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Preface

Forest landscape maps provide the foundational information for managing, con-
serving, and utilizing forests—one of the most important global resources. Use of 
the spatially and temporally explicit knowledge generated by these maps, once lim-
ited to professionals engaged in research, management, and education, is now pos-
sible for nonprofessionals, including the general public. Recent interest in global 
issues such as conserving biodiversity, the impacts of anthropogenic activities, and 
the effects of climate change have further increased the demand for mapped infor-
mation about forest landscapes. This demand is being met by a rapidly expanding 
capability to supply that information readily and inexpensively. Given this positive 
and dynamic scenario, and the growing enthusiasm of academics and students, it is 
perhaps time to pause and ponder the status quo for using mapped information. 
Thus, in this book, we examine the mapping of forest landscapes with the goals of 
providing a broad overview of the current status of mapping and highlighting some 
advances in the techniques available for obtaining and visualizing this information. 
It is not intended to be an exhaustive review of the state of our current knowledge of 
forest landscape mapping, but rather a recap of some key aspects related to the util-
ity and use of these maps.

The book is composed of eight chapters. We begin with a broad introduction to 
mapping forest landscapes, which will serve as a primer for readers who are either 
not well versed in this topic or who need a refresher course in the basics. Chapter 1 
reminds the reader that maps are abstractions of reality, and that the degree of the 
abstraction is influenced by the map’s scale and the developers’ decisions regarding 
the geometric projection and representation; forest landscapes represent a high level 
of ecological organization that includes many hierarchically structured elements at 
multiple scales, and the elements we map are often fuzzy and heterogeneous with 
respect to their attributes and geometry. Data for maps are gathered from numerous 
sources at multiple scales; the collection can span many sources, so assessments of 
the inherent errors and of map accuracy are essential for defining the validity and 
credibility of maps.

Chapter 2 describes the concept of mapping forest landscapes as fuzzy elements, 
since both classification themes and the boundaries of mapped entities are often 
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unknown or imprecise. This chapter describes the approaches that can be used to 
obtain probabilistic and membership values for mapped ecosystems, how the mem-
bership functions that provide these values can take many forms that depend on the 
spatial resolution, and the consequences for the uncertainty of mapped themes and 
spatial details.

Chapter 3 addresses the specific case of mapping wildfires in forest landscapes 
as discrete but complex objects. It describes how wildfire footprints, despite com-
monly being mapped as simple polygons with a uniform interior and a definitive 
boundary, are highly complex with respect to their internal composition and spatial 
attributes. This complexity results from the heterogeneous and stochastic nature of 
the processes that underlie fire behavior. Accurate portrayal of these processes is 
scale-dependent.

Chapter 4 describes the utility of three-dimensional mapping of forest landscapes 
using airborne light detection and ranging (LiDAR). This chapter compares the uses 
of discrete and full-waveform LiDAR data collection and discusses the types of 
summary statistics about forests that each can provide, including various character-
izations of tree crowns and the development of canopy and terrain models. Having 
access to 3D forest landscape data has implications for mapping biomass and stem 
density that go beyond traditional two-dimensional stand-level genus or species 
classifications.

Chapter 5 explores the mapping of outputs from spatial models to understand the 
interactions among processes from the resulting spatial patterns. Such mapping 
often extends into the construction of mathematical surfaces, for which the mapped 
quantities represent the outputs of a model (e.g., CART, Random Forests) and are 
themselves abstractions of a landscape. In such cases, the spatial patterns can be 
used as a surrogate for studying complex ecological processes, and ensemble meth-
ods can be used to integrate data within analyses of growing archives of spatial data.

Chapter 6 continues the discussion of landscape abstraction through the use of 
landscape metrics in two, three, and four dimensions. Although numerous metrics 
exist, most capture some aspect of the landscape’s composition or configuration by 
summarizing the size, density, shape, core, edge, or connectivity characteristics of 
specific land cover types. Transition zones (e.g., ecotones, edges) can be visualized 
as concentric bands, which are conceptually simpler than fuzzy membership func-
tions in terms of how they describe changes with respect to the distance across an 
interface, since fuzzy membership functions can take on highly complex forms.

Chapter 7 explores the automation of data processing to standardize the produc-
tion of forest maps and to ensure both consistency and more rapid map develop-
ment. Ensuring the effectiveness of such workflows will require consistent 
terminology in the context of an increasingly automated environment. In this chap-
ter, we reiterate the distinction between land use and land cover, particularly since 
the important information obtained from land use classification remains difficult to 
extract from remote-sensing imagery. The chapter concludes with a discussion of 
tools that can integrate this imagery with LiDAR data in a logistic regression model 
to allow interpretation of fractional tree cover, which connects neatly with the con-
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cept and fuzziness or mixed pixels that contain various combinations of land cover 
types.

The book concludes with a brief synopsis of the need to improve the application 
of forest landscape maps, particularly in terms of the efficiency and effectiveness of 
using the mapped information. In this epilogue, we remind readers that all applica-
tions of maps are scale-related; the best information is not necessarily the most 
detailed or presented at the highest resolution, but rather uses the optimal (most 
appropriate) scale for a specific application. We also reiterate that maps are abstrac-
tions and simplifications of complex natural systems, and that these abstractions 
depend on many assumptions and are undermined by the many sources of error that 
are associated with any map.

Our target audience for this book is readers who are involved with generating and 
using forest landscape maps. We anticipate this volume to benefit readers from the 
communities of developers and users of geospatial data about forest landscapes. 
Throughout the book, we emphasize how creators and users of maps must actively 
and continuously communicate their needs and interact to achieve those needs, with 
the ultimate goal being to improve the efficiency and effectiveness of creating and 
using forest landscape maps.

On behalf of all authors who contributed to this book, we thank the colleagues 
who critically reviewed drafts of the chapter manuscripts and suggested improve-
ments: Raivo Aunap, Den Boychuk, Nicholas Coops, Christoph Fischer, Curtis 
Gautschi, Wendy Goetz, Emilie Henderson, John Lindsay, Jed Long, Kevin 
McGarigal, Don McKenzie, Scott Mitchell, Achilleas Psomas, Marc Simard, 
Christoph Straub, and Hannah Wilson. Finally, we gratefully acknowledge Geoff 
Hart for improving the clarity of the messages in several chapters, Marc Ouellette 
for refining many images and illustrations, and Janet Slobodien for guiding the pub-
lication process.

Tarmo K. Remmel 
Toronto, ON, Canada

 Ajith H. Perera 
Sault Ste. Marie, ON, Canada
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Mapping Forest Landscapes: Overview 
and a Primer

Tarmo K. Remmel and Ajith H. Perera

Abstract  In this chapter, we offer a primer that defines key terminology and that 
positions forest landscape mapping within a broad context that encompasses all 
readers of this book. We present the fundamentals of cartography, and emphasize the 
importance of data representations, map projections, scales, and data collection 
options and principles. We then formalize the term forest landscape, and clarify how 
to understand this term in the context of this book by considering the numerous 
characteristics that could be mapped and the influence of scale on this mapping. 
Next, we focus on mapping forest landscapes from the perspectives of both regions 
and boundaries between them by considering the fuzziness of both; we then extend 
these concepts beyond two dimensions. The chapter concludes with a long discus-
sion of map utility and how maps can be interpreted, mined for information, and how 
scale affects these types of interpretations. We stress that data with higher spatial 
resolution is not always better and that multiple-scale and cross-scale analyses may 
yield more meaningful information than interpreting a landscape at only a single 
scale. We conclude with a summary and discussion of the assessment of accuracy, 
error sources, and overall map validation. Throughout, we draw attention to chapters 
in this book that advance the discussion of the topics introduced in this chapter.
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�Mapping Forest Landscapes: An Introduction

�What is Mapping?

Historians and archaeologists continue to debate where and when the world’s first 
map was produced. There are compelling arguments in favor of a recently discov-
ered 14,000-year-old engraved landscape depiction that was discovered in a Spanish 
cave; however, it is broadly accepted that a 6200  BC wall painting that depicts 
buildings and an erupting volcano from Çatalhöyük in Turkey (near ancient 
Babylon) is the world’s first map. Though neither can be considered a true map, 
constructed to exacting standards stemming from modern cartographic principles, 
both mark a possible prehistoric origin to the visual (geographic) representation of 
spatial entities and phenomena.

The union of geodesy (the mathematics and science of measurement of the 
Earth) with sampling, geographic measurement, and description has evolved into 
the discipline of cartography and has further led to the refinement of what are com-
monly referred to as thematic maps—cartographic representations of related fea-
tures within specific thematic domains such as land use types. These representations 
of real landscapes are built upon the premise of accurately situating attributes and 
measured values of an area on a flat surface (the map), where distances scale pro-
portionally to the corresponding real-world distances to permit measurements from 
the map itself. It is the fundamental concept of the thematic map that forms the basis 
of modern navigation, land registry and ownership, land cover mapping, and eco-
logical modeling, and this concept touches virtually every aspect of geoinformatics. 
In this book we specifically address thematic maps of forested landscapes, but the 
ideas presented here extend well beyond the context of forestry.

Forest landscape mapping represents the confluence of many areas of scien-
tific expertise: mathematics, geography, remote sensing, geographical informa-
tion systems (GIS), spatial statistics, forest and landscape ecology, management 
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of forests and other resources, and even economics. Given this variety of special-
ties that have become involved with forest landscape mapping, we feel that it’s 
important to explain some basic concepts associated with this topic, thereby 
forming a context for the discussions that appear in the rest of this book. 
Therefore, our goal in this chapter is to provide an overview—to define what we 
mean by mapping, to elucidate what forest landscapes are and why we map 
them, and, finally, to provide context for the considerations and challenges 
involved in mapping forest landscapes. It is designed to cover broad consider-
ations that will introduce the perspective of geographers to ecologists, and 
vice-versa.

�Thematic Mapping Basics

Mapping can be defined as the depiction and attribution of components belong-
ing to natural and cultural environments using visual (graphic) representations. 
Accurate representation of spatial relationships in two-dimensional maps 
requires precise positional measurements in horizontal, vertical, or both dimen-
sions, together with appropriate use of color, symbols, and cartographic scale to 
construct truthful and effective representations of real environments. Though 
some aspects of thematic mapping extend to include mental abstractions that do 
not occupy physical spaces, the goal in this book is to focus on the mapping of 
physical environments while avoiding the more abstract mental aspects of map-
ping as well as the cultural and often anthropogenic elements, except where they 
intersect with forested landscapes. Because abstraction is a key point in this 
book, a working definition is important. Here, we define abstraction as the pro-
cess of creating a visual image that does not exist in the real world, but that bears 
an obvious resemblance to the real world, though with some of the complexity 
eliminated to preserve only the most important points. For example, an aerial 
photograph is relatively concrete, but a line drawing based on that photograph is 
highly abstract.

Forested landscapes are traditionally mapped to delineate land ownership, typi-
cally to support deeds and title records and to support taxation. However, legal map-
ping (precise surveying) aside, modern forest mapping serves many more and wider 
reaching purposes. From forest management planning to disturbance tracking, map-
ping allows foresters and managers to organize their harvesting and regeneration 
strategies under the constraints imposed by natural environmental conditions. 
Ecologists might be concerned about the diversity of species (flora or fauna) or the 
ranges of mammals or birds. Forest scientists are curious about biomass accumula-
tion in terms of fuel loading and wildfire risk, and climate change researchers may 
wish to quantify the carbon sequestered in forests and the underlying soils or its 
periodic, episodic, or catastrophic release. Park rangers interested in establishing 
new hiking trails and viewpoints are concerned with topographic and esthetic 
components, and most stakeholders are at some point interested in identifying and 
measuring changes between consecutive periods.

Mapping Forest Landscapes: Overview and a Primer
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Traditional thematic maps can be constructed from data obtained through field 
observation and measurement, surveying, photographic and photogrammetric 
analyses, or interpretation of satellite images. However, as the past decades have 
demonstrated, spatial models are becoming equally likely sources of thematic maps, 
and the products from traditionally developed maps might become model parame-
ters that are ultimately used to produce new maps.

A map will never be able to record the full complexity of a landscape; among 
other problems, it would need to be the same size as the landscape to do so. Thus, it 
is impossible to consider depicting a complete enumeration of all phenomena, inter-
actions, and processes that act on an area of interest across the full spectrum of 
spatial scales. Forested landscapes can be complex and heterogeneous environ-
ments composed of diverse biotic and abiotic elements and the associated biologi-
cal, chemical, physical, and energy exchanges and interactions. Capturing the true 
complexity of a forested landscape, including every element and entity from the 
submicroscopic level through connections with global atmospheric circulation and 
solar insolation, would be a daunting—indeed, impossible—task. An appropriate 
level of representation must therefore be chosen based on the needs of the map’s 
users, and the cartographic construction will then rely on a series of generalizations 
that prevent the map from being cluttered with extraneous information that would 
make it difficult to comprehend and from distracting the user’s attention from the 
most important points. Spatial objects must therefore be simplified with respect to 
their shape (e.g., edge complexity), generalized in terms of their thematic detail 
(e.g., the number of levels of a variable), and designed based on the minimum fea-
ture size that must be represented. Thoughtful design, combined with clear use of 
colors, symbols, spacing, and fonts, and the choice of an appropriate density of 
landscape elements, will permit the human mind to perceive the inherent complexi-
ties of the landscape without being distracted by the inclusion of peripheral infor-
mation. Indeed, information designer Richard Saul Wurman considers “map” to be 
an acronym for “mankind’s ability to perceive.”

Forest landscapes are mapped for many reasons, and each creates requirements 
for the final map representation, its precision, and its accuracy. Similarly, the 
content desired in each map will dictate how landscapes are measured, repre-
sented, and ultimately portrayed as maps. In this section, we provide a back-
ground to the processes that cartographers use to convert real-world forest 
landscapes into maps that abstract the things or processes they are studying. These 
creative processes are all constrained by the considerations and caveats detailed 
in the following sections that simultaneously constrain and emphasize the need 
for such map products.

For any mapping exercise, the initial requirement is a clear articulation of the 
map’s purpose and definition of the related requirements for the final product, as 
these will guide the data acquisition, representation, and cartographic processes 
that will be implemented. In most instances, forest landscapes will be mapped as 
one or more thematic maps to characterize their composition. Such maps delin-
eate areas that are more similar to each other than they are to a different group 
of areas. Whether these thematic classifications characterize tree species, age 
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classes, wood volume, height, or other measureable metrics will be determined 
by the initial step in which the cartographer articulates the map’s purpose. Once 
the purpose is clear, the specific variables that must be measured can be identi-
fied and their measurement can proceed using traditional and proven methods.

Thematic maps can be as varied as the purposes that they are designed for. 
Depending on the extent of the area for which mapping is conducted, the level of 
detail required, and the spatial scale of the phenomena of interest, the outcome of 
the mapping exercise will differ. For forested landscapes, mapping generally 
revolves around the mapping of forest composition and factors (e.g., functional or 
utilitarian) that derive from the forest’s resources, disturbances (e.g., natural or 
anthropogenic), and processes acting on the landscape. The emphasis is often on 
land cover mapping (composition), paying particular attention to tree genera and 
species assemblages (where possible) to produce forest inventory maps that can be 
updated regularly to support forest management planning. Such mapping also 
reflects the structural characteristics of landscapes (i.e., the assemblage of shapes 
into patterns and horizontal or vertical structures).

�Factors that Influence Mapped Patterns

The decision to add or delete even a single feature will alter the observed spatial 
pattern in a map. Beyond the selection of which features to include in a map, several 
additional decisions will influence the design of the map and the patterns that it 
portrays. The choice of a measurement will alter the number of levels at which an 
attribute can be drawn (colors, shapes, symbol sizes) and determine whether the 
presentation will be qualitative or quantitative. Furthermore, the type of data repre-
sentation will impose certain restrictions or allow certain freedoms on the represen-
tation of the geographic space. Within these constraints, the degree of feature 
generalization, the choice of geometric projection, and (ultimately) the scale of 
mapping will all contribute to defining the final landscape pattern that is displayed. 
The design decisions made within these constraints will influence symbolization, 
attribute definition, and observed patterns of depicted fragmentation, patch sizes, 
topographic variation, or complexity of nested geographic features, but in each case, 
small changes to decisions about data representation and map construction can have 
a substantial influence on the resulting spatial patterns. In the following sections, we 
will discuss each of these influences independently.

Attributes linked to geographic locations can be qualitative (generally observed 
and described) or quantitative (generally measured and numeric). Stevens (1946) 
defined specific levels of measurement that describe the types of attributes that can 
be associated with mapped locations and that depend on the application domain for 
which the map is being constructed: nominal, ordinal, interval, and ratio. Although 
these four categories cover most attribute types that may be desirable to map, 
Chrisman (1998) extended this list by six to include the categories of log interval, 
extensive ratio, cyclical ratio, derived ratio, counts, and absolute scales, all of which 
are particularly applicable in cartography. These categories are defined as follows:

Mapping Forest Landscapes: Overview and a Primer
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Nominal categories permit the assignment of unordered labels to geographic ele-
ments (e.g., land use) that have no implied value beyond their identification of 
membership in a category. Colors, codes, and identification values for counting 
objects are all nominal; for example, a serial code for each tree growing in a 
plantation does not permit ranking of one tree over another.

Ordinal categories are ordered, but there is no specific or consistent numerical step 
between the classes (e.g., small, medium, large). There is an implied relative 
ranking, but there is no way to assess the absolute difference between categories 
(e.g., large is not necessarily twice as big as small).

Interval measurements express a meaningful quantitative difference between val-
ues, but there is no defined zero or origin (e.g., degree Celsius). It is possible to 
say that the difference between 10 °C and 20 °C is identical to the difference 
between 30 °C and 40 °C, but unlike 0 K, 0 °C does not represent the absence 
of heat.

Ratio measurements have an explicitly defined zero (or origin), such as the mea-
surement of length, velocity, or mass (where 0 cm, 0 km/h, and 0 kg, respec-
tively, all express the absence of what they explicitly measure).

Log intervals are similar to an interval, but using a logarithmic scale (e.g., Richter 
earthquake intensities). As a result, the magnitude of the difference between 
adjacent categories will change.

Extensive ratios are similar to a ratio, but the signifiers (e.g., symbols such as dots 
in a map) have a size that is proportional to their numerical value.

Cyclical ratios are similar to a ratio, but the values have a maximum and a mini-
mum, and when the maximum value is exceeded, values start over again at the 
minimum (e.g., the 360° in a circle).

Derived ratios are similar to ratios, but are expressed with respect to a specific 
range of values. For example, in a choropleth map, the values of a variable can 
be expressed in shades of a color, with the intensity of the color proportional to 
the magnitude of the value. For example, if green is used to represent vegetation 
cover, 0% vegetation cover would be represented by white (0% green) and 
100% vegetation cover would be represented by the darkest shade of green 
(100% green).

Counts are simple total numbers, such as the number of trees in a sampling plot or 
the number of insects on a tree.

Absolute scales are fixed and cannot be rescaled. For example, probabilities are an 
absolute scale that ranges from 0 to 1.

