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Preface

In 2016, the July–December Thematic Program at the Fields Institute focused
on Combinatorial Algebraic Geometry. From a modern perspective, this branch
of algebraic geometry is devoted to the study of combinatorial varieties: those
algebraic varieties, schemes, spaces, or stacks whose geometric structures have a
concrete combinatorial description. Toric varieties and Schubert varieties might be
the most prominent members of this class. However, many other spaces, such as
the Deligne–Mumford compactification of the moduli space of curves with marked
points, the toroidal compactifications of the moduli space of abelian varieties, and
the Hilbert scheme of points, also belong within this conceptual framework. Despite
being special, combinatorial varieties nevertheless account for a disproportionately
large number of the spaces arising in applied algebraic geometry, combinatorial
optimization, commutative algebra, representation theory, mathematical physics,
and other fields. Developments in tropical geometry and Newton–Okounkov bodies
are also expanding the class of algebraic spaces with a recognized combinatorial
structure.

Among the training activities for new researchers in the Combinatorial Algebraic
Geometry Program, the Apprenticeship Program served as the flagship. Partially
funded by the Clay Mathematics Institute and the Fields Institute, the Apprentice-
ship Program brought together over 35 early-career mathematicians for an intense
2 weeks (21 August–3 September) of mathematics. Led by Bernd Sturmfels, the
participants explored new problems, stressed their computers with calculations,
discovered the roots of the field by reading historic papers, networked with peers,
and developed the skills of the trade. The overall vision was to encourage young
researchers to become active in the field and to promote new collaborations.

This volume of the Fields Institute Communications series consolidates selected
articles from the Apprenticeship Program. Written primarily by junior mathemati-
cians (˙5 years from their PhD), the articles cover a range of topics in combinatorial
algebraic geometry: curves, surfaces, Grassmannians, convexity, abelian varieties,
and moduli spaces. Almost all of the participants in the Apprenticeship Program
are coauthors on at least one paper which was initiated at the Fields Institute.

v



vi Preface

A few articles include junior coauthors who did not participate directly in the
Apprenticeship Program, or more senior mathematicians. This book bridges the
gap between graduate courses and cutting-edge research by connecting historical
sources, computation, explicit examples, and new results.

We are grateful to many readers who provided valuable feedback. These
include Enrique Arrondo, Matthew Baker, Cristiano Bocci, Rob Eggermont, Daniel
Erman, Ghislain Fourier, Naoki Fujita, Paul Alexander Helminck, Nathan Ilten,
Gary Kennedy, Kaie Kubjas, Antonio Laface, Christian Liedtke, Diane Maclagan,
Madhusudan Manjunath, Chris Manon, Emilia Mezzetti, Marta Panizzut, Kristian
Ranestad, Jenna Rajchgot, Rainer Sinn, Jenia Tevelev, and Timo De Wolff.

Kingston, ON, Canada Gregory G. Smith
Leipzig, Germany Bernd Sturmfels
29 June 2017
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Fitness, Apprenticeship, and Polynomials

Bernd Sturmfels

Abstract This article discusses the design of the Apprenticeship Program at the
Fields Institute, held 21 August–3 September 2016. Six themes from combinatorial
algebraic geometry were selected for the 2 weeks: curves, surfaces, Grassman-
nians, convexity, abelian combinatorics, parameters and moduli. The activities
were structured into fitness, research and scholarship. Combinatorics and concrete
computations with polynomials (and theta functions) empowers young scholars in
algebraic geometry, and it helps them to connect with the historic roots of their field.
We illustrate our perspective for the threefold obtained by blowing up six points
in P

3.

MSC 2010 codes: 14Q15, 05E40, 14-01

1 Design

A thematic program on Combinatorial Algebraic Geometry took place at the Fields
Institute, Toronto, Canada, during the Fall Semester 2016. The program organizers
were David Cox, Megumi Harada, Diane Maclagan, Gregory Smith, and Ravi Vakil.

As part of this semester, the Clay Mathematics Institute funded the “Apprentice-
ship Weeks”, held from 21 August 2016 to 3 September 2016. This article discusses
the design and mathematical scope of this fortnight. The structured activities took
place in the mornings and afternoons on Monday, Wednesday, and Friday, as well
as the mornings on Tuesday and Thursday. The posted schedule was identical for
both weeks; see Table 1.

The term “fitness” is an allusion to physical exercise. In order to improve
physical fitness, many of us go to the gym. A personal trainer can greatly enhance
that experience. The trainer develops your exercise plan and pushes you beyond

B. Sturmfels (�)
Department of Mathematics, University of California, Berkeley, CA 94720, USA

Max-Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany
e-mail: bernd@berkeley.edu; bernd@mis.mpg.edu

© Springer Science+Business Media LLC 2017
G.G. Smith, B. Sturmfels (eds.), Combinatorial Algebraic Geometry,
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2 B. Sturmfels

Table 1 Weekly schedule of activities

Days Times Activities

Monday–Wednesday–Friday 09:00–09:30 Introduction to today’s theme

Monday–Wednesday–Friday 09:30–11:15 Working on fitness problems

Monday–Wednesday–Friday 11:15–12:15 Solutions to fitness problems

Monday–Wednesday–Friday 14:00–14:30 Dividing into research teams

Monday–Wednesday–Friday 14:30–17:00 Team work on projects

Monday–Wednesday–Friday 17:00–18:00 Teams present findings

Tuesday–Thursday 09:00–12:00 Discussion of the scholarship theme

previously perceived limits. He makes you sweat a lot, ensures that you use exercise
equipment correctly, and helps you to feel good about yourself afterwards. In the
context of team sports, the coach plays that role. She works towards the fitness of
the entire team, where every player will contribute to the best of their abilities.

The six fitness sessions were designed to be as intense as those in sports. Ten
problems were posted for each session, and these were available online two or three
days in advance. By design, these demanding problems were open-ended and probed
a different aspect of the theme. Section 3 of this article contains the complete list of
problems, along with a brief discussion and references that contain some solutions.

The “apprentices” were about 40 early-career mathematicians, graduate students
and postdocs, coming from a wide range of backgrounds. An essential feature of the
Apprenticeship Weeks was the effort to build teams, and to promote collaboration
as much as possible. This created an amazing sense of community within the group.

At 9:00 a.m. on each Monday, Wednesday or Friday, a brief introduction was
given to each fitness question. We formed ten teams to work on the problems. At
11:15 a.m. we got together again, and one person from each team gave a brief
presentation on what had been discussed and discovered. Working on a challenging
problem, with a group of new collaborators, for less than two hours created a very
intense and stimulating experience. A balanced selection process ensured that each
participant had the opportunity to present for their team at least once.

At 2:00 p.m. the entire group re-assembled and they discussed research-oriented
problems for the afternoons. This was conducted in the style of the American
Institute for Mathematics (AIM), whereby one of the participants serves as the
discussion leader, and only that person is allowed to touch the blackboard. This led
to an ample supply of excellent questions, some a direct continuation of the morning
fitness problems, and others only vaguely inspired by these. Again, groups were
formed for the afternoon, and they engaged in learning and research. Computations
and literature search played a big role, and a lot of teaching went on in the groups.

Tuesdays and Thursdays were discussion days. Here the aim was to create a sense
of scholarship among the participants. The morning of these days involved studying
various software packages, classical research papers from the 19th and early 20th
centuries, and the diverse applications of combinatorial algebraic geometry. The
prompts are given in Sect. 2. The afternoons on discussion days were unstructured
to allow the participants time to ponder, probe, and write up their many new ideas.
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2 Scholarship Prompts

Combinatorial algebraic geometry is a field that, by design, straddles mathematical
boundaries. One aim is to study algebraic varieties with special combinatorial
features. At its roots, this field is about systems of polynomial equations in
several variables, and about symmetries and other special structures in their solution
sets.

Section 5 offers a concrete illustration of this perspective for a system of
polynomials in 32 variables. The objects of combinatorial algebraic geometry are
amenable to a wide range of software tools, which are now used widely among the
researchers.

Another point we discussed is the connection to problems outside of pure
mathematics. A new field, Applied Algebraic Geometry, has arisen in the past
decade. The techniques used there often connect back to 19th and 20th century
work in algebraic geometry, which is much more concrete and combinatorial than
many recent developments. And, even for her study of current abstract theories,
an apprentice may benefit from knowing the historic origins that have inspired the
development of algebraic geometry. Understanding these aspects, by getting hands-
on experiences and by studying original sources, was a focus in this part of the
program.

In what follows, we replicate the hand-outs for the four Tuesday and Thursday
mornings. The common thread can be summarized as: back to the roots. These hand-
outs were given to the participants as prompts for explorations and discussions. For
several of the participants, it was their first experience with software for algebraic
geometry. For others, it offered a first opportunity to read an article that was
published over 100 years ago.

Tuesday, 23 August 2016: Software

• Which software tools are most useful for performing computations in Combina-
torial Algebraic Geometry? Why?

• Many of us are familiar with Macaulay2. Some of us are familiar with Singular.
What are your favorite packages within these systems?

• Lots of math is supported by general-purpose computer algebra systems such as
Sage, Maple, Mathematica, or Magma. Do you use any of these regularly? For
research or for teaching? How often and in which context?

• Other packages that are useful for our community include Bertini, PHCpack, 4ti2,
Polymake, Normaliz, GFan. What are these and what do they do? Who developed
them and why?

• Does visualization matter in algebraic geometry? Have you tried software like
Surfex?

• Which software tool do you want to learn today?
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Thursday, 25 August 2016: The Nineteenth Century

Algebraic Geometry has a deep and distinguished history that goes back hundreds
of years. Combinatorics entered the scene a bit more recently.

Young scholars interested in algebraic geometry are strongly encouraged to
familiarize themselves with the literature from the nineteenth century. Dig out
papers from that period and read them! Go for the original sources. Some are in
English. Do not be afraid of languages like French, German, Italian.

Today we form groups. Each group will explore the life and work of one
mathematician, with focus on what he has done in algebraic geometry. Identify one
key paper written by that author. Then present your findings.

Here are some suggestions, listed alphabetically:

• Alexander von Brill
• Arthur Cayley
• Michel Chasles
• Luigi Cremona
• Georges Halphen
• Otto Hesse
• Ernst Kummer

• Max Noether
• Julius Plücker
• Bernhard Riemann
• Friedrich Schottky
• Hermann Schubert
• Hieronymus Zeuthen

Tuesday, 30 August 2016: Applications

The recent years have seen a lot of interest in applications of algebraic geometry,
outside of core pure mathematics. An influential event was a research year 2006–
07 at the Institute for Mathematics and its Applications (IMA) in Minneapolis.
Following a suggestion by Doug Arnold (then IMA director and SIAM president),
it led to the creation of the Society for Industrial and Applied Mathematics (SIAM)
activity group in Algebraic Geometry and (ultimately) to the SIAM Journal on
Applied Algebra and Geometry. The reader is referred to these resources for further
information. These interactions with the sciences and engineering have been greatly
enhanced by the interplay with Combinatorics and Computation seen here at the
Fields Institute. However, the term “Algebraic Geometry” has to be understood now
in a broad sense.

Today we form groups. Each group will get familiar with one field of application,
and they will select one paper in Applied Algebraic Geometry that represent an
interaction with that field. Read your paper and then present your findings. Here are
some suggested fields, listed alphabetically:

• Approximation Theory
• Bayesian Statistics
• Chemical Reaction Networks
• Coding Theory
• Combinatorial Optimization
• Computer Vision
• Cryptography
• Game Theory

• Geometric Modeling
• Machine Learning
• Maximum Likelihood Inference
• Neuroscience
• Phylogenetics
• Quantum Computing
• Semidefinite Programming
• Systems Biology
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Thursday, 1 September 2016: The Early Twentieth Century

One week ago we examined the work of some algebraic geometers from the nine-
teenth century. Today, we move on to the early twentieth century, to mathematics
that was published prior to World War II. You are encouraged to familiarize
yourselves with the literature from the period 1900–1939. Dig out papers from that
period and read them! Go for the original sources. Some are written in English. Do
not be afraid of languages like French, German, Italian, Russian.

Each group will explore the life and work of one mathematician, with focus on
what (s)he has done in algebraic geometry during that period. Identify one key paper
written by that author. Then present your findings.

Here are some suggestions, listed alphabetically:

• Eugenio Bertini
• Guido Castelnuovo
• Wei-Liang Chow
• Arthur B. Coble
• Wolfgang Gröbner
• William V.D. Hodge
• Wolfgang Krull
• Solomon Lefschetz

• Frank Morley
• Francis S. Macaulay
• Amalie Emmy Noether
• Ivan Georgievich Petrovsky
• Virginia Ragsdale
• Gaetano Scorza
• Francesco Severi

3 Fitness Prompts

This section presents the six worksheets for the morning sessions on Mondays,
Wednesdays and Fridays. These prompts inspired most of the articles in this volume.
Specific pointers to dates refer to events that took place at the Fields Institute. The
next section contains notes for each problem, offering references and solutions.

Monday, 22 August 2016: Curves

1. Which genus can a smooth curve of degree 6 in P
3 have? Give examples.

2. Let f .x/ D .x � 1/.x � 2/.x � 3/.x � 6/.x � 7/.x � 8/ and consider the genus
2 curve y2 D f .x/. Where is it in the moduli space M2 ? Compute the Igusa
invariants. Draw the Berkovich skeleton for the field of 5-adic numbers.

3. The tact invariant of two plane conics is the polynomial of bidegree .6; 6/ in
the 6 C 6 coefficients which vanishes when the conics are tangent. Compute
this invariant explicitly. How many terms does it have?

4. Bring’s curve lives in a hyperplane in P
4. It is defined by xi

0Cxi
1Cxi

2Cxi
3Cxi

4 D

0 for 1 � i � 3. What is its genus? Determine all tritangent planes of this curve.
5. Let X be a curve of degree d and genus g in P

3. The Chow form of X defines a
hypersurface in the Grassmannian Gr.1;P3/. Points are lines that meet X. Find
the dimension and (bi)degree of its singular locus.

6. What are the equations of the secant varieties of elliptic normal curves?
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7. Let XP be the toric variety defined by a three-dimensional lattice polytope P,
as in Milena Hering’s 18–22 July 2016 course. Intersect XP with two general
hyperplanes to get a curve. What is the degree and genus of that curve?

8. A 2009 article by Sean Keel and Jenia Tevelev presents Equations for M0;n.
Write these equations in Macaulay2 format for n D 5 and n D 6. Can you
see the  -classes (seen in Renzo Cavalieri’s 18–22 July 2016 course) in these
coordinates?

9. Review the statement of Torelli’s Theorem for genus 3. Using Sage or Maple,
compute the 3 � 3 Riemann matrix of the Fermat quartic fx4 C y4 C z4 D 0g.
How can you recover the curve from that matrix?

10. The moduli space M7 of genus 7 curves has dimension 18. What is the
codimension of the locus of plane curves? Hint: Singularities are allowed.

Wednesday, 24 August 2016: Surfaces

1. A nondegenerate surface in P
n has degree at least n � 1. Prove this fact and

determine all surfaces of degree n � 1. Give their equations.
2. How many lines lie on a surface obtained by intersecting two quadratic

hypersurfaces in P
4? Find an instance where all lines are defined over Q.

3. What is the maximum number of singular points on an irreducible quartic
surface in P

3? Find a surface and compute its projective dual.
4. Given a general surface of degree d in P

3, the set of its bitangent lines is a
surface in Gr.1;P3/. Determine the cohomology class (or bidegree) of that
surface.

5. Pick two random circles C1 and C2 in R
3. Compute both their Minkowski sum

C1 C C2 and their Hadamard product C1 ? C2. Try other curves.
6. Let X be the surface obtained by blowing up five general points in the plane.

Compute the Cox ring of X. Which of its ideals describe points on X?
7. The incidences among the 27 lines on a cubic surface defines a 10-regular graph.

Compute the complex of independent sets in this graph.
8. The Hilbert scheme of points on a smooth surface is smooth. Why? How many

torus-fixed points are there on the Hilbert scheme of 20 points in P
2? What can

you say about the graph that connects them?
9. State the Hodge Index Theorem. Verify this theorem for cubic surfaces in P

3,
by explicitly computing the matrix for the intersection pairing.

10. List the equations of one Enriques surface. Verify its Hodge diamond.

Friday, 26 August 2016: Grassmannians

1. Find a point in Gr.3;C6/ with precisely 16 non-zero Plücker coordinates.
As in June Huh’s 18–22 July 2016 course, determine the Chow ring of its
matroid.

2. The coordinate ring of the Grassmannian Gr.3;C6/ is a cluster algebra of finite
type. What are the cluster variables? List all the clusters.

3. Consider two general surfaces in P
3 whose degrees are d and e respectively.

How many lines in P
3 are bitangent to both surfaces?

4. The rotation group SO.n;R/ is an affine variety in the space of real n � n-
matrices. Can you find a formula for the degree of this variety?
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5. The flag variety for GL4.C/ is a six-dimensional subvariety of P
3 � P

5 � P
3.

Compute its ideal and determine its tropicalization.
6. Classify all toric ideals that arise as initial ideals for the flag variety above. For

each such toric degeneration, compute the Newton–Okounkov body.
7. The Grassmannian Gr.4; 7/ has dimension 12. Four Schubert cycles of codi-

mension 3 intersect in a finite number of points. How large can that number be?
Exhibit explicit cycles whose intersection is reduced.

8. The affine Grassmannian and the Sato Grassmannian are both infinite-dimen-
sional versions of the Grassmannian. How are they related?

9. The coordinate ring of the Grassmannian Gr.2;C7/ is Z
7-graded. Determine

the Hilbert series and the multidegree of Gr.2;C7/ for this grading.
10. The Lagrangian Grassmannian parametrizes n-dimensional isotropic

subspaces in C
2n. Find a Gröbner basis for its ideal. What is a ‘doset’?

Monday, 29 August 2016: Convexity

1. The set of nonnegative binary sextics is a closed full-dimensional convex cone
in Sym6.R

2/ Š R
7. Determine the face poset of this convex cone.

2. Consider smooth projective toric fourfolds with eight invariant divisors. What
is the maximal number of torus-fixed points of any such variety?

3. Choose three general ellipsoids in R
3 and compute the convex hull of their

union. Which algebraic surfaces contribute to the boundary?
4. Explain how the Alexandrov–Fenchel Inequalities (for convex bodies) can be

derived from the Hodge Index Theorem (for algebraic surfaces).
5. The blow-up of P

3 at six general points is a threefold that contains 32 special
surfaces (exceptional classes). What are these surfaces? Which triples intersect?
Hint: Find a six-dimensional polytope that describes the combinatorics.

6. Prove that every face of a spectrahedron is an exposed face.
7. How many combinatorial types of reflexive polytopes are there in dimension 3?

In dimension 4? Draw pictures of some extreme specimen.
8. A 4 � 4-matrix has six off-diagonal 2 � 2-minors. Their binomial ideal in 12

variables has a unique toric component. Determine the f -vector of the polytope
(with 12 vertices) associated with this toric variety.

9. Consider the Plücker embedding of the real Grassmannian Gr.2;R5/ in the unit
sphere in R

10. Describe its convex hull. Hint: Calibrations, Orbitopes.
10. Examine Minkowski sums of three tetrahedra in R

3. What is the maximum
number of vertices such a polytope can have? How to generalize?

Wednesday, 31 August 2016: Abelian Combinatorics

1. The intersection of two quadratic surfaces in P
3 is an elliptic curve. Explain its

group structure in terms of geometric operations in P
3.

2. A 2006 paper by Keiichi Gunji gives explicit equations for all abelian surfaces
in P

8. Verify his equations in Macaulay2. How to find the group law?
3. Experiment with Swierczewski’s Sage code for the numerical evaluation of the

Riemann theta function �.� I z/. Verify the functional equation.
4. Theta functions with characteristics �Œ�; �0�.� I z/ are indexed by two binary

vectors �; �0 2 f0; 1gg. They are odd or even. How many each?
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5. Fix the symplectic form hx; yi WD x1y4 C x2y5 C x3y6 C x4y1 C x5y2 C x6y3 on
the 64-element vector space F

6
2. Determine all isotropic subspaces.

6. Explain the combinatorics of the root system of type E7. How would you choose
coordinates? How many pairs of roots are orthogonal?

7. In 1879, Cayley published a paper in Crelle’s journal titled Algorithms for . . .
What did he do? How does it relate the previous two exercises?

8. The regular matroid R10 defines a degeneration of abelian 5-folds. Describe its
periodic tiling on R

5 and secondary cone in the 2nd Voronoi decomposition.
Explain the application to Prym varieties due to Gwena.

9. Consider the Jacobian of the plane quartic curve defined over Q2 by

41x4C1530x3yC3508x3zC1424x2y2C2490x2yz�2274x2z2C470xy3C680xy2z

� 930xyz2 C 772xz3 C 535y4 � 350y3z � 1960y2z2 � 3090yz3 � 2047z4

Compute its limit in Alexeev’s moduli space for the 2-adic valuation.
10. Let � be the theta divisor on an abelian threefold X. Find n D dim H0.X; k�/.

What is the smallest integer k such that k� is very ample? Can you compute (in
Macaulay2) the ideal of the corresponding embedding X ,! P

n�1?

Friday, 2 September 2016: Parameters and Moduli

1. Write down (in Macaulay2 format) the two generators of the ring of invariants
for ternary cubics. For which plane cubics do both invariants vanish?

2. Fix a Z-grading on the polynomial ring S D CŒa; b; c; d� defined by deg.a/ D 1,
deg.b/ D 4, deg.c/ D 5, and deg.d/ D 9. Classify all homogeneous ideals I
such that S=I has Hilbert function identically equal to 1.

3. Consider the Hilbert scheme of eight points in affine 4-space A
4. Identify a

point that is not in the main component. List its ideal generators.
4. Let X be the set of all symmetric 4�4-matrices in R

4�4 that have an eigenvalue
of multiplicity � 2. Compute the C-Zariski closure of X.

5. Which cubic surfaces in P
3 are stable? Which ones are semi-stable?

6. In his second lecture on August 15, Valery Alexeev used six lines in P
2 to

construct a certain moduli space of K3 surfaces with 15 singular points. List
the most degenerate points in the boundary of that space.

7. Find the most singular point on the Hilbert scheme of 16 points in A
3.

8. The polynomial ring CŒx; y� is graded by the 2-element group Z=2Z where
deg.x/ D 1 and deg.y/ D 1. Classify all Hilbert functions of homogeneous
ideals.

9. Consider all threefolds obtained by blowing up six general points in P
3.

Describe their Cox rings and Cox ideals. How can you compactify this moduli
space?

10. The moduli space of tropical curves of genus 5 is a polyhedral space of
dimension 12. Determine the number of i-faces for i D 0; 1; 2; : : : ; 12.



Fitness, Apprenticeship, and Polynomials 9

4 Notes and Solutions

Solutions to several of the 60 fitness problems can be found in the articles of this
volume. In this section, we present the relevant pointers to these articles and offer
references for the other problems that did not lead to articles in this book.

Notes on Curves

1. Castelnuovo classified the degree and genus pairs .d; g/ for all smooth curves
in P

n. This was extended to characteristic p by Ciliberto [25]. For n D 3

and d D 6, the possible genera are g D 0; 1; 2; 3; 4. The Macaulay2 package
RandomCurves can compute examples. The Hartshorne–Rao module [50] plays
a key role.

2. See Sect. 2 in the article by Bolognese, Brandt and Chua [1]. An approach using
Igusa invariants was developed by Helminck in [32].

3. The tact invariant has 3210 terms by [57, Example 2.7].
4. See Sect. 2.1 in the article by Harris and Len [2]. The analogous problem for

bitangents of plane quartics is discussed by Chan and Jiradilok [3].
5. This is solved in the article by Kohn, Nødland, and Tripoli [4].
6. Following Fisher [29], elliptic normal curves are defined by the 4 � 4-

subpfaffians of the Klein matrix and their secant varieties are defined by its
larger subpfaffians.

7. The degree of a projective toric variety XP is the volume of its lattice polytope P.
The genus of a complete intersection in XP was derived by Khovanskii in
1978. We recommend the tropical perspective by Steffens and Theobald in [53,
Sect. 4.1].

8. See the article by Monin and Rana [5] for a solution up to n D 6.
9. See [26] for how to compute the forward direction of the Torelli map of an

arbitrary plane curve. For the backward direction in genus 3, see [61, Sect. 5.2].
10. Trinodal sextics form a 16-dimensional family and their codimension in M7 is

two. This is a result is originally due to Severi, but also derived by Castryck and
Voight in [24, Theorem 2.1].

Notes on Surfaces

1. This was solved by Del Pezzo in 1886. Eisenbud and Harris [27] give a beautiful
introduction to varieties of minimal degree including their equations.

2. This is a del Pezzo surface of degree 4. It has 16 lines. To make them rational,
map P

2 into P
3 via a Q-basis for the cubics vanishing at five Q-points in P

2.
3. The winner, with 16 singular points, is the Kummer surface [34]. It is self-dual.
4. This is solved in the article by Kohn, Nødland, and Tripoli [4].
5. See Sect. 5 in the article by Friedenberg, Oneto, and Williams [6].
6. This is the del Pezzo surface in Problem 2. Its Cox ring is a polynomial ring in
16 variables modulo an ideal generated by 20 quadrics. Ideal generators that are
universal over the base M0;5 are listed in [47, Proposition 2.1]. Ideals of points
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on the surface are torus translates of the toric ideal of the five-dimensional
demicube D5. For six points in P

2 we refer to Bernal, Corey, Donten-Bury,
Fujita, and Merz [7].

7. This is the clique complex of the Schläfli graph. The f -vector of this simplicial
complex is .27; 216; 720; 1080; 648; 72/. The Schläfli graph is the edge graph
of the E6-polytope, denoted 221, which is a cross section of the Mori cone of
the surface.

8. The torus-fixed points on Hilb20.P2/ are indexed by ordered triples of partitions
.�1; �2; �3/ with j�1j C j�2j C j�3j D 20. The number of such triples equals
341,649. The graph that connects them is a variant of the graph for the Hilbert
scheme of points in the affine plane. The latter was studied by Hering and
Maclagan in [33].

9. The signature of the intersection pairing is .1; r � 1/ where r is the rank of
the Picard group. This is r D 7 for the cubic surface. From the analysis
in Problem 7, we can get various symmetric matrices that represent the
intersection pairing.

10. See the article by Bolognese, Harris, and Jelisiejew [8].

Notes on Grassmannians

1. See the article by Wiltshire-Gordon, Woo, and Zajackowska [9].
2. In addition to the 20 Plücker coordinates pijk, one needs two more functions:

p123p456�p124p356 and p234p561�p235p461. The six boundary Plücker coordinates
p123; p234; p345; p456; p561; p612 are frozen. The other 16 coordinates are the
cluster variables for Gr.3;C6/. This was derived by Scott in [51, Theorem 6].

3. This is worked out in the article by Kohn, Nødland and Tripoli [4].
4. This is the main result of Brandt, Bruce, Brysiewicz, Krone and Robeva [10].
5. See the article by Bossinger, Lamboglia, Mincheva, and Mohammadi [11].
6. See the article by Bossinger, Lamboglia, Mincheva, and Mohammadi [11].
7. The maximum number is 8. This is obtained by taking the partition .2; 1/ four

times. For this problem, and many other Schubert problems, instances exist
where all solutions are real; see the works of Sottile such as [52, Theorem 3.9].

8. The Sato Grassmannian is more general than the affine Grassmannian. These
are studied in integrable systems and geometric representation theory, respec-
tively.

9. A formula for the Z
n-graded Hilbert series of Gr.2;Cn/ is given by Witaszek

[63, Sect. 3.3]. For an introduction to multidegrees, see [40, Sect. 8.5]. Try
the Macaulay2 commands Grassmannian and multidegree. Escobar
and Knutson [12] find the multidegree of an important variety from computer
vision.

10. The coordinate ring of the Lagrangian Grassmannian is an algebra with
straightening law over a double poset or doset. See the exposition in [48,
Sect. 3].
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Notes on Convexity

1. The face lattice of the cone of non-negative binary forms of degree d is
described in Barvinok’s textbook [20, Sect. II.11]. In more variables, this is
much more difficult.

2. This seems to be an open problem. For seven invariant divisors, this was
resolved by Gretenkort et al. [30]. Note the conjecture stated in the last line
of that paper.

3. We refer to Nash, Pir, Sottile, and Ying [13] and to the youtube video The
Convex Hull of Ellipsoids by Nicola Geismann, Michael Hemmer, and Elmar
Schömer.

4. We refer to Ewald’s textbook, specifically [28, Sect. IV.5 and Sect. VII.6].
5. The relevant polytope is the six-dimensional demicube; its 32 vertices corre-

spond to the 32 special divisors. See the notes for Problem 9 in Parameters and
Moduli.

6. This was first proved by Ramana and Goldman in [43, Corollary 1].
7. Kreuzer and Skarke [37] classified such reflexive polytopes up to lattice

isomorphism. There are 4319 in dimension 3 and 473,800,776 in dimension 4.
Lars Kastner classified the list of 4319 into combinatorial types. He found that
there are 558 combinatorial types of reflexive 3-polytopes and they have up to
14 vertices.

8. This six-dimensional polytope is obtained from the direct product of two
identical regular tetrahedra by removing the four pairs of corresponding
vertices. It is the convex hull of the points ei ˚ ej in R

4 ˚ R
4 where i; j 2

f1; 2; 3; 4g with i 6D j. Using the software Polymake, we find its f -vector to be
.12; 54; 110; 108; 52; 12/.

9. The faces of the Grassmann orbitopes conv
(
Gr.2;Cn/

)
, for n � 5, are

described in [49, Theorem 7.3]. It is best to start with the case n D 4 in [49,
Example 7.1].

10. The maximum number of vertices is 38 by the formula of Karavelas et al. [35,
Sect. 6.1, Eq. (49)]. A definitive solution to the problem of characterizing face
numbers of Minkowski sums of polytopes was given by Adiprasito and Sanyal
[17].

Notes on Abelian Combinatorics

1. A beautiful solution was written up by Qiaochu Yuan when he was a high school
student; see [62]. The idea is to simultaneously diagonalize the two quadrics,
project their intersection curve into the plane, and obtain an Edwards curve.

2. This is a system of nine quadrics and three cubics, derived from Coble’s cubic
following Theorem 3.2 in [45]. Using theta functions as in Lemma 3.3 of [45],
one obtains the group law.

3. See [61] and compare with Problem 9 in Curves.
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4. For the 22g pairs .�; �0/, we check whether � � �0 is even or odd. There are
2g�1.2g C 1/ even ones and 2g�1.2g � 1/ odd ones.

5. The number of isotropic subspaces of F
6
2 is 63 of dimension 1, 315 in dimension

2, and 135 in dimension 3. The latter are the Lagrangians [46, Sect. 6].
6. The root system of type E7 has 63 positive roots. They are discussed in [46,

Sect. 6].
7. Cayley gives a bijection between the 63 positive roots of E7 with the 63 nonzero

vectors in F
6
2. Two roots have inner product zero if and only if the corresponding

vectors in F
6
2nf0g are orthogonal in the setting of Problem 5. See [46, Table 1].

8. This problem implicitly refers to Gwena’s article [31]. Since the matroid R10
is not cographic, the corresponding tropical abelian varieties are not in the
Schottky locus of Jacobians.

9. This fitness problem is solved in the article by Bolognese, Brandt, and Chua [1].
Chan and Jiradilok [3] also study an important special family of plane quartics.

10. The divisor k� is very ample for k D 3. This embeds any abelian threefold into
P
26. For products of three planar cubic curves, this gives the Segre embedding.

Notes on Parameters and Moduli

1. The solution can be found, for instance, on the website math.stanford.edu/�notz
eb/aronhold.html. The two generators have degree 4 and 6. The quartic invariant
is known as the Aronhold invariant and it vanishes when the ternary cubic is
a sum of three cubes of linear forms. Both invariants vanish when the cubic
curve has a cusp.

2. This refers to extra irreducible components in toric Hilbert schemes [42]. These
schemes were first introduced by Arnold [19], who coined the term A-graded
algebras. Theorem 10.4 in [54] established the existence of an extra component
for A D Œ 1 3 4 7 �. We ask to verify the second entry in Table 10-1 in [54, p. 88].

3. Cartwright et al. [22] showed that the Hilbert scheme of eight points in A
4

has two irreducible components. An explicit point in the non-smoothable
component is given in the article by Douvropoulos, Jelisiejew, Nødland, and
Teitler [14].

4. At first, it is surprising that X has codimension 2. The point is that we work
over R. The analogous set over C is the hypersurface of a sum-of-squares
polynomial. The C-Zariski closure of X is a nice variety of codimension 2. The
defining ideal and its Hilbert–Burch resolution are explained in [56, Sect. 7.1].

5. This is an exercise in Geometric Invariant Theory [41]. A cubic surface is
stable if and only if it has at most ordinary double points (A1 singularities).
For semi-stable surfaces, A2 singularities are allowed. For an exposition, see
E. Reinecke’s Bachelor thesis [44, Theorem 3.6] written under the supervision
of D. Huybrechts.

6. This is the moduli space of stable hyperplane arrangements [18] for the case of
six lines in P

2 and a choice of parameters [18, Sect. 5.7]. For some parameters,
this is the tropical compactification associated with the tropical Grassmannian
trop

(
Gr.3;C6/

)
, so the most degenerate points correspond to the seven generic

types of tropical planes in 5-space; see [38, Fig. 5.4.1].

http://math.stanford.edu/~notzeb/aronhold.html
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7. See Theorem 2.3 in [55].
8. For each partition, representing a monomial ideal in CŒx; y�, we count the

odd and even boxes in its Young diagram. The resulting Hilbert functions
hWZ=2Z! N are

(
h.even/; h.odd/

)
D .k2Cm; k.kC 1/Cm/ or

(
.kC 1/2Cm; k.kC 1/Cm

)
:

where k;m 2 N This was contributed by Dori Bejleri [21, Sect. 1.3].
9. The blow-up of P

n�3 at n points is a Mori dream space. Its Cox ring has 2n�1

generators, constructed explicitly by Castravet and Tevelev in [23]. These form
a Khovanskii basis [36], by [60, Theorem 7.10]. The Cox ideal is studied in
[59]. Each point on its variety represents a rank two stable quasiparabolic vector
bundle on P

1 with n marked points. The relevant moduli space is M0;n.
10. The moduli space of tropical curves of genus 5 serves as the first example in

the article by Lin and Ulirsch [15]. The article by Kastner, Shaw, and Winz [16]
discusses state-of-the-art software for computing with such polyhedral spaces.

5 Polynomials

The author of this article holds the firm belief that algebraic geometry concerns the
study of solution sets to systems of polynomial equations. Historically, geometers
explored curves and surfaces that are zero sets of polynomials. It is the insights
gained from these basic figures that have led, over the course of centuries, to
the profound depth and remarkable breadth of contemporary algebraic geometry.
However, many of the current theories are now far removed from explicit varieties,
and polynomials are nowhere in sight. We are advocating for algebraic geometry to
take an outward-looking perspective. Our readers should be aware of the wealth of
applications in the sciences and engineering and be open to a “back to the basics”
approach in both teaching and scholarship. From this perspective, the interaction
with combinatorics can be particularly valuable. Indeed, combinatorics is known
to some as the “nanotechnology of mathematics”. It is all about explicit objects—
those that can be counted, enumerated, and dissected with laser precision. And, these
objects include some beautiful polynomials and the ideals they generate.

The following example serves as an illustration. We work in a polynomial ring
QŒp� in 32 variables, one for each subset of f1; 2; 3; 4; 5; 6g whose cardinality is odd:

p1; p2; : : : ; p6; p123; p124; p125; : : : ; p356; p456; p12345; p12346; : : : ; p23456 :

The polynomial ring QŒp� is Z
7-graded by setting deg.p� / D e0 C

∑
i2� ei, where

e0; e1; : : : ; e6 is the standard basis of Z
7. Let X be a 5 � 6-matrix of variables,

and let I be the kernel of the ring map QŒp� ! QŒX� that takes the variable p�
to the determinant of the submatrix of X with column indices � and row indices
1; 2; : : : ; j� j.
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Table 2 Degrees and minimal generators for the ideal I

Degree Generators

.2; 0; 0; 1; 1; 1; 1/ p3p456 � p4p356 C p5p346 � p6p345

.2; 0; 1; 0; 1; 1; 1/ p2p456 � p4p256 C p5p246 � p6p245
:
:
:

:
:
:

.2; 1; 1; 1; 1; 0; 0/ p1p234 � p2p134 C p3p124 � p4p123

.2; 0; 1; 1; 1; 1; 2/ p256p346 � p246p356 C p236p456
:
:
:

:
:
:

.2; 2; 1; 1; 1; 1; 0/ p125p134 � p124p135 C p123p145

.2; 1; 1; 1; 1; 2; 2/ p156p23456 � p256p13456 C p356p12456 � p456p12356
:
:
:

:
:
:

.2; 2; 2; 1; 1; 1; 1/ p123p12456 � p124p12356 C p125p12346 � p126p12345

The ideal I is prime and Z
7-graded. It has multiple geometric interpretations.

First of all, it describes the partial flag variety of points in 2-planes in hyperplanes in
P
5. This flag variety lives in P

5�P
19�P

5, thanks to the Plücker embedding. Its pro-
jection into the factor P

19 is the Grassmannian Gr.3;C6/ of 2-planes in P
5. Flag

varieties are studied by Bossinger, Lamboglia, Mincheva, and Mohammadi in [11].
But, let the allure of polynomials now speak for itself. Our ideal I has 66minimal

quadratic generators. Sixty generators are unique up to scaling in their degree; see
Table 2. The other six minimal generators live in degree .2; 1; 1; 1; 1; 1; 1/ and are
4-term Grassmann–Plücker relations like p126p345 � p125p346 C p124p356 � p123p456.

Here is an alternate interpretation of the ideal I. It defines a variety of dimension
15 D

(
6
2

)
in P

31 known as the spinor variety. In this guise, I encodes the algebraic
relations among the principal subpfaffians of a skew-symmetric 6 � 6-matrix. Such
subpfaffians are indexed with the subsets of f1; 2; 3; 4; 5; 6g of even cardinality. The
trick is to fix a natural bijection between even and odd subsets. This variety is similar
to the Lagrangian Grassmannian seen in Problem 10 on Grassmannians.

At this point, readers who like combinatorics and computations may study I.
Can you compute the tropical variety of I? Which of its maximal cones are prime
in the sense of Kaveh and Manon [36, Theorem 1]? These determine Khovanskii
bases for QŒp�=I and hence toric degenerations of the spinor variety in P

31. Their
combinatorics is recorded in a list of Newton-Okounkov polytopes with 32 vertices.

Each of these polytopes comes with a linear projection to the six-dimensional
demicube, which is the convex hull in R

7 of the 32 points deg.p� /. We saw this
demicube in Problem 5 on Convexity, whose theme we turn to shortly.

It is the author’s opinion that Khovanskii bases deserve more attention than the
Newton-Okounkov bodies they give rise to. The former are the algebraic manifes-
tation of a toric degeneration. These must be computed and verified. Looking at
a Khovanskii basis through the lens of convexity reveals the Newton–Okounkov
body.

We now come to a third, and even more interesting, geometric interpretation of
our 66 polynomials. It has to do with Cox rings, and their Khovanskii bases, similar
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to those in the article by Bernal, Corey, Donten-Bury, Fujita, and Merz [7]. We begin
by replacing the generic 5 � 6-matrix X by one that has the special form in [23,
Eq. (1.2)]:

X D

⎡

⎢⎢⎢⎢⎢
⎣

u21x1 u22x2 u23x3 u24x4 u25x5 u26x6
u1y1 u2y2 u3y3 u4y4 u5y5 u6y6

u1v1x1 u2v2x2 u3v3x3 u4v4x4 u5v5x5 u6v6x6
v1y1 v2y2 v3y3 v4y4 v5y5 v6y6
v21x1 v22x2 v23x3 v24x4 v25x5 v26x6

⎤

⎥⎥⎥⎥⎥
⎦
:

Now, the polynomial ring QŒX� gets replaced by kŒx1; x2; : : : ; x6; y1; y2; : : : ; y6�
where k is the field extension of Q generated by the entries of a 2 � 6-matrix of
scalars:

U D

ñ
u1 u2 u3 u4 u5 u6
v1 v2 v3 v4 v5 v6

ô
: (1)

We assume that the 2 � 2-minors of U are nonzero. Let J denote the kernel of the
odd-minors map kŒp�! kŒX� as before. The ideal J is also Z

7-graded and it strictly
contains the ideal I. Castravet and Tevelev [23, Theorem 1.1] proved that kŒp�=J is
the Cox ring of the blow-up of P

3
k

at six points. These points are Gale dual to U.
We refer to J as the Cox ideal of that rational threefold whose Picard group Z

7

furnishes the grading. The affine variety in A
32
k

defined by J is ten-dimensional (it is
the universal torsor). Quotienting by a seven-dimensional torus action yields our
threefold. The same story for blowing up five points in P

2
k

is Problem 6 on Surfaces.
In [59], we construct the Cox ideal by duplicating the ideal of the spinor variety:

J D I C u � I : (2)

Here u is a vector in .k�/32 that is derived from U. The ideal u� I is obtained from I
by scaling the variables f� with the coordinates of u. In particular, the Cox ideal J is
minimally generated by 132 quadrics. Now, there are two generators in each of the
sixty Z

7-degrees in our table and there are 12 generators in degree .2; 1; 1; 1; 1; 1; 1/.
Following [60, Example 7.6], we fix the rational function field K D Q.t/ and set

U D

ñ
1 t t2 t3 t4 t5

t5 t4 t3 t2 t 1

ô
:

The ring map KŒp�! KŒX� now maps the variables p� like this:

p1 7! x1

p123 7! x1y2x3t
6�.x1x2y3 C y1x2x3/t

7 C .y1x2x3 C x1x2y3/t
9�x1y2x3t

10

p12345 7! x1y2x3y4x5t
10�.y1x2x3y4x5Cx1y2x3x4y5C� � �Cx1x2y3y4x5/t

11C� � �
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Table 3 Degrees and
minimal generators for the
ideal J

Degree Generators

.2; 1; 1; 1; 1; 0; 0/ p1p234 � p2p134 C p3p124 � p4p123

.2; 1; 1; 1; 1; 0; 0/ t4p1p234 � t2p2p134 C t2p1p234 C p4p123

Table 4 Degrees and minimal generators for the ideal in.J/

Degree Generators

.2; 0; 0; 1; 1; 1; 1/ p3p456 � p4p356 p5p346 � p6p345

.2; 0; 1; 0; 1; 1; 1/ p2p456 � p4p256 p5p246 � p6p245
:
:
:

:
:
:

:
:
:

.2; 1; 1; 1; 1; 0; 0/ p1p234 � p2p134 p3p124 � p4p123

.2; 0; 1; 1; 1; 1; 2/ p6p23456 � p236p456 p246p356 � p256p346
:
:
:

:
:
:

:
:
:

.2; 2; 1; 1; 1; 1; 0/ p1p12345 � p123p145 p124p135 � p125p134

.2; 1; 1; 1; 1; 2; 2/ p156p23456 � p256p13456 p356p12456 � p456p12356
:
:
:

:
:
:

:
:
:

.2; 2; 2; 1; 1; 1; 1/ p123p12456 � p124p12356 p125p12346 � p126p12345

A typical example of a Z
7-degree with two minimal generators appears in Table 3.

The algebra generators p� form a Khovanskii basis for KŒp�=J with respect to the
t-adic valuation. The toric algebra resulting from this flat family is generated by the
underlined monomials. Its toric ideal in.J/ is generated by 132 binomial quadrics;
see Table 4. These 132 binomials define a toric variety that is a degeneration of our
universal torsor. The ideal in.J/ is relevant in both biology and physics. It represents
the Jukes-Cantor model in phylogenetics [58] and the Wess-Zumino-Witten model in
conformal field theory [39]. Beautiful polynomials can bring the sciences together.

Let us turn to another fitness problem. The past three pages offered a capoeira
approach to Problem 9 in Parameters and Moduli. The compactification is that
given by the tropical variety of the universal Cox ideal, to be computed as in
[45, 47]. The base space is M0;6 with points represented by 2 � 6-matrices U as
in (1). We encountered several themes that are featured in other articles in this book:
flag varieties, Grassmannians, Z

n-gradings, Cox rings, Khovanskii bases, and toric
ideals. The connection to spinor varieties was developed in the article [59] with
Mauricio Velasco. The formula (2) is derived in [59, Theorem 7.4] for the blow-up
of P

n�3 at n points when n � 8. It is still a conjecture for n � 9. On your trail
towards solving such open problems, fill your backpack with polynomials. They
will guide you.
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From Curves to Tropical Jacobians and Back

Barbara Bolognese, Madeline Brandt, and Lynn Chua

Abstract For a curve over an algebraically closed field that is complete with respect
to a nontrivial valuation, we study its tropical Jacobian. We first tropicalize the curve
and then use the weighted metric graph to compute the tropical Jacobian. Finding
the abstract tropicalization of a general curve defined by polynomial equations is
difficult, because an embedded tropicalization may not be faithful, and there is no
known algorithm for carrying out semistable reduction. We solve these problems for
hyperelliptic curves by using admissible covers. We also calculate the period matrix
from a weighted metric graph, which gives the tropical Jacobian and tropical theta
divisor. Lastly, we look at how to compute a curve that has a given period matrix.

MSC 2010 codes: 14T05

1 Introduction

Let X be a nonsingular curve of genus g over an algebraically closed field K that is
complete with respect to a non-archimedean valuation. Let R be the valuation ring
of K with maximal ideal m, and let k WD R=m be its residue field. We associate
to X its abstract tropicalization: the dual weighted metric graph 	 of the special
fibre of a semistable model of X. Finding the abstract tropicalization of a general
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curve is difficult and there is no known algorithm; see [13, Remark 3]. In this paper,
we solve this problem for hyperelliptic curves and discuss strategies for finding
abstract tropicalizations of all curves.

Given a weighted metric graph 	 , we compute its period matrix Q	 , which
corresponds to the tropical Jacobian of the curve X. By taking the Voronoi
decomposition dual to the Delaunay subdivision associated to Q	 , we obtain the
tropical theta divisor. This process can also be inverted. The set of period matrices
that arise as the tropical Jacobian of a curve is the tropical Schottky locus. Starting
with a principally polarized tropical abelian variety whose period matrix Q is known
to lie in the tropical Schottky locus, we give a procedure to compute a curve whose
tropical Jacobian corresponds to Q.

This process of associating a tropical Jacobian to a curve can also be accom-
plished via the classical Jacobian. Jacobians of curves are principally polarized
abelian varieties; among all abelian varieties, they are the most extensively studied.
Both algebraic curves and abelian varieties have extremely rich geometries. Jaco-
bians provide a link between such geometries and often reveal hidden features of
algebraic curves. To associate a tropical Jacobian to a complex algebraic curve X,
one first constructs its classical Jacobian J.X/ WD H0.X; !X/

�=H1.X;Z/, where
!X denotes the cotangent bundle of the curve. This complex torus admits a natural
principal polarization �, called the theta divisor, such that the pair

(
J.X/;�

)
is a

principally polarized abelian variety. We can then obtain the tropical Jacobian by
taking the Berkovich skeleton of the classical Jacobian. Baker–Rabinoff [9] and
Viviani [37] independently prove that this alternative path gives the same result as
ours. However, the classical process conceals computational difficulties and proves
much more challenging to carry out in explicit examples. Methods are implemented
in the Maple package algcurves [16] for computing Jacobians numerically over C.

The structure of this paper is depicted in Fig. 1. Dashed arrows indicate steps
which are not yet algorithmic. In Sect. 2, we find the abstract tropicalization of
all hyperelliptic curves. Section 3 discusses issues with embedded tropicalizations,
states some known results about certifying the faithfulness of an embedded tropical-
ization, and outlines the process of semistable reduction. This step of the procedure
is far from being algorithmic, and this section focuses on examples which illustrate

Fig. 1 The process of
associating a tropical
Jacobian to a curve

Curve X

Weighted Metric Graph G

Period Matrix Q

Tropical Jacobian and Theta Divisor (J,Q)

Hyperelliptic
Curves
Sect. 2

All Curves
Sect. 3

Sect. 4

Sect. 5Sect. 7.1

Sect. 7.2

Sect. 7.3
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obstacles. In Sect. 4, we describe how to find the period matrix of a weighted
metric graph. We then define and give examples of the tropical Jacobian and its
theta divisor in Sect. 5. In Sect. 6, we discuss the tropical Schottky problem. Finally,
Sect. 7 describes the challenges in reversing this process.

2 Hyperelliptic Curves

This section finds the abstract tropicalization of hyperelliptic curves. For
elliptic curves, the tropicalization can be completely described in terms of the
j-invariant [24]. Similarly, tropicalizations of genus 2 curves (all of which are
hyperelliptic) can be described by tropical Igusa invariants [22]. This problem was
also solved in genus 2 by studying the curve as a double cover of P

1 ramified at
six points; see [34, Sect. 5]. In this section, we generalize the latter method to find
tropicalizations of all hyperelliptic curves. Let X be a nonsingular hyperelliptic
curve of genus g over K, an algebraically closed field which is complete with
respect to a nontrivial non-archimedean valuation. Our goal is to find 	 , the
abstract tropicalization of X.

Let Mg;n be the moduli space of genus g curves with n marked points; see [23].
The space M0;2gC2 maps surjectively onto the hyperelliptic locus inside Mg by
identifying each hyperelliptic curve of genus g with a double cover of P

1 ramified at
2gC2marked points. In characteristic other than 2, the normal form for the equation
of a hyperelliptic curve is y2 D f .x/; where f .x/ has degree 2g C 2, and the roots
of f are distinct. The roots of f correspond to the ramification points of the double
cover.

The space Mtrop
0;2gC2 is the tropicalization of M0;2gC2. A phylogenetic tree is a

metric tree with leaves labelled f1; 2; : : : ;mg and no vertices of degree 2. Such a
tree is determined by the distances di;j between the leaves. Following [26, Chap. 4.3],
we see that Mtrop

0;2gC2 parametrizes the space of phylogenetic trees with 2gC 2 leaves
using the Plücker embedding to map M0;2gC2 into the Grassmannian Gr.2;K2gC2/:

{
.ai W bi/ W 1 � i � 2gC 2

}
7! .p1;2 W p1;3 W � � � W p2gC1;2gC2/ where pi;j D aibj � ajbi:

As in [34, Sect. 5], the distances are di;j D �2 val.pi;j/C n for a suitable constant n.
Using the Neighbour Joining Algorithm [33, Algorithm 2.41] , one can construct the
unique tree, along with the lengths of its interior edges, using only the leaf distances
di;j as input. Since the lengths of leaf edges can only be defined up to adding a
constant length to each leaf, we think of this tree as a metric graph where the leaves
have infinite length and the interior edges have prescribed lengths. This process

realizes Mtrop
0;2gC2 as a .2g�1/-dimensional fan inside TP

.2gC2
2 /�1; see [26, Sect. 2.5].

The space Mtrop
0;2gC2 can be computed as a tropical subvariety of TP

.2gC2
2 /�1, because

it has a tropical basis given by the Plücker relations for Gr.2;K2gC2/; see [26,
Chap. 4.4]. Each cone corresponds to a combinatorial type of tree and the dimension
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Fig. 2 The poset of unlabelled trees with eight leaves

of each cone corresponds to the number of interior edges in the tree; see Fig. 2 in
the case g D 3. The next step is to take the corresponding point in Mtrop

0;2gC2, as a tree
on 2gC 2 leaves, and compute a weighted metric graph in Mtrop

g ; again see Fig. 2.
To describe this correspondence for general g, we collect some definitions related

to metric graphs; compare with [12].

Definition 2.1 A metric graph is a metric space 	 , together with a graph G and
a length function `WE.G/ ! R>0 [ f1g such that 	 is obtained by gluing
intervals e of length `.e/, or by gluing rays to their endpoints, according to
how they are connected in G. In this case, the pair .G; `/ is a model for 	 . A
weighted metric graph is a metric graph 	 with a weight function on its points
w W 	 ! Z�0, such that

∑
v2	 w.v/ is finite.

Edges of infinite length are infinite leaves, and these only meet the rest of the
graph in one endpoint. A bridge is an edge whose deletion increases the number of
connected components. The genus of a weighted metric graph .	;w/ is

∑

v2	

w.v/C jE.G/j � jV.G/j C 1 ;

where G is any model of 	 . Two weighted metric graphs of genus at least 2 are
isomorphic if one can be obtained from the other via graph automorphisms, or by
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removing infinite leaves or leaf vertices v with w.v/ D 0, together with the edge
connected to it. In this way, every weighted metric graph has a minimal skeleton.

A model is loopless if there is no vertex with a loop edge. The canonical loopless
model of 	 , with genus at least 2, is the graph G with vertices

V.G/ WD

®
x 2 	 W

valence of x is at least 2, w(x) > 0,
or x is the midpoint of a loop

´
:

If .G; `/ and .G0; `0/ are loopless models for the metric graphs 	 and 	 0, then
a morphism of loopless models 'W .G; `/ ! .G0; `0/ is a map V.G/ [ E.G/ !
V.G0/ [ E.G0/ of sets such that

• all vertices of G map to vertices of G0;
• if e 2 E.G/ maps to v 2 V.G0/, then the endpoints of e also map to v;
• if e 2 E.G/ maps to e0 2 E.G0/, then the endpoints of e map to vertices of e0;
• infinite leaves in G map to infinite leaves in G0; and
• if '.e/ D e0, then `0.e0/=`.e/ is an integer. (These integers must be specified if

the edges are infinite leaves.)

An edge e 2 E.G/ is vertical if ' maps e to a vertex of G0. The morphism ' is
harmonic if, for all v 2 V.G/, the local degree

dv WD
∑

eWv2e
'.e/De0

`0.e0/

`.e/

is the same for all choices of e0 2 E.G0/. If the local degree is positive, then ' is
nondegenerate. The (global) degree of a harmonic morphism is defined as

∑

e2E.G/
'.e/De0

`0.e0/

`.e/
:

We also say that ' satisfies the local Riemann–Hurwitz condition if:

2 � 2w.v/ D dv
Ä
2 � 2w0

(
'.v/

)ä
�

∑

eWv2e

`0
(
'.e/

)

`.e/
� 1 :

If ' satisfies this condition at every vertex v in the canonical loopless model of 	 ,
then ' is called an admissible cover [14].

Definition 2.2 ([12, Theorem 1.3]) Let 	 be a weighted metric graph, and let
.G; `/ denote its canonical loopless model. We say that 	 is hyperelliptic if there
exists a nondegenerate harmonic morphism of degree 2 from G to a tree.

A hyperelliptic curve will always tropicalize to a hyperelliptic weighted metric
graph, however not every hyperelliptic weighted metric graph is the tropicalization
of a hyperelliptic curve.
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Theorem 2.3 ([1, Corollary 4.15]) If 	 is a minimal weighted metric graph of
genus at least 2, then there is a smooth proper hyperelliptic curve X of genus g
having 	 as its minimal skeleton if and only if 	 is hyperelliptic and, for all p 2 	 ,
the number of bridge edges adjacent to p is at most 2w.p/C 2.

Lemma 2.4 and its proof give an algorithm for taking a tree with 2gC 2 infinite
leaves and obtaining a metric graph which is an admissible cover of the tree.

Lemma 2.4 Every tree T with 2gC 2 infinite leaves has an admissible cover ' by
a unique hyperelliptic metric graph 	 of genus g, and ' is harmonic of degree 2.

Proof Let T be a tree with 2g C 2 infinite leaves. If all infinite leaves are deleted,
then a finite tree T 0 remains. Let v1; v2; : : : ; vk be the vertices of T 0, ordered such
that, for i < j, the distance from vi to vk is at least the distance from vj to vk.

We construct 	 iteratively by building the preimage of each vertex vi, asserting
along the way that the local Riemann–Hurwitz condition holds. We begin with v1,
which has a positive number n1 of leaf edges in T . Since ' has degree 2, it must
be locally of degree 1 or 2 at every vertex of 	 . Since the preimage of an infinite
leaf must be an infinite leaf, attach n1 infinite leaves at the preimage '�1.v1/ in 	 .
At any vertex in 	 with infinite leaves, the morphism ' has local degree 2, so we
attach to 	 an infinite leaf e such that `.'.e//=`.e/ D 2. There is a unique vertex
in the preimage '�1.v1/; otherwise, there would need to be another edge in the
preimage of each leaf, so the degree of the morphism would be greater than 2. Let
e1 be the edge connecting v1 to some other vi. There are two possibilities:

1. The preimage of e1 is two edges in 	 , each with length `.e1/, and the local
Riemann–Hurwitz equation is 2 � 2w

(
'�1.v1/

)
D 2.2 � 0/ � .n1 C 0 C 0/,

which is only possible if n1 is even and '�1.v1/ has weight .n1 � 2/=2.
2. The preimage of e1 is one edge in 	 , with length `.e1/=2, and the local Riemann–

Hurwitz equation is 2�2w.'�1.v1// D 2.2�0/�.n1C1/, which is only possible
if n1 is odd, and '�1.v1/ has weight .n1 � 1/=2.

Now, we proceed to the other vertices. As long as the order of the vertices is
respected, at each vertex vi, there will be at most one edge ei whose preimage in 	
we do not know. What happens at vi is determined by the local Riemann–Hurwitz
data. For i > 1, let ni be the number of infinite leaves at vi plus the number of edges
e 2 T such that e D fvi; vjg, with j < i, and '�1.e/ is a bridge in 	 . If ni > 0, then
one of the two above possibilities holds. However, it is possible that ni D 0, which
yields the third possibility:

3. If ni D 0 and v0
i 2 '

�1.vi/, then the local Riemann–Hurwitz equation becomes
2 � 2w.v0

i/ D dvi.2 � 0/ � .0/. It follows that dvi D 1 and w.v0
i/ D 0, which

implies that there are two vertices in '�1.vi/.

Finally, we glue the pieces of 	 as specified by T , and contract the leaf edges
on 	 . The fact that 	 has genus g is a consequence of the local Riemann–Hurwitz
condition. ut
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v3 v4 v5

1

v6 v7v1
v2

T

j

G

Fig. 3 The tree T and the hyperelliptic weighted metric graph 	 that admissibly covers it

This process did not require a tree with an even number of leaves. Applying this
procedure for a tree with an odd number of leaves one obtains a hyperelliptic metric
graph. However, this graph is not the tropicalization of a hyperelliptic curve.

Example 2.5 A tree with vertices labelled v1; v2; : : : ; v7 appears in Fig. 3. Begin-
ning with v1, we observe that n1 D 2, which means that the edge from v1 to v3 has
two edges in its preimage. The same is true for v2. Moving on to v3, we see that
n3 D 0, so v3 has two points in 	 which map to it. We can connect the edges from
'�1.v1/ and '�1.v2/ to the two points in '�1.v3/. Since '�1.v3/ consists of two
points, the edge from v3 to v4 corresponds to two edges in 	 . Since n4 D 2, the
edge from v4 to v5 also splits. Next, we have n5 D 1, which means that the edge
from v5 to v6 corresponds to a bridge in 	 . As n6 D 4, the edge v6 to v7 splits,
and the vertex mapping to v6 has genus 1. Lastly, we have n7 D 2, so the point
mapping to v7 has genus 0. All edges depicted in the image have the same length as
the corresponding edges in the tree, except for the bridge, which has length equal to
half the length of the corresponding edge in the tree.

The next theorem shows that the metric graph from Lemma 2.4 is the tropicaliza-
tion of a hyperelliptic curve.

Theorem 2.6 Fix a positive integer g. Let X be a hyperelliptic curve of genus g,
given by the double cover of P

1 ramified at 2g C 2 points p1; p2; : : : ; p2gC2. If
T is the tree corresponding to the tropicalization of P

1 with the marked points
p1; p2; : : : ; p2gC2, and 	 is the unique hyperelliptic weighted metric graph that
admits an admissible cover to T, then 	 is the abstract tropicalization of X.

Proof This follows from Remark 20 and Theorem 4 in [14]. The hyperelliptic locus
of Mg is the space Hg!0;2

(
.2/2gC2

)
of admissible covers with 2gC 2 ramification

points of order 2. The space H
an
g!0;2

(
.2/2gC2

)
is the Berkovich analytification of

Hg!0;2

(
.2/2gC2

)
, so a point X is represented by an admissible cover with 2g C 2

ramification points of order 2. By Theorem 4 in [14], the diagram

M
an

H
an

(2) M
an
g

M
trop

H
trop (2) M

trop
g

trop

bran src an

trop trop

br trop srctrop

0,2g+2

0,2g+2

2g+2

2g+2
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Fig. 4 This is the tree and
metric graph for Problem 2
on curves

1

1
1

r1

r2

r5
r3

r6

r4

2

2

2

commutes. The morphisms src take a cover to its source curve, marked at the entire
inverse image of the branch locus, and the morphisms br take a cover to its base
curve, marked at its branch points. Starting with an element X of H

an
g!0;2

(
.2/2gC2

)
,

we seek trop
(
srcan.X/

)
2 M

trop
g . Lemma 2.4 enables us to find an inverse for

brtrop. If T D trop.bran.X//, then the commutativity of the diagram establishes that
trop

(
srcan.X/

)
D srctrop

(
.brtrop/�1.T/

)
D 	 . ut

Example 2.7 ([36, Problem 2 on Curves]) Consider the curve

y2 D .x � 1/.x � 2/.x � 3/.x � 6/.x � 7/.x � 8/

with the 5-adic valuation. In Mtrop
0;6 , this gives us the point

.p1;2; p1;3; : : : ; p5;6/ D .0; 0; 1; 0; 0; 0; 0; 1; 0; 0; 0; 1; 0; 0; 0/ :

When n is any integer, this gives us a tree metric with distances given by

.d1;2; d1;3; : : : ; d5;6/ D .n; n; n � 2; n; n; n; n; n � 2; n; n; n; n � 2; n; n; n/ :

This is a metric for the tree on the left of Fig. 4 and the metric graph on the right.

3 Other Curves

Beyond the hyperelliptic case, finding the abstract tropicalization of a curve is
very hard. In this section, we highlight some of the difficulties and discuss two
approaches to this problem: faithful tropicalization and semistable reduction. We
offer the following example as an illustration of the difficulties.

Example 3.1 ([36, Problem 9 on Abelian Combinatorics]) Consider the curve in P
2

given by the zero locus of

f .x; y; z/ D 41x4 C 1530x3yC 3508x3zC 1424x2y2 C 2490x2yz�

2274x2z2 C 470xy3 C 680xy2z � 930xyz2 C 772xz3C

535y4 � 350y3z � 1960y2z2 � 3090yz3 � 2047z4 ;
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defined over Q2. The induced regular subdivision of the Newton polygon will be
trivial because the 2-adic valuation of the coefficients on the x4, y4, z4 terms is 0.
Therefore, no information about the structure of the abstract tropicalization can
be detected from this embedded tropicalization. In Example 3.4, we pick another
coordinate system that allows us to find a faithful tropicalization.

Faithful Tropicalization To discuss the Berkovich skeleton of a curve, consider
an algebraically closed field K that is complete with respect to a nontrivial non-
archimedean valuation, and let X be a nonsingular curve defined over K. The
Berkovich analytification Xan is a topological space whose underlying set consists
of all multiplicative seminorms on the coordinate ring KŒX� that are compatible
with the valuation val on K; see [5]. It has the coarsest topology such that, for all
f 2 KŒX�, the map sending a seminorm j � j to jf j is continuous; this is different from
the metric structure, see [7, Sect. 5.3]. When X is a smooth proper geometrically
integral curve of genus greater than or equal to 1, the space Xan has a strong
deformation retraction onto finite metric graphs called skeletons of Xan, and there
is a unique minimal skeleton; see [4].

The minimal skeleton of the Berkovich analytification is the same metric graph
as the dual graph of the special fibre of a stable model of a curve X. Suppose
that iWX ,! A

n is an embedding of X and the polynomials f1; f2; : : : ; fm generate
the ideal of the image. Let trop.X; i/ denote the embedded tropicalization; details
including how to find the metric on trop.X; i/ can be found in [26]. The Berkovich
analytification is related to embedded tropicalizations as follows.

Theorem 3.2 ([30, Theorem 1.1]) If X is an affine variety over K, then there is a
homeomorphism Xan ! lim

 �
trop.X; i/.

The homeomorphism is given by the inverse limit of maps 
iWXan ! A
m defined

by 
i.x/ D
(
� log jf1jx;� log jf2jx; : : : ;� log jfmjx

)
, where j � jx denotes the norm

corresponding to the point x 2 Xan. The image of this map is equal to trop.X; i/.
Given one embedded tropicalization, we want to extract information about the

Berkovich skeleton. In some cases, the embedded tropicalization contains enough
information to recover the structure of the skeleton of Xan. Identifying these cases is
the problem of certifying faithfulness; see [8, Subsect. 5.23].

Theorem 3.3 Let X be a smooth curve in P
n
K

of genus g. If dim H1

(
trop.X/;R

)
D g,

all vertices of trop.X/ 	 R
nC1=R1 are trivalent, and all edges have multiplicity 1,

then the minimal skeleta of trop.X/ and Xan are isometric. In particular, if X is
a smooth curve in P

2
K

whose Newton polygon and subdivision form a unimodular
triangulation, then the minimal skeleta of trop.X/ and Xan are isometric.

Proof This follows from a result of Baker, Payne, and Rabinoff [8, Corollary 5.2.8]
who assume that all vertices of trop.X/ 	 R

nC1=R1 are trivalent, all edges have
multiplicity 1, ˙ has no leaves, and dim H1.trop.X/;R/ D dim H1.˙;R/. We are
detecting information about the minimal skeleton ˙ of Xan, so we may ignore their
hypothesis on ˙ . Thus, we have that g � dim H1.˙;R/ � dim H1

(
trop.X/;R

)
.

When g D dim H1

(
trop.X/;R

)
, we also have g D dim H1.˙;R/. Furthermore, it is

only possible that ˙ has leaves when g > dim H1.˙;R/. ut
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1 1
3 3

3

6

Fig. 5 The Newton polygon from Example 3.4 together with its unimodular triangulation on the
left, the embedded tropicalization in the centre, and the metric graph on the right

Fig. 6 The Newton polygon
from Example 3.5 with its
regular subdivision on the left,
and the embedded
tropicalization on the right

The next example illustrates how to apply Theorem 3.3 to find the metric graph
of the curve given in Problem 9.

Example 3.4 (Problem 9 continued) If x WD 1
12

X C 1
2
Y � 1

12
Z, y WD 1

2
X � 1

2
Y , and

z WD � 5
12

X � 1
12

Z, then we obtain

0 D �256X3Y � 2X2Y2 � 256XY3 � 8X2YZ � 8XY2Z � XYZ2 � 2XZ3 � 2YZ3:

We calculate the regular subdivision of the Newton polygon in polymake [21],
weighted by the 2-adic valuations of the coefficients. The embedded tropicalization
and corresponding metric graph, with edge lengths, are depicted in Fig. 5. Since all
vertices are trivalent, all edges have multiplicity 1, and dim H1

(
trop.X/;R

)
D 3,

Theorem 3.3 establishes that this is the abstract tropicalization of the curve.
We offer another example to illustrate some of the shortcomings of Theorem 3.3.

One ultimately needs to use semistable reduction to solve the problem in this case.

Example 3.5 Consider the curve X in P
2 over the Puiseux series field Cfftgg defined

by xyz2 C x2y2 C 29t.xz3 C yz3/C 17t2.x3yC xy3/ D 0. Tropicalizing X with this
embedding, we obtain the embedded tropicalization in Fig. 6. Since this is not a
unimodular triangulation, Theorem 3.3 does not allow us to draw any conclusions.
However, the next subsection shows that this is a faithful tropicalization.

Semistable Reduction If we fail to certify the faithfulness of a tropicalization,
then we find the metric graph 	 by taking the dual graph of the special fibre of
a semistable model for X; see [7]. To this end, we outline the process of finding the
semistable model of a curve X.

Let X be a reduced nodal curve over K. For each irreducible component C of
X, let 'WeC ! C be the normalization of C. The curve X is semistable if every
smooth rational component meets the rest of the curve in at least two points, or
every component of eC has at least two points x such that '.x/ is a singularity in
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Fig. 7 Illustrations of the special fibres in Example 3.7

X. If R is the valuation ring of K, then the scheme Spec.R/ contains two points:
one corresponding to the zero ideal .0/ and another corresponding to the maximal
ideal m of R. If X is a scheme over Spec.R/, we call the fibre of the the point
corresponding to .0/ the generic fibre, and the fibre over the point corresponding to
m the special fibre.

Definition 3.6 If X is any finite type scheme over K, then a model for X is a flat and
finite type scheme X over R whose generic fibre is isomorphic to X. This model is
semistable if the special fibre Xk D X �R k is a semistable curve over k WD R=m.
The Semistable Reduction Theorem shows that X always admits a semistable model.
However, the proofs of this theorem only contain hints towards an algorithmic
approach; see [15] and [3].

Given a model for X, we now describe a procedure for finding a semistable model;
see [23]. The first step is to blow up the total space X , removing any singularities
in the special fibre, to arrive at a family whose special fibre is a nodal curve. At this
point, our work is not yet done because the resulting curve may be nonreduced.

Example 3.7 (Example 3.5 continued) The special fibre is a conic with two tangent
lines, depicted in Fig. 7a. We denote the conic by C and the two lines by l1 and
l2. By blowing up the total space at the point p1, the result, depicted in Fig. 7b, is
that l1 and C are no longer tangent, but they do intersect in the exceptional divisor
e1. The exceptional divisor e1 has multiplicity 2, coming from the multiplicity of
the point p1. In the figures, we encode the multiplicities of the components by their
thickness. Next, we blow up the total space at the point labelled p0

1 to get Fig. 8a.
The new exceptional divisor e0

1 has multiplicity 4, and the curves l1 and C no longer
intersect. All points except l2 \ C are either smooth or have nodal singularities, so
blowing up these two points gives the configuration in Fig. 8b.

To eliminate the nonreduced components in the special fibre, we make successive
base changes of prime order p. Explicitly, we take the pth cover of the family
branched along the special fibre. If D is a component of multiplicity q in the special
fibre, either p does not divide q, in which case D is in the branch locus, or else we
obtain p copies of D branched along the points where D meets the branch locus, and
the multiplicity is reduced by 1=p.
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Fig. 8 More illustrations of the special fibres in Example 3.7
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Fig. 9 Illustrations of the special fibres in Example 3.8

Fig. 10 The special fibre of
the semistable model

C
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e ′
1 e ′

2

Example 3.8 (Example 3.5 continued) We must make two base changes of order 2.
Starting with Fig. 8b, we see that l1, l2, and C are in the branch locus. The curves
e0
1 and e0

2 are replaced by their respective double covers branched at two points,
which is again a rational curve. We continue to call these e0

1 and e0
2, and they each

have multiplicity 2. The curves e1 and e2 are disjoint from the branch locus, so each
one is replaced by two disjoint rational curves. The result is depicted in Fig. 9a. In
the second base change of order 2, all components except e0

1 and e0
2 are in the branch

locus. The curves e0
1 and e0

2 each meet the branch locus in four points, which, by the
Riemann–Hurwitz theorem, means they will be replaced by genus 1 curves. The
result is depicted in Fig. 9b.

The last step is to blow down all rational curves which meet the rest of the fibre
exactly once, depicted in Fig. 10. This gives us a semistable model of X.
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Fig. 11 The metric graph
from Example 3.10

2

1

1

1

Weighted Metric Graphs From a faithful tropicalization, the abstract tropicaliza-
tion of a curve X is obtained simply by taking the minimal skeleton of trop.X/. Given
a semistable model X of X, this coincides with the dual graph of Xk; see [7].

Definition 3.9 Let C1;C2; : : : ;Cn be the irreducible components of Xk, the special
fibre of a semistable model of X. The dual graph G of Xk has vertices vi

corresponding to the components Ci with w.vi/ D g.Ci/, and an edge ei;j between
vi and vj if the corresponding components Ci and Cj intersect in a node q. The
completion of the local ring OX ;q is isomorphic to RŒŒx; y��=.xy � f /, where R
is the valuation ring of K, and f lies the maximal ideal m of R, so we define
`.ei;j/ D val.f /.

Example 3.10 (Example 3.5 continued) Taking the dual graph of the semistable
model described in the previous subsection, we obtain a cycle with two vertices of
weight 1. Hence, Theorem 5.24 in [8] shows that the cycle arising from embedded
tropicalization was a faithful tropicalization. Hence, the metric graph is as depicted
in Fig. 11. Since the vertices corresponding to l1 and l2 each have valence 2, we do
not depict these in the model in Fig.11.

4 Period Matrices of Weighted Metric Graphs

A weighted metric graph 	 WD .G;w; `/ is a triple consisting of a metric graph G, a
function w on V.G/ assigning nonnegative weights to the vertices, and a function `
on E.G/ assigning positive lengths to the edges. Given a weighted metric graph 	 ,
we describe a procedure to compute its period matrix, following [6, 11, 28].

Fix an orientation of the edges of G. For any edge e 2 E.G/, let s.e/ denote
the source vertex and let t.e/ denote the target vertex. The spaces of 0-chains and
1-chains of G with coefficients in Z are defined as

C0.G;Z/ D
¶ ∑

v2V.G/

av v W av 2 Z

©
; and C1.G;Z/ D

¶ ∑

e2E.G/

ae e W ae 2 Z

©
:

The module C1.G;Z/ is equipped with the inner product

¨ ∑

e2E.G/

ae e;
∑

e2E.G/

be e
∂
WD

∑

e2E.G/

ae be `.e/ :
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The boundary map @WC1.G;Z/! C0.G;Z/ acts linearly on 1-chains by mapping an
edge e to t.e/�s.e/. To change the coefficients, we tensor this map with the relevant
commutative ring, so Ci.G;R/ WD Ci.G;Z/˝Z R for 0 � i � 1. The kernel of this
map is the first homology group H1.G;Z/ of G, whose rank is g.G/ D jE.G/j �
jV.G/j C 1. Let jwj WD

∑
v2V.G/ w.v/, and let g WD g.G/ C jwj be the genus of

	 . Consider the positive semidefinite form Q	 on H1.G;Z/˚Z
jwj, which vanishes

on the second summand Z
jwj and is defined on H1.G;Z/ by Q	

(∑
e2E.G/ ˛e e

)
WD

∑
e2E.G/ ˛

2
e `.e/.

Definition 4.1 If !1; !2; : : : ; !g.G/ is a basis of H1.G;Z/, then we identify the free
module H1.G;Z/˚Z

jwj with Z
g. In this situation, we may express Q	 as a positive

semidefinite g � g matrix, called the period matrix of 	 . Choosing a different basis
gives another matrix related by an action of GL.g;Z/.

To calculate the period matrix of a given weighted metric graph 	 , fix an
arbitrary orientation of the edges of the underlying graph G and choose a spanning
tree T of G. Set m WD jE.G/j. Label the edges of G such that e1; e2; : : : ; eg.G/ are
not in the spanning tree T , and eg.G/C1; eg.G/C2; : : : ; em are. It follows that each
subgraph T [ feig, for 1 � i � g.G/, contains a unique cycle !i in G, and the
cycles !1; !2; : : : ; !g.G/ form a basis of the lattice H1.G;Z/. Traverse each cycle
! i in the direction specified by ei. Consider the vector bi 2 Z

m representing the
cycle ! i:

jth entry of bi WD

⎧
⎨

⎩

1 if ej belongs to !i and has the same orientation,
0 if ej does not belong to !i;

�1 if ej belongs to !i and has the opposite orientation.

Let B be the
(
g.G/ � m

)
-matrix whose ith row is bi. The matrix B is the totally

unimodular matrix representing the cographic matroid of G; see [29]. Suppose
that all vertices in G have weight zero, so that g.G/ D g. If D is the diagonal
.m � m/-matrix with nonzero entries `.e1/; `.e2/; : : : ; `.em/, then the period matrix
is Q	 WD BDBT. If we label the columns of B by u1; u2; : : : ; um, the period matrix
equals Q	 D `.e1/u1uT

1 C `.e2/u2uT
2 C � � � C `.em/umuT

m. Thus, the cone of all
matrices that are period matrices of G, allowing the edge lengths to vary, is the
rational open polyhedral cone �G WD R>0hu1uT

1 ; u2u
T
2 ; : : : ; umuT

mi. Finally, if 	 has
vertices of nonzero weight, then the period matrix is given by the same construction
with g � g.G/ additional rows and columns with zero entries.

Example 4.2 Consider the complete graph on four vertices in Fig. 12. We indicate in
the figure an arbitrary choice of the edge orientations. If we choose the spanning tree
T consisting of the edges fe4; e5; e6g, then the corresponding cycle basis is !1 WD
e1 C e5 C e4, !2 WD e2 C e6 � e5, and !3 WD e3 � e4 � e6, which yields

B D

⎡

⎣
1 0 0 1 1 0

0 1 0 0 �1 1

0 0 1 �1 0 �1

⎤

⎦ :
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Fig. 12 The metric graph
and edge orientation used in
Example 4.2
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Hence, the period matrix is

Q	 D B

⎡

⎣
2 0 0 0 0 0
0 5 0 0 0 0
0 0 3 0 0 0
0 0 0 13 0 0
0 0 0 0 7 0
0 0 0 0 0 11

⎤

⎦BT D

⎡

⎣
22 �7 �13

�7 23 �11

�13 �11 27

⎤

⎦ :

5 Tropical Jacobians

In this section, we use period matrices to define and study tropical Jacobians of
curves as principally polarized tropical abelian varieties.

Let Sg
C be the set of symmetric positive semidefinite .g�g/-matrices with rational

nullspace (their kernels have bases defined over Q). The group GL.g;Z/ acts on
Sg

C by the map that sends .X;Q/ 2 GL.g;Z/ � Sg
C to XTQX. For any weighted

metric graph 	 of genus g, the period matrix Q	 belongs to Sg
C. A tropical torus

of dimension g is the quotient X D R
g=�, where � is a lattice of rank g in R

g. A
polarization on X is given by a quadratic form Q on R

g. Following [6, 11], the pair
.Rg=�;Q/ is called a principally polarized tropical abelian variety whenever Q 2
Sg

C. Two principally polarized tropical abelian varieties are isomorphic if there is
some X 2 GL.g;R/ that maps one lattice to the other, and sends one quadratic form
to the other. By choosing a representative of each isomorphism class of .Rg=Zg;Q/,
we obtain the moduli space Atrop

g of principally polarized tropical abelian varieties.
The structure of Atrop

g is described in Sect. 6.

Definition 5.1 The tropical Jacobian of a curve is the principally polarized tropical
abelian variety .Rg=Zg;Q/, where Q is the period matrix of the curve.

The period matrix also induces a Delaunay subdivision of R
g which gives rise to

the tropical theta divisor on the tropical Jacobian. To be more explicit, fix Q 2 Sg
C

and consider the map  QWZ
g �! Z

g � R defined by x 7! .x; xTQx/. By taking the
convex hull of the image of  Q in R

g � R Š R
gC1 and projecting away from the

last coordinate, we obtain a periodic decomposition of the lattice Z
g 	 R

g, called
the Delaunay subdivision of Q. Naively, this operation corresponds to looking at
the polyhedron from below and recording the visible faces on the lattice. This is an
infinite periodic analogue of the regular subdivision of a polytope. The tropical theta
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Fig. 13 Convex hull and Delaunay subdivision for the quadratic form in Example 5.2

Fig. 14 Delaunay decompositions of R
2 and their associated Voronoi decompositions

divisor on a principally polarized tropical abelian variety .Rg=�;Q/ is the tropical
hypersurface of the theta function

�WRg ! R where �.x/ D max�2�

{
�TQx � 1

2
�TQ�

}
:

Example 5.2 For Q WD
[
1 0
0 0

]
2 S2C, the function  QWZ

2 ! Z
2 � R is given by

.x; y/ 7! .x; y; x2/. The lower faces of the convex hull of the image of  Q appear on
the left of Fig. 13, and the associated Delaunay subdivision appears on the right.

Dualizing the Delaunay subdivision produces the Voronoi decomposition. For
g D 2, we illustrate a few Delaunay subdivisons (with solid lines) together with
their associated Voronoi decomposition (with dotted lines) in Fig. 14.

As with algebraic curves, there is a natural map from a tropical curve to its
tropical Jacobian. Let 	 WD .G;w; `/ be a weighted metric graph, let p0 2 	

be a fixed basepoint, and let !1; !2; : : : ; !g be a basis of H1.G;Z/. For any point
p in 	 , we encode a path from p0 to p by a divisor c.p/ D

∑
i aiei, where the

coefficient ai 2 Z records the orientation (and number of occurrences) of the edge
ei in the given path. By identifying the tropical torus R

g=� with our chosen cycle
basis, we obtain the tropical Abel–Jacobi map �W	 ! R

g=� which sends p 2 	
to

(
hc.p/; !1i; hc.p/; !2i; : : : ; hc.p/; !gi

)
; see [28]. This map is independent of the
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Fig. 15 The left shows the Delaunay subdivision by tetrahedra and a dual permutohedron in grey
and the right illustrates a tiling of R

3 by permutohedra

choice of path from p0 to p and extends linearly to a map on all divisors on 	 . The
degree of a tropical divisor D D

∑
i ai pi is

∑
i ai 2 Z. Moreover, a tropical divisor

D D
∑

i ai pi is effective if ai � 0 for all i. Let Wg�1 be the image of effective
divisors of degree g � 1 under the tropical Abel–Jacobi map.

Theorem 5.3 ([28, Corollary 8.6]) The set Wg�1 is the tropical theta divisor up to
translation.

Example 5.4 (Example 4.2 continued) The polyhedral [17] package in GAP [20]
show that the fundamental region of the Delaunay subdivision for the quadratic
form in Example 4.2 consists of six tetrahedra in the unit cube which share the main
diagonal as an edge. The associated Voronoi decomposition gives a tiling of R

3

by permutohedra; see Fig. 15. The tropical theta divisor has f -vector .6; 12; 7/. In
Fig. 16, we illustrate the correspondence between W2 and the tropical theta divisor.
Each vertex of the permutohedron corresponds to a divisor supported on the vertices
of 	 . The square faces correspond to divisors supported on the interiors of edges of
	 that do not meet in a vertex. Each hexagonal face corresponds to a divisor that is
supported on edges of 	 and is adjacent to a fixed vertex. The edges correspond to
keeping one point of the divisor fixed, and moving the other point along an edge of
	 . The curves depicted above represent the embedding of 	 into its Jacobian under
the Abel–Jacobi map, which is again K4.

6 Tropical Schottky Problem

In this section, we describe the structure of the moduli space Atrop
g using Voronoi

reduction theory. Given a Delaunay subdivision D of R
g, let �D denote the set of all

matrices Q 2 Sg
C that produce the same subdivision. The secondary cone of D is the

Euclidean closure �D of �D in R.
gC1
2 /; it is a closed rational polyhedral cone. The

GL.g;Z/-action on Sg
C extends to an action on the set of secondary cones.
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Fig. 16 Correspondence between W2 and the tropical theta divisor

Theorem 6.1 ([38]) The set of secondary cones forms an infinite polyhedral
GL.g;Z/-periodic decomposition of the cone Sg

C, known as the second Voronoi
decomposition.

As a consequence of this theorem, one may choose Delaunay subdivisions
D1;D2; : : : ;Dk of R

g such that the corresponding secondary cones are representa-
tives for GL.g;Z/-equivalence classes of secondary cones. The moduli space Atrop

g is
a stacky fan whose cells correspond to these classes; see [6, 11]. For each Delaunay
subdivision D, consider the stabilizer Stab.�D/ WD fX 2 GL.g;Z/ W �D �X D �Dg. If
the cell C.D/ WD �D=Stab.�D/ is the quotient of the secondary cone by the stabilizer,
then we have Atrop

g D
⊔k

iD1 C.Di/= �, where we take the disjoint union of the cells
C.D1/;C.D2/; : : : ;C.Dk/ and quotient by the equivalence relation � induced by
GL.g;Z/-equivalence of matrices in Sg

C (which corresponds to gluing the cones).

Example 6.2 For g D 2, we may choose the Delaunay subdivisions D1;D2;D3;D4

as shown in Fig. 17. These have the property that their secondary cones give repre-
sentatives for GL.g;Z/-equivalence classes of secondary cones. The corresponding
secondary cones are

�D1 D

®ñ
aC c �c
�c bC c

ô
W a; b; c 2 R

´
; �D2 D

®ñ
a 0
0 b

ô
W a; b 2 R

´
;
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D1 D2 D3 D4

Fig. 17 Delaunay subdivisions for g D 2

�D3 D

®ñ
a 0
0 0

ô
W a 2 R

´
; �D4 D

®ñ
0 0

0 0

ô´
:

The tropical Torelli map ttrop
g WM

trop
g ! Atrop

g sends a weighted metric graph of
genus g to its tropical Jacobian, which is the element of Atrop

g corresponding to its
period matrix. The image of this map is the tropical Schottky locus. To characterize
this locus, consider the cographic matroid M�.G/ associated to a graph G: it is
representable by the totally unimodular matrix B constructed in Sect. 4; see [29]. The
GL.g;Z/-equivalence class of the corresponding secondary cone �G is independent
of the choice of totally unimodular matrix representing M�.G/. Hence, we associate
to M�.G/ a unique cell C

(
M�.G/

)
of Atrop

g . A matroid is simple if it has no loops and
no parallel elements. We define the following stacky subfan of Atrop

g corresponding
to simple cographic matroids,

Acogr
g WD fC.M/ W M a simple cographic matroid of rank at most gg :

The image of the tropical Torelli map ttrop
g is Acogr

g . We call Acogr
g the tropical Schottky

locus; see [6, 11]. When g � 3, we have Acogr
g D Atrop

g and every element of Sg
C is

a period matrix of a weighted metric graph. However, when g � 4, this inclusion is
proper. For example, computations in [11] show that Acogr

4 has 25 cells while Atrop
4

has 61 cells, and Acogr
5 has 92 cells whereas Atrop

5 has 179,433 cells.

7 : : : and Back

So far, we have a process that produces the tropical Jacobian of a curve given
its defining equations. In this section, we examine whether it is possible to take
a principally polarized tropical abelian variety X in the tropical Schottky locus,
and produce a curve whose tropical Jacobian is precisely X. Several of the steps
described in the previous sections are far from being one-to-one. Many algebraic
curves have the same abstract tropicalization; all curves with a smooth stable model
tropicalize to a single weighted vertex. In the same fashion, the non-injectivity of
the tropical Torelli map implies that the same positive semidefinite matrix can be
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associated to more than one weighted metric graph; see [6, 11]. The purpose of this
section is therefore to construct an arbitrary curve with a given tropical Jacobian.

From Tropical Jacobians to Positive Semidefinite Matrices Let .Rg=�;�/ be
a tropical Jacobian, and fix an isomorphism � Š Z

g. The tropical theta divisor
� corresponds to a Voronoi decomposition dual to a Delaunay subdivision D.
We can describe D by a collection of hyperplanes fH1;H2; : : : ;Hkg such that the
lattice translates by Z

g of these hyperplanes cut out the polytopes in D. Following
[27, Fact 4.1.4] and [19], one may choose these hyperplanes with normal vectors
u1; u2; : : : ; uk 2 R

g such that the matrix with u1; u2; : : : ; uk as its columns is
unimodular. The secondary cone of D is then �D D R>0hu1uT

1 ; u2u
T
2 ; : : : ; ukuT

k i.
Thus, any quadratic form lying in the positive span of the rank-one forms uiuT

i ,
for 1 � i � k, will have the Delaunay subdivision D, so we can take Q D
u1uT

1 C u2uT
2 C � � � C ukuT

k .

From Positive Semidefinite Matrices to Weighted Metric Graphs Fix g � 0 and
let Q be a .g� g/-matrix in Sg

C. If Q is not positive definite, there exists a change of
basis such that Q has a positive definite .g0 � g0/-submatrix and remaining entries
zero. This corresponds to adding jwj D g � g0 weights on the vertices of the graph,
which can be done arbitrarily as long as every weight zero vertex has degree at least
3. Hence, without loss of generality, we assume that Q is positive definite. Our goal
is to determine if Q corresponds to an element of the tropical Schottky locus and, if
so, to find a weighted metric graph that has Q as its period matrix.

Consider all combinatorial types of simple graphs with genus at most g. We
compute their corresponding secondary cones. Let S be the set of these secondary
cones. The polyhedral [17] package in GAP [20] allows one to compute the
secondary cone �Q of Q; the underlying theory is described in [35]. Again, using
the polyhedral package, with external calls to the program ISOM [31, 32], one
may check if �Q is GL.g;Z/-equivalent to any cone in S; see [18, Sect. 4] for
the implementation details. If �Q is not equivalent to any cone in S, then Q is
not the period matrix of a weighted metric graph. Otherwise, there exists a cone
� in S that belongs to the same GL.g;Z/-equivalence class as �Q. Let G be the
graph associated to � , and find a matrix X 2 GL.g;Z/ which maps �Q to �

and sends Q to a matrix Q0 in � . Write �G D R>0hu1uT
1 ; u2u

T
2 ; : : : ; umuT

mi, so
Q0 D ˛1u1uT

1C˛2u2u
T
2C� � �C˛mumuT

m for positive ˛1; ˛2; : : : ; ˛m 2 R. It follows that
Q0 is the period matrix of G with edge lengths ˛1; ˛2; : : : ; ˛m. Since X 2 GL.g;Z/
corresponds to a different choice of cycle basis, we have constructed a metric graph
with Q as its period matrix.

Example 7.1 Consider the positive definite matrix

Q D

⎡

⎢⎢
⎣

17 5 3 5

5 19 7 11

3 7 23 16

5 11 16 29

⎤

⎥⎥
⎦ :
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Fig. 18 Weighted metric
graph in Example 7.1
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Using the polyhedral package, we see that �Q is GL.4;Z/-equivalent to the cone
� 2 S corresponding to the weighted metric graph in Fig. 18, via the transformation

X D

⎡

⎢⎢
⎣

0 0 0 1

1 0 0 0

0 1 1 0

�1 �1 0 0

⎤

⎥⎥
⎦ ; Q0 D XTQX D

⎡

⎢⎢
⎣

26 9 �9 0

9 20 7 �2

�9 7 23 3

0 �2 3 17

⎤

⎥⎥
⎦ :

Hence Q is in the tropical Schottky locus, and Q0 is the period matrix of the metric
graph in Fig. 18, with the cycle basis consisting of e2C e6 � e3, �e1C e6C e7 � e4,
�e1 C e3 C e8 � e5, and e4 C e9 � e5.

Currently, this algorithm is impractical for genus greater than 5, as the classifica-
tion of Delaunay subdivisions is known only up to dimension 5; see [18].

From Weighted Metric Graphs to Algebraic Curves Given a weighted metric
graph 	 , we want to produce equations defining a curve which tropicalizes to 	 .
Any weighted metric graph 	 arises through tropicalization; see [2, Theorem 1.2.1].
Given a smooth curve X with 	 as its tropicalization, there exists a rational map
f WX ! P

3 such that the restriction of trop.f / to the skeleton 	 is an isometry onto
its image; see [9, Theorem 8.2]. Since f is not required to be a closed immersion,
this does not necessarily give a faithful tropicalization, see [9, Remark 8.5].

The paper [10] also studies this question for a specific class of metric graphs.
They give a method for producing curves over C..t1=l//, embedded in a toric scheme
and with a faithful tropicalization to the input metric graph 	 . They start by defining
a suitable nodal curve whose dual graph is a model for 	 , and use deformation
theory to show that the nodal curve can be lifted to a proper flat semistable curve
over R with the nodal curve as its special fibre, which tropicalizes to 	 .

We now describe a procedure for finding a nodal curve over C whose dual graph
is a model for 	 . Let G be a weighted stable graph of genus g with n infinite edges; a
stable graph G is a connected graph such that each vertex of weight zero has valence
at least three. The dual graph of a stable curve is always a stable graph. The original
idea for this procedure is due to Kollár [25], and works in a much more general
setup. Suppose that the stable graph 	 WD .G;w; `/ is such that:

• for each vertex v 2 V.G/, the weight w.v/ is of the form w.v/ D
(d.v/�1

2

)
for

some integer d.v/, and
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• for each two vertices v1; v2 2 V.G/, one has jE.v;w/j � d.v1/d.v2/, where
jE.v1; v2/j denotes the number of edges between v1 and v2.

It follows that every component of G is realizable by a curve in P
2, and it is possible

to achieve the right number of intersection points between every two components.
More precisely, one proceeds as follows:

1. Label the vertices as fv1; v2; : : : ; vng D V.G/. For each 1 � i � n, take a general
smooth plane curve Ci of degree di WD d.vi/.

2. We have now a reducible plane curve C, whose irreducible components are the
curves Ci of degree di and, by the genus–degree formula, of genus w.vi/. Any two
components Ci and Cj intersect in didj points, by Bézout’s formula. We choose
any ki;j D didj � jE.vi; vj/j of those, and set r D

∑
i;j ki;j.

3. Take the blow up X D Blp1;p2;:::;pr P
2 of P

2 at the chosen points p1; p2; : : : ; pr, and
consider the proper transform eC of C in X.

4. The curve X lives in the product P
2 � P

1. Embed X in P
2�3�1 D P

5 via a
Segre embedding, and take the image of eC. This gives a projective curve with
components of the correct genera (as the genus is a birational invariant), and any
two components will intersect precisely at the correct number of points. Hence,
its dual graph will be G.

Example 7.2 Consider the graph in Fig. 19. It has two components of genus 0 and
two components of genus 1, which we realize as a pair of lines and cubics in general
position in P

2. The two lines intersect in a point, the two cubics intersect in nine
points and each cubic will intersect each line in three points. The corresponding
curve arrangement appears in Fig. 20. We blow up eight of the nine intersection
points between the two cubics, because they correspond to edges between the
components of genus 1 in the graph. Moreover, the two components of genus 0
do not share an edge, so the unique intersection point between the two lines must
be blown up, as well as the three intersection points of a chosen cubic with a line,
two out of the three intersection point with the remaining line, and one of the three
intersection points of the first cubic with the second line. In Fig. 20, these points
are marked. The result is a curve in P

2 � P
1 ,! P

5, whose components have the
correct genera and intersect at the correct number of points, and whose equations
can be explicitly computed.

Remark 7.3 The theory shows that it is, in principle, possible to find a smooth
curve over K with a prescribed metric graph as its tropicalization. For certain types

Fig. 19 The weighted graph
discussed in Example 7.2

1

1
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Fig. 20 Arrangement of
curves in P

2

of graphs, more work has been done in this direction; see [10]. Nevertheless, this
problem is far from being solved in full generality in an algorithmic way.
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Tritangent Planes to Space Sextics: The
Algebraic and Tropical Stories

Corey Harris and Yoav Len

Abstract We discuss the classical problem of counting planes tangent to general
canonical sextic curves at three points. We determine the number of real tritangents
when the curve is real. We also revisit a curve constructed by Emch with the greatest
known number of real tritangents and, conversely, construct a curve with very few
real tritangents. Using recent results on the relation between algebraic and tropical
theta characteristics, we show that the tropicalization of a canonical sextic curve has
15 tritangent planes.

MSC 2010 codes: 14T05, 14H50, 14N10, 14P25

1 Introduction

In this article, we study tritangent planes to general sextic curves in three-
dimensional projective space which, in particular, are not hyperelliptic. By general,
we mean that the curve is the intersection of a smooth quadric and a smooth cubic.
A plane in space is determined by three parameters and, when chosen generically,
meets a sextic in six points. Requiring that two contact points coincide to form a
tangent imposes a single condition on the parameters. Therefore, a finite number of
planes are expected to be tangent to the curve at three points. Making this argument
precise and finding the exact number of tritangent planes is more subtle and dates
back to the mid-nineteenth century with the work of Clebsch [11]. Sixty years
later, an understanding of these tritangents was the impetus and principal goal for
Coble [10].
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The tritangent planes to a sextic are closely related with other classical problems
such as the 27 lines on a cubic surface [15, Chapter V.4] and the 28 bitangents to a
quartic curve [12, Chapter 6]. The projection from a general point of a cubic surface
is a double cover of a plane branched along a quartic. The image of each of the
27 lines is bitangent to this quartic with an additional bitangent given by blowing
up the indeterminacy locus of the projection. Quite similarly, a del Pezzo surface
of degree one forms a double cover of a quadric cone, branched along a smooth
sextic of genus 4. The .�1/-curves are mapped to conics, each meeting the sextic
in three points, and the planes containing these conics are tritangent planes—they
have intersection multiplicity two at each of the three points.

In a lecture given by Arnold [2] at his 60th birthday conference at the Fields
Institute, he referred to this as one of his mathematical trinities. Other examples of
trinities are the exceptional Lie algebras E6, E7, E8, the rings R, C, H, and the three
polytopes tetrahedron, cube, and dodecahedron.

The next dream I want to present is an even more fantastic set of theorems and conjectures.
Here I also have no theory and actually the ideas form a kind of religion rather than
mathematics. The key observation is that in mathematics one encounters many trinities : : :
I mean the existence of some “functorial” constructions connecting different trinities. The
knowledge of the existence of these diagrams provides some new conjectures which might
turn to be true theorems : : : I have heard from John MacKay that the straight lines on a
cubical surface, the tangents of a quartic plane curve, and the tritangent planes of a canonic
sextic curve of genus 4 form a trinity parallel to E6, E7, and E8.

Our interest stems from two variations of the classical problem: the real case and
the tropical case. For a real space sextic, one may ask how many of the tritangent
planes are real. In Sect. 3, we appeal to the theory of real theta characteristics to
show that the answer depends on the topology of the real curve: the number of
connected components and how they are arranged on the Riemann surface of the
complex curve. In some cases, all the tritangents may be real, but their three points of
tangency may include a complex-conjugate pair; see Theorem 3.1. We also explore
this phenomenon through explicit examples. We reexamine a construction of Arnold
Emch, in which he claimed to find 120 tritangents, and show that he overcounted.

Theorem 3.2 Emch’s curve has only 108 planes tritangent at three real points.
On the other extreme, we construct a real space sextic with only one connected
component and find its eight real tritangent planes.

In Sect. 4, we set up a tropical formulation of the problem. Once the notion of a
tropical tritangent plane is established, we ask how many such planes are carried by
a tropical sextic curve. This is a natural sequel to earlier tropical counting problems,
such as the number of lines on a tropical cubic surface [23] and the number of
bitangents to a tropical plane quartic [5, 9].

Theorem 5.2 A smooth tropical sextic curve 	 in R
3 has at most 15 classes of

tritangent planes. If it is the tropicalization of a sextic C on a smooth quadric in P
3,

then it has exactly 15 equivalence classes of tritangent planes.
In Lemma 5.5, we show that the question can actually be replaced by the simpler
problem of counting tritangents to tropical curves of bidegree .3; 3/ in tropical
P
1 � P

1. This result paves the way for a computational study of tropical tritangents.
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2 Algebraic Space Sextics

Throughout this section, we work over an algebraically closed field k of character-
istic different from 2. For simplicity, the reader may assume that the field is C.

Let C 	 P
3 be the intersection of a quadric and a cubic surface. Such a curve is

a smooth canonical sextic [15, Proposition IV.6.3]. The intersection of a hyperplane
with C is a divisor of degree 6 and rank 3 and is the canonical divisor KC of C. In
particular, the genus of C is 4. It follows that, whenever H is tangent to C at three
points, those points form a divisor D such that 2D ' KC.

Definition 2.1 A theta characteristic is a divisor class ŒD� such that 2D ' KC. A
theta characteristic is odd or even depending on the parity of dim H0.C;D/.

Theorem 2.2 If C is the sextic defined by the intersection of a smooth cubic and a
smooth quadric in P

3, then it has 120 tritangent planes that are in bijection with its
odd theta characteristics.

Proof Let D be a theta characteristic of C obtained from a hyperplane section, and
set h WD dim H0.C;D/. We claim that h D 1. To begin with, Clifford’s Theorem [1,
Chapter 3.1] implies that h is strictly smaller than 3. As D is obtained from
intersecting a curve with a plane, it is effective, so h also cannot be 0. The geometric
version of the Riemann–Roch Theorem states that, in the canonical embedding, the
support of a divisor of degree d with h global sections spans a subspace of dimension
d � h. It follows that h D 2 if and only if the contact points are colinear. To see that
this is impossible, consider the quadric Q containing C. Since Q is smooth, it is
isomorphic to P

1 � P
1. The intersection of Q with a plane H is a .1; 1/-curve on Q.

If it contains a line of one of the rulings, it also contains a line in the other. Therefore,
H intersects C at points not in the support of D and is not a tritangent.

On the other hand, given an odd theta characteristic p1 C p2 C p3, a plane H
through p1; p2; p3 intersects C at a divisor of the form p1 C p2 C p3 C q1 C q2 C q3
for some points q1; q2; q3. Since p1 C p2 C p3 C q1 C q2 C q3 and 2.p1 C p2 C p3/
are both canonical, we get an equivalence of divisors p1 C p2 C p3 ' q1 C q2 C q3.
Since p1 C p2 C p3 is an odd theta characteristic, Clifford’s Theorem implies that
the rank of p1 C p2 C p3 is zero. It follows that these equivalent divisors are equal.
We deduce that p1C p2C p3C q1C q2C q3 D 2p1C 2p2C 2p3 and H is tritangent
to C at p1; p2; p3.

We conclude that tritangent planes are in bijection with the odd theta characteris-
tics of C. The number of odd characteristics of a curve of genus g is 2g�1.2g � 1/;
see [20, Sect. 4]. As g D 4 in this case, we have 120 tritangent planes. ut

A canonical sextic does have two classes of colinear divisors of degree 3. Indeed,
those correspond to intersections of the sextic with the rulings of the ambient
quadratic surface. However, as seen in the proof above, such a divisor is never
obtained as the intersection of a hyperplane with the curve.

Remark 2.3 A smooth quadratic surface in P
3 is isomorphic to P

1�P
1 via the Segre

embedding [18, Lemma 3.31]. Under this isomorphism, the sextic corresponds to a
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curve of bidegree .3; 3/ on P
1�P

1, and a tritangent plane corresponds to a tritangent
.1; 1/-curve. It follows that a .3; 3/-curve on a quadratic surface has 120 tritangent
.1; 1/-curves as well. This result can also be deduced directly; the argument is
similar to the proof of Theorem 2.2.

Our initial interest in tritangent planes came from studying tritangent planes to
Bring’s curve, as part of the apprenticeship workshop at the Fields Institute [22,
Problem 4 on Curves]. Bring’s curve is a space sextic, traditionally written in
supernumerary coordinates by considering a special plane in P

4. In particular, it
is the intersection of the quadric given by x2 C y2 C z2 C t2 C u2 D 0 and the cubic
given by x3 C y3 C z3 C t3 C u3 D 0 in the plane xC yC zC tC u D 0.

Edge [13] found equations for all 120 tritangent planes to Bring’s curve. They
come in two types. Type (i) tritangent planes are determined by three stalls of the
curve. These are the points at which the osculating plane has order of contact higher
than expected. In this case, the general point on the curve has order 3 contact with
the osculating plane, and the stall points have order 4. Plücker’s formulas for space
curves tell us that there are exactly 60 stalls on Bring’s curve.

Let ˛, ˇ,  be the three distinct roots of �3 C 2�2 C 3� C 4 D 0. Each of the
equations  t � ˇu D 0, ˛u � z D 0, ˇz � ˛t D 0 defines a plane that is tritangent
to our curve and contains the tangent line at the stall point Œ1 W 1 W ˛ W ˇ W �.
The rest of the type (i) planes are given by replacing fz; t; ug with any of the 60
ordered triples in fx; y; z; t; ug. Each of these contains the tangent line at a stall point
given by an appropriate permutation of the coordinates of Œ1 W 1 W ˛ W ˇ W �. The
construction yields three tritangent planes through each of the 60 stall points of the
curve, and every plane contains three stall points. In other words, the containment
relation between type (i) tritangents and stalls determines the edges of a bipartite
graph such that every vertex has valence 3. Thus, there are 60 such tritangent planes.

The type (ii) tritangent planes each contain exactly one stall point. One of them
is given by .˛ � 1/.˛C 4/zC .ˇ � 1/.ˇC 4/tC . � 1/. C 4/u D 0, and the rest
are obtained, again, by replacing fz; t; ug with ordered triples in fx; y; z; t; ug. These
results are summarized in the following theorem.

Theorem 2.4 ([13]) Bring’s curve has 60 tritangent planes of type (i) and 60

tritangent planes of type (ii). ut

3 Tritangents to Real Space Curves

In this section, we restrict ourselves to smooth curves that are defined over the real
numbers with non-empty real part. The real part of a curve consists of a disjoint
union of ovals, where by oval we mean a simple closed loop. For a curve of genus g,
the number of these ovals cannot exceed gC1. See [24] and [7] for nice introductions
to real algebraic geometry.

We say that a tritangent plane is real if it is defined over the real numbers, and
totally-real if in addition the tangency points are all real. For a real tritangent that
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is not totally-real, the tangency points consist of a real point and a pair of complex
conjugate points. For a smooth sextic on a smooth quadric in P

3, real tritangent
planes are in bijection with real odd theta characteristics.

Proposition 3.1 ([17]) Let C be a real curve of genus g such that its real part C.R/
consists of s distinct ovals.

1. If C.R/ separates C, then there are 2g�1.2s�1C1/ real even theta characteristics
and 2g�1.2s�1 � 1/ real odd ones.

2. If C.R/ doesn’t separate C, then there are 2gCs�2 real even and 2gCs�2 real odd
theta characteristics.

A real curve of genus g with exactly gC1 ovals is referred to as an M-curve. Any
disjoint union of gC1 cycles on a Riemann surface of genus g separates the surface,
so an M-curve always corresponds to the first case in Proposition 3.1. In particular,
a canonical space sextic with five ovals has 120 real tritangent planes. The question
remains, how many of them are totally-real?

In [14], Emch claimed that the tritangents of a real space sextic with five ovals
are all totally-real and constructed an example of such a curve and its tritangents.
However, several of the planes were overcounted, and only 108 of its tritangents are
totally-real. We are not aware of any previous literature that has addressed this issue.

We begin by considering a union of three lines in P
2, so that they bound an

equilateral triangle with incentre at the origin. For instance, if we choose one line
to be of the form x D a, we find that the other lines should have slope ˙1=

p
3.

Choosing a D �
p
3 yields p.x; y/ D .x C

p
3/.x � y

p
3 � 3/.x C y

p
3 � 3/, and

V
(
p.x; y/

)
	 A

2 is our union of lines (Fig. 1).
The set of points f.x; y/ 2 A

2 W p.x; y/ D 2g is a smooth cubic curve with four
real branches, one of which is an oval bounded by our triangle. The polynomial
c.x; y; z/ WD p.x; y/ � 2 has zeros along a cubic cylinder in A

3. A sphere centred at
the origin of sufficiently large radius meets each of the components of the cubic and
meets the central component twice. Therefore, the intersection of the cubic surface

Fig. 1 Union of lines and a
smooth cubic
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Fig. 2 Real sextic with five
ovals

O1
O2

O3

N

S

with a sphere yields a space sextic with five ovals. We refer to the top and bottom
ovals as N and S, and the other three as O1;O2;O3 (Fig. 2).

Theorem 3.2 The real sextic space curve defined by the equations c.x; y; z/ D 0

and x2 C y2 C z2 D 25 has 108 totally-real tritangent planes.

Proof We break the proof into parts based on the type of tritangent plane. There
are tritangents that touch three distinct ovals, tritangents that touch an oval twice
and another oval once, and tritangents that touch a single oval three times. We label
them as the .1; 1; 1/-, .2; 1/-, and .3/-tritangents respectively.

80 .1; 1; 1/-Tritangents Given any three ovals of the curve, there exist 23 D 8

classes of planes that separate them; a given plane has some of the ovals ‘above’
it and some ‘below’. Such a plane can be moved to touch the three ovals each at
one point in a unique way. (For an analogue in the plane, consider two general non-
concentric ellipses and their four bitangents.) This yields 8

(
5
3

)
D 80 tritangents, and

there are no other tritangent planes meeting each of three ovals once.

12 C 18 .2; 1/-Tritangents For each Oi, there are four tritangents that touch it
twice. To find them, consider the plane tangent to Oi at its northernmost point and
southernmost point. The plane can be rotated to keep two points tangent to Oi. As
it rotates, it meets the other two Oj each once yielding two tritangents for a total of
.3/.2/ D 6 such tritangents. The projection of these two tritangents to the xy-plane
is pictured in Fig. 3. Similarly, for the oval N (resp. S), there are nine tritangents that
touch it twice. To see them, pick a side of the triangle of N (resp. S), and consider
the opposing Oi. There is a tritangent that touches N (resp. S) at two points along
this side and touches Oi at its northernmost point, and similarly one which touches
the Oi’s southernmost point. Finally, there is a tritangent that touches the opposing
point of S (resp. N). This yields .9/.2/ D 18 tritangents.

There are no additional .2; 1/-tritangents meeting N; S twice. We claim that
there are no additional .2; 1/-tritangents meeting Oi twice. The oval Oi has two
reflectional symmmetries, one through the ‘equator’ and one through the great circle
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Fig. 3 Two .2; 1/-tritangents
projected to xy-plane

determined by the northernmost and southernmost points. If p 2 Oi is a point that
is not fixed by either reflection, then the images under reflection, denoted p0 and
p00, each share a tangent plane to Oi with p. Hence, the tangent line TpOi to Oi at p
intersects Tp0 Oi and Tp00Oi. The two planes determined by these lines are the only
bitangent planes to Oi at p. If p0 is given by reflecting p through the xy-plane, then
the corresponding bitangent is a tritangent only if the projection is a bitangent line.
From Fig. 3, it is apparent that we have already counted all these. If p00 is the other
reflection, then the bitangent to p and p00 cuts out a circle on the sphere which is
contained in Oi. Therefore, it cannot be tangent at a point on another oval.

4 .3/-Tritangents The oval N has three maxima with respect to height in the
z-direction. There is a plane which touches the oval at these three points. Similarly,
it has three minima, and there is another tritangent plane there. The same is true
for S. We thus have .2/.2/ D 4 four more tritangent planes.

It is easy to see that there are no more .3/-tritangent planes meeting N or S only.
A tritangent plane also cannot meet Oi only as, by symmetry, such a plane would
have to touch Oi at either its northernmost or southernmost point, but there are not
other points sharing a bitangent with either of these. ut

We have shown that Emch’s curve has fewer totally-real tritangents than was
previously thought. A natural question is thus reopened.

Question 3.3 Does there exist a canonically embedded real space sextic with 120
totally-real tritangent planes?

We now consider a curve with significantly fewer totally-real tritangent planes
(Fig. 4). Let C be the sextic determined by the intersection of the unit sphere S2
defined by x2 C y2 C z2 D 1 and the Clebsch diagonal cubic S3 defined by

81.x3 C y3 C z3/ � 189.x2yC x2zC xy2 C y2zC xz2 C yz2/C 54xyz

C 126.xyC xzC yz/ � 9.x2 C y2 C z2/ � 9.xC yC z/C 1 D 0 :
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Fig. 4 The intersection of a
cubic and a quadric yields a
sextic

Fig. 5 A real sextic curve
with a single connected
component

This cubic surface has a threefold rotational symmetry about the axis x D y D z. In
Fig. 5, this corresponds to the 2


3
rotation about the north pole pN and south pole pS.

Since C has real points, Proposition 3.1 implies that it has eight real tritangent planes.
As the following theorem shows, these planes exist and are all totally-real.

Theorem 3.4 The curve C has exactly eight totally-real tritangent planes.

Proof Let q denote a point on C that minimizes the distance to pN . This point lies on
a circle in R

3 which is the intersection of S2 with a sphere centred at pN of radius
d.pN ; q/. By the threefold rotational symmetry, there are at least three distinct points
at which C touches the circle. Thus, the plane containing this circle is tritangent to
C and there are exactly three tangency points. The same argument for pS gives a
second tritangent plane to C.

The curve C has a reflectional symmetry through the plane determined by pN , pS,
and q. The three points associated to any tritangent to C must lie on a circle on S2
which cannot cross C. By the reflectional symmetry of C, this circle must meet C at
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one of the points q from the two known tritangents. Such a circle, of a sufficiently
small radius, meets C at no other points. With a sufficiently large radius, it meets
C transversely at multiple points. Thus, there are circles on either side of C, which
touch but don’t cross the curve at some point other than q. Since the total intersection
number of the two curves cannot exceed .3/.2/ D 6, this circle is tangent at exactly
three points. Hence, we find one additional circle for each of the six points q, for a
total of 8 tritangents planes. By Proposition 3.1, this is the maximum possible. ut

4 Tropical Space Sextics

In this section, we consider tropical space sextics of genus 4 and show that they
have similar enumerative properties. We begin with a brief overview of tropical
curves. We focus on the notions that are necessary for defining and studying tropical
tritangent planes. The interested reader may find a more thorough treatment in [19].

Definition 4.1 A tropical curve is a metric graph 	 embedded in R
n, together with

an integer weight function on the edges, such that

• The direction vector of each edge is rational.
• At each vertex, the weighted sum of the primitive integral vectors of the edges

around the vertex is zero.

The genus of a tropical curve is the first Betti number dim H1.	;Z/ of the graph.
We assume throughout that the weights on the edges are all one.

Definition 4.2 A tropical curve is of degree d if it has d infinite ends in each of the
directions�e1;�e2; : : : ;�en; e1Ce2C� � �Cen. A plane curve is of bidegree .d1; d2/
if it has d1 ends in each of the directions e2;�e2, and d2 ends in the directions
e1;�e1.

Example 4.3 The graph in Fig. 6 is a tropical plane curve of degree 3 and genus 1.

Definition 4.4 A tropical plane in R
3 is a two-dimensional polyhedral complex

with a unique vertex v whose 1-skeleton consists of the rays v C R�0.�e1/, v C

Fig. 6 A tropical elliptic
curve
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R�0.�e2/, and v C R�0.e1 C e2 C e3/. The maximal faces are the cones generated
by each pair of rays. In other words, it is a translation of the 2-skeleton of the fan of
the toric variety P

3.
More generally, a tropical variety is a balanced polyhedral complex in R

n;
see [19, Definition 3.3.1]. Tropical hypersurfaces, namely tropical varieties of
codimension 1, are simply constructed by taking the dual complex of a subdivision
of a polytope with integer vertices. The hypersurface is tropically smooth if the
subdivision is a unimodular triangulation.

