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Abstract The gut microbiota has a profound impact on the resistance, pathogen-

esis, and immunity of enteric viral pathogens. Commensal microbes may prevent

the host from infection or enhance infection by altering virus stability, attachment

or cellular entry. Additionally, microbiota members can stimulate or suppress host

immune responses to the viral infection. In most cases, the gut microbiota plays a

role in host resistance against invading enteric viral pathogens; hence, germ-free

animals are more susceptible to infection of various enteric pathogens. However,

increasing evidence has demonstrated that certain commensal bacteria can enhance

enteric viral infection. Exact mechanisms by which specific bacteria carry out these

effects are not clearly understood in most instances. In this chapter, human

norovirus (HuNoV) and human rotavirus (HRV), the two most important viral

pathogens causing gastroenteritis, are chosen for the discussion of the impacts

and mechanisms of microbiome–host interactions on viral gastroenteritis. The

pathogenesis and immunity of HuNoV and HRV in humans and in germ-free

animal models, particularly gnotobiotic (Gn) mice and pigs, and Gn pigs

transplanted with human gut microbiota are reviewed. Findings from studies on

host–microbiome interactions on the pathogenesis and immunity of the two viruses,

and mechanisms of probiotics/prebiotics in ameliorating their infection and dis-

eases, are summarized. Unraveling the role of microbiome and specific probiotics

in the infectivity, pathogenesis, and immunity of HuNoV and HRV facilitates the

development of strategies for manipulating the microbiome against viral infections.

Further studies are needed to improve our understanding of mechanisms underlying

host–microbiome interactions in the pathophysiology of enteric viral diseases.
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List of Abbreviations

ASC Antibody-secreting cells

AttHRV Attenuated human rotavirus

Dpi Days post-inoculation

EcN Escherichia coli Nissle 1917
Gn Gnotobiotic

HBGA Histo-blood group antigen

HHGM Healthy human gut microbiota

HRV Human rotavirus

HuNoV Human norovirus

LGG Lactobacillus rhamnosus GG
MNCs Mononuclear cells

NHPs Nonhuman primates

UHGM Unhealthy human gut microbiota

VirHRV Virulent human rotavirus

3.1 HuNoV Pathogenesis and Immunity in Humans

and in Animal Models

3.1.1 HuNoV Gastroenteritis, Pathogenesis, and Cell
Tropism in Humans

Human noroviruses (HuNoVs) are positive-sense, single-stranded, non-enveloped

RNA viruses that belong to the genus Norovirus in the family Caliciviridae (Zheng

et al. 2006). Since the introduction of rotavirus vaccines (RotaTeq in 2006 and

Rotarix in 2008), HuNoVs have become the predominant cause of viral epidemic

acute gastroenteritis across the globe (Pringle et al. 2015; Hemming et al. 2013;

Payne et al. 2013). Viral transmission occurs via the fecal–oral route by contami-

nated food or water and person-to-person spread (Patel et al. 2009). HuNoV

gastroenteritis is generally self-limiting, with a duration of 2–3 days and consists

of moderate to severe acute diarrhea episodes, sudden onset of vomiting, and mild

or no fever (O’Ryan et al. 2010), but the diseases can become more severe and

prolonged in infants, the elderly, and individuals with impaired immunity (Karst

2010). Despite its importance in public health, no virus-specific therapeutics or

vaccines are currently available to treat or prevent HuNoV gastroenteritis (Kocher

and Yuan 2015), mainly because HuNoV research has been hampered by the long

absence of a robust cell culture system and small-animal model. HuNoV biology

has been explored most frequently by viral challenge studies in human volunteers

(Karst 2010), chimpanzees (Bok et al. 2011), gnotobiotic (Gn) calves and pigs

(Souza et al. 2008; Bui et al. 2013; Cheetham et al. 2006), and immunodeficient

mice (Taube et al. 2013) (Table 3.1).
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Challenging HuNoV in immunocompetent volunteers resulted in acute gastro-

enteritis, and biopsy specimens from the individuals who acquired clinical gastro-

enteritis displayed histological changes in the small intestine, including mucosal

inflammation, villus blunting, microvillus shortening, and abnormal organelles

such as endoplasmic reticulum and mitochondria (Agus et al. 1973; Schreiber

et al. 1973, 1974; Dolin et al. 1975). Although intestinal epithelial cells (IECs)

are the target for most enteric pathogens, the presence of HuNoV virions or antigen

have not been reported in these biopsies from immunocompetent humans, and the

cellular tropism of HuNoV has long been elusive (Agus et al. 1973; Schreiber et al.

1973, 1974; Dolin et al. 1975; Karst et al. 2014). Chronic HuNoV infection occurs

in immunocompromised transplant patients. A recent study using intestinal biopsies

from a patient cohort showed that HuNoV infection was observed in duodenal and

jejunal enterocytes, and HuNoV-associated histopathological changes were present

as the flattening of epithelial cells and the severe loss of villin in enterocytes

(Karandikar et al. 2016). In addition, stem cell-derived and nontransformed

human intestinal enteroids have been recently established as a reproducible culti-

vation system for multiple HuNoV strains, confirming enterocytes as target cell

types for HuNoV infection in vitro and in vivo (Ettayebi et al. 2016). B cells were

suggested to be a permissive cell type for HuNoV replication in vitro, which is a

novel HuNoV cultivation system in the BJAB cell line supplemented with free

histo-blood group antigen (HBGA) or HBGA-expressing inactivated enteric bacte-

ria (Jones et al. 2014). However, this cell culture system produced inconsistent

results in other laboratories (Jones et al. 2015; Lei et al. 2016c), and HuNoV

infection was observed in B cell-deficient patients and Gn pigs (Brown et al.