As the measurement level or framework changes, so does the ability to represent 
different types of data and perform certain types of analyses of the data. Chrisman 
(1998) proposed extensions to these classic measurement levels to facilitate the han-
dling of attributes related to, for example, probabilities, angles, nonlinear intervals, 
dates, and times, all of which are relatively common and important measurements 
related to geographic data and mathematical modeling. Each measurement level has 
implications for how measurements can be presented by varied use of color and 
symbology.
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Although the term “map” conjures images of analog depictions on paper, the 
modern approach to cartography is firmly rooted in the digital era. Though maps 
may appear to be analog constructions, their origins lie in the need to visualize digi-
tal information (nowadays, often very large databases). In the era of geographic 
information systems (GIS), such databases belong to one of the two broad families 
of geographic data: vector representation (in which lines and objects are defined as 
single mathematical entities) and raster representation (in which lines and objects 
are defined by groups of independent areas or points). Depending on whether we fix, 
control, or measure (geographic) space, attributes, or time, we can conceptualize the 
type of representation as either vector data (points, lines, polygons) or raster data 
(regular arrays of cells, generally squares). Table 1 summarizes some of the conse-
quences of these decisions that were defined by Sinton (1978). Sinton noted that 
raster data representation is used when, at a fixed point in time, a regular tessellation 
of polygons (i.e., a grid) is used to control the spatial fabric within which a variable 
of interest is measured at the location of each cell within the tessellation. In contrast, 
vector data representation is used when, at a fixed point in time, the variable to be 
measured is controlled and then identified or delineated within the spatial fabric by 
defining a shape (e.g., a point, line, or polygon) that can range from a single local 
point to an area that encompasses a region (analogous to extending outward from a 
single cell to a group of cells in a raster representation). In vector representations, 
spatial complexity can be inherently higher, as spatial entities are represented by 
combinations of geographic primitives (points, lines, or area features); for example, 
polygons are constructed by connecting line segments to enclose an area, and loca-
tions of directional change are identified by points. In vector representations, the 
positions of these objects are recorded as spatial coordinates that do not necessarily 
align to the imposed size and spacing of the regular cells in a raster representation, 
and in a GIS database, each primitive is linked with corresponding attributes stored 
in data tables. Changes to the representation affect the graphic presentation, the level 
of detail or generalization of features, and the overall complexity of the shapes.

As the level of vector representation increases from points (0D) to lines (1D) and 
polygons (2D), the complexity of the topological and hierarchical data structures 
required to store this data in a digital database increases. (Three-dimensional (3D) 
representations are also possible, though they are a more recent innovation. We will 
discuss them later in this chapter.) Since polygons are enclosed by lines that com-
prise segments bounded by points that are either nodes (the endpoints of a line) or 
vertices (points of inflection along a line), the number and types of data that need to 
be stored with higher level representations are much greater than at lower levels. For 
this reason, the storage overhead for highly complex objects can be substantial. 

Table 1  Sinton’s (1978) 
scheme for distinguishing 
between vector and raster 
representations of data

Vector Raster

Time Fixed Fixed
Space Measured Controlled
Attribute Controlled Measured
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If  the operational or representational cartographic scale is small, then this stored 
complexity may never actually be seen, but it will nonetheless be present and will 
increase processing, handling, and storage requirements.

Several algorithms and filtering methods have been developed to reduce the 
complexity of linear features in digital geographic databases. The simplest is likely 
the notion of weed tolerance, which represents the minimum distance permitted 
between any two consecutive vertices along a line during line simplification. One or 
more vertices positioned closer together than this distance are “weeded out” during 
digitizing or data entry to simplify the representation. This differs from grain toler-
ance, which represents the same concept but is implemented during the process of 
digitizing a new linear feature. These approaches are especially useful when using 
tools that create a piecewise representation of lines (splining input tools) or that 
automatically identify vertices (automated vertex placement tools) based on the 
digitizer’s settings or movement of the input device by its operator. The general 
implementation of weed tolerances is to filter data to retain points with a minimum 
spacing along a line.

Often, line generalization is performed on existing data to meet the needs of a spe-
cific application. In this case, algorithms are applied to systematically remove vertices 
to simplify the structure of a line while maintaining its general form. A well-known 
approach is that of Douglas and Peucker (1973), which recursively finds points to 
maintain and delete in complex lines, thereby simplifying the line. (Note that this is 
different from smoothing, since the abrupt directional changes that would be removed 
by smoothing are preserved.) Related processes exist for handling raster data, in 
which lines (represented by a series of adjacent cells that have a common value) can 
be skeletonized (thinned), such that the line is never more than a single-cell wide.

Although linear geometry, and hence the geometry of many spatial features, 
receives most attention when considering generalization in the context of changing 
mapping scales, attribute generalization can also be a substantial component of map 
simplification. Imagine, for example, an attribute table for a given geographic data-
set of points; the rows are the observations (the number of features in the dataset or 
on the map) and the columns are attributes for which values or codes will be stored 
in the cells of the table. Generalization and simplification could reduce the number 
of features (rows) based on a query (e.g., to remove features that do not meet a 
specified threshold or that do not attain some other conditional requirement). 
However, it is also possible to remove certain attributes (columns) and thereby 
decrease the storage requirement and information content of the database. These are 
simplistic generalizations. It is also possible to constrain the number of levels in 
nominal or ordinal attributes, decrease the numeric precision of quantitative vari-
ables, limit the character width of textual fields, or force lower levels of measure-
ment (e.g., nominal rather than ordinal). Although eliminating variables serves to 
greatly reduce data overhead, manipulating storage characteristics has the advan-
tage of maintaining some proportion of the initial attribute information.

Generalization does not need to be permanent and can instead be an on-the-fly 
complexity reduction for mapping purposes while preserving the full information 
content in the database. It is possible to select feature subsets by means of queries 
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that constrain the results to specific spatial characteristics or attributes, to aggregate 
features by using a common symbol, or to represent spatial clusters of features 
using a single symbol or marker.

�Map Projections

Map projections are the mathematical models used to represent the curved and 
irregular 3D surfaces of the Earth on flat 2D maps. The choice of a projection is 
often taken for granted by map users, but selection of an appropriate projection is 
actually a critical step in the map-making process and something that receives 
considerable attention by cartographers. Since no projection can fully preserve all 
of the characteristics of the area being mapped, it is vital for cartographers to 
choose projections that represent an acceptable trade-off between competing prop-
erties such as size accuracy and shape accuracy in the representation, as these 
trade-offs will influence how the map can ultimately be used. Four broad types of 
mapping projection exist: mapping that preserves the area of objects (equal-area or 
equivalent projections), the shapes of objects (conformal or orthomorphic projec-
tions), the distances between points (equidistant projections), or the directions 
from a central point to all other locations (azimuthal projections). No single map 
can belong to all of these projection types simultaneously, and the preserved prop-
erties are generally not global, but rather are best suited to small through interme-
diate areal extents.

In an effort to reduce the amount of deformation when representing the true 
character of the Earth’s surface on a map, an appropriate projection must be selected 
in which standard lines (or points) can be positioned at optimal locations so that 
they minimize the distortion of a target criterion such as area, shape, distance, or 
direction. Since scale distortion is theoretically eliminated along these lines or 
between these points, having them within the area of interest can greatly improve 
the map’s ability to preserve landscape characteristics and improve measurement 
accuracy. Many projections can be produced geometrically by selecting a develop-
able surface (a cylinder, cone, or plane) with an appropriate scale factor and orienta-
tion, onto which the Earth’s surface will be projected. The developable surfaces can 
then be flattened (unrolled) without additional deformation (e.g., tearing or stretch-
ing). These developable surfaces yield the azimuthal, cylindrical, conic, and arbi-
trary families of map projections (Fig.  1). When these developable surfaces are 
positioned such that the plane touches either of the poles, the cylinder touches at the 
equator, or the cone touches a line of latitude, the aspect is said to be normal. If the 
position is rotated 90°, the aspect is considered transverse, and if the positioning is 
at any other angle, it is oblique. If the scale factor is such that the developable sur-
face is the same size as the Earth, the projection is considered to be a tangent case, 
and when the developable surface is smaller than the Earth, it is considered to be a 
secant case. In the secant case, there are two standard lines for cylindrical and coni-
cal projections, and the standard point becomes a standard circle (or ellipse) for 
azimuthal projections.
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In any mapping exercise, the cartographer must choose a projection that will 
minimize the error in the most important attribute of the data (e.g., area vs. size) 
based on the primary purpose of the map. This requires the selection of standard 
points or lines to preserve surface characteristics of interest while minimizing 
deformations and to select an appropriate datum that will ensure that a proper model 
of the Earth’s shape is implemented in the positioning of the developable surface 
relative to the Earth’s surface. A datum can be considered as a shift of the develop-
able surface to make it correspond more closely to the Earth’s true surface within a 
specific region; numerous datums exist and most have been devised for use in par-
ticular situations. If data from different projections or datums must be combined or 
overlaid, they must first be projected to a common form to avoid misalignment of 
the data due to incongruencies between Earth models. In North America, the North 
American Datum of 1927 (NAD 27) and the North American Datum of 1983 (NAD 
83) are commonly used, but positions could differ horizontally by up to 200  m 
between these datums. However, with the arrival of GPS navigation, the World 
Geodetic System of 1984 (WGS 84) has surfaced as the most accurate version 
for worldwide use; for all but the most detailed survey work, it can be considered 
equivalent to NAD 83 in North America.

The important message regarding projections and datums is that the goal is to 
minimize deformations but also select a mapping form that will support the analyses 

Fig. 1  Illustrations of the basic map projection aspects (normal, transverse, and oblique) and three 
major forms (azimuthal, cylindrical, conic), and the developable surfaces each can produce for 
their primary orientations (Reproduced with permission from the designer, Carlos Furuti, Progonos 
Consultoria)
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and calculations required to produce the final product. For example, if area calculations 
are going to be the primary use of the map, then a map projection that preserves 
shapes or distances will be less appropriate than one that preserves sizes.

The term scale is widely used in the literature and is in regular use by practitio-
ners from a multitude of fields, yet its meaning can be confusing if it is not appro-
priately contextualized (Dungan et al. 2002). The ecological definition for scale is 
such that a large scale refers to a large area or extent and a low degree of spatial 
detail; conversely, a small scale refers to a small area or extent and a high degree of 
spatial detail. Although this is logical, cartographers use an equally logical but dia-
metrically opposed definition that stems from how they express the fractions that 
describe the relative number of units in the real world accounted for by the same 
unit on a map. For example, with a map scale of 1:10,000, one unit measured on the 
map equates to 10,000 of the same units measured in the real world (e.g., 1 mm 
represents 10 m). This unitless notion of scale provides us with the means to use 
maps to depict and measure the real world that they represent. However, ecologi-
cally small areas will have ratios that are much larger than ecologically large areas 
for the same map size. For example, a 1:100 scale would cover a small area of forest 
in high detail from the ecologist’s perspective, but from the cartographer’s perspec-
tive, this would be a larger scale (1/100 = 0.010) than a 1:1000 map (1/1000 = 0.001). 
It is these opposing meanings that can lead to confusion.

Thus, whenever the term scale is used, authors should clearly contextualize its use 
by stating whether the meaning is ecological or cartographic to avoid confusion. Such 
confusion becomes highly probable when ecologists, cartographers, and geographers 
work together and use their own familiar terminology. To further avoid ambiguity, it 
may be better to use the phrases large area or small area for ecological purposes, and 
use scale only for cartographic purposes. When it’s necessary to use the term scale to 
describe both extent and level of detail, it is advisable to use concepts such as the spa-
tial resolution (e.g., the size of an image pixel), or the minimum mapping unit (MMU), 
which represents the smallest discernable spatial entity in a database or on a map.

�Data Sources Used in Mapping

The data used to construct maps can be obtained from several sources. These are not 
necessarily fixed, but rather are reflections of specific goals, map extents, carto-
graphic scales, desired spatial resolution, and temporal scale at which processes 
controlling the observed pattern operate (Fig. 2), which are the reasons for creating 
the map in the first place. Field sampling, in situ sensors, aerial photography, and 
satellite imaging are common data sources, but even microscopic investigations 
(e.g., involving fungi, insects, and genetics) may be necessary in some cases. The 
following sections describe various components of the data collection spectrum that 
feed into the cartographic process.

Ever since it became necessary to map vegetation (particularly in forest land-
scapes), primarily driven by the vegetation’s perceived value and the resulting need 
to delineate ownership, field-based mapping has formed a critical component in the 
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construction of such maps. In situ observations by field technicians or sensors are 
governed by classical methods of mapping vegetation in the field, as established by 
Küchler (1955), and multiple variations are possible given the breadth of the sam-
pling designs that can be implemented (e.g., complete, random, transect-based, 
clustered, based on convenience, purpose driven); some examples are provided in 
Fig. 3. These methods rely on the selection of an appropriate sampling design based 
on the data being collected and on the investigator having sufficient skill at identify-
ing species, landforms, and terrain conditions that they can accurately convert field 
data into cartographic products with minimal error, uncertainty, and bias. Field sur-
vey data are often augmented by in situ sensor measurements (e.g., weather sta-
tions) to collect spatially distributed data for specific applications and to construct 
highly specialized maps. In traditional surveys, all objects (e.g., trees) within a 
defined area are included in the sample. However, the high cost of data collection in 
remote forest areas often results in the use of variable-area sampling, in which sam-
pled data ultimately form the mapped features or form the basis for interpolation. 
Such variable-area sampling is common in forest mapping when variables such as 
basal area are estimated by using a wedge prism. In this approach, the degree to 
which the prism visually offsets tree stems is used to decide whether specific trees 
should be included or excluded from the sample as the prism is rotated about the 
center of the field plot. This approach provides a rapid assessment of basal area by 
sampling only trees of a required size class that are within an allowable distance 
from the plot’s centroid.

Though field surveys and mapping are standard practices, particularly for valida-
tion of other mapping products such as satellite remote-sensing data, the data is 
simultaneously localized, focused on details near ground level, and biased toward a 
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generally horizontal view of the landscape from predominantly below canopy 
height. This limitation makes broader conceptualization and characterization of 
spatial relationships difficult. Thus, the past 150–200  years have seen numerous 
efforts to gain a different perspective to improve mapping efforts.

In an effort to gain a better vantage point and to gain more spatial context for 
their surroundings, people have continually climbed higher so they could look 
down on the landscape around them. The development of technologies involving 
various forms of flight has permitted many improvements in cartography as peo-
ple attached photographic devices to kites, birds, hot air balloons, rockets, and 
more recently airplanes, satellites, and unmanned aerial vehicles (UAVs, or 
“drones”) to acquire oblique and ultimately downward-looking views from above 
areas of interest (Fig. 4). The advances made possible by acquiring nadir (verti-
cally downward-looking) and stereoscopic (overlapping) pairs of landscape pho-
tographs (or images) led to the development of photogrammetry (Kavanagh 
2003), which is the science of making physical measurements of length (and 
hence area) and height from such visual products. The visible scene that forms an 
image can be described in terms of its geometry, which depends on the relation-
ship between the ground and image planes, but also depends on the light or other 
forms of electromagnetic radiation reflected from the ground plane and focused 
through a camera lens to expose film or sensors on the image plane within the 
camera. The distance from the center of the lens to the image plane is called the 
focal length and the vertical axis connecting the centers of the image plane and 
ground plane through the center of the lens is called the optical axis. The centers 
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of the ground and image planes (O and o, respectively) are referred to as nadir 
points. To aid in geometric measurements, halfway marks (fiducial marks) are 
added along the image plane to allow rapid location of the scene’s center, and if 
overlapping scenes are available, these marks also aid in  locating the aircraft’s 
flight line during image acquisition.

Aerial imaging has been a dominant means of data acquisition for carto-
graphic purposes for more than a century. Advances have come in terms of 
improved sensitivity and range of the imaging medium (e.g., films, digital sen-
sors), stability of the imaging platform (e.g., gimbals), and improvements in 
imaging technology (e.g., lenses, acquisition rate, a change from analog to digi-
tal). Advances in film (and, more recently, in digital imaging arrays) span the 
gamut from standard panchromatic images (only visible colors, typically as 
grayscale images) to infrared, color, and color-infrared capabilities, while cam-
era and imaging systems have undergone considerable miniaturization coupled 
with substantial improvements in photographic and imaging quality and resolu-
tion (spatial, spectral, and radiometric).
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Rapid improvements in spatial resolution and in the acquisition of multi-spectral 
data have revolutionized mapping and brought aspects of a once complex science to 
regular citizens through the Internet and mobile services. However, issues related to 
cloud cover, shadows (due to tall objects or topographic relief), geometric distor-
tions (e.g., radial displacement, the Earth’s curvature, sensor lens distortion), and 
the obstacle created by the forest canopy continue to complicate data acquisition 
when mapping is done from satellites and airborne platforms. The technological 
advances experienced thus far have solved some mapping problems but introduced 
others; these remain areas of active research.

In an ongoing quest to acquire better data for mapping, the development and 
availability of imagery with high spatial, radiometric, spectral, and temporal resolu-
tion have opened up the floodgates for data procurement. Satellite platforms provide 
the ability to record multispectral or radar data over large areas, with regular revisit 
times, variable spatial resolutions, and options to observe landscapes in wavelengths 
beyond what the human eye can see. These platforms typically provide nadir views 
of landscapes (although pointable optics that permit oblique viewing are available 
on satellites such as the Satellite Pour l’Observation de la Terre [SPOT]) and permit 
the classification of data to extract a range of data products about the environment 
and to produce maps that support a range of research and management goals.

For Earth observation, images are collected simultaneously in multiple spectral 
bands, each of which represents a different slice of the electromagnetic spectrum; 
bands from the ultraviolet through to the infrared (200 to 3000 nm), as well as the 
thermal infrared (3000 nm to 1 mm), are the most common because of their useful-
ness in vegetation studies. Depending on the individual sensor, the spectral data that 
forms the images can come from any number of spectral bands, with an additional 
panchromatic band that covers the full visible electromagnetic spectrum (between 
wavelengths of approximately 400 and 700 nm) being common. Since vegetation that 
contains chlorophyll strongly reflects electromagnetic radiation in the near-infrared 
region of the spectrum (700 to 1100 nm), but strongly absorbs radiation in the adja-
cent red region (600 to 700 nm), these regions are typically well measured for Earth 
observation. The slope formed by connecting green-vegetation reflectance measure-
ments in the adjacent red and near-infrared spectral regions (i.e., the red-edge), and 
its shift toward shorter wavelengths, can be used in diagnoses of vegetation health, 
moisture stress, biomass, and presence or absence of a species, among other uses.

Figure 5 displays a forest landscape from northwestern Ontario, Canada, as a 
false-color infrared composite multispectral image, with 3.2 m spatial resolution. In 
remote sensing, false color means that the cartographer replaces the actual colors 
(many of which cannot be seen by the human eye) with other colors that represent 
properties of the image, such as reflectance in the near-infrared band. In Fig. 5, the 
near-infrared, red, and green spectral bands are displayed as red, green, and blue, 
respectively. Numerous indices, such as the normalized-difference vegetation index 
(NDVI), and transformed indicators, such as the tasseled cap indicator, have been 
generated to exploit information about forest conditions from spectral data 
(Schroeder et al. 2011). Thermal remote sensing has been used for detecting wild-
fire hotspots (Fraser et al. 2000) and drought conditions (Coates et al. 2015).

Mapping Forest Landscapes: Overview and a Primer



16

Numerous satellite platforms exist, providing Earth observation at a multitude of 
spatial, temporal, spectral, and radiometric resolutions. Some common satellite pro-
grams and sensors include Landsat, SPOT, the Advanced Very High Resolution 
Radiometer (AVHRR), Ikonos, WorldView, Sentinel, and the Moderate Resolution 
Imaging Spectroradiometer (MODIS), each of which was selected for specific niche 
application areas and spatial extents. Great gains have been made in mapping fire 
disturbances and in managing carbon stocks using AVHRR and MODIS data 
(Sukhinin et al. 2004; Ruiz et al. 2012), in hotspot mapping during forest fires using 
the higher thermal contrasts provided by imaging at night with data from the 
Defense Meteorological Satellite Program (DMSP) satellites (Badarinath et  al. 
2011), and in assessing post-disturbance vegetation recovery by means of time-
series mapping (Schroeder et al. 2011).

