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Perseus: A Bioinformatics Platform for Integrative Analysis
of Proteomics Data in Cancer Research
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Abstract

Mass spectrometry-based proteomics is a continuously growing field marked by technological and meth-
odological improvements. Cancer proteomics is aimed at pursuing goals such as accurate diagnosis, patient
stratification, and biomarker discovery, relying on the richness of information of quantitative proteome
profiles. Translating these high-dimensional data into biological findings of clinical importance necessitates
the use of robust and powerful computational tools and methods. In this chapter, we provide a detailed
description of standard analysis steps for a clinical proteomics dataset performed in Perseus, a software for
functional analysis of large-scale quantitative omics data.
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1 Introduction

High-resolution mass spectrometry-based proteomics, aided by
computational sciences, is continuously pushing the boundaries of
systems biology. Obtaining highly accurate quantitative proteomes
on a genome-wide scale is becoming feasible within realistic mea-
surement times [1]. Similar to the clinical goals of genomics and
transcriptomics to provide a deeper understanding of a certain
disease that goes beyond the standard clinical parameters of cancer
diagnosis, proteomics offers a comprehensive view of the molecular
players in a cell at a particular moment and in a specific state
[1]. The maturation of the technology together with the develop-
ment of suitable methods for quantification of human tissue pro-
teomes [2–4] has opened new doors for employing proteomics in
medical applications and is shaping the growing field of clinical
proteomics [5, 6]. Following these advances, proteomic approaches
have been used to address multiple clinical questions in the context
of various cancer types. The major area of application is the
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profiling of cancer-relevant tissues—including the proteomes of
colorectal cancer [7, 8] and prostate cancer [9], as well as the
subtyping of lymphoma [10] and breast cancer [11, 12] patients.
Although proteomics has become an extremely powerful approach
for studying biomedical questions, offering unique advantages
compared to other omics techniques, the functional interpretation
of the vast amounts of data of a typical proteomics experiment often
poses analytical challenges to the biological domain experts.

The aim of data analysis is to translate large amounts of pro-
teomic data that cover numerous samples, conditions and time
points into structured, domain-specific knowledge that can guide
clinical decisions (Fig. 1). Prior to any statistical analysis, data
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Fig. 1 Outline of a typical analysis workflow in Perseus. The workflow shows the process of converting data
into information and knowledge. Statistical analysis can be used to guide the identification of biologically
relevant hits and drive hypotheses generation. Various external databases, annotation sources, and multiple
omics types can be loaded and matched within the software and together with powerful enrichment
techniques allow for smooth data integration
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cleansing is usually performed which includes normalization, to
ensure that different samples are comparable, and missing value
handling to enable the use of methods that require all data points
to be present. A plethora of imputation methods developed for
microarray data [13] can be applied to proteomics as well
[14]. Among these, methods with the underlying assumption that
missing values result from protein expression that lies under the
detection limit of modern mass spectrometers are frequently used.
A typical task of clinical proteomics studies is to identify proteins
that show differential expression between healthy and diseased
states or between different subtypes of a disease. Although com-
monly established statistical methods, which achieve this task exist,
distinguishing between expression differences due to technical
variability, genetic heterogeneity, or even intra-sample variability
and true disease-related changes require deep knowledge of statis-
tical tools and good understanding of the underlying problems in
the analysis of omics data.

For instance, testing thousands of proteins for differential
expression is hampered by the multiple hypothesis-testing prob-
lem, which results in an increased probability of calling a protein a
significant hit when there is no actual difference in expression.
This necessitates the use of correction methods to increase the
confidence of the identified hits. The choice of the appropriate
correction method depends on the balance between wrongly
accepted hits (error type I) and wrongly rejected hits (error type
II) that an experimentalist is willing to accept. For instance,
permutation-based FDR [15] has a reduced error type II rate
compared to the Benjamini-Hochberg correction [16]. Once the
initial list of quantified proteins is narrowed down to only the
significantly changing hits the question of their functional rele-
vance arises. Enrichment analysis of protein annotations is the
preferred method for deriving functional implications of sets of
proteins and is applicable to both categorical (Fisher’s exact test
[17]) and expression/numerical data (1D enrichment test [18]).
The outcome of such an analysis often offers a comprehensive
view of the biological roles of the selected proteins through high-
lighting key pathways and cellular processes in which they are
involved.

