interior of C1 is easy to characterize.



Operators with Simple Orbital Behavior 243

Proposition 4

int C1 D fT 2 B.H/ W 
.T/ � Dg

Proof “�”
Taking into account (ii) of Proposition 1, it suffices to prove that if there is z 2


.T/ such that jzj D 1, there is a sequence of operators Tn ! T such that Tn … C1.
It is easy to see that

Tn D

	
1C

1

n



T

has this property.
“�”
Follows from (i) of Proposition 1 and the upper semi continuity of the spectrum.

ut

We will look now at the closure of C2.

Theorem 3 cl C2 consists of all operators T 2 B.H/ such that

(a) no component of the spectrum is included in D.
(b) �sFC.T/ \ D D ;.

Proof The necessity of (a) follows from (i) of Proposition 1 and the necessity of (b)
follows from (ii) of Proposition 2.

For the sufficiency, it suffices to justify separate each piece of an Apostol-Morrel
simple model.

	
1C

1

n



T0

is approximating T0 and the spectrum is completely outside the closed unit disc.
MC has spectrum outside the closed unit disc, so that is OK.
The spectrum of M (or N, again, no need for both) can also be placed outside the

closed unit disc.
The only difficult piece is M�. Because of direct sum properties we only have to

justify it for one Bergman shift.
If the analytic Cauchy domain goes outside the closed unit disc then we can use

(iii) of Proposition 2 and the fact that the kernels corresponding to eigenvalues of
the adjoint that are outside the disc span the space.

If the boundary of the analytic Cauchy domain touches the disc then

	
1C

1

n



M�

is in the closure, which is enough to imply the result.
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The problem case is when the closure of the analytic Cauchy domain is included
in the open unit disc. For this we need to come up with a completely new type of
Apostol-Morrel model.

The analytic Cauchy domain in case, call it V , was initially included in a
component of the spectrum and this component reached at least to the unit circle.
Therefore .
lre.T//" has a component that goes outside the closed unit disc and
shares boundary with this analytic Cauchy domain. In this case, instead of a circle,
we can choose an analytic Cauchy domain as well (say W) which goes outside the
closed unit disc and which, together with the other one and the common boundary,
form an analytic Cauchy domain, U.

We consider now the Bergman shift on U, M�.U/ and the multiplication by z on
L2.W/, M.W/. Let M�.V/ be the Bergman shift on V .

The operators M�.V/ ˚ M.W/ and M�.U/ ˚ M.W/ have the same spectral
picture. Therefore they have the same semi Fredholm domain, the same index, -1,
and the same minimal index, 0.

Therefore each of them is the limit of a sequence of similarities of the other
one. As we saw before, M�.U/ and M.W/ are in the closure of the class on their
corresponding spaces. Therefore the direct sum is in the closure of the sum and so
is M�.V/˚ M.W/.

This completes the proof. ut

Before we characterize the interior we need to discuss a certain result in spectral
theory.

Let T be an operator in B.H/ with U a component of �sFC.T/ with the minimal
index 0.

If the space is spanned by

fker.T � �/ W � 2 Ug

then the operator is in one of the Cowen Douglas classes. We want to see what can
we say about the operator when it is not.

Let H1 be the subspace spanned by the kernels above. With respect to H D

H1 ˚H?
1 we can write

T D

	
T1 A
0 B




It is clear that T1 is in a Cowen-Douglas class. We will look at B.
It is easy to see in an upper triangular form as here that if T and T1 are invertible

then B is invertible. Applying this to the Calkin algebra we get that U � �sF.B/. It
is clear that for � 2 U, ker.B ��/� D .0/. Therefore either U is not in the spectrum
of B or U � �sFC.B/. In the first case we are done. In the second we repeat the
procedure for B.

There are two possibilities here. Either the procedure stops after a finite number
of steps or it continues without stop.
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In both cases we end up with

T D

	
T 0 A
0 C




where, if the C part is not absent, U \ 
.C/ D ;.
In the first case, we get

T 0 D

0

B
BBBB
@

T1 � � � : : : �

0 T2 � � : : : �

0 0 T3 � : : : �

: : :

0 0 0 0 : : : Tp

1

C
CCCC
A

where


.T1/ D 
.T2/ D : : : 
.Tp/ D cl U

�sFC.T1/ D �sFC.T2/ D � � � D �sFC.Tp/ D U

and each of them acts on a space generated by their kernels.
In the second case we get

T 0 D

0

BB
@

T1 � � � : : :

0 T2 � � : : :

0 0 T3 � : : :

: : :

1

CC
A

where, for every n


.Tn/ D cl U; �sFC.Tn/ D U

and each Tn acts on a space generated by its kernels.

Theorem 4

int C2 D fT 2 B.H/ W 
.T/ \ ND D ;g

[
fT 2 B.H/ W ND � �sF�.T/;min: ind.T � �/ D 0 if j�j � 1g

Proof “�”
By the upper semi continuity of the spectrum and of the minimal index and the

stability of the Fredholm index, both sets on the right are open. The first is included
in the interior of C2 by (i) of Proposition 2.
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We can write T� in one of the two formes discussed before the theorem. By (i)
and (iii) of Proposition 2, each diagonal entry of T has all nonzero orbits going to
infinity. Then we use (ii) of Proposition 3 to conclude that T is in C2.

“�”
Suppose not. This means first that 
.T/ \ ND ¤ ;. Since T 2 C2, there is no

point spectrum (so no strictly positive semi Fredholm index, no 0 index, no strictly
negative index with minimal index greater than 0, no normal eigenvalues). Therefore

.T/ \ ND can only contain left and right essential spectrum and semi Fredholm
domain with strictly negative Fredholm index and minimal index 0. Since ND is not
included in the second,


lre.T/ \ ND ¤ ;:

Now, as we showed in the approximation by Apostol-Morrel models, we can
approximate T by operators having eigenvalues placed in any part we choose of the
left and right essential spectrum. Thus we can choose the eigenvalues in 
lre.T/\ ND,
which will imply that we approximate T by operators not in C2. Therefore T cannot
be in the interior of C2.

This contradiction completes the proof. ut
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Taylor Series, Universality and Potential
Theory

Stephen J. Gardiner

Abstract Universal approximation properties of Taylor series have been inten-
sively studied over the past 20 years. This article highlights the role that potential
theory has played in such investigations. It also briefly discusses potential theoretic
aspects of universal Laurent series, universal Dirichlet series, and universal polyno-
mial expansions of harmonic functions.
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1 Introduction

Universality refers to the phenomenon where a single object, when subjected
to a countable process, yields approximations to all members of some universal
collection. An example of this is hypercyclicity, since a hypercyclic vector is one
that has dense orbit under repeated application of a certain operator. The main focus
of this article is on another example, namely that of universal Taylor series, which
are defined below. An excellent overview of universal series and hypercyclicity may
be found in Grosse-Erdmann [27].

Let Hol.˝/ denote the space of functions which are holomorphic on a domain
˝ � C, endowed with the topology of local uniform convergence. Given f 2

Hol.˝/ and � 2 ˝, we will study the partial sums of the Taylor series about �,
namely

Sm.f ; �/.z/ D

mX

nD0

f .n/.�/

nŠ
.z � �/n .z 2 CI m � 0/:

The complement of a set A will be denoted by Ac.
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Definition 1 Let f 2 Hol.˝/ and � 2 ˝. Then f is said to have a universal Taylor
series about � if, for any compact K � ˝c with Kc connected, and for any g 2

C.K/\ Hol.Kı/, there is a subsequence .Smk.f ; �// which converges uniformly to g
on K. The collection of all functions f with this property will be denoted by U.˝; �/.

Remarkably, such universal approximation properties of a Taylor series turn
out to be generic for holomorphic functions on simply connected domains, as the
following result of Nestoridis (see [38, 39]) shows. A set (in some Baire space) is
called residual if its complement is of first Baire category.

Theorem 1 If ˝ � C is a simply connected domain and � 2 ˝, then U.˝; �/ is a
residual subset of Hol.˝/.

Many further results on universal Taylor series may be found in [34], and an
axiomatic approach to the subject is provided in [7]. The purpose of this article
is to highlight how potential theoretic methods have recently shed light on the
existence and properties of functions in U.˝; �/, and also on universal Laurent
series, universal Dirichlet series, and universal polynomial expansions of harmonic
functions. The reader is referred to the books [2] and [41] for accounts of the various
potential theoretic notions that arise below.

2 Existence of Universal Taylor Series

There are two main situations where the existence (and abundance) of universal
Taylor series is well understood. One of these is where ˝ is simply connected, as
we saw in Theorem 1 above. The other is where ˝c is compact and connected,
which is covered by the following result of Melas [33].

Theorem 2 If ˝ � C is a domain such that ˝c is compact and connected and
� 2 ˝, then U.˝; �/ is a residual subset of Hol.˝/.

The existence question for universal Taylor series on more general domains ˝
remains largely unresolved. However, potential theory has shed significant light on
it, as we will now describe.