2016; Lei et al. 2016b), along with the low virus yields in such an in vitro cell

system compared with high-level virus shedding in patients (Bok and Green 2012),

suggesting that B cells might not be the primary target cell of HuNoV.

3.1.2 HuNoV Infection and Pathophysiology
in Conventional Animal Models

Nonhuman primates (NHPs), particularly chimpanzee (99%) (Kehrer-Sawatzki and

Cooper 2007), share the greatest genome similarities with humans, which makes

them desirable models for studies on several fastidious viral pathogens, such as

human immunodeficiency virus and hepatitis viruses (O’Neil et al. 2000; Pfaender
et al. 2014; Purcell and Emerson 2001). The chimpanzee was presented as a viable

animal model for subclinical GI.1 HuNoV infection, characterized by intravenous

inoculation, asymptomatic fecal virus shedding, and viral associated serum anti-

body responses (Bok et al. 2011). Biopsies from the jejunum and duodenum showed

no histological changes after HuNoV infection, although the viral genome was

detectable up to 21 days post-inoculation. Interestingly, viral capsid antigen was

only observed in cells of the duodenal and jejunal lamina propria, and further
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investigations indicated that viral antigen-positive cells were dendritic cells and B

lymphocytes (Bok et al. 2011). However, the chimpanzee is not available for

biomedical research any longer owing to ethical concerns.

Another animal model of subclinical HuNoV infection is the Balb/c mouse

deficient in recombination activation gene (RAG) and common gamma chain (γc
or IL2RG), which lacks T cells, B cells, and natural killer cells. In this mouse

model, a HuNoV GII mix was inoculated intraperitoneally (Taube et al. 2013).

Although virus shedding and gastrointestinal diseases were not observed in those

Balb/c RAG/γc�/� mice, viral genome was detected in the intestinal and systemic

sites, with increased levels over the input virus 1–2 days post-inoculation. Viral

structural and nonstructural proteins were observed in cells morphologically resem-

bling macrophages in the liver and spleen, validating HuNoV propagation (Taube

et al. 2013). Moreover, Balb/c RAG/γc�/� mice can be used for the evaluation of

anti-HuNoV drugs such as the nucleoside analog 20-C-methylcytidine, which

inhibited HuNoV replication in vivo (Kolawole et al. 2016).

3.1.3 HuNoV Infection and Pathophysiology in Gnotobiotic
Large Animal Models

The neonatal Gn pig model is well suited for the evaluation of HuNoV pathogenesis

and vaccine efficacy, and it reflects HuNoV biology in terms of supporting the

natural oral route of infection, resulting in diarrhea, transient viremia, and virus

shedding in feces (Cheetham et al. 2006; Bui et al. 2013; Kocher et al. 2014; Souza

et al. 2007a, b). Viral structural and nonstructural proteins were detected in

enterocytes in wild-type Gn pigs experimentally infected with HuNoV genotype

GII.4 (Bui et al. 2013; Cheetham et al. 2006; Lei et al. 2016c), indicating viral

infection and replication in Gn pigs. HuNoV-induced diarrhea in Gn pigs was

associated with mild villus atrophy and cytopathological changes in the small

intestine, manifested as blunting and shortening of microvilli and necrosis and

apoptosis of enterocytes (Bui et al. 2013; Cheetham et al. 2006), which recapitulate

the hallmark pathological features in humans.

Twenty-four units of the P domain of HuNoV capsid protein can form P particle,

which efficiently induces innate, humoral, and cellular immune responses in mice

(Fang et al. 2013). Together with its easy and economical preparation in E. coli, P
particle has gained recognition as a promising vaccine candidate against HuNoV

infection (Kocher and Yuan 2015). In the study of P particle vaccination in Gn pigs,

P particle exhibited 47% cross-variant protection against HuNoV diarrhea, and the

protection correlated positively with T cell expansion in the ileum and spleen, while

correlating inversely with T cell expansion in the duodenum (Kocher et al. 2014).

Persistent HuNoV infection in immunocompromised patients can lead to increas-

ingly debilitating and life-threatening gastroenteritis with prolonged virus shedding

(Bok and Green 2012; Green 2014). Similarly, in RAG2/IL2RG-deficient Gn pigs,
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HuNoV infection was severe and prolonged owing to the severe combined immu-

nodeficiency of the host, and enterocytes of the duodenum and jejunum were sites

of HuNoV infection (Lei et al. 2016b).

Neonatal Gn calves serve as another large animal model that supports GII.4

HuNoV infection; viral capsid protein was detected in enterocytes of the jejunum

and ileum, and in cells morphologically resembling macrophages in the lamina

propria (Souza et al. 2008). Similar to the findings in Gn pigs, HuNoV challenge in

Gn calves resulted in diarrhea along with intestinal lesions and mild villous atrophy,

fecal virus shedding, transient viremia, and intestinal and systemic immune

responses (Souza et al. 2008).

Notably, pigs are natural hosts of noroviruses GII (genotypes 11, 18, and 19);

however, all porcine noroviruses were detected from conventional pigs without

clinical signs (Knowles and Reuter 2012). Porcine norovirus has been detected in

many countries and geographical distribution indicates the worldwide occurrence

of porcine noroviruses among pigs on farms. The QW101/2003/US (GII.18) isolate

from a healthy adult pig was genetically and antigenically related to HuNoVs and

replicated in Gn pigs with fecal shedding coincident with mild diarrhea (Wang et al.