For the rest of this section, we assume that k is an algebraically closed field
endowed with a non-trivial non-archimedean valuation val. For example, k could be
the field of Puiseux series over C consisting of all elements of the form

x D ak t
k
n C akC1 t

kC1
n C akC2 t

kC2
n C � � �

for all choices of k 2 Z, n 2 N, and coefficients ai 2 C. In this case, the valuation is
simply given by val.x/ D k

n .
Let X be a variety in .k�/n. The tropicalization map tropWX.k/! R

n is defined
by trop.x1; x2; : : : ; xn/ D

(
� val.x1/;� val.x2/; : : : ;� val.xn/

)
. The tropicalization

of X is the closure in R
n of trop X.k/. The reader will be relieved to know that the

tropicalization of a variety is a tropical variety of the same dimension. Moreover, the
tropicalization of a generic curve of degree d (resp. bidegree .d1; d2/) is a tropical
curve of degree d (resp. bidegree .d1; d2/). Similarly, the tropicalization of a plane
in .k�/3 is a tropical plane in R

3.

Example 4.5 The tropicalization of the degree 3 plane curve defined by

tC xC yC xyC t x2 C t y2 C t2 x2yC t2 xy2 C t4 x3 C t4 y3

is the tropical curve of degree 3 appearing in Fig. 6. The tropicalization of the curve
of bidegree .1; 2/ defined by 1C xC yC t xyC t3 xy2C t3 y2 is the tropical curve of
bidegree .1; 2/ depicted in Fig. 7.

In tropical geometry, as in classical algebraic geometry, the intersection of two
varieties may have higher than expected dimension. This can happen even when
the tropical varieties are tropicalizations of algebraic varieties that do intersect in

Fig. 7 A tropical P
1 � P

1

curve of bidegree (1,2)
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Fig. 8 Two tropical curves
with a multiplicity 2
intersection

Fig. 9 Two tropical curves
with a stable intersection
consisting of two points

the expected dimension. The stable intersection of two tropical varieties provides
a solution to this problem. Roughly speaking, the stable intersection involves
generically perturbing the tropical varieties and taking the limit of their intersection
as the perturbations tend to zero. More precisely, whenever cells �1; �2 of tropical
varieties ˙1;˙2 span R

n, their set-theoretic intersection will be a cell in the stable
intersection. To assign a weight to this cell, consider the lattices N1 and N2 obtained
by intersecting �1 and �2 with the lattice Z

n in R
n respectively. The weight assigned

to their set-theoretic intersection of �1 and �2 equals m.�1/m.�2/ŒZn W N1 C N2�,
where m.�i/ denotes the weight of the cell �i 2 ˙i, for 1 � i � 2, and ŒZn W N1CN2�
denotes the index of the sublattice generated by N1 and N2.

Example 4.6 Consider the two tropical curves depicted in Fig. 8. The primitive
vectors .1; 1/ and .1;�1/ span the sublattice obtained by intersecting the appropriate
curve with the lattice Z

2. Hence, the multiplicity of the intersection point equals
det

[
1 1
1 �1

]
D 2, which is the index of the relevant sublattice. This is consistent with

tropical Bézout’s Theorem because this is an intersection of a line with a .1; 1/-
curve.

The two tropical curves in Fig. 9 do not intersect properly. However, by slightly
perturbing the horizontal line, the two tropical curves intersect at two points with
multiplicity 1. Taking the limit as the red curve returns to its original position, we
see that the stable intersection has multiplicity 2.

Definition 4.7 Two tropical varieties are tangent at a point q if their intersection at
q has weight at least 2 or if q is in the interior of a bounded segment of their set-
theoretic intersection. They are tritangent to each other if they are tangent at three
disjoint places (either points or segments) counted with multiplicity. Two tritangents
are equivalent if the tangency points are linearly equivalent divisors.

As a consequence, tritangent tropical varieties may meet at three places with
multiplicity 2 each, at two places with multiplicity 4 and 2, or at one place with
multiplicity 6. For various examples of curves that are tritangent to each other,
see Fig. 11. When 	 is the tropicalization of a curve C, then any tangent of C
tropicalizes to a tangent of 	 , and a tritangent tropicalizes to a tritangent; see [21,
Theorem 6.4].
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5 Tropical Divisors, Theta Characteristics,
and Tritangent Planes

Divisors on tropical curves are defined analogously to algebraic curves. A divisor
D on 	 is a finite formal sum D WD a1p1 C a2p2 C � � � C akpk, where each ai is an
integer and each pi is a point of the curve. The degree of D is the sum of coefficients
a1 C a2 C � � � C ak, and we say that D has ai chips at pi. A divisor is effective if
ai � 0 for all i. In analogy with the algebraic case, there is a suitable equivalence
relation between divisors, and a notion of rank which, roughly speaking, reflects the
dimension in which the divisor moves. The curve has a canonical divisor class K	
which fits in a tropical Riemann–Roch Theorem

r.D/ � r.K	 � D/ D deg.D/ � gC 1;

where r is the rank of a divisor and g the genus of the tropical curve; see [6,
Theorem 1.12]. For a lucid introduction to tropical divisor theory also see [4].

A tropical theta characteristic on a tropical curve 	 is defined in exactly the
same way as algebraic theta characteristic. It is a divisor class ŒD� such that 2D '
K	 . The Jacobian of a tropical curve of genus g is isomorphic to a g-dimensional
real torus R

g=Zg; see [3, Theorem 3.4] and [8, Sect. 5]. Since theta characteristics
are in bijection with its 2-torsion points, there are 2g theta characteristics. One of
them is not effective and the rest are effective. They are easily computed via the
following algorithm introduced by Zharkov [25].

To get an effective theta characteristic, fix a cycle  in 	 . At every point p that
locally maximizes the distance from  , place a�1 chips at p, where a is the number
of incoming edges at p from the direction of  . The process is often described
pictorially as follows. A fire spreads along the graph at equal speed away from  .
If a is the number of incoming fires at a point p, we place a � 1 chips at that point.
To obtain the unique non-effective theta characteristic, repeat the same process, but
replace  with the set of vertices of the graph, and place a negative chip at each
vertex.

Example 5.1 Let 	 be the curve in Fig. 10, where the infinite ends are omitted.
As the genus is 2, we expect the theta characteristics to have degree 1. For the
picture on the left, the middle of the bottom horizontal edge is the unique local
maximum from the chosen cycle (marked with a point). The corresponding theta

Fig. 10 Two theta
characteristics on a curve of
genus 2

-1-1
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characteristic has a single chip at that point. For the picture on the right, the middle
of each horizontal edge locally maximizes the distance from the vertices. The non-
effective theta characteristic of this curve therefore consists of a negative chip at
each of the three vertices and a chip at the middle of each horizontal edge. Each of
these divisors, when multiplied by two is equivalent to the canonical divisor, so they
are half canonical.

Let 	 be a tropical curve of degree 6 and genus 4 in R
3. Its stable intersection

with a tropical plane ˘ is an effective divisor of degree 6. We claim that its
rank is 3. Indeed, we can find a tropical plane through any three general points,
and any pair of divisors obtained this way is linearly equivalent. By the tropical
Riemann–Roch Theorem, a divisor of degree 6 and rank 3 has to be equivalent to
the canonical divisor. Consequently, every tritangent plane gives rise to an effective
theta characteristic on 	 . By definition, non-equivalent tritangent planes correspond
to different theta characteristics. It follows that the number of equivalence classes of
tritangent planes is bounded above by the number of effective theta characteristics
which is 24 � 1 D 15.

Theorem 5.2 A smooth tropical sextic curve 	 in R
3 has at most 15 classes of

tritangent planes. If it is the tropicalization of a sextic C on a smooth quadric in P
3,

then it has exactly 15 equivalence classes of tritangent planes.

Proof The first statement follows from the discussion preceding theorem. By
Theorem 2.2, the curve C has 120 tritangent planes. If the plane H is tritangent
to C, then tropical plane trop.H/ is tritangent to 	 . Moreover, by [16, Theorem 1.1],
each tropical effective theta characteristic of 	 is the tropicalization of eight odd
theta characteristics of C. Since different theta characteristics correspond to non-
equivalent tritangent planes, there are 15 distinct classes of planes tritangent to 	 .

ut

Remark 5.3 It is possible for a tropical sextic to have an infinite continuous family
of tritangent planes. However, the tangency points of such a family will consist
of linearly equivalent divisors, and as such the corresponding tritangent planes
are equivalent. If the sextic is the tropicalization of an algebraic sextic, then each
equivalence consists of eight tritangent planes (counted with multiplicity) that can
be lifted to tritangent planes of the algebraic sextic.

The proof of Theorem 5.2 relies on the fact that the given tropical curve arises
as the tropicalization of an algebraic curve. Nevertheless, we expect this result to be
true more generally.

Conjecture 5.4 Every tropical sextic curve of genus 4 in R
3 has exactly 15

equivalence classes of tritangent planes.
We now explore the tropical analogue of the relation between quadric surfaces

and P
1 � P

1 described in Remark 2.3. To examine the analogous statement in
tropical geometry, recall that a smooth tropical quadric in R

3 is dual to a unimodular
triangulation of the 3-simplex with vertices .0; 0; 0/, .2; 0; 0/, .0; 2; 0/, and .0; 0; 2/.
From the proof of [19, Theorem 4.5.8], such a triangulation has a unique interior
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edge corresponding to a unique bounded face of the quadric. This face can be seen
as a model for tropical P

1 � P
1. More precisely, we have the following result.

Lemma 5.5 Let ˙ be a tropical smooth quadric surface in R
3. If R is a rectangle

in R
2, Then there is an affine linear map from R onto a parallelogram in the

bounded face of ˙ inducing a bijection between curves of bidegree .d; d/ in R
2,

whose bounded edges are all contained in R, and curves of degree 2d in R
3 that are

contained in ˙ and have their bounded edges contained in the parallelogram.

Proof Let F be the unique bounded face of˙ . By [19, Theorem 4.5.8], there are two
tropical lines through each point of F that are fully contained in ˙ . The bounded
edge of each is fully contained in F and is parallel to one of two directions. We
denote these two directions by u1 and u2. These directions are determined by F and
do not depend on the point. Every ray in F that is parallel to ui, for 1 � i � 2, can be
extended past the boundary of F by attaching infinite ends in two of the directions
f�e1;�e2;�e3; e1C e2C e3g and a ray parallel to �ui can be extended by attaching
ends in the two remaining directions.

Let 'WR ! F be the given affine linear map. The map ' sends a vertex of R to
point p 2 F and the two adjacent vertices to pC �u1, pC �u2 where � 2 R. If 	
is the .d; d/-curve in R

2 whose bounded edges are contained in R, then each of the
infinite end is mapped by ' to rays that are parallel to ˙u1 or ˙u2. By extending
all the rays emanating from '.	 \ R/, we get a curve of degree 2d in R

3 contained
in ˙ . ut

This lemma leads to an alternative formulation of Conjecture 5.4.

Corollary 5.6 For tropical sextics whose bounded edges are contained in the
bounded face of a smooth tropical quadric, Conjecture 5.4 is equivalent to saying
that every .3; 3/-curve in R

2 has 15 classes of tritangent .1; 1/-curves.

Proof As in Lemma 5.5, let 	 be a .3; 3/-curve in R
2 mapping to a sextic in R

3

under an affine linear map '. Every .1; 1/-curve that is tritangent to 	 maps to a
conic curve in R

3 that is tritangent to '.	 / and contained in ˙ . By construction,
the conic curve is not contained in a tropical line or in any of the standard planes
in R

3. Therefore, we can find three general points on it that span a unique tropical
plane. This plane contains the conic curve and is tritangent to '.	 /. ut

Example 5.7 Figure 11 shows 15 equivalence classes of tritangent .1; 1/-curves
to a tropical .3; 3/-curve in R

2. By Corollary 5.6, this curve corresponds to a
tropical sextic in R

3 reaching the maximal number of tritangent planes. To find
each tritangent curve, we choose a non-trivial cycle in the graph, compute the
corresponding theta characteristic via Zharkov’s algorithm, and find a .1; 1/-curve
through it.

We stress that some of the odd theta characteristics, in fact, give rise to infinitely
many tritangent .1; 1/-curves, for instance the third tritangent in the second row in
Fig. 11 when counting from the top left. However, as the tangency points of these
different .1; 1/-curves are equivalent divisors, they are all in the same equivalence
class; see Remark 5.3.
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2
2

Fig. 11 The 15 tritangents to a tropical sextic
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Theta Characteristics of Tropical K4-Curves

Melody Chan and Pakawut Jiradilok

Abstract A K4-curve is a smooth proper curve X of genus 3 over a field with
valuation whose Berkovich skeleton 	 is a complete graph on four vertices. The
curve X has 28 effective theta characteristics—the 28 bitangents to a canonical
embedding—while 	 has exactly seven effective tropical theta characteristics, as
shown by Zharkov. We prove that the 28 effective theta characteristics of a K4-curve
specialize to the theta characteristics of its minimal skeleton in seven groups of four.

MSC 2010 codes: 14T05 (primary), 14C20, 14H45, 14H50 (secondary)

1 Introduction

This paper provides a rigorous link between the classical and tropical theories of
theta characteristics for a special class of algebraic curves that we call K4-curves.
Fix an algebraically closed field K, complete with respect to a nontrivial nonar-
chimedean valuation. A K4-curve is an algebraic curve over K whose Berkovich
skeleton is a metric complete graph on four vertices. These curves provide a
convenient window into the study of theta characteristics and their tropicalizations.

It is well known that every smooth plane quartic has exactly 28 distinct bitangents.
Abstractly, these correspond to the 28 effective theta characteristics on a genus
3 nonhyperelliptic curve under its canonical embedding. In [33], building on
[27], Zharkov developed a theory of theta characteristics in tropical geometry. In
this framework, a tropical curve (also known as a metric graph) of genus 3 has
exactly seven effective theta characteristics. Zharkov’s theory, while compelling, is
“synthetic”: it predated a precise connection to classical algebraic curves, as far as
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we know. The specialization theorem in tropical geometry [1] has since provided a
connection, showing that theta characteristics of a curve X do indeed tropicalize to
theta characteristics of its skeleton 	 . Our main theorem provides a new rigorous
connection between the two theories of theta characteristics past the general setup
of specialization:

Theorem 1.1 If X is a K4-curve with Berkovich skeleton 	 , then the 28 effective
theta characteristics of X specialize to the effective theta characteristics of 	 in
seven groups of four.

This answers a question in [3] in the special case of K4-curves. It complements
the purely combinatorial analysis in that paper of smooth plane tropical quartics
and their bitangents, which are shown to fall in seven equivalence classes. The tech-
niques that we use span both abstract tropical curves (notably the nonarchimedean
Slope Formula of [5]) and embedded tropical curves (notably tropical intersection
theory [28, 29]). Better yet, these two realms interact in an interesting way in some
of our arguments. In addition, the key input that we use from classical algebraic
geometry is a calculation of the limits of the 28 bitangents in a family of plane
quartics specializing to a union of four lines, carried out by Caporaso–Sernesi [12,
Sect. 3.4].

In fact, in the language of classical algebraic geometry, our theorem amounts
to the following. Suppose we have a one-parameter family of plane quartics
degenerating to a union of four non-concurrent lines in P

2. This is exactly the data
of a K4-curve; see Theorem 3.2. Sometimes it is the case that a bitangent contact
point will specialize into one of the six nodes of the special fibre. In that case,
Theorem 1.1 gives refined information about that specialization. It says that after
a sequence of blowups replacing the node with a chain of rational curves, such that
the bitangent contact point now specializes to a smooth point of the special fibre,
Zharkov’s algorithm describes where on that chain the specialization occurs.

This particular interpretation aside, it is natural to ask whether Theorem 1.1
should be true for all curves of genus 3. The answer is yes. Since this paper
first appeared as a preprint, Jensen and Len proved a significant generalization of
Theorem 1.1, showing in particular that for a curve X of genus g, every effective
theta characteristic of 	 lifts to 2g�1 even and 2g�1 odd theta characteristics
on X [20]; this was previously obtained in the case of hyperelliptic curves by
Panizzut [30]. Our techniques are different: Jensen–Len use the Weil pairing on the
Jacobian of the curve, while we use the interaction betwen abstract and embedded
tropical curves, and tropical intersection theory. We also refer the reader to the
article [17] which contains a higher-dimensional analogue to Theorem 1.1, counting
tropical tritangent planes to space sextic curves, and to forthcoming work of Len–
Markwig that deals with liftings of tropical bitangents to plane tropical curves.

There are some interesting combinatorics and computations specific to the case
of K4-curves, as shown in Sects. 4–5. In Theorem 4.2, we prove a statement that
is stronger than Theorem 1.1 for a generic honeycomb curve; see Definition 4.1.
The bitangents of such a curve tropicalize exactly in seven groups of four. This
is stronger than Theorem 1.1 in the sense that two bitangents can have different
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tropicalizations in R
2 even while their contact points retract to the same place on

the skeleton. Indeed, in Sect. 5, we give exactly such an example, of a nongeneric
honeycomb plane quartic whose bitangents tropicalize in groups of 2 and 4. Further-
more, we compute the beginnings of the Puiseux expansions of the 28 bitangents in
this example. This section may be of independent interest to computational algebraic
geometers, because it showcases some of the difficulties of computing over the field
of Puiseux series, and how we used tropical techniques to carry out a computation
which a priori is not tropical at all.

2 Preliminaries

In this section, we develop preliminary notions on tropical curves and tropical-
ization, semistable models, theta characteristics, and specialization, all of which
interact in our results. We refer the reader who is interested in more details on these
topics to the survey article [2] and the textbook [25].

Graphs, Metric Graphs, and Tropical Curves All graphs in this paper are finite
and connected; multiple edges and loops are allowed. We write G WD .V;E/ for
a graph with vertices V D V.G/ and edges E D E.G/. The degree of a vertex
v 2 V.G/, denoted deg.v/, is the number of edges in E.G/ incident to v. For n 2 N,
the complete graph Kn is the graph on n vertices in which each pair of distinct
vertices is connected by an edge.

A metric graph 	 is a graph G together with a length function `WE.G/ ! R>0.
By identifying an edge e 2 E.G/ with the interval Œ0; `.e/� 	 R, we view 	 as a
one-dimensional CW complex, and we will freely identify 	 with this topological
space. The genus of 	 is b1.	 / WD jE.G/j � jV.G/j C 1. An abstract tropical
curve is a vertex-weighted metric graph, that is a metric graph .G; `/ together with
a weight function wWV.G/ ! Z�0. A stable tropical curve is an abstract tropical
curve satisfying the condition that deg.v/ � 2w.v/ � 2 for all v 2 V.G/. If 	 is
a metric graph all of whose edge lengths lie in some subgroup � 
 R, then 	 is
�-rational. In this situation, we say that p 2 	 is a �-rational point if the distance
from p to any (equivalently every) vertex v 2 	 is in �.

There is a combinatorial theory of divisors on metric graphs that mirrors, and has
a precise relationship with, the classical theory of divisors on algebraic curves. This
theory was first developed by Baker–Norine [4]. Here we only give a bare-bones
account of the part that we need; see [4, 16, 27] for more information. A divisor on
a metric graph 	 is an element of the free abelian group Div	 generated by the
points p 2 	 , where 	 is regarded as a topological space, so the point p may lie in
the interior of an edge. There is a degree map Div	 ! Z sending

∑
ap p to

∑
ap.

Write Divd 	 for the set of divisors of degree d. We say D D
∑

ap p is effective if
ap � 0 for all p, and the set of all the effective divisors is Div�0 	 . The canonical
divisor on 	 is K	 WD

∑
p2	

(
deg.p/ � 2

)
p, where deg.p/ WD 2 if p is not a vertex.
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A rational function on 	 is a continuous function f on 	 that is piecewise-linear
with integer slopes on each edge. The divisor of f is

div f WD
∑

p2	

.sum of outgoing slopes at p/ p :

Such a divisor is called principal. We say that D � D0 are linearly equivalent
divisors if D � D0 is principal, and we define the Picard group Pic	 WD Div	= �.
The rank of a divisor D is

r.D/ WD max

®
k 2 Z W

for all E 2 Divk
�0 	; there exists E0 2 Div�0 	

such that D � E � E0

´
:

Since the condition holds vacuously for k D �1, we see that r.D/ D �1 if and only
if D is not equivalent to any effective divisor. We say that an effective divisor E on
a metric graph 	 is rigid if it is the unique effective divisor in its linear equivalence
class. The following lemma characterizes rigidity; we will use it and Corollary 2.2
to construct lifts of canonical divisors in Sect. 3.

Lemma 2.1 Let D be an effective divisor on a metric graph 	 . If D D
∑k

iD1 ai pi

for some ai > 0, then D is rigid if and only if, for every nonempty closed subset
S 
 	 with @S 
 fp1; p2; : : : ; pkg, there is a pi 2 S with outdegS.pi/ > ai, where
outdegS.p/ is the number of edges at p that leave S.

Proof If there is a closed subset S 
 	 such that @S 
 fp1; p2; : : : ; pkg and
outdegS.pi/ � ai for all pi 2 S, then for sufficiently small � > 0, there is a rational
function f on 	 taking on value 0 on S, decreasing to value �� along each edge
leaving S, and taking on value �� everywhere else. It follows that D C div.f /
is effective. Conversely, suppose that D is not rigid. If we choose f ¤ 0 such
that D C div.f / is effective, then S WD fp 2 	 W f is maximized at pg has
@S 
 fp1; p2; : : : ; pkg and outdegS.pi/ � ai for all 1 � i � k. ut

The next corollary is an immediate consequence of Lemma 2.1.

Corollary 2.2 Let D be an effective divisor on a metric graph 	 .

1. If D WD a p for some a > 0 and the space 	 n fpg is connected, then the divisor
D is rigid if and only if a < deg.p/.

2. If D WD p1 C p2 C � � � C pd for points p1; p2; : : : ; pd lying on the interiors of d
distinct edges whose removal does not disconnect 	 , then D is rigid. ut

Remark 2.3 For readers who are familiar with the notion of q-reducedness, we
observe that D is rigid if and only if it is q-reduced for all q 2 	 . The only if
direction is clear from the definition. For the other direction, suppose that D is not
rigid. If we choose f ¤ 0 such that D C div.f / is effective, then D is not reduced
with respect to any q in the boundary of fp 2 	 W f is minimized at pg.

Semistable Models Throughout this paper, K denotes an algebraically closed field
that is complete with respect to a nontrivial nonarchimedean valuation valWK� ! R.
Let � WD val.K�/ 
 R denote the value group of K, let R denote the valuation ring
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of K with maximal ideal m, and let k WD R=m be the residue field. The corresponding
polynomial rings are SK WD KŒx0; x2; : : : ; xn�, SR WD RŒx0; x2; : : : ; xn�, and Sk WD

kŒx0; x2; : : : ; xn�. For a 2 R, we write a for the reduction of a, that is the image of
a under the canonical quotient map R ! k, and we write f 2 Sk for the coefficient-
wise reduction of a polynomial f 2 SR.

Let X be a finite-type scheme over K. By an algebraic model for X, we mean a
flat and finite type scheme X over R whose generic fibre is isomorphic to X. We next
describe the basic source of algebraic models for subvarieties of projective space.

Lemma 2.4 Let I 	 SK be a homogeneous ideal and let X WD Proj SK=I be the
corresponding projective scheme. If IR WD I \ SR, then X WD Proj SR=IR is an
algebraic model for X. Furthermore, if I is generated by the polynomial f 2 SR

which does not reduce to 0 in Sk, then I \ SR D fSR, so I \ SR is the principal ideal
generated by f .

Proof Given a closed subscheme of A
n
K defined by the ideal I 	 KŒx1; x2; : : : ; xn�,

Proposition 4.4 in [19] shows that I \ RŒx1; x2; : : : ; xn� defines a flat scheme
with general fibre isomorphic to X. Hence, it suffices to check the first part
locally on the affine open subsets defined by xi ¤ 0 for 0 � x � n;
see [19, Remark 4.6]. On such an affine open subset, the defining ideal
of X is IjxiD1 	 KŒx1; x2; : : : ; xi�1; xiC1; xiC2; : : : ; xn�, for which IjxiD1 \

RŒx1; x2; : : : ; xi�1; xiC1; xiC2; : : : ; xn� is the equation of a model. Since we have
IjxiD1\RŒx1; x2; : : : ; xi�1; Oxi; xiC1; xiC2; : : : ; xn� D IRjxiD1, we deduce that Proj SR=IR

gives a model for X.
For the second part, consider an ideal I generated by f 2 SR with f ¤ 0 and

suppose g 2 SK satisfies fg 2 SR. We claim that g 2 SR. Suppose not, and pick some
scalar a 2 K with positive valuation such that ag 2 SR and ag ¤ 0. Since f ¤ 0 and
ag ¤ 0, we have afg ¤ 0. However, we have a D 0which gives a contradiction. ut

Let X be a smooth proper curve of genus g over K. A semistable model for X is
a proper model X over R whose special fibre Xk WD X �R k is a nodal curve over k.
If the special fibre Xk is a stable curve, then we say that X is a stable model. For all
g � 2, stable models exist; see [10].

To any semistable model X over R, we associate a tropical curve 	X as follows.
The vertices vi of 	X correspond to the irreducible components Ci of X and there is
an edge between two vertices if and only if the corresponding components intersect.
For a node p of Xk, lying on components Ci and Cj, the completion of the local
ring OX;p is isomorphic to RŒŒx; y��=.xy � ˛/ for some ˛ 2 m, and val.˛/ 2 �>0 is
independent of all choices. Hence, the length of the edge between the vertices vi and
vj is simply val.˛/. Thus, the metric graph 	X has edge lengths in the value group.

Classical and Tropical Theta Characteristics Let X be a smooth proper curve of
genus g over K. A theta characteristic of X is a divisor class ŒD� 2 Picg�1.X/ such
that 2ŒD� D ŒKX�. It is effective if D is linearly equivalent to an effective divisor.
The theta characteristic ŒD� is odd or even if dimK H0

(
X;OX.D/

)
is odd or even.

It is well-known that X has exactly 22g theta characteristics, and of these, exactly
.2g � 1/2g�1 are odd; see [15, Sect. 5.1.1].
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When X is a nonhyperelliptic curve of genus 3, the effective theta characteristics
of X are precisely its odd theta characteristics, of which there are 28 D .23� 1/.22/.
These are precisely divisor classes representable as ŒP C Q� such that 2P C 2Q �
KX . In other words, the points P and Q are contact points of the 28 bitangent
lines to the curve X under its canonical embedding as a smooth plane quartic
in P

2.
Now, suppose that 	 is a metric graph of genus g. A theta characteristic

of 	 is a divisor class ŒD� 2 Picg�1 	 such that 2ŒD� D ŒK	 �. Zharkov [33]
gives an algorithm for computing theta characteristics of 	 and shows that 	 has
exactly 2g theta characteristics, all but one of which are effective. His description
of the effective theta characteristics can be reformulated as follows. The effective
theta characteristics of 	 are in bijection with the 2g � 1 nonempty Eulerian
subgraphs of 	 , that is, the subgraphs of 	 that have everywhere even valence.
More precisely, if S 
 	 is an Eulerian subgraph, then the distance function d.S;�/
produces an orientation of 	 n S in which segments are directed away from S.
This partial orientation, taken together with a cyclic orientation on S, orients 	 .
With this orientation, the divisor

∑
p2	

(
valC.p/� 1

)
p represents an effective theta

characteristic, where valC.p/ is indegree. The divisor arising from different Eulerian
subgraphs are shown to be pairwise linearly inequivalent.

Specialization The theory of specializing divisors from curves to graphs was
developed in [1]. We recall the relevant facts here, starting with skeletons of
Berkovich curves [7, 8, 32].

Let X be a smooth proper curve of genus g � 2 over K. Fix a semistable model
X for X and write 	X for its associated metric graph. When there is no ambiguity,
we simply write 	 for the associated metric graph. There is a canonical embedding
of 	X in the Berkovich analytification Xan of X such that Xan admits a retraction
� WXan ! 	X. We call 	X a skeleton for X. If g � 2, then X has a minimal skeleton
	X corresponding to a stable model X for X; see [5, Sect. 4.16].

There is a natural inclusion X.K/ ,! Xan. The composition X.K/ ,! Xan � 	

induces, by linearity, a specialization map ��WDiv.X/! Div.	 /. The specialization
map is, by construction, a degree-preserving group homomorphism that sends
effective divisors to effective divisors and principal divisors to principal divisors;
see [32] or [5, Theorem 5.15]. Hence, �� descends to a map Pic.X/ ! Pic.	 /
which, by a slight abuse of notation, will also be denoted by ��.

Lemma 2.5 The specialization map �� takes effective theta characteristics of X to
effective theta characteristics of 	 .

Proof Since Lemma 4.19 in [1] shows that the canonical class on X specializes to
the canonical class on 	 , the claim follows from the stated properties of ��. ut

Tropicalizations Suppose V 
 .K�/n is a subvariety of an algebraic torus. The
tropicalization of V is the closure in the usual Euclidean topology on R

n of
the set

{(
val.x1/; val.x2/; : : : ; val.xn/

)
W .x1; x2; : : : ; xn/ 2 V

}

 R

n. This set
can be equipped with the structure of a polyhedral complex and positive integer
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multiplicities on top-dimensional faces, so that the result is a balanced complex of
dimension equal to the dimension of V; see [25] for the details.

If V 
 P
n, then we may consider the torus T D f.x0 W x1 W � � � W xn�1 W 1/g 	 P

n

and, when we refer to the tropicalization of V , we mean the tropicalization of V \T ,
the part inside the torus. For example, consider a line Ax C By C z D 0 in P

2,
with A;B 2 K�. The tropicalization of this line is the one-dimensional polyhedral
complex consisting of a point at

(
� val.A/;� val.B/

)
2 R

2 and three rays emanating
from this point in directions .1; 0/, .0; 1/, and .�1;�1/. In this situation, we say that(
� val.A/;� val.B/

)
is the centre of the tropical line.

3 Plane Quartics in K4-Form

Let X WD V.f / 	 P
2 be a smooth quartic curve over K. After scaling, we may

assume that the minimum valuation of the 15 coefficients of f is zero. Hence,
Lemma 2.4 shows that the quartic polynomial f 2 RŒx; y; z� defines an algebraic
model X for X. We start with the main definition in this section.

Definition 3.1 We say that a smooth quartic X WD V.f / is in K4-form if the special
fibre of the model X for X described in Lemma 2.4 is xyz.xC yC z/ D 0.

The following theorem characterizes the curves that have embeddings in
K4-form.

Theorem 3.2 If X is a smooth proper curve of genus 3 over K, then the following
are equivalent:

1. X has an embedding as a smooth plane quartic in K4-form.
2. X has an embedding as a smooth plane quartic whose tropicalization in R

2 has
a strong deformation retract to a metric K4.

3. The minimal skeleton of X is a metric K4.

If these equivalent conditions hold, we will say that X is a K4-curve.
We highlight the differences between the parts: the first is an assertion about the
existence of a certain algebraic model for X, the second is an assertion about the
existence of a tropicalization satisfying a topological criterion, and the third is
an assertion about the topology of its minimal Berkovich skeleton (an intrinsic
property).

Proof

2. H) 1.: Suppose that X has an embedding as a smooth plane quartic C WD
V.f / 	 P

2
K whose tropicalization trop.C/ strongly deformation retracts to a K4.

It follows that R
2 n trop.C/ has exactly three bounded regions and each pair

of bounded regions is separated by an edge of trop.C/. Let Qf WD f jzD1 be the
dehomogenization, write Qf D

∑
ci;jxiyj for some ci;j 2 K, and consider the

Newton polygon Newt.Qf / WD convf.i; j/ 2 Z
2 W ci;j ¤ 0g of Qf . Since deg.f / D 4,

we see that Newt.Qf / is a subpolytope of the triangle convf.0; 0/; .4; 0/; .0; 4/g.
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The Newton subdivision �.Qf / is obtained by projecting the lower faces of the
polytope P.Qf / D conv

{(
i; j; val.cij/

)}
	 R

3 onto the polytope Newt.Qf / 	 R
2.

Proposition 3.1.6 in [25] proves that �.Qf / is a polyhedral complex that is dual
to the tropical curve trop

(
V.Qf /

)
. The three bounded regions of R

2 n trop.C/
correspond to interior vertices of Newt.Qf /, so these interior vertices must be
.1; 1/, .2; 1/, and .1; 2/. Each pair of bounded regions in R

2ntrop.C/ is separated
by an edge in trop.C/, so there is an edge joining each pair of interior vertices in
�.Qf /. Hence, the triangle T WD convf.1; 1/; .2; 1/; .1; 2/g is a face of�.Qf /. After
a suitable projective transformation of f , we may assume that the triangle T is
the unique lowest face of P.Qf /; all coefficients of f have nonnegative valuation
and the coefficients with valuation 0 are precisely c1;1, c2;1, and c1;2. Lemma 2.4
implies that the polynomial f defines a model for X whose special fibre has the
form ax2yzC bxy2zC cxyz2 D xyz.axC byC cz/ D 0 for some a; b; c 2 k�. By
rescaling, we may assume a D b D c D 1:

1. H) 3.: A plane embedding of X in K4-form gives, by definition, a stable model
X of X whose skeleton is a metric K4.

3. H) 2.: Given a stable model X for X, the special fibre Xk has four irreducible
components C1, C2, C3, C4, each isomorphic to P

1
k , that intersect pairwise.

Let 	 be the minimal skeleton of X. If ˝X=R is the pushforward to X of the
sheaf of relative Kähler differentials on the smooth locus of X over R, then
Lemma 2.11 in [22] shows that ˝X=R is a line bundle whose restriction to X
is the canonical bundle and whose restriction to Xk is the relative dualizing sheaf.
Since hyperellipticity is preserved under passing to the skeleton [1] and 	 is not
hyperelliptic [13], we see that X is not hyperelliptic. Thus, the general fibre of X
is canonically embedded as a smooth plane quartic over K, and the special fibre
is embedded as a stable curve in P

2
k . We deduce that the restriction of ˝X=R to

each component Ci is isomorphic to !Ci.p
i
1 C pi

2 C pi
3/ Š OCi.1/, where pi

1, pi
2,

and pi
3 are the nodes on Ci. Hence, Xk is the union of four lines in P

2
k , no three

of which are concurrent. All such quadruples of lines are projectively equivalent,
we may assume they are x D 0, y D 0, z D 0, and x C y C z D 0. It follows
that X is defined by a homogeneous quartic polynomial f 2 RŒx; y; z� and Xk D

V.x2yzC xy2zC xyz2/. Moreover, the triangle T D convf.1; 1/; .2; 1/; .1; 2/g is a
face of the Newton subdivision �.Qf /, where Qf D f jzD1 is the dehomogenization
of f and �.Qf / is the subdivision of its Newton polygon Newt.f /.
Let v be the vertex of trop

(
V.f /

)
dual to T . Since V.f / is smooth, it does not

contain the coordinate lines x D 0, y D 0, or z D 0 as a component, so Newt.Qf /
meets the lines i D 0, j D 0, and iC j D 4. The polynomial f has at least one of
the three terms x4, x3y, and x3z in its support, otherwise V.f / would be singular
at .1 W 0 W 0/. Thus, the Newton polygon Newt.Qf / contains at least one of the
points .4; 0/, .3; 1/, or .3; 0/. By symmetry, we see that Newt.Qf / contains at least
one of the points .0; 4/, .1; 3/ or .0; 3/, and at least one of the points .0; 0/, .1; 0/,
or .0; 1/. As this Newton polygon contains these three other points, the triangle
T must lie in the interior of Newt.Qf /. It follows that a cycle remains when v is
deleted from trop

(
V.f /

)
. Furthermore, v must be attached to that cycle along the
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three edges of trop
(
V.f /

)
dual to the three edges of T . Therefore, the tropical

curve trop
(
V.f /

)
contains a metric K4 inside its bounded subcomplex. It has the

homotopy type of a K4, because the rank of H1

(
trop

(
V.f /

)
;Z

)
cannot exceed

the number of interior lattice points of Newt.Qf /, which is exactly 3. ut

Remark 3.3 As Proposition 2.3 in [3] establishes, not all metric graphs of genus 3
can be realized as a subcomplex of the dual complex to a Newton subdivision of a
quartic, so graph K4 is crucial in Theorem 3.2. Moreover, we are not claiming that
the embedding of X Š C 	 P

2
K may be chosen so that trop.C/ is tropically smooth.

In fact, [11] gives inequalities on the edge lengths of a metric K4 that are necessary
and sufficient for it to be embeddable in R

2 as part of a tropically smooth plane
quartic.

Remark 3.4 Theorem 3.2 suggests the following algorithmic problems. Given a
smooth plane quartic f WD

∑
ci;j;kxiyjzk, how can we tell whether f defines a

K4-curve. If it does, how can one read off its six edge lengths? In principle, one
could attempt to compute a semistable model and local equations for the nodes
in the special fibre. However, Theorem 3.2 opens up the possibility of finding
a more explicit algorithm, using tropical techniques, in the special case of K4-
curves. Indeed, the theorem shows that being a K4-curve is equivalent to having
a projective reembedding in P

2
K whose Newton subdivision contains the triangle

T D convf.1; 1/; .2; 1/; .1; 2/g, and this property may be encoded explicitly as a
system of inequalities on the valuations of the 15 coefficients defining a quartic
curve. The general algorithmic question of computing the abstract tropical curve or
minimal Berkovich skeleton associated to a nonarchimedean curve is an interesting
one; see [9] for more on the status of this problem as well as its relationship with
computing tropical Jacobians.

Proposition 3.5 Let C WD V.f / 	 P
2
K be a smooth quartic in K4-form. Suppose

the minimum valuation of the coefficients of f is 0, so that f defines a model C for
C over R. Consider the 28 bitangents l1; l2; : : : ; l28 of C, and let L1;L2; : : : ;L28 	
R
2 denote their tropicalizations. If P1;P2; : : : ;P28 2 R

2 are the centres of the 28
tropical lines Li, then we have the following:

1. Four of the Pi’s lie in the region f.a; b/ W a > 0; a > bg.
2. Four of the Pi’s lie in the region f.a; b/ W b > 0; b > ag.
3. Four of the Pi’s lie in the region f.a; b/ W a < 0; b < 0g.
4. Four of the Pi’s are .0; 0/.
5. Four of the Pi’s lie in the region f.a; a/ W a > 0g.
6. Four of the Pi’s lie in the region f.0;�a/ W a > 0g.
7. Four of the Pi’s lie in the region f.�a; 0/ W a > 0g.

Proof Write li WD V.˛ixC ˇiyC iz/, where ˛i; ˇi; i 2 R, such that the minimum
valuation of ˛i, ˇi, and i is 0. Lemma 2.4 implies that the special fibre of li is the
line ˛ix C ˇiy C iz D 0 	 P

2
k . As shown by Caporaso–Sernesi [12, 3.4.11 and

Lemma 2.3.1], the 28 bitangents li limit to the seven lines x D 0, y D 0, z D 0,
xCyC z D 0, xCy D 0, xC z D 0, and yC z D 0, each with multiplicity four. This
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Fig. 1 The seven regions of
R
2 in Proposition 3.5; Each

region supports four centres
of the 28 tropicalized
bitangents, and their limiting
equations are as shown

(0,0)

x+y

x+y+z

y+z

x+z

x

y

z

means that the closure over the space of all plane quartics of the incidence variety
of bitangents over smooth quartics is flat and the fibre over the singular quartic
xyz.x C y C z/ is as claimed. The lines x C y D 0, x C z D 0, and y C z D 0

are simply the three additional lines that are spanned by the six points of pairwise
intersection of x, y, z, and x C y C z. For the four lines li D V.˛ix C ˇiy C iz/
with limit x D 0, we have val.˛i/ D 0 and val.ˇi/; val.i/ > 0. The centre Pi of
the tropicalized line Li is at

(
� val.˛i=i/;� val.ˇi=i/

)
2 R

2, so it follows that
Pi D .a; b/ where a > 0 and a > b. The other six cases are similar. ut

Figure 1 illustrates the regions of R
2 corresponding to the seven cases.

To prove the main result in this section, we need a general condition under which
a divisor can be lifted pointwise. The idea in the subsequent lemma, which uses
rigidity to lift tropical divisors, is reminiscent of arguments in [21, Sect. 6]. If E and
E0 are effective divisors, say that E0 is a subdivisor of E if E � E0 is again effective.

Lemma 3.6 Let X be a smooth proper curve of genus g, at least 2, over K and
let 	 denote a skeleton for X. Suppose Œ QE� 2 Picd.X/ is a divisor on X with
dimK H0

(
X;OX. QE/

)
� r C 1, and let ŒE� WD ��.Œ QE�/ 2 Picd.	 /. If D 2 ŒE�

is a effective divisor on 	 such that support of D is �-rational and D has a
rigid subdivisor of degree d � r, then D lifts pointwise to an effective divisor
QD WD Qp1 C Qp2 C � � � C Qpd 2 Œ QE� with �.Qpi/ D pi.

Proof Write D D p1Cp2C� � �Cpd 2 ŒE�, and suppose prC1CprC2C� � �Cpd is rigid.
By [1, Sect. 2.3], the retraction map � WX.K/! 	 is surjective on�-rational points,
so we may pick arbitrary lifts Qp1; Qp2; : : : ; Qpr 2 X.K/ for the points p1; p2; : : : ; pr.
Since dimK H0

(
X;OX. QE/

)
> r, there exist QqrC1; QqrC2; : : : ; Qqd such that

QD WD Qp1 C Qp2 C � � � C Qpr C QqrC1 C QqrC2 C � � � C Qqd 2 Œ QE�:

Setting qi WD �.Qqi/, we have ��. QD/ D p1Cp2C� � �CprCqrC1CqrC2C� � �Cqd � D,
so qrC1C qrC2C � � � C qd � prC1C prC2C � � � C pd. Since prC1C prC2C � � � C pd

is rigid, we conclude that ��. QD/ D D. ut

Corollary 3.7 If D 2 ŒK	 � is an effective and �-rational divisor on a metric graph
	 of genus g, and D has a rigid subdivisor of degree g � 1, then the divisor D lifts
pointwise to a canonical divisor on X. ut
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Remark 3.8 The results of Lemma 3.6 and Corollary 3.7 do not follow from the
main lifting criterion established in [6, Theorem 1.1]; our rigidity assumptions allow
a pointwise lift, whereas the lift in [6] may involve up to g extra pairs of zeros
and poles which cancel under specialization. Our lifting results also fail to follow
directly from the Mikhalkin correspondence results [26], because it is important for
us to be able to lift the given tropical plane quartic curve together with a tropical
canonical embedding of it to an algebraic curve.

We now prove the main theorem in the section.

Theorem 3.9 Let X be a genus 3 smooth proper curve over K whose minimal
skeleton 	 is a metric K4. The 28 odd theta characteristics of X are sent to the
seven odd theta characteristics of 	 in groups of four.

Proof Given an effective theta characteristic ŒP C Q� on 	 , we show that at least
four effective theta characteristics on X specialize to it. Since X has 28 effective theta
characteristics, it follows that exactly four of them specialize to each effective theta
characteristic on 	 . We start by using two rational functions on 	 as coordinate
functions to give an embedding of 	 in R

2 that can be completed to a balanced
tropical curve. We then argue that this embedding can be lifted to a canonical
embedding of X 	 P

2
K as a plane quartic in K4-form. Finally, we use Proposition 3.5

to find four bitangents to X whose contact points specialize to P and Q on 	 .
Let V1, V2, V3, and V4 denote the vertices of 	 , let Ei;j denote the edge between

Vi and Vj, and let a, b, c, d, e, and f denote the lengths of the edges E1;2, E1;3, E1;4,
E3;4, E2;4, and E2;3 respectively. As in [33], the seven effective theta characteristics
of 	 are in bijection with the seven nonempty Eulerian subgraphs of 	 : the four
3-cycles and the three 4-cycles in 	 .

Suppose that ŒP C Q� corresponds to a 3-cycle. After relabelling, the cycle
is V1V2V3 and, after permuting the labels V1, V2, and V3, we may assume c D
min.c; d; e/. Let x WD min.a; e; f / and y WD min.b; d; f /. With this notation, we have
the following explicit embedding of 	 in R

2 such that the coordinate functions are
rational functions on 	 ; see Fig. 2. Put the vertices V1, V2, V3, and V4 at .0; 0/,
.x; 0/, .0; y/, and .�c;�c/ respectively. Embed the edge E1;4 in R

2 as a straight line
segment between V1 and V4. If a D min.a; e; f /, then we embed E1;2 by simply
joining V1 and V2 with a straight line segment. However, when a ¤ min.a; e; f /, we
embed E1;2 as the piecewise-linear path .0; 0/ ! . aCx

2
; 0/ ! .x; 0/; in particular,

E1;2 contributes multiplicity 2 to the segment between .x; 0/ and . aCx
2
; 0/ in the

image of this embedding in R
2. Similarly, if b D min.b; d; f /, then we embed E1;3

by simply joining V1 and V3 with a straight line segment; when b ¤ min.b; d; f /,
we embed E1;3 as the piecewise-linear path .0; 0/! .0; bCy

2
/! .0; y/. Finally, we

embed

• E2;3 as the piecewise-linear path .x; 0/!
( f Cx

2
; f �x
2

)
!

( f �y
2
; f Cy

2

)
! .0; y/,

• E3;4 as the piecewise-linear path .0; y/!
( y�d

2
; y
)
!

(
�c�d
2
;�c

)
! .�c;�c/,

• E2;4 as the piecewise-linear path .�c;�c/!
(
�c; �c�e

2

)
!

(
x; x�e

2

)
! .x; 0/.



76 M. Chan and P. Jiradilok

f+x
2 , f−x

2
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2 , f+y

2

(−c,−c)
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2 ,−c
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2 ,y

)

x, x−e
2

−c, −c−e
2

a+x
2 ,0

f+x
2 , f−x

2

f−y
2 , f+y

2

(−c,−c)

−c−d
2 ,−c
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2 ,y

−c, −c−e
2

(x,0) (x,0)

(0,y)
(0,y)

(0,0)

(0,0)

Fig. 2 An embedding of 	 using tropical rational coordinate functions. The six infinite rays have
multiplicity 2 and the bounded segments have multiplicity 1 except for the edge between .x; 0/ and
.a C x=2; 0/ which has multiplicity 2. On the left, we depict the case with min.a; e; f / D a and
min.b; d; f / D b. On the right, we depict the case with min.a; e; f / D e and min.b; d; f / D b

To describe some rational functions on 	 , let pz; qz 2 	 be the points mapping
to

(
�c�f
2
;�c

)
and

(
�c; �c�e

2

)
. Similarly, let px; qx 2 	 be the points mapping to

⎧
⎪⎪⎨

⎪⎪⎩

( f Ca
2
; f �a

2

)
and

(
a; a�e

2

)
if a D min.a; e; f /;

( f Ca
2
; f �a

2

)
and

(
aCe
2
; 0

)
if e D min.a; e; f /;

( aCf
2
; 0

)
and

(
f ; f �e

2

)
if f D min.a; e; f /:

It follows that the x-coordinate of this embedding is a rational function F on 	 with
div.F/ D 2pzC2qz�2px�2qx. Furthermore, we claim that 2pzC2qz � K	 . Indeed,
if S 	 	 is the cycle V1V2V3 and d.S;�/W	 ! R is the distance function, regarded
as a rational function on 	 , then we have

div d.S;�/ D 2pz C 2qz � V1 � V2 � V3 � V4 D 2pz C 2qz � K	 :

Similarly, the y-coordinate of this embedding of 	 is a rational function G with
div G D 2pz C 2qz � 2py � 2qy and 2py C 2qy is also in the canonical class of 	 .
Thus, the image of 	 under .F;G/ becomes a tropical plane curve in R

2 by adding
six infinite rays each of multiplicity two; we add two rays in direction .1; 0/ at px

and qx, two rays in direction .0; 1/ at py and qy, and two in direction .�1;�1/ at pz

and qz.
All of the edge lengths a, b, c, d, e, f lie in the value group �, so each point

px, qx, py, qy, pz, qz is a �-rational point of 	 ; the value group � is divisible
because K is algebraically closed. We claim that each divisor D0 D 2px C 2qx,
D1 D 2py C 2qy, and Dz D 2pz C 2qz has a rigid subdivisor of degree 2. If
i 2 fx; y; zg and pi is a vertex of 	 , then Corollary 2.2 shows that 2pi is rigid.
By symmetry, the analogous statement holds for qi. If neither pi nor qi is a vertex
of 	 , then they are on the interiors of distinct edges in 	 , and pi C qi is again rigid
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by Corollary 2.2. Applying Corollary 3.7, we see that the divisors D0;D1;D2 can
be lifted pointwise to canonical divisors QD0, QD1, QD2 on X. Choosing global sections
s0; s1; s2 2 H0.X;KX/ with zeros QD0, QD1, QD2 respectively, the Slope Formula for
tropical curves (see either [5, Theorem 5.15] or [32, Proposition 3.3.15]) implies that
the embedding .s0; s1; s2/WX ,! P

2 is, up to a shift in R
2, a lift of .F;G/W	 ! R

2.
This shift can be corrected by rescaling coordinates on P

2. Hence, Theorem 3.2
establishes that X is canonically embedded in P

2 as a smooth plane quartic in
K4-form.

It remains to analyze the bitangents in this case. Proposition 3.5 shows that there
are four bitangents of X whose tropicalizations L1, L2, L3, and L4 are centred in
the open southwest quadrant of R

2. For 1 � j � 4, let Cj D .uj; vj/ 2 R
2 denote

the centre of Lj. We claim that the point Cj cannot lie to the left of the piecewise-
linear path .x; 0/ !

(
x; x�e

2

)
!

(
�c; �c�e

2

)
. If it did, then the rightward ray of Li

would intersect trop.X/ in a point on one of these segments with stable intersection
multiplicity 1, but this contradicts the main theorem of Osserman–Rabinoff [29]
along with the fact that each bitangent meets X in two points of multiplicity 2 (or
one point of multiplicity 4). Similarly, Cj cannot lie below .0; y/ !

( y�f
2
; y
)
!(

�c�f
2
;�c

)
. It follows that uj �

�c�f
2

and vj �
�c�e
2

, so Li intersects trop.X/ at two
points, each with multiplicity 2, which retract to pz; qz 2 	 . This is precisely the
theta characteristic associated to the cycle V1V2V3. By symmetry, we have therefore
proved the main claim for the four effective theta characteristics of 	 corresponding
under the Zharkov bijection to the four 3-cycles in 	 . In other words, we have
proved that at least four effective theta characteristics of X specialize to each of
these effective theta characteristic of 	 .

Finally, an analogous argument shows the claim for the three effective theta
characteristics of 	 that correspond to 4-cycles in 	 . For instance, Proposition 3.5
proves that there are four bitangents of X whose tropicalizations are tropical lines
centred on the open ray f.˛; 0/ W ˛ < 0g. Moreover, the centres lie to the left of( y�f
2
; y
)
!

(
�c�f
2
;�c

)
, again by [29]. This means that the two bitangent contact

points tropicalize to the midpoint of E3;4 and somewhere on the edge E1;2. Hence,
those four theta characteristics on X specialize to the theta characteristic associated
to the cycle V1V3V2V4. ut

4 The 28 Bitangents of Honeycomb Quartics

Following [23], we say that a smooth plane quartic curve X WD V.f / 	
P
2
K is a honeycomb curve if the regular subdivision of the triangle �4 WD

convf.0; 0/; .4; 0/; .0; 4/g induced by f is the standard one obtained by slicing �4
by the lines x D i, y D i, x C y D i for all 1 � i � 3; see Fig. 3. Honeycomb
curves play a special role in tropical geometry [14, 31]. In this section, we will
determine almost exactly where the 28 bitangents of honeycomb quartic curves go
under tropicalization. In fact, our description is exact for generic honeycomb curves.
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(4, 0)
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Fig. 3 The subdivision �4 and a tropical honeycomb plane quartic trop X � R
2; the curve shown

in grey illustrates Remark 4.4

In the final section of the paper, we will give an interesting explicit calculation of
the 28 bitangents of a honeycomb plane quartic over Cfftgg, giving an idea of the
behaviour that can arise in the non-generic case. The tools we use in this section
are tropical intersection theory [28, 29], the census of bitangents and their limits
provided in [12], and the elementary geometry of tropical plane curves.

The curve trop.X/ divides R
2 into 15 regions, one for each lattice point in�4. Let

Ri;j denote the region corresponding to the lattice point .i; j/; see Fig. 3. The three
bounded hexagonal regions are R1;1;R1;2;R2;1 and their unique common vertex is O.
For adjacent regions Ri;j and Rk;l, write Ei;jIk;l for the unique edge that they share,
and write `.Ei;jIk;l/ for the line spanned by Ei;jIk;l. The line `.E1;1I1;2/ intersects the
boundary of R2;1 in two points: O and another point Sx. Similarly, the line `.E1;1I2;1/
intersects the boundary of R1;2 at O and Sy, and the line `.E1;2I2;1/ intersects the
boundary of R1;1 at O and Sz. Finally, we label some of the pairwise intersections of
these lines: set Tx WD `.E0;1I1;1/\ `.E0;3I1;2/ 2 R

2, set Ty WD `.E1;0I1;1/\ `.E3;0I2;1/,
and set Tz WD `.E2;1I3;1/ \ `.E1;2I1;3/; see Fig. 4.

Definition 4.1 A honeycomb curve X WD V.f / with f WD
∑

iCj�4 ci;jxiyjz4�i�j is
generic if we have a3;1 C a1;1 � a3;0 � a1;2 ¤ 0, a0;3 C a2;1 � a1;3 � a1;1 ¤ 0 and
a1;0 C a1;2 � a0;1 � a2;1 ¤ 0 where ai;j WD val.ci;j/.

Theorem 4.2 Let X WD V.f / 	 P
2
K be a honeycomb plane quartic curve and let

L1;L2; : : : ;L28 be the tropicalizations of its 28 bitangents. If Pi 2 R
2 is the centre of

the tropical line Li for 1 � i � 28, then we have the following.

1. Four of the Pi’s are Tx.
2. Four of the Pi’s are Ty.
3. Four of the Pi’s are Tz.
4. Four of the Pi’s are O.
5. Four of the Pi’s lie on the closed ray in direction .1; 1/ based at Sz.
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O
Sx

Sy

Sz

Tx

Ty

Tz

Fig. 4 The seven centres of the bitangents to a generic honeycomb quartic. Exactly four bitangents
are centred at each of the locations

6. Four of the Pi’s lie on the closed ray in direction .�1; 0/ based at Sx.
7. Four of the Pi’s lie on the closed ray in direction .0;�1/ based at Sy.

Moreover, if X is a generic honeycomb curve, then the points in parts 5–7 must be
exactly Sz, Sx, and Sy, respectively.

Proof If necessary, change coordinates so that O D .0; 0/. Proposition 3.5 shows
that each of the seven regions in Fig. 1 supports exactly four of the Pi’s. Thus, part 4
follows immediately.

Since four of the Pi’s lie southwest of O, each of the north and east rays of
the corresponding lines Li intersect trop.X/ is a single connected component with
stable intersection multiplicity of 2; see [29]. It follows that Pi must lie on or below
the closed segment E2;1I3;1, and it must lie on or to the left of the closed segment
E1;2I1;3. Therefore, the four points are exactly Tz which proves part 3. Similar
arguments establishes part 1 and part 2.

Proposition 3.5 also guarantees that four of the Pi lie in the direction .1; 1/ from
O. If Pi lies within the open region R1;1, then Li \ trop.X/ would have at least three
distinct connected components, contradicting the fact that Li is a tropicalization of
a bitangent. This proves that part 5 holds. Moreover, if X is generic, then the only
way that the connected component of Li \ trop.X/ that contains Sz can have stable
intersection multiplicity 2 is if Pi D Sz; otherwise Li \ trop.X/ would have more
than two connected components. This proves that four of the Pi are Sz when X is a
generic honeycomb curve. Again, similar arguments establish part 6 and part 7. ut
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Fig. 5 The 28 centres of the
bitangents to the honeycomb
quartic (NHC)
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Remark 4.3 It is straightforward to calculate the coordinates of each of these points
exactly in terms of the ai;j’s, using the duality between tropical plane curves and
their lifted Newton subdivisions [25]. Thus, for almost all honeycomb quartics X,
we can produce an explicit formula for the tropicalizations of the 28 bitangents of X
in terms of the coefficients of its defining equation.

For non-generic honeycomb curves, the bitangent centres need not be grouped in
fours and may even appear in the regions R0;0, R4;0, and R0;4; see Fig. 5.

Remark 4.4 Classically, a smooth plane quartic curve is uniquely determined by its
28 bitangents [12, 24]. If X and X0 	 P

2 are plane quartics with smooth tropical-
ization and the 28 tropicalizations of their bitangents agree, do the tropicalizations
of X and X0 agree? Theorem 4.2 shows that the answer is no. More dramatically,
it yields infinite families of tropical honeycomb quartics such that all lifts of them
to classical curves have the same 28 tropicalized bitangents. For instance, any two
curves tropicalizing to the honeycomb curve in Fig. 3 and the one obtained from it
by shrinking region R2;0 (as shown in Fig. 3 in grey) have the same 28 tropicalized
bitangents.

5 Computing the 28 Bitangents of a Honeycomb Quartic

In the final section of this paper, we compute of the Puiseux expansions for the 28
bitangents of a specific K4-quartic. Our calculation illustrates how tropical geometry
may be used in computations that are not a priori tropical. Throughout this section,
let K WD Cfftgg. The smooth plane quartic X defined by the equation
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f WD xyz.xC yC z/C t.x2y2 C x2z2 C y2z2/

Ct2.x3yC xy3 C x3zC xz3 C y3zC yz3/C t5.x4 C y4 C z4/
(NHC)

is a non-generic honeycomb curve, in the sense of Definition 4.1. The tropicalization
of X is a smooth tropical plane curve in which every bounded segment has lattice
length 1. The computations in this section were carried out in Macaulay2 [18], and
the results are summarized in Table 1.

Let B be the set of all .A;B/ 2 Cfftgg2 such that AxC ByC z D 0 is a bitangent
to the honeycomb curve X. Since X admits no bitangent of the form AxC By D 0,
we have jBj D 28. Observe that Ax C By C z D 0 is a bitangent to X if and only
if the polynomial f .x; y;�Ax�By/ is a perfect square. To exploit this condition, we
introduce a square-detecting ideal in the next lemma.

Lemma 5.1 Let K be an algebraically closed field of characteristic 0. If the ideal
J 
 KŒX0;X1; : : : ;X4� is generated by the seven cubic polynomials

8X1X
2
4 � 4X2X3X4 C X33 ; 8X20X3 � 4X0X1X2 C X31 ;

16X0X
2
4 C 2X1X3X4 � 4X22X4 C X2X

2
3 ; 16X20X4 C 2X0X1X3 � 4X0X

2
2 C X21X2 ;

8X0X1X4 � 4X0X2X3 C X21X3 ; 8X0X3X4 � 4X1X2X4 C X1X
2
3 ;

X0X
2
3 � X21X4 :

then we have .c0; c1; : : : ; c4/ 2 V.J/ if and only if the polynomial

s.x; y/ WD c4x
4 C c3x

3yC c2x
2y2 C c1xy3 C c0y

4 2 KŒx; y�

is a perfect square.

Proof Since K is algebraically closed, the polynomial s.x; y/ is a perfect square if
and only if there exist C;D;C0;D0 2 K such that s.x; y/ D .CxCDy/2.C0xCD0y/2.
Expanding and eliminating C;D;C0; and D0 produces the ideal J above. ut

To identify the bitangents to X, we expand f .x; y;�Ax � By/ as a homogeneous
quartic polynomial in x and y, whose five coefficients are polynomials in A and B.
Substituting these five polynomials for X0;X1; : : : ;X4 in J yields an ideal I 	
KŒA;B� generated by seven polynomials whose variety is B, the bitangents of X.
Because of their length, we avoid displaying the explicit generators for I.

Our goal is to compute V.I/. Even though this variety is just 28 points, it is
not simple to carry out its computation over the field of Puiseux series. We now
explain our strategy for carrying it out. First, we will determine the 28 valuations
.val.A/; val.B// 2 R

2 of the bitangent coefficients, i.e. we will compute the
locations of the 28 tropicalized bitangents. For this we use elimination theory
and Newton polygons to determine the valuations of V.I/ under specially chosen
projections. Second, we will bound the denominators of the exponents of t that show
up in the Puiseux expansions of pairs .A;B/, allowing us to pass from Puiseux series
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to power series (after an appropriate base change). Finally, we will use repeated
specialization to t D 0 to successively compute the the Puiseux expansions of the
bitangent coefficients at each of the determined locations.

The first step is accomplished in the proposition below, whose proof makes
use of computations in Macaulay2; see Fig. 5. Note that a bitangent .A;B/ 2 B
tropicalizes to a line centred at

(
� val.A/;� val.B/

)
2 R

2.

Proposition 5.2 If A;B 2 K D Cfftgg with a WD val.A/ and b WD val.B/, then the
28 bitangents Ax C By C z D 0 of the non-generic honeycomb curve X D V.f /
include

• exactly 4 with .a; b/ D .0; 0/,
• exactly 4 with .a; b/ D .�2; 0/,
• exactly 4 with .a; b/ D .0;�2/,
• exactly 4 with .a; b/ D .2; 2/,
• exactly 2 with .a; b/ D .�2;�2/,

• exactly 2 with .a; b/ D .�4;�4/,
• exactly 2 with .a; b/ D .2; 0/,
• exactly 2 with .a; b/ D .4; 0/,
• exactly 2 with .a; b/ D .0; 2/,
• exactly 2 with .a; b/ D .0; 4/.

Proof The first four statements all follow from Theorem 4.2. By symmetry, it
suffices to prove that there are exactly two tropicalized bitangents centred at .2; 2/
and two centred at .4; 4/. Let .A;B/ 2 B. Following Proposition 3.4.8 in [25], we
use tropical geometry in dimension 1, together with a special change of coordinates,
get information about the possible values of ACB and ACBC1. Rewriting the ideal
I 	 KŒA;B� in terms of coordinates A0 WD AC B and B and eliminating B produces
an ideal that is principally generated by a polynomial p 2 KŒA0� such that p.A0/ D 0

if and only if A0 D ACB for some .A;B/ 2 B. Because of the symmetry of f , there
are fewer possible values of ACB, which makes this elimination calculation doable
in Macaulay2.

Before completing the proof, we collect four simple claims which are verified by
computation in Macaulay2.

Claim The polynomial p is a squarefree polynomial of degree 16. The roots of p
have valuations �4;�2; 0; and 2, and these valuations are attained with multiplicity
1; 5; 7; and 3 respectively.

Proof We calculated p in Macaulay2. To check that it is squarefree, we computed
a specialization, say t D 1, of the resultant of p and p0 and observed that it is
nonzero; the actual resultant of p and p0 is much too large to compute exactly. The
valuations of the roots of p are determined, with multiplicity, by the valuations of
the 17 coefficients of p, via the method of the Newton polygon. ut

Claim If .A;B/ 2 B, then we have val.AC BC 1/ � 0.

Proof Using Macaulay2, we rewrote I in terms of coordinates A00 WD A C B C 1
and B. We then eliminated B. The result is a polynomial whose Newton polygon is
comprised of segments of nonnegative slope. ut

Claim There are exactly four points of B of the form .A;A/ and their valuations
are .0; 0/ and .2; 2/ with multiplicity 2 each.
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Proof We substituted B D A into I and computed a Gröbner basis. The result is
an ideal principally generated by a degree four polynomial. Analyzing its Newton
polygon yields the claim about the valuations. ut

Claim If .A;B/ 2 B such that
(
val.A/; val.B/

)
D .�a;�a/ for some a � 2, then

we have val.AC B/ D �a, so
(
val.A/; val.B/

)
is either .�4;�4/ or .�2;�2/.

Proof The second part follows from the first by our initial claim. To prove the first,
suppose instead val.AC B/ > val.A/ D val.B/. By symmetry, if AxC ByC z D 0
is a bitangent, then AxC yC Bz D 0 is also a bitangent and

(
A
B ;

1
B

)
2 B. Therefore,

the second claim shows that val
(

A
BC

1
BC1

)
� 0, but val

(
1
B

)
> 0 and val

(
ACB

B

)
> 0

yields a contradiction. ut

The first claim shows that exactly 16 distinct values of A C B occur. The third
claim implies that there are four bitangents of the form .A;A/, and the symmetry
of f implies that the remaining 24 bitangents form twelve pairs .A;B/ and .B;A/.
If two points .A;B/ ¤ .A0;B0/ 2 B satisfy A C B D A0 C B0, then we see that
.A0;B0/ D .B;A/. Since p has a unique root of valuation �4 by the first claim, there
is exactly one pair of bitangents .A;B/ ¤ .B;A/ 2 B with val.A C B/ D �4.
The fourth claim establishes that these must be the unique pair of bitangents that
have valuation .�4;�4/; all other cases given in Theorem 4.2 give pairs .A;B/ with
val.AC B/ > �4. Therefore, by combining the fourth claim and Theorem 4.2, we
conclude that there are exactly two bitangents that have valuation .�2;�2/. ut

Remark 5.3 Let .A;B/ 2 B be one of m bitangents that has the same tropicalization.
If n is the smallest positive integer such that A;B 2 C..t1=n//, then we have n �
m. Indeed, the automorphisms C..t1=n//=C..t// preserve valuations, so we already
produce n bitangents with the same tropicalization.

Fix a positive integer n and consider a point .a; b/ 2 R
2 that is a possible

tropicalization of .A;B/ 2 B as determined in Proposition 5.2. We now explain
how to compute, at least in principle, the Puiseux expansions of the bitangents
.A;B/ that lie in C..t1=n//2 and whose tropicalizations are .a; b/. After a base change
sn D t, we may assume n D 1 and, after a change of coordinates, we may assume
.a; b/ D .0; 0/. Proposition 4.4 in [19] shows that the variety

{
.a; b/ 2 C

2 W there exist .A;B/ 2 B such that .a; b/ D
(
val.A/; val.B/

)}

is cut out by the ideal .I \ RŒA;B�/jtD0. For each .a; b/ 2 .C�/2 in this variety, we
make a change of coordinates A WD a C tA0, B WD b C tB0 and repeat the process
to obtain the next coefficient in the expansion. We obtain the desired precision by
making sufficient iterations. To find all 28 bitangents, we make this computation at
each possible location found in Proposition 5.2 and for each n � m.

In practice, finding the saturation .I W t1/ is much too slow, so when we run
this algorithm, we simply use IjtD0 rather than .I W t1/jtD0. The scheme-theoretic
inclusion V.IjtD0/ � V

(
.I W t1/jtD0

)
implies that deg V.IjtD0/ � deg V

(
.I W

t1/jtD0
)

when dim V.IjtD0/ D 0. In other words, using IjtD0 at each stage gives us
only a set-theoretic upper bound on the possible bitangents .A;B/ 2 B, computed to
arbitrary precision. However, if the sum of the degrees of all of the zero-dimensional
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Table 1 Puiseux series expansion of .A;B/ 2 B

val .A;B/

.0; 0/ .1; 1/, .1C 4t C 4t3 � 24t4 C 	 	 	 ; 1C 4t C 4t3 � 24t4 C 	 	 	 /,
.1; 1� 4t C 16t2 � 68t3 C 	 	 	 /, .1� 4t C 16t2 � 68t3 C 	 	 	 ; 1/

.2; 2/ .t2 C 2it
5
2 � 2t3 � 5it

7
2 C 	 	 	 ; t2 C 2it

5
2 � 2t3 � 5it

7
2 C 	 	 	 /,

.t2 C 2it
5
2 � 2t3 � 5it

7
2 C 	 	 	 ; t2 � 2it

5
2 � 2t3 C 5it

7
2 C 	 	 	 /,

.t2 � 2it
5
2 � 2t3 C 5it

7
2 C 	 	 	 ; t2 � 2it

5
2 � 2t3 C 5it

7
2 C 	 	 	 /,

.t2 � 2it
5
2 � 2t3 C 5it

7
2 C 	 	 	 ; t2 C 2it

5
2 � 2t3 � 5it

7
2 C 	 	 	 /

.0;�2/ .1; t�2 C 2it�
3
2 � 2t�1 � 5it�

1
2 C 	 	 	 /, .1; t�2 � 2it�

3
2 � 2t�1 C 5it�

1
2 C 	 	 	 /,

.1C 4it
1
2 � 8t � 18it

3
2 C 	 	 	 ; t�2 C 2it�

3
2 � 2t�1 � 5it�

1
2 C 	 	 	 /,

.1� 4it
1
2 � 8t C 18it

3
2 C 	 	 	 ; t�2 � 2it�

3
2 � 2t�1 C 5it�

1
2 C 	 	 	 /

.�2; 0/ .t�2 C 2it�
3
2 � 2t�1 � 5it�

1
2 C 	 	 	 ; 1/, .t�2 � 2it�

3
2 � 2t�1 C 5it�

1
2 C 	 	 	 ; 1/,

.t�2 C 2it�
3
2 � 2t�1 � 5it�

1
2 C 	 	 	 ; 1C 4it

1
2 � 8t � 18it

3
2 C 	 	 	 /,

.t�2 � 2it�
3
2 � 2t�1 C 5it�

1
2 C 	 	 	 ; 1� 4it

1
2 � 8t C 18it

3
2 C 	 	 	 /

.2; 0/ .4t2 C 4it
5
2 � 12t3 � 18it

7
2 C 	 	 	 ; 1C 2it

1
2 � 2t � 5it

3
2 C 	 	 	 /,

.4t2 � 4it
5
2 � 12t3 C 18it

7
2 C 	 	 	 ; 1� 2it

1
2 � 2t C 5it

3
2 C 	 	 	 /

.0; 2/ .1C 2it
1
2 � 2t � 5it

3
2 C 	 	 	 ; 4t2 C 4it

5
2 � 12t3 � 18it

7
2 C 	 	 	 /,

.1� 2it
1
2 � 2t C 5it

3
2 C 	 	 	 ; 4t2 � 4it

5
2 � 12t3 C 18it

7
2 C 	 	 	 /

.�2;�2/ . 1
4
t�2 C i

4
t�

3
2 C 1

2
t�1 C i

8
t�

1
2 C 	 	 	 ; 1

4
t�2 � i

4
t�

3
2 C 1

2
t�1 � i

8
t�

1
2 C 	 	 	 /,

. 1
4
t�2 � i

4
t�

3
2 C 1

2
t�1 � i

8
t�

1
2 C 	 	 	 ; 1

4
t�2 C i

4
t�

3
2 C 1

2
t�1 C i

8
t�

1
2 C 	 	 	 /

.4; 0/ .2t4 C 2it
9
2 � 10t5 � 13it

11
2 C 	 	 	 ; 1C 2it

1
2 � 2t � 5it

3
2 C 	 	 	 /,

.2t4 � 2it
9
2 � 10t5 C 13it

11
2 C 	 	 	 ; 1� 2it

1
2 � 2t C 5it

3
2 C 	 	 	 /

.0; 4/ .1C 2it
1
2 � 2t � 5it

3
2 C 	 	 	 ; 2t4 C 2it

9
2 � 10t5 � 13it

11
2 C 	 	 	 /,

.1� 2it
1
2 � 2t C 5it

3
2 C 	 	 	 ; 2t4 � 2it

9
2 � 10t5 C 13it

11
2 C 	 	 	 /

.�4;�4/ . 1
2
t�4 C i

2
t�

7
2 C 2t�3 C 5

4
it�

5
2 C 	 	 	 ; 1

2
t�4 � i

2
t�

7
2 C 2t�3 � 5

4
it�

5
2 C 	 	 	 /,

. 1
2
t�4 � i

2
t�

7
2 C 2t�3 � 5

4
it�

5
2 C 	 	 	 ; 1

2
t�4 C i

2
t�

7
2 C 2t�3 C 5

4
it�

5
2 C 	 	 	 /

schemes in question drops to 28, then we know that the 28 Puiseux expansions we
have computed up to that point do correspond to true bitangents. This termination
condition does indeed happen in our example. The results of our computations are
shown in Table 1.
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Secants, Bitangents, and Their Congruences

Kathlén Kohn, Bernt Ivar Utstøl Nødland, and Paolo Tripoli

Abstract A congruence is a surface in the Grassmannian Gr.1;P3/ of lines in
projective 3-space. To a space curve C, we associate the Chow hypersurface in
Gr.1;P3/ consisting of all lines which intersect C. We compute the singular locus
of this hypersurface, which contains the congruence of all secants to C. A surface
S in P

3 defines the Hurwitz hypersurface in Gr.1;P3/ of all lines which are tangent
to S. We show that its singular locus has two components for general enough S: the
congruence of bitangents and the congruence of inflectional tangents. We give new
proofs for the bidegrees of the secant, bitangent and inflectional congruences, using
geometric techniques such as duality, polar loci and projections. We also study the
singularities of these congruences.

MSC 2010 codes: 14M15, 14H50, 14J70, 14N10, 14N15, 51N35, 14C17

1 Introduction

The aim of this article is to study subvarieties of Grassmannians which arise
naturally from subvarieties of complex projective 3-space P

3. We are mostly
interested in threefolds and surfaces in Gr.1;P3/. These are classically known as
line complexes and congruences. We determine their classes in the Chow ring of
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Gr.1;P3/ and their singular loci. Throughout the paper, we use the phrase ‘singular
points of a congruence’ to simply refer to its singularities as a subvariety of the
Grassmannian Gr.1;P3/. In the older literature, this phrase refers to points in
P
3 lying on infinitely many lines of the congruence; nowadays, these are called

fundamental points.
The Chow hypersurface CH0.C/ 	 Gr.1;P3/ of a curve C 	 P

3 is the set of all
lines in P

3 that intersect C, and the Hurwitz hypersurface CH1.S/ 	 Gr.1;P3/ of a
surface S 	 P

3 is the Zariski closure of the set of all lines in P
3 that are tangent to S

at a smooth point. Our main results are consolidated in the following theorem.

Theorem 1.1 Let C 	 P
3 be a nondegenerate curve of degree d and geomet-

ric genus g having only ordinary singularities x1; x2; : : : ; xs with multiplicities
r1; r2; : : : ; rs. If Sec.C/ denotes the locus of secant lines to C, then the singular locus
of CH0.C/ is Sec.C/ [

⋃s
iD1fL 2 Gr.1;P3/ W xi 2 Lg, the bidegree of Sec.C/ is

Ä
1
2
.d � 1/.d � 2/ � g �

s∑

iD1

1
2
ri.ri � 1/;

1
2
d.d � 1/

ä
;

and the singular locus of Sec.C/, when C is smooth, consists of all lines that
intersect C with total multiplicity at least 3.

Let S 	 P
3 be a general surface of degree d with d � 4. If Bit.S/ denotes the

locus of bitangents to S and Infl.S/ denotes the locus of inflectional tangents to S,
then the singular locus of CH1.S/ is Bit.S/ [ Infl.S/, the bidegree of Bit.S/ is

(
1
2
d.d � 1/.d � 2/.d � 3/; 1

2
d.d � 2/.d � 3/.dC 3/

)
;

the bidegree of Infl.S/ is
(
d.d � 1/.d � 2/; 3d.d � 2/

)
, and the singular locus of

Infl.S/ consists of all lines that are inflectional tangents at at least two points of S
or intersect S with multiplicity at least 4 at some point.
The bidegree of Infl.S/ also appears in [22, Prop. 4.1]. The bidegrees of Bit.S/,
Infl.S/, and Sec.C/, for smooth C, already appear in [2], a paper to which we
owe a great debt. Nevertheless, we give new, more geometric, proofs not relying on
Chern class techniques. The singular loci of Sec.C/, Bit.S/, and Infl.S/ are partially
described in Lemma 2.3, Lemma 4.3, and Lemma 4.6 in [2].

Using duality, we establish some relationships of the varieties in Theorem 1.1.

Theorem 1.2 If C is a nondegenerate smooth space curve, then the secant lines of
C are dual to the bitangent lines of the dual surface C_ and the tangent lines of C
are dual to the inflectional tangent lines of C_.

Congruences and line complexes have been actively studied both in the nine-
teenth century and in modern times. The study of congruences goes back to
Kummer [20], who classified those of order 1; the order of a congruence is the
number of lines in the congruence that pass through a general point in P

3. The
Chow hypersurfaces of space curves were introduced by Cayley [4] and generalized
to arbitrary varieties by Chow and van der Waerden [5]. Many results from the
second half of the nineteenth century are detailed in Jessop’s monograph [16].
Hurwitz hypersurfaces and further generalizations known as higher associated or
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coisotropic hypersurfaces are studied in [11, 19, 28]. Catanese [3] shows that Chow
hypersurfaces of space curves and Hurwitz hypersurfaces of surfaces are exactly the
self-dual hypersurfaces in the Grassmannian Gr.1;P3/. Ran [25] studies surfaces
of order 1 in general Grassmannians and gives a modern proof of Kummer’s
classification. Congruences play a role in algebraic vision and multi-view geometry,
where cameras are modeled as maps from P

3 to congruences [24]. The multidegree
of the image of several of those cameras is computed by Escobar and Knutson in [9].

In Sect. 2, we collect basic facts about the Grassmannian Gr.1;P3/ and its
subvarieties. Section 3 studies the singular locus of the Chow hypersurface of a
space curve and computes its bidegree. Section 4 describes the singular locus of a
Hurwitz hypersurface and Sect. 5 uses projective duality to calculate the bidegree of
its components. In Sect. 6, we connect the intersection theory in Gr.1;P3/ to Chow
and Hurwitz hypersurfaces. Finally, Sect. 7 analyzes the singular loci of secant,
bitangent, and inflectional congruences.

This article provides complete solutions to Problem 5 on Curves, Problem 4 on
Surfaces, and Problem 3 on Grassmannians in [29].

2 The Degree of a Subvariety in Gr.1; P
3/

In this section, we provide the geometric definition for the degree of a subvariety
in Gr.1;P3/. An alternative approach, using coefficients of classes in the Chow
ring, can be found in Sect. 6. For information about subvarieties of more general
Grassmannians, we recommend [1].

The Grassmannian Gr.1;P3/ of lines in P
3 is a four-dimensional variety that

embeds into P
5 via the Plücker embedding. In particular, the line in 3-space spanned

by two distinct points .x0 W x1 W x2 W x3/; .y0 W y1 W y2 W y3/ 2 P
3 is identified

with the point .p0;1 W p0;2 W p0;3 W p1;2 W p1;3 W p2;3/ 2 P
5, where pi;j is the minor

formed of ith and jth columns of the matrix
[ x0 x1 x2 x3

y0 y1 y2 y3

]
. The Plücker coordinates

pi;j satisfy the relation p0;1p2;3 � p0;2p1;3 C p0;3p1;2 D 0. Moreover, every point in
P
5 satisfying this relation is the Plücker coordinates of some line. Dually, a line in

P
3 is the intersection of two distinct planes. If the planes are given by the equations

a0x0 C a1x1 C a2x2 C a3x3 D 0 and b0x0 C b1x1 C b2x2 C b3x3 D 0, then the
minors qi;j of the matrix

[ a0 a1 a2 a3
b0 b1 b2 b3

]
are the dual Plücker coordinates and also satisfy

q0;1q2;3 � q0;2q1;3 C q0;3q1;2 D 0. The map given by p0;1 7! q2;3, p0;2 7! �q1;3,
p0;3 7! q1;2, p1;2 7! q0;3, p1;3 7! �q0;2, and p2;3 7! q0;1 allows one to conveniently
pass between these two coordinate systems.

A line complex is a threefold ˙ 	 Gr.1;P3/. For a general plane H 	 P
3 and a

general point v 2 H, the degree of ˙ is the number of points in ˙ corresponding
to a line L 	 P

3 such that v 2 L 	 H. For instance, if C 	 P
3 is a curve, then the

Chow hypersurface CH0.C/ WD fL 2 Gr.1;P3/ W C \ L ¤ ¿g is a line complex.
A general plane H intersects C in deg.C/ many points, so there are deg.C/ many
lines in H that pass through a general point v 2 H and intersect C; see Fig. 1. Hence,
the degree of the Chow hypersurface is equal to the degree of the curve.



90 K. Kohn et al.

v H

C

Fig. 1 The degree of the Chow hypersurface

A congruence is a surface ˙ 	 Gr.1;P3/. For a general point v 2 P
3 and a

general plane H 	 P
3, the bidegree of a congruence is a pair .˛; ˇ/, where the order

˛ is the number of points in ˙ corresponding to a line L 	 P
3 such that v 2 L and

the class ˇ is the number of points in ˙ corresponding to lines L 	 P
3 such that

L 	 H. For instance, consider the congruence of all lines passing through a fixed
point x. Given a general point v, this congruence contains a unique line passing
through v, namely the line spanned by x and v. Given a general plane H, we have
x 62 H, so this congruence does not contain any line that lies in H. Hence, the set of
lines passing through a fixed point is a congruence with bidegree .1; 0/. A similar
argument shows that the congruence of lines lying in a fixed plane has bidegree
.0; 1/.

The degree of a curve˙ 	 Gr.1;P3/ is the number of points in˙ corresponding
to a line L 	 P

3 that intersects a general line in P
3. Equivalently, it is the number

of points in the intersection of ˙ with the Chow hypersurface of a general line. For
instance, the set of all lines in P

3 that lie in a fixed plane H 	 P
3 and contain a

fixed point v 2 H forms a curve in Gr.1;P3/. This curve has degree 1, because a
general line has a unique intersection point with H and there is a unique line passing
through this point and v. In other words, this curve is a line in Gr.1;P3/.

Finally, the degree of a zero-dimensional subvariety is simply the number of
points in the variety.

3 Secants of Space Curves

This section describes the singular locus of the Chow hypersurface of a space curve.
For a curve with mild singularities, we also compute the bidegree of its secant
congruence.

A curve C 	 P
3 is defined by at least two homogeneous polynomials in

the coordinate ring of P
3, and these polynomials are not uniquely determined.

However, there is a single equation that encodes the curve C. Specifically, its Chow
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hypersurface CH0.C/ WD fL 2 Gr.1;P3/ W C \ L ¤ ¿g is determined by a single
polynomial in the Plücker coordinates on Gr.1;P3/. This equation, known as the
Chow form of C, is unique up to rescaling and the Plücker relation. For more on
Chow forms; see [6].

Example 3.1 ([6, Prop. 1.2]) The twisted cubic is a smooth rational curve of degree
3 in P

3. Parametrically, this curve is the image of the map �3WP1 ! P
3 defined by

.s W t/ 7! .s3 W s2t W st2 W t3/. The line L, which is determined by the two equations
a0x0 C a1x1 C a2x2 C a3x3 D 0 and b0x0 C b1x1 C b2x2 C b3x3 D 0, intersects the
twisted cubic if and only if there exists a point .s W t/ 2 P

1 such that

a0s
3 C a1s

2tC a2st2 C a3t
3 D 0 D b0s

3 C b1s
2tC b2st2 C b3t

3 :

The resultant for these two cubic polynomials, which can be expressed as a
determinant of an appropriate matrix with entries in ZŒa0; a1; a2; a3; b0; b1; b2; b3�,
vanishes exactly when they have a common root. It follows that the line L meets the
twisted cubic if and only if

0 D det

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

a0 a1 a2 a3 0 0

0 a0 a1 a2 a3 0
0 0 a0 a1 a2 a3
b0 b1 b2 b3 0 0

0 b0 b1 b2 b3 0
0 0 b0 b1 b2 b3

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

D � det

⎡

⎣
q0;1 q0;2 q0;3
q0;2 q0;3 C q1;2 q1;3
q0;3 q1;3 q2;3

⎤

⎦ ;

where qi;j are the dual Plücker coordinates. Hence, the Chow form of the twisted
cubic is q30;3Cq20;3q1;2�2q0;2q0;3q1;3Cq0;1q

2
1;3Cq20;2q2;3�q0;1q0;3q2;3�q0;1q1;2q2;3.

We next record a technical lemma. If IX is the saturated homogeneous ideal
defining the subvariety X 	 P

n, then the tangent space Tx.X/ at the point x 2 X
can be identified with

{
y 2 P

n W
∑n

iD0
@f
@xi
.x/yi D 0 for all f .x0; x1; : : : ; xn/ 2 IX

}
.

Lemma 3.2 Let f WX ! Y be a birational finite surjective morphism between
irreducible projective varieties and let y 2 Y. The variety Y is smooth at the point
y if and only if the fibre f �1.y/ contains exactly one point x 2 X, the variety X is
smooth at the point x, and the differential dxf WTx.X/! Ty.Y/ is an injection.

Proof First, suppose that Y is smooth at the point y. Since Y is normal at the point y,
the Zariski Connectedness Theorem [21, Sect. III.9.V] proves that the fibre f �1.y/
is a connected set in the Zariski topology. As f is a finite morphism, its fibres are
finite and we deduce that f �1.y/ D fxg. If Y0 is the open set of smooth points in Y
and let X0 WD f �1.Y0/, then Zariski’s Main Theorem [21, Sect. III.9.I] implies that
the restriction of f to X0 is an isomorphism of X0 with Y0. In particular, we have
that x 2 X0 	 X is a smooth point. Moreover, Theorem 14.9 in [13] shows that the
differential dxf is injective.

For the other direction, suppose that f �1.y/ D fxg for some smooth point
x 2 X with injective differential dxf . Let Y1 be an open neighbourhood of y
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containing points in Y with one-element fibres and injective differentials. Combin-
ing Lemma 14.8 and Theorem 14.9 in [13] produces an isomorphism of X1 WD
f �1.Y1/ with Y1. Since x 2 X1 is smooth, we conclude that y 2 Y1 	 Y is smooth.

ut

When the curve C has degree at least two, the set of lines that meet it in two
points forms a surface Sec.C/ 	 Gr.1;P3/ called the secant congruence of C. More
precisely, Sec.C/ is the closure in Gr.1;P3/ of the set of points corresponding to
a line in P

3 which intersects the curve C at two smooth points. A line meeting
C at a singular point might not belong to Sec.C/, even though it has intersection
multiplicity at least two with the curve; see Remark 3.4.

The following theorem is the main result in this section.

Theorem 3.3 Let C 	 P
3 be an irreducible curve of degree at least 2. If Sing.C/

denotes the singular locus of the curve C, then the singular locus of the Chow
hypersurface for C is Sec.C/ [

(⋃
x2Sing.C/fL 2 Gr.1;P3/ W x 2 Lg

)
.

Proof We first show that the incidence variety ˚C WD f.v;L/ W v 2 Lg 	 C �
Gr.1;P3/ is smooth at the point .v;L/ if and only if the curve C is smooth at the
point v 2 C. Let f1; f2; : : : ; fk 2 CŒx0; x1; x2; x3� be generators for the saturated
homogeneous ideal of C in P

3. Consider the affine chart of P
3 � Gr.1;P3/ where

x0 ¤ 0 and p0;1 ¤ 0. We may assume that v D .1 W ˛ W ˇ W / and the line L is
spanned by the points .1 W 0 W a W b/ and .0 W 1 W c W d/. We have that v 2 L if and
only if the line L is given by the row space of matrix

ñ
1 ˛ ˇ 

0 1 c d

ô
D

ñ
1 ˛

0 1

ôñ
1 0 ˇ � ˛c  � ˛d
0 1 c d

ô
;

which is equivalent to a D ˇ � ˛c and b D  � ˛d. Hence, in the chosen affine
chart, ˚C can be written as

{
.˛; ˇ; ; a; b; c; d/ W fi.1; ˛; ˇ; / D 0 for 1 � i � k; a D ˇ � ˛c; b D  � ˛d

}
:

As dim˚C D 3, it is smooth at the point .v;L/ if and only if its tangent space has
dimension three or, equivalently, the Jacobian matrix

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

@f1
@x1
.1; ˛; ˇ; / @f1

@x2
.1; ˛; ˇ; / @f1

@x3
.1; ˛; ˇ; / 0 0 0 0

@f2
@x1
.1; ˛; ˇ; / @f2

@x2
.1; ˛; ˇ; / @f2

@x3
.1; ˛; ˇ; / 0 0 0 0

:::
:::

:::
:::

:::
:::

:::
@fk
@x1
.1; ˛; ˇ; / @fk

@x2
.1; ˛; ˇ; / @fk

@x3
.1; ˛; ˇ; / 0 0 0 0

�c 1 0 �1 0 �˛ 0

�d 0 1 0 �1 0 �˛

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦
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has rank four. We see that this Jacobian matrix has rank four if and only if the
Jacobian matrix of C has rank two, in which case v 2 C is smooth. Therefore, we
deduce that ˚C is smooth at the point .v;L/ exactly when C is smooth at the point v.

By Lemma 14.8 in [13], the projection 
 W˚C ! CH0.C/ defined by .v;L/ 7! L
is finite; otherwise C would contain a line contradicting our assumptions. Moreover,
the general fibre of 
 has cardinality 1 because the general line L 2 CH0.C/
intersects C in a single point. Hence, 
 is birational. Applying Lemma 3.2 shows
that CH0.C/ is smooth at L if and only if 
�1.L/ D f.v;L/g where v 2 C is a
smooth point and the differential d.v;L/
 is injective. Using our chosen affine chart,
we see that the differential d.v;L/
 sends every element in the kernel of the Jacobian
matrix to its last four coordinates. This map is not injective if and only if the kernel

contains an element of the form
[
� � � 0 0 0 0

]T
¤ 0. Such an element belongs to

the kernel if and only if it is equal to
[
� c� d� 0 0 0 0

]T
for some � 2 C n f0g and

@fi
@x1

.1; ˛; ˇ; /C c
@fi
@x2

.1; ˛; ˇ; /C d
@fi
@x3

.1; ˛; ˇ; / D 0

for all 1 � i � k. Hence, for a smooth point v 2 C, the differential d.v;L/
 is not
injective if and only if L is the tangent line of C at v. Since we have that j
�1.L/j D
1 if and only if L is not a secant line and all tangent lines to C are contained in
Sec.C/, we conclude that CH0.C/ is smooth at L if and only if L … Sec.C/ and L
meets C at a smooth point. ut

Remark 3.4 Local computations show that the secant congruence of C generally
does not contain all lines through singular points of C. To be more explicit, let
x 2 C be an ordinary singularity; the point x is the intersection of r branches of C
with r � 2, and the r tangent lines of the branches at x are pairwise different. We
claim that a line L intersecting C only at the point x is contained in Sec.C/ if and
only if L lies in a plane spanned by two of the r tangent lines at x. The union of all
those lines forms the tangent star of C at x; see [17, 27].

Suppose that x D .1 W 0 W 0 W 0/ and L 2 Sec.C/ intersects the curve C only
at the point x. The line L must be the limit of a family of lines Lt that intersect C
at two distinct smooth points. Without loss of generality, the line L is not one of
the tangent lines of the curve C at the point x and each line Lt intersects at least
two distinct branches of C. Since there are only finitely many branches, we can
also assume that each line Lt in the family intersects the same two branches of the
curve C. These two branches are parametrized by

(
1 W f1.s/ W f2.s/ W f3.s/

)
and(

1 W g1.s/ W g2.s/ W g3.s/
)

with fi.0/ D 0 D gj.0/ for 1 � i; j � 3. It follows that
tangent lines to these branches are spanned by x and

(
1 W f 0

1.0/ W f 0
2.0/ W f 0

3.0/
)

or(
1 W g0

1.0/ W g0
2.0/ W g0

3.0/
)
. Parametrizing intersection points, we see that the line

Lt intersects the first branch at
(
1 W f1

(
'.t/

)
W f2

(
'.t/

)
W f3

(
'.t/

))
and the second

branch at
(
1 W g1

(
 .t/

)
W g2

(
 .t/

)
W g3

(
 .t/

))
where '.0/ D 0 D  .0/. Hence,

the Plücker coordinates for Lt are

Ä
g1. .t//�f1.'.t//

t W g2. .t//�f2.'.t//
t W � � � W f2.'.t//g3. .t//�f3.'.t//g2. .t//

t

ä
:
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Taking the limit as t! 0, we obtain the line L with Plücker coordinates

(
g0
1.0/ 

0.0/ � f 0
1.0/'

0.0/ W g0
2.0/ 

0.0/ � f 0
2.0/'

0.0/ W � � � W 0
)
:

This line is spanned by the point x and

(
1 W g0

1.0/ 
0.0/�f 0

1.0/'
0.0/ W g0

2.0/ 
0.0/�f 0

2.0/'
0.0/ W g0

3.0/ 
0.0/�f 0

3.0/'
0.0/

)
;

so it lies in the plane spanned by the two tangent lines. From this computation,
we also see that all lines passing through x and lying in the plane spanned by the
tangent lines can be approximated by lines that intersect both of the branches at
points different from x. For this, one need only choose '.t/ D �t and  .t/ D �t for
all possible �;� 2 C n f0g.

Using Chern classes, Proposition 2.1 in [2] calculates the bidegree of the secant
congruence of a smooth curve. We give a geometric description of this bidegree and
extend it to curves with ordinary singularities.

Theorem 3.5 If C 	 P
3 is a nondegenerate irreducible curve of degree d and genus

g having only ordinary singularities x1; x2; : : : ; xs with multiplicities r1; r2; : : : ; rs,
then the bidegree of the secant congruence Sec.C/ is

ÇÇ
d � 1

2

å
� g �

s∑

iD1

Ç
ri

2

å
;

Ç
d

2

åå
:

Proof Let H 	 P
3 be a general plane. The intersection of H with C consists of d

points. Any two of these points define a secant line lying in H; see Fig. 2. Hence,
there are

(d
2

)
secant lines contained in H, which gives the class of Sec.C/.

To compute the order of Sec.C/, let v 2 P
3 be a general point. Projecting away

from v defines a rational map 
vWP3 Ü P
2. Set C0 WD 
v.C/. The map 
v sends a

line passing through v and intersecting C at two points to a simple node of the plane
curve C0; see Fig. 6. Moreover, every ordinary singularity of C is sent to an ordinary
singularity of C0 with the same multiplicity, and the plane curve C0 has the same

H

C

Fig. 2 The class of the secant congruence
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degree as the space curve C. As the geometric genus is invariant under birational
transformation, it also has the same genus; see [14, Theorem II.8.19]. Thus, the
genus-degree formula for plane curves [26, p. 54, Eq. (7)] shows that the genus of C
is equal to

(d�1
2

)
�

∑s
iD1

(ri
2

)
minus the number of secants of C passing through v.

ut

Remark 3.6 If C 	 P
3 is a curve of degree at least 2 that is contained in a plane,

then its secant congruence consists of all lines in that plane and has bidegree .0; 1/.
Problem 5 on Curves in [29] asks to compute the dimension and bidegree of

Sing.CH0.C//. When C is not a line, Theorem 3.3 establishes that Sing.CH0.C// is
two-dimensional. For completeness, we also state its bidegree explicitly.

Corollary 3.7 If C 	 P
3 is an irreducible curve of degree d � 2 and geo-

metric genus g having only ordinary singularities x1; x2; : : : ; xs with multiplicities

r1; r2; : : : ; rs, then the bidegree of Sing
(

CH0.C/
)

equals
Ä(d�1

2

)
� g �

s∑

iD1

(ri
2

)
C

s;
(d
2

)ä
if C is nondegenerate, and .s; 1/ if C is contained in a plane.

Proof The bidegree of each congruence fL 2 Gr.1;P3/ W xi 2 Lg is .1; 0/. Hence,
combining Theorem 3.3, Theorem 3.5, and Remark 3.6 proves the corollary. ut

4 Bitangents and Inflections of a Surface

This section describes the singular locus of the Hurwitz hypersurface of a surface
in P

3. For a surface S 	 P
3 that is not a plane, the Hurwitz hypersurface CH1.S/

is the Zariski closure of the set of all lines in P
3 that are tangent to S at a smooth

point. Its defining equation in Plücker coordinates is known as the Hurwitz form of
S; see [28].

In analogy with the secant congruence of a curve, we associate two congruences
to a surface S 	 P

3. Specifically, the Zariski closure in Gr.1;P3/ of the set of lines
tangent to a surface S at two smooth points forms the bitangent congruence;

Bit.S/ WD
{

L 2 Gr.1;P3/ W x; y 2 L 	 Tx.S/ \ Ty.S/ for distinct smooth points x; y 2 S
}
:

The inflectional locus associated to S is the Zariski closure in Gr.1;P3/ of the set of
lines that intersect the surface S at a smooth point with multiplicity at least 3;

Infl.S/ WD
{

L 2 Gr.1;P3/ W L intersects S at a smooth point with multiplicity at least 3
}
:

A general surface of degree d in P
3 is a surface defined by a polynomial correspond-

ing to a general point in P.CŒx0; x1; x2; x3�d/. For a general surface, the inflectional
locus is a congruence. However, this is not always the case, as Remark 5.8
demonstrates.
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In parallel with Sect. 3, the main result in this section describes the singular locus
of the Hurwitz hypersurface of S.

Theorem 4.1 If S 	 P
3 is an irreducible smooth surface of degree at least 4 which

does not contain any lines, then we have Sing
(

CH1.S/
)
D Bit.S/ [ Infl.S/.

Proof We first show that the incidence variety

˚S WD f.v;L/ W v 2 L 	 Tv.S/g 	 S � Gr.1;P3/

is smooth. Let f 2 CŒx0; x1; x2; x3� be the defining equation for S in P
3. Consider

the affine chart in P
3 � Gr.1;P3/ where x0 ¤ 0 and p0;1 ¤ 0. We may assume that

v D .1 W ˛ W ˇ W / and the line L is spanned by the points .1 W 0 W a W b/ and
.0 W 1 W c W d/. In this affine chart, S is defined by g0.x1; x2; x3/ WD f .1; x1; x2; x3/.
As in the proof of Theorem 3.3, we have that v 2 L if and only if a D ˇ � ˛c
and b D  � ˛d. For such a pair .v;L/, we also have that L 	 Tv.S/ if and only if
.0 W 1 W c W d/ 2 Tv.S/. Setting g1 WD

@g0
@x1
C c @g0

@x2
C d @g0

@x3
, we have L 	 Tv.S/ if and

only if g1.˛; ˇ; / D 0. Hence, in the chosen affine chart, ˚S can be written as

{
.˛; ˇ; ; a; b; c; d/ W gj.˛; ˇ; / D 0 for 0 � j � 1; a D ˇ � ˛c; b D  � ˛d

}
:

As dim˚S D 3, it is smooth at the point .v;L/ if and only if its tangent space has
dimension three or, equivalently, its Jacobian matrix

⎡

⎢⎢⎢⎢
⎣

@g0
@x1
.˛; ˇ; / @g0

@x2
.˛; ˇ; / @g0

@x3
.˛; ˇ; / 0 0 0 0

@g1
@x1
.˛; ˇ; / @g1

@x2
.˛; ˇ; / @g1

@x3
.˛; ˇ; / 0 0 @g0

@x2
.˛; ˇ; / @g0

@x3
.˛; ˇ; /

�c 1 0 �1 0 �˛ 0

�d 0 1 0 �1 0 �˛

⎤

⎥⎥⎥⎥
⎦

has rank four. Since S is smooth, we deduce that this Jacobian matrix has rank four,
so ˚S is also smooth.

Since S does not contain any lines, all fibres of the projection 
 W˚S ! CH1.S/
defined by .v;L/ 7! L are finite, so Lemma 14.8 in [13] implies that 
 is finite.
Moreover, the general fibre of 
 has cardinality 1, so 
 is birational. Applying
Lemma 3.2 shows that CH1.S/ is smooth at the point .v;L/ if and only if the
fibre 
�1.L/ consists of one point .v;L/ and the differential d.x;L/
 is injective. In
particular, we have j
�1.L/j D 1 if and only if L is not a bitangent. It remains to
show that the differential d.v;L/
 is injective if and only if L is a simple tangent of
S at v. Using our chosen affine chart, we see that the differential d.v;L/
 projects
every element in the kernel of the Jacobian matrix on its last four coordinates.
This map is not injective if and only if the kernel contains an element of the form
[
� � � 0 0 0 0

]T
¤ 0. Such an element belongs to the kernel if and only if it is

equal to
[
� c� d� 0 0 0 0

]T
for some � 2 Cnf0g and g1.˛; ˇ; / D 0 D g2.˛; ˇ; /

where g2 WD
@g1
@x1
C c @g1

@x2
C d @g1

@x3
. Parametrizing the line L by
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`.s; t/ WD .s W s˛ C t W sˇ C tc W s C td/

for .s W t/ 2 P
1 shows that the line L intersects the surface S with multiplicity

at least 3 at v if and only if f
(
`.s; t/

)
is divisible by t3. This is equivalent to

the conditions that g1.˛; ˇ; / D
@
@t

[
f
(
`.s; t/

)]∣∣
.1;0/

D 0 and g2.˛; ˇ; / D
@2

@2t

[
f
(
`.s; t/

)]∣∣
.1;0/
D 0. ut

Remark 4.2 If S is a surface of degree at most 3 and the line L is bitangent to S,
then L is contained in S. Indeed, if L is not contained in S, then the intersection
L \ S consists of at most three points, counted with multiplicity, so L cannot be a
bitangent. On the other hand, when the degree of S is at least four, the hypothesis
that S does not contain any lines is relatively mild. For example, a general surface
of degree at least 4 in P

3 does not contain a line; see [32].

5 Projective Duality

This section uses projective duality to compute the bidegrees of the components of
the singular locus of the Hurwitz hypersurface of a surface in P

3, and to relate the
secant congruence of a curve to the bitangent congruence of its dual surface.

Let P
n be the projectivization of the vector space C

nC1. If .Pn/� denotes
the projectivization of the dual vector space .CnC1/�, then the points in .Pn/�

correspond to hyperplanes in P
n. Given a projective subvariety X 	 P

n, a hyperplane
in P

n is tangent to X at a smooth point x 2 X if it contains the embedded tangent
space Tx.X/ 	 P

n. The dual variety X_ is the Zariski closure in .Pn/� of the set of
all hyperplanes in P

n that are tangent to X at some smooth point.

Example 5.1 If V is a linear subspace of C
nC1 and X WD P.V/, then the dual

variety X_ is the set of all hyperplanes containing P.V/, which is exactly the
projectivization of the orthogonal complement V? 	 .CnC1/� with respect to
the nondegenerate bilinear form .x; y/ 7!

∑n
iD0 xiyi. In particular, X_ is not the

projectivization of V�, and .Pn/_ D ¿.

Remark 5.2 The dual of a line in P
2 is a point, and the dual of a plane curve of

degree at least 2 is again a plane curve. The dual of a line in P
3 is a line, and the

dual of a curve in P
3 of degree at least 2 is a surface. The dual of plane in P

3 is a
point and the dual of a surface in P

3 of degree at least 2 can be either a curve or a
surface.

From our perspective, the key properties of dual varieties are the following. If
X is irreducible, then its dual X_ is also irreducible; see [11, Proposition I.1.3].
Moreover, the Biduality Theorem shows that, if x 2 X is smooth and H 2 X_

is smooth, then H is tangent to X at the point x if and only if the hyperplane in
.Pn/� corresponding to x is tangent to X_ at the point H; see [11, Theorem I.1.1]. In
particular, any irreducible variety X 	 P

n is equal to its double dual .X_/_ 	 P
n;

again see [11, Theorem I.1.1].
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Fig. 3 A bitangent and an inflectional line corresponding to a node and a cusp of the dual curve

The next lemma, which relates the number and type of singularities of a plane
curve to the degree of its dual variety, plays an important role in calculating the
bidegrees of the bitangent and inflectional congruences. A point v on a planar
curve C is a simple node or a cusp if the formal completion of OC;v is isomorphic to
CŒŒz1; z2��=.z21C z22/ or CŒŒz1; z2��=.z31C z22/ respectively; see Fig. 3. Both singularities
have multiplicity 2; nodes have two distinct tangents and cusps have a single tangent.

Lemma 5.3 (Plücker’s Formula [7, Example 1.2.8]) If C 	 P
2 is an irreducible

curve of degree d with exactly � cusps, ı simple nodes, and no other singularities,
then the degree of the dual curve C_ is d.d � 1/ � 3� � 2ı.

Proof (Sketch) Let f 2 CŒx0; x1; x2� be the defining equation for C in P
2, so we have

deg.f / D d. To begin, assume that C is smooth. The degree of its dual C_ 	 .P2/�

is the number of points of C_ lying on a general line L 	 .P2/�. By duality, the
degree equals the number of tangent lines to C passing through a general point
y 2 P

2. Such a tangent line at the point v 2 C passes through the point y if and only
if g WD y0

@f
@x0
.v/C y1

@f
@x1
.v/C y2

@f
@x2
.v/ D 0. Hence, the degree of C_ is the number

of points in V.f ; g/; the vanishing set of f and g. Since deg.g/ D d � 1, this finite
set contains d.d � 1/ points.

If C is singular, then the degree of C_ is the number of lines that are tangent to
C at a smooth point and pass through the general point y. Those smooth points are
contained in the set V.f ; g/, but all of the singular points also lie in V.f ; g/. The
curve V.g/ passes through each node of C with intersection multiplicity two and
through each cusp of C with intersection multiplicity 3. Therefore, we conclude that
deg.C_/ D d.d � 1/ � 3� � 2ı. ut
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H

S

v

Fig. 4 The degree of the Hurwitz hypersurface

Using Lemma 5.3, we can compute the degree of the Hurwitz hypersurface of a
smooth surface; this formula also follows from Theorem 1.1 in [28].

Proposition 5.4 For an irreducible smooth surface S 	 P
3 of degree d with d � 2,

the degree of the Hurwitz hypersurface CH1.S/ is d.d � 1/.

Proof Let H 	 P
3 be a general plane and v 2 H be a general point. The degree

of CH1.S/ is the number of tangent lines L to S such that v 2 L 	 H. Bertini’s
Theorem [13, Theorem 17.16] implies that the intersection S \H is a smooth plane
curve of degree d. The degree of CH1.S/ is the number of tangent lines to S \ H
passing through the general point v; see Fig. 4. By definition, this is equal to the
degree of the dual plane curve .S \ H/_, so Lemma 5.3 shows deg

(
CH1.S/

)
D

d.d � 1/. ut

Using Lemma 5.3, we can also count the number of bitangents and inflectional
tangents to a general smooth plane curve.

Proposition 5.5 A general smooth irreducible curve in P
2 of degree d has exactly

1
2
d.d � 2/.d � 3/.dC 3/ bitangents and 3d.d � 2/ inflectional tangents.

Proof Let C 	 P
2 be a general smooth irreducible curve of degree d. A bitangent

to C corresponds to a node of C_, and an inflectional tangent to C corresponds to a
cusp of C_; see Fig. 3 and [12, pp. 277–278]. Lemma 5.3 shows that C_ has degree
d.d�1/. Let � and ı be the number of cusps and nodes of C_, respectively. Applying
Lemma 5.3 to the plane curve C_ yields

d D deg.C/ D deg
(
.C_/_

)
D d.d � 1/

(
d.d � 1/ � 1

)
� 3� � 2ı :
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The dual curves C and C_ have the same geometric genus; see [31, Proposition 1.5].
Hence, the genus-degree formula [26, p. 54, Eq. (7)] gives

1
2
.d�1/.d�2/ D genus.C/ D genus.C_/ D 1

2

(
d.d�1/�1

)(
d.d�1/�2

)
���ı :

Solving this system of two linear equations in � and ı, we obtain � D 3d.d�2/ and
ı D 1

2
d.d � 2/.d � 3/.dC 3/. ut

The next result is the main theorem in this section and solves Problem 4 on
Surfaces in [29]. The bidegrees of the bitangent and the inflectional congruence for
a general smooth surface appear in [2, Proposition 3.3], and the bidegree of the
inflectional congruence also appears in [22, Proposition 4.1].

Theorem 5.6 Let S 	 P
3 be a general smooth irreducible surface of degree d with

d � 4. The bidegree of Bit.S/ is
(
1
2
d.d�1/.d�2/.d�3/; 1

2
d.d�2/.d�3/.dC3/

)
,

and the bidegree of Infl.S/ is
(
d.d � 1/.d � 2/; 3d.d � 2/

)
.

Proof For a general plane H 	 P
3, Bertini’s Theorem [13, Theorem 17.16] implies

that the intersection S \ H is a smooth plane curve of degree d. By Proposition 5.5,
the number of bitangents to S contained in H is 1

2
d.d � 2/.d � 3/.d C 3/, which is

the class of Bit.S/. Similarly, the number of inflectional tangents to S contained in
H is 3d.d � 2/, which is the class of Infl.S/.

It remains to calculate the number of bitangents and inflectional lines of the
surface S that pass through a general point y 2 P

3. Following the ideas in [23,
p. 230], let f 2 CŒx0; x1; x2; x3� be the defining equation for S in P

3, and consider
the polar curve C 	 S with respect to the point y; the set C consists of all points
x 2 S such that the line through y and x is tangent to S at the point x; see Fig. 5. The
condition that the point x lies on the curve C is equivalent to saying that the point
y belongs to Tx.S/. As in the proof for Lemma 5.3, we have C D V.f ; g/ where
g WD y0

@f
@x0
C y1

@f
@x1
C y2

@f
@x2
C y3

@f
@x3

. Thus, the curve C has degree d.d � 1/.

Projecting away from the point y gives the rational map 
yWP
3 Ü P

2. Restricted
to the surface S, this map is generically finite, with fibres of cardinality d, and is

y

C

C′

zL
T

H

S

Fig. 5 Polar curve
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Fig. 6 A secant projecting onto a node and a tangent projecting to a cusp

ramified over the curve C. If C0 is the image of C under 
y, then a bitangent to the
surface S that passes through y contains two points of C and these points are mapped
to a simple node in C0; see Fig. 6. All of these nodes in C0 have two distinct tangent
lines because no bitangent line passing through y is contained in a bitangent plane
that is tangent at the same two points as the line; the bitangent planes to S form a
one-dimensional family, so the union of bitangent lines they contain is a surface in
P
3 that does not contain the general point y.

We claim that the inflectional lines to S passing through the point y are exactly
the tangent lines of C passing through y. The line between a point x 2 S and the
point y is parametrized by the map `WP1 ! P

3 which sends the point .s W t/ 2 P
1

to the point .sx0 C ty0 W sx1 C ty1 W sx2 C ty2 W sx3 C ty3/ 2 P
3. It follows that this

line is an inflectional tangent to S if and only if f
(
`.s; t/

)
is divisible by t3. This is

equivalent to the conditions that @
@t

[
f
(
`.s; t/

)]∣∣
.1;0/
D 0 and @2

@t2

[
f
(
`.s; t/

)]∣∣
.1;0/
D 0,

which means that x 2 C and y0
@g
@x0
C y1

@g
@x1
C � � � C y3

@g
@x3
D 0, or in other words

y 2 Tx.C/. Therefore, the inflectional lines to S passing through y are the tangents
to C passing through y, and are mapped to the cusps of C0; again see Fig. 6.

Since the bitangent and inflectional lines to S passing through y correspond to
nodes and cusps of C0, it suffices to count the number �0 of cusps and the number ı0

of simple nodes in the plane curve C0. We subdivide these calculations as follows.

�0 D d.d � 1/.d � 2/ From our parametrization of the line through points x 2 S
and y, we see that this line is an inflectional tangent to S if and only if x 2
V.f ; g; h/ where h WD y0

@g
@x0
C y1

@g
@x1
C � � � C y3

@g
@x3

. Since deg.h/ D d � 2 and S
is general, the set V.f ; g; h/ consists of d.d � 1/.d � 2/ points.

deg
(
.C0/_

)
D deg.S_/ By duality, the degree d0 of the curve .C0/_ is the number

of tangent lines to C0 	 P
2 passing through a general point z 2 P

2. The preimage
of z under the projection 
y is a line L 	 P

3 containing y; see Fig. 5. Hence, d0

is the number of tangent lines to C intersecting L in a point different from y. For
every line T that is tangent to C at a point x and intersects the line L, it follows
that the pair L and T spans the tangent plane of S at the point x. On the other hand,
given any plane H which is tangent to S at the point x and contains L, we deduce
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that x must lie on the polar curve C and H is spanned by L and the tangent line
to C at x, so this tangent line intersects L. Therefore, d0 is the number of tangent
planes to S containing L, which is the degree of the dual surface S_.

deg.S_/ D d.d � 1/2 By duality, the degree of S_ is the number of tangent planes
to the surface S containing a general line, or the number of tangent planes to S
containing two general points y; z 2 P

3. Thus, this is the number of intersection
points of the two polar curves of S determined by y and z, which is the cardinality
of the set V.f ; g; Qg/where Qg WD z0

@f
@x0
Cz1

@f
@x1
Cz2

@f
@x2
Cz3

@f
@x3

. Since deg.Qg/ D d�1,
we conclude that deg.S_/ D d.d � 1/2.

Finally, both the surface S and the point y are general, so Lemma 5.3 implies that
d.d � 1/2 D deg

(
.C0/_

)
D deg.C0/

(
deg.C0/� 1

)
� 3d.d � 1/.d � 2/� 2ı0. Since

deg.C0/ D deg.C/ D d.d � 1/, we have ı0 D 1
2
d.d � 1/.d � 2/.d � 3/. ut

We end this section by proving that the secant locus of an irreducible smooth
curve is isomorphic to the bitangent congruence of its dual surface via the natural
isomorphism between Gr.1;P3/ and Gr

(
1; .P3/�

)
. A subvariety ˙ 	 Gr.1;P3/ is

sent under this isomorphism to the variety ˙? 	 Gr
(
1; .P3/�

)
consisting of the

dual lines L_ for all L 2 ˙ . For every congruence ˙ 	 Gr.1;P3/ with bidegree
.˛; ˇ/, the bidegree of ˙? is .ˇ; ˛/.

Theorem 5.7 If C 	 P
3 is a nondegenerate irreducible smooth curve, then we have

Sec.C/? D Bit.C_/, the inflectional lines of C_ are dual to the tangent lines of C,
and Infl.C_/ 	 Bit.C_/.

Proof We first show that Sec.C/? D Bit.C_/. Consider a line L that intersects C at
two distinct points x and y, but is equal to neither Tx.C/ nor Ty.C/. Together the line
L and Tx.C/ span a plane corresponding to a point a 2 C_. Similarly, the span of
the lines L and Ty.C/ corresponds to a point b 2 C_. Without loss of generality, we
may assume that both a and b are smooth points in C_. By the Biduality Theorem,
the points a; b 2 C_ must be distinct with tangent planes corresponding to x and y.
Thus, the line L_ is tangent to C_ at the points a, b, and Sec.C/? 	 Bit.C_/. To
establish the other inclusion, let L0 be a line that is tangent to C_ at two distinct
smooth points a; b 2 C_. The tangent planes at the points a, b correspond to two
points x, y 2 C. If x ¤ y, then .L0/_ is the secant to C through these two points. If
x D y, then the Biduality Theorem establishes that .L0/_ is the tangent line of C at
x. In either case, we see that Bit.C_/ 	 Sec.C/?, so Sec.C/? D Bit.C_/.