A basic tool here is Bernstein’s lemma (see [41]). This says that, if L � C is
non-polar and compact, and p is a polynomial of degree m � 1, then

1

m
log

jp.z/j

supL jpj
� GbCnL

.z;1/ .z 2 C/;

where bC D C [ f1g and G!.�; �/ is the Green function for ! (interpreted as 0
outside ! � !). It is natural to consider the subharmonic functions

um D
1

m
log jSm.f ; �/ � f j on ˝; and vm D

1

m
log jSm.f ; �/j on C:
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For a given sequence .mk/, we may further consider the upper semicontinuous
regularizations u� and v� of the functions

u D lim sup
k!1

umk on ˝; and v D lim sup
k!1

vmk on C; (1)

respectively. These are again subharmonic functions (by Corollary 5.7.2 of [2])
since the sequences .umk/ and .vmk/ are locally uniformly bounded above in their
respective domains, by Bernstein’s lemma.

Less immediately obvious is the relevance to this question of the notion of
thinness. We recall that a set A � C is thin at a point w if and only if

1X

nD1

n

log.1=c�.An//
< 1 (Wiener’s criterion), (2)

where An D fz 2 A W 2�n�1 � jz � wj � 2�ng and c� denotes outer logarithmic
capacity. Thinness of a set at 1 is defined by means of inversion.

If s is subharmonic on a neighbourhood of w, then there is a set A, thin at w, such
that s.z/ ! s.w/ as z ! w outside A. Also, a boundary point w of an open set ! is
regular for the Dirichlet problem on ! if and only if !c is non-thin at w. If A is thin
at w, then there are arbitrarily small circles centred at w which do not intersect A.
Thus, if ˝ ¨ C is simply connected, then ˝c is certainly non-thin at infinity.

The following result is due to Müller et al. [36] (see also [35]).

Theorem 3 If ˝ is a multiply connected domain and ˝c is non-thin at 1, then
U.˝; �/ D ; for all � 2 ˝.

For an alternative to the original proof of this result we can use the following
lemma, which is based on Theorem 7.6.7 of [2] (see the proof of Lemma 4.2.1 in
[32] for a more detailed explanation).

Lemma 1 Let s be a subharmonic function on C satisfying s.z/ � a C b logC jzj,
where a 2 R and b > 0. If s � c on a set A which is non-thin at 1, then s is constant
and s � c on C.

Theorem 3 can be deduced as follows. Suppose there exists f in U.˝; �/, choose
a point w in a bounded component L of ˝c, and let jlj < 1. Then we can find .mk/

such that jSmk.f ; �/j � 1 on fz 2 ˝c W jzj � kg and Smk.f ; �/.w/ ! l. It follows
from Bernstein’s lemma that the function v� (see (1)) satisfies the hypotheses of
Lemma 1 with c D 0 and b D 1, whence u� � 0 on ˝. Since u� < 0 on the disc of
convergence of the Taylor series, it follows from the maximum principle that u� < 0

on ˝. Hence .Smk.f ; �// converges locally uniformly on ˝, and so on ˝ [ L by the
maximum principle. The value of limk!1 Smk.f ; �/.w/ is thus uniquely determined
by the holomorphic extension of f to L, contradicting the arbitrary choice of l.

The above argument also yields part (i) of the next theorem, which is again taken
from [35] and [36]. We recall that the series

P
an.z � �/n is said to have Ostrowski

gaps .mk; pk/ if
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1 � m1 < p1 � m2 < p2 � : : :, where pk=mk ! 1, and

janj1=n ! 0 as n ! 1 through
[

k

fmk C 1 � n � pkg:

Theorem 4 Let f 2 U.˝; �/, where ˝ is simply connected and � 2 ˝. Then the
sequence .mk/ in Definition 1 can be chosen so that

(i) Smk.f ; �/ ! f locally uniformly in ˝, and
(ii) the Taylor series of f about � has Ostrowski gaps .mk; pk/.

Theorem 3 shows that, for multiply connected domains ˝, thinness of ˝c at 1

is necessary for the existence of universal Taylor series. It was conjectured in [36]
that the same condition is also sufficient. However, this was disproved in [24], where
it was shown that U.˝; �/ can be empty when ˝c is the union of a non-degenerate
continuum L and an additional point � . Further, for a particular choice of L, the
location of � and � turn out to be crucial to the existence question. (This was the
first known example of a domain˝ for which the existence of functions in U.˝; �/
depends on the choice of �.) Let D.�; r/ denote the open disc of centre � and radius
r. The existence and non-existence assertions below are drawn from [16] and [24],
respectively.

Example 1 If ˝ D .D.3; 1/ [ f1g/c, then U.˝; 5/ ¤ ; and U.˝; 0/ D ;.
Subsequently, such examples were seen to be special cases of the following result

from [17], in which thinness again plays a role.

Theorem 5 Let r D dist.�;˝c/, where ˝ is a domain and � 2 ˝, and suppose
that ˝cnD.�; r/ is non-polar. If ˝c is thin at a point � 2 @˝ \ @D.�; r/, then
U.˝; �/ D ;.

Although Theorems 3 and 5 both feature thinness, they do so in contrasting ways:
in the former result, thinness of ˝c at 1 is necessary for the existence of universal
Taylor series on multiply connected domains ˝, whereas, in the latter result, non-
thinness of ˝c at the closest points of @˝ to � is necessary. Since a polar set is
everywhere thin, we immediately deduce:

Corollary 1 Let ˝ be a domain and � 2 ˝. If D.�;R/n˝ is non-empty and polar
for some R > 0, and ˝c is non-polar, then U.˝; �/ D ;.

The non-existence assertion in Example 1 clearly follows from this corollary, as
does the next observation.

Example 2 If ˝ D .D.0; 1/ [ E/c, where

E D

1[

kD1

n�
1C 2�k

�
em21�k� i W 1 � m � 2k

o
;

then U.˝; �/ D ; for every � 2 ˝.
Next we mention a more subtle, and intriguing, example.
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Example 3 Let ˝ D .D.�; r/ [ f�0g/
c, where 0 2 ˝ and �0 … D.�; r/. Then

(a) U.˝; 0/ ¤ ; if j�0j � j�j C r;

(b) U.˝; 0/ D ; if j�0j <

q
j�j2 � r2.

Part (a) follows by combining results from [16] and [44]. Part (b) is a special case
of a more general result in [17].

Open Question What happens if
q

j�j2 � r2 � j�0j < j�j C r?

The critical case here, where j�0j D

q
j�j2 � r2, corresponds to the situation

where the circles @D.0; j�0j/ and @D.�; r/ meet at right angles. In this case, the
harmonic measures for

1. the inner domain D.0; j�0j/nD.�; r/ and the point 0, and
2. the outer domain

�
D.0; j�0j/ [ D.�; r/

c
and the point 1,

are comparable along their common boundary @D.0; j�0j/nD.�; r/. This reflects the
fact that both Theorem 5 and Example 3(b) rely on an inner-outer comparison of
harmonic measures (or, equivalently, of Green functions), as we will now explain.

When studying universal Taylor series, we have a function f 2 Hol.˝/ and a
subsequence .Smk.f ; �// which is uniformly bounded on some compact set K. Let
U be the largest domain containing � on which this sequence is locally uniformly
convergent. Usually we have K \ U D ;. What can we say about the set U when
˝nU ¤ ;? Clearly it is simply connected. Further, we can adapt our sketch proof
of Theorem 3 to see that it is bounded. However, we can say much more [17].

Proposition 1 Let U and K be as above, where K \ U D ; and ˝nU ¤ ;. Then
the upper semicontinuous regularization s� of the function

s.z/ D

8
<

:

�GU.z; �/ .z 2 U/
GV.z;1/ .z 2 V/

0 (elsewhere in C)
; (3)

where V D bCn.U [ K/, is subharmonic on ˝ [ .@U/c and continuously vanishes
on @U.

Roughly speaking, the first two parts of formula (3) arise from consideration of
the functions u and v in (1). One can show that u� � s� on ˝, and then deduce that
U would not be maximal if the function s� were not subharmonic on ˝ [ .@U/c.

Finally in this section, we mention that Costakis and Tsirivas [15] have
used potential theory to investigate the existence of holomorphic functions f on
the unit disc D and sequences .�n/ in N with the following doubly universal
approximation property: for any compact K � D

c with Kc connected and any
g1; g2 2 C.K/ \ Hol.Kı/, there is a sequence .mk/ such that Smk.f ; �/ ! g1 and
S�mk

.f ; �/ ! g2 uniformly on K. They show that such functions f exist if and only if
lim sup�n=n D 1. Further, if this last condition holds, then such functions form a
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residual subset of Hol.D/. The inspiration for such a result was drawn from concepts
in dynamical systems and ergodic theory. Vlachou [45] has recently generalized this
theorem to cover multiply universal approximation on simply connected domains
(see also [10]).