In this chapter, we provide a step-by-step workflow of bioin-
formatic analysis of proteomics data of luminal-type breast cancer
progression. Commonly used analytical practices are described
including data cleansing and preprocessing, exploratory
analysis, statistical methods and guidelines, as well as functional
enrichment techniques. All the steps are implemented as processes
in Perseus [19], a comprehensive software for functional analysis of
omics data.
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2 Materials

2.1 Software

Download and

Installation

Written in C#, Perseus achieves optimal performance when run on
Windows operating systems. The latest versions require 64 bit
system and .NET Framework 4.5 to be installed on the same
computer. To use the software on MacOS set up BootCamp and
optionally in addition Parallels. Registration and acceptance of the
Software License Agreement are required prior to downloading
Perseus from the official website: http://www.coxdocs.org/doku.
php?id¼perseus:start . Once the download has finished, decom-
press the folder, locate the Perseus.exe file, and double-click it to
start the program.

2.2 Data Files In the subsequent analysis, we used a subset of the data measured
by Pozniak et al. [20]. The authors provide a genome-wide pro-
teomic analysis of progression of breast cancer in patients by study-
ing major differences at the proteome level between healthy,
primary tumor, and metastatic tissues. The data were measured as
ratios between an optimized heavy-labeled mix of cell lines repre-
senting different breast cancer stages and the patient proteome
[2]. This constitutes an accurate relative quantification approach
used especially in the analysis of clinical samples. Peptide and pro-
tein identification and quantification was performed using the
MaxQuant suite for the analysis of raw mass spectrometry data
[21] at peptide spectrum match and protein false discovery rate of
1%. The subset used in this protocol contains proteome profiles of
22 healthy, 21 lymph node negative, and 25 lymph node metastatic
tissue samples and spans over 10,000 protein groups and can be
found in the proteinGroups.txt file provided as supplementary
material to the Pozniak et al. study (see Note 1).

3 Methods

The Methods section contains several modules covering the most
frequently performed steps in the analysis of proteomics data.
Often, a proteomics study benefits from a global overview of the
data, which usually includes the total number of identified and
quantified proteins, dynamic range, coverage of specific pathways,
and groups of proteins. A good practice in data analysis is to start
with exploratory statistics in order to check for biases in the data,
undesirable outliers, and experiments with poor quality data and to
make sure that all requirements for performing the subsequent
statistical tests are met. Once the data are filtered and normalized
appropriately, statistical and bioinformatic analyses are performed
in order to identify proteins that are likely to be functionally-
important. When the list of such proteins is small enough and direct
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links to the question of interest can be inferred using prior knowl-
edge, follow-up experiments can be performed after this step to
confirm the results of the statistical analysis. However, one of the
advantages of mass spectrometry-based proteomics is the ability to
unravel new discoveries in an unbiased way, for instance, through
functional analysis. This analysis is often based on enrichment tests,
which can highlight guiding biological processes and mechanisms.

3.1 Loading the Data 1. Go to the “Load” section in Perseus and click the “Generic
matrix upload” button.

2. In the pop-up window, navigate to the file to be loaded (see
Note 2).

3. Select all the expression columns and transfer them to theMain
columns window (see Note 3). Select all additional numerical
data that may be needed in the analysis and transfer them to the
Numerical columns window. Make sure that the columns con-
taining identifiers (e.g., protein IDs) are selected as Text col-
umns. Click ok.

3.2 Summary

Statistics

Get familiar with the Software and its five main sections: Load,
Processing, Analysis, Multi-processing, and Export (see Fig. 2).

1. In the workflow panel, change the name of the data matrix from
matrix 1 to InitialData by right-clicking the node and changing
the Alternative name box. Close the pop-up window. Explore
the right-most panel of Perseus, which contains useful informa-
tion such as number of main columns and number of rows.