Fig. 5  A false-color infrared image from the Ikonos optical satellite for a forest landscape in 
northwestern Ontario, Canada. Reddish pixels represent healthy forest growth, black pixels repre-
sent water, cyan pixels represent gravel roads, and greenish-grey pixels represent fire-disturbed 
forest
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The utilization of satellites circumvents the need for a plane, pilot, and camera 
system, but introduces considerations regarding the fixed times when new images 
are acquired (which depend on the satellite’s orbit), atmospheric conditions at the 
time of image acquisition, and potentially high cost. One unfortunate reality of near-
optical satellite data is that many images are degraded by interference from cloud 
cover and haze, and received signals are also affected by atmospheric attenuation, 
which reduces the signal strength. Another problem is that most satellite sensors are 
passive, and detect reflected light rather than generating their own signals; as a 
result, most can only provide images during the day. One solution is to rely on radar 
imagery (Fig. 6), since the longer wavelengths (on the order of centimeters) pene-
trate haze, clouds, and light precipitation. Moreover, because radar is an active sen-
sor (i.e., it generates its own signal and reflection), images can be obtained at night. 
Figure 6 shows a scene from northern Ontario, Canada, at 12.5 m spatial resolution. 
Radar can provide information that near-optical wavelengths cannot, primarily 
regarding physical properties of vegetation such as the moisture content based on an 
analysis of the vegetation’s dielectric properties, texture, and scattering of the radar 
signal. Some radar can even penetrate the ground or snow to reveal buried struc-
tures. Radar data has been used to map fire scars (Bourgeau-Chavez et al. 2002), but 
not at national or global scales. One drawback of radar is that the image data are 

Fig. 6  Radarsat 1 image from northern Ontario, Canada (synthetic aperture radar, SAR WIDE 1 
beam mode)
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much more difficult to interpret due to geometric distortions (e.g., layover, radar 
shadows, foreshortening), speckles, and extremely bright spots due to corner reflec-
tors. Layover represents the case in which tall landscape features appear to lean 
toward the direction of the radar source due to the tops of those features being closer 
to the sensor than their base, radar shadows represent areas with no reflection 
because the signal was blocked by an impenetrable object, and foreshortening rep-
resents the extreme distortions formed by very tall features such that the bottom of 
the feature becomes unseen due to the degree of layover. Speckles represent noise 
(distorted data) with a granular visual texture that results from interference among 
reflections from complex terrain. Bright spots are generated by vertical features 
such as tree trunks or cliffs that strongly reflect radar signals due to their orientation 
relative to the signal. Both radar and near-optical remote sensing images can be 
distorted when the image covers a wide swath due to variations in topography and 
the general curvature of the Earth.

�What is a Forest Landscape?

In forestry, most maps are created to describe a forest landscape. Intuitively, the 
term “forest landscape” invokes a visual image of a vast expanse of land that con-
tains trees, similar to a vista gained from a high vantage point (Fig. 7). Although this 
perception is not incorrect, it is insufficiently precise because it is a subjective 

Fig. 7  An intuitive understanding of the term forest landscape implies the kind of large visual 
image that can be obtained from a high vantage point
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interpretation (i.e., it depends on the individual and circumstances) that includes 
ambiguous (i.e., implicit and unclear) descriptors, and lacks a scientific foundation 
(i.e., is not based on explicit knowledge or logic, and hence is not repeatable). 
Asking the question “what is a forest landscape?” and pursuing an objective and an 
unambiguous answer founded in science are not merely an academic exercise. 
Though the answer may vary depending on the specific circumstances, the question 
must be explicitly posed and answered before each mapping exercise, since it 
clearly defines the goals and constraints. Mappers should not assume that this ques-
tion has been asked and answered; on the contrary, it’s necessary to develop an 
explicit and objective description, even if this is only a preliminary working defini-
tion, before beginning any mapping exercise. As we shall see later, this step is 
important because it defines the scope, scale, and methods that are most appropriate 
for a specific mapping goal. In our attempt to articulate what we mean by a forest 
landscape in the context of mapping, a brief foray into basic ecological concepts 
will be helpful because it explains the organization of organisms and their environ-
ment within a landscape. To do so, we must first decompose the term “forest land-
scape” and examine its two major components separately.

�What is a Forest?

The common use of the term forest includes three levels of ecological organization 
(Fig. 8). First, a forest could mean a single-species population of trees that form a 
spatial cluster of individual stems. This connotation is sometimes accurate, as in the 
case of an even-aged, mono-specific tree plantation. The definition and spatial delinea-
tion of the forest is relatively easy and precise in this case. Second, forest may be used 
to describe a community, which in ecology means a collection of populations of dif-
ferent species that share the same space; this is perhaps the most common usage of the 
term. In this case, the forest may include several populations—each comprising differ-
ent tree species as well as other plant life forms such as shrubs, herbs, and grasses, all 
of varying ages. Such component populations would share the same space and coexist, 
spatially interspersed within the community. For example, forest stand is a common 
forestry term that refers to a spatially integrated mixed-species plant community. The 
definition and spatial delineation of such a forest are more difficult than identifying 
and demarcating the population of a single tree species. Even though the term stand is 
used widely, in practice the term denotes a highly subjective, ambiguous, and implicit 
spatial entity; given this ambiguity, its boundaries are difficult to define. Third, forest 
can be an even more integrative and holistic concept that refers to a spatial unit that 
contains many terrestrial communities, both plant and animal, which are sometimes 
intermingled with aquatic communities such as lakes and rivers. In ecology, this means 
an ecosystem, where many communities coexist in close spatial proximity and interact 
with each other and with their physical environment at multiple scales.

Therefore, a tree-based (forest) ecosystem may contain many other plant, ani-
mal, and aquatic communities that are spatially interspersed, that interact with each 
other, and that typically share a common climate. Given the level of abstraction 
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involved in conceiving an ecosystem and the high degree of internal complexity, an 
unequivocal definition or spatial delineation is difficult to achieve. As illustrated in 
Fig. 8, the degree of abstraction changes among the different levels of ecological 
organization. Here, we have tried to simplify and generalize ecological concepts 
that have been discussed and debated for more than 75 years. For those who want 
further information on the concepts that underlie ecological organization, most 
basic texts on ecology provide the necessary information. In particular, we 
recommend Allen and Hoekstra (1992), who elegantly elucidate the principles of 
ecological organization in relevance to scale.

�What is a Landscape?

In ecological theory, a landscape represents the level of ecological organization 
above an ecosystem (Fig. 8). That is, it comprises an assembly of different ecosys-
tems that are spatially interspersed and that interact with each other. Therefore, by 

Landscape

Ecosystem

Community

Population

“Forest”

Less tangible
Complex 
More abstract

More tangible
Simple
Less abstract

Fig. 8  Levels of ecological organization and the associated degrees of complexity and abstraction 
along the spectrum from populations of trees to a forest landscape. Lower levels are constituents 
of higher levels and are successively nested within the levels above
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definition, it is composed of a series of nested sublevels: individual organisms are 
nested within populations of their species, these combinations assemble to form 
communities, communities combine to create ecosystems, and ecosystems combine 
to create a landscape. This does not mean that all landscapes are large. If the popula-
tions of individual organisms are relatively small, then their associated communi-
ties, ecosystems, and landscapes will also be relatively small. For example, an 
arthropod landscape could be a single fallen tree, even though that tree would be a 
single organism from the perspective of trees. If the populations of one or more 
organisms are large, then all levels of the hierarchy will occupy relatively large 
spatial extents. This is the most common use of the term landscape, which implies 
a large geographical expanse primarily because it is based on a human perspective. 
In fact, most early discussions of landscape ecology address the structure, function, 
and utility of vast extents of land exclusively as they relate to people (e.g., Naveh 
and Lieberman 1984; Forman and Godron 1986). Only recently has research on 
landscape ecology become more comprehensive and holistic (e.g., Allen and 
Hoekstra 1992; Turner and Gardner 2015).

Forest landscapes, which are composed of populations of trees and other organ-
isms that combine to form forests and other ecosystems, will be large in spatial 
extent, and are likely to include many different types and sizes of ecosystems that 
are spatially interspersed, but connected so that they interact with each other. The 
proportion of the forest component may vary from very high (almost completely 
forested landscapes) to very low (sparsely forested landscapes). Examples of the 
former include the vast expanses of temperate boreal landscapes, where relatively 
few tree species compose the populations, communities, and ecosystems (Fig. 9). 
Even though this landscape is predominantly forested, spatial interspersion of other 
ecosystems—terrestrial (e.g., shrubs), semiterrestrial (e.g., wetlands), and aquatic 
(e.g., lakes)—may occur to varying degrees, increasing the overall spatial heteroge-
neity. At the other extreme, there are landscapes where non-forest ecosystems domi-
nate the forest ecosystems. These may be designated as landscapes of their dominant 
ecosystem type; for example, agricultural landscapes are dominated by agricultural 
ecosystems (Fig.  10a) and savannah landscapes are dominated by grasslands 
(Fig. 10b), though they may also contain patches of forest. Most of the world’s for-
est landscapes fall between these extremes, and are interspersed with several other 
ecosystem types to form a spatial mosaic (Fig. 11). In landscape ecology, a land-
scape’s less dominant component ecosystems are called patches, and the back-
ground (typically the most dominant and contiguous ecosystem type) is called the 
matrix (Forman and Godron 1986). In the case of forest landscapes, forest 
ecosystems can be the matrix (Fig. 9) or the patches (Fig. 10).

Given this complexity, how can we define a forest landscape in a reasonably 
objective way? Many definitions are found in the literature; Turner and Gardner 
(2015) provide a list. However, all of the definitions emphasize the spatial pat-
terns, heterogeneity, and a focal factor—for example, a species or an ecological 
function. This also suggests that the definition of a landscape depends on the 
context in which the landscape is being considered (e.g., from a forestry perspec-
tive). Building on these definitions, we can adopt a broad and inclusive definition 
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Fig. 9  Contiguous boreal forest landscapes composed of (a) different populations and communi-
ties (revealed by different leaf colors), and (b) a terrestrial wetland surrounding aquatic 
ecosystems
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Fig. 10  (a) An agricultural landscape where the forest component is sparse and patchy, and (b) a 
savannah landscape where the forest component is sparse and sporadic
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for forest landscapes: large geographical units that contain a mosaic of forest 
cover types, often interspersed with non-forest cover types, including those of 
anthropogenic origin (modified from Perera et al. 2000). Of course, the geograph-
ical extent of a forest landscape and its spatial delineation will require specific and 
explicit definitions for each research question and analytical method and for each 
management goal.

�What are the Characteristics of Forest Landscapes?

As depicted in Fig. 8, the lower levels of the ecological hierarchy (e.g., individual 
trees and their populations) are tangible and spatially distinct structural entities. In 
contrast, the higher levels relevant to our topic—forest ecosystems and land-
scapes—are functional constructs that are less distinct. In fact, the level of abstrac-
tion required to perceive these entities increases continuously from a group of 
individual trees (tangible; simple to describe, recognize, and delineate) to forest 
landscapes (less tangible and more abstract; difficult to describe, recognize, and 
delineate). Consequently, there is a high degree of ambiguity in recognizing, delin-
eating, and characterizing forest landscapes. Furthermore, the components of forest 
landscapes (i.e., embedded constituents) are successively nested within the higher 
levels (i.e., trees compose populations, populations compose communities, com-
munities compose ecosystems, and ecosystems compose landscapes), leading to a 
multiple-scale structure. This also results in a high degree of internal heterogeneity 

Fig. 11  Most forested landscapes are likely to form a mosaic that includes non-forest components 
(other ecosystems). For example, in this image there are spatially interspersed natural forests, for-
est plantations, farmland, grassland, and human settlements
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(compositional diversity and spatial variability of components) within a forest land-
scape. All constituents of forest landscapes are dynamic—their structure and func-
tions change over time. Such changes are relatively rapid at lower levels (e.g., 
months and years for trees) but much slower at higher levels (e.g., decades and 
centuries for forest landscapes). Thus, both the structures and the functions within 
a forest landscape occur at multiple scales. In summary, the nature of forest land-
scapes is complex: they are abstract entities that occupy large extents, are spatially 
heterogeneous, contain fuzzy components, and change slowly.

Given this description, what traits can be used to characterize a forest landscape? 
In adherence to the principles of ecological organization and parsimony (i.e., prefer-
ring the simplest description that can explain all the key details), forest landscapes 
should be characterized by their immediate subcomponents, namely the ecosystems; 
these, in turn, can be characterized by their subcomponents (communities) and so on, 
moving down the hierarchy. In practice, however, the traits typically used to charac-
terize forest landscapes are a cross-scale mixture of elements from populations, com-
munities, and ecosystems. This array of traits can be very long, so we have listed 
only a few here for illustrative purposes, grouped as descriptors of various aspects: 
composition, structure, function, processes, patterns, and utility (Table 2).

Table 2  Examples of traits used to characterize aspects of forest landscapes at different scales

Aspect Forest landscape trait Comments and sample references

Composition Life form Composition is the most common characterization 
of forest landscapes at local, regional, and global 
scales (e.g., Reed et al. 1994; Martin et al. 1998; 
Potapov et al. 2008)

Cover type
Phenological type
Leaf type
Genus or species 
mixtures

Structure Tree age These descriptors are borrowed from tree physiology 
and forest ecology, and are typically used at local 
extents, but are also used occasionally at regional 
and global scales (e.g., Nelson et al. 1988; Martin 
and Aber 1997; Treitz and Howarth 1999; Asner 
et al. 2012)

Density of tree stems
Basal area of stems
Canopy height
Canopy closure
Canopy volume
Foliage density
Chlorophyll content
Nutrient content
Biomass
Diameter at breast 
height (DBH)

Utility Timber volume These descriptors are commonly used at local and 
regional scales to characterize forest landscapes 
(e.g., Riitters et al. 1997; Falkowski et al. 2005; Hill 
et al. 2014)

Fuel mass
Erosion control
Conservation
Natural capital
Wildlife habitat

(continued)
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Table 2  (continued)

Aspect Forest landscape trait Comments and sample references

Function Photosynthetic rates These are conventional descriptors of forest ecology 
that are used as ecosystem-level characteristics. 
They are increasingly being used at regional and 
global scales (e.g., Cook et al. 1989; Running et al. 
1989; Kimball et al. 2000)

Carbon sequestration
Nutrient cycling
Hydrological cycling
Habitat provision

Processes Wildfire These descriptors are commonly used at regional 
and global scales to characterize forest landscapes 
(e.g., Macomber and Woodcock 1994; Wang et al. 
2002; Wulder et al. 2004a, b)

Flood
Drought
Windthrow
Insect epidemics
Disease incidence
Timber harvest
Land conversion
Road network growth
Regeneration

Patterns Patch geometry These descriptors have recently been used to 
characterize forest landscapes, mostly at regional 
scales but rarely at global extents (e.g., Turner et al. 
1989; McGarigal and Marks 1995; Haines-Young 
and Chopping 1996; Vogt et al. 2009)

Patch boundary
Matrix geometry
Complexity
Inter-patch distances
Boundary complexity

Compositionally, forest landscapes are typically characterized by various dis-
crete groupings of their most obvious basic elements—the plant species. 
Commonly used species-based traits are life forms (e.g., trees, shrubs, herbs, 
grass), cover type (the dominant species in mixed-species communities), phenol-
ogy (e.g., differences in the ability of deciduous and evergreen trees to retain their 
leaves throughout the year), and leaf type (e.g., needle leaves versus broad leaves). 
Similarly, various structural aspects of forest constituents could also be used to 
characterize forest landscapes: discrete metrics such as the density of groupings of 
stems (e.g., dense versus sparse forest) and continuous metrics such as the basal 
area of stems, degree of canopy closure, canopy volume, foliage density, chloro-
phyll content, nutrient content, and biomass. Functional derivatives are also used, 
though perhaps less commonly, to characterize forest landscapes. Examples 
include photosynthetic rates, biomass, carbon sequestration capacity, growth 
rates, and even nutrient and hydrological cycling. Forest landscapes are also char-
acterized by their internal processes; these include abiotic disturbances (e.g., wild-
fire, flood, drought, windthrow), biotic disturbances (e.g., pests, diseases), and 
anthropogenic activities (e.g., land conversion, road construction, mining). Spatial 
patterns within forest landscapes are also increasingly used to characterize them, 
using various measures of the geometrical properties of the constituents. Such 
landscape metrics address the characteristics of patches (e.g., extent, shape, num-
ber), of the relationships among patches (e.g., edges, boundaries, ecotones), and of 
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the whole landscape (e.g., fragmentation, contagion, interspersion, pattern). 
Perhaps the most common characterization of forest landscapes is utilitarian, 
based on how humans perceive forest landscapes for management purposes. The 
derivatives therefore include timber volume (for forest harvesting), fuel mass (for 
wildfire management), and wildlife habitat (for conservation or hunting). All these 
characteristics are frequently used in the literature as attributes of forest land-
scapes that affect their spatial portrayal as maps.

The spatial and temporal scales of observation are fundamental to characterizing 
forest landscapes. An explicit description of the scale of forest landscape compo-
nents (i.e., ecosystem, community, or population) is essential, but it’s also necessary 
to deliberately determine the appropriate spatial resolution (mostly, but not exclu-
sively, for compositional and structural characteristics) and temporal interval 
(mostly, but not exclusively, for functional and process characteristics). Ideally, the 
spatial and temporal scales of characterization must be based on the ecological scale 
of the traits being measured. However, in practice, researchers commonly character-
ize forest landscapes at the highest possible spatial resolution and shortest possible 
temporal interval based on the belief that the most precise information is the most 
informative and accurate. This is not necessarily the correct approach. Since we will 
address the topic of appropriate scale in detail later in this chapter (in section “Map 
Scale”), we will state for the moment only that the spatial resolution and temporal 
interval must be suitable for the scale of the goal.

Another consideration in characterizing forest landscapes is how to determine 
their extent and boundaries. From the theoretical perspective of system function, the 
extent of a forest landscape would be delimited by the relative strength of the inter-
actions among its subsystems; that is, the ecosystems within a given forest land-
scape interact more strongly with each other than they do with ecosystems outside 
the landscape. From a compositional perspective, the internal heterogeneity of eco-
system constituents within a given forest landscape will be different than the eco-
system heterogeneity outside its boundaries. However, the literature suggests that 
both the theoretical and compositional approaches are impractical; the extent and 
boundaries of forest landscapes (when studied or managed) remain case dependent, 
and rely on features that may be geographical (e.g., topography), administrative 
(e.g., forest management units), or arbitrary (e.g., satellite image extent). Therefore, 
it is of paramount importance to develop explicit working definitions, extents, and 
boundaries before mapping forest landscapes.

In conjunction with land cover and species mapping, foresters and ecologists are 
interested in mapping additional biophysical attributes and parameters (e.g., bio-
mass, carbon, diameter at breast height (DBH), stand age, and height) that define the 
state of the forests that occupy a landscape (Hall et al. 1997). Table 2 provides a 
representative list of forest aspects and traits that are generally mapped, as well as 
some key references that describe each group of traits. Together, these attributes let 
managers develop harvesting and regeneration plans, design road layouts, minimize 
water crossings, and avoid low and wet areas or wetlands. Similarly, road construc-
tion can be optimized by designing road layouts that account for proximity to 
sources of aggregate (e.g., gravel) suitable for road surfaces and relatively flat 
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topography to reduce construction costs; thus, mapping of forest landscapes is often 
coupled with detailed topographical and hydrological mapping within a multicrite-
rion framework (Tampekis et al. 2015). The multitude of variables that can be mea-
sured may be separated into different maps, or aggregated as indicators within a 
single map composed of multiple GIS layers. Sometimes the mapped products are 
the outcomes of predictive or deterministic models, and other times they are inter-
pretations, interpolations, or derivatives of these models (Saarinen et al. 2016).

