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Surfaces
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Abstract In this article, we explicitly compute equations of an Enriques surface via
the involution on a K3 surface. We also discuss its tropicalization and compute the
tropical homology, thus recovering a special case of the result of [18], and establish
a connection between the dimension of the tropical homology groups and the Hodge
numbers of the corresponding algebraic Enriques surface.
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1 Introduction

In the classification of algebraic surfaces, Enriques surfaces comprise one of four
types of minimal surfaces of Kodaira dimension 0. There are a number of surveys
on Enriques surfaces. For those new to the theory, we recommend the excellent
exposition found in [2] and [3], and for a more thorough treatment, the book
[10]. Another recommended source is Dolgachev’s brief introduction to Enriques
surfaces [11].

The first Enriques surface was constructed in 1896 by Enriques himself [12] to
answer negatively a question posed by Castelnuovo (1895): Is every surface with
pg D q D 0 rational?; see Sect. 2 for the meaning of pq and q. Enriques’ original
surface has a beautiful geometric construction: the normalization of a degree 6

surface in P
3 with double lines given by the edges of a tetrahedron. Another
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construction, the Reye congruence, defined a few years earlier by Reye [25], was
later proved by Fano [13] to be an Enriques surface. Since these first constructions,
there have been many examples of Enriques surfaces, most often as quotients of
K3 surfaces by a fixed-point-free involution. In [9], Cossec describes all birational
models of Enriques surfaces given by complete linear systems.

As we recall in Sect. 2, every Enriques surface has an unramified double cover
given by a K3 surface. Often exploiting this double cover, topics of particular inter-
est relate to lattice theory, moduli spaces and their compactifications, automorphism
groups of Enriques surfaces, and Enriques surfaces in characteristic 2. While there
are many constructions of Enriques surfaces, none give explicit equations for an
Enriques surface embedded in a projective space. In this paper, by interpreting the
work of Cossec–Verra, we give explicit ideals for all Enriques surfaces.

Theorem 1.1 Let Y be the toric fivefold of degree 16 in P
11 that is obtained by

taking the join of the Veronese surface in P
5 with itself. The intersection of Y

with a general linear subspace of codimension 3 is an Enriques surface, and every
Enriques surface arises in this way.
By construction, the Enriques surface in Theorem 1.1 is arithmetically Cohen–
Macaulay. Its homogeneous prime ideal in the polynomial ring with 12 variables is
generated by the twelve binomial quadrics that define Y and three additional linear
forms. Code for producing this Enriques surface in Macaulay2 appears in Sect. 3.

After having constructed Enriques surfaces explicitly, we focus on their tropical-
izations, with the purpose of studying their combinatorial properties. For this we
choose a different K3 surface, namely a hypersurface S � .P1/3 with an involution
� , see Example 4.3. We get a fairly complete picture for its tropicalization (Fig. 1).
In particular, we recover its Hodge numbers and, conjecturally, the Hodge numbers
of S=� , which was [28, Problem 10 on Surfaces]; this was the starting point of
this work.

Proposition 1.2 (Example 4.3, Propositions 5.7–5.8) The dimensions of tropical
homology groups of the tropicalization of the K3 surface S agree with the Hodge
numbers of S. The dimensions of the � -invariant parts of tropical homology groups
agree with the Hodge numbers of the Enriques surface S=� .

Finally, we discuss an analogue of Castelnuovo’s question on the tropical and
analytic level. Since the analytifications of rational varieties are contractible by

Fig. 1 A tropical K3 surface
in P

1 � P
1 � P

1 that is fixed
under the involution
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Corollary 1.1.4 in [6], we ask: are the analytifications of K3 or Enriques surfaces
contractible? We give a negative answer to this question, the counterexample being
the analytification of S from Example 4.3.

Theorem 1.3 The analytification San of the K3 surface S is homotopy equivalent to
a two-dimensional sphere. The surface S has a fixed-point-free involution � and
the analytification of the Enriques surface S=� retracts onto the real projective
plane RP

2. In particular, neither San nor .S=�/an is contractible.
The contents of the paper are as follows. In Sect. 2, we give some background

about Enriques surfaces. Next, in Sect. 3, we exploit a classical construction
to obtain an Enriques ideal in a codimension 3 linear space in P

11 and prove
Theorem 1.1. In Sect. 4, we discuss the basics of tropical geometry and analytic
spaces in the sense of Berkovich. Example 4.3 provides an Enriques surface S=�

arising from a K3 surface S � P
1 � P

1 � P
1 with an involution � . The surface S is

suitable from the tropical point of view (its tropical variety is schön and multiplicity
one everywhere) and is used throughout the paper. In Sect. 5, we compute the
tropical homology groups of trop.S/ and, conjecturally, of trop.S=�/. We also prove
Proposition 1.2. In Sect. 6, we discuss the topology of analytifications of S and S=�

and prove Theorem 1.3.

2 Background

Apart from the code snippets, we work over an algebraically closed field of
characteristic zero. An Enriques surface X is a smooth projective surface such that
q.X/ WD h1.X;OX/ D 0, !˝2

X ' OX and !X 6' OX , where !X D ∧2 ˝1
X is the

canonical bundle of X. It follows that X is minimal, see [3], and its geometric
genus is pg.X/ WD h2.X;OX/ D 0. Enriques surfaces are defined the same way
over any field of characteristic other than 2. By Lemma 15.1 in [2], the Hodge
diamond of an Enriques surface X appears in Fig. 2. An Enriques surface admits an
unramified double cover f WY ! X, where Y is a K3 surface, see [2, Lemma 15.1]
or [3, Proposition VIII.17]. The Hodge diamond of Y appears in Fig. 3. Since Y is
simply connected, the fundamental group of an Enriques surface is Z=2Z; see [2,
Sect. 15]. The cover Y ! X is a quotient of Y by an involution � that exchanges
the two points of each fibre. Conversely, for a K3 surface Y with a fixed-point-free
involution � , the quotient Y=� is an Enriques surface.

Fig. 2 Hodge diamond of an
Enriques surface

h0,0 1

=
h1,0 h0,1 0 0

h h1,1 h 0 10 0
h2,1 h1,2 0 0

h2,2 1

2,0 0,2
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Fig. 3 Hodge diamond of a
K3 surface

=

h0,0 1
h1,0 h0,1 0 0

h2,0 h1,1 h 1 20 1
h2,1 h1,2 0 0

h2,2 1

0,2

3 Enriques Surfaces via K3 Complete Intersections in P
5

In this section, we construct Enriques surfaces via K3 surfaces in P
5. One cannot

hope for especially simple equations—for instance, an Enriques surface cannot be a
hypersurface in P

3.

Proposition 3.1 If X � P
N
C

is a smooth toric threefold and S D X \ H is a smooth
hyperplane section, then S is simply connected, and is not an Enriques surface.