2. Go to “Processing ! Filter rows ! Filter rows based on
categorical column” to exclude proteins identified by site,
matching to the reverse database or contaminants (seeNote 4).

3. Transform the data to a logarithmic scale by going to “Proces-
sing ! Basic ! Transform” and specifying the transformation
function (e.g., log2(x)).

4. In the “Processing” section, select the “Basic” menu and click
on the “Summary statistics (columns)” button. Select all
expression columns by transferring them to the right-hand
side. Click ok and explore the new matrix.

3.3 Filtering 1. Use the workflow window to select the InitialDatamatrix data
by clicking on it (see Note 5).

2. In the “Processing” section, go to the “Filter rows” menu and
select “Filter rows based on valid values.” Change the Min.
valids parameter to Percentage and keep the default value of
70% for the Min. percentage of values parameter. Click ok.
Check how many protein groups were retained after the filter-
ing (see Note 6).

Perseus for Systems Analysis of Cancer Proteomics Data 137



3.4 Exploratory

Analysis

1. To visually inspect the data, go to “Analysis! Visualization!
Histograms.” Select all the samples of interest by transferring
them to the right-hand side. Click ok.

2. Explore the visualization options in the Histogram panel by
testing the functionality of each of the buttons (e.g., Properties,
Fit width, Fit height).
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Fig. 2 Interfaces of Perseus and the augmented data matrix format. (a) Perseus extends over five interfaces,
each of which includes various analysis and transformation functionalities and visualization possibilities. (b)
Experimental design is specified as annotation (e.g., treatment vs. control groups) or numerical rows (e.g.,
variable concentration). Multiple annotation rows can be specified that allow biological and technical
replicates to be analyzed together. (c) The data is organized in a matrix format where typically all samples
are displayed as columns and all proteins as rows. (d) Additional protein information can be added in the form
of Numerical, Categorical, or Text annotations
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3. Click on the pdf button to export the plot (see Note 7).

4. Switch the view to the “Data” tab.

5. Go to “Analysis ! Visualization ! Multi scatter plot.” Select
the desired samples by transferring them to the right-hand side.
Click ok (see Fig. 3).

6. Adjust the plot using the Fit width and Fit height options and
resizing the plot window.

7. In the drop-down menu “Display in plots” in the plot window,
select Pearson correlation.

8. Select a scatter plot by clicking on it. The selected plot will be
shown in an enlarged view.

9. Select a number of proteins from the “Point” table on the right
of the multi scatter plot and examine their position in all pair-
wise sample comparisons.

10. Switch back to the “Data” tab to continue with the analysis.

11. “Go to Processing! Basic!Column correlation.”Make sure
that the Type is set to Pearson correlation. The output table
contains all pairwise correlations between the selected
columns.

12. To visualize the sample correlations, go to “Analysis ! Clus-
tering/PCA ! Hierarchical clustering.” Use the Change color
gradient to set a continuous gradient similar to the one in
Fig. 3a.

13. Export the plot by clicking on the pdf button.

14. Navigate back to the previous data matrix by clicking on it in
the workflow panel.

15. Principal component analysis requires all values to be valid. To
remove all protein groups with missing values, repeat Subhead-
ing 3.3, step 2 setting the percentage parameter to 100 (see
Note 8).

16. Go to “Analysis ! Clustering/PCA ! Principal component
analysis” and click ok. Explore the sample separation (dot plot
in the upper panel) and the corresponding loadings (dot plot in
the lower panel).

17. In the table on the right of the PCA plot, select a set of samples
(e.g., all samples that belong to one experimental condition)
and change their color by clicking on the Symbol color button
and selecting the desired color.