3 Boundary Behaviour I

We will now discuss the boundary behaviour of functions in U.˝; �/, beginning
with the case where ˝ D D. Bayart [6] showed that functions f in U.D; 0/ must be
unbounded near every point of the unit circle T. Costakis and Melas [13] showed
that such functions assume every complex value, with at most one exception,
infinitely often on D (cf. Picard’s theorem). Both of these results are contained in
the next theorem, taken from [20]. It says that f has a Picard-type property near
each point of T, whence universal Taylor series must have “universal boundary
behaviour”.

Theorem 6 Let f 2 U.D; 0/. Then, for every w 2 T and r > 0, the function
f assumes every complex value, with at most one exception, infinitely often on
D.w; r/ \ D.

In fact, if f omits at least two values in U WD D.w; r/ \ D for some w 2 T and
r, then Schottky’s theorem tells us that f has restricted growth near T in U. This
allows Theorem 6 to be deduced from the following [20].

Theorem 7 Let  W Œ0; 1/ ! .0;1/ be an increasing function such that

Z 1

0

logC logC  .t/dt < 1: (4)

If f 2 Hol.D/ and jf .z/j �  .jzj/ on D.w; r/ \ D for some w 2 T and r > 0, then
f … U.D; 0/.

The proof of this result uses the following equiconvergence property [34] (cf.
[29]), which holds when .Sm.f ; 0// has Ostrowski gaps .mk; pk/:

Smk.f ; �/.z/ � Smk.f ; 0/.z/ ! 0 .k ! 1/ locally uniformly on f.�; z/ 2 D � Cg:

(5)
The hypothesized local growth restriction on f allows us to estimate Smk.f ; �/ near w
when � is suitably chosen in U, and a normal families argument can then be applied
to the sequence .Smk.f ; 0// on a neighbourhood of w, in view of (5).

The above reasoning relies on certain geometric properties of the boundary. It
thus does not apply to general simply connected domains ˝, where @˝ may not be
locally connected, or may have a fractal nature. In this more general context it was
established in [36] that functions in U.˝; �/ are not holomorphically extendable
beyond ˝, but it was not known until recently whether they need be unbounded.
Indeed they must be, but even more can be said [18], as follows.
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Theorem 8 Let f 2 U.˝; �/, where ˝ is simply connected and � 2 ˝. Then, for
every w 2 @˝ and r > 0, and every component U of D.w; r/ \˝, the set Cnf .U/
is polar.

What is actually shown in [18] is that the subharmonic function log jf j cannot
have a positive harmonic majorant on any such component U. The stated conclusion
follows because, otherwise, Myrberg’s theorem would show that logC jzj has a
harmonic majorant h on the open set f .U/, whence log jf j would have the positive
harmonic majorant h ı f on U.

The proof of Theorem 8 relies on Martin boundary theory (a generalization of
Carathéodory’s theory of prime ends) and minimal thinness. We will discuss the role
of the latter concept further in the next section. Similar tools were combined with
Proposition 1 to establish the following extremely general result [21]. (Of course,
the theorem becomes vacuous when U.˝; �/ D ;.)

Theorem 9 For any domain ˝ and any point � 2 ˝, every function f in U.˝; �/
is unbounded.

Unlike Theorem 8, which only concerned simply connected domains, this result
does not assert the unboundedness of f near every boundary point. Indeed, as Melas
[33] has observed for domains with discrete complement, it is even possible for f to
have removable singularities at some isolated boundary points.

We will revisit the boundary behaviour of universal Taylor series later, following
a discussion of some recent results concerning Taylor series in general.

4 Recent Results for General Taylor Series

We next describe some recent results for the disc which connect the boundary
behaviour of a Taylor series with its behaviour on the boundary itself. Applications
to universal Taylor series will be given in the following section. We denote by
nt limz!w f .z/ the non-tangential limit of a function f on D at a point w of T,
whenever it exists.

A classical result of this nature is Abel’s Limit Theorem. It says that, if f 2

Hol.D/ and .Sm.f ; 0// converges at some w 2 T, then nt limz!w f .z/ exists and
equals limm!1.Sm.f ; 0//.w/. Theorem 1 shows that nothing similar can be deduced
from the convergence of a subsequence .Smk.f ; 0//, even on a subarc of T. However,
the following result of Beise et al. [8] raises an interesting question. We recall that
a closed subset F of T is called a Dirichlet set if some subsequence of .zn/ tends to
1 uniformly on F.

Theorem 10 Let ˝ � C be a domain containing 0 such that each component of
bCn˝ meets T, and let F � T\˝ be a Dirichlet set. Then there is a residual subset
of functions f in Hol.˝/ with the property that, for every g 2 C.F/, there is a
subsequence .Smk.f ; 0// converging to g uniformly on F.

The most interesting case of this result is where D � ˝. The above universal
approximation occurs within the domain where f is holomorphic, whereas functions
in U.D; 0/ have no holomorphic extension beyond D. Since Dirichlet sets can have
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Hausdorff dimension 1 but not positive arclength, the question naturally arises
whether such universal approximation can occur on sets F � T of positive arclength
where f is holomorphic. The next result [22] shows that this cannot happen, even
where f merely has a finite non-tangential limit.

Theorem 11 Given f 2 Hol.D/ and an increasing sequence .mk/, let

E D fw 2 T W S.w/ WD lim
k!1

Smk.f ; 0/.w/ existsg;

F D fw 2 T W f .w/ WD nt lim
z!w

f .z/ existsg:

Then S D f almost everywhere on E \ F (with respect to arclength).
Thus knowledge of limk!1 Smk.f ; 0/ on a non-negligible subset of T where f is

well-behaved does give information about the function f itself. This result fails if
we replace non-tangential limits by radial limits. Indeed, Costakis [11] has shown
that there are functions f in U.D; 0/ with radial limit 0 on any given closed nowhere
dense set F � T, and such a set F can be chosen to have positive arclength.

By a fat approach region to 1 2 T we mean a set of the form

!.1/ D fx C iy 2 D W jyj < a and b < x < 1 � �.y/g;

for some a > 0 and b 2 .0; 1/, where � W Œ�a; a� ! Œ0;1/ is Lipschitz and

Z a

�a
y�2�.y/dy < 1: (6)

(For example, we could choose �.y/ D jyj˛ for some ˛ > 1.) It is easy to see
that nt limz!1 	!.1/.z/ D 1. Fat approach regions !.eit/ to other points eit of T are
formed by rotation. The next result is taken from [19].

Theorem 12 Suppose that f 2 Hol.D/, where

(i) f is bounded on two fat approach regions !.eit1 /; !.eit2 / .t1 < t2 < t1 C 2�/,
and

(ii) .Smk.f ; 0// is uniformly bounded on an open arc I containing J D feit W t1 �

t � t2g.

Then f is bounded on the sector frw W 0 < r < 1;w 2 Jg.
A further result, from [23], concerns boundary behaviour at a single point:

Theorem 13 Suppose that the Taylor series of f 2 Hol.D/ has Ostrowski gaps
.mk; pk/. If

(i) f 0 is bounded on a fat approach region to w 2 T, and
(ii) .Smk.f ; 0// is uniformly bounded on an open arc containing w, then

lim
k!1

Smk.f ; 0/.w/ D nt lim
z!w

f .z/: (7)



Taylor Series, Universality and Potential Theory 255

The above non-tangential limit automatically exists, by hypothesis (i). The
theorem asserts both the existence of the first limit in (7) and the equality of the two
limits. Although this is reminiscent of Abel’s Limit Theorem, the existence of the
non-tangential limit now forms part of the hypothesis rather than the conclusion. The
result fails if the Ostrowski gap condition is omitted, as can easily be seen by consid-
ering the function z 7�! .1� z/�1 and w 2 Tnf1g and a suitable subsequence .Smk/.

We will now give a brief indication of the potential theory underlying the above
theorems. Suppose that s is subharmonic and bounded above on a domain ! and let
w 2 @!. (For simplicity we will assume that ! is bounded.) In general, we cannot
say much about the boundary behaviour of s at w. However, in the special case where
! is the punctured disc Dnf0g and w D 0, the point w is a removable singularity
for s. Thus there exists l 2 Œ�1;1/ such that s.z/ ! l as z ! w outside some set
A which is thin at w. In such circumstances we say that s has fine limit l at w and
write f limz!w s.z/ D l. More generally, and less trivially, if !c is thin at w, then
f limz!w s.z/ still exists.

Now let �!z .A/ denote the harmonic measure of a set A � @! with respect to !
and z 2 !. If s is subharmonic and bounded above on a neighbourhood of !, then
certainly s.z/ �

R
@!

sd�!z . However, it is possible to extend the notion of harmonic
measure to the case where z is replaced by a point w 2 @! at which !c is thin (that
is, w is an irregular boundary point of !). If s is subharmonic and bounded above on
a neighbourhood of !nfwg, then the fine limit of the preceding paragraph satisfies

f lim
z!w

s.z/ �

Z

@!

sd�!w : (8)

Now suppose that .sk/ is a decreasing sequence of such functions on some neigh-
bourhood of !nfwg with a negative limit. It follows from (8) that f limz!w sk0 .z/ < 0
for some k0.