Proof Since X is a smooth projective toric variety, it is simply connected; see [14,
Sect. 3.2]. A homotopical version of Lefschetz’ theorem asserts that the fundamental
groups of X \ H and X are isomorphic via the natural map; see [1] and [4, 2.3.10].
Thus, S is simply connected. Since an Enriques surface admits a non-trivial étale
double cover, it is never simply connected. ut
Remark 3.2 This proof generalizes to other complete intersections inside smooth
toric varieties, provided that intermediate complete intersections are smooth.

Following [3, Example VIII.18], we construct an Enriques surface from a K3 sur-
face that is an intersection of quadrics in P

5. Fix P
5 WD Proj.CŒx0; x1; x2; y0; y1; y2�/.

The fixed point set of the involution � WP5 ! P
5 given by �.xi/ D xi and

�.yi/ D �yi, for all 0 � i � 2, is equal to the union of P2 D V.y0; y1; y2/ and
P

2 D V.x0; x1; x2/. Fix quadrics Fi 2 CŒx0; x1; x2� and Gi 2 CŒy0; y1; y2�, where
0 � i � 2 and set Qi WD Fi C Gi. By construction, these quadrics are fixed by � .
Choose Q0; Q1; Q2 so that they form a complete intersection. For the surface S D
SQ WD V.Q0; Q1; Q2/, the Adjunction Formula gives KS D OS.�6C2C2C2/ D OS.
Since the surface S is a complete intersection of quadrics in P

5, it follows that
h1.OS/ D 0; see [3, Lemma VIII.9]. Thus, if S is smooth, then it is a K3 surface
fixed under the involution � . We now formalize exactly which assumptions must be
satisfied by the three quadrics to obtain a smooth Enriques surface.

Definition 3.3 Let Q WD .Q0; Q1; Q2/ be a triple of quadrics where Qi WD Fi C Gi

for some Fi 2 CŒx0; x1; x2� and Gi 2 CŒy0; y1; y2�. We say that the quadrics Q are
enriquogeneous if the following conditions are satisfied:

1. the forms Q D .Q0; Q1; Q2/ are a complete intersection,
2. the surface S D V.Q0; Q1; Q2/ is smooth,
3. the surface S D V.Q0; Q1; Q2/ does not intersect the fixed-point set of � .

The third condition is equivalent to F0; F1; F2 having no common zeros in
CŒx0; x1; x2� and G0; G1; G2 having no common zeros in CŒy0; y1; y2�, so it is an
open condition. For a choice of enriquogeneous quadrics Q, we obtain an Enriques
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surface as SQ=� . The set of enriquogeneous quadrics is open inside .A6C6/3, so
that a general choice of forms gives an Enriques surface. In [9], Cossec shows that
every complex Enriques surface may be obtained in this way if one allows Q not
satisfying the smoothness condition; see also [30]. Notably, Lietdke proves that
the same is true for Enriques surfaces over any characteristic [21]. To develop our
intuition, we demonstrate that, over C, these surfaces give at most a ten-dimensional
space of Enriques surfaces.

Each Qi is chosen from the same 12-dimensional affine space and SQ depends
only on their span, which is an element of the 27-dimensional variety Gr

(
3;C12

)
.

Since we have fixed � , the quadrics Qi yield an isomorphic K3 surface (with an
isomorphic involution) if we act on P

5 by an automorphism that commutes with � .
Such automorphisms are given by block matrices in PGL.6/ of the form

C D
ñ

A 0

0 B

ô
or C D

ñ
0 A
B 0

ô

where A and B are matrices in GL.3;C/, up to scaling. Thus, the space of
automorphisms preserving the � -invariant quadrics has dimension .2/.9/� 1 D 17.
Modulo these automorphisms, we obtain a ten-dimensional projective space of K3
surfaces with an involution. The condition that Q be enriquogeneous is an open
condition, so the space of Enriques surfaces is also ten-dimensional.

We now aim to make the Enriques surfaces constructed as SQ=� explicit. In other
words, we want to present them as embedded into a projective space. The first step is
to identify the quotient of P5 by the involution � . Let S D CŒx0; x1; x2; y0; y1; y2� be
the homogeneous coordinate ring, so the quotient is Proj .S� / D Proj

(
CŒxi; yiyj�

)
.

The Enriques surface SQ is cut out of Proj
(
CŒxi; yiyj�

)
by the quadrics Q such that

SQ D Proj
(
CŒxi; yiyj�=Q

)
. This does not give us an embedding into P

8, because
the variables xi and yiyj have different degrees. Rather we obtain an embedding
into a weighted projective space P.13; 26/. Therefore, we replace CŒxi; yiyj� by the
Veronese subalgebra CŒxixj; yiyj�=Q. This algebra is generated by the 12 elements
xixj, yiyj, where 0 � i; j � 2, which implies that SQ is embedded into a P

11. The
relations Q are linear in the variables xixj and yiyj, so SQ is embedded into a P

8.
Let us rephrase this geometrically. Consider the second Veronese embedding

vWP5 ! P
20. The coordinates of P

20 are forms of degree two in xi and yi. The
involution � extends to an involution on P

20 and the invariant coordinate ring is
generated by the linear forms corresponding to the products xixj and yiyj. Thus, the
quotient is embedded into P

11; we have

P
5

P
20

P
11

v

π



186 B. Bolognese et al.

where � denotes the quotient by the involution � . The image �.P5/ is cut out by 12

binomial quadrics: the six usual equations between xixj and the six corresponding
equations for yiyj. It is the join of two Veronese surfaces which constitute its singular
locus. Quadrics in CŒxi; yi� of the form Fi C Gi for Fi 2 CŒxi� and Gi 2 CŒyi�

correspond bijectively to linear forms on the above P11. A choice of enriquogeneous
quadrics Q corresponds to a general choice of three linear forms on P

11. We obtain
the corresponding Enriques surface SQ as a linear section of �.P5/. Summing up,
we have the chain of inclusions V \ �.P5/ � �.P5/ � P.13; 26/ � P

11, where V is
a codimension three linear section. Although V \ �.P5/ is a complete intersection
in �.P5/, this does not contradict (the natural generalisation of) Proposition 3.1,
because �.P5/ is singular. Since sufficiently ample embeddings of varieties are
always cut out by quadrics, see [23, 27], this suggests that our embedding is
sufficiently good.