18. Check the contribution of other components by substituting
Component 1 and 2 with other components from the drop-
down menu. Find the components that show sample separa-
tion according to the experimental conditions (see Fig. 3c).
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19. Explore the proteins driving this separation. In the loadings
plot beneath the PCA, change the selection Mode to rectangu-
lar selection. Hold the left mouse key down and draw a rectan-
gle around the dots in the upper right corner and then release
the mouse. The selected proteins are highlighted in the table to
the right and their labels are displayed in the plot.
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Fig. 3 Exploratory analysis outputs in Perseus. (a) Hierarchical clustering of all the samples based on the
correlation coefficients between them reveals higher similarity between primary and metastatic tumors versus
healthy tissue samples. (b) Multi-scatter plot of averaged profiles among the three main groups clearly
represents the disease progression by highlighting strong similarities between subsequent stages, e.g.,
healthy tissue samples are more similar to primary tumors than to metastasis (correlation coefficient 0.76
vs 0.69), whereas primary tumors are most similar to metastasis (R ¼ 0.94). The category Cell division is
highlighted in bright green in all pairwise comparison plots. (c) Principal component analysis (PCA) attributes
the largest variance to the difference between healthy (blue dots) and cancer tissues (pink and red dots)
(Component 1, 21.1%) and shows that primary and metastatic tumors (pink and red dots respectively) are
difficult to distinguish
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3.5 Normalization 1. Navigate back to the data matrix before filtering for 100% valid
values (Subheading 3.3, step 2).

2. Go to “Processing ! Normalization ! Z-score.” Change the
Matrix access parameter to Columns and select the Use median
option. In the new data table, plot histograms for the same
subset of samples as in Subheading 3.4, step 1 (see Note 9).

3.6 Experimental

Design

1. Go to “Processing ! Annot. rows ! Categorical annotation
rows.” Use the Create action option to manually specify the
experimental condition to which a sample belongs (i.e., indi-
cate control versus stimulus, or different stages of a disease). All
the samples belonging to one condition should have the same
annotation. A new row will be added under the column names
in the newly generated data matrix (see Note 10).

3.7 Loading

Annotations

1. Go to the drop-down menu indicated with a white arrow at the
top left corner of Perseus and select “Annotation download.”

2. Click on the link in the pop-up window. Select the appropriate
annotation file (e.g., “PerseusAnnotaion! FrequentlyUsed!
mainAnnot.homo_sapiens.txt.gz,” if the organism of interest is
homo sapiens).

3. Download the file to the Perseus/conf/annotations folder.

4. Go to “Processing ! Annot. columns ! Add annotation.”
Select the file from the previous step as a Source.

5. Set the UniProt column parameter to the column that
contains UniProt identifiers. These identifiers will be used for
overlaying the annotation data with the expression matrix (e.g.,
Protein IDs).

6. Select several categories of interest to be overlaid with the main
matrix and move them to the right-hand side. Click ok.

3.8 Differential

Expression Analysis

1. Go to “Processing ! Tests.” From the menu select the appro-
priate test. For the data set used in this chapter, the Multiple-
sample tests option should be chosen, as there are more than
two conditions that are compared. The default parameters do
not have to be changed (see Note 11).

2. Specify the categorical row that contains information about the
experimental conditions of the samples that will be used in the
differential analysis in the Grouping parameter.

3. Keep the default value of 0 for the S0 parameter, to use the
standard t-test statistic. Change the parameter to use the mod-
ified test statistic approach described by Tusher et al. [15].

4. Select the multiple hypothesis testing correction method to
be used by specifying the Use for truncation parameter (see
Note 12, Fig. 4a).
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5. Specify if a suffix should be added to the output columns
produced by Perseus. This option is relevant when multiple
tests are conducted, e.g., with different parameter settings, as it
helps to distinguish between them in the output table.

6. Inspect the output table. It contains three new columns:
ANOVA significant, �Log ANOVA p-value, and ANOVA
q-value (see Note 13).

7. Go to “Processing ! Filter rows ! Filter rows based on
categorical column.” Set the Column parameter to ANOVA
Significant and the Mode parameter to Keep matching rows to
retain all differentially expressed proteins.