We now proceed by analogy. There is a related notion of a set A � D being
minimally thin at a point w 2 T. If ! � D is an approach region to w 2 T that is
bounded by the graph of a Lipschitz function, then Dn! is minimally thin at w if
and only if ! is a fat approach region. Thus, for such sets, the condition (6) plays
the role of the Wiener criterion for thinness (2). We write mf limz!w g.z/ D l if
g.z/ ! l as z ! w outside a set A which is minimally thin at w.

If s is subharmonic on D, and s.z/=.� log jzj/ is bounded above near w 2 T,
then mf limz!w s.z/=.� log jzj/ exists and lies in Œ�1;1/. This is the boundary
analogue of the earlier fine limit assertion for an upper bounded subharmonic
function on a punctured disc. More generally, the same conclusion is known to hold
if s is subharmonic merely on a fat approach region ! to w 2 T and s.z/=.� log jzj/
is bounded above there. Further, if .sk/ is a decreasing sequence of such functions
with negative limit, then mf limz!w sk0 .z/=.� log jzj/ < 0 for some k0.
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We can now sketch a proof of Theorem 12. For simplicity we assume that the
bounds in hypotheses (i) and (ii) are both 1. By Bernstein’s lemma,

1

mk
log jSmk.f ; 0/.z/j � GbCnI

.z;1/ � c log
1

jzj
on !.eit1 / [ !.eit2 /

for some c > 0, so

sk.z/ � c log
1

jzj
on !.eit1 / [ !.eit2 /; where sk D

1

mk
log

jSmk.f ; 0/ � f j

2
:

It is easily seen that lim supk!1 sk.z/ � log jzj < 0 on D, so we can apply our
previous observations to find k0 and a set A, minimally thin at both eit1 and eit2 , such
that

sk0 < 0 ) jSmk.f ; 0/ � f j < 2 ) jSmk.f ; 0/j < 3 on Œ!.eit1 /[!.eit2 /�nA .k � k0/:

(Strictly speaking, .sk/ need not be decreasing, so there is a little extra work to do
here.) It follows from the maximum principle that f is bounded on the stated sector.

Remark Hypothesis (i) in Theorem 12 can be relaxed to require merely that
log jf j � h on the two fat approach regions, where h is some positive harmonic
function on D. The conclusion must then be slightly weakened to say that f is
bounded on all sectors of the form freit W 0 < r < 1; t1 C " � t � t2 � "g,
where " > 0.

Corollary 2 Let f 2 Hol.D/ and suppose that log jf .z/j �  .jzj/ on D.w; r/ \ D

for some w 2 T and r > 0, where  W Œ0; 1/ ! .0;1/ is an increasing continuous
function such that

Z 1

0

r
 .
/

1 � 

d
 < 1:

If, on the arc I D D.w; r/ \ T, a subsequence .Smk/ is uniformly bounded and
pointwise convergent almost everywhere, then

nt lim
z!w

f .z/ exists and equals lim
k!1

Smk.w/ almost everywhere on I:

To see this, we note from an argument of Rippon (Section 3 of [42], cf. [43])
that, at each point w 2 I, there is a fat approach region on which log jf j is majorized
by a positive harmonic function on D. From Theorem 12 and the above remark we
see that f must be bounded near each point of I. Hence, by Fatou’s theorem, f has
a finite non-tangential limit at almost every point of I. The desired equality of the
limits almost everywhere now follows from Theorem 11.

Corollary 2 complements recent universality results of Beise and Müller [9]
concerning Taylor series that lie in Bergman spaces.
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5 Boundary Behaviour II

We will now apply Theorems 11–13 to obtain additional results about the boundary
behaviour of universal Taylor series. The first two corollaries below originally
appeared in [19], and the third in [23].

Corollary 3 Let f 2 U.D; 0/. Then, at almost every point w in T, the image f .� /
of every Stolz angle � at w is dense in C.

Proof Plessner’s theorem states that, at almost every point w of T, either
nt limz!w f .z/ exists or f .� / D C for every Stolz angle � at w. Theorem 11
says that, for any given .mk/, the value of nt limz!w f .z/ determines the value of
limk!1 Smk.f ; 0/ almost everywhere that it exists on T. Thus, if f 2 U.D; 0/, the
first possibility in Plessner’s theorem must fail almost everywhere.

Corollary 4 Suppose that f 2 Hol.D/ and log jf j � h on fat approach regions to
two distinct points, eit1 and eit2 , where h is a positive harmonic function on D. Then
f … U.D; 0/.
Proof If .Smk.f ; 0// were to converge on an open arc I containing eit1 and eit2 , then
Theorem 12 (and the remark preceding Corollary 2) would imply the boundedness
of f near certain subarcs of I. This is impossible for functions f in U.D; 0/.
Corollary 5 If f 2 Hol.D/ and f 0 is bounded on a fat approach region to a point of
T, then f … U.D; 0/.
Proof This follows by combining Theorem 13 with conclusion (ii) of Theorem 4.

In connection with Corollary 4 we note from the following result [19] that it is
possible for a function f in U.D; 0/ to satisfy the inequality log jf j � h on a fat
approach region to a single point w 2 T, provided h tends to infinity at w.

Proposition 2 Let A � D, where A \ T D f1g, and let g W D ! .1;1/ be a
continuous function such that g.z/ ! 1 as z ! 1. Then there exists f 2 U.D; 0/
such that jf j � g on A.

Example 4 Let D be a disc that is internally tangent to T at the point 1. As noted in
[34] (see the proof of Proposition 5.6 there), no member of U.D; 0/, when restricted
to D, can have a limit at 1. However, by the above proposition, there exists f in
U.D; 0/ satisfying jf .z/j � jz � 1j�1=3 on D. It follows that the function z 7! .z �

1/f .z/ does not belong to U.D; 0/, and so the universality property of Taylor series
is not preserved under multiplication by non-constant polynomials. Similarly, no
antiderivative of this function f can belong to U.D; 0/. It is an open question whether
derivatives of universal Taylor series are again universal.

Since universal Taylor series have mainly been investigated on simply connected
domains, it is natural to ask if the universality property of Taylor series is
conformally invariant. That is, given a conformal map˚ W ˝0 ! ˝ between simply
connected domains and f 2 U.˝; �/, does it follow that f ı ˚ 2 U.˝0; ˚

�1.�//?
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The above results enable us to show that the answer is negative [19]. Let S denote
the strip f�1 < Rez < 1g.

Theorem 14 There is a function f 2 U.S; 0/ such that, for any conformal mapping
˚ W D ! S, the function f ı ˚ does not belong to U.D; ˚�1.0//.

To see why this is the case, we remark that the construction used for Proposition 2
also yields the following analogue for the strip [19]. (The key difference here is that
no continuum in S

c contains both 1 and �1.)

Proposition 3 Let A � S be bounded, where A \ @S D f˙1g, and let g W S !

.1;1/ be a continuous function such that g.z/ ! 1 as z ! ˙1. Then there exists
f 2 U.S; 0/ such that jf j � g on A.

To see why Theorem 14 holds, we choose the set A above to contain fat approach
regions to both 1 and �1, and the function g to be of the form eh, where h is a
positive harmonic function on S with limit 1 at ˙1. We next note that fat approach
regions in S to two distinct points of @S are images under ˚ of fat approach regions
in D to two distinct points of T. (More generally, the notion of minimal thinness can
be formulated purely in terms of harmonic and superharmonic functions, and so is
conformally invariant.) In view of Corollary 4, and Theorem 15 below, we now see
that f ı ˚ cannot belong to U.D; ˚�1.0//.

6 Dependence on the Centre of Expansion

The next result [36] is a consequence of Theorem 4(ii) and the equiconvergence
property (5).

Theorem 15 If ˝ is simply connected, then the collection U.˝; �/ is independent
of the centre of expansion �.

The situation when˝c is compact and connected (cf. Theorem 2) is more subtle.
Bayart [4] established the following result, which contains work of Costakis [12]
for the special case where ˝c is a polygon.

Theorem 16 If ˝ � C is a domain such that ˝c is compact and connected, then
\�2˝U.˝; �/ is a residual subset of Hol.˝/.

This leaves open the question of whether U.˝; �/ can depend on � in this setting.
It turns out that this is indeed the case [21].

Theorem 17 If ˝ is the exterior domain of a Dini-smooth Jordan curve, then, for
every � 2 ˝, there exists �1 such that U.˝; �/nU.˝; �1/ ¤ ;.

We will briefly outline why this result holds in the case where ˝ D
�
D

�c
. Let

w 2 Tnf�1g. There is an analogue of Proposition 2 in this context which says that,
if A � ˝, where A \ T D f�1;wg, and g W ˝ ! .1;1/ is a continuous function
with limit 1 at both �1 and w, then there exists f1 2 U.˝; 2/ such that jf1j � g
on A. We can take g to be of the form eh here, where h is positive and harmonic on
˝. On the other hand, there is an analogue of Corollary 4 in this context which says
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that no function f2 in U.˝;�2/ can satisfy log jf2j � h on fat approach regions to
�1 and w provided we take w 2 D.�2;

p
3/ \ .Tnf�1g/. (The

p
3 here is closely

related to Example 3(b).) Hence f1 2 U.˝; 2/nU.˝;�2/ in this case, as required.