Proof of Theorem 1.1 The surfaces obtained from enriquogeneous quadrics are
arithmetically Cohen–Macaulay of degree 16 as they are linear sections of �.P5/

possessing those properties. Every Enriques surface can be obtained by this
procedure if one allows Q not satisfying the smoothness condition by [9]. ut

We provide Macaulay2 [15] code for finding the equations of SQ. To simplify the
computation, we work over a finite field.

kk = ZZ/1009;
P5 = kk[x0,x1,x2,y0,y1,y2];
P11 = kk[z0,z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11];
pii = map(P5, P11, {x0^2, x0*x1, x0*x2, x1^2,

x1*x2, x2^2, y0^2, y0*y1,
y0*y2, y1^2, y1*y2, y2^2});

The kernel of pii is generated by 12 binomial quadrics and has degree 16.

assert(kernel pii == ideal(
z10^2-z9*z11, z8*z10-z7*z11, z8*z9-z7*z10,
z8^2-z6*z11, z7*z8-z6*z10, z7^2-z6*z9,
z4^2-z3*z5, z2*z4-z1*z5, z2*z3-z1*z4,
z2^2-z0*z5, z1*z2-z0*z4, z1^2-z0*z3))

assert(degree kernel pii == 16)

We next generate an Enriques surface from a random set of linear forms named
linForms. To see the quadrics in P

5, compute pii(linForms).

linForms = random(P11^3, P11^{-1})

randomEnriques = (kernel pii) + ideal linForms

We now verify that this is in fact an Enriques surface. Computationally, it is much
easier to check this for the associated K3 surface, because we need only check that
K3 is a smooth surface (first two assertions below) and that the involution is fixed-
point-free on K3 (last two assertions).

K3 = ideal pii(linForms)
assert (dim K3 == 3)
assert (dim saturate ideal singularLocus K3 == -1)
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assert (dim saturate (K3 + ideal(y0,y1,y2)) == -1)
assert (dim saturate (K3 + ideal(x0,x1,x2)) == -1)

If the K3 passes all the assertions, then randomEnriques is an Enriques surface.
Its ideal is given by 12 binomial quadrics listed above and three linear forms in P11.

Example 3.4 Over k D F1009, the choice of

linForms = matrix{{2*z2+z6+5*z7+8*z11,
2*z0+8*z4+z9,
5*z1+4*z3+4*z5+6*z8}}

in the above algorithm gives an Enriques surface.
Finally, we check that �.P5/ is arithmetically Cohen-Macaulay. Using betti

res kernel pii, we obtain its Betti table.

1 . . . . . .
. 12 16 6 . . .
. . 36 96 100 48 9

The projective dimension of �.P5/ (the number of columns) is equal to the codi-
mension, thus �.P5/ � P

11 is arithmetically Cohen-Macaulay; see [26, Sect. 10.2].
Therefore, all its linear sections are also arithmetically Cohen-Macaulay.

4 Analytified and Tropical Enriques Surfaces

This section discusses the basics of tropical and analytic geometry and constructs
a K3 surface whose tropicalization is nice enough for computations of tropical
homology. In Example 4.3, we present a K3 surface with an involution, which on the
tropical side is the antipodal map. As an excellent reference for tropical varieties, we
recommend [22], especially Sect. 6.2. For analytic spaces in the sense of Berkovich,
we recommend [5, 17].

Let k be a field extension of C with a nontrivial valuation valWk� ! R such that
val.C�/ D f0g. We assume that k is algebraically closed, so the image val.k�/ is
dense in R. Without much loss of generality, one could simply consider the field
k D Cffzgg D ⋃

n2N C..z1=n// of Puiseux series, with valuation yielding the lowest
exponent of z appearing in the series. For every point p D .p1; p2; : : : ; pn/ 2 .k�/n,
its valuation is val.p/ D (

val.p1/; val.p2/; : : : ; val.pn/
)
.

Definition 4.1 Let X be a toric variety with torus .k�/n and Y � X be a closed
subvariety. The tropical variety of Y , denoted by trop.Y � X/ or briefly trop.Y/, is
the closure of the set fval.p/ W p 2 .k�/n \ Yg � R

n.
The tropical variety trop.Y � X/ is a polyhedral complex of dimension dim Y with
rich combinatorial structure; see [22, Chapter 3].

A morphism of tori 'W .k�/n ! .k�/m is given by ' D .'1; '2; : : : ; 'm/ where
'i.t/ D bi � tai for 1 � i � m. For each such ', there is a tropicalized map
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trop.'/WRn ! R
m given by trop.'/i.v/ D val.bi/ C .ai � v/ for 1 � i � m. One

verifies that the following diagram commutes:

(k∗)n (k∗)m

R
n

R
m

val val
trop (j)

j

This naive tropicalization is not a functor—it is known how to tropicalize a map
only when it is monomial. This problem is solved by passing to Berkovich spaces.
We will not discuss Berkovich spaces in detail: we invite the reader to see [5, 17]
or [24] for a slightly more elementary introduction.

For every finite-type scheme X over a valued field k, its Berkovich analytification
Xan is the analytic space which best approximates X; see [5, Chap. 3]. The space
Xan is locally ringed (in the usual sense, see [29, 4.3.6]) and there is a morphism
� WXan ! X such that every other map from an analytic space factors through � . If
X D Spec A is affine, then the points of Xan are in bijection with the multiplicative
semi-norms on A which extend the norm on k. Most importantly, the analytification
is functorial: for every map f WX ! Y , we get an induced map f anWXan ! Yan. If
X D Spec A and Y D Spec B are affine, then f induces f #WB ! A and the map f an

takes a seminorm j � j on A to the seminorm b! jf #.b/j on B.
The analytification of an affine variety X is the limit of its tropicalizations by [24].

To be more precise, let X be an affine variety. For two embeddings iWX ! A
n and

jWX ! A
m, and a toric morphism 'WAn ! A

m satisfying j D ' ı i, we obtain a
tropicalized map trop.X � A

n/ ! trop.X � A
m/. For every embedding X � A

n,
there is an associated map Xan ! trop.X � A

n/, sending a multiplicative seminorm
j � j to the valuation � log j � j, see [24, p. 544]. The main result in [24] is that
the inverse limit is homeomorphic to the Berkovich analytification. Hence, one has
Xan D lim � trop.X � A

n/.
We now return to the case of Enriques surfaces. We are interested in finding an

Enriques surface S=� with a K3 cover S suitable for tropicalization. Specifically, we
would like � to be an involution acting without fixed points on the tropical side. In
this sense, the examples obtained as in Sect. 3 are not suitable.