For the second part, let L be an inflectional line at a smooth point a 2 C_. A point
y 2 L_nC corresponds to a plane H such that L D Ta.C_/\H, so the line L is also an
inflectional line to the plane curve C_ \H 	 H. Regarding L as a subvariety of the
projective plane H, its dual variety is a cusp on the plane curve .C_ \ H/_ 	 H�;
see Fig. 3. If 
yWP

3 Ü P
2 Š H� denotes the projection away from the point y,

then we claim that .C_ \ H/_ equals 
y.C/; for a more general version see [15,
Proposition 6.1]. Indeed, a smooth point z 2 
y.C/ is the projection of a point of
C whose tangent line does not contain y. Together this tangent line and the point
y span a plane such that its dual point w is contained in the curve C_ \ H. Thus,
the tangent line Tz

(

y.C/

)
equals 
y.w_/; the latter is the line in H� dual to the
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point w 2 H. In other words, we have
(

y.C/

)_
	 C_ \ H. Since both curves are

irreducible, this inclusion must be an equality. Hence, when considering L in the
projective plane H, its dual point is a cusp of 
y.C/. It follows that L_ is the tangent
line Tx.C/, where x 2 C is the point corresponding to the tangent plane Ta.C_/;
see Fig. 6. Reversing these arguments shows that the dual of a tangent line to C is
an inflectional line to C_. Since every tangent line to C is contained in Sec.C/, we
conclude that Infl.C_/ 	 Bit.C_/. ut

Proof of Theorem 1.2 This result is a restatement of Theorem 5.7. ut

Remark 5.8 Theorem 5.7 shows that Infl.C_/ is a curve, as Infl.C_/? is the set
of tangent lines to C, so the inflectional locus of a surface in P

3 is not always a
congruence.

Remark 5.9 For a curve C 	 P
3 with dual surface C_ 	 .P3/�, Theorem 20 in [19]

establishes that CH0.C/? D CH1.C_/. Combined with Theorem 5.7, we see that
the singular locus of the Hurwitz hypersurface CH1.C_/, for smooth C, has just one
component, namely the bitangent congruence.

Remark 5.10 For a surface S 	 P
3 with dual surface S_ 	 .P3/�, Theorem 20

in [19] also establishes that CH1.S/? D CH1.S_/. If both S and S_ have mild
singularities, then the proof of Lemma 5.1 in [2] shows that Bit.S/? D Bit.S_/.

6 Intersection Theory on Gr.1; P
3/

In this section, we recast the degree of a subvariety in Gr.1;P3/ in terms of certain
products in the Chow ring.

Consider a smooth irreducible variety X of dimension n. For each j 2 N, the
group Zj.X/ of codimension-j cycles is the free abelian group generated by the
closed irreducible subvarieties of X having codimension j. Given a variety W of
codimension j � 1 and a nonzero rational function f on W, we have the cycle
div.f / WD

∑
Z ordZ.f /Z where the sum runs over all subvarieties Z of W with

codimension 1 in W and ordZ.f / 2 Z is the order of vanishing of f along Z. The
group of cycles rationally equivalent to zero is the subgroup generated by the cycles
div.f / for all codimension-.j � 1/ subvarieties W of X and all nonzero rational
functions f on W. The Chow group Aj.X/ is the quotient of Zj.X/ by the subgroup
of cycles rationally equivalent to zero. We typically write ŒZ� for the class of a
subvariety Z in the appropriate Chow group. Since X is the unique subvariety of
codimension 0, we see that A0.X/ Š Z. We also have A1.X/ Š Pic.X/. Crucially,
the direct sum A�.X/ WD

⊕n
jD0 Aj.X/ forms a commutative Z-graded ring called

the Chow ring of X. The product arises from intersecting cycles: for subvarieties V
and W of X having codimension j and k and intersecting transversely, the product
ŒV�ŒW� 2 AjCk.X/ is the sum of the irreducible components of V \ W. More
generally, intersection theory aims to construct an explicit cycle to represent the
product ŒV�ŒW�.
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Example 6.1 The Chow ring of P
n is isomorphic to ZŒH�=.HnC1/ where H is the

class of a hyperplane. In particular, any subvariety of codimension d is rationally
equivalent to a multiple of the intersection of d hyperplanes.

To a given a vector bundle E of rank r on X, we associate its Chern classes
ci.E / 2 Ai.X/ for 0 � i � r; see [30]. When E is globally generated, these classes
are represented by degeneracy loci; the class crC1�j.E / is associated to the locus of
points x 2 X where j general global sections of E fail to be linearly independent.
In particular, cr.E / is represented by the vanishing locus of a single general global
section. Given a short exact sequence 0 ! E 0 ! E ! E 00 ! 0 of vector bundles,
the Whitney Sum Formula asserts that ck.E / D

∑
iCjDk ci.E 0/cj.E 00/; see [10,

Theorem 3.2]. Moreover, if E � WD Hom.E ;OX/ denotes the dual vector bundle,
then we have ci.E �/ D .�1/ici.E / for 0 � i � r; see [10, Remark 3.2.3].

Example 6.2 Given nonnegative integers a1; a2; : : : ; an, consider the vector bundle
E WD OPn.a1/˚OPn.a2/˚ � � � ˚OPn.an/. Since each OPn.ai/ is globally generated,
the Chern class c1

(
OPn.ai/

)
is the vanishing locus of a general homogeneous

polynomial CŒx0; x1; : : : ; xn� of degree ai, so c1
(
OPn.ai/

)
D aiH in A�.Pn/. Hence,

the Whitney Sum Formula implies that cn.E / D
∏n

iD1 c1
(
O.ai/

)
D

∏n
iD1.aiH/.

Example 6.3 If TPn is the tangent bundle on P
n, then we have the short exact

sequence 0 ! OPn ! OPn.1/˚.nC1/ ! TPn ! 0; see [14, Example 8.20.1]. The
Whitney Sum Formula implies that

c1.TPn/ D .nC 1/c1
(
OPn.1/

)
� c1.OPn/ D .nC 1/H

and c2.TPn/ D c2
(
OPn.1/˚.nC1/

)
D

(nC1
2

)
H2.

Example 6.4 Let Y 	 P
n be a smooth hypersurface of degree d. If TY is the tangent

bundle of Y , then we have the exact sequence 0! TY ! TPn jY ! OPn.d/jY ! 0;
see [14, Proposition 8.20]. Setting h WD HjY in A�.Y/, the Whitney Sum Formula
implies that c1.TY/ D c1.TPn jY/ � c1

(
OPn.d/jY

)
D .nC 1/h � dh D .nC 1 � d/h

and c2.TY/ D c2.TPn jY/ � c1.TY/c1
(
OPn.d/jY

)
D

((nC1
2

)
� .nC 1 � d/d

)
h2.

We next focus on the Chow ring of Gr.1;P3/; see [1, 30]. Fix a complete flag
v0 2 L0 	 H0 	 P

3 where the point v0 lies in the line L0, and the line L0 is
contained in the plane H0. The Schubert varieties in Gr.1;P3/ are the following
subvarieties:

˙0 WD Gr.1;P3/ ; ˙1 WD fL W L \ L0 ¤ ¿g 	 Gr.1;P3/ ;

˙1;1 WD fL W L 	 H0g 	 Gr.1;P3/ ; ˙2 WD fL W v0 2 Lg 	 Gr.1;P3/ ;

˙2;1 WD fL W v0 2 L 	 H0g 	 Gr.1;P3/ ; ˙2;2 WD fL0g 	 Gr.1;P3/ :

The corresponding classes �I WD Œ˙I �, called the Schubert cycles, form a basis for
the Chow ring A�.Gr.1;P3//; see [8, Theorem 5.26]. Since the sum of the subscripts
gives the codimension, we have
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A0
(

Gr.1;P3/
)
Š Z�0 ; A1

(
Gr.1;P3/

)
Š Z�1 ; A2

(
Gr.1;P3/

)
Š Z�1;1 ˚ Z�2 ;

A3
(

Gr.1;P3/
)
Š Z�2;1 ; A4

(
Gr.1;P3/

)
Š Z�2;2 :

To understand the product structure, we use the transitive action of GL.4;C/ on
Gr.1;P3/. Specifically, Kleiman’s Transversality Theorem [18] shows that, for two
subvarieties V and W in Gr.1;P3/, a general translate U of V under the GL.4;C/-
action is rationally equivalent to V and the intersection of U and W is transversal at
the generic point of any component of U \W. Hence, we have ŒV�ŒW� D ŒU \W�.
To determine the product �1;1�2, we intersect general varieties representing these
classes: �1;1 consists of all lines L contained in a fixed plane H0, and �2 is all lines
L containing a fixed point v0. Since a general point does not lie in a general plane,
we see that �1;1�2 D 0. Similar arguments yield all products:

�21;1 D �2;2 ; �22 D �2;2 ; �1;1�2 D 0 ; �1�2;1 D �2;2 ;

�1�1;1 D �2;1 ; �1�2 D �2;1 ; �21 D �2 C �1;1 :

The degree of a subvariety in Gr.1;P3/, introduced in Sect. 2, can be interpreted
as certain coefficients of its class in the Chow ring. Geometrically, the order ˛ of a
surface X 	 Gr.1;P3/ is the number of lines in X passing through the general point
v0. Since we may intersect X with a general variety representing �2, it follows that
˛ equals the coefficient of �2 in ŒX�. Similarly, the class ˇ of X is the coefficient of
�1;1 in ŒX�, the degree of a threefold ˙ 	 Gr.1;P3/ is the coefficient of �1 in Œ˙�,
and the degree of a curve C 	 Gr.1;P3/ is the coefficient of �2;1 in ŒC�.

The degree of a subvariety in Gr.1;P3/ also has a useful reinterpretation
via Chern classes of tautological vector bundles. Let S denote the tautological
subbundle, the vector bundle whose fibre over the point W 2 Gr.1;P3/ is the two-
dimensional vector space W 
 C

4. Similarly, let Q be the tautological quotient
bundle whose fibre over W is C

4=W. Both S � and Q are globally generated;
H0

(
Gr.1;P3/;S �

)
Š .C4/� and H0

(
Gr.1;P3/;Q

)
Š C

4; see [1, Proposition 0.5].
A global section of S � corresponds to a nonzero map 'WC4 ! C, where its value
at the point W is 'jW WW ! C. The Chern class c2.S �/ is represented by the
vanishing locus of ', so we have c2.S �/ D �1;1 D c2.S /. For two general sections
'; WC4 ! C of S �, the Chern class c1.S �/ is represented by the locus of points
W where 'jW and  jW fail to be linearly independent or W\ker.'/\ker. / ¤ f0g.
Generality ensures that ker.'/ \ ker. / is a two-dimensional subspace of C

4, so
c1.S �/ D �c1.S / D �1. Similarly, a global section of Q corresponds to a
point v 2 C

4; its value at W is simply the image of the point in C
4=W. Thus,

c2.Q/ is represented by the locus of those W containing v, which is �2. Two global
sections of Q are linearly dependent at W when the two-dimensional subspace of
C
4 spanned by the points intersects W nontrivially, so c1.Q/ D �1. Finally, for a

surface X 	 Gr.1;P3/ with ŒX� D ˛�2 C ˇ�1;1, we obtain

c2.Q/ ŒX� D �2.˛�2 C ˇ�1;1/ D ˛�2;2 ;
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c2.S / ŒX� D �1;1.˛�2 C ˇ�1;1/ D ˇ�2;2 ;

so computing the bidegree is equivalent to calculating the products c2.Q/ ŒX� and
c2.S / ŒX� in the Chow ring.

We close this section with three examples demonstrating this approach.

Example 6.5 Given a smooth surface S in P
3, we recompute the degree of CH1.S/;

compare with Proposition 5.4. Theorem 9 in [19] implies that this degree equals
the degree ı1.S/ of the first polar locus M1.S/ D fx 2 S W y 2 TxSg, where y is
a general point of P

3 (this locus is the polar curve in the proof of Theorem 5.6).
Letting TS be the tangent bundle of S, Example 14.4.15 in [10] shows that ı1.S/ D
deg

(
3h � c1.TS/

)
. Hence, Example 6.4 gives ı1.S/ D deg.3h � h.3 C 1 � d// D

.d � 1/ deg.h/. Since S is a degree d surface, the degree of the hyperplane h equals
d, so ı1.S/ D d.d � 1/.

Example 6.6 (Problem 3 on Grassmannians in [29]) Let S1; S2 	 P
3 be general

surfaces of degree d1 and d2, respectively, with d1; d2 � 4. To find the number of
lines bitangent to both surfaces, it suffices to compute the cardinality of Bit.S1/ \
Bit.S2/. Theorem 5.6 establishes that, for all 1 � i � 2, we have ŒBit.Si/� D ˛i�2C

ˇi�1;1 where ˛i WD
1
2
di.di � 1/.di � 2/.di � 3/ and ˇi WD

1
2
di.di � 2/.di � 3/.diC 3/.

It follows that ŒBit.S1/ \ Bit.S2/� D ŒBit.S1/�ŒBit.S2/� D .˛1˛2 C ˇ1ˇ2/�2;2, so the
number of lines bitangent to S1 and S2 is

1
4
d1.d1 � 1/.d1 � 2/.d1 � 3/d2.d2 � 1/.d2 � 2/.d2 � 3/

C 1
4
d1.d1 � 2/.d1 � 3/.d1 C 3/d2.d2 � 2/.d2 � 3/.d2 C 3/ :

Example 6.7 Let S 	 P
3 be a general surface of degree d1 with d1 � 4, and let

C 	 P
3 be a general curve of degree d2 and geometric genus g with d2 � 2. To

find the number of lines bitangent to S and secant to C, it suffices to compute the
cardinality of Bit.S/ \ Sec.C/. Theorem 5.6 and Theorem 3.5 imply that

ŒBit.S/� D 1
2
d1.d1 � 1/.d1 � 2/.d1 � 3/ �2 C

1
2
d1.d1 � 2/.d1 � 3/.d1 C 3/ �1;1 ;

ŒSec.C/� D
(
1
2
.d2 � 1/.d2 � 2/ � g

)
�2 C

1
2
d2.d2 � 1/ �1;1 :

It follows that ŒBit.S/ \ Sec.C/� D ŒBit.S/�ŒSec.C/� D �2;2 where

 WD 1
4
d1.d1 � 1/.d1 � 2/.d1 � 3/

(
.d2 � 1/.d2 � 2/ � 2g

)

C 1
4
d1.d1 � 2/.d1 � 3/.d1 C 3/d2.d2 � 1/ ;

so the number of lines bitangent to S and secant to C is  .
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7 Singular Loci of Congruences

This section investigates the singular points of the secant, bitangent, and inflectional
congruences. We begin with the singularities of the secant locus of a smooth
irreducible curve.

Proposition 7.1 Let C be a nondegenerate smooth irreducible curve in P
3. If L is

a line that intersects the curve C in three or more distinct points, then the line L
corresponds to a singular point in Sec.C/.

Proof The symmetric square C.2/ is the quotient of C � C by the action of the
symmetric group S2, so points in this projective variety are unordered pairs of points
on C; see [13, pp. 126–127]. The map $ WC.2/ ! Sec.C/, defined by sending fx; yg
to the line spanned by the points x and y if x ¤ y or to the tangent line Tx.C/ if
x D y, is a birational morphism. Since jL \ Cj � 3, the fibre $�1.L/ is a finite set
containing more than one element. Hence, $�1.L/ is not connected and the Zariski
Connectedness Theorem [21, Sect. III.9.V] proves that Sec.C/ is singular at L. ut

Lemma 7.2 If f 2 CŒŒz;w�� satisfies f .z;w/ D �f .w; z/, then the linear form z � w
divides the power series f .

Proof We write the formal power series f as a sum of homogeneous polynomials
f D

∑
i2N fi. Since we have f .z;w/C f .w; z/ D 0, it follows that, in each degree i,

we have fi.z;w/C fi.w; z/ D 0. In particular, we see that fi.w;w/ D 0. If we consider
fi.w; z/ as a polynomial in the variable z with coefficients in CŒw�, it follows that w
is a root of fi. Thus, we conclude that z � w divides fi for all i 2 N. ut

Theorem 7.3 Let C be a nondegenerate smooth irreducible curve in P
3. If a point

in Sec.C/ corresponds to a line L that intersects C in a single point x, then
the intersection multiplicity of L and C at x is at least 2. Moreover, the line L
corresponds to a smooth point of Sec.C/ if and only if the intersection multiplicity
is exactly 2.

We thank Jenia Tevelev for help with the following proof.

Proof Suppose the line L intersects the curve C at the point x with multiplicity 2.
Without loss of generality, we may work in the affine open subset with x3 ¤ 0,
and we assume that x D .0 W 0 W 0 W 1/ and L D V.x1; x2/. Since C is smooth,
there is a local analytic isomorphism ' from a neighbourhood of the origin in A

1

to a neighbourhood of the point x in C. The map ' will have the form '.z/ D(
'0.z/; '1.z/; '2.z/

)
for some '0; '1; '2 2 CŒŒz��. We have '0

0.0/ ¤ 0 and '0
1.0/ D

'0
2.0/ D 0 because L is the tangent to the curve C at x. After making an analytic

change of coordinates, we may assume that '.z/ D
(
z; '1.z/; '2.z/

)
. As L is a

simple tangent, at least one of '1 and '2 must vanish at 0 with order exactly 2.
Hence, we may assume that '1.z/ D z2 C z3f .z/ and '2.z/ D z2g.z/ for some
f ; g 2 CŒŒz��. The line spanned by the distinct points '.z/ and '.w/ on the curve C is
given by the row space of the matrix



108 K. Kohn et al.

ñ
z z2 C z3f .z/ z2g.z/ 1
w w2 C w3f .w/ w2g.w/ 1

ô
:

The Plücker coordinates are skew-symmetric power series, so Lemma 7.2 implies
that they are divisible by z� w. In particular, if f .z/ D

∑
i aizi, then we have p0;3 D

z � w,

p0;1 D z
(
w2 C w3f .w/

)
� w

(
z2 C z3f .z/

)
D �zw.z � w/

Ä
1C

∑

i
ai

iC1∑

jD0
wjziC1�j

ä
;

p1;3 D z2 C z3f .z/ � w2 � w3f .w/ D .z � w/
Ä

zC wC
∑

i
ai

iC2∑

jD0
zjwiC2�j

ä
:

The symmetric square .A1/.2/ of the affine line A
1 is a smooth surface iso-

morphic to the affine plane A
2; see [13, Example 10.23]. Consider the map

$ W .A1/.2/ ! Sec.C/ defined by sending the pair fz;wg of points in A
1 to

the line spanned by the points '.z/ and '.w/ if z ¤ w or to the tangent
line of C at '.z/ if z D w. In other words, the map $ sends fz;wg toÄ
�zwC h1.z;w/ W

p0;2
z�w W 1 W

p1;2
z�w W zC wC h2.z;w/ W

p2;3
z�w

ä
where

h1.z;w/ WD �zw
∑

i
ai

iC1∑

jD0
wjzi�jC1 and h2.z;w/ WD

∑

i
ai

iC2∑

jD0
zjwiC2�j :

Since the forms zw and zCw are local coordinates of .A1/.2/ in a neighbourhood of
the origin, we conclude that $ is a local isomorphism and Sec.C/ is smooth at the
point corresponding to L.

Suppose the line L intersects the curve C at the point x with multiplicity at least 3.
It follows that the line L is contained in the Zariski closure of the set of lines
that intersect C in at least three points or that intersect C in two points, one with
multiplicity at least 2. By Proposition 7.1 and Lemma 2.3 in [2], we conclude that
the line is singular in Sec.C/. ut

Corollary 7.4 Let C be a nondegenerate smooth irreducible curve in P
3. If the line

L corresponds to a point in Sec.C/, then L corresponds to a singular point of Sec.C/
if and only if one of the following three conditions is satisfied:

• the line L intersects the curve C in three or more distinct points,
• the line L intersects the curve C in exactly two points and L is the tangent line to

one of these two points,
• the line L intersects the curve C at a single point with multiplicity at least 3.

Proof Combine Proposition 7.1, Lemma 2.3 in [2], and Theorem 7.3. ut

Analogously, we want to describe the singularities of the inflectional locus Infl.S/
and the bitangent locus Bit.S/ of a surface S 	 P

3.
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Theorem 7.5 If S 	 P
3 is an irreducible smooth surface of degree at least 4 which

does not contain any lines, then the singular locus of Infl.S/ corresponds to lines
which either intersect S with multiplicity at least 3 at two or more distinct points, or
intersect S with multiplicity at least 4 at some point.

Proof We consider the incidence variety

�S WD f.x;L/ W L intersects S at x with multiplicity 3g 	 S � Gr.1;P3/ :

The projection 
 W�S ! Infl.S/, defined by .x;L/ 7! L, is a surjective morphism.
Since S does not contain any lines, all fibres of 
 are finite and Lemma 14.8 in [13]
implies that the map 
 is finite. Moreover, the general fibre of 
 has cardinality one,
so 
 is birational. To apply Lemma 3.2, we need to examine the singularities of �S

and the differential of 
 .
Let f 2 CŒx0; x1; x2; x3� be the defining equation for S in P

3. Consider the affine
chart in P

3 � Gr.1;P3/ where x0 ¤ 0 and p0;1 ¤ 0. We may assume x D .1 W ˛ W

ˇ W / and the line L is spanned by the points .1 W 0 W a W b/ and .0 W 1 W c W d/. In
this affine chart, S is defined by g0.x1; x2; x3/ WD f .1; x1; x2; x3/. As in the proof of
Theorem 3.3, we have x 2 L if and only if a D ˇ�˛c and b D �˛d. Parametrizing
the line L by `.s; t/ WD .s W s˛ C t W sˇ C tc W s C td/ for .s W t/ 2 P

1 shows that L
intersects S with multiplicity at least m at x if and only if f

(
`.s; t/

)
is divisible by tm.

This is equivalent to

@
@t

[
f
(
`.s; t/

)]∣∣∣
.1;0/
D @2

@t2

[
f
(
`.s; t/

)]∣∣∣
.1;0/
D � � � D @m�1

@tm�1

[
f
(
`.s; t/

)]∣∣∣
.1;0/
D 0 :

Setting gk WD
[
@
@x1
C c @

@x2
C d @

@x3

]k
g0 for k � 1, the incidence variety �S can be

written on the chosen affine chart as

{
.˛; ˇ; ; a; b; c; d/ W gk.˛; ˇ; / D 0 for 0 � k � 2; a D ˇ � ˛c; b D  � ˛d

}
:

As dim�S D 2, it is smooth at the point .x;L/ if and only if its tangent space has
dimension 2 or, equivalently, its Jacobian matrix

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

@g0
@x1
.˛; ˇ; / @g0

@x2
.˛; ˇ; / @g0

@x3
.˛; ˇ; / 0 0 0 0

@g1
@x1
.˛; ˇ; / @g1

@x2
.˛; ˇ; / @g1

@x3
.˛; ˇ; / 0 0 @g0

@x2
.˛; ˇ; / @g0

@x3
.˛; ˇ; /

@g2
@x1
.˛; ˇ; / @g2

@x2
.˛; ˇ; / @g2

@x3
.˛; ˇ; / 0 0 2@g1

@x2
.˛; ˇ; / 2@g1

@x3
.˛; ˇ; /

�c 1 0 �1 0 �˛ 0

�d 0 1 0 �1 0 �˛

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

has rank five. Since S is smooth, the first two and the last two rows of the Jacobian
matrix are linearly independent. If �S is singular at .x;L/, then the third row is
a linear combination of the others; specifically, there exist scalars �;� 2 C such
that @g2

@xj
.˛; ˇ; / D �@g1

@xj
.˛; ˇ; / C �@g0

@xj
.˛; ˇ; / for 1 � j � 3. It follows that
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g3.˛; ˇ; / D �g2.˛; ˇ; / C �g1.˛; ˇ; / D 0. Thus, the line L intersects the
surface S at the point x with multiplicity at least 4 if �S is singular at .x;L/.

It remains to show that the differential d.x;L/
 WT.x;L/.�S/ ! TL
(

Infl.S/
)

is
not injective if and only if the line L intersects the surface S at the point x with
multiplicity at least 4. The differential d.x;L/
 sends every element in the kernel
of the Jacobian matrix to its last four coordinates. This map is not injective if and

only if the kernel contains an element of the form
[
� � � 0 0 0 0

]T
¤ 0. Such an

element belongs to the kernel if and only if it equals
[
� c� d� 0 0 0 0

]T
for some

� 2 C n f0g and g1.˛; ˇ; / D g2.˛; ˇ; / D g3.˛; ˇ; / D 0. This shows that the
line L intersects the surface S at the point x with multiplicity at least 4 if and only if
d.x;L/ is not injective.

Finally, the fibre 
�1.L/ consists of more than one point if and only if L intersects
S with multiplicity at least 3 at two or more distinct points, so Lemma 3.2 completes
the proof. ut

Proof of Theorem 1.1 The first part related to the curve C is an amalgamation of
Theorem 3.3, Theorem 3.5, Theorem 7.3, and Corollary 7.4. Similarly, the second
part related to the surface S is an amalgamation of Theorem 4.1, Theorem 5.6, and
Theorem 7.5. ut

Proposition 7.6 Let S 	 P
3 be a general irreducible surface of degree at least 4.

If L is a line that is tangent to S at three or more distinct points, then the line L
corresponds to a singular point of Bit.S/.

Proof As in the proof of Proposition 7.1, the symmetric square S.2/ is the quotient
of S � S by the action of the symmetric group S2. The projection $ from

{
.fx; yg;L/ W x ¤ y; x; y 2 L 	 Tx.S/ \ Ty.S/

}
	 S.2/ � Gr.1;P3/

onto Bit.S/, defined by sending the pair .fx; yg;L/ 7! L is a birational morphism.
The fibre $�1.L/ is a finite set containing more than one element if L is tangent to
S in at least three distinct points. Hence, $�1.L/ is not connected and the Zariski
Connectedness Theorem [21, Sect. III.9.V] proves that Bit.S/ is singular at L. ut

We do not yet have a full understanding of points in Bit.S/ for which the
corresponding lines have an intersection multiplicity greater than 4 at a point
of S. We know that a line L that is tangent to the surface S at exactly two points
corresponds to a smooth point in Bit.S/ if and only if the intersection multiplicity of
L and S at both points is exactly 2. Moreover, given a line L that is tangent to S at a
single point, the intersection multiplicity of L and S at this point is at least 4, and the
line L corresponds to a smooth point of Bit.S/ when the multiplicity is exactly four;
see [2, Lemma 4.3]. To complete this picture, we make the following prediction.

Conjecture 7.7 Let S 	 P
3 be a general irreducible surface of degree at least 4. If a

point in the bitangent congruence Bit.S/ corresponds to a line L that is tangent to S
at a single point x such that the intersection multiplicity of L and S at x is at least 5,
then L corresponds to a singular point of Bit.S/.
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Equations of M0;n

Leonid Monin and Julie Rana

Abstract We study the moduli space M0;n of genus 0 curves with n marked points.
Following Keel and Tevelev, we give explicit polynomials in the Cox ring of P

1 �

P
2�� � ��P

n�3 that, conjecturally, determine M0;n as a subscheme. Using Macaulay2,
we prove that these equations generate the ideal for 5 � n � 8. For n � 6, we also
give a cohomological proof that these polynomials realize M0;n as a subvariety of
P
.n�2/Š�1 embedded by the complete log canonical linear system.

MSC 2010 codes: 14H10 (primary), 13D02 (secondary)

1 Introduction

Let M0;n denote the moduli space of genus 0 curves with n marked points, and
let M0;n be its Deligne–Mumford–Knudsen compactification [4]. In [14], Kapranov
constructs M0;n as a Chow quotient of the Grassmannian Gr.2; n/, which allowed
him to present M0;n as a sequence of blowups of P

n�3. Following this, Keel and
Tevelev [16] described an embedding of M0;n into the space of sections of particular
characteristic classes on M0;n, and an embedding 'WM0;n ! P

1 � P
2 � � � � � P

n�3.
We obtain equations satisfied by '.M0;n/ in the Cox ring of P

1 � P
2 � � � � � P

n�3.
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Lemma 1.1 Consider the embedding 'WM0;n ! P
1 � P

2 � � � � � P
n�3 and let

w.i/0 ;w
.i/
1 ; : : : ;w

.i/
i be the homogeneous coordinates on the ith factor of the target.

The image of ' satisfies the
(n�1
4

)
equations given by the 2-minors of the matrices

ñ
w.i/0

(
w.j/0 � w.j/iC1

)
w.i/1

(
w.j/1 � w.j/iC1

)
� � � w.i/i

(
w.j/i � w.j/iC1

)

w.j/0 w.j/1 � � � w.j/i

ô

for all 1 � i < j � n � 3.

Conjecture 1.2 Let In be the prime ideal in the Cox ring of P
1 � P

2 � � � � � P
n�3

that defines the embedding '.M0;n/ scheme-theoretically. Let Jn be the ideal in the
Cox ring of P

1 � P
2 � � � � � P

n�3 generated by the equations of Lemma 1.1. Then In

is the unique B-saturation of Jn, where B D \n�3
iD1 hw

.i/
0 ;w

.i/
1 ; : : : ;w

.i/
i i. The ideal In

is minimally generated by
(n�1

dC1

)
polynomials of degree d, for 3 � d � n � 2. The

degree of In is .2n� 7/ŠŠ, the number of trivalent phylogenetic trees on n� 1 leaves.
The lexicographic initial monomial ideals are square-free and Cohen–Macaulay.

We verified Conjecture 1.2 for n D 5; 6; 7; 8 using Macaulay2. In particular, we
partially answered the question posed in [20, Problem 8 on Curves].

In Sect. 4, we provide a list of degree 4 polynomials contained in In and describe
a conjectural method to count the number of minimal generators of In in any degree.
The combinatorial description of the ideal of relations of the invariant ring of M0;n

presented in [12] offers another possibly promising method.
In a slightly different direction, we consider the embedding ˚ of M0;n into

P
.n�3/Š�1 given by the � class. By work of Keel and Tevelev [16], the ideal defining

M0;n as a subscheme of P
.n�3/Š�1 is generated by the polynomials defining the Segre

embedding P
1�P

2�� � ��P
n�3 ! P

.n�3/Š�1, together with the preimages in the Cox
ring of P

.n�3/Š�1 of the polynomials in In of degree .2; 2; : : : ; 2/. For example, in the
case of M0;5, we have

Corollary 1.3 The ideal of the embedding of M0;5 into P
5 via the � class is

generated by the five quadrics

t0t1�t0t4Ct2t3�t1t2; t0t4�t3t4Ct3t5�t1t5; t1t3�t0t4; t2t3�t0t5; t2t4�t1t5: (1)

Using the Chow quotient description of M0;n due to Kapranov [13], Gibney and
Maclagan [8] provide equations for M0;5 	 P

21. Many of the listed equations in [8]
are linear, so they have effectively given an embedding of M0;5 into P

5. Using
Macaulay2, we were able to eliminate variables in such a way that the resulting
embedding is a nonsingular variety of dimension 2 given by five quadrics in P

5.
Beyond this, it is not yet clear how these equations relate to ours.

The result of Keel and Tevelev motivates the following conjecture.

Conjecture 1.4 The ideal Jn contains all polynomials of degree .2; 2; : : : ; 2/ in In,
and is therefore enough to determine the equations of ˚.M0;n/ in the Cox ring of
P
.n�3/Š�1 ideal-theoretically.
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In Sect. 5, we prove Conjecture 1.4 for M0;5 and M0;6 using cohomological
techniques developed in [16]. We hope that these techniques can be extended to
larger values of n. In particular, we have

Theorem 1.5 Let J6 be the ideal generated by the five polynomials of Lemma 4.1.
Then the ideal QI6 generated by polynomials of degree .d; d; d/ in I6 is generated by
the degree .2; 2; 2/ polynomials in J6. Equivalently, the embedding of M0;n in P

23

defined by the � class is generated by the polynomials of degree .2; 2; 2/ in J6 and
the Segre relations.

The paper is structured as follows. In Sect. 2, we give some background about
the moduli spaces M0;n. In Sect. 3, we describe in detail the embedding 'WM0;n !

P
1 � P

2 � � � � � P
n�3 which we will use in later sections to find equations of M0;n.

In particular, away from the boundary of M0;n, we give a parametrization of '
that extends to the full moduli space, and provide a geometric interpretation of '
in the cases n D 4 and n D 5. In Sect. 4, we give explicit equations satisfied
by '.M0;n/ that are forced by the parametrization. In Sect. 5 and 6 we recall the
cohomological machinery developed in [16] and use it to prove that J5 and J6 contain
all polynomials of degree .2; 2; : : : ; 2/ in the respective Cox rings.

2 Background on the Moduli Space M0;n

We begin with a brief introduction to the moduli space of pointed rational curves.
For more details, we recommend the lectures and lecture notes of Cavalieri [1]. For
those new to the theory of stable curves, we recommend [11].

For n � 3, the moduli space M0;n parametrizes ordered n-tuples of distinct points
on P

1. Two n-tuples .p1; p2; : : : ; pn/ and .q1; q2; : : : ; qn/ are equivalent if there exists
a projective transformation g 2 PGL.2;C/ such that

.q1; q2; : : : ; qn/ D
(
g.p1/; g.p2/; : : : ; g.pn/

)
:

Since a projective transformation can map three points in P
1 to any other three points

and is uniquely determined by their image, the dimension of M0;n equals n � 3.
The space M0;n is not compact because the points pi are distinct. There are a num-

ber of compactifications of M0;n, including those described by Losev-Manin [17]
and Keel [15]. But the first and most well-known is M0;n, the Deligne-Mumford-
Knudsen compactification, described explicitly by Kapranov [13, 14]. The moduli
space M0;n parametrizes stable n-pointed rational curves.

Definition 2.1 A stable n-pointed rational curve is a tuple .C; p1; p2; : : : ; pn/,
where

1. C is a connected curve of arithmetic genus 0 with at most simple nodal
singularities;

2. p1; p2; : : : ; pn are distinct nonsingular points on C;
3. each irreducible component of C has at least three special points (either marked

points or nodes).
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Fig. 1 The Petersen graph
describes the boundary
complex of M0;5

δ2,5

δ1,3

δ2,3

δ1,4

δ1,5

δ3,4

δ4,5

δ1,2

δ3,5

δ2,4

The dual graph of a stable curve .C; p1; p2; : : : ; pn/ is defined as a graph having
a vertex for each irreducible component, an edge between two vertices for each
point of intersection of the corresponding components, and for each marked point,
a labelled half edge attached to the appropriate vertex. Since C has arithmetic genus
0, the dual graph is a tree.

The boundary M0;n nM0;n is a normal crossing divisor with a natural stratification
by the dual graphs. The codimension of the stratum ı.	 / in M0;n corresponding to
the dual graph 	 is one less than the number of vertices of 	 :

codim.ı.	 // D #V.	 / � 1:

Thus, each divisorial component of the boundary of M0;n corresponds to stable
curves with dual graph 	 corresponding to a partition of f1; 2; : : : ; ng into two
disjoint sets I and Ic, each of cardinality at least 2. Given such a partitition, we
denote the corresponding irreducible boundary divisor of M0;n by ıI . Note that two
divisors ıI and ıJ intersect in M0;n if and only if I 	 J, I 	 Jc, J 	 I, or J 	 Ic.

Example 2.2 Consider the graph whose vertices correspond to the irreducible
boundary divisors in M0;5. Two vertices are joined by an edge if the corresponding
boundary divisors intersect (see Fig. 1). Originally a purely combinatorial construc-
tion, the Petersen graph shown in Fig. 1 is in fact the link of the tropical moduli
space Mtrop

0;5 . For a brief introduction to the moduli space Mtrop
g;n , we recommend

the lectures and lecture notes of Melody Chan [2]. For a thorough introduction to
tropical geometry, see [18].

Remark 2.3 A general philosophy is that birational models of a given compactified
moduli space should provide alternate compactifications which themselves have
modular interpretations. From this perspective, describing the birational geometry
of M0;n is not only interesting in its own right, but also provides a window into
current research in moduli theory. As a first step in this direction, in [10], Harris and
Mumford proved that the moduli spaces Mg;n are of general type for large enough g.
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Thus, understanding the birational geometry of Mg;n boils down to describing all
ample divisors on the moduli space. A long-standing conjecture of Fulton and
Faber, the so-called “F-conjecture”, describes the ample cone of Mg;n; see for
example [7] in which the F-conjecture is reduced to the genus 0 case. Notably, in [9],
Hu and Keel conjectured that M0;n is a Mori Dream Space, a result that would have
implied the F-conjecture. This was recently disproved for n > 133 by Castravet and
Tevelev [3]; their techniques were quickly extended to n > 13 in [6]. We recommend
the excellent survey [5] for those interested in learning more about birational models
and alternative compactifications of Mg;n.

3 The Embedding of M0;n in P
1 � P

2 � � � � � P
n�3

We begin with a description of an embedding 'WM0;n ,! P
1 � P

2 � � � � � P
n�3,

followed by a parametrization of ' on the interior of M0;n which extends to the full
moduli space. We then give a geometric interpretation of ' in the cases M0;4 and
M0;5. This realizes M0;5 in Theorem 3.8 as a pencil of conics in P

1 �P
2. Finally, we

use the parametrization to list a set of equations satisfied by the image '.M0;n/ 	

P
1 � P

1 � � � � � P
n�3.

We recall two well-studied maps. First, the forgetful map 
nWM0;n ! M0;n�1, is
given by forgetting the last point of ŒC; p1; p2; : : : ; pn� and stabilizing the curve. That
is, 
n contracts the components of C that have less than three special points among
p1; p2; : : : ; pn�1, and remembers the points of intersection.

For the second, let Li be the line bundle on M0;n whose fibre over a point
ŒC; p1; p2; : : : ; pn� is the cotangent space of P

1 at pi. Define  i D c1.Li/ to be the
first Chern class of Li. The Kapranov map  n is the rational map given by the linear
system j nj. This map was first described in detail by Kapranov [14], who proved
in particular that  n W M0;n ! P

n�3.

Theorem 3.1 ([16, Corollary 2.7]) The map

˚ D .
n;  n/ W M0;n ! M0;n�1 �P
n�3

is a closed embedding.

Corollary 3.2 We have a closed embedding 'WM0;n ,! P
1 � P

2 � � � � � P
n�3.

Proof Apply Theorem 3.1 successively. ut

Let us describe the map ' of Corollary 3.2 explicitly. Since ' is a closed
embedding, it is enough to describe it only on the smooth part M0;n of M0;n, which
is an open, dense subset of M0;n. To this end, consider the restriction of 
n to M0;n

and let F D 
�1
n .ŒP1; p1; p2; : : : ; pn�1�/ ' P

1nfp1; p2; : : : ; pn�1g be the fibre over
a point in M0;n�1. We have the following description of the line bundle Ln over the
fibre F.
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Lemma 3.3 ([16]) We have LnjF D !P1 .p1Cp2C� � �Cpn�1/. In particular, njF D

KP1 C p1 C p2 C � � � C pn�1.
Following Lemma 3.3, we obtain a basis of H0.F;KF C p1 C p2 C � � � C pn�1/.

Lemma 3.4 The vector space H0.F;KFCp1Cp2C� � �Cpn�1/ has dimension n�2
and a basis is given by the one-forms

¶
dx

.x�p1/.x�p2/
; dx
.x�p1/.x�p3/

; : : : ; dx
.x�p1/.x�pn�1/

©
.

Proof Since the canonical class of F ' P
1 is KF D �2Œpt�, the dimension of the

space of global sections follows from, for example, Riemann-Roch. Since the n� 2
one-forms listed have two poles, each at different pairs of points, they are linearly
independent, and so form a basis. ut

We thus obtain an explicit parametrization of the map  njFWF ,! P
n�3.

Proposition 3.5 Let F ' P
1nfp1; p2; : : : ; pn�1g be the fibre of the map 
n over the

point ŒP1; p1; p2; : : : ; pn�1� 2 M0;n�1. The restriction  njFWF ,! P
n�3 is given in

coordinates by x 7!
î

p1�p2
x�p2

W p1�p3
x�p3

W � � � W p1�pn�1

x�pn�1

ó
.

Proof Using a properly rescaled basis from Lemma 3.4, we can write the map as

x 7!
ï

p1 � p2
.x � p1/.x � p2/

W
p1 � p3

.x � p1/.x � p3/
W � � � W

p1 � pn�1

.x � p1/.x � pn�1/

ò
:

Multiplying through by x � p1 gives the result. ut

By Corollary 3.2, we can extend  n uniquely to all of M0;n. By our choice of
basis, the points p1; p2; : : : ; pn�1 2 NF map to the coordinate points of P

n�3, in
particular to points in general position. Thus,  n. NF/ is a degree n� 3 curve in P

n�3,
i.e. a (generically) smooth rational normal curve passing through these n � 1 fixed
points. Taking the parameter x to be pn, the map 'WM0;n ! P

1 � P
2 � � � � � P

n�3 on
the ith factor of the target is given by

ŒC; p1; p2; : : : ; pn� 7!

ï
p1 � p2

piC3 � p2
W

p1 � p3
piC3 � p3

W � � � W
p1 � piC2

piC3 � piC2

ò
:

Example 3.6 We describe the embedding 'WM0;4 ! P
1 explicitly. Away from

p2; p3; p4, we have 'W ŒP1; p1; p2; p3; p4� 7!
î

p1�p2
p4�p2

W p1�p3
p4�p3

ó
. Thus, away from the

boundary of M0;4, we see that ' is an isomorphism mapping a 4-tuple of distinct
points on P

1 to their cross-ratio. The boundary of M0;4 consists of the three points
ı1;2, ı1;3, and ı1;4; see Fig. 2. By taking limits p1 ! p2, p1 ! p3, and p1 ! p4, we
see that these boundary points map under ' to the points Œ0 W 1�, Œ1 W 0�, and Œ1 W 1�,
respectively.
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p3

p4 p1

p3 p2

p4 p1

p4 p2

p3p1

p2

d1,2 d1,3 d1,4

Fig. 2 The boundary divisors of M0;4

Fig. 3 The embedding
'W M0;5 ! P

1 � P
2. The red

lines correspond to boundary
divisors

[1:0]

[1:1]

[0:1]

1

Example 3.7 For n D 5, the embedding 'WM0;5 ! P
1 � P

2 ' M0;4 �P
2 has the

form

ŒP1; p1; p2; : : : ; p5� 7!
Åï

p1 � p2
p4 � p2

W
p1 � p3
p4 � p3

ò
;

ï
p1 � p2
p5 � p2

W
p1 � p3
p5 � p3

W
p1 � p4
p5 � p4

òã
:

The forgetful map 
5 restricts to M0;5 the projection of M0;4 �P
2 onto the first factor,

so the fibre of 
5 over any point in M0;4 ' P
1 n fŒ0 W 1�; Œ1 W 0�; Œ1 W 1�g is a smooth

conic passing through four fixed points Œ1 W 0 W 0�,Œ0 W 1 W 0�,Œ0 W 0 W 1�, and Œ1 W 1 W 1�
in a copy of P

2. The fibres over Œ0 W 1�; Œ1 W 0�; Œ1 W 1� are the singular conics passing
through these four fixed points. In particular, six boundary divisors of M0;5 map to
the components of three singular conics, and the remaining four map to the fibres
P
1�fŒ1 W 0 W 0�g, P

1�fŒ0 W 1 W 0�g, P
1�fŒ0 W 0 W 1�g, and P

1�fŒ1 W 1 W 1�g; see Fig. 3.
Since M0;5 is the pencil of conics in P

2 passing through these given four points,
we easily write down an embedding of M0;5 in P

1
Œa0Wa1�

� P
2
Œb0Wb1Wb2�

. Its equation is
a0b1.b0 � b2/ � a1b0.b1 � b2/.

We observe that  WM0;5 ! P
2 is a blowdown. Indeed, since there is unique

conic passing through any five points in P
2, the map  WM0;5 ! P

2 is 1-to-1 away
from Œ1 W 0 W 0�; Œ0 W 1 W 0�; Œ0 W 0 W 1�, and Œ1 W 1 W 1�. The fibres over these points are
all isomorphic to P

1.
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Proposition 3.8 With the choice of coordinates above, the ideal which defines the
moduli space M0;5 as a projective variety in P

1
Œa0Wa1�

� P
2
Œb0Wb1Wb2�

is generated by
a0b1.b0 � b2/ � a1b0.b1 � b2/.

Proof This is a direct computation consisting of checking that the variety
described by this principal ideal in the multigraded ring CŒa0; a1; b0; b1; b2� is
two-dimensional, smooth, and irreducible. We verified this using Macaulay2. ut

4 Equations of M0;n

We provide a list of equations contained in the ideal defining the scheme '.M0;n/

in the Cox ring of P
1 � P

2 � � � � � P
n�3. Let w.i/0 ;w

.i/
1 ; � � � ;w

.i/
i be homogeneous

coordinates on the ith factor of P
1 � P

2 � � � � � P
n�3. By Proposition 3.5, the

embedding 'WM0;n ! P
1 � P

2 � � � � � P
n�3 is given in coordinates by w.i/j D

p1;jC2=piC3;jC2 where pi;j WD pi � pj.

Lemma 4.1 The image of ' in P
1 � P

2 � � � � � P
n�3 satisfies the

(n�1
4

)
polynomials

given by the 2 � 2 minors of the matrices

ñ
w.i/0

(
w.j/0 � w.j/iC1

)
w.i/1

(
w.j/1 � w.j/iC1

)
� � � w.i/i

(
w.j/i � w.j/iC1

)

w.j/0 w.j/1 � � � w.j/i

ô

for all 1 � i < j � n � 3. Let Jn be the ideal generated by these polynomials. No
proper subset of these polynomials forms a basis of Jn.

Proof The proof is direct calculation. Choose columns r and s. We show that

(
w.j/r � w.j/iC1

)
w.j/s w.i/r D

(
w.j/s � w.j/iC1

)
w.j/r w.i/s :

Indeed, the following equalities hold:

w.j/r � w.j/iC1 D
p1;rC2

pjC3;rC2
�

p1;iC3
pjC3;rC3

D
p1;rC2pjC3;iC3 � p1;iC3pjC3;rC2

pjC3;rC2pjC3;iC3
D

p1;jC3prC2;iC3

pjC3;rC2pjC3;iC3
:

So we have

(
w.j/r � w.j/iC1

)
w.j/s w.i/r D

p1;jC3prC2;iC3

pjC3;rC2pjC3;rC2
�

p1;sC2
pjC3;sC2

�
p1;rC2

piC3;rC2

D �
p1;jC3p1;sC2p1;rC2

pjC3;rC2pjC3;sC2pjC3;iC3
:
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A similar calculation gives that
(
w.j/s � w.j/iC1

)
w.j/r w.i/s equals the same expression.

For each i 2 f1; 2; : : : ; n � 4g, there are n � 3 � i matrices with i C 1 columns
each. Thus, the number of 2 � 2 minors is given by

n�4∑

iD1

.n � 3 � i/

Ç
iC 1

2

å
D

Ç
n � 1

4

å
:

The polynomials have the same total degree and different initial terms under lex
order, so are linearly independent over C. This proves the final statement. ut

Example 4.2 We list the polynomials of Lemma 4.1 satisfied by M0;7 as a sub-
scheme of P

1 � P
2 � P

3 � P
4. The Cox ring of the product of projective

spaces is CŒa0; a1; b0; b1; b2; c0; c1; c2; c3; d0; d1; d2; d3; d4�. The six matrices of
Lemma 4.1 areñ

a0.b0 � b2/ a1.b1 � b2/
b0 b1

ô
;

ñ
b0.c0 � c3/ b1.c1 � c3/ b2.c2 � c3/

c0 c1 c2

ô
;

ñ
a0.c0 � c2/ a1.c1 � c2/

c0 c1

ô
;

ñ
b0.d0 � d3/ b1.d1 � d3/ b2.d2 � d3/

d0 d1 d2

ô
;

ñ
a0.d0 � d2/ a1.d1 � d2/

d0 d1

ô
;

ñ
c0.d0 � d4/ c1.d1 � d4/ c2.d2 � d4/ c3.d3 � d4/

d0 d1 d2 d3

ô
:

Taking all 2-minors gives the following 15 polynomials in the ideal defining M0;7 as
a subscheme of P

1 � P
2 � P

3 � P
4:

c2d2d3 � c3d2d3 C c3d2d4 � c2d3d4 ; c1d1d3 � c3d1d3 C c3d1d4 � c1d3d4 ;

c0d0d3 � c3d0d3 C c3d0d4 � c0d3d4 ; c1d1d2 � c2d1d2 C c2d1d4 � c1d2d4 ;

b1d1d2 � b2d1d2 C b2d1d3 � b1d2d3 ; c0d0d2 � c2d0d2 C c2d0d4 � c0d2d4 ;

b0d0d2 � b2d0d2 C b2d0d3 � b0d2d3 ; c0d0d1 � c1d0d1 C c1d0d4 � c0d1d4 ;

b0d0d1 � b1d0d1 C b1d0d3 � b0d1d3 ; a0d0d1 � a1d0d1 C a1d0d2 � a0d1d2 ;

b1c1c2 � b2c1c2 C b2c1c3 � b1c2c3 ; b0c0c2 � b2c0c2 C b2c0c3 � b0c2c3 ;

b0c0c1 � b1c0c1 C b1c0c3 � b0c1c3 ; a0c0c1 � a1c0c1 C a1c0c2 � a0c1c2 ;

a0b0b1 � a1b0b1 C a1b0b2 � a0b1b2 :

Conjecture 4.3 Let CŒw.i/j W 1 � i � n�3; 0 � j � i� be the Cox ring of the product

P
1 � P

2 � � � � � P
n�3 and let B D

⋂n�3
iD1 hw

.i/
0 ;w

.i/
1 ; : : : ;w

.i/
i i be its irrelevant ideal. If

In is the B-saturated ideal that defines the subscheme '.M0;n/ of P
1�P

2�� � ��P
n�3
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and G is a minimal Gröbner basis of In, then the number of polynomials of degree
d in G is

(n�1
dC1

)
.

Computations in Macaulay2 support Conjecture 4.3 for 4 � n � 8. The
following lemma gives additional evidence.

Lemma 4.4 For each choice of 0 � i < j � k < l < m � n � 3, the embedding
of M0;n in P

1 � P
1 � � � � � P

n�3 satisfies the following
(n�1
5

)
linearly independent

equations of degree 4 in the Cox ring:

w.m/kC1w
.m/
lC1

(
w.k/i w.l/j � w.k/j w.l/i

)
C w.m/lC1w

.m/
j

(
w.k/j w.l/i � w.k/i w.l/i

)

C w.m/j w.m/kC1

(
w.k/i w.l/i � w.k/i w.l/j

)
D 0 : (2)

Proof The number of equations with j D k is
(n�2
5

)
and the number with j ¤ k

is
(n�2
4

)
, so there are

(n�2
5

)
C

(n�2
4

)
D

(n�1
5

)
equations in total. Since all of the

equations have different initial terms with respect to lex order, they are linearly
independent.

The rest of the proof is direct calculation. For simplicity, we first shift the indices:

w.m�3/
k�2 w.m�3/

l�2

(
w.k�3/

i�2 w.l�3/j�2 � w.k�3/
j�2 w.l�3/i�2

)

C w.m�3/
l�2 w.m�3/

j�2

(
w.k�3/

j�2 w.l�3/i�2 � w.k�3/
i�2 w.l�3/i�2

)

C w.m�3/
j�2 w.m�3/

k�2

(
w.k�3/

i�2 w.l�3/i�2 � w.k�3/
i�2 w.l�3/j�2

)
D 0 :

Then one checks that the following identities hold:

w.m�3/
k�2 w.m�3/

l�2

(
w.k�3/

i�2 w.l�3/j�2 � w.k�3/
j�2 w.l�3/i�2

)
D A

pk;l

pm;lpm;kpk;jpl;j

w.m�3/
l�2 w.m�3/

j�2

(
w.k�3/

j�2 w.l�3/i�2 � w.k�3/
i�2 w.l�3/i�2

)
D A

1

pm;lpm;jpk;j

w.m�3/
j�2 w.m�3/

k�2

(
w.k�3/

i�2 w.l�3/i�2 � w.k�3/
i�2 w.l�3/j�2

)
D �A

1

pm;jpm;kpl;j

where A WD p1;ip1;jp1;lp1;kpj;i

pl;ipk;i
. Furthermore the following is true:

1

pm;jpm;kpl;j
�

1

pm;lpm;jpk;j
D

1

pm;j

pm;lpk;j � pm;kpl;j

pm;lpk;jpm;kpl;j

D
pm;j

pm;j

pk;l

pm;lpm;kpk;jpl;j
D

pk;l

pm;lpm;kpk;jpl;j
;

which completes the proof. ut
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The equations in Lemma 4.4 are equivalent to the following, modulo the ideal Jn:

w.k/i w.l/i w.m/j w.m/kC1 � w.k/i w.l/kC1w
.m/
j w.m/kC1 � w.k/i w.l/i w.m/j w.m/lC1

C w.k/j w.l/i w.m/j w.m/lC1 C w.k/i w.l/kC1w
.m/
j w.m/lC1 � w.k/j w.l/i w.m/kC1w

.m/
lC1 : (3)

Indeed, the difference of the equations (2) and (3) is

w.k/i

Ä
w.l/kC1w

.m/
j

(
w.m/kC1 � w.m/lC1

)
� w.l/j w.m/kC1

(
w.m/j � w.m/lC1

)ä
2 Jn :

We expect that the polynomials (3) are the minimal generators of In in degree 4.

Example 4.5 Conjecture 4.3 predicts that there are
(
7�1
4C1

)
D 6 polynomials of

degree 4 in a reduced Gröbner basis of I7. Using Macaulay2, we compute the unique
B-saturation of J7, which gives the six polynomials of degree 4

b1c1d2d3 � b1c3d2d3 � b1c1d2d4 C b2c1d2d4 C b1c3d2d4 � b2c1d3d4 ;

b0c0d2d3 � b0c3d2d3 � b0c0d2d4 C b2c0d2d4 C b0c3d2d4 � b2c0d3d4 ;

b0c0d1d3 � b0c3d1d3 � b0c0d1d4 C b1c0d1d4 C b0c3d1d4 � b1c0d3d4 ;

a0c0d1d2 � a0c2d1d2 � a0c0d1d4 C a1c0d1d4 C a0c2d1d4 � a1c0d2d4

a0b0d1d2 � a0b2d1d2 � a0b0d1d3 C a1b0d1d3 C a0b2d1d3 � a1b0d2d3

a0b0c1c2 � a0b2c1c2 � a0b0c1c3 C a1b0c1c3 C a0b2c1c3 � a1b0c2c3 ;

in CŒa0; a1; b0; b1; b2; c0; c1; c2; c3; d0; d1; d2; d3; d4�. These polynomials correspond
to the equations (3). The last equation coincides with the unique equation of degree
4 in a Gröbner basis of I6, and the structure of each equation is similar. In general,
we expect that equations of degree d in a Gröbner basis for In have structure similar
to the unique equation of top degree in a Gröbner basis for IdC2. Moreover, for each
pair 0 � i < j � 2, there is a unique polynomial of degree .0; 1; 1; 2/ containing bi

and bj.
Let G be a reduced Gröbner basis of In under lex order, and Gd the subset of G

consisting of polynomials of degree d. Fix a P
i and choose two w.i/j ;w

.i/
k . For each

choice of d � 2 of the remaining spaces P
iC1;PiC2; : : : ;Pn�3, we conjecture that

there is a unique polynomial in Gd of degree one in the chosen variables, other than
the last occurring projective space, in which the polynomial has degree two.

If the polynomials of degree d can be counted in this way, then Conjecture 4.3
will be true, upon application of the following combinatorial fact:

Lemma 4.6 We have

n�3∑

iD1

Ç
n � 3 � i

d � 2

åÇ
iC 1

2

å
D

Ç
n � 1

dC 1

å
:
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Proof We rewrite the left hand side as a hypergeometric series and apply the Chu-
Vandermonde Identity, see e.g. [19]. Let 2F1

(
a b

c

)
denote the series

1∑

kD0

a.aC 1/ � � � .aC k � 1/ � b.bC 1/ � � � .bC k � 1/

kŠc.cC 1/ � � � .cC k � 1/
:

Note that if either a or b is negative then the series is finite.
Now, changing the index of the series on the left hand side of the desired identity

to k D i � 1, we let Ck be the kth term. Expanding factorials and cancellation gives

CkC1

Ck
D
.kC dC 2 � n/.kC 3/

.n � k � 4/.kC 1/
:

This means that the left hand side of the desired identity can be written as

n�4∑

kD0

Ç
n � 4 � k

d � 2

åÇ
kC 2

2

å
D

Ç
n � 4

d � 2

å
2F1

Ç
�.n � d � 2/ 3

4 � n

å
:

The Chu-Vandermonde Identity [19, Equation (2.7)] gives the desired identity:

Ç
n � 4

d � 2

å
2F1

Ç
�.n � d � 2/ 3

4 � n

å
D

Ç
n � 4

d � 2

å
.1 � n/.2 � n/ � � � .�.dC 2//

.4 � n/.5 � n/ � � � .�.d � 1//

D

Ç
n � 4

d � 2

å
.n � 1/Š

.dC 1/Š

.d � 2/Š

.n � 4/Š

D
.n � 1/.n � 2/.n � 3/.n � 4/Š

.dC 1/d.d � 1/.d � 2/Š.n � 4 � dC 2/Š

D

Ç
n � 1

dC 1

å
: ut

5 The Number of Equations of M0;n in M0;n�1 �P
n�3

We recall some cohomological tools developed in [16]. Working in the ideal defining
M0;n as a subscheme of M0;n�1 �P

n�3, these tools allow us to realize the number of
equations of a given bidegree as the dimension of the space of global sections of a
certain sheaf on M0;n�1. We apply this to the case n D 5 to prove that J5 contains all
polynomials in I5 of degree .d; d/. We do the same for J6 and I6 in the next section.

Let � WU ! M0;n be the universal curve over M0;n and ! be the relative dualizing
sheaf. The �-class on M0;n is the pushforward of the first Chern class of !, namely
� WD ��

(
c1.!/

)
. If KM0;n

is the canonical class on M0;n and ıI the classes of the
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boundary divisors, then Keel and Tevelev [16] prove that � � KM0;n
C
∑
ıI , � is very

ample, and the composition of ' with the Segre embedding P
1 �P

2 � � � � �P
n�3 ,!

P
.n�2/Š�1 is the embedding of M0;n via the � class. Proposition 3.8 implies:

Corollary 5.1 The ideal of the embedding of M0;5 into P
5 via the � class is

generated by the five quadrics in (1).

Proof The first two equations are given by first multiplying the equation of
Proposition 3.8 by x0 and x1 to obtain equations homogeneous of the same degree
in xi and yj, then mapping into P

5 by the Segre embedding. The final three are
the Segre relations. By [16], the resulting map from M0;5 ! P

5 is given by the
� class. ut

We will prove that, for 5 � n � 6, the ideals generated by polynomials in In of
degree .d; d; : : : ; d/ are generated by polynomials in Jn. The following theorem tells
us that this is enough to understand the ideal of ˚.M0;n/ in P

.n�2/Š�1 via the � class.

Theorem 5.2 ([16]) The ideal that defines ˚.M0;n/ as a subscheme of P
.n�2/Š�1 is

generated by quadrics. Equivalently, if QIn is the ideal generated by all polynomials
of degree .d; d; : : : ; d/ contained in the ideal In in the Cox ring of P

1�P
2�� � ��P

n�3,
then QIn is generated by polynomials of degree .2; 2; : : : ; 2/.

Let V n be the vector bundle on M0;n defined by the exact sequence

0! V n ! H0.M0;n;  n/˝ OM0;n
!  n ! 0; (4)

and consider the map ˚ D .
n;  n/WM0;n ! M0;n�1 �P
n�3. By [16, Lemma 4.1],

we have the following resolution of the structure sheaf of ˚.M0;n/ in M0;n�1 �P
n�3:

0!M n�4
n � O.3�n/! � � � !M 1

n � O.�2/! OM0;n�1 �Pn�3 ! ˚�OM0;n
! 0;

(5)

where M p
n D R1
n�.^

pC1V n/.
To gain control of the sheaves in (5), we have

Theorem 5.3 ([16, Theorem 4.3]) There exists a vector bundle Q on M0;n and
exact sequences

0! 
�
n M p

n�1 !M p
n ! Q! 0 (6)

0! V n ! Q!M p�1
n ! 0: (7)

Remark 5.4 The vector bundle Q is defined explicitly in [16].
Thus, by tensoring (5) with the correct line bundles one can compute the expected

number of equations for M0;n 	 M0;n �P
n�3 in particular degrees.

Lemma 5.5 For all integers n � 5 and a > 0, the ideal In defining M0;n as
a subscheme of M0;n�1 �P

n�3 contains exactly h0.M0;n�1;M
1
n�1 ˝ �

˝a
n�1/ linearly

independent equations of bidegree .a; 2/. Additionally, we have the short exact
sequence
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0! H0.M0;n�1; 

�
n�1M

1
n�2 ˝ �

˝a
n�1/! H0.M0;5;M

1
n�1 ˝ �

˝a
n�1/

! H0.M0;n�1;V n�2 ˝ �
˝a
n�1/! 0 :

Proof We use the resolution of the structure sheaf of ˚�OM0;n
given by the exact

sequence (5). Tensoring this with �˝a
n�1 � O.2/, we obtain the following exact

sequence on M0;n�1 �P
n�3:

0! .M n�4
n�1 ˝ �

˝a
n�1/� O.1 � n/! .M n�3

n�1 ˝ �
˝a
n�1/� O.2 � n/

! � � � ! .M 1
n�2 ˝ �

˝a
n�1/� O.�1/! .M 1

n�1 ˝ �
˝a
n�1/� O

! �˝a
n�1 � O.2/! ˚�OM0;n

˝ .�˝a � O.2//! 0 :

By the Künneth Formula, and since O.k/ is acyclic for 1 � n � k � �1, we have

Hi
(

M0;n�1 �P
n�3; .M kC2n�5

n�1 ˝ �˝a
n�1/� O.k/

)
D 0

for all 1 � n � k � �1 and i � 0. Moreover, by Lemma 6.5 of [16], we have

H1
(

M0;n�1 �P
n�3; .M 1

n�1 ˝ �
˝a
n�1/� O

)
D 0 :

Thus, we obtain a short exact sequence in cohomology:

0! H0
(

M0;n�1 �P
n�3; .M 1

n�1 ˝ �
˝a
n�1/� O

)

! H0
(

M0;n�1 �P
n�3; �˝a

n�1 � O.2//

�
�! H0

Ä
M0;n�1 �P

n�3; ˚�OM0;n
˝

(
�˝a � O.2/

)ä
! 0 :

In particular, the number of equations of bidegree .a; 2/ in the ideal defining M0;n as
a subvariety of M0;n�1 �P

n�3 is given by the dimension of the kernel of � , which is
H0.M0;n�1 �P

n�3; .M 1
n�1˝�

˝a
n�1/�O/. By the Künneth Formula, this vector space

is isomorphic to H0.M0;n�1;M
1
n�1 ˝ �

˝a
n�1/.

Using the short exact sequences (6) and (7), and noting that M 0
n D 0 for all n,

we have the short exact sequence 0 ! 
�
n�1M

1
n�2 ! M 1

n�1 ! V n�2 ! 0. We
tensor with �˝a

n�1. Then Hi.M0;n�1; 

�
n�1M

1
n�2˝ �

˝a
n�1/ D 0 for i > 0, by Lemma 6.5

in [16], and so taking cohomology gives the short exact sequence. ut

Example 5.6 For a reality check, recall from Proposition 3.8 that I5 is generated by
one equation of degree .1; 2/, and Lemma 4.1 gives one equation satisfied by M0;5

in P
1�P

2. On the other hand, Lemma 5.5 tells us that M0;5 has h0.M0;4;M
1
4 ˝�

˝a
4 /

linearly independent equations of degree .a; 2/.
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Theorem 5.7 We have h0.M0;4;M
1
4 ˝ �4/ D 1 and h0.M0;4;M

1
4 ˝ �

˝2
4 / D 2.

Proof Under the isomorphism M0;4 ' P
1, we have �4 D OP1 .1/. We show that

on M0;4, we have M 1
4 D  �1

4 D OP1 .1/. Since M 1
3 D 0, the exact sequence (6)

becomes 0 ! 0 ! M 1
4 ! Q ! 0 and tells us that M 1

4 ' Q. Since M 0
n D 0 for

all n, the sequence (7) becomes 0 ! V 4 ! Q ! 0 ! 0, and therefore M 1
4 '

Q ' V 4 . We can determine the bundle V 4 by analyzing the exact sequence (4). On
M0;4, this is 0 ! V 4 ! H0.M0;4;  4/ ˝ OM0;4

!  4 ! 0. Taking determinants
gives

OM0;4
D det

(
H0.M0;4;  4/˝ OM0;4

)
D det.V 4/˝ det. 4/ D V 4 ˝  4 :

In particular, M 1
4 ' V 4 is a line bundle dual to  4. Recall that M0;4 ' P

1 and
 4 ' OP1 .1/, so the dimension of H0.M0;4;M

1
4 ˝ OP1 .2// is given by

h0
(

M0;4;M
1
4 ˝ OP1 .2/

)
D h0

(
P
1;OP1 .�1/˝ OP1 .2/

)
D h0

(
P
1;OP1 .1/

)
D 2 :

Similarly we compute the dimension of H0
(

M0;4;M
1
4 ˝ OP1 .1/

)
to be

h0
(

M0;4;M
1
4 ˝ OP1 .1/

)
D h0

(
P
1;OP1 .�1/˝ OP1 .1/

)
D h0.P1;OP1 / D 1 : ut

6 Equations for M0;6

We apply the tools from the previous section to prove Theorem 6.3, which states that
QI6 is generated by polynomials in J6. Lemma 4.1 gives five polynomials satisfied by
M0;6 in P

1 � P
2 � P

3:

f1 WD b1c1c2 � b2c1c2 C b2c1c3 � b1c2c3 ;

f2 WD b0c0c2 � b2c0c2 C b2c0c3 � b0c2c3 ;

f3 WD b0c0c1 � b1c0c1 C b1c0c3 � b0c1c3 ;

f4 WD a0c0c1 � a1c0c1 C a1c0c2 � a0c1c2 ;

f5 WD a0b0b1 � a1b0b1 C a1b0b2 � a0b1b2 :

Let J6 be the ideal in CŒa0; a1; b0; b1; b2; c0; c1; c2; c3� generated by f1; f2; : : : ; f5, and
let I6 be the unique B-saturated ideal defining M0;6 scheme-theoretically, where the
irrelevant ideal is B D ha0; a1i\ hb0; b1; b2i\ hc0; c1; c2; c3i. Using Macaulay2, we
verified that I6 is prime, and is generated by J6 and

f6 WD a0b0c1c2 � a0b2c1c2 � a0b0c1c3 C a1b0c1c3 C a0b2c1c3 � a1b0c2c3 :
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Proposition 6.1 The ideal J6 is properly contained in the ideal I6, but the parts of
homogeneous degrees .2; 2; 2/ of the ideals J6 and I6 coincide.

Proof Let I.i;j;k/, respectively J.i;j;k/, be the vector space of polynomials of degree
.i; j; k/ in I6, respectively J6. Multiplying the polynomials f1; f2; : : : ; f5 by all
monomials of the correct degree gives a spanning set of J.i;j;k/. Computing the
dimension of J.i;j;k/ involves determining which of the resulting polynomials are
redundant. We used Macaulay2 to show that dim J.1;1;2/ D 9 < dim I.1;1;2/ D 10

and dim J.2;2;2/ D dim I.2;2;2/ D 55. ut

Remark 6.2 As we will see, the second part of Proposition 6.1 implies that the
homogeneous parts of the ideals I6 and J6 coincide. Corollary 6.6 shows that these
ideals contain the correct number of homogeneous equations of degree .2; 2; 2/.

Theorem 6.3 Let QI6 be the ideal generated by the polynomials of degree .d; d; d/
in I6. Then QI6 is generated by the polynomials of degree .2; 2; 2/ contained in J6.
Equivalently, the embedding ˚.M0;n/ in P

23 defined by the � class is generated by
the homogeneous polynomials of degree .2; 2; 2/ in J6 and the Segre relations.

The proof of Theorem 6.3 requires the following two lemmas.

Lemma 6.4 We have h0.M0;5;V 4 ˝ �
˝2
5 / D 24 and h0.M0;5;V 4 ˝ �5/ D 11.

Proof We have on M0;5 the exact sequence 0! V 4 ! C
3˝OM0;5

!  4 ! 0. We

tensor with �˝2
5 . Noting that Hi.M0;5;V 4˝�

˝2
5 / D 0 for i > 0 by [16, Lemma 6.5],

the long exact sequence in cohomology gives the short exact sequence

0! H0.M0;5;V 4 ˝ �
˝2
5 /! H0.M0;5;C

3 ˝ �˝2
5 /! H0.M0;5;  4 ˝ �

˝2
5 /! 0:

We shall determine the dimensions of the middle term and the last term.
For the middle term, we note first that any global section of C

3 ˝ �˝2
5 is of

the form ˛ ˝ ˇ where ˛ 2 C
3 and ˇ 2 H0.M0;5; �

˝2
5 /. Using that M0;5 '

Blq1;q2;:::;q4 .P
2/, we let � WBlq1;q2;:::;q4 .P

2/ ! P
2 be the blowup, E1;E2; : : : ;E4 the

exceptional divisors, and Li;j the proper transform of the line passing through qi and
qj on P

2. The � class is given by �5 D KM0;5
C

∑
ıI , where the sum is taken over all

boundary divisors ıI of M0;5, so we have the linear equivalence

�5 �

Å
��.KP2 /C

4∑

iD1

Ei

ã
C

Å 4∑

iD1

Ei C
∑

1�i<j�4

Li;j

ã
:

Since Li;j � �
�H � Ei � Ej, where H is the class of a hyperplane section on P

2, we
can write �˝2

5 as .�5/˝2 � ��.6H/ � 2
∑4

iD1 Ei. In particular, this gives

H0.M0;5; �
˝2
5 / ' H0

Ç
P
2;OP2 .6H/˝

Å 4⊗

iD1

I ˝2
qi

ãå
;
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where Iq denotes the skyscraper sheaf at q. By explicitly writing out equations, one
can check that the conditions that a curve C of degree 6 on P

2 attain nodes at four
points in general position are linearly independent. Thus, this latter vector space has
dimension

(
8
2

)
�12 D 16, and therefore h0.M0;5;C

3˝�˝2
5 / D 3�16 D 48:Repeating

the above with �˝2
5 replaced by �5, we have h0.M0;5;C

3 ˝ �5/ D 3
((
5
2

)
� 4

)
D 18.

Since we have  4 � ı1;2 C ı3;5 C ı4;5 � H, it follows that

 4 ˝ �
˝2
5 � ��.7H/ � 2.E1 C E2 C E3 C E4/ :

With this, we compute the dimension of H0.M0;5;  4 ˝ �
˝2
5 / to be

h0.M0;5;  4 ˝ �
˝2
5 / D h0

Ç
P
2;OP2 .7/˝

Å 4⊗

iD1

I ˝2
qi

ãå
D

(
9
2

)
� 12 D 24:

Finally, we repeat the above computation with �˝2
5 replaced by �5, and we find

h0.M0;5;  4 ˝ �5/ D h0
Ç

P
2;OP2 .4/˝

Å 4⊗

iD1

Iqi

ãå
D

(
6
2

)
� 4 D 11 :

ut

Lemma 6.5 We have h0.M0;5; 

�M 1

4 ˝�
˝2
5 / D 11 and h0.M0;5; 


�M 1
4 ˝�5/ D 3.

Proof We note first that on M0;4 ' P
1, we have M 1

4 D  �1
4 and  4 D O.�1/, so


�.M 1
4 / D 
�. �1

4 /. Thus, we have 
�.M 1
4 / D 
�

(
O.1/

)
D �2H C

∑4
iD1 Ei.

This allows us to write the class 
�M 1
4 ˝ �

˝2
5 as


�M 1
4 ˝ �

˝2
5 � �

�.�2H/C
4∑

iD1

Ei C �
�.6H/ � 2

4∑

iD1

Ei D �
�.4H/ �

4∑

iD1

Ei:

Using the push-pull formula, we can now compute the desired dimensions:

h0.M0;5; 

�M 1

4 ˝ �
˝2
5 / D h0

Å
P
2;OP2 .4/˝

4⊗

iD1

Iqi

ã
D

(
6
2

)
� 4 D 11 ;

h0.M0;5; 

�M 1

4 ˝ �5/ D h0
(
P
2;OP2 .1/

)
D 3 : ut

Applying Lemmas 6.4 and 6.5 to the short exact sequence of Lemma 5.5 gives

Corollary 6.6 The number of equations defining M0;6 in the line bundle �˝2
5 �O.2/

on M0;5 �P
3 is 35. Similarly, for the line bundle �5 � O.2/, the number is 10.
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Proof For n D 6 and a D 1; 2, Lemma 5.5 gives the short exact sequences

0!H0.M0;5; 

�M 1

4 ˝ �
˝2
5 /!H0.M0;5;M

1
5 ˝ �

˝2
5 /!H0.M0;5;V 4˝ �

˝2
5 /!0

0!H0.M0;5; 

�M 1

4 ˝ �5/!H0.M0;5;M
1
5 ˝ �5/!H0.M0;5;V 4˝ �5/!0 :

The result follows from these, and Lemmas 6.4 and 6.5. ut

Proof of Theorem 6.3 There are no equations in I5 of degree .1; 1/, so the ideal
generated by equations of degree .1; 1; 2/ in I6 has number of linearly independent
polynomials coinciding with the number of linearly independent polynomials
defining M0;6 in the line bundle �5 � O.2/ on M0;5 �P

3. Since there are two
equations in I5 of degree .2; 2/ in the Cox ring of P

1 � P
2, both of which must be

homogenized, we see that I6 contains 20 linearly independent polynomials of degree
.2; 2; 2/ in the Cox ring of P

1 � P
2 � P

3. By Corollary 6.6, the number of linearly
independent polynomials of degree .2; 2; 2/ is h0.M0;5;M

1
5 ˝ �

˝2
5 / C 20 D 55.

The number of linearly independent polynomials in I6 of degree .1; 1; 2/ equals 10.
Together with Proposition 6.1, this completes the proof. ut
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Appendix

We include the Macaulay2 code used to verify Conjecture 1.2.

R = QQ[a0,a1,b0,b1,b2,c0,c1,c2,c3,d0,d1,d2,d3,d4,
e0,e1,e2,e3,e4,e5,f0,f1,f2,f3,f4,f5,f6];

The rows of the following matrix are coordinates on P
1;P2;P3;P4;P5;P6

M = matrix{{0,0,0,0,0,0,0}, {a0,a1,0,0,0,0,0},
{b0,b1,b2,0,0,0,0}, {c0,c1,c2,c3,0,0,0},
{d0,d1,d2,d3,d4,0,0}, {e0,e1,e2,e3,e4,e5,0},
{f0,f1,f2,f3,f4,f5,f6} };

M05 = {{2,2}};
M06 = {{2,2},{3,2},{3,3}};
M07 = {{2,2},{3,2},{3,3},{4,2},{4,3},{4,4}};
M08 = {{2,2},{3,2},{3,3},{4,2},{4,3},{4,4},{5,2},{5,3},

{5,4},{5,5}};
M09 = {{2,2},{3,2},{3,3},{4,2},{4,3},{4,4},{5,2},{5,3},

{5,4},{5,5},{6,2},{6,3},{6,4},{6,5},{6,6}};
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Select your desired n here:

L = M07;

Lemma 4.1 involves the 2 � 2-minors of the matrices

Q = apply(L, l -> {submatrix(M,{l_1-1,l_0}, 0..l_1-1),
M_(l_1)_(l_0) } )

S = apply(Q, T -> matrix{ apply(entries transpose T_0,
x -> x_0 * (x_1-T_1) ), (entries T_0)_1 })

We form the ideal J D Jn of all such 2-minors, and compute the prime ideal I by
saturation.

J = sum apply(S,N -> minors(2,N));
J = saturate(J,ideal(a0,a1));
J = saturate(J,ideal(b0,b1,b2));
J = saturate(J,ideal(c0,c1,c2,c3));
J = saturate(J,ideal(d0,d1,d2,d3,d4));
J = saturate(J,ideal(e0,e1,e2,e3,e4,e5));
I = saturate(J,ideal(f0,f1,f2,f3,f4,f5,f6));

The following are used to determine whether the dimension of I is correct, as well
as compute the degree of I, and the minimal number of generators in each degree.

codim I, degree I, betti mingens I

We finally note that the initial ideal is square-free and Cohen–Macaulay:

M = monomialIdeal leadTerm I;
betti mingens M
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Minkowski Sums and Hadamard Products
of Algebraic Varieties

Netanel Friedenberg, Alessandro Oneto, and Robert L. Williams

Abstract We study Minkowski sums and Hadamard products of algebraic varieties.
Specifically, we explore when these are varieties and examine their properties in
terms of those of the original varieties. This project was inspired by Problem 5 on
Surfaces in [13].

MSC 2010 codes: 14M99, 14N05, 14Q15, 14R99

1 Introduction

In algebraic geometry, we have several constructions to build new algebraic varieties
from given ones. Examples of classical, well-studied constructions are joins, secant
varieties, rational normal scrolls, and Segre products. In these cases, it is very
interesting to relate geometric properties of the constructed variety to those of the
original varieties. In this article, we focus on the Minkowski sum and the Hadamard
product of algebraic varieties. These are constructed by considering the entry-wise
sum and multiplication, respectively, of points on the varieties. Due to the nature
of these operations, there is a remarkable difference between the affine and the
projective case.

The entrywise sum is not well-defined over projective spaces. For this reason,
we consider only Minkowski sums of affine varieties. However, in the case of affine
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cones, the Minkowski sum corresponds to the classical join of the corresponding
projective varieties. Conversely, we focus on Hadamard products of projective
varieties and, in particular, of varieties of matrices with fixed rank. This is because
these Hadamard products parametrize interesting problems related to algebraic
statistics and quantum information.

Our original motivating question was the following.

Question 1.1 Which properties do the Minkowski sum and the Hadamard product
have with respect to the properties of the original varieties? In particular, what are
their dimensions and degrees?

We now introduce these constructions. We work over an algebraically closed
field k. We use the notation k

� WD k n f0g.
The Minkowski sum of a pair of algebraic varieties is constructed from the

coordinatewise sums of their points. More precisely, the Minkowski sum X C Y of
two affine subvarieties X;Y 	 A

n in the same ambient space is the Zariski closure
of the image of the product X�Y under the morphism �CWA

n�A
n ! A

n defined by(
.a1; a2; : : : ; an/; .b1; b2; : : : ; bn/

)
7! .a1 C b1; a2 C b2; : : : ; an C bn/. We focus on

affine subvarieties because the coordinatewise sum is not well-defined for points in
projective space. From the definition, we see that dim.X C Y/ � dim.X/C dim.Y/
and, when X and Y are both irreducible, the variety X C Y is also irreducible. As
Example 3.1 illustrates, the image &.X � Y/ may not be closed.

As far as we know, there is no literature on the Minkowski sums of varieties. We
compute the dimension and degree of Minkowski sums of generic affine varieties.

Theorem 3.9 Given two affine varieties X;Y 	 A
n in general position, we have

dim.X C Y/ D min.dim X C dim Y; n/.

Corollary 3.12 Assume that the characteristic of the underlying field k is not equal
to 2. If the affine varieties X;Y 	 A

n are contained in disjoint nonparallel affine
subspaces, then we have deg.X C Y/ D deg.X/ deg.Y/.
A crucial observation in our computations is that the Minkowski sum of affine
varieties disjoint at infinity can be described in terms of the join of their projec-
tivizations, see Proposition 3.5 and Remark 3.6. This is a construction inspired by
the combinatorial Cayley trick used to construct Minkowski sums of polytopes.

In analogy with Minkowski sums, the Hadamard product of a pair of algebraic
varieties is constructed from the coordinatewise products of their points. Specifi-
cally, the Hadamard product X ? Y of two projective varieties X;Y 	 P

n is the
Zariski closure of the image of X � Y under the rational map ��WP

n � P
n Ü P

n

defined by .Œa0 W a1 W � � � W an�; Œb0 W b1 W � � � W bn�/ 7! Œa0b0 W a1b1 W � � � W anbn�.
The indeterminacy locus of this rational map $ is the union of all products of
complementary coordinate subspaces. In other words, if k is a field and P

n WD

Proj.kŒx0; x1; : : : ; xn�/, then the domain of $ consists of all points in P
n except for⋃

I V.xi W i 2 I / �V.xi W i 62 I /, where I is any subset of f0; 1; : : : ; ng. As with
Minkowski sums, this definition implies that dim.X ? Y/ � dim.X/C dim.Y/ and,
when X and Y are both irreducible, the variety X?Y is also irreducible. Example 4.1
shows that the image $.X � Y/ need not be closed.
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In [1], the authors studied the geometry of Hadamard products, with a particular
focus on the case of linear spaces. This work has been continued in [2].

In particular, we are interested in studying Hadamard products of varieties of
matrices. The Hadamard product of matrices is a classical operation in matrix
analysis [7]. Its most relevant property is that it is closed on positive matrices.
The Hadamard product of tensors appeared more recently in quantum information
[8] and in statistics [4, 11]. In the latter, the authors studied restricted Boltzmann
machines which are statistical models for binary random variables where some are
hidden. From a geometric point of view, this reduces to studying Hadamard powers
of the first secant variety of Segre products of copies of P

1. An interesting question is
to understand how to express matrices as Hadamard products of small rank matrices.
We call these expressions Hadamard decompositions. We define Hadamard ranks of
matrices by using a multiplicative version of the usual definitions used for additive
tensor decompositions. The study of Hadamard ranks is related to the study of
Hadamard powers of secant varieties of Segre products of projective spaces.

In Sect. 4, we focus in particular on the dimension of these Hadamard powers.
We define the expected dimension and, consequently, we define the expected rth
Hadamard generic rank, i.e., the expected number of rank r matrices needed to
decompose the generic matrix of size m � n as their Hadamard product. It is

exp:Hrkı
r .m; n/ D

°
dim P.Matm;n/ � dim.X1/

dim.Xr/ � dim.X1/

§
D

°
mn � .mC n � 1/

r.mC n � r/ � m � nC 1

§
:

We confirm this is correct for square matrices of small size using Macaulay2.
The paper is structured as follows. In Sect. 2, we present some explicit compu-

tations of these varieties. We use both Macaulay2 [5] and Sage [12]. These com-
putations allowed us to conjecture some geometric properties of Minkowski sums
and Hadamard products of algebraic varieties. In Sect. 3, we analyze Minkowski
sums of affine varieties. In particular, we prove that, under genericity conditions, the
dimension of the Minkowski sum is the sum of the dimensions and we investigate
the degree of the Minkowski sum. In Sect. 4, we study Hadamard products and
Hadamard powers of projective varieties. In particular, we focus on the case of
Hadamard powers of projective varieties of matrices of given rank. We introduce
the notion of Hadamard decomposition and Hadamard rank of a matrix. These
concepts may be viewed as the multiplicative versions of the well-studied additive
decomposition of tensors and tensor ranks.

2 Experiments

Problem 5 on Surfaces in [13] requests: Pick two random circles C1 and C2 in R
3.

Compute their Minkowski sum C1 C C2 and their Hadamard product C1 ? C2. Try
other curves. To accomplish this, we use the algebra softwares Macaulay2 and Sage
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to obtain equations and nice graphics. Via elimination theory, we can compute the
ideals of Minkowski sums and Hadamard products in Macaulay2 as follows:

R = QQ[z_1..z_n,
x_1..x_n,y_1..y_n];

I = ideal( ... ); -- ideal of X in variables x_i;
J = ideal( ... ); -- ideal of Y in variables y_i;

---- construct the ideals of graphs of entry-wise
addition and multiplication maps

---- phi_+ and phi_star
S = I + J + ideal(z_1-x_1-y_1,...,z_n-x_n-y_n);
P = I + J + ideal(z_1-x_1*y_1,...,z_n-x_n*y_n);
Msum = eliminate(toList{x_1..x_n | y_1..y_n}, S);
Hprod = eliminate(toList{x_1..x_n | y_1..y_n}, P);

With Sage, we produced graphics of the real parts of Minkowski sums and
Hadamard products of curves in A

3. This is the script we used.

A.<x1,x2,x3,y1,y2,y3,z1,z2,z3>=QQ[]
I=( ... )*A # ideal of X in the variables x;
J=( ... )*A # ideal of Y in the variables y;

# construct the ideals defining the graphs of entry-
wise addition and multiplication maps

# phi_+ and phi_star
S = I + J + (z1-(x1+y1),z2-(x2+y2),z3-(x3+y3))*A
P = I + J + (z1-(x1*y1),z2-(x2*y2),z3-(x3*y3))*A

MSum = S.elimination_ideal([x1,x2,x3,y1,y2,y3])
HProd = P.elimination_ideal([x1,x2,x3,y1,y2,y3])

# Assuming we get a surface, take the one generator of
# each ideal.
MSumGen=MSum.gens()[0]
HProdGen=HProd.gens()[0]

# We plot these surfaces.
# Because MSumGen and HProdGen are considered as
# elements of A, which has 9 variables, they take
# 9 arguments.
var(’z1,z2,z3’)
implicit_plot3d(MSumGen(0,0,0,0,0,0,z1,z2,z3)==0,

(z1, -3, 3), (z2, -3,3), (z3, -3,3))
implicit_plot3d(HProdGen(0,0,0,0,0,0,z1,z2,z3)==0,

(z1, -3, 3), (z2, -3,3), (z3, -3,3))

In Figs. 1, 2, 3, and 4 are some of the pictures we obtained. These experiments gave
us a first idea about the properties of Minkowski sums and Hadamard products.

The fact that X C Y and X ? Y are linear projections of X � Y 	 A
n � A

n and
of X � Y 	 P

n � P
n 	 P

n2C2n, respectively, leads us to expect certain geometric
properties of X C Y and X ? Y .

Because the projection of a variety Z 	 P
N in generic position from a linear

space L with dim.Z/Cdim.L/ < N�1 is generically one-to-one, we naively expect
that, for X and Y in general position with dim.X/C dim.Y/ < n, we have
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dim.X C Y/ D dim.X/C dim.Y/ ;

deg.X C Y/ D deg.X � Y/ D deg.X/ deg.Y/; .X � Y 	 A
n/

dim.X ? Y/ D dim.X/C dim.Y/ ;

deg.X ? Y/ D deg.X � Y/ D
(dim.X/Cdim.Y/

dim.X/

)
deg.X/ deg.Y/; .X � Y 	 P

n2C2n/ :

Fig. 1 Minkowski sum of a
circle of radius 1 in the
x0; x1-plane and circle of
radius 2 in the x0; x2-plane

Fig. 2 Minkowski sum of the
two parabolas x0 D x1 in the
x0; x1-plane and x1 D x2 in
the x1; x2-plane

Fig. 3 Minkowski sum of the twisted cubic with the unit circle in the x0; x1-plane, x1; x2-plane,
and x0; x2-plane from left to right, respectively



138 N. Friedenberg et al.

Fig. 4 The real part of the Hadamard product of (left) the unit circle in the x2 D 1 plane and
the unit circle in the x1 D 1 plane and (right) the circles x0 C .x1 C x2/2 D 1; x2 � x1 D 1 and
x0 C .x2 � x1/2 D 1; x1 C x2 D 1

These expectations, however, do not follow directly from the projections of the
varieties in general position because, even for X and Y in general position, X � Y is
not in general position. Hence, we need further analysis as in the following sections.

3 Minkowski Sums of Affine Varieties

In this section, we analyze the Minkowski sum of two affine varieties. To begin, we
demonstrate that the image of the coordinatewise-sum map & WAn � A

n ! A
n need

not be closed.

Example 3.1 Consider the plane curves X WD V.x1x2 � 1/ and Y WD V.x1x2C 1/ in
A
2 WD Spec.kŒx1; x2�/. We claim that the image &.X�Y/ is not closed in the Zariski

topology. For a; b 2 k
�, the map & sends the point

(
.a; 1=a/; .�b; 1=b/

)
2 X � Y to

the point .p; q/ 2 A
2 if and only if we have a�b D p and 1

aC
1
b D q or, equivalently,

a D pCb and qb2C .pq�2/b�p D 0. For pq ¤ 0, we see that there is at least one
point in X � Y mapping to .p; q/ 2 A

2, because k is an algebraically closed field.
Suppose char k ¤ 2. If p D 0 then we have qa D qb D 2; if p ¤ 0 D q, then we
have 2a D 2b D �p. Hence, the origin .0; 0/ 2 A

2 does not lie in &.X � Y/, so the
image is not closed in the Zariski topology.

One of our main tools for proving results about the Minkowski sum is an
alternative description of it in terms of the join of the two varieties.

For X;Y subvarieties of A
n or P

n, we let Jset.X;Y/ be the setwise join of X and Y ,
i.e., the union of the lines connecting distinct points x 2 X and y 2 Y . This space is
usually not closed and its Zariski closure J.X;Y/ is the classical join of X and Y .
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Our analysis of the Minkowski sum of affine algebraic sets X and Y via a join
will involve hyperplanes positioned as in Lemma 3.2 below. For an intuitive sense
of the statement of the lemma, one may consider the case where L, M, and N are the
projectivizations of parallel affine hyperplanes.

Lemma 3.2 Let L;M;N 	 P
n be three distinct hyperplanes with a common

pairwise intersection; E WD L\M D L\ N D M \ N, and consider two nonempty
disjoint subvarieties X 	 M and Y 	 N. Say X 	 M and Y 	 N are nonempty
disjoint subvarieties. Let Xa D X n E, Ya D Y n E, @X D X \ E, and @Y D Y \ E.
Then:

(i) J.X;Y/ D Jset.X;Y/,
(ii) J.X;Y/ \ L D .Jset.Xa;Ya/ \ L/ [ Jset.@X; @Y/ [ @X [ @Y, and

(iii) J.X;Y/ \ L n E D Jset.Xa;Ya/ \ L.

In particular, if X and Y have positive dimension then

J.X;Y/ \ L D .Jset.X
a;Ya/ \ L/ [ Jset.@X; @Y/ :

Proof

(i) Because X and Y are disjoint, we have Jset.X;Y/ is Zariski closed, so J.X;Y/ D
Jset.X;Y/ [see Example 6.17 on p. 70 of [6]].

(ii) From the first part, we have

J.X;Y/ D Jset.X
a;Ya/ [ Jset.X

a; @Y/ [ Jset.@X;Ya/ [ Jset.@X; @Y/:

So to get the claimed expression for J.X;Y/ \ L it suffices to show

(a) Jset.Xa; @Y/ \ L; Jset.@X;Ya/ \ L 	 @X [ @Y and
(b) Jset.@X; @Y/ [ @X [ @Y 	 L.

(a) By symmetry it is enough to show that Jset.Xa; @Y/ \ L 	 @Y .
Say x 2 Xa and y 2 @Y . So y 2 L but x … L. Thus, the line between x

and y intersects L in exactly fyg 	 @Y .
(b) We show that Jset.@X; @Y/ [ @X [ @Y 	 E.

By definition, @X; @Y 	 E. So, because E is a linear space, for any
x 2 @X and y 2 @Y , the line between x and y is contained in E.

(iii) First, note that because Jset.@X; @Y/ [ @X [ @Y 	 E, we have

.J.X;Y/ \ L/ n E 	 .Jset.X
a;Ya/ \ L/ n E:

Hence, we just need to show that Jset.Xa;Ya/ \ L is disjoint from E.
Considering any x 2 Xa and y 2 Ya, it suffices to show that the line ` between

x and y does not meet E. If we assume, towards a contradiction, that there is some
z 2 ` \ E, then z and x would be distinct points on the hyperplane M, so the line `
between them would be contained in M. But y 2 Ya 	 N n E D N nM, so ` cannot
be contained in M.
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Finally, if X and Y are positive dimensional then @X D X \ L and @Y D Y \ L
are nonempty, so @X; @Y 	 Jset.@X; @Y/. ut

Our alternative description of the Minkowski sum will give us cases in which
X Cset Y is already closed. Recall from Example 3.1 that for the two plane curves
X WD V.x1x2 � 1/ and Y WD V.x1x2 C 1/, X Cset Y is not Zariski closed. Note
that in this example, X and Y have a common asymptote, or equivalently, that
their projective closures meet at the line at infinity. We will see that when the
characteristic of the base field is not 2, all cases where X Cset Y is not closed share
an analogous property.

Definition 3.3 Let X;Y 	 A
n be varieties and denote the projective closures of X

and Y in P
n by X and Y , respectively. Let H0 D fŒx0 W x1 W � � � W xn� 2 P

n W x0 D 0g be
the hyperplane at1. We say that X and Y are disjoint at infinity if X\Y \H0 D ¿.

Remark 3.4 If X and Y are disjoint at infinity then dim.X\Y/ < 1, thus we get that
dim X C dim Y � n.

Proposition 3.5 Assume that the characteristic of k is not 2. Suppose X;Y 	 A
n

are varieties that are disjoint at infinity. Let z0; z1 be distinct scalars and let
QX; QY 	 P

nC1 be the projective closures of X � fz0g and Y � fz1g, respectively. Let
x0; x1; : : : ; xn; z be the coordinates on P

nC1.
If we identify S D fz D z0Cz1

2
x0g 	 P

nC1 with P
n and S n H0 with A

n, then:

(i) Jset. QX; QY/ D J. QX; QY/;
(ii) 1

2
.X C Y/ D J. QX; QY/ \ S n H0;

(iii) X Cset Y D X C Y, namely, X Cset Y is Zariski closed.

Proof

(i) Let E D fx0 D 0g 	 P
nC1 be the hyperplane at1 in P

nC1. Note that

E\fz D z0x0g D E\
{

z D
z0 C z1
2

x0

}
D E\fz D z1x0g D fz D 0; x0 D 0g;

which is identified with H0. Therefore the statement that X and Y are
disjoint at infinity is equivalent to

QX \ QY \ E D ¿:

On the other hand, QX n E D X � fz0g and QY n E D Y � fz1g, and so we
see that QX \ QY D ¿. So, by Lemma 3.2 applied to S D fz D z0Cz1

2
x0g,

QX 	 fz D z0x0g, and QY 	 fz D z1x0g, we find that

Jset. QX; QY/ D J. QX; QY/ and J. QX; QY/\SnH0 D Jset.X�fz0g;Y�fz1g/\S:

(ii) & (iii) For any x 2 X and y 2 Y , the line between the points .x; z0/ 2 X � fz0g
and .y; z1/ 2 Y � fz1g meets the affine hyperplane S nE D fz D z0Cz1

2
g

in exactly the point . xCy
2
; z0Cz1

2
/. So, we have shown that J. QX; QY/\ S n
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H0 D
1
2
.X Cset Y/. In particular, because J. QX; QY/ is closed, this tells

us that X Cset Y is a closed subset of S n H0 Š A
n. Hence, we have

1
2
.X C Y/ D 1

2
.X Cset Y/ D J. QX; QY/ \ S n H0. ut

Remark 3.6 We call the construction 1
2
.X C Y/ D J. QX; QY/ \ S n H0 the Cayley

trick, as the underlying idea is exactly the same as that of the Cayley trick used to
construct Minkowski sums of polytopes.

As a consequence of the following lemma, if we restrict to dim X C dim Y � n,
then the hypothesis that X and Y are disjoint at infinity is a genericity condition.

Lemma 3.7 Let X;Y 	 P
n be varieties with dim XCdim Y < n. Then, we have that

the set fg 2 GL.nC1;k/ W gX\Y D ¿g is a nonempty open subset of GL.nC1;k/.
That is, for generic g 2 GL.nC 1;k/, gX and Y do not intersect.

Proof First, note that for any point p 2 P
n the stabilizer of p in GL.n C 1;k/ has

dimension n2 C n C 1. This is because any two point stabilizers in GL.n C 1;k/
are conjugate and the stabilizer of Œ1 W 0 W 0 W � � � W 0� 2 P

n is the set of all

g 2 GL.nC1;k/ with first column of the form
[
� 0 0 � � � 0

]T
, which has dimension

.nC 1/nC 1.
Let Z D f.g; x; y/ 2 GL.n C 1;k/ � X � Y W gx D yg which is a subvariety

of GL.n C 1;k/ � X � Y . Let 
1 W Z ! GL.n C 1;k/ and 
2 W Z ! X � Y be
the restrictions of the canonical projections from GL.nC 1;k/ � X � Y . Note that

2 is surjective, because for any x; y 2 P

n there exists some g 2 GL.n C 1;k/

taking x to y. Further, the fibre over any point .x; y/ 2 X � Y is a left coset of a
point stabilizer in GL.n C 1;k/ and so has dimension n2 C n C 1. Thus, dim Z D
n2 C nC 1C dim X C dim Y < n2 C 2nC 1 D dim GL.nC 1;k/.

Because X�Y is projective, the projection GL.nC1;k/�X�Y ! GL.nC1;k/
is a closed map, so 
1.Z/ is a closed subset of GL.n C 1;k/. Since dim
1.Z/ �
dim Z < dim GL.nC 1;k/, 
1.Z/ is a proper closed subset of GL.nC 1;k/. So,

fg 2 GL.nC 1;k/ W gX \ Y D ¿g D GL.nC 1;k/ n 
1.Z/

is a nonempty open subset of GL.nC 1;k/. ut

Now, we claim that if X;Y 	 A
n are varieties with dim X C dim Y � n, then

for general g 2 GL.n;k/; gX and Y are disjoint at infinity.

To see this, note that, considering H0 D fx0 D 0g,

dim.X\H0/Cdim.Y\H0/ � dim X�1Cdim Y�1 < dim XCdim Y�1 � n�1 :

The action of GL.n;k/ on A
n extends to an action on P

n, and the identification
H0 Š P

n�1 is GL.n;k/-equivariant. So we have

gX \ Y \ H0 D .gX \ H0/ \ .Y \ H0/ D g.X \ H0/ \ .Y \ H0/:

By Lemma 3.7, for general g 2 GL.n;k/ this is empty.
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Remark 3.8 One could use the group of affine transformations Affn D A
n Ì

GL.n;k/, because shifting an affine variety does not change the part at infinity of its
projective closure.

When a result holds under the same conditions as Lemma 3.7, i.e., if we fix X
and Y then it holds for gX and Y , for general g 2 Affn, we shall say that the result
holds for X and Y in general position.

We are now ready to compute the dimension of Minkowski sums. Based on the
examples in Sect. 2, it seems that for dim X C dim Y � n, we get dim.X C Y/ D
dim X C dim Y . This does happen generically.

Theorem 3.9 For affine varieties X;Y 	 A
n in general position, we have

dim.X C Y/ D min.dim X C dim Y; n/ :

Proof Since for any X;Y 	 A
n, we have dim.X C Y/ � minfdim.X/C dim.Y/; ng,

it suffices to prove the converse for X;Y in general position. Set k WD dim.X/ and
l WD dim.Y/. For any vector v, we have .X C v/C Y D .X C Y/C v, so it suffices
to show that for general g 2 GL.n;k/, dim.gX C Y/ � minfdim.X/C dim.Y/; ng.
We consider the case dim.X/C dim.Y/ � n, the case dim.X/C dim.Y/ � n being
analogous. By just looking at full-dimensional irreducible components of X and Y ,
we may assume without loss of generality that X and Y are irreducible.

We denote by Tp.X/ the tangent space to the variety X at the point p. For now fix
g 2 GL.n;k/. If .p; q/ 2 A

n � A
n then

.d&/.p;q/ W TpA
n � TqA

n ! TpCqA
n

is simply the addition map & , and so we see that if p 2 gX and q 2 Y then Tp.gX/C
TqY 
 TpCq.gX C Y/. So to conclude that dim.gX C Y/ � dim.X/ C dim.Y/ it
suffices to show that there is a dense subset � of gX C Y such that for each � 2 �
there exist p 2 gX and q 2 Y with � D pC q and Tp.gX/ \ TqY D 0, for then

dim.T� .gX C Y// � dim.Tp.gX/C TqY/

D dim.Tp.gX//C dim.TqY/ � dim.X/C dim.Y/;

and because � is dense some � 2 � is a smooth point of gXC Y . Also, because the
image of a dense subset under a continuous function is a dense subset of the image,
we see that it suffices to show that there is a nonempty open subset of gX � Y such
that for .p; q/ in this set, Tp.gX/ \ TqY D 0.

For any variety Z 	 A
n let Zsm denote the smooth locus of Z. So we have the

morphism  Z W Zsm ! Gr.dim.Z/;An/, p 7! TpZ, and we let �Z denote the image
of this morphism inside the Grassmannian.

Consider U D f.V;W/ 2 Gr.k;An/ �Gr.l;An/ W V \W ¤ 0g, which is an open
subset of Gr.k;An/ � Gr.l;An/. In particular, if we let

'g WD  gX �  Y W gXsm � Ysm ! Gr.k;An/ � Gr.l;An/;
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then '�1
g .U/ is a (possibly empty) open subset of gX � Y , and if .p; q/ 2 '�1

g .U/
then Tp.gX/ \ TqY D 0. Also, '�1

g .U/ is nonempty if and only if .�gX � �Y/ \ U
is nonempty. So we conclude that to show that dim.gX C Y/ � dim.X/C dim.Y/,
it suffices to show that .�gX � �Y/ \ U ¤ ¿.

Now we let g 2 GL.n;k/ vary. Fix p 2 Xsm and q 2 Ysm. So for g 2 GL.n;k/,
gp 2 .gX/sm with Tgp.gX/ D g.TpX/. Now TqY is an l-dimensional subspace of A

n

and so because k C l � n, fV 2 Gr.k;An/ W V \ TqY D 0g is a nonempty open
subset of the Grassmannian. So because GL.n;k/ acts transitively on Gr.k;An/ we
conclude that for generic g 2 GL.n;k/, Tgp.gX/\ TqY D g.TpX/\ TqY D 0. Thus
.gp; q/ 2 .�gX � �Y/ \ U, and so dim.gX C Y/ � dim.X/C dim.Y/.

For the case where dim.X/C dim.Y/ � n the same proof works upon replacing
the condition that tangent spaces intersect trivially with the condition that they
intersect transversely. ut

Further, when the characteristic of the base field is not 2 we can use the Cayley
trick to show that the condition of disjoint at infinity is sufficient to have additivity
of dimension.

Theorem 3.10 Assume the characteristic of the base field is not 2. If X;Y 	 A
n are

varieties that are disjoint at infinity, then we have dim.X C Y/ D dim X C dim Y.

Proof For any X;Y 	 A
n, we have dim.X C Y/ � dim.X/C dim.Y/. If either X or

Y has dimension zero then X C Y is a union of finitely many shifts of the other and
so has dimension dim X C dim Y .

Assume X and Y have both positive dimension. Then, by Proposition 3.5 (with
any z0; z1) and Lemma 3.2, we have that J. QX; QY/\S D 1

2
.XCY/[J.@X; @Y/ where

@X D X \ H0 and @Y D Y \ H0 are the parts at infinity of the projective closures
of X and Y , and 1

2
.X C Y/ is an open subset of J. QX; QY/ while J.@X; @Y/ is closed.

Hence, we have

dim X C dim Y D dim J. QX; QY/ � 1 � dim.J. QX; QY/ \ S/

D dim
(
1
2
.X C Y/ [ J.@X; @Y/

)

D max fdim.X C Y/; dim J.@X; @Y/g

D max fdim.X C Y/; dim X C dim Y � 1g ;

where the last equality follows since

dim J.@X; @Y/ D dim X � 1C dim Y � 1C 1 D dim X C dim Y � 1 :

So dim.X C Y/ D dim X C dim Y . ut

We now consider the degree of Minkowski sums. The degree of a variety X of
dimension d in A

n or P
n is the number of points in the intersection of X and a general

linear subspace of dimension n � d.
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Proposition 3.11 Let k be the ground field with characteristic other than 2. Let
X;Y 	 A

n be varieties which are disjoint at infinity. Then, for generic ˛ 2 k
�, in

the same notation as in Proposition 3.5, we have that deg.˛XCY/ D deg
(
J. QX; QY/

)
.

Proof The proof will go in three main steps.

(i) Show that, up to projective equivalence, dilating X by a generic ˛ 2 k
� and

then applying the Cayley trick is the same as intersecting J. QX; QY/with a generic
hyperplane whose affine part is parallel to SnH0.

(ii) Prove that for generic ˛ the corresponding hyperplane intersects J. QX; QY/
generically transversely.

(iii) Apply Bézout’s theorem and show that the part of the intersection that is at
infinity does not contribute to the degree.

Once again we use our Cayley trick and, to simplify computations, we fix z0 D 0

and z1 D 1. Note that, for any ˛ 2 k
�, ˛X and Y are disjoint at infinity so we still

get the conclusions of Proposition 3.5 and Theorem 3.10.
(i) For ˛ 2 k

�, let

˚˛ D

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 0 � � � 0 ˛ � 1

0
:::

0

˛In

0
:::

0

0 0 � � � 0 ˛

⎤

⎥⎥⎥⎥⎥⎥
⎦

2 GL.nC 2;k/ :

We consider GL.n C 2;k/ as acting on P
nC1 with coordinates x0; x1; : : : ; xn; z. For

˛; ˇ 2 k
� we have

˚˛˚ˇ D

⎡

⎣
1 ˛ � 1

˛In

˛

⎤

⎦

⎡

⎣
1 ˇ � 1

ˇIn

ˇ

⎤

⎦ D

⎡

⎣
1 ˇ � 1C ˇ.˛ � 1/

˛ˇIn

˛ˇ

⎤

⎦ D ˚˛ˇ;

so ˛ 7! ˚˛ is a group homomorphism k
� ! GL.nC 2;k/.

Note that ˚˛ acts on the hyperplane fz D 0g as

˚˛

⎡

⎣
1

x
0

⎤

⎦ D

⎡

⎣
1

˛x
0

⎤

⎦ and ˚˛

⎡

⎣
0

x
0

⎤

⎦ D

⎡

⎣
0

˛x
0

⎤

⎦ D

⎡

⎣
0

x
0

⎤

⎦ :

Similarly, ˚˛ fixes the hyperplane fz D x0g pointwise. Thus, ˚˛. QX/ D f˛X and
˚˛. QY/ D QY . Since ˚˛ acts as a projective transformation, and so takes lines to lines,
˚˛.J. QX; QY// D J.f˛X; QY/. In particular, we have deg J.f˛X; QY/ D deg J. QX; QY/. We
know that 1

2
.˛X C Y/ D J

(
f˛X; QY

)
\ S n H0, so we consider ˚�1

˛ .S n H0/. We get
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S n H0 D
{

z D 1
2
x0
}
n fz D 0; x0 D 0g D

{
x0 D 1; z D

1
2

}
;

and we find that, for ˛ ¤ �1,

˚�1
˛

⎡

⎣
1

w
1=2

⎤

⎦D

⎡

⎣
1 ˛�1 � 1

˛�1In

˛�1

⎤

⎦

⎡

⎣
1

w
1=2

⎤

⎦D

⎡

⎢
⎣

˛�1C1
2

˛�1w

˛�1=2

⎤

⎥
⎦D

⎡

⎢⎢
⎣

1

2˛�1

˛�1C1
w

˛�1

˛�1C1

⎤

⎥⎥
⎦D

⎡

⎢
⎣

1

2
1C˛

w
1

1C˛

⎤

⎥
⎦ :

Thus ˚�1
˛ .S n H0/ D fx0 D 1; z D

1
1C˛
g D fz D 1

1C˛
x0g n H0.

(ii) We claim that, for generic ˛,
¶

z D 1
1C˛

x0
©

intersects J. QX; QY/ generically

transversely. First, it suffices to only consider the affine points of J. QX; QY/, i.e. those
with x0 D 1, because

dim
Ä

J. QX; QY/ \
¶

z D 1
1C˛

x0
©
n H0

ä
D dim

(
J.f˛X;eY/ \ S n H0

)

D dim.˛X C Y/ D dim X C dim Y

> dim J.@X; @Y/ D dim.J. QX; QY/ \ H0/ ;

But A
nC1 	 P

nC1 is the disjoint union of fx0 D 1; z D ag as a ranges over k, so
for all but finitely many a 2 k, fx0 D 1; z D ag \ J. QX; QY/ must not be contained
in the singular locus of J. QX; QY/. So, for all but finitely many ˛ 2 k

�, we have that
fx0 D 1; z D

1
1C˛
g \ J. QX; QY/ must not be contained in the singular locus of J. QX; QY/.

So for generic ˛ 2 k
�, the general point of fz D 1

1C˛
x0g \ J. QX; QY/ is a smooth

point of J. QX; QY/. In order to check transversality, we need another description of
this intersection, which we compute now. Namely, we find

J. QX; QY/ \
¶

z D 1
1C˛

©
D ˚�1

˛

(
J
(
f˛X; QY

)
\ S n H0

)

D ˚�1
˛ .J.˛X � f0g;Y � f1g/ \ S n H0/

D J .X � f0g;Y � f1g/ \
¶

z D 1
1C˛

©

where the second equality follows from Lemma 3.2.
Thus, considering p 2 J. QX; QY/\fz D 1

1C˛
g, we have that p is on the line between

the points .x; 0/ and .y; 1/, for some x 2 X and y 2 Y . Since this line intersects
S D fz D 1

1C˛
x0g transversely and TpJ. QX; QY/ contains this line, if p is a smooth

point of J. QX; QY/ then we have that fz D 1
1C˛

x0g and J. QX; QY/ intersect transversely at

p. Thus, for generic ˛, fz D 1
1C˛

x0g intersects J. QX; QY/ transversely.
(iii) For such an ˛, applying Bézout’s theorem gives us that

deg
Ä

J
(
QX; QY

)
\
¶

z D 1
1C˛

x0
©ä
D deg

(
J. QX; QY/

)
:
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We can write J. QX; QY/ \ fz D 1
1C˛

x0g as the disjoint union of the open subset

J. QX; QY/ \ fx0 D 1; z D
1

1C˛
g and the closed subset J. QX; QY/ \ H0. Now,

J. QX; QY/ \
¶

x0 D 1; z D
1

1C˛

©
D ˚�1

˛

(
J.f˛X; QY/ \ S n H0

)

D ˚�1
˛

(
1
2
.˛X C Y/

)

has dimension dim XCdim Y and J. QX; QY/\H0 D J.@X; @Y/ has dimension dim XC
dim Y � 1. Therefore,

deg
Ä

J
(
QX; QY

)
\
¶

x0 D 1; z D
1

1C˛

©ä
D deg

Ä
J. QX; QY/ \

¶
z D 1

1C˛
x0
©ä

D deg
(
J. QX; QY/

)
:

Finally, since we have 1
2
.˛XCY/ D ˚˛

Ä
J. QX; QY/ \

¶
x0 D 1; z D

1
1C˛

©ä
, we obtain

deg.˛X C Y/ D deg
(
J. QX; QY/

)
. ut

Corollary 3.12 Suppose k has characteristic other than 2. Let X;Y 	 A
n be

varieties whose projective closures X;Y 	 P
n are contained in complementary

linear subspaces; equivalently, X;Y are contained in disjoint affine subspaces which
are not parallel. Then for generic ˛ 2 k

�, deg.˛X C Y/ D deg.X/ deg.Y/.

Proof Since X and Y are contained in complementary linear spaces they are disjoint,
so, in particular, X and Y are disjoint at infinity.

By Proposition 3.11, for a generic ˛ 2 k
�, we have deg.˛X C Y/ D

deg
(
J. QX; QY/

)
. Moreover, the projective closures X and Y being contained in com-

plementary linear spaces implies that QX and QY are also contained in complementary
linear spaces, so deg

(
J. QX; QY/

)
D deg. QX/ deg. QY/; see [6, Example 18.17]. Thus, for

a generic ˛ 2 k
�, we obtain deg.˛X C Y/ D deg J. QX; QY// D deg. QX/ deg. QY/ D

deg.X/ deg.Y/. ut

4 Hadamard Products of Projective Varieties

We defined the Hadamard product of projective varieties X;Y 	 P
n as

X ? Y WD fp ? q W p 2 X; q 2 Y; p ? q is definedg 	 P
n ;

where p ? q is the point obtained by entry-wise multiplication of the points p; q.
Also in this case the operation of closure is crucial.

Example 4.1 Consider the Hadamard product between the rational normal curve
C3 D fŒa3 W a2b W ab2 W b3� W Œa W b� 2 P

1g in P
3 and the point P D Œ0 W 1 W 1 W 0�.

Now, we obviously have C3 ? P 	 fz0 D z3 D 0g. The equality follows because, if
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ab ¤ 0, then we have that Œ0 W a W b W 0� D Œa3 W a2b W ab2 W b3� ? Œ0 W 1 W 1 W 0�.
However, in this case the operation of taking the closure is needed in order to get
the entire line; indeed, the points Œ0 W 1 W 0 W 0� and Œ0 W 0 W 1 W 0� cannot be written
as the Hadamard product of a point in C3 and the point P.

Another useful way to describe the Hadamard product of projective varieties is
as a linear projection of the Segre product of X and Y , i.e., the variety obtained as
the image of X � Y under the map

 n;n W P
n � P

n �! P
n2C2n;

.Œa0 W : : : W an�; Œb0 W : : : W bn�/ 7! Œa0b0 W a0b1 W a0b2 W : : : W anbn�1 W anbn�:

If zij, with i D 0; : : : ; n, j D 0; : : : ; n, are the coordinates of the ambient space of the
Segre product P

n2C2n, then the Hadamard product X ? Y is the projection of X � Y
with respect to the linear space fzii D 0 W 0 � i � ng.

Therefore, if X and Y are irreducible, then X ?Y is irreducible and the dimension
of their Hadamard product is at most the sum of the dimensions of the original
varieties, i.e., dim.X ? Y/ � dim.X/C dim.Y/:

Example 4.2 It is easy to find examples where equality does not hold. Actually, the
dimension of the Hadamard product of two varieties can be arbitrarily small. E.g.,
consider two skew lines in P

3 as H01 D H0 \ H1 D fŒ0 W 0 W a W b� W Œa W b� 2 P
1g

and H23 D H2 \ H3 D fŒc W d W 0 W 0� W Œc W d� 2 P
1g. Then H01 ? H23 is empty.

A classic approach to compute the dimension of projective varieties is to look at
their tangent space. From now, we consider C as the ground field in order to avoid
fuzzy behaviours caused by positive characteristics or non algebraically closed
fields. Also, this is the case we want to consider in our applications.

In the case of joins, there is a result by A. Terracini [14] which describes the
tangent space of the join at a generic point in terms of the tangent spaces of the
original varieties. In [1], the authors proved a version of this result for Hadamard
products of projective varieties.

Lemma 4.3 ([1, Lemma 2.12]) Let p 2 X and q 2 Y be generic points, then the
tangent space to the Hadamard product X ? Y at the point p ? q is given by

Tp?q.X ? Y/ D
〈
p ? TqY;TpX ? q

〉
:

Another powerful tool to study Hadamard products of projective varieties is
tropical geometry. In particular, we have the following relation. Since we are not
using tropical geometry elsewhere, here we assume the reader to be familiar with
the concept of tropicalization of a variety. For the inexperienced reader, we suggest
to read [10] for an introduction of the topic.