2005). Seroprevalence of norovirus GII in pigs was reported to be 97% in the USA.

Attempts have been made, but failed to infect conventional G€ottingen miniature

pigs (Marshall BioResources, North Rose, NY, USA) with HuNoV (Tin et al.

2017). The miniature pigs shed neither virus nor seroconvert after oral and intra-

venous HuNoV inoculation. The difference in the susceptibility to norovirus infec-

tion and lack of disease in conventional pigs suggest that the gut microbiota or

maternal antibodies might be protective. Effects of the gut microbiota on the

resistance and immunity to norovirus infection are currently under investigation.

3.2 Effects of the Microbiome on Norovirus Infection,

Immunity, and Disease

The notion that commensal bacteria can enhance enteric viral infection was dem-

onstrated by two landmark studies published in 2011 using poliovirus, reovirus, and

mouse mammary tumor virus (Kuss et al. 2011; Kane et al. 2011). When intestinal

bacteria were depleted by administering a cocktail of antibiotics to mice, poliovirus

infection was dramatically attenuated in comparison with normal mice with gut

microbiota, as characterized by the reduced fecal virus shedding and mortality

(Kuss et al. 2011). In addition, the reduced poliovirus infection was reversed by

fecal transplantation to reconstitute intestinal microbes, and the status of the

intestinal microbiota did not affect viral infectivity when poliovirus was inoculated

intraperitoneally (Kuss et al. 2011), indicating the role of intestinal bacteria in

enhancing enteric viral infection. Poliovirus was shown to directly bind to the

bacterial outer-membrane component lipopolysaccharide, resulting in virion
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thermo-stabilization and attachment to host cells (Kuss et al. 2011; Wilks et al.

2015). As a result, the interactions between host-microbiome and enteric viruses

have been gaining intense attention. However, the understanding of effects of the

intestinal microbiota on HuNoV has been impeded by the absence of a suitable cell

culture system and animal model. Limited studies analyzing stool samples from

human patients showed that HuNoV infection could alter microbial composition

(Nelson et al. 2012).

Murine norovirus (MNV) was first identified in 2002 from the brain of an

immunocompromised mouse, RAG/STAT1�/� strain, because of its lethal infec-

tion (Karst et al. 2003). Since then, MNV has been used widely as a surrogate to

explore HuNoV biology regarding viral pathogenesis, host immunity, and inter-

plays with gut microbiota. Antibiotic treatment reduced the acute MNV infection,

and lower virus titers in the distal ileum, mesenteric lymph nodes, and colon were

observed compared with control mice (Jones et al. 2014). Antibiotics also

prevented persistent MNV infection in mice, but persistent infection could be

restored by microbial colonization (Baldridge et al. 2015), indicating the stimula-

tory role of microbiota in MNV infectivity. However, major disruptions of the

microbiome were not observed following acute or persistent MNV infection in

mice (Nelson et al. 2013). MNV infection is asymptomatic in wild-type mice, but

mucosal inflammation was observed in IL-10�/� mice maintained in a specific

pathogen-free environment, and MNV-induced pathological changes such as

reduced tight junction proteins and inflammatory lesions were lacking in germ-

free IL-10�/� mice, suggesting that MNV-triggered intestinal diseases might be

induced via bacterial microbiota (Basic et al. 2014).

3.3 Mechanisms of Probiotics/Prebiotics in Ameliorating

Norovirus Infection and Disease

Probiotics have been increasingly recognized as vaccine adjuvants and therapeutic

agents to ameliorate pediatric acute gastroenteritis (Schnadower et al. 2015;

Licciardi and Tang 2011). The underlying mechanisms of their beneficial health

effects include modulating gut microbiota composition, enhancing intestinal barrier

function, and promoting mucosal immunity (Wen et al. 2009). Notably, Lactoba-
cillus spp. exhibit promising properties against viral infection and diseases in

human clinical trials (Guandalini et al. 2000; Sindhu et al. 2014; Szajewska et al.

2014), and their binding capacity with viral P particles holds great promise for

reducing HuNoV infectivity and disease in vivo (Rubio-del-Campo et al. 2014).

Evaluation of the effects of consuming Lactobacillus casei strain Shirota fermented

milk on HuNoV gastroenteritis during an outbreak in Japan demonstrated that the

elderly HuNoV-infected patients (about 84 years old) who continuously consumed

the milk experienced a shorter duration of fever than the nontreated patients
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(1.5 vs. 2.9 days), although the incidence of HuNoV gastroenteritis did not differ

between the two groups (Nagata et al. 2011).

Probiotic bacteria can bind HuNoV P particles on their surface in vitro, and the

presence of L. casei BL23 and Escherichia coli Nissle 1917 (EcN) may inhibit P

particle attachment to epithelial cells (Rubio-del-Campo et al. 2014). Lactobacillus
rhamnosus GG (LGG) is another probiotic strain with HuNoV-binding capacity,

and a recent study showed that the binding between HuNoV and LGG/EcN was

associated with their inhibitory role of HuNoV shedding in Gn pigs (Lei et al.