7 Universal Laurent Series

Theorem 3 shows that, for many multiply connected domains, there is no hope of
finding any universal Taylor series. The picture is completely different, however,
if we turn our attention to Laurent series. Let ˝ � C be a domain of the form

˝ D Cn

 
kS

jD0
Aj

!

, where k � 1, the sets Aj are pairwise disjoint continua in bC,

and 1 2 A0. (At least one of these continua should be non-degenerate, to avoid
triviality.) Each function f in Hol.˝/ has a unique decomposition of the form

f D

kX

jD0

fj; where fj 2 Hol
�
bCnAj

�
.j D 0; : : :; k/ and fj.1/ D 0 .j D 1; : : :; k/:

We fix ˛j 2 Aj for each j D 1; : : :; k. Then fj has a Laurent expansion outside some
closed disc centred at ˛j, and the coefficient of .z � ˛j/

�n in this expansion will be
denoted by bn.fj; ˛j/. We define, for � 2 Ac

0,

Mm.f ; �/.z/ D

mX

nD0

f .n/0 .�/

nŠ
.z � �/n C

kX

jD1

mX

nD1

bn.fj; ˛j/

.z � ˛j/n
.z 2 Cnf˛1; : : :; ˛kg/:

Definition 2 We say that f has a universal Laurent series with respect to
f˛1; : : :; ˛kg if, for every compact set K � .˝ [ f˛1; : : :; ˛kg/

c with Kc connected,
and every function g 2 C.K/ \ Hol.Kı/, there is a sequence .mn/ in N such that

sup
�2J

sup
z2K

jMmn.f ; �/.z/ � g.z/j ! 0 .k ! 1/

for every compact set J � Ac
0. The collection of functions with this property will be

denoted by UL.˝I˛1; : : :; ˛k/.
This notion was introduced by Costakis et al. [14], who showed that

UL.˝I˛1; : : :; ˛k/ is a residual subset of Hol.˝/. The theory was further developed
by Müller et al. in [36] and [37]. For example, [37] contains a version for Laurent
series of Theorem 4(i) above. (See also [26].)

The following analogue of Theorem 8 for the boundary behaviour of universal
Laurent series was established in [21].

Theorem 18 Let f 2 UL.˝I˛1; : : :; ˛k/, where ˝ is as above. Then, for any disc D
centred at a point of @˝nf˛1; : : :; ˛kg, the set Cnf .D \˝/ is polar.
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It was also shown in [21] that the collection UL.˝I˛1; : : :; ˛k/ can depend on
the choice of ˛1; : : :; ˛k. This is true even when k D 1 and ˝ is an exterior Jordan
domain:

Theorem 19 Let f 2 UL.˝I˛1/, where ˝ is an exterior Jordan domain and ˛1 2

@˝. Then UL.˝I˛1/nUL.˝I˛/ ¤ ; for every ˛ 2 ˝cnf˛1g.
The proof of this result is related to that of Corollary 4 above.

8 Universal Dirichlet Series

Let CC denote the half-plane fs D 
 C it W 
 > 0g. Further, let D.CC/ denote
the space of holomorphic functions on CC which are representable there as an
absolutely convergent general Dirichlet series, f .s/ D

P1
1 ane��ns, where .�n/ is

an unbounded strictly increasing sequence in Œ0;1/.
Theorems 11–13 have recently [23] been generalized to cover functions in

D.CC/. We give a sample below. Let Tm.s/ denote the partial sum
Pm

1 ane��ns.

Theorem 20 Given f 2 D.CC/ and an increasing sequence .mk/, let

E D fw 2 iR W T.w/ WD lim
k!1

Tmk.w/ existsg

and

F D fw 2 iR W f .w/ WD nt lim
s!w

f .s/ existsg:

Then f D S almost everywhere on E \ F.
We now restrict our attention to ordinary Dirichlet series, that is, where �n D

log n.

Definition 3 We say that a member
P1

1 ann�s of D.CC/ is a universal Dirichlet
series if, for every compact set K � f
 � 0g with Kc connected, and every function
g 2 C.K/\Hol.Kı/, there is a subsequence .Tmk/ of the partial sums that converges
uniformly to g on K. The collection of all universal Dirichlet series will be denoted
by UD.CC/.

Aron et al. [3] have recently shown that such series are topologically generic in
the space of absolutely convergent ordinary Dirichlet series on CC, endowed with
the topology induced by the semi-norms

��P1
1 ann�s

��



D
P1

1 janj n�
 . Bayart [5]
had previously established this for approximation on a more restricted collection of
compact sets K. However, almost nothing was known about the boundary behaviour
of universal Dirichlet series, including even the question of whether universal
Dirichlet series could have a holomorphic extension beyond CC. We now list some
consequences of Theorem 20 taken from [23], where they are stated in greater
generality. (The obvious analogue of Corollary 4 also holds.)



Taylor Series, Universality and Potential Theory 261

Corollary 6 Let f 2 UD.CC/. Then, for almost every w 2 iR, the set f .� / is dense
in C for every Stolz angle � � CC with vertex at w.

Corollary 7 Let f 2 UD.CC/. Then, for any disc D centred on iR, the set Cnf .D \

CC/ is polar.

Corollary 8 Let f 2 UD.CC/. Then there is a residual set Z � R such that ff .
 C

it/ W 0 < 
 < 1g is dense in C for every t 2 Z.
Corollary 6 follows from Theorem 20 just as Corollary 3 was deduced from

Theorem 11. Corollary 7 holds because, otherwise, log jf j would have a positive
harmonic majorant on D \ CC (see the paragraph following Theorem 8) and then
Fatou’s theorem would yield a contradiction to Corollary 6. Corollary 8 follows
from Corollary 7 because, by the Collingwood maximality theorem, it is enough to
show that f has a maximal unrestricted cluster set at each point of iR.

The obvious analogues of Theorem 12 and Corollary 2 hold for general Dirichlet
series. From the latter we can immediately deduce the following.

Corollary 9 Let  W .0; 1� ! .0;1/ be a decreasing continuous function such
that

Z 1

0

r
 .
/



d
 < 1:

If f 2 D.CC/ and log jf .
 C it/j �  .
/ on D.w; r/ \ CC for some w 2 iR and
r > 0, then f … UD.CC/.

This result is significantly weaker than Theorem 7 for universal Taylor series.

9 Universal Polynomial Expansions of Harmonic Functions

Let B.x0; r/ denote the open ball of centre x0 and radius r in Euclidean space R
N

.N � 2/, and let B D B.0; 1/. If h is a harmonic function on B.x0; r/, then it has an
expansion there of the form h.x/ D

P1
nD0 Hn.x � x0/, where Hn is a homogeneous

harmonic polynomial of degree n. We denote by Sm.h; x0/ the partial sum, up to
degree m, of this series.

Definition 4 Let h be a harmonic function on a domain˝ � R
N and let x0 2 ˝. We

say that h has a universal polynomial expansion about x0 if, for any compact K � ˝c

with Kc connected, and for any function g which is harmonic on a neighbourhood
of K, there is a subsequence .Smk.h; x0// which converges uniformly to g on K. The
collection of all such functions h will be denoted by UH.˝; x0/.

Gauthier and Tamptse [25] have shown that, if
�
R

N [ f1g
�

n˝ is connected and
x0 2 ˝, then UH.˝; x0/ is a residual subset of the space of all harmonic functions
on˝, endowed with the topology of local uniform convergence. (See also Armitage
[1] for an earlier, related result.) A substantial advance in the theory was made by
Manolaki [31] who proved, among other things, the following.
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Theorem 21 Let ˝ � R
N be a domain such that RNn˝ contains an infinite cone,

and let x0 2 ˝. Then

(a) the existence of functions in UH.˝; x0/ requires
�
R

N [ f1g
�

n˝ to be con-
nected;

(b) the collection UH.˝; x0/ is independent of the choice of x0;
(c) no function in UH.˝; x0/ can be extended harmonically to any larger domain.

This result is related to a previous paper [30], in which she established analogues
for harmonic functions of celebrated results of Ostrowski [40] on the relationship
between overconvergence and gap structure for complex power series. The proof
also uses a process of inductive complexification, which relies on ˝ omitting
an infinite cone C: the significance of this hypothesis lies in the facts that the
intersection with ˝c of any line parallel to the axis of C contains a half-line, and
that half-lines embedded in a plane are non-thin at infinity.

Logunov [28] has proved the following analogue of Theorem 7 for harmonic
functions, which strengthens a result in [20].

Theorem 22 Let  W Œ0; 1/ ! .0;1/ be an increasing function such that (4) holds.
If h is harmonic on B and jh.x/j �  .jxj/ on B.y; r/\B for some y 2 @B and r > 0,
then f … UH.B; 0/.

Finally, Golitsyna [26] has recently developed a theory of universal Laurent
expansions for harmonic functions.