Proposition 4.4 ([10, Proposition 5.5.11]) Given two irreducible varieties X;Y 	
P

n, the tropicalization of the Hadamard product of X and Y is the Minkowski sum of
their tropicalizations: trop.X ? Y/ D trop.X/C trop.Y/.
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Applying this result, in [1], the authors gave an upper-bound for the dimension
of the Hadamard product of two varieties.

Proposition 4.5 ([1, Proposition 5.4]) Let X;Y 	 P
n be irreducible varieties. If

H 	 .C�/nC1=C� be the maximal subtorus acting on X and Y and G 	 .C�/nC1=C�

is the smallest subtorus having a coset containing X and a coset containing Y, then
we have dim.X ? Y/ � minfdim.X/C dim.Y/ � dim.H/; dim.G/g.

We call this upper bound expected dimension and denote it exp: dim.X ? Y/.
However, this is not always the correct dimension. In [1], the authors present an
example of a Hadamard product of two projective varieties with dimension strictly
smaller than the expected dimension.

From the definition of the Hadamard product of two varieties, it makes sense also
to analyze self Hadamard products of a projective variety. We call them Hadamard
powers of a projective variety.

Definition 4.6 We define the sth Hadamard power of a projective variety X as

X?s WD X ? X?.s�1/; for s � 0;

where X?0 WD Œ1 W : : : W 1�:
In general, a projective variety is not contained in its Hadamard powers. However,

if 1n D Œ1 W : : : W 1� 2 P
n lies in the variety X, we get the following chain of not

necessary strict inclusions

X 	 X?2 	 � � � 	 X?s 	 � � � 	 P
n: (1)

Therefore, it becomes very natural to check if the Hadamard powers of a projective
variety X eventually fill the ambient space. In general, the answer is no.

Proposition 4.7 If X is a toric variety in P
n, then we have X D X?2.

Proof Since any toric variety contains the point Œ1 W : : : W 1�, it follows that X 	 X?2.
The other inclusion follows by applying Proposition 4.5 to the case X D Y D H.

ut

Remark 4.8 Recently, C. Bocci and E. Carlini gave a necessary and sufficient
condition for a plane irreducible curve C 	 P

2 to have its tth Hadamard power equal
to the curve itself. This result has been shared with us in private communication and
will appear in [3].

Remark 4.9 Proposition 4.7 can be proved directly by recalling that the ideals
defining toric varieties are given by binomial ideals, namely ideals whose generators
are differences of monomials as f˛;ˇ D x˛ � xˇ , where ˛; ˇ 2 N

nC1 and we use the
multi-index notation x˛ WD x˛00 � � � x

˛n
n .

Now, consider two points of X, p D Œp0 W : : : W pn� and q D Œq0 W : : : W qn�. For any
generator f˛;ˇ of the ideal defining X, we have p˛ � pˇ D q˛ � qˇ D 0. Therefore,



Minkowski Sums and Hadamard Products of Algebraic Varieties 149

.p ? q/˛ � .p ? q/ˇ D p˛q˛ � pˇqˇ D p˛q˛ � p˛qˇ C p˛qˇ � pˇqˇ

D p˛.q˛ � qˇ/ � qˇ.p˛ � pˇ/ D 0I

hence, p ? q 2 X.

Remark 4.10 Given a projective variety X 	 P
n, the sth secant variety �s.X/ is the

Zariski closure of the union of linear spaces spanned by s points lying on X. This
is a very classical object that has been studied since the second half of nineteenth
century. In particular, we have a chain of not necessary strict inclusions given by

X 	 �2.X/ 	 � � � 	 �s.X/ 	 � � � 	 P
n:

Therefore, we can ask if the secant varieties of a variety X eventually fill the ambient
space. It is not difficult to prove that the answer is no. Indeed, if H is a linear space,
then �2.H/ D H and, therefore, if X is degenerate, i.e., it is contained in a proper
linear subspace of P

n, then its secant varieties do not fill the ambient space.
Hadamard powers of projective varieties may be viewed as the multiplicative

version of the classical notion of secant varieties where instead of looking at
the linear span of points lying on a variety we consider their Hadamard product.
Moreover, by Proposition 4.7, we have that the role played by linear spaces in the
case of secant varieties is taken by toric varieties in the case of Hadamard products.

Example 4.11 A concrete example satisfying the assumptions of Proposition 4.7 is
the variety X1 	 P.Matm;n/ of rank 1 matrices of size m � n. Indeed, it is generated
by the 2 � 2 minors of the generic matrix .zij/

jD1;:::;n
iD1;:::;m. Therefore, X?21 D X1. This

gives another proof of the well-known fact that the Hadamard product of two rank
1 matrices is still of rank 1.

The latter example raises a very interesting question.

Question 4.12 What if we consider matrices of rank higher than 1? Can we
decompose all matrices as Hadamard products of rank r > 1 matrices?

The answer is positive, as we show in the following proposition.

Proposition 4.13 Let M be a matrix of size m� n and fix 2 � r � minfm; ng. Then,
M can be written as the Hadamard product of at most

†
minfm;ng

r�1

£
matrices of rank

less than or equal to r.

Proof Without loss of generality, we may assume that m � n and let fv1; : : : ; vmg

be the rows of the matrix M. Then, consider the following matrices
(
N D

⌈
m

r�1

⌉)
:

A1 D

⎡

⎢⎢⎢
⎣

v1
:::

vr�1

1n�rC1;n

⎤

⎥⎥⎥
⎦
; A2 D

⎡

⎢⎢⎢⎢⎢⎢
⎣

1r�1;n

vr
:::

v2r�1

1n�2rC1;n

⎤

⎥⎥⎥⎥⎥⎥
⎦

; : : : ; AN D

⎡

⎢⎢⎢
⎣

1.N�1/r�1;n

v.N�1/r
:::

vn

⎤

⎥⎥⎥
⎦
:
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Then, it is easy to check that M D A1 ? A2 ? � � � ? AN .
If n � m, we do the same constructions, considering columns instead of rows.

ut

Therefore, it makes sense to give the following definitions.

Definition 4.14 Let M be a matrix and fix r � 2. We call an rth Hadamard
decomposition of M an expression of the type M D A1 ? : : :?As; where rank.Ai/ �

r: We define the rth Hadamard rank of M as the smallest length of such a
decomposition, i.e.,

Hrkr.M/ D min

®
s W

there exist A1;A2; : : : ;As with rank.Ai/ � r
and M D A1 ? A2 ? � � � ? As

´
:

We define the generic rth Hadamard rank of matrices of size m � n as

Hrkı
r .m; n/ D minfs W X?s

r D P.Matm;n/g;

and the maximal rth Hadamard rank of matrices of size m � n as

Hrkmax
r .m; n/ D maxfHrkr.M/ W M 2 Matm;ng:

These definitions may be seen as the multiplicative versions of the more common
notion of tensor ranks, where we consider additive decompositions of tensors as
sums of decomposable tensors. In terms of matrices, we look at decomposition
as sums of rank 1 matrices. A massive amount of work has been devoted to
problems related to tensor ranks during the last few decades, especially due to
their applications to statistics, data analysis, signal process, and others. See [9] for
a complete exposition of the current state of the art.

The Hadamard product of matrices, i.e., the entrywise product, is the naive
definition for matrix multiplication that any school student would hope to study.
Even if it is not the standard multiplication we have been taught, it is a very
interesting operation, with nice properties and applications in matrix analysis,
statistics and physiscs. As mentioned in the introduction, the generalization to the
case of tensors has been used in data mining and quantum information [4, 8]. We
look at it from a geometric point of view, by studying Hadamard powers of varieties
of matrices.

For a fixed positive integer r � minfm; ng, let Xr 	 P.Matm;n/ be the variety of
.m � n/-matrices with rank at most r. In other words, Xr is the rth secant variety of
the Segre product P

m�1 � P
n�1. These are well-studied classic objects. Since 1m;n,

the matrix of all 1’s, which is the identity element for the Hadamard product, is
contained in the variety Xr, we have a chain of inclusions as in (1).

Remark 4.15 Our aim is to study Hadamard powers of the varieties Xr of matrices
with rank at most r. As we observed before, we can view the Hadamard power X?2r
as a linear projection of the Segre product Xr � Xr. In terms of matrices, this is
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the geometric translation of the well-known fact that the Hadamard product of two
matrices is a submatrix of their Kronecker product. Indeed, if M D .mi;j/ 2 Matm;n
and N D .ni;j/ 2 Matm;n, we define the Kronecker product as M ˝ N D .mi;jnh;k/ 2

Matm2;n2 . Then, M ?N D .M˝N/jI;J , where .M˝N/jI;J denotes the restriction on
the indexes I D f1;mC 2; 2mC 3; : : : ;m2g and J D f1; nC 2; 2nC 3; : : : ; n2g.

Hadamard powers of a specific space of tensors has been considered in [4] as the
geometric interpretation of a particular statistical model. Therefore, we believe that
the definitions of Hadamard ranks of matrices, and more generally of tensors, are
very natural and may be an interesting area of research from several perspectives.

Proposition 4.13 gives us an upper bound on the rth Hadamard rank, i.e.,

Hrkmax
r .m; n/ �

°
minfm; ng

r � 1

§
:

We can also give a lower bound on the generic rank as a straightforward application
of the following well-known property of the Hadamard product of matrices.

Lemma 4.16 Given two matrices A;B, we have that rank.A?B/ � rank.A/ rank.B/:

Proof Say that rank.A/ D r1 and rank.B/ D r2. Consider the additive decomposi-
tion of A and B as sums of rank 1 matrices, i.e.,

A D
r1∑

iD1

ai � b
T
i and B D

r2∑

jD1

cj � d
T
j ;

where ai; bi; cj; dj are column vectors. Then, we get that

A ? B D
r1∑

iD1

r2∑

jD1

.ai ? cj/ � .bi ? dj/
T:

Therefore, we have that rank.A ? B/ � r1r2. ut

As an immediate consequence of this lemma we see that that X?2r 	 Xr2 , for any
r. In particular, we obtain a lower bound on the generic Hadamard rank.

Corollary 4.17 For r � 2, the generic rth Hadamard rank of .m � n/-matrices is
at least dlogr.minfm; ng/e.

Proof If s < dlogr.minfm; ng/e, then rs < minfm; ng. Hence, the Hadamard product
of s matrices of rank r cannot have maximal rank and, therefore, it cannot be enough
to cover the entire space of matrices of size m � n. ut

Therefore, we have the following chain of inequalities.

dlogr.minfm; ng/e � Hrkı
r .m; n/ � Hrkmax

r .m; n/ �
°

minfm; ng

r � 1

§
: (2)

By this chain of inclusions we get the following result.
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Proposition 4.18 If m � n and r D m � 1, then we have

Hrkı
m�1.m; n/ D Hrkmax

m�1.m; n/ D 2:

Proof On the left hand side of (2) we have dlogm�1.m/e D 2:
On the right hand side, we have

⌈
m

m�2

⌉
, which is equal to 2 if m � 4. Then, in

order to conclude, we just need to prove the case m D 3.
Let m D 3. If we consider a matrix M of rank� 2, then it lies on X2. Assume that

M has rank 3 and let vi D .vi;1; : : : ; vi;n/, for i D 1; 2; 3, be the rows of M. Consider
the first two rows. If v1;j and v2;j are not both equal to zero, for all j D 1; : : : ; n, then
there exists a linear combination of �v1 C �v2 with all entries different from zero
and, therefore, we can decompose M as follows

M D

⎡

⎣
v1;1 : : : v1;n
v2;1 : : : v2;n

�v1;1 C �v2;1 : : : �v1;n C �v2;n

⎤

⎦ ?

⎡

⎢
⎣

1 : : : 1

1 : : : 1
v3;1

�v1;1C�v2;1
: : :

v3;n
�v1;nC�v2;n

⎤

⎥
⎦ :

If we have v1;j D v2;j D 0, for some j D 1; : : : ; n, any linear combination of v1
and v2 will have the jth entry equal to zero. Therefore, we cannot use the previous
algorithm. Hence, we define evi, for i D 1; 2, as

evi;j D

{
vi;j if v1;j ¤ 0 or v2;j ¤ 0I

1 if v1;j D v2;j D 0:

Now, there exists a linear combination of �ev1 C �ev2 with all entries different from
zero. Therefore, if we define a row u as

ui D

{
1 if v1;j ¤ 0 or v2;j ¤ 0I

0 if v1;j D v2;j D 0;

we can decompose M as

M D

⎡

⎣
ev1;1 : : : ev1;n
ev2;1 : : : ev2;n

�ev1;1 C �ev2;1 : : : �ev1;n C �ev2;n

⎤

⎦ ?

⎡

⎢⎢
⎣

u1 : : : un

u1 : : : un

v3;1

�ev1;1 C �ev2;1
: : :

v3;n

�ev1;n C �ev2;n

⎤

⎥⎥
⎦ :

Therefore, we conclude that Hrkmax
2 .3; n/ D 2. ut

Example 4.19 If we have

M D

⎡

⎣
1 2 0 1

�1 1 0 0

0 1 1 2

⎤

⎦ ; ev1 D .1; 2; 1; 1/ ; ev2 D .�1; 1; 1; 0/ ; and u D .1; 1; 0; 1/ ;
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then we obtain

M D

⎡

⎣
1 2 1 1

�1 1 1 0

1 5 3 2

⎤

⎦ ?

⎡

⎣
1 1 0 1

1 1 0 1

0 1
5
1
3
1

⎤

⎦ :

Remark 4.20 We proved that, for r D minfm; ng � 1, the rth Hadamard rank is
equal to 2. Actually, the upper-bound in (2) lets us be more precise. Indeed, we can
say that for any minfm;ngC2

2
< r < minfm; ng, we get Hrkı

r .m; n/ D 2.
In other cases, we need a more geometric approach in order to understand the

generic Hadamard rank. By using Proposition 4.5, we can define the expected
dimension for the sth Hadamard power of the variety Xr of rank r matrices.

Proposition 4.21 In the same above notation,

dim.X?s
r / � min

{
s dim.Xr/ � .s � 1/ dim.X1/; dim P.Matm;n/

}
: (3)

Proof We proceed by induction on s. For s D 1, it follows trivially from definitions.
Consider s > 1. Then, since X?s

r D X?.s�1/r ? Xr, by Proposition 4.5 and by the
inductive hypothesis, we get

dim.X?s
r / � min

{
dim.X?.s�1/r /C dim.Xr/ � dim.X1/; dim P.Matm;n/

}

D min
{

s dim.Xr/ � .s � 1/ dim.X1/; dim P.Matm;n/
}
: ut

We refer to the formula on the right hand side of (3) as the expected dimension
of X?s

r . More precisely, we have the following

exp: dim.X?s
r / D min

{
s dim.Xr/ � .s � 1/ dim.X1/; dim P.Matm;n/

}

D min
{

sr.nC m � r/ � .s � 1/.nC m � 1/;mn
}
� 1:

Therefore, the expected generic rth Hadamard rank is

exp:Hrkı
r .m; n/ D

†
dimP.Matm;n/�dim.X1/

dim.Xr/�dim.X1/

£
D
†

mn�.mCn�1/
r.mCn�r/�m�nC1

£
: (4)

Remark 4.22 A very important concept in the world of additive decomposition of
tensors is the idea of identifiability, namely, we say that a tensor is identifiable if it
has a unique decomposition as sum of decomposable tensors. Since we are viewing
Hadamard decomposition as a multiplicative version of tensor decomposition, we
might look for identifiability also in this set up. However, in this case, we cannot
have identifiability for any matrix. For a rth Hadamard decomposition of a matrix
M, we have M D A1 ? A2 ? � � � ? As; with rank.Ai/ D r. Hence, for any .s � 1/-
tuple of rank 1 matrices R1; : : : ;Rs�1, all with non-zero entries, we can construct a
different rth Hadamard decomposition as
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M D
(
R1 ? A1

)
? � � � ?

(
Rs�1 ? As�1

)
?
(
.R1 ? � � � ? Rs�1/

?.�1/ ? As
)
;

where R?.�1/ denotes the Hadamard inverse of the matrix R. Here, we have to recall
that rank.Ri ? Ai/ � rank.Ai/, for any i D 1; : : : ; s � 1, by Lemma 4.16, and,
similarly, we see that rank

(
.R1 ? � � �?Rs�1/

?.�1/ ?As
)
� rank.As/, because we have

rank.R1 ? � � � ? Rs�1/
?.�1/ D 1.

We can check that (3) is the actual dimension and, consequently, (4) gives the
correct generic rth Hadamard rank for matrices of small size.

Here we describe an algorithm written with Macaulay2 to compute the dimen-
sions of Hadamard powers of varieties of square matrices of given rank. This allows
us to compute the corresponding generic Hadamard ranks (Table 1). We reduced to
square matrices for simplicity of exposition, but the code can be easily generalized.

The key point is to use Lemma 4.3 which states that the tangent space to X?s
r at a

generic point A1 ? � � � ? As is given by

TA1?			?As.X
?s
r / D hTA1 .Xr/ ? A2 ? � � � ? As; : : : ;A1 ? � � � ? As�1 ? TAs.Xr/i (5)

Hence, we first need to construct the tangent spaces at s random points of Xr.
Recall that, if A is a matrix of rank r written as A D

∑r
iD1 ui � v

T
i , ui; vi 2 C

n, the
tangent space of Xr at A is given by

TA .Xr/ D
〈
u1 � .C

n/T C .Cn/ � vT
1 ; : : : ; ur � .C

n/T C .Cn/ � vT
r

〉
:

Here is Macaulay2 code.

INPUT: n = sizes of matrices;
r = rank of matrices;
s = Hadamard power to compute;

OUTPUT: D = dimension of the sth Hadamard power of
the variety of rank r matrices of size nxn.

S := QQ[z_(1,1)..z_(n,n), a_(1,1)..a_(n,r),
b_(1,1)..b_(n,r), c_(1,1)..c_(2*r,n)];

---- Construct s random matrices of rank r
u = for i from 1 to s list

for j from 1 to 2*r list
random(S^n,S^{0});

A = for i from 0 to (s-1) list sum (
for j from 0 to (r-1) list

u_i_(2*j) * transpose(u_i_(2*j+1)));
---- Construct their tangent spaces
C = for i from 1 to 2*r list

genericMatrix(S,c_(i,1),n,1);
TA = for i from 0 to (s-1) list sum

for j from 0 to (r-1) list
u_i_(2*j) * transpose C_(2*j) +

C_(2*j+1) * transpose(u_i_(2*j+1));
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Now, we construct the vector spaces spanning the tangent space of X?s
r as in (5).

First, we define a function HP to compute the Hadamard product of two matrices.

-- Method to construct the Hadamard product of a
-- list of matrices of same size;
HP = method();
HP List := L -> (

s := #L;
r := numRows(L_0);
c := numColumns(L_0);
for i from 1 to (s-1) do

if (numRows(L_i)!=r or numColumns(L_i)!=c) then
return << "error";

H := for i from 0 to (r-1) list
for j from 0 to (c-1) list product (

for h from 0 to (s-1) list (L_h)_j_i);
return matrix H)

-- Construct the two vector spaces spanning the tangent
-- space of the Hadamard power and find their equations
-- in the space of matrices
TAstar = for i from 0 to (s-1) list

HP(toList(set{TA_i}+set(A)-set{A_i}));
M = genericMatrix(S,z_(1,1),n,n);
H = for i from 0 to (s-1) list

ideal flatten entries (M - TAstar_i);
H1 = for i from 0 to (s-1) list

eliminate(toList(c_(1,1)..c_(2*r,n)),H_i);
T = QQ[z_(1,1)..z_(n,n)];
E = for i from 0 to (s-1) list sub(H1_i,T);

In E, we have the list of the equations of the tangent spaces to the variety Xr at the s
random points. From these, we can construct a vector basis for each tangent space.
Now, in order to compute the dimension of their span it is enough to compute the
rank of the matrix obtained by collecting all these vector bases together.

K = for i from 0 to (s-1) list
kernel transpose

contract(transpose vars(T),mingens E_i);
tt = mingens K_0 | mingens K_1;
if s >= 3 then (

for i from 2 to (s-1) do tt = tt | mingens K_i);
D = rank tt

In the following table, we list the generic rth Hadamard ranks that we have
computed for square matrices of small size.
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Table 1 Generic rth Hadamard ranks of square matrices of size n � n with n � 14

n r rth Hadamard rank

3 2 2

4 2 2

5 2 3

3 2

6 2 3

3 2

7 2 4

3 2

4 2

8 2 4

3 3

4 2

9 2 5

3 3

n r rth Hadamard rank

9 4 2

5 2

10 2 5

3 3

4 2

5 2

11 2 6

3 3

4 2

5 2

6 2

12 2 6

3 4

4 3

n r rth Hadamard rank

12 5 2

6 2

13 2 7

3 4

4 3

5 2

6 2

7 2

14 2 7

3 4

4 3

5 2

6 2

7 2

By Remark 4.20, we could restrict to the cases r < nC2
2

; for r � nC2
2

, we know that
Hrkı

r .n; n/ D 2. This computation required less than 9 min on a laptop with a processor 2.2GHs
Intel Core i7 processor
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of 27 minimal generators. We investigate conditions under which the initial forms
of these generators generate the initial algebra of this Cox ring. Sturmfels and Xu
provide a classification in the case of degree 4 del Pezzo surfaces by subdividing
the tropical Grassmannian TGr.2;Q5/. After providing the necessary background
on Cox–Nagata rings and Khovanskii bases, we review the classification obtained
by Sturmfels and Xu. We then describe our classification problem in the degree
3 case and its connections to tropical geometry. In particular, we show that two
natural candidates, TGr.3;Q6/ and the Naruki fan, are insufficient to carry out the
classification.

MSC 2010 codes: 14Q10, 14T05, 14D06

M. Bernal Guillén
Unidad Académica de Matemáticas, Universidad Autónoma de Zacatecas,
Calzada Solidaridad, Zacatecas, Mexico
e-mail: m.m.bernal.guillen@gmail.com

D. Corey
Department of Mathematics, Yale University, PO Box 208283, New Haven,
CT 06520-8283, USA
e-mail: daniel.corey@yale.edu

M. Donten-Bury (�)
Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
e-mail: m.donten@mimuw.edu.pl

N. Fujita
Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku,
Tokyo 152-8551, Japan
e-mail: fujita.n.ac@m.titech.ac.jp

G. Merz
Mathematisches Institut, Georg-August Universität Göttingen, Bunsenstraße 3-5,
37073 Göttingen, Germany
e-mail: georg.merz@mathematik.uni-goettingen.de

© Springer Science+Business Media LLC 2017
G.G. Smith, B. Sturmfels (eds.), Combinatorial Algebraic Geometry,
Fields Institute Communications 80, https://doi.org/10.1007/978-1-4939-7486-3_8

159

mailto:m.m.bernal.guillen@gmail.com
mailto:daniel.corey@yale.edu
mailto:m.donten@mimuw.edu.pl
mailto:fujita.n.ac@m.titech.ac.jp
mailto:georg.merz@mathematik.uni-goettingen.de
https://doi.org/10.1007/978-1-4939-7486-3_8


160 M. Bernal Guillén et al.

1 Introduction

The starting point for this article is the following problem proposed by Sturmfels
and Xu as [27, Problem 5.4]: determine all equivalence classes of three-dimensional
sagbi subspaces of k

6. Let us begin with clarifying two important aspects of our
notation. First, instead of the name sagbi bases (resp. sagbi subspaces) where sagbi,
first used in [21], stands for “subalgebra analogue to Gröbner bases for ideals”, we
will use the name Khovanskii bases (resp. Khovanskii subspaces). This new name
was introduced in a much more general setting in a recent article [13]. Second, we
make some assumptions on the underlying field k. We usually take k to be the
field of rational functions Q.t/, but to formulate and work on this problem one may
consider any other field with a nontrivial valuation. The residue field of k for the
considered valuation will be denoted by k.

The fundamental objects for this chapter are Khovanskii bases and moneric sets.
We repeat their definitions after Sturmfels and Xu; see [27, Sect. 3] for more details
and comments on their properties. By valWk� ! Z, we denote a valuation map
of k. If k D F.t/ for some field F, we use the following valuation: val.p/ 2 Z

is the unique integer ! 2 Z such that t�!p.t/ takes a nonzero value at t D 0.
When f 2 kŒx1; x2; : : : ; xn�, we can compute its initial form in.f /. If !0 is the
minimum of val for coefficients of all monomials in f , then in.f / D .t�!0 f /jtD0 2
kŒx1; x2; : : : ; xn�. That is, in.f / identifies all monomials of f whose coefficients have
smallest valuation.

Definition 1.1 A subset F 	 kŒx1; x2; : : : ; xn� is moneric if in.f / is a monomial for
all f 2 F .

For a k-subalgebra U 
 kŒx1; x2; : : : ; xn�, we define the initial algebra in.U/ as
the k-subalgebra generated by in.f / for all f 2 U.

Definition 1.2 A subset F 	 U is a Khovanskii basis of a k-subalgebra U 

kŒx1; x2; : : : ; xn� if

• F is moneric, and
• the initial algebra in.U/ is generated by fin.f / W f 2 F g as a k-algebra.

We are interested in Khovanskii bases of Cox–Nagata rings, which will be
described in Sect. 2. After they are introduced, we will be able to explain how a three-
dimensional subspace of k

6 determines a basis, possibly a Khovanskii basis, of the
Cox ring of a del Pezzo surface of degree 3. We say that such a subspace is moneric
(resp. Khovanskii) if the corresponding basis is moneric (resp. Khovanskii), see
Definition 2.4. We look at moneric subspaces up to an equivalence relation which
respects the property of being a Khovanskii subspace, see Definition 2.5.

We suggest that the reader treat this text as an introduction to the concept
of Khovanskii bases and related research problems. For us, understanding the
geometric motivation and connections was as important as solving the combinatorial
classification problem itself. This is the reason why, besides presenting our approach
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to answering the main question, we also spend a significant amount of time on
exploring its background.

In Sect. 2, we define the Cox ring and explain its construction for del Pezzo
surfaces. We also introduce the Nagata action, which provides a link between linear
subspaces of k

n and choices of initial forms of generators of Cox rings of del Pezzo
surfaces (i.e. candidates for moneric or Khovanskii bases of the Cox ring).

Section 3 is dedicated to explaining the geometric consequence of a Khovanskii
basis in terms of degenerations. Roughly speaking, a Khovanskii basis of a (finitely
generated) subalgebra U of the polynomial ring yields a degeneration of Spec.U/ to
a toric variety. We show that we obtain even more if we choose a Khovanskii basis
of the Cox ring Cox.X/ of a variety X. We do not only obtain a toric degeneration
of Spec.Cox.X//, but also toric degenerations of X with respect to all possible
embeddings.

In Sect. 4, we explain and give examples for the problem which motivated
Sturmfels and Xu to study Khovanskii bases of Cox–Nagata rings. It turns out that
a Khovanskii basis allows us to compute the Hilbert function of a del Pezzo surface
with respect to a specific embedding by counting lattice points in dilations of a
rational convex polytope.

Finally, Sects. 5–6 describe our first attempts to classify three-dimensional
Khovanskii subspaces of k

6. First we describe two tropical varieties which we
expect to be related to the problem: the tropical Grassmannian TGr.3; 6/ and
the tropical moduli space of del Pezzo surfaces of degree 3. We then explain how
we tried to use them as parametrizing spaces for moneric and Khovanskii subspaces.
The conclusion is that neither of these models has the combinatorial structure
suitable to play this role.

2 Cox–Nagata Rings

Let G be a linear group acting on a polynomial ring R over a field k. Hilbert’s 14th
problem asks whether the ring of invariants RG is a finitely generated k-algebra. The
answer is affirmative when the group G is reductive or G D Ga. Nagata considered
the action of a codimension 3 linear subspace G 	 C

n acting on the polynomial
ring R D CŒx1; x2; : : : ; xn; y1; y2; : : : ; yn� via xi 7! xi and yi 7! yi C �ixi, where
.�1; �2; : : : ; �n/ 2 G. He proved that the ring of invariants RG is, in general, not
finitely generated for n D 16, see [18]. Mukai realized the ring of invariants RG as a
certain Rees algebra and as such, it is isomorphic to the Cox ring of a blow-up [17].
Mukai’s description of RG provides conditions for it to be finitely generated and a
way of computing its generators, at least for codim G � 3.

In this section, we review Mukai’s description of RG. We recall the definition
of Cox rings and study with some more detail the isomorphism between RG when
codim G D 3 and the Cox ring of the blow-up of P

2 at n points in general position.
Next we specialize to the blow-up of six points and give a description of the
invariants that generate RG.



162 M. Bernal Guillén et al.

Nagata’s Action Let R WD kŒx1; x2; : : : ; xn; y1; y2; : : : ; yn� be the polynomial ring
with a Z

n-grading induced by setting deg.xi/ D deg.yi/ D ei, where e1; e2; : : : ; en

is the standard basis of Z
n. Let G 	 k

n be a linear subspace of codimension r given
by the equations

a1;1t1 C a1;2t2 C � � � C a1;ntn D 0

a2;1t1 C a2;2t2 C � � � C a2;ntn D 0

:::

ar;1t1 C ar;2t2 C � � � C ar;ntn D 0 :

We consider Nagata’s action of G on R. As xi is invariant for all 1 � i � n, we can
extend the action to the localization

Rx D RŒx�1
1 ; x

�1
2 ; : : : ; x

�1
n � D kŒx˙1

1 ; x˙1
2 ; : : : ; x˙1

n ; y1x
�1
1 ; y2x

�1
2 ; : : : ; ynx�1

n �:

The grading on R extends naturally to a grading on Rx with deg.x�1
i / D �ei. Now,

� D .�1; �2; : : : ; �n/ 2 G acts on Rx by xi 7! xi and yi
xi
7! yi

xi
C �i. If y0

i D
yi
xi

,

then the element � 2 G acts on kŒx˙1
1 ; x˙1

2 ; : : : ; x˙1
n ; y0

1; y
0
2; : : : ; y

0
n� by xi 7! xi and

y0
i 7! y0

iC�i. A direct computation shows that the invariant ring RG
x is generated over

kŒx˙1
1 ; x˙1

2 ; : : : ; x˙1
n � by the linear polynomials `0

i WD ai;1y0
1 C ai;2y0

2 C � � � C ai;ny0
n

for 1 � i � r. Let x0 D
∏n

jD1 xj and

`i D x0`
0
i D x0

Å
ai;1

y1
x1
C ai;2

y2
x2
C � � � C ai;n

yn

xn

ã
: (1)

We define the algebra U WD kŒ`1; `2; : : : ; `r� 	 RG. Let V be the k-vector space
spanned by `1; `2; : : : ; `r. Then U is a Z-graded ring and V is its degree one part.
We also let Vi 	 V be the polynomials in V that do not have yi

∏
i¤j xj as a monomial

and Ii 	 U the ideal generated by Vi. Then we have the following:

Proposition 2.1 The invariant algebra RG is the extended multi-Rees algebra

UŒx1; x2; : : : ; xn�C
∑

d2Zn

(
Id1
1 \ � � � \ Idn

n

)
x�d1
1 � � � x�dn

n 	 UŒx˙1
1 ; x˙1

2 ; : : : ; x˙1
n � :

Proof A proof is found in either [17] or [1, Sect. 4.3.4]. ut

Cox Rings The Cox ring of a smooth projective variety X over the field k, with
finitely generated torsion free divisor class group Cl.X/, is the ring

Cox.X/ D
⊕

.a1;a2;:::;ar/2Zr

H0
(
X;OX.a1D1 C a2D2 C � � � C arDr/

)
;



Khovanskii Bases of Cox–Nagata Rings and Tropical Geometry 163

where D1;D2; : : : ;Dr is a fixed basis of Cl.X/ ' Z
r. This ring has the structure of a

k-algebra. When it is finitely generated the variety X is called a Mori Dream Space.
This is the case for smooth del Pezzo surfaces of degree 1 � d � 9, for which
generators and relations among them are known.

We let A be an r � n matrix with entries in k such that G is the kernel of A. We
denote by a.i/ the ith column vector of A and assume that they are pairwise linearly
independent. Denote by XG the del Pezzo surface resulting from the blow-up of P

2

at n different points with homogeneous coordinates a.i/. The del Pezzo surface XG

is determined by G only up to isomorphism: an isomorphism of P
2 as a linear map

leaves the rowspace of A, and therefore also the kernel G, invariant and induces an
isomorphism of the corresponding del Pezzo surfaces. The Picard group Pic.XG/ is
isomorphic to Z

nC1 and is generated by the proper transform of the hyperplane class
H and the classes of the exceptional divisors Ei for 1 � i � n. Thus the Cox ring of
XG is:

Cox.XG/ D
⊕

.d0;d1;:::;dn/2ZnC1

H0
(
XG;O.d0H C d1E1 C d2E2 C � � � C dnEn/

)
:

Given a divisor class D WD d0H C d1E1 C d2E2 C � � � C dnEn, the corresponding
homogeneous part Cox.XG/D is the space H0

(
XG;O.D/

)
. If d0 � 0 then D is the

class of the proper transform of a degree d0 hypersurface that has multiplicity �di in
the point a.i/. Thus we can identify H0.XG;O.D// with the space of homogeneous
polynomials of degree d0 in kŒz� D kŒz1; z2; : : : ; zr� that have multiplicity at least
�di at a.i/. Let I0

i be the vanishing ideal in kŒz� of the point a.i/. The latter vector
space is precisely

(
.I0
1/

�d1 \ .I0
2/

�d2 \ � � � \ .I0
n/

�dn
)

d0
; (2)

where .I0
i /

�di D kŒz� if �di � 0. If d0 < 0 then we have H0.XG;O.D// D 0.
Consider the map Cox.XG/D ' H0.XG;O.D// �! RG

d given by

g.z1; z2; : : : ; zr/ 7! g.`1; `2; : : : ; `r/x
d1
1 xd2

2 � � � x
dn
n ;

where d D .d0 C d1; d0 C d2; : : : ; d0 C dn/, and `i; 1 � i � r are as in (1).
Recall that `i D x0`0

i where `0
i 2 RG

x are the invariants in Rx of degree 0 2 Z
n.

As g is homogeneous of degree d0, then g.`1; `2; : : : ; `r/ D xd0
0 g.`0

1; `
0
2; : : : ; `

0
r/

is an invariant of degree .d0; d0; : : : ; d0/ 2 Z
n. Thus g.`1; `2; : : : ; `r/x

d1
1 xd2

2 � � � x
dn
n is

indeed an element of RG of degree .d0Cd1; d0Cd2; : : : ; d0Cdn/. Now we notice that

RG D UŒx˙1
1 ; x˙1

1 ; : : : ; x˙1
n � \ R D kŒ`1; `2; : : : ; `r�Œx

˙1
1 ; x˙1

2 ; : : : ; x˙1
n � \ R:

Given d 2 Z
n, any homogeneous element f 2 RG

d admits a presentation of the form

f D
∑

v 2Zn

hv.`1; `2; : : : ; `r/x
v1
1 xv22 � � � x

vn
n
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where the hv are homogeneous of degree d � v. On the other hand, the `i are
homogeneous of degree .1; 1; : : : ; 1/ 2 Z

n and therefore d � v D .d0; d0; : : : ; d0/
for some d0 � 0. Thus, hv.z1; z2; : : : ; zr/ 2 kŒz1; z2; : : : ; zr�d0 . Moreover, by
Proposition 2.1, we may assume that hv.`1; `2; : : : ; `r/ 2 .Ii/

�vi and therefore
hv.z1; z2; : : : ; zr/ 2 .I0

i /
�vi . Thus, given d 2 Z

n fixed, we have an isomorphism

⊕

DD.d0;d1;:::;dn/2Z
n

dD.d0Cd1;d0Cd2;:::;d0Cdn/

Cox.XG/D �! .RG/d (3)

g.z/ 7�! g.`1; `2; : : : ; `r/x
d1
1 xd2

2 � � � x
dn
n (4)

where d D .d0C d1; d0C d2; : : : ; d0C dn/. This and the previous proposition prove
the following:

Proposition 2.2 The Cox ring of XG is isomorphic to RG.
We should observe that the ideals I0

i in (2) do not change if we rescale the columns
of A, yet the image of a polynomial g under the isomorphism (3) can be different.

The Cox Ring of a del Pezzo Surface In [2] it was proven that the Cox ring
of a del Pezzo surface of degree at least 2 is generated by the global sections
over the exceptional curves. An exceptional curve is one with self-intersection �1.
Such a curve has only one global section (up to scalar multiplication). We use this
knowledge and the isomorphism of the previous part to compute a set of generators
for RG.

Example 2.3 Before we move to the case of del Pezzo surfaces of degree 3, most
important for us, let us say what the Cox ring of a del Pezzo surface of degree 4
looks like. This is a sketch of a solution to Problem 6 on Surfaces in [25].

We need to identify all exceptional curves on the blow-up of P
2 in 5 points

P1;P2; : : : ;P5 in general position. First, there are 5 exceptional divisors of the blow-
up, E1;E2; : : : ;E5. Then one checks that strict transforms of lines through two points
Pi;Pj are exceptional curves. As divisors, they are linearly equivalent to H�Ei�Ej.
Finally, there is one conic through all five chosen points, and its strict transform also
is an exceptional curve, linearly equivalent to 2H � E1 � E2 � E3 � E4 � E5. Thus
we have 16 generators of the Cox ring in total.

Relations between them come, roughly speaking, from the possibility of decom-
posing a divisor class as sums of the ones given above in a few different ways. For
instance, 2H � E1 � E2 � E3 � E4 can be written as:

.H � E1 � E2/C .H � E3 � E4/ D .H � E1 � E3/C .H � E2 � E4/

D .H � E1 � E4/C .H � E2 � E3/ :

This leads to relations of corresponding sections which generate the Cox ring.
A good explanation of these computations (also for del Pezzo surfaces of smaller
degree) can be found in the MSc thesis of J.C. Ottem [20]. It is worth noting that
different choices of points give different relations, but the Cox rings are isomorphic.
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Let G and A be as before with r D 3, n D 6 and suppose that the points a.i/ 2
P

r�1 are in general position, that is, no three of them lie on a line and no six on a
conic. Then XG is a del Pezzo surface of degree 3 and it has 27 exceptional curves,
determined in a very similar way as in Example 2.3. These are the classes of:

• the exceptional divisors Ei, 1 � i � 6,
• the proper transforms of lines which pass through pairs of the blown-up points

Lij, 1 � i < j � 6, and
• the proper transforms of conics through five of these points, Qi with 1 � i � 6.

The classes in Pic.XG/ of these curves are Ei, H � Ei � Ej and 2H �
∑

j¤i Ej. This
means that RG is generated by the images under (3) of the unique polynomials g in
kŒz1; z2; : : : ; zr� having the prescribed multiplicity on the blown-up points. Now we
compute these images explicitly. For simplicity we will denote Œ6� D f1; 2; : : : ; 6g.

Let us start with the exceptional divisors Ei. We have that the only monomials
of degree 0 in kŒz� are the non-zero constants and they all belong to .I0

i /
�1 D kŒz�.

Thus, by (3) we get

(
.I0

i /
�1

)
0
D kŒz�0 ' Cox.XG/Ei ' .R

G/ei ;

where ei 2 Z
6 is the ith standard basis vector, and this isomorphism maps 1 7! 1 � xi.

Thus the elements fxi W 1 � i � 6g are part of the chosen generating set of RG.
For each class of the form H � Ei � Ej, there is a polynomial of degree one in

I0
i \ I0

j , namely, the equation of the unique line through the points a.i/ and a.j/. This is

g.z1; z2; z3/ D
(
.a2ja3i � a2ia3j/z1 C .a1ia3j � a1ja3i/z2 C .a1ja2i � a1ia2j/z3

)
:

The image of this polynomial in RG is

g.`1; `2; `3/ � .xixj/
�1 D �

∑

k¤i;j

pijkyk.
∏

s…fi;j;kg

xs/;

where the pijk are the Plücker coordinates of A, and it has degree
∑

k¤i;j ek 2 Z
6.

Finally, for the class 2H �
∑

j¤m Ej there is also a unique polynomial of degree
2 in \j¤mI0

j : the defining polynomial of the unique conic through the five points
different from a.m/. A direct computation shows that the image of this conic has the
form

Gm D .xm/
2

∑

i<j;i;j2Œ6�nm

p.Œ6�ni;j;m/ yiyj

∏

k2Œ6�nfi;j;mg

pijkxk C .ym/ �
∑

i2Œ6�

.ui � vi/yi

∏

k¤i

xk

where ui � vi is a binomial of degree 4 in the Plücker coordinates of A. This conic
generator has degree em C

∑
i2Œ6� ei

It is worth noting that even when it is difficult to write the exact expression
of the polynomials Gm, its computation is straightforward. Also, we observe that
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the generators of RG are determined up to scalar multiple by G since the Plücker
coordinates of the matrix A are. Yet, as observed after Proposition 2.2, RG is not
itself an invariant of the isomorphism class of XG.

Moneric and Khovanskii Subspaces The preceding paragraphs show how a
codimension 3 vector subspace G 	 k

n, or a matrix containing its basis, gives a
minimal generating set of the Cox ring of a del Pezzo surface of degree 9 � n.
Having covered this, we can finally introduce Khovanskii and moneric subspaces.

Definition 2.4 We say that a codimension 3 subspace G 	 k
n is Khovanskii (resp.

moneric) if the corresponding minimal generating set of the Cox ring of a del Pezzo
surface of degree 9 � n is a Khovanskii (resp. moneric) basis of RG.

We would like to consider moneric and Khovanskii bases up to the following
equivalence relation:

Definition 2.5 Codimension 3 subspaces G;G0 	 k
n will be called equivalent if

the corresponding initial algebras of the Cox ring of a del Pezzo surface are equal.
If G and G0 are Khovanskii and determine the same initial terms of the minimal

generating set of corresponding Cox rings then they are equivalent.

3 Khovanskii Basis and Degeneration of the Cox Ring

Degeneration of varieties is a powerful tool in algebraic geometry, used on many
different occasions. The idea behind it is to introduce a notion of a “limit” of a
family of algebraic varieties. However, since the Zariski topology on an algebraic
variety is not well behaved in this sense (it is for example almost never Hausdorff),
it turns out that a better replacement for an arbitrary family of varieties is the notion
of a flat family. This notion has the desirable feature that limit points exist and are
unique if we parametrize over a one dimensional variety. It also ensures that the
points in the family, including the limit point have the same Hilbert function, and
thus share many invariants such as e.g. the degree and the genus. Degenerations thus
motivate the following approach: to compute properties of a given variety X first
degenerate the variety to a more accessible variety X0 and then do the computations
on this variety. This idea can be realized in the notion of a Khovanskii basis.

Toric Degenerations The following definition makes precise what we mean by a
degeneration of a variety.

Definition 3.1 Let .kı;m/ be a discrete valuation ring and let X be a variety over
k D Quot.kı/. A degeneration of the variety X is a flat family QX ! Spec.kı/ such
that QX�kı Spec.k/ Š X. A degeneration is toric if the special fibre QX�kı Spec.kı=m/

is a toric variety.
In this section, we provide a method for degenerating a variety with respect to

all possible embeddings at once. The idea is to degenerate the Cox ring of the given
variety which contains information about all possible embeddings of the variety. In
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order to talk about degenerations of a projective variety with respect to a specific
embedding, we need to take the choice of a very ample line bundle into account.

Definition 3.2 Let .kı;m/ be a discrete valuation ring and X be a projective variety
over k, together with a very ample line bundle L. A family QX ! Spec.kı/ together
with a line bundle QL is called a toric degeneration of X with respect to the embedding
given by L if it is a toric degeneration, QL is flat over Spec.kı/, we have QLj QX�Spec.k/ Š

L and the line bundle QLj QX�Spec.kı=m/ is ample.

In the above definition, we did not assume that QLj QX�Spec.kı=m/ is very ample.
However, if we consider the Veronese embedding of the embedded variety X, we
may assume that X as well as the special fibre are embedded in the same P

N . More
concretely by replacing L with a high enough multiple L˝k, we can make sure that
Lj QX�Spec.kı=m/ is also very ample.

Degenerations of del Pezzo Surfaces via the Cox Ring Let k D F.t/ for a field
F of characteristic 0. We often assume F D Q. As in Sect. 2, given n 2 f1; 2; : : : ; 8g
we can associate to a matrix A 2 Matk.3; n/ which has maximal rank, with kernel
G, the variety XG. The variety XG is the blow-up of P

2 at the points represented by
A. Proposition 2.2 gives us the following identity

Cox.XG/ ' kŒx1; x2; : : : ; xn; y1; y2; : : : ; yn�
G DW RG :

By varying the variable t we can interpret XG as a family of del Pezzo surfaces over
F and Cox.XG/ as the corresponding family of Cox rings. Note however that the
only property we are using in this section about the variety XG is that its Cox ring
RG is a subalgebra of a polynomial ring kŒx1; x2; : : : ; xn�.

Let k
ı be the corresponding valuation ring of k, i.e. the set of all elements having

nonnegative valuation.

Theorem 3.3 Let R 	 kŒx1; x2; : : : ; xn� be a k-subalgebra. A finite Khovanskii basis
F of R induces a toric degeneration of Spec.R/.

Proof Let F be a finite Khovanskii basis. For f 2 F , let us denote by trop.f /.0/ the
minimum of the valuation of the coefficients of f . Consider the k

ı-algebra generated
by

ft� trop.f /.0/f W f 2 RGg 	 k
ıŒx1; x2; : : : ; xn�:

We claim that Spec.RG
kı

/! Spec.kı/ is a toric degeneration of Spec.R/.
It is a flat morphism since RG

kı

is a torsion free module over the discrete valuation
ring k

ı. Now, the general fibre is given by Spec.RG
kı

˝kı k/ Š Spec.R/, and the
special fibre is Spec

(
RG
kı

˝kı k
ı=.t/

)
Š Spec

(
in.R/

)
. The last thing to prove is

that the algebra in.RG
kı

/ is an affine semigroup algebra. But this follows easily from
the fact that it is a finitely generated algebra generated by monomials. ut

As a consequence of the above theorem we conclude that a finite Khovanskii
basis F of R induces a toric degeneration of Spec.R/. Now we want to show
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how this toric degeneration gives a toric degeneration of XG with respect to any
embedding. For this purpose the following lemma is helpful.

Lemma 3.4 Let F be a finite Khovanskii basis of RG. Let L be a very ample line
bundle on XG and T WD

⊕
Tq WD

⊕
q2N0 H0.X;L˝q/ 	 RG be its graded section

ring. Then in.T/ is finitely generated.

Proof Let f1; f2; : : : ; fw 2 RG be homogenous elements which form a Khovanskii
basis of RG. For each ˇ 2 N

w
0 consider the set of all polynomials fˇ WD

∏w
iD1 f ˇi

i
such that there is a non-negative integer p 2 N for which we have

w∑

iD1

ˇi � deg.fi/ D p � deg.L/: (5)

By a slight abuse of notation, we use deg for the function which assigns to a section
as well as to a divisor the corresponding integer vector under the isomorphism
Pic.XG/ Š Z

nC1. Our first claim is that this set forms a (possibly non-finite)
Khovanskii basis of T . Indeed, let f 2 Tq be a homogeneous element. Using the
assumption that the fi’s form a Khovanskii basis for RG, we deduce that there are
finitely many ˛j 2 N

w
0 , and cj 2 k which satisfy in.f / D

∑
j cj � in.f˛j/. Since f was

homogeneous, the degrees of all the f˛j match the degree of f , and we deduce that
all the f˛j fulfill the above prescribed property of (5).

Next, we want to prove that finitely many fˇ suffice to form a Khovanskii basis.
The question can be reformulated into the question of the finite generation of the
following semigroup:

S WD
¶
.ˇ1; ˇ2; : : : ; ˇw; k/ 2 N

w
0 � N W

w∑

iD1

ˇi � deg.fi/ D k � deg.L/
©
:

Consider the cone C.S/ generated by S in R
wC1. Then C.S/ \ .ZwC1 n f0g/ D S,

hence by Gordan’s Lemma (see e.g. [5, Sect. 1.2]), S is finitely generated. ut

Theorem 3.5 A finite Khovanskii basis of RG D Cox.XG/ induces a toric
degeneration of XG with respect to all possible embeddings.

Proof Let L be a very ample line bundle on X and let T WD
⊕

q2N0 H0.X;L˝q/ be
its graded section algebra. Define the algebra

Tkı D ft� trop.f /.0/f j f 2 Tg 	 k
ıŒx1; x2; : : : ; xn; y1; y2; : : : ; yn�;

where again trop.f /.0/ denotes the minimum of the valuation of the coefficients
of f . The N0-grading on T defines a natural grading on Tkı . As L is very ample the
section ring T is finitely generated. Hence, the same follows for the graded algebra
Tkı . The flatness of Tkı can easily be derived from the torsion freeness over the
discrete valuation ring k

ı. Thus, we get an induced flat morphism
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Proj.
⊕

q2N0

.Tkı/q/! Spec.kı/

and an induced line bundle QL D OT
kı

.1/. For the computations of the fibres, we
use the following two identities on the graded pieces: .Tkı/q ˝kı k Š in.Tq/ and
.Tkı/q ˝kı k Š Tq, where in.Tq/ is the k-vector space generated by in.f / for all
f 2 Tq. Therefore we get the following:

Proj.
⊕

q2N0

.Tkı/q/ � Spec.k/ D Proj.
⊕

q2N0

.Tkı/q ˝ k/ D Proj.
⊕

q2N0

Tq/ Š X;

Proj.
⊕

q2N0

.Tkı/q/ � Spec.k/ D Proj.
⊕

q2N0

.Tkı/q ˝ k/ D Proj.
⊕

q2N0

in.Tq// DW XT :

The previous lemma implies that the graded algebra in.T/ D
⊕

q2N0 in.Tq/ is
finitely generated by monomials, and can be seen as a quotient of the semigroup
algebra of

S WD
⊕

q2N0

Sq WD
⊕

q2N0

f.ˇ1; ˇ2; : : : ; ˇw; q/ 2 N
w
0 �fqg j

∑
ˇi � deg.fi/ D q � deg.L/g:

This shows that XT D Proj.
⊕

q2N0 in.Tq// is a toric variety and QLjXT D OXT .1/ is
the induced ample line bundle. ut

4 Hilbert Functions of Del Pezzo Surfaces

The original motivation of the paper [27] is to give an interpretation of the Hilbert
function of the Cox–Nagata ring RG as a counting function of the numbers of lattice
points in slices of some explicit rational convex polyhedral cone. If we focus on a
specific embedding of the variety XG into a projective space, then this interpretation
induces a realization of the Hilbert function of XG with respect to the embedding as
the Ehrhart function of an explicit rational convex polytope.

Such an Ehrhart-type formula has appeared in many areas of mathematics:
Berenstein-Zelevinsky’s description of tensor product multiplicities for represen-
tations [3], Holtz-Ron’s work on zonotopal algebras [11], the theory of Newton–
Okounkov bodies [12, 15], and so forth. Having an Ehrhart-type formula for a
mathematical object enables us to relate it with many areas of mathematics through
convex geometry. One more important point is that an Ehrhart-type formula can
be easier to evaluate since a polytope is bounded and given by a finite number of
inequalities.

The theory of Khovanskii bases gives a systematic way to construct an Ehrhart-
type formula for the Hilbert function of a graded ring under some assumptions. We
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explain this construction following [27]. Let k be the rational function field Q.t/,
kŒx1; x2; : : : ; xm� the polynomial ring over k in m variables, and xa WD xa1

1 xa2
2 � � � x

am
m

for a D .a1; a2; : : : ; am/ 2 Z
m
�0. Note that the residue field k is identical to the field

Q of rational numbers. Fix d1;d2; : : : ;dm 2 Z
n, and define a Z

n-graded k-algebra
structure on kŒx1; x2; : : : ; xm� by deg.xi/ WD di for 1 � i � m. We assume that the
homogeneous parts kŒx1; x2; : : : ; xm�d, d 2 Z

n, are finite-dimensional. Let U be a
Z

n-graded k-subalgebra of kŒx1; x2; : : : ; xm� with a finite Khovanskii basis F 	 U.
The Z

n-grading of U induces a Z
n-graded k-algebra structure on in.U/. The Hilbert

function of U is a map  WZn ! Z�0 given by  .d/ WD dimk.Ud/ for d 2 Z
n.

Let Z�0.in.F // (resp. Z.in.F //) be the subsemigroup (resp. the subgroup) of Z
m

generated by fa 2 Z
m
�0 W xa 2 in.F /g and the zero vector. Denote by 	 	 R

m the
smallest real closed convex cone containing Z�0.in.F //. The Z

n-graded k-algebra
structure on kŒx1; x2; : : : ; xm� induces a Z

n-grading of the semigroup 	 \Z.in.F //.
We observe that in.U/ is identical to the semigroup algebra of Z�0.in.F //, which
is regarded as a Z

n-graded k-subalgebra of the semigroup algebra of 	 \Z.in.F //.

Proposition 4.1 If the initial algebra in.U/ is normal, then the value  .d/ for all
dZ

n equals the cardinality of fa 2 	 \ Z.in.F // W deg.a/ D dg.

Proof Fix d 2 Z
n such that Ud ¤ f0g, and take a k-basis ff1; f2; : : : ; frg of Ud. If the

initial forms in.f1/; : : : ; in.fr/ are linearly dependent, then the definition of initial
forms implies that there exist c1; c2; : : : ; cr 2 k such that in.c1f1C c2f2C � � � C crfr/
does not belong to the k-linear space spanned by in.f1/; in.f2/; : : : ; in.fr/. Then by
replacing fi for some 1 � i � r with c1f1 C c2f2 C � � � C crfr, we can increase
the dimension of the k-linear space spanned by in.f1/; in.f2/; : : : ; in.fr/. Repeating
this procedure, we obtain a k-basis fQf1; Qf2; � � � ; Qfrg of Ud such that the initial forms
in.Qf1/; in.Qf2/; � � � ; in.Qfr/ are linearly independent.

Then it follows that these form a k-basis of in.U/d. In particular, the k-algebra U
and its initial algebra in.U/ share the same Hilbert function. Since in.U/ is identical
to the semigroup algebra of Z�0.in.F //, the group Z.in.F // is regarded as a
subset of the field of fractions of in.U/. Hence the normality assumption on in.U/
implies that the semigroup Z�0.in.F // is saturated in Z.in.F //, and hence that
Z�0.in.F // D 	 \ Z.in.F //. In particular, the initial algebra in.U/ is identical to
the semigroup algebra of 	 \ Z.in.F //. This proves the proposition. ut

Remark 4.2 Our proof of Theorem 3.5 in Sect. 3 also uses initial forms. In the case
U D RG, the description of  in Proposition 4.1 reflects the toric degeneration of
XG constructed in the theorem. Let us fix a very ample line bundle L on XG, and
take a multi-degree d such that .RG/d D H0.XG;L/. Then the Hilbert polynomial of
XG with respect to the corresponding embedding is identical to the polynomial in l
given by  .ld/ for l � 0. In addition, by [10, Chap. I, Theorem 9.9], the Hilbert
polynomial of XG is identical to that of the resulting toric variety from the toric
degeneration. From these observations and our proof of Theorem 3.5, we obtain an
Ehrhart-type description of  .ld/ for l � 0, which is identical to the formula in
Proposition 4.1.
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Normality (or saturatedness) is a key to an Ehrhart-type formula in general. In the
case of in.U/, the theory of Gröbner bases can be applied to prove the normality as
follows. Since F is moneric, we deduce that in.U/ is generated by a finite number
of monomials, and hence that the ideal I of relations is spanned by a set of binomials
[26, Lemma 4.1]. Then we obtain a useful sufficient condition for the normality of
in.U/ in terms of a Gröbner basis of I (see [26, Proposition 13.15]).

Example 4.3 (Elementary Symmetric Function) Following [27, Example 3.2], set

el.t; x1; x2; : : : ; xm/ WD
∑

1�j1<j2<			<jl�m

t.j1�1/C.j2�2/C			C.jl�l/xj1xj2 � � � xjl

for 1 � l � m, and F WD fel.t; x1; x2; : : : ; xm/ W 1 � l � mg 	 kŒx1; x2; : : : ; xm�.
We obtain the elementary symmetric functions by specializing at t D 1. Let U be

the k-subalgebra of kŒx1; x2; : : : ; xm� generated by F . It is easily checked that the
initial algebra in.U/ is identical to the k-subalgebra of kŒx1; x2; : : : ; xm� generated
by fx1; x1x2; : : : ; x1x2 � � � xmg, and hence that F is a Khovanskii basis. In addition,
the initial algebra in.U/ is normal since x1; x1x2; : : : ; x1x2 � � � xm are algebraically
independent.

Since in.F / D fx1; x1x2; : : : ; x1x2 � � � xmg, we have Z.in.F // D Z
m and

	 \ Z
m D f.a1; a2; : : : ; am/ 2 Z

m W a1 � a2 � � � � � am � 0g: (6)

Regard U as a Z�0-graded k-algebra by the total degree in variables x1; x2; : : : ; xm.
Let  WZ�0 ! Z�0 denote the Hilbert function. We deduce by Proposition 4.1 and
equation (6) that the value  .r/ for r 2 Z�0 equals the cardinality of

f.a1; a2; : : : ; am/ 2 Z
m W a1 � a2 � � � � � am � 0; a1 C � � � C am D rgI

this is identical to the set of partitions of r with at most m parts.
Let us come back to our situation of interest.

Example 4.4 ([27, Theorem 3.5 and Proposition 3.6]) Let G 	 k
n be a generic

subspace of dimension 1, and .˛1; ˛2; : : : ; ˛n/ 2 k
n a nonzero element of G. We

consider a .2 � n/-matrix

ñ
˛1x1 ˛2x2 � � � ˛nxn

y1 y2 � � � yn

ô
;

and, for 1 � i < j � n, denote by pi;j the .2 � 2/-minor of this matrix with column
indices i; j, that is, pi;j D ˛ixiyj � ˛jxjyi. If we regard ˛ixi as an indeterminate,
then the k-subalgebra of RG generated by fpi;j W 1 � i < j � ng is identical
to the homogeneous coordinate ring of the Grassmannian of lines in the .n � 1/-
dimensional projective space over k with respect to the usual Plücker embedding.
In particular, the minors pi;j, for 1 � i < j � n, satisfy the Plücker relation:
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pi;lpj;m � pi;mpj;l D pi;jpl;m for 1 � i < j < l < m � n. This is a key to the
fact that F WD fpij W 1 � i < j � ng [ fxi W 1 � i � ng is a Khovanskii
basis of RG. The normality of the initial algebra in.RG/ follows from the criterion
explained before Example 4.3. Thus we can apply Proposition 4.1 to obtain an
Ehrhart-type formula for the Hilbert function  of RG. We may assume without loss
of generality that val.˛1/ < val.˛2/ < � � � < val.˛n/. Then since in.pij/ 2 k�xiyj,
we deduce that the value of  at .r; u1; u2; : : : ; un/ 2 Z

nC1 equals the number of
.ai;j/iD1;2; jD1;:::;n 2 Z

2n
�0 satisfying the following conditions:

a2;1 D 0; a2;2 C � � � C a2;lC1 � a1;1 C � � � C a1;l; 1 � l � n � 1;

a1;l C a2;l D ul; 1 � l � n; a2;1 C � � � C a2;n D r:

By [27, Theorem 6.1], for 4 � n � 8, there exists a generic k-subspace G 	 k
n

of codimension 3 such that RG has a finite Khovanskii basis F and in.RG/ is normal.
Hence Proposition 4.1 produces an Ehrhart-type formula for the Hilbert function  
of the Z

nC1-graded algebra RG. The case of degree 5 del Pezzo surfaces is included
in Example 4.4. In the case of del Pezzo surfaces of degree 3 and 4, Sturmfels and
Xu gave a system of explicit linear inequalities defining the corresponding rational
convex polytope for a specific subspace G, see [27, Example 1.3 and Corollary 5.2].

Since G is generic, the function  is independent of the choice of G. Hence we
obtain a system of Ehrhart-type formulas for the same function  . If G is a different
generic subspace, then the induced Ehrhart-type formula may be different, that is,
the corresponding rational convex polytope may not be unimodularly equivalent. In
order to compute rapidly, we want to determine a generic subspace G such that the
number of linear inequalities defining the corresponding rational convex polytopes
is as small as possible.

In case of del Pezzo surfaces of degree 4, Sturmfels and Xu proved that
the optimal number of linear inequalities is 12. Their proof relies on giving the
complete classification of the subspaces G which produce Khovanskii bases [27,
Theorem 4.1]. In addition, they conjectured that in the case of degree 3 the number
21 of linear inequalities in [27, Corollary 5.2] is minimal. One motivation of this
research is to generalize their argument for degree 4 del Pezzo surfaces to the case
of degree 3, and to prove the conjecture by giving a complete characterization of all
Khovanskii subspaces G.

5 Tropicalization

Tropicalization is a procedure that associates to a very affine variety X (i.e. a closed
subvariety of an algebraic torus) a rational polyhedral complex trop.X/ in R

N . Of
the many ways of characterizing trop.X/, there are two descriptions that will be
useful for our purposes. In terms of initial degenerations, trop.X/ is the set of all
w 2 R

N such that inw X is nonempty (note that the ideal of inw X coincides with
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the initial ideal as defined in [4] in the case where the valuation on K is trivial;
for the definition of inw X in general, see [8, Sect. 5]). This allows us to compute
trop.X/ using computer algebra software such as gfan [6]. When X is defined over an
algebraically closed field with a nontrivial valuation, trop.X/ is the closure of the set
of coordinatewise valuations. As this is the description we use for our classification
problem, we will provide a more precise formulation of this characterization.

Let K be a field with a (possibly trivial) valuation val W K� ! R, and X a closed
subvariety of the algebraic torus G

N
m.K/. We define the Bieri–Groves set A .X/ of X

to be A .X/ D f
(

val.x1/; val.x2/; : : : ; val.xN/
)
2 R

N W .x1; x2; : : : ; xN/ 2 Xg. Now,
suppose L is an algebraically closed field extension of K with a nontrivial valuation
extending the valuation on K. By abuse of notation, we will also call this valuation
val W L

� ! R. Let XL denote the extension of X to a closed subvariety of G
N
m.L/.

Tropicalization is unchanged under field extension, i.e. trop.XL/ D trop.X/, see [16,
Thm 3.2.4]. By the Fundamental Theorem of Tropical Geometry [16, Thm 3.2.3],
the closure of A .XL/ in R

N is trop.XL/. Moreover, if the valuation on K is trivial,
then trop.X/ is a rational polyhedral fan in R

N .
Now let us specialize to the case of the tropical Grassmannian. We let K D Q and

L will denote Puiseux series over C. The Grassmannian Gr.d;Qn/ can be viewed as
a subvariety of P

N�1.Q/ via its Plücker embedding, where N D
(n

d

)
. Let Gr0.d;Qn/

be the intersection of the affine cone of Gr.d;Qn/ with the dense torus (the locus
where all Plücker coordinates are nonzero). This gives us a closed subvariety of
G

N
m.Q/, so we may form the tropicalization trop.Gr0.d;Qn//. Let us abbreviate this

by TGr.d;Qn/. This is a rational polyhedral fan in R
N . We index the coordinates of

R
N by the d-tuples of the numbers 1 through n. In [24], Speyer and Sturmfels give

a combinatorial description of TGr.2;Qn/ in terms of the space of phylogenetic
trees on n leaves (up to sign). In particular, they show that d D .dij/ is a point in
TGr.2;Qn/ if and only if for each 4-tuple 1 � i < j < k < l � n, the maximum of

dij C dkl; dik C djl; dil C djk

is attained at least twice.
In the classification of Khovanskii subspaces G of k

5, G can be viewed as a k-
valued point of Gr0.2;Q5/, where k D Q.t/. If .pij/ are the Plücker coordinates of
G, then the valuations of the Plücker coordinates dij D � val.pij/ are integers. This
means that the Bieri–Groves set of the k-valued points of Gr0.2;Q5/ is the set of
integer points in TGr.2;Q5/.

The Naruki fan is a fan structure on the tropicalization of the moduli space of
marked del Pezzo surfaces of degree 3. Let Y6 be the moduli space of degree 3
marked del Pezzo surfaces. We can express Y6 as an open subvariety of the space of
configurations of six labelled points in P

2 in linear general position; call this space
X6. By the Gelfand–MacPherson correspondence, we can recover X6 from the space
of 3 � 6 matrices by taking appropriate quotients. The Grassmannian Gr.3;K6/ is
identified with the quotient of MatK.3; 6/ by the left-multiplication action of GL3,
i.e. Gr.3;K6/ D GL3 nMatK.3; 6/. Now let Gr0.3;K6/ be the points in Gr.3;K6/

with a representative in MatK.3;K6/ whose maximal minors do not vanish (in fact,
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this will hold for any representative). The torus acts on Gr0.3;K6/. The action on
MatK.3; 6/ by right multiplication of diagonal invertible 6 � 6 matrices induces an
action of the torus G

6
m.K/ on Gr0.3;K6/. The Gelfand-MacPherson correspondence

(see [14, Sect. 2.6]) provides the identification X6 D Gr0.3;K6/=G6
m.K/. Here, we

view the columns of the matrix representative as the points in the configuration. The
Plücker embedding induces an embedding of X6 into the torus G

20
m .K/=G

6
m.K/ Š

G
14
m as a closed subvariety. Under this correspondence, the six points in P

2.K/ lie
on a conic if and only if the Plücker coordinates satisfy

C WD p1;3;4p1;5;6p2;3;5p2;4;6 � p1;3;5p1;4;6p2;3;4p2;5;6 D 0 :

To see this, note that there is only one conic up to projective transformation, e.g.
take xz D y2. So the points lie on a conic if and only if this configuration can be
represented by a matrix of the form

⎡

⎣
1 1 1 1 1 1

a1 a2 a3 a4 a5 a6
a21 a22 a23 a24 a25 a26

⎤

⎦

for a1; a2; : : : ; a6 in k. It suffices to check the above Plücker identity for this matrix.
The vanishing locus of C corresponds to an irreducible Weil divisor of X6. By the
description of degree 3 del Pezzo surfaces as blow-ups of P

2 at six points in general
position, we may identify Y6 with X6 n V.C/. Under this identification, we see that
Y6 is a very affine variety and can be realized as a closed subvariety of G

15
m (this

follows from [9, Lemma 6.1]). Therefore, the tropicalization of Y6 may be viewed
as the underlying set of a pure four dimensional fan in R

15. By [9], trop.Y6/ admits
a unique coarsest fan structure called the Naruki fan. The coordinates of this fan
compute the possible valuations of the Plücker coordinates pijk and C (up to the
action of G

6
m).

6 The Search for a Combinatorial Structure

In order to classify three-dimensional Khovanskii subspaces of k
6 we are looking for

a combinatorial structure which parametrizes equivalence classes of such subspaces.
When we identify a right structure (probably a fan of convex polyhedral cones),
the next, and the last, step will be to subdivide it such that each chamber in
the subdivision corresponds to a different class of moneric bases, some of them
Khovanskii.

Degree 4 del Pezzo Surfaces and TGr.2 ; Q
5/ In the case of the Cox ring of a

del Pezzo surface of degree 4, i.e. G being represented by a 2 � 5 matrix, this role
was played by the tropical Grassmannian TGr.2;Q5/, introduced in Sect. 5. It is a
seven-dimensional fan in the ten-dimensional space, a product of a five-dimensional
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lineality space and the cone over the Petersen graph. It is worth noting that this two-
dimensional part is also the tropicalization of (the very affine part of) the moduli
space of degree 4 del Pezzo surfaces, see [23].

The map from the set of equivalence classes of subspaces G to TGr.2;Q5/ is
given by the tropical Plücker coordinates dij D � val.pij/ for 1 � i < j � 5. In this
way TGr.2;Q5/, or its set of integral points, becomes a good parametrizing set for
equivalence classes of moneric and Khovanskii subspaces (see Definition 2.5). This
means that it satisfies the conditions of the following important definition.

Definition 6.1 For a set M to be a good parametrizing set for moneric and
Khovanskii subspaces of k

n we require that for any subspaces G and G0 mapped
to the same point of M, if G is moneric (resp. Khovanskii), then G0 is also moneric
(resp. Khovanskii).

The reason for this property is that all coefficients in generators of the Cox ring in
this case (see [27, Thm 4.1]) are monomials in Plücker coordinates. Thus if G and
G0 have the same sequence .dij/ then they determine the same initial forms of all
generators. In particular, if one of them is moneric or Khovanskii, then the second
one also is, and obviously they are equivalent.

Degree 3 del Pezzo Surfaces, TGr.3; Q
6/ and the Naruki Fan To find a fan

parametrizing moneric subspaces G for the case of del Pezzo surfaces of degree 3
(which can be embedded in P

3 as smooth cubic surfaces), we tested two natural
candidates. The first one is the tropical Grassmannian TGr.3;Q6/.

Example 6.2 Take the subspace represented by the matrix G written below. Its
sequence of (negatives of) tropical Plücker’s coordinates is

.di;j;k/ D .5; 11; 10; 4; 13; 15; 9; 18; 12; 15; 4; 10; 1; 9; 3; 6; 14; 8; 11; 14/:

We modify G slightly to the matrix G0 by changing the sign of the fourth term in the
first row.

G D

⎡

⎣
t4 t t8 t3 t9 1
t11 t7 t t7 t6 1
t9 1 t5 t9 t11 t6

⎤

⎦ G0 D

⎡

⎣
t4 t t8 �t3 t9 1
t11 t7 t t7 t6 1
t9 1 t5 t9 t11 t6

⎤

⎦

One checks that the modification does not affect the tropical Plücker coordinates.
That is, G and G0 are mapped to the same point of TGr.3;Q6/. Thus, if a coefficient
in the formula for a generator is a monomial in Plücker coordinates, it will also take
the same value for G and G0. All coefficients of generators corresponding to lines,
and also some coefficients of generators corresponding to conics, have this form.

However, generators corresponding to conics have also some coefficients which
are binomials in Plücker coordinates, and it turns out that they are the reason for
TGr.3;Q6/ being insufficient for our task. Look at the generator corresponding to
the conic G6 through points 1, 2, 3, 4, 5 (in [27, p. 443]):
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G6 D p1;2;3p1;2;4p1;2;5p3;4;5y1y2x3x4x5x
2
6 C p1;2;3p1;3;5p1;3;4p2;4;5y1y3x2x4x5x

2
6C

p1;2;4p1;3;4p1;4;5p2;3;5y1y4x2x3x5x
2
6 C p1;2;5p1;3;5p1;4;5p2;3;4y1y5x2x3x4x

2
6C

p1;2;3p2;3;4p2;3;5p1;4;5y2y3x1x4x5x
2
6 C p1;2;4p2;3;4p2;4;5p1;3;5y2y4x1x3x5x

2
6C

p1;2;5p2;3;5p2;4;5p1;3;4y2y5x1x3x4x
2
6 C p1;3;4p2;3;4p3;4;5p1;2;5y3y4x1x2x5x

2
6C

p1;3;5p2;3;5p3;4;5p1;2;4y3y5x1x2x4x
2
6 C p1;4;5p2;4;5p3;4;5p1;2;3y4y5x1x2x3x

2
6C

.p1;2;4p2;3;5p1;3;6p1;4;5 � p1;2;3p2;4;5p1;4;6p1;3;5/y1y6x2x3x4x5x6C

.p1;2;4p1;3;5p2;3;6p2;4;5 � p1;2;3p1;4;5p2;4;6p2;3;5/y2y6x1x3x4x5x6C

.p1;3;4p1;2;5p2;3;6p3;4;5 C p1;2;3p1;4;5p3;4;6p2;3;5/y3y6x1x2x4x5x6C

.p1;2;4p1;3;5p3;4;6p2;4;5 � p1;3;4p1;2;5p2;4;6p3;4;5/y4y6x1x2x3x5x6C

.p1;2;5p1;3;4p3;5;6p2;4;5 � p1;3;5p1;2;4p2;5;6p3;4;5/y5y6x1x2x3x4x6C

.p1;2;4p1;3;5p2;3;6p4;5;6 � p1;2;3p1;4;5p2;4;6p3;5;6/y
2
6x1x2x3x4x5 :

The signs are different from those in [27], which is a result of permuting the indices
in Plücker coordinates. We compute the valuation of its second binomial coefficient,
p1;2;4p1;3;5p2;3;6p2;4;5 � p1;2;3p1;4;5p2;4;6p2;3;5: for G it is 36, but for G0 it is 37. Both
monomials have valuation 36, as shown by the sequence .di;j;k/, but for G0 the
coefficients are such that the lowest terms cancel.

Moreover, computation of the remaining coefficients for G6 show that in both
cases this is the minimal valuation. Only for G it is the smallest one, and for G0

there are more coefficients with valuation 37. We obtain that initial forms of G6

are �2x1x3x4x5x6y2y6 and �x1x4x5.x26y2y3 C 2x3x6y2y6 C x2x3y26/ for G and G0

respectively. That is, G0 is not moneric, and one can check by computing other
generators that G is. This example was constructed using Macaulay2 [7].

Thus we have two subspaces mapped to a single point of TGr.3;Q6/, such that
one is moneric and the second is not. This shows that the tropical Grassmannian is
too coarse to be a good parametrizing set: the property of being moneric is not well-
defined for its points. It is worth noting that the point corresponding to G and G0

does not lie in the interior of a maximal cone of TGr.3;Q6/, but we expect the same
phenomenon to appear also at interior points of maximal cones.

The second candidate for the parametrizing space is, as suggested in [27,
Problem 5.4], the tropical moduli space of (smooth, marked) del Pezzo surfaces
of degree 3. Its combinatorial structure is the Naruki fan, described in Sect. 5 (see
also [9, 19] and [22, Sect. 6]). Recall that a 3�6matrix G corresponds to a sequence
of coordinates which are either monomials in Plücker coordinates or products of
such monomials and a binomial C D p1;3;4p1;5;6p2;3;5p2;4;6 � p1;3;5p1;4;6p2;3;4p2;5;6,
which encodes the condition for six points lying on a conic.
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Example 6.3 We compute the value of the binomial C for both G and G0 and obtain
the result that they both have valuation 37. These matrices are mapped to the same
point in trop.Y6/, so this is not a good space for parametrizing moneric classes.

To summarize, Examples 6.2 and 6.3 prove the following result.

Proposition 6.4 Neither the tropical Grassmannian TGr.3;Q6/ nor the Naruki fan
is a good parametrizing set for moneric classes of three-dimensional subspaces
of k

6 in the sense of Definition 6.1.
The conclusion is that to find a good parametrizing set for our problem we should

probably look for an another variety (maybe a different embedding of Y6), whose
coordinates are more closely related to binomials which appear in the Cox ring conic
generators. Of 36 binomials appearing in 6 conic generators, 6 are equivalent (up
to a Plücker relation) to C, and the remaining 30 are different, and also pairwise
different. Hence our strategy will be to consider a variety embedded in a projective
space using all 31 equivalence classes of binomials, tropicalize it and subdivide the
fan structure obtained in this way to parametrize three-dimensional moneric and
Khovanskii subspaces of k

6.
We finish with a remark that the tropical moduli space of cubic surfaces is not

sufficient for one more reason: it requires being enlarged by adding a lineality space
to the fan.

Example 6.5 Consider

G00 D

⎡

⎣
1 t t8 t3 t9 1
t7 t7 t t7 t6 1
t5 1 t5 t9 t11 t6

⎤

⎦

which comes from G by multiplying the first column by 1=t4. Note that if we treat
columns of a matrix as coordinates of points in P

2, then G and G00 represent the
same choice of six points, so the same marked del Pezzo surface. Note also that if
we looked at the kernels of G and G00 as choices of six points in P

2, we would also
get the same sets, because multiplying the first column of G by 1=t4 corresponds
to multiplying the first row of a matrix representing ker G by t4. However, one can
compute the conic generator G6 for G00 and learn that it has a binomial leading term,
so G00 is not moneric.

This shows that the property of being moneric is not well-defined for a marked
del Pezzo surface—its behaviour varies in the set of matrices representing the same
choice of six points on the plane. The same phenomenon can be observed also in
the case of degree 4 del Pezzo surfaces, where TGr.2;Q5/ was used to parametrize
moneric subspaces. This is one of the reasons for considering the full TGr.2;Q5/,
not only the tropicalization of the moduli space of degree 4 del Pezzo surfaces,
i.e. the cone over the Petersen graph. The lineality space is equally important. The
subdivision determining equivalence classes of moneric subspaces is not a pull-back
of a subdivision of the cone over the Petersen graph to TGr.2;Q5/ via the projection
along the lineality space, it cuts through fibres of this projection. Thus, by analogy,
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we expect that to use some variant of the tropical moduli space of del Pezzo surfaces
of degree 3 to parametrize three-dimensional moneric subspaces of k

6 we should
also enlarge it by adding a lineality space.

Acknowledgements This article was initiated during the Apprenticeship Weeks (22 August–
2 September 2016), led by Bernd Sturmfels, as part of the Combinatorial Algebraic Geometry
Semester at the Fields Institute. The authors are very grateful to Bernd Sturmfels for sug-
gesting the problem, discussions and encouragement. Daniel Corey was supported by NSF
CAREER DMS-1149054. Maria Donten-Bury was supported by a Polish National Science Center
project 2013/11/D/ST1/02580. Naoki Fujita was supported by Grant-in-Aid for JSPS Fellows
(No. 16J00420).

References

1. Ivan Arzhantsev, Ulrich Derenthal, Jürgen Hausen, and Antonio Laface: Cox rings, Cambridge
Studies in Advanced Mathematics 144, Cambridge University Press, Cambridge, 2015.

2. Victor Batyrev and Oleg Popov: The Cox ring of a del Pezzo surface, in Arithmetic of higher-
dimensional algebraic varieties (Palo Alto, CA, 2002), 85–103, Prog. Math. 226, Birkhäuser
Boston, Boston, MA, 2004.

3. Arkady Berenstein and Andrei Zelevinsky: Tensor product multiplicities, canonical bases and
totally positive varieties, Invent. Math. 143 (2001) 77–128.

4. Lara Bossinger, Sara Lamboglia, Kalina Mincheva, and Fatemeh Mohammadi: Computing
toric degenerations of flag varieties, in Combinatorial Algebraic Geometry, 247–281, Fields
Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

5. William Fulton: Introduction to Toric Varieties, Annals of Mathematics Studies 131, Princeton
University Press, Princeton, NJ, 1993.

6. Anders N. Jensen: Gfan, a software system for Gröbner fans and tropical varieties, available at
home.imf.au.dk/jensen/software/gfan/gfan.html.

7. Daniel R. Grayson and Michael E. Stillman: Macaulay2, a software system for research in
algebraic geometry, available at www.math.uiuc.edu/Macaulay2.

8. Walter Gubler: A guide to tropicalizations, in Algebraic and combinatorial aspects of tropical
geometry, 125–189, Contemp. Math. 589, American Mathematical Society, Providence, RI,
2013.

9. Paul Hacking, Sean Keel, and Jenia Tevelev: Stable pair, tropical, and log canonical compacti-
fications of moduli spaces of del Pezzo surfaces, Invent. Math. 178 (2009) 173–227.

10. Robin Hartshorne: Algebraic geometry, Graduate Texts in Mathematics 52, Springer, NY, 1977.
11. Olga Holtz and Amos Ron: Zonotopal algebra, Adv. Math. 227 (2011) 847–894.
12. Kiumars Kaveh and Askold Khovanskii: Newton–Okounkov bodies, semigroups of integral

points, graded algebras and intersection theory, Ann. of Math. (2) 176 (2012) 925–978.
13. Kiumars Kaveh and Christopher Manon: Khovanskii bases, Newton–Okounkov polytopes and

tropical geometry of projective varieties, arXiv:1610.00298 [math.AG]
14. Sean Keel and Jenia Tevelev: Geometry of Chow quotients of Grassmannians, Duke Math. J.

134 (2006) 259–311.
15. Robert Lazarsfeld and Mircea Mustata: Convex bodies associated to linear series, Ann. Sci. Éc.

Norm. Supér. (4) 42 (2009) 783–835.
16. Diane Maclagan and Bernd Sturmfels: Introduction to Tropical Geometry, Graduate Studies in

Mathematics 161, American Mathematical Society, RI, 2015.
17. Shigeru Mukai: Counterexample to Hilbert’s fourteenth problem for the 3-dimensional additive

group, RIMS preprint no. 1343, Kyoto, 2001, available at www.kurims.kyoto-u.ac.jp/preprint/
file/RIMS1343.pdf.

home.imf.au.dk/jensen/software/gfan/gfan.html
www.math.uiuc.edu/Macaulay2
arXiv:1610.00298 [math.AG]
www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1343.pdf
www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1343.pdf


Khovanskii Bases of Cox–Nagata Rings and Tropical Geometry 179

18. Masayoshi Nagata: On the fourteenth problem of Hilbert, Proc. Int’l Cong. Math. 1958, 459–
462, Cambridge University Press, New York, 1960.

19. Isao Naruki: Cross ratio variety as a moduli space of cubic surface, Proc. London Math. Soc.
(3) 45 (1982) 1–30.

20. John Christian Ottem: Cox rings of projective varieties, MSc Thesis at the University of Oslo,
2009, available at urn.nb.no/URN:NBN:no-23198.

21. Lorenzo Robbiano and Moss Sweedler: Subalgebra bases, in Commutative algebra (Salvador,
1988), 61–87, Lecture Notes in Math. 1430, Springer, Berlin, 1990.

22. Qingchun Ren, Steven V. Sam, and Bernd Sturmfels: Tropicalization of classical moduli spaces,
Math. Comput. Sci. 8 (2014) 119–145.

23. Qingchun Ren, Kristin Shaw, and Bernd Sturmfels: Tropicalization of del Pezzo surfaces, Adv.
Math. 300 (2016) 156–189.

24. David Speyer and Bernd Sturmfels: The tropical Grassmannian, Adv. Geom. 4 (2004) 389–411.
25. Bernd Sturmfels: Fitness, Apprenticeship, and Polynomials, in Combinatorial Algebraic

Geometry, 1–19, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.
26. Bernd Sturmfels: Gröbner bases and convex polytopes, University Lecture Series 8. American

Mathematical Society, Providence, RI, 1996.
27. Bernd Sturmfels and Zhiqiang Xu: Sagbi bases of Cox-Nagata rings, J. Eur. Math. Soc. (JEMS)

12 (2010) 429–459.

urn.nb.no/URN:NBN:no-23198


Equations and Tropicalization of Enriques
Surfaces

Barbara Bolognese, Corey Harris, and Joachim Jelisiejew

Abstract In this article, we explicitly compute equations of an Enriques surface via
the involution on a K3 surface. We also discuss its tropicalization and compute the
tropical homology, thus recovering a special case of the result of [18], and establish
a connection between the dimension of the tropical homology groups and the Hodge
numbers of the corresponding algebraic Enriques surface.

MSC 2010 codes: 14T05, 14J28, 14N10

1 Introduction

In the classification of algebraic surfaces, Enriques surfaces comprise one of four
types of minimal surfaces of Kodaira dimension 0. There are a number of surveys
on Enriques surfaces. For those new to the theory, we recommend the excellent
exposition found in [2] and [3], and for a more thorough treatment, the book
[10]. Another recommended source is Dolgachev’s brief introduction to Enriques
surfaces [11].

The first Enriques surface was constructed in 1896 by Enriques himself [12] to
answer negatively a question posed by Castelnuovo (1895): Is every surface with
pg D q D 0 rational?; see Sect. 2 for the meaning of pq and q. Enriques’ original
surface has a beautiful geometric construction: the normalization of a degree 6
surface in P

3 with double lines given by the edges of a tetrahedron. Another
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construction, the Reye congruence, defined a few years earlier by Reye [25], was
later proved by Fano [13] to be an Enriques surface. Since these first constructions,
there have been many examples of Enriques surfaces, most often as quotients of
K3 surfaces by a fixed-point-free involution. In [9], Cossec describes all birational
models of Enriques surfaces given by complete linear systems.

As we recall in Sect. 2, every Enriques surface has an unramified double cover
given by a K3 surface. Often exploiting this double cover, topics of particular inter-
est relate to lattice theory, moduli spaces and their compactifications, automorphism
groups of Enriques surfaces, and Enriques surfaces in characteristic 2. While there
are many constructions of Enriques surfaces, none give explicit equations for an
Enriques surface embedded in a projective space. In this paper, by interpreting the
work of Cossec–Verra, we give explicit ideals for all Enriques surfaces.

Theorem 1.1 Let Y be the toric fivefold of degree 16 in P
11 that is obtained by

taking the join of the Veronese surface in P
5 with itself. The intersection of Y

with a general linear subspace of codimension 3 is an Enriques surface, and every
Enriques surface arises in this way.
By construction, the Enriques surface in Theorem 1.1 is arithmetically Cohen–
Macaulay. Its homogeneous prime ideal in the polynomial ring with 12 variables is
generated by the twelve binomial quadrics that define Y and three additional linear
forms. Code for producing this Enriques surface in Macaulay2 appears in Sect. 3.

After having constructed Enriques surfaces explicitly, we focus on their tropical-
izations, with the purpose of studying their combinatorial properties. For this we
choose a different K3 surface, namely a hypersurface S 	 .P1/3 with an involution
� , see Example 4.3. We get a fairly complete picture for its tropicalization (Fig. 1).
In particular, we recover its Hodge numbers and, conjecturally, the Hodge numbers
of S=� , which was [28, Problem 10 on Surfaces]; this was the starting point of
this work.

Proposition 1.2 (Example 4.3, Propositions 5.7–5.8) The dimensions of tropical
homology groups of the tropicalization of the K3 surface S agree with the Hodge
numbers of S. The dimensions of the � -invariant parts of tropical homology groups
agree with the Hodge numbers of the Enriques surface S=� .

Finally, we discuss an analogue of Castelnuovo’s question on the tropical and
analytic level. Since the analytifications of rational varieties are contractible by

Fig. 1 A tropical K3 surface
in P

1 � P
1 � P

1 that is fixed
under the involution
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Corollary 1.1.4 in [6], we ask: are the analytifications of K3 or Enriques surfaces
contractible? We give a negative answer to this question, the counterexample being
the analytification of S from Example 4.3.

Theorem 1.3 The analytification San of the K3 surface S is homotopy equivalent to
a two-dimensional sphere. The surface S has a fixed-point-free involution � and
the analytification of the Enriques surface S=� retracts onto the real projective
plane RP

2. In particular, neither San nor .S=�/an is contractible.
The contents of the paper are as follows. In Sect. 2, we give some background

about Enriques surfaces. Next, in Sect. 3, we exploit a classical construction
to obtain an Enriques ideal in a codimension 3 linear space in P

11 and prove
Theorem 1.1. In Sect. 4, we discuss the basics of tropical geometry and analytic
spaces in the sense of Berkovich. Example 4.3 provides an Enriques surface S=�
arising from a K3 surface S 	 P

1 � P
1 � P

1 with an involution � . The surface S is
suitable from the tropical point of view (its tropical variety is schön and multiplicity
one everywhere) and is used throughout the paper. In Sect. 5, we compute the
tropical homology groups of trop.S/ and, conjecturally, of trop.S=�/. We also prove
Proposition 1.2. In Sect. 6, we discuss the topology of analytifications of S and S=�
and prove Theorem 1.3.

2 Background

Apart from the code snippets, we work over an algebraically closed field of
characteristic zero. An Enriques surface X is a smooth projective surface such that
q.X/ WD h1.X;OX/ D 0, !˝2

X ' OX and !X 6' OX , where !X D
∧2 ˝1

X is the
canonical bundle of X. It follows that X is minimal, see [3], and its geometric
genus is pg.X/ WD h2.X;OX/ D 0. Enriques surfaces are defined the same way
over any field of characteristic other than 2. By Lemma 15.1 in [2], the Hodge
diamond of an Enriques surface X appears in Fig. 2. An Enriques surface admits an
unramified double cover f WY ! X, where Y is a K3 surface, see [2, Lemma 15.1]
or [3, Proposition VIII.17]. The Hodge diamond of Y appears in Fig. 3. Since Y is
simply connected, the fundamental group of an Enriques surface is Z=2Z; see [2,
Sect. 15]. The cover Y ! X is a quotient of Y by an involution � that exchanges
the two points of each fibre. Conversely, for a K3 surface Y with a fixed-point-free
involution � , the quotient Y=� is an Enriques surface.

Fig. 2 Hodge diamond of an
Enriques surface

h0,0 1

=
h1,0 h0,1 0 0

h h1,1 h 0 10 0
h2,1 h1,2 0 0

h2,2 1

2,0 0,2
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Fig. 3 Hodge diamond of a
K3 surface

=

h0,0 1
h1,0 h0,1 0 0

h2,0 h1,1 h 1 20 1
h2,1 h1,2 0 0

h2,2 1

0,2

3 Enriques Surfaces via K3 Complete Intersections in P
5

In this section, we construct Enriques surfaces via K3 surfaces in P
5. One cannot

hope for especially simple equations—for instance, an Enriques surface cannot be a
hypersurface in P

3.

Proposition 3.1 If X 	 P
N
C

is a smooth toric threefold and S D X \ H is a smooth
hyperplane section, then S is simply connected, and is not an Enriques surface.

Proof Since X is a smooth projective toric variety, it is simply connected; see [14,
Sect. 3.2]. A homotopical version of Lefschetz’ theorem asserts that the fundamental
groups of X \ H and X are isomorphic via the natural map; see [1] and [4, 2.3.10].
Thus, S is simply connected. Since an Enriques surface admits a non-trivial étale
double cover, it is never simply connected. ut

Remark 3.2 This proof generalizes to other complete intersections inside smooth
toric varieties, provided that intermediate complete intersections are smooth.

Following [3, Example VIII.18], we construct an Enriques surface from a K3 sur-
face that is an intersection of quadrics in P

5. Fix P
5 WD Proj.CŒx0; x1; x2; y0; y1; y2�/.

The fixed point set of the involution � WP5 ! P
5 given by �.xi/ D xi and

�.yi/ D �yi, for all 0 � i � 2, is equal to the union of P
2 D V.y0; y1; y2/ and

P
2 D V.x0; x1; x2/. Fix quadrics Fi 2 CŒx0; x1; x2� and Gi 2 CŒy0; y1; y2�, where
0 � i � 2 and set Qi WD Fi C Gi. By construction, these quadrics are fixed by � .
Choose Q0;Q1;Q2 so that they form a complete intersection. For the surface S D
SQ WD V.Q0;Q1;Q2/, the Adjunction Formula gives KS D OS.�6C2C2C2/ D OS.
Since the surface S is a complete intersection of quadrics in P

5, it follows that
h1.OS/ D 0; see [3, Lemma VIII.9]. Thus, if S is smooth, then it is a K3 surface
fixed under the involution � . We now formalize exactly which assumptions must be
satisfied by the three quadrics to obtain a smooth Enriques surface.

Definition 3.3 Let Q WD .Q0;Q1;Q2/ be a triple of quadrics where Qi WD Fi C Gi

for some Fi 2 CŒx0; x1; x2� and Gi 2 CŒy0; y1; y2�. We say that the quadrics Q are
enriquogeneous if the following conditions are satisfied:

1. the forms Q D .Q0;Q1;Q2/ are a complete intersection,
2. the surface S D V.Q0;Q1;Q2/ is smooth,
3. the surface S D V.Q0;Q1;Q2/ does not intersect the fixed-point set of � .

The third condition is equivalent to F0;F1;F2 having no common zeros in
CŒx0; x1; x2� and G0;G1;G2 having no common zeros in CŒy0; y1; y2�, so it is an
open condition. For a choice of enriquogeneous quadrics Q, we obtain an Enriques
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surface as SQ=� . The set of enriquogeneous quadrics is open inside .A6C6/3, so
that a general choice of forms gives an Enriques surface. In [9], Cossec shows that
every complex Enriques surface may be obtained in this way if one allows Q not
satisfying the smoothness condition; see also [30]. Notably, Lietdke proves that
the same is true for Enriques surfaces over any characteristic [21]. To develop our
intuition, we demonstrate that, over C, these surfaces give at most a ten-dimensional
space of Enriques surfaces.

Each Qi is chosen from the same 12-dimensional affine space and SQ depends
only on their span, which is an element of the 27-dimensional variety Gr

(
3;C12

)
.

Since we have fixed � , the quadrics Qi yield an isomorphic K3 surface (with an
isomorphic involution) if we act on P

5 by an automorphism that commutes with � .
Such automorphisms are given by block matrices in PGL.6/ of the form

C D

ñ
A 0

0 B

ô
or C D

ñ
0 A
B 0

ô

where A and B are matrices in GL.3;C/, up to scaling. Thus, the space of
automorphisms preserving the � -invariant quadrics has dimension .2/.9/� 1 D 17.
Modulo these automorphisms, we obtain a ten-dimensional projective space of K3
surfaces with an involution. The condition that Q be enriquogeneous is an open
condition, so the space of Enriques surfaces is also ten-dimensional.

We now aim to make the Enriques surfaces constructed as SQ=� explicit. In other
words, we want to present them as embedded into a projective space. The first step is
to identify the quotient of P

5 by the involution � . Let S D CŒx0; x1; x2; y0; y1; y2� be
the homogeneous coordinate ring, so the quotient is Proj .S� / D Proj

(
CŒxi; yiyj�

)
.

The Enriques surface SQ is cut out of Proj
(
CŒxi; yiyj�

)
by the quadrics Q such that

SQ D Proj
(
CŒxi; yiyj�=Q

)
. This does not give us an embedding into P

8, because
the variables xi and yiyj have different degrees. Rather we obtain an embedding
into a weighted projective space P.13; 26/. Therefore, we replace CŒxi; yiyj� by the
Veronese subalgebra CŒxixj; yiyj�=Q. This algebra is generated by the 12 elements
xixj, yiyj, where 0 � i; j � 2, which implies that SQ is embedded into a P

11. The
relations Q are linear in the variables xixj and yiyj, so SQ is embedded into a P

8.
Let us rephrase this geometrically. Consider the second Veronese embedding

vWP5 ! P
20. The coordinates of P

20 are forms of degree two in xi and yi. The
involution � extends to an involution on P

20 and the invariant coordinate ring is
generated by the linear forms corresponding to the products xixj and yiyj. Thus, the
quotient is embedded into P

11; we have

P
5

P
20

P
11

v

π
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where 
 denotes the quotient by the involution � . The image 
.P5/ is cut out by 12
binomial quadrics: the six usual equations between xixj and the six corresponding
equations for yiyj. It is the join of two Veronese surfaces which constitute its singular
locus. Quadrics in CŒxi; yi� of the form Fi C Gi for Fi 2 CŒxi� and Gi 2 CŒyi�

correspond bijectively to linear forms on the above P
11. A choice of enriquogeneous

quadrics Q corresponds to a general choice of three linear forms on P
11. We obtain

the corresponding Enriques surface SQ as a linear section of 
.P5/. Summing up,
we have the chain of inclusions V \ 
.P5/ 	 
.P5/ 	 P.13; 26/ 	 P

11, where V is
a codimension three linear section. Although V \ 
.P5/ is a complete intersection
in 
.P5/, this does not contradict (the natural generalisation of) Proposition 3.1,
because 
.P5/ is singular. Since sufficiently ample embeddings of varieties are
always cut out by quadrics, see [23, 27], this suggests that our embedding is
sufficiently good.

Proof of Theorem 1.1 The surfaces obtained from enriquogeneous quadrics are
arithmetically Cohen–Macaulay of degree 16 as they are linear sections of 
.P5/
possessing those properties. Every Enriques surface can be obtained by this
procedure if one allows Q not satisfying the smoothness condition by [9]. ut

We provide Macaulay2 [15] code for finding the equations of SQ. To simplify the
computation, we work over a finite field.

kk = ZZ/1009;
P5 = kk[x0,x1,x2,y0,y1,y2];
P11 = kk[z0,z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11];
pii = map(P5, P11, {x0^2, x0*x1, x0*x2, x1^2,

x1*x2, x2^2, y0^2, y0*y1,
y0*y2, y1^2, y1*y2, y2^2});

The kernel of pii is generated by 12 binomial quadrics and has degree 16.

assert(kernel pii == ideal(
z10^2-z9*z11, z8*z10-z7*z11, z8*z9-z7*z10,
z8^2-z6*z11, z7*z8-z6*z10, z7^2-z6*z9,
z4^2-z3*z5, z2*z4-z1*z5, z2*z3-z1*z4,
z2^2-z0*z5, z1*z2-z0*z4, z1^2-z0*z3))

assert(degree kernel pii == 16)

We next generate an Enriques surface from a random set of linear forms named
linForms. To see the quadrics in P

5, compute pii(linForms).

linForms = random(P11^3, P11^{-1})

randomEnriques = (kernel pii) + ideal linForms

We now verify that this is in fact an Enriques surface. Computationally, it is much
easier to check this for the associated K3 surface, because we need only check that
K3 is a smooth surface (first two assertions below) and that the involution is fixed-
point-free on K3 (last two assertions).

K3 = ideal pii(linForms)
assert (dim K3 == 3)
assert (dim saturate ideal singularLocus K3 == -1)
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assert (dim saturate (K3 + ideal(y0,y1,y2)) == -1)
assert (dim saturate (K3 + ideal(x0,x1,x2)) == -1)

If the K3 passes all the assertions, then randomEnriques is an Enriques surface.
Its ideal is given by 12 binomial quadrics listed above and three linear forms in P11.

Example 3.4 Over k D F1009, the choice of

linForms = matrix{{2*z2+z6+5*z7+8*z11,
2*z0+8*z4+z9,
5*z1+4*z3+4*z5+6*z8}}

in the above algorithm gives an Enriques surface.
Finally, we check that 
.P5/ is arithmetically Cohen-Macaulay. Using betti

res kernel pii, we obtain its Betti table.

1 . . . . . .
. 12 16 6 . . .
. . 36 96 100 48 9

The projective dimension of 
.P5/ (the number of columns) is equal to the codi-
mension, thus 
.P5/ 	 P

11 is arithmetically Cohen-Macaulay; see [26, Sect. 10.2].
Therefore, all its linear sections are also arithmetically Cohen-Macaulay.

4 Analytified and Tropical Enriques Surfaces

This section discusses the basics of tropical and analytic geometry and constructs
a K3 surface whose tropicalization is nice enough for computations of tropical
homology. In Example 4.3, we present a K3 surface with an involution, which on the
tropical side is the antipodal map. As an excellent reference for tropical varieties, we
recommend [22], especially Sect. 6.2. For analytic spaces in the sense of Berkovich,
we recommend [5, 17].

Let k be a field extension of C with a nontrivial valuation valWk� ! R such that
val.C�/ D f0g. We assume that k is algebraically closed, so the image val.k�/ is
dense in R. Without much loss of generality, one could simply consider the field
k D Cffzgg D

⋃
n2N C..z1=n// of Puiseux series, with valuation yielding the lowest

exponent of z appearing in the series. For every point p D .p1; p2; : : : ; pn/ 2 .k
�/n,

its valuation is val.p/ D
(

val.p1/; val.p2/; : : : ; val.pn/
)
.

Definition 4.1 Let X be a toric variety with torus .k�/n and Y 	 X be a closed
subvariety. The tropical variety of Y , denoted by trop.Y 	 X/ or briefly trop.Y/, is
the closure of the set fval.p/ W p 2 .k�/n \ Yg 	 R

n.
The tropical variety trop.Y 	 X/ is a polyhedral complex of dimension dim Y with
rich combinatorial structure; see [22, Chapter 3].

A morphism of tori 'W .k�/n ! .k�/m is given by ' D .'1; '2; : : : ; 'm/ where
'i.t/ D bi � tai for 1 � i � m. For each such ', there is a tropicalized map
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trop.'/WRn ! R
m given by trop.'/i.v/ D val.bi/ C .ai � v/ for 1 � i � m. One

verifies that the following diagram commutes:

(k∗)n (k∗)m

R
n

R
m

val val
trop (j)

j

This naive tropicalization is not a functor—it is known how to tropicalize a map
only when it is monomial. This problem is solved by passing to Berkovich spaces.
We will not discuss Berkovich spaces in detail: we invite the reader to see [5, 17]
or [24] for a slightly more elementary introduction.

For every finite-type scheme X over a valued field k, its Berkovich analytification
Xan is the analytic space which best approximates X; see [5, Chap. 3]. The space
Xan is locally ringed (in the usual sense, see [29, 4.3.6]) and there is a morphism

 WXan ! X such that every other map from an analytic space factors through 
 . If
X D Spec A is affine, then the points of Xan are in bijection with the multiplicative
semi-norms on A which extend the norm on k. Most importantly, the analytification
is functorial: for every map f WX ! Y , we get an induced map f anWXan ! Yan. If
X D Spec A and Y D Spec B are affine, then f induces f #WB ! A and the map f an

takes a seminorm j � j on A to the seminorm b! jf #.b/j on B.
The analytification of an affine variety X is the limit of its tropicalizations by [24].

To be more precise, let X be an affine variety. For two embeddings iWX ! A
n and

jWX ! A
m, and a toric morphism 'WAn ! A

m satisfying j D ' ı i, we obtain a
tropicalized map trop.X 	 A

n/ ! trop.X 	 A
m/. For every embedding X 	 A

n,
there is an associated map Xan ! trop.X 	 A

n/, sending a multiplicative seminorm
j � j to the valuation � log j � j, see [24, p. 544]. The main result in [24] is that
the inverse limit is homeomorphic to the Berkovich analytification. Hence, one has
Xan D lim

 �
trop.X 	 A

n/.
We now return to the case of Enriques surfaces. We are interested in finding an

Enriques surface S=� with a K3 cover S suitable for tropicalization. Specifically, we
would like � to be an involution acting without fixed points on the tropical side. In
this sense, the examples obtained as in Sect. 3 are not suitable.

Example 4.2 Consider the K3 surface SQ defined via the enriquogeneous quadrics
in Sect. 3 with �.x0; x1; x2; y0; y1; y2/ D .x0; x1; x2;�y0;�y1;�y2/. Since we have
val.�1/ D 0, the tropicalized involution trop.�/ is the identity map on R

6.
To obtain a K3 surface with an involution � tropicalizing to a fixed-point-free

involution, we consider embeddings into products of P
1. Consider the involution

� WP1 ! P
1 given by �.Œx W y�/ D Œy W x� and the involution � W .P1/3 ! .P1/3

given by applying � to every coordinate. The map � restricts to the torus C
� and is

given by C
� 3 t ! t�1 2 C

�. Therefore, we have trop.�/.v/ D �v. Consequently,
the tropicalization trop.�/WR3 ! R

3 is given by trop.�/.v/ D �v. This map is
non-trivial and has only one fixed point.
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Example 4.3 (A K3 Surface with a Fixed-Point-Free Involution) Let S 	 P
1 �

P
1 � P

1 be a smooth surface given by a section of the anticanonical divisor of
.P1/3, namely a triquadratic polynomial. The Newton polytope of S is the three-
dimensional cube Œ0; 2�3. We introduce the following assumptions on S:

1. S is smooth;
2. S is invariant under the involution � ; and
3. the subdivision induced by S on its Newton polytope Œ0; 2�3 is a unimodular

triangulation, that is, the polytopes in the triangulation are tetrahedra of volume
equal to 1=6; see [22, p. 13].

Each such S is a K3 surface. Under our assumptions, the point .0; 0; 0/ is not in
the tropical variety of S. Indeed, if it were in trop.S/, that variety would not be
locally linear at .0; 0; 0/. But trop.S/ is coming from a unimodular triangulation,
so it is locally linear everywhere. Hence, the point .0; 0; 0/ is outside and trop.�/
is a fixed-point-free involution on trop.S/. The map � W S ! S induces also an
involution � anW San ! San which is compatible with trop.�/ under the projection

 ; the following diagram commutes.

S 

an S 

an

trop(S) trop(S)
trop(s )

 s an

p p

Fig. 4 The bounded part of a
tropical K3 surface in
P
1 � P

1 � P
1
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5 The Tropical Homology

In this section, we explicitly calculate the tropical homology of a tropical K3 surface
and a tropical Enriques surface. We use the construction in Example 4.3 in order to
obtain tropicalizations which are locally linear (locally look like tropicalizations of
linear spaces), and then compute their tropical cohomology groups. In accordance
with the results in [18], the dimensions of such homology groups coincide with the
Hodge numbers of the surfaces themselves. We carry out the calculation by hand for
some curves, a tropical K3 surface and also for an object, which we believe to be the
associated tropical Enriques surface; see [20] for computation of tropical homology
using polymake.

Theorem 5.1 ([18, Special Case of Theorem 2]) If X 	 P
N, and its tropicalization

trop.X/ 	 trop.PN/ has multiplicities all equal to 1 and is locally linear, then
the tropical Hodge numbers agree with Hodge numbers of X: dim Hp;q.trop.X// D
dim Hp;q.X;R/.
For the definition of multiplicities, we refer to [22, Chap. 3]. A tropical variety
is locally linear if a Euclidean neighbourhood of each point is isomorphic to a
Euclidean open subset of the tropicalization of a linear subspace P

n 	 P
m; see [31].

A hypersurface in P
N is locally linear if and only if the subdivision of its Newton

polygon is a triangulation. It has multiplicities one if and only if this triangulation
is unimodular.

In Theorem 5.1, we do not assume that X intersects the torus of P
N . Therefore,

this theorem applies to X	 .P1/3	P
7 or more generally to X in any projective

toric variety with fixed embedding. Moreover, one might wonder whether The-
orem 5.1 identifies not only dimensions but homology classes. This is possible
when the appropriate spectral sequence degenerates at the E2 page. This E2 page is
Hq.X;F p/, where F p D Hom.Fp;R/; see the discussion after Corollary 2 in [18]
or [8].

We provide generalities about tropical homology and compute some examples of
interest; for a more detailed introduction see [7, 18]. We compute the dimensions
of the tropical homology groups and show how Theorem 5.1 holds. The last part of
the paper is dedicated to showing a particular instance of this theorem for a special
tropical K3 surface with involution and for its quotient.

Tropical projective space trop.Pn/ D TP
n is homeomorphic to an n-simplex;

see [22, Chap. 6.2]. It is covered by nC1 copies of T
n D trop.An/ D .f�1g[R/n,

that are complements of torus invariant divisors. Let X be a tropical subvariety of
TP

n. The definitions of sheaves Fp and groups Cp;q computing the homology are all
local, so we assume that X 	 trop.An/ is contained in one of the distinguished open
subsets. We denote by T

J D fx 2 T
n W xi D �1 for all i 62 Jg, for J 
 f1; 2; : : : ; ng,

the tropicalization of smaller torus orbits. Let X 2 T
n be a polyhedral complex. The

sedentarity I.x/ of a point x 2 X is the set of coordinates of x which are equal to�1,
and we set J.x/ WD f1; : : : ; ng n I.x/. We denote by R

J.x/ D R
n=RI.x/ the interior

of T
J.x/. For a face E 	 X \ R

J.x/ adjacent to x, we let Tx.E/ 	 Tx.R
J.x// be the
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cone spanned by the tangent vectors to E starting at x and directed towards E. Fix
the following terminology:

1. The tropical tangent space F1.x/ 	 Tx.R
J.x// is the vector space generated by

all Tx.E/ for all E adjacent faces to x;
2. The tropical multitangent space Fp.x/ 	

∧p Tx.R
J.x// is the vector space

generated by all vectors of the form v1^v2^� � �^vp where v1; v2; : : : ; vp 2 Tx.E/
for all E adjacent faces to x (this implies F0.x/ Š R)

The multitangent vector space Fp.x/ for x 2 X only depends on the minimal face
� 	 X containing x. Hence, we can write Fp.�/ WD Fp.x/ for each x 2 �. We
have the following group of .p; q/-chains

Cp;q.X/ WD
⊕

� q�dim face of X

Fp.�/

giving rise to the chain complex

Cp;
 D � � � �! Cp;qC1.X/
@
�! Cp;q.X/

@
�! Cp;q�1.X/ �! � � �

where the differential @ is the usual simplicial differential (we choose orientation
for each face) composed with inclusion maps given by �WFp.�/ ! Fp.�

0/ for
�0  �. Even when �0 and � have different sedentarities, we have I.�0/ � I.�/
so we get a natural map R

J.x/ D R
n=RI.x/ � R

n=RI.x0/ D R
J.x0/ inducing the map

�WFp.�/! Fp.�
0/.

Definition 5.2 The .p; q/th tropical homology group Hp;q.X/ of X is the qth
homology group of the complex Cp;
.

In the light of Theorem 5.1, if X D trop.X0/ is a tropicalization of suitable variety
X0, then dim Hp;q.X/ are the Hodge numbers of X0. For all X, the tropical Poincaré
duality holds: dim Hd�p;d�q.X/ D dim Hp;q.X/, see [19].

Example 5.3 Let’s compute the tropical homology of a tropical line L; see Fig. 5.

p D 0: From the discussion above, we see that C0;0.L/ D R
4 and C0;1 D R

3

injects into C0;0. Thus, we have dim H0;0.X/ D 1 and H0;1.X/ D 0.
p D 1: The chain complex is 0 ! C1;1.X/ ! C1;0.X/ ! 0. As in the previous

case, we see that C1;0.X/ D F1.v1/ D Rhe1; e2i, where e1 D .�1; 0/ and e2 D
.0;�1/ are the standard basis vectors of R

2 up to a sign. Moreover, we have

C1;1.X/ D F1.p/˚F1.q/˚F1.r/ D Rhe1i ˚ Rhe2i ˚ Rh�e1 � e2i :

The differential Rhe1i˚Rhe2i˚Rh�e1�e2i
@
�! Rhe1; e2i is given by the natural

inclusion e1 7! e1, e2 7! e2, and �e1 � e2 7! �e1 � e2. Hence, the kernel of the
differential is one-dimensional, generated by the sum he1i C he2i C h�e1 � e2i,
so we conclude that dim H1;0.X/ D 0 and dim H1;1.X/ D 1.
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Fig. 5 A tropical line

q

p

r

v3

v2 v1

-¥

-¥

Fig. 6 A tropical elliptic
curve in P

1 � P
1

Remark 5.4 By definition, we have F0.x/ D R, so the complex C0;
 is the
singular homology complex for the subdivision of X by polyhedra. Thus, the tropical
homology group H0;q.X/ is identified with the singular homology group Hq.X;R/.

Example 5.5 (Elliptic Curve) We next compute the tropical homology of an elliptic
curve in P

1 � P
1. Its tropicalization is shown in Fig. 6. From the isomorphism

H0;q.X/ Š Hq.X;R/, it follows that H0;0.X/ Š R and H0;1.X/ Š R. We can
compute H1;1.X/ directly from the complex C1;1.X/ ! C1;0.X/. It follows that
C1;1.X/ Š R

E and C1;0.X/ Š R
2V , where E D 16 (respectively, V D 8) denotes

the number of edges (respectively, of interior vertices). The kernel of the map
C1;1.X/! C1;0.X/ is generated by the boundary of the square, hence H1;1.X/ Š R.

del Pezzo in .P1/3 Consider a surface S in P
1 � P

1 � P
1 given by a section of

O.1; 1; 1/ WD O.1/ � O.1/ � O.1/; this is a del Pezzo surface, its anticanonical
divisor is, by adjunction, the restriction of O.1; 1; 1/, so the anticanonical degree
is 6. The equation for S can be written as F D

∑
0�i;j;k�1 ai;j;kxiyjzk, where x, y, z

are local coordinates on the three projective lines. Suppose that we are over a valued
field and that ai;j;k D a1�i;1�j;1�k for all indices and that a1;0;0 > max.a0;1;0; a0;0;1/.
Hence, the induced subdivision of a cube is regular, as seen in Fig. 8. From the
picture, we see that there are 6 points, 18 edges, and 19 faces in the non-sedentary
part of trop.S/. The tropical variety trop

(
.P1/3

)
' .R[f˙1g/3 is homeomorphic
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Fig. 7 A tropicalization of
P
1 � P

1 � P
1 with the

sedentarities of the faces at
infinity

I(x) = {1}

I(x) = {2}
I(x) = {3}

I(x) = {1,3}

I(x) = {2,3}

I(x) = {1,2}

I(x) = {1,2,3}

Fig. 8 Regular subdivision
of the cube and tropical del
Pezzo

to the cube, see Fig. 7. Its faces correspond to torus-invariant divisors in .P1/3. The
boundary trop.S/nR

3 decomposes into six components, the intersections of trop.S/
with those faces. To understand the sedentary points, we use the following result.

Theorem 5.6 ([22, Theorem 6.2.18]) If Y 	 T and Y is the closure of Y in a toric
variety X, then the tropical variety trop.Y/ is the closure of trop.Y/ in trop.X/.
Applying Theorem 5.6 to Y D NS, we see that the boundary of the tropicalization is
the tropicalization of the boundary, so we have trop.S/ \ trop.D/ D trop.S \ D/
for each torus-invariant divisor. The torus-invariant divisors are defined by x˙1, y˙1,
z˙1. Without loss of generality, assume D D V.x/. By restricting the element F to
D, we obtain the quadric

∑
0�j;k�1 a0;j;kyjzk whose tropicalization is given in Fig. 9.

In particular, it has five edges, two mobile points, and four sedentary points. Table 1
summarizes the strata.

This information enables us to compute the Cp;q without analyzing the maps,
because our del Pezzo is locally linear: near each vertex the tropical structure looks
like the tropicalization of P

2 	 P
3, as shown in Fig. 4. The complexes are

C0;2 D R
19 ! C0;1 D R

18 ˚ R
30 ! C0;0 D R

30

C1;2 D R
2	19 ! C1;1 D R

3	18 ˚ R
30 ! C1;0 D R

3	6 ˚ R
2	12

C2;2 D R
19 ! C2;1 D R

2	18 ! C2;0 D R
3	6:
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Fig. 9 A tropical quadric in
P
1 � P

1

Table 1 Strata in tropical del
Pezzo

Sedentarity 0 1 2

Points 6 12 12

Edges 18 30 �

Faces 19 � �

By comparing H0;
 with singular homology and using Poincaré duality, we obtain
H0;0 ' H2;2 ' R H0;1 D H0;2 D H2;0 D H2;1 D 0, so the interesting
part is the homology of C1;
. It is not impossible to compute this homology by
hand. However, to save space, we only outline a series of reductions. Each of
these reductions involves to finding an exact subcomplex D 	 C1;
 and reducing
to computing homology of C1;
=D. Consider a sedentary point p on the face of
a cube. This point has two edges e1, e2 going towards the boundary of this face
(and a third edge, which is irrelevant here). In C1;
, these polyhedra give an exact
subcomplex RŒe1� ˚ RŒe2� ! R

2Œp�, so the homology of C1;
 is the homology
of the quotient C0 by all these subcomplexes for 12 choices of p. The quotient is
R
.2/.19/ ! R

.3/.18/ ˚ R
6 ! R

.3/.6/. Next, consider one of the two corner vertices
in Fig. 8 and all its adjacent faces (three edges, three faces, one simplex). In the
tropical variety, those correspond to one point p, three edges ei, and three faces
fi that glue together to form on tropical A

2. Such an A
2 has no higher homology,

so the sequence
⊕

R
2Œfi� !