2016a). In addition, daily supplement of prebiotic rice bran in LGG/EcN colonized

Gn pigs was highly protective against HuNoV diarrhea and shedding. The mech-

anism involves enhancement of IFN-γ-producing T cell responses, increased pro-

duction of total intestinal IgA and IgG antibodies, and maintenance of longer villi

compared with the non-rice bran-fed and non-probiotic-colonized control group

(Lei et al. 2016a). Norovirus infection leads to epithelial barrier dysfunction and an

increase in epithelial apoptosis, which results in a reduction in villus height

(Troeger et al. 2009). The antiviral effects of IFN-γ and mucosal antibodies induced

by rice bran can attenuate the damage to the intestinal epithelia by HuNoV infection

to reduce diarrhea and maintain longer villi. In another study, the presence of

Bifidobacterium adolescentis inhibited the attachment of HuNoV GI.1 virus-like

particle to epithelial cells in vitro (Li et al. 2016), indicating the inhibitory role of

probiotics on the initial viral infection stage. However, instead of affecting the viral

attachment, B. adolescentis decreased the replication of MNV in RAW 264.7 cells

(Li et al. 2016). Vitamin A was shown to inhibit MNV replication in mice by

upregulating lactobacilli in gut microbiota, and anti-MNV effects of lactobacilli

were confirmed in RAW264.7 cells (Lee and Ko 2016). Given the natural source

and commercial accessibility, probiotic and prebiotic treatments may constitute a

novel, safe, and effective measure in clinical practice against HuNoV infection and

disease.

3.4 Rotavirus Pathogenesis and Immunity in Humans

and in Animal Models

3.4.1 Rotavirus Pathogenesis and Immunity

Rotaviruses are double-stranded, segmented, non-enveloped, RNA viruses belong-

ing to the Reoviridae family. Worldwide, rotaviruses are a major cause of acute

gastroenteritis in infants and young children, which is characterized by diarrhea,

vomiting, and dehydration. They were responsible for approximately 500,000 deaths

a year, mostly in low-middle income countries before the two commercial vaccines

(Rotarix and RotaTaq) became available (Desselberger 2014; Desselberger and

Huppertz 2011). Diarrhea is caused by viral damage to enterocytes, villus ischemia,
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action of the enterotoxin NSP4, and activation of the enteric nervous system

(Desselberger 2014; Desselberger and Huppertz 2011).

Rotaviruses replicate in mature, nondividing enterocytes near the tips of the villi.

The pathological changes due to rotavirus infection are mostly limited to the small

intestine (Ramig 2004). Systemic rotavirus infections have been documented in

humans and animals and systemic disease does occur in rare cases (Ramig 2007). In

humans, after primary symptomatic or asymptomatic rotavirus infection, the patient

is typically protected from subsequent severe disease (Desselberger and Huppertz

2011). Correlates of protection include rotavirus-specific serum IgA and fecal

IgA (Desselberger 2014; Desselberger and Huppertz 2011). In some studies, there

is a lack of correlation between neutralizing antibody titers and protection

(Desselberger 2014). Rotavirus-specific T cells help to eliminate virus after infec-

tion and memory B cells provide long-term protection (Desselberger 2014). In

humans, newborns are provided with additional protection through transplacental

and breast milk antibodies (Desselberger and Huppertz 2011).

3.4.2 Animal Models of Rotavirus Infection and Disease

In addition to humans, many animals are susceptible to rotavirus infection and

disease, and can be used as models (i.e., pigs, calves, lambs, rats, rabbits, mice, and

NHPs) to study rotavirus pathogenesis and immunity. These models have been

reviewed in extensive detail elsewhere (Yuan and Wen 2017). The Gn pig model

has many benefits over other animal models. Pigs and humans share high genomic

and protein sequence homologies, omnivorous diet, similar gastrointestinal physi-

ology, and similar immune systems (Wang and Donovan 2015; Saif et al. 1996).

Additionally, there is no transfer of maternal antibodies across the porcine placenta

and Gn pigs are deprived of sow colostrum/milk, which prevents maternal anti-

bodies from interfering with studies. Gn pigs are susceptible to genotype 1 (G1) and

genotype 3 (G3) human rotavirus (HRV) infections. Inoculation of Gn pigs, up to at

least 8 weeks of age with Wa strain (G1P1A[8]) HRV results in diarrhea (Yuan

et al. 1998). Based on duodenal biopsies from children with acute rotavirus

infection, the histopathological changes are similar to those found in piglets (Barnes

and Townley 1973; Davidson and Barnes 1979; Ward et al. 1996a). Extensive work

has been done with Gn pigs and Wa strain HRV. The virulent Wa human rotavirus

strain (VirHRV) allows assessment of host response to natural infection, whereas

the attenuated human rotavirus (AttHRV) can be used to study vaccination (Yuan

and Saif 2002; Saif et al. 1997).

After oral inoculation with VirHRV, Gn pigs develop diarrhea, shed virus, and

develop nearly complete protection against subsequent clinical disease and viral

shedding when challenged with VirHRV after recovery (Yuan et al. 1996; Ward

et al. 1996b; Iosef et al. 2002). Diarrhea develops approximately 13 h after

inoculation and is associated with viral antigen in enterocytes at villus tips; villus

atrophy develops 24 h post-infection and correlates with peak fecal viral titers
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(Ward et al. 1996a). Gn pigs orally inoculated with AttHRV seroconvert, but have

little to no virus shedding and no clinical signs, and protection from diarrhea and

viral shedding after challenge is less efficacious than what is seen in pigs receiving

primary VirHRV oral inoculation (Yuan et al. 1996; Ward et al. 1996b; Iosef et al.