Example 4.2 Consider the K3 surface SQ defined via the enriquogeneous quadrics
in Sect. 3 with �.x0; x1; x2; y0; y1; y2/ D .x0; x1; x2;�y0;�y1;�y2/. Since we have
val.�1/ D 0, the tropicalized involution trop.�/ is the identity map on R

6.
To obtain a K3 surface with an involution � tropicalizing to a fixed-point-free

involution, we consider embeddings into products of P
1. Consider the involution

� WP1 ! P
1 given by �.Œx W y�/ D Œy W x� and the involution � W .P1/3 ! .P1/3

given by applying � to every coordinate. The map � restricts to the torus C� and is
given by C

� 3 t ! t�1 2 C
�. Therefore, we have trop.�/.v/ D �v. Consequently,

the tropicalization trop.�/WR3 ! R
3 is given by trop.�/.v/ D �v. This map is

non-trivial and has only one fixed point.
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Example 4.3 (A K3 Surface with a Fixed-Point-Free Involution) Let S � P
1 �

P
1 � P

1 be a smooth surface given by a section of the anticanonical divisor of
.P1/3, namely a triquadratic polynomial. The Newton polytope of S is the three-
dimensional cube Œ0; 2�3. We introduce the following assumptions on S:

1. S is smooth;
2. S is invariant under the involution � ; and
3. the subdivision induced by S on its Newton polytope Œ0; 2�3 is a unimodular

triangulation, that is, the polytopes in the triangulation are tetrahedra of volume
equal to 1=6; see [22, p. 13].

Each such S is a K3 surface. Under our assumptions, the point .0; 0; 0/ is not in
the tropical variety of S. Indeed, if it were in trop.S/, that variety would not be
locally linear at .0; 0; 0/. But trop.S/ is coming from a unimodular triangulation,
so it is locally linear everywhere. Hence, the point .0; 0; 0/ is outside and trop.�/

is a fixed-point-free involution on trop.S/. The map � W S ! S induces also an
involution � anW San ! San which is compatible with trop.�/ under the projection
� ; the following diagram commutes.

S 

an S 

an

trop(S) trop(S)
trop(s )

 s an

p p

Fig. 4 The bounded part of a
tropical K3 surface in
P

1 � P
1 � P

1
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5 The Tropical Homology

In this section, we explicitly calculate the tropical homology of a tropical K3 surface
and a tropical Enriques surface. We use the construction in Example 4.3 in order to
obtain tropicalizations which are locally linear (locally look like tropicalizations of
linear spaces), and then compute their tropical cohomology groups. In accordance
with the results in [18], the dimensions of such homology groups coincide with the
Hodge numbers of the surfaces themselves. We carry out the calculation by hand for
some curves, a tropical K3 surface and also for an object, which we believe to be the
associated tropical Enriques surface; see [20] for computation of tropical homology
using polymake.

Theorem 5.1 ([18, Special Case of Theorem 2]) If X � P
N, and its tropicaliza-

tion trop.X/ � trop.PN/ has multiplicities all equal to 1 and is locally linear, then
the tropical Hodge numbers agree with Hodge numbers of X: dim Hp;q.trop.X// D
dim Hp;q.X;R/.
For the definition of multiplicities, we refer to [22, Chap. 3]. A tropical variety
is locally linear if a Euclidean neighbourhood of each point is isomorphic to a
Euclidean open subset of the tropicalization of a linear subspace P

n � P
m; see [31].

A hypersurface in P
N is locally linear if and only if the subdivision of its Newton

polygon is a triangulation. It has multiplicities one if and only if this triangulation
is unimodular.

In Theorem 5.1, we do not assume that X intersects the torus of PN . Therefore,
this theorem applies to X� .P1/3�P

7 or more generally to X in any projective
toric variety with fixed embedding. Moreover, one might wonder whether The-
orem 5.1 identifies not only dimensions but homology classes. This is possible
when the appropriate spectral sequence degenerates at the E2 page. This E2 page is
Hq.X;F p/, where F p D Hom.Fp;R/; see the discussion after Corollary 2 in [18]
or [8].

We provide generalities about tropical homology and compute some examples of
interest; for a more detailed introduction see [7, 18]. We compute the dimensions
of the tropical homology groups and show how Theorem 5.1 holds. The last part of
the paper is dedicated to showing a particular instance of this theorem for a special
tropical K3 surface with involution and for its quotient.

Tropical projective space trop.Pn/ D TP
n is homeomorphic to an n-simplex;

see [22, Chap. 6.2]. It is covered by nC1 copies of Tn D trop.An/ D .f�1g[R/n,
that are complements of torus invariant divisors. Let X be a tropical subvariety of
TP

n. The definitions of sheaves Fp and groups Cp;q computing the homology are all
local, so we assume that X � trop.An/ is contained in one of the distinguished open
subsets. We denote by T

J D fx 2 T
n W xi D �1 for all i 62 Jg, for J � f1; 2; : : : ; ng,

the tropicalization of smaller torus orbits. Let X 2 T
n be a polyhedral complex. The

sedentarity I.x/ of a point x 2 X is the set of coordinates of x which are equal to�1,
and we set J.x/ WD f1; : : : ; ng n I.x/. We denote by R

J.x/ D R
n=RI.x/ the interior

of TJ.x/. For a face E � X \ R
J.x/ adjacent to x, we let Tx.E/ � Tx.R

J.x// be the
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cone spanned by the tangent vectors to E starting at x and directed towards E. Fix
the following terminology:

1. The tropical tangent space F1.x/ � Tx.R
J.x// is the vector space generated by

all Tx.E/ for all E adjacent faces to x;
2. The tropical multitangent space Fp.x/ � ∧p Tx.R

J.x// is the vector space
generated by all vectors of the form v1^v2^� � �^vp where v1; v2; : : : ; vp 2 Tx.E/

for all E adjacent faces to x (this implies F0.x/ Š R)

The multitangent vector space Fp.x/ for x 2 X only depends on the minimal face
� � X containing x. Hence, we can write Fp.�/ WD Fp.x/ for each x 2 �. We
have the following group of .p; q/-chains

Cp;q.X/ WD
⊕

� q�dim face of X

Fp.�/

giving rise to the chain complex

Cp;� D � � � �! Cp;qC1.X/
@�! Cp;q.X/

@�! Cp;q�1.X/ �! � � �

where the differential @ is the usual simplicial differential (we choose orientation
for each face) composed with inclusion maps given by �WFp.�/ ! Fp.�0/ for
�0 � �. Even when �0 and � have different sedentarities, we have I.�0/ 	 I.�/

so we get a natural map R
J.x/ D R

n=RI.x/ � R
n=RI.x0/ D R

J.x0/ inducing the map
�WFp.�/! Fp.�0/.

Definition 5.2 The .p; q/th tropical homology group Hp;q.X/ of X is the qth
homology group of the complex Cp;�.

In the light of Theorem 5.1, if X D trop.X0/ is a tropicalization of suitable variety
X0, then dim Hp;q.X/ are the Hodge numbers of X0. For all X, the tropical Poincaré
duality holds: dim Hd�p;d�q.X/ D dim Hp;q.X/, see [19].