⊕
R
3Œei� !

⊕
R
3Œp� is an exact subcomplex of C0.

Dividing C0 by the subcomplexes given by two corner vertices, we see that C00 equal
to R

.2/.13/ ! R
.3/.12/ ˚ R

6 ! R
.3/.4/. The module R

.3/.4/ corresponds to four
multitangent spaces at four vertices of the square in the interior; see Fig. 8. Since
none of the edges adjacent to them was modified in the process, the right map is
surjective. Hence, we have H1;0 D 0. By Poincaré duality, we deduce that H1;2 D 0

and dim H1;1 D 36C 6 � 26 � 12 D 4, as expected from the Hodge diamond of a
del Pezzo of anticanonical degree 6.

A K3 Surface in .P1/3 Let S 	 P
1 � P

1 � P
1 be a K3 surface over a valued field k

as in Example 4.3. This subsection discusses its tropical homology and relations to
its Hodge classes; using tropical homology, we recover the expected Hodge numbers
and an anti-symplectic involution.

As explained in [22, Definition 2.3.8, Fig. 1.3.3], the polyhedral decomposition
of the tropicalization is dual to the subdivision induced on the 2� 2� 2 cube by the
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Table 2 Strata in tropical K3 Sedentarity 0 1 2

Points 48 48 24

Edges 120 96 �

Faces 98 � �

Fig. 10 Tropicalization of P
2

coefficients of S; see Fig. 4. Restrict to the torus and consider polyhedra with empty
sedentarity. The tropical variety trop.S/ comes from a regular subdivision into 48
simplices, so it has 48 distinguished points. Each face of the subdivision (or edge in
the tropicalization) is either “inner”, shared by two tetrahedra, or “outer”, adjacent
to only one of them. There are 48 outer faces and each tetrahedron has four faces,
so there is a total of

(
.48/.4/ C 48

)
=2 D 120 faces. As seen in the del Pezzo

case, there are 19 edges in a subdivision of a unit cube. In the 2 � 2 � 2 cube,
we have .8/.19/ of those segments; 36 of them are adjacent to exactly two cubes,
six of them are adjacent to four cubes, and the others stick to one cube. Therefore,
there are .8/.19/ � 36 � .3/.6/ D 98 segments. The boundary of trop.S/ is the
intersection of trop.S/ with the boundary of this cube. Pick a face F of the cube. It
is the tropicalization of one of the six toric divisors x˙1

i for 1 � i � 3, say to x1.
Theorem 5.6 implies that trop.S/ \ F D trop

(
S \ V.x1/

)
. But S \ V.x1/ is an

elliptic curve in P
1 � P

1 and Sect. 5.5 shows that its tropicalization has 16 edges, 8
mobile points, and 8 sedentary points; see Fig. 6. Table 2 enumerates the strata.

Once again, this information enables us to compute the Cp;q without analyzing
the maps. Near each vertex the tropical structure looks like the tropicalization of
P
2 	 P

3 see Fig. 10 and compare with Fig. 4. The complexes are

C0;2 D R
98 ! C0;1 D R

120 ˚ R
96 ! C0;0 D R

120

C1;2 D R
2	98 ! C1;1 D R

3	120 ˚ R
96 ! C1;0 D R

3	48 ˚ R
2	48

C2;2 D R
98 ! C2;1 D R

2	120 ! C2;0 D R
3	48:

In particular, we see that �.C1;
/ D 2 � 98 � 3 � 120 � 96 C 3 � 48 C 2� D �20

as expected. Moreover, one can show that H1;0 D 0, roughly because the classes
of sedentary edges surject to classes of sedentary points and other points can be
analyzed directly by Fig. 4. By Poincaré duality, we have H1;2 D 0, so we obtain

�20 D �.C1;
/ D dim H1;0 � dim H1;1 C dim H1;2 D � dim H1;1 :
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We now consider .0; q/-classes. The homology of C0;
 is just the singular
homology of the tropical variety by Remark 5.4. The tropical variety is contractible
to the boundary of the cube. Thus, C0;
 is exact in the middle and its homology
groups are the homology groups of the sphere: H0;0 ' R, H0;1 D 0, and H0;2 D R.
In other words, this gives an explicit proof for our special case of Theorem 5.1.

Proposition 5.7 The tropical Hodge numbers of tropical variety trop.S/ agree with
the Hodge numbers of the surface S. ut

We expose an explicit generator of H0;2 and analyze the action of � on this space.
Briefly speaking, this class is obtained as the boundary of the interior of the cube.
To expand this, consider the boundary of the cube and the complex C0

2 ! C0
1 ! C0

0

computing its singular homology. This boundary can be embedded into a full cube
and the complex C0 becomes part of the complex C00 computing the homology of
the cube 0 ! C00

3 ! C00
2 ! C00

1 ! C00
0 . Since the cube is contractible, the complex

C00 is exact. Hence, the unique class ! in H2.C0/ is the boundary of the class ˝
in C00

3 . Consider the action of � on the R
3 containing the tropical variety. We have

�.x/ D �x in R
3, so � changes orientation and �.˝/ D �˝. It follow that �.!/ D

�.@˝/ D �!.
Finally, we investigate the � -invariant part C�

p;
 of the complexes Cp;
. Since
we work over characteristic different from two, the functor .�/� is exact and the
homology of C�

p;
 is the invariant part of the homology of Cp;
. Since trop.S/=�
is a tropical manifold, C�


;
 computes its tropical homology; see [7, Chap. 7]. In
particular, the homology groups H�

p;q D Hq.C�
p;
/ satisfy H�

p;q D H�
2�p;2�q. We

believe, although we have not proved it formally, that the manifold trop.S/=� is a
tropicalization of the Enriques surface S=� . If this is the case, the homology classes
of C�


;
 compute the tropical homology of Enriques surface S=� . It is straightforward
to compute the dimensions of C�

p;q, because trop.S/ does not contain the origin. As
a consequence, every face F of trop.S/ is mapped by � to a unique face F0 so that
the action of � on the space spanned by ŒF� and ŒF0� always decomposes into an
invariant subspace ŒF� C ŒF0� and an anti-invariant space ŒF� � ŒF0�. Therefore, we
have dim C�

p;q D
1
2
� dim Cp;q, for all p; q, and the sequences are

C�
0;2 D R

49 ! C�
0;1 D R

60 ˚ R
48 ! C�

0;0 D R
60

C�
1;2 D R

2	49 ! C�
1;1 D R

3	60 ˚ R
48 ! C�

1;0 D R
3	24 ˚ R

2	24

C�
2;2 D R

49 ! C�
2;1 D R

2	60 ! C�
2;0 D R

3	24:

The generator ! of H0;2 does not lie in H�
0;2. Thus, we have H�

0;2 D H�
0;1 D 0 and

H�
0;0 ' R. By symmetry, we also have H�

2;0 D H�
2;1 D 0 and H�

2;2 ' R, which yields

� dim H1;1 D dim H1;0 � dim H1;1 C dim H1;2 D ��
(
C�
1;


)
D � 1

2
�.C1;
/ D �10 :

Summarizing these calculations, we obtain the following counterpart of Proposi-
tion 5.7.
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Proposition 5.8 The dimensions of the � -invariant parts of tropical homology
groups of S agree with the Hodge numbers of S=� . ut

6 Topology of Analytifications of Enriques Surfaces

In this section, we analyze the analytification of an Enriques surface that is the
quotient of the K3 surface from Example 4.3. Fix a valued field k and a K3 surface
S 	 .P1/3 over k together with an involution � W S! S, as in Example 4.3. We first
analyze the topology of San itself.

Proposition 6.1 The topological space San has a strong deformation retraction
onto a two-dimensional sphere C. More precisely, there exist continuous maps
sWC ! San and eW San ! C, so that e ı s D idC and s ı e is homotopic to idSan . The
maps s and e may be chosen to be � -equivariant, where � acts on C antipodally.

Proof We consider the tropicalization trop.S/ 	 .R [ f˙1g/3 with the antipodal
involution trop.�/. We abbreviate trop.�/ as � . There is a cube C 	 trop.S/ fixed
under the involution, see Fig. 4. This cube is a strong deformation retract of trop.S/
and the retraction can be chosen to be � -equivariant. In the following we identify C
with a two-dimensional sphere.

It remains to prove that the tropical variety trop.S/ is a strong deformation retract
of San under the map 
 W San ! trop.S/. The tropical variety trop.S/ is schön; its
intersection with every torus orbit is smooth; see [22, Definition 6.4.19]. Moreover,
all multiplicities of top degree polyhedra are equal to one, so the multiplicity at each
point is equal to one by semicontinuity; see [22, Lemma 3.3.6]. Therefore, 
 has
a section trop.S/ ! San whose image is equal to a skeleton S.S ;H/ of a suitable
semistable model .S ;H/ of S; see [16, Remark 9.12]. The skeleton S.S ;H/ is
a proper strong deformation retract of San by [17, Sect. 4.9]. The retraction map
San ! trop.S/ is equal to 
 , so � -equivariant as discussed in Example 4.3. The
retraction s in the claim of the theorem is the composition of retractions from San to
trop.S/ and from trop.S/ to the cube constructed above. ut

Corollary 6.2 The analytified K3 surface San is homotopy equivalent to a two-
dimensional sphere. ut

Remark 6.3 From Proposition 6.1, it does not follow that the homotopy between
s ı e and idSan can be chosen � -equivariantly. This is most likely true, but presently
there seems to be no reference for this fact.

We now analyze the topology of the analytification of the Enriques surface
S=� using our knowledge about San. The quotient map qW S ! S=� analytifies
to qanW San ! .S=�/an. For any X, we denote 
 WXan ! X the natural map.
Summarizing, we consider the following diagram.
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S

(S/σ)an

S/σS

an qan

q

πππ

σ

σ
S 

an S 

an

It is crucial that qan is a quotient by � an, as we now prove.

Proposition 6.4 We have .S=�/an D San=� an as topological spaces.

Proof First, we prove the equality of sets .S=�/an D San=� an. Consider x 2 .S=�/an

and its image 
.x/ 2 S=� . If U D Spec.A/ is an affine neighbourhood of the point

.x/, then the point x corresponds to a semi-norm j � jx on A and 
.x/ corresponds to
the prime ideal px D ff 2 A W jf jx D 0g; see [5, Remark 1.2.2]. We denote by H .x/
the completion of the fraction field of A=px D �.
.x//. We have the equality of
fibres San

x D
(
Sx ��.
.x// H .x/

)an
; see [5, p. 65]. In down-to-earth terms, the set San

x
consists of multiplicative seminorms on the H .x/-algebra R D H0.Sx;OSx/˝�.
.x//
H .x/ which extend the norm j � jx on H .x/. Using Proposition 1.3.5 in [5], we
may assume H .x/ is algebraically closed. Since H0.Sx;OSx/

� D �.
.x//, we have
R� DH .x/. Similarly, the ring R is a free H .x/-module of rank 2. It follows that R
is isomorphic to either H .x/�2 with � permuting the coordinates or to H .x/Œ"�="2.
Given a multiplicative seminorm j � jy on R, its kernel q D ff 2 R W jf jy D 0g is a
prime ideal in R. In both cases, we have R=q D H .x/. Since j � jy agrees with j � jx
on H .x/, we see that j � jy is determined uniquely by its kernel. The involution �
acts transitively on those, hence � an acts transitively on the set San

x and the equality
is proven.

Second, we prove that .S=�/an D San=� an as topological spaces; in other words,
the topology on .S=�/an is induced from this of San. Take an open subset U 	 San.
We want to show that qan.U/ is open. Clearly, the union U [ � an.U/ 	 San is open
and a union of fibres, so its complement Z 	 San is closed and a union of fibres. The
map qan is finite, so it proper and hence closed; see [5, 3.4.7 and 3.3.6]. In particular,
the image qan.Z/ 	 .S=�/an is closed, so its complement 
.U/ D .S=�/an n qan.Z/
is open. This proves that .S=�/an D San=� an as topological spaces. ut

Corollary 6.5 There exists a retraction from .S=�/an onto RP
2. In particular

.S=�/an is not contractible.

Proof The argument follows formally from Proposition 6.1 and Proposition 6.4. If
C is a two dimensional sphere with an antipodal involution � and C=� ' RP

2, then
Proposition 6.1 provides the � -invariant map eW San ! C and its section sWC! San.
We now produce equivalents of s and e on the level of San=� an ' .S=�/an.

C C = RP
2

an

e e

qan

e

trop (s) q

s s s

S 

an S 

an

C/σ

(S/σ)anσ
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The map qıeW San ! s.C/=� D RP
2 satisfies qıeı� an D qıe so, by Proposition 6.4,

it induces a unique map eW San=� an D .S=�/an ! RP
2. Similarly, the map qan ı s

satisfies qan ı s ı trop.�/ D qan ı s, so induces a unique map sWRP
2 ! .S=�/an. It

follows that e ı sWRP
2 ! RP

2 is the unique map induced � -invariant map q ı e ı
s D q. Therefore, we have e ı s D idRP2 and s ı e is a retraction of .S=�/an onto
s.RP

2/ ' RP
2. ut

Remark 6.6 If the difficulty presented in Remark 6.3 was removed, a similar
argument would show that .S=�/an strongly deformation retracts onto RP

2.

Proof of Theorem 1.3 Follows from Proposition 6.1 and Corollary 6.5. ut
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Specht Polytopes and Specht Matroids

John D. Wiltshire-Gordon, Alexander Woo, and Magdalena Zajaczkowska

Abstract The generators of the classical Specht module satisfy intricate relations.
We introduce the Specht matroid, which keeps track of these relations, and the
Specht polytope, which also keeps track of convexity relations. We establish basic
facts about the Specht polytope: the symmetric group acts transitively on its vertices
and irreducibly on its ambient real vector space. A similar construction builds a
matroid and polytope for a tensor product of Specht modules, giving Kronecker
matroids and Kronecker polytopes instead of the usual Kronecker coefficients. We
call this process of upgrading from numbers to matroids and polytopes “matroid-
ification”. In the course of describing these objects, we also give an elementary
account of the construction of Specht modules. Finally, we provide code to compute
with Specht matroids and their Chow rings.

MSC 2010 codes: 05E10

1 Overview

The irreducible representations of the symmetric group Sn were worked out by
Young and Specht in the early twentieth century, and they remain omnipresent in
algebraic combinatorics. The symmetric group Sn has a unique irreducible repre-
sentation for each partition of n 2 N. For example, S4 has exactly five irreducible
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representations corresponding to the integer partitions .4/, .3; 1/, .2; 2/, .2; 1; 1/
and .1; 1; 1; 1/. Young and Specht constructed these irreducible representations,
which are now called Specht modules. Young [20] gave a matrix representation and
Specht [18] gave a combinatorial spanning set. Garnir [8] later explained how to
rewrite Specht’s spanning set in terms of Young’s basis, which are now called Garnir
relations. Modern accounts can be found in Sagan [16] or James and Kerber [10].

The classical approach, however, privileges Young’s basis over other bases and
the Garnir relations over other linear dependencies. Focusing on Young’s basis and
the Garnir relations immediately breaks the symmetry of Specht’s spanning set and
ignores its other combinatorial properties. Certainly, there are linear relations other
than those given by Garnir and bases other than those given by Young to investigate!

To this end, we introduce the Specht matroid, which encodes all the linear
dependencies among the vectors of Specht’s spanning set. We also introduce the
Specht polytope, which provides a way to visualize the Specht module, since the
polytope sits inside the corresponding real vector space with positive volume, and
the action of the symmetric group takes the polytope to itself. In the case of the
partition .n � 1; 1/, we recover both classical constructions and objects of current
research interest. The corresponding Specht polytope is essentially the root polytope
of type An. In Theorem 7.5, we record a result of Ardila, Beck, Hoşten, Pfeifle
and Seashore [2] describing the faces of this polytope. The Specht matroid for the
partition .n � 1; 1/ is the matroid of the braid arrangement, and hence its Chow
ring is the cohomology ring for the moduli space M0;n of n marked points on
the complex projective line [4, 6]. We compute further examples of Chow rings
in Sect. 5, including the solution to Problem 1 on Grassmannians in [19], which
partially inspired this project. We state a combinatorial conjecture for the graded
dimensions of the Chow rings for the Specht matroid for the partition .2; 1n�1/.
However, we do not study any further connections with moduli spaces.

Our approach allows us to upgrade familiar combinatorial coefficients to
matroids and polytopes. By analogy with categorification, which sometimes
upgrades numbers to vector spaces, we call this process matroidification, or
polytopification when working over the reals. This is the subject of Sect. 8. In
Theorem 8.3, we polytopify the Kronecker coefficients, building the Kronecker
polytopes. We also construct the Kronecker matroids encoding the Garnir-style
rewriting rules that govern linear dependence in a tensor product of Specht
modules. An analogue of Young’s basis for the Kronecker matroid would provide a
combinatorial rule for computing Kronecker coefficients. In Theorems 8.6 and 8.9,
we give similar results for Littlewood–Richardson coefficients and plethysm
coefficients.

The outline of the article is as follows. We begin in Sect. 2 with a self-contained
construction of the Specht module. This construction is a bit unusual in that it makes
no mention of tabloids, polytabloids, standard tableaux, or the group algebra. In
Sect. 4, 5, and 6, we introduce respectively the Specht matroid, its Chow ring, and
the Specht polytope; we then prove some basic general facts about them. Section 7
is devoted to the partitions .n � 1; 1/ and .2; 1n�1/, for which the Specht matroids
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and polytopes coincide with other well-studied objects. We describe Kronecker,
Littlewood–Richardson, and plethysm matroids and polytopes in Sect. 8. Section 9
includes code for calculating the objects described in this paper.

2 Introduction to Specht Modules

This section gives an exposition of the representation theory of the symmetric group
motivated by elementary combinatorics. The reader who wishes to start with the
main statements should first look at Definitions 2.14 and 2.16, and Theorem 2.18.

We begin with an elementary combinatorics problem: In how many distinct ways
can the letters in a word TENNESSEE be rearranged? There are 9Š ways to move
the letters around, but since some letters are repeated, some of these rearrangements
give the same string. For example, the four Es can be rearranged to appear in any
order without affecting the string. This reasoning gives the following answer:

#frearrangements of TENNESSEEg D 9Š
1Š 4Š 2Š 2Š

:

The idea of rearranging letters can be formalized as an action of the symmetric
group. In our example, the symmetric group S9 acts on the word TENNESSEE. The
stabilizer subgroup of S9 with respect to the word TENNESSEE is isomorphic to
S1 � S4 � S2 � S2. Hence, the given argument provides an isomorphism of S9-sets,
which is to say, a bijection that commutes with the group action:

frearrangements of TENNESSEEg ' S9
S1�S4�S2�S2

:

Using the orbit-stabilizer theorem, we recover the numerical answer above.
Now, we add a layer of complexity. Suppose we wish to understand the S9-set

frearrangements of TENNESSEEg � frearrangements of SASSAFRASg;

where S9 acts diagonally on the two factors. This diagonal action makes sense
because SASSAFRAS has the same number of letters as TENNESSEE. Each factor
in this Cartesian product has a single S9-orbit, but the product certainly does not.
The pairs

Ç
EEEENNSST

SSSSAAAFR

å
and

Ç
TENNESSEE

SASSAFRAS

å

cannot be in the same orbit because the upper Es and lower Ss always appear
together in the first pair but not in the second. Alternatively, their orbits have dif-
ferent sizes. If we consider a column, such as E

S , as a compound letter, then the total
number of distinct rearrangements of the first compound word is 9Š=.4Š 2Š 1Š 1Š 1Š/ D
7560, which does not equal the number 9Š=.1Š 3Š 2Š 1Š 1Š 1Š/ D 30240 of rearrange-
ments of the second compound word.
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Fig. 1 A simultaneous
histogram

E

N
S

T

S
A

F
R

For the construction of the Specht module, we are interested in free orbits; an
orbit is free if each of its points has trivial stabilizer. In our context, a non-trivial
stabilizer comes from repeated columns, so a pair is in a free orbit if and only if all
of its columns are distinct. For example, the pair

Ç
SNETNEESE

SASSSAFAR

å

has no repeated columns, so its orbit is free. We claim the following:

• There is only one free orbit, and we have already found it.
• The proof is basically a picture, and the proof-picture-idea is strong enough to

construct a complete set of irreducible representations over C for the symmetric
group Sn. These are the Specht modules. (The story would be the same for any
field of characteristic zero.)

In Fig. 1, the boxes provide a simultaneous histogram tallying the letter multi-
plicities for each word. From the picture, we see that the letter E from the word
TENNESSEE must appear once with each of the letters S, A, F, and R. Indeed, in
order to keep distinct the four columns in which E appears, E must be paired with
each of the four available letters in the bottom row. Removing the four Es from the
pool along with one copy of each of the letters S, A, F, and R, we may proceed
to pair off N with the two letters S and A. Continuing inductively, we see that the
combinations that appear in a valid pair of rearrangements give the boxes in the
diagram.

We give some definitions that encode these pictures.

Definition 2.1 A partition of n 2 N is an integer vector � WD .�1; �1; : : : ; �`/ such
that �1 � �2 � � � � � �` > 0 with �1 C �2 C � � � C �` D n. The number ` WD `.�/
is the length of the partition.

Definition 2.2 A diagram is a finite subset of N
2
�1. The elements of a diagram are

called boxes. The diagram associated to a partition � is D.�/ WD f.i; j/ W 1 � j � �ig

where, by convention, �i D 0 if i > `.�/.
The partition in our running example is .4; 3; 1; 1/; its associated diagram is

f.1; 1/; .1; 2/; .1; 3/; .1; 4/; .2; 1/; .2; 2/; .2; 3/; .3; 1/; .4; 1/g:
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Throughout, we use matrix coordinates, so .2; 3/ denotes the box in the second row
and third column.

The following proposition is immediate.

Proposition 2.3 A diagram D corresponds to a partition � if and only if D is closed
under natural coordinatewise partial order. In other words, D D D.�/ for some
partition � if and only if, for any .i; j/ 2 D and any .a; b/ with 1 � a � i and
1 � b � j, we have .a; b/ 2 D.

Definition 2.4 We say two words w1;w2 of the same length n have complementary
rearrangements if the diagonal action of Sn on the product

frearrangements of w1g � frearrangements of w2g

has a unique free orbit. Furthermore, if .w1;w2/ is in this free orbit, then we say w1
and w2 are complementary.

As Fig. 1 shows, the words TENNESSEE and SASSAFRAS have complemen-
tary rearrangements; these words are not complementary, but the rearrangements
TENENEESS and SASSAFRAS are.

Theorem 2.5 Two words w1;w2 have complementary rearrangements if and only
if there exists a parititon diagram D with the simultaneous histogram property:

# occurrences in wi of its jth most-common letter D #f.d1; d2/ 2 D W di D jg :

Proof If we have a partition diagram D with the simultaneous histogram property,
then we can put in the box .d1; d2/ the d1-th most common letter in w1 and the d2-th
most common letter in w2 breaking ties arbitrarily. The boxes have distinct pairs,
so there exists at least one free orbit; this orbit is unique by the iterative argument
below Fig. 1. In the other direction, rewrite the words using positive integers, so that
in each word k appears at least as often as kC 1, and take

D D f.d1; d2/ W d1 appears in a column with d2 in the unique free orbitg : ut

We use the idea of complementary words to construct irreducible representations
of the symmetric group Sn. Before doing so, we collect some basic definitions in
representation theory.

Definition 2.6 Let G be a group. A (complex) representation of G is a C-vector
space V along with a linear action of G on V: for any vectors v;w 2 V , any scalar
c 2 C, and any element g 2 G, we have g�vCg�w D g�.vCw/, and c.g�v/ D g�.cv/.
Alternatively, the data of a representation can be encoded in a group homomorphism
G! GL.V/, where GL.V/ is the group of invertible linear automorphisms of V .

Definition 2.7 For representations V and W of the group G, a linear transformation
'WV ! W is a map of G representations if ' commutes with the action of G: for
all g 2 G and all v 2 V , we have '.g � v/ D g � .'.v//.
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Definition 2.8 If V and W are representations of G, then the tensor product V ˝W
is a representation of G under the action g � .v ˝ w/ D .g � v/˝ .g � w/.

Definition 2.9 If V is a representation of G, then its dual V_ WD Hom.V;C/ has
the linear action of G such that, for f 2 V_ and g 2 G, the functional g � f satisfies
.g � f /.v/ D f .g�1 � v/ for any v 2 V .

We also need two definitions specific to the symmetric group Sn.

Definition 2.10 For any n 2 N, the representation " is the one-dimensional vector
space on which Sn acts by sign. More precisely, for v 2 ", we have g � v D v if
g is an even permutation and g � v D �v if g is an odd permutation. If V is any
representation of Sn, then V ˝ " is isomorphic to V as a vector space, but the action
of Sn differs in that the action of an odd permutation picks up a sign.

Definition 2.11 Given a word w, the representation V.w/ is the vector space with
basis given by the rearrangements of w, with Sn acting by permuting our basis
according to how it rearranges words.

The representation V.w/ is special in that the action of Sn is actually induced
from a combinatorial action of Sn on a basis of V.w/. This property has a useful
consequence.

Lemma 2.12 Given any word w of length n, we have a canonical isomorphism of
Sn representations V.w/ ' V.w/_ given by identifying our basis of rearrangements
with its dual basis.

Proof Since V.w1/ has a canonical basis fvrg, where r is an arbitrary rearrangement,
the vector space V.w1/_ has a dual basis ffrg, and

.� � fr/.vr0/ D

®
1 if r0 D � � r;
0 if r0 ¤ � � r:

Since � � fr D f� 	r, the map vr 7! fr is an isomorphism of Sn representations. ut

We are now ready to construct representations of Sn using the combinatorics of
complementary words; see Definition 2.4.

Corollary 2.13 If w1 and w2 are words of length n with complementary rearrange-
ments, then there is a unique-up-to-scaling map 'WV.w2/ ˝ " �! V.w1/ of Sn

representations and the image of ' is an irreducible representation.

Proof Consider an arbitrary map � WV.w2/ ˝ V.w1/_ ! � of Sn representations;
the linear map � satisfies � � �.v/ D �.� � v/ for all v. Any such map must factor
through the quotient V.w2/ ˝ V.w1/_=W, where W is the subspace spanned by
elements of the form

(
sign.�/v � �v

)
for all v. In this quotient, any element of Sn

acts on the image of any vector by sign. Pairs of rearrangements form a basis for the
tensor product, so the images of these basis vectors still span the quotient. If some
pair of rearrangements has a repeated column, then swapping those columns fixes
the pair. The vectors indexed by such pairs become zero in the quotient because
transpositions are odd.
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By Theorem 2.5, the action on pairs has a unique free orbit. Any two vectors
in the free orbit are related by a unique permutation, and so any vector spans the
quotient, which must therefore be one-dimensional. Using tensor-hom adjunction,

Hom
(
V.w2/˝ V.w1/

_=W; "
)
' Hom

(
V.w2/˝ V.w1/

_; "
)

' Hom
(
V.w2/˝ ";V.w1/

)
;

where the first space is one-dimensional by the first paragraph. All isomorphisms
are natural. We may take ' to be any nonzero vector in the last hom-space. This
shows we have a unique-up-to-scaling linear map 'WV.w2/˝ " �! V.w1/.

Now, we show that V D Im' is irreducible. Suppose U 	 V is a proper subrepre-
sentation. By Maschke’s Theorem, there exists a complementary subrepresentation
U0 
 V with the property that V D U ˚ U0. Let 
 WV ! V denote the projection

with kernel U0 and image U. But the composite V.w2/˝" �! V


�! V �! V.w1/

cannot be a scalar multiple of ' because it is nonzero and has a different image. ut
The next definition helps us write an explicit example of the linear map '.

Definition 2.14 Let w1;w2 be fixed words of length n, and let r1 and r2 be arbitrary
rearrangements of w1 and w2 respectively. Define Young’s character to be

Yw1;w2 .r1; r2/ WD
∑

�

sign.�/;

where � 2 Sn ranges over all permutations such that � � w1 D r1 and � � w2 D r2.

Proposition 2.15 Young’s character takes values in f�1; 0; 1g. Whenever writing
r2 on top of r1 has a repeated column, we have Yw1;w2 .r1; r2/ D 0. If w1 and w2 are
complementary, then Yw1;w2 .r1; r2/ ¤ 0 exactly when all columns are distinct.

Proof If there is a repeated column, then interchanging those columns does not
change the value of Y, but it also introduces a sign change (since interchanging two
columns is an odd permutation). It follows that Y D 0 in this case. If all the columns
are distinct, then there is at most one permutation carrying each row back to wi, and
so the sum either is empty or has a single term. In the event that w1 and w2 are
complementary, the sum is nonempty. ut

Definition 2.16 If w1;w2 are complementary words of length n, the Specht matrix
'.w1;w2/ is the frearrangements of w1g � frearrangements of w2g matrix with
.r1; r2/-entry equal to Yw1;w2 .r1; r2/. If w1 and w2 are not complementary but have
complementary rearrangements, then we choose complementary rearrangements w0

1

and w0
2 of w1 and w2 respectively and define the Specht matrix '.w1;w2/ to be

'.w0
1;w

0
2/. The column-span of the Specht matrix (as a subspace of V.w1/) is the

Specht module V.w1;w2/. The symmetric group acts on V.w1;w2/ by permuting the
rearrangements of w1.
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Table 1 Specht matrix
'.1 1 2 2; 1 2 1 2/

1 1 2 2 1 2 1 2 1 2 2 1 2 1 1 2 2 2 1 1 2 1 2 1

1 2 1 2 1 0 �1 �1 1 0

1 1 2 2 0 �1 1 1 0 �1

1 2 2 1 �1 1 0 0 �1 1

2 1 2 1 1 0 �1 �1 1 0

2 2 1 1 0 �1 1 1 0 �1

2 1 1 2 �1 1 0 0 �1 1

When w1 and w2 are not themselves complementary, the Specht matrix '.w1;w2/
is only defined up to a global choice of sign depending on which complementary
rearrangements are chosen, but the Specht module is independent of this choice.

Example 2.17 For the words w1 D 1 1 2 2 and w2 D 1 2 1 2, the Specht matrix
'.1 1 2 2; 1 2 1 2/ is shown in Table 1. We now describe the action of Sn on the rows
of this Specht matrix. Consider the action of � D .1 2 3/ on the row word w1. This
action changes the order of rows to 2 1 1 2, 1 2 1 2, 2 2 1 1, 1 2 2 1, 2 1 2 1 and 1 1 2 2.
What effect does it have on the columns of the Specht matrix? Let us look, for
example, at the first column, labelled by 1 1 2 2. With the new row order this column
becomes c D .�1; 1; 0;�1; 1; 0/, which is the original column for r2 D 2 1 1 2.
If we consider also the action of � on the rearrangements of w2, we see that the
rearrangement r2 D 2 1 1 2 of w2 becomes � � 2112 D 1 1 2 2, which is the label of
the first column. The permutation � acts this way on the Specht module.

We have the following fundamental fact about this representation.

Theorem 2.18 The Specht module V.w1;w2/ is an irreducible representation of Sn.

Proof By the proof of Corollary 2.13, we see that having a unique free orbit gives
a unique-up-to-scaling map 'WV.w2/ ˝ " ! V.w1/ whose image is irreducible.
It remains only to show that the Specht matrix provides an explicit choice for '.
This was accomplished in Proposition 2.15, which shows that Y provides a map
"! V.w1/˝ V.w2/_, where we have used the fact that the actions of Sn on V.w2/
and V.w2/_ are canonically equal. ut

The representation does not actually depend on the words but only on the
partition diagram, so we make the following definition:

Definition 2.19 If � is a partition of n, then the Specht module V.�/ is the Specht
module V.w1;w2/ for any choice of complementary w1 and w2 such that the diagram
showing w1 and w2 are complementary is D.�/. We call w1 the row word and w2 the
column word.

For example, the matrix in Example 2.17 is the Specht matrix V.2; 2/.

Remark 2.20 Since every entry of the Specht matrix is a 0, 1, or �1, the Specht
module can be similarly defined over any field. However, over a field of positive
characteristic, Maschke’s Theorem does not hold. Nevertheless, over any field of
characteristic other than 2, the statements above show that the Specht module is
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indecomposable, meaning that V.w1;w2/ cannot be written as the direct sum of two
subrepresentations.

If w1 and w2 are complementary words with associated diagram D, then w2 and
w1 are also complementary, with an associated diagram which is the transpose of D.
It will be useful to have a definition describing this relationship.

Definition 2.21 Given a partition �, the conjugate partition �� is the partition
whose diagram D.��/ is the transpose of the diagram D.�/. Formally, we have
��

i D #fk W �k � ig.
For example, if � D .4; 3; 1; 1/, then �� D .4; 2; 2; 1/. This natural combinatorial
construction has the following representation-theoretic meaning.

Theorem 2.22 We have an isomorphism of Sn representations V.��/ ' V.�/_˝ ".

Proof Transposing the Specht matrix �.w1;w2/ gives the Specht matrix �.w2;w1/,
which is the Specht matrix for the conjugate partition. After transposing, the
symmetric group acts on �.w2;w1/ by rearranging the column word w1. This is not
the correct action of the symmetric group on the Specht matrix; the action is off only
by a sign and a dual because, by the identity Y.w2; �w1/ D .�1/� � Y.��1w2;w1/,
the symmetric group acts on the row word w2 by ��1 and picks up a sign with odd
permutations. ut

Remark 2.23 We have not needed it, but it is actually the case that Specht modules
are self-dual in the sense that there is an abstract isomorphism V.�/_ ' V.�/.
Choosing a basis from the columns of the Specht matrix, it would be possible to
write matrices for the action of the symmetric group. Evidently, these matrices
would contain only real numbers—in fact, only rational numbers—and so their
traces would be real as well. It follows that the character of a Specht module is
real, and so its dual, whose character is given by complex conjugation, is the same.
With this fact in mind, Theorem 2.22 gives that V.��/ Š V.�/˝ ".

We remark briefly on the relationship between the construction above and
the more traditional presentation found in James and Kerber [10, Chap. 7.1] or
Sagan [16, Chap. 2.3]. In the usual construction, one defines a column-strict filling
of � to be a labelling of D.�/ by the integers f1; 2; : : : ; ng such that every column is
strictly increasing. Then, for each column-strict filling T , one associates an element
vT in an abstractly defined vector space, and the Specht module is the span of the
vectors vT as one takes all possible fillings T . In the definition of Specht module
V.�/ used here (Definition 2.19), we start with a word w2, which we can take to
be w2 D 1�12�2 � � � k�k , where � D �� and k D �1. Each rearrangement r of
the word w2 gives a column of the corresponding Specht matrix, which we can
interpret as a vector vr, and V.�/ is defined as the span of the vectors vr as one takes
all possible rearrangements r. For each rearrangement r of w2, one can define an
associated filling Tr: the one where the labels in column i are the positions of the
appearances of i in r. For example, if � D .4; 3; 1; 1/, so w2 D 111122334, and we
take r D 131243112 (or r D ESENTSEEN if we let w2 D TENNESSEE), then Tr is
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Tr =

8

7

3

1

9

4

6

2 5

This correspondence between column-strict fillings and rearrangements essentially
gives the correspondence between our version and the usual version. Our version,
however, sometimes differs by a sign (when the minimal rearrangement of w2 to r is
by an odd permutation). This sign turns out to be useful; for instance, Theorem 6.2
would be harder to state otherwise.

3 A Complete Set of Irreducible Representations

The Specht modules V.�/ as � varies over all partitions of n form a complete set of
finite-dimensional irreducible representations for Sn. The usual proof, found in [16,
Sect. 2.4], shows that V.�/ 6Š V.�/ for � ¤ �. Since there are as many conjugacy
classes of Sn as there are partitions of n, we have all the irreducible representations.
We give a new and different argument that the Specht modules are a complete set of
irreducibles assuming an unproven combinatorial conjecture.

Definition 3.1 In a diagram D, the hook of a box d 2 D consists of the box d, all
boxes directly to the right of d, and all boxes directly below d. In other words, if
d D .i; j/ 2 D, the hook of d is the set of all .a; b/ 2 D such that a � i and b D j or
a D i and b � j. The hook length of a box 	 .d/ is the number of boxes in its hook.

Definition 3.2 The dimension of a diagram D with n boxes is dim D WD nŠ∏
d2D 	 .d/

.

By a beautiful result of Frame, Robinson, and Thrall [7], the dimension of a
diagram equals the number of standard Young tableaux, which is the dimension of
its Specht module. A bijective proof of this result was later given by Novelli, Pak,
and Stoyanovskii [13]. Consequently, dim D is always an integer (Fig. 2).

An ordered set partition of a finite set S is a sequence .P1;P2; : : : ;P`/ of subsets
of S such that each Pi is nonempty, Pi \ Pj D ¿ for all i ¤ j, and

⋃
i Pi D S. An

ordered set partition is properly ordered if the parts are nonincreasing in size, so
#Pi � #PiC1 for all i. For each properly ordered set partition P D .P1;P2; : : : ;P`/

Fig. 2 A hook with six boxes
inside the diagram D.�/ for
� D .6; 5; 3; 3/
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of the set f1; 2; : : : ; ng, pick a word wP of length n so that the ith and jth letters of
wP match if and only if i and j are in the same Pk. For each P, choose also a word w0

P
so that wP and w0

P are complementary. Every properly ordered set partition P gives
rise to an underlying partition �.P/ with �.P/i D #Pi. A set partition with parts of
distinct sizes will have only one proper ordering, but a set partition with parts of
equal sizes will have more. For notational simplicity, set d.P/ WD dim D

(
�.P/

)
.

While searching for a Specht matrix proof that every irreducible representation
of the symmetric group is isomorphic to some Specht module, we uncovered the
following conjecture, which has been checked for n � 5.

Conjecture 3.3 If �; � 2 Sn are two permutations, then Young’s character in
Definition 2.14 satisfies

∑

P

∑

r

d.P/2 Y.�wP; r/Y.�wP; r/ D

{
.nŠ/2 if � D �

0 if � ¤ �;

where the first sum is over all properly ordered set partitions of f1; 2; : : : ; ng, and
the second sum is over all rearrangements of the word w0

P.
For our application, we desire a proof of the conjecture that does not make use

of the following theorem.

Theorem 3.4 Every irreducible representation of Sn arises exactly once from a
diagram with n boxes.

Proof This proof assumes Conjecture 3.3. There are three parts: first, we build a
block matrix whose blocks are built from Specht matrices; second, we use the
conjecture to show that this matrix has full rank; finally, we conclude that the regular
representation CSn is spanned by a sum of Specht modules.

Build a block matrix M with a single block row and a block column for every
properly ordered set partition P of the set f1; 2; : : : ; ng. The block MP associated
to P is a matrix whose rows are indexed by Sn and whose columns are indexed
by the rearrangements of w0

P. The .�; r/-entry of MP is YwP;w0

P
.�wP; r/. The rows

of MP come directly from the Specht matrix associated to the complementary pair
.wP;w0

P/, so the column-span of MP is isomorphic to the Specht module V.�P/.
Conjecture 3.3 asserts that the rows of this block matrix are orthogonal under the

inner product given by the diagonal inner product hu; vi D
∑

PIr d.P/2 � .uPIrvPIr/,
where uPIr denotes the entry of u in the column indexed by P and r. Consequently,
the block matrix M has full rank.

The natural action of Sn by permuting the rows of this matrix is the regular
representation CSn. Since M has full rank, the image of M must be the regular
representation. On the other hand, the image of M is the span of the images of
MP, and the image of each MP is isomorphic to some Specht module V.�P/. Hence,
the regular representation is spanned by a sum of Specht modules.

The regular representation always contains a copy of every irreducible represen-
tation, so every irreducible representation of Sn is isomorphic to the Specht module
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V.�/ for some partition �. Since there are as many conjugacy classes of Sn as there
are partitions of n, and the number of distinct irreducible representations is always
equal to the number of conjugacy classes, the Specht modules must be distinct. ut

4 Specht Matroids

A matroid is a combinatorial generalization of the dependence relations among
a finite set of vectors in a vector space. This structure can be defined in many
equivalent ways, each with an axiomatization on some collection of subsets of a
ground set E, which is the abstraction of our original set of vectors. Because of
the presence of many equivalent definitions, each useful in a different context, it
has become customary not to define the word “matroid” but instead to only give
definitions of the bases, independent sets, circuits, rank function, or other linear
algebra notion associated to the underlying object M, the matroid. Since we will
only work with matroids that come from a set of vectors in a C-vector space (so
called C-representable matroids), we do not give any of these abstract definitions.
We refer the interested reader to [15].

Let E be a finite set, which we take to be f1; 2; : : : ; kg for convenience, and let
fvi W i 2 Eg be a set of vectors spanning a vector space C

n. A subset B 
 E is a basis
of the matroid M.v1; v2; : : : ; vk/ if fvi W i 2 Ig is a basis of C

n. A subset C 
 E is
a circuit of M if it is a minimal dependent set: v.C/ D fvi W i 2 Cg is dependent
but any proper subset of v.C/ is independent. Given some subset A 	 E, the rank
of A, denoted r.A/, is the dimension of the subspace spanned by fvi W i 2 Ag. A
flat of M is a maximal subset of E of a given rank; in other words, F 
 E is a flat
if r.F [ fig/ > r.F/ for all i 62 F. One can think of each flat F as representing
the subspace spanned by fvi W i 2 Fg, which gives a bijection between subspaces
spanned by a subset of fv1; v2; : : : ; vkg and flats. This correspondence shows that the
flats of a matroid M form a lattice under inclusion, called the lattice of flats of M.

Given a partition �, we define the Specht matroid M.�/ to be the matroid formed
from the columns of the Specht matrix for �. The Specht matrix depends on a global
choice of sign coming from the complementary words chosen, but the matroid is
independent of this choice.

Example 4.1 We describe the matroid M.2; 2/, which is the matroid represented by
the columns of the Specht matrix in Example 2.17. The circuits are f1122; 2211g,
f1212; 2121g, and f1221; 2112g and all sets of three vectors not containing one of
the first three sets. The bases are the 12 different sets of 2 vectors not containing a
circuit. One can choose any of the six vectors as the first vector in the basis, which
leaves four choices for the second vector, but this procedure chooses every basis
twice. The five flats are ¿, the three circuits of size 2, and the set of all six vectors.

We characterize the possible circuits of size 2, which also characterizes the flats
of rank 1.
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Theorem 4.2 The Specht matroid M.�/ has a circuit with two elements if and only
if the diagram of � has two columns of the same size.

Proof For simplicity, we let � D �� and let our complementary words be x and w,
where w D 1�12�2 � � � k�k (with k D �1) and x D 12 � � ��11 � � ��2 � � � 1 � � ��k. The
pair .x;w/ is part of the free orbit on the rearrangements of .x;w/. We could give a
proof describing the circuits involving any arbitrary rearrangement r of w. However,
since the symmetric group Sn acts transitively on the matroid M.�/, we may choose
our favorite rearrangement of w, which is w itself. For any other rearrangement r,
we have a circuit of two elements involving r if and only if there is a circuit of two
elements involving w.

Suppose � has two columns of the same size, so there exists some i such that
�i D �iC1. Consider w and the rearrangement r where all the i’s and .iC 1/’s have
been switched, so r D 1�12�2 � � � .i�1/�i�1 .iC1/�i.i/�i.iC2/�iC2 .iC3/�iC3 � � � k�k .
For any rearrangement s of the row word, we have Y.s;w/ D .�1/�i Y.s; r/. Hence,
vw � .�1/

�ivr D 0, and fw; rg forms a circuit.
Now, suppose all the columns of � are distinct. Suppose r is some rearrangement

of w with r ¤ w. We show there is some rearrangement s of the row word such that
Y.s;w/ ¤ Y.s; r/. Let k be the smallest integer such that wk ¤ rk, and let i D wk

and j D rk. By our construction of w, j > i, and since the columns of � are distinct,
�j < �i. We also have rM D i for some M > m, where m D �1C�2C� � �C�i is the
position of the last occurrence of the letter i in w. Now, consider the rearrangement
s of the row word switching xk and xm. The pair .s;w/ is part of the free orbit, and,
in fact, Y.s;w/ D �1. However, we have Y.s; r/ D 0 because .sM; rM/ D .a; i/ for
some a < xk and .sk�xk�a; rk�xk�a/ D .a; i/. Therefore, the vectors vr and vw do not
form a circuit for any rearrangement r. ut

Matroids have a number of interesting invariants. One is the characteristic
polynomial, a generalization of the chromatic polynomial for a graphical matroid.
The characteristic polynomial pM.t/ for a matroid M can be calculated recursively
by deletion and contraction, so it is a specialization of the Tutte polynomial
TM.x; y/. It would be interesting to find formulas or characterizations of the Tutte
or characteristic polynomials of Specht matroids.

Example 4.3 For the Specht matroid M.2; 1; 1; 1/, we use Sage to compute the
Tutte polynomial: TM.2;1;1;1/.x; y/ D x4C x3C x2C xC y. The characteristic polyno-
mial is related to the Tutte polynomial by the formula pM.t/ D .�1/r.M/TM.1� t; 0/.
Since r

(
M.2; 1; 1; 1/

)
D 4, we get pM.2;1;1;1/.t/ D t4� 5t3C 10t2� 10tC 4. Similar

computations produce pM.3;2/.t/ D t5 � 15t4 C 90t3 � 260t2 C 350t � 166 and
pM.2;2;1/.t/ D t5 � 10t4 C 45t3 � 105t2 C 120t � 51.

5 Chow Rings

Given a matroid M, Feichtner and Yuzvinksy [6] (following DeConcini and
Procesi [4] in the representable case) define the Chow ring A�.M/ ' QŒxF�=IM

of M as follows. There is one generator xF for each nonempty flat F, and the ideal
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IM is generated by the following two types of relations: xFxG 2 IM whenever F and
G are incomparable, and

∑
F�feg xF 2 IM for every element e in the ground set.

Remark 5.1 The definition of Feichtner and Yuzvinsky also requires as input a
building set, which is a subset of the flats satisfying some combinatorial properties
with respect to the lattice. The definition we have given here is the case of the
maximal building set, which is the one containing every nonempty flat. A slightly
different presentation of the Chow ring appears also in the literature. In [1],
Adiprasito, Huh, and Katz use a presentation that differs from the one of Feichtner
and Yuzvinksy in not using the generator (which can be rewritten in terms of other
generators) corresponding to the entire ground set of M.

The next example gives a solution to Problem 1 on Grassmannians in [19].

Example 5.2 Let us consider the matroid M which is formed from the columns of
the matrix

⎡

⎣
1 0 0 1 1 1

0 1 0 2 3 4

0 0 1 0 0 1

⎤

⎦ ;

where the columns are labelled 0; 1; : : : ; 5. This matrix represents a point in
Gr.3;C6/ with 16 nonzero Plücker coordinates. To determine the Chow ring of M,
first we list all nonempty flats of M:

f0g; f0; 1; 2; 3; 4; 5g; f0; 1; 3; 4g; f0; 2g; f0; 5g; f1g; f1; 2g; f1; 5g;

f2g; f2; 3g; f2; 4g; f2; 5g; f3g; f3; 5g; f4g; f4; 5g; f5g:

There is one generator xF of the Chow ring A�.M/ for each nonempty flat F. The
monomial generators in IM coming from pairs of incomparable flats are

x0x12 ; x0x15 ; x0x23 ; x0x24 ; x0x25 ; x0x35 ; x0x45 ; x1x02 ; x1x05 ; x1x23 ; x1x24 ; x1x25 ;

x1x35 ; x1x45 ; x2x05 ; x2x15 ; x2x35 ; x2x45 ; x2x0134 ; x3x02 ; x3x12 ; x3x05 ; x3x15 ;

x3x24 ; x3x25 ; x3x45 ; x4x02 ; x4x12 ; x4x05 ; x4x15 ; x4x23 ; x4x25 ; x4x35 ; x5x02 ;

x5x12 ; x5x23 ; x5x24 ; x5x0134:

The relations in IM of the second type are

x0 C x02 C x05 C x0134 C x012345 ; x1 C x12 C x15 C x0134 C x012345 ;

x2 C x02 C x12 C x23 C x24 C x25 C x012345 ; x3 C x23 C x35 C x0134 C x012345 ;

x4 C x24 C x45 C x0134 C x012345 ; x5 C x05 C x15 C x25 C x35 C x45 C x012345:

Copying these generators and relations into Macaulay2 (either by hand or using the
Sage code in Sect. 9), we obtain that the Hilbert series of A�.M/ is 1C 11T C T2.
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Table 2 Dimensions of
Chow groups of M.�/

� 0 1 2 3 4 5

.4/ 1

.3; 1/ 1 8 1

.2; 2/ 1 1

.2; 1; 1/ 1 7 1

.1; 1; 1; 1/ 1

.5/ 1

.4; 1/ 1 41 41 1

.3; 1; 1/ 1 303 2552 2552 303 1

.2; 2; 1/ 1 151 541 151 1

.3; 2/ 1 256 1026 256 1

.2; 1; 1; 1/ 1 21 21 1

.1; 1; 1; 1; 1/ 1

Table 2 lists the dimensions of Ai.M.�// for all partitions � of n D 4 and
n D 5. Every row of Table 2 is palindromic, so dim Ai

(
M.�/

)
D dim Ad�1�i

(
M.�/

)

for all i, where d D dim V.�/. In fact, the Chow ring A�.M/ satisfies an
algebraic version of Poincaré duality for any matroid M. Feichtner and Yuzvinsky [6,
Corollary 2] prove this fact for a representable matroid M by showing that A�.M/
is the cohomology ring of a smooth, proper algebraic variety. This equality of
dimensions is extended to non-representable matroids by Adiprasito, Huh, and
Katz [1, Theorem 6.19] as the first major step in their proof of the log-concavity
of coefficients of the characteristic polynomial of an arbitrary matroid. Finding
a combinatorial interpretation of these dimensions remains an interesting open
problem.

By finding a Gröbner basis for IM and determining the standard monomials,
Feichtner and Yuzvinsky describe a monomial basis for A�.M/ as follows [6,
Corollary 1].

Theorem 5.3 (Paraphrased from [6], Corollary 1) The ring A�.M/ has a basis
consisting of the monomials 1 and

∏k
iD1 xdi

Fi
such that F1 
 F2 
 � � � 
 Fk and

0 < di < rank.Fi/ � rank.Fi�1/ for all i (considering rank.F0/ D 0 by convention).
The next example illustrates how to use Theorem 5.3.

Example 5.4 Consider the Specht matroid M.2; 1; 1; 1/, which is a uniform matroid
on five elements. Denote the elements of its ground set by f0; 1; 2; 3; 4g. Using Sage,
we get the list of nonempty flats of M.2; 1; 1; 1/ in Table 3. By considering one
element sequences of flats, we get one monomial of degree 1 from each flat of rank
greater than 1. This gives 21monomials of degree 1. Flats of rank 1 do not contribute
to the list of monomials because there is no integer d such that 0 < d < 1.

We can get a monomial of degree 2 in two ways. Quadratic monomials which are
a square of only one variable are obtained from one element sequences consisting
of flats of rank greater than 2. There are 11 such flats. For the other quadratic
monomials, we need to consider sequences of flats of length 2 such that the rank of
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Table 3 Nonempty flats of M.2; 1; 1; 1/

Rank Flats

1 f0g; f1g; f2g; f3g; f4g

2 f0; 1g; f0; 2g; f0; 3g; f0; 4g; f1; 2g; f1; 3g; f1; 4g; f2; 3g; f2; 4g; f3; 4g

3 f0; 1; 2g; f0; 1; 3g; f0; 1; 4g; f0; 2; 3g; f0; 2; 4g; f0; 3; 4g; f1; 2; 3g; f1; 2; 4g; f1; 3; 4g; f2; 3; 4g

4 f0; 1; 2; 3; 4g

the first element and the difference between the ranks of the two elements are each at
least 2. In our case we get 10 such sequences. They are of the form Fk 	 Ff0;1;2;3;4g,
where Fk is a flat of rank 2.

The only way to obtain a monomial of degree 3 is from the one element
sequence Ff0;1;2;3;4g. Since the biggest rank of a flat in our matroid is 4, there are
no monomials of degree 4 of higher. The dimensions we obtained are 1; 21; 21; 1,
which agrees with the next-to-last row of Table 2.

In the case where a matroid M is a Specht matroid, Theorem 5.3 has an appealing
consequence. We say that a finite-dimensional representation V of a finite group G
is a permutation representation if the group action on V arises from an action of G
on a basis of V . In other words, the vector space V has a basis v1; v2; : : : ; vd such
that, for all i with 1 � i � d and all g 2 G, we have g � vi D vj for some basis
element vj. These representations are particularly easy to understand because one
only has to understand the combinatorics of a group acting on a finite set.

Given an element vr of the ground set of the Specht matroid, the action of
any permutation � 2 Sn on V.w1/ takes vr to .�1/�v��1r. Therefore, given
a flat F, which we think of as the subspace spanned by fvr1 ; vr2 ; : : : ; vrkg, a
permutation � sends F to the flat ��1F corresponding to the subspace spanned by
fv��1r1 ; v��1r2 ; : : : ; sv��1rk

g. This action on flats induces an action on the Chow ring
A�

(
M.�/

)
sending a monomial

∏k
iD1 xdi

Fi
to

∏k
iD1 xdi

��1Fi
. Since a monomial satisfies

the conditions of Theorem 5.3 if and only if its image under the action of � does,
the action of Sn on A�.M.�// is a permutation action. If one understood the action
of Sn on the set of flags of flats of M.�/, one would be able to easily determine
the graded character of A�

(
M.�/

)
by substituting characters for dimensions in the

computations of Feichtner and Yuzvinsky [6, p. 526]

6 Specht Polytopes

Given a partition �, . n
�
/ we define the Specht polytope P.�/ to be the convex hull in

R
N , where N D

(n
�

)
, of the columns of the Specht matrix. This polytope is defined

only up to a global sign; this choice will be irrelevant for our purposes because any
polytope is projectively equivalent to its negative.

Example 6.1 Consider the partition .2; 1; 1/. The row and column words for this
partition are 1 1 2 3 and 1 2 1 1, respectively. The Specht matrix appears in Table 4.
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Table 4 Specht matrix for
.2; 1; 1/

1 2 1 1 1 1 2 1 1 1 1 2 1 2 1 1

1 1 2 3 1 0 0 �1

1 1 3 2 �1 0 0 1

1 2 1 3 0 �1 0 1

1 2 3 1 0 0 1 �1

1 3 1 2 0 1 0 �1

1 3 2 1 0 0 �1 1

2 1 1 3 �1 1 0 0

2 1 3 1 1 0 �1 0

2 3 1 1 0 �1 1 0

3 1 1 2 1 �1 0 0

3 1 2 1 �1 0 1 0

3 2 1 1 0 1 �1 0

Using Macaulay2, we can verify that the polytope in R
12 which is the convex hull

of the columns of the matrix in Table 4 is a three-dimensional simplex.

Theorem 6.2 Every column of the Specht matrix is a vertex of P.�/.

Proof Suppose some column of the Specht matrix can be written as a non-trivial
convex combination of the others. Since Sn acts transitively on the columns of
the Specht matrix, this would mean that every column can be written as a convex
combination of the others, which would mean P.�/ has no vertices, which is
impossible. ut

Theorem 6.3 Every Specht polytope other than P.1; 1; : : : ; 1/ contains the origin.

Proof First, we show that each row of a Specht matrix corresponding to a partition
different from .1; 1; : : : ; 1/ contains the same number of 1’s as of �1’s. Let r be
some permutation of a row word, and let Stab.r/ be the set of all permutations
preserving the word r. Since we excluded the partition .1; 1; : : : ; 1/, the stabilizer
Stab.r/ is a nontrivial direct product of symmetric groups. Nonzero entries in the
row corresponding to r in the Specht matrix have values 1 or �1 depending on the
signature of an element in Stab.r/. Since Stab.r/ has an equal number of odd and
even permutations, the entries add up to 0. If c1; c2; : : : ; cm are the columns of the
Specht matrix, then we have

∑m
iD1

1
m ci D 0, which finishes the proof. ut

Theorem 6.4 The dimension of the Specht polytope matches the dimension of the
Specht module for any partition other than .1; 1; : : : ; 1/.

Proof Since the Specht module is the span of the columns of a Specht matrix, its
dimension is equal to the rank of this matrix. By Theorem 6.3, the corresponding
polytope contains the origin, so its dimension matches the dimension of the linear
span of its vertices. ut
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Table 5 Dimensions and
f -vectors of Specht polytopes

� Dimension f -vector

(3,1) 3 (1, 12, 24, 14, 1)

(2,2) 2 (1, 3, 3, 1)

(2,1,1) 3 (1, 4, 6, 4, 1)

(4,1) 4 (1, 20, 60, 70, 30, 1)

(3,2) 5 (1, 15, 60, 80, 45, 12, 1)

(3,1,1) 6 (1, 20, 120, 290, 310, 144, 24, 1)

(2,2,1) 5 (1, 10, 45, 90, 75, 22, 1)

(2,1,1,1) 4 (1, 5,10,10,5,1)

Table 6 Dimensions of
Ak
(

M.2; 1n�1/
) n k

0 1 2 3 4

2 1

3 1 1

4 1 7 1

5 1 21 21 1

6 1 51 161 51 1

We conclude this section with Table 5, which gives f -vectors and dimensions of
some of the Specht polytopes. We have not found yet any interpretation of these
data.

7 Examples: The Partitions .2 ; 1n�1/ and .n � 1; 1/

In the previous section, we saw that the Specht polytope for the partition .2; 1; 1/ is
a simplex. In fact, any partition of the form .2; 1n�1/ corresponds to a simplex.

Theorem 7.1 The Specht polytope P.2; 1n�1/ is an .n � 1/-dimensional simplex.

Proof The Specht module M.2; 1n�1/ of size n has dimension n�1. By Theorem 6.4,
the Specht polytope has the same dimension. The partition .2; 1n�1/ has the
column word 1 2 1 1 � � � 1, which has n rearrangements. Hence, the Specht polytope
P.2; 1n�1/ has at most n vertices and dimension n � 1, so it must be an .n � 1/-
simplex. ut

Correspondingly, for � D .2; 1n�1/, the matroid M.�/ is the generic matroid
on n elements of total rank n � 1. The Hilbert series for A�.M/ for any generic
matroid M is calculated by Feichtner and Yuzvinsky. It is not too difficult to modify
their computation to include information on the action of Sn. The dimensions of
the Chow groups of this Specht matroid appear in Table 6. We make the following
conjecture with the help of the OEIS [14].

Conjecture 7.2 The dimension of Ak
(
M.2; 1n�1/

)
is the number of permutations in

Sn with no fixed points and kC 1 excedances (OEIS A046739).
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A fixed point of a permutation � 2 Sn is an index i such that �.i/ D i, and an
excedance is an index i such that �.i/ > i. Consider the cyclic subgroup Cn 	 Sn

generated by the n-cycle c D .12 � � � n/. Conjugation by c preserves the number of
fixed points and the number of excedances, so, for any fixed n and k, the cyclic group
Cn acts on the set of permutations of Sn with no fixed points and k C 1 excedances.
As in Sect. 5, the symmetric group Sn acts on the Feichtner–Yuzvinsky basis of
Ak

(
M.2; 1n�1/

)
, and Cn acts by restricting this action. A possible refinement of the

conjecture asserts that the orbit structures of these two actions coincide; we have
checked this refinement for n � 6. For n D 6 and k D 2, both actions have 1 orbit
of size 1, 2 orbits of size 2, 4 orbits of size 3, and 24 orbits of size 6.

We switch our attention to partitions of the form .n�1; 1/. We start by describing
the Specht matrices coming from this partition.

Proposition 7.3 Each column of a Specht matrix for the partition .n � 1; 1/ is of
the form ei � ej, where ei is a standard unit vector in R

n, and, for n � 4, ei � ej and
ej � ei are both columns of the Specht matrix for any i; j with 1 � i < j � n.

Proof For the partition .n � 1; 1/, a choice of row word is w1 D 1 1 � � � 1 1 2 and
a choice of column word is w2 D 1 2 3 � � � .n � 1/ 1. Let r2 be a rearrangement of
the column word w2. In the column for r2, there are exactly two nonzero entries,
namely the entries corresponding to the rearrangements of w1 in which the 2 is in
the same position as one of the 1’s in r2. Let us call these rearrangements r1 and r0

1.
If � is a permutation such that �w1 D r1 and �w2 D r2, and � 0 is a permutation
such that � 0w1 D r0

1 and � 0w2 D r2, then � and � 0 differ by a transposition, so
we have Y.r1; r2/ D �Y.r0

1; r2/. Given i and j, to obtain ei � ej and ej � ei, use
the column corresponding to some rearrangement r of w2 with the 1’s in the ith
and jth positions and the column corresponding to rearrangement r0 obtained from
switching the positions of the 2 and 3 in r. ut

For the partition .3; 1/, the Specht polytope naturally lives in a four-dimensional
space, but as it is a three-dimensional object, it can be drawn in a 3-space; see Fig. 3.

Fig. 3 Specht polytope .3; 1/
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In what follows, we denote a vertex of a Specht polytope P.n � 1; 1/ by vi;j if
the corresponding column in the Specht matrix has 1 in the ith position and �1 in
the jth position. It turns out that the Specht polytopes P.n� 1; 1/ have already been
studied by Ardila, Beck, Hoşten, Pfeifle, and Seashore [2].

Definition 7.4 A root polytope PAn of type An is the convex hull of the points ei�ej

for 1 � i ¤ j � n where i; j 2 f1; 2; : : : ; ng.
This definition is different from the definition of Gelfand, Graev, and Postnikov [9],
which uses only the positive roots and zero. For this class of polytopes, Ardila, Beck,
Hoşten, Pfeifle and Seashore [2, Proposition 8] give the following description of
their edges and facets.

Theorem 7.5 The polytope PAn 2 R
nC1 has dimension n and is contained in the

hyperplane H0 D fx 2 R
nC1 W

∑n
iD0 xi D 0g. It has .n � 1/n.nC 1/ edges, which

are of the form vijvik and vikvjk for i; j; k distinct. It has 2nC1�2 facets, which can be
labelled by the proper subsets S of Œ0; n� WD f0; 1; : : : ; ng. The facet FS is defined by
the hyperplane HS WD

{
x 2 R

nC1 W
∑

i2S xi D 1
}

, and it is congruent to the product
of simplices �S ��T , where T D Œ0; n� � S.
The main idea in the proof of this theorem is that, if f is a linear functional and
i; j; k; l are all different, then f .vi;j/C f .vk;l/ D f .vi;l/C f .vk;j/. Hence f cannot be
maximized at only one of the line segments vi;jvk;l or vi;lvk;j, so neither can be an
edge. A similar argument works both for ruling out pairs of vertices of the form vi;j

and vj;k as edges and for determining the facets.
Ardila, Beck, Hoşten, Pfeifle and Seashore also gave the following description

of the lattice points inside PAn .

Theorem 7.6 The only lattice points in PAn are its vertices and the origin.

Proof A polytope PAn is contained in an .n � 1/-sphere with radius
p
2 and centre

0. The only lattice points in this sphere are ˙ei and ˙ei ˙ ej for 1 � i; j � n. Since
PAn is contained in the hyperplane H0 D fx 2 R

nC1 W
∑n

iD0 xi D 0g, the only lattice
points contained in PAn are the vertices and the origin. ut

The matroid M.n � 1; 1/ is the matroid for the braid arrangement of Sn. This
was one of the original motivations of DeConcini and Procesi [4] for studying
Chow rings of representable matroids. Moreover, A�.M/ is the cohomology ring
for the moduli space M0;n of n marked points on the complex projective line, which
DeConcini and Procesi [3] show can be realized as the successive blowup of P

n�2

at all the subspaces in the intersection lattice of the braid arrangement. For more
information on M0;n, see [12].

This matroid is also the graphical matroid on the complete graph Kn on n vertices.
By the usual translation between graphical matroids and graphs, vectors in the
matroid correspond to (directed) edges of the graph, and a basis of the matroid
corresponds to a spanning tree for the graph. To be precise, we can label the vertices
of Kn by f1; 2; : : : ; ng, and, with this labelling, the edge from i to j corresponds to
the vector ej�ei. If we start with the column word w2 D 1 1 2 3 � � � n, then the vector
ej�ei is vr for the rearrangement r where a 1 appears in the ith and jth positions and
the remaining letters 2; 2; : : : ; n appear in order. In terms of the usual presentation of
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the Specht matroid in terms of fillings, this vector corresponds to the filling with an i
and a j in the first column and the remaining integers in order along the first row. The
usual basis of the Specht module given by Standard Young Tableaux corresponds to
the tree with edges between vertex 1 and vertex j for every j > 1, and declaring i
to be the “smallest” letter in our filling alphabet gives a similar tree with vertex i
having degree n � 1. Of course, Kn has many other types of spanning trees, so the
Specht matroid has many bases that look completely different than the standard one!

8 Matroidification

Many constructions in the representation theory of Sn involve tensor products
or Hom spaces of Specht modules. Since Specht modules have a distinguished
symmetric spanning set, so do their tensor products. Hence, we can extend our
definitions of Specht matroids and Specht polytopes to these other contexts. In
this section, we build matroids and polytopes for three famous collections of
numbers arising in combinatorics and representation theory: Kronecker coefficients,
Littlewood–Richardson coefficients, and plethysm coefficients.

Definition 8.1 If �;�; � are partitions of n, then the Kronecker coefficient g�;�;� is
defined to be the dimension of the Sn-invariants of the tensor product

g�;�;� WD dim
(

Specht.�/˝ Specht.�/˝ Specht.�/
)Sn :

In Definitions 8.2, 8.5, and 8.8, we denote by x1 and x2 a pair of complementary
words of length n that correspond via Theorem 2.5 to the partition �. Similarly, y1
and y2 correspond to �, and w1 and w2 to �.

Definition 8.2 The Kronecker matrix has rows indexed by the product

frearrangements of x1g � frearrangements of y1g � frearrangements of w1g

and columns indexed by the product

frearrangements of x2g � frearrangements of y2g � frearrangements of w2g ;

where the
(
.p; q; r/; .s; t; u/

)
entry is given by the formula

∑

�2Sn

Y.�s; p/ � Y.� t; q/ � Y.�u; r/:

Its columns define the Kronecker matroid and the convex hull of its columns defines
the Kronecker polytope.

Theorem 8.3 The dimension of the Kronecker polytope is g�;�;� .
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Proof The tensor product Specht.�/˝Specht.�/˝Specht.�/ is given by the column
span of the matrix with entries Y.p; s/ � Y.q; t/ � Y.r; u/. The summation over Sn

produces Sn-invariant vectors. ut

Definition 8.4 If �;�; � are partitions of l, m, and l C m respectively, then the
Littlewood–Richardson coefficient c��;� is defined by

c��;� WD dim
Ä

Specht.�/� Specht.�/˝ Res
SlCm
Sl�Sm

(
Specht.�/

)äSl�Sm
;

where Sl � Sm acts on Specht.�/ � Specht.�/ separately in the two tensor factors,
and Sl � Sm acts on Res

SlCm
Sl�Sm

(
Specht.�/

)
by considering Sl � Sm as a subgroup of

SlCm and using the SlCm-action on Specht.�/. We use the notation � for the tensor
product with this separated action in order to contrast with the diagonal action that
we indicate by ˝.

Definition 8.5 The Littlewood–Richardson matrix has rows indexed by the product

frearrangements of x1g � frearrangements ofy1g � frearrangements of w1g

and columns indexed by the product

frearrangements of x2g � frearrangements ofy2g � frearrangements of w2g ;

where the ..p; q; r/; .s; t; u// entry is given by the formula

∑

���2Sl�Sm

Y.�s; p/ � Y.� t; q/ � Y
(
.� � �/u; r

)
:

Its columns define the Littlewood–Richardson matroid and the convex hull of its
columns defines the Littlewood–Richardson polytope.

Littlewood–Richardson polytope for � D 2 C 1, � D 2 C 1, � D 3 C 2 C 1

appears in Fig. 4. Since c��;� D 2, this polytope is actually a polygon.

Theorem 8.6 The dimension of the Littlewood–Richardson polytope is c���.

Proof The proof for this theorem is analogous to that of Theorem 8.3. ut

Fig. 4 Littlewood–
Richardson polytope for
c.3;2;1/.2;1/;.2;1/ D 2
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We now study restriction to the wreath subgroup Sl o Sm 
 Slm. Thinking of lm
as an l � m array of dots to be permuted, the wreath subgroup is generated by the
permutations in which every dot stays in its row together with the permutations that
perform the same operation in every column simultaneously. Abstractly, the wreath
subgroup is isomorphic to the semidirect product .Sl/

m ÌSm where the second factor
acts on the first by permuting coordinates.

Definition 8.7 If �, �, and � are partitions of l, m, and l � m respectively, then the
plethysm coefficient p��;� is defined by

p��;� D dim
Ä

Specht.�/�m Ì̋ Specht.�/˝ ResSlm
SloSm

(
Specht.�/

)äSloSm
;

where .Sl/
m ÌSm acts on Specht.�/�m Ì̋ Specht.�/ by Sm on the second factor, and

the normal subgroup .Sl/
m E .Sl/

m Ì Sm acts naturally on the first factor.
As before, let x1; x2 be a complementary pair of words of length l that correspond

via Theorem 2.5 to the partition �, and similarly suppose that yi correspond to�, and
that wi correspond to �.

Definition 8.8 The plethysm matrix has rows indexed by the product

frearrangements of x1g
m � frearrangements of y1g � frearrangements of w1g

and columns indexed by the product

frearrangements of x2g
m � frearrangements of y2g � frearrangements of w2g;

where the
(
.Op; q; r/; .Os; t; u/

)
entry is given by the formula

∑

O�Ì�2SloSm

Y. O�1Os1; Op1/ � Y. O�2Os2; Op2/ � � �Y. O�mOsm; Opm/ � Y.� t; q/ � Y
(
. O� Ì �/u; r

)
:

Its columns define the plethysm matroid, and the convex hull of its columns defines
the plethytope.

Theorem 8.9 The dimension of the plethytope is p���.

Proof The proof for this theorem is also analogous to that of Theorem 8.3. ut

9 Computer Calculations

The following Sage [17] code generates the Specht matrix given a row word and a
column word.

def distinctColumns(w1, w2):
if len(w2) != len(w2): return False
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seen = set()
for i in range(len(w1)):

t = (w1[i], w2[i])
if t in seen: return False
seen.add(t)

return True

def YoungCharacter(w1, w2):
assert distinctColumns(w1, w2)
wp = [(w1[i], w2[i]) for i in range(len(w1))]
def ycfunc(r1, r2):

if not distinctColumns(r1, r2):
return 0

rp = [(r1[i], r2[i]) for i in range(len(w1))]
po = [wp.index(rx) + 1 for rx in rp]
return Permutation(po).sign()

return ycfunc

def SpechtMatrix(w1, w2):
yc = YoungCharacter(w1, w2)
mat = []
for r1 in Permutations(w1):

row = []
for r2 in Permutations(w2):

row = row + [yc(r1, r2)]
mat = mat + [row]

return matrix(QQ, mat)

sm22 = SpechtMatrix([1,1,2,2], [1,2,1,2])
print sm22

The output of the code is

[ 0 1 -1 -1 1 0]
[-1 0 1 1 0 -1]
[ 1 -1 0 0 -1 1]
[ 1 -1 0 0 -1 1]
[-1 0 1 1 0 -1]
[ 0 1 -1 -1 1 0]

Having a Specht matrix, we can use Macaulay2 [11] package Polyhedra [5] to obtain
some information about Specht polytopes.

loadPackage "Polyhedra";
V = matrix{{ 0, 1,-1,-1, 1, 0}, {-1, 0, 1, 1, 0,-1},

{ 1,-1, 0, 0,-1, 1}, { 1,-1, 0, 0,-1, 1},
{-1, 0, 1, 1, 0,-1}, { 0, 1,-1,-1, 1, 0}}

P = convexHull V
fVector P

The output of the above code, line by line, is

| 0 1 -1 -1 1 0 |
| -1 0 1 1 0 -1 |
| 1 -1 0 0 -1 1 |
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| 1 -1 0 0 -1 1 |
| -1 0 1 1 0 -1 |
| 0 1 -1 -1 1 0 |

6 6
Matrix ZZ <--- ZZ

{ambient dimension => 6 }
dimension of lineality space => 0
dimension of polyhedron => 2
number of facets => 3
number of rays => 0
number of vertices => 3

{3, 3, 1}

The following commands give us a description of the faces of codimension i and the
vertices on each face of a polytope P:

F_i = faces(i,P)
apply(F_i,vertices)

For i D 1, the output is

{{ambient dimension => 6 },
dimension of lineality space => 0
dimension of polyhedron => 1
number of facets => 2
number of rays => 0
number of vertices => 2

{{ambient dimension => 6 },
dimension of lineality space => 0
dimension of polyhedron => 1
number of facets => 2
number of rays => 0
number of vertices => 2

{{ambient dimension => 6 }}
dimension of lineality space => 0
dimension of polyhedron => 1
number of facets => 2
number of rays => 0
number of vertices => 2

{| -1 1 |, | 0 -1 |, | 0 1 |}
| 1 0 | | -1 1 | | -1 0 |
| 0 -1 | | 1 0 | | 1 -1 |
| 0 -1 | | 1 0 | | 1 -1 |
| 1 0 | | -1 1 | | -1 0 |
| -1 1 | | 0 -1 | | 0 1 |

The following Sage code computes the Hilbert series of the Chow ring for a given
matroid. The code computing the Chow ring was contributed to the Sage system by
Travis Scrimshaw. In the example, we use the Specht matrix sm22 computed above.
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def chow_ring_dimensions(mm, R=None):
# Setup
if R is None:

R = ZZ
# We only want proper flats
flats = [X for i in range(1, mm.rank())

for X in mm.flats(i)]
E = list(mm.groundset())
flats_containing = {x: [] for x in E}
for i,F in enumerate(flats):

for x in F:
flats_containing[x].append(i)

# Create the ambient polynomial ring
from sage.rings.polynomial\

.polynomial_ring_constructor
import PolynomialRing
try:

names = [’A{}’.format(’’.join(str(x)
for x in sorted(F)))
for F in flats]

P = PolynomialRing(R, names)
except ValueError: # variables have

# improper names
P = PolynomialRing(R, ’A’, len(flats))
names = P.variable_names()

gens = P.gens()
# Create the ideal of quadratic relations
Q = [gens[i] * gens[i+j+1]

for i,F in enumerate(flats)
for j,G in enumerate(flats[i+1:])
if not (F < G or G < F)]

# Create the ideal of linear relations
L = [sum(gens[i] for i in flats_containing[x])

- sum(gens[i] for i in flats_containing[y])
for j,x in enumerate(E) for y in E[j+1:]]

# Compute Hilbert series using Macaulay2
macaulay2.eval("restart")
macaulay2.eval("R=QQ[" + str(gens)[1:-1] + "]")
macaulay2.eval("I=ideal(" + str(Q)[1:-1] + ",
" + str(L)[1:-1] + ")")
hs = macaulay2.eval("toString hilbertSeries I")
T = PolynomialRing(RationalField(),"T").gen()
return sage_eval(hs, locals={’T’:T})

chow_ring_dimensions(Matroid(sm22))

The output of the code for our example is

T+1
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We now give the code for Examples 5.2 and 5.4. The following Sage commands
compute the matroid corresponding to a given matrix, the lattice of flats of a matroid,
a list of flats of a given rank, and the characteristic polynomial of a matroid.

X = matrix([[1, 0, 0, 1, 1, 1], [0, 1, 0, 2, 3, 4],
[0, 0, 1, 0, 0, 1]])

M = Matroid(X)
M
M.lattice_of_flats()
sorted([sorted(F) for F in M.lattice_of_flats()])
F1 = M.flats(1)
sorted([sorted(F) for F in F1])
rank = M.rank()
Tutte_polynomial = M.tutte_polynomial()
Tutte_polynomial
var(’t’)
char_poly = (-1)^rank * expand(Tutte_polynomial(1-t,0))
char_poly

The output of the above code is

Linear matroid of rank 3 on 6 elements represented over
the Rational Field
Finite lattice containing 18 elements
[[], [0], [0, 1, 2, 3, 4, 5], [0, 1, 3, 4], [0, 2],
[0, 5], [1], [1, 2], [1, 5], [2], [2, 3], [2, 4],
[2, 5], [3], [3, 5], [4], [4, 5], [5]]
[[0], [1], [2], [3], [4], [5]]
x^3 + x*y^2 + y^3 + 3*x^2 + 2*x*y + 2*y^2 + 3*x + 3*y
t
t^3 - 6*t^2 + 12*t - 7
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The Degree of SO.n; C/

Madeline Brandt, Juliette Bruce, Taylor Brysiewicz, Robert Krone,
and Elina Robeva

Abstract We provide a closed formula for the degree of SO.n;C/. In addition, we
test symbolic and numerical techniques for computing the degree of SO.n;C/. As
an application of our results, we give a formula for the number of critical points of
a low-rank semidefinite programming problem. Finally, we provide evidence for a
conjecture regarding the real locus of SO.n;C/.

MSC 2010 codes: 14L35, 20G20, 15N30

1 Introduction

The special orthogonal group SO.n;R/ is the group of automorphisms of R
n which

preserve the standard inner product and have determinant equal to one. The complex
special orthogonal group is the complexification of SO.n;R/ or, more explicitly, the
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group of matrices SO.n;C/ WD fM 2 C
n�n W det.M/ D 1 and MTM D Ig. Since

the defining conditions are polynomials in the entries of the matrix M, the group
SO.n;C/ is also a complex variety.

The degree of a complex variety X 	 C
n is the generic number of points in the

intersection of X with a linear space of complementary dimension. Problem 4 on
Grassmannians in [19] seeks a formula for the degree of SO.n;C/. Our main result
provides this.

Theorem 1.1 The degree of SO.n;C/ equals 2n�1 det
î(
2n�2i�2j

n�2i

)ó
1�i;j�bn=2c

.

Our proof of Theorem 1.1 uses a formula of Kazarnovskij [14] for the degree
of the image of a representation of a connected reductive algebraic group over
an algebraically closed field; see Theorem 2.4 for more information. By applying
this formula to the case of the standard representation of SO.n;C/, we are able to
express the degree in terms of its root data and other invariants. As an added feature,
Theorem 4.2 provides a combinatorial interpretation of this degree in terms of non-
intersecting lattice paths. In contrast with Theorem 1.1, the combinatorial statement
has the benefit of being obviously non-negative.

In order to verify Theorem 1.1, as well as explore the structure of SO.n;C/ in
further depth, it is useful to compute this degree explicitly. We were able to do
this, for small n, using symbolic and numerical computations. A comparison of the
success of these approaches is illustrated in Table 1.

Remark 1.2 Let k be a field of characteristic zero. We can define SO.n;k/ using
the same system of equations because they are defined over the prime field Q. For
a field k that is not algebraically closed, the degree of a variety can be defined in
terms of the Hilbert series of its coordinate ring. Since the Hilbert series does not
depend on the choice of k, the degree does not either. We choose to work over C not
only for simplicity, but also so that we may use the above definition of degree.

Remark 1.3 Our methods are not restricted to SO.n;C/ and can be used to compute
the degree of other algebraic groups. For example, we provide a similar closed
formula for the degree of the symplectic group in Sect. 3 and a combinatorial
reinterpretation in Sect. 4.

Table 1 Degree of SO.n;C/
computed in various ways

n Symbolic Numerical Formula

2 2 2 2

3 8 8 8

4 40 40 40

5 384 384 384

6 - 4768 4768

7 - 111616 111616

8 - - 3433600

9 - - 196968448
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This project started in the spring of 2014, when Benjamin Recht asked the fifth
author to describe the geometry of a low-rank optimization problem; see Sect. 5. In
particular, Benjamin asked why the augmented Lagrangian algorithm for solving
this problem [5] almost always recovers the correct optimum despite the existence
of multiple local minima. It quickly became clear that to even compute the number
of local extrema, one needs to know the degree of the orthogonal group. In Sect. 5,
we find a formula for the number of critical points of the low-rank semidefinite
programming problem; see Theorem 5.3.

The rest of this article is organized as follows. In Sect. 2, we give the reader a
brief introduction to algebraic groups and state the Kazarnovskij Theorem. Section 3
proves Theorem 1.1 by applying the Kazarnovskij Theorem and simplifying the
resulting expressions. After simplification, we are left with a determinant of
binomial coefficients that can be interpreted combinatorially using the celebrated
Gessel–Viennot Lemma; see Sect. 4. The relationship between the degree of
SO.n;C/ and the degree of the low-rank optimization programming problem is
elaborated upon in Sect. 5. Section 6 contains descriptions of the symbolic and
numerical techniques involved in the explicit computation of deg SO.n;C/. Finally,
in Sect. 7, we explore questions involving the real points on SO.n;C/.

2 Background

In this section, we provide the reader with the language to understand the
Kazarnovskij Theorem, our main tool for determining the degree of SO.n;C/.
We invite those who already are familiar with Lie theory to skip to the statement
of Theorem 2.4. Aside from applying Theorem 2.4, no understanding of the
material in this section is necessary for understanding the remainder of the proof of
Theorem 1.1. A more thorough treatment of the theory of algebraic groups can be
found in [6, 8, 13].

An algebraic group G is a variety equipped with a group structure such that
multiplication and inversion are both regular maps on G. When the unipotent radical
of G is trivial and G is over an algebraically closed field, we say that G is a reductive
group. Throughout this section, we let G denote a connected reductive algebraic
group over an algebraically closed field k. Let Gm denote the multiplicative group
of k, so as a set Gm D k n f0g. Let T denote a fixed maximal torus of G, that is a
subgroup of G isomorphic to G

r
m and which is maximal with respect to inclusion.

The number r 2 N is well-defined and is called the rank of G. After fixing T , we
define the Weyl group of G, denoted W.G/, to be the quotient of the normalizer of T
by its centralizer: W.G/ WD NG.T/=ZG.T/. Like the rank, the group W.G/ does not
depend on the choice of T up to isomorphism.
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Example 2.1 The map RWGm ! SO.2;k/, given by R.t/ WD 1
2

[
tCt�1 �i.t�t�1/

i.t�t�1/ tCt�1

]
,

parametrizes SO.2;k/ and is a group isomorphism. If k D C, then the rotation by an
angle � corresponds to the matrix R.ei� /. Therefore, the algebraic group SO.2;k/
has rank 1.

If r � 1, then the maximal tori of rank r in their respective algebraic groups are

T2r WD

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎢⎢
⎣

R.t1/ 0 0 � � � 0

0 R.t2/ 0 � � � 0

:::
:::

:::
: : :

:::

0 0 0 � � � R.tr/

⎤

⎥⎥⎥⎥⎥⎥
⎦

W ti 2 Gm

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Š SO.2;k/r 	 SO.2r;k/ ;

T2rC1 WD

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

R.t1/ 0 0 � � � 0 0

0 R.t2/ 0 � � � 0 0

:::
:::

:::
: : :

:::
:::

0 0 0 � � � R.tr/ 0

0 0 0 � � � 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

W ti 2 Gm

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Š SO.2;k/r 	 SO.2rC 1;k/ :

Therefore, we have rank SO.2r;k/ D rank SO.2r C 1;k/ D r and see that the rank
of SO.n;k/ depends on the parity of n.

The character group M.T/ is the set of algebraic group homomorphisms from
T to Gm. In other words, M.T/ WD HomAlgGrp.T;Gm/ consists of the group
homomorphisms defined by polynomial maps. Since T is isomorphic to G

r
m, all

such homomorphisms must be of the form .t1; t2; : : : ; tr/ 7! ta1
1 ta2

2 � � � t
ar
r for some

integers a1; a2; : : : ; ar. Hence, the character group M.T/ is isomorphic to Z
r and,

for this reason, it is often called the character lattice. The group of 1-parameter
subgroups N.T/ WD HomAlgGrp.Gm;T/ is dual to M.T/ and is also isomorphic
to Z

r. Indeed, each 1-parameter subgroup is of the form t 7! .tb1 ; tb2 ; : : : ; tbr /

for some integers b1; b2; : : : ; br. Moreover, there exists a natural bilinear pairing
M.T/ � N.T/! HomAlgGrp.Gm;Gm/ Š Z given by h�; �i 7! � ı � .

Now, if �WG ! GL.V/ is a representation of G, then we attach to it special
characters called weights. A weight of the representation � is a character � 2 M.T/
such that the set

V� WD
⋂

s2T

ker
(
�.s/ � �.s/ IdV

)

is non-trivial. This condition is equivalent to saying that all of the matrices in
f�.s/ W s 2 Tg have a simultaneous eigenvector v 2 V such that the associated
eigenvalue for �.s/ is �.s/. We write CV for the convex hull of the weights of the
representation �.
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Example 2.2 An important example for us comes from the defining representation
�WSO.n;C/ ,! GL.n;C/. Let e1; e2; : : : ; en denote the standard basis for C

n. For
any t 2 Gm, the matrix R.t/ 2 SO.2;C/ has eigenvectors e1 C ie2 and e1 � ie2 with
eigenvalues t and t�1 respectively. From the explicit description of the maximal torus
T in Example 2.1, it follows that the eigenvectors of � are all vectors of the form
e2j�1 ˙ ie2j with 1 � j � r and the corresponding eigenvalues are t˙11 ; t˙12 ; : : : ; t˙1r .
These eigenvalues, viewed as characters, are the weights of �. Additionally, when
n D 2rC 1, we see that e2rC1 is an eigenvector with eigenvalue 1, corresponding to
the trivial character.

Another representation of a matrix group G 
 End.V/ is the adjoint representa-
tion AdWG ! GL

(
End.V/

)
, where Ad.g/ the linear map defined by A 7! gAg�1.

The roots of G are the nonzero weights of the adjoint representation. Given a linear
functional ` on M.T/, we define the positive roots of G with respect to ` to be the
roots � such that `.�/ > 0. We denote the positive roots of G by ˛1; ˛2; : : : ; ˛l. For
the algebraic groups in this paper, we can choose ` to be the inner product with the
vector .r; r � 1; : : : ; 1/, so that a root of the form ej � ek is positive if and only if
j < k. To each root ˛, we associate a coroot L̨ , defined to be the linear function
L̨ .x/ WD 2hx; ˛i=h˛; ˛i where the pairing is W.G/-invariant. Throughout this paper,
we fix the pairing to be the standard inner product.

Example 2.3 We now describe the roots of SO.n;C/, starting with n D 2r. The
simultaneous eigenvectors of Ad.s/ over all s 2 T are matrices A with the following
structure. These matrices are zero outside a .2 � 2/-block B in rows 2j � 1; 2j and
columns 2k � 1; 2k for some 1 � j; k � r. Furthermore, B D v1vT

2 with each vector
vk, for 1 � k � 2, equals one of the eigenvectors of R.t/, namely e1 ˙ ie2. If
s 2 T has blocks along the diagonal R.tj/ with t1; t2; : : : ; tr 2 Gm, then the matrix
Ad.s/.A/ will also be zero except in the same .2 � 2/-block, and that block will
be R.tj/B R.tk/T D t˙1j t˙1k B, where the signs depend on the choices of v1 and v2.
Taking the exponent vectors of these eigenvalues, we see that the roots of SO.2r;C/
are the characters of the form˙.ej ˙ ek/ for 1 � j; k � r.

When n D 2r C 1, the matrix A has an extra row and column. If the matrix
A has support only in the last column, then we have Ad.s/.A/ D sAs�1. But
s�1 acts trivially on the left, while s acts on the last column as an element of
GL.n;C/ as in the standard representation. As in Example 2.2, the eigenvalues are
t˙11 ; t˙12 ; : : : ; t˙1r ; 1. The same weights appear for A with support in the last row.
Hence, the roots of SO.2r C 1;C/ are ˙.ej ˙ ek/ for 1 � j; k � r and ˙ei for
1 � i � r.

Associated to the algebraic group G is a Lie algebra g that comes equipped with
a Lie bracket Œ�; ��W g � g ! g. A Cartan subalgebra h is a nilpotent subalgebra of
g that is self-normalizing; if Œx; y� 2 h for all x 2 h, then we have y 2 h. Let S.h�/

be the ring of polynomial functions on h. The Weyl group W.G/ acts on h, and this
extends to an action of W.G/ on S.h�/. The space S.h�/W.G/ of polynomials which
are invariant up to the action of W.G/ is generated by r homogeneous polynomials
whose degrees, c1 C 1; c2 C 1; : : : ; cr C 1, are uniquely determined. The values
c1; c1; : : : ; cr are called Coxeter exponents.
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Table 2 Data required to apply the Kazarnovskij Theorem

Group Dimension Rank Positive roots Weights jW.G/j Coxeter exponents

SO.2r C 1;C/
(
2rC1
2

)
r fei ˙ ejgi<j [ feig f˙eig rŠ2r 1; 3; 5; : : : ; 2r � 1

Sp.2r;C/
(
2rC1
2

)
r fei ˙ ejgi<j [ f2eig f˙eig rŠ2r 1; 3; 5; : : : ; 2r � 1

SO.2r;C/
(
2r
2

)
r fei ˙ ejgi<j f˙eig rŠ2r�1 1; 3; 5; : : : ; 2r � 3; r � 1

We are now prepared to state the Kazarnovskij Theorem.

Theorem 2.4 (Kazarnovskij Theorem, [6, Proposition 4.7.18]) Let G be a con-
nected reductive algebraic group of dimension m and rank r over an algebraically
closed field. If �WG! GL.V/ is a representation with finite kernel, then we have

deg
Ä
�.G/

ä
D

mŠ

jW.G/j .c1Šc2Š � � � crŠ/2 j ker.�/j

∫

CV

. L̨1 L̨2 � � � L̨r/
2 dv ;

where W.G/ is the Weyl group, the ci are Coxeter exponents, CV is the convex hull
of the weights, and the L̨ i are the coroots.

If � is the standard representation for an algebraic group G, then it follows that
deg �.G/ D deg G. Thus, in order to compute deg SO.n;C/, all we must do is apply
this theorem for the standard representation of SO.n;C/. The relevant data for this
theorem is given in Table 2 for SO.n;C/ and Sp.n;C/.

3 Main Result: The Degree of SO.n; C/

We now prove our main result, Theorem 1.1. At the end of this section, we also use
the same method to obtain a formula for the degree of the symplectic group.

We begin by applying Theorem 2.4 to SO.2r;C/ and SO.2rC 1;C/ to obtain

deg SO.2r;C/ D

(
2r
2

)
Š

rŠ2r�1
(
.r � 1/Š

)2 r�1∏

kD1

(
.2k � 1/Š

)2

∫

CV

∏

1�i<j�r

.x2i � x2j /
2 dv ;

deg SO.2rC 1;C/ D

(
2rC1
2

)
Š

rŠ2r
r∏

kD1

(
.2k � 1/Š

)2

∫

CV

∏

1�i<j�r

.x2i � x2j /
2

r∏

iD1

.2xi/
2 dv :

To compute the degree of SO.n;C/, it suffices to find formulas for these integrals.
We do this by expanding the integrand into monomials and integrating the result. We
first use the well-known expression for the determinant of the Vandermonde matrix:

∏

1�i<j�r

.yj � yi/ D
∑

�2Sr

sgn.�/
r∏

iD1

y�.i/�1i ;
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where Sr denotes the symmetric group on f1; 2; : : : ; rg. Substituting yi D x2i and
squaring the entire expression yields

∏

1�i<j�r

.x2i � x2j /
2 D

∑

�;�2Sr

sgn.��/
r∏

iD1

x2�.i/C2�.i/�4i : (1)

Every variable in the integrand is being raised to an even power, and CV is the convex
hull of weights f˙eig. Because of this symmetry, the integrals over CV are 2r times
the same integrals over the r-simplex �r WD conv.0; e1; e2; : : : ; er/ 	 R

r. Hence,
we have reduced the computation to understanding the integral of any monomial
over the simplex �r. The following lemma provides the required formula.

Lemma 3.1 ([15, Lemma 4.23]) Consider the r-simplex �r WD conv.0; e1;
e2; : : : ; er/ in R

r. If a D .a1; a2; : : : ; ar/ 2 Z
r
>0, then we have

∫

�r

xa dx D
∫

�r

xa1
1 xa2

2 � � � x
ar
r dx1dx2 � � � dxr D

1

.rC
∑

i ai/Š

∏

i

aiŠ :

With these preliminaries, we can now prove the key technical result in this
section.

Proposition 3.2 We have

∫

CV

∏

1�i<j�r

.x2i � x2j /
2 dv D

rŠ2r

(
2r
2

)
Š

det
[
.2iC 2j � 4/Š

]
1�i;j�r ;

∫

CV

∏

1�i<j�r

.x2i � x2j /
2

r∏

iD1

.2xi/
2 dv D

rŠ23r

(
2rC1
2

)
Š

det
[
.2iC 2j � 2/Š

]
1�i;j�r :

Proof Exploiting the symmetry of Cv along with equation (1) gives

Iodd.r/ WD

∫

CV

∏

1�i<j�r

.x2i � x2j /
2

r∏

iD1

.2xi/
2 dv D 2r

∫

�r

∏

1�i<j�r

.x2i � x2j /
2

r∏

iD1

.2xi/
2 dv

D 23r
∑

�;�2Sr

sgn.��/
∫

�r

r∏

iD1

x2�.i/C2�.i/�2i dv :

As the integrand is homogeneous of degree 4
(r
2

)
C 2r, Lemma 3.1 yields

Iodd.r/ D
23r

(
4
(r
2

)
C 3r

)
Š

∑

�;�2Sr

sgn.��/
r∏

iD1

(
2�.i/C 2�.i/ � 2

)
Š :
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Since � 2 Sr, we may reindex the product by ��1.i/ rather than i to obtain∏r
iD1

(
2�.i/C2�.i/�2

)
Š D

∏r
iD1

(
2iC2���1.i/�2

)
Š. Ranging over all �; � 2 Sr,

each permutation in Sr appears exactly rŠ times as the composition � WD ���1 and
sgn.��/ D sgn.�/. Therefore, we have

Iodd.r/ D
rŠ23r

(
4
(r
2

)
C 3r

)
Š

∑

�2Sr

sgn.�/
r∏

iD1

.2iC 2�.i/ � 2/Š

D
rŠ23r

(
2rC1
2

)
Š

det
[
.2iC 2j � 2/Š

]
1�i;j�r :

The calculation for Ieven.r/ WD
∫

CV

∏
1�i<j�r.x

2
i � x2j /

2 dv follows the same
steps. ut

Proof of Theorem 1.1 Combining Theorem 2.4, the data in Table 2, and Proposi-
tion 3.2, we have

deg SO.2rC 1;C/ D

(
2rC1
2

)
Š

rŠ2r
r∏

kD1

(
.2k � 1/Š

)2

∫

CV

∏

1�i<j�r

.x2i � x2j /
2

r∏

iD1

.2xi/
2 dv

D
22r

r∏

kD1

(
.2k � 1/Š

)2
det

[
.2iC 2j � 2/Š

]
1�i;j�r :

Since the determinant is linear in each row and column, we obtain

deg SO.2rC 1;C/ D 22r det

ñ
.2iC 2j � 2/Š

.2i � 1/Š.2j � 1/Š

ô
D 22r det

ñÇ
2iC 2j � 2

2i � 1

åô
1�i;j�r

:

Reversing the order of the rows and columns of the final matrix and reindexing
produces the required formula. Similarly, for the even case, we have

deg SO.2r;C/ D

(
2r
2

)
Š

rŠ2r�1
(
.r � 1/Š

)2 r�1∏

kD1

(
.2k � 1/Š

)2

∫

CV

∏

1�i<j�r

.x2i � x2j /
2 dv

D
2

(
.r � 1/Š

)2 r�1∏

kD1

(
.2k � 1/Š

)2
det

[
.2iC 2j � 4/Š

]
1�i;j�r

D
2.2r�1/2

r�1∏

kD1
.2k/2

r�1∏

kD1

(
.2k � 1/Š

)2
det

[
.2iC 2j � 4/Š

]
1�i;j�r
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D
22r�1

r∏

kD1

(
.2k � 2/Š

)2
det

[
.2iC 2j � 4/Š

]
1�i;j�r

D 22r�1 det

ñ
.2iC 2j � 4/Š

.2i � 2/Š.2j � 2/Š

ô
1�i;j�r

D 22r�1 det

ñÇ
2iC 2j � 4

2i � 2

åô
D 22r�1 det

ñÇ
4r � 2i � 2j

2r � 2i

åô
1�i;j�r

:

ut

Since the orthogonal group O.n;C/ WD fM 2 C
n�n W MTM D MMT D Ig has

two connected components that are isomorphic to SO.n;C/, we immediately get a
formula for the degree of O.n;C/.

Corollary 3.3 The degree of O.n;C/ equals 2n det
[(
2n�2i�2j

n�2i

)]
1�i;j�b n

2 c
.

We also easily obtain the degree of the symplectic group Sp.2r;C/. By definition,
we have Sp.2r;C/ WD fM 2 C

2r�2r W MT˝M D ˝g where

˝ WD

ñ
0 Ir

�Ir 0

ô
2 C

2r�2r :

Corollary 3.4 We have deg SO.2rC 1;C/ D 22r deg Sp.2r;C/ and

deg Sp.2r;C/ D det

ñÇ
2.2rC 1/ � 2i � 2j

.2rC 1/ � 2i � 1

åô
1�i;j�r

:

Proof Comparing the first two rows in Table 2, we see that the Weyl groups for
SO.2r C 1;C/ and Sp.2r;C/ have the same cardinality, the Coxeter exponents are
equal, the convex hull of the weights are equal, and there is a natural bijection
between the coroots. In fact, among the r2 coroots for SO.2rC 1;C/ and Sp.2r;C/,
r.r � 1/ are equal and r differ by a factor of 2 with the coroots for Sp.2r;C/ being
larger. Hence, Theorem 2.4 implies that deg SO.2rC 1;C/ D 22r deg Sp.2r;C/ and
Theorem 1.1 shows that deg Sp.2r;C/ D det

[(
2.2rC1/�2i�2j
.2rC1/�2i�1

)]
1�i;j�r. ut

4 Non-intersecting Lattice Paths

This section gives a combinatorial interpretation for the determinant appearing
in our formulas for the degree of SO.n;C/. In particular, we show that this
determinant counts appropriate collections of non-intersecting lattice paths by
using the celebrated Lindström–Gessel–Viennot Lemma; see [1, Chap. 29] or [10,
Theorem 1].
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To sketch this approach, let Q be a locally-finite directed acyclic graph. Since
there are no directed cycles in Q and every vertex in Q is the tail of only finitely
many arrows, it follows that there are only finitely many directed paths (connected
sequences of distinct arrows all oriented in the same direction) between any two
vertices. For pair a; b of vertices in Q, let ma;b 2 N be number of directed paths
from a to b. Given two finite lists A WD fa1; a2; : : : ; arg and B WD fb1; b2; : : : ; brg of
vertices, the associated path matrix is M WD Œmai;bj �1�i;j�r 2 N

r�r. A path system P
from A to B consists of a permutation � 2 Sr together with r directed paths from
ai to b�.i/. For � 2 Sr, set sgn.�/ WD .�1/k where k is the number of inversions
in � . If the paths in P are pairwise vertex-disjoint, then P is a non-intersecting
path system. The following “lemma” relates det M with non-intersecting path
systems.

Lemma 4.1 (Lindström–Gessel–Viennot) If A and B are finite lists, having the
same cardinality and consisting of vertices from a locally-finite directed acyclic
graph, then the determinant of the associated path matrix M equals the signed sum
of the non-intersecting path systems from A to B: det M D

∑
P sgn.�/. ut

For our application, consider the directed grid graph whose vertices are the lattice
points in Z

2 and whose arrows are unit steps in either the north or east direction. In
other words, the vertex .i; j/ 2 Z

2 is the tail of exactly two arrows: one with head
.i; jC1/ and the other with head .iC1; j/. The next result provides our combinatorial
reinterpretation for the degree of SO.n;C).

Proposition 4.2 Let n 2 N. If N.n/ is the number of non-intersecting path systems
in the directed grid graph from A WD f.2� n; 0/; .4� n; 0/; : : : ; .2bn=2c � n; 0/g to
B WD f.0; n � 2/; .0; n � 4/; : : : ; .0; n � 2bn=2c/g, then we have

deg SO.n;C/ D 2n�1N.n/ :

Proof By construction, the only non-intersecting path systems in our directed grid
graph have direct paths from .2i � n; 0/ to .0; n � 2i/ for 0 � i � bn=2c. Hence,
the associated element in Sdn=2e is the identity permutation and the determinant
of the associated path matrix counts the total number of non-intersecting path
systems.

The number of directed paths from .0; 0/ to .i; j/ in our directed grid graph is(iCj
i

)
; simply choose which i arrows in the connected sequence are oriented east.

Since the grid graph is invariant under translation, it follows that the number of
direct paths from the vertex .2i � n; 0/ to .0; n � 2j/ equals

(
2n�2i�2j

n�2i

)
. Therefore,

the path matrix associated to A and B is M D
[(
2n�2i�2j

n�2i

)]
1�i;j�bn=2c. Combining

Theorem 1.1 and Lemma 4.1, we conclude that deg SO.n;C/ D 2n�1N.n/. ut

Remark 4.3 From Corollaries 3.3–3.4, we also see that deg O.n;C/ D 2nN.n/ and
deg Sp.2r;C/ D N.2rC 1/.

Example 4.4 For n D 5, the 24 non-intersecting path systems are illustrated in
Fig. 1. It follows that deg SO.5;C/ D 24.24/ D 384.
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Fig. 1 The non-intersecting path systems from f.�3; 0/; .�1; 0/g to f.0; 1/; .0; 3/g

Theorem 4.2 suggests that there might be a deeper relationship between the
degree of SO.n;C/ and lattice paths. It would be interesting to find a direct
connection. Since the degree of Sp.2r;C/ does not have a coefficient involving a
power of 2, it may be the natural place to look for a combinatorial proof.

5 The Degree of a Low-Rank Optimization Problem

In this section, we show how the degree of SO.n;C/ arises in counting the number
of critical points for a particular optimization problem.

To motivate our particular problem, we first consider a more general framework.
The trace tr.A/ of a square matrix C is the sum of the entries on the main diagonal,
and a real symmetric matrix X is positive semidefinite, written X � 0, if all of its
eigenvalues are nonnegative. A semidefinite programming problem has the form:

For real symmetric matrices C;A1;A2; : : : ;Am 2 R
n�n and b 2 R

m;

minimize tr.CX/; for all real symmetric matrices X 2 R
n�n; subject

to the constraints that X � 0 and tr.AiX/ D bi for all 1 � i � m:
(SDP)

Many practical problems can be modeled as, and many NP-hard problems can
be approximated by, semidefinite programming problems; see [3, 11]. Although
semidefinite programming problems can often be efficiently solved by interior point
methods, this invariably becomes computationally prohibitive for large n. Since the
rank of an optimal solution is often much smaller than n, Burer and Monteiro [5]
study the hierarchy of relaxations in which X is replaced by the low-rank positive
semidefinite matrix RRT. Specifically, the new optimization problem is:

For real symmetric matrices C;A1;A2; : : : ;Am 2 R
n�n and b 2 R

m;

minimize tr.CRRT/; for all R 2 R
n�r; subject to the constraints that

tr.AiRRT/ D bi for all 1 � i � m:
(NOP)
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When r < .n C 1/=2, this alternative formulation has the advantage of reducing
the number of unknowns from

(nC1
2

)
to nr. However, the objective function and

the contraints are no longer linear—they are quadratic and the feasible set is non-
convex.

Burer and Monteiro [5] propose a fast algorithm for solving (NOP). Despite the
existence of multiple local minima, this algorithm quickly finds the global minimum
in practice. To help understand this phenomenon, we examine the critical points,
those points where the partial derivatives of the associated Lagrangian function
vanish, of (NOP). Before giving our formula for the number of critical points of
the new optimization problem, we need the following notation.

Definition 5.1 For positive integers i and j, let  i WD 2i�1, let  0;j WD  j, and let
 i;j WD

∑j�1
kDi

(iCj�2
k

)
. For r > 2, set

 i1;i2;:::;ir WD

{
pf
[
 ik ;i`

]
1�k<`�r if r is even

pf
[
 ik ;i`

]
0�k<`�r if r is odd,

where pf denotes the Pfaffian of a skew-symmetric matrix. For positive integer m and
n, we define ı.m; n; r/ WD

∑
I  I I0 , where the sum runs over all strictly increasing

subsequences I WD fi1; i2; : : : ; in�rg of f1; 2; : : : ; ng with i1 C i2 C � � � C in�r D m
and I0 WD f1; 2; : : : ; ng n I denotes the complement.

Remark 5.2 Originally defined in [16] as the number of critical points for (SDP) in
which the matrix X has rank r, the number ı.m; n; r/ is called the algebraic degree
of the semidefinite programming problem. Our defining formula for ı.m; n; r/ was
subsequently computed in [2].

Theorem 5.3 The number of critical points for (NOP) is 2ı.m; n; r/ deg SO.r;C/.

Proof Given new variables y1; y2; : : : ; ym, the Lagrangian function associated
to (NOP) is L.R; y/ WD tr.CRRT/ �

∑m
iD1 yi

(
tr.AiRRT/ � bi

)
. Taking the partial

derivatives of L.R; y/ yields the equations

(

C �
m∑

iD1

yiAi

)

RRT D 0 and tr.AiRRT/ D bi ; for 1 � i � m;

which define the set of critical points. Analogously, the critical points for (SDP) are
determined by the equations

(

C �
m∑

iD1

yiAi

)

X D 0 and tr.AiX/ D bi ; for 1 � i � m:

Nie, Ranestad, and Sturmfels [16] show that the number of critical points for (SDP),
for which the rank of X equals r, is ı.m; n; r/. Comparing the defining systems of
equations for the critical points of (NOP) and (SDP), we see that the fibre of the
map .R; y/ 7! .RRT; y/ over each point .X; y/ consists of all points .R; y0/ for which
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X D RRT and y0 D y. Given X and R such that X D RRT, all other matrices S
such that .S; y/ lies in the fibre over .X; y/ have the form S D RU where U is
an orthogonal .r � r/-matrix. In other words, the fibre is isomorphic to a copy of
the orthogonal group. Therefore, the number of critical points for (NOP) equals
2ı.m; n; r/ deg SO.r;C/. ut

Since the number of critical points for (NOP) grows rapidly with the rank r, the
appealing behaviour of the algorithm in [5] still needs to be explained.

Remark 5.4 For applications, the most important critical points for (NOP) are real
and satisfy the equation

(
C �

∑m
iD1 yiAi

)
� 0.

6 Computational Methods

Since Theorem 1.1 provides a formula for the degree of SO.n;C/, this family of
examples becomes an interesting testing ground for various symbolic and numerical
methods for computing degrees. In this section, we outline three algorithmic
techniques for calculating the degree of a variety. The first is based on Gröbner
bases, the second uses polynomial homotopy continuation, and the third involves
numerical monodromy. Table 1 summarizes the results of our computations, and
the related Macaulay2 code appears in the Appendix. Beyond contrasting these
algorithms, we hope that the different routines and auxiliary data, such as Gröbner
bases or witness sets, will lead to new insights into the degrees of varieties.

The standard symbolic algorithm for determining the degree of a variety first
finds a Gröbner basis of the defining ideal and then uses combinatorial properties
of the initial ideal to return the Hilbert polynomial; the degree can be easily
extracted from the highest degree term of the Hilbert polynomial. As this method
is independent of the ground field, one can speed up the calculation by working
over a small finite field. With this algorithm, we were able to compute the degree of
SO.n;C/ for all 2 � n � 5, but it was the slowest among the methods we compared.

The basic numerical strategy for computing the degree of SO.n;C/ randomly
chooses a linear subspace L of complementary dimension and counts the number
of complex solutions S to the zero-dimensional system of polynomial equations
corresponding to SO.n;C/ \ L. The triple

(
SO.n;C/;L; S

)
is called a witness set

for SO.n;C/. This triple is a fundamental data type in numerical algebraic geometry:
the computation of a witness set is often a necessary input to other numerical
algorithms, including sampling points on the variety, studying its asymptotic
behaviour, computing its monodromy group, or even studying its real locus; see
Sect. 7. Both numerical algorithms presented below produce a witness set for
SO.n;C/.

Polynomial homotopy continuation computes a witness set by finding numerical
approximations for the complex solutions S. First, one constructs a polynomial
system that has a similar structure to the target system and has a simple solution
set. This start system is embedded in a homotopy relating it to the target system and
the numerical solutions of the start system are traced towards solutions of the target
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system. Start systems correspond to root counts. For dense systems, one typically
uses the Bézout bound whereas, for sparse systems, one uses the mixed volume of
the appropriate Newton polytopes. However, for SO.n;C/, both of these bounds are
equal 2n.nC1/=2, which grows quickly (for n D 6, it is already 2 097 152). Because of
the number of paths that must be tracked, we were only able to compute the degree
of SO.n;C/ for all 2 � n � 5 using this method.

Our third technique takes advantage of monodromy; see [7]. Suppose L and L0

are two linear subspaces of complementary dimension to SO.n;C/. Given a point
on the linear slice W WD SO.n;C/ \ L, we can numerically track this solution
along some path  to a point in another slice W 0 WD SO.n;C/ \ L0. Tracking the
second point along a different path  0 back to W yields another point in W and
induces a permutation �; 0 on the points in W. Iterating this process, one expects
to populate the witness set associated to W. Although there are algorithms [17]
which certify that a witness set is complete, one frequently uses heuristic stopping
criteria because they are much faster. This monodromy method is implemented in
the MonodromySolver package for Macaulay2 [9]. With the naive stopping criterion
that no new points were found after ten consecutive iterations, we were able to
calculate with this method the degree SO.n;C/ for all 6 � n � 7.

7 Real Points on SO.n; C/

Motivated by the applications to optimization, this section investigates the structure
of the real points in SO.n;C/. Taking advantage of the numerical monodromy
algorithm, we collect experimental data counting the number of real points in
witness sets for SO.3;C/, SO.4;C/, and SO.5;C/.

More precisely, we use the random function in Macaulay2 [9] to generate a
sample of linear slices of SO.n;C/. Homotopy continuation allows us to track
solutions from a precomputed witness set to those lying on each randomly chosen
linear slice. We determine how many solutions in the random slice are real by
checking whether each coordinate is within a 0:001 numerical tolerance of being
real. One can actually certify reality using alphaCertify [12], which implements
Smale’s ˛-theory. However, for the sake of speed, we limited these formal checks
to at least one witness set achieving the maximum observed number of real
points. The results of computing 1,398,000, 1,004,100, and 48,200 witness sets for
SO.3;C/;SO.4;C/; and SO.5;C/ are displayed in Figs. 2 and 3.

The raw data and actually code can be found at [4]. In rare examples, the process
failed to return a witness set on the randomly chosen linear slice, because the
homotopy continuation was ill-conditioned. In particular, we observed 2, 51, and
81 such failures for SO.3;C/;SO.4;C/; and SO.5;C/ respectively. Despite the fact
that all witness sets computed for SO.4;C/ and SO.5;C/ had fewer than 40 and 384
solutions, we are not convinced that there exists a non-trivial upper bound for the
number of real solutions on a witness set of SO.n;C/ exists. In fact, we conjecture
that, for all n � 2, SO.n;C/ admits a real witness set.
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Fig. 3 Another histogram for the number of real solutions found in each witness set
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Appendix: Macaulay2 Code

This section contains Macaulay2 [9] code for computing the degree of SO.n;C/.
We typically compute the degree of O.n;C/, and divide by to 2 to obtain the degree
of SO.n;C/, because this approach eliminates the polynomial of highest degree, the
condition that the determinant equal 1.

First, we compute the degree of SO.5/ using Gröbner bases. The computation
is done over the finite field Z=2Z for O.5;C/ and the result is halved to give the
degree of SO.5;C/.

deg1SO = n -> (
R := ZZ/2[x_(1,1)..x_(n,n)];
M := genericMatrix(R,n,n);
J := minors(1, M * transpose(M) - id_(R^n));
(degree J) // 2)

Our second function uses the package NumericalAlgebraicGeometry to solve
the zero-dimensional system arising from a linear slice of the variety O.3;C/. The
command solveSystem employs the standard method of polynomial homotopy
continuation.

needsPackage ‘‘NumericalAlgebraicGeometry’’;
deg2SO = n -> (

R := CC[x_(1,1)..x_(n,n)];
M := genericMatrix(R,n,n);
B := M * transpose(M) - id_(R^n);
polys := unique flatten entries B;
linearSlice := apply(binomial(n,2),

i -> random(1,R) - random(CC));
S := solveSystem(polys | linearSlice);
#S // 2)

We next provide code that computes the degree of SO.n;C/ using the package
MonodromySolver. Again we do not include the determinant condition, but this time
we do not need to halve the result. This is because our starting point, the identity
matrix, lies on SO.n;C/ and this method only discovers points on the irreducible
component corresponding to our starting point. The linear slices are parametrized
by the t and c variables which are varied within the function monodromySolve to
create monodromy loops. The method stops when ten consecutive loops provide
no new points. Although it is possible that this stopping criterion is satisfied
prematurely, in our case the program stopped at the correct number.

needsPackage ‘‘MonodromySolver’’;
deg3SO = n -> (

d := binomial(n,2);
R := CC[c_1..c_d,

t_(1,1,1)..t_(d,n,n)][x_(1,1)..x_(n,n)];
M := genericMatrix(R,n,n);
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B := M * transpose(M) - id_(R^n);
polys := unique flatten entries B;
linearSlice := for i from 1 to d list (

c_i + sum flatten for j from 1 to n list (
for k from 1 to N list t_(i,j,k)*x_(j,k)));

G := polySystem( polys | linearSlice);
setRandomSeed 0;
(p0, x0) := createSeedPair(G,

flatten entries id_(CC^n));
(V, npaths) = monodromySolve(G, p0, {x_0},

NumberOfNodes => 2, NumberOfEdges => 4);
# flatten points V.PartialSols)

Finally, we may use Theorem 1.1 to compute the degree of SO.n;C/.

deg4SO = n -> (
r := n // 2;
M := matrix table(toList(1..r), toList(1..r),

(i,j) -> binomial(2*n-2*i-2*j, n-2*i));
2^(n-1) * det(M))

References

1. Martin Aigner and Günter Ziegler: Proofs from The Book, Fourth edition, Springer-Verlag,
Berlin, 2010.

2. Hans-Christian Graf von Bothmer and Kristian Ranestad: A general formula for the algebraic
degree in semidefinite programming, Bull. Lond. Math. Soc. 41 (2009) 193–197.

3. Stephen Boyd and Lieven Vandenberghe: Semidefinite programming relaxations of non-
convex problems in control and combinatorial optimization, in Communications, Computation,
Control, and Signal Processing, 279–287, Springer Science+Business Media, New York, 1997.