2002).

Gnotobiotic calves have also been used to study rotavirus; however, reports are

not as numerous as those in Gn pigs. Gn calves can be infected with some HRV

strains, but clinical illness does not always develop (Tzipori et al. 1980). In a study

in which calves successfully developed diarrhea after administration of an HRV

strain, they had histological lesions consistent with rotavirus infection (Mebus et al.

1977). In addition to the fact that Gn calves are not as consistent as Gn pigs as a

model of HRV infection and disease, ruminant microbiota is very different from

that of humans; therefore, calves are not a proper model for the study of the role of

microbiota in HRV infection and immunity.

Despite the close genetic relationship between NHPs and humans, they are not a

superior rotavirus animal model compared with Gn pigs. Often, HRV strains are

naturally attenuated in NHPs (McNeal et al. 2005). There have been reports of oral

inoculation of simian (SA11) or human (Wa) rotavirus into different NHPs with

development of diarrhea; however, it is usually during the first week of life, after

which disease is not observed, and older animals may not shed virus or even

seroconvert (McNeal et al. 2005). Even in a study evaluating a wild-type macaque

rotavirus in 14- to 42-day-old macaques, they remained clinically normal, despite

shedding large amounts of virus (McNeal et al. 2005).

Mice are attractive animal models because of their size, ease of maintenance

compared with Gn pigs, and availability of numerous strains and genetic knockouts.

The major downside of the murine rotavirus model is that mice are only susceptible

to disease for approximately 15 days after birth (Ward et al. 1990). Adult mice can

be used to study rotavirus infection; however, infections are subclinical and often

do not predict protective efficacy of interventions against clinical infection (Ward

et al. 1990; Yuan and Saif 2002).

3.5 Effects of Microbiome on Rotavirus Infection,

Immunity, and Disease

3.5.1 Studies Comparing Conventional and Germ-Free Mice

A French research group pioneered the study on the impact of the microbiota on

rotavirus pathogenesis nearly 30 years ago (Heyman et al. 1987). They compared

intestinal absorption of macromolecules during murine rotavirus infection in con-

ventional versus germ-free newborn mice derived from seronegative dams. The

study showed that rotavirus infection caused a transient increase in gut permeability

to undegraded proteins; this increase occurred earlier after infection in conventional
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pups and later in germ-free pups. Furthermore, the length of virus excretion was

different in conventional and germ-free mice; rotavirus titers in intestinal homog-

enates were still high at 8 days post-inoculation (dpi) in conventional mice, whereas

they become very low in germ-free mice. However, there was no correlation

between virus excretion and diarrhea in mice, as diarrhea was observed from 2 to

8 dpi in both conventional and germ-free mice, and no differences were detected on

diarrhea kinetics. When the intestinal microbiota was absent, clinical and physio-

logical disturbance were more severe, i.e., greater weight loss after rotavirus

infection, and a more marked and long-lasting augmentation in intestinal perme-

ability to intact proteins. This study indicates that intestinal microbiota has a

significant impact on both rotavirus replication and pathogenesis, as supported by

the timing, magnitude, and duration of increased epithelial permeability and virus

excretion (Heyman et al. 1987).

A recent study showed that rotavirus infection was reduced by 42% and diarrhea

was decreased in incidence and duration in germ-free mice (via ablation of

microbiota by antibiotics) compared with mice with conventional microbiota

(Uchiyama et al. 2014). Based on the non-altered ratio of positive to negative

sense rotavirus RNA strands, the authors suggested that the antibiotics used to

ablate the microbiota affected entry of the virus into host cells (Uchiyama et al.

2014). These antibiotic-treated mice had more durable mucosal and systemic

humoral immune response and the durability correlated with small intestinal

rotavirus-specific IgA antibody-secreting cells (ASCs) (Uchiyama et al. 2014).

Mice treated with low levels of dextran sodium sulfate to increase exposure of

immune cells to the microbiota had decreased rotavirus-specific antibodies. Further

studies are needed to understand how the microbiota and antibiotics interact to

induce the immunological differences between the mouse groups. The contradic-

tory findings between the two studies on the role of microbiota in rotavirus infection

and diarrhea are most likely due to the difference between using true germ-free

newborn mice (Heyman et al. 1987) versus using mice ablated of the microbiota

with antibiotics (Uchiyama et al. 2014). In addition to killing bacteria, antibiotics

have many effects on the physiology and immune cell development of the host,

which need to be taken into consideration and should be properly controlled in these

types of studies.

3.5.2 Studies in Gn Pigs and Human Gut Microbiota-
Transplanted Gn Pigs

To identify the influence of microbiota in the response of the Gn pig to HRV and to

more closely mimic human infants with the model, Gn pigs transplanted with

newborn human gut microbiota (HGM) and infected with HRV have been evalu-

ated (Zhang et al. 2014). HGM successfully colonized the Gn pig intestine after

three oral inoculations. Sequencing of the V4 region of 16S rRNA genes
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demonstrated that the pigs carried a microbiome similar to that of the cesarean-

section-delivered human infant donor (Zhang et al. 2014). This model was used to

test the effects of probiotics on the gut microbiome structure during a VirHRV

infection and the development of AttHRV vaccine-induced immune responses were

compared between the HGM- and non-HGM-transplanted Gn pigs (Wen et al.