For disturbance mapping, it is possible to consider different stages of the land-
scape pattern produced by the disturbance regime. Fires can be assessed prior to 
burning by estimating the probability of ignition and burning based on fuel distri-
bution maps (Arroyo et  al. 2008), and wide-area and long-term trends can be 
mapped and analyzed in terms of disturbance regimes (Morgan et  al. 2001). 
Processes or events can be mapped in real time, as in the example of detecting and 
mapping active fires or hotspots (Giglio et al. 2009), or can be mapped after the 
fire has been extinguished by detecting the footprints (Remmel and Perera 2001) 
and determining the severity of the burn (Mitri and Gitas 2008). Similar condi-
tions and effects can be assessed for other dominant forms of forest disturbance, 
such as wind damage (Fransson et al. 2010), insect infestations (White et al. 2004), 
disease outbreaks (Chen et al. 2015), drought (Goerner et al. 2009), or flooding 
(Voormansik et al. 2014). In each unique case, the purpose of the mapping will be 
slightly different, as will the variables measured and the types of maps produced. 
Whereas hotspots or fire instances might be represented by a series of points, dis-
turbed areas are likely to be delineated as a polygon or a related set of polygons, 
and blowdown maps may be delineated as linear features oriented with respect to 
the prevailing wind direction. Regardless of the subject, each thematic map will 
contain the geographic positions of the entities considered by the analysis along 
with descriptors of those entities, recorded at one or more of the measurement 
scales discussed earlier.

�Considerations in Forest Landscape Mapping

�Describing Spatial Patterns

Areas within a landscape express some element of similarity or connectivity, 
whether this is in terms of an attribute, process, function, or service provided by 
the landscape; these related areas may form a region with characteristics that are 
distinct from those of other regions. Depending on the premise that connects the 
areas, the definitions of the regions may change from being formal (based on 
internal characteristics) to functional (based on function), but either approach 
identifies areas that are more homogeneous internally than they are with respect to 
their surroundings. The regional approach to thematic mapping involves the con-
ceptual approach of moving from inward to outward; in this approach, regions are 
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seeded (given an initial position) at identified locations and set to grow outwards 
from those seeds based on algorithms that accumulate areas based on specific 
criteria (e.g., similarity of attributes, textures, brightness values, reflectance).

Since area data (e.g., polygons or clusters of raster cells) that partition landscapes 
into two-dimensional entities dominate the representation of forested landscapes at 
most operational scales (Fig. 12), we focus here on two broad approaches for concep-
tualizing and constructing the corresponding spatial units. The first is to focus on the 
areas themselves by building polygons, contiguous clusters of cells, or patches outward 
from specified centroids (the geometric center or the center of mass) using “greedy” 
algorithms (i.e., algorithms that seek local optima at each stage of the analysis) to build 
homogeneous landscape units. The second approach focuses on discovering boundar-
ies by measuring and isolating high-contrast locations, and then drawing the boundary 
segments that separate these locations; eventually areas will become enclosed and will 
delineate the most homogeneous patches that are separated by these boundaries.

Fig. 12  Example of a Canadian forest resource inventory map of polygons that depict different 
stands and species compositions
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�Regions

Regions can be defined based on either formal criteria (internal characteristics) or 
functional criteria (based on a function such as erosion prevention or a process such 
as carbon sequestration). Formal regions are bounded areas that can be explicitly 
defined based on their similarity to other regions using one or more attributes. In 
other words, the expression of similarity within a formal region is one of greater 
homogeneity with respect to one or more specified attributes than is evident with 
respect to the values of those attributes outside the formal region (Brown and 
Holmes 1971). When the within-region similarity is greater than the among-region 
similarity, a boundary can be drawn to enclose the areas that are most similar. The 
strictness of the criteria for defining similarity will determine the sizes of the formal 
regions (e.g., polygons) in a map or GIS database, as well as the number of regions 
in the map.

A formal region does not need to be completely homogeneous for all aspects 
throughout the specified geographic unit; this homogeneity is only necessary for 
aspects that define whether an area belongs to or does not belong to the region. 
Thus, a landscape may be dissected differently each time the definition of a region 
changes. The most important factor is that formal regions enclose areas that are 
contiguous and similar with respect to one or more key attribute values. 
These regions are based on explicit definitions, which are in turn based on facts 
whose existence can be verified. If the defining rules for the region are known, the 
mapping can be repeated and translated to other locations with the same 
characteristics.

Unlike formal regions, which are relatively simple to define on a map or in a GIS 
database, functional regions are not defined by homogeneous areas enclosed by 
clearly marked boundaries. Instead, functional regions are defined by relationships 
that connect multiple entities. Nodal regions are a special case in which there is only 
one central location (the node) to which connections are made (Brown and Holmes 
1971). The connections can be obvious, as in the case of transportation networks 
(e.g., roads connecting harvesting sites to mills), but the connections can also be 
process based (e.g., wind distribution vectors, animal migrations, nutrient cycling 
pathways). Functional regions are associated with multiple locations based on the 
connections or processes that link them across landscapes, and the locations of the 
constituent areas do not need to be contiguous or even proximal.

Whereas formal regions are useful in defining areas to represent (for example) 
inventory data that is spatially clustered or homogeneous, functional regions are 
important for defining and representing operative connections that are important in 
process-based modeling applications. Consider the dispersal of seeds from a tree (a 
point source) into the surrounding landscape. In a simple gravity-only model, the 
dispersal area may mimic the polygonal area of the tree crown projected on the 
ground. However, in reality, wind may disperse the seeds farther and in the prevail-
ing wind directions, and animals or birds may carry these seeds even farther, 
over considerable distances. The interactions between dispersal mechanisms, the 
physical controls on the processes that govern the functioning of the dispersal 
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mechanisms, and the characteristics of the point source all combine to form a 
complex functional region that may not be optimally represented by the polygons or 
contiguous sets of raster cells of a model based on formal regions. In strong 
contrast, functional regions are characterized by connectors (often represented by 
arrows or links on maps) between a central location and one or more distant loca-
tions. For functional regions, the linkages among locations are due to interconnec-
tivity through a process rather than the simple physical adjacency or proximity that 
is easily represented by a single area.

Formal and functional representations can be combined to take advantage of 
their offsetting strengths and weaknesses. In an insect infestation, when the spread 
vector (the travel distance and direction) of the infesting species is relatively short, 
infested areas that develop during a single outbreak are likely to be closely clustered 
in space and time, with only short periods of low colonization activity or small dis-
persal gaps within the landscape. In such scenarios, the multiple infested formal 
regions can be linked in a map by labeling them with a common attribute code to 
indicate that they all belong to the same functional outbreak region. Similarly, a 
wildfire event may leave unburned residual patches in the landscape within the pre-
dominantly burned area or may burn smaller patches outside of the burned area; 
these multiple landscape components can have vastly differing land cover composi-
tion and other characteristics yet still be connected functionally to the same event. 
The linking of formal regions by means of one or more functional relationships 
permits the study and mapping of complex landscape processes and interactions 
that would otherwise be impossible to discern. In forested landscapes, it is particu-
larly pertinent to consider functional connectors in the context of connectivity, as in 
the case of migratory routes for animals, with habitat patches linked by corridors or 
travel routes, such as avian pathways. The connectivity may also be related to physi-
cal processes, such as moisture and nutrient movements within complex forest 
environments.

�Attribute Fuzziness

Cartographically speaking, an ideal world would be composed of a limited number 
of features evenly distributed within a geographic space. Each feature would be eas-
ily identifiable and describable, with clear and distinct boundaries that never be 
overlapped with those of other features and aligned perfectly with the sampling 
frame or raster grid onto which these features were mapped. Similarly, the features 
would all exist and interact at the same scale. Unfortunately, the world is not carto-
graphically ideal any more than all measured quantities are integers; just as some 
properties or processes must be represented by decimal values rather than integers, 
reality cannot always be divided into discrete chunks. Even a relatively uniform and 
homogeneous forest stand is inherently complex in its horizontal, vertical, temporal, 
and attribute dimensions. Any decision to map these environments will be affected 
by decisions surrounding the cartographic scale, observation time, and choice of 
representation (e.g., vector, raster, point cloud).
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Imagine a 10 m × 10 m square in a forested environment. The number of ways in 
which this 100 m2 patch of land could be described is staggering. Which attributes 
should be included? Should the attributes be qualitative or quantitative? How many 
levels should be defined for any of the attributes? Now imagine the compounded 
effect if this area were 30 m × 30 m or even larger, such as a landscape. These are 
the realities of data collected by imaging with medium spatial resolution or even 
field sampling. At some scale and extent, even conceptually simple attributes such 
as composition become mixed within the MMU. Thus, it is possible to imagine that 
data presented at the scale of the MMU is not compositionally pure, but rather rep-
resents a mixture of two or more entities. Consider, for example, a pixel in a satellite 
image that falls at the boundary between water and land and therefore includes both 
surface types. In that context, a better representation would perhaps be to incorpo-
rate this fuzziness into the attribute definition. The notion of fuzzy sets (Zadeh 
1965) indicates that membership in a specific MMU is actually a set of probabilities 
for each attribute or attribute value that sum to 1 (i.e., that account for all possibili-
ties) and that represent the relative abundance or likelihood of certain entities exist-
ing within the specified spatial extent.

Fuzziness describes a situation based on probability rather than discrete values; 
probabilities range from 0 to 1, whereas discrete values can only be 0 or 1. The 
fuzziness in the membership of a pixel or other spatial unit can be used to produce 
a range of output maps (or inputs to spatial models) that can be used to explore 
potential output domains. Since this approach is highly flexible, a clear specification 
of the attribute definitions is essential to ensure logical consistency in the stored 
data. It is also imperative that each definition relate to a specific scale, ranging from 
local to regional or even global. This means that if local data is to be aggregated or 
connected with datasets that cover a larger area (e.g., at a regional scale), the defini-
tions must be broad enough to incorporate subtle changes in nuances of the defini-
tion that result from the changed scale.

In addition, when it’s necessary to slice continuous variables into categories, 
what rules will be followed to make this division a reasonably objective process? 
There are many possible methods (Slocum et al. 2009), ranging from simple (e.g., 
dividing the range into equal intervals) to complex (e.g., identifying natural breaks 
in the distribution), each influencing the outcome (Csillag et al. 2008). Finally, the 
units of measurement used to quantify an attribute (e.g., density, vegetation cover, 
proportions) all have underlying spatial contexts. When the spatial context changes, 
the values stored in the attributes may no longer be representative; thus, proce-
dures need to be defined for how to adjust the values in such instances. This may 
lead to additional problems that must be solved, such as rounding errors and clas-
sification adjustments; each solution is likely to incorporate some degree of fuzzi-
ness into the attribute definitions. A final consideration is how to deal with values 
that occur at boundaries. For example, should a tree that is exactly 10 m tall be 
grouped with the size class from 9 to 10 m or the class from 10 to 11 m? This leads 
us to consider the concept of boundaries in more depth, both in terms of attributes 
and spatial geometry.
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�Focus on Boundaries

The opposite approach to identifying regions (polygons, areas, patches) is to shift the 
focus from spatial homogeneity within an area to the task of identifying highly con-
trasting areas that reveal the possibility of boundaries (contrast interfaces) between 
areas. Line segments can be used to represent where such boundaries exist and can 
then be connected to form lines that eventually envelop areas that can be considered 
to be distinct regions based on substantial dissimilarity from their surrounding regions 
or based on a lack of internal contrast within the region. Since boundaries can persist 
in landscapes for long periods (Jordan et al. 2008), many methods exist for identify-
ing boundaries, including the identification of locations where a property changes 
rapidly (i.e., wombling; Philibert et al. 2008) and assigning membership probabilities 
to continuous boundary functions (Mark and Csillag 1989). Contrast enhancement, 
which uses the available data to improve the distribution of image shades or colors to 
create a better visual image, can be performed either algorithmically or by selecting 
imagery from appropriate dates; for example, mapping coniferous versus deciduous 
tree stands can be improved by using winter scenes because more snow adheres to 
conifers than to deciduous species, thereby improving light versus dark contrast 
(Peterson et al. 2004), and this difference in properties has proven useful for identify-
ing boundaries. The following sections explore these methods for dealing with the 
problem of boundary fuzziness and the impacts of spatial scale.

�Membership Function

The boundary between two adjacent patches is rarely an absolute and infinitely 
fine line scribed between two obviously different regions. Although such an ideal 
description may be true for legal boundaries and is approached by some built or 
highly contrasting surface features (e.g., walls), the transition between one patch 
and an adjacent one in most natural environments is much more gradual, and 
there is often a degree of overlap between adjacent patches. (Consider, for exam-
ple, how the crowns of adjacent trees interpenetrate.) This gradual transition 
between patches will vary based on the combinations of all the influencing fac-
tors that have been discussed thus far in this chapter, but given the additional 
complexity of defining regions, these complications are often disregarded or con-
sidered negligible.

However, some researchers have taken up the challenge of describing gradual 
transitions and explaining them by means of various functional forms (Mark and 
Csillag 1989) or by treating transitional regions between patches separately to 
mimic ecotones, where land cover types mix (Zhang and Suart 2001). The questions 
then arise as to what form the patch-membership function should take, how wide the 
transition zone should be, and whether the transition zone should have sub-transition 
zones. This quickly becomes a question of scale choice.
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Figure 13 illustrates three conceptual approaches to the handling of a boundary 
and the resulting membership function. If the vertical axis represents the probability 
of membership in a class or an area (or some other indicators of belonging), the first 
panel indicates a binary case, in which something belongs to one patch or the other 
and the boundary between them is crisp and unmistakably defined. The second panel 
indicates a case in which some distance on either side of the boundary is allocated to 
one of the two error bands, with one band associated with each focal patch. A loca-
tion that falls within either of the error bands suggests that the location belongs to an 
ecotone (i.e., a transitional space between two classes), rather than belonging unmis-
takably to either of the classes. Variations of this form include variability in the width 
of the error band relative to some characteristic (e.g., direction, local patch width, 
land cover-type contrast). In the final panel, membership is described by a smooth 
function that relates distance along the curve to some degree of membership. This 
functional form could be linear, Gaussian, stepped, or any other defensible functional 
form. Once one of these three functional forms (or another form that we haven’t dis-
cussed) is selected, then the patch boundary can be mapped, and any point along the 
gradient can be classified as a member or nonmember according to its probability of 
belonging to a given patch. Conversely, the boundary can be considered as being 
fuzzy, and the function can be used to determine the probability of membership in a 
given patch at a specific location along the horizontal distance between the centroids 
of the patches. Representative examples of these extreme cases are presented for the 
example of a managed boreal forest site in northern Ontario, Canada (Fig. 14).

�Boundary Location Fuzziness

Once the rules for demarcating the boundaries that delineate regions have been 
decided, and the resulting maps have been constructed, how confident can we be in 
the boundary locations? Whether the boundaries in question were identified by 
image classification, digitizing, GPS data acquisition, or conversion of perimeters 
sketched on a manually annotated map to digital images, both the physical position 
and the uncertainty of the boundary’s position must be scrutinized to determine 
their accuracy. In some cases, boundaries are constructed to have a width that 
describes the probability gradient for membership in the adjacent patches.  
The width could also be like the error band (ε in Fig. 13) that dictates the uncertainty 
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Fig. 13  Typical boundary functions between two areas that can be used to define membership or 
the probability of membership in a given class. In the second panel, ε represents the width of the 
error band at the boundary of each class. In the third panel, the crosshairs represent the midway 
point between the two classes. Modified from Mark and Csillag (1989)
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Fig. 14  Images of forest stand boundaries (ecotones) for a managed boreal forest site in northern 
Ontario, Canada: (a) stepped, (b) gradual, and (c) abrupt. Figure 13 illustrates the membership 
functions for these boundary types. Photographs by Tarmo Remmel
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in its horizontal positioning (Abeyta and Franklin 1998; Kronenfeld 2011). Much 
work has been done to characterize the vagueness and uncertainty of forest stand 
boundaries (Edwards and Lowell 1996; Brown 1998; Jordan et al. 2005).

In reality, data analysis typically involves data with multiple spatial resolutions 
and integrated queries across multiple scales and levels of generalization. In this 
context, fuzziness of the boundary location becomes a central issue. As boundary 
lines are simplified, weed tolerances are altered such that the minimum vertex spac-
ing changes, so line complexities will adjust to reflect those changes. These altera-
tions will influence the geometry, curvature, and spatial footprint of the boundaries 
and therefore introduce some level of fuzziness into their definitions. Whether those 
locations are represented in vector or raster forms, the positional uncertainty may 
represent the scaling uncertainty rather than the inability to precisely select a bound-
ary location. In raster cases, a coarsening of the spatial resolution will increase the 
mixtures within cells (i.e., a line may not fall completely within one cell of the grid, 
and may instead fall partially within two adjacent cells) and widen the boundaries. 
These actions alter both the accuracy and the precision of the boundary position.

�Boundaries as Transitional Regions

Depending on the specific landscape, the scale of data collection and mapping, and 
the definition of the attribute concerned, the boundary enclosing a region may itself 
be region. Consider, for example, a riparian zone that separates a river from the 

Fig. 14  (continued)
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surrounding forest. In ecological parlance, transitional zones that are wide enough 
to possess their own unique conditions are called ecotones, and can be described as 
being different from the two regions they separate. They are uniquely defined by 
characteristics related to habitat type, light penetration, airflow, moisture regimes, or 
other factors. Ecotones often provide niche habitats for species, or define zones in 
which predation rates differ from those in core patch areas. In such cases, the tradi-
tional definition of a sharp boundary (or even a fuzzy boundary) may not suffice. 
Instead, the boundary becomes its own region and may necessitate its own delin-
eated patch structure. The structures of ecotones have been studied to identify opti-
mal ways they can be characterized and delineated in terms of the uncertainty and 
abruptness of the change across these wide transitional zones (Bowersox and Brown 
2001; Arnot et al. 2004). However, in addition to the issue of defining the boundary, 
the ecotone’s internal structure must also be considered; ecotones may possess 
patches and other complex structures, depending on the observational scale used.

�Beyond 2D Data

Although the 2D plane is the traditional domain for mapping, it is becoming increas-
ingly important and fruitful to map additional dimensions. Many environments (at 
high spatial, temporal, radiometric, and thematic resolution) have important 3D 
characteristics (i.e., topography), and because of the importance of temporal 
changes, a fourth dimension (time) will be important in many contexts. Forests are 
a great example of multidimensional entities; in addition to their 2D horizontal 
extent, they grow vertically and change over time. The inclusion of additional 
dimensions has important implications for data acquisition, storage, handling, car-
tographic representation, and analysis. In the following sections, we explore some 
of the interesting new elements that can be measured and analyzed by extending our 
traditional 2D perspective to include additional dimensions of forested landscapes, 
including vertical extensions and time. These additional dimensions have implica-
tions for data handling, storage, and processing time, but in exchange for these costs 
will permit many new and interesting interpretations and analytical possibilities.

�Vertical Structural Dimension

The measurement of vertical landscape elements in forested landscapes is difficult 
in the field. Although it is possible to directly measure, triangulate, or estimate tree 
heights, these values become increasingly difficult to attain as the height of trees or 
the stem density increases. For this reason, photogrammetric approaches that rely 
on the overlap of successive air photos and the parallax of human sight have been 
important throughout the past century for mapping and measuring properties of 
landscapes beyond simply the horizontal plane. Such measurements have been 
especially useful for measuring tree heights, describing topography, separating 
understory from overstory vegetation, estimating DBH and biomass, and calculat-
ing several additional biophysical metrics.
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Recently, the availability of light detection and ranging (LiDAR) technology has 
spurred the automated processing of data from wide areas to extract these types of 
values (Lim et al. 2003a, b; Coops et al. 2007). LiDAR provides both terrestrial and 
airborne capabilities for directly collecting 3D data to characterize topography and 
land-surface features (Shan and Toth 2009). Chapter “Airborne LiDAR Applications 
in Forest Landscapes” by Ko and Remmel discusses this subject in detail. 
Opportunities for simultaneously producing digital elevation models (DEMs) 
with high spatial resolution, computing the heights of trees, and assessing biomass 
and several other biophysical parameters became a reality. Although there are 
limitations to this technology due to shadowing (blocking of some features by 
other features), signal attenuation, and errors associated with parameter estimations 
(Lim et al. 2003a, b), multiple passes over an area can provide scans from multiple 
directions and produce datasets with very high densities of LiDAR points. Since 
the accuracy of this data capture is on the order of centimeters to millimeters, the 
scientific community is still only discovering the possibilities that this technology 
may provide.