4. Taylor Brysiewicz: Experimenting to find many real points on slices of SO.n;C/, www.math.
tamu.edu/~tbrysiewicz/realitySonData.html.

5. Samuel Burer and Renato Monteiro: Local minima and convergence in low-rank semidefinite
programming, Math. Program. Ser. A 103 (2005) 427–444.

6. Harm Derksen and Gregor Kemper: Computational invariant theory, Encyclopaedia of
Mathematical Sciences 130, Springer, Heidelberg, 2015.

7. Timothy Duff, Cvetelina Hill, Anders Jensen, Kisun Lee, Anton Leykin, and Jeff Sommars:
Solving polynomial systems via homotopy continuation and monodromy, arXiv:1609.08722
[math.AG].

8. William Fulton and Joe Harris: Representation theory, Graduate Texts in Mathematics 129,
Springer-Verlag, New York, 1991.

9. Daniel R. Grayson and Michael E. Stillman: Macaulay2, a software system for research in
algebraic geometry, available at www.math.uiuc.edu/Macaulay2/.

10. Ira Gessel and Gérard Viennot: Binomial determinants, paths, and hook length formulae, Adv.
in Math. 58 (1985) 300–321.

11. Michel X. Goemans and David P. Williamson: Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming, J. Assoc. Comput.
Mach. 42 (1995) 1115–1145.

12. Jonathan D. Hauenstein and Frank Sottile: alphaCertified software for certifying numerical
solutions to polynomial equations, available at www.math.tamu.edu/~sottile/research/stories/
alphaCertified.

www.math.tamu.edu/~tbrysiewicz/realitySonData.html
www.math.tamu.edu/~tbrysiewicz/realitySonData.html
http://arXiv:1609.08722 [math.AG]
www.math.uiuc.edu/Macaulay2/
www.math.tamu.edu/~sottile/research/stories/alphaCertified
www.math.tamu.edu/~sottile/research/stories/alphaCertified


246 M. Brandt et al.

13. James E. Humphreys: Reflection groups and Coxeter groups, Cambridge Studies in Advanced
Mathematics 29, Cambridge University Press, Cambridge, 1990.

14. B. Ya. Kazarnovskiı̆: Newton polyhedra and Bézout’s formula for matrix functions of finite-
dimensional representations, Functional Anal. Appl. 21 (1987) 319–321.

15. James S. Milne: Algebraic number theory, v3.06, 2014, available at www.jmilne.org/math/
CourseNotes/ant.html.

16. Jiawang Nie, Kristian Ranestad, and Bernd Sturmfels: The algebraic degree of semidefinite
programming, Math. Program. Ser. A 122 (2010) 379–405.

17. Andrew J. Sommese, Jan Verschelde, and Charles W. Wampler: Symmetric functions applied
to decomposing solution sets of polynomial systems, SIAM J. Numer. Anal. 40 (2002) 2026–
2046.

18. Andrew J. Sommese and Charles W. Wampler: The Numerical Solution of Systems of
Polynomials Arising in Engineering and Science, World Scientific Publishing Co. Pte. Ltd.,
Singapore, 2005.

19. Bernd Sturmfels: Fitness, apprenticeship, and polynomials, in Combinatorial Algebraic Geom-
etry, 1–19, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

www.jmilne.org/math/CourseNotes/ant.html
www.jmilne.org/math/CourseNotes/ant.html


Computing Toric Degenerations of Flag Varieties
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Abstract We compute toric degenerations arising from the tropicalization of the
full flag varieties Fl4 and Fl5 embedded in a product of Grassmannians. For Fl4
and Fl5 we compare toric degenerations arising from string polytopes and the FFLV
polytope with those obtained from the tropicalization of the flag varieties. We also
present a general procedure to find toric degenerations in the cases where the initial
ideal arising from a cone of the tropicalization of a variety is not prime.
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1 Introduction

Consider the variety Fln of full flags f0g D V0 	 V1 	 � � � 	 Vn�1 	 Vn D C
n

of vector subspaces of C
n with dimC.Vi/ D i. The flag variety Fln is naturally

embedded in a product of Grassmannians using the Plücker coordinates. We denote
by In the defining ideal of Fln with respect to this embedding. We produce toric
degenerations of Fln as Gröbner degenerations coming from the initial ideals
associated to the maximal cones of trop.Fln/. Moreover, we compare these with
certain toric degenerations arising from representation theory.

L. Bossinger
Mathematisches Institut, University of Cologne, Weyertal 86-90, 50931 Cologne, Germany
e-mail: lbossing@math.uni-koeln.de

S. Lamboglia
Mathematics Institute, University of Warwick, Zeeman Building, Coventry CV4 7AL, UK
e-mail: S.Lamboglia@warwick.ac.uk

K. Mincheva
Department of Mathematics, Yale University, 10 Hillhouse Ave., New Haven, CT 06511, USA
e-mail: kalina.mincheva@yale.edu

F. Mohammadi (�)
School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
e-mail: fatemeh.mohammadi@bristol.ac.uk

© Springer Science+Business Media LLC 2017
G.G. Smith, B. Sturmfels (eds.), Combinatorial Algebraic Geometry,
Fields Institute Communications 80, https://doi.org/10.1007/978-1-4939-7486-3_12

247

mailto:lbossing@math.uni-koeln.de
mailto:S.Lamboglia@warwick.ac.uk
mailto:kalina.mincheva@yale.edu
mailto:fatemeh.mohammadi@bristol.ac.uk
https://doi.org/10.1007/978-1-4939-7486-3_12


248 L. Bossinger et al.

We consider 1-parameter toric degenerations of Fln. These are flat families
'WF ! A

1, where the fibre over zero (also called special fibre) is a toric variety and
all other fibres are isomorphic to Fln. Once we have such a degeneration, some of the
algebraic invariants of Fln will be the same for all fibres, hence the computation can
be done on the toric fibre. In the case of a toric variety such invariants are easier to
compute than in the case of a general variety. In fact, they have a nice combinatorial
description. Moreover, toric degenerations connect different areas of mathematics,
such as symplectic geometry, representation theory, and algebraic geometry.

Let X D V.I/ be a projective variety and trop.X/ be its tropicalization. The initial
ideals associated to the top-dimensional cones of trop.X/ are good candidates to give
toric degenerations, see Lemma 2.7 and [27, Proposition 1.1] for a more general
statement. For example, in the case of Grassmannians Gr.2;Cn/ each maximal
cone of trop.Gr.2;Cn// gives a toric degeneration, see [5, 29, 32]. However, this is
not true for the Grassmannians Gr.3;Cn/. In [27], Mohammadi and Shaw identify
which maximal cones of trop.Gr.3;Cn// produce such degenerations.

The following are our main results. More detailed formulations can be found in
Theorem 3.3, Theorem 3.5, and Proposition 6.4. A maximal cone C of trop.X/ is
prime if inC.I/ WD inw.I/ is prime, with w a vector in the relative interior of C.

Theorem 1.1 The tropical variety trop.Fl4/ 	 R
14=R3 is a six-dimensional fan

with 78 maximal cones. From prime cones we obtain four non-isomorphic toric
degenerations. After applying Procedure 6.1, we obtain at least two additional non-
isomorphic toric degenerations from non-prime cones.

Theorem 1.2 The tropical variety trop.Fl5/ 	 R
30=R4 is a ten-dimensional fan

with 69,780 maximal cones. From prime cones we obtain 180 non-isomorphic toric
degenerations.

Toric degenerations of flag varieties and Schubert varieties have been studied
intensively in representation theory over the last two decades. We refer the reader to
[13] for a nice overview on this topic and to the references therein.

The main motivation of this paper is to study the flat degenerations of flag
varieties into toric varieties arising from the tropicalization and to compare these
degenerations to those associated to string polytopes and the Feigin–Fourier–
Littelmann–Vinberg polytope (FFLV polytope).

Theorem 1.3 For Fl4, there is at least one new toric degeneration arising from
prime cones of trop.Fl4/ in comparison to those obtained from string polytopes and
the FFLV polytope. For Fl5, there are at least 168 new toric degenerations arising
from prime cones of trop.Fl5/ in comparison to those obtained from string polytopes
and the FFLV polytope.

Our work is closely related to the theory of Newton–Okounkov bodies. Let k be
a not necessarily algebraically closed field and X a projective variety. It is possible
to associate to every prime cone in trop.X/ a valuation with a finite Khovanskii
basis B on the homogeneous coordinate ring kŒX�, see [23, Lemma 5.7]. This is
a set of elements of kŒX�, such that their valuations generate the value semigroup
S.kŒX�; val/. The convex hull of S.kŒX�; val/ [ f0g is referred to as the Newton–
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Okounkov cone. After intersecting this cone with a certain hyperplane one obtains
a convex body, called the Newton–Okounkov body. When a finite Khovanskii basis
exists, [2, Theorem 1.1] states that there is a flat degeneration of the variety X into a
toric variety whose normalization has as associated polytope the Newton–Okounkov
body. In this case the Newton–Okounkov body is a polytope. The toric polytopes
obtained in Theorem 3.3, Theorem 3.5, and Proposition 6.4 can be seen as Newton–
Okounkov bodies for the valuations defined in Sect. 6.

The paper is structured as follows. In Sect. 2 we provide the necessary back-
ground. We study the tropicalization of the flag varieties Fln for n D 4; 5 and the
induced toric degenerations in Sect. 3. The solutions to [30, Problem 5 on Grass-
mannians] and [30, Problem 6 on Grassmannians] can be found in Theorem 3.3.

In Sect. 4 we recall the definition of string cones, string polytopes, and the FFLV
polytope for regular dominant integral weights. We compute for Fl4 and Fl5 all string
polytopes for the weight �, which is the sum of all fundamental weights. Moreover,
in Sect. 5 for every string cone we construct a weight vector ww0

contained in the
tropicalization of the flag variety in order to further explore the connection between
these two different approaches. The construction is inspired by Caldero [7].

In Sect. 6 we give an algorithmic approach to solving [23, Problem 1] for a
subvariety X of a toric variety Y when each cone in trop.X/ has multiplicity one.
Procedure 6.1 aims at computing a new embedding X0 of X in case trop.X/ has some
non-prime cones. Once we have such an embedding, we explain how to get new toric
degenerations of X. We apply the procedure to Fl4. Furthermore, we explain how to
interpret the procedure in terms of finding valuations with finite Khovanskii basis
on the algebra given by the homogeneous coordinate ring of X.

2 Preliminary Notions

In this section, we recall the definition of a flag variety and we introduce the
necessary background in tropical geometry. In fact, the key ingredient in the study
of Gröbner toric degenerations of Fln is the subfan of the Gröbner fan of In given by
the tropicalization of Fln. We mostly refer to the approach described in [25] and we
encourage the reader to look there for a more thorough introduction.

Let k be a field with char.k/ D 0 and consider on it the trivial valuation. We are
mainly interested in the case when k D C.

Definition 2.1 A complete flag in the vector space k
n is a chain

V W f0g D V0 	 V1 	 � � � 	 Vn�1 	 Vn D k
n

of vector subspaces of k
n with dimk.Vi/ D i.

The set of all complete flags in k
n is denoted by Fln and it has an algebraic

variety structure. More precisely, it is a subvariety of the product of Grassmannians
Gr.1;kn/ � Gr.2;kn/ � � � � � Gr.n � 1;kn/.
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Composing with the Plücker embeddings of the Grassmannians, Fln becomes a
subvariety of P.

n
1/�1�P.

n
2/�1�� � ��P.

n
n�1/�1 and so we can ask for its defining ideal

In. Each point in the flag variety can be represented by an .n�1/�n-matrix M D Œxi;j�

whose first d rows generate Vd. Each Vd corresponds to a point in a Grassmannian.
Moreover, they satisfy the condition Vd 	 VdC1 for d D 0; : : : ; n � 1. In order to
compute the ideal In defining Fln in P.

n
1/�1 � P.

n
2/�1 � � � � � P.

n
n�1/�1 we have to

translate the inclusions Vd 	 VdC1 into polynomial equations. We define the map
'nWkŒpJ W ¿ ¤ J ¨ f1; 2; : : : ; ng� ! kŒxi;j W 1 � i � n � 1; 1 � j � n� sending
each Plücker variable pJ to the determinant of the submatrix of M with row indices
1; 2; : : : ; jJj and column indices in J. The ideal In of Fln is the kernel of 'n. There is
an action of Sn �Z2 on Fln. The symmetric group acts by permuting the columns of
M. The action of Z2 maps a complete flag V to its complement, which is defined to
be V ?W f0g D V?

n 	 V?
n�1 	 � � � 	 V?

1 	 V?
0 D k

n.
Hence, we do computations up to Sn�Z2-symmetry. We are interested in finding

toric degenerations. These are degenerations whose special fibre is defined by a toric
ideal, i.e. a binomial prime ideal not containing monomials. This toric ideal arises
as the initial ideal of In.

Definition 2.2 Let f D
∑

auxu with u 2 Z
nC1
�0 be a polynomial in

S D kŒx0; x1; : : : ; xn�. For each w 2 R
nC1 we define its initial form to be

inw.f / D
∑

w	u is minimal

auxu:

If I is an ideal in S, then its initial ideal with respect to w is inw.I/ D hinw.f / W f 2 Ii.

An important geometric property of initial ideals is that there exists a flat family
over A

1 for which the fibre over 0 is isomorphic to V
(
inw.I/

)
and all the other fibres

are isomorphic to the variety V.I/. Here, if J is a homogeneous ideal of S then we
define V.J/ WD Proj.S=J/ where the grading on S and hence on S=J comes from the
ambient space which has S as homogeneous coordinate ring.

Let t be the coordinate in A
1, then the flat family is given by the ideal

QIt D ht
� minufw	ugf .tw0x0; t

w1x1; : : : ; t
wn xn/W f D

∑
auxu 2 Ii 	 kŒt; x0; x1; : : : ; xn� :

This family gives a flat degeneration of the variety V.I/ into the variety
V
(

inw.I/
)

called the Gröbner degeneration. In order to look for toric degenerations,
we study the tropicalization of V.I/.

Definition 2.3 For any f WD
∑

auxu 2 S, the tropicalization of f is the function
trop.f /WRnC1 ! R given by trop.f /.w/ D minfw � u W u 2 Z

nC1
�0 and au ¤ 0g.

Let f WD
∑

auxu be a homogeneous polynomial in S. If w � v D m � 1, for
some v;w 2 R

nC1, 1 WD .1; 1; : : : ; 1/ 2 R
nC1, and m 2 R, then we have that the

minimum in trop.f /.w/ and trop.f /.v/ is achieved for the same u 2 Z
nC1
�0 such that

au ¤ 0.
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Definition 2.4 Let f be a homogeneous polynomial in S and V.f / the associated
hypersurface in P

n. Then the tropical hypersurface of f is defined to be

trop.V.f // D

®
w 2 R

nC1=R1 Š R
nW

the minimum in trop.f /.w/
is achieved at least twice

´
:

Let I be a homogeneous ideal in S. The tropicalization of the variety V.I/ 	 P
n is

defined to be

trop
(

V.I/
)
D

⋂

f 2I

trop
(

V.f /
)
:

For every w 2 trop
(

V.I/
)
, inw.I/ does not contain any monomial (see proof of

[25, Theorem 3.2.3]). If V.I/ is a .d� 1/-dimensional irreducible projective variety,
then trop.V.I// is the support of a rational fan given by the quotient by R1 of a
subfan F of the Gröbner fan of I ([25, Theorem 3.3.5]). The fan F has dimension
d, which is the Krull dimension of S=I. It is possible to quotient by R1 because I
is homogeneous and hence inw.I/ D inv.I/ for every w � v D m � 1 with v;w 2
R

nC1 and m 2 R. If we consider this fan structure on trop.V.I// we have that
vectors in the relative interior of a cone give rise to the same initial ideal and vectors
in distinct relative cone interiors induce distinct initial ideals. For this reason, we
denote by inC.I/ the initial ideal of I with respect to any w in the relative interior
of C. The tropicalization of a variety X is non-empty only if X intersects the torus
Tn D .k�/nC1=k� non-trivially. In fact, trop.X/ is technically the tropicalization of
X \ Tn.

In the same way the tropicalization can be defined when S is the total coordinate
ring (see [9, p. 207] for a definition) of P

k1 � � � � � P
ks . The ring S has a Z

s-grading
given by deg W Z

nC1 ! Z
s. An ideal I defining an irreducible subvariety V.I/ of

P
k1 � � � � � P

ks is homogeneous with respect to this grading. The tropicalization
of V.I/ is contained in R

k1C:::CksCs=H, where H is an s-dimensional linear space
spanned by the rows of the matrix D associated to deg. Similarly to the projective
case, if V.I/ is a d-dimensional irreducible subvariety of P

k1 � � � � � P
ks , then

trop.V.I// is the support of a fan which is the quotient by H of a rational .d C s/-
dimensional subfan F of the Gröbner fan of I. Here the Krull dimension of S=I is
dC s.

In the following, we always consider trop
(

V.I/
)

with this fan structure.

Remark 2.5 A detailed definition of the tropicalization of a general toric variety X˙
and of its subvarieties can be found in [25, Chap. 6]. Note that we only consider the
tropicalization of the intersection of V.I/with the torus of X˙ while in [25, Chap. 6]
they introduce a generalized version of trop.V.I//which includes the tropicalization
of the intersection of V.I/ with each orbit of X˙ .

Another property of trop
(

V.I/
)

is that any fan structure on it can be balanced
by assigning a positive integer weight to every maximal cell. We do not explain the
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notion of balancing in detail and we consider an adapted version of the multiplicity
defined in [25, Definition 3.4.3].

Definition 2.6 Let I 	 S be a homogeneous ideal and ˙ be a fan with support
j˙ j D j trop

(
V.I/

)
j such that, for each cone C of ˙ , the ideal inw.I/ is constant

for w in the relative interior of C. For a maximal dimensional cone C 2 ˙ , we
define the multiplicity as mult.C/ D

∑
P mult.P; inC.I//, where the sum is taken

over the minimal associated primes P of inC.I/ that do not contain monomials; see
[11, Sect. 3] or [8, Sect. 4.7].

As we have seen, each cone of trop
(

V.I/
)

corresponds to an initial ideal which
contains no monomials. Moreover, we will see that the good candidates for toric
degenerations are the initial ideals corresponding to the relative interior of the
maximal cones. A maximal cone is prime if the corresponding initial ideal is prime.

Lemma 2.7 Let I 	 S be a homogeneous ideal and C a maximal cone of trop.V.I//.
If inC.I/ is a toric ideal, i.e. binomial and prime, then C has multiplicity one. If C has
multiplicity one, then inC.I/ has a unique toric ideal in its primary decomposition.

Proof We first prove the lemma for S the homogeneous coordinate ring of P
n. Let

I0 D inC.I/kŒx˙1
1 ; : : : ; x˙1

n � and consider the subvariety V.I0/ of the torus Tn. Then
by [25, Remark 3.4.4] the multiplicity of a maximal cone C is the number of d-
dimensional torus orbits whose union is V.I0/. If inC.I/ is toric, then V.I0/ is an
irreducible toric variety having a unique d-dimensional torus orbit. Hence, C has
multiplicity one.

Suppose now C has multiplicity one. This implies that inC.I/ contains one
associated prime J, which does not contain monomials. The ideal J has to be
binomial since it is the ideal of the unique d-dimensional torus orbit contained in
V.I0/.

When S is the total coordinate ring of the product P
k1 � � � � � P

ks , the torus is
given by Tk1 � � � � � Tks Š Tk1C			Cks . We may assume that for each i,

Tki D fŒ1 W a1 W : : : W aki � 2 P
ki W aj ¤ 0 for all jg:

The variables for P
ki are denoted by xi;0; : : : ; xi;ki for each i. We fix the Laurent poly-

nomial ring S0 D kŒx˙1
1;1 ; : : : ; x

˙1
1;k1 ; x

˙1
2;1 ; : : : ; x

˙1
2;k2 ; : : : ; x

˙1
s;1 ; : : : ; x

˙1
s;ks
�. We consider

the ideal I0 D inC.I/S0 in S0 and the variety V.I0/ as a subvariety of Tk1C:::Cks . Then
the proof proceeds as before. ut

Remark 2.8 From Lemma 2.7 we conclude the multiplicity being one is a necessary
but not sufficient condition for toric initial ideals. A cone can have multiplicity one
but its associated initial ideal might be neither prime nor binomial. There may be
associated primes that contain monomials in the decomposition of inw.I/ and these
do not contribute to the multiplicity. There are examples of such cones in trop.Fl5/
as we will see in Theorem 3.5.

Let I be a homogeneous ideal in S such that the Krull dimension of S=I is d.
Consider trop

(
V.I/

)
	 R

nC1=H and the d-dimensional subfan F 	 R
nC1 of the
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Gröbner fan of I with F=H Š trop
(

V.I/
)
. When V.I/ 	 P

k1 � P
k2 � � � � � P

ks the
linear space H is spanned by the rows of the matrix D. In particular, when V.I/ 	 P

n

we have that H is equal to the span of .1; 1; : : : ; 1/. We now describe some properties
of the toric initial ideals corresponding to maximal cones of trop

(
V.I/

)
. Let C be

a cone in trop.V.I// and fw1;w2; : : : ;wdg be d linearly independent vectors in F
generating the maximal cone C0, such that C0=H Š C. We can assume that the wi’s
have integer entries since F is a rational fan. The matrix associated to C is

WC D
[
w1 w2 � � � wd

]T
: (1)

Consider a sublattice L of Z
nC1 and the standard basis e1; e2; : : : ; enC1 of Z

nC1.
Given ` D .`1; `2; : : : ; `nC1/ 2 L, we set `C D

∑
`i>0

`iei and `� D �
∑

`j<0
`jej,

so that ` D `C � `� and `C; `� 2 N
nC1; see [9, p. 15].

Lemma 2.9 Let I be a homogeneous ideal in S and C a maximal cone in trop.V.I//.
If inC.I/ is toric, then there exists a sublattice L of Z

nC1 and constants 0 ¤ c` 2 k

with ` 2 L such that inC.I/ D I.WC/ WD hx`
C

� c`x`
�

W ` 2 Li. In particular, L is
the kernel of the map f W ZnC1 ! Z

d defined by the matrix WC. If C has multiplicity
one and inC.I/ is not toric, then the unique toric ideal in the primary decomposition
of inC.I/ is of the form I.WC/.

Proof Let inC.I/ 	 S be a toric initial ideal and let C0 be the corresponding cone in
F. The fan structure is defined on trop

(
V.I/

)
so that for every w0, w in the relative

interior of C0 we have inw0.I/ D inC.I/ D inw.I/. This implies that inC.I/ is WC-
homogeneous, that is homogeneous with respect to the Z

d-grading on S given by
the matrix WC. By [31, Lemma 10.12] there exists an automorphism � of S sending
xi to �ixi for some �i 2 k, such that the ideal inC.I/ is isomorphic to an ideal of
the form IL WD hx`

C

� x`
�

W ` 2 Li, where L is the sublattice of Z
nC1 given by the

kernel of the map f WZnC1 ! Z
d. Applying ��1 to inC.I/ we can write each toric

initial ideal as hx`
C

� c`x`
�

W ` 2 Li D I.WC/, for some 0 ¤ c` 2 k, L and WC

defined above.
Let C be a cone of multiplicity one and suppose inC.I/ is not prime. By

Lemma 2.7, there exists a unique toric ideal J in the primary decomposition of
inC.I/. This toric ideal J contains inC.I/ and we show that it can be expressed as
I.WC/. The variety V.I/ is considered as a subvariety of P

n. As in Lemma 2.7,
the case in which V.I/ 	 P

k1 � P
k2 � � � � � P

ks has an analogous proof.
The tropical variety depends only on the intersection of V.I/ with the torus,
and inC.I/kŒx˙1

1 ; x˙1
2 ; : : : ; x˙1

n � is equal to J. Hence, J is a prime ideal that is
homogeneous with respect to WC so we proceed as above to establish that we have
J D hx`

C

� c`x`
�

W ` 2 Li D I.WC/. ut

Remark 2.10 The lattice L and the ideal I.WC/ only depend on the linear space
spanned by the rays of the cone C0. Hence, they are the same for every set of d
independent vectors in C0 chosen to define WC.
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3 Tropicalization and Toric Degenerations

In this section, we study the tropicalization of Fl4 and Fl5. We analyze the Gröbner
toric degenerations arising from trop.Fl4/ and trop.Fl5/, and we compute the
polytopes associated to their normalizations. In Proposition 3.4 we describe the
tropical configurations arising from the maximal cones of trop.Fl4/. These are
configurations of a point on a tropical line in a tropical plane corresponding to the
points in the relative interior of a maximal cone.

Before stating our main results, we recall the following definition.

Definition 3.1 There exists a unimodular equivalence between two lattice poly-
topes P and Q (resp. two fans F and G ) if there exists an affine lattice isomorphism
� of the ambient lattices sending the vertices (resp. the rays) of one polytope (resp.
fan) to the vertices (resp. rays) of the other. Moreover, if � is a face of P (resp. of
F ) then �.�/ is a face of Q (resp. G ) and the adjacency of faces is respected.

Remark 3.2 We are interested in finding distinct fans up to unimodular equivalence
as they give rise to non-isomorphic toric varieties. Often it will be possible only to
determine combinatorial equivalence (see [9, Sect. 2.2]). This is a weaker condition
but when it does not hold it allows us to rule out unimodular equivalence.

Theorem 3.3 The tropical variety trop.Fl4/ is a six-dimensional rational fan in
R
14=R3 with a three-dimensional lineality space. It consists of 78maximal cones, 72

of which are prime. They are organized in five S4 �Z2-orbits, four of which contain
prime cones. The prime cones give rise to four non-isomorphic toric degenerations.

Proof The theorem is proved by explicit computations. We developed a Macaulay2
package called ToricDegenerations containing all the functions we use.
The package and the data needed for this proof are available at https://github.
com/ToricDegenerations. The flag variety Fl4 is a six-dimensional subvariety of
P
3 � P

5 � P
3. The ideal I4 defined in the previous section is contained in the total

coordinate ring R of P
3�P

5�P
3 which is the polynomial ring over C in the variables

p1, p2, p3, p4, p1;2, p1;3, p1;4, p2;3, p2;4, p3;4, p1;2;3, p1;2;4, p1;3;4, p2;3;4. The grading on
R is given by the matrix

D D

⎡

⎣
1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎤

⎦ : (2)

The explicit form of I4 can be found in [26, p. 276]. As we have seen in Sect. 2
the tropicalization of Fl4 is contained in R

14=H. In this case, H is the vector space
spanned by the rows of D.

We use the Macaulay2 [19] interface to Gfan [21] to compute trop.Fl4/. The
given input is the ideal I4 and the S4 � Z2-action (see [22, Sect. 3.1.1]). The
output is a subfan F of the Gröbner fan of dimension 9. We quotient it by H to
get trop.Fl4/ as a six-dimensional fan contained in R

14=H Š R
14=R3. Firstly, the

https://github.com/ToricDegenerations
https://github.com/ToricDegenerations
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function computeWeightVectors computes a list of vectors. There is one for
every maximal cone of trop.Fl4/ and it is contained in the relative interior of the
corresponding cone. Then groebnerToricDegenerations computes all the
initial ideals and checks if they are binomial and prime over Q. These are organized
in a hash table, which is the output of the function. All 78 initial ideals are binomial
and all maximal cones have multiplicity one. In order to check primeness over C,
we have to check if inC.I4/ D I.WC/. This can be done by computing the degrees
of V

(
inC.I4/

)
and V

(
I.WC/

)
seen as subvarieties of P

13. If these are equal, then
there are no non-toric ideals in the primary decomposition of inC.I4/. The degree of
V
(
I.WC/

)
equals the degree of V.IL/, where L and IL can be computed from WC as

in the proof of Lemma 2.9.
We consider the orbits of the S4 Ë Z2-action on the set of initial ideals. These

correspond to the orbits of maximal cones of F and trop.Fl4/. There is one orbit
of non-prime initial ideals and four orbits of prime initial ideals. The varieties
corresponding to initial ideals contained in the same orbit are isomorphic. Thus,
for each orbit, we choose a representative of the form inC.I4/ D I.WC/ for some
cone C.

We now compute for each of the four prime orbits, the polytope of the
normalization of the associated toric varieties. We use the Macaulay2 package
Polyhedra [4] for the following computations. The lattice M associated to S=I.WC/

is generated over Z by the columns of WC. To use Polyhedra we want to have a
lattice with index 1 in Z

9. Hence, in case the index of M in Z
9 is different from 1, we

consider M as the lattice generated by the columns of the matrix .ker..ker.WC//
T/T.

Here, for a matrix A we consider ker.A/ to be the matrix whose columns minimally
generate the kernel of the map Z

14 ! Z
9 defined by A. We denote the set of

generators of M by BC D fb1;b2; : : : ;b14g so that M D ZBC.
The toric variety P

3 � P
5 � P

3 can be seen as Proj.˚`R`.1;1;1// and I.WC/

as an ideal in ˚`R`.1;1;1/ (see [26, Chap. 10]). The associated toric variety is
Proj.˚`CŒNBC�`.1;1;1//. The polytope P of the normalization is given as the convex
hull of those lattice points in NBC corresponding to degree .1; 1; 1/-monomials
in CŒNBC�. These can be found in the following way. We order the rows of the
matrix Œb1;b2; : : : ;b14� associated to BC so that the first three rows give the matrix
D from (2). Now the matrix Œb1;b2; : : : ;b14� represents a map Z

14 ! Z
3 ˚ Z

6,
where Z

3 ˚ Z
6 is the lattice M and the Z

3 part gives the degree of the monomials
associated to each lattice point on M. The lattice points, whose convex hull gives the
polytope P, are those ones with the first three coordinates being 1. In other words,
we have obtained P by applying the reverse procedure of constructing a toric variety
from a polytope (see [9, Sect. 2.1–2.2]). The difference from the procedure given
in [9, Sect. 2.1–2.2] is the Z

3-grading and because of that we do not consider the
convex hull of BC, but the intersection of NBC with these hyperplanes.

In Table 1, we list the numerical invariants of the initial ideals and their
corresponding polytopes. The tropical variety trop.Fl4/ has 78 maximal cones
organized in five S4 � Z2-orbits. Using polymake [17], we first obtain that there
is no combinatorial equivalence between each pair of polytopes. This means that
there is no unimodular equivalence between the corresponding normal fans, hence
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Table 1 The algebraic invariants of the initial ideals associated to maximal cones in trop.Fl4/

Orbit Size Cohen–Macaulay Prime # Generators f -vector of associated polytope

1 24 Yes Yes 10 .42; 141; 202; 153; 63; 13/

2 12 Yes Yes 10 .40; 132; 186; 139; 57; 12/

3 12 Yes Yes 10 .42; 141; 202; 153; 63; 13/

4 24 Yes Yes 10 .43; 146; 212; 163; 68; 14/

5 6 Yes No 10 Not applicable

Orbit 1

Orbit 2 Orbit 3

Orbit 4 Orbit 5
(Non-prime)

the pointany point of the planethe vertex of the plane

Fig. 1 The list of all tropical configurations up to symmetry that arise in Fl4. The hollow and the
full gray dot denote whether that vertex of the line is the vertex of the plane or it is contained in a
ray of the plane. The black dot is the position of the point on the line

the normalization of the toric varieties associated to these toric degenerations are not
isomorphic. This implies that we obtain four non-isomorphic toric degenerations.

ut

Proposition 3.4 There are six tropical configurations up to symmetry, depicted in
Fig. 1, arising from the maximal cones of trop.Fl4/. They are further organized in
five S4 � Z2-orbits.

Proof The tropical variety trop.Fl4/ is contained in

trop
(

Gr.1;C4/
)
� trop

(
Gr.2;C4/

)
� trop

(
Gr.3;C4/

)
:

Each tropical Grassmannian parametrizes tropicalized linear spaces; see [25, Theo-
rem 4.3.17]. This implies that every point p in trop.Fl4/ corresponds to a chain of
tropical linear subspaces given by a point on a tropical line contained in a tropical
plane. All tropical chains are realizable, meaning that they are the tropicalization of
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2

1

4

3

3

1

4

2

4

1

3

2

4

1

3

2

Fig. 2 Combinatorial types of tropical lines in R
3=R1

the classical chains of linear spaces of k
4 corresponding to a point q in Fl4 such that

val.q/ D p, where k D Cfftgg and val is the natural valuation on this field; see [25,
Part (3) of Theorem 3.2.3].

In this case, there is only one combinatorial type for the tropical plane and four
possible types for the lines up to symmetry; see [25, Example 4.4.9]. The plane
consists of six two-dimensional cones positively spanned by all possible pairs of
vectors .1; 0; 0/T; .0; 1; 0/T; .0; 0; 1/T, and .�1;�1;�1/T. The combinatorial types
of the tropical lines are shown in Fig. 2. The leaves of these graphs represent the rays
of the tropical line labelled 1 up to 4 corresponding to the positive hull of each of
the vectors .1; 0; 0/T; .0; 1; 0/T; .0; 0; 1/T, and .�1;�1;�1/T. Consider the S4 �Z2-
orbits of maximal cones of trop.Fl4/. If we compute the chain of tropical linear
spaces corresponding to an element in each orbit, we get the configurations in Fig. 1.
We do not include the labelling since up to symmetry we can get all possibilities. The
point on the line is the black dot. In case the intersection of the line with the rays of
the plane is the vertex of the plane then we denote this with a hollow dot. A vertex of
the line is colored in gray if it lies on a ray of the plane. For example in orbit 2, label
the rays 1 to 4 anti-clockwise starting from the top left edge. We have rays 1 and 2 in
the two-dimensional positive hull of .1; 0; 0/T and .0; 1; 0/T. The vector associated
to the internal edge is .1; 1; 0/T. The gray point is the origin and the black point has
coordinates .a; 1; 0/T for a > 1. Orbits 1 and 4 in Fig. 1 have size 24, orbits 2 and 3
have size 12 and orbit 5 has size 6. Orbit 5 corresponds to non-prime initial ideals.
Orbit 1 contains two combinatorial types of tropical configurations and one is sent
to the other by the Z2-action on the tropical variety. The orbits 2 and 3 differ from
the fact that for each combinatorial type of line the gray dot can lie on one of the
four rays of the tropical plane. These possibilities are grouped in two pairs, one is
in orbit 2 and the other in orbit 3. ut

Theorem 3.5 The tropical variety trop.Fl5/ is a ten-dimensional fan in R
30=R4

with a four-dimensional lineality space. It consists of 69,780 maximal cones which
are grouped in 536 S5 � Z2-orbits. These give rise to 531 orbits of binomial initial
ideals and among these 180 are prime. They correspond to 180 non-isomorphic
toric degenerations.

Proof The flag variety Fl5 is a ten-dimensional variety defined by 66 quadratic
polynomials in the total coordinate ring of P

4 � P
9 � P

9 � P
4. These are of the

form
∑

j2JnI.�1/
lj pI[fjgpJnfjg, where J; I 	 f1; 2; : : : ; 5g and

lj D #fk 2 J W j < kg C #fi 2 I W i < jg :
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The proof is similar to the proof of Theorem 3.3. The only difference is that
the action of S5 � Z2 on Fl5 is crucial for the computations. In fact, without
exploiting the symmetries the calculations to get the tropicalization would not
terminate. Moreover, we only verify primeness of the initial ideals over Q using
the primdec library [28] in Singular [10]. We compute the polytopes associated to
the normalization of the 180 toric varieties in the same way as Theorem 3.3, but we
change the matrix of the grading. This is now given by

⎡

⎢⎢
⎣

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

⎤

⎥⎥
⎦ : (3)

Since there are no combinatorial equivalences among the normal fans to these
polytopes, we deduce that the obtained toric degenerations are pairwise non-
isomorphic. More information on the non-prime initial ideals is available in Table 4
in the appendix. ut

4 String Polytopes and the FFLV-Polytope

This section provides an introduction to string cones, string polytopes, and the FFLV
polytope with explicit computations for Fl4 and Fl5. String polytopes are described
by Littelmann in [24], and by Berenstein and Zelevinsky in [3]. FFLV stands for
Feigin, Fourier, and Littelmann, who defined this polytope in [15], and Vinberg
who conjectured its existence in a special case. Both, the string polytopes and the
FFLV polytope, can be used to obtain toric degenerations of the flag variety.

Let W D Sn be the symmetric group, which is the Weyl group corresponding
to G D SLn over C with the longest word w0 given in the alphabet of simple
transpositions si D .i; iC 1/ 2 Sn. We choose the Borel subgroup B 	 SLn of upper
triangular matrices and the maximal torus T 	 B of diagonal matrices. Further, let
U� 	 B� be the unipotent radical in the opposite Borel subgroup, i.e. the set of
lower triangular matrices with 1’s on the diagonal. Let Lie.G/ D g D sln be the
corresponding Lie algebra, i.e. n � n-matrices with trace zero. Let h D Lie.T/ 	 g

be diagonal matrices. We fix a Cartan decomposition g D n� ˚ b with Lie.B/ D b

and Lie.U�/ D n�. We also have SLn=B D Fln. By R we denote the root system
of g, see [20, Sect. 9.2] for the definition. Here R is of type An�1. Let RC be the
set of positive roots with respect to the given choice of b. We denote the simple
roots generating the root lattice by ˛1; ˛2; : : : ; ˛n�1, and their coroots generating
the dual lattice by ˛_

i . For positive roots ˛i C ˛iC1 C � � � C ˛j with j � i we use the
short notation ˛i;j. Using this notation we have ˛i;i D ˛i. The number of positive
roots is N, which is also the length of w0 as reduced expression in the si. For a
positive root ˇ 2 RC, fˇ is a non-zero root vector in n� of weight �ˇ. Let P denote
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Fig. 3 Pseudoline
arrangement corresponding to
w0 D s1s2s1 for Fl3 with
orientation induced by l1

l3

l2

l1

L1

L2

L3

s1 s1s2

v1,3

v2,3v1,2

Fig. 4 The two local orientations with thick arrows forbidden in rigorous paths

the weight lattice of T generated by the fundamental weights !1; !2; : : : ; !n�1. The
definition can be found in [20, Sect. 13.1]. A weight � 2 P is regular dominant, if
� D

∑n�1
iD1 ai!i with ai 2 Z>0 for all i. The subset of regular dominant weights is

denoted by PCC.
For a fixed weight � 2 PCC and a reduced expression w0 of w0 we construct the

string polytope Qw0
.�/. This description can be found in [18] and [24]. To w0 one

associates a pseudoline arrangement. It consists of n horizontal pseudolines (or in
short lines) labelled 1 to n on the left from bottom to top. Pairwise, they cross exactly
once and the order of crossings depends on w0. More precisely, a simple reflection
si induces a crossing on level i, see Fig. 3. The diagram has vertices vi;j for every
crossing of lines li and lj, as well as vertices L1;L2; : : : ;Ln from top to bottom at the
right ends of the lines. Every line li with 1 � i < n induces an orientation of the
diagram obtained by orienting lj for j > i from left to right and lk for k � i from
right to left.

Fix an oriented path v0 ! � � � ! vs in an (oriented) pseudoline arrangement and
assume three adjacent vertices vk�1 ! vk ! vkC1 on the path belong to the same
pseudoline li. Whenever a path does not change the line at a crossing, we are in this
situation. Let vk be the intersection of li and lj. The path is rigorous, if it avoids the
following two situations:

• i < j and both lines are oriented to the left or
• i > j and both lines are oriented to the right.

The first situation is visualized on the left of Fig. 4 and the second on the right. The
thick arrow is the part of line li that must not be contained in a rigorous path. We
denote by Pw0

the set of all possible rigorous paths for all orientations induced by
the lines li with 1 � i < n.

Example 4.1 Consider Fl4 with reduced expression w0 D s1s2s3s2s1s2. We draw
the corresponding pseudoline arrangement in Fig. 5 with orientation induced by l1.
The rigorous paths for this orientation have source L1 and sink L2. An example of
a rigorous path is p D L1 ! v1;4 ! v1;3 ! v3;4 ! v2;3 ! L2. An example for a
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s1 s1s2 s2 s2s3

L1

L2

v1,4

v1,3 v3,4 v2,3

v2,4

Fig. 5 A pseudoline arrangement for Fl4 with w0 D s1s2s3s2s1s2 and orientation induced by l1;
thicker arrows denote forbidden line segments for rigorous paths

non-rigorous path is one that passes through a thick arrow, for example

p0 D L1 ! v1;4 ! v3;4 ! v2;4 ! v2;3 ! L2:

Back to the general case, we fix an orientation induced by li; 1 � i < n and
consider all rigorous paths from Li to LiC1. We associate the weight cp to each such
path p as follows. Denote by fci;jg1�i;j�n the standard basis of R

N , where we set
ci;j D �cj;i if i > j and cj;j D 0. The integer N is the number of crossings in
a pseudoline arrangement and hence we can associate the basis vector ci;j to the
crossing of li and lj for 1 � i; j � n. Consider a rigorous path p D Li ! vr1 !

� � � ! vrm ! LiC1. Every vertex vrs corresponds to the crossing of two lines lk and
lj. If p changes from line lk to line lj at vrs we associate the vector ck;j 2 R

N . We set
cp to be the sum of all such ck;j in p and denote it by cp.

Definition 4.2 For a fixed reduced expression w0, we define the string cone to be

Cw0
D

{
.yi;j/ 2 R

N W .cp/
T.yi;j/ � 0; for all p 2Pw0

}
:

This is not the original definition of a string cone; see [18, Corollary 5.8]. It can be
extended to describe string cones for Schubert varieties, see [6].

Example 4.3 There are two rigorous paths in Fig. 3, L1 ! v1;3 ! v2;3 ! L2 and
L1 ! v1;3 ! v1;2 ! v2;3 ! L2. The corresponding weights are c1;3 � c2;3 and c1;2
inducing the inequalities y1;3 � y2;3 � 0 and y1;2 � 0. Considering the orientation
induced by l2, there is a rigorous path L2 ! v2;3 ! L3 which gives the inequality
y2;3 � 0. The string cone corresponding to the underlying non-oriented pseudoline
arrangement in Fig. 3 is then given by Cs1s2s1 D fy1;2 � 0; y1;3 � y2;3 � 0g.

Each crossing of lines lk and lm corresponds to an index ij associated to a simple
reflection sij in w0; see Fig. 3. Therefore, we write ck;m D cj. Let 1 � i � n � 1 and
r1; r2; : : : ; rni be the indices such that sirp

D si in w0 for 1 � p � ni. Further, let
k1; k2; : : : ; kt be the positions where sikm

2 fsi�1; siC1g for 1 � m � t. In particular,
r1; r2; : : : ; rni are those positions inducing a crossing at level i in the corresponding
pseudoline arrangement. The following appears in [24].
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Definition 4.4 The weighted string cone Cw0
	 R

N � R
n�1
�0 is obtained from

Cw0
by adding variables m1;m2; : : : ;mn�1, and for every 1 � i � n � 1 and

j 2 fr1; r2; : : : ; rnig the inequality mi � yj � 2
∑

rp>j yrp C
∑

kp>j ykp � 0, where

.yk;ml/ 2 R
N � R

n�1
�0 . For a weight � D

∑n�1
iD1 ai!i 2 P, the string polytope is

Qw0
.�/ WD Qw0

\ H�, where H� is the intersection of the hyperplanes defined by
mi D ai for all 1 � i < n.

The additional weight inequalities can also be obtained combinatorially as
described in [6]. We will consider for all computations the weight � D

∑n�1
iD1 !i.

This is the weight in PCC with minimal choice of coefficients of fundamental
weights in Z>0, namely all are 1. All string polytopes are cut out from the weighted
string cone, but for different weights they are different polytopes.

The following result is a simplified version of Theorem 1 proven by Caldero [7]
for flag varieties. A more general statement is given by Alexeev and Brion in [1,
Theorem 3.2].

Theorem 4.5 There exists a flat family X ! A
1 for a normal variety X such that

for t 6D 0 the fibre over t is isomorphic to Fln and for t D 0 it is isomorphic to a
projective toric variety X0 with polytope Qw0

.�/ for � 2 PCC.

The proof of Theorem 4.5 uses the embedding Fln ,! P.V.�// and the dual
canonical basis, where V.�/ is the irreducible representation of sln with highest
weight �.

For A;B 	 R
l, the Minkowski sum is AC B WD faC b W a 2 A; b 2 Bg. Consider

the weight �. The string polytope Qw0
.�/ is in general not the Minkowski sum of

string polytopes Qw0
.!1/; : : : ;Qw0

.!n�1/, which motivates the following definition.

Definition 4.6 A string cone has the weak Minkowski property (MP), if for every
lattice point p 2 Qw0

.�/ there exist lattice points p!i 2 Qw0
.!i/ such that

p D p!1 C p!2 C � � � C p!n�1 :

Remark 4.7 The (non-weak) Minkowski property would require the above condi-
tion on lattice points to be true for arbitrary weights �. Further, note that if Qw0

.�/

is the Minkowski sum of the fundamental string polytopes Qw0
.!i/, then MP is

satisfied.

Proposition 4.8 For Fl4 there are four string polytopes in R
10 up to unimodular

equivalence and three of them satisfy MP. For Fl5 there are 28 string polytopes in
R
14 up to unimodular equivalence and 14 of them satisfy MP.

Proof We first consider Fl4. There are 16 reduced expressions for w0. Simple
transpositions si and sj with 1 � i < i C 1 < j < n commute and are also called
orthogonal. We consider reduced expressions up to changing those, i.e. there are
eight symmetry classes. We fix the weight in PCC to be � D !1 C !2 C !3. The
string polytopes are organized in four classes up to unimodular equivalence. Table 2
summarizes the weight vectors ww0

constructed in Sect. 5, primeness of the binomial
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Table 2 Isomorphism classes of string polytopes for n D 4

w0 Weight vector ww
0

Tropical cone

String 1

121321 .0; 32; 24; 7; 0; 16; 6; 48; 38; 30; 0; 4; 20; 52/ Rays 10, 18, 19, cone 71

212321 .0; 16; 48; 7; 0; 32; 6; 24; 22; 54; 0; 4; 36; 28/ Rays 6, 10, 19, cone 44

232123 .0; 4; 36; 28; 0; 32; 24; 6; 22; 54; 0; 16; 48; 7/ Rays 0, 3, 6, cone 3

323123 .0; 4; 20; 52; 0; 16; 48; 6; 38; 30; 0; 32; 24; 7/ Rays 0, 1, 3, cone 1

String 2

123212 .0; 32; 18; 14; 0; 16; 12; 48; 44; 27; 0; 8; 24; 56/ Rays 2, 10, 18, cone 36

321232 .0; 8; 24; 56; 0; 16; 48; 12; 44; 27; 0; 32; 18; 14/ Rays 0, 1, 2, cone 0

String 3

213231 .0; 16; 48; 13; 0; 32; 12; 20; 28; 60; 0; 8; 40; 22/ Rays 3, 6, 19, cone 24

String 4

132312 .0; 16; 12; 44; 0; 8; 40; 24; 56; 15; 0; 32; 10; 26/ Rays 1, 2, 17, cone 17

FFLV

wmin D .0; 2; 2; 1; 0; 1; 1; 2; 1; 2; 0; 1; 1; 1/ Rays 9, 11, 12, cone 56

wreg D .0; 3; 4; 3; 0; 2; 2; 4; 3; 5; 0; 1; 2; 3/ Rays 9, 11, 12, cone 56

initial ideals inww0
.I4/, and the corresponding tropical cones with their spanning rays

as they appear in the file Flag4.txt at github.com/ToricDegenerations; the word
121321 denotes the reduced expression w0 D s1s2s1s3s2s1. All of these polytopes
are normal and, except for those in the class String 4, these polytopes satisfy the
weak Minkowski property and the binomial initial ideals are prime. The four classes
give four different toric degenerations for the embedding Fl4 ,! P

(
V.�/

)
. In order

to verify whether the weak Minkowski property holds or not, we proceed as follows.
We fix w0 to compute the string polytope Qw0

.�/ using polymake. The number
of lattice points in Qw0

.�/ is dim V.�/ D 64. Then we compute the polytopes
Qw0

.!1/;Qw0
.!2/; sQw0

.!3/ and set P D Qw0
.!1/C Qw0

.!2/C Qw0
.!3/. Now let

LP.P/ be the set of lattice points in P. If jLP.P/j < 64, then there exists a lattice
point in Qw0

.�/ that cannot be expressed as p1 C p2 C p3 for pi 2 Qw0
.!i/. For

w0 D s1s3s2s3s1s2, we observe that
∣∣LP.Qw0

.!1/CQw0
.!2/CQw0

.!3//
∣∣ D 62 < 64.

Hence, the class String 4 does not satisfy MP. For the classes String 1, 2, and 3
equality holds and MP is satisfied.

Now consider Fl5. There are 62 reduced expressions w0 up to changing orthog-
onal transpositions. The map L W S5 ! S5 given on simple reflections by L.si/ D

s4�iC1 induces a symmetry among the string polytopes. Namely, for a fixed � 2
PCC, there is a unimodular equivalence between Qw0

.�/ and QL.w0/
.�/. Exploiting

this symmetry, we compute 31 string polytopes for �. These are organized in
28 unimodular equivalence classes, that arise from further symmetries of the
underlying pseudoline arrangements. Table 6 shows which reduced expressions
belong to string polytopes within one class of unimodular equivalence, and which
string cones satisfy MP. Proceeding as for Fl4, we observe that 14 out of 28 classes
satisfy MP. ut

http://github.com/ToricDegenerations
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We will now turn to the FFLV polytope. It is defined in [15] by Feigin, Fourier,
and Littelmann to describe bases of irreducible highest weight representations V.�/.
In [16], they give a construction of a flat degeneration of the flag variety into the
toric variety associated to the FFLV polytope. It is also an example of the more
general setup presented in [12]. We give the general definition here and compute the
FFLV polytopes for Fl4 and Fl5 for �. Recall, that ˛i for 1 � i < n are the simple
roots of sln, and ˛p;q is the positive root ˛p C ˛pC1 C � � � C ˛q for 1 � p � q < n.

Definition 4.9 A Dyck path is a sequence of positive roots d D .ˇ0; ˇ1; : : : ; ˇk/

with k � 0 satisfying the following conditions:

• if k D 0 then d D .˛i/ for 1 � i � n � 1,
• if k � 1 then the first and the last roots are simple, that is ˇ0 D ˛i, ˇk D ˛j for
1 � i < j � n � 1. Moreover, if ˇs D ˛p;q then ˇsC1 is either ˛p;qC1 or ˛pC1;q.

Denote by D the set of all Dyck paths. We choose the positive roots ˛ > 0 as an
indexing set for a basis of R

N .

Definition 4.10 The FFLV polytope P.�/ 	 R
N
�0 for a weight � D

∑n�1
iD1 mi!i 2

PCC is defined as

P.�/ D

®
.r˛/˛ >0 2 R

N
�0 W

for all d 2 D ; if ˇ0 D ˛i and ˇk D ˛j then
rˇ0 C rˇ1 C � � � C rˇk � mi C miC1 C � � � C mj

´
:

Example 4.11 For Fl4, the seven Dyck paths are .˛1/, .˛2/, .˛3/, .˛1; ˛1;2; ˛2/,
.˛2; ˛2;3; ˛3/, .˛1; ˛1;2; ˛2; ˛2;3; ˛3/, and .˛1; ˛1;2; ˛1;3; ˛2;3; ˛3/. For our favorite
choice of weight � D � D !1 C !2 C !3, we obtain the FFLV polytope

P.�/ D

⎧
⎨

⎩
.r˛/˛ >0 W

r˛1 � 1; r˛2 � 1; r˛3 � 1; r˛1 C r˛1;2 C r˛2 � 2;
r˛2 C r˛2;3 C r˛3 � 2; r˛1 C r˛1;2 C r˛2 C r˛2;3 C r˛3 � 3;
r˛1 C r˛1;2 C r˛1;3 C r˛2;3 C r˛3 � 3

⎫
⎬

⎭
	 R

6
�0:

The following is a corollary of [15, Proposition 11.6], which says that a strong
version of the Minkowski property is satisfied by the FFLV polytope for Fln.
It can alternatively be shown for n D 4; 5 using the methods in the proof of
Proposition 4.8.

Corollary 4.12 The FFLV polytope P.�/ satisfies the weak Minkowski property.

Remark 4.13 The FFLV polytope is in general not a string polytope. A computation
in polymake shows that P.�/ for Fl5 is not combinatorially equivalent to any string
polytope for �.
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5 String Cones and the Tropicalized Flag Variety

We have seen in Sect. 2 how to obtain toric degenerations from maximal prime
cones of the tropicalization of the flag varieties. We compare the different toric
degenerations that arise from the different approaches. Moreover, applying [7,
Lemma 3.2] we construct a weight vector from a string cone. Computational
evidence for Fl4 and Fl5 shows that each constructed weight vector lies in the relative
interior of a maximal cone in trop.Fln/. A similar idea for a more general case is
carried out in [23, Sect. 7]. For the FFLV polytope we compute weight vectors for
Fln with n D 4; 5 following a construction given in [14]; see Example 5.8.

We will now prove the result in Theorem 1.3 by analyzing the polytopes
associated to the different toric degenerations of Fln for n D 4; 5.

Proof of Theorem 1.3 In order to distinguish the different toric degenerations, we
consider the toric varieties associated to their special fibres. In case of the degen-
erations induced by the string polytopes and FFLV polytope, these toric varieties
are normal. This might not be true for the degenerations found in Theorem 3.3
and Theorem 3.5. Hence, we consider two toric degenerations to be different if the
normalization of their special fibres are not isomorphic.

Two toric varieties are isomorphic if their corresponding fans are unimodular
equivalent. In our case the fans are the normal fans of the polytopes. For this
reason we first look for combinatorial equivalences between those. If they are not
combinatorially equivalent then their normal fans cannot be unimodular equivalent.
We use polymake [17] for computations with polytopes.

From Table 3 one can see that for Fl4 there is one toric degeneration, whose
associated polytope is not combinatorially equivalent to any string polytope or
the FFLV polytope for �. Hence, its corresponding normal toric variety is not
isomorphic to any toric variety associated to these polytopes. For the toric varieties
associated to the other polytopes we cannot exclude isomorphism since there might
be a unimodular equivalence between pairs of normal fans.

For Fl5, Table 5 shows that there are 168 polytopes obtained from prime cones of
trop.Fl5/ that are not combinatorially equivalent to any string polytope or the FFLV
polytope for �. ut

Remark 5.1 There are also string polytopes, which are not combinatorially equiva-
lent to any polytope from prime cones in trop.Fln/ for n D 4; 5. These are exactly
those not satisfying MP: one string polytope for Fl4 and 14 for Fl5; see Table 6.

Table 3 Equivalent
polytopes obtained from
trop.Fl4/

Orbit Combinatorially equivalent polytopes

1 String 2

2 String 1 (Gelfand-Tsetlin)

3 String 3 and FFLV

4 –
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From now on, we fix a reduced expression w0 D si1si2 � � � siN and we consider the
sequence of simple roots S D .˛i1 ; ˛i2 ; : : : ; ˛iN /. For a positive root ˛, we denote by
f˛ the root vector in n� 	 sln of weight �˛. By [12, Lemma 2], the following holds.

Proposition 5.2 The universal enveloping algebra U.n�/ is linearly generated by
monomials of the form fm D f m1

˛i1
f m2
˛i2
� � � f mN

˛iN
for mi 2 N.

The proposition may be interpreted as a definition of the universal enveloping
algebra. Given a weight �, the irreducible highest weight representation V D V.�/
is cyclically generated by a highest weight vector v� 2 V.�/, i.e. V.�/ D U.n�/:v�.

Example 5.3 For Fl4, three root vectors in n� are

f˛1 D

⎡

⎢⎢
⎣

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥⎥
⎦ ; f˛2 D

⎡

⎢⎢
⎣

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

⎤

⎥⎥
⎦ ; f˛3 D

⎡

⎢⎢
⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

⎤

⎥⎥
⎦ :

The action of n� on C
4 is defined by f˛i.ei/ D eiC1 and f˛i.ej/ D 0 for j 6D i. On

V D
∧2

C
4, the n�-action is given by f˛i.ej ^ ek/ D f˛i.ej/ ^ ek C ej ^ f˛i.ek/. For

e1 ^ e3 2 V , we have f˛2.e1 ^ e2/ D e1 ^ e3. Since V D U.n�/:.e1 ^ e2/, it follows
that v!2 WD e1 ^ e2 is a highest weight vector. Fixing w0 D s1s2s1s3s2s1, we obtain
U.n�/ D hf m1

˛1
f m2
˛2

f m3
˛1

f m4
˛3

f m5
˛2

f m6
˛1
W mi 2 Ni. Hence, we deduce that

f.0;1;0;0;0;0/.e1 ^ e2/ D f.0;0;0;0;1;0/.e1 ^ e2/ :

As seen in Example 5.3, the monomial fm for a given weight vector v 2 V with
fm.v�/ D v is not unique. To fix this, we define a term order on the monomials
fm generating U.n�/ and pick the minimal monomial with this property. We fix for
m;n 2 N

N the order fm � fn if deg.fm/ > deg.fn/ or deg.fm/ D deg.fn/ and
m <lex n. The connection to trop.Fln/ is established through Plücker coordinates.
For J WD fj1; j2; : : : ; jkg 	 Œn�, the Plücker coordinate pJ is given by

.ej1 ^ ej1 ^ � � � ^ ejk/
� 2 .

∧k
C

n/� :

Now,
∧k

C
n is the fundamental representation V.!k/ D U.n�/:.e1^e2^� � �^ek/; see

Example 5.3. Denote by mJ , the unique multiexponent such that fmJ is -minimal
satisfying fm.e1 ^ e2 ^ � � � ^ ek/ D ej1 ^ : : : ^ ejk .

Following a construction given in [7, Proof of Lemma 3.2], we define the linear
form eWNN ! N as e.m/ D 2N�1m1 C 2

N�2m2 C � � � C 2mN�1 C mN . This is a
particular choice satisfying m � n) e.m/ > e.n/ for m;n 2 N

N .

Definition 5.4 For a fixed reduced expression w0 the weight of the Plücker variable
pJ is e.mJ/. We fix the weight vector ww0

in R.
n
1/C.

n
2/C			C.n

n/�1 to be

ww0
D .e.m1/; e.m2/; : : : ; e.m2;3;:::;n//:
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Example 5.5 We continue as in Example 5.3 with the fixed reduced expression
w0 D s1s2s1s3s2s1 for Fl4. The Plücker coordinate p13 in Fl4 is .e1 ^ e3/�. The
corresponding minimal monomial among those satisfying fm.e1 ^ e2/ D e1 ^ e3 is
f.0;1;0;0;0;0/. Hence, the weight of p13 is e.0; 1; 0; 0; 0; 0/ D 1 � 24 D 16. Similarly, we
obtain the weights of all Plücker coordinates and

ww0
D .0; 32; 24; 7; 0; 16; 6; 48; 38; 30; 0; 4; 20; 52/:

Table 2 contains all weight vectors for Fl4 constructed in the way just described.

Proposition 5.6 Consider Fln with n D 4 or 5. The above construction produces
a weight vector ww0

for every string cone. This weight vector lies in the relative
interior of a maximal cone of trop.Fln/. If the string cone satisfies MP, then ww0

lies
in the relative interior of a prime cone whose associated polytope is combinatorially
equivalent to Qw0

.�/.

Proof The constructed weight vectors ww0
can be found in Table 2 for Fl4 and

Table 6 in the appendix for Fl5. A computation in Macaulay2 shows that all initial
ideals inww0

.In/ for n D 4; 5 are binomial, hence in the relative interiors of maximal
cones of trop.Fln/.

Moreover, if MP is satisfied we check using polymake that the polytope
constructed from the maximal prime cone Cw0

with ww0
in its relative interior is

combinatorially equivalent to the string polytope Qw0
.�/; see Table 2 and Table 6.

ut

Computational evidence leads us to the following conjecture.

Conjecture 5.7 Let n � 3 be an arbitrary integer. For every reduced expression w0,
the weight vector ww0

lies in the relative interior of a maximal cone in trop.Fln/. In
particular, if the string cone satisfies MP this vector lies in the relative interior of the
prime cone C, whose associated polytope is combinatorially equivalent to the string
polytope Qw0

.�/.
The following example discusses a similar construction of weight vectors for the

FFLV polytope.

Example 5.8 Consider for Fl4 the sequence of positive roots

S D .˛1 C ˛2 C ˛3; ˛1 C ˛2; ˛2 C ˛3; ˛1; ˛2; ˛3/:

By [12, Example 1], Proposition 5.2 is also true for this choice of S. More generally
speaking, Proposition 5.2 holds for every sequence containing all positive roots
ordered by height. The height of a positive root is the number of simple summands.
Such sequences are called PBW-sequences with good ordering in [12].

With this choice of S we apply the aformentioned procedure to obtain a unique
multi-exponent mJ for each Plücker variable pJ . Taking the convex hull of all multi-
exponents mJ for J 	 f1; : : : ; 4g yields the FFLV polytope from Definition 4.10
with respect to the embedding Fl4 ,! P.V.�//. Then we define linear forms
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emin.mJ/ D m1 C 2m2 C m3 C 2m4 C m5 C m6;

ereg.mJ/ D 3m1 C 4m2 C 2m3 C 3m4 C 2m5 C m6 ;

according to the degrees defined in [14]. We obtain in analogy to Definition 5.4 the
corresponding weight vectors

wmin D .0; 2; 2; 1; 0; 1; 1; 2; 1; 2; 0; 1; 1; 1/;

wreg D .0; 3; 4; 3; 0; 2; 2; 4; 3; 5; 0; 1; 2; 3/:

A computation in Macaulay2 shows that inwmin.I4/ D inwreg.I4/ is a binomial prime
ideal. Hence, wmin and wreg lie in the relative interior of the same prime cone
C 	 trop.Fl4/. Using polymake [17], we verify that the polytope associated to C is
combinatorially equivalent to the FFLV polytope P.�/. We did the analogue of this
computation for Fl5 and the outcome is the same, inwmin.I5/ D inwreg.I5/ D inC.I5/
with the polytope associated to C being combinatorially equivalent to P.�/. The
weight vectors wmin and wreg for Fl5 can be found in Table 6 in the appendix.

6 Toric Degenerations from non-prime Cones

As we have seen in Sect. 3, not all maximal cones in the tropicalization of a variety
give rise to prime initial ideals and hence to toric degenerations. In fact, there
may also be tropicalizations without prime cones (see Example 6.3). Let X be a
subvariety of a toric variety Y . In this section, we give a recursive procedure in
Procedure 6.1 to compute a new embedding X0 of X in case trop.X/ has non-prime
cones. Let C be a non-prime cone. If the procedure terminates, the new variety X0

has more prime cones than trop.X/ and at least one of them is projecting onto C.
We apply this procedure to Fl4 and compare the new toric degenerations with those
obtained so far (see Proposition 6.4). The procedure terminates for Fl4, but we are
still investigating the conditions for which this is true in general.

Procedure 6.1 New embeddings of X when trop.X/ contains non-prime cones

Input: A D CŒx0; x1; : : : ; xn�=I where CŒx0; x1; : : : ; xn� is the total coordinate ring
of the toric variety Y and I defines the subvariety V.I/ 	 Y , and

C is a non-prime cone of trop
(

V.I/
)

with multiplicity 1.
Output: The algebra A0, the ideal I0 of a new embedding of X, and the ideal inC0.I0/

of a toric degeneration of X.
Compute the primary decomposition of inC.I/;
Set I.WC/ to be the unique prime toric component in the decomposition;
Set G to be the minimal generating set of I.WC/;
Compute a list of binomials LC D ff1; f2; : : : ; fsg in G which are not in inC.I/;
Set A0 WD CŒx0; x1; : : : ; xn; y1; y2; : : : ; ys�=I0 where the ideal I0 is
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I0 D I C hy1 � f1; y2 � f2; : : : ; ys � fsi;
Compute trop

(
V.I0/

)
;

For all prime cones C0 2 trop.V.I0// do
If 
.C0/ is contained in the relative interior of C then

Return the algebra A0 and the ideal inC.I0/

Else
Apply the procedure again to A0 and C0.

We now explain Procedure 6.1. Consider a toric variety Y whose total coordinate
ring is CŒx0; x1; : : : ; xn� with associated Z

k-degree degWZnC1 ! Z
k. Let X be

the subvariety of Y associated to an ideal I 	 CŒx0; x1; : : : ; xn�, where the Krull
dimension of A D CŒx0; x1; : : : ; xn�=I is d. Denote by trop.V.I// the tropicalization
of X intersected with the torus of Y . Suppose there is a non-prime cone C 	
trop.V.I// with multiplicity one. By Lemma 2.9, we have that I.WC/ is the unique
toric ideal in the primary decomposition of inC.I/, hence inC.I/ 	 I.WC/. We
can compute I.WC/ using the function primaryDecomposition in Macaulay2.
Fix a minimal binomial generating set G of I.WC/, and let LC D ff1; f2; : : : ; fsg
be the set consisting of binomials in G, which are not in inC.I/. By Hilbert’s
Basis Theorem, s is a finite number. The absence of these binomials in inC.I/
is the reason why the initial ideal is not equal to I.WC/. We introduce new
variables fy1; y2; : : : ; ysg, where deg.yi/ D deg.fi/ for 1�i�s, and consider the
algebra A0 D CŒx0; x1; : : : ; xn; y1; y2; : : : ; ys�=I0, where I0 is the homogeneous ideal
I C hy1 � f1; y1 � f1; : : : ; ys � fsi. The new variety V.I0/ is a subvariety of a toric
variety Y 0, which has total coordinate CŒY 0� WD CŒx0; x1; : : : ; xn; y1; y2; : : : ; ys�. For
example, if V.I/ is a subvariety of a projective space then V.I0/ is contained in a
weighted projective space.

Since the algebras A and A0 are isomorphic as graded algebras, the varieties V.I/
and V.I0/ are isomorphic. We have a monomial map


 WCŒx0; x1; : : : ; xn�=I ! CŒx0; x1; : : : ; xn; y1; y2; : : : ; ys�=I0

inducing a surjective map trop.
/W trop
(

V.I0/
)
! trop

(
V.I/

)
; see [25, Corol-

lary 3.2.13]. The map trop.
/ is the projection onto the first n coordinates.
Suppose there exists a prime cone C0 	 trop.V.I0//, whose projection has a
non-empty intersection with the relative interior of C. Then by construction we
have inC.I/ 	 inC0.I0/ \ CŒx0; x1; : : : ; xn� and the procedure terminates. In this way
we obtain a new initial ideal inC0.I0/ which is toric and hence gives a new toric
degeneration of the variety V.I0/ Š V.I/. If only non-prime cones are projecting to
C then run this procedure again with A0 and C0, where the latter is a maximal cone
of trop

(
V.I0/

)
, which projects to C. We can then repeat the procedure starting from

a different non-prime cone.
The function to apply Procedure 6.1 is findNewToricDegenerations and

it is part of the package ToricDegenerations. This will compute only one
reembedding for each non-prime cone. It is possible to use mapMaximalCones
to obtain the image of trop.V.I0// under the map 
 .
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Remark 6.2 If fi is a polynomial in kŒx0; x1; : : : ; xn� with the standard grading and
deg.fi/ > 1, then we need to homogenize the ideal I0 before computing the tropi-
calization with Gfan. This is done by adding a new variable h. The homogenization
of I0 with respect to h is denoted by I00 
 kŒx0; x1; : : : ; xn; y1; y2; : : : ; ys; h�. Then
by [25, Proposition 2.6.1] for every w in R

nCsC2 the ideal inw.I0/ is obtained from
in.w;0/.I00/ by setting h D 1.

If the cone C is prime, we can construct a valuation valC on kŒx0; x1; : : : ; xn�=I as
follows. Consider the matrix WC in Equation (1). For mi D cx˛i 2 kŒx0; x1; : : : ; xn�

define val.mi/ D WC˛i and val.
∑

i mi/ D minifval.mi/g, where the minimum on the
right side is taken with respect to the lexicographic order on .Zd;C/. This is a val-
uation on kŒx0; x1; : : : ; xn� of rank equal to the Krull dimension of A for every cone
C. Composing val with the map pWkŒx0; x1; : : : ; xn�! kŒx0; x1; : : : ; xn�=I, we obtain
a map valC, which is a valuation if and only if the cone C is prime. Moreover, [23]
proves that a cone C in trop

(
V.I/

)
is prime if and only if A D kŒx0; x1; : : : ; xn�=I

has a finite Khovanskii basis for the valuation valC constructed from the cone C. A
Khovanskii basis for an algebra A with valuation valC is a subset B of A such that
valC.B/ generates the value semigroup

S.A; valC/ D
{

valC.f / W f 2 A n f0g
}
:

Procedure 6.1 can be interpreted as finding an extension valC0 of valC so that A0

has finite Khovanskii basis with respect to valC0 . The Khovanskii basis is given by
the images of x0; x1; : : : ; xn; y1; y2; : : : ; ys in A0. We illustrate the procedure in the
following example.

Example 6.3 Consider the algebra A D CŒx; y; z�=hxyCxzCyzi. The tropicalization
of V.hxyCxzCyzi/ 	 P

2 has three maximal cones. The corresponding initial ideals
are hxzC yzi; hxyC yzi and hxyC xzi, none of which is prime. Hence, they do not
give rise to toric degenerations. The matrices associated to each cone are

WC1 D

ñ
0 0 �1

1 1 1

ô
; WC2 D

ñ
0 �1 0

1 1 1

ô
; WC3 D

ñ
�1 0 0

1 1 1

ô
:

We now apply Procedure 6.1 to the cone C1. The initial ideal associated to C1 is
generated by xz C yz. In this case inC1 .I/ D hzi � hx C yi hence for the missing
binomial xC y we adjoin a new variable u to CŒx; y; z� and the new relation u� x� y
to I. We have I0 D hxy C xz C yz; u � x � yi and A0 D CŒx; y; z; u�=I0 with V.I0/

a subvariety of P
3. After computing the tropicalization of V.I0/ we see that there

exists a prime cone C0 such that 
.C0/ D C. The matrix WC0 associated to the cone
C0 is

W 0 D

ñ
0 0 �1 1

1 1 1 1

ô
:
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The initial ideal inC0.I0/ gives a toric degeneration of V.I0/. The image of the set
fx; y; z; ug in A0 is a Khovanskii basis for S.A0; valC0/. Repeating this process for
the cones C2 and C3 of trop.V.xy C xz C yz//, we get prime cones C0

2 and C0
3

whose projections are C2 and C3 respectively. Hence, there is a valuation with finite
Khovanskii basis and a corresponding toric degeneration for every maximal cone.

We now apply Procedure 6.1 to trop.Fl4/.

Proposition 6.4 Each of the non-prime cones of trop.Fl4/ gives rise to three toric
degenerations, which are not isomorphic to any degeneration coming from the prime
cones of trop.Fl4/. Moreover, two of the three new polytopes are combinatorially
equivalent to the previously missing string polytopes for � in the class String 4.

Proof By Theorem 3.3, we know that trop.Fl4/ has six non-prime cones forming
one S4 � Z2-orbit. Hence, we apply Procedure 6.1 to only one non-prime cone. The
result for the other non-prime cones will be the same up to symmetry. In particular,
the obtained toric degenerations from one cone will be isomorphic to those coming
from another cone. We describe the results for the maximal cone C associated to the
initial ideal inC.I4/ defined by the following binomials:

p4p1;2;3 � p3p1;2;4 ; p2;4p1;3;4 � p1;4p2;3;4 ; p2;3p1;3;4 � p1;3p2;3;4 ;

p2p1;4 � p1p2;4 ; p2p1;3 � p1p2;3 ; p2;4p1;2;3 � p2;3p1;2;4 ;

p1;4p1;2;3 � p1;3p1;2;4 ; p4p2;3 � p3p2;4 p4p1;3 � p3p1;4 ;

p1;4p2;3 � p1;3p2;4 :

We define the ideal I0 D I4C hw� p2p1;3;4C p1p2;3;4i. The grading on the variables
p1; p2; : : : ; p2;3;4 and w is given by the matrix

⎡

⎣
1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

⎤

⎦ :

It extends the grading on the variables p1; p2; : : : ; p2;3;4 given by the matrix D in (2).
The tropical variety trop

(
V.I0/

)
has 105 maximal cones, 99 of which are prime.

Among them we can find three maximal prime cones, which are mapped to C by
trop.
/; see Fig. 6. We compute the polytopes associated to the normalizations of
these three toric degenerations by applying the same methods as in Theorem 3.3.
Using polymake, we check that two of them are combinatorially equivalent to
the string polytopes for � in the class String 4. Moreover, none of them is
combinatorially equivalent to any polytope coming from prime cones of trop.Fl4/,
hence they define different toric degenerations. ut

Remark 6.5 Procedure 6.1 could be applied also to Fl5, but we have not been able
to do so. In fact, the tropicalization for trop

(
V.I0

5/
)

did not terminate since the
computation cannot be simplified by symmetries.
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Fig. 6 Cones in trop
(

V.I0/
)

which project down to the
non-prime cone C in
trop.Fl4/

trop (V(I�)) ⊃ C1,C2,C3

trop (FI4) ⊃ C

trop(p)
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Appendix

In this Appendix, we provide numerical evidence of our computations.

Algebraic and Combinatorial Invariants of trop.Fl5/ Table 4 contains data on
the non-prime maximal cones of trop.Fl5/.

In Table 5, there is information on the polytopes obtained from maximal prime
cones of trop.Fl5/. It shows the f -vectors of the polytopes associated to maximal
prime cones of trop.Fl5/ for one representative in each orbit. The last column
contains information on the existence of a combinatorial equivalence between these
polytopes and the string polytopes resp. FFLV polytope for �. The initial ideals are
all Cohen–Macaulay.

Algebraic Invariants of the Fl5 String Polytopes Table 6 contains information
on the string polytopes and FFLV polytope for Fl5, such as the weight vectors con-
structed in Sect. 5, primeness of the initial ideals with respect to these vectors, and
the MP property. The last column contains information on unimodular equivalences
among these polytopes. If there is no information in this column, then there is no
unimodular equivalence between this polytope and any other polytope in the table.



272 L. Bossinger et al.

Table 4 Data for non-prime initial ideals of Fl5

# Orbits # Generators

30 69

267 66

37 68

11 70

10 71

2 73

Table 5 Information on the polytopes obtained from maximal prime cones of trop.Fl5/

Orbit f -vector Equivalences

0 475 2956 8417 14241 15690 11643 5820 1899 374 37

1 456 2799 7843 13023 14038 10159 4938 1565 301 30

2 425 2573 7108 11626 12333 8779 4201 1316 253 26

3 393 2313 6200 9833 10125 7021 3297 1027 201 22

4 433 2621 7230 11796 12473 8847 4219 1318 253 26

5 435 2630 7246 11810 12479 8848 4219 1318 253 26

6 425 2553 6988 11317 11888 8388 3987 1245 240 25

7 450 2751 7677 12699 13648 9863 4800 1529 297 30

8 435 2630 7246 11810 12479 8848 4219 1318 253 20

9 419 2522 6922 11243 11842 8373 3985 1245 240 20

10 453 2785 7817 12999 14027 10157 4938 1565 301 30

11 463 2885 8237 13987 15474 11532 5788 1895 374 30

12 463 2852 8020 13365 14459 10501 5121 1627 313 30

13 457 2840 8078 13638 14954 10996 5413 1726 330 30

14 454 2819 8016 13540 14870 10968 5427 1744 337 30

15 445 2748 7770 13050 14254 10464 5161 1658 322 30

16 441 2681 7438 12228 13056 9369 4525 1430 276 20

17 440 2704 7602 12684 13752 10014 4897 1560 301 30

18 471 2923 8298 13995 15369 11369 5667 1845 363 30

19 464 2883 8200 13861 15258 11313 5651 1843 363 30

20 467 2911 8309 14097 15574 11586 5804 1897 374 30

21 461 2876 8225 13993 15509 11575 5814 1903 375 30

22 397 2363 6416 10313 10755 7536 3561 1109 215 20

23 437 2669 7447 12319 13236 9556 4642 1475 286 20

24 425 2553 6988 11317 11888 8388 3987 1245 240 20

25 415 2498 6861 11158 11772 8339 3976 1244 240 20

26 470 2942 8436 14377 15944 11889 5955 1939 379 30

27 460 2856 8109 13656 14929 10944 5374 1712 328 30

28 449 2741 7634 12594 13487 9702 4695 1486 287 20

29 427 2592 7181 11778 12523 8926 4270 1334 255 20

30 425 2573 7108 11626 12333 8779 4201 1316 253 20 FFLV

(continued)
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Table 5 (continued)

Orbit f -vector Equivalences

31 443 2708 7557 12495 13411 9667 4686 1485 287 20

32 397 2363 6416 10313 10755 7536 3561 1109 215 20 S22

33 425 2553 6988 11317 11888 8388 3987 1245 240 20

34 419 2522 6922 11243 11842 8373 3985 1245 240 20

35 405 2407 6518 10442 10851 7578 3571 1110 215 20

36 401 2387 6477 10398 10825 7570 3570 1110 215 20

37 368 2154 5755 9111 9373 6497 3052 953 188 20 S21

38 379 2214 5892 9280 9494 6547 3063 954 188 20 S27, S28

39 393 2313 6200 9833 10125 7021 3297 1027 201 20

40 358 2069 5453 8516 8653 5941 2778 870 174 20 S1, S18, S26, S29

41 459 2851 8111 13720 15118 11223 5614 1834 362 30

42 467 2913 8322 14133 15629 11636 5831 1905 375 30

43 423 2562 7083 11596 12313 8772 4200 1316 253 20

44 425 2573 7108 11626 12333 8779 4201 1316 253 20 S24

45 397 2363 6416 10313 10755 7536 3561 1109 215 20 S23

46 461 2876 8225 13993 15509 11575 5814 1903 375 30

47 400 2366 6377 10175 10546 7363 3480 1089 213 20

48 393 2313 6200 9833 10125 7021 3297 1027 201 20

49 393 2313 6200 9833 10125 7021 3297 1027 201 20

50 379 2214 5892 9280 9494 6547 3063 954 188 20 S2, S19

51 426 2599 7257 12034 12981 9420 4602 1470 286 20

52 428 2594 7176 11761 12514 8947 4307 1359 263 20

53 419 2522 6922 11243 11842 8373 3985 1245 240 20

54 466 2917 8371 14288 15879 11870 5960 1944 380 30

55 443 2729 7692 12867 13982 10197 4987 1585 304 30

56 453 2787 7826 13011 14021 10122 4895 1539 293 20

57 469 2926 8358 14188 15679 11663 5839 1906 375 30

58 458 2825 7958 13286 14398 10472 5113 1626 313 30

59 472 2949 8435 14335 15854 11796 5902 1923 377 30

60 440 2704 7602 12684 13752 10014 4897 1560 301 30

61 472 2967 8561 14720 16525 12526 6410 2144 432 40

62 457 2842 8099 13726 15153 11266 5640 1842 363 30

63 465 2902 8296 14096 15588 11594 5795 1884 368 30

64 459 2851 8111 13720 15118 11223 5614 1834 362 30

65 428 2608 7269 12028 12946 9377 4576 1462 285 20

66 441 2681 7438 12228 13056 9369 4525 1430 276 20

67 418 2510 6876 11157 11753 8321 3969 1243 240 20

68 406 2442 6713 10943 11587 8245 3950 1241 240 20

69 373 2199 5926 9474 9849 6897 3267 1024 201 20

70 427 2586 7144 11681 12383 8806 4209 1317 253 20

71 451 2781 7840 13111 14243 10390 5089 1623 313 30

(continued)
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Table 5 (continued)

Orbit f -vector Equivalences

72 440 2704 7602 12684 13752 10014 4897 1560 301 30

73 406 2442 6713 10943 11587 8245 3950 1241 240 20

74 448 2764 7800 13061 14208 10377 5087 1623 313 30

75 462 2873 8181 13846 15258 11321 5656 1844 363 30

76 457 2842 8099 13726 15153 11266 5640 1842 363 30

77 469 2927 8364 14203 15699 11678 5845 1907 375 30

78 454 2802 7903 13216 14348 10453 5110 1626 313 30

79 451 2787 7879 13221 14419 10565 5200 1667 323 30

80 441 2705 7584 12611 13622 9885 4823 1537 298 30

81 454 2803 7914 13263 14455 10598 5231 1687 330 30

82 441 2697 7532 12465 13391 9660 4685 1485 287 20

83 445 2721 7593 12550 13461 9694 4694 1486 287 20

84 441 2697 7532 12465 13391 9660 4685 1485 287 20

85 445 2725 7617 12611 13546 9764 4728 1495 288 20

86 397 2363 6416 10313 10755 7536 3561 1109 215 20

87 368 2154 5755 9111 9373 6497 3052 953 188 20 S5, S31

88 452 2801 7946 13385 14654 10771 5309 1699 327 30

89 430 2624 7318 12097 12974 9329 4497 1411 269 20

90 456 2834 8071 13670 15083 11210 5612 1834 362 30

91 432 2633 7332 12104 12975 9341 4521 1430 276 20

92 467 2919 8359 14230 15769 11756 5892 1922 377 30

93 456 2834 8071 13670 15083 11210 5612 1834 362 30

94 426 2597 7244 11998 12926 9370 4575 1462 285 20

95 440 2708 7630 12769 13898 10169 5001 1603 311 30

96 432 2633 7332 12104 12975 9341 4521 1430 276 20

97 412 2479 6810 11083 11707 8306 3967 1243 240 20

98 415 2511 6945 11391 12133 8679 4174 1313 253 20

99 458 2845 8092 13676 15042 11132 5543 1800 353 30

100 437 2669 7447 12319 13236 9556 4642 1475 286 20

101 441 2703 7569 12562 13531 9780 4746 1502 289 20

102 427 2586 7144 11681 12383 8806 4209 1317 253 20

103 419 2522 6922 11243 11842 8373 3985 1245 240 20

104 437 2669 7447 12319 13236 9556 4642 1475 286 20

105 411 2470 6776 11012 11617 8235 3933 1234 239 20

106 413 2483 6808 11043 11606 8177 3871 1201 230 20

107 425 2553 6988 11317 11888 8388 3987 1245 240 20

108 405 2407 6518 10442 10851 7578 3571 1110 215 20

109 405 2427 6638 10751 11296 7969 3785 1181 228 20 S30

(continued)
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Table 5 (continued)

Orbit f -vector Equivalences

110 465 2904 8312 14152 15700 11734 5907 1940 384 30

111 464 2902 8323 14204 15795 11828 5960 1956 386 30

112 438 2690 7559 12608 13667 9952 4868 1552 300 30

113 445 2725 7617 12611 13546 9764 4728 1495 288 20

114 437 2669 7447 12319 13236 9556 4642 1475 286 20

115 411 2470 6776 11012 11617 8235 3933 1234 239 20

116 424 2574 7139 11737 12529 8983 4332 1367 264 20

117 419 2522 6922 11243 11842 8373 3985 1245 240 20

118 401 2387 6477 10398 10825 7570 3570 1110 215 20

119 405 2427 6638 10751 11296 7969 3785 1181 228 20 S6

120 464 2893 8261 14019 15483 11503 5746 1869 366 30

121 454 2806 7928 13283 14448 10543 5159 1641 315 30

122 451 2794 7928 13370 14676 10840 5387 1746 342 30

123 444 2736 7715 12915 14053 10273 5044 1613 312 30

124 466 2909 8318 14138 15644 11650 5837 1906 375 30

125 456 2815 7939 13271 14398 10480 5118 1627 313 30

126 423 2561 7078 11586 12303 8767 4199 1316 253 20

127 429 2580 7064 11429 11972 8402 3959 1221 232 20

128 431 2626 7309 12058 12915 9290 4494 1422 275 20

129 428 2602 7224 11883 12684 9087 4375 1377 265 20

130 443 2727 7679 12831 13927 10147 4960 1577 303 30

131 432 2637 7354 12152 13024 9356 4505 1412 269 20

132 451 2793 7920 13342 14620 10770 5331 1718 334 30

133 434 2632 7273 11879 12557 8883 4210 1301 246 20

134 452 2781 7813 13004 14042 10171 4944 1566 301 30

135 453 2808 7969 13433 14725 10847 5366 1727 335 30

136 451 2794 7928 13370 14676 10840 5387 1746 342 30

137 433 2646 7390 12236 13150 9482 4589 1448 278 20

138 442 2715 7629 12727 13808 10076 4948 1587 309 30

139 432 2633 7332 12104 12975 9341 4521 1430 276 20

140 423 2564 7096 11632 12368 8822 4227 1324 254 20

141 413 2483 6808 11043 11606 8177 3871 1201 230 20

142 427 2594 7196 11827 12614 9031 4347 1369 264 20

143 431 2622 7281 11973 12769 9135 4390 1379 265 20

144 431 2626 7309 12058 12915 9290 4494 1422 275 20

145 410 2459 6725 10881 11411 8029 3802 1183 228 20

146 428 2594 7176 11761 12514 8947 4307 1359 263 20

147 419 2522 6922 11243 11842 8373 3985 1245 240 20

148 451 2781 7840 13111 14243 10390 5089 1623 313 30

149 464 2900 8310 14168 15740 11778 5933 1948 385 30

150 446 2750 7757 12985 14123 10315 5058 1615 312 30

151 420 2541 7021 11496 12218 8719 4184 1314 253 20

152 441 2705 7584 12611 13622 9885 4823 1537 298 30

(continued)
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Table 5 (continued)

Orbit f -vector Equivalences

153 425 2575 7119 11651 12363 8799 4208 1317 253 20

154 448 2764 7801 13067 14223 10397 5102 1629 314 30

155 444 2737 7724 12949 14124 10363 5115 1647 321 30

156 452 2772 7753 12830 13755 9876 4750 1486 282 20

157 442 2706 7565 12529 13460 9696 4684 1473 281 20

158 441 2708 7602 12655 13676 9915 4821 1525 292 20

159 427 2596 7207 11850 12633 9026 4324 1350 257 20

160 452 2781 7813 13004 14042 10171 4944 1566 301 30

161 427 2586 7144 11681 12383 8806 4209 1317 253 20

162 400 2382 6467 10388 10820 7569 3570 1110 215 20

163 448 2764 7800 13061 14208 10377 5087 1623 313 30

164 470 2943 8444 14405 16000 11959 6011 1967 387 30

165 460 2857 8117 13684 14985 11014 5430 1740 336 30

166 418 2530 6996 11466 12198 8712 4183 1314 253 20

167 434 2640 7325 12025 12788 9108 4348 1353 257 20

168 425 2577 7132 11687 12418 8849 4235 1325 254 20

169 425 2581 7160 11772 12564 9004 4339 1368 264 20

170 430 2614 7255 11928 12724 9109 4382 1378 265 20

171 422 2557 7075 11597 12333 8801 4220 1323 254 20

172 411 2470 6772 10988 11556 8150 3863 1200 230 20 S7

173 427 2586 7144 11681 12383 8806 4209 1317 253 20

174 400 2382 6467 10388 10820 7569 3570 1110 215 20

175 464 2898 8295 14119 15649 11673 5856 1913 376 30
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Table 6 Polytopes for Fl5

w0 MP Weight vector Prime Equivalences

S1 1213214321 Yes
(0, 512, 384, 112, 0, 256, 96, 768, 608,
480, 0, 64, 320, 832, 15, 14, Yes S18, S26, S29

526, 398, 126, 12, 268, 108, 780, 620, 492,
0, 8, 72, 328, 840)

S2 1213243212 Yes
(0, 512, 384, 98, 0, 256, 96, 768, 608, 480,
0, 64, 320, 832, 30, 28, 540, Yes

412, 123, 24, 280, 120, 792, 632, 504, 0,
16, 80, 336, 848)

S3 1213432312 No
(0, 512, 384, 74, 0, 256, 72, 768, 584, 456,
0, 64, 320, 832, 58, 56,

No

568, 440, 111, 48, 304, 108, 816, 620, 492,
0, 32, 96, 352, 864)

S4 1214321432 No
(0, 512, 384, 56, 0, 256, 48, 768, 560, 432,
0, 32, 288, 800, 120, 112, No

624, 496, 63, 96, 352, 54, 864, 566, 438, 0,
64, 36, 292, 804)

S5 1232124321 Yes
(0, 512, 288, 224, 0, 256, 192, 768, 704,
432, 0, 128, 384, 896, 15, Yes

14, 526, 302, 238, 12, 268, 204, 780, 716,
444, 0, 8, 136, 392, 904)

S6 1232143213 Yes
(0, 512, 288, 224, 0, 256, 192, 768, 704,
420, 0, 128, 384, 896, 30, Yes

28, 540, 316, 252, 24, 280, 216, 792, 728,
437, 0, 16, 144, 400, 912)

S7 1232432123 Yes
(0, 512, 260, 196, 0, 256, 192, 768, 704,
390, 0, 128, 384, 896, 60, Yes

56, 568, 310, 246, 48, 304, 240, 816, 752,
423, 0, 32, 160, 416, 928)

S8 1234321232 No
(0, 512, 264, 152, 0, 256, 144, 768, 656,
396, 0, 128, 384, 896, 120, No

112, 624, 364, 219, 96, 352, 210, 864, 722,
462, 0, 64, 192, 448, 960)

S9 1234321323 No
(0, 512, 264, 152, 0, 256, 144, 768, 656,
394, 0, 128, 384, 896, 120, No

112, 624, 362, 222, 96, 352, 212, 864, 724,
459, 0, 64, 192, 448, 960)

S10 1243212432 No
(0, 512, 272, 112, 0, 256, 96, 768, 608,
344, 0, 64, 320, 832, 240, 224, No

736, 472, 119, 192, 448, 102, 960, 614,
350, 0, 128, 68, 324, 836)

S11 1243214323 No
(0, 512, 272, 112, 0, 256, 96, 768, 608,
338, 0, 64, 320, 832, 240, 224, No

736, 466, 126, 192, 448, 108, 960, 620,
347, 0, 128, 72, 328, 840)

(continued)
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Table 6 (continued)

w0 MP Weight vector Prime Equivalences

S12 1321324321 No
(0, 512, 192, 448, 0, 128, 384, 640, 896,
240, 0, 256, 160, 672, 15, No

14, 526, 206, 462, 12, 140, 396, 652, 908,
252, 0, 8, 264, 168, 680)

S13 1321343231 No
(0, 512, 192, 448, 0, 128, 384, 640, 896,
228, 0, 256, 160, 672, 29, No

28, 540, 220, 476, 24, 152, 408, 664, 920,
246, 0, 16, 272, 176, 688)

S14 1321432143 No
(0, 512, 192, 448, 0, 128, 384, 640, 896,
216, 0, 256, 144, 656, 60, No

56, 568, 248, 504, 48, 176, 432, 688, 944,
219, 0, 32, 288, 146, 658)

S15 1323432123 No
(0, 512, 132, 388, 0, 128, 384, 640, 896,
198, 0, 256, 192, 704, 60,

No

56, 568, 182, 438, 48, 176, 432, 688, 944,
231, 0, 32, 288, 224, 736)

S16 1324321243 No
(0, 512, 136, 392, 0, 128, 384, 640, 896,
172, 0, 256, 160, 672, 120,

No

112, 624, 236, 492, 96, 224, 480, 736, 992,
175, 0, 64, 320, 162, 674)

S17 1343231243 No
(0, 512, 48, 304, 0, 32, 288, 544, 800, 60,
0, 256, 40, 552, 240, 224,

No

736, 188, 444, 192, 168, 424, 680, 936, 63,
0, 128, 384, 42, 554)

S18 2123214321 Yes
(0, 256, 768, 112, 0, 512, 96, 384, 352,
864, 0, 64, 576, 448, 15, 14, Yes

S1, S26, S29,
Gelfand-Tsetlin

270, 782, 126, 12, 524, 108, 396, 364, 876,
0, 8, 72, 584, 456)

S19 2123243212 Yes
(0, 256, 768, 98, 0, 512, 96, 384, 352, 864,
0, 64, 576, 448, 30, 28,

Yes

284, 796, 123, 24, 536, 120, 408, 376, 888,
0, 16, 80, 592, 464)

S20 2123432132 No
(0, 256, 768, 76, 0, 512, 72, 384, 328, 840,
0, 64, 576, 448, 60, 56, No

312, 824, 111, 48, 560, 106, 432, 362, 874,
0, 32, 96, 608, 480)

S21 2132134321 Yes
(0, 256, 768, 224, 0, 512, 192, 320, 448,
960, 0, 128, 640, 336, 15, 14,

Yes

270, 782, 238, 12, 524, 204, 332, 460, 972,
0, 8, 136, 648, 344)

(continued)
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Table 6 (continued)

w0 MP Weight Vector Prime Equivalences

S22 2132143214 Yes
(0, 256, 768, 224, 0, 512, 192, 320, 448,
960, 0, 128, 640, 328, 30, 28,

Yes

284, 796, 252, 24, 536, 216, 344, 472,
984, 0, 16, 144, 656, 329)

S23 2132343212 Yes
(0, 256, 768, 194, 0, 512, 192, 320, 448,
960, 0, 128, 640, 352, 30, 28,

Yes

284, 796, 219, 24, 536, 216, 344, 472,
984, 0, 16, 144, 656, 368)

S24 2132432124 Yes
(0, 256, 768, 196, 0, 512, 192, 320, 448,
960, 0, 128, 640, 336, 60, 56,

Yes

312, 824, 246, 48, 560, 240, 368, 496,
1008, 0, 32, 160, 672, 337)

S25 2134321324 No
(0, 256, 768, 152, 0, 512, 144, 272, 400,
912, 0, 128, 640, 276, 120,

No

112, 368, 880, 222, 96, 608, 212, 340,
468, 980, 0, 64, 192, 704, 277)

S26 2321234321 Yes
(0, 64, 576, 448, 0, 512, 384, 96, 352,
864, 0, 256, 768, 112, 15, 14,

Yes S1, S118, S29,
Gelfand-Tsetlin

78, 590, 462, 12, 524, 396, 108, 364,
876, 0, 8, 264, 776, 120)

S27 2321243214 Yes
(0, 64, 576, 448, 0, 512, 384, 96, 352,
864, 0, 256, 768, 104, 30, 28,

Yes

92, 604, 476, 24, 536, 408, 120, 376,
888, 0, 16, 272, 784, 105)

S28 2321432134 Yes
(0, 64, 576, 448, 0, 512, 384, 72, 328,
840, 0, 256, 768, 74, 60, 56,

Yes

120, 632, 504, 48, 560, 432, 106, 362,
874, 0, 32, 288, 800, 75)

S29 2324321234 Yes
(0, 8, 520, 392, 0, 512, 384, 12, 268,
780, 0, 256, 768, 14, 120, 112,

Yes S1, S18, S26,
Gelfand-Tsetlin

108, 620, 492, 96, 608, 480, 78, 334,
846, 0, 64, 320, 832, 15)

S30 2343212324 Yes
(0, 16, 528, 304, 0, 512, 288, 24, 280,
792, 0, 256, 768, 28, 240, 224,

Yes

216, 728, 438, 192, 704, 420, 156, 412,
924, 0, 128, 384, 896, 29)

S31 2343213234 Yes
(0, 16, 528, 304, 0, 512, 288, 20, 276,
788, 0, 256, 768, 22, 240, 224,

Yes

212, 724, 444, 192, 704, 424, 150, 406,
918, 0, 128, 384, 896, 23)

FFLV reg Yes (0, 4, 6, 6, 0, 3, 4, 6, 6, 9, 0, 2, 4, 6, 4,
3, 4, 7, 8, 2, 3, 5, 4, 6, 8, 0, 1, 2, 3, 4)

Yes

FFLV min Yes (0, 3, 4, 3, 0, 2, 2, 4, 3, 5, 0, 1, 2, 3, 1,
1, 1, 3, 3, 1, 1, 2, 1, 2, 3, 0, 1, 1, 1, 1)

Yes
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The Multidegree of the Multi-Image Variety

Laura Escobar and Allen Knutson

Abstract The multi-image variety is a subvariety of Gr.1;P3/n that parametrizes
all of the possible images that can be taken by n fixed cameras. We compute its
cohomology class in the cohomology ring of Gr.1;P3/n and its multidegree as a
subvariety of .P5/n under the Plücker embedding.

MSC 2010 codes: 14M15, 14Nxx

1 Introduction

Multi-view geometry studies the constraints imposed on a three-dimensional scene
by various two-dimensional images of the scene. Each image is produced by a
camera. Algebraic vision is a recent field of mathematics that uses techniques from
algebraic geometry and optimization to formulate and solve problems in computer
vision. One of the main objects studied in this field is a multi-view variety. Roughly
speaking, a multi-view variety parametrizes all of the possible images that can
be taken by a fixed collection of cameras; see [1, 11, 14] for more on multi-view
varieties and [13] for various camera models.

The paper [11] presents a new viewpoint on multi-view varieties. A photographic
camera maps a point in the scene to a point in the image. In contrast, a geometric
camera, defined in [11], maps a point in the scene to a viewing ray, not a point.
More precisely, a photographic camera corresponds to a rational map of the form
P
3 Ü P

2 or P
3 Ü P

1 � P
1 whereas a geometric camera is a rational map of the

form P
3 Ü Gr.1;P3/ such that the image of each point is a line containing the

point. The viewing ray corresponding to a point p 2 P
3 is the line in Gr.1;P3/ to
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Fig. 1 A pinhole camera p

f ( p)

focal point

which this point is mapped. Since light is assumed to travel along rays, the image of
a geometric camera is two-dimensional.

We now illustrate these definitions using the example of pinhole cameras or
cameræ obscuræ; see Fig. 1. As a geometric camera, a pinhole camera maps a point
p 2 P

3 to the line �.p/ connecting p to the focal point. This map is undefined at the
focal point. As a photographic camera, a pinhole camera maps a point p 2 P

3 to the
intersection of �.p/ and the plane at the back of the camera. By varying the back
plane, we see that there are many pinhole cameras associated to a given focal point.
All of these cameras are equivalent up to a projective transformation. The essential
part of a pinhole camera is the mapping of the scene points to viewing rays—its
model as a geometric camera.

A multi-image variety is the Zariski closure of the image of a rational map
�WP3 Ü Gr.1;P3/n defined by p 7!

(
�1.p/; �2.p/; : : : ; �n.p/

)
where each �i is

a geometric camera. The multi-view variety is a multi-image variety in which each
�i is a pinhole camera. If Ci is the Zariski closure of the image of ith camera �i

inside the ith Gr.1;P3/, then, under some assumptions, Theorem 5.1 in [11] shows
that .C1 � C2 � � � � � Cn/ \ Vn D �.P3/, where Vn is the concurrent lines variety
consisting of ordered n-tuples of lines in P

3 that meet in a point x. The concurrent
lines and multi-image varieties are embedded into .P5/n via the Plücker embedding.

The multidegree of a variety embedded into a product of projective spaces is
the polynomial whose coefficients give the numbers (when finite) of intersection
points in the variety intersected with a product of general linear subspaces. This
article verifies the conjectured formula [11, Eq. (11)] for the multidegree of Vn

and computes the multidegree of the multi-image variety. To do so, we describe
Vn as the projection of a partial flag variety and use Schubert calculus to compute
the cohomology classes of Vn and .C1 � C2 � � � � � Cn/ \ Vn in the cohomology
ring of Gr.1;P3/n. We then push forward these formulæ into .P5/n to obtain the
multidegrees.
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This article is organized as follows. In Sect. 2, we define the main objects of
study: the multi-image variety and the concurrent lines variety. We present the main
theorem which computes the multidegrees of these objects. The primary tool to
prove this theorem is Schubert calculus. In Sect. 3, we give a brief introduction
to Schubert calculus for Gr.1;P3/. Section 4 calculates the cohomology class of
the multi-image variety and the concurrent lines variety in terms of the Schubert
cycles in Gr.1;P3/. We prove the main theorem by taking the pushforward of these
equations to the cohomology ring of P

5. In Sect. 5, we refine these results to a
computation of the K-polynomial for the concurrent lines variety.

2 The Multi-Image Variety

The Grassmannian Gr.k;P3/ consists of all k-dimensional planes inside P
3. A

congruence is a two-dimensional family of lines in P
3. The bidegree .˛; ˇ/ of a

congruence C is a pair of nonnegative integers such that the cohomology class of C
in Gr.1;P3/ has the form

ŒC� D ˛ ŒL W L contains a fixed point�C ˇŒL W L lies in a fixed plane� :

The first integer coefficient ˛, called the order, counts the number of lines in C that
pass through a general point of P

3, and the second ˇ, called the class, counts the
number of lines in C that lie in a general plane of P

3. The focal locus of C consists
of the points in P

3 that do not belong to ˛ distinct lines of C.

Example 2.1 A congruence with bidegree .1; 0/ consists of all lines in Gr.1;P3/
that contain a fixed point. A geometric camera for such a congruence represents a
pinhole camera where the fixed point is the focal point.

Example 2.2 A two-slit camera assigns to a point p 2 P
3 the unique line passing

through p and intersecting two fixed lines L1;L2 2 Gr.1;P3/, see Fig. 2. Its focal
locus is fL1;L2g. These cameras correspond to the congruences with bidegrees
.1; 1/.

Remark 2.3 The study of congruences started with [7], which classified congru-
ences of order 1. They were subsequently studied by many mathematicians during

Fig. 2 A two-slit camera

L1

L2
p

f (p)
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Fig. 3 A non-central
panoramic camera

*****

*
*

*

L

X

p

f (p)

the second half of the nineteenth century; see [5]. Moreover, [6, Sect. 2] discusses
congruences and their bidegrees, and [10] discusses the bidegrees of curves in
P
1 � P

1.
For congruences C1;C2; : : : ;Cn 	 Gr.1;P3/, consider a rational map

�WP3 Ü C1 � C2 � � � � � Cn

defined by x 7!
(
�1.x/; �2.x/; : : : ; �n.x/

)
, where the Zariski closure of �i.P

3/

equals Ci and x 2 �i.x/ for all 1 � i � n. Each map �i is defined everywhere
except on the focal locus of Ci. The map � corresponds to taking pictures with n
rational cameras where each Ci is the ith image plane. When the congruence Ci

has bidegree .1; ˇi/, it follows that �i.x/ is the unique line in Ci passing through x.
In this situation, the multi-image variety of .C1;C2; : : : ;Cn/ is the Zariski closure
of �.P3/. The concurrent lines variety Vn consists of ordered n-tuples of lines
in P

3 that meet in a point x. If the focal loci of the congruences are pairwise
disjoint, then Theorem 5.1 in [11] shows that the multi-image equals the intersection
.C1�C2�� � ��Cn/\Vn in Gr.1;P3/n. The concurrent lines and multi-image varieties
embed into .P5/n via the Plücker embedding Gr.1;P3/ ,! P

5.

Example 2.4 Although most cameras studied in computer vision correspond to
congruences of order 1, cameras of higher order also appear; see [11, Sect. 7] and
[13]. As an example of a camera associated to a congruence of bidegree .2; 2/, we
describe a non-central panoramic camera; see Fig. 3. Consider a circle X obtained by
rotating a point about a vertical axis L. There are two lines passing through a general
point p 2 P

3 and intersecting both L and X. The congruence C consisting of all lines
intersecting both X and L has bidegree .2; 2/. A physical realization of a non-central
panoramic camera consists of a sensor on the circle taking measurements pointing
outwards. This orientation of the sensor yields a map �WP3 Ü Gr.1;P3/; it assigns
only one line �.p/ to a point p 2 P

3.
The multidegree of a variety X embedded into a product of projective spaces

P
a1 � P

a2 � � � � � P
an is a homogeneous polynomial in ZŒz1; z2; : : : ; zn� whose term

q zr1
1 zr2

2 � � � z
rn
n indicates that there are q intersection points when X meets a product
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of general linear subspaces H1 � H2 � � � � � Hn 	 P
a1 � P

a2 � � � � � P
an such that

dim Hi D ri for all 1 � i � n. The degree of this homogeneous polynomial equals
the codimension of X in P

a1 � P
a2 � � � � � P

an . Equivalently, this homogeneous
polynomial represents the class of S in the cohomology ring for P

a1 �P
a2 �� � ��P

an .
The command multidegree in the Macaulay2 [4] software system computes the
multidegree of X from its defining ideal; see [9, Sect. 8.5] for more on multidegrees.

Our main result determines the multidegree of the multi-image variety.

Theorem 2.5 The multidegree of the concurrent lines variety Vn in .P5/n equals

.z1z2 � � � zn/
3

Å
4
∑

.i;j/
i¤j

z�2
i z�1

j C 8
∑

fi;j;kg

z�1
i z�1

j z�1
k

ã
:

If the congruence Ci has bidegree .˛i; ˇi/ for all 1 � i � n, the multidegree of
.C1 � C2 � � � � � Cn/ \ Vn in .P5/n equals

.˛1˛2 � � �˛n/.z1z2 � � � zn/
5�Ç

∑

.i;j/
i¤j

.˛iCˇi/.˛jCˇj/

˛i˛j
z�2

i z�1
j C

∑

fi;j;kg

.˛iCˇi/.˛jCˇj/.˛kCˇk/

˛i˛j˛k
z�1

i z�1
j z�1

k

å
;

where we distribute appropriately whenever ˛i D 0 for some i. In particular, the
multidegree of the multi-image variety for .C1;C2; : : : ;Cn/ is obtained by setting
˛i D 1 for all 1 � i � n.

Remark 2.6 Ponce–Sturmfels–Trager [11, Eq. (11)] had conjectured this formula
for the multidegree of Vn based on experimental evidence from Macaulay2. If the
congruences all have bidegree .1; 0/, then Theorem 2.5 specializes to the equation
for the multidegree appearing in Aholt–Sturmfels–Thomas [1, Corollary 3.5].

3 Schubert Varieties

In this section, we review the basic properties of Schubert varieties in Gr.k;Pd/; for
more information, we recommend [3]. Given our interest in multi-image varieties
and concurrent lines varieties, we highlight the case in which d D 3; also see
[6, Sect. 6]. Fix a coordinate system for P

d, let P
.i;iC1;:::;j/ denote the coordinate

subspace of P
n spanned by the coordinates .i; iC1; : : : ; j/, and consider the standard

flag

E
 WD P
.0/ 	 P

.0;1/ 	 � � � 	 P
.0;1;			 ;d/ D P

d :
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For J WD fj1; j2; : : : ; jkC1g 	 ŒdC1� WD f1; 2; : : : ; dC1g, the corresponding Schubert
variety is

XJ D Xfj1;j2;			 ;jkC1g WD

®
p 2 Gr.k;Pd/ W

dim.p \ P
.0;1;:::;j`�1// � ` � 1

for all 1 � ` � kC 1

´
: (1)

Example 3.1 There are 6 D
(
4
2

)
D

(dC1
kC1

)
Schubert varieties in Gr.1;P3/, namely

Xf1;2g WD fP
.0;1/g ; Xf2;3g WD fL W L 	 P

.0;1;2/g ;

Xf1;3g WD fL W P
.0/ 	 L 	 P

.0;1;2/g ; Xf2;4g WD fL W dim.L \ P
.0;1// � 1g ;

Xf1;4g WD fL W P
.0/ 	 Lg ; Xf3;4g WD Gr.1;P3/ :

The Schubert cells in Gr.1;Pd/ are defined by replacing the inequality in (1)
with an equality. Since Gr.1;Pd/ is a disjoint union of the Schubert cells and
each cell is contractible, the classes ŒXJ�, for all J 	 Œd C 1�, form a basis for
the cohomology ring of Gr.k;P3/. Multiplication in the cohomology ring is given
by the cup product ŒXI � ` ŒXJ� WD ŒXI.E

op

 / \ XJ�, where XI.E

op

 / is defined

by using P
.d�j`C1;d�j`C2;:::;d/ instead of P

.0;1;:::;j`�1/ in (1). Unlike XI , the variety
XI.E

op

 / intersects XJ transversely, while having the same cohomology class as XI .

One obtains a basis for the cohomology ring of products of Grassmannians via the
Künneth isomorphism. Expressing the product ŒXI � ` ŒXJ� as a linear combination
of this basis can be accomplished by using the Pieri rule for special classes and
Littlewood–Richardson rule more generally; see the discussion before Example 3.3
and [8] respectively.

Example 3.2 In the cohomology ring of Gr.1;P3/, we have ŒXJ� ` ŒXf1;2g� D 0 for
all J ¤ f3; 4g because P

.2;3/ … XJ . Any line L containing P
.0/ is not contained in

P
.1;2;3/, so we also have ŒXf1;4g� ` ŒXf2;3g� D 0. Finally, we have ŒXf1;4g� ` ŒXf1;4g� D

ŒXf1;2g� because there is a unique line containing the points P
.0/ and P

.3/.
Schubert varieties stratify Gr.k;Pd/. The poset of their inclusions is most easily

described when these strata are indexed by partitions. A partition of the integer n
into kC1 parts is a list � WD .�1; �2; : : : ; �kC1/ such that �1 � �2 � � � � � �kC1 > 0

and n D �1 C �2 C � � � C �kC1. There is a bijection between the .kC 1/-subsets of
ŒdC 1� and partitions � with at most kC 1 parts such that �1 � d � k given by

J D fj1; j2; : : : ; jkC1g $ � D .d�kC1� j1; d�kC2� j2; : : : ; d� jk; dC1� jkC1/ :

Partitions can be visualized. Given a partition �1 � �2 � � � � � �kC1, the
corresponding Young diagram is the left-justified shape of k C 1 rows of boxes
of length �1; �2; : : : ; �kC1. Figure 4 illustrates the Young diagram for the partition
.5; 3; 3; 2/. If the Young diagram of � fits inside the Young diagram of �, then we
simply write � 	 �; by construction, this is equivalent to saying that �i � �i for
all i.
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Fig. 4 The Young diagram
for the partition .5; 3; 3; 2/

Fig. 5 The containment
poset of the Schubert varieties
in Gr.1;P3/

X2,2 = {L= P
(0,1)}

X2,1 = {L : P
(0) ⊂ L⊂ P

(0,1,2)}

X1,1 = {L : L⊂ P
(0,1,2)} X2 = {L : P

(0) ⊂ L}

X1 = {L : L∩P
(0,1) �= ∅}

X∅ = Gr(1,P3)

Using our bijection between subsets and partitions, we may index Schubert cells
and varieties by partitions. With this new indexing set, we have the following:

• dim.X�/ D .kC 1/.d � k/ �
∑

i �i,
• X� � X� if and only if � � �, and
• if � D .�1; 0; 0; : : : ; 0/ and � D .�1; �2; : : : ; �kC1/ are partitions with at most

k C 1 parts, then we have ŒX�� ` ŒX�� D
∑

�ŒX��, where the sum runs over all
partitions � D .�1; �2; : : : ; �kC1/ such that �1 � d � k, �i � �i � �i�1 for
2 � i � kC 1 and

∑
i �i D

∑
i.�i C �i/.

The third item is known as the Pieri rule.

Example 3.3 The Schubert varieties in Gr.1;P3/ are ordered by containment in the
poset in Fig. 5. This poset is ranked by the dimensions of the Schubert varieties. By
the Pieri rule, we have that ŒX1� ` ŒX2� D ŒX2;1� and ŒX1� ` ŒX1;1� D ŒX2;1�.

Remark 3.4 In terms of Schubert varieties, the cohomology class of a congruence
C 	 P

3 is ŒC� D ˛ŒX2�C ˇŒX1;1�.

4 Computing the Multidegrees

In this section, we use Schubert calculus to obtain the cohomology classes of Vn and
the multi-image variety in the cohomology ring of Gr.1;P3/n. Using these formulæ
we then describe the multidegrees of these varieties in P

n.



290 L. Escobar and A. Knutson

Let M 	 Gr.0;P3/ � Gr.1;P3/ be the partial flag manifold consisting of
pairs .P;L/, where P is a point in P

3 and L is a line through P, and let Mn
� be

the subvariety of Mn consisting of lists of n flags such that the point P is the
same in all of them. In other words, Mn

� is the preimage of the small diagonal,
where all points are coincident, under the projection Mn ! .P3/n which sends(
.P1;L1/; .P2;L2/; : : : ; .Pn;Ln/

)
to .P1;P2; : : : ;Pn/. For instance, the subvariety

M2
� 
 M2 consists of pairs of flags of the form ..P;L1/; .P;L2//. With this notation,

we see that the concurrent lines variety Vn is the image of subvariety Mn
� under

the map pWMn ! Gr.1;P3/n which is defined on each factor by the composition
M ,! Gr.0;P3/ � Gr.1;P3/! Gr.1;P3/.

Using this description, we deduce the following formulæ for the cohomology
classes of the concurrent lines variety Vn and the multi-image variety.

Theorem 4.1 The class ŒVn� of the concurrent lines variety in the cohomology ring
of Gr.1;P3/n is

ŒVn� D
∑

0Dv0�v1�			�vnD3
vjC1�vj<3

n�1⊗

iD0

[
L W L \ P

.vi;viC1;:::;viC1/ ¤ ¿
]

D
∑

0Dv0�v1�			�vnD3
vjC1�vj<3

n⊗

iD1

⎧
⎪⎪⎨

⎪⎪⎩

ŒX2� if vi � vi�1 D 0;

ŒX1� if vi � vi�1 D 1;

ŒGr.1;P3/� if vi � vi�1 D 2:

The first equation is more natural, as it holds in T-equivariant cohomology, whereas
the second equation is only valid in ordinary cohomology.