Acknowledgements The author is grateful to the referee for a careful reading of the manuscript.
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Subharmonic Images of a Convergent
Sequence

Paul Gauthier and Myrto Manolaki

Abstract In this paper we characterize the sequences of possible values of a
subharmonic function along a convergent sequence of points. We also discuss some
related open questions and possible generalizations.

Keywords Subharmonic interpolation

Msc codes: Primary 31B05; Secondary 31A05

1 Introduction

A classical interpolation theorem of Weierstrass (see, for example [9, Ch. 15])
asserts that, if .an/ is a sequence of distinct points in a domain G of the complex
plane C without accumulation points in G and .bn/ is any sequence in C, then there
is a holomorphic function f in G such that f .an/ D bn for all n. For example, if we
choose as .bn/ an enumeration of all complex numbers with rational coordinates,
one can obtain a function f such that the sequence .f .an// is dense in C. On
the other hand, if .an/ is a sequence of distinct points in the domain G with
accumulation point in G, and .bn/ is any sequence in C, with the property that
there is a holomorphic function f in G such that f .an/ D bn for all n, then .bn/

has to satisfy certain conditions. First of all it has to be convergent. Secondly, the
function f with the above property is uniquely determined by the identity principle.
A complete characterization of pairs of convergent sequences .an/ and .bn/ in C;
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with the an distinct, such that there exists an entire function f , for which f .an/ D bn

for all n; was discovered independently by Bendixson [2] in 1887 and a century
later by Peretz in 1983 (in [8] and in his unpublished manuscript “Analytic image
of a convergent sequence”). (See also [7].) The condition for this characterization
is given in terms of the convergence of one specific series involving the sequences
.an/ and .bn/.

This paper is concerned with similar interpolation problems for subharmonic (or
continuous subharmonic) functions. This is rather different from the known exten-
sion theorems for subharmonic functions (see [5] and [6]), where a subharmonic
function is given in a neighbourhood of a set A and we wish to extend it to a given,
larger domain.

Since subharmonic functions take their values in Œ�1;C1/ and are upper
semicontinuous, if .xn/ is a sequence of distinct points converging to a point x0
and .yn/ is a sequence of values in Œ�1;C1/; such that yn D u.xn/; n D 1; 2; : : : ;

for some function u subharmonic in a neighbourhood of x0; then

lim sup
n!1

u.xn/ � u.x0/ < C1:

In this note, we show that this obvious necessary condition is in fact also sufficient to
characterize such “interpolation pairs” ..xn/; .yn// for subharmonic functions. More
precisely, we show the following:

Theorem 1 Let Bx0 be an open ball in R
N.N � 2/ with center x0, and let .xn/

be a sequence of distinct points in Bx0 n fx0g which converges to x0. If .yn/ is a
sequence of values in Œ�1;C1/ with lim supn!1 yn DW b < C1, then, there
exist a subharmonic function u on Bx0 , satisfying the following:

(i) u.xn/ D yn for each n D 1; 2; : : : ;
(ii) lim supx!x0 u.x/ D b;

(iii) u W Bx0 n fx0g ! Œ�1;C1/ is continuous (in the extended sense) and finite-
valued on Bx0 n fxn W n 2 Ng.

Remark 1 If we do not require condition (ii) to be valid and we only require the
interpolating function u to be continuous and subharmonic on Bx0 n fx0g, then
the result could follow by applying known extension theorems for subharmonic
functions (such as Theorem 6.1 of [5]). However, these extension theorems do not
provide estimates for the growth of the subharmonic extension u, and therefore, we
cannot conclude that x0 is a removable singularity for u. To overcome this difficulty,
we provide a constructive proof by carefully “gluing” specific Dirichlet solutions on
spherical shells around x0.

We express our deep affection for our dear friend André Boivin (respectively
doctoral student and postdoctoral supervisor), who would have collaborated in this
work had he not tragically left us far too soon.
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2 Preliminaries

For y 2 R
N and 0 < r < R we denote by SyŒr;R� the closed shell

fx W r � kx � yk � Rg and by Sy.r;R/ the open shell fx W r < kx � yk < Rg.
We also write SyŒr� to denote the sphere fx W kx � yk D rg. If y D 0 we simply write
SŒr;R�, S.r;R/ and SŒr� (instead of S0Œr;R�, S0.r;R/ and S0Œr�). Moreover we denote
by Uy.x/ the fundamental solution for the Laplacian with pole at y:

Uy.x/ D

�
� ln jx � yj for N D 2;

kx � yk2�N for N > 2:

Throughout this paper, for a radial function L and r > 0, we (abusively) denote
by L.r/ the (common) value of L.x/ for kxk D r. In particular, we write U0.r/ to
signify U0.x/; for some (hence every) x for which kxk D r:

It is easy to see that the function

Lm;M
r;R .x/ WD m

U0.x/

U0.r/
C

	
U0.r/ � U0.x/

U0.r/ � U0.R/


	
M � m

U0.R/

U0.r/



(1)

is the solution of the Dirichlet problem on SŒr;R�; with boundary values m on SŒr�
and M on SŒR�.

One of the main tools we will use is the following classical theorem:

Lemma 1 (Gluing Principle [Cor. 3.2.4, [1]) Let ! be an open subset of an open
set˝ in R

N. Let s be subharmonic on ! and S subharmonic on˝, and suppose that
lim supx!y;x2! s.x/ � S.y/ for all y 2 @! \˝. Then the function

v.x/ D

�
maxfs.x/; S.x/g .x 2 !/

S.x/ .x 2 ˝ n !/

is subharmonic on ˝.

Proof The proof follows immediately by verifying the submeanvalue property for
the function v for all points in @! \˝.

We can apply the gluing principle to prove the following lemma, which is of
fundamental importance for the proof of Theorem 1.

Lemma 2 Fix 0<r1<R2<R1 and m2<m1<M1, and let M2 2 .m1;L
m1;M1

r1;R1
.R2//.

For each r2 2 .0; r1/, we consider the function

L21.x/ WD

8
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
:

Lm2;M2

r2;R2
.x/ for r2 � kxk � r1;

maxfLm2;M2

r2;R2
.x/;Lm1;M1

r1;R1
.x/g for r1 � kxk � R2;

Lm1;M1

r1;R1
.x/ for R2 � kxk � R1:
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Then, for all sufficiently small r2, the function L21 is continuous on SŒr2;R1� and
subharmonic on S.r2;R1/.

Proof For simplicity we write Lri instead of Lmi;Mi
ri;Ri

for i D 1; 2. For each fixed
r 2 .r2;R2�;

Lr2 % M2 uniformly on S.r;R2�;

as r2 & 0: This follows easily by using the formula (1). In particular, for r D r1;
and sufficiently small r2;

maxfLr2 .x/;Lr1 .x/g D Lr2 .x/; for kxk D r1; (2)

so L21 is continuous on kxk D r1:
On kxk D R2; we have Lr2 .R2/ D M2 < Lr1 .R2/. Hence

maxfLr2 .x/;Lr1 .x/g D Lr1 .x/; for kxk D R2; (3)

so L21 is continuous on kxk D R2:
The function L21 is obviously continuous elsewhere, hence it is continuous on

the whole SŒr2;R1�. Finally, we can conclude that L21 is subharmonic on S.r2;R1/
for sufficiently small r2. To see this, we use (2) and (3) to apply twice the gluing
principle (Lemma 1): for the functions S1 WD Lr2 and s1 WD Lr1 which are
subharmonic on the sets ˝1 WD S.r2;R2/ and !1 WD S.r1;R2/ respectively; and
for the functions S2 WD Lr1 and s2 WD Lr2 which are subharmonic on the sets
˝2 WD S.r1;R1/ and !2 WD S.r1;R2/ respectively.

Lemma 3 Let A D fa1; : : : ; ang and P D fp1; : : : ; pmg be two disjoint sets in
the open shell S.r;R/. Then there exists a continuous (in the extended sense)
superharmonic function UP;A on R

N, such that UP;A.aj/ D 0 for all aj 2 A and
U�1

P;A.1/ \ SŒr;R� D P.

Proof We consider the superharmonic function UP.x/ WD
Pm

iD1 Upi.x/. Let cj WD

UP.aj/. To finish the proof it suffices to find a finite-valued superharmonic and
continuous function V on R

N such that V.aj/ D �cj for all j D 1; 2; : : : ; n, and
define UP;A.x/ WD V.x/ C UP.x/. One way to see that the construction of such a
function V is possible is, by using Theorem 6.1 of [5]. Indeed, let E be the union
of n pairwise disjoint, closed balls Dj in S.r;R/ with respective centres at aj (where
j D 1; 2; : : : ; n). Then, by Theorem 6.1 of [5], the function which equals to �cj on
each Dj, can be extended continuously and superharmonically on R

N (because the
complement of E in the one-point compactification of RN is connected and locally
connected).