2014). The AttHRV vaccine conferred overall similar protection against rotavirus

diarrhea and virus shedding in Gn pigs and HGM-transplanted Gn pigs. HGM

promoted the development of the neonatal immune system, significantly enhancing

IFN-γ-producing T cell responses and reducing Treg cell responses in the AttHRV-

vaccinated pigs (Wen et al. 2014).

Furthermore, a Gn pig model of enteric dysbiosis and rotavirus immunity has

been developed (Twitchell et al. 2016). Using this model, it has been shown that

after vaccination with AttHRV, pigs colonized by gut microbiota from children

who had a good immune response to oral rotavirus vaccination and low enteropathy

scores (healthy human gut microbiota, HHGM) had more rotavirus-specific IFN-γ
T cells in the ileum, spleen, and blood than pigs colonized by microbiota from

children who did not respond well to the oral rotavirus vaccine and showed

evidence for enteropathy (unhealthy human gut microbiota, UHGM) (Twitchell

et al. 2016). UHGM pigs had higher viral shedding titers and more severe clinical

signs than HHGM pigs after challenge with VirHRV (Twitchell et al. 2016). There

was a significantly positive correlation between Collinsella and significantly neg-

ative correlations between Clostridium spp. or Anaerococcus and frequencies of

IFN-γ T cells at the time of challenge. HHGM pigs had an increased mean relative

abundance of Bacteroides after VirHRV challenge (Twitchell et al. 2016). As the

only variable that differed between these groups was microbiota composition, this

study clearly demonstrated that the differences in immune responses and clinical

disease are due to the influence of the different microbiota.

It has been shown that human intestinal cells incubated with soluble factors from

Bacteroides thetaiotaomicron and L. casei were protected from rotavirus infection

(Varyukhina et al. 2012). The protection was attributed to increased cell surface

galactose induced by the bacterial factors, which blocked rotavirus infection. This

mechanism is significant in rotavirus infection because these viruses use glycan

recognition to attach to enterocytes (Varyukhina et al. 2012). Perhaps a similar

mechanism was at play in the Gn pig enteric dysbiosis study and may partially

explain why HHGM pigs had decreased viral shedding compared with UHGM pigs

(Twitchell et al. 2016).

3.5.3 Studies of the Microbiome in Rotavirus Infection
and Vaccination in Humans

The abundance of Bacteroides species in rotavirus infected and uninfected children
was different. B. fragilis was increased whereas B. vulgatus and B. stercoris were
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decreased in the intestines of infected children (Zhang et al. 2009). A rotavirus

vaccine study in rural Ghana evaluated pre-vaccination fecal microbiome of vac-

cine responders and non-responders and then compared them with age-matched

healthy Dutch infants (Harris et al. 2016). The Ghanaian vaccine responder

microbiome was more like the healthy Dutch infant microbiome than the Ghanaian

nonresponders. Vaccine response correlated with an increased abundance of Strep-
tococcus bovis and decreased Bacteroidetes phylum (Harris et al. 2016). The

significance of these findings needs to be further elucidated. These studies suggest

that certain bacterial components of microbiome might play a modulatory role in

the development of rotavirus infection and immunity. Although the underlying

mechanisms of specific host–bacteria and virus–bacteria interactions that lead to

the different outcomes in enteric viral diseases and immunity have not been

identified, studies of probiotics shed some light on the mechanisms.

3.6 Mechanisms of Probiotics/Prebiotics in Ameliorating

Rotavirus Infection and Disease

Prebiotics and probiotics are being developed as a nonpharmacological means of

preventing or ameliorating gastroenteritis caused by enteropathogens, and as vac-

cine adjuvants. Mechanisms by which prebiotics and probiotics affect infection,

disease, and immunity are an active area of study. Effects vary based on strain,

dose, and frequency of administration.

3.6.1 Mechanisms for Reducing Rotavirus Diarrhea Using
Probiotics

Among all commercially available probiotics, LGG has been most extensively

studied in rotavirus infection, disease, and immunity. LGG has been shown to

protect the intestinal barrier in studies using conventional pigs and Gn pigs.

When supplemented with LGG and then challenged with rotavirus, conventional

pigs had increased villus-to-crypt ratios, villus height, sIgA, IL-4, mucin1 and

mucin2 concentrations, and ZO-1, occludin, and Bcl-2 mRNA in jejunal mucosa,

and decreased Bax mRNA and NSP4 in the jejunum compared with controls (Mao

et al. 2016). Gn pigs supplemented with LGG were partially protected from

HRV-induced increases in adherens junction proteins α-catenin and β-catenin,
tight junction proteins occludin, claudin-3 and claudin-4, and leakage of protein

claudin-2 compared with controls (Liu et al. 2013). In both studies,

LGG-supplemented pigs had reduced diarrhea compared with controls after rota-

virus challenge (Mao et al. 2016; Liu et al. 2013). One mechanism by which LGG

may reduce diarrhea is by protecting small intestinal barrier function. A recent
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study showed that metabolites of L. casei and B. adolescentis significantly reduced

NSP4 production and Ca2++ liberation in vitro, suggesting activity against rotavirus

infection (Olaya Galan et al. 2016).

LGG can improve innate immunity. It has been shown that LGG increases

mRNA levels of TLR3 when incubated with intestinal organoids (Aoki-Yoshida

et al. 2016). In vivo, single and a 7-day course of LGG increased TLR3 mRNA

levels in the small intestine of C57/BL6N mice (Aoki-Yoshida et al. 2016).