LiDAR requires that the laser source be equipped with an inertial navigation sys-
tem and global positioning system receiver if mobile, or that it be accurately located 
if stationary, so that the measured ranges can be post-processed by means of inver-
sion to produce a set of (x, y, z) coordinate triplets that identify points within the 
cloud of LiDAR points that represent important objects such as tree crowns and the 
ground surface (Fig. 15). Because each light pulse emitted by a LiDAR system can 
generate more than one return signal, most systems can process these multiple 
returns; these are called discrete-return LiDAR systems. Other systems (described 
later in this section) can capture and process the whole waveform of the return signal, 
and thereby obtain even more data on the spatial structure. Both technologies allow 
characterization of multiple levels of a forest canopy. The first returns occur closest 
to the detector, generally at the top of the canopy, whereas the last returns are farthest 
from the detector and generally represent the ground or points near the ground.

Fig. 15  A false-color set of 3D LiDAR points in an (x, y, z) coordinate space that show variations 
in the 3D structure of a forest landscape. Here, the lighter shading indicates higher absolute eleva-
tion of the LiDAR return point (e.g., the top of the tree canopy)
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With increasing extension of traditional planar 2D surveys into 3D, spurred by 
technological advances such as LiDAR, new data structures are being developed to 
accommodate these new data demands. For example, LiDAR points are identified 
by 2D coordinates in traditional (x, y) coordinate space, but also include a z-
coordinate that captures the vertical position with respect to a defined vertical 
datum. These points can be rendered in 3D, and due to the large number of locations 
in a typical dataset appear like a cloud of points; hence, they are referred to as a 
LiDAR point cloud. Unlike remote sensing systems in which geographic space is 
fully partitioned into cells for which measurements are made, LiDAR datasets are 
primarily empty space that separates points that represent locations where laser 
pulses interacted with something solid that reflected some of the energy back toward 
the detector.

Depending on the specific LiDAR system used, and budget constraints that limit 
how much information can be purchased from a surveyor, each point within the 
cloud can have a number of attributes attached to it. In addition to the 3D position 
of each point and the date and time when it was recorded, the dataset can include 
attributes such as the scan angle or the intensity of the return pulse. Classification or 
feature identification and extraction algorithms are still being produced that can 
handle the multidimensionality of the non-connected points in the point cloud, and 
this is proving to be a difficult but rewarding and interesting task. Further increasing 
the complexity of the analysis, and therefore requiring high computing power and 
data storage even for simple 3D positions, multispectral LiDAR technologies have 
been developed that use lasers with different wavelengths to acquire even more 
detailed data about the environment.

Emerging LiDAR technologies are permitting the storage of full-waveform 
results. Thus, whereas discrete-return LiDAR may provide several returns for each 
outgoing pulse, full-waveform LiDAR returns a continuous wave function for the 
returned energy. Full-waveform LiDAR can potentially provide much greater detail 
along near-vertical transects through a forested canopy, but at the cost of much 
greater data storage requirements and longer processing times. Full-waveform 
methods are being tested for detailed mapping of single trees, genera, or even 
species-level classifications, as well as for understory detection and removal to 
allow the calculation of ground-surface elevations. Much of this work is still in its 
infancy, but major contributions are expected.

�Mapping Dynamic Processes

All landscapes change; some simply change more quickly than others, or more fre-
quently at certain scales. The notion of dynamic processes is thus context and scale 
specific, but can be taken to mean that there is an expectation that a landscape will 
often have changed on a shorter interval than can generally be measured, imaged, or 
mapped. Hence, mapping dynamic landscapes can be thought of in the context of 
change detection or the quantification of differences that occur between successive 
points in time. Rapid forest disturbances (hours to days, weeks, and months) create 
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the dynamism of forested landscapes (e.g., wildfire, blowdown, insect infestations), 
with alteration of the composition, configuration, and morphology of the landscape. 
In addition, landscapes are dynamic over long periods (from years to decades and 
centuries), allowing less frequent surveys to capture changes due to tree growth and 
mortality and the resulting effects on biomass accumulation and other processes 
such as carbon sequestration.

To adequately map and study dynamic processes, the critical first step is to iden-
tify the time period that would best capture the essence of that specific process (this 
is the temporal equivalnet of the MMU in spatial data). This means that the mea-
surements must be sufficiently frequent to capture changes in the state of the land-
scape that can then be interpreted to infer how a process creates specific landscape 
patterns. The linkage between patterns and processes can then be studied. As with 
any map-based comparison, standard issues related to scale, spatial resolution, 
extent, and composition of the overall landscape mosaic need to be considered in 
the study design, and appropriate hypotheses must be articulated to define the data 
collection needs.

Change detection and updating of maps are critically important for maintaining 
representations of the landscape that are up to date and complete. Temporal consid-
erations constrain the methodology for answering questions related to change during 
a specified period, for assessing the effect of a specific disturbance (e.g., fires, insect 
infestations, windstorms, disease outbreaks, harvesting), or for identifying where 
specific events or processes occurred. Change detection assumes that the initial con-
ditions are known or can be inferred, and that a change or difference between this 
state and another one can be described some time after the initial state was described. 
This typically leads to one-directional analyses (the change in a given area during a 
given time), but may also incorporate probabilistic techniques or transition matrices 
to describe the changes between states over time. The benefit of knowing past condi-
tions when classifying satellite imagery or other sources of landscape data is that 
labeling accuracy will be higher than if prior knowledge is unavailable, since certain 
conditions are more or less likely under those initial conditions. Thus, prior knowl-
edge supports decision making and should produce better final results.

�Utility of Forest Landscape Maps

Maps serve many purposes. Historically, maps were used primarily for navigation 
and for identifying locations of markets for trade or the acquisition of goods and 
resources (e.g., villages, hunting grounds) and for facilitating the transport and relo-
cation of goods (e.g., land and water routes). Traditionally, maps were static and 
showed the locations of things at the time the maps were created; these maps facili-
tated movement among known locations because the spatial scale was consistent 
across the map, thereby allowing distance (and time) calculations. Though many 
maps still serve these requirements, the mapping of complex and dynamic land-
scapes such as forests can serve many additional purposes.
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Forest landscapes are often subject to intensive management, whether for con-
servation, extraction of timber, provision of ecosystem services, or preservation or 
development of certain characteristics (e.g., biodiversity) in a region. Since effec-
tive management requires baseline data and ongoing updates to provide informa-
tion on the landscape’s current state, maps capable of accurately characterizing all 
forms of forest conditions are essential for effectively managing forests. Such maps 
record topography (e.g., land cover and elevation), constructed features, and 
detailed resource layers (e.g., biomass, species, height, age) that can be used inde-
pendently or in conjunction with other mapped information. These maps provide 
the starting points for future decision-making capacity or to monitor changes to 
baseline conditions.

Change detection in forest landscapes includes both anthropogenic changes 
(e.g., road network expansion, mapping of harvest sites) and natural events (e.g., 
forest fires, wind, and insect damage). Incorporation of time as a dimension permits 
the detection and mapping of explicit landscape changes (first-order effects) and 
drawing of inferences about processes and their properties (second-order effects). 
The temporal and spatial scales of the data acquisition and mapping, along with the 
map’s extent, will govern the suite of discernable forest landscape characteristics 
that can be mapped and the changes that can be detected. It is particularly important 
to understand that although static displays at a single point in time provide evidence 
of the current state of the landscape, change detection allows inferences to be drawn 
about the processes responsible for that state. This improves our understanding of 
how and why a landscape is changing.

Increasingly, many maps are not the desired end product, but rather serve as 
inputs for other products, such as simulation models and decision-support systems. 
Thus, forest landscape maps can be the results or outputs of simulation models, in 
which case the mapped information is not what was originally detected or measured, 
but rather the derivative of one or more modeling decisions or interpretations.

A relatively recent problem that arises from the distribution of large volumes of 
data over the Internet relates to how to determine the origin, accuracy, and utility 
of maps. Many maps result from overlaying or combining data from a range of 
sources, some of which may have been produced by inappropriate means or may 
not be sufficiently similar to permit easy or reliable combination of the disparate 
datasets. The utility of maps that are produced by black-box models, based on 
undeclared assumptions or on data from unclear or unknown sources, should be 
questioned and the conclusions drawn from such maps should be used with height-
ened caution.

�Map Representations

By definition, geographic data includes one or more entities (items, objects, or 
things) that are described by both their location (coordinates) and other useful attri-
butes. In a digital environment such as a GIS, attribute tables contain descriptive 
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data on each attribute (e.g., biomass), including its locations in the map. Assigning 
colors and symbols to different types of spatial entities or to various levels of their 
attributes, and then displaying these in a map, links the descriptors to their locations. 
In this way, it is possible to convey vast amounts of information through the result-
ing maps. The visual effect of colors and symbols in a map produces the spatial 
patterns that can be characterized, measured, and compared.

Options for coloring or labeling a map (Brewer et al. 1997; Slocum et al. 2009) 
depend on both the nature of the entities that must be represented and the type of 
attribute that is to be mapped for each entity (Fig. 16). First, markers or symbols 
can be chosen to represent specific types of point data, and their size or color can 
be modified to represent values of certain attributes; for example, circles could be 
used to represent deciduous trees and triangles could be used to represent conifers. 
Similarly, linear features can be labeled using lines with different widths, colors, 
and patterns (e.g., solid versus dashed) to communicate attributes attached to those 
features such as their boundary. Area data can also be displayed by adopting the 
techniques used for points and lines; for example, polygon boundaries and the fill 
color or opacity can be modified to communicate attributes of the polygons. 
Second, the symbol, line pattern, or color can be adjusted to communicate the 
attribute values directly. If the data is nominal or ordinal, then unique colors or 
symbols can be assigned to each unique value. As the measurement framework 
becomes more complex, quantitative data can be grouped or divided in various 
ways to produce categories that can be represented by monochromatic scales (e.g., 
using shades of black in 20% intervals to distinguish five categories) or multicol-
ored scales (e.g., red to indicate danger, yellow to indicate uncertainty, and green 
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to represent safety). If quantitative values are not divided into discrete categories, 
a continuous color ramp can be applied to the data, with the percentage of the full 
color value proportional to the value of the attribute; this provides a smooth, con-
tinuous range of attribute values. These approaches can be used with both raster 
and vector data.

�Morphological Interpretations

Moving beyond the extensive body of traditional landscape pattern metrics (Baker 
and Cai 1992; McGarigal and Marks 1995; Riitters et al. 1995; Uuemaa et al. 2011), 
researchers are developing a body of pattern analysis methods that consider mor-
phological landscape characteristics (Soille and Vogt 2009). Both branches of pat-
tern characterization provide numerous options for characterizing and quantifying 
various aspects of spatial patterns, but morphological methods (also called morpho-
metric methods) focus on quantifying forms or shapes (i.e., morphologies). These 
methods seek to partition binary landscapes that present the presence and absence 
of a category (e.g., forest) into morphological elements that describe the fundamen-
tal forms that cells or clusters of cells represent from a structural perspective. For 
example, basic morphological landscape pattern elements can include cores, edges, 
and islets (among others). Each image cell will be coded as having membership in 
only one mutually exclusive morphological element class (e.g., a cell cannot be 
considered an edge and a core simultaneously). These classifications can have deep 
ecological meaning and are often used to further partition the analysis of land cover 
that comprises individual morphological element classes.

Traditional maps portray spatial entities in either raster or vector representations 
by labeling the entities with either colors or symbols that represent the associated 
attribute values or levels within a hierarchy or sequence. The combination of these 
labels and their arrangement in space can reveal emergent properties of spatial pat-
terns. Landscape pattern metrics permit the measurement (quantification) and sum-
marization of these patterns either globally (for an entire landscape) or at the class 
or patch levels. These summaries result both from the attributes being mapped and 
from their geometry, and they are strongly influenced by spatial resolution, geo-
graphic extent, and composition and configuration of the entities.

Morphological metrics let researchers quantitatively describe and compare land-
scapes, though the precautions raised by Remmel and Csillag (2003) for landscape 
metrics extend to morphological elements too, since the distributions of these met-
rics are unknown and it is difficult to produce null models against which comparisons 
could be made. Thus, the challenge of comparing maps based on pattern is not as 
simple as it might appear at first glance. However, despite these precautions, mor-
phological metrics provide a means for mapping shape-based classifications of 
landscape elements, thereby producing spatial summaries of landscape components 
that visualize the relationships among their position, connectivity, and overall shape. 
Since the results can be directly mapped, the results allow spatial inquiries, such as 
asking whether elements with certain morphologies are clustered.
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�Map Scale

The concept of scale is central to mapping, and particularly so for mapping forest 
landscapes, which exist as amalgams of entities, flows, and interconnected pro-
cesses that exist and interoperate at multiple extents and scales. The construction of 
maps requires a consideration of scale at all stages, from survey planning and 
obtaining data to analysis, interpolation, and interpretation, and finally to combin-
ing data from multiple surveys or maps and using the mapped and georeferenced 
information to support research or forest management. Jenks and Caspall (1971) 
proposed a theoretical model in which an optimal map exists for any purpose and in 
which both the information and accuracy are maximized; to do so, they proposed a 
graph with axes for map complexity and for accuracy and information flow, where 
information flow refers to the ability to grasp the concepts presented in a map 
(Fig. 17); when maps are overly complex, their interpretation often becomes more 
difficult and thus the information flow to the reader eventually starts to decrease. 
Although it’s not yet clear how to formalize these functions to permit identification 
of the characteristics of this optimal map, the idea is clear: produce a map that com-
bines the greatest flow of accurate information with the minimum complexity.

There is no easy answer to the question of how to choose the most appropriate 
scale for analysis. However, there are some useful rules of thumb. First, and most 
important, the scale must be such that it lets you see the features you are attempting 
to study. That is, the MMU must reveal the distribution and patterns of the features 
being studied. This means that the smallest feature of interest should be represented 
by at least one cell in a grid or one visible shape in a vector display, with a suffi-
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Fig. 17  Optimal maps exist in which the maximum map information flow and accuracy intersect 
with the curve for complexity. Modified from Jenks and Caspall (1971)
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ciently high resolution that it will be visible as a core area surrounded by different 
features and with boundaries between them. At the same time, the internal hetero-
geneity should not be so large that its identity as a distinct feature is concealed and 
the analysis becomes unnecessarily complicated. Similarly, the cells and shapes 
should not be so large that they oversimplify the surface through smoothing. 
Woodcock and Strahler (1987) clearly summarize the scales at which objects are 
best observed based on measures of local variance along a continuum of spatial 
resolution.

Scale influences the amount of detail that is visible. This is most easily concep-
tualized by thinking about spatial resolution in terms of the pixels that comprise a 
satellite image: images with fine spatial resolution show more detail than those with 
coarse spatial resolution. Hence, spatial resolution is often a good proxy for scale. 
This concept extends to include time, since the interval between successive mea-
surements (i.e., the observation frequency) and the duration of each observation will 
both influence the types of changes or dynamic processes that can be observed, 
measured, and mapped. Scale also depends on the extent of the area that must be 
mapped to reveal the conditions, patterns, and processes being studied and the 
methods that can acquire the necessary data most easily at that spatial extent 
(Fig. 18).

Given these definitions, mapping of naturally complex forest landscapes by 
detecting and measuring phenomena, patterns, and processes is inherently a scale-
dependent task. Scale dependence in ecological patterns and processes has been an 
important theme for several decades (e.g., Turner et al. 1989; Wiens 1989; King 
1991; Levin 1992; Peterson and Parker 1998). Advances are expected in this domain 
as increasing familiarity is achieved with specific environments and data sources, 
but determination of the optimal scale will always remain context specific. 
Difficulties remain in determining a single scale for mapping and analysis because 
many phenomena and processes operate at different scales or over a range of scales. 
Moreover, two processes that interact may operate at different scales. One key 
breakthrough that mitigates the difficulty of scale dependency is the use of GIS 
software and other computer tools, which allow researchers and managers to inter-
actively change the scale until it is optimal for a given purpose and to reveal impor-
tant differences among scales.

As spatial resolution decreases (becomes coarser), narrow patches and ecotones 
may become too small to be represented and may disappear completely from data-
sets and maps. Area and perimeter (hence, shape) computations will be affected by 
this disappearance, as will simple frequency counting to determine whether certain 
classes (particularly rare classes) exist within a landscape. The resulting changes in 
patch shapes will also influence computed spatial relationships such as nearest-
neighbor calculations, boundary widths, contrasts, or abruptness of a boundary. 
McIntire and Fortin (2006) showed that boundary widths (and especially the gradi-
ent steepness and boundary heterogeneity) change substantially in response to 
changes in spatial resolution in landscapes affected by mountain pine beetle infesta-
tions and wildfires. This consideration of spatial resolution is important for the 
analysis of satellite spectral data, since as spatial resolution decreases, the amount 
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of mixing of spectral signatures within cells increases and classification accuracy 
decreases, and although the decrease may be small (Boudewyn et al. 2000), its mag-
nitude will depend on the classes, their configuration, the landscape characteristics, 
and other factors. Therefore, researchers (e.g., Remmel and Csillag 2006; Gaucherel 
2007) have attempted to analyze maps and patterns at multiple spatial scales, since 
single-scale analyses do not always provide the complete picture.

�Spatial Resolution

It’s important to account for the impact of spatial scale on how landscapes are 
represented and the level of information a map can retain. Here, we examine this 
problem from a patch (or area) perspective by considering both the geometric and 
attribute elements of a landscape and the impacts upon them as scale changes.

Fig. 18  Illustrations of the relationships among scale, resolution (level of observable detail), and 
the patterns revealed at each scale, along with the typical methods of data acquisition. Modified 
from http://conf2016.uas4rs.org.au/speaker/urs-treier-university-of-aarhus-denmark/. Used with 
permission

T.K. Remmel and A.H. Perera
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In raster environments, the impact of spatial resolution can be significant, since 
halving the pixel size (i.e., doubling of the spatial resolution) quadruples the num-
ber of cells that must be analyzed, which increases both the storage requirements 
and the processing time (Fig. 19). Although this change has operational consider-
ations (i.e., defines how data must be collected), a new type of data implication 
arises: the modifiable areal unit problem (MAUP). In this problem, aggregation of 
area-based measures of spatial data introduces various forms of statistical bias that 
depend on the scale of the aggregation. The biases can affect the means or vari-
ances, depending on how the spatial aggregation or zoning is conducted (Jelinski 
and Wu 1996; Dark and Bram 2007). The characterization of forest stands is 
strongly influenced by MAUP. For example, if forests are classified to a dominant 
species at some fine mapping extent, the aggregation of these spatial units to coarser 
ones without starting from the original raw data can introduce bias so that the 
aggregated maps no longer reflect the true species distribution on the ground. This 
concept is similar to the popular vote and aggregated Electoral College results 
being in disagreement with each other, as occurred in the US presidential election 
of 2016 (Collin 2016). Although the MAUP is most often seen as a problem, 
Openshaw (1977) suggests that the effect can be highly useful once it is understood 
and controlled for. Menon (2012) presented an example in which different aggrega-
tions (zoning) of underlying counties (spatial partitions) were applied to compute a 
specific index and control its value.