Example 5.3 Let’s compute the tropical homology of a tropical line L; see Fig. 5.

p D 0: From the discussion above, we see that C0;0.L/ D R
4 and C0;1 D R

3

injects into C0;0. Thus, we have dim H0;0.X/ D 1 and H0;1.X/ D 0.
p D 1: The chain complex is 0 ! C1;1.X/ ! C1;0.X/ ! 0. As in the previous

case, we see that C1;0.X/ D F1.v1/ D Rhe1; e2i, where e1 D .�1; 0/ and e2 D
.0;�1/ are the standard basis vectors of R2 up to a sign. Moreover, we have

C1;1.X/ D F1.p/˚F1.q/˚F1.r/ D Rhe1i ˚ Rhe2i ˚ Rh�e1 � e2i :

The differential Rhe1i˚Rhe2i˚Rh�e1�e2i @�! Rhe1; e2i is given by the natural
inclusion e1 7! e1, e2 7! e2, and �e1 � e2 7! �e1 � e2. Hence, the kernel of the
differential is one-dimensional, generated by the sum he1i C he2i C h�e1 � e2i,
so we conclude that dim H1;0.X/ D 0 and dim H1;1.X/ D 1.
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Fig. 5 A tropical line

q

p

r

v3

v2 v1

-¥

-¥

Fig. 6 A tropical elliptic
curve in P

1 � P
1

Remark 5.4 By definition, we have F0.x/ D R, so the complex C0;� is the
singular homology complex for the subdivision of X by polyhedra. Thus, the tropical
homology group H0;q.X/ is identified with the singular homology group Hq.X;R/.

Example 5.5 (Elliptic Curve) We next compute the tropical homology of an elliptic
curve in P

1 � P
1. Its tropicalization is shown in Fig. 6. From the isomorphism

H0;q.X/ Š Hq.X;R/, it follows that H0;0.X/ Š R and H0;1.X/ Š R. We can
compute H1;1.X/ directly from the complex C1;1.X/ ! C1;0.X/. It follows that
C1;1.X/ Š R

E and C1;0.X/ Š R
2V , where E D 16 (respectively, V D 8) denotes

the number of edges (respectively, of interior vertices). The kernel of the map
C1;1.X/! C1;0.X/ is generated by the boundary of the square, hence H1;1.X/ Š R.

del Pezzo in .P1/3 Consider a surface S in P
1 � P

1 � P
1 given by a section of

O.1; 1; 1/ WD O.1/ � O.1/ � O.1/; this is a del Pezzo surface, its anticanonical
divisor is, by adjunction, the restriction of O.1; 1; 1/, so the anticanonical degree
is 6. The equation for S can be written as F D ∑

0�i;j;k�1 ai;j;kxiyjzk, where x, y, z
are local coordinates on the three projective lines. Suppose that we are over a valued
field and that ai;j;k D a1�i;1�j;1�k for all indices and that a1;0;0 > max.a0;1;0; a0;0;1/.
Hence, the induced subdivision of a cube is regular, as seen in Fig. 8. From the
picture, we see that there are 6 points, 18 edges, and 19 faces in the non-sedentary
part of trop.S/. The tropical variety trop

(
.P1/3

) ' .R[f˙1g/3 is homeomorphic
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Fig. 7 A tropicalization of
P

1 � P
1 � P

1 with the
sedentarities of the faces at
infinity

I(x) = {1}

I(x) = {2}
I(x) = {3}

I(x) = {1,3}

I(x) = {2,3}

I(x) = {1,2}

I(x) = {1,2,3}

Fig. 8 Regular subdivision
of the cube and tropical del
Pezzo

to the cube, see Fig. 7. Its faces correspond to torus-invariant divisors in .P1/3. The
boundary trop.S/nR3 decomposes into six components, the intersections of trop.S/

with those faces. To understand the sedentary points, we use the following result.

Theorem 5.6 ([22, Theorem 6.2.18]) If Y � T and Y is the closure of Y in a toric
variety X, then the tropical variety trop.Y/ is the closure of trop.Y/ in trop.X/.
Applying Theorem 5.6 to Y D NS, we see that the boundary of the tropicalization is
the tropicalization of the boundary, so we have trop.S/ \ trop.D/ D trop.S \ D/

for each torus-invariant divisor. The torus-invariant divisors are defined by x˙1, y˙1,
z˙1. Without loss of generality, assume D D V.x/. By restricting the element F to
D, we obtain the quadric

∑
0�j;k�1 a0;j;kyjzk whose tropicalization is given in Fig. 9.

In particular, it has five edges, two mobile points, and four sedentary points. Table 1
summarizes the strata.

This information enables us to compute the Cp;q without analyzing the maps,
because our del Pezzo is locally linear: near each vertex the tropical structure looks
like the tropicalization of P2 � P

3, as shown in Fig. 4. The complexes are

C0;2 D R
19 ! C0;1 D R

18 ˚ R
30 ! C0;0 D R

30

C1;2 D R
2�19 ! C1;1 D R

3�18 ˚ R
30 ! C1;0 D R

3�6 ˚ R
2�12

C2;2 D R
19 ! C2;1 D R

2�18 ! C2;0 D R
3�6:
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Fig. 9 A tropical quadric in
P

1 � P
1

Table 1 Strata in tropical del
Pezzo

Sedentarity 0 1 2

Points 6 12 12

Edges 18 30 �
Faces 19 � �

By comparing H0;� with singular homology and using Poincaré duality, we obtain
H0;0 ' H2;2 ' R H0;1 D H0;2 D H2;0 D H2;1 D 0, so the interesting
part is the homology of C1;�. It is not impossible to compute this homology by
hand. However, to save space, we only outline a series of reductions. Each of
these reductions involves to finding an exact subcomplex D � C1;� and reducing
to computing homology of C1;�=D. Consider a sedentary point p on the face of
a cube. This point has two edges e1, e2 going towards the boundary of this face
(and a third edge, which is irrelevant here). In C1;�, these polyhedra give an exact
subcomplex RŒe1� ˚ RŒe2� ! R

2Œp�, so the homology of C1;� is the homology
of the quotient C0 by all these subcomplexes for 12 choices of p. The quotient is
R

.2/.19/ ! R
.3/.18/ ˚ R

6 ! R
.3/.6/. Next, consider one of the two corner vertices

in Fig. 8 and all its adjacent faces (three edges, three faces, one simplex). In the
tropical variety, those correspond to one point p, three edges ei, and three faces
fi that glue together to form on tropical A2. Such an A

2 has no higher homology,
so the sequence

⊕
R

2Œfi� ! ⊕
R

3Œei� ! ⊕
R

3Œp� is an exact subcomplex of C0.
Dividing C0 by the subcomplexes given by two corner vertices, we see that C00 equal
to R

.2/.13/ ! R
.3/.12/ ˚ R

6 ! R
.3/.4/. The module R

.3/.4/ corresponds to four
multitangent spaces at four vertices of the square in the interior; see Fig. 8. Since
none of the edges adjacent to them was modified in the process, the right map is
surjective. Hence, we have H1;0 D 0. By Poincaré duality, we deduce that H1;2 D 0

and dim H1;1 D 36C 6 � 26 � 12 D 4, as expected from the Hodge diamond of a
del Pezzo of anticanonical degree 6.