Lemma 4 Let A D fa1; : : : ; ang and P D fp1; : : : ; pmg be two disjoint sets in the
open shell S.r;R/ and let UP;A be as in Lemma 3. For each j D 1; 2; : : : ; n and
sufficiently small � > 0, we consider the closed balls Kj;� with centres at aj and
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radii equal to �, such that they are all contained in S.r;R/ and they are pairwise
disjoint. We put K� D K1;�[� � �[Kn;� and let S� WD S.r;R/nK� and S0 WD S.r;R/nA:

Let m < M and suppose that we are given finitely many real values b1; b2; : : : ; bn;

with bj < m, for all j D 1; 2; : : : ; n.

(i) For � > 0, we denote by h� the solution of the Dirichlet problem on SŒr;R� with
boundary values m C �UP;A and M C �UP;A on SŒr� and SŒR� respectively. As
� ! 0; the directed family of subharmonic functions ��UP;A C h� converges
uniformly on compact subsets of S.r;R/ n P to Lm;M

r;R (the solution of the
Dirichlet problem on S.r;R/ with boundary values m and M on SŒr� and SŒR�
respectively).

(ii) For � > 0; let h�;� be the solution of the Dirichlet problem on S�;with boundary
values m C �UP;A on SŒr�, M C �UP;A on SŒR� and bj on each @Kj;�, and equal
to bj on Kj;�.

We consider the function u�;� W SŒr;R� ! Œ�1;C1/ defined by

u�;� WD ��UP;A C h�;�: (4)

Then, u�;� is continuous on SŒr;R� and converges uniformly on compact
subsets of S0 n P to ��UP;A C h�; as � ! 0: Moreover, for small � and �;
the function u�;� is subharmonic on S.r;R/.

Proof Let �0 > 0 be such that for all � � �0 the hypothesis in the first paragraph
of the lemma is satisfied.

It is obvious that, as � ! 0, the functions m C �UP;A and M C �UP;A converge
uniformly to m and M on SŒr� and SŒR� respectively, and so by the maximum
principle, we conclude that h� converges to Lm;M

r;R uniformly on SŒr;R�:Moreover, as
� ! 0; the function �UP;A tends uniformly to zero on compact subsets of RN n P,
and so part (i) follows immediately. Also we may choose � is so small that

�UP;A.x/ < maxfjmj; jMjg; .x 2 @S.r;R/ [ K�; � � �0/:

Therefore, since h� converges uniformly on SŒr;R� to Lm;M
r;R , we may assume that

� is so small that

jh�.x/j < 2maxfjmj; jMjg; 8x 2 S.r;R/: (5)

The function u�;� W SŒr;R� ! Œ�1;C1/ is continuous on SŒr;R� by the
regularity of the Dirichlet problem (since Kj is non-thin at each x 2 @Kj).

Let K be a compact subset of S0 n P: For all z 2 K and all sufficiently small �;
we have that z 2 S� and

��UP;A.z/C h�.z/ � u�;�.z/ D

Z

@S�

Œh�.�/ � h�;�.�/�d!�.z; �/;
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where !�.z;E/ is the harmonic measure for S� of a Borel set E � @S� evaluated at
a point z 2 S�. Since h� D h�;� on @S.r;R/ we may write

��UP;A.z/C h�.z/ � u�;�.z/ D

nX

jD1

Z

@Kj;�

Œh�.�/ � h�;�.�/�d!�.z; �/:

Therefore, since h�;� D bj on Kj;�, we can use (5) to deduce that

j ��UP;A.z/C h�.z/� u�;�.z/j <
nX

jD1

.2maxfjmj; jMjg C jbjj/!�.z; @Kj;�/: (6)

Now, we will estimate !�.z; @Kj;�/. Choose � > 0 so large that, for all small �
and each j D 1; : : : ; n, the set S� is contained in the open shell Saj.�;�/ and denote
by !j;� the harmonic measure for Saj.�;�/: Then,

!�.z; @Kj;�/ < !j;�.z; @Kj;�/ D 1 �
Uaj.�/ � Uaj.z/

Uaj.�/ � Uaj.�/
:

It is now clear that !�.�; @Kj;�/ converges uniformly to zero on compact subsets of
S0; as � ! 0 and, from (4) and (6), it follows that u�;� converges uniformly to
��UP;A C h�; on compact subsets of S0 n P:

We have that h� ! Lm;M
r:R uniformly on SŒr;R� as � ! 0 and, for every compact

subset Q of S.r;R/;we have minfLm;M
r;R .x/ W x 2 Qg > m (minimum principle). Thus,

for all sufficiently small �; we have h� > m on Q: Hence, for every compact subset
Q of S0 n P; we have u�;� > m on Q for small � and �: In particular, let Qj be a
closed ball centred at aj; which (as we may assume) contains all of the balls Kj;� in
its interior. Then, for sufficiently small �; it follows from the minimum principle that
u�;� > bj on Qj n Kj;� (because bj < m for all j D 1; 2; : : :; n). Consequently, u�;�
satisfies the submeanvalue inequality on @Kj;�. Since u�;� is upper semi-continuous
and obviously satisfies the submeanvalue inequality elsewhere, it follows that u�;�
is indeed subharmonic. This completes the proof of part (ii).

3 Proof of Theorem 1

Throughout the proof of Theorem 1 we will use the same notation as in the
statements of the previous lemmas. Also, by abuse of notation, we use the same
letter to denote a sequence of distinct points and the set of all terms of the sequence.

Proof We may (and shall) assume that x0 D 0: Our goal can be rephrased in the
following equivalent form. Suppose we are given a sequence A D .a1; a2; : : :/
of distinct non-zero points, tending to 0 in R

N , and a corresponding sequence
B D .b1; b2; : : :/ of real values such that lim supj!1 bj DW b < C1. We are
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also given a bounded sequence P D .p1; p2; : : :/ of distinct points, distinct from 0

and from the points of A, having no limit points except possibly 0, and we wish to
construct a corresponding subharmonic function u, in a neighbourhood of 0; such
that u.aj/ D bj; j D 1; 2; : : : ; u�1.�1/ D P and lim supx!0 u.x/ D b. (If we
construct such an interpolating function in a ball with center at 0, we can then
extend it subharmonically and continuously to any given ball of center at 0 using
Theorem 6.1 of [5].)

Let .mj/ be a sequence strictly decreasing to b such that m1> supfbj W jD1; 2; : : : g
and mj 62 B for each j. (This is possible because lim supj!1 bj DW b < C1.)
Choose R1 > maxfkxk W x 2 A [ Pg and r1 2 .0;minf1;R1g/, with .A [ P/\
SŒr1� D ; and A \ S.r1;R1/ 6D ;: Since lim supj!1 bj D b; we may choose r1 so
small that maxfbj W kajk < r1g < m2: Choose M1 > m1I choose R2 with r1 < R2 <
R1 such that .A [ P/ \ SŒr1;R2� D ;:

We now apply Lemma 4 for rDr1;RDR1;mDm1;MDM1;A1DA \ SŒr1;R1�;
B1Dfbj W aj 2 A1g; P1DP \ SŒr1;R1� and the compact set Q1 D SŒR2�. By Lemma 4,
noting that ��1UP1;A1 C h�1 < Lm1;M1

r1;R1
on S.r1;R1/, we may choose �1 and �1

sufficiently small so that u�1;�1 is subharmonic on S.r1;R1/ and

m1 < min
kxkDR2

u�1;�1.x/ 	 M2 < Lm1;M1

r1;R1
.R2/:

We set u1 D u�1;�1 on S.r1;R1/.
All sufficiently small r2 satisfy the conclusion of Lemma 2, so we may choose

such an r2 < minf1=2; r1g; for which .A [ P/ \ SŒr2� D ; and A \ S.r2; r1/ 6D ;:

Moreover, we may choose r2 so small that maxfbj W kajk < r2g < m3.
Choose R3 with r2 < R3 < r1 such that .A [ P/ \ SŒr2;R3� D ;: We now

apply Lemma 4 for r D r2;R D R2;m D m2;M D M2;A2 D A \ SŒr2;R2�,
B2 D fbj W aj 2 A2g, P2 D P \ SŒr2;R2� and the compact set Q2 D SŒR3�[ SŒr1�: By
Lemma 4, and since m2 < Lm2;M2

r2;R2
on S.r2;R2/;we may choose�2 and �2 sufficiently

small so that u�2;�2 is subharmonic on S.r2;R2/,

m2 < min
kxkDR3

u�2;�2.x/ 	 M3 < Lm2;M2

r2;R2
.R3/

and also such that

m1 < min
kxkDr1

u�2;�2.x/:

Then,

u�2;�2.x/ > m1 D u1.x/ for kxk D r1

and

u�2;�2.x/ D M2 � u1.x/ for kxk D R2:
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The function

u2.x/ D

8
<

:

u�2;�2.x/ for r2 � kxk � r1;
maxfu�2;�2.x/; u1.x/g for r1 � kxk � R2;
u1.x/ for R2 � kxk � R1;

is continuous on SŒr2;R1� and subharmonic on S.r2;R1/ (since r2 was chosen
sufficiently small to satisfy the conclusion of Lemma 2).