As spatial resolutions decrease, the area represented by each raster cell increases. 
In many cases, this means that the attribute definitions must be revised (or carefully 
reinterpreted) to account for the fact that they represent a combination of larger 
areas that leads to less local detail and complexity. The use of coarser spatial resolu-
tion also creates an averaging effect that weakens the ability to detect areas with 
specific spatial characteristics because the attribute represents the average of two or 
more areas with different spatial characteristics. (In remote sensing, this is called 
the mixed-pixel effect.) One important implication is that extreme values may disap-
pear or become less frequent, which is problematic when those extreme values are 
the important characteristics being studied. This effect is clearly seen when a DEM 
is resampled. DEMs are typically raster grids in which each cell contains a value 
that represents its height above some reference datum. Because of the large number 
of cells in a grid that covers a large area, it’s often necessary to choose a coarser 
resolution to allow mapping, modeling, or assessment of large areas in a reasonable 
amount of time. Unfortunately, the landscape becomes increasingly smooth as the 
spatial resolution decreases. This can both decrease slopes in areas with a steep 
slope and lead to the loss of peaks and valleys. This will affect interpretations of 

Fig. 19  A doubling of the 
spatial resolution equates 
to a quadrupling of the 
number of raster cells that 
must be analyzed
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erosion potential, the development of drainage networks, and the angle of incoming 
solar radiation. This can have consequences for both environmental research and 
forestry operations such as planning and building roads. A smoother DEM may also 
contradict a tree canopy height model created from LiDAR data with high spatial 
resolution, leading to a skewed interpretation of tree heights. In contrast, the use of 
finer spatial resolution does not necessarily improve the level of thematic detail 
(e.g., mapping the extents of specific forest stand types), particularly when the 
edges of these objects account for a small proportion of their total area.

Changes to spatial resolution have also been shown to have potentially signifi-
cant additional consequences, including alterations of patch shape, size, and edge 
complexity, all of which affect the values of metrics based on these factors. Thus, 
comparing maps created at different spatial resolutions can introduce bias. In vector 
environments, the cartographic scale, MMU, and grain or weed tolerances will all 
affect the level of observable detail that can be presented. Researchers and managers 
often use line generalization functions to simplify linear features, but as is the case 
in a raster environment, altering the number of vertices that define a line will affect 
estimates of its length and complexity, and the area of any associated polygons. 
When spatial resolution becomes overly coarse for the landscape being observed, 
smaller or narrower patches will begin to disappear from the final map, since the 
dominance of neighboring patches will weigh more heavily in the assignment of 
attributes to cells or delineated polygons. This alters the observed spatial pattern, 
since it decreases the number of patches that comprise the landscape, thereby 
decreasing the landscape’s perceived complexity and potentially resulting in an 
overly simplistic understanding.

�Increased Spatial Resolution Versus Marginal Information Gain

In a world of ever-increasing desire for increased spatial resolution (e.g., high-
definition television, digital cameras with more megapixels), it’s not surprising 
that the same desire for detail exists with satellite image acquisition. Although 
imagery with high spatial resolution can provide more or better visual context, 
thereby benefiting the human element of identification and classification work, it 
often complicates automation of mapping and spatial analysis because of the 
larger amounts of information that must be processed. In addition, there is the 
question of diminishing returns: at some point, increasing the resolution does not 
provide enough new or useful information (the marginal information gain per unit 
of increased resolution) to justify the cost of acquiring and processing the data. In 
addition, the amount of information obtained may become overwhelming, pre-
venting humans from seeing important overall patterns, as in the phrase “failing to 
see the forest because of the trees.”

One advantage of using data with coarser spatial resolution is that complex envi-
ronmental states are generalized, smoothed, and averaged, leading to decreased spa-
tial heterogeneity and allowing us to see patterns that would be difficult to detect 
amidst a sea of details; in effect, it becomes easier to see the forest when one is not 
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distracted by all the individual trees. Calculations and data processing also become 
simpler and faster. One powerful advantage of tools such as GIS software is the 
ability to interactively adjust the resolution, thereby allowing researchers to adjust 
the scale until they can focus on the most important details. Notwithstanding the 
perceived benefits and esthetic qualities of images with high spatial resolution, 
researchers and managers must always ask whether the marginal information gain 
obtained from increased resolution justifies the costs (i.e., increased processing time 
and complexity). They must carefully consider the trade-off between image extent, 
spatial resolution, and information content.

�Multiple-Scale and Cross-Scale Analyses

With the growing availability of spatial data at multiple spatial resolutions and 
growing interest in characterizing landscapes or processes across multiple scales, it 
has become necessary to develop new methods capable of performing these types of 
analyses and to refine existing methods (Johnson et  al. 2001; Mysorewala et  al. 
2009). For example, multiple-resolution assessments of species diversity have been 
achieved by using quadtrees (Csillag et al. 1992), which partition a space into quad-
rants only if a specified threshold for diversity is reached. The result is a surface 
tiling with tile size that varies across the study area. Similar approaches have been 
used to segment land-cover maps to improve summary statistics by reducing the 
error terms generated by modeling (de Bruin et al. 2004) and to compare raster-
format categorical maps (Remmel and Csillag 2006). Continued development of 
multiple-resolution analyses, including wavelet convolutions (Bradshaw and Spies 
1992) and fusion of LiDAR and image data (Dalponte et al. 2008), will broaden our 
understanding of the spatial processes that act on forested landscapes and permit the 
construction of increasingly informative maps. Major gains will come from stream-
lining the fusion and simultaneous analysis of data from multiple sources and 
obtained at multiple scales.

When comparing forest maps at different levels of thematic resolution or per-
forming comparisons between data products with different thematic definitions, the 
results can differ greatly among the algorithms used to perform the aggregation 
(Remmel et al. 2005). Aggregation of thematic data with different resolutions has 
been shown to significantly affect the characterization of spatial patterns, particularly 
when landscape metrics (see Chapter “Mapping the Abstractions of Forest Landscape 
Patterns” by Uuemaa et al.) are used to prepare quantitative summaries and abstrac-
tions (Buyantuyev and Wu 2007). When disparate data products are combined into 
a common analytical framework, it becomes imperative to align the thematic resolu-
tions and definitions. For more information, see Chapter “Towards Automated Forest 
Mapping” by Waser et  al. This will require substantial effort to ensure semantic 
consistency and to identify thematic ranges that are comparable across products. We 
predict that as methods develop and access to data products increases, standards will 
be developed for thematic classification and description, because these issues will 
become as important as geometric accuracy has been in the past.
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�Error Assessment and Validation

�Sources of Errors

When maps are validated, their positional and geometric errors are often assessed, 
but thematic labels and overall spatial patterns should also be assessed for com-
pleteness and accuracy. Positional accuracy can be assessed in either relative or 
absolute terms, depending on the context and the desired use of the maps. When 
maps will not be used in conjunction with other spatially explicit data, then the 
absolute location does not matter. When the absolute locations of features (e.g., a 
specific latitude and longitude) are not required, then a less restrictive relative 
assessment of positioning accuracy can be applied. Such assessments examine the 
relative size and positioning of geographical features (e.g., adjacency, proximity, 
area, perimeter) without requiring that these features be tied to real-world 
locations.

However, when map overlays or change detection must be performed, then the 
positional accuracy must be assessed to ensure that the coordinates are equivalent 
between maps. Often, the positional error permitted on maps will be given as a hori-
zontal or vertical distance error (e.g., ±2  m), which often depends on the carto-
graphic scale and can be summarized using metrics such as the root-mean-square 
error (RMSE). RMSE summarizes the average separation between the actual (Ai) 
and observed (Oi) map coordinates of point i between a sample (N) of control loca-
tions across the map (Eq. 1):

	
RMSE =

-( )å =i

N

i iA O

N
1

2

	
(1)

RMSE can be further partitioned to describe the error in specific directions (e.g., 
in the x and y horizontal directions) or for categorical data (Ding et al. 2014). RMSE 
values can be mapped as vectors that display the magnitude of the difference (which 
is proportional to the scaled length of the vector) and the associated offset direction. 
When displayed graphically at each control point Ai, trends and variability in posi-
tional accuracy can be visualized. RMSE generally summarizes how well a dataset 
matches the validation data, or how well two superimposed maps align at a series of 
control points.

Although RMSE values are often calculated as an overall value for an entire map 
or some region of the map, this fails to account for the fact that errors have many 
sources, and should therefore be calculated separately for each source of error. To 
find ways to improve accuracy by decreasing RMSE and other error metrics, it’s 
necessary to partition this error among its many components. Such errors arise from 
the projection, datum, spatial resolution, geometric registration, and precision cho-
sen by the researcher. Furthermore, Dauwalter and Rahel (2011) demonstrated that 
the patch sizes that comprise a landscape, rather than their shape or complexity, influ-
ence positional accuracy. Ongoing research will be needed to establish acceptable 
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practices for assessing positional accuracy (both globally and locally) and for pre-
senting this information in statistical and graphical forms. A greater focus needs to 
be placed on partitioning spatial accuracy into error, uncertainty, and bias compo-
nents for all input data simultaneously, resulting in a multidimensional assessment.

When the statistical distribution of a dataset (e.g., normal vs. Gaussian) is 
known, standard statistical techniques can be used to convert the RMSE into a 
physical distance at a given scale (USGS 1999). For example, the 95% confidence 
interval for normally distributed data would indicate that errors should not be 
greater than 1.64 times the RMSE. The United States Geological Survey, a major 
producer of maps, adheres to a series of heuristic targets for horizontal, vertical, and 
thematic accuracy. The targets depend on the cartographic scale of the original map 
(USGS 1999).

Digital maps can now be easily rescaled in GIS software and produced at virtu-
ally any cartographic scale that is desired, but it is crucial to understand that both the 
new scale and the map’s accuracy relate directly to the original scale at which data 
were measured and converted into maps. Errors also appear when information is 
converted to a coarser resolution, which results in the averaging problem described 
earlier in this chapter, or interpolated to a finer resolution, which requires assump-
tions about the missing data (Jelinski and Wu 1996). Errors also appear as maps 
progress through sequences of aggregation, overlaying, or other processing stages 
because the errors from each process can combine, interact, and propagate in deriv-
ative products (Wu 1999). In ecology, this is termed aggregation error or transmu-
tation error (O’Neil and King 1998), or extrapolation error (Miller et al. 2004). The 
existence of such errors and the need to deal with them during cartographic analysis 
emphasize the importance of knowing the origin of maps and the need to obtain 
complete and informative data about the origin and characteristics of the maps (i.e., 
metadata).

�Map Validation

Maps promise that specific entities will be present at specific georeferenced points. 
Accordingly, a mapped point is accurate if that particular entity is encountered at 
that specific location. Maps can be considered valid if all points or a statistically 
representative sample of points has been verified, and validity means that the map 
can be used for the intended purpose. The process of verification is scale specific; 
accuracy must be assessed at the same spatial and temporal resolutions that were 
used to generate the mapped information and that will be used to create the map.

Missing data is a familiar problem in the geoinformatics community. Whether 
the gap results from missing attribute information or the need to “clean” a dataset to 
remove erroneous data (e.g., cloud-contaminated pixels in satellite images), these 
gaps pose problems in subsequent analyses. The problem arises at all scales and for 
all platforms. For example, satellite data will continue to be plagued by atmospheric 
conditions that block transmission or reception of a signal. Similarly, ground-based 
data collection will be subject to human error, such as missed survey dates due to 
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illness, bad weather, or an inability to survey during the whole-field season because 
of budget constraints. Data collected by automated sensors is sometimes lost due to 
power failures, running out of storage, vandalism, or damage by animals. For these 
and other reasons, incomplete data are an expectation rather than a rare occurrence. 
One solution to this problem is to use multiple data sources to fill gaps in a data 
series or in coverage. This approach requires the merger of data with multiple spa-
tial and thematic resolutions, leading to the data fusion problems described earlier 
in this chapter.

When gaps in data are detected, it is possible to simply mask out those areas from 
further analysis, but this has the drawback of leaving literal holes in the map. To 
avoid these holes, researchers can instead use various forms of simulation (e.g., 
Stamatellos and Panourgias 2005) or interpolation (e.g., Hessl et al. 2007) to predict 
the real value of the missing data. Because it is not always possible to obtain data on 
a study area before and after some change (e.g., in response to a disturbance such as 
forest harvesting), researchers often use a carefully selected area as a proxy for the 
initial conditions. This space-for-time substitution (Ullman 1974) has been highly 
effective, but relies on the assumption that the proxy is valid, which may not be cor-
rect if undetected conditions cause the proxy to differ from what it is intended to 
represent in some important way. Furthermore, data representation conversions 
(e.g., from vector to raster) or type conversions (e.g., from point to area) create 
additional concerns that warrant special attention. For example, converting point 
data to a raster format will introduce errors related to the area and perimeter of the 
resulting data. Each time that data are modified from one form to another, there are 
implications for the resulting spatial patterns, and these may affect the interpretation 
of the results.

As we noted earlier, the quantification and comparison of spatial patterns focus 
on the composition, configuration, and morphology of the landscape as the domi-
nant descriptive metrics. Although tools for computing these metrics are widely 
available, concerns regarding their validity for comparing landscape patterns have 
been raised and explored (Remmel and Csillag 2003). These approaches are reason-
ably effective for obtaining diagnostic indicators of possible landscape pattern 
changes, but pose numerous complications when statistical comparisons are neces-
sary. A comprehensive review of scale effects on landscape indices (Šímová and 
Gdulová 2012) emphasized that the most useful metrics are those that are simple to 
compute and easy to interpret, and that the metrics are most useful when grain sizes 
and image extents can be kept consistent.

The greatest gains in quantifying and comparing spatial patterns will be made 
through the development of methods or metrics that simultaneously capture com-
position, configuration, and morphological attribute values at multiple scales (e.g., 
Remmel and Csillag 2006), and that will permit valid statistical comparisons of 
these metrics. Great advances have been made in recent years, but the next phase 
will involve connecting the various disparate approaches so they can be integrated 
within GIS software. The assessment of patterns will need to follow these devel-
opments in analysis and mapping at multiple scales. MacDougall (1975) focused 
on the accuracy of map overlays, and found that inaccuracy can result from the 
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comparison of low-quality maps and that some boundary errors can be minimized 
by patch enlargement or reduction operations. Chrisman (1987) reassessed 
MacDougall’s work, and showed that overlaid maps produced both large polygons 
that agreed between the maps and small areas that disagreed between maps, which 
he referred to as “slivers” (impurities). More importantly, he discussed the impor-
tance of the disagreements, and noted that some categorical or spatial disagree-
ments were not important for certain applications.

For this research to move forward, it will be important for researchers to use 
terminology consistently. Although the terms accuracy, ground-truthing, and vali-
dation are often used interchangeably, they have significantly different meanings. 
Accuracy refers to the correctness of a mapped result. Ground-truthing is one way 
that accuracy is determined: researchers obtain field data at the mapped sites and 
compare it with the data that appears in the map. This approach assumes that it is 
possible to determine the truth about what exists at a specific location at any scale, 
mixture of land cover types, and landscape complexity, or position (i.e., theoretical 
perfection) and that this information can then be used to validate the results of a 
classification or mapping process at the same location. In contrast, validation refers 
to achieving a result that is not perfect, but rather is “good enough” for the purpose 
of the cartographic exercise.

There is always a possibility that some gap in our understanding of ecosystems 
can lead to discrepancies of various magnitudes; even something as simple as veg-
etation cover or crown closure can have definitions that differ among studies, and 
measuring such values in the field can be difficult and will produce results with dif-
ferent biases when different measurement methods have been used. Hence, there is 
a general preference toward emphasizing validation over accuracy. This philosophy 
aims to align what is possible through cartographic analysis with what we can actu-
ally achieve in the real world. For example, the explicit definitions of land cover 
categories are commonly designed such that the inherent variability can be accounted 
for by means of a validation effort such as ground-truthing. Accuracy is then used to 
refer to one or more metrics that quantify how well the data presented in a map cor-
respond to the actual landscape conditions in the field.

Though many measures of accuracy have been proposed and used, most rely in 
some form on the initial construction of a confusion matrix (sometimes referred to 
as an error matrix) that compares the mapped data with validation data obtained by 
means of ground-truthing (Congalton 1991). The mapped data generally form the 
rows of this matrix and the validated categories generally form the columns 
(Fig. 20). Each cell of the confusion matrix records the frequency (f) of the agree-
ment between the row and column (mapped and validated) data for i categorical 
labels. The values in each row and column are summed to produce marginal distri-
butions for the rows and columns. The sum of the marginal distributions for all rows 
in the confusion matrix (which equals the sum for all columns) represents the num-
ber of sample locations where validation data was collected. There has been consid-
erable debate over the number of samples required to validate a dataset, but 
researchers have generally accepted a worst-case conservative sample size (Eq. 2), 
which is well documented by Congalton and Green (1999):
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where n represents the conservative estimate for the number of required samples; 
B is determined from a chi square distribution with 1 degree of freedom and 1 – α/k, 
where α represents the probability of a type I error and we assume a classification 
scheme with k = 4 classes; ∏i is the proportion of the map covered by class i (e.g., 
30% in the example in Fig. 20); and bi is the desired precision (5% or 0.05 given a 
desired 95% confidence interval). Thus, for this example, B would be c 1 0 9875
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6.239. Thus, Eq. 2 would yield n = 524 samples, or approximately 131 samples per 
land cover category.

The confusion matrix can be described using various summary statistics, of 
which the most popular ones are the overall accuracy (the proportion of correctly 
classified values, Pc), the user’s accuracy (the proportion of errors of commission, 
PUi), and the producer’s accuracy (the proportion of errors of omission, PAi). Here, 
the overall accuracy is a global measure of the number of agreements between 
mapped and validated samples (e.g., pixels) across all land cover categories 
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PA2 = (5 / 8 ) × 100 = 62.5%
PA1 = (2 / 2 ) × 100 = 100.0%
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Fig. 20  An example of a confusion matrix constructed for mapped and reference data with four 
mapping categories. See the text for an explanation of producer and user accuracies and the fre-
quency (f) terms
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number of samples mapped into that same category (f++): PUi = fii/fi+. The produc-
er’s accuracy represents (individually for each category) the number of correctly 
labeled samples (fii) divided by the total number of samples identified in that 
category via field validation (f+i): PAi = fii/f+i.

Alternative summary statistics exist that compensate for the probability of correct 
labeling due to random chance between mapped locations and field-validated data 
using the kappa coefficient of agreement (k



; Foody 1992) and the construction of 
confidence intervals for summary metrics (Congalton and Green 1999; Csillag et al. 
2006). The kappa coefficient of agreement for a thematic map is calculated as follows:

	
k = -( ) -( )p p po c c/ 1

	
(3)

where po is the proportion of correctly classified cases and pc is the proportion of 
correctly classified cases that would be expected based on random chance. However, 
because pc relies heavily on a priori knowledge of the marginal distributions of the 
error matrix, its use has been questioned (Foody 2007). All of these approaches 
should be supported by a sufficiently large sample size to permit a statistically sig-
nificant comparison (Chuvieco 2016). Stehman (2004) cautions against the normal-
ization of the confusion matrix (i.e., mathematical transformation to produce a 
matrix that sums to unity), stating the risk that it will “cloak the assessment in a veil 
of analytic mystique that hinders understanding and proper interpretation.”