A K3 Surface in .P1/3 Let S � P
1 � P1 � P1 be a K3 surface over a valued field k

as in Example 4.3. This subsection discusses its tropical homology and relations to
its Hodge classes; using tropical homology, we recover the expected Hodge numbers
and an anti-symplectic involution.

As explained in [22, Definition 2.3.8, Fig. 1.3.3], the polyhedral decomposition
of the tropicalization is dual to the subdivision induced on the 2� 2� 2 cube by the
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Table 2 Strata in tropical K3 Sedentarity 0 1 2

Points 48 48 24

Edges 120 96 �
Faces 98 � �

Fig. 10 Tropicalization of P2

coefficients of S; see Fig. 4. Restrict to the torus and consider polyhedra with empty
sedentarity. The tropical variety trop.S/ comes from a regular subdivision into 48

simplices, so it has 48 distinguished points. Each face of the subdivision (or edge in
the tropicalization) is either “inner”, shared by two tetrahedra, or “outer”, adjacent
to only one of them. There are 48 outer faces and each tetrahedron has four faces,
so there is a total of

(
.48/.4/ C 48

)
=2 D 120 faces. As seen in the del Pezzo

case, there are 19 edges in a subdivision of a unit cube. In the 2 � 2 � 2 cube,
we have .8/.19/ of those segments; 36 of them are adjacent to exactly two cubes,
six of them are adjacent to four cubes, and the others stick to one cube. Therefore,
there are .8/.19/ � 36 � .3/.6/ D 98 segments. The boundary of trop.S/ is the
intersection of trop.S/ with the boundary of this cube. Pick a face F of the cube. It
is the tropicalization of one of the six toric divisors x˙1

i for 1 � i � 3, say to x1.
Theorem 5.6 implies that trop.S/ \ F D trop

(
S \ V.x1/

)
. But S \ V.x1/ is an

elliptic curve in P
1 � P

1 and Sect. 5.5 shows that its tropicalization has 16 edges, 8

mobile points, and 8 sedentary points; see Fig. 6. Table 2 enumerates the strata.
Once again, this information enables us to compute the Cp;q without analyzing

the maps. Near each vertex the tropical structure looks like the tropicalization of
P

2 � P
3 see Fig. 10 and compare with Fig. 4. The complexes are

C0;2 D R
98 ! C0;1 D R

120 ˚ R
96 ! C0;0 D R

120

C1;2 D R
2�98 ! C1;1 D R

3�120 ˚ R
96 ! C1;0 D R

3�48 ˚ R
2�48

C2;2 D R
98 ! C2;1 D R

2�120 ! C2;0 D R
3�48:

In particular, we see that �.C1;�/ D 2 � 98 � 3 � 120 � 96 C 3 � 48 C 2� D �20

as expected. Moreover, one can show that H1;0 D 0, roughly because the classes
of sedentary edges surject to classes of sedentary points and other points can be
analyzed directly by Fig. 4. By Poincaré duality, we have H1;2 D 0, so we obtain

�20 D �.C1;�/ D dim H1;0 � dim H1;1 C dim H1;2 D � dim H1;1 :
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We now consider .0; q/-classes. The homology of C0;� is just the singular
homology of the tropical variety by Remark 5.4. The tropical variety is contractible
to the boundary of the cube. Thus, C0;� is exact in the middle and its homology
groups are the homology groups of the sphere: H0;0 ' R, H0;1 D 0, and H0;2 D R.
In other words, this gives an explicit proof for our special case of Theorem 5.1.

Proposition 5.7 The tropical Hodge numbers of tropical variety trop.S/ agree with
the Hodge numbers of the surface S. ut

We expose an explicit generator of H0;2 and analyze the action of � on this space.
Briefly speaking, this class is obtained as the boundary of the interior of the cube.
To expand this, consider the boundary of the cube and the complex C0

2 ! C0
1 ! C0

0

computing its singular homology. This boundary can be embedded into a full cube
and the complex C0 becomes part of the complex C00 computing the homology of
the cube 0 ! C00

3 ! C00
2 ! C00

1 ! C00
0 . Since the cube is contractible, the complex

C00 is exact. Hence, the unique class ! in H2.C0/ is the boundary of the class ˝

in C00
3 . Consider the action of � on the R

3 containing the tropical variety. We have
�.x/ D �x in R

3, so � changes orientation and �.˝/ D �˝. It follow that �.!/ D
�.@˝/ D �!.

Finally, we investigate the � -invariant part C�
p;� of the complexes Cp;�. Since

we work over characteristic different from two, the functor .�/� is exact and the
homology of C�

p;� is the invariant part of the homology of Cp;�. Since trop.S/=�

is a tropical manifold, C��;� computes its tropical homology; see [7, Chap. 7]. In
particular, the homology groups H�

p;q D Hq.C�
p;�/ satisfy H�

p;q D H�
2�p;2�q. We

believe, although we have not proved it formally, that the manifold trop.S/=� is a
tropicalization of the Enriques surface S=� . If this is the case, the homology classes
of C��;� compute the tropical homology of Enriques surface S=� . It is straightforward
to compute the dimensions of C�

p;q, because trop.S/ does not contain the origin. As
a consequence, every face F of trop.S/ is mapped by � to a unique face F0 so that
the action of � on the space spanned by ŒF� and ŒF0� always decomposes into an
invariant subspace ŒF� C ŒF0� and an anti-invariant space ŒF� � ŒF0�. Therefore, we
have dim C�

p;q D 1
2
� dim Cp;q, for all p; q, and the sequences are

C�
0;2 D R

49 ! C�
0;1 D R

60 ˚ R
48 ! C�

0;0 D R
60

C�
1;2 D R

2�49 ! C�
1;1 D R

3�60 ˚ R
48 ! C�

1;0 D R
3�24 ˚ R

2�24

C�
2;2 D R

49 ! C�
2;1 D R

2�60 ! C�
2;0 D R

3�24:

The generator ! of H0;2 does not lie in H�
0;2. Thus, we have H�

0;2 D H�
0;1 D 0 and

H�
0;0 ' R. By symmetry, we also have H�

2;0 D H�
2;1 D 0 and H�

2;2 ' R, which yields

� dim H1;1 D dim H1;0 � dim H1;1 C dim H1;2 D ��
(
C�

1;�
) D � 1

2
�.C1;�/ D �10 :

Summarizing these calculations, we obtain the following counterpart of Proposi-
tion 5.7.
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Proposition 5.8 The dimensions of the � -invariant parts of tropical homology
groups of S agree with the Hodge numbers of S=� . ut

6 Topology of Analytifications of Enriques Surfaces

In this section, we analyze the analytification of an Enriques surface that is the
quotient of the K3 surface from Example 4.3. Fix a valued field k and a K3 surface
S � .P1/3 over k together with an involution � W S! S, as in Example 4.3. We first
analyze the topology of San itself.