8. Go to “Processing ! Tests ! Post-hoc tests.” Set the Group-
ing parameter to the same grouping that was used for the
ANOVA test (see Subheading 3.6, step 1) and the FDR to
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Fig. 4 Differential expression and multiple hypothesis testing. (a) Multiple hypothesis testing correction using a
permutation-based false discovery rate approach is shown. Labels are randomly swapped between the three
groups (blue, yellow, and red). The Randomization is repeated r times. ANOVA p-values are computed both on
the measured and the permutated data and local FDR values (q-values) are computed as the fraction of
accepted hits from the permuted data over accepted hits from the measured data normalized by the total
number of randomizations r. All hits with a q-value smaller than a threshold are considered significant. (b) To
determine the exact pairwise differences of protein expression Tukey’s Honest Significant Difference (THSD)
test is used on the ANOVA significant hits. If the mean difference between two groups is greater than or equal
to the corresponding THSD, the difference is considered significant between the compared groups. q: constant
depending on the number of treatments and the degrees of freedom that can be found in a Studentized range q
table; MSE: mean squared error; n1, n2, number of data points in each group
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the desired threshold. Tukey’s honestly significant difference
(THSD) is computed for all proteins and all pairwise compar-
isons and the significant hits within the corresponding pairs are
marked (see Note 14, Fig. 4b).

3.9 Clustering and

Profile Plots

1. Go to “Analysis ! Clustering/PCA ! Hierarchical cluster-
ing.” Keep the default parameters and click ok.

2. Inspect the resulting heatmap and the relationship between the
groups and the proteins.

3. Click on theChange color gradient button in the button ribbon
above the heatmap to examine the color scale usage (red means
high and green low expression) and to modify them.

4. Click on several node junctions in the protein tree that repre-
sent potentially interesting clusters of proteins (i.e., upregula-
tion in a certain experimental condition). The selected clusters
are highlighted and appear in the “Row clusters” table dis-
played to the right of the heatmap (see Note 15).

5. Inspect the different profile plots as you navigate through the
different clusters in the table. Change the color by modifying
the Color scale and export the profile plots by clicking on the
Export image button (see Fig. 5).

6. From the ribbon menu in the heat map view, click on the
Export row clustering button to add the cluster information to
a new data matrix.

3.10 Functional

Analysis

1. Go to “Multi-proc. ! Matching rows by name.” Both Base
and Other matrices point to the last matrix.

2. Click on Base matrix and then in the workflow window select
the data matrix that was generated before filtering for ANOVA
significant hits (Subheading 3.9, step 6).

3. In the pop-up window set Matching column in matrix 1 and
2 to a common identifier (e.g., Protein IDs).

4. In the categorical columns section, transfer the category Clus-
ter to the right hand-side. Click ok (see Note 16).

5. Go to “Processing ! Annot. columns ! Fisher exact test.”
Change the Column parameter to Cluster and click ok. The
resulting table contains information about all annotation cate-
gories that were found to be significantly enriched or depleted
using a Fisher’s exact test and multiple hypotheses correction
(see Note 17).

In summary, this chapter provides a complete protocol for
fundamental analysis of proteomic data, starting from data
upload and transformation and ending with identification of
proteins, characteristic of the specific disease progression stage,
and the underlying processes in which they are involved. The
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described analytical methods and visualization tools are
integrated in Perseus, a freely available platform for analysis of
omics data, which provides a comprehensive portfolio of analy-
sis tools with a user-friendly interface [19]. A special emphasis
is placed on employing statistically sound methods in the anal-
ysis of large data, avoiding wrong interpretation and extracting
maximum information. More advanced computational techni-
ques such as supervised learning are also supported and are
often instrumental for the analysis of complex data where
genetic and intra-tumor variability may pose challenges. More-
over, Perseus is being continuously developed to integrate
analysis of various data types, including posttranslation mod-
ifications, sequence information, as well as to allow deeper
functional interpretation through network and pathways
analysis.
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Fig. 5 Enrichment analysis highlighting important pathways and processes. (a) Hierarchical clustering of
proteins found to have differential expression between pairs of disease states. High and low expression are
shown in red and blue respectively. Various clusters of protein groups are highlighted in the dendrogram. (b)
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multiple categories that were enriched in the three selected clusters. The enriched terms and the
corresponding enrichment factor and p-value are shown
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4 Notes

1. Proteins with shared peptides that cannot be distinguished
based on the peptides identified in a bottom-up proteomics
approach are often reported together as a protein group [21].