Example 4.2 Theorem 4.1 implies that

ŒV3� D ŒL W L \ P
.0/ ¤ ¿�˝ ŒL W L \ P

.0;1/ ¤ ¿�˝ ŒL W L \ P
.1;2;3/ ¤ ¿�C

ŒL W L \ P
.0/ ¤ ¿�˝ ŒL W L \ P

.0;1;2/ ¤ ¿�˝ ŒL W L \ P
.2;3/ ¤ ¿�C

ŒL W L \ P
.0;1/ ¤ ¿�˝ ŒL W L \ P

.1/ ¤ ¿�˝ ŒL W L \ P
.1;2;3/ ¤ ¿�C

� � � C ŒL W L \ P
.0;1;2/ ¤ ¿�˝ ŒL W L \ P

.2;3/ ¤ ¿�˝ ŒL W L \ P
.3/ ¤ ¿�

D ŒX2�˝ ŒX1�˝ ŒGr.1;P3/�C ŒX2�˝ ŒGr.1;P3/�˝ ŒX1�C

ŒX1�˝ ŒX2�˝ ŒGr.1;P3/�C ŒX1�˝ ŒX1�˝ ŒX1�C ŒX1�˝ ŒGr.1;P3/�˝ ŒX2�C

ŒGr.1;P3/�˝ ŒX2�˝ ŒX1�C ŒGr.1;P3/�˝ ŒX1�˝ ŒX2� :

Proof The transverse intersection .Mi�1 � M2
� � Mn�i�1/ \ .Mi � M2

� � Mn�i�2/

consists of
(
.P1;L1/; .P2;L2/; : : : ; .Pn;Ln// such that Pi D PiC1 D PiC2. Hence,

the subvariety Mn
� is the transverse intersection Mn

� D
⋂n�1

iD1 .M
i�1 �M2

� �Mn�i�1/.
It follows that



The Multidegree of the Multi-Image Variety 291

ŒMn
�� D

n�1∏

iD1

(
1˝ � � � ˝ 1˝ ŒM2

��˝ 1˝ � � � ˝ 1
)

in the cohomology of
(

Gr.0;P3/ � Gr.1;P3/
)n

. Using Künneth isomorphism to
identify the cohomology ring H�

(
.P3/2;Z

)
with H�.P3;Z/˝ H�.P3;Z/, the class

of the diagonal in .P3/2 is

[
.P1;P2/ 2 .P

3/2 W P1 D P2
]
D

∑

0�v�3

ŒP.0;1;:::;v/�˝ ŒP.v;vC1;:::;3/� ;

so the class of the small diagonal in .P3/n is

[
.P;P; : : : ;P/ 2 .P3/n W P 2 P

3
]
D

∑

0Dv0�v1�			�vnD3

n�1⊗

iD0

ŒP.vi;viC1;:::;viC1/� :

Pulling this back to Mn, we get

ŒMn
�� D

∑

0Dv0�v1�			�vnD3

n�1⊗

iD0

[
.P;L/ W P 2 P

.vi;viC1;:::;viC1/
]
:

Since Vn is the image of the subvariety Mn
� under the map pWMn ! Gr.1;P3/n, we

see that p�ŒMn
�� D ŒVn�. The image of the subvariety f.P;L/ W P 2 P

.0;1;2;3/g under
the component map from M to Gr.1;P3/ equals Gr.1;P3/, so the push forward of the
class Œ.P;L/ W P 2 P

.vj;vjC1;:::;vjC1/�with vjC1�vj D 3 is zero. When vjC1�vj < 3, the
push forward of the class Œ.P;L/ W P 2 P

.vj;vjC1;:::;vjC1/� is ŒL W L \ P
.vj;vjC1;:::;vjC1/ ¤

¿�. Therefore, we conclude that

ŒVn� D
∑

0Dv0�v1�			�vnD3
vjC1�vj<3

n�1⊗

iD0

ŒL W L \ P
.vi;viC1;:::;viC1/ ¤ ¿� :

For any L 2 Gr.1;P3/, we have that L \ P
.0;1;2/ ¤ ¿ and L \ P

.1;2;3/ ¤ ¿, so the
classes ŒP.0;1;2/� and ŒP.1;2;3/� push down to ŒGr.1;P3/�. ut

Theorem 4.3 If Ci 	 Gr.1;P3/ is a general congruence, for 1 � i � n, with class
˛iŒX2�C ˇiŒX1;1� 2 H4

(
Gr.1;P3/;Z

)
, then we have

Œ.C1 � C2 � � � � � Cn/ \ Vn�

D
∑

0Dv0�v1�			�vnD3
vjC1�vj<3

n⊗

iD1

⎧
⎨

⎩

˛iŒX2;2� if vi � vi�1 D 0;

.˛i C ˇi/ŒX2;1� if vi � vi�1 D 1;

˛iŒX2�C ˇiŒX1;1� if vi � vi�1 D 2:

In particular, if ˛i D 0 for some 1 � i � n, then the terms with vi�viC1 D 0 vanish.
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Example 4.4 If Ci 	 Gr.1;P3/ is congruences with bidegree .˛i; ˇi/ for 1 � i � 3,
then Theorem 4.3 implies that

[
.C1 � C2 � C3/ \ V3

]
D ˛1ŒX2;2�˝ .˛2 C ˇ2/ŒX2;1�˝ .˛3ŒX2�C ˇ3ŒX1;1�/

C ˛1ŒX2;1�˝ .˛2ŒX2�C ˇ2ŒX1;1�/˝ .˛3 C ˇ3/ŒX2;1�

C .˛1 C ˇ1/ŒX2;1�˝ ˛2ŒX2;2�˝ .˛3ŒX2�C ˇ3ŒX1;1�/

C � � � C .˛1ŒX2�C ˇ1ŒX1;1�/˝ .˛2Cˇ2/ŒX2;1�˝ ˛3ŒX2;2�:

Proof If Ci 	 Gr.1;P3/ is a surface with class ˛iŒX1;1�CˇiŒX2� 2 H4
(

Gr.1;P3/;Z
)

for 1 � i � n, then Theorem 4.1 gives

Œ.C1 � C2 � � � � � Cn/ \ Vn�

D ŒVn� ` .ŒC1�˝ ŒC2�˝ � � � ˝ ŒCn�/

D
∑

0Dv0�v1�			�vnD3
vjC1�vj<3

n⊗

iD1

(
ŒL W L \ P

.vi�1;vi�1C1;:::;vi/ ¤ ¿� ` .˛iŒX2�C ˇiŒX1;1�/
)
:

Using Examples 3.2–3.3, we analyze the three distinct cases: when vi � vi�1 D 0,
we have ŒL W L\ P

.vi/ ¤ ¿� D ŒX2� and ŒX2� ` .˛iŒX2�C ˇiŒX1;1�/ D ˛iŒX2;2�; when
vi � vi�1 D 1, we have ŒL W L \ P

.vi;viC1/ ¤ ¿� D ŒX1� and

ŒX1� ` .˛iŒX2�C ˇiŒX1;1�/ D .˛i C ˇi/ŒX2;1� I

and, when vi � vi�1 D 2, we have ŒL W L \ P
.vi;viC1;viC1/ ¤ ¿� D ŒGr.1;P3/� D 1

and 1 ` .˛iŒX2� C ˇiŒX1;1�/ D .˛iŒX2� C ˇiŒX1;1�/. Combining these calculations
completes the proof. ut

We now describe the push forward of the Schubert classes to H�.P5;Z/ under
the Plücker embedding �WGr.1;P3/ ,! P

5. To accomplish this, we first give their
equations inside P

5. The degrees of general Schubert varieties were computed by
Schubert [12]. A line L 2 Gr.1;P3/ passing through the points .x0 W x1 W x2 W x3/
and .y0 W y1 W y2 W y3/ 2 P

3 is uniquely determined by the .2 � 2/-minors of the
.2�4/-matrix

[ x0 x1 x2 x3
y0 y1 y2 y3

]
. Let pi;j denote the minor given by the ith and jth columns.

The Plücker embedding associates the point .p1;2 W p1;3 W � � � W p3;4/ 2 P
5 to each line

in Gr.1;P3/. The classes ��ŒX�� 2 H�.P5;Z/ can then be computed as follows.

Gr.1;P3/: The image �
(

Gr.1;P3/
)
D V.p1;2p3;4� p1;3p2;4C p2;3p1;4/ 	 P

5 is the
quadratic hypersurface defined by the Plücker relation. Hence, it has
degree 2 and codimension 1, so ��ŒGr.1;P3/� D 2z1.

X1: Since the condition that L \ P
.0;1/ ¤ ¿ is equivalent to p3;4 D 0, the

image �.X1/ is the complete intersection V.p3;4; p1;2p3;4 � p1;3p2;4 C
p2;3p1;4/ in P

5. Hence, it has degree .1/.2/ D 2 and codimension 2, so
��ŒX1� D 2z2.
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X1;1: Since the condition that L \ P
.0;1/ 	 P

.0;1;2/ is equivalent to p1;4 D 0,
p2;4 D 0, and p3;4 D 0, the image �.X1;1/ is the complete intersection
V.p1;4; p2;4; p3;4/ in P

5. Hence, it has degree .1/.1/.1/ D 1 and
codimension 3, so ��ŒX1;1� D z3.

X2: The image �.X2/ is the complete intersection V.p2;3; p2;4; p3;4/ in P
5.

Hence, it has degree .1/.1/.1/ D 1 and codimension 3, so ��ŒX2� D z3.
X2;1: The image �.X2/ is the complete intersection V.p1;4; p2;3; p2;4; p3;4/ in

P
5. Hence, it has degree .1/.1/.1/.1/ D 1 and codimension 4, so
��ŒX2;1� D z4.

X2;2: The image �.X2;2/ is the complete intersection V.p1;3; p1;4; p2;3; p2;4;
p3;4/ in P

5. Hence, it has degree .1/.1/.1/.1/.1/ D 1 and codimension
5, so ��ŒX2;2� D z5.

Remark 4.5 The small case Gr.1;P3/ relevant for this paper is convenient, but
misleading. In Gr.1;P4/, one already encounters Schubert varieties that are not
complete intersections in the Plücker embedding.

Proof of Theorem 2.5 For 1 � i � n, the Schubert classes in the ith component of(
Gr.1;P3/

)n
push forward to .P5/n as follows:

ŒX2;2� 7! z5i ; ŒX2;1� 7! z4i ; ŒX1;1� 7! z3i ;

ŒX2� 7! z3i ; ŒX1� 7! 2z2i ; ŒGr.1;P3/� 7! 2zi :

Hence, Theorem 4.1 implies that

��ŒVn� D
∑

0Dv0�v1�			�vnD3
vjC1�vj<3

n∏

iD1

⎧
⎪⎪⎨

⎪⎪⎩

z3i if vi � vi�1 D 0;

2z2i if vi � vi�1 D 1;

2zi if vi � vi�1 D 2:

Since 0 D v0 � v1 � � � � � vn�1 � vn D 3 and 0 � vi � vi�1 � 2 for all 1 � i � n,
there are exactly two different possibilities: either vi � vi�1 D 0 for all but three
indices at which vi � vi�1 D 1, or vi � vi�1 D 0 for all but two indices j and k at
which vj�vj�1 D 2 and vk�vk�1 D 1 respectively. In the first case, we have a term
of the form 8.z1z2 � � � zn/

3z�1
i z�1

j z�1
k and, tn the second case, we have a term of the

form 4.z1z2 � � � zn/
3z�2

j z�1
k .

For .C1 � C2 � � � � � Cn/ \ Vn, Theorem 4.3 gives

��Œ.C1 �C2 � � � � �Cn/\Vn� D
∑

0Dv0�v1�			�vnD3
vjC1�vj<3

n∏

iD1

z5�.vi�vi�1/
i

ß
˛i if vi D vi�1;

˛i C ˇi if vi > vi�1:

Analyzing the two different possibilities produces the desired formula. ut
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5 K-Theory

We conclude this paper by computing the K-polynomial of the concurrent lines
variety Vn. Our reference for K-polynomials is [9, Sect. 8.5], but we include some
words of motivation here. Equivariant K-theory refines homology by incorporating
lower-dimensional objects and the K-polynomial of a subvariety is the class
represented by its structure sheaf in equivariant K-theory. More precisely, there is a
filtration on equivariant K-theory of a variety such that the associated graded module
over Q is isomorphic to the rational homology of the variety.

For our application, we need only define the K-polynomial for a subvariety of
.Pm/n. The Cox ring of .Pm/n is the polynomial ring CŒxj;i W 0 � j � m; 1 � i � n�.
If e1; e2; : : : ; en is the standard basis of Z

n, then the Cox ring is equipped with the
Z

n-grading induced by setting deg.xj;i/ WD ei 2 Z
n. Consider the abelian group

generated by the (isomorphism classes of) finitely-generated Z
n-graded modules

over the Cox ring. We impose two types of relations on this group. First, any module
annihilated by the ideal hx0;i; x1;i; : : : ; xm;ii for some 1 � i � n is equivalent to zero.
Second, alternating sum of modules in an exact sequence is zero. The resulting
quotient group is denoted by K0

(
.Pm/n

)
. The first type of relation ensures that

choosing any module over the Cox ring to represent a coherent sheaf on .Pm/n yields
the same class in K0

(
.Pm/n

)
. For a subvariety X 	 .Pm/n, we write ŒOX� for its class

in K0
(
.Pm/n

)
, which is also known as its K-polynomial.

The abelian group K0
(
.Pm/n

)
has a non-obvious product. However, we will need

only a special case. For two subvarieties X and Y that intersect transversally, we have
ŒOX�ŒOY � D ŒOX\Y �. For instance, this formula applies when X and Y are smooth and
codim.X\Y/ D codim.X/Ccodim.Y/. Since any two hyperplanes defined the same
class H in K0.Pm/, we have HmC1 D 0. In fact, one has K0.Pm/ Š ZŒH�=hHmC1i

and K0
(
.Pm/n

)
Š ZŒH1;H2; : : : ;Hn�=hH

mC1
1 ;HmC1

2 ; : : : ;HmC1
n i.

Since the diagonal in .P3/2 flatly degenerates to the union of four linear subspace:
V.x1;1; x2;1; x3;1/ [ V.x2;1; x3;1; x0;2/ [ V.x3;1; x0;2; x1;2/ [ V.x0;2; x1;2; x2;2/, the K-
polynomial for this diagonal is

ŒOP.0/�P.0;1;2;3/ �C ŒOP.0;1/�P.1;2;3/ �C ŒOP.0;1;2/�P.2;3/ �C ŒOP.0;1;2;3/�P.3/ �

� ŒOP.0/�P.1;2;3/ � � ŒOP.0/�P.2;3/ � � ŒOP.0/�P.3/ � � ŒOP.0;1/�P.2;3/ � � ŒOP.0;1/�P.3/ �

� ŒOP.0;1;2/�P.3/ �C ŒOP.0/�P.2;3/ �C ŒOP.0/�P.3/ �C ŒOP.0/�P.3/ �C ŒOP.0;1/�P.3/ �

� ŒOP.0/�P.3/ �

D

3∑

vD0

ŒOP.0;1;:::;v/ �
(
ŒO

P.v;vC1;:::;3/ � � ŒOP.vC1;vC2;:::;3/ �
)

From this formula, we can follow arguments similar to those of Sect. 4 to compute
the K-class of Vn in K0

(
.P5/n

)
. If Hi denotes the hyperplane class in the ith factor

of .P5/n, then we have
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ŒOVn � D
∑

0Dv0�v1�			�vnD3
vjC1�vj<3

n∏

iD1

⎧
⎪⎪⎨

⎪⎪⎩

�H3
i .2Hi � H2

i / if vi � vi�1 D 0;

.2H2
i � H3

i /.2Hi � 3H2
i C H3

i / if vi � vi�1 D 1;

.2Hi � H2
i /.2H2

i � 2H3
i / if vi � vi�1 D 2:

This is an analogue of the Hilbert polynomial calculation of [1, Theorem 3.6].
However, there are two important differences. First, theirs concerns a rational
map P

3 Ü .P2/n whereas ours concerns a rational map P
3 Ü Gr.1;P3/n !

.P5/n. Second, their class in H�
(
.P2/n;Z

)
is multiplicity-free in the sense of [2],

which is what shows that every degeneration of their variety will be reduced
and Cohen–Macaulay. In particular, they can have a universal Gröbner basis with
squarefree initial terms; see [1, Sect. 2]. In contrast, our class in H�

(
.P5/n;Z

)

is not multiplicity-free thanks to those coefficients 2 appearing in Theorem 4.1.
Nevertheless, the second equation in Theorem 4.1 shows that Vn is multiplicity-
free in the sense of [2] when considered as a subvariety of Gr.1;P3/n. It follows
that every degeneration of Vn inside Gr.1;P3/n, but not inside .P5/n, is reduced and
Cohen–Macaulay.
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The Convex Hull of Two Circles in R
3

Evan D. Nash, Ata Firat Pir, Frank Sottile, and Li Ying

Abstract We describe convex hulls of the simplest compact space curves, reducible
quartics consisting of two circles. When the circles do not meet in complex
projective space, their algebraic boundary contains an irrational ruled surface of
degree eight whose ruling forms a genus one curve. We classify which curves arise,
classify the face lattices of the convex hulls, and determine which are spectrahedra.
We also discuss an approach to these convex hulls using projective duality.

MSC 2010 codes: 52A05, 14P10, 90C22

1 Introduction

Convex algebraic geometry studies convex hulls of semialgebraic sets [15]. The
convex hull of finitely many points, a zero-dimensional variety, is a polytope [8, 24].
Polytopes have finitely many faces, which are themselves polytopes. The boundary
of the convex hull of a higher-dimensional algebraic set typically has infinitely many
faces which lie in algebraic families. Ranestad and Sturmfels [13] described this
boundary using projective duality and secant varieties. For a general space curve, the
boundary consists of finitely many two-dimensional faces supported on tritangent
planes and a scroll of line segments, called the edge surface. These segments are
stationary bisecants, which join two points of the curve whose tangents meet.

We study convex hulls of the simplest nontrivial compact space curves, those
which are the union of two circles lying in distinct planes. Zero-dimensional faces
of such a convex hull are extreme points on the circles. One-dimensional faces are
stationary bisecants. It may have two-dimensional faces coming from the planes of
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Fig. 1 Some convex hulls of two circles

the circles. It may have finitely many nonexposed faces, either points of one circle
whose tangent meets the other circle, or certain tangent stationary bisecants. Figure 1
shows some of this diversity.

In the convex hull on the left, the discs of both circles are faces, and every face is
exposed. In the oloid in the middle, the discs lie in the interior, an arc of each circle
is extreme, and the endpoints of the arcs are nonexposed. In the convex hull on the
right, there are two nonexposed stationary bisecants lying on its two-dimensional
face, which is the convex hull of one circle and the point where the other circle is
tangent to the plane of the first.

These objects have been studied before. Paul Schatz discovered and patented the
oloid in 1929 [16]; this is the convex hull of two congruent circles in orthogonal
planes, each passing through the centre of the other. It has found industrial uses [2],
and is a well-known toy. A curve in R

3 may roll along its edge surface. When rolling,
the oloid develops its entire surface and has area equal to that of the sphere [3] with
equator one of the circles of the oloid. Other special cases of the convex hull of two
circles have been studied from these perspectives [5, 10].

This paper had its origins in Subsection 4.1 of [13], which claimed that the edge
surface for a general pair of circles is composed of cylinders. We show that this
is only the case when the two circles either meet in two points or are mutually
tangent—in all other cases, the edge surface has higher degree and it is an irrational
surface of degree eight when the circles are disjoint in CP

3. This is related to
Problem 3 on Convexity in [21], on the convex hull of three ellipsoids in R

3. An
algorithm was presented in [6] (see the video [7]), using projective duality. We
sketch this in Sect. 5, and also apply duality to the convex hull of two circles.

In Sect. 2, we recall some aspects of convexity and convex algebraic geometry,
and see that the convex hull of two circles is the projection of a spectrahedron. We
study the edge surface and the edge curve of stationary bisecants of complex conics
C1;C2 	 CP

3 in Sect. 3. We show that the edge curve is a reduced curve of bidegree
.2; 2/ in C1 � C2 and, if C1 \ C2 D ¿ and neither circle is tangent to the plane of
the other, then the edge surface has degree eight. We also classify which curves of
bidegree .2; 2/ arise as edge curves to two conics. All possibilities occur, except a
rational curve with a cusp singularity and a maximally reducible curve.
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In Sect. 4, we classify the possible arrangements of two circles lying in different
planes in terms that are relevant for their convex hulls. We determine the face
lattice and the real edge curve of each type, and show that these convex hulls are
spectrahedra only when the circles lie on a quadratic cone.

2 Convex Algebraic Geometry

We review some fundamental aspects of convexity and convex algebraic geometry,
summarize our results about convex hulls of pairs of circles and their edge curves,
and show that any such convex hull is the projection of a spectrahedron.

The convex hull of a subset S 	 R
d is

conv.S/ WD

{
n∑

iD1

�isi W s1; s2; : : : ; sn 2 S; 0 � �i; and 1 D
n∑

iD1

�i

}

:

A set K is convex if it equals its convex hull, and a point p 2 K is extreme if
K ¤ conv.K X fpg/. A compact convex set is the convex hull of its extreme points.

A convex subset F of a convex set K is a face if F contains the endpoints of any
line segment in K whose interior meets F. A supporting hyperplane ˘ is one that
meets K with K lying in one of the half-spaces of R

d defined by ˘ . A supporting
hyperplane ˘ supports a face F of K if F 	 K \˘ and it exposes F if F D K \˘ .

Not all faces of a convex set are exposed. The boundary of the convex hull of
two coplanar circles in Fig. 2 consists of one arc on each circle and two bitangent
segments. An endpoint p of an arc is not exposed. The only line supporting p is the
tangent to the circle at p, and this line also supports the adjoining bitangent.

A fundamental problem from convex optimization is to describe the faces of a
convex set, identify those that are exposed, and determine their lattice of inclusions
(the face lattice). For more on convex geometry, see [1].

Convex algebraic geometry is the marriage of classical convexity with real
algebraic geometry. A real algebraic variety X is an algebraic variety defined over R.
If X is irreducible and contains a smooth real point, then its real points are Zariski-
dense in X, so it is often no loss to consider only the real points. Conversely, many
aspects of a real algebraic variety are best understood in terms of its complex points.
Studying the complex algebraic geometry aspects of a question from real algebraic

p

Fig. 2 Convex hull of coplanar circles
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geometry is its algebraic relaxation. This relaxation enables the use of powerful
techniques from complex algebraic geometry to address the original question.

As the real numbers are ordered, we also consider semialgebraic sets that
are defined by polynomial inequalities. By the Tarski–Seidenberg Theorem on
quantifier elimination [19, 22], the class of semialgebraic sets is closed under
projections and under images of polynomial maps. A closed semialgebraic set is
basic if it is a finite intersection of sets of the form fx W f .x/ � 0g for some
polynomial f .

Motivating questions about convex algebraic geometry were raised in [15]. A
fundamental convex semialgebraic set is the cone of positive semidefinite matrices
(the PSD cone). These are symmetric matrices with nonnegative eigenvalues.
The boundary of the PSD cone is (a connected component of) the determinant
hypersurface and every face is exposed. A spectrahedron is an affine section L\PSD
of this cone. Write A � 0 to indicate that A 2 PSD. Parameterizing L shows that a
spectrahedron is defined by a linear matrix inequality,

fx 2 R
m W A0 C x1A1 C � � � C xmAm � 0g ;

where A0;A1; : : : ;Am are real symmetric matrices.
Images of spectrahedra under linear maps are spectrahedral shadows. Semidefi-

nite programming provides efficient methods to optimize linear objective functions
over spectrahedra and their shadows, and a fundamental question is to determine
if a given convex semialgebraic set may be realized as a spectrahedron or as a
spectrahedral shadow, and to give such a realization. Scheiderer showed that the
convex hull of a curve is a spectrahedral shadow [17], and recently proved that
there are many convex semialgebraic sets which are not spectrahedra or their
shadows [18].

Since the optimizer of a linear objective function lies in the boundary, convex
algebraic geometry also seeks to understand the boundary of a convex semialgebraic
set. This includes determining its faces and their inclusions, as well as the Zariski
closure of the boundary, called the algebraic boundary. This was studied for rational
curves [20, 23] and for curves in R

3 by Ranestad and Sturmfels [14]. They showed
that the algebraic boundary of a space curve C consists of finitely many tritangent
planes and a ruled edge surface composed of stationary bisecant lines. A stationary
bisecant is a secant x; y to C (x; y 2 C) such that the tangent lines TxC and TyC to C
at x and y meet. For a general irreducible space curve of degree d and genus g, the
edge surface has degree 2.d�3/.dCg�1/.

For example, suppose that C is a general space quartic (see [11, Rem. 5.5] or [14,
Ex. 2.3]). This is the complete intersection of two real quadrics P and Q, and has
genus one by the adjunction formula [9, Ex. V.1.5.2]. Its edge surface has degree
2.4�3/.4C1�1/ D 8 and is the union of four cones. In the pencil of quadrics that
contain C, sP C tQ for Œs; t� 2 P

1, four are singular and are given by the roots of
det.sPC tQ/. Here, the quadratic forms P;Q are expressed as symmetric matrices.
Each singular quadric is a cone and each line on that cone is a stationary bisecant of
C. A general point of C lies on four stationary bisecants, one for each cone.
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The union of two circles in different planes is also a space quartic, but it is not in
general a complete intersection (the complex points of a complete intersection are
connected). We therefore expect a different answer than for general space quartics.
We give a taste of that which is to come.

Theorem 2.1 Let C1 and C2 be circles in R
3 lying in different planes. Their convex

hull is a spectrahedron if and only if the scheme C1 \ C2 has length 2. When
the complex points of the circles are disjoint and neither is tangent to the plane
of the other, the edge surface is irreducible and has degree eight. Its rulings are
parametrized by a smooth curve of genus one in C1�C2. A general point of C1[C2
lies on two stationary bisecants.

Proof This is proven in Lemma 3.1, and in Theorems 3.3, 3.5 and 4.8. ut

3 Stationary Bisecants to Two Complex Conics

We study stationary bisecants and edge surfaces in the algebraic relaxation of our
problem of two circles, replacing circles in R

3 by smooth conics in P
3 D CP

3.
A conic C in P

3 spans a plane. Let C1 and C2 be conics spanning different planes,
˘1 and ˘2, respectively. A stationary bisecant is spanned by points p 2 C1 and
q 2 C2 with p ¤ q whose tangent lines TpC1 and TqC2 meet. Set ` WD ˘1 \˘2.

Lemma 3.1 A point p 2 C1 lies on two stationary bisecants unless the tangent line
TpC1 meets C2. If the tangent line meets C2, then it is the unique stationary bisecant
through p unless p 2 C2 or TpC1 lies in the plane ˘2 of C2. When TpC1 	 ˘2, the
pencil of lines in ˘2 through p are all stationary bisecants.

Proof Consider the tangent line TpC1 for p 2 C1 and see Fig. 3 for reference. Either

.i/ TpC1 6	 ˘2 or .ii/ TpC1 	 ˘2 :

P2

C1

C2

p

q
r

s

stationary bisecants through p

TpC1

tangent stationary
bisecant

Fig. 3 Stationary bisecants
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In case .i/, let q be the point where TpC1 meets ˘2. There are further cases. When
q 62 C2, there are two tangents to C2 that meet q, and the lines through p and each
point of tangency (r; s in Fig. 3) give two stationary bisecants through p. If q 2 C2
and p ¤ q, then the tangent line TpC1 is the only stationary bisecant through p.

In case .ii/, the tangent line TpC1 meets every tangent to C2, and every line in˘2

through p (except TpC2 if p 2 C2) meets C2 and is therefore a stationary bisecant. If
p 2 C2, then the tangent line TpC2 is a limit of such lines. ut

Remark 3.2 When C1 is tangent to the plane ˘2 at a point p, the pencil of lines in
˘2 through p are degenerate stationary bisecants. When p 62 C2, a general line in
the pencil meets C2 twice so that the map from C2 to this pencil has degree two.

Lines that meet C1 and C2 in distinct points are given by points .p; q/ 2 C1 � C2
with p ¤ q. The edge curve E is the Zariski closure of the set of points .p; q/ such
that p; q is a stationary bisecant. As a smooth conic is isomorphic to P

1, the edge
curve is a curve in P

1 � P
1. Subvarieties of products of projective spaces have a

multidegree (see [4, § 2]). For a curve C in P
1 �P

1, this becomes its bidegree .a; b/,
where a is the number of points in the intersection of C with P

1 � fqg for q general
and b the number of points in the intersection of C with fpg � P

1 for p general. As
P
1�fqg has bidegree .0; 1/ and fpg�P

1 has bidegree .1; 0/, the intersection pairing
on curves in P

1 � P
1, expressed in terms of bidegree, is

.a; b/ � .c; d/ D adC bc 2 Z : (1)

A curve of bidegree .a; b/ is defined in homogeneous coordinates .Œs W t�; Œu W v�/
for P

1 � P
1 by a bihomogeneous polynomial that has degree a in s; t and b in u; v.

Theorem 3.3 The edge curve E has bidegree .2; 2/.

Proof In the projection to C1, two points of E map to a general point p 2 C1, by
Lemma 3.1. Thus the intersection number of E with fpg �C2 is 2 and vice-versa for
C1 � fqg, for general q 2 C2. Consequently, E has bidegree .2; 2/.

We compute the defining equation of E to give a second proof. This begins with
a parametrization of the conics. Let fi;0; fi;1; fi;2; fi;3 2 H0

(
P
1;O.2/

)
for i D 1; 2

be two quadruples of homogeneous quadrics that each span H0
(
P
1;O.2/

)
. Each

quadruple gives a map fiWP1 ! P
3 whose image is a conic Ci. The plane ˘i of Ci is

defined by the linear relation among fi;0; fi;1; fi;2; fi;3, and we assume that ˘1 ¤ ˘2.
In coordinates, if Œs W t� 2 P

1, then the image

fiŒs W t� D Œfi;0.s; t/ W fi;1.s; t/ W fi;2.s; t/ W fi;3.s; t/�

is the corresponding point of Ci. Its tangent line is spanned by @sfi and @tfi, where
@x WD

@
@x , as s@s f C t@t f D 2f , for a homogeneous quadric f . The points f1Œs W t� and

f2Œu W v� span a stationary bisecant when their tangents meet. Equivalently, when
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Fig. 4 Edge curve in window js=tj; ju=vj � 5

E.s; t; u; v/ WD det

⎡

⎢⎢
⎣

@sf1;0 @sf1;1 @sf1;2 @sf1;3
@tf1;0 @tf1;1 @tf1;2 @tf1;3
@uf2;0 @uf2;1 @uf2;2 @uf2;3
@vf2;0 @vf2;1 @vf2;2 @vf2;3

⎤

⎥⎥
⎦ D 0 : (2)

As the first two rows have bidegree .1; 0/ and the second two have bidegree .0; 1/,
this form E.s; t; u; v/ has bidegree .2; 2/. ut

Example 3.4 Suppose that C1 and C2 are the unlinked unit circles where C1 is
centred at the origin and lies in the xy-plane and C2 is centred at .3; 0; 0/ and lies
in the xz-plane. If we choose homogeneous coordinates ŒX0 W X1 W X2 W X3� for P

3

where .x; y; z/ D 1
X0
.X1;X2;X3/, then these admit parametrizations

Œs W t� 7�! Œs2Ct2 W s2�t2 W 2st W 0� and Œu W v� 7�! Œu2Cv2 W 2u2C4v2 W 0 W 2uv� :

Dividing the determinant (2) by �16 gives the equation for the edge curve E,

s2u2 � 3s2v2 � 3t2u2 C 5t2v2 ;

which is irreducible. Figure 4 draws E in the window js=tj; ju=vj � 5 in RP
1 �RP

1.
The Zariski closure of the union of all stationary bisecants is the ruled edge

surface E . By Lemma 3.1, a general point of one of the conics lies on two stationary
bisecants. Therefore, each conic is a curve of self-intersections of E , and the
multiplicity of E at a general point of a conic is 2.

Theorem 3.5 The edge surface E has degree eight when C1 \C2 D ¿ and neither
is tangent to the plane of the other.

Proof The line ` D ˘1 \ ˘2 meets each conic in two points and therefore meets
E in at least four points. Any other point r 2 ` \ E lies on a stationary bisecant m
between a point p of C1 and a point q of C2. As p; r 2 ˘1, we have m 	 ˘1, and
similarly m 	 ˘2. Thus m D `, but ` is not a stationary bisecant, a contradiction.

Each of the four points of `\E has multiplicity two on E by Lemma 3.1 and the
observation preceding the statement of the theorem. Thus, E has degree eight.

We give a second proof. Let m be a general line that meets E transversally. The
points of m \ E lie on stationary bisecants that meet m. We count these using
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Fig. 5 Expanded view of edge surface

intersection theory. Let M 	 C1 � C2 be the curve whose points are pairs .p; q/
such that the secant line spanned by p and q meets m. Stationary bisecants that meet
m are points of intersection of M and the edge curve E. We compute the bidegree
of M.

Fix a point p 2 C1 with p 62 ˘2. Secant lines through p rule the cone over C2 with
vertex p. As this cone meets m in two points, we have deg.M \ fpg � C2/ D 2. The
symmetric argument with a point of C2 shows that M has bidegree .2; 2/. By (1), M
meets E in .2; 2/ � .2; 2/ D 4C 4 D 8 points. This proves the theorem. ut

The arguments in this proof using intersection theory are similar to arguments
used in the contributions [4, 12] in this volume.

Remark 3.6 Each irreducible component C of the edge curve E gives an algebraic
family of stationary bisecants and an irreducible component C of the edge surface
E . If C has bidegree .a; b/, then the corresponding component C of E has degree at
most .2; 2/ � .a; b/ D 2.aC b/. This is not an equality when the intersection M \ E
has a basepoint or when the general point of C contains two stationary bisecants.
This occurs when one circle is tangent to the plane of the other and there are one or
more components of degenerate stationary bisecants.

Example 3.7 The real points of the edge curve appearing in Fig. 4 had two
connected components (the picture showed a patch of RP

1 � RP
1). Thus, the

set of real points of the edge surface has two components. Stationary bisecants
corresponding to the oval in the centre of Fig. 4 lie along the convex hull, which
is shown on the left in Fig. 5. The others bound a nonconvex set that lies inside the
convex hull. Figure 5 displays it in an expanded view on the right. The planes of the
circles meet in the x-axis. For sufficiently small � > 0, the line defined by y D z D �
meets E transversally. Near each point of a circle lying on the x-axis it meets E in
two points, one for each of the two families of stationary bisecants passing through
the nearby arc of the circle. These eight points are real.

A curve of bidegree .2; 2/ on P
1�P

1 has arithmetic genus one, by the adjunction
formula. If smooth, then it is an irrational genus one curve. Another way to see this
is that the projection to a P

1 factor is two-to-one, except over the branch points, of
which there are four, counted with multiplicity. Indeed, writing its defining equation
as a quadratic form in the variables .u; v/ for the second P

1 factor, its coefficients
are quadratic forms in the variables s; t of the first P

1. The projection to the first
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C1

p
q

S

C2

P1

Fig. 6 Conic giving specified branch points

has branch points where the discriminant vanishes, which is a quartic form. By
elementary topology, a double cover of CP

1 with four branch points has Euler
characteristic zero, again implying that it has genus one.

Lemma 3.8 For every set S of four points of C1, there is a conic C2 such that the
projection to C1 of the edge curve is branched over S.

Proof Let p be the point of intersection of two of the tangents to C1 at points of S
and q be the point of intersection of the other two tangents (see Fig. 6). Since the
tangent TsC1 at any point s 2 S meets C2 (in one of the points p or q), Lemma 3.1
implies that this is the unique stationary bisecant involving the point s. Thus, the
points of S are branch points of the projection to C1 of the edge curve. ut

Remark 3.9 There are three families of conics C2 giving an edge curve branched
over S. These correspond to the three partitions of S into two parts of size two. Each
partition determines two points p; q on the plane˘1 of C1 where the tangent lines at
the points in each part meet. The corresponding family is the collection of conics C2
that meet ˘1 transversally in p and q. If both C1 and S 	 C1 are real and we choose
an affine R

3 containing the points p and q, then we may choose C2 to be a circle.
The isomorphism class of a complex smooth genus one curve is determined by

its j-invariant [9, Sect. IV.4]. This may be computed from the branch points S of any
degree two map to P

1. Explicitly, if we choose coordinates on P
1 so that the branch

points S are f0; 1; �;1g, then the j-invariant is

28 �
.�2 � �C 1/3

�2.� � 1/2
:

We have the following corollary of Lemma 3.8.

Theorem 3.10 For every conic C1 and every J 2 C, there is a conic C2 such that
the edge curve has j-invariant J. When C1 and S 	 C1 are real, C2 may be a circle.

We now classify the possible edge curves E to a pair of conics C1 and C2 lying
in distinct planes ˘1 and ˘2. By Lemma 3.12, every component of E is reduced. If
E D F[G is reducible, then we have that .2; 2/ D bidegree.F/Cbidegree.G/. Thus,
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Table 1 Types of .2; 2/-curves

smooth (generic) nodal rational cuspidal 2(1,0) + 2(0,1)

2(1,1) (2,1) + (0,1) (2,1) + (0,1) (1,1) + (0,1)
+ (1,0)

(1,1) + (0,1)
+ (1,0)

the bidegrees of the components of E form a partition of .2; 2/. If E is irreducible,
then either it is smooth of genus one or singular of arithmetic genus one and hence
rational. Any curve of bidegree .1; a/ or .a; 1/ is rational. Table 1 gives the different
possibilities, along with pictures of a real curve.

Theorem 3.11 All types of .2; 2/-curves of Table 1 occur as the edge curve of a pair
of conics C1;C2 lying in distinct planes except a curve with a cusp and a reducible
curve 2.1; 0/C 2.0; 1/ with four components.

For existence, see Tables 2, 3, and 4, which display edge curves of two circles in
all possible configurations. We rule out edge curves with a cusp and reducible edge
curves of type 2.1; 0/C 2.0; 1/. We first analyze the singularities of edge curves.

Lemma 3.12 The edge curve E is reduced. A point .p; q/ 2 C1 � C2 is a singular
point of E only if p D q or TpC1 	 ˘2 or TqC2 	 ˘1. There are five possibilities
for p; q and the tangents, up to interchanging the conics C1 and C2.

(i) p D q and the tangent to each conic at p does not lie in the plane of the other.
(ii) p D q with TpC1 	 ˘2, but TqC2 6	 ˘1.

(iii) p D q with both TpC1 	 ˘2 and TqC2 	 ˘1.
(iv) p ¤ q and TpC1 	 ˘2, but TqC2 6	 ˘1. Then p 2 TqC2 is a stationary

bisecant.
(v) p ¤ q and TpC1 D TqC2 is ˘1 \˘2, and is a stationary bisecant.

Proof Let .p; q/ 2 C1 �C2 be a point on a curve E of bidegree .2; 2/. If the fibre of
E in one of the projections from .p; q/, say to C2, has exactly two points, then E is
smooth at .p; q/. Indeed, as E is a .2; 2/ curve, E \ .C1 � fqg/ is either C1 � fqg or
one double or two simple points, and if two, then E is smooth at each point.
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Consequently, there are three possibilities for points of E in the fibres of the
projections to C1 and C2 containing a singular point .p; q/. Either

1. .p; q/ is the only point of E in both fibres,
2. .p; q/ is the only point in one fibre and the other fibre is a component of E, or
3. both fibres are components of E.

In Case 2, E has at least one component with either linear bidegree .1; 0/ or .0; 1/,
and in Case 3, it has at least one component with each linear bidegree.

Now let E be the edge curve, which is smooth at any point .p; q/ where there is
another point in one of the two fibres of projections to Ci. Lemma 3.1 implies that
there are two points in E over a general point of either conic, so every component
of E is smooth at a generic point and therefore E is reduced. By Lemma 3.1 and the
analysis above, a point .p; q/ 2 E is singular if and only if both tangents meet the
other conic for otherwise there is a second point in one of the fibres.

If TpC1 	 ˘2, then every line in ˘2 through p is a stationary bisecant, so E
contains fpg�C2, which has bidegree .1; 0/. If TqC2 	 ˘1, then as before E contains
C1�fqg, which has bidegree .0; 1/. If neither occurs, but E is singular at .p; q/, then
we are in Case .i/. When p D q and we are not in Case .i/, then, up to interchanging
the indices 1 and 2, we are in either Case .ii/ or .iii/. When p ¤ q, so that one circle
is tangent to the plane of the other, then we are in either Case .iv/ or .v/. ut

Proof of Theorem 3.11 We need only to rule out that the edge curve E has type
2.1; 0/ C 2.0; 1/ or has a cusp. By Lemma 3.12, E has a component fpg � C2 of
bidegree .1; 0/ exactly when C1 is tangent to the plane ˘2 at the point p. Since
˘1 ¤ ˘2, there is at most one such point of tangency on C1, so E has at most one
component of bidegree .1; 0/ and the same is true for a component of bidegree .0; 1/.
Thus the type 2.1; 0/C 2.0; 1/ cannot occur for an edge curve.

We show that if .p; q/ 2 E is a singular point in Case .i/ of Lemma 3.12, then E
has a node at .p; q/, ruling out a cusp and completing the proof.

Suppose that p D q and the tangents to each conic at p do not lie in the plane of
the other. Choose coordinates x; y; z;w for P

3 so that˘1 is the plane z D 0,˘2 is the
plane x D 0, TpC1 is the line y D z D 0, TpC2 is x D y D 0, and p D Œ0 W 0 W 0 W 1�.
Then we may choose parametrizations near p for C1 and C2 of the form

C1W s 7�! ŒsC as2 W bs2 W 0 W 1C csC ds2�
C2W u 7�! Œ0 W ˇu2 W uC ˛u2 W 1C uC ıu2� ;

(3)

for some a; b; c; d; ˛; ˇ; ; ı 2 C where bˇ ¤ 0. The edge curve is defined by

det

⎡

⎢⎢
⎣

sC as2 bs2 0 1C csC ds2

1C 2as 2bs 0 cC 2ds
0 ˇu2 uC ˛u2 1C uC ıu2

0 2ˇu 1C 2˛u  C 2ıu

⎤

⎥⎥
⎦

D
(
ˇ.ac � d/ � b.˛ � ı/

)
s2u2 � 2b˛s2uC 2aˇsu2 C ˇu2 � bs2 : (4)
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Indeed, the matrix has rows f1.s/; f 0
1.s/; f2.u/; f

0
2.u/, where fi is the parametrization

of Ci (3). The determinant vanishes when the tangent to C1 at f1.s/meets the tangent
to C2 at f2.u/. The terms of lowest order in (4), ˇu2�bs2, have distinct linear factors
when bˇ ¤ 0. Thus, E has a node when s D u D 0, which is .p; p/. ut

4 Convex Hull of Two Circles in R
3

We classify the relative positions of two circles in R
3 and show that the combinato-

rial type of the face lattice of their convex hull depends only upon their relative
position. This relative position is determined by the combinatorial type of the
face lattice and the real geometry of the edge curve. We use this classification to
determine when the convex hull of two circles is a spectrahedron.

Let C1;C2 be circles in R
3 lying in distinct planes ˘1 and ˘2, respectively. The

intersection C1\˘2 in CP
3 is either two real points, two complex conjugate points,

or C1 is tangent to ˘2 at a single real point. Let m1 be the number of real points in
this intersection, and the same for m2. Order the circles so that m1 � m2, and call
Œm1;m2� the intersection type of the pair of circles.

The configuration of the circles is determined by the order of their points along
the line ` WD ˘1 \ ˘2 	 R

3. For example, C1 and C2 have order type .1; 2; 1; 2/
along ` when they have intersection type Œ2; 2� and meet ` in distinct points which
alternate. If C1 \ C2 ¤ ¿, then we write S for that shared point. For example, if C1
meets ` in two real points with C2 tangent to ` at one, then this pair has order type
.1; S/. The intersection type may be recovered from the order type.

A further distinction is necessary for intersection type Œ0; 0�, when both circles
meet ` in two complex conjugate points. In CP

3, we have either C1 \ C2 D ¿ or
C1 \ ` D C2 \ `. Write ¿ for the order type in the first case and .2c/ in the second.
By Lemma 3.12, the edge curve is smooth in order type ¿ and singular in order type
.2c/.

Lemma 4.1 There are 15 possible order types of two circles in R
3.

Proof See Tables 2, 3, and 4 for the order types of circles and their convex hulls.
The possible intersection types are Œ0; 0�, Œ1; 0�, Œ1; 1�, Œ2; 0�, Œ2; 1�, and Œ2; 2�. For

Œ0; 0�, we noted two order types, and intersection types Œ1; 0� and Œ2; 0� each admit
one order type, namely .1/ and .1; 1/, respectively.

For Œ1; 1�, each circle Ci is tangent to ` at a point pi. Either p1 ¤ p2 or p1 D p2,
so there are two order types, .1; 2/ and .S/.

For Œ2; 1�, the line ` is secant to circle C1 and C2 is tangent to ` at a point p2.
Either p2 is in the exterior of C1 or it lies on C1 or it is interior to C1. These give
three order types, .1; 1; 2/, .1; S/, and .1; 2; 1/, respectively.

Finally, for Œ2; 2� there are three order types when all four points are distinct,
.1; 1; 2; 2/, .1; 2; 1; 2/, and .1; 2; 2; 1/. When one point is shared, we have .1; 2; S/
or .1; S; 2/. Finally, both points may be shared, giving .S; S/. ut
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The order type of the circles determines the combinatorial type of the face
lattice of their convex hull K. Describing the face lattice means identifying all
(families of) faces of K, their incidence relations, and which are exposed/not
exposed. Throughout, Di is the disc of the circle Ci. We invite the reader to peruse
our gallery in Tables 2, 3, and 4 while reading this classification. Our main result is
the following.

Theorem 4.2 The order type of C1;C2 determines the combinatorial type of the
face lattice of K, as summarized in Table 5. There are eleven distinct combinatorial
types of face lattice. The combinatorial type of the face lattice, together with the real
algebraic geometry of its edge curve, determines the order type.

Table 2 Some convex hulls, intersection and order types, and edge curves

[0,0]
[2,0] (1,1) [2,2] (1,2,2,1)

[2,2] (1,1,2,2) [2,2] (1,2,1,2) [2,2] (1,S, 2)

�
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Table 3 More convex hulls, intersection and order types, and edge curves

[2,2] (1,2,S) [2,2] (S,S) [0,0] (2c)

We determine the face lattice for each order type. Some general statements are
given in preliminary results which precede our proof of Theorem 4.2. The statements
are asymmetric, with the symmetric statement obtained by interchanging 1 and 2.
We first study the section �1 WD K \˘1 of K, which contains D1.

Lemma 4.3 We have �1 D conv.C1;C2 \˘1/.

Proof As Di D conv.Ci/, K D conv.D1;D2/. Therefore a point x 2 K is a convex
combination �yC �z (�;� � 0 with �C � D 1) of points y 2 D1 and z 2 D2. If
x 2 �1 	 ˘1, then as y 2 ˘1, we must have that z 2 D2\˘1 D conv.C2\˘1/. ut

Corollary 4.4 If C2\˘1 	 D1, then we have �1 D D1. Otherwise, �1 is the convex
hull of D1 and the one or two points of C2 \˘1 exterior to D1. A point p 2 C1 is an
extreme point of �1 if and only if C1 and C2 \˘1 lie on the same side of TpC1. An
extreme point p 2 C1 of �1 is not exposed if and only if TpC1 meets C2Xfpg. Extreme
points of �1 are extreme points of K and nonexposed points of �1 are nonexposed in
K. Finally, �1 is a face of K if and only if m2 � 1.

Proof The first two statements follow from Lemma 4.3. The next two about extreme
points p of �1 follow as TpC1 is the only possible supporting line to �1 at p. The next,
about extreme points of K and its section �1, follows by Lemma 4.3, and the last is
immediate as C2 lies on one side of ˘1 if and only if jC2 \˘1j < 2. ut

By Lemma 3.1, a general point p 2 C1 lies on two stationary bisecants. If p 2 K is
extreme, then these may support one-dimensional bisecant faces of K. We determine
the bisecant faces meeting most extreme points. Any plane supporting an extreme
point p 2 C1 contains TpC1. If such a plane does not meet C2, then p is exposed.
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Table 4 More convex hulls, intersection and order types, and edge curves

[2,1] (1,2,1) [2,1] (1,S) [2,1] (1,1,2)

[1,0] (1) [1,1] (1,2) [1,1] (S)

Lemma 4.5 Let p 2 K be an extreme point of K. If TpC1 neither meets C2 nor lies
in ˘2, then p is exposed. Such a point p lies on one bisecant face if m2 � 1 and two
if m2 D 2. When there are two, one is on each side of ˘1.
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Fig. 7 Some possible slices �i

Proof Let p 2 C1 be an extreme point of K such that TpC1 neither meets C2 nor
lies in ˘2. By Corollary 4.4, C1 and C2 \ ˘1 lie on the same side of TpC1 in ˘1.
In the pencil RP

1 of planes containing TpC1, those meeting K form an interval I
containing˘1 and an interval  of planes meeting C2. Each endpoint of  is a plane
containing a stationary bisecant through p. Our assumptions on p and TpC1 imply
that I ¤ RP

1, so that p is exposed. If m2 � 1, then ˘1 is one endpoint of I and the
other is an endpoint of  , otherwise the endpoints of I are the endpoints of  and
˘1 is an interior point, which proves the lemma. ut

Remark 4.6 Corollary 4.4 identifies the 2-faces, extreme points, and some nonex-
posed points of K. Lemma 4.5 identifies most exposed points and bisecant edges.
The rest of the face lattice is determined in the proof of Theorem 4.2. We first
understand the boundary of each section �i D K \ ˘i. Figure 7 shows the
possibilities when �i is not the disc Di.

There, q1 and q2 are points of the other circle on the boundary of �i and points pj

are nonexposed points of Ci as Tpj Ci meets q1 or q2. The line segment between q1
and q2 is where the disc of the second circle meets ˘i.

Proof of Theorem 4.2 We give separate arguments for each order type.

Order Type ¿: By Corollary 4.4, both discs are faces of K, and every point of the
circles is extreme. By Lemma 4.5, all points of the circles are exposed, and each
point lies on exactly one bisecant face.

Order Type .2c/: As the edge curve for order type ¿ is smooth and of genus 1,
while that for order type .2c/ is singular, the edge curve distinguishes these two
order types.

Order Type .1; 1/: Since m1 D 2 and m2 D 0, D1 is the only 2-face. The section
�2 is similar to Fig. 7b, so the extreme points on C2 form an arc p̆1; p2 whose
endpoints are not exposed, each lying on one bisecant edge. The interior points of
p̆1; p2 are exposed by Lemma 4.5 and each lies on two bisecant edges. Similarly,
every point of C1 is exposed and lies on one bisecant edge.

Order Type .1; 2; 1/: Its edge curve is singular, while order type .1; 1/ has a
smooth edge curve.

Order Type .1; 2; 2; 1/: Since m1 D m2 D 2, K has no 2-faces. Since C2 meets
the interior of D1, Corollary 4.4 implies that every point of C1 is extreme and C2
has two intervals of extreme points. The four endpoints are not exposed and each
lies on one bisecant edge. By Lemma 4.5, every point of C1 and of the interior of
the arcs on C2 is exposed and lies on two bisecant edges.
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Order Type .1; 1; 2; 2/: By Corollary 4.4, K has no 2-faces and each circle has
one arc of extreme points, as the sections �i are similar to Fig. 7a. As before,
each endpoint of an arc is not exposed and lies on one bisecant edge, and each
interior point of an arc is exposed and lies on two bisecant edges.

Order Types .1; 2; 1; 2/ and .1; S; 2/: The edge curve in type .1; 1; 2; 2/ has two
real components as seen in Example 3.7, while for type .1; 2; 1; 2/ there is one
real component. For type .1; S; 2/, the edge curve is singular at the shared point.

Order Type .1; 2; S/: Again, K has no 2-faces. All points of C1 are extreme and
C2 has an arc of extreme points whose endpoints are not exposed and each lies on
one bisecant edge. Also, all interior points of that arc and of C1—except possibly
the shared point p—are exposed and lie on two bisecant edges. The tangents TpC1
and TpC2 span a plane exposing p and p lies on no bisecant edges.

Order Type .S; S/: There are no 2-faces and as in type .1; 2; S/ every point of the
circles is extreme, and the nonshared points are exposed and each lies on two
bisecant edges. Each shared point is exposed by the plane spanned by the two
tangents at that point and neither shared point lies on a bisecant edge.

Order Type .1; S/: The only 2-face is D1. Every point of C1 is extreme and C2 has
an arc p̆1; p2 of extreme points with one endpoint, say p1, the shared point where
C2 is tangent to˘1. Neither endpoint is exposed and p2 lies on one bisecant edge
(the bisecant Tp1C2 meets the interior of D1). By Lemma 4.5, every point of C1
except p1 lies on one bisecant edge and every interior point of p̆1; p2 lies on two
bisecant edges, and all of these are exposed.

Order Type .1; 1; 2/: The only 2-face is �1 and its shape is as in Fig 7a with the
vertex q1 where D2 is tangent to ˘1. There is an arc p̆1; p2 of extreme points of
C1 whose endpoints are not exposed with each lying on a bisecant edge pi; q1.
The section �2 has the same shape and C2 has an arc q̆1; q2 of extreme points
with neither endpoint exposed. The point q2 lies on one bisecant edge along
Tq2C2 and q1 lies on two bisecant edges pi; q1. Neither of the edges pi; q1 is
exposed as ˘1 is the only supporting plane of K containing either edge. Finally,
by Lemma 4.5, interior points of the arcs are exposed, with those from p̆1; p2
lying on one bisecant edge and those from q̆1; q2 lying on two.

In the order types of the last row of Table 4, the circle C2 is tangent to ˘1 at a point
q1 and the tangent Tq1C2 does not meet the interior of D1. In the pencil of planes
containing Tq1C2, ˘1 and ˘2 are the endpoints of an interval of planes meeting
K X Tq1C2 and of an interval of planes that meet K only in Tq1C2 \ K. Thus, both
sections �1 and �2 are 2-faces of K and the face Tq1C2 \ K is exposed.

Order Type .1/: Here, m1 D 1 and m2 D 0. The 2-face �2 has the same shape as
in order type .1; 1; 2/. The description of the points and bisecant edges meeting
C2 is also the same. By Lemma 4.5 and the preceding observation, every point of
C1 is exposed, and all lie on a unique bisecant edge except q1, which lies on the
two nonexposed bisecant edges pi; q1.

Order Type .1; 2/: This is the most complicated. Each circle is tangent to the
plane of the other, sharing a tangent line, and the description is symmetric in
the indices 1 and 2. The 2-faces are the sections �1 and �2, with the description
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Table 5 Face lattices

Order type 0-faces 1-faces 2-faces

¿ Points on C1 [ C2 One family parametrized by
C1

D1, D2

.1; 1/ Points on C1 and points on
an arc of C2

One family parametrized by
C1

D1

.1; 2; 2; 1/ Points on C1 and points on
two arcs of C2

Two families parametrized
by C1

None

.1; 1; 2; 2/ Points on an arc of C1 and
an arc of C2

One family parametrized by
a 2-fold branched cover of
an arc

None

.1; 2; 1; 2/ Same as order type
.1; 1; 2; 2/

Same as order type
.1; 1; 2; 2/

Same as order
type .1; 1; 2; 2/

.1; S; 2/ Same as order type
.1; 1; 2; 2/

Same as order type
.1; 1; 2; 2/

Same as order
type .1; 1; 2; 2/

.1; 2; S/ Points on C1 and an arc of
C2

Two families parametrized
by C1 X C2

None

.S; S/ Points on C1 [ C2 Four families with two
parametrized by each arc
C1 X C2

None

.2c/ Same as order type ¿ Same as order type ¿ Same as order
type ¿

.1; S/ Points on C1 and an arc of
C2

One family parametrized by
C1 X C2

D1

.1; 1; 2/ Points on an arc of C1 and
an arc of C2

One family parametrized by
the arc of C1

conv.D1; p2/

.1; 2; 1/ Same as order type .1; 1/ Same as order type .1; 1/ Same as order
type .1; 1/

.1/ Points on C1 and an arc of
C2

One family parametrized by
the arc on C2

D1, conv.D2; p1/

.1; 2/ Points on an arc of C1 and
an arc of C2

One family parametrized by
either arc, and an isolated
bisecant p1; p2

conv.D1; p2/,
conv.D2; p1/

.S/ Points on C1 [ C2 One family parametrized by
either circle except the com-
mon point

D1, D2

for each is nearly the same as for �1 in order type .1; 1; 2/. The exception is the
bisecant edge p1; q1 lying along the shared tangent. This is exposed, but neither
endpoint is exposed. It is also isolated from the other bisecant edges, which form
a continuous family.

Order Type .S/: The two circles are mutually tangent at a point p. The 2-faces are
D1 and D2, every point of either circle is extreme, including p, and each (except
for p) lies on one bisecant edge. ut

Table 5 summarizes the face lattices by order type. In this table, when mi D 1,
the point where Ci is tangent to the plane of the other circle is denoted by pi.
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By [17], the convex hull K is a spectrahedral shadow. We use our classification
to describe when K is a spectrahedron.

Lemma 4.7 Let C1 2 P
3 and C2 2 P

3 be conics in distinct planes ˘1 and ˘2. If
C1 \˘2 D C2 \˘1, then the conics C1 and C2 lie on a pencil of quadrics.

Proof Since C1;C2 lie on the singular quadric˘1[˘2, we need only find a second
quadric containing them. Choose coordinates Œx W y W z W w� for P

3 so that ˘1 is
defined by w D 0 and ˘2 by z D 0. Then C1 and C2 are given by homogeneous
quadratic polynomials f .x; y; z/ D 0 and g.x; y;w/ D 0. Since C1 \˘2 D ˘1 \ C2,
the forms f .x; y; 0/ and g.x; y; 0/ define the same scheme, so they are proportional.
Scaling g if necessary, we may assume that f .x; y; 0/ D g.x; y; 0/. Define h.x; y; z;w/
to be f .x; y; z/ C g.x; y;w/ � f .x; y; 0/. It follows that h.x; y; z; 0/ D f .x; y; z/ and
h.x; y; 0;w/ D g.x; y;w/, and thus C1 and C2 lie on the quadric defined by h. ut

Theorem 4.8 The convex hull of two circles C1 and C2 lying in distinct planes in
R
3 is a spectrahedron only if they have order type .S; S/ or .2c/ or .S/.

Proof We have that C1 \˘2 D C2 \˘1 in P
3 if and only if the circles have order

type .SS/ or .2c/ or .S/. By Lemma 4.7, C1 and C2 lie on a pencil Q1 C tQ2 of
quadrics. Following Example 2.3 in [14], this pencil of quadrics contains singular
quadrics given by the real roots of det.Q1 C tQ2/. Such a singular quadric is given
by the determinant of a 2 � 2 matrix polynomial AxC ByC CzC D, and the block
diagonal matrix with blocks A, B, C, and D represents conv.C/ as a spectrahedron.

By Corollary 4.4, K has a nonexposed face when a tangent line to one circle
meets the other circle in a different point. This occurs for all the remaining order
types of the circles C1 and C2, except type ¿ where C1\C2 D ¿ in P

3. In this case,
the edge curve is irreducible with two connected real components and the edge
surface meets the interior of conv.C/ (as there are internal stationary bisecants).
Thus, conv.C/ is not a basic semialgebraic set and thus not a spectrahedron. ut

5 Convex Hulls Through Duality

We sketch an alternative approach to studying the convex hull K of two circles
that uses projective duality. This is inspired by the paper [6] and accompanying
video [7] that explains a solution to the problem of determining the convex hull of
three ellipsoids in R

3.
Points L̆ of the dual projective space LP3 correspond to planes ˘ of the primal

space P
3. A line L̀ represents the pencil of planes containing a fixed line ` 	 P

3, and
a plane Lo represents the net of planes incident on a point o 2 P

3. The dual LC 	 LP3

of a conic C 	 P
3 is the set of planes that contain a line tangent to C.

Lemma 5.1 The dual LC to a conic C is a quadratic cone in LP3 with vertex L̆

corresponding to the plane ˘ of C.
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Proof The pencil of planes containing the tangent line TpC to C is a line lying on LC
that meets L̆ as TpC 	 ˘ . Thus, LC is a cone in LP3 with vertex L̆ . Let o 2 P

3 be
any point that is not on ˘ . Then the curve Lo \ LC is the set of planes through o that
contain a tangent line TpC to C. As there are two such planes that contain a general
line ` through o (` meets two tangents to C), the curve Lo \ LC is a conic in Lo and LC
is the cone over that conic with vertex L̆ . ut

Let C1;C2 be circles in R
3 	 RP

3 lying in distinct planes ˘1;˘2 and let K be
the convex hull of C1 [C2. Let o be any point in the interior of K. We will consider

the plane Lo 	 LRP
3

to be the plane at infinity and set LR3 WD LRP
3
X Lo. This is an

affine space that contains every plane supporting K as well as all those disjoint from
K, as every plane incident on o meets the interior of K. It also contains the point L1
corresponding to the plane at infinity in RP

3.
For i D 1; 2, let LCi be the cone in LR3 dual to the conic Ci. If o 2 ˘i, then the

vertex L̆ i of LCi lies at infinity ( L̆ i 2 Lo) and LCi is a cylinder. Neither dual cone
contains the point L1. Let LK be the closure of the component of LR3 X LC1 X LC2
containing L1.

Proposition 5.2 Points L̆ in the interior of LK are exactly those whose correspond-
ing plane˘ is disjoint from K. Points of the boundary of LK correspond to supporting
planes of K, and LK is convex and bounded.

We present an elementary proof of this standard result about convex sets in R
d.

Proof Choose coordinates .x; y; z/ for R
3 so that o D .0; 0; 0/ is the origin. An

affine plane is defined by the vanishing of an affine form � WD ax C by C cz C d,

whose coefficients Œa W b W c W d� give homogeneous coordinates for LRP
3
. In these

coordinates, L1 is the point Œ0 W 0 W 0 W 1�, Lo has equation d D 0, and the points of
the affine LR3 have coordinates Œa W b W c W 1�, so that L1 is the origin in LR3.

Let v D .˛; ˇ; / 2 R
3 X f.0; 0; 0/g and consider the linear map �vWR

3 ! R

defined by �v.x; y; z/ WD ˛x C ˇy C z. Since ��1
v .0/ is a plane containing the

origin o, �v.K/ is a closed interval Œ�; ı� with 0 in its interior, so that � < 0 < ı.

Thus, the points �v;tW Œt˛ W tˇ W t W 1� for � 1
ı
< t < � 1

�
of LRP

3
are exactly the

planes in RP
3 parallel to ��1

v .0/ that are disjoint from K as �v;t.K/ 	 .0;1/ for
� 1
ı
< t < � 1

�
.

All other planes parallel to��1
v .0/meet K, with�v;�1=ı and�v;�1=� the planes in

this family that support K. These supporting planes necessarily lie on LC1[ LC2. Hence,
the interior of LK is exactly the set of all planes disjoint from K and its boundary is
exactly the set of planes supporting K.

As o lies in the interior of K, there is a closed ball centred at o of radius 1=�
contained in the interior of K. For any unit vector v, the numbers �; ı defined by
�v.K/ D Œ�; ı� satisfy j1=�j; j1=ıj < �. Thus, the coordinates of points Œ˛ W ˇ W  W
1� in LK satisfy k.˛; ˇ; /k < �, proving that LK is bounded.

Let � D Œa W b W c W 1� and �0 D Œa0 W b0 W c0 W 1� be points of LK. It follows that
�.K/;�0.K/ 	 Œ0;1/. For all t 2 Œ0; 1�, set �t WD t�C .1 � t/�0. Since Œ0;1/ is
convex, we see that �t.K/ 	 Œ0;1/ and �t 2 LK. This proves that LK is convex. ut
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Fig. 8 Duals to convex hulls
of two circles are
intersections of two cylinders

Points in the boundary @K of LK are planes supporting K, and faces of LK
correspond to exposed faces of K. For example, L̆ i 2 @ LK if and only if the plane
˘i of Ci supports a two-dimensional face of K. Points of the curve in @ LK where the
cones LC1 and LC2 meet correspond to stationary bisecants, and line segments in the
ruling of LCi lying in @ LK correspond to the exposed points of Ci in K. This may be
seen in Fig. 8, which shows the dual bodies to the convex hulls of Fig. 1. For these,
the origin o is the midpoint of the segment joining the centres of the circles.

The intersection of two cones on the left has cone points corresponding to the
planes of the discs in the boundary of the convex set on the left in Fig. 1. In the
centre is the dual of the oloid. The origin o is in the interior of the discs of the
circles, so both cones LCi are elliptical cylinders. On the right is the intersection of a
cone with a horizontal cylinder meeting its vertex. The cylinder is dual to the vertical
circle in the rightmost convex set in Fig. 1. The vertex is the two-dimensional face,
and the two branches of the intersection curve at the vertex of the cone have limit
the two nonexposed stationary bisecants.

In [6], the authors sketch an exact algorithm (beautifully explained in [7]) to
compute the convex hull of three ellipsoids P, Q, and R in R

3. Their approach
inspired the previous discussion.

If the origin o lies in the interior of an ellipsoid P, then its dual LP is also an
ellipsoid. If o lies on P, then its dual is a paraboloid and L1 lies in the convex
component of its complement. If o is exterior to P, then its dual is a hyperboloid of
two sheets, and one of the convex components of its complement contains L1.

Choosing an origin o in the interior of the convex hull K of P [ Q [ R as
in Proposition 5.2, LK is a bounded convex set that is the closure of the region in
the complement of the duals containing the origin L1. The video [7] describes the
algorithm to compute K when the origin o lies in the interior of all three ellipsoids.
In that case, the dual LK of the convex hull of the three ellipsoids is the intersection
of the three dual ellipsoids LP\ LQ\ LR. Computing LK requires the computation of the
curves where two dual ellipsoids intersect, and points where three dual ellipsoids
meet, and then decomposing the dual ellipsoids along these curves into patches.
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This analysis gives three types of points in the boundary of LK.

1. Points common to all three dual ellipsoids. These give tritangent planes in @K.
2. Points on curves given by the pairwise intersection of dual ellipsoids. They are

bitangent planes and give bitangent edges. These form one-dimensional families
of 1-faces in @K.

3. Points on a single dual ellipsoid. These are tangent planes to an ellipsoid at a
point of K, and give a two-dimensional family of exposed points of K coming
from the corresponding ellipsoid.

As we see in Fig. 8, the dual LK eloquently displays information about the exposed
faces of K, but information about the nonexposed faces is less clear in LK.
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The Hilbert Scheme of 11 Points in A
3 is

Irreducible

Theodosios Douvropoulos, Joachim Jelisiejew, Bernt Ivar Utstøl Nødland,
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Abstract We prove that the Hilbert scheme of 11 points on a smooth threefold is
irreducible. In the course of the proof, we present several known and new techniques
for producing curves on the Hilbert scheme.

MSC 2010 codes: 14C05, 14D15

1 Introduction

Let X be a smooth connected quasi-projective variety. The Hilbert scheme of d
points in X is the scheme parametrizing finite subschemes of X of degree d; for
an introduction see [17, 18, 20, 26, 30, 37, 38]. The Hilbert scheme of points is
quasi-projective (projective if and only if X is) and connected; see [18]. Moreover,
Fogarty [18] proves that, for dim X � 2, it is smooth of dimension d dim X. For
higher-dimensional X, much less is known. The question of irreducibility for the
Hilbert scheme of points is especially interesting because it ensures that all finite
schemes are limits of reduced ones; see [4] for an application. This question is local
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and only depends on the dimension of X: the answer for n-dimensional X will be
the same as for A

n, see [1, p. 4] or [10, Lemma 2.2]. We denote the Hilbert scheme
of d points in A

n by Hd
n . Our motivating question is the following: For which pairs

.n; d/ is the Hilbert scheme Hd
n irreducible?

By Fogarty’s results, all Hd
2 are irreducible. Mazzola [36] proves irreducibility

of the Hilbert scheme Hd
n , for all n and d � 7. Iarrobino [27, 28] shows that, for

all n � 3 and d � 78, the Hilbert scheme Hd
n is reducible. Emsalem and Iarrobino

prove that Hd
n is reducible for n � 4 and d � 8; see [29, Sect. 2.2, p. 158] and

[8]. Finally, Borges dos Santos, Henni, and Jardim [2] show that H9
3 and H10

3 are
irreducible, by comparing them with appropriate spaces of commuting matrices and
using the results of Šivic [40, Theorems 26,32]. These papers do not determine the
reducibility of Hd

n for n D 3 and 11 � d � 77. In this article, we improve the lower
bound.

Theorem 1.1 The Hilbert scheme of 11 points in a smooth irreducible threefold is
irreducible of dimension 33.

We prove Theorem 1.1 in Sect. 4. We review background information in Sect. 2.
In Sect. 3, we give an overview of strategy, gather general results for the proof of the
Theorem 1.1, and demonstrate how to use Macaulay2 [22] for some computations.

In Sect. 5, we discuss a special class of subschemes, coming from the first
example of reducible Hd

3 by Iarrobino [27]. Let m be the ideal of the origin of
A
3, fix d, and consider an ideal I such that msC1 	 I 	 ms and the variety V.I/

has degree d; the nonnegative integer s is uniquely determined. We call such ideals
very compressed and denote by H max;d the subset of Hd

3 corresponding to these
ideals. The closure in Hd

3 of the open set of smooth subschemes is the smoothable
component Rd

3 of Hd
3 , and has dimension 3d. The key result in [27] establishes that,

for d � 96, we have dim H max;d � 3d, so a general very compressed ideal does not
lie in the smoothable component. We prove that this result is sharp.

Proposition 1.2 The family H d;max of very compressed ideals is contained in the
smoothable component if and only if d � 95.

The proof depends on initial ideals and a Macaulay2 calculation; see Sect. 5.
We now outline our approach to the proof of Theorem 1.1, which builds upon

the strategy in [8]. Questions about smoothability of a specified ideal I reduce to the
case where I is local and has embedding dimension 3. There are 15 possible Hilbert
functions of I:

.1; 3; 1; 1; 1; 1; 1; 1; 1/ .1; 3; 5; 1; 1/ .1; 3; 2; 2; 2; 1/

.1; 3; 2; 1; 1; 1; 1; 1/ .1; 3; 3; 4/ .1; 3; 3; 2; 2/

.1; 3; 2; 2; 1; 1; 1/ .1; 3; 4; 3/ .1; 3; 3; 3; 1/

.1; 3; 3; 1; 1; 1; 1/ .1; 3; 5; 2/ .1; 3; 3; 2; 1; 1/

.1; 3; 4; 1; 1; 1/ .1; 3; 4; 2; 1/ .1; 3; 6; 1/
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For each Hilbert function h, let Hh
3 denote the scheme parametrizing local ideals

with fixed Hilbert function h, and let H h
3 be the standard graded Hilbert scheme

parametrizing homogeneous ideals with fixed Hilbert function h. We use three
different strategies to prove that, for each of these 15 functions, we have Hh

3 	 R113 .
First, for some cases, knowledge about the Hilbert function of an ideal I is enough

to produce a deformation (via the ray families in [9]), whose special fibre is I and
general fibre is reducible. By Lemma 1.4, such an I is smoothable; see Sect. 4.

Second, most of the schemes Hh
3 contain smooth points of the Hilbert scheme that

lie in the smoothable component R113 . Such points are called smooth and smoothable
points and examples include points corresponding to Gorenstein algebras; see [10,
Corollary 2.6].

Lemma 1.3 If Z 
 H11
3 is an irreducible set that contains a smooth and smoothable

point, then we have Z 
 R113 .

Proof The locus of smooth and smoothable points is open and contained in R113 , so
the intersection Z\R113 contains an open subset of Z. Hence, the subset Z\R113 	 Z
is dense and closed, so it is equal to Z. ut

To exploit this lemma, we write Hh
3 as a union of irreducible sets Z and

demonstrate that each Z contains a smooth and smoothable point. To find the sets
Z, we may take advantage of the morphism 
hWHh

3 !H h
3 sending an ideal I to its

initial ideal; see [8]. We employ the following 3-step strategy:

1. Decompose H h
3 into irreducible strata.

2. Using the morphism 
hWHh
3 !H h

3 , decompose Hh
3 into irreducible strata.

3. For each stratum of Hh
3 , find a smooth point of the Hilbert scheme that lies in the

smoothable component and conclude that the whole stratum lies there.

In steps 1–2, we use inverse systems; see Sect. 2. In the simplest cases, we find that
there is a bijection between irreducible strata of H h

3 and Hh
3 , but this is not always

true. For step 3, we introduce cleavable ideals. An ideal is cleavable if it can be
deformed to an ideal whose support consists of at least two points.

Lemma 1.4 A cleavable ideal I 2 H11
3 is smoothable.

Proof Let It be a one-parameter flat family of ideals such that I0 D I and, for t ¤ 0,
It is supported at more than one point. Each irreducible component of It has length
strictly less than 11, so it is smoothable. Hence, the ideal I is also smoothable. ut

To show that an ideal I is cleavable, we construct a family over Spec kŒt�, whose
general fibre is reducible, and check that this family is flat.

Third, there is one case where neither of the previous methods apply, namely
h D .1; 3; 6; 1/; see Proposition 4.22. The stratum Hh

3 does not seem to contain
smooth points. However, the stratum is irreducible and we can describe what general
points look like. We build a deformation establishing that such general points are
smoothable, so irreducibility implies that the entire stratum has to be smoothable.

Throughout, we work over an algebraically closed field k of characteristic zero.
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2 Prerequisites

Hilbert Schemes and Smoothability The Hilbert scheme Hd
n parametrizes sub-

schemes of A
n of dimension zero and degree d. More formally, Hd

n represents the
functor which assigns, to each k-scheme X, the set of subschemes of A

n � X that
are flat and finite of degree d over X; see [26, Chapter 1]. Equivalently, letting
T WD kŒ˛1; ˛2; : : : ; ˛n�, the scheme Hd

n parametrizes ideals I for which T=I is a
vector space of dimension d. In other words, Hd

n also represents the functor which
assigns, to each k-algebra A, the set of ideals I in T ˝ A such that the quotients
T ˝ A=I are locally-free A-modules of rank d.

The Zariski tangent space to Hd
n at the point representing I is the T-module

Hom.I;T=I/; see [26, Theorem 1.1]. Using Macaulay2 [22], we can compute the
dimension of this tangent space. We stress that a point is smooth if and only if the
point lies on only one irreducible component of the scheme and the dimension of
the tangent space at that point equals the dimension of the component of the scheme
containing the point. The dimension of the tangent space increases at singular points.

On the Hilbert scheme Hd
n , there is a distinguished component corresponding to

smooth schemes. Since a slightly perturbed tuple of d closed points in A
n is just

another such tuple, the set of tuples of points is open in Hd
n . Their closure is the

smoothable component of Hd
n and denoted by Rd

n. By construction, Rd
n is generically

smooth of dimension nd. Since Hd
2 is smooth, we have Rd

2 D Hd
2 .

A point of Rd
n is said to be smoothable. Thus, an ideal I is smoothable if and only

if it can be deformed to an ideal of d distinct points. This means that one can build
a one-parameter flat family of schemes over a discrete valuation ring for which the
general member consists of d distinct points and the special fibre is T=I; see [6, 8]
for the details. In particular, a disjoint union of smoothable schemes is smoothable
and a limit of smoothable schemes is smoothable.

Hilbert Functions To analyze Hd
n , it is useful to have an invariant that refines the

degree d. There are two closely-related notions of a Hilbert function:

• For an N-graded T-module M, its Hilbert function hWN ! N is defined by
h.i/ WD dim Mi. Given a homogeneous ideal I 	 T , we consider the Hilbert
function of the quotient ring T=I.

• For a filtered T-module M with descending filtration M D M0 � M1 � M2 �

� � � , the Hilbert function hWN ! N is defined by h.i/ WD dim.Mi=MiC1/. If the
scheme associated to an ideal I 	 T is supported at a point, then T=I is a local
ring .A;m/, and the Hilbert function h with respect to the filtration by powers of
m is defined to be h.i/ WD dim.mi=miC1/.

If I is homogeneous and T=I is local, the two notions coincide. We typically write
h as the vector

(
h.0/;h.1/; : : :

)
in which the trailing zeros are omitted.

Consider A WD T=I where T D kŒ˛1; ˛2; : : : ; ˛n� is a polynomial ring with
its standard N-grading and I is a homogeneous ideal. Assume that I contains no
linear forms. We call such an algebra standard graded. The Macaulay bound is
an upper bound for the growth of Hilbert functions of standard graded algebras.
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More precisely, for any positive integers h and d, there exist unique integers
ı; kd; kd�1; : : : ; kı 2 N such that ı � 1, kd > kd�1 > � � � > kı � ı, and h D(kd

d

)
C

(kd�1

d�1

)
C � � � C

(kı
ı

)
. This expression, denoted by h.d/, is called the d-binomial

expansion of h. The d-binomial expansion of h can be determined via a greedy
algorithm: choose kd to be the greatest integer such that

(kd
d

)
� h and recursively

compute the .d�1/-binomial expansion of h�
(kd

d

)
. If h.d/ D

(kd
d

)
C
(kd�1

d�1

)
C� � �C

(kı
ı

)
,

then the function h 7! hhdi is defined by

hhdi WD

Ç
kd C 1

dC 1

å
C

Ç
kd�1 C 1

d

å
C � � � C

Ç
kı C 1

ı C 1

å
:

Example 2.1 The 2-binomial expansion of 5 and 4 are simply 5.2/ D
(
3
2

)
C

(
2
1

)
and

4.2/ D
(
3
2

)
C

(
1
1

)
, so we have 5h2i D

(
4
3

)
C

(
3
2

)
D 7 and 4h2i D

(
4
3

)
C

(
2
2

)
D 5.

Example 2.2 If h � d, then we have h.d/ D
(d

d

)
C
(d�1

d�1

)
C� � �C

(d�hC1
d�hC1

)
and hhdi D h.

Theorem 2.3 (Macaulay Bound; [34] or [3, Theorem 4.2.10]) If h is the Hilbert
function of a standard graded algebra, then we have h.d C 1/ � h.d/hdi for all
d 2 N.

Corollary 2.4 Let h be the Hilbert function of a standard graded algebra. If d 2 N

satisfies h.d/ � d, then we have h.i/ � h.iC 1/ for all i � d.
Once the Macaulay bound is attained then it will also be attained for all higher

degrees provided that no new generators of the ideal appear.

Theorem 2.5 (Gotzmann Persistence Theorem; [21] or [3, Theorem 4.3.3]) Let
h be the Hilbert function of a standard graded algebra T=I. If d 2 N satisfies
h.d C 1/ D h.d/hdi and the homogeneous ideal I is generated in degrees at most d,
then we have h.iC 1/ D h.i/hii, for all i � d.

Apolarity and Inverse Systems A key tool in the analysis of finite schemes is the
technique of Macaulay’s inverse systems, also known as apolarity; see [16, 19, 39]
and [30, Sect. 5.1.3]. Let S WD kŒx1; x2; : : : ; xn� and T D kŒ˛1; ˛2; : : : ; ˛n� be
polynomial rings with the standard grading. When n � 3, we replace the subscripted
variables with x; y; z and ˛; ˇ;  respectively. For d 2 N, set S�d WD

⊕d
kD0 Sk and

T�d WD
⊕d

kD0 Tk. The polynomial ring T acts on S by letting ˛i act as partial
differentiation with respect to xi. We denote this action by ı, so ˛i ı F D @F

@xi
for

all F 2 S. In other words, this apolarity action gives bilinear maps Td � Se ! Se�d

for all d; e and, for each d 2 N, the pairing Td � Sd ! S0 D k is perfect.

Definition 2.6 For any subset J 	 S, the apolar ideal or annihilating ideal J? 	 T
is the ideal of elements � 2 T such that � ı F D 0, for all F 2 J. For a single
element F 2 S, we simply write F? for the apolar ideal of the singleton fFg. When J
is spanned by homogeneous elements, the apolar ideal is also homogeneous. When J
is spanned by a single element F, then F? is a Gorenstein ideal; see [13, Sect. 21.2].
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Example 2.7 If F D xa1
1 xa2

2 � � � x
an
n , then we claim F? D .˛

a1C1
1 ; ˛

a2C1
2 ; : : : ; ˛anC1

n /.
Indeed, we easily see that ˛aiC1

i 2 F?, for 1 � i � n. Conversely, if the polynomial
� 2 T contains a monomial ˛b1

1 ˛
b2
2 � � �˛

bn
n such that bi � ai for 1 � i � n, then

the apolar pairing of this monomial with F is a monomial whose exponent vector is
.a1 � b1; a2 � b2; : : : ; an � bn/. Since each monomial in � corresponds to a distinct
monomial in � ı F, there can be no cancellation. Thus, if � 2 F?, then each
monomial in � must lie in the indicated ideal.

For a given F 2 S, the apolar ideal F? is just the kernel of the linear map T ! S
given by � 7! � ı F. Hence, we can compute J? by intersecting the ideals F?, for
all F 2 J. If J is a k-vector space, then it is sufficient to consider a basis for J.

Example 2.8 For F D x3 C yz, we have F? D .˛3 � 6ˇ; ˛ˇ; ˛; ˇ2; 2/.

Example 2.9 For F D x2yC y2z, we have F? D .2; ˛; ˛2 � ˇ; ˇ3; ˛ˇ2/.

Definition 2.10 A (Macaulay) inverse system is a T-submodule J 
 S that is closed
under the apolarity action: for F 2 J, the derivatives ˛1 ı F; ˛2 ı F; : : : ; ˛n ı F lie
in J.
The inverse system generated by the elements f1; f2; : : : ; fs of S is the vector space
spanned by the fi and all of their higher partial derivatives:

hf1; f2; : : : ; fsi D Tf1 C Tf2 C � � � C Tfs :

It follows that hf1; f2; : : : ; fsi? D
⋂s

iD1hfii
? D

⋂s
iD1 f ?

i . An inverse system is
homogeneous if it is generated by homogeneous elements.

Remark 2.11 As Macaulay [35] or [16, Corollaire 2] establish, the map J 7! J?

defines a bijection between finite-dimensional inverse systems and local ideals
supported at the origin (also known as m-primary ideals where m is the ideal of
the origin). When I is a local ideal, we write I? for its inverse system.

Proposition 2.12 ([19, Remark after Proposition 2.5]) If J is a homogeneous
inverse system, then J is isomorphic as a graded k-vector space to T=J?.

Proposition 2.13 ([16, Proposition 2(a)]) For a finite-dimensional inverse system
J, we have dimk J D dimk T=J?.

Proof Choose d sufficiently large so that J 
 S�d. Hence, the map T�d ! T=J? is
surjective, and the dimensions are equal to the codimension of J?\T�d in T�d. ut

Remark 2.14 Given k 2 N and an inverse system J, the vector space of polynomials
of degree at most k in J is denoted by J�k. These vector spaces form an increasing
filtration: J�k 
 J�kC1 for all k � N. The inverse system J is a filtered T-module
and its Hilbert function h is h.k/ D dim J�k � dim J�k�1 for all k 2 N. Moreover,
we have

∑
k2N h.k/ D dimk J and, when J is homogeneous, h.k/ D dim Jk.

Proposition 2.15 ([30, Lemma 2.12]) If F 2 S is homogeneous, then the Hilbert
function of F? is symmetric; if F 2 Sd, then h.i/ D h.d � i/ for 0 � i � d.
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Proposition 2.16 ([7]) Suppose that f 2 S is a homogeneous form of degree d. Let
h be the Hilbert function of hf i. If h.d � 1/ D k, that is h D .: : : ; k; 1/, then there
are independent linear functions `1; `2; : : : ; `k 2 S1 and a homogeneous form g such
that f D g.`1; `2; : : : ; `k/. Equivalently, there is a linear change of coordinates so
that f depends only on the variables x1; x2; : : : ; xk, not on xkC1; xkC2; : : : ; xn.

Remark 2.17 Using the above proposition, one can show that if hf i has Hilbert
function .: : : ; 1; 1/, then f D `d for some linear function ` and hf i has Hilbert
function .1; 1; : : : ; 1; 1/. If h.d � 2/ D h.d � 1/ D 2, then either f D `d C md or
f D `d�1m for some independent linear functions `;m 2 S1, and either way hf i has
Hilbert function .1; 2; 2; : : : ; 2; 2; 1/. For proof see for example [30, Theorem 1.44]:
in their notation, s D 2, and f ? has a quadratic generator, which up to a change of
coordinates is either ˛ˇ or ˇ2.

Dealing with nonhomogeneous inverse systems is much harder than working
with homogeneous ones. Fortunately, each inverse system J has an associated
homogeneous inverse system lead.J/.

Definition 2.18 The leading form of a polynomial is its highest degree homoge-
neous part. This may not be a monomial. For an inverse system J 	 S, the inverse
system of leading forms of J, denoted lead.J/, is the vector subspace of S spanned
by leading forms of all the elements of J.

For example, the inverse system hx3 C y2i D spanfx3 C y2; x2; x; y; 1g has

lead.hx3 C y2i/ D spanfx3; x2; x; y; 1g D hx3; yi:

There is a tight connection between a system J and lead.J/.

Proposition 2.19 The Hilbert functions of J and lead.J/ are equal.

Proof (Sketch) Let f1; f2; : : : ; fs be a vector space basis for lead.J/ consisting of
homogeneous elements and let g1; g2; : : : ; gs 2 J with lead.gi/ D fi. One can show
the gi are a basis for J. Expressing the Hilbert functions of J and lead.J/ in terms of
the gi and fi gives the result. ut

The initial form or lowest degree form of a polynomial gi is its lowest degree
homogeneous part. The initial ideal of an ideal K, denoted in.K/, is the ideal
generated by the initial forms of all elements of K.

Proposition 2.20 ([16, Proposition 3]) Let J be a finite-dimensional inverse sys-
tem with ideal J? D I. We have lead.J/? D in.I/. In other words, T= lead.J/? is
the associated graded algebra of T=J?.

Proof If � 2 in.I/, then � D in.�/, for some � 2 I. To see that � 2 lead.J/?, let
F D lead.G/ for G 2 J. It follows that� ıF is the highest degree part of � ıG D 0,
so it is zero. This shows that in.I/ 
 lead.J/?. We have

dimk J D dimk lead.J/ D dimk T= lead.J/? � dimk T= in.I/ D dimk T=I D dimk J ;
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where the first equality is by Proposition 2.19 and the last is by Proposition 2.13.
This completes the proof. ut

Remark 2.21 By Proposition 2.19 and Proposition 2.20, the Hilbert function of an
inverse system J is also the Hilbert function of a standard graded algebra, namely the
associated graded algebra of T=J?. Hence, Macaulay’s and Gotzmann’s theorems
apply to these functions. This enables us to classify the possible Hilbert functions h
of local ideals I D J? in H11

3 with h.1/ D 3. Since h.2/ � 6, we need to consider
every possible value for h.2/, 1 � h.2/ � 6. Also,

∑
h.i/ D dimk T=I D 11.

Finally, if h.i/ � 2 for any i � 2, then h is nonincreasing from the ith step onward,
by Corollary 2.4. It is then easy to list the possible Hilbert functions.

Proposition 2.22 ([16, Sect. C.2]) Let F.t/ D ff1.t/; f2.t/; : : : ; fs.t/g 	 SŒŒt�� be
a collection of polynomials in SŒŒt��, which we regard as polynomials in S whose
coefficients are continuous functions of a parameter t in a neighbourhood of 0.
The family of apolar ideals fF.t/?g satisfies limt!0 F.t/? 
 F.0/?. If the inverse
systems hF.t/i have the same Hilbert function for all t, then we have limt!0 F.t/? D
F.0/? and fF.t/?g is a flat family.

Proof If � 2 limt!0 F.t/?, write � D �.0/ D limt!0 �.t/ where �.t/ 2 F.t/?

for t ¤ 0. For each t ¤ 0 we then have that �.t/ ı fi.t/ D 0, for i D 1; : : : ; s.
By continuity, we also have that �.0/ ı fi.0/ D 0. This shows � 2 F.0/?

and limt!0 F.t/? 
 F.0/?. The equality of Hilbert functions implies equality of
dimensions, so the ideals are equal. ut

Definition 2.23 When Jt D hf1.t/; f2.t/; : : : ; fs.t/i is a parametrized family of
inverse systems generated by polynomials fi whose coefficients are continuous
functions of t, we will say limt!0 Jt D J0 if and only if limt!0 J?

t D J?
0 .

Example 2.24 Consider the families W1 D fh`
d;mdi W `;m 2 S1; independentg and

W2 D fh`
d; `d�1mi W `;m 2 S1; independentg. Since the limit

lim
t!0

.`C tm/d � `d

dt
D `d�1m;

we have, by Proposition 2.22, that

lim
t!0
h`d; .`C tm/di D lim

t!0

Æ
`d;

.`C tm/d � `d

dt

∏
D h`d; `d�1mi:

This is because every inverse system in each family has Hilbert function
.1; 2; 2; : : : ; 2/. This implies that W2 is in the closure of W1 in the Zariski topology.
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3 The Hilbert Scheme of 11 Points in 3-space

In this section, we use Macaulay2 to perform some required computations and
gather some general methods.

Macaulay2 Code To check if an ideal I in T D kŒa; b; c� is smooth, we
use the following code. In particular, this example is needed for the proof of
Proposition 4.16.

i1 : T = QQ[a,b,c];

i2 : I = ideal(b*c, a*b, a^2*c, a^3-c^2, b^5);

o2 : Ideal of T

i3 : (dim I, degree I, degree Hom(I,T/I))

o3 = (0, 11, 33)

o3 : Sequence

This shows that the ideal I defines a zero-dimensional scheme of degree 11 with
tangent space dimension 33. If this ideal corresponds to a point in the smoothable
component, then it has to be a smooth point, because the smoothable component
has dimension .3/.11/ D 33. To demonstrate that this point lies in the smoothable
component, we construct a deformation. We guess a candidate ideal K and check
that it satisfies the required conditions.

i4 : R = T[t];

i5 : K = ideal (b*c, a*b, a^2*c, a^3-c^2, b^5+t*b^4);

o5 : Ideal of R

i6 : assert (K:t == K)

i7 : minimalPrimes K

o7 = {ideal (c, a, t + b), ideal (c, b, a)}

o7 : List

Regarding K as a family of ideals over QŒt�, we see that its fibre over t D 0 is I.
Proposition III.9.7 in [25] implies that this is a flat family in a neighbourhood of 0.
Since the general fibre is supported at the two points .0;�t; 0/ and .0; 0; 0/, we see
that the special fibre is cleavable. Thus, Lemma 1.4 proves that I is also smoothable.

Some General Methods We now collect various results for use in Sect. 4. In our
analysis of the irreducible components of some standard graded Hilbert scheme (and
the fibres of 
h), we often consider the set of quadric generators fq1; q2; : : : ; qkg

of a homogeneous ideal I 	 T . The next lemma describes the space of cubics
hq1; q2; : : : ; qki � T1 in the ideal generated by these quadrics.
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Lemma 3.1 If the ideal I D .q1; q2; : : : ; qk/ 	 T D kŒ˛1; ˛2; : : : ; ˛n�, where 2 �
k � n, is generated by linearly independent quadrics, then we have dim I3 � nk�

(k
2

)

and equality holds if and only if the quadrics share a common linear factor.

Proof Let hWN ! N be the Hilbert function of the quotient ring T=I. Since the
2-binomial expansion of h.2/ is h.2/ D

(nC1
2

)
� k D

(n
2

)
C

(n�k
1

)
, the Macaulay

Bound on Hilbert functions establishes that h.3/ � h.2/h2i D
(nC1
3

)
C

(n�kC1
2

)
, so

we obtain dim I3 D dim T3 � h.3/ �
(nC2
3

)
�

(nC1
3

)
�

(n�kC1
2

)
D nk �

(k
2

)
. We

have the equality dim I3 D nk �
(k
2

)
if and only if h.3/ D h.2/h2i. In this situation,

the Gotzmann Persistence Theorem implies that h.tC 1/ D h.t/hti, for all t � 2. It
follows that

h.t/ D
(nCt�2

t

)
C

(n�kCt�2
t�1

)
D

(nCt�2
n�2

)
C

(n�kCt�2
n�k�1

)
D 1

.n�2/Š
tn�2 C O.tn�3/ ;

is the Hilbert polynomial of the variety V.I/ 	 P
n�1, so the variety V.I/

has codimension 1 and degree 1; see [25, Sect. I.7, p. 52]. Hence, the variety
V.I/ consists of a reduced hyperplane, with possibly some lower-dimensional
components. Since each qi vanishes on this hyperplane, all of the quadrics are
divisible by the linear equation defining the hyperplane. ut

The next two lemmas demonstrate that it is relatively easy to determine the
irreducible components of Hh

n when h equals the Hilbert function of the ambient
ring for all but a few values.

Lemma 3.2 If the Hilbert function h D
(
1;h.1/;h.2/; : : : ;h.t/

)
satisfies h.i/ D

dim Ti for 1 � i � t � 2, then the Hilbert scheme Hh
n is a vector bundle of rank

h.t/
(
dim St�1�h.t� 1/

)
over H h

n . In particular, the irreducible components of Hh
n

are exactly the preimages of the irreducible components of H h
n .

Proof A direct generalization of Proposition 4.3 in [8]. ut

Lemma 3.3 If the Hilbert function h D
(
1;h.1/;h.2/; : : : ;h.t/

)
satisfies h.i/ D

dim Ti for 1 � i � t � 3, then every fibre of 
h is isomorphic to an affine space.

Proof Let I be a homogeneous ideal in H h
n . The fibre 
�1

h .I/ consists of the ideals
I0 for which in.I0/ D I. We regard I0 as a perturbation of I; the generators of I0 are
allowed to have additional terms when compared to the corresponding generators
in I. Requiring that in.I0/ D I corresponds to allowing higher degree terms in
generators of I. The requirement that the Hilbert function of T=I0 equal h imposes
conditions on the coefficients of these higher degree terms. Adding terms of degree
greater than t has no effect as these are already contained in I. To any generator
of degree t � 2 or t � 1, we can freely add terms of degree t because they cannot
change the Hilbert function. To any generator qi of degree t � 2, we can add a
term ai of degree t � 1 if it satisfies the following condition. For any tuple of linear
forms `1; `2; : : : ; `r 2 T1 such that `1q1 C `2q2 C � � � C `rqr D 0, we require that
`1a1 C `2q2 C � � � C `rar 2 I0

t D It. Since these are all linear conditions on the
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coefficients of the ai, the solution space is an affine space. Hence, the fibre at I is
isomorphic to A

k for some k. ut

Remark 3.4 If there are only two generators q1 and q2 of degree t � 2, then there is
at most one linear condition on the forms a1 and a2. Specifically, if there are linear
forms `1; `2 such that `1q1 C `2q2 D 0, then these are uniquely determined up to a
scalar multiple, and the condition `1a1 C `2a2 2 It implies that in.I0/ D I.

Going beyond Lemma 3.2, it is possible that the fibres of 
h are reducible. To
show that they are contained in the smoothable component of the Hilbert scheme, we
would have to find a smooth and smoothable point in each component of the fibre.
Unfortunately, it is generally difficult to describe the fibres of 
h. The following
statement allows us in a handful of very special cases to avoid this difficulty.

Lemma 3.5 If I 2H h
n , then I lies in every irreducible component of 
�1

h .I/.

Proof If I0 2 
�1
h .I/, then we have I D in.I0/ and there is a path in 
�1

h .I/ from
I0 to I; see [13, Theorem 15.17]. Thus, the ideal I lies in the irreducible component
that contains I0. ut

If the homogeneous ideal I happens to be a smooth and smoothable point, then
the whole fibre is contained in the smoothable component of the Hilbert scheme.

Non-linear Changes of Coordinates Following [9, 15] and [31, Sect. 2.2], we
describe a useful non-linear change of coordinates. Assume T D kŒ˛; ˇ; � and
the zero-dimensional quotient A D T=I is supported at the origin. The algebra A
can also be viewed as a quotient of the power series ring R D kŒŒ˛; ˇ; ��, which
has a much larger automorphism group than the polynomial ring. Let m denote the
maximal ideal in R. For any �1; �2; �3 2 m whose images span m=m2, there is an
automorphism  of R defined by  .˛/ WD �1,  .ˇ/ WD �2, and  ./ WD �3. If
J D hf1; f2; : : : ; fri is the inverse system of I, then the inverse system of  �1.I/ is
generated by  _.fi/ where  _ is defined as follows; see [31, Sect. 2.2]. Setting
D˛ WD  .˛/ � ˛, Dˇ WD  .ˇ/ � ˇ, and D WD  ./ �  , we have

 _.f / D
∑

.k;m;n/2Z3
�0

xkymzn

kŠmŠnŠ �
Ä

Dk
˛Dm

ˇDn
 ı f
ä
:

Example 3.6 Consider J D hf i where f D x4 C y4 C g and deg.g/ � 3. By
subtracting multiples of ˛ ı f and ˛2 ı f from f , we may assume the monomials
x3 and x2 do not appear in g. We perform a non-linear change of coordinates so
that there are no monomials in g divisible by x2; for an application, see the proof of
Lemma 4.8. If B and C are the coefficients of x2y and x2z in g, then we define the
automorphism  by  .˛/ WD ˛,  .ˇ/ WD ˇ � B

12
˛2, and  ./ WD  � C

12
˛2. It

follows that D˛ D 0, Dˇ D �
B
12
˛2, and D D �

C
12
˛2, so we obtain

 _.x4/ D x4 C yDˇ.x
4/C zD .x

4/C � � � D x4 � Bx2y � Czx2 C � � �
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where we have omitted terms of degree less than 3. Similarly, we have  _.y4/ D y4

and  _.g/ is equal to g modulo terms of degree less than 3. Therefore, the image
 _.f / has no terms divisible by x2.

An Explicit Construction of Flat Families Adapting the more general results on
Gorenstein schemes in [9, Sect. 5], we show that many zero-dimensional schemes
R are cleavable by constructing a family whose special fibre is R and whose general
fibre is reducible.

Proposition 3.7 Let R 	 A
n be a finite scheme supported at the origin and let

C 	 A
n be a smooth curve passing through the origin such that the hyperplane

V.x/ intersects C transversely. Furthermore, suppose that the ideal of intersection
R\C in C is .xr/ for some r � 1. If R 	 C[V.xr�1/ as schemes, then R is cleavable.

Proof Since R \ C is cut out of C by xr, we can choose an f 2 IR whose image in
kŒC� D kŒAn�=IC is xr, so we have q WD xr� f 2 IC. The image in kŒC� of any p 2 IR

is gxr for some g 2 kŒAn�, so we have p D g.xr � q/ C h for some h 2 kŒAn�. It
follows that h 2 IR \ IC and IR D .xr � q/C IR[C. In other words, the finite scheme
R is cut out of R[C by the equation xr � q. Consider the deformation of R 	 R[C
defined by V.xr � txr�1 � q/ 	 .R [ C/ � A

1 where t is the local parameter on A
1.

Let IV WD .xr� txr�1�q/ 	 kŒ.R[C/�A
1� denote the defining ideal of this family.

If IC�A1 and IR�A1 are the ideals in kŒ.R[C/�A
1� of C�A

1 and R�A
1 respectively,

then we have IC�A1 \ IR�A1 D 0. By assumption, we have .xr�1/ \ IC�A1 	 IR�A1 .
Since the hyperplane V.x/ is transversal to C, we also have IV \ IC�A1 D IV � IC�A1 .
Consequently, we obtain

IV \ IC�A1 D IV � IC�A1 D .xr � txr�1 � q/ � IC�A1

	 .xr � q/ � IC�A1 C .x
r�1/ � IC�A1 	 IR�A1 \ IC�A1 D 0:

To prove the flatness of the family V , it is enough to show that every polynomial
f 2 kŒt� is not a zero-divisor in the coordinate ring of V . Suppose there exists f 2 kŒt�
and g 2 kŒV� such that the product fg is zero in kŒV�. Restricting to C, the family
V \ .C � A

1/ is given by the equation xr � txr�1, so it is flat. Thus, we see that g
restricts to zero on V \ .C � A

1/, which implies that g lies in .IC C IV/=IV 	 kŒV�.
Since IV \ IC�A1 D 0, the element g belongs to

.IC C IV/=IV ' IC=.IV \ IC/ D IC 	 kŒ.R [ C/ � A
1� ;

so g is an element of a flat kŒt�-module kŒ.R [ C/ � A
1�. Since fg D 0, it follows

that g D 0, which concludes the proof of flatness.
The fiber of this family over t ¤ 0 is supported on at least two points: the

origin and .t; 0; : : : ; 0/. Since these fibres are reducible, we conclude that R is
cleavable. ut
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Corollary 3.8 Let R 	 A
n be a finite scheme supported at the origin and let I be

its ideal. Assume that there exist coordinates ˛1; ˛2; : : : ; ˛n on A
n and c 2 N is such

that ˛c
1 � ˛j 2 I for all j ¤ 1. If ˛c

1 … I C .˛2; ˛3; : : : ; ˛n/, then R is cleavable.

Proof This follows from Proposition 3.7. If C D V.˛2; ˛3; : : : ; ˛n/ and H D V.˛1/,
then r is determined by the equation R \ C D .˛r

1/. Since r > c, we conclude that
R 	 C [ Hr�1. ut

Corollary 3.9 Suppose that R 	 A
3 is a scheme of length 11. Let I 	 kŒ˛; ˇ; � be

its ideal and suppose that ˛ˇ; ˛ 2 I. Then the ideal I is smoothable.

Proof If R is reducible, it is smoothable because all its components are. Suppose R
is irreducible supported at the origin. If any order one element lies in I, then after
a non-linear coordinate change R is contained in an A

2 and so is smoothable. If no
order one element lies in I, then Corollary 3.8 applied to c D 1 implies that R is
cleavable. Therefore, it is smoothable by Lemma 1.4. ut

4 Proof of Main Theorem

In this section, we prove Theorem 1.1 by examining each possible Hilbert function.
Throughout the section, we fix n D 3, S D kŒx; y; z�, and T D kŒ˛; ˇ; �.

Cases with Long Tails of Ones

Proposition 4.1 If the Hilbert function h equals .1; 3; 3; 1; 1; 1; 1/, .1; 3; 5; 1; 1/,
.1; 3; 4; 1; 1; 1/, .1; 3; 2; 2; 1; 1; 1/, .1; 3; 2; 1; 1; 1; 1; 1/, or .1; 3; 1; 1; 1; 1; 1; 1; 1/,
then we have Hh

3 	 R113 .

Proof Fix I 2 Hh
3 . Proposition 4.2 establishes the ideal I is cleavable and Lemma 1.4

demonstrates that the ideal I is smoothable. Therefore, we have I 2 R113 . ut

Proposition 4.2 Let R D Spec.A/ 	 A
n be an irreducible subscheme and h be the

Hilbert function of the local algebra A. If h D
(
1;h.1/;h.2/; : : : ;h.c/; 1; 1; : : : ; 1

)

with at least c trailing ones (that is, letting s be the greatest value such that h.s/ ¤ 0,
we assume that h.k/ D 1 for c C 1 � k � s, and s � 2c), then the scheme R is
cleavable.

The proof follows the Gorenstein case of [9, Example 5.15].

Proof Let I be the ideal of R and let J be the inverse system of I. Consider a minimal
generating set of J. It has a unique generator f of degree s. As explained above, we
can perform a non-linear coordinate change to assume that f D xs

1 C g; for some g
such that ˛c

1ıg D 0. All other generators of J are of degree at most c. By subtracting
some partials of f , we may assume that they are also annihilated by ˛c

1. Thus, we
have ˛c

1˛j lies in I for all j ¤ 1.
It remains to check that ˛c

1 … I C .˛2; ˛3; : : : ; ˛n/. Take any q 2 .˛2; ˛3; : : : ; ˛n/.
Then .˛c

1 � q/ ı f D sŠ
.s�c/Šx

s�c
1 � q ı g. We claim this is nonzero. Note that s� c � c

by assumption on the number of trailing ones. Therefore, ˛s�c
1 annihilates g. So
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˛s�c
1 ı

Å
sŠ

.s � c/Š
xs�c
1 � q ı g

ã
D sŠx01 � q ı .˛s�c

1 ı g/ D sŠ ¤ 0:

This shows .˛c
1 � q/ ı f ¤ 0, as claimed, so ˛c

1 � q … I. Therefore, we conclude that
˛c
1 … IC .˛2; ˛3; : : : ; ˛n/. Thus, by Corollary 3.8 the subscheme R is cleavable. ut

Cases with Short Hilbert Functions For the following three cases h D .1; 3; 3; 4/,
h D .1; 3; 4; 3/, and h D .1; 3; 5; 2/, the analysis of the irreducible components
of their standard graded Hilbert schemes completely determines the corresponding
strata in the (not graded) Hilbert scheme Hh

3 . In each of these cases, Hh
3 is a vector

bundle over H h
3 by Lemma 3.2, so the irreducible components of Hh

3 are exactly the
preimages of the irreducible components of H h

3 . We cover each H h
3 by a collection

of irreducible sets (which are not necessarily components) and produce a smooth
and smoothable ideal for each set. By Lemma 3.2 and Lemma 1.3, this is enough to
guarantee that all algebras in Hh

3 are smoothable.

Proposition 4.3 For the Hilbert function h D .1; 3; 3; 4/, we have Hh
3 	 R113 .

Proof Let I 	 T , I 2 H h
3 be a homogeneous ideal such that A D T=I has Hilbert

function h. Then dim I2 D dim T2 � h.2/ D 3. Let I0 D .I2/ be the ideal generated
by the quadrics in I. By Lemma 3.1, dim I0

3 � 3 �3�
(
3
2

)
D 6, but dim I0

3 � dim I3 D
dim T3 � h.3/ D 6. So I3 D I0

3, equality holds in the dimension bound, and by
Lemma 3.1, the quadrics in I2 must share a common linear factor `.

Then I2 is spanned by `˛, `ˇ, ` . That is, the standard graded Hilbert scheme
H h
3 is parametrized by the line `. It is, therefore, isomorphic to the Grassmannian

Gr.1; 3/ Š P
2 and, hence, irreducible. By Lemma 3.2, Hh

3 is also irreducible.
It is sufficient to find one smooth and smoothable point in Hh

3 . Consider the ideal
L D .˛ˇ; ˛; ˛2 C ˇ3; ˇ22; ˇ3; 4/. It is smoothable by Corollary 3.9 and we
check computationally that L is smooth. ut

Proposition 4.4 For the Hilbert function h D .1; 3; 4; 3/, we have Hh
3 	 R113 .

Proof The standard graded Hilbert scheme H h
3 is a union of two irreducible sets.

We will provide a smooth and smoothable point in each of them.
Let I 	 T , I 2 H h

3 be a homogeneous ideal such that A D T=I has Hilbert
function h. Then dim I2 D 2. By Lemma 3.1, the space of cubics generated by the
quadrics in I2 can have dimension either 6 or 5, and the latter occurs exactly when
the quadrics share a linear factor. Let P 	H h

3 be the set of ideals I whose quadrics
generate a six-dimensional space of cubics and let Q 	 H h

3 be the set of ideals I
whose quadrics generate a five-dimensional space of cubics. Then H h

3 D P [ Q.
We claim that each of P and Q is irreducible.

The subset P is parametrized by pairs of spaces .K;M/, where K is a two-
dimensional subspace of T2, not of the form spanf` � `1; ` � `2g, and M is a
seven-dimensional subspace of T3 that contains K �T1, equivalently a line in T3=K �T1.
Thus, P is realized as a projective bundle with fibre P.T3=K �T1/ over an open subset
of Gr.2;T2/. In particular, P is irreducible.
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In the subset Q, the quadrics q1; q2 that span I2 have the form q1 D ` � `1 and
q2 D ` � `2 for some lines `; `1; `2. This component is parametrized by a triple
.`;L;N/, where ` 2 T1 is the common line, L D .`1; `2/ 	 T1 is the space spanned
by the other two lines, and N is a seven-dimensional space of T3 that contains the
five-dimensional space ` � L � T1. It follows that Q is isomorphic to a Grassmannian
bundle with fibre Gr.7 � 5;T3=` � L � T1/, over a base Gr.1;T1/ � Gr.2;T1/; it is,
therefore, irreducible.

Now Hh
3 D 
�1

h .P/ [ 
�1
h .Q/, and by Lemma 3.2 these are irreducible sets as

well. To complete this case, we provide a smooth and smoothable ideal for each set.
The ideal I D .˛2; ˇ2; 3; ˛ˇ2/ lies in P and, hence, also in 
�1

h .P/. It is monomial,
hence, smoothable by [8, Proposition 4.15] and it is easy to check computationally
that it is a smooth point. For 
�1

h .Q/ let I D .˛ˇ; ˛; ˛3 C 3; ˇ2; ˇ3; ˇ4/: Then
I is smoothable by Corollary 3.9 and once again a smooth point. ut

Proposition 4.5 For the Hilbert function h D .1; 3; 5; 2/, we have Hh
3 	 R113 .

Proof Let I 	 T , I 2 H h
3 be a homogeneous ideal such that A D T=I has

Hilbert function h. Then dim I2 D 1 and dim I3 D dim T3 � h.3/ D 8. The
standard graded Hilbert scheme H 3

h is parametrized by pairs .L;M/, where L is
some one-dimensional subspace of T2 and M is an eight-dimensional subspace
of T3 that contains the three-dimensional subspace L � T1. This parametrization
realizes an isomorphism of H h

3 to a Grassmannian bundle with base PT2 and fibre
Gr.8�3;T3=L�T1/, proving that H h

3 is irreducible. By Lemma 3.2, Hh
3 is irreducible

as well.
Now let I D .˛ˇ; ˛3; ˇ3; 3; ˛2; ˛2Cˇ2/: One can check that I 2 Hh

3 . Since
˛ˇ2; ˛2 2 I and ˛2 … IC .ˇ; /, Corollary 3.8 with c D 2 implies I is smoothable.
Finally one can check computationally that I is a smooth point. ut

Case h D .1; 3; 4; 2 ; 1/

Proposition 4.6 For the Hilbert function h D .1; 3; 4; 2; 1/, we have Hh
3 	 R113 .

Proof Let I 2 H h
3 be a homogeneous ideal with inverse system J. Let f 2 J4

and let hf be the Hilbert function of hf i. Since hf i 	 J we have hf � h. By
Proposition 2.15 and the Macaulay bound (Theorem 2.3), the Hilbert function hf

must be .1; 2; 3; 2; 1/, .1; 2; 2; 2; 1/, or .1; 1; 1; 1; 1/.
If hf D .1; 2; 3; 2; 1/, then see Lemma 4.7. If hf D .1; 2; 2; 2; 1/ then, by

Remark 2.17, we can choose coordinates so that f D x4 C y4 or f D x3y. For
f D x4 C y4 see Lemma 4.8 and for f D x3y see Lemma 4.9. If hf D .1; 1; 1; 1; 1/,
then see Lemma 4.10. ut

Lemma 4.7 Let h D .1; 3; 4; 2; 1/ and let I 2 H h
3 be a homogeneous ideal with

inverse system J. If the degree 4 generator f of J is such that the Hilbert function of
hf i is .1; 2; 3; 2; 1/, then we have 
�1

h .I/ 	 R113 .

Proof Let I0 2 
�1
h .I/ with inverse system J0. Let F be the degree 4 generator of

J0, so that f is the leading form of F. We will construct a family J0
t so that J0

1 D J0

and J0
0 is hx2y2; z2i, hx2y2; zxi, or hx2y2; z.x C y/i. First change coordinates so that



336 T. Douvropoulos et al.

f 2 kŒx; y�. Then x2; xy; y2 2 hf i2 	 J0, so J0
�2 is spanned by fx2; xy; y2;Q; S�1g for

a quadratic form Q 2 kŒx; y; z�. Write Q D cxzC dyzC ez2. If e ¤ 0 then changing
coordinates by replacing z with a suitable linear combination of x; y; z to complete
the square eliminates the xz and yz terms and takes Q to z2 modulo x2; xy; y2. So
either J0 D hF; z2i or J0 D hF; z.cxC dy/i.

Write F D f C g, deg g � 3. By well-known facts about binary forms (see [30,
Theorem 1.43]), we have f D `41 C `

4
2 C `

4
3 for some nonproportional linear forms

`i 2 kŒx; y�. Observe that 18x2y2 D .xC y/4 C !.xC !y/4 C !2.xC !2y/4 where
! is a cube root of unity. We change coordinates in kŒx; y� so that `1 D x C y and
`2 D !

1=4.xC !y/. Let ft D `41C `
4
2C .t`3C .1� t/!1=2.xC !2y//4, Ft D ft C tg,

and J0
t D hFt;Qi.

It is easy to check that F1 D F, F0 D 18x2y2, and for all but finitely many t, hfti
has Hilbert function .1; 2; 3; 2; 1/ and J0

t has Hilbert function .1; 3; 4; 2; 1/. Then
lim J0

t D J0
0 D h18x2y2;Qi D hx2y2;Qi, as in Definition 2.23. Rescaling x and

y and interchanging if necessary, Q is one of z2, zx, or z.x C y/. Now hx2y2; z2i?

and hx2y2; zxi? are monomial ideals, hence smoothable. The family .2; ˛ �

ˇ; ˇ2; ˇ3; ˛3C t˛2/ shows that hx2y2; z.xC y/i? D .2; ˛ � ˇ; ˇ2; ˇ3; ˛3/ is
smoothable. So all three points are smoothable and it is easy to check that each one
is a smooth point. Hence, the irreducible (one-dimensional) family f.J0

t/
?g 	 R113 ,

in particular I0 D .J0
1/

? 2 R113 . ut

Lemma 4.8 Let h D .1; 3; 4; 2; 1/ and let I 2 H h
3 be a homogeneous ideal with

inverse system J. If the degree 4 generator of J is of the form `4 C m4 for some
independent linear forms `;m 2 S1, then we have 
�1

h .I/ 	 R113 .

Proof Assume ` D x, and m D y. Let I0 2 
�1
h .I/ with inverse system J0. We will

apply Corollary 3.8. Consider the degree four generator F D x4Cy4Cg 2 J0, where
deg g � 3. Since x2 2 J we can subtract the x2 term out of g. Then the only terms
of g divisible by x2 are possibly x3, x2y, x2z. After a non-linear coordinate change as
in Example 3.6 we may assume that there are no such terms. Then ˛2 ı F D 12x2,
so ˛2 62 F? C .ˇ; /. Moreover ˛2ˇ and ˛2 annihilate F and so its partials lie
in I0. Therefore, the assumptions of Corollary 3.8 for c D 2 are satisfied and I0 is
cleavable. By Lemma 1.4, it is smoothable. ut

Lemma 4.9 Let h D .1; 3; 4; 2; 1/ and let I 2 H h
3 be a homogeneous ideal

with inverse system J. If the degree 4 generator of J is of the form `3m for some
independent linear forms `;m 2 S1, then we have 
�1

h .I/ 	 R113 .

Proof Assume ` D x, m D y, so that J D hx3y;Q1;Q2i for some quadratic forms
Q1;Q2. Let I0 2 
�1

h .I/ with inverse system J0. We will show I0 is smoothable by
writing it as a limit of smoothable points. Note, J0 D hx3yC g3C g2;Q1;Q2i where
gi is a form of degree i for i D 2; 3. We introduce a parameter t and let yt D xC ty.
Observe that limt!0.y4t � x4/=4t D x3y. For general t we will define a form g3.t/ so
that J0

t D h.y
4
t � x4/=4tC g3.t/C g2;Q1;Q2i ! J0 in the sense of Definition 2.23.