Proposition 6.1 The topological space San has a strong deformation retraction
onto a two-dimensional sphere C. More precisely, there exist continuous maps
sWC ! San and eW San ! C, so that e ı s D idC and s ı e is homotopic to idSan . The
maps s and e may be chosen to be � -equivariant, where � acts on C antipodally.

Proof We consider the tropicalization trop.S/ � .R [ f˙1g/3 with the antipodal
involution trop.�/. We abbreviate trop.�/ as � . There is a cube C � trop.S/ fixed
under the involution, see Fig. 4. This cube is a strong deformation retract of trop.S/

and the retraction can be chosen to be � -equivariant. In the following we identify C
with a two-dimensional sphere.

It remains to prove that the tropical variety trop.S/ is a strong deformation retract
of San under the map � W San ! trop.S/. The tropical variety trop.S/ is schön; its
intersection with every torus orbit is smooth; see [22, Definition 6.4.19]. Moreover,
all multiplicities of top degree polyhedra are equal to one, so the multiplicity at each
point is equal to one by semicontinuity; see [22, Lemma 3.3.6]. Therefore, � has
a section trop.S/ ! San whose image is equal to a skeleton S.S ; H/ of a suitable
semistable model .S ; H/ of S; see [16, Remark 9.12]. The skeleton S.S ; H/ is
a proper strong deformation retract of San by [17, Sect. 4.9]. The retraction map
San ! trop.S/ is equal to � , so � -equivariant as discussed in Example 4.3. The
retraction s in the claim of the theorem is the composition of retractions from San to
trop.S/ and from trop.S/ to the cube constructed above. ut
Corollary 6.2 The analytified K3 surface San is homotopy equivalent to a two-
dimensional sphere. ut
Remark 6.3 From Proposition 6.1, it does not follow that the homotopy between
s ı e and idSan can be chosen � -equivariantly. This is most likely true, but presently
there seems to be no reference for this fact.

We now analyze the topology of the analytification of the Enriques surface
S=� using our knowledge about San. The quotient map qW S ! S=� analytifies
to qanW San ! .S=�/an. For any X, we denote � WXan ! X the natural map.
Summarizing, we consider the following diagram.
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S

(S/σ)an

S/σS

an qan

q

πππ

σ

σ
S 

an S 

an

It is crucial that qan is a quotient by � an, as we now prove.

Proposition 6.4 We have .S=�/an D San=� an as topological spaces.

Proof First, we prove the equality of sets .S=�/an D San=� an. Consider x 2 .S=�/an

and its image �.x/ 2 S=� . If U D Spec.A/ is an affine neighbourhood of the point
�.x/, then the point x corresponds to a semi-norm j � jx on A and �.x/ corresponds to
the prime ideal px D ff 2 A W jf jx D 0g; see [5, Remark 1.2.2]. We denote by H .x/

the completion of the fraction field of A=px D 	.�.x//. We have the equality of
fibres San

x D
(
Sx �	.�.x// H .x/

)an
; see [5, p. 65]. In down-to-earth terms, the set San

x
consists of multiplicative seminorms on the H .x/-algebra R D H0.Sx;OSx/˝	.�.x//

H .x/ which extend the norm j � jx on H .x/. Using Proposition 1.3.5 in [5], we
may assume H .x/ is algebraically closed. Since H0.Sx;OSx/

� D 	.�.x//, we have
R� DH .x/. Similarly, the ring R is a free H .x/-module of rank 2. It follows that R
is isomorphic to either H .x/�2 with � permuting the coordinates or to H .x/Œ"�="2.
Given a multiplicative seminorm j � jy on R, its kernel q D ff 2 R W jf jy D 0g is a
prime ideal in R. In both cases, we have R=q D H .x/. Since j � jy agrees with j � jx
on H .x/, we see that j � jy is determined uniquely by its kernel. The involution �

acts transitively on those, hence � an acts transitively on the set San
x and the equality

is proven.
Second, we prove that .S=�/an D San=� an as topological spaces; in other words,

the topology on .S=�/an is induced from this of San. Take an open subset U � San.
We want to show that qan.U/ is open. Clearly, the union U [ � an.U/ � San is open
and a union of fibres, so its complement Z � San is closed and a union of fibres. The
map qan is finite, so it proper and hence closed; see [5, 3.4.7 and 3.3.6]. In particular,
the image qan.Z/ � .S=�/an is closed, so its complement �.U/ D .S=�/an n qan.Z/

is open. This proves that .S=�/an D San=� an as topological spaces. ut
Corollary 6.5 There exists a retraction from .S=�/an onto RP

2. In particular
.S=�/an is not contractible.

Proof The argument follows formally from Proposition 6.1 and Proposition 6.4. If
C is a two dimensional sphere with an antipodal involution � and C=� ' RP

2, then
Proposition 6.1 provides the � -invariant map eW San ! C and its section sWC! San.
We now produce equivalents of s and e on the level of San=� an ' .S=�/an.

C C = RP
2

an

e e

qan

e

trop (s) q

s s s

S 

an S 

an

C/σ

(S/σ)anσ
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The map qıeW San ! s.C/=� D RP
2 satisfies qıeı� an D qıe so, by Proposition 6.4,

it induces a unique map eW San=� an D .S=�/an ! RP
2. Similarly, the map qan ı s

satisfies qan ı s ı trop.�/ D qan ı s, so induces a unique map sWRP2 ! .S=�/an. It
follows that e ı sWRP2 ! RP

2 is the unique map induced � -invariant map q ı e ı
s D q. Therefore, we have e ı s D idRP2 and s ı e is a retraction of .S=�/an onto
s.RP2/ ' RP

2. ut
Remark 6.6 If the difficulty presented in Remark 6.3 was removed, a similar
argument would show that .S=�/an strongly deformation retracts onto RP

2.

Proof of Theorem 1.3 Follows from Proposition 6.1 and Corollary 6.5. ut

Acknowledgements This article was initiated during the Apprenticeship Weeks (22 August–
2 September 2016), led by Bernd Sturmfels, as part of the Combinatorial Algebraic Geometry
Semester at the Fields Institute for Research in Mathematical Sciences. We thank Kristin Shaw for
many helpful conversations and for suggesting Example 4.3. We thank Christian Liedtke for many
useful remarks and suggesting Proposition 3.1. We thank Julie Rana for discussions and providing
the sources for the introduction, and we thank Walter Gubler, Joseph Rabinoff and Annette Werner
for sharing their insights. We also thank Bernd Sturmfels and the anonymous referees for providing
many interesting suggestions and giving deep feedback. The first author was supported by the
Fields Institute for Research in Mathematical Sciences; the second author was supported by the
Fields Institute for Research in Mathematical Sciences, by the Clay Mathematics Institute, and by
NSA award H98230-16-1-0016; and the third author was supported by the Polish National Science
Center, project 2014/13/N/ST1/02640.