Co-colonization of Gn pigs with LGG and Bifidobacterium lactis Bb12 (Bb12)

induced upregulation of TLR3 after VirHRV challenge and downregulation of TLR

2 and TLR4 expressing mononuclear cells (MNCs) after AttHRV vaccination

(Vlasova et al. 2013). L. ruminis SPM02111, Bifidobacterium longum SPM1205

and SPM1206 were able to inhibit rotavirus replication in neonatal mice, inhibit Wa

HRV infection of Caco-2 cells, increase IFN-α and IFN-β, and increase gene

expression of IFN-inducible antiviral effectors when compared to controls (Kang

et al. 2015). Lactobacillus reuteri and Lactobacillus acidophilus with HRV infec-

tion have an additive effect on TLR2 and TLR9 expressing antigen presenting cell

responses in Gn pigs (Wen et al. 2009). This same study demonstrated increased

IFN-γ and IL-4 responses in serum of the probiotic colonized pigs while serum

IFN-α response to HRV were reduced (Wen et al. 2009).

Lactobacillus rhamnosus GG, in combination with other probiotics, has been

shown to influence T cell and humoral responses. Nonvaccinated Gn pigs colonized

with LGG and Bb12 challenged with VirHRV had less diarrhea and viral shedding

than nonvaccinated, noncolonized pigs, and the increased protection was associated

with higher T regulatory cells before and after challenge; higher serum TGF-β; and
lower proinflammatory cytokines after viral challenge (Chattha et al. 2013).

AttHRV-vaccinated pigs colonized with these two probiotics had enhanced serum

IFN-α, splenic and blood IFN-γ-producing T cells, and serum Th1 cytokines

compared with noncolonized vaccinated pigs (Chattha et al. 2013). Gn pigs colo-

nized with LGG and Bifidobacterium animalis lactis Bb12 had lower diarrhea

scores and viral shedding after AttHRV vaccination and VirHRV challenge than

noncolonized vaccinated pigs (Kandasamy et al. 2014). The decreased clinical

signs in the colonized pigs correlated with higher intestinal rotavirus-specific IgA

titers, and rotavirus-specific IgA ASC (Kandasamy et al. 2014).

Modulation of microbiome by probiotics has been studied in Gn pig models.

AttHRV-vaccinated Gn pigs colonized with infant gut microbiota showed that LGG

prevented changes in the microbiome structure caused by VirHRV challenge that

were seen in non-LGG-supplemented groups (Zhang et al. 2014).

Bifidobacterium spp. are commonly studied probiotics. B. thermophilum RBL67

is thought to inhibit rotavirus infection by competing for adherence on cells, as

demonstrated in vitro with Caco-2 and HT-29 cells (Gagnon et al. 2016). When

incubated before rotavirus infection of cells to assess exclusion and incubated with

rotavirus to assess competition, there was decreased viral attachment in the

B. thermophilum-treated cells; however, the probiotic did not appear to displace

virus already adhered (Gagnon et al. 2016). B. longum subsp. infantis CECT 7210

can inhibit rotavirus replication in vitro via an 11-aminoacid peptide (11-mer
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peptide) released into supernatant along with a protease that releases the 11-mer

peptide (Chenoll et al. 2016). In vivo studies have shown the effectiveness of

B. thermophilum during rotavirus infection. Administration of B. thermophilum
RBL67 to CD-1 suckling mice before challenge with simian rotavirus SA-11

decreased the duration of diarrhea, viral replication, recovery time, and histological

lesions, and stimulated rotavirus-specific IgG and IgM (Gagnon et al. 2016).

The combination of EcN and LGG have been evaluated in vivo and in vitro. Gn

pigs colonized by EcN had lower mean peak viral shedding titers and mean

cumulative fecal scores compared with LGG or noncolonized pigs (Kandasamy

et al. 2016). Total IgA levels after challenge in the intestine and before challenge in

serum were higher in EcN than LGG-colonized pigs (Kandasamy et al. 2016). EcN

but not LGG induced IL-6, IL-10, and IgA in MNCs treated with EcN or LGG

in vitro (Kandasamy et al. 2016). EcN colonization was associated with better

protection against HRV and induced higher frequencies of plasmacytoid dendritic

cells (pDCs), increased NK-cell function, and decreased frequencies of apoptotic

and TLR4+MNC compared with LGG-colonized pigs (Vlasova et al. 2016).

EcN-treated splenic or intestinal MNC produced higher levels of IFN-α, IL-12,
and IL-10, compared with MNC treated with LGG (Vlasova et al. 2016). These

studies demonstrate that different probiotic strains do not have the same immuno-

modulatory functions and that strain selection should be based on the effect desired.

Bacteria are not the only microorganisms used as probiotics. When the yeast

Saccharomyces boulardii was given to children with acute rotavirus diarrhea, the

mean duration of diarrhea and hospitalization were shorter than in controls; how-

ever, there was no difference between the groups in the number of children

requiring parenteral rehydration or who had diarrhea lasting beyond 7 days (Das

et al. 2016). It is believed that S. boulardii decreases diarrhea by preventing

rotavirus-induced oxidative stress and thus activation of NSP4 and subsequent

chloride secretion based on results obtained in Caco-2 cells and human intestinal

organ culture (Buccigrossi et al. 2014).