To define u3; we repeat the process. All sufficiently small r3 satisfy the
conclusion of Lemma 2, so we may choose such an r3 < minf1=3; r2g; for which
.A [ P/ \ SŒr3� D ; and A \ S.r3; r2/ 6D ;: Moreover, we may choose r3 so small
that maxfbj W kajk < r3g < m4:

Choose R4 with r3 < R4 < r2 such that .A [ P/ \ SŒr3;R4� D ;: We now
apply Lemma 4 for r D r3;R D R3;m D m3;M D M3;A3 D A \ SŒr3;R3�,
B3 D fbj W aj 2 A3g, P3 D P \ SŒr3;R3� and the compact set Q3 D SŒR4�[ SŒr2�: By
Lemma 4, we may choose �3 and �3 sufficiently small so that u�3;�3 is subharmonic
on S.r3;R3/,

m3 < min
kxkDR4

u�3;�3.x/ 	 M4 < Lm3;M3

r3;R3
.R4/

and

m2 < min
kxkDr2

u�3;�3.x/:

Then,

u�3;�3.x/ > m2 D u2.x/ for kxk D r2

and

u�3;�3.x/ D M3 � u2.x/ for kxk D R3:

The function

u3.x/ D

8
<

:

u�3;�3.x/ for r3 � kxk � r2;
maxfu�3;�3.x/; u2.x/g for r2 � kxk � R3;
u2.x/ for R3 � kxk � R1;

is continuous on SŒr3;R1� and subharmonic on S.r3;R1/ (since r3 was chosen
sufficiently small to satisfy the conclusion of Lemma 2).

We continue in this manner to define a sequence .uj/ of functions continuous on
SŒrj;R1� and subharmonic on S.rj;R1/:

The sequence uj is eventually stable on compact subsets of the punctured ball
S.0;R1/, and so it converges to a limit function u W S.0;R1/ ! Œ�1;C1/
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which is continuous and subharmonic. Moreover, lim supx!0 u.x/ D b < C1.
Hence, the origin is a removable singularity; thus we may extend u to a function
subharmonic on the ball SŒ0;R1/; centred at the origin and of radius R1: By
construction u�1.�1/ D P and u.aj/ D bj for all j D 1; 2; : : : . This concludes
the proof.

4 Concluding Remarks and Questions

In this final section we list some remarks and questions for further directions on
similar interpolation problems.

1. We note that the interpolating function of Theorem 1 can be chosen to be
subharmonic and continuous (in the extended sense) on all of RN . To see this, let
u be the subharmonic function on the ball B D B.x0;R/ obtained in Theorem 1
and choose 0 < �2 < �1 < R; such that the points xj lie in B.x0; �2/ and denote
Bj D B.x0; �j/: By the Riesz decomposition [1, Cor. 4.4.3],

u D �

Z

B1

Uyd�u.y/C h on B1;

where h is harmonic on B1 and �u is the Riesz measure of u on B. The potential is
well-defined and superharmonic on all of RN and, using Theorem 6.1 of [5], we
can extend the restriction of h on B2 to a function H, continuous and subharmonic
on all of RN : (See also [6].) Thus,

v D �

Z

B1

Uyd�u.y/C H

is a subharmonic function on all of RN which performs the required interpolation.
We note that v is continuous in the extended sense, that is, as a mapping from
R

N to Œ�1;C1/: Indeed, v is continuous in the extended sense on B2; since
it agrees with u; which is continuous in the extended sense. The potential is
continuous in the extended sense on B1; since it differs from u by a harmonic
function. By the construction of the proof, we may assume that u is harmonic on
an open neighbourhood of SŒ�2; �1� and so the restriction of �u to B1 has support
in a compact subset K of B2. Hence the potential is harmonic (and so continuous)
outside K. Since the subharmonic function v differs from the potential by the
continuous function H; it follows that v is continuous outside of K. Thus, v is
continuous in the extended sense on all of RN :

2. It is obvious that Theorem 1 would not remain valid in the case of convex
functions in R (which are the 1-dimensional analogue of subharmonic functions).
For example for xn D 1=n and yn D .�1/n it is impossible to find a convex
function u in R with u.xn/ D yn for all n (not even for n D 1; 2; 3).



274 P. Gauthier and M. Manolaki

Subharmonic functions in higher dimensions have less rigid behaviour, which
makes interpolation easier. For example, a key-ingredient of the proof of our
theorem was Lemma 2, which again would not be valid in dimension 1.

3. Harmonic functions have much more rigid behaviour than (continuous) subhar-
monic functions. In particular, given a sequence of distinct points xn converging
to a point x0, if h is a harmonic function on a neighbourhood of x0 containing
these points, the possible sequences yn D h.xn/ are extremely limited. It would
be natural to ask under which conditions harmonic interpolation of a convergent
sequence would be valid; that is, given a convergent sequence .xn/ in R

N and a
convergent sequence .yn/ in R, under which conditions on .xn/ and .yn/ can we
have that there is a harmonic function h in R

N for which h.xn/ D yn for all n?
It is quite easy to give simple examples of pairs of sequences .xn/ and .yn/, for

which harmonic interpolation is not possible. The heuristic ontological principle
that, if there is at most one of a certain type of object, then there are “probably”
none, suggests a connection between uniqueness and non-existence. We present
an example in this spirit. Let C be a cone in R

N with vertex at 0 and let D be
a dense subset of SŒ1� \ C. We construct a sequence X D .xn/, convergent to
0, such that, for each x 2 D, the set X \ Œ0; x� contains a sequence of points of
the form .x2k/ that accumulate at 0. We consider the sequence .yn/ which equals
to 1=n if n is odd and equals to 0 in n is even. We claim that there does not
exist a harmonic function h on a neighbourhood of 0 for which h.xn/ D yn for
all n. Indeed, if there was such a function h, we would have that, for all n even
numbers, h.xn/ D yn D 0. Using the real analyticity of h, we can conclude that
h D 0 on each segment of the form X \ Œ0; x�, for all x in D. Since D is dense
in SŒ1� \ C, we conclude (using the continuity of h) that h 	 0 on C and so
(by the identity principle) h is identically 0 in R

N . This contradicts the fact that
for n odd h.xn/ D yn D 1=n ¤ 0. Hence, there is no harmonic function h in a
neighbourhood of 0 for which h.xn/ D yn:

The sequence .xn/ we constructed here is an example of an “analytic
uniqueness sequence” (for more details see [3]). We note that, for each such
sequence .xn/; we would be able to construct analogous counterexamples where
harmonic interpolation fails.

4. Theorem 1 can be extended if we replace the assumption that the sequence .xn/

has only one accumulation point, with finitely many accumulation points (by
preserving the condition of lim supn!1 yn < C1). It is natural to ask how far
we can push the conditions on a sequence .xn/ so that (continuous) subharmonic
interpolation is possible under the simple condition of lim supn!1 yn < C1.
More generally, what can be said if we replace the sequences .xn/ by more
general closed sets A (and the corresponding interpolating values .yn/ with an
upper semicontinuous function B W A ! Œ�1;C1/)? Since subharmonic
functions take the value �1 only on a polar set, it makes sense to examine
the more general case only for the finite setting, i.e. when the data function B
takes only finite values (or, if it takes the value �1, this happens only on a polar
subset of A). (Of course if the set A does not have empty interior we must have a
submeanvalue property for our data function.) For example, does the method of
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our proof extend to polar closed sets A? The answer is yes (without continuity)
if all values B.a/ D �1 for all a 2 A since, by the definition of polar sets, we
can find a subharmonic function on a neighbourhood of A, which takes the value
�1 on A. However, this function can be highly discontinuous (see p. 69 of [1]).

5. As discussed above, the techniques of the proof of Theorem 1 can be used to
obtain the following:

Corollary 1 Let A be a compact set in R
N with a finite number of accumulation

points, and let f 2 C.A/. Then there exists a function F 2 C.RN/, which is
subharmonic on R

N, such that F D f on A. That is, A is an interpolation set for
continuous entire subharmonic functions.

One further direction would be to examine interpolation by smooth subharmonic
functions; that is, to find conditions on the sequences .xn/ and .yn/ (or, more
generally on the set A and the function f on A) under which the interpolating
function can be C1. This relates to the work in [4].

6. Although we do not in general have uniqueness for interpolating subharmonic
functions along a sequence of points, perhaps uniqueness can be attained by
imposing additional constraints. For example, what can be said about interpo-
lation where, besides interpolating at a sequence of points .xn/ converging to 0
we are additionally interpolating the mean values around 0? To be more precise:

Problem We consider a sequence .yn/ of points in Œ�1;C1/ with b WD

lim supn!1 yn < C1. We also fix a function M W .0; 1� ! R which is
increasing, such that M.r/ is a convex function of the fundamental solution U0.r/
and

lim
r!0C

M.r/ D b:

Is it possible for the spherical mean values M.uI 0; r/ of (some of) the interpo-
lating function(s) u on the sphere SŒr�, obtained by Theorem 1, to coincide with
M.r/ for all r 2 .0; 1�?

The conditions we put on M are necessary from Corollary 3.2.6 and Theo-
rem 3.5.6 of [1].
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