2. The input file format of Perseus is a tab-delimited txt file that
contains a header row with the names of all columns. The type
of data is specified during file loading. Make sure that the
“Regional and Language Options” are set to English to avoid
errors while reading numerical data such as decimal separators
being wrongly interpreted.

3. Different expression and meta data can be imported in Perseus
and used for subsequent analysis. Common expression data are
in one of the following formats: normalized intensities (e.g.,
LFQ intensity as described in [4], iBAQ as described in [22])
or ratios between heavy standard and light/non-labeled sam-
ple. Other data types that can be analyzed with Perseus are
shown in Fig. 2.

4. Reverse, identified by site and contaminant proteins have to be
marked in a categorical column before these filters can be
applied. These are automatically set when MaxQuant output
tables are used for analysis in Perseus. Additional filtering
options can be used to remove proteins based on a quantitative
measure such as a minimum number of quantified peptides or a
maximum q-value.

5. Different activities have different output results including a
data matrix with the same expression values and additional
columns containing the results of the analysis or a new data
matrix containing only the output of an analysis activity. An
activity is always performed on the data matrix and specific tab
for that matrix that is active at the moment.

6. Depending on the nature of missing values, different filtering
strategies may be employed and are supported in Perseus. For
example, if large differences between groups are expected with
proteins having very low expression level in one of the groups,
filtering based on a minimum number of valid values in at least
one group would be a more suitable approach than filtering for
a minimum number of valid values in the complete matrix.

7. All the plots can be exported in figure-ready formats such as
pdf, tiff, or png.

8. Very stringent filtering is usually not recommended, as a large
amount of the data will be lost. Instead milder filtering com-
bined with imputation may be more appropriate.

9. Data normalization is not always necessary. Different types of
normalization can be applied on the data to correct for system-
atic shifts or skewness and to make samples comparable.
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10. Regular expressions can be used to derive the experimental
design from the sample names (“Action ! Create from exper-
iment name”). Additionally, a template txt file can be written
out, edited in an external editor program, and read in to
indicate the experimental design.

11. Analysis of differentially expressed proteins depends on the
number of compared conditions, the underlying distribution
properties, and the availability of biological replicates. For
example, data sets with one condition with replicates should
be analyzed with One-sample tests, with two conditions—with
Two-sample tests, and with more than two conditions—Multi-
ple-sample tests. Paired samples test and tests abolishing the
requirement for equal variance are also available.

12. The method with largest power Permutation-based FDR is
recommended and at least 250 repetitions are suggested. In
case of technical replicates, these have to be specified as a
separate grouping (see Subheading 3.7, step 1) and selected
with the “Preserve grouping in randomizations” option. Fail-
ure to specify technical replicates will result in wrong FDR
calculation. The more conservative Benjamini-Hochberg cor-
rection can also be used when a lower number of Type I errors
at the cost of lower sensitivity are desired.

13. The “Significant” column contains a “+” if a protein met the
selected significance threshold (usually q-value). Additionally,
p-values (probability of type I error) and the corresponding
q-values (corrected p-value) are provided in the output table.

14. Tukey’s honestly significant difference (THSD) is a post-hoc
test that when performed on ANOVA significant hits deter-
mines in exactly which pairwise group comparisons a given
protein is differentially expressed.

15. Clusters can be defined by clicking on the respective nodes in
the protein tree or based on the precise distance measure used
to compute the tree. To use the latter option, click on the
“Define row clusters” button and specify the desired number
of clusters, which will then be automatically defined.

16. The matching step is necessary in order to define the correct
background against which enrichment will be computed. Too
small (only significant hits) or too large (the complete prote-
ome, even if not detected with MS analysis) introduces bias in
the enrichment results.

17. The enrichment output table contains information about the
values used to compute the contingency table for the Fisher’s
exact test (e.g., category and intersection size), the enrichment
factor, and the statistical significance of the hit indicated by a p-
value and the associated false discovery rate.
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