Foody (2002) provides an extensive review of accuracy assessment methods and 
challenges to these methods, and underscores the importance of accuracy assessment, 
particularly when mapping large areas or monitoring changing landscapes. Mitchell 
et al. (2008) investigated how to mine the classification cluster statistics in remote 
sensing data to produce ratios of the probability of the most probable land cover class 
to the probability of the second most probable class for all pixels and develop statisti-
cal measures of reliability for each pixel location. The state of the art in accuracy 
assessment has not changed greatly since this period, when de facto standards for 
accuracy assessment were forged. However, Remmel (2009) extended the use of the 
confusion matrix to measure the uncertainty of landscape configuration and provide 
a deeper interpretation of the spatial distribution of accuracy. Their approach extracted 
information on spatial variability from an otherwise nonspatial confusion matrix. 
Olofsson et al. (2014) agreed with Foody’s (2002) review and continued to outline 
best practices for determining the optimal sample size and developing confidence 
intervals specifically suitable for use in area estimation and landscape change.

�Summary

Mapping has a history that dates back several thousand years. During this span, the 
field has undergone substantial improvement by refining both the art and the science 
of cartography to produce current standards for mapping excellence. The focus of 
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this chapter has been to introduce the underlying concepts that govern mapping in 
general, but with a view toward applying these general rules to mapping of forest 
landscapes. At the core of all mapping is the creation of an abstraction of reality, and 
abstraction represents acceptance of the notion that the seemingly infinite complex-
ity of the real world must be simplified in some way to create summaries that can be 
presented in map form and comprehended by users of the map. Decisions about the 
best way to generalize information are influenced by, and often limited by, how we 
choose to represent real-world phenomena (e.g., raster cells, vector primitives, tes-
sellations). They are also influenced and limited by the types of attributes, topologi-
cal relationships, and geometries that are possible or that we choose to account for. 
The spatial and temporal resolutions of a map (which are proxies for its scale) and 
of the underlying data acquisition further constrain the options available for map-
ping, and must be considered in all decisions surrounding plans for data acquisition, 
the actual surveys or measurements that provide that data, cartographic design, 
analysis, and accuracy assessment.

These considerations are complicated by the need to choose formal definitions of 
forests, landscapes, and characteristics that we generally map within the context of 
forest landscape mapping. We drew attention to approaches that focus on mapping of 
areas (formal and functional regions) and the identification of boundaries that sepa-
rate a map into groups of areas with similar properties that are distinct from groups 
of areas with different properties. Both area-based and boundary-based approaches 
can be further extended to account for fuzzy logic, in which an area’s membership in 
a given class is not crisp, but rather is described by a probability distribution function 
or by boundaries that represent transition zones (e.g., ecotones). Either of these 
extensions, alone or in combination, can lead to very complex maps.

The extension of maps from traditional flat 2D formats to 3D or even higher 
dimensions can express the dynamics, change, and vertical complexity of landscapes. 
This extension is facilitated by recent technological developments in computing, 
computer graphics, and data acquisition capabilities (e.g., LiDAR, satellite images). 
Maps are no longer produced simply to demarcate the locations of things, resources, 
or phenomena, but rather to understand broader spatial patterns and associations, 
and to make inferences about ecological processes. Maps, though often the final 
desired product, are increasingly serving as intermediate or initial data layers that 
record spatially explicit information that will be used as input for models, analytical 
engines, or visualizations that illustrate the stages dynamic systems pass through 
over time or in space.

Forest landscape maps are used extensively in conservation and forest manage-
ment efforts, and are perceived as scientific documents. In this context, robust and 
statistically defensible techniques should be used to design the maps and assess 
their accuracy, and validation tools have been developed to accomplish this. The 
most popular tools generally involve cross-tabulations of observed versus expected 
attribute values (e.g., confusion matrices). Summary statistics are commonly 
derived to quantify the accuracy and validity of maps that are produced at specific 
scales and that are well documented in the associated metadata.
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Techniques for georeferencing data (e.g., GPS receivers, ground-control points 
for satellite images), for performing statistical and spatial analyses of data, and for 
displaying and visualizing data have significantly improved in the last few decades. 
These improvements have accompanied the rapidly growing demand for spatially 
and temporally explicit information about forest landscapes. This demand has been 
motivated by the growing recognition of the need for sustainable development and 
by global concerns (e.g., climate change), regional concerns (e.g., wildfires, biodi-
versity), and local concerns (e.g., ecosystem services). These concerns arise from 
the need to balance conservation and extraction of natural resources, and the need to 
mitigate the consequences of this balance. The interaction between requirements 
dictated by user demands and the availability of new data collection technologies 
and analytical methods is fortunate, because it benefits all stakeholders, but it 
requires a sound understanding of mapping techniques and constraints (by the 
users) and of forest landscape ecology (by the mappers). This chapter was written 
to help provide this understanding.
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Fuzzy Classification of Vegetation 
for Ecosystem Mapping

F. Jack Triepke

Abstract  Vegetation classification and mapping are important tools for addressing 
natural resource management, ecosystem restoration, and other contemporary eco-
logical issues. Though classical set theory is most often applied for mapping prob-
lems, natural landscapes are often expressed as fuzzy sets. Where contrast among 
map categories or geometric objects is often weak in ecological contexts fuzzy 
approaches offer the advantage of identifying and utilizing the degree of member-
ship among multiple possibilities, enabling opportunities for alternative outputs and 
for the careful analysis of error structure. In this chapter, fuzzy systems are explored 
for purposes of describing ecological features, for interpretation and mapping of 
those features, and for analyzing the uncertainty of spatial information. Some eco-
logical applications that lend themselves to fuzzy logic are discussed along with 
examples of the effective use of fuzzy techniques for mapping and analysis, with 
explanations of the advantages of fuzzy approaches over crisp methods. Finally, in 
a look to future, I discuss advanced classifier methods, some Web-based solutions, 
and the potential for applying fuzzy systems to interactively generate user-defined 
map products, neutral of á priori ecological classification, according to the precise 
needs of natural resource managers and researchers.

�Introduction

The mapping of ecological features is fundamental to the management and study of 
ecosystems (Brewer et al. 2006). Maps provide readily accessible graphic represen-
tations of ecosystem features and, within the data domain, an efficient means of 
facilitating spatial analyses when multiple spatial layers are brought together to 
respond to a question or an issue. Ecological mapping is the process of delineating 
the geographic extent of chosen features of ecosystem structure and composition or 
the extent of other biophysical expressions such as potential vegetation and ecologi-
cal systems (Daubenmire 1978; Comer et al. 2003). With some of these spatial data, 
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remote sensing may have a limited role in their development and makeup, though 
image analysis and interpretation techniques are no less valuable. The reader is 
referred to Chapter “Mapping Forest Landscapes: Overview and a Primer” for an 
overview of important concepts and components of vegetation mapping and for a 
discussion on the variables that affect such products.

Mapping requires that map units and the underlying classification be identified 
prior to map development (Running et al. 1994; Brohman and Bryant 2005; Brewer 
2007), without which leads to map data which are inconsistent, vague, unsuited for 
comparison, and problematic for GIS analysis. While fuzzy mapping approaches 
can offer solutions to the indiscrete nature of ecological features on the landscape, 
it is nevertheless important to contemplate a scientific classification so that the 
resulting map units are consistent in logic, comprehensive relative to the thematic 
resolution, and mutually exclusive. Even continuous non-categorical mapping, such 
as tree cover or NDVI renderings (USGS 2014), reflects classifications of some type 
characterized in a metric (e.g., aerial extent) and a definition that describes the fea-
ture. As detailed in the following sections, the fuzzy nature of natural landscapes 
challenges the common conception of mutual exclusivity among map classes.

Classic spatial analysis and image classification rely on the strengths of the 
underlying ecological classification and map unit framework, and the assumptions 
that the project area is made up of various mutually exclusive and internally homo-
geneous units that can be discerned and subsequently modeled with training data 
(Lillesand and Kiefer 2000). To an extent this perspective is the same for the eco-
logical classification, itself, since it relies on a degree of similarity within classes 
and maximal dissimilarity among classes (Daubenmire 1966; Hoppner et al. 1999). 
However, as is more often the case, even ecological classes express themselves 
across landscapes as continua within and among other units—fuzzy sets. Thus the 
character of ecological features across landscapes often has significant fuzziness 
within any arbitrary class that humans impose to challenge a key assumption of 
conventional image classification (Wood and Foody 1993). That is not to say that 
fuzzy sets do not have medoid properties, objects that represent a central concept to 
the map unit that can be useful for understanding and conveying the unit’s essence 
and for generating training data. But these medoid representations may have limited 
utility in framing a model for a fuzzy set given the variability of the unit reflected 
over the landscape.

The fuzziness of a map theme may even be revealed at the scale of individual 
image objects or pixels. In the case of mixed pixels, ecological features are of finer 
grain than the spatial resolution of the spectral imagery used to interpret those fea-
tures (Foody 1997; Zhang and Foody 1998; Campbell 2002). The idea of mixed 
pixels is that their spatial extent is not completely occupied by a single homoge-
neous map theme. The exact issue may stem from the inherent fuzziness in the 
ecological features, as elaborated above, or due to the size of objects being small in 
relation to the underlying variability of ecological features (Li et al. 2014). It may 
be not only erroneous to assign one category to a mixed pixel, but by its messiness 
a mixed pixel confounds our ability to interpret and assign even the most likely 
category. At the same time, the spatial resolution of the spectral imagery may do 
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justice to some map themes and not others so that acquisition of the preferred image 
source is determined as the least objectionable alternative when combining sources 
is not operationally feasible. With road verges, for instance, an ordinary image 
source such as Landsat TM may be too coarse to precisely map the narrow strip of 
lawn adjacent to urban roadways, though road verges may be a map theme of lesser 
interest. The choice of spectral imagery may also be a matter of cost, so that an 
affordable alternative such as Landsat TM may indirectly influence how a map leg-
end is composed. In the case of road verges, map developers may opt for a more 
general and practical map theme, such as “residential,” so that Landsat TM is an 
option, particularly if accurately mapping road verges is a low-priority objective.

Situations of gradual or mixed membership can be accommodated with fuzzy 
techniques. The need for fuzzy classification and related spatial analysis approaches 
was recognized as least since the 1990s (e.g., Wang 1990), and has since been 
applied in various vegetation mapping, fire severity, soils and geology, and socio-
logical mapping (Zhang and Foody 1998; Triepke et al. 2008; Remmel and Perera 
2009). In this chapter the application of fuzzy systems is reviewed within two 
realms: in the characterization of ecological features, both in map unit concept and 
in output attribution of a geodatabase. The attribution can, in turn, be used for the 
assessment of uncertainty. Second, fuzzy systems are explored as classifiers of 
image objects, expressed as rules for the interpretation of predictor data. Finally, 
some discussion of recent and future technology and methods is included, but first, 
an overview of fuzzy logic is provided.

�Overview of Fuzzy Systems

Fuzzy logic is an approximate form of reasoning used in set theory to represent 
knowledge (Cox 1992). Since fuzzy systems represent approximate reasoning, they 
can provide accurate levels of abstraction for many ecological circumstances that, 
by their nature, are ambiguities among arbitrary human categories. In this context, 
fuzzy logic provides an efficient means of representing features with more effective 
metaphors and fewer rules than classic Boolean approaches (Rickel et al. 1998). 
Traditional map themes, and their associated rule sets, assume discrete boundaries 
among themes. Fuzzy logic, however, accommodates the gradation and overlap 
among map themes that is common in natural systems so that any pixel or object can 
be assigned a value between 0 and 1 by the strength of its identity to a theme (Wang 
1990); that is, an object can have partial membership to one or more themes (Zhang 
and Foody 1998). Membership to a theme at any locale represented spatially by 
pixels or objects can be represented as “no,” “yes,” or “somewhat,” respectively, as 
0, 1, or any value between 0 and 1 (Zadeh 1965; Klaua 1966; Goguen 1969). As 
with Boolean logic, fuzzy logic suggests the most probable identity for a given 
object. But unlike Boolean functions (i.e., crisp or hard functions), fuzzy approaches 
leave open the possibility of partial membership to more than one map theme, offer-
ing a distinct advantage over crisp methods for refining map unit concepts, 
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generating spatial outputs, and assessing uncertainty (see section “Fuzzy Approaches 
for Identifying and Utilizing Uncertainty”).

Fuzzy systems are fundamentally probabilistic (Kosco 1995) and membership 
values can be assigned to a map object depending on the probability of membership 
to each of the categories conceptualized in a map legend. Membership values can be 
determined such that all individual memberships for each category total to 1, with 
classification rules constructed accordingly (Zadeh 1965; Goguen 1969). 
Membership is alternatively determined through suitable algorithms including unit-
less distance such as Euclidean or Mahalanobis functions, with outputs scaled to a 
range from 0 to 1 to represent the degree of inclusion to a category for each object. 
In the case of Mahalanobis distance, membership is the distance between an object 
and the distribution D of actual values for a given category (Knick and Rotenberry 
1998). Here, the distance is a measure of the number of standard deviations between 
the object and the mean of D, with distance increasing as the value of an object and 
the mean of D increase. As with other approaches, Mahalanobis distance can be 
computed for each map category so that each object is comprised of a set of mem-
bership values for all categories. Later in the chapter other classifier approaches are 
explored. First however, we will step back and look at rule operators as a means to 
understand connections between fuzzy membership values and the classification of 
ecological features.

�Fuzzy Systems: Key Concepts for Mapping

While fuzzy systems can be used to address either thematic or spatial mapping 
problems, for simplicity the following descriptions are based on familiar circum-
stances of thematic mapping. Some geometric situations are summarized in sections 
“Spatial Uncertainty” and “Simultaneous Considerations of Thematic and Spatial 
Uncertainty.” Fuzzy logic is used for both characterizing ecological features and for 
classifier approaches, including the combining of rules into decision trees for image 
classification. Fuzzy rules can also be used to determine fuzzy membership values 
for categorical data for purposes of image classification and spatial analysis. The 
following sections describe the role of fuzzy systems for characterizing ecological 
features and for classifying them through the interpretation of image data.

�Map Unit Concepts

To develop a system of map themes, first an ecological classification is adopted or 
developed based on the business needs or the research criteria of a program or proj-
ect. Map units are made up of one or more ecological classes, often an iterative 
process that balances the capacity of the classification with mapping objectives, 
technological constraints, and available resources devoted to the particular map 
project (Jennings et al. 2003; Brohman and Bryant 2005; Brewer et al. 2006). In the 
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end, a one-to-one relationship between an ecological classification and the map 
units in a legend may not be possible or desired. Also, it may be necessary to nor-
malize training samples so that there is a logical consistency between training data 
and the proposed map categories. While not discussed here, Wang (1990) and others 
have advocated attributing training data with fuzzy membership values between 0 
and 1 for every map category, likewise extending the approach to accuracy samples. 
More recent work has shown that training maps with mixed objects, where member-
ship to each map category is determined, can be an asset to improving map accuracy 
rather than an issue (Costa et al. 2017). In the end, map units are ideally under-
pinned by a scientific classification and characterized in fuzzy terms.

With a fuzzy mapping system, it is helpful to consider that that every pixel or 
object in the dataset is attributed with a membership value between 0 and 1 for every 
map theme. Now consider a fuzzy mapping system based on a single-species cover 
type concepts. Figure 1 shows a fuzzy membership function for a “Ponderosa Pine” 
vegetation type, where the strength of membership bears on the percentage of pon-
derosa pine (Pinus ponderosa) in the tree component of an object. With this func-
tion, membership values increase by the proportion of ponderosa pine, so that 
objects with tree components that are comprised only of ponderosa pine (100%) 
have fuzzy membership values of 1; conversely, objects with no ponderosa pine 
have membership values of 0. The relationship between membership and the clas-
sification can be sigmoid as shown in Fig. 2, or expressed by some other mathemati-
cal function. In the end every object of the map has a membership value for 
ponderosa pine between 0 and 1.

Now we will look at a more complex and realistic scenario with two map unit 
concepts in combination, and take an initial look at the characterization of uncer-
tainty. Two common montane forest tree species of western North America—pon-
derosa pine and Douglas-fir (Pseudotsuga menziesii)—represent primary 
constituents of forests of the Cordillera in the United States and Canada (Morin 

Fig. 1  Fuzzy operator used to show increasing membership to a “Ponderosa Pine” map unit as a 
logistic curve, based on the proportion of ponderosa pine in an image object
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1993). These species commonly co-occur as frequent-fire components in relatively 
warm-dry forested settings. If a map legend includes these two conifer tree themes, 
and a given plant community has both species present, say, in a proportion of 60% 
and 40%, the community would be mapped as “Ponderosa Pine” assuming uniform 
classification rules. Likewise, if the respective percentages are 40% and 60%, the 
community would be mapped as Douglas-fir. If the proportions were equal, then a 
tie-breaker rule could be imposed, a mixed cover type could be introduced, or map 
objects could simply be attributed with fuzzy membership values for each map 
theme treated with no set-upon legend. In the latter case, classification schemes 
could be imposed á posteriori and ad hoc along with uncertainty characterizations.

Structure type concepts, such as tree size, likewise necessitate membership 
schemes and rule-making to determine what conditions point to the assignment of a 
given object to a particular map theme (Rickel et al. 1998). Where trees of more 
than one size class occupy the same object, as is often the case in North American 
forests, map unit concepts can be derived from a consistent means of assigning 
fuzzy membership. One possible scheme involves the expression of membership 
gradients within each unit of a category framework. In these situations, the overlap 
(fuzziness) among categories is often depicted in linear relationships between 
neighboring classes and by complete exclusivity in all other class-to-class relation-
ships (Nauck and Kruse 1999). As shown in Fig. 2, an object can share properties of 
up to two categories, say seedling-sapling (<15 cm) and small-diameter trees (<15–
25 cm); that is, the object representing a stand of trees has characteristics of both 
seedling-sapling trees and small trees, reflected in the canopy cover of each tree size 
class, and can be discerned by the comparative membership of the object to the two 
neighboring size classes. Of course the approach assumes consistent relationships 
among categories—e.g., that seedling-sapling trees do not co-occur with trees of 
size categories other than small. While this representation is unnecessary for 
univariate data such as the total tree cover, it can be useful for categorical data of 

Fig. 2  Fuzzy operator for categorical data, showing hypothetical membership values for each 
class of tree size

F.J. Triepke



69

multivariate conditions such as tree size or species. The approach assumes binary 
conditions since the object can have properties of only two categories, though the 
relationships could just as well be redrawn to show overlap in three or more catego-
ries granted certain additional assumptions.

Fuzzy approaches to building map rules and assessing uncertainty bring much-
needed precision to these practices, and allow end users a greater range of options 
in spatial applications and the development and analysis of map data. Building on 
fuzzy map unit concepts, the following section provides a survey of common clas-
sifier methods that employ fuzzy approaches for the production of map data.

�Fuzzy Classifiers

With concepts of fuzzy classifiers introduced in section “Mapping with Fuzzy 
Classifiers,” what follows is a more detailed examination of these classifiers and the 
attribution of image objects. Here, fuzzy relationships between predictor data and 
ecological classes are identified and utilized as a means of building maps through 
image classification and often depicted in rule sets. Fuzzy classifiers do not bear on 
fuzzy map unit concepts (e.g., Fig. 1) nor do they necessarily result in fuzzy outputs, 
though there are advantages to both.

With fuzzy classifiers, rules are developed for each map unit or theme based on 
the fuzzy membership patterns among predictor variables including spectral infor-
mation and biophysical data layers such as elevation. For example, in the southwest-
ern USA steep slopes comprise a partial signature for fire-adapted shrubland types 
such as interior chaparral and mountain mahogany shrubland. In a rule-building 
process, each potential predictor can be represented by a membership function 
(Zadeh 1965). Figure 3 illustrates the relationship between one predictor variable, 
slope, and fuzzy membership to fire-adapted shrublands.