3.6.2 Dose Effects of Probiotics in Modulating Rotavirus
Vaccine-Induced Immune Responses

Differences in the dosing schedule of the probiotics influence host immune

response. A Gn pig study looking at the influence of LGG on protection provided

by AttHRV vaccination showed that rotavirus-specific intestinal memory B cell

responses and virus-specific intestinal IgA ASCs were enhanced by a five-dose

regimen of LGG, but not nine-dose regimen, although both doses enhanced the

rotavirus-specific serum IgA response and rotavirus-specific IFN-γ producing

effector/memory T cell responses, with the nine-dose regimen having a stronger

effect (Wen et al. 2015). This study demonstrated how the dosing regimen can

affect the immune response; in this case, the five-dose regimen favored a mucosal
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IgA response, whereas the higher dosing schedule favored the T cell response (Wen

et al. 2015). Another AttHRV vaccine study in Gn pigs showed that pigs receiving

14 doses of LGG had increased large intestinal LGG titers and a shifted microbiota

structure, which correlated with increased rotavirus-specific IFN-γ-producing T

cells, suggesting a Th1 adjuvant effect (Wang et al. 2016). However, pigs in the

same study receiving nine doses of LGG had enhanced TLR9 signaling, which may

suggest that this dosing regimen might have enhanced innate immunity (Wang et al.

2016). A third study also demonstrated a differential effect from LGG dosing

schedules. In this study, using HGM¼transplanted Gn pigs, it was shown that a

14-dose regimen of LGG enhanced rotavirus-specific, IFN-γ-producing T cell

response to AttHRV vaccination, whereas a nine-dose regimen was ineffective

(Wen et al. 2014). The effects of dosing schedules are seen with other probiotics

in addition to LGG. Gn pigs colonized with the L. acidophilus NCFM, vaccinated

with AttHRV, and challenged with VirHRV demonstrated that a nine-dose regimen

of L. acidophilus but not a 14- or five-dose regimen improved protection provided

by the vaccine and this was associated with enhanced rotavirus-specific antibody,

ASC, and memory B cell responses to the vaccination (Liu et al. 2014). Neither the

high-dose (14) nor the low-dose (5) regimen enhanced antibody or ASC responses,

and thus did not improve vaccine efficacy (Liu et al. 2014). The differential

modulating effects of different doses of probiotics are intriguing. The underlying

mechanisms require further investigation. It has been reported that the effect of

low-dose microbe-associated molecular patterns (MAMPs), such as lipopolysac-

charide, was strikingly different than that of high-dose MAMPs on macrophage cell

functions: low-dose lipopolysaccharide induced a strong inflammatory response in

macrophages (Maitra et al. 2011). It is plausible that a similar interaction occurs

between the MAMPs from probiotics and immune cells in the gut. Future studies

are needed to identify the molecular mechanisms of the dose responses of different

MAMPs.

3.6.3 Mechanisms for Reducing Rotavirus Diarrhea Using
Prebiotics

Prebiotics are another nonpharmacological category of agents being investigated

for treatment or prevention of diarrhea with or without concurrent probiotic admin-

istration. Rice bran contains phytochemicals that can promote intestinal mucosal

immunity to enteropathogens (Yang et al. 2014). Gn pigs fed rice bran were

protected from diarrhea after VirHRV challenge and AttHRV was more protective

in these pigs than in nonrice bran-fed pigs (Yang et al. 2014). IFN-γ-producing CD4
+ and CD8+ T cells were increased in intestinal and systemic lymphoid tissues, IgM

ASC, IgA ASC, total serum IgM, IgG, IgA, and rotavirus-specific IgA intestinal

titers were increased in rice bran-fed pigs compared with nonrice bran-fed pigs

(Yang et al. 2014). Results support rice bran as a stimulator of nonspecific and
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rotavirus-specific immune responses (Yang et al. 2014). Gn pigs colonized with

LGG and EcN were fed a diet supplemented with rice brain daily (Yang et al. 2015).

Rice bran completely prevented rotavirus diarrhea in the colonized pigs after

VirHRV challenge and promoted growth of both probiotic strains LGG and EcN

compared with nonrice bran-fed pigs (Yang et al. 2015). In addition, after VirHRV

challenge, the rice bran-fed pigs had increased intestinal IFN-γ and total IgA levels,

and fewer histological changes in the ileum, compared with the nonrice bran-fed

group (Yang et al. 2015).

Prebiotics are often evaluated with probiotics as they can have synergistic effects

on each other. A study evaluating B. lactis B94 and inulin in children with acute

diarrhea showed that the duration and amount of diarrhea was reduced in the group

receiving the prebiotics and probiotics (Islek et al. 2014). The clinical effects were

most pronounced in cases of rotavirus diarrhea (Islek et al. 2014).

3.7 Concluding Remarks

Germ-free animal models provide an indispensable tool for the study of the

consequences of bacterial colonization and mechanisms underlying host–

microbiome interactions in enteric virus infection and gastroenteritis. The Gn pig

model, with its distinct advantages, has greatly contributed to studies on the effects

and mechanisms of gut microbiota and probiotics on enteric virus infections and

vaccines. However, the drawback of using pig models is the decreased availability

of species-specific molecular reagents and gene knockout pigs compared with

mouse models, which hinders in-depth mechanistic studies. Further optimization

of the pig models, including genetic modification using CRISPR/Cas9 technology,

humanization of the immune system through stem cell transfer, and transplantation

with HGM from donors representing different health, disease, and immune statuses

will further improve the usefulness and reliability of pig models for mimicking

HuNoV and HRV infection and disease in humans. Unraveling the role of the

microbiome and specific probiotics in the infectivity, pathogenesis, and immunity

of HuNoV and HRV will facilitate the development of strategies for manipulating

the microbiome against viral infections.
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