To define g3.t/, first note that  ı g3 2 J2 D spanfx2; xy;Q1;Q2g. For i D 1; 2

let Q]
i D

∫
Qi dz be a homogeneous form of degree 3 so that  ı Q]

i D Qi. Write
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g3 D ax2zC bxyzC cQ]
1 C dQ]

2 C e.x; y/ for some scalars a; b; c; d and a 3-form e.
Now we define g3.t/ D ax2zC .b=2t/.y2t � x2/zC cQ]

1 C dQ]
2 C e.x; y/.

Now  ı g3.t/ 2 spanfx2; y2t ;Q1;Q2g, hence, lead.J0
t/ D hy

4
t � x4;Q1;Q2i. Since

dim J2 D 4 we have xy 62 spanfx2;Q1;Q2g. Since xy D limt!0.y2t � x2/=.2t/
we also have y2t 62 spanfx2;Q1;Q2g for general t. For such t the space .lead.J0

t//2
has dimension 4, which means that lead.J0

t/ and J0
t have Hilbert function h. Also

limt!0 g3.t/ D g3. Therefore, limt!0 J0
t D J0, as desired. By Lemma 4.8, each .J0

t/
?

with t ¤ 0 is smoothable, which implies I0 D lim.J0
t/

? is smoothable as well. ut

Lemma 4.10 Let h D .1; 3; 4; 2; 1/ and let I 2 H h
3 be a homogeneous ideal with

inverse system J. If the degree 4 generator f of J is such that the Hilbert function of
hf i is .1; 1; 1; 1; 1/, then we have 
�1

h .I/ 	 R113 .

Proof By Remark 2.17, we can choose coordinates such that f D z4. Let V 	 H h
3

be the set of ideals I satisfying the hypothesis; V D fI 2 H h
3 W I 	 .z4/?g: For

I 2 V , we have dim I2 D 2 and dim I3 D 8. Lemma 3.1 shows that dim T1 � I2 is
either 5 or 6. Let V1 	 V be the set of I such that dim T1 � I2 D 6 or, equivalently,
the quadrics in I2 have no common factor. Let V2 	 V be the set of I such that
dim T1 � I2 D 5 and I2 D spanf``1; ``2g for some linear forms `; `1; `2 such that

spanf`1; `2g 
 z? D spanf˛; ˇg

(necessarily equality must hold). And let V3 	 V be the remainder, the set of I such
that dim T1 � I2 D 5 and I2 D spanf``1; ``2g for some linear forms `; `1; `2 such that
spanf`1; `2g 6	 z?. We will show that each Vi and each 
�1

h .Vi/ is irreducible, and
give a smooth and smoothable point on each 
�1

h .Vi/.
First, every ideal I 2 V is determined by .I2; I3/. Suppose I 2 V1. The subspace

I2 	 .z2/? is parametrized by an open subset of Gr.2; .z2/?/ D Gr.2; 5/. And then
I3 	 .z3/? is such that T1 � I2 	 I3. The quotient I3=T1 � I2 is a two-dimensional
subspace of .z3/?=T1 � I2. So for each choice of I2, I3 may be chosen from Gr.8 �
6; .z3/?=T1 � I2/ D Gr.2; 3/. This shows V1 is a Grassmannian bundle over an open
subset of a Grassmannian, in particular irreducible. Let I2 D spanfq1; q2g. Since
I 2 V1, there are no lines `1; `2 such that `1q1 C `2q2 D 0. By Lemma 3.3 and
Remark 3.4, the fibre 
�1

h .I/ is a certain product of affine spaces. Explicitly it is
T23 � T44 , corresponding to cubic terms that may be added to the quadric generators
of I and quartic terms that may be added to the quadric and cubic generators of I.
This makes 
�1

h .V1/ a (trivial!) vector bundle over V1, hence, irreducible. A smooth
and smoothable point in 
�1

h .V1/ is given by hyz; x2y; z4i? D .˛; ˇ2; ˇ2; ˛3; 5/.
It is smoothable because it is a monomial ideal and we check computationally that
it is a smooth point. This shows that 
�1

h .V1/ 	 R113 .
If I 2 V2 then I2 D `�spanf˛; ˇg for some linear form `, so I2 is determined by the

choice of Œ`� 2 PT1. As before, for each choice of `, I3 may be chosen from Gr.8 �
5; .z3/?=T1 � I2/ D Gr.3; 4/. Again this makes V2 a Grassmannian bundle over an
irreducible base, so V2 is irreducible. By Remark 3.4, 
�1

h .V2/ is a trivial subbundle
of a trivial vector bundle over V2, namely 
�1

h .V2/ 	 V2 � .T23 � T54 / is defined
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by ˇa1 � ˛a2 2 I4 D .z4/?, where a1; a2 are the cubic terms added to the quadric
generators `˛; `ˇ. Hence, 
�1

h .V2/ is irreducible. A smooth and smoothable point
in this set is given by the limit of the flat family .˛; ˇ; ˇ3 C 4; ˛3 � t � ˛2; ˛2ˇ/.

If I 2 V3 then, writing I2 D spanf``1; ``2g, we must have ` ı z D 0, since for at
least one of i D 1; 2 we have `i ı z ¤ 0, but ``i ı z2 D 0. Now ` may be chosen
from z? and spanf`1; `2g may be chosen to be any two-dimensional subspace of T1
other than z?. It follows that the choice of I2 is parametrized by an open subset of
P.z?/ � Gr.2;T1/. Once again, for each choice of I2, I3 may be chosen from the
Grassmannian Gr.8 � 5; .z3/?=T1 � I2/ D Gr.3; 4/. Hence, V3 is a Grassmannian
bundle over an irreducible base, in particular irreducible. By Remark 3.4, 
�1

h .V3/
is a (nontrivial) subbundle of a trivial vector bundle over V2, namely 
�1

h .V3/ 	
V3 � .T23 � T54 / is defined by `2a1 � `1a2 2 I4 D .z4/? where, as before, a1; a2
are the cubic terms added to the quadric generators ``1; ``2. Hence, 
�1

h .V3/ is
irreducible. The ideal .ˇ2; ˇ; ˛3; ˛2; ˛2; 5/ 2 V3 is smoothable because it is
monomial and we check computationally that it is smooth. ut

Case h D .1; 3; 2 ; 2 ; 2 ; 1/

Lemma 4.11 If h D .1;h.1/; : : : ;h.k/; 2; : : : ; 2; 1/ such that h.i/ D dim Si for
all i � k and h has at least two 2s and a 1 in the last position, then the standard
graded Hilbert scheme H h

n is irreducible. Each ideal I 2 H h
n is the apolar ideal

J? of an inverse system J of one of the following forms: h`d C md; Ski, h`d�1m; Ski,
h`d;md�1; Ski, h`d; `d�2m; Ski for some linear forms `;m.

Proof Say the last 1 is in degree d, let J be a homogeneous inverse system with
Hilbert function h, and let f 2 J be the d-form that appears. Either hf i has Hilbert
function .: : : ; 2; 2; 1/ or .: : : ; 1; 1; 1/. In the first case f D `d C md or f D `d�1m,
and J is generated by f together with Sk. The second type is a limit of the first type,
similarly to Example 2.24.

In the second case f D `d and there is a generator g of degree d�1. Note g has at
most 2 first derivatives since hgid�2 
 Jd�2. So hgi has Hilbert function .: : : ; 2; 1; 0/
or .: : : ; 1; 1; 0/. If it is .: : : ; 1; 1; 0/ then g D md�1 for a linear form m independent
from `. If the Hilbert function of g is .: : : ; 2; 1; 0/ then `d�2 2 hgid�2, so g D `d�2m
for a linear form m independent from `.

So either g D `d�2m or g D md�1. Correspondingly, either J D h`d; `d�2m; Ski

or J D h`d;md�1; Ski. Both of these can be obtained as limits of inverse systems of
the first two forms in appropriate ways, using Proposition 2.22. Explicitly, we have
h`d; `d�2m; Ski D lim

t!0
h`d�1.`C tm/; Ski and h`d;md�1; Ski D lim

t!0
h`dC tmd; Ski. ut

Proposition 4.12 For the Hilbert function h D .1; 3; 2; 2; 2; 1/, we have Hh
3 	 R113 .

Proof By Lemma 4.11, every homogeneous ideal in H h
3 is the apolar ideal of an

inverse system which is isomorphic to one of the following: J1 D hx5 C y5; zi,
J2 D hx4y; zi, J3 D hx5; y4; zi, or J4 D hx5; x3y; zi. We may dispose of the first two
cases easily. We compute I2 D J?

2 D .˛5; ˇ2; ˛; ˇ; 2/. Then I2 is smoothable
because it is a monomial ideal and one can easily check computationally that it is
a smooth point. By Lemma 3.5, the smooth and smoothable point I2 lies in every
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component of the fibre 
�1
h .I2/, which shows that each irreducible component of

the fibre is contained in R113 .
Similarly, I1 D J?

1 D .˛5 � ˇ5; ˛ˇ; ˛; ˇ; 2/ is smooth and it is smoothable
by Corollary 3.9. Using Lemma 3.5 again, this smooth and smoothable point lies in
each irreducible component of the fibre, so each irreducible component of the fibre
is contained in R113 .

Now we consider the last two cases, where one finds that the homogeneous ideals
J?
3 , J?

4 are not smooth points (although they are monomial, hence, smoothable).
So we need to develop a more detailed description of the fibres in these cases. In
Lemma 4.13 we show that the fibre 
�1

h .J?
3 / is contained in R113 and in Lemma 4.14

we do the same for J4. ut

Lemma 4.13 If h D .1; 3; 2; 2; 2; 1/ and J D hx5; y4; zi, I D J?, then we have

�1

h .I/ 	 R113 .

Proof First we will show that the fibre 
�1
h .I/ is irreducible, then we will display

a smooth and smoothable point in the fibre. To begin, I is generated by f1 D ˛ˇ,
f2 D ˛ , f3 D ˇ , f4 D 2, ˇ5, ˛6. If I0 2 
�1

h .I/, then we have

I0 D .F1;F2;F3;F4; ˇ
5/C .˛; ˇ; /6 ; (1)

where Fi D fi C gi and each gi involves monomials of degree 3 or greater that are
not in I. Those monomials are ˛3; ˇ3; ˛4; ˇ4; ˛5. We can write, for each 1 � i � 4,
gi D ai˛

3 C biˇ
3 C ci˛

4 C diˇ
4 C ei˛

5. This embeds the fibre 
�1
h .I/ into A

20

with coordinates a1; : : : ; e4. It remains to find its equations, that is, determine which
ideals I0 of the form (1) have initial ideal I. We claim that 
�1

h .I/ is defined by the
equations

b2 D a3 D a4 D b4 D a1a2 C c3 D a22 C c4 D 0: (2)

Since in.I0/ � I and dim T= in.I0/ D dim T=I0 we have in.I0/ D I if and only if
dim T=I D dim T=I0. Consider the elements Qgi D a1˛3C biˇ

3C t � .ci˛
4C diˇ

4/C

t2 � ei˛
5 2 TŒt� and QFi D fi C t Qgi. Define the ideal

QI0 D . QF1; QF2; QF3; QF4; ˇ
5/C .˛; ˇ; /6: (3)

Clearly, the fibre of QI0 over t D 1 is I0 and over t D 0 is I. Also the family is flat
over kŒt˙1� because of the torus action. Therefore, QI0 is flat if and only if all fibres
have the same length, if and only if dim T=I0 D dim T=I. That is, I0 2 
�1

h .I/ if and
only if QI0 is flat. Flatness of QI0 is equivalent to the following condition; see [1, p. 11]
or [23, Corollary 7.4.7].

Every relation
∑

firi D 0 with ri 2 T lifts to
∑
QFiRi D 0 with Ri 2 TŒt�:
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That is, there exist R0
i 2 TŒt� such that 0 D

∑
QFi.ri C tR0

i/ D
∑

rifi C t
∑

ri Qgi C

t
∑

R0
i
QFi, equivalently

∑
ri Qgi D �

∑
R0

i
QFi 2 QI0. So QI0 is flat if and only if the

following holds.

For every relation
∑

firi D 0 with ri 2 T we have
∑
Qgiri 2 QI0: (4)

The relations between the fi are the syzygies of I. They are generated by four
linear syzygies, two quartic syzygies, and two quintic syzygies (direct check). It
is enough to check (4) for those generators. Since QI0 � .˛; ˇ; /6, the property (4)
is automatically satisfied for quartic and quintic syzygies. The linear generators are
given by  f1 D ˇf2, ˇf2 D ˛f3,  f2 D ˛f4, and  f3 D ˇf4 By (4), the fibre is cut out
by the conditions  Qg1�ˇ Qg2 2 QI0, ˇ Qg2�˛ Qg3 2 QI0,  Qg2�˛ Qg4 2 QI0, and  Qg3�ˇ Qg4 2 QI0.
We now check that they unfold into (2). Consider an ideal I0 2 
�1

h .I/. The element
 Qg1 � ˇ Qg2 lies in QI0 by (4). Since

 Qg1 � ˇ Qg2 D a1˛
3 C b1ˇ

3 � a2˛
3ˇ � b2ˇ

4

C t.c1˛
4 C d1ˇ

4 � c2˛
4ˇ � d2ˇ

5/C t2.e1˛
5 � e2˛

5ˇ/

lies in QI0, its initial form lies in I, which implies b2 D 0. Similarly, by considering
the initial forms of  Qg1 � ˛ Qg3 2 I0 we deduce that a3 D 0; from  Qg2 � ˛ Qg4 2 I0 we
get a4 D 0; from  Qg3 � ˇ Qg4 2 I0 we get b4 D 0. Note the following relations:

˛3ˇ � �a1t˛
5; ˛3 � �a2t˛

5; ˇ3 � �b3tˇ
5 .mod QI0/:

Using these relations, together with b2 D a3 D a4 D b4 D 0, we check that

ˇ Qg2 � ˛ Qg3 � �t.a1a2 C c3/˛
5 .mod QI0/:

This implies that �t.a1a2 C c3/˛5 2 QI0, so by evaluating at t D 1 we get .a1a2 C
c3/˛5 2 I0. Hence, the leading form .a1a2C c3/˛5 is in I. Therefore, a1a2C c3 D 0.
Similarly,  Qg2 � ˛ Qg4 � �.a22 C c4/˛5 .mod QI0/ which gives the condition a22 C
c4 D 0, whereas for  Qg3 � ˇ Qg4 and  Qg1 � ˇ Qg2 we get trivially zero. Thus, (2) is
satisfied for every I0 in the fibre. Conversely, the above reasoning implies that each
I0 satisfying (2) lies in the fibre. This shows that the fibre is irreducible, in fact
isomorphic to A

14 via projection to the coordinates a1, a2, b1, b3, c1, c2, d1; : : : ; e4.
Finally, let I0 D .˛6; ˇ5; ˛ˇ; ˛; ˇ C ˛5; 2/. It is smoothable by Corollary 3.9.

We verify computationally that I0 is a smooth point. ut

Lemma 4.14 If h D .1; 3; 2; 2; 2; 1/ and J D hx5; x3y; zi, I D J?, then we have

�1

h .I/ 	 R113 .

Proof The proof directly follows the argument of Lemma 4.13. The ideal I is
generated by f1 D ˛ , f2 D ˇ2, f3 D ˇ , f4 D 2, ˛4ˇ, ˛6. Let I0 2 
�1

h .I/.
Then



The Hilbert Scheme of 11 Points in A
3 is Irreducible 341

I0 D .F1;F2;F3;F4; ˇ
5/C .˛; ˇ; /6; (5)

where Fi D fi C gi and gi D ai˛
3 C bi˛

2ˇ C ci˛
4 C di˛

3ˇ C ei˛
5. The syzygies

among fi’s are again generated by linear, quartic, and quintic syzygies. The linear
generators are ˇf1�˛f3,  f1�˛f4,  f2�ˇf3,  f3�ˇf4. An analysis of the resulting
conditions gives the following equations for 
�1

h .I/:

a1 � b3 D a3 D a4 D b4 D a2b1 C c3 D a21 C c4 D 0: (6)

This shows that the fibre 
�1
h .I/ is irreducible, in fact isomorphic to A

14 via pro-
jection to the coordinates a1; a2; b1; b2; c1; c2; d1; : : : ; e4. A smooth and smoothable
point in the fibre is I0 D .˛6; ˛4ˇ; ˛; ˇ2; ˇ; 2 C ˛5/: It is smoothable by
Corollary 3.9 and is computationally verified to be a smooth point. ut

Case h D .1; 3; 3; 2 ; 2/

Lemma 4.15 Let f 2 kŒx; y� be a homogeneous form of degree d with d � 3. Either
f D `d C md or f D `d�1m for some linear forms ` and m, or else f is determined
up to scalar multiple by the subspace hf id�1, in the sense that if f ¤ `dCmd; `d�1m
and g 2 kŒx; y� is a homogeneous form of degree d such that hf id�1 D hgid�1, then
g is a scalar multiple of f .

Proof If f D `d for a linear form `, then we have hgid�1 D hf id�1 D spanf`d�1g,
so g is a scalar multiple of `d. Otherwise let I D f ? and J D g?. The assumption
hf id�1 D hgid�1 means Id�1 D Jd�1. Assuming f ¤ `d; `d C md; `d�1m means that
f ? has no generators of degree � d by [5, Proposition 1.6, Theorem 1.7]. So Id is
determined by Id�1 D .hf id�1/

?. Since Jd�1 D Id�1, these generate the same degree
d part, Jd D Id. But Jd is perpendicular to g while Id is perpendicular to f , so g and
f are linearly dependent. ut

Proposition 4.16 For the Hilbert function h D .1; 3; 3; 2; 2/, we have Hh
3 	 R113 .

Proof Let J be a graded inverse system in S D kŒx; y; z� with Hilbert function
.1; 3; 3; 2; 2/. Then dim J4 D 2, say J4 D spanff ; gg. Each f ; g has first derivatives
in J3, so each f ; g involves at most two variables. If both hf i and hgi have Hilbert
function .1;�;�; 1; 1/, then f D `4, g D m4 for independent linear forms `;m,
and we change coordinates so .f ; g/ D .x4; y4/. Otherwise at least one, say hf i,
has Hilbert function .1;�;�; 2; 1/. Then by Proposition 2.16 there is a coordinate
change so that f 2 kŒx; y�. We have hgi3 
 J3 D hf i3 	 kŒx; y�. This shows that
˛ ı g; ˇ ı g;  ı g have no terms involving z. This implies g has no terms involving
z. So g 2 kŒx; y� as well.

Now there are various cases, according as f D `4Cm4 (which we may take to be
x4Cy4 after a change of coordinates), f D `3m (equivalently, x3y), or something else;
and dimhgi3 D 1 or 2. In every case one checks that either spanff ; gg D spanfx4; y4g
or spanff ; gg D spanfx4; x3yg, after a change of coordinates.

In either case, J is generated by J4, some quadratic form Q, and possibly
linear forms: J is generated, possibly redundantly, either by fx4; y4;Q; x; y; zg or by
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fx4; x3y;Q; x; y; zg, where Q is linearly independent from fx2; y2g in the first case or
fx2; xyg in the second case.

Now we claim that there is an automorphism of S1 D spanfx; y; zg that takes
J to one of the following. If J4 is generated by x4; y4, then we claim there is an
automorphism taking J to the inverse system generated by fx4; y4;Q; x; y; zg where
Q 2 fz2; z2 C xy; z.xC y/; zx; xyg. If J4 is generated by x4, x3y, then we claim there
is an automorphism taking J to the inverse system generated by fx4; x3y;Q; x; y; zg
where Q 2 fz2; z2 C y2; yz; y2 C xz; y2; xzg.

First suppose J is generated by x4; y4;Q; x; y; z. Write Q D axyCbxzCcyzCdz2,
where we can eliminate x2; y2 terms since x2; y2 2 J2. If d ¤ 0 then replacing z
with a suitable linear combination of z; x; y allows us to eliminate the xz; yz terms
by completing the square, as well as simultaneously rescaling z to get rid of the
coefficient d. Then Q D a0xy C z2. If a0 D 0 then Q D z2, and if a0 ¤ 0 then
rescaling x; y gives Q D z2 C xy. On the other hand, if d D 0, then rescaling x; y; z
allows us to get rid of the coefficients a; b; c, so we may assume each of them is 0 or
1. This shows Q 2 fz2; z2C xy; xyC xzC yz; xyC xz; xyC yz; xzC yz; xy; xz; yzg. By
symmetry, interchanging x and y allows us to eliminate the cases xyCyz; yz because
these are isomorphic to xyC xz; xz. Replacing z with z� y takes xyC xz D x.yC z/
to xz. Similarly, replacing z with z � y sends xyC xzC yz to xzC yz � y2 and

spanfx2; y2; xzC yz � y2g D spanfx2; y2; xzC yzg ;

so this case is also equivalent to Q D xz. This finishes the analysis of the case
J4 D spanfx4; y4g.

The case J4 D spanfx4; x3yg is similar. Instead of a symmetry interchanging x
and y, we can replace y with y C ax, since spanfx4; x3yg D spanfx4; x3.y C ax/g.
Write Q D axz C by2 C cyz C dz2, after eliminating x2; xy terms. If d ¤ 0 then
a substitution for z eliminates xz; yz terms, yielding Q D b0y2 C z2. Rescaling y
if necessary, Q D z2 or Q D y2 C z2. If d D 0 then rescaling x; y; z to eliminate
the a; b; c coefficients gives Q 2 fxzC y2 C yz; xzC y2; xzC yz; y2 C yz; xz; y2; yzg.
Appropriate substitutions for y and z take the cases xzC y2C yz; xzC yz; y2C yz all
to yz.

By Lemma 3.3, each fibre over a point in H h
3 is irreducible. Thus, it suffices to

find a smooth and smoothable inverse system J0 such that lead.J0/ D J for each of
the normal forms J. For the case that J4 is spanned by x4 and y4 see Table 1. For the
case that J4 is spanned by x4 and x3y see Table 2. ut

Case h D .1; 3; 3; 3; 1/

We consider separately a special case, where the quadrics in the inverse systems
have a most special form.

Proposition 4.17 Let h D .1; 3; 3; 3; 1/, let I 2 Hh
3 and let J be its inverse system.

Suppose x2; xy; y2 2 J. Then I is contained in the smoothable component.

Proof The inverse system J has a quartic generator and its leading form f is uniquely
determined. Since h.2/ D 3 and x2; xy; y2 2 lead.J/, we see that f 2 kŒx; y�. We
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Table 1 Smooth and smoothable inverse systems J0 with Hilbert function .1; 3; 3; 2; 2/ and
lead.J0/4 spanned by x4, y4

Q J0 Deformation of ideal of J0

z2 C xy hx4; y4; z2 C xyi .ˇ; 2˛ˇ � 2; ˛; ˛5; ˇ5 C tˇ4/

z2 hx4 C x2y C x2z C z3; y4; z2i .ˇ; ˛ˇ � ˛; 3˛2 � 3; ˛3 � 12˛; ˇ5 C tˇ4/

xy hx4Cx2yCx2zCxy2; y4; xy; zi .2; ˇ; ˛ˇ2 � ˛2; ˛2ˇ � ˛2; ˛3 � 12˛; ˇ5 C
tˇ4/

xz hx4 C xz2; y4; xzi .ˇ; ˛ˇ; ˛2; ˛3 � 122; ˇ5 C tˇ4/

.x C y/z hx4; y4; xz C yzi .2; ˛ � ˇ; ˛ˇ; ˇ5; ˛5 C t˛4/

Table 2 Smooth and smoothable inverse systems J0 with Hilbert function .1; 3; 3; 2; 2/ and
lead.J0/4 spanned by x4, x3y

Q J0 Deformation of ideal of J0

z2 hx4; x3y C x2z C z3; z2i .ˇ; ˇ2; 3˛2 � 3; ˛2ˇ � 3˛; ˛5 C t˛4/

z2 C y2 hx4; x3y; y2 C z2i .ˇ; ˛; ˇ2 � 2; ˛4ˇ; ˛5 C t˛4/

yz hx4; x3y C x2z; yzi .2; ˇ2; ˛ˇ; ˛2ˇ � 3˛; ˛3; ˛5 C t˛4/

y2 C xz hx4 C 2x2z; x3y C xyz; y2 C xzi .2Ct; ˇ2; ˇ3; ˛ˇ2; ˛2ˇ�6ˇ; ˛3�6˛C3ˇ2/

y2 hx4 C 2x2z; x3y C x2z C
xyz; y2; zi

.2; ˇ2; ˇ3 C tˇ2; ˛ˇ2; ˛2ˇ � 6ˇ; ˛3 � 6˛ C
12ˇ/

xz hx4; x3y C x2z C xz2; xzi .ˇ; ˇ2; ˛2 � ˛2; ˛2ˇ � 32; ˛5 C t˛4/

consider two cases. In each case we show that the space of possible J is irreducible
and find a smooth and smoothable point there.

Suppose f is annihilated by a linear form in kŒ˛; ˇ�; up to coordinate change, we
have f D x4. Consider the family of tuples .x4 C c C q; c1 C q1; c2 C q2; x; y; z/;
where ci, c are cubics and qi, q are quadrics, with the condition that  ı c; ˇ ı c lie
in spanfx2; xy; y2g and also all derivatives of ci lie in spanfx2; xy; y2g. The space of
polynomial tuples satisfying these conditions is an affine space. Each inverse system
K generated by a tuple as above has Hilbert function at most .1; 3; 3; 3; 1/. Thus,
a general one has Hilbert function exactly .1; 3; 3; 3; 1/. Denote the irreducible
family of such K’s by F . Then F gives a morphism to the Hilbert scheme Hh

3

and the image contains J. The image contains also J0 D hx4 C x2z; x2y; xy2; x; y; zi.
A deformation of its ideal is given by .ˇ; 2C t; ˇ3; ˛3 � 12˛; ˛2ˇ2/. For t ¤ 0
this is supported at more than one point, hence, J?

0 is smoothable. And J?
0 is smooth

as well, hence the whole image of F is contained in R113 by Lemma 1.3.
Suppose now f is not annihilated by a linear form in kŒ˛; ˇ�. Then the proof of

the previous case applies with the difference we consider the family of g C c C q,
c1 C q1 where g 2 kŒx; y�4 with the condition that  ı c and all derivatives of c1
lie in spanfx2; xy; y2g. The smooth and smoothable point is given by the inverse
system hx2y2 C xyz; x3; zi and a deformation of the corresponding ideal is given by
.2; ˇ2; ˛2; ˇ3; ˛ˇ2 � 4ˇ; ˛2ˇ � 4˛; ˛4 C ˛3t/. ut

Proposition 4.18 If h D .1; 3; 3; 3; 1/ and J is a graded inverse system with Hilbert
function h, then up to coordinate change the vector space J2 is the span of one of the
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following sets: fx2; xy; y2g, fx2; y2; z2g, fx2; yz; z2g, fxz; yz; z2g, and fx2 C yz; xz; z2g.
Setting A D T=.J?

2 /, we have dim A3 D 4when J2 D spanfx2; xy; y2g, and dim A3 D
3 otherwise.

Proof Let I WD .J?
2 /. By the Macaulay bound, we have dim A3 � .dim A2/h2i D

3h2i D 4. If dim A3 D 4, then by Lemma 3.1 the quadrics in I2 share a common
linear factor. After a change of coordinates, I2 is spanned by f2; ˇ; ˛g, so the
ideal J contains the quadrics x2; xy; y2.

To reduce to the case dim A3 D 3 or, equivalently, dim I3 D 7, we start with the
claim that, when I D .I2/ is generated by 3 quadrics and dim I3 D 7, then I is the
saturated ideal of a zero-dimensional degree 3 scheme in P

2. The space T1 ˝ I2 has
dimension 9 and maps by multiplication surjectively to T1 ˝ I2 ! I3, so the kernel
has dimension 2, which means there are 2 linear syzygies among the quadrics in I2.
The minimal free resolution of A D T=I is equal to

0 T  T.�2/˚3  T.�3/˚2 ˚ T.�4/˚q ˚ F0  T.�4/˚p ˚ F00  0;

where F0;F00 are sums of T.�i/ with i > 4. We will show that p D q D 0. First, if
p D ˇ3;4.I/ ¤ 0 then I contains the ideal `.˛; ˇ; / for some linear form `, by [14,
discussion following Theorem 8.15, p. 162]. But this is the case dim A3 D 4 which
we have already treated. Since we are now assuming dim A3 D 3, then we must have
p D 0. Next, we compute dim A4 by considering the free resolution above:

dim A4 D dim T4 � 3 dim T2 C .2 dim T1 C q dim T0/ � 0;

where the final 0 reflects p D 0. This gives dim A4 D 15� 3 � 6C 2 � 3C q D 3C q.
At the same time, 3C q D dim A4 � .dim A3/h3i D 3h3i D 3. So q D 0.

Now I is generated in degree 2 and dim A4 D .dim A3/h3i D 3. By the Gotzmann
Persistence Theorem, dim Ak D 3 for all k � 3. This shows Z D Proj A has Hilbert
polynomial 3, so Z D V.I/ 	 P

2 is zero-dimensional and has degree 3. To see that
I is saturated, let I0 be the saturation of I. Since the quadrics in I share no common
linear factor, Z is not contained in any line, so I0 contains no linear forms. Then
dim.T=I0/1 D 3. The Hilbert function of a saturated ideal is nondecreasing, so for
every k � 1, 3 D dim.T=I0/1 � dim.T=I0/k � dim.T=I/k D 3; which shows
I0 D I. This completes the proof of the claim that I is the saturated ideal of a degree
3 zero-dimensional scheme Z in P

2.
Since Z is cut out by quadrics, the intersection of Z with any line has degree at

most 2, so Z is one of the following.

• Z may be a disjoint union of three non-collinear reduced points. We change
coordinates so that Z D fŒ1 W 0 W 0�; Œ0 W 1 W 0�; Œ0 W 0 W 1�g. Then
I2 D spanf˛ˇ; ˛; ˇg.

• Z may be the union of a reduced point with a zero-dimensional scheme of degree
2. We choose coordinates so that the reduced point is Œ1 W 0 W 0� and the scheme
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of degree 2 is supported at Œ0 W 0 W 1� and is contained in the line spanned by
Œ0 W 0 W 1� and Œ0 W 1 W 0�. Then I2 D spanf˛ˇ; ˛; ˇ2g.

• Z may be a scheme of degree 3 supported at a point which we may take to be
Œ0 W 0 W 1�. Then after a change of coordinates either I2 D spanf˛2; ˛ˇ; ˇ2g or
I2 D spanf˛2 � ˇ; ˛ˇ; ˇ2g.

To see the last claim, observe that if q D `1`2 2 I2 is a reducible quadric then both
components `1; `2 pass through Œ0 W 0 W 1�, because Z is not contained in any single
line. If every quadric in I2 is reducible then I2 D spanf˛2; ˛ˇ; ˇ2g consists of all the
quadrics that are singular at Œ0 W 0 W 1�. Otherwise, there is a smooth quadric in I2
and we can choose coordinates so that it is q D ˛2�ˇ . A quadric q0 2 I2 intersects
q in Z plus one more point. If the extra point is also Œ0 W 0 W 1� then q0 D ˇ2C�q for
some scalar �. Otherwise q0 D `ˇ C �q where ` is the line through Œ0 W 0 W 1� and
the extra point. So I2 is spanned by q, ˛ˇ, and ˇ2. Now, having the normal forms of
Z, we calculate J2 as I?

2 , obtaining the list above. ut

Lemma 4.19 Fix a three-dimensional space of quadrics Q and a subspace A 	
h˛; ˇ; i. Suppose that the derivatives of Q span hx; y; zi. If the set J .Q;A/ of
inverse systems J satisfies

1. J has Hilbert function .1; 3; 3; 3; 1/,
2. Q equals J2, and
3. A is equal to the space of linear forms annihilating the quartic in lead.J/,

then J .Q;A/ is irreducible or empty.

Proof Suppose J .Q;A/ is non-empty. Let I D Q?. Let h be the Hilbert function
of T=I. By Proposition 4.18, we have either Q D spanfx2; xy; y2g up to coordinate
change or h.3/ D 3. The equality Q D spanfx2; xy; y2g is impossible, since
derivatives of Q span x; y; z. Thus, h.3/ D 3. The remaining part of the proof
resembles the proof of Proposition 4.17. Let a D dim A. Consider the set F of
tuples of polynomials

f C cC q; c1 C q1; : : : ; ca C qa 2 S; (7)

such that

1. f is homogeneous of degree four and annihilated by A (and possibly other linear
forms),

2. all ci and c are homogeneous of degree three,
3. all qi and q are homogeneous of degree two,
4. both f and all ci are annihilated by I,
5. the space A ı c is contained in Q.

All given conditions are linear in coefficients of polynomials, thus, F is an affine
space. Consider an open (possibly empty) subset F0 	 F consisting of tuples
where f is annihilated exactly by A and such that ci are linearly independent and
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spanfcig is disjoint from the space of partial derivatives of f . Then F0 is irreducible
as an open set in affine space.

Consider an inverse system J generated by all linear forms and a tuple in F0.
We now prove that its Hilbert function Qh is at most .1; 3; 3; 3; 1/ position-wise. By
Proposition 2.19, it is enough to show that the Hilbert function of lead.J/ is at most
.1; 3; 3; 3; 1/. It is clear that Qh.0/ D Qh.4/ D 1 and Qh.1/ � 3. All cubic terms in
lead.J/ are leading forms of combinations of ci and partials of f . Thus, they are
annihilated by I. The space of cubics annihilated by I has dimension h.3/ D 3, thus,
Qh.3/ � 3. Consider now the quadrics in lead.J/. They are combinations of leading
forms of partials of f , of ci and also of Aı c. All those forms lie in Q, thus, Qh.2/ � 3.
Therefore, we have Qh � .1; 3; 3; 3; 1/ position-wise.

Since .1; 3; 3; 3; 1/ is the maximal possible value of Qh, the set Fgen 	 F0

consisting of systems with Hilbert function .1; 3; 3; 3; 1/ is open and irreducible.
It gives a map to the Hilbert scheme whose image is J .Q;A/, which is irreducible
as well. ut

Proposition 4.20 For the Hilbert function h D .1; 3; 3; 3; 1/, we have Hh
3 	 R113 .

Proof Let J be a graded inverse system with Hilbert function h D .1; 3; 3; 3; 1/. It
has a unique degree 4 generator f . We subdivide the cases according to the Hilbert
function of the inverse system K generated by f . The Hilbert function is symmetric.
Using the Macaulay bound, we find that there are four different possible Hilbert
functions for K: .1; 1; 1; 1; 1/, .1; 2; 2; 2; 1/, .1; 2; 3; 2; 1/, and .1; 3; 3; 3; 1/.

Case .1; 3; 3; 3; 1/: The polynomial f generates the entire module, so J is Goren-
stein and every J0 in the fibre 
�1

h .J/ is also Gorenstein. By [33, Proposition 2.2]
or [32, Corollary 4.3], any Gorenstein subscheme of A

3 is smoothable, so all
such points J0 lie in the smoothable component of H11

3 .
Case .1; 2; 3; 2; 1/: Since f has two independent first derivatives, we know it

depends on only two variables, say x; y. Since it spans a three-dimensional set of
second derivatives, this will have to be hx2; xy; y2i and Proposition 4.17 completes
the proof in this case.

Case .1; 2; 2; 2; 1/: Let Q be the space of quadrics inside J. By Proposition 4.17,
we may assume that Q ¤ spanfx2; xy; y2g up to coordinate change, so that
derivatives of Q span x; y; z. By Proposition 4.18 and Lemma 4.19, we see that the
irreducible strata are determined by Q, which has to be equal to spanfx2; y2; z2g,
spanfx2; yz; z2g, spanfxz; yz; z2g, or spanfx2 C yz; xz; z2g, and by the linear forms
annihilating f (up to simultaneous coordinate change). It remains to check
which annihilators are possible for each Q. Let A D T=Q?. By the proof of
Proposition 4.18, this is a homogeneous coordinate ring of a zero-dimensional
subscheme of Proj T . If a linear form � annihilates f , then the intersection of
Proj A with the projective line .� D 0/ has degree at least two. For the four
cases, we directly check that the possible annihilators are ˛ or ˇ or  for
Q D spanfx2; y2; z2g, ˛ or ˇ for Q D spanfx2; yz; z2g, �1˛ C �2ˇ with �i 2 k

arbitrary for Q D spanfxz; yz; z2g, and ˇ for Q D spanfx2 C yz; xz; z2g. For the
first, third, and fourth case, there is a unique choice up to coordinate change.



The Hilbert Scheme of 11 Points in A
3 is Irreducible 347

Table 3 Smooth and smoothable points J0 with Hilbert function .1; 3; 3; 3; 1/ such that the
inverse system generated by f 2 J0

4 has Hilbert function .1; 2; 2; 2; 1/

Q .f ?/1 J0 Deformation of ideal of J0

spanfx2; y2; z2g  hx4 C y4; z3i .ˇ; ˛; ˛ˇ; 4 C t3; ˛4 � ˇ4/

spanfx2; yz; z2g ˛ hyz3; x3i Monomial ideal, so smoothable

spanfx2; yz; z2g ˇ hx4 C z4; yz2i .ˇ2 C tˇ; ˛; ˛ˇ; ˇ3; ˛4 � 4/

spanfxz; yz; z2g ˇ hxz3; yz2i Monomial ideal, so smoothable

spanfx2 C yz; xz; z2g ˇ hxz3; x2z C yz2i .ˇ2; ˛ˇ; ˛2 � ˇ; ˇ3; 4 C t3/

Table 4 Smooth and smoothable points J0 with Hilbert function .1; 3; 3; 3; 1/ such that the inverse
system generated by f 2 J0

4 has Hilbert function .1; 1; 1; 1; 1/

Q .f ?/1 J0 Deformation of ideal of J0

spanfx2; y2; z2g .˛; ˇ/ hz4CxzCxyCyz; x3; y3i .˛ � ˇ; ˛ˇ � ˇ; ˛2ˇ; ˛4 C
t˛3; ˇ4; 4 � 24˛ˇ/

spanfx2; yz; z2g .˛; ˇ/ hz4; x3 C y2; yz2i .˛; ˛ˇ; ˇ2; ˛3 C t˛2 �
3ˇ2; ˇ3; 5/

spanfx2; yz; z2g .ˇ; / hx4 C y2; yz2; z3i .˛; ˛ˇ; ˇ2; ˇ3; 4 C
t3; ˛3; ˛4 � 12ˇ2/

spanfxz; yz; z2g .˛; ˇ/ hy2z C z4; yz2; xz2i .˛ˇ; ˛2� t˛; 3�12ˇ2; ˇ3; ˇ22/

spanfx2 C yz; xz; z2g .˛; ˇ/ hz4 C y2; yz2 C x2z; xz2i .˛ˇ; ˛2 � ˇ; ˇ3; ˛3; ˇ3; 4 C
t3 � 12ˇ2/

Therefore, we have five distinct cases in total. The corresponding smooth and
smoothable points are presented in Table 3.

Case .1; 1; 1; 1; 1/: The argument is completely analogous to the previous case up
to the point where we determine possible .f ?/1 depending on Q. As before, let
A D T=Q?. An annihilator .�1; �2/ is possible if and only if l4 2 J, equivalently
Œl� 2 Proj A, where l is the linear form annihilated by .�1; �2/ and Œl� 2 Proj T is
its class. Hence, the possible annihilators in the four cases are .˛; ˇ/ or .ˇ; / or
.˛; / for Q D spanfx2; y2; z2g, .˛; ˇ/ or .ˇ; / for Q D spanfx2; yz; z2g, .˛; ˇ/
for Q D spanfxz; yz; z2g, and .˛; ˇ/ for Q D spanfx2 C yz; xz; z2g. The three
possibilities for Q D spanfx2; y2; z2g are equivalent, thus, we get five cases in
total. The list of smooth and smoothable points is presented in Table 4. ut

Case h D .1; 3; 3; 2 ; 1; 1/

Proposition 4.21 For the Hilbert function h D .1; 3; 3; 2; 1; 1/, we have Hh
3 	 R113 .

Proof Consider a local ideal I with Hilbert function h D .1; 3; 3; 2; 1; 1/, let J be
the inverse system of I, choose generators of J, and let f be the generator of J of
degree five. Let hf be the Hilbert function of the algebra T=f ? apolar to f . The case
decomposes into five subcases, depending on hf . Since f ? � I, T=f ? is a quotient
of A D T=I, so that hf � .1; 3; 3; 2; 1; 1/. If hf .3/ D 2 then hf .1/;hf .2/ � 2 by
Corollary 2.4.
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hf D .1; a; b; 1; 1; 1/: Here we argue exactly as in the proof of Proposition 4.2,
so we omit some details below. After a non-linear change of coordinates, we
may assume f D x5 C g with ˛2 ı g D 0. Since J is generated by f together with
elements of degree 3 or less, ˛3ˇ and ˛3 annihilate all of J. If q 2 .ˇ; / is such
that ˛c � q annihilates f , then c � 4; hence, ˛3 … I C .ˇ; /. Now Corollary 3.8
proves that the element is cleavable, hence, smoothable by Lemma 1.4.

hf D .1; 3; 3; 2; 1; 1/: In this case I D f ? and so A is Gorenstein, hence,
smoothable by [33, Proposition 2.2] or [32, Corollary 4.3].

hf D .1; 2; 3; 2; 1; 1/: After changing coordinates, we have J D hf ; zi, so A is
smoothable by Corollary 3.9.

hf D .1; 3; 2; 2; 1; 1/: In this case after a non-linear change of coordinates we
have f D g C z2 for g 2 kŒx; y� with Hilbert function .1; 2; 2; 2; 1; 1/, see [9,
Proposition 4.5, Example 4.6]. The set of those g is irreducible by a result of
Iarrobino [9, Proposition 4.8]. Thus, the set of f is also irreducible. J is generated
by f and a quadric q which may be chosen arbitrarily, modulo hf i2, thus, the set
of pairs .f ; q/ is irreducible. It is now enough to find a smooth or smoothable
point. Such a point is given by the ideal

I D hx5 C y4 C z2; xzi? D lim
t!0
.ˇ; ˛ˇ; ˛ˇ2; ˛2ˇ; ˇ4 C tˇ3 � 122; ˛5 � 602/ :

hf D .1; 2; 2; 2; 1; 1/: As in the previous case, after a nonlinear change of coor-
dinates we get f 2 kŒx; y� and the set of f 2 kŒx; y� is irreducible by [9,
Proposition 4.8]. J is generated by f and a quadric q with no relations. For general
q after adding a multiple of q to f we get fnew with hfnew D .1; 3; 2; 2; 1; 1/ and,
thus, reduce to the previous case. ut

Case h D .1; 3; 6; 1/

Proposition 4.22 For the Hilbert function h D .1; 3; 6; 1/, we have Hh
3 	 R113 .

This case is in contrast with previous ones. First, it is easy to check that
Hh
3 D H h

3 , that is, every local ideal with Hilbert function h is homogeneous. And
second, it is also easy to check that H h

3 is irreducible, in fact a P
9 D Gr.9; 10/. The

isomorphism is given by sending an ideal to all its cubic equations. However, in this
set there seem to be no smooth points. We argue by showing that general points in
H h
3 are smoothable, then by irreducibility so are all points.

Proof Let I 2 Hh
3 with inverse system J. Necessarily I and J are homogeneous. Let

f 2 J be the cubic generator, which is unique up to scalar. We see that Hh
3 D H h

3

is parametrized by the point Œf � in the projective space of cubics in three variables,
a P

9, so once again Hh
3 is irreducible. The cubic f is the equation of a plane cubic

curve. Assume it is a smooth curve. Then we may change coordinates so that f is in
Hesse normal form, that is f D x3 C y3 C z3 C 6hxyz for some h, see for example
[11, Sect. 3.1.2]. Now J D hf ; S2i. We may directly compute

I D J? D .˛ˇ2; ˛2ˇ; ˛2; ˛2; ˇ2; ˇ2; ˛3 � ˇ3; ˛3 � 3; ˛ˇ � h3/ :



The Hilbert Scheme of 11 Points in A
3 is Irreducible 349

Corollary 3.8 with c D 2 implies that I is cleavable and smoothable. Thus, all I
corresponding to smooth curves are smoothable, so by irreducibility Hh

3 	 R113 . ut

5 Smoothability of Very Compressed Algebras

In this section, we prove Proposition 1.2, in other words we show that each element
of H max;d is smoothable. We begin by noting that the scheme is irreducible.

Lemma 5.1 The locus H max;d is irreducible.

Proof A scheme in H max;d is uniquely determined by choice of I inside ms and
containing msC1. Hence, H max;d is a Grassmannian and, thus, irreducible. ut

To check smoothability, we verify that a general point of the stratum is obtained
as a k

�-limit, a notion which we now explain. The scaling (homothety) action of k
�

on A
3 extends to an action on P

3. Take a set 	 of d points in P
3. For every t 2 k

�

we may take t � 	 . The k
�-limit of 	 is 	 0 D limt!0.t � 	 /: This is a flat limit,

in the sense of [25, Proposition III.9.8]. It is constructed as follows. Take the graph
of the k

�-action, which is a family Zı
	 	 k

� � P
3; whose fibre over t 2 k

� is t	 .
This family is just the union of n lines in k

� � P
3 through the points .1; p/, where

p 2 	 . All its fibres are isomorphic to 	 and it is flat over k
�. Let Z	 	 k � P

3

be the closure of Zı
	 . This family is flat over k, see [25, Proposition III.9.8]. Finally

let 	 0 D Z	 \ .t D 0/: By construction, 	 0 is smoothable (as a limit of 	 ) and
k

�-invariant.
A general set 	 of d points imposes independent conditions on forms, hence the

ideal defining the limit scheme has no small-degree generators. For example, for
d D 11 the algebra 	 0 has Hilbert function h D .1; 3; 6; 1/. After restricting to
general 	 ’s, the k

�-limit can be made relative [8, Proof of Lemma 5.4] and we get
a rational map 'dWRd

P
3 Ü H max;d, where Rd

P
3 is the smoothable component of

the Hilbert scheme of points of P
3.

Lemma 5.2 The map 'd is dominating for all 8 � d � 95.

Proof First, we prove that for every 8 � d � 95 there is a smooth point
x 2 Rd

P
3 such that the tangent map T'd W

(
TRd

P
3
)

x !
(
TH max;d

)
'd.x/

is surjective.
This is verified by a direct computer calculation; see CombalggeomApprenticeship-
sHilbert.m2 [12]. By [24, Theorem 17.11.1d, p. 83] the morphism f is smooth at x,
thus flat, thus open, and thus the claim. ut

Proposition 5.3 For all d � 95 all schemes in H max;d are smoothable.

Proof By Lemma 5.1, the locus H max;d is irreducible. For d < 8 all schemes are
smoothable by [8]. Assume d � 8. By Lemma 5.2, the map 'd is dominating. Hence,
a general element of H max;d is smoothable. But smoothability is a closed property,
thus, all elements of H max;d are smoothable. ut
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Proof of Proposition 1.2 When d � 95 the claim follows from Proposition 5.3.
When d � 96 the claim follows by dimension count, as in [27]. ut

Remark 5.4 (Comparison with the Case of Eight Points in A
4) From the case d D

96 onwards we do not get a surjective tangent map and, indeed, the dimension of
the family H max;96 D H

.1;3;6;10;20;35;21/
3 is equal to 3 � 96, thus, a general member

of this family cannot be smoothable for dimensional reasons. (Points in H max;96

define schemes supported at a single point, so H max;96 would have to be contained
in the boundary of R963 .) This was the original example of [27]. Our methods show
that H max;d is smoothable for all d � 95, hence the bound d D 96 obtained in [27]
is sharp for this method. Note that in [28] another, only partially related, method
was used to prove that Hd

3 is reducible for d � 78. It is currently unclear whether
this other method can yield irreducible components for d � 77.

Even though T'd is not surjective for d � 96, we conjecture that the maps
T'd are of maximal rank. This is no longer true for A

4: in fact T'8 A4 has 20-
dimensional image in the 21-dimensional Grassmannian Gr.3; 10/, which accounts
for the fact that there are nonsmoothable ideals of degree 8 in A

4, as proven
in [8]. An explicit example of such a scheme in A

4 D Spec kŒ˛; ˇ; ; ı� is given
by the ideal .˛2; ˛ˇ; ˇ2; ˛ı C ˇ; 2; ı; ı2/ D hxz; xw; yz; yw; xy � zwi?, see [8,
Proposition 5.1]. This scheme gives an answer to [41, Problem 3 on Parameters and
Moduli].
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Towards a Tropical Hodge Bundle

Bo Lin and Martin Ulirsch

Abstract The moduli space Mtrop
g of tropical curves of genus g is a generalized

cone complex that parametrizes metric vertex-weighted graphs of genus g. For each
such graph 	 , the associated canonical linear system jK	 j has the structure of a
polyhedral complex. In this article, we propose a tropical analogue of the Hodge
bundle on Mtrop

g and study its basic combinatorial properties. Our construction is
illustrated with explicit computations and examples.

MSC 2010 codes: 14T05

1 Introduction

Let g � 2 and denote by Mg the moduli space of smooth algebraic curves of genus g.
The Hodge bundle �g is a vector bundle on Mg whose fibre over a point ŒC� in Mg

is the vector space H0.C; !C/ of holomorphic differentials on C. One can think of
the total space of �g as parametrizing pairs .C; !/ consisting of a smooth algebraic
curve and a differential ! on C. Since for every curve C the canonical linear system
jKCj can be identified with the projectivization P

(
H0.C; !C/

)
, the total space of

the projectivization Hg WD P.�g/ of �g parametrizes pairs .C;D/ consisting of a
smooth algebraic curve C and a canonical divisor D on C; it is referred to as the
projective Hodge bundle. Let 
 WCg !Mg be the universal curve on Mg. We may
define �g formally as the pushforward 
�!g of the relative dualizing sheaf !g on
Cg over Mg.

The Hodge bundle is of fundamental importance when describing the geometry
of Mg. For example, its Chern classes, the so-called �-classes, form an important
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collection of elements in the tautological ring on Mg; see [31] for an introductory
survey. The Hodge bundle admits a natural stratification by prescribing certain pole
and zero orders .m1;m2; : : : ;mn/ such that m1 C m2 C � � � C mn D 2g � 2 and the
study of natural compactifications of these components has recently seen a surge
from the perspective of algebraic geometry and Teichmüller theory; see [4].

In tropical geometry, the natural analogue of Mg is the moduli space Mtrop
g that

parametrizes isomorphism classes Œ	 � of stable tropical curves 	 of genus g. In
Sect. 2, we recall the construction of this moduli space. In particular, we see how this
moduli space naturally admits the structure of a generalized cone complex whose
cones are in a order-reversing one-to-one correspondence with the boundary strata
of the Deligne-Mumford compactification M g of Mg; see Sect. 2 or [1]. We refer
the reader to [19, 20, 24, 25] for the theory in genus g D 0 (with marked points), to
[7, 10, 13, 16, 32] for its connections to the tropical Torelli map, to [1, 11, 12, 28,
30, 33] for connections to non-Archimedean analytic geometry, and to [14, 15] for
an in-depth study of the topology of Mtrop

g;n . We also highlight the two survey papers
[8, 9].

Let 	 be a tropical curve. We denote by K	 the canonical divisor on 	 and by
Rat.	 / the group of piecewise integer linear functions on 	 ; see Sect. 3. In this
note, we propose tropical analogues of the affine and the projective Hodge bundle,
and study their basic combinatorial properties.

Definition 1.1 As a set, the tropical Hodge bundle �trop
g is given as

�trop
g WD

{
.Œ	 �; f / W Œ	 � 2 Mtrop

g and f 2 Rat.	 / such that K	 C .f / � 0
}

and the projective tropical Hodge bundle H trop
g is given as

H trop
g WD

{
.Œ	 �;D/ W Œ	 � 2 Mtrop

g and D 2 jK	 j
}
:

The maps
(
Œ	 �; f

)
7! Œ	 � and

(
Œ	 �;D

)
7! Œ	 � define projections �trop

g �! Mtrop
g

and H trop
g �! Mtrop

g that are, in a slight abuse of notation, both denoted by 
g.
In [18, 22, 26], the authors describe the structure of a polyhedral complex on the

linear system jDj associated to a divisor D on a tropical curve 	 ; we review this
description in Sect. 3. Moreover, the paper [23] presents algorithms for computing
this polyhedral complex. Our main result is the following.

Theorem 1.2 Let g � 2.

1. The tropical Hodge bundle�trop
g and the projective tropical Hodge bundle H trop

g
carry the structure of a generalized cone complex.

2. The dimensions of �trop
g and H trop

g are 5g � 4 and 5g � 5 respectively.
3. There is a proper subdivision of Mtrop

g such that, for all Œ	 � in the relative interior
of a cone in this subdivision, the canonical linear systems jK	 j D 
�1

g .Œ	 �/ have
the same combinatorial type.

We refer to the subdivision of Mtrop
g appearing in part 3 as the wall-and-chamber

decomposition of Mtrop
g . In general, the generalized cone complexes�trop

g and H trop
g
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are not equidimensional, so part 2 simply states that the dimension of a maximal-
dimensional cone in �trop

g and H trop
g has dimension 5g � 4 and 5g � 5 respectively.

As a first example, we depict in Fig. 1 the face lattice of the tropical Hodge bundle
in the case g D 2; the numbers in purple are the positive h.v/ and the numbers in
black denote coefficients greater than 1 in the divisors.

We outline the contents of the article. In Sect. 2–3, we review the construction
of the moduli space Mtrop

g of stable tropical curves and the polyhedral structure of
linear systems on tropical curves respectively. In Sect. 4, we prove Theorem 1.2
by simultaneously describing the polyhedral structures on both �trop

g and H trop
g .

Section 5 contains a selection of explicit (sometimes partial) calculations of the
polyhedral structure of H trop

g in some small genus cases. Finally, in Sect. 6, we
describe a tropicalization procedure for the projective algebraic Hodge bundle via
non-Archimedean analytic geometry and pose a natural realizability problem.

2 Moduli of Tropical Curves

A tropical curve is a finite metric graph 	 , with a fixed minimal model G, together
with a genus function hWV.G/! Z�0. The genus of 	 or G is defined to be

g.	 / D g.G/ D b1.G/C
∑

v2V.G/

h.v/ ;

Fig. 1 The face lattice of H
trop

2
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where b1.G/ denotes the Betti number of G. In the above sum, one should think of
the vertex-weight terms as the contributions of h.v/ infinitesimally small loops at
every vertex v. We say a tropical curve 	 (or the graph G) is stable if, for every
vertex v 2 V.G/, we have

2h.v/ � 2C jvj > 0 ; (1)

where jvj denotes the valence of G at v.

Definition 2.1 As a set, the moduli space Mtrop
g of stable tropical curves of genus g

is Mtrop
g WD fisomorphism classes Œ	 � of stable tropical curves of genusgg.

Following [1], we recall the description of Mtrop
g as a generalized cone complex.

Proposition 2.2 ([1, Sect. 4]) The moduli space Mtrop
g carries the structure of an

equidimensional generalized rational polyhedral cone complex of dimension 3g�3.

A morphism � ! � between rational polyhedral cones is a face morphism if it
induces an isomorphism onto a face of � . In particular, the class of face morphisms
includes all isomorphisms. A generalized (rational polyhedral) cone complex is a
topological space ˙ that arises as a colimit of a finite diagram of face morphisms;
see [1, Sect. 2] or [29, Sect. 3.5].

In order to understand this structure on Mtrop
g , we exploit a particular presentation

as a colimit, namely Mtrop
g D lim

�!
eMG, where the rational polyhedral cones eMG and

the underlying category Jg are defined as follows.

1. The objects in Jg are stable vertex-weighted graphs .G; h/ of genus g. A weighted
edge contraction cWG ! G=e is an edge contraction such that, for every vertex
v in G=e, we have g

(
c�1.v/

)
D h.v/. The morphisms in Jg are generated by

weighted edge contractions G ! G=e for an edge e of G together with the
automorphisms of all .G; h/.

2. For every graph G, we denote by eMG D R
E.G/
�0 the parameter space of all possible

edge lengths on G. The assignment G 7! eMG defines a contravariant functor
Jg ! RPCZ from the category Jg to the category of rational polyhedral cones.
It associates to a weighted edge contraction G ! G=e the embedding of the
corresponding face of eMtrop

G and to an automorphism of G the automorphism of
eMG that permutes the entries correspondingly.

From this colimit description, we obtain a decomposition of Mtrop
g into locally closed

subsets

Mtrop
g D

⊔

G

R
E.G/
>0 =Aut.G/ ;

where the disjoint union is taken over all isomorphism classes of stable finite vertex-
weighted graphs G of genus g.
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Example 2.3 ([13, Theorem 2.12]) For a d-dimensional cone complex C, its f -
vector is defined as .f0; f1; : : : ; fd/, where fi is the number of i-dimensional cones in
C. The 12-dimensional moduli space Mtrop

5 has 4555 cells and its f -vector is given by

f .Mtrop
5 / D .1; 3; 11; 34; 100; 239; 492; 784; 1002; 926; 632; 260; 71/:

Remark 2.4 Earlier approaches, such as [7, 8, 10, 13, 16, 32], refer to the structure
of a generalized cone complex as a stacky fan. Since there is a closely related, but
not equivalent, notion with the same name in the theory of toric stacks, we prefer to
follow the terminology of generalized cone complexes introduced in [1].

3 Linear Systems on Tropical Curves

Expanding on [6], a divisor on a tropical curve 	 is a finite formal Z-linear sum
D D

∑
i aipi over points pi in 	 . In other words, D is an element in the free abelian

group Div.	 / on the points of 	 . The degree deg.D/ of a divisor D D
∑

i aipi is
the integer

∑
i ai. We say D D

∑
i aipi is effective if ai � 0 for all i.

A rational function on 	 is a continuous function f W	 ! R whose restriction to
every edge is a piecewise linear integral affine function. Given a rational function f
on 	 and a point p 2 	 , the order ordp.f / of f at p is the sum of the outgoing slopes
of f emanating from p. Since ordp.f / is equal to zero for all but finitely many points
p 2 	 , we have a map from Rat.	 / to Div.	 / given by f 7! .f / WD

∑
p ordp.f / � p.

Divisors of the form .f /, for some function f 2 Rat.	 /, are called principal divisors
on 	 and form the subgroup PDiv.	 / of Div.	 /. Moreover, the continuity of f
implies that deg.f / D 0. Two divisors D and D0 on 	 are equivalent, written as
D � D0, if there is a rational function f 2 Rat.	 / such that DC .f / D D0 or simply
if D � D0 2 PDiv.	 /.

Let us now define the main players of this game.

Definition 3.1 Let D be a divisor of degree n on a tropical curve 	 , and consider
the set R.D/ WD ff 2 Rat.	 / W DC .f / � 0g. For f 2 R.D/, the divisor DC .f / is
supported on deg

(
DC .f /

)
D deg.D/ D n points, counted with multiplicity, so we

define

S.D/ WD

®
.f ; p1; p2; : : : ; pn/ W

f 2 Rat.	 / and p1; p2; : : : ; pn 2 	 such
that DC .f / D p1 C p2 C � � � C pn � 0

´
:

The associated linear system is the set jDj WD fD0 2 Div.	 / W D0 � 0 and D0 � Dg.
Observe that R.D/ D S.D/=Sn, where the symmetric group Sn acts on S.D/ by

permutation of the points p1; p2; : : : ; pn. Moreover, the additive group R D .R;C/

operates on R.D/ by adding a constant function. Taking the quotient under this
operation, we obtain R.D/=R D jDj, because .f / D 0 if and only if f is a constant
function on 	 .
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The sets S.D/, R.D/, and jDj are known to carry the structure of a polyhedral
complex; see [18, 26]. The following proposition is a more detailed version of
Lemma 1.9 in [18].

Proposition 3.2 Given a divisor D on a tropical curve 	 , the space S.D/ has the
structure of a polyhedral complex. More precisely, choose an orientation for each
edge e of 	 and identify it with the interval Œ0; l.e/�. The cells of S.D/ are described
by the following discrete data:

• a partition of fp1; p2; : : : ; png into disjoint subsets Pe and Pv , indexed by v 2
V.G/ and edges e 2 E.G/, that indicates on which edge or at which vertex every
point pi is located,

• a total order on each Pe, and
• the outgoing slope me 2 Z of f at the starting point of e

such that, for every vertex v 2 V.G/, we have

#Pv D D.v/C
∑

outward edges at v

me C
∑

inward edges at v

�.#Pe C me/ :

Furthermore, this polyhedral structure descends from S.D/ to R.D/ D S.D/=Sn and
jDj D R.D/=R.

Proof Set dv WD #Pv and de WD #Pe. We claim that the points in a cell of S.D/ can
be parametrized by two types of continuous data: the value f .v/ at a vertex v, and
the distance d.pe

i / of every point pe
i 2 Pe on the edge 0 2 e D Œ0; l.e/�.

The distance d.pe
i / immediately determines the point pi. In order to reconstruct f

(if it exists), we write
∑

i pe
i D

∑
j de;jxj for points 0 < x1 < x2 < � � � < xr < l.e/ on

e, where the positive integers de;j indicate the number of points pe
i that are all located

at the same point xj. The rational function f is then determined by taking the value
f .v/ at the origin of every edge e D Œ0; l.e/� and continuing it piecewise linearly
with slope me until we hit x1, at which point we change the slope to de;1 C me until
we hit x2, where we change the slope to de;2 C de;1 C me, and so on until we hit the
vertex v0 at the end of e D Œ0; l.e/�. By continuity, for every edge, we obtain the
linear condition on the parameters of a cell in S.D/:

f .v0/ D f .v/C mex1 C
r∑

kD1

Ç
me C

k∑

jD1

de;j

å
.xkC1 � xk/

D f .v/C mel.e/C
r∑

iD1

de;i
(
l.e/ � xi

)
:

Together with the inequalities 0 < x1 < x2 < � � � < xr < l.e/, these linear
conditions determine the polyhedral structure of a cell in S.D/. These parameters
are still overdetermined in the sense that there may be no rational function f which
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satisfies these linear conditions and DC .f / D p1 C p2 C � � � C pn � 0. In this case,
we obtain an empty cell.

The linear conditions on the cells of S.D/ are all discrete, and the points within
one cell are all parametrized by the distances d.pe

i / 2
(
0; l.e/

)
and the values f .v/

subject to these discrete conditions. Therefore, the set S.D/ is a polyhedral complex
that does not depend on the choice of the orientation of 	 .

The action of Sn on every cell is affine linear, so the polyhedral structure
descends to R.D/. Moreover, the additive group R acts on R.D/ by adding a constant
to all f .v/. Therefore, the polyhedral structure also descends to jDj. ut

We end with a technical lemma that will be used in the next section.

Lemma 3.3 Let 	 be a tropical curve with minimal model G D .V;E/. If D is a
divisor on 	 such that the support of D is contained in V, then the combinatorial
structure of jDj is independent of the length of any loop or bridge in G.

Proof Suppose eb 2 E is a bridge in G. Let 	1 and 	2 be two tropical curves with
minimal model G such that

• there exists positive constants l and c such that the length of eb in 	1 and 	2 is l
and cl respectively, and

• for all e 2 E n febg, the lengths of e in 	1 and 	2 are the same.

It suffices to show that the sets of cells in jDj	1 and jDj	2 are exactly the same.
On the first tropical curve 	1, we view the bridge eb as the open interval .0; l/. For

any cell C1 in jDj	1 , its data consist of an integer meb and a partition of nonnegative
integers deb D

∑r
jD1 de;j. Suppose a divisor DC .f1/ is

∑r
jD1 de;jxj on the bridge eb,

where 0 < x1 < x2 < � � � < xr.e/ < l. Since the rational function f1 is unique up to
a translation, we may assume that the value of f1 is zero on the endpoint 0 of eb. It
follows that, for all 0 < x � x1, we have f1.x/ D meb x and, for all 1 � k � r.e/ and
all xk < x < xkC1, we have f1.x/ D f1.xk/C

Ä
meb C

∑k
jD1 deb;j

ä
.x � xk/.

Now, on the second tropical curve 	2, we view the bridge eb as the open interval
.0; cl/ with the same orientation as on 	1. We construct a rational function f2 on
	2 as follows. Since the bridge eb is identified with .0; cl/, we set f2.x/ WD meb x,
for all 0 < x � cx1, and f2.x/ WD f1.cxk/ C

Ä
meb C

∑k
jD1 deb;j

ä
.x � cxk/, for all

1 � k � r.e/ and all cxk < x < cxkC1. Since eb is a bridge in G, the graph G � eb

consists of two connected components. We denote them by G1 and G2, where G1

contains the endpoint 0 of eb and G2 contains the endpoint cl of eb. For notational
convenience, we set

f1.l/ WD meb x1 C .meb C deb;1/x2 C � � � C

Ñ
meb C

r∑

jD1

deb;j

é
.l � xr.e//

and f2.cl/ WD cf1.l/. We define f2 on G � eb as follows:
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f2.x/ WD

{
f1.x/ if x 2 G1;

f1.x/C f2.cl/ � f1.l/ D f1.x/C .c � 1/f1.l/ if x 2 G2:

By construction, the rational functions f1 and f2 correspond to the same data on Gi

for 1 � i � 2. In addition, on the bridge eb, both functions correspond to the integer
meb and the partition

∑r
jD1 deb;j. Hence, f2 corresponds to a cell C2 in jDj	2 that is

exactly the same as C1. Since l D 1
c .cl/, we can interchange 	1 and 	2, so the cell

C1 can be obtained from C2. Therefore, Lemma 3.3 holds for bridges.
Suppose el is a loop in G. In this case almost the same proof works, except that

we have f1.l/ D 0 and G0 WD G � el is connected. Since f2.cl/ D 0, we may define
f2 on el in the same way as on eb and f2.x/ D f1.x/ for all x 2 G0. Thus, our claim
also holds for loops. ut

4 Structure of the Tropical Hodge Bundle

Let 	 be a tropical curve with a fixed minimal model G. As explained in Sect. 5.2
of [3], the canonical divisor on 	 is defined to be

K	 D KG WD
∑

v2V.G/

(
2h.v/C jvj � 2

)
.v/ ;

where jvj denotes the valence of the vertex v. It follows that deg.K	 / D 2g � 2.
The h.v/-term in the sum should be thought of as contributing h.v/ infinitesimally
small loops at the vertex v. In fact, given a semistable curve C whose dual graph
is G, the canonical divisor is the multidegree of the dualizing sheaf on C; see [2,
Remark 3.1].

To understand the structure of the tropical Hodge bundle �trop
g from Defini-

tion 1.1, we consider the pullbacks of �trop
g and H trop

g to eMG, namely

e�G WD
{
.Œ	 �; f / W Œ	 � 2 eMG and f 2 Rat.	 / such that K	 C .f / � 0

}
;

fH G WD
{
.Œ	 �;D/ W Œ	 � 2 eMG and D 2 jK	 j

}
:

In analogy with the space S.D/ defined in Sect. 3, we also set

eSG WD

ß
.Œ	 �; f ; p1; p2; : : : ; p2g�2/ W

Œ	 �2 eMG; f 2 Rat.	 /; and p1; p2; : : : ; p2g�2 2 	

such that K	 C .f / D p1 C p2 C � � � C p2g�2 � 0

™
:

Proposition 4.1 The action of the symmetric group S2g�2 on eSG, which permutes
the points p1; p2; : : : ; p2g�2, induces a natural bijection e�G 'eSG=S2g�2. Moreover,
the action of the additive group R D .R;C/ on e�G, given by adding constant
functions to f , induces a natural bijection fH G ' e�G=R.
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Proof Since the projectionseSG ! eMG and e�G ! eMG are invariant under the action
of S2g�2 and R, the claims follow from the respective identities on the fibres. ut

Proof of Theorem 1.2 For the first part, it suffices to show thateSG carries a canonical
structure of a cone complex because of Proposition 4.1. Choose an orientation
for each edge e of G and identify it with the closed interval Œ0; l.e/�. As in
Proposition 3.2, we can describe the cells of eSG by the following discrete data:

• a partition of fp1; p2; : : : ; p2g�2g into disjoint subsets Pe and Pv , indexed by
vertices v 2 V.G/ and edges e 2 E.G/, that indicate on which edge or at which
vertex each point pi is located,

• a total order on each Pe, and
• the integer slope me of f at the starting point of e

such that, for every vertex v, we have

dv D 2h.v/ � 2C jvj C
∑

outward edges at v

me C
∑

inward edges at v

�.de C me/

where dv WD #Pv and de WD #Pe. The continuous parameters describing all elements
in our cell are the values f .v/, the distances d.pe

i / of the point pe
i from 0 2 Œ0; l.e/�,

and the lengths l.e/. In order to find the conditions on these parameters, we again
write

∑
i pe

i D
∑r

jD1 de;jxj for some x1 < x2 < � � � < xr. Using this notation, we
have 0 < x1 < x2 < � � � < xr < l.e/ as conditions on the d.pe

i / D xi. By the
continuity of f , we also have

f .x1/ � f .v/ D mex1

f .x2/ � f .x1/ D .me C de;1/.x2 � x1/

f .x3/ � f .x2/ D .me C de;1 C de;2/.x3 � x2/

:::

f .v0/ � f .xr/ D .me C de;1 C de;2 C � � � C de;r/
(
l.e/ � xr

)

Summing these equations, we obtain

f .v0/ D f .v/C .me C de/l.e/ � .de;1x1 C de;2x2 C � � � C de;rxr/ (2)

Since these conditions are invariant under multiplying all parameters simultaneously
by elements in R�0, every non-empty cell in eSG has the structure of a rational
polyhedral cone. Finally, the natural action of Aut.G/ oneSG, given by

� � .Œ	 �; f ; p1; p2; : : : ; p2g�2/ D
(
Œ�.	 /�; f ı ��1; �.p1/; �.p2/; : : : ; �.p2g�2/

)
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for � 2 Aut.G/, is compatible with both the S2g�2-action and the R-action.
Moreover, given a weighted edge contraction G0 D G=e of G, the natural map
eSG0 ,!eSG identifieseSG0 with the subcomplex ofeSG given by the condition l.e/ D 0
in the above coordinates. Therefore, we can conclude that �trop

g D lim
�!

e�G and

H trop
g D lim

�!
fH G, where the limits are taken over the category Jg as in Sect. 2

above, carry the structure of a generalized cone complex.
For the second part, we need to show that the dimension of a maximal-

dimensional cone in Hg is 5g � 5. Proposition 3.2.5 (i) in [7] demonstrates that
dim Mtrop

g D 3g � 3 and Corollary 7 in [23] establishes that the dimension of the
fibre jK	 j of a point Œ	 � is at most deg.K	 / D 2g� 2. It follows that the dimension
of H trop

g is at most .3g � 3/C .2g � 2/ D 5g � 5. It remains to exhibit a .5g � 5/-
dimensional cone in H trop

g . To accomplish this, consider the tropical curve 	max as
indicated in Fig. 2; it has 2g � 2 vertices and 3g � 3 edges. Lemma 3.3 implies that
the combinatorial structure of jK	max j is independent of the edge lengths, so we can
choose a generic chamber. We obtain a divisor D 2 jK	max j as indicated in Fig. 3.
[22, Proposition 13] implies that the divisor D belongs to a .2g � 2/-dimensional
face in jK	max j. Thus, there is a .5g � 5/-dimensional cone in H trop

g .
For part three, we reuse the coordinates described in first part. For every edge

e of G with de D #Pe D 0, we have an equation mel.e/ D f .v/ � f .v0/ which is
parametrized by the l.e/. If de > 0 and x WD 1

de

∑r
jD1 de;jxj, then equation (2) can

be rewritten as f .v0/ D f .v/C .me C de/l.e/ � dex. Since 0 < x < l.e/, we deduce

Fig. 2 The tropical curve 	max with 2g � 2 vertices (bold) and 3g � 3 edges

Fig. 3 The divisor D on 	max (red)
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that .me C de/l.e/ > f .v0/ � f .v/ > mel.e/, so the cells in eMG are polyhedra. As
the combinatorial type of jK	 j is independent under scaling all edge lengths with a
factor in R>0, all these polyhedra determine a subdivision of eMG such that on each
relatively open cell of this subdivision, the corresponding jK	 j has the same set of
cells. In other words, the combinatorial type ofeSG is constant. ut

5 Computations in Low Genus

In this section, we present some computational results on the polyhedral structure
of tropical Hodge bundles of small genus. In order to describe all cones in �trop

g ,
we first list all cones in Mtrop

g . For each cone, we then compute its subdivision by
the structure of jK	 j. The two cases g D 2 and g D 3 already show a surprisingly
different behaviour.

Proposition 5.1 If 	 is a tropical curve in Mtrop
2 , then the combinatorial structure

of jK	 j is uniquely determined by the minimal model G of 	 . In other words, it is
independent of the edge lengths in 	 .

Proof There are seven faces in Mtrop
2 ; see in [13, Fig, 4]. For six of these faces, all

edges are loops or bridges, so the claim follows from Lemma 3.3. For the “theta
graph” G� , an explicit computation shows that the canonical linear system jKG� j is
always a one-dimensional polyhedral complex with three segments, as in Fig. 4. ut

The face lattice of �trop
2 is visualized in Fig. 1.

Remark 5.2 The f -vector of �trop
2 is .1; 5; 11; 16; 9; 1/, which is consistent with

Theorem 1.2. The unique five-dimensional face consists of the “dumbbell” graph
and a triangular cell in jK	 j. In other words, any divisor in this cell is of the form
PCQ, where P and Q are distinct points in the interior of the bridge in the dumbbell
graph.

Fig. 4 The polyhedral complex jKG� j



364 B. Lin and M. Ulirsch

When g D 3, the direct analogue of Proposition 5.1 is false. One counterexample
comes from the six-dimensional cone C ' R

6
>0 in Mtrop

3 parametrizing tropical
curves whose minimal model G is a complete metric graph K4. The following
proposition characterizes the open chambers of C regarding the structure of jKGj.

Proposition 5.3 There are 51 open chambers in the six-dimensional cone C in Mtrop
3

parametrizing tropical curves whose minimal model G is a K4. For all metrics in the
same chamber, the canonical linear system jKGj has the same set of cells, and the
polyhedral complex jKGj always has 34 vertices, 60 edges, and 27 two-dimensional
faces (12 triangles and 15 quadrilaterals). However, there are four non-isomorphic
combinatorial structures of jKGj.

Furthermore, the metric M D .M12;M13;M14;M23;M24;M34/ on K4 belongs
to an open chamber if and only if, among the four subsets fM12;M13;M14g,
fM12;M23;M24g, fM13;M23;M34g, and fM14;M24;M34g, the minimum is attained
only once.

Proof Computations using the algorithm from [23, Sect. 2.3] give the result. ut

Remark 5.4 (The Structure of jKGj for a Generic Metric) If M belongs to an open
chamber, the canonical linear system jKGj always has the 13 vertices in Fig. 5.
Among them, the ten labelled vertices are all connected to an extra vertex that is
the divisor KG. The remaining 20 vertices come from 4 copies of a substructure
(we call a bat) attached at D1, D2, D3, and D4. Some edges in Fig. 5 are subdivided
by other vertices in the bats. The four distinct combinatorial types of jKGj come
from different ways of attaching the bats. Since M belongs to an open chamber, the
minimum of M12;M13;M14 appears only once. Suppose it is M12, then the bat at
D1 is attached along the edges towards D13 and D14, as in Fig. 6. This bat appears
whenever M12 < min.M13;M14/. Figure 7 shows the divisors Di and Dij.

The action of the symmetric group S4 on the vertices of K4 induces 4 orbits
among the 51 open chambers with lengths 24, 12, 12, and 3. Each orbit corresponds
to a combinatorial type of jKGj. Each open chamber is an open cone in C, defined by
homogeneous linear inequalities involving M12, M13, M14, M23, M24, and M34. The

Fig. 5 The main skeleton of
jKGj



Towards a Tropical Hodge Bundle 365

Fig. 6 Each bat has five extra
(green) vertices

Fig. 7 Numbers are the coefficients of divisors and the triangle symbols show the equal line
segments

M24

M24

M34 M34M23 M23

M13 M13

M12 M12

M14

M14

Fig. 8 Representatives of two chamber orbits of length 12

Fig. 9 Representatives of a
chamber orbit of length 3 and
length 24 M13 M14 M23 M24

M14 M24

M23

M12

M13

M34

M13M12

inequalities are displayed as the covers in a lattice. For example, M13 covering M12

means that the inequality M13 > M12 holds. Figures 8 and 9 illustrate some of the
possibilities.
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6 The Realizability Problem

Let k be an algebraically closed field carrying the trivial absolute value. In [1],
expanding on earlier work (see e.g. [32]), the authors have constructed a natural
continuous tropicalization map tropMg

WM an
g ! Mtrop

g sending a point x in the
non-Archimedean analytic moduli space M an

g to a tropical curve Œ	x� 2 Mtrop
g . To

describe this map, recall that a point x 2 M an
g parametrizes an algebraic curve C

over some non-Archimedean extension K of k. After a finite extension K0 of K if
necessary, we can extend C to a stable model C ! Spec R0 over the valuation
ring R0 of K0. Let Gx be the weighted dual graph of the special fibre Cs of C ; the
vertices correspond to the components of Cs and we have an edge e between two
vertices v and v0 for every node connecting the two corresponding components Cv
and Cv0 . The vertex weight function is given by h.v/ D g.eCv/, where eCv denotes
the normalization of Cv . Around every node pe in Cs, there exists formal coordinates
x and y on C such that xy D t for some element t in the base. The edge length of e
is l.e/ D val.t/.

Let H an
g denote the non-Archimedean analytification of the total space of the

algebraic Hodge bundle Hg.

Proposition 6.1 There is a natural tropicalization map tropHg
WH an

g ! H trop
g

such that the following diagram commute:

an

an

g

g

g

g

trop

tropM

H
H

H

M

trop

trop

g

gM

We expect that tropHg
is also continuous, but refrain from investigating this

question here.

Proof An element x 2 H an
g parametrizes a tuple .C;KC/ consisting of a smooth

projective curve C over a non-Archimedean extension K of k together with a
canonical divisor on C. We associate to .C;KC/ the point

(
Œ	x�; ��.KC/

)
, where

��WDiv.CK/ �! Div.	 / denotes the specialization map constructed in [5, Sect. 2.3]
given by pushing KC forward to the non-Archimedean skeleton of C . As shown in
[5, Sect. 2.3], this is well-defined and the commutativity of the above diagram is an
immediate consequence of the definition. ut

It is well-known that tropgWM
an
g ! Mtrop

g is surjective. However, Theorem 1.2
shows that dimC Hg D 4g � 4 < 5g � 5 D dim H trop

g , so the analogous statement
for Hg appears to be false. This gives rise to the following problem.

Problem 6.2 Characterize of the realizability locus tropHg
.H an

g / in H trop
g .

In other words, given a stable tropical curve 	 of genus g together with a divisor D
that is equivalent to K	 , find the algebraic and combinatorial conditions that ensure
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that there is an algebraic curve C over a non-Archimedean field extension K of k
together with a canonical divisor eD on C such that tropHg

.ŒC�;eD/ D .Œ	 �;D/.
Since tropMg

is surjective, we already know that every tropical curve 	 can
be lifted to a smooth algebraic curve C. When the tropical curve 	 has integer
edge lengths l.e/, we can also give a constructive approach to this problem. For a
special fibre Cs over k whose weighted dual graph is G, use logarithmically smooth
deformation theory to find a smoothing of Cs to a stable family C ! Spec R with
deformation parameters l.e/ at each node; see [21, Proposition 3.38]). If l.e/ D 1

for all edges e, we may also proceed as in [5, Appendix B]. Next, let eD be a divisor
on C that specializes to the given canonical divisor D on 	 . Since we have deg eD D
deg D D 2g� 2, Clifford’s theorem (or alternatively Baker’s Specialization Lemma
[5, Corollary 2.11]) shows that the rank of eD is at most g � 1. If the rank of D is
smaller than g � 1, then it cannot be a canonical divisor. If, however, the divisor eD
has rank g� 1, then, by Riemann-Roch, it is a canonical divisor. So the realizability
problem reduces to finding a lift of the divisor D of rank g � 1.

The existence of such a divisor would follow, for example, from the smoothness
of a suitable moduli space of limit linear series; see [17, 27]. Unfortunately the
machinery of limit linear series is not available for nodal special fibres that are not
of compact type. However, considerations undertaken from the point of view of
compactifications of the moduli space of abelian differentials and its strata, such as
[4], treating the special case of limits of canonical linear systems seem to provide
us with a very promising approach for future investigations into this question.
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Cellular Sheaf Cohomology in Polymake

Lars Kastner, Kristin Shaw, and Anna-Lena Winz

Abstract This is a guide to the polymake extension cellularSheaves. We first define
cellular sheaves on polyhedral complexes in Euclidean space, as well as cosheaves,
and their (co)homologies. As motivation, we summarize some results from toric and
tropical geometry linking cellular sheaf cohomologies to cohomologies of algebraic
varieties. We then give an overview of the structure of the extension cellularSheaves
for polymake. Finally, we illustrate the usage of the extension with examples from
toric and tropical geometry.

MSC 2010 codes: 05-04, 14Fxx, 14T05, 52Bxx

1 Introduction

The main motivation for this polymake (see [11]) extension is to implement
tropical homology, as introduced by Itenberg, Katzarkov, Mikhalkin, and Zharkov
in [15]. Tropical homology is the homology of particular cosheaves which can be
defined on any polyhedral complex. When the polyhedral complex arises as the
tropicalization of a family of complex projective varieties, the tropical homology
groups give information about the Hodge numbers of a generic member of the
family; see Theorem 2.13. However, this is just one particular instance of cellular
(co)sheaf (co)homology that our extension can handle. Cellular (co)sheaves have
also appeared as a tool in recent years in the field of applied topology, notably in
persistent homology, sensor networks, and network coding; see [6, 12]. With this
polymake extension, (co)sheaves on polyhedral complexes can be constructed from
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scratch. We hope that this will allow for a range of uses of the extension beyond just
the ones from combinatorial algebraic geometry that we highlight here.

Given a polyhedral complex ˘ in R
n, a cellular sheaf of vector spaces on ˘

associates to every face of ˘ a vector space and to every face relation a map
of the associated vector spaces. Just as with usual sheaves, we can compute the
cohomology of cellular sheaves. The advantage over usual sheaves is that cellular
sheaf cohomology is the cohomology of a chain complex consisting of finite-
dimensional vector spaces.

We begin, in Sect. 2, by giving the definitions of cellular (co)sheaves and their
(co)homologies and presenting two major classes of examples coming from toric
and tropical geometry. We refer the reader to [10] and [5] for a guide to toric
geometry and polytopes. For an introduction to tropical geometry, see [4] and [20].
A description of our implementation of cellular sheaves and their cohomologies in
polymake is given in Sect. 3. In Sect. 4, we illustrate the usage of the extension in a
variety of examples from tropical and algebraic geometry. Finally, Sect. 5 outlines
some potential future directions and applications for our extension.

2 Cellular Sheaf Cohomology

This section defines cellular sheaves and cosheaves, as well as their cohomologies
and homologies. We provide an explicit example of a sheaf and a cosheaf which
have been implemented in our extension.

A polyhedral complex ˘ is a finite collection of polyhedra in R
n with the

property that any face of a polyhedron in ˘ is also in ˘ and the intersection of
any two polyhedra in ˘ is a face of both. Let ˘ i denote the collection of polyhedra
in ˘ of dimension i. For polyhedra �; � 2 ˘ , we use � � � to indicate that � is a
face of � .

Definition 2.1 Given a polyhedral complex ˘ and a chosen orientation of each
polyhedron in ˘ , we define the orientation map OW˘ i�1 �˘ i ! f�1; 0;C1g, for
each i, by

O.�; �/ WD

⎧
⎨

⎩

�1 if the orientation of � 	 @� differs from that of �;
0 if � 6� �;
C1 if the orientation of � 	 @� coincides with that of �:

A polyhedral complex ˘ can be considered as a category where the objects are
the polyhedra and the morphisms are given by inclusions. For instance, we have
.f W � ! �/ 2 Mor.˘/ if and only if � � � . We use the notation ˘ op to denote the
category obtained from ˘ by using the same objects and reversing the directions
of all morphisms. Viewing ˘ as a category, we can give a succinct definition of
cellular (co)sheaves. Let Vectk denote the category of vector spaces over a field k.
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Definition 2.2 Given a polyhedral complex ˘ , a cellular sheaf G and a cellular
cosheaf F are functors G W˘ ! Vectk and F W˘ op ! Vectk.

Expanding on the definition, a cellular sheaf consists of the following data:

• for each polyhedron � in ˘ , a vector space G .�/, and
• given �; � 2 ˘ satisfying � � � , a morphism ��� WG .�/! G .�/.

In particular, for  � � � � , the restriction morphisms commute in the sense that
�;� D ��;� ı �;� . A cellular cosheaf is similar except that the morphisms are in the
opposite direction: ��;� WF .�/! F .�/.

A sheaf of vector spaces, in the usual sense, is a contravariant functor from
the category of open sets of a topological space to Vectk that satisfies additional
axioms. A polyhedral complex can be equipped with a finite topology known as
the Alexandrov topology and our functorial definition produces a sheaf in this
topology. Due to the simplicity of the cellular sheaves and the Alexandrov topology,
no additional sheaf axioms are required. The reader is directed to Chapter 4 in [6]
for more details.

Example 2.3 We may define a constant sheaf by setting G .�/ to be the one-
dimensional vector space k, for all � 2 ˘ , and setting the map ��;� WG .�/! G .�/
to be the identity, for all �; � 2 ˘ such that � � � . A constant cosheaf can be
defined in a similar fashion.

Example 2.4 Let ˘ be a polyhedral complex in R
n. For � 2 ˘ , set L.�/ to be the

linear subspace of R
n parallel to the face � . For p 2 N, we define the sheaf Wp by

setting Wp.�/ WD
∧p L.�/, for all � 2 ˘ , and taking the map ��;� WWp.�/! Wp.�/

to be the pth exterior power of the natural inclusion L.�/! L.�/, for all � � � . By
convention, the sheaf W0 is the constant sheaf from Example 2.3.

We next give an example of a cosheaf on a polyhedral complex. The homology
of this particular cosheaf is the tropical homology from [15] and will come up in
subsequent sections.

Example 2.5 If ˘ is a polyhedral complex in R
n, then we define

Fp.�/ WD
∑

�<

p∧
L./ :

If � � � , then we have f W � < g 	 f W � < g, which yields the inclusion
��;� WFp.�/ ! Fp.�/. As in Example 2.4, we obtain the constant cosheaf from
Example 2.3 when p D 0.

Remark 2.6 By dualizing the vector spaces G .�/ for all � 2 ˘ , we can transform
a cellular sheaf G into a cellular cosheaf and vice versa.

For a given (co)sheaf, we build (co)chain complexes in the following two parallel
definitions. The definitions appeared in this form in Section 6.2 of [6].

Definition 2.7 Given a polyhedral complex ˘ and a cellular sheaf G , the cellular
cochain groups and cellular cochain groups with compact support are defined as
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Cq.˘ IG / WD
⊕

dim �Dq
� compact

G .�/ and Cq
c.˘ IG / WD

⊕

dim �Dq

G .�/

respectively. The cellular cochain maps (usual and with compact support)

dWCq.˘ IG /! CqC1.˘ IG / and dWCq
c .˘ IG /! CqC1

c .˘ IG /

are given componentwise by d�;� WG .�/! G .�/, for � 2 ˘ q and � 2 ˘ qC1, where

d�;� WD

{
O.�; �/ � ��� if � � �;

0 otherwise.

Definition 2.8 Given a polyhedral complex ˘ and a cellular cosheaf F , the
cellular chain groups and the Borel–Moore cellular chain groups are defined as

Cq.˘ IF / WD
⊕

dim �Dq
� compact

F .�/ and CBM
q .˘ IF / WD

⊕

dim �Dq

F .�/

respectively. The cellular chain maps (usual and Borel–Moore)

@WCq.˘ IF /! Cq�1.˘ IF / and @WCBM
q .˘ IF /! CBM

q�1.˘ IF /

are given componentwise by @�;� WF .�/ ! F .�/, for � 2 ˘ q and � 2 ˘ q�1,
where

@�;� WD

{
O.�; �/ � ��� if � � �;

0 otherwise.

Definition 2.9 The cellular sheaf cohomology (with compact support) of G is
the cohomology of the cellular cochain complex (with compact support) from
Definition 2.7. The cellular (Borel-Moore) cosheaf homology of F is the homology
of the cellular (Borel-Moore) chain complex from Definition 2.8.

Remark 2.10 It may seem counterintuitive that the usual cellular cochains are
supported only on compact faces and cellular cochains with compact support are
supported on all faces. As a sanity check, the reader is encouraged to compute the
cohomology of the constant sheaf from Example 2.3 on your favourite non-compact
polyhedral complex. Under reasonable hypotheses on the polyhedral complex, the
cellular cohomology of the constant sheaf will be isomorphic to the ordinary
singular cohomology of the polyhedral complex. The analogous statement holds for
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the compactly supported versions. See Example 6.2.4 in [6] for a simple example
and more details.

We now present some connections between the cellular (co)homology groups of
(co)sheaves and the cohomology groups of complex algebraic varieties. Demonsta-
tions of these theorems, along with the polymake code, appear in Sect. 4.

To a rational polytope � 	 R
n, we associate the toric variety TV.�/ corre-

sponding to its outer-normal fan; see Sect. 1.4 in [10]. The following theorem
relates the cohomology of the sheaves of p-differential forms ˝p on TV.�/ with
the cohomologies of the sheaves Wp on the polytope � from Example 2.4.

Theorem 2.11 ([8, Remark 12.4.1]) If � 	 R
n is a rational polytope and TV.�/

is the associated toric variety, then we have Hq.TV.�/I˝p/ Š Hq.�IWp/˝R C.
When the toric variety is smooth, we see that Hq.TV.�/I˝p/ Š Hp;q.TV.�// is
isomorphic to the .p; q/th part in the Hodge decomposition.

The next two results involve the F-cosheaves defined in Example 2.5. Consider a
hyperplane arrangement A in P

d
C

. Orlik and Solomon [21, Theorem 3.65] prove that
the cohomology of the complement P

d
C
n A depends only on the combinatorics of

the arrangment. More precisely, the combinatorics of an arrangement is encoded
by a matroid; see [18] or [22] for an introduction to matroid theory. For any
matroid, there is a combinatorially described Orlik–Solomon algebra, which equals
the cohomology ring of the complement P

d
C
n A when the matroid corresponds to

the hyperplane arrangement.
To any matroid M, we associate a fan B.M/ in Euclidean space known as the

Bergman fan of M; see [1]. If M is the matroid of a hyperplane arrangement A ,
then the fan B.M/ is the tropicalization of the complement P

d
C
nA under a suitable

embedding to a complex torus.

Theorem 2.12 ([27, Theorem 4]) If M is a matroid, B.M/ is its Bergman fan, and
Fp are the cosheaves from Example 2.5 on B.M/, then we have OSp.M/ D Fp.v/

�

where OSp.M/ denotes the pth graded piece of the Orlik–Solomon algebra of M and
v is the vertex of the fan.

In Examples 4.1–4.3, we illustrate how we can compute the dimensions of
the graded pieces of the Orlik–Solomon algebra of a matroid using the polymake
applications matroid, tropical and our extension cellularSheaves.

Lastly, the statements relating the cohomology of the complements of arrange-
ments and the tropical homology of matroidal fans in Theorem 2.12 can be
generalized, and even refined, in the setting of tropicalization of complex projective
algebraic varieties. We state a theorem and refer the reader to [15] for the precise
definitions of smooth Q-tropical projective varieties and tropical limits.

Theorem 2.13 ([15, Corollary 2]) Consider a 1-parameter family of complex
projective varieties 
 WX ! Dı where Dı is the punctured disc. If the tropical
limit trop.X / D X is a smooth Q-tropical projective variety, then we have

dim Hp;q.Xt/ D dim Hq.XIFp/
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where Hp;q.Xt/ is the .p; q/th part of the Hodge decomposition of Xt WD 

�1.t/ for

a generic point t 2 Dı.
As a consequence of this theorem, the homology of the F-cosheaves is also known
as tropical homology.

As yet, polymake does not have compact tropical varieties as objects. Therefore,
in the examples presented in Sect. 4, we do not produce Hodge numbers of complex
projective algebraic varieties, but rather Betti numbers of limit mixed Hodge
structures of non-complete varieties. Examples of this can be found in [7] for
hypersurfaces and complete intersections, also in [19] from a more tropical point
of view. Future plans to implement tropical homology for compact (and hence also
projective) tropical varieties are outlined in Sect. 5.

3 Implementation in Polymake

The mathematical software package polymake provides a framework for computa-
tions in polyhedral geometry. It focuses on combinatorial objects such as cones,
polyhedra, graphs, fans, and polyhedral complexes. Toric and tropical geometry
provide many ways for using polymake to solve computational tasks from algebraic
geometry. In particular, polymake provides the applications tropical for tropical
geometry and fulton for toric geometry. Furthermore, polymake interfaces several
other software packages which may be useful in our context, such as Gfan [17]
for tropical computations and Singular [9] for algebraic geometry. See [14] for an
overview of the most current implemented polymake features for tropical geometry.

The interface language for polymake is perl. For improved performance one
can write and attach C++ code. The combinatorial objects are realized as objects
with properties. For example, the object Polytope has the properties VERTICES
and F_VECTOR among many others. Since solving certain problems can be very
expensive, polymake adheres to the principle of lazy evaluation: properties are only
computed when needed and then cached with the object, so they do not have to be
recomputed.

Computation of properties is done via polymake’s internal rule structure. A rule
takes a certain set of input properties and then computes a certain set of output
properties. When asked for a certain property of an object, polymake creates a queue
of rules to apply in order to get this property from any set of given properties, if this
is possible. Take for example the following snippet of code:

object PolyhedralFan {

property ORIENTATIONS : Map<Set<Set<Int> >, Int>;

rule ORIENTATIONS: HASSE_DIAGRAM, FAN_DIM, RAYS,
LINEALITY_SPACE{

... # Code
}

}
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Here the object PolyhedralFan is equipped with a new property ORIENTA-
TIONS which one needs for computing tropical homology, see Definition 2.1. A
rule is created, that computes ORIENTATIONS from the properties HASSE_DIA-
GRAM, FAN_DIM, RAYS and LINEALITY_SPACE of the PolyhedralFan.

Internally in polymake, every polyhedral complex ˘ in R
n is considered as a

polyhedral fan ˙ in R
nC1 intersected with the hyperplane defined by x0 D 1. Every

face of ˘ is indexed by a subset of the rays of ˙ . The one-dimensional faces of ˙
whose direction v D .v0; v1; : : : ; vn/ satisfies v0 D 1 correspond to vertices of ˘ .
The one-dimensional faces of ˙ whose direction v satisfies v0 D 0 correspond to
unbounded one dimensional faces of ˘ .

Definition 3.1 Let ˙ be a fan in R
nC1 and ˘ D ˙ \ fx0 D 1g. A far vertex of ˘

is a ray of ˙ whose direction v satisfies v0 D 0. A face � of ˘ is

• a far face if its index set consists only of far vertices,
• a non-far face if its index set contains at least one non-far vertex,
• a bounded face if it contains no far vertices, and
• an unbounded face if it is neither a far face nor a bounded face.

Our extension cellularSheaves adds the properties FAR_FACES, NON_FAR_FACES,
BOUNDED_FACES, and UNBOUNDED_FACES to a polyhedral complex.

Computing orientations for the polyhedral fan avoids complications caused by
the different types of faces of the polyhedral complex. Since the object Poly-
hedralComplex is derived from the object PolyhedralFan, it will have the
property ORIENTATIONS as well.

Installing the cellularSheaves Extension The extension can be installed on a
Linux system with the most recent polymake version with the following two steps.
First clone the repository with

git clone \
http://www.github.com/lkastner/cellularSheaves \
FOLDER

into a folder named FOLDER. Second start polymake and import the extension using

import_extension("FOLDER");

The extension introduces the new objects Sheaf and CoSheaf from Definition 2.2.
A basic usage scenario looks like

application "fan";
$pc = new PolyhedralComplex(

check_fan_objects(new Cone(cube(3))));
$w1 = $pc->wsheaf(1);

We switch to the application fan because this is the application our extension adds
functionality to. The next line takes the three dimensional cube and turns it into a
polyhedral complex. We then ask for the W1-sheaf appearing in Example 2.4.

We implemented most methods dealing with pure linear algebra in C++. The file

apps/fan/include/linalg.h
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contains the C++ code. These linear algebra methods, especially those assembling
a chain complex from given block matrices, perform significantly better when
implemented in C++ than in perl.

Sheaves and Cosheaves In our extension, we introduce the objects Sheaf and
CoSheaf. As implemented, these objects have two properties. The first is a map
from a collection of sets of integers to matrices. This property represents the vector
spaces of a (co)sheaf. The second is a map from pairs of sets in this collection
to matrices. These matrices represent the morphisms between these vector spaces.
The vector spaces and morphisms are stored in the following two properties of a
(co)sheaf:

property BASES : Map<Set<Int>, Matrix>;

property BLOCKS : Map<Set<Set<Int> >, Matrix >;

Let us rephrase this in terms of the Definitions 2.7 and 2.8. Let˘ be a polyhedral
complex with a sheaf G and let � � � be a face relation in ˘ . The faces of ˘ are
encoded as index sets of the rays of vertices of the defining polyhedral fan ˙ . As
an object in polymake, the sheaf G has the property BASES containing the bases of
the vector spaces G ./ for all  2 ˘ . For the sheaf G , the property BLOCKS also
contains a matrix representing the map ��;� WG .�/ ! G .�/, for each pair of faces
� � � . This matrix is written using the bases from the property BASES. Similarly
for cosheaves, the property BASES of F contains the bases of F .�/, for all � 2 ˘ ,
and the property BLOCKS contains a matrix representing the map ��;� WF .�/ !

F .�/, for each pair of faces � � � . For the purpose of computing sheaf cohomology
only the BLOCKS are required; the property BASES may be left empty. However,
in BLOCKS, it is also necessary to store morphisms for certain non-face relations,
these consist of zero matrices of the appropriate sizes.

The main (co)sheaf constructors included in the cellularSheaves extension are
constant_sheaf, fcosheaf, and wsheaf, which produce the (co)sheaves
from Examples 2.3, 2.4, and 2.5. These are user methods attached to a polyhedral
complex. The latter two methods take a non-negative integer p as a parameter that
determines the exterior power for the F-cosheaves and W-sheaves.

Chain Complexes and Homologies The remaining new important objects
are chain complexes introduced as ChainComplex. A chain complex comes
with the properties DIFFERENTIALS, BETTI_NUMBERS, HOMOLOGY and
IS_WELLDEFINED. It can be created by giving an array of matrices as the
property INPUT_DIFFERENTIALS. It has a user method print() providing
a human readable sequence format of the chain complex. Dually, we introduce
the object CoChainComplex. Internally this is just a wrapper around the object
ChainComplex.

Currently, there are four (co)homology methods in our extension for a given
(co)sheaf. They differ by which faces are used in building the chain complex.

usual_chain_complex: This method computes C
.˘ IF /, meaning that it
only considers the bounded faces of the given polyhedral complex.
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borel_moore_complex: This method computes CBM

 .˘ IF /, meaning that

it uses all non-far faces of a given polyhedral complex.
usual_cochain_complex: This method computes C
.˘ IG /.
compact_support_complex: This method computes C


c .˘ IG /.

4 Examples and Usage

This section provides sample code and output for some specific examples. These
examples are chosen to highlight the connections to cohomology of complex
algebraic varieties described in Sect. 2.

Polytopes We consider the polyhedral complex that consists of a three-dimensional
cube C and all its faces. We will compute the W-sheaves for C as well as the Betti
numbers of the cohomology groups Hq.CIWp/ for all p; q from 0 to 3.

application "fan";
$pc = new PolyhedralComplex(

check_fan_objects(new Cone(cube(3))));
@betti = ();
for(my $i=0; $i<4; $i++){

my $w = $pc->wsheaf($i);
my $s = $pc->usual_cochain_complex($w);
push @betti, $s->BETTI_NUMBERS;

}
print new Matrix(@betti);

The first step turns the three-dimensional cube into a polyhedral complex. We then
loop over all possible W-sheaves and save the Betti numbers in a matrix, which
yields the following output.

fan > print new Matrix(@betti);
1 0 0 0
0 3 0 0
0 0 3 0
0 0 0 1

We see that dim Hq.CIWp/ D 0 if p ¤ q. The diagonal dim Hp.CIWp/ is the dual
h-vector of the cube. This relationship holds for any simple polytope �; see [3,
Corollary, p. 6].

fan > $cube = polytope::cube(3);

fan > print $cube->DUAL_H_VECTOR;
1 3 3 1

The toric variety of this cube is X D P
1
C
� P

1
C
� P

1
C

. Hence,we have

dim Hp.XI˝p/ D

{
1 if p D 0; 3;

3 if p D 1; 2:

and dim Hq.XI˝p/ D 0 for p ¤ q.
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Bergman Fans and Tropical Linear Spaces We can build the Bergman fan B.M/
of a matroid M and compute the usual homology of the F-cosheaf. Assuming the
matroid M is connected, the fan B.M/ has a unique bounded face, its vertex v.
Therefore, the cellular chain groups Cq

(
B.M/IFp

)
are trivial unless q D 0. In

the following examples, we will see that dim H0.B.M/IFp/ D dim OSp.M/, where
OSp.M/ is the pth graded part of the Orlik–Solomon algebra of M. This follows
from Theorem 2.12. When v is the vertex of the Bergman fan, we have

H0

(
B.M/IFp

)
D C0

(
B.M/IFp

)
D Fp.v/

and Hi
(
B.M/IFp

)
D 0 for i > 0.

When M is a rank d C 1 matroid on n C 1 elements arising from a non-central
hyperplane arrangement A in P

d
C

, the Orlik–Solomon algebra is isomorphic to the
cohomology ring of the complement C WD P

d
C
nA of the arrangement. There is

a canonical embedding of C ! .C�/n, and its tropicalization is the Bergman
fan of the matroid. Therefore, we see that the homology of the F-cosheaf on a
tropicalization recovers cohomological information about the original variety.

Example 4.1 Our first example computes the tropical homology of a tropical line
in R

2. This is the tropicalization of a generic line L 	 C
2 intersected with the

torus .C�/2. This space is homeomorphic to P
1
C
n fp1; p2; p3g, so it follows that

dim H0
(
L\ .C�/2IC

)
D 1 and dim H1

(
L\ .C�/2IC

)
D 2. The tropical line is the

Bergman fan of the uniform matroid of rank two on three elements.
We start by computing the Bergman fan of the matroid in polymake. The

algorithm polymake uses to compute this fan is from the program TropLi [25].

application "fan";
$m = matroid::uniform_matroid(2,3);
$berg = tropical::matroid_fan<Max>($m);

Next, we construct the associated F-cosheaves up to the dimension of the Bergman
fan and compute their usual chain complexes.

$f0 = $berg->fcosheaf(0);
$f1 = $berg->fcosheaf(1);
$s0 = $berg->usual_chain_complex($f0);
$s1 = $berg->usual_chain_complex($f1);

We may determine the Betti numbers as follows.

fan > print $s0->BETTI_NUMBERS;
1 0
fan > print $s1->BETTI_NUMBERS;
2 0

We can also compute the Borel–Moore homology. Here every face of the Bergman
fan contributes to the Borel–Moore chain groups; see Definition 2.9.

$bm0 = $berg->borel_moore_complex($f0);
$bm1 = $berg->borel_moore_complex($f1);
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gives

fan > print $bm0->BETTI_NUMBERS;
0 2
fan > print $bm1->BETTI_NUMBERS;
0 1

We obtain dim Hq.B.M/IFp/ D dim HBM
d�q.B.M/IFd�p/ for d D 1, which is the

dimension of the Bergman fan. This is the homological version of Poincaré duality
for matroidal fans and tropical manifolds from [16].

Example 4.2 In this example, we study the Bergman fan of the matroid of the
complete graph on four vertices. This is also the matroid of the braid arrangement of
lines in P

2
C

whose complement is the moduli space of 5-marked genus 0 curves M0;5;
see [1]. We use the applications graph and matroid to construct the Bergman
fan.

application "fan";
$g = graph::complete(4);
$m = matroid::matroid_from_graph($g);
$berg = tropical::matroid_fan<Max>($m);

We compute the usual and the Borel-Moore homology of the F-cosheaf.

@betti_usual = ();
@betti_bm = ();
for(my $i=0; $i<3; $i++){

my $f = $berg->fcosheaf($i);
my $s = $berg->usual_chain_complex($f);
my $bm = $berg->borel_moore_complex($f);
push @betti_usual, $s->BETTI_NUMBERS;
push @betti_bm, $bm->BETTI_NUMBERS;

}

This gives the following Betti numbers:

fan > print new Matrix(@betti_usual);
1 0 0
5 0 0
6 0 0

fan > print new Matrix(@betti_bm);
0 0 6
0 0 5
0 0 1

Again, we see that dim Hq
(
B.M/IFp

)
D dim HBM

d�q

(
B.M/IFd�p

)
for d D 2.

Example 4.3 A tropical linear space is not necessarily a fan. Nevertheless, the Betti
numbers of the tropical homology of the tropical linear space and of its recession
fan agree. In this example, we start with the Bergman fan of the uniform matroid
of rank three on six elements and compare its homology with that of the tropical
linear space of a valuated matroid with the aforementioned matroid as its underlying
matroid. Consider the input
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application "fan";
$m = matroid::uniform_matroid(3,6);
$berg = tropical::matroid_fan<Max>($m);
@betti_usual = ();
@betti_bm = ();
for(my $i=0; $i<3; $i++){

my $f = $berg->fcosheaf($i);
my $s = $berg->usual_chain_complex($f);
my $bm = $berg->borel_moore_complex($f);
push @betti_usual, $s->BETTI_NUMBERS;
push @betti_bm, $bm->BETTI_NUMBERS;

}

The resulting output equals

fan > print new Matrix(@betti_usual);
1 0 0
5 0 0
10 0 0

fan > print new Matrix(@betti_bm);
0 0 10
0 0 5
0 0 1

We next consider a valuated matroid whose underlying matroid is uniform of rank
three on six elements and construct the corresponding tropical linear space. In
particular, the input

$v = [0,0,3,1,2,1,0,1,0,2,2,0,3,0,4,1,2,2,0,0];
$val_matroid = new matroid::ValuatedMatroid<Min>(

BASES=>matroid::uniform_matroid(3,6)->BASES,
VALUATION_ON_BASES=>$v,N_ELEMENTS=>6);

$tls = tropical::linear_space($val_matroid);
@betti_usual = ();
@betti_bm = ();
for(my $i=0;$i<3;$i++){

my $fi = $tls->fcosheaf($i);
my $si=$tls->usual_chain_complex($fi);
my $bmi=$tls->borel_moore_complex($fi);
push @betti_usual, $si->BETTI_NUMBERS;
push @betti_bm, $bmi->BETTI_NUMBERS;

}

returns

fan > print new Matrix(@betti_usual);
1 0 0
5 0 0
10 0 0

fan > print new Matrix(@betti_bm);
0 0 10
0 0 5
0 0 1

which is the same as for the Bergman fan of the matroid above.
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Example 4.4 In this example, we compute the usual cohomology and the compactly
supported cohomology of the W-sheaves on a tropical linear space. These cohomolo-
gies exhibit vanishing in certain degrees. We continue with the same tropical linear
space from Example 4.3. The input

@wbetti_usual = ();
@wbetti_cs = ();
for(my $i=0;$i<3;$i++){

my $wi = $tls->wsheaf($i);
my $wsi=$tls->usual_cochain_complex($wi);
my $wcsi=$tls->compact_support_complex($wi);
push @wbetti_usual, $wsi->BETTI_NUMBERS;
push @wbetti_cs, $wcsi->BETTI_NUMBERS;

}

returns

fan > print new Matrix(@wbetti_usual);
1 0 0
0 4 0
0 0 1

fan > print new Matrix(@wbetti_cs);
0 0 10
0 0 32
0 0 28

More generally, we conjecture that the following cohomology groups vanish.

Conjecture 4.5 If L 	 R
n is a tropical linear space of dimension d, then we have

Hq.LIWp/ D 0 if p ¤ q and Hq
c .LIW

p/ D 0 if q ¤ d.
This conjecture has been verified on all tropical linear spaces in trop Gr.3;A6/.

The Euler characteristics of the complexes C
.LIWp/ and C

c .LIW

p/ imply that

.�1/pHp.LIWp/ D

d∑

qD0

.�1/q
Ç

q

p

å
f b
q and .�1/dHd

c .LIW
p/ D

d∑

qD0

.�1/q
Ç

q

p

å
fq

where .f b
0 ; f

b
1 ; : : : ; f

b
d / is the f b-vector of the bounded faces of L and .f0; f1; : : : ; fd/

is the f -vector of L. If the above conjecture holds, then understanding the f -vector
of a tropical linear space comes down to understanding the possible dimensions
of Hq


.LIWp/. As a consequence, it would be possible to bound the f b-vector by
bounding Hp.LIWp/. This would give an approach to the f -vector conjecture for
tropical linear spaces, see [23], similar to the proof of the upper bound conjecture
for polytopes.

Tropical Hypersurfaces Using the a-tint application [13], we can construct
tropical hypersurfaces in polymake from convex piecewise integer affine functions,
which are also known as tropical polynomials. The subsequent examples demon-
strate how one can start directly with a given tropical polynomial and compute the
tropical homology of the hypersurface.
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Example 4.6 We begin with a tropical curve in R
2 which is dual to a triangulation

of a square of size one. The input

application "tropical";
$f = toTropicalPolynomial("max(0,x+5,y+3, x+y+9)");
$div = divisor( (projective_torus<Max>(2)),

rational_fct_from_affine_numerator($f));
application "fan";
@betti_usual = ();
@betti_bm = ();
for(my $i=0;$i<2;$i++){

my $fi = $div->fcosheaf($i);
my $si=$div->usual_chain_complex($fi);
my $bmi=$div->borel_moore_complex($fi);
push @betti_usual, $si->BETTI_NUMBERS;
push @betti_bm, $bmi->BETTI_NUMBERS;

}

gives

fan > print new Matrix(@betti_usual);
1 0
3 0

fan > print new Matrix(@betti_bm);
0 3
0 1

Example 4.7 As a final example, we calculate the homology of another tropical
hypersurface. This hypersurface arises as a triangulation of the three dimensional
simplex of edge length four, and is a tropical K3-surface in R

3. From the input

application "tropical";
$f = toTropicalPolynomial("max(0,x,y,z, 2*x-2,

2*y-2, 2*z-2, x+y-1, x+z-1, y+z-1, 3*x-6,
3*y-6, 3*z-6, 2*x+y-4, 2*y+x-4, 2*x+z-4,
2*z+x-4, 2*y+z-4, 2*z+y-4, x+y+z+1, 4*x-12,
4*y-12, 4*z-12, 3*x+y-9, 3*y+x-9, 3*x+z-9,
3*z+x-9, 3*y+z-9, 3*z+y-9, 2*x+2*y-8,
2*x+2*z-8, 2*y+2*z-8, 2*x+y+z-7, x+2*z+y-7,
2*y+z+x-7)");

$k3 = divisor((projective_torus<Max>(3)),
rational_fct_from_affine_numerator($f));

application "fan";
@numbers = (0..2);
@cosheaves = map{$k3 -> fcosheaf($_)} @numbers;
@usualChainComplexes = map{$k3->

usual_chain_complex($_)} @cosheaves;
@bmComplexes = map{$k3->borel_moore_complex($_)}

@cosheaves;
@betti_usual = map{$_->BETTI_NUMBERS}

@usualChainComplexes;
@betti_bm = map{$_->BETTI_NUMBERS} @bmComplexes;
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we obtain the following matrices of Betti numbers

fan > print new Matrix(@betti_usual);
1 0 1
3 31 0
34 0 0

fan > print new Matrix(@betti_bm);
0 0 34
0 31 3
1 0 1

This tropical hypersurface is bigger than the polyhedral complexes we previously
considered. Its f -vector is .64; 96; 34/. This can be seen from the usual chain
complex of the F0-cosheaf.

fan > $usualChainComplexes[0]->print();
3 2 1 0 -1
k^0 --> k^34 --> k^96 --> k^64 --> k^0

In this example and Example 4.6, we again observe Poincaré duality for tropical
homology.

5 Future Directions

Sheaves of Modules It is also possible to compute (co)homology of cellular
(co)sheaves of modules. For example, given a rational polyhedral complex, there
are also integral versions of the W-sheaves and F-cosheaves that are free Z-modules.
However, using the current methods fcosheaf and wsheaf can lead to incorrect
cohomology groups over Z. Still, the ranks of the torsion and the free part of the
(co)homology will be correct in these cases.

The problem with using the current implementation to compute integral versions
of the (co)homology of the integral versions of these (co)sheaves is that the property
BASES does not necessarily consist of a lattice basis of the free Z-module for each
face. If one properly chooses Z-bases for BASES and defines BLOCKS manually
with the correct maps over Z when creating a (co)sheaf, then the current rules for
computing the cellular (co)homology will compute the correct Z-homology.

We plan to adapt fcosheaf and wsheaf to give the correct results over Z

after switching to polymake’s internal chain complex object. This has recently been
pushed to the polymake repository by Olivia Röhrig.

Tropical Compactifications and Projective Hypersurfaces How to implement
compact tropical varieties is part of an ongoing discussion inside the polymake
developer team. One possibility is to save one affine tropical variety per chart of
tropical projective space. For many cases, this would result in a drastic increase of
resource usage. Thus, one may want to restrict to certain classes of tropical varieties
with nice compactifications.
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A solution to this problem is necessary in order to use our extension to solve
Problem 10 on Surfaces in [24]. Upon having an implementation of compact tropical
varieties, one could for example combine our extension and the approach to tropical
Enriques surfaces in [2] to determine the Hodge numbers of the surface.

Implementing Other Cellular (Co)sheaves There are many other (co)sheaves to
consider on a polyhedral complex including those arising from common (co)sheaf
operations, such as restrictions, pullbacks, and Verdier duals. For example, cellular
sheaves on polyhedral fans have appeared in [3]. In this work, given a polyhedral
fan in R

n, Brion associates to a face � , the quotient vector space R
n=L.�/ where

L.�/ denotes the linear span of the � . These vector spaces come equipped with
natural maps between them when there is an inclusion of faces. One can also take pth
exterior powers of these vector spaces, as well as generalize this definition beyond
polyhedral fans to get a collection of sheaves. The cohomology of these cellular
sheaves is related to the motion spaces in discrete dynamical geometry; see [26].
Following [26], the W-sheaves come up in aspects of rigidity and the F-cosheaves
of skeleta of polyhedral complexes are related to stress spaces.

Applied Topology Cellular (co)sheaves also appear frequently in applied topology
and topological data analysis. Notable examples arise in the study of sensor
networks, network coding, and persistent homology; see [6, 12]. The (co)sheaves
appearing in these contexts are often a part of the input data of the model under
consideration and do not have a simple recipe coming from the geometry of the
underlying topological space like in the case of tropical homology. However, our
extension allows for the construction of a sheaf from scratch. In the future, our
implementation will be extended to cellular (co)sheaves on more general topological
spaces using the polymake application topaz. We would also like to point out the
current efforts underway by Olivia Röhrig to implement persistent homology in
polymake.
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