References

1. Wolf P. Barth and Michael E. Larsen: On the homotopy groups of complex projective algebraic
manifolds, Math. Scand. 30 (1972) 88–94.

2. Wolf P. Barth, Chris A.M. Peters, and Antonius Van de Ven: Compact complex surfaces, A
Series of Modern Surveys in Mathematics 4, Springer-Verlag, Berlin, 2004.

3. Arnaud Beauville: Complex algebraic surfaces, Second edition, London Mathematical Society
Student Texts 34. Cambridge University Press, Cambridge, 1996.

4. Mauro C. Beltrametti and Andrew J. Sommese: The adjunction theory of complex projective
varieties, De Gruyter Expositions in Mathematics 16, Walter de Gruyter & Co., Berlin, 1995.

5. Vladimir G. Berkovich: Spectral theory and analytic geometry over non-Archimedean fields,
Mathematical Surveys and Monographs 33. American Mathematical Society, Providence, RI,
1990.

6. Morgan Brown and Tyler Foster: Rational connectivity and analytic contractibility,
arXiv:1406.7312 [math.AG].

7. Erwan Brugallé, Ilia Itenberg, Grigory Mikhalkin, and Kristin Shaw: Brief introduction to
tropical geometry, in Proceedings of the Gökova Geometry-Topology Conference 2014, 1–75,
Gökova Geometry/Topology Conference (GGT), Gökova, 2015.

8. C. Herbert Clemens: Degeneration of Kähler manifolds. Duke Math. J. 44 (1977) 215–290.
9. François Cossec: Projective models of Enriques surfaces, Math. Ann. 265 (1983) 283–334.

10. François R. Cossec and Igor V. Dolgachev: Enriques Surfaces I, Progress in Mathematics 76,
Birkhäuser Boston, Inc., Boston, MA, 1989.

11. Igor V. Dolgachev: A brief introduction to Enriques surfaces, in Development of moduli theory
- Kyoto 2013, 1–32, Adv. Stud. Pure Math. 69, Math. Soc. Japan, Tokyo, 2016.

arXiv:1406.7312 [math.AG]


200 B. Bolognese et al.

12. Federigo Enriques: Introduzione alla geometria sopra le superficie algebriche, Mem. Soc Ital.
delle Scienze 10 (1896) 1–81.

13. Gino Fano: Nuovo ricerche sulle congruenze di retta del 3ı ordine, Mem. Acad. Sci. Torino 50
(1901) 1–79, www.bdim.eu/item?id=GM_Fano_1901_1.

14. William Fulton: Introduction to Toric Varieties, Annals of Mathematics Studies 131, Princeton
University Press, Princeton, NJ, 1993.

15. Daniel R. Grayson and Michael E. Stillman: Macaulay2, a software system for research in
algebraic geometry, available at www.math.uiuc.edu/Macaulay2/.

16. Walter Gubler, Joseph Rabinoff, and Annette Werner: Tropical skeletonsm arXiv:1508.01179
[math.AG].

17. Walter Gubler, Joseph Rabinoff, and Annette Werner: Skeletons and tropicalizations, Adv.
Math. 294 (2016) 150–215.

18. Ilia Itenberg, Ludmil Katzarkov, Grigory Mikhalkin, and Ilia Zharkov: Tropical homology,
arXiv:1604.01838 [math.AG].

19. Philipp Jell, Kristin Shaw, and Jascha Smacka: Superforms, tropical cohomology and Poincaré
duality, arXiv:1512.07409 [math.AG].

20. Lars Kastner, Kristin Shaw, and Anna-Lena Winz: Computing sheaf cohomology in polymake,
in Combinatorial Algebraic Geometry, 369–385, Fields Inst. Commun. 80, Fields Inst. Res.
Math. Sci., 2017.

21. Christian Liedtke: Arithmetic moduli and lifting of Enriques surfaces, J. Reine Angew. Math.
706 (2015) 35–65.

22. Diane Maclagan and Bernd Sturmfels: Introduction to Tropical Geometry, Graduate Studies in
Mathematics 161, American Mathematical Society, RI, 2015.

23. David Mumford: Varieties defined by quadratic equations, in Questions on Algebraic Varieties
(C.I.M.E., III Ciclo, Varenna, 1969), 29–100, Edizioni Cremonese, Rome, 1970.

24. Sam Payne: Analytification is the limit of all tropicalizations, Math. Res. Lett. 16 (2009) 543–
556.

25. Theodor Reye: Die Geometrie Der Lage, volume 2. Hannover, Carl Rümpler, 1880, available
at www.archive.org/details/geoderlagevon02reyerich.

26. Hal Schenck: Computational algebraic geometry, London Mathematical Society Student
Texts 58, Cambridge University Press, Cambridge, 2003.

27. Jessica Sidman and Gregory G. Smith: Linear determinantal equations for all projective
schemes, Algebra Number Theory 5 (2011) 1041–1061.

28. Bernd Sturmfels: Fitness, apprenticeship, and polynomials, in Combinatorial Algebraic Geom-
etry, 1–19, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

29. Ravi Vakil: The rising sea: Foundations of algebraic geometry, available at math.stanford.edu/~
vakil/216blog/.

30. Alessandro Verra: The étale double covering of an Enriques surface, Rend. Sem. Mat. Univ.
Politec. Torino 41 (1983) 131–167.

31. Magnus Dehli Vigeland: Topics in elementary tropical geometry. PhD thesis, Universitetet i
Oslo, 2008, available at folk.uio.no/ranestad/mdvavhandling.pdf.

www.bdim.eu/item?id=GM_Fano_1901_1
www.math.uiuc.edu/Macaulay2/
arXiv:1508.01179 [math.AG]
arXiv:1604.01838 [math.AG]
arXiv:1512.07409 [math.AG]
www.archive.org/details/geoderlagevon02reyerich
math.stanford.edu/~vakil/216blog/
math.stanford.edu/~vakil/216blog/
http://dx.doi.org/folk.uio.no/ranestad/mdvavhandling.pdf

	Equations and Tropicalization of Enriques Surfaces
	1 Introduction
	2 Background
	3 Enriques Surfaces via K3 Complete Intersections in P5
	4 Analytified and Tropical Enriques Surfaces
	5 The Tropical Homology
	6 Topology of Analytifications of Enriques Surfaces
	References