Fig. 3  Fuzzy operator showing the hypothetical relationship between fire-adapted shrublands and 
slope
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Obviously fire-adapted shrublands are not the only cover type that can occur 
within the slope range represented by this function. Slope may be useful for differ-
entiating these shrublands from other shrub types but other predictor variables, and 
consequently other rules and decision nodes, would be necessary to differentiate 
fire-adapted shrublands from forested and grassland cover types, and also to subdi-
vide fire-adapted shrubland feature space into finer shrub units such as “Interior 
Chaparral” and “Mountain Mahogany Shrubland” (Brown et al. 1998).

Additional variables may be needed to more accurately model and separate 
themes depending on the degree of overlap among map themes for a particular 
model variable. For instance, the membership profiles for slope may be useful in 
helping to discern fire-adapted shrub systems from other shrub types in the 
Southwest, but additional differentia are needed to separate the two themes from 
one another. Figure 4 shows membership functions for elevation for the two shru-
bland systems that share slope affinities.

By combining variables in a decision tree, multiple membership functions can be 
brought together for particular classifier problems using hierarchical reasoning to 
combine membership functions into a rule set. Also, membership functions can be 
either fuzzy or Boolean and, in fact, can be combined with other algorithms such as 
nearest neighbor at specific decision nodes that makes up the rule set. Membership 
functions can be combined using classic mathematical operators such as if-then, 
greater than, less than, and, and or to build and join rules to determine a consequence 
theme (Mansoori et  al. 2007). Fuzzy rule sets can be elaborate (Ishibuchi and 
Nakashima 2001) and require successive refinements to maximize precision and sep-
aration among map themes when developed manually. Small adjustments in member-
ship can have considerable effects on the classifier outputs. The generation and 
combination of fuzzy rules can either be a manual exercise, as with eCognition soft-
ware (Definiens 2003; Triepke et al. 2008) or an automated process (Nauck and Kruse 
1998; de Oliveira 1999; Pajares et al. 2009), or both (e.g., Sameen and Pradhan 2017).

Fig. 4  Fuzzy operators showing the hypothetical relationships between elevation and the Interior 
Chaparral and Mountain Mahogany Shrubland types
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Finally, the map theme assignment that is ultimately given to a pixel or map 
feature in a decision process is the one of greatest overall membership among 
permutations of the decision network. In the process of assigning individual map 
themes, classifier outputs are defuzzified, replacing membership values with crisp 
outputs and map assignments (Rickel et al. 1998). By this process membership 
data can facilitate responses to a range of problems associated with ecological 
input data, ecological patterns, and demands of end users. The following sections 
expand on advantages of fuzzy classifiers over conventional crisp methods for 
addressing image classification and modeling dilemmas such as gradual member-
ship among themes, modeling uncertainty, and possibility of multiple outcomes 
with changes in classification rules. Fuzzy logic in accuracy assessment is also 
discussed.

�Fuzzy Representation with Continuous and Categorical Data

Spatial analysis with fuzzy classifiers can leverage both continuous and categorical 
predictor data. Continuous data in particular lend themselves to portrayal in proba-
bility surfaces and fuzzy sets. Not all continuous data may be representable in a 
fuzzy surface depending on whether each object in the dataset can be attributed by 
membership to the same theme. Typically there are also competing themes to a 
fuzzy set that are represented in membership values. Nevertheless many continuous 
data and legacy sources, such as solar insolation or wetness layers, can be depicted 
as fuzzy map surfaces.

The greater challenge is in representing categorical data with fuzzy surfaces, 
though it is possible for some datasets. A habitat model based on the amount of tree 
cover across the landscape can be informed by categorical data, even if continuous 
data are preferred, barring the need for more precise information. Categorical data 
can be made useful for map modeling and environmental analysis if suitable mem-
bership values can be determined for each category (Nauck and Kruse 1999). The 
example in Fig. 5 reflects a continuum for tree canopy cover where, conceptually, 
objects with no tree cover have a membership of 0 and communities with complete 
tree cover have a membership of 1. In this case, membership values have been deter-
mined based on the midpoint of the four a priori tree canopy cover classes—sparse 
(0–9.9%, midpoint 5%), open (10–29.9%, midpoint 20%), moderate (30–59.9%, 
midpoint 45%), and closed (60%+, midpoint 80%).

Such an approach to categorical data may be applicable for any number of data-
sets and ecological variables including species dominance. Again considering the 
abundance of ponderosa pine, the amount of ponderosa pine could be represented 
by cover percentages as with the example in Fig. 5 rather than a system of gradual 
membership suited for continuous data (Fig. 1). So a forested stand where ponder-
osa pine comprised 70% of the total tree cover would have a membership value for 
ponderosa pine of 0.80. With individual map themes, as with the amount of 
ponderosa pine cover or the amount of total tree cover, such a scheme is useful for 
exploiting categorical data within the context of a fuzzy approach.
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In mapping other plant composition or structural features of interest, it may be 
necessary to weight multiple map categories coincidentally, requiring rule-making 
to determine what conditions warrant the assignment of membership for a given 
map category to a given object. In utilizing tree cover type data, for instance, it is 
likely that the abundance of ponderosa pine would be factored in relation to the 
abundance of other tree species prompting rules that discern map units in feature 
space. Pixels of a mixed type, such as “Ponderosa Pine-Douglas-fir,” compel the 
assignment of membership values for both tree species by some set of rules. In these 
cases, the underlying vegetation classification or map unit concepts are likely to 
play a role in building rules and determining standard membership values. In an 
upcoming example in section “Vertical Structure Mapping,” rules were developed 
for producing membership values for forest canopy layering (storiedness) from cat-
egorical data. With ingenuity some categorical data can be made useful for map 
modeling purposes if the analyst can build a membership scheme that is appropri-
ately suited to the predictor data (Rickel et al. 1998; Nauck and Kruse 1999).

�Mapping with Fuzzy Classifiers

Pattern recognition and image classification of ecological features involve the 
search for signatures in spectral and biophysical datasets for purposes of rendering 
the features of interest in a two-dimensional model. While the term image classifi-
cation most often refers to the classification of pixels or objects that have been 
generated from a remote sensing source (Lillesand and Kiefer 2000), here the term 
is inclusive to other ancillary predictor data including biophysical layers. Remmel 

Fig. 5  Fuzzy operator for categorical data, showing hypothetical membership values for four 
classes of tree canopy cover
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and Perera in Chapter “Mapping Forest Landscapes: Overview and a Primer,” pro-
vide useful overviews of mapping constructs, objectives, important data sources, 
and process of map development. Remmel further contrasts conventional functional 
forms behind image classification including binary solutions, quantification of 
uncertainty, and fuzzy membership. Here, only the background information that is 
immediately relevant to fuzzy classifier methods is given. Suffice to say that the 
major steps of image classification include the determination of a suitable map unit 
scheme, selection of training samples, preparation of the predictor data layers, 
selection of a classifier method, model development (training or feature extraction), 
post-processing of classifier results, accuracy assessment, and final processing of 
outputs into a geodataset (Lillesand and Kiefer 2000; Brohman and Bryant 2005; 
Brewer 2007; Lu and Weng 2007). Predictor data are those layers of complete cov-
erage of the project area, sometimes referred to as census data, which are interpreted 
and used to model map themes. Remote sensing techniques were generated in ear-
nest in the 1980s and included unsupervised technology such as k-means and 
ISODATA, and supervised classifiers including maximum likelihood, and various 
hybrid techniques (Li et al. 2014). While some of these approaches are still in use, 
other nonparametric classifiers have come into practice including neural networks 
and decision tree classifiers that include fuzzy rules and other knowledge-based 
classification that use both pixels and image objects as base model units (Lu and 
Weng 2007). Object-based techniques begin with the creation of a polygon configu-
ration of image objects, each object a grouping of pixels with similar properties 
(e.g., spectral response) (Myint et al. 2011) to become the base units for an image 
classification exercise (see Chapter “Portraying Wildfires in Forest Landscapes as 
Complex Objects”). Identifying and refining suitable classifier procedures, com-
mensurate with the input data and project objectives, are necessary for the success-
ful development of a map layer of maximum accuracy.

This brief section focuses on the concepts of fuzzy systems in classifier meth-
ods for the development of map data. First, some clarification: fuzzy classifiers can 
be used to produce both crisp and fuzzy map data outputs. Also, fuzzy outputs can 
be post-processed to render crisp categorical mapping as described in section 
“Simultaneous Considerations of Thematic and Spatial Uncertainty.” The applica-
tion and value of fuzzy maps will be covered in this latter section. Second, inter-
polation and distance algorithms as well as conventional classifiers such as 
maximum likelihood estimation can be used to produce fuzzy maps that do not 
employ the fuzzy decision rules which typically comprise fuzzy classifiers. The 
focus of this section is on the former circumstances and the use of fuzzy classifiers 
to make maps, along with some advantages of fuzzy approaches over other classi-
fier methods.

As framed at the beginning of section “Overview of Fuzzy Systems,” fuzzy sys-
tems offer advantages in thinking about landscapes and responding to the heteroge-
neity and complexity of ecological features. In the context of classifiers, fuzzy 
systems offer a solution to the problem of imprecise predictor data, which Bonissone 
and others (Bonissone et al. 2010) summarize in this way: first, some imprecision 
can safely be ignored as in the case of ambiguities that are completely encompassed 
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by relatively general map themes. Second, data which are significantly imprecise 
can sometimes be accommodated with the use of classifiers that effectively model 
the probability distribution of a map theme, such as maximum likelihood estima-
tion. Of course, the weakness of maximum likelihood is in the assumption of 
Gaussian distributions, a condition often not exhibited in ecological features and 
fuzzy sets. Also, when representing problems of mixed pixels, fuzzy classification 
rules are structured to optimize the precision in classifier results relative to problems 
of gradual membership, both in ground conditions and in the continua that occur 
among map themes, and in the spatial resolution of remote sensing imagery and 
other predictor layers. Where membership is most gradual among themes, addi-
tional variables and more complex rule structure may be needed to optimize differ-
entiation. Third, when imprecision is a significant issue and a probability distribution 
does not fit the natural pattern, the data represent a fuzzy set and the need for an 
alternative classifier. For such a mapping problem, fuzzy classifiers are typically 
represented by rule sets and often in the form of decision trees that subdivide feature 
space into progressively finer extents in a top-down approach (Safavian and 
Landgrebe 1991). A decision tree approach lessens the magnitude of image classifi-
cation problems with the creation of more numerous but less complex rules with 
each additional layer in a decision hierarchy. As mentioned, decisions at each node 
of a rule set can be either crisp or fuzzy, automatically or manually generated (Gong 
et al. 1996), and be informed by continuous or categorical data (Nauck and Kruse 
1999). Decisions, in turn, can reflect both expert and statistical relationships between 
observations and predictor data. In a study by Triepke et al. (2008), decision tree 
classifiers were used to predict the landscape distribution of Alliances and 
Associations of the US National Vegetation Classification (Jennings et al. 2009). 
The resulting decision tree represented a multi-classifier approach (Bonissone et al. 
2010), combining manually generated fuzzy and crisp rules into one rule set, with 
nearest-neighbor classifiers applied at terminal nodes of the decision tree. In this 
study predictor layers were comprised of both continuous and categorical data to 
inform what Nauck and Kruse (1999) refer to as mixed fuzzy rules. While the devel-
opment of most decision tree classifiers is automated (Nauck and Kruse 1997), the 
manual development of rules can be time consuming but the access to and under-
standing of decision rule structure offers extraordinary flexibility in addressing 
fuzzy sets and inputting expert knowledge of a landscape into a mapping problem.

Since the difference in fuzzy membership among a set of map categories is often 
subtle, as in the case of ecotones, small changes to fuzzy rules can produce signifi-
cantly different classification results. Contrast among map unit concepts themselves 
may be weak, but greater problems may be in the lack of contrast in imagery and 
biophysical data or in the spatial resolution of the image data or other issues for 
which fuzzy systems can provide a superior solution (Cai et al. 2009). It is in these 
circumstances where fuzzy systems possess strengths over other classifier tech-
niques since even slight differences expressed for a particular variable can be lever-
aged synergistically when variables are effectively combined to leverage the 
collective strength of multiple predictor data. Fuzzy classifier approaches can offer 
better representations of land cover features than crisp methods for the simple fact 
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that much of the landscape is fuzzy and not described well by single map categories 
(Wang 1990). Even the most basic approaches for rendering geometrically fuzzy 
surfaces, such as interpolation and distance functions (Lowell 1994; Wang and Hall 
1996), are likely to offer advantages in accuracy over crisp mapping at least for 
heterogeneous extents. For some types of map units such as glaciers, parking lots, 
lakes and ponds, riparian corridors, or scree slopes which have discrete edges, mem-
bership can change abruptly over short distances to limit the performance and suit-
ability of a fuzzy solution (Zhang and Foody 1998). Additionally, discreteness is 
scale sensitive given the spatial resolution of the natural feature relative to the spa-
tial resolution of the input imagery.

Back to automated rule development: fuzzy decision systems can and usually are 
generated from automated methods including fuzzy cluster analysis (Hoppner et al. 
1999), neural networks (Nauck et al. 1997), and multi-classifier methods (Nauck 
and Kruse 1999; Bonissone et al. 2010), which have been shown to produce results 
that are better than individual classifier methods. In their study of fuzzy classifiers 
and the random forest algorithm, Bonissone et al. (2010) nicely summarize the evo-
lution of ensemble techniques used to build decision tree rules and fuzzy systems by 
first describing bootstrap aggregating (Breiman 1996). Bootstrap aggregating, or 
bagging, is a machine learning algorithm designed to maximize the accuracy of 
decision tree classifiers. This approach results in an ensemble of classifiers that have 
been generated by resampling and replacement of individual training data in turn, 
where the final predictions are made by a vote of the most repeated classifications. 
Boosting, on the other hand, results in an ensemble of classifiers that have been 
added one at a time through iterative learning based on weaker classifications, with 
the eventual outcome of the strongest classifier (Schapire 1990). In the process, 
classifiers resulting in misclassification gain weight while strong classifiers lose 
weight, resulting in an ensemble of classifiers and the identification of their relative 
strength. Other key decision tree building classifiers have since been offered (e.g., 
Amit and Geman 1997; Ho 1998; Dietterich 2000) that lent to the development of 
random forest ensembles (Breiman 2001).

Random forest is another machine learning algorithm used for classification that 
“learns” from data (data mining) (Breiman 2001). Random forest operates through 
ensemble learning, based on patterns among training samples and predictor data 
and the construction of multiple decision trees. Classifications are ultimately 
assigned based on the most votes (mode) among outputs from the multitude of deci-
sion trees. As a classifier, random forest is a combination of bootstrap aggregating 
and the random selection of sample sets from the suite of training data through 
bootstrap selection and replacement (Amit and Geman 1997; Ho 1998). The only 
adjustable parameter of import is the out-of-bag error rate, which is used in deter-
mining the optimal range of predictor variables for inclusion in the model. Reducing 
the number of variables reduces both the strength of individual decision trees and 
the correlation (redundancy) between any two trees. Increasing the number of vari-
ables has the reverse effect. The out-of-bag error estimation is the proportion of 
decision tree scenarios that do not result in a correct classification according to the 
samples held back from selection for a given scenario—that is, not within the bag of 
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selected samples. The out-of-bag error rate is an unbiased error output with random 
forest that can assist in determining the optimal range of predictor variables. 
Random forest can be effective and robust with the default settings, making it ideal 
for non-statisticians and image analysts given the limited parameters for tuning, 
including the number of variables tested at each split in the tree and the number of 
classification trees in the model. The decision trees generated by random forest are 
typically made up of crisp rules though fuzzy systems are a logical extension for 
some classification problems (Marsala 2009; Bonissone et  al. 2010). Although 
fuzzy random forest has been used in other fields of science (Bonissone et al. 2008; 
Kulkarni and Sinha 2013; Lasota et al. 2013), the approach is not as yet a conven-
tion for land cover mapping. In the final section of this chapter, “A Look to the 
Future,” the potential application and advantages of fuzzy random forest are 
explored.

�Fuzzy Approaches for Identifying and Utilizing Uncertainty

Uncertainty determinations form a basic component of any scientific tool or product 
(Congalton 1991; Congalton and Green 1999; Brohman and Bryant 2005), most 
commonly expressed in statistical estimates of confidence. Different techniques 
have been applied to assess the uncertainty of map data, most often taking the form 
of thematic accuracy assessments summarized on confusion matrices. Objective 
determinations of map uncertainty are critical for informing end users, who may 
exacerbate error by the ways map data are misunderstood and applied (Bailey 1988; 
Cowling et al. 2005).

Uncertainty can be both thematic, dealing with extents that have shared charac-
teristics of multiple map categories, or geometric, where the same spatial extents 
may be more or less homogenous but reflect zones of intergradation among dispa-
rate map units that make up a minor proportion of an analysis area. Put another way, 
the problem of shared characteristics to a mapping specialist is either one of mapped 
extents with attributes of more than one map theme or one of the transitional nature 
of ecological features across horizontal distances (Zhang and Stuart 2001). Added 
to the complexity in ecological patterns, and the ability to capture those patterns in 
a map model, is the question of model accuracy. For this question, the reader is 
referred to Chapters “Fuzzy Classification of Vegetation for Ecosystem Mapping” 
and “Portraying Wildfires in Forest Landscapes as Complex Objects” with the 
acknowledgement that the uncertainty in a map product in part reflects the capabil-
ity and shortcomings of the underlying models used to generate map surfaces. Also, 
both thematic and geometric ambiguities can be augmented by, or even stem from, 
the relative coarseness in the spatial or thematic detail of predictor data—also a 
problem of model performance—not to mention possible registration errors in the 
various predictor layers. Chapter “Mapping Forest Landscapes: Overview and a 
Primer” introduces important concepts of uncertainty and poses the fundamental 
question: How confident can we be in the accuracy of map data? For now, the focus 
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is on the specific problems of thematic and geometric uncertainty that can exist and 
be dealt with using fuzzy methods, either at the front end by improving map clas-
sification and the separation of map units or in the assessment of results and the 
characterization of map accuracy and fuzziness.

First, transitional areas of the landscape can share properties of multiple themes 
in a legend and difficult to map accurately to the most suitable theme(s), as in the 
case of mixed pixels (Li et al. 2014). Still, the problem may not necessarily be fixed 
by, say, acquisition of imagery with higher spatial resolution (e.g., Landsat TM 
versus RapidEye imagery, 30 m vs. 5 m resolution). In fact, the issue may be com-
pounded if the higher resolution source is too sensitive to within-theme features of 
little interest that reflect greater detail than the map scheme—higher spatial resolu-
tion imagery is not always better. For example, small tree patches of a few square 
meters within a grassland matrix may be mappable with the high-resolution source, 
but nevertheless undesirable depending on the objectives and specifications of the 
project. In this case a satellite sensor of coarser spatial resolution may effectively 
blend the responses of tree and understory components to create a useful image 
source for mapping grassland or savannah systems without expressing within-theme 
features such as small shrub or tree patches (Fig. 6).

Nor would it be desirable or practical to map transitional areas of the landscape 
if they are only a minor element in the overall ecological pattern, unworthy of dis-
tinction in a map legend. Yet transitional areas may also occur over extensive 
expanses and protracted gradients, as with the zone between boreal forests and tun-
dra on the northern Canadian Shield, where individual plant communities support 

Fig. 6  Comparison of spatial resolution of satellite image sources, Landsat TM (30 m) versus 
RapidEye (5 m), from a grassland system with juniper encroachment east of Grants, New Mexico, 
USA (Earth 2014a)
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both woodland and tundra components over vast areas (Barbour et  al. 1998). In 
these environments trees and tundra co-occur with regularity and at common map 
scales with relative uniformity that warrant imagery and mapping systems that cap-
ture these features within the same categories. Categorical mapping assumes that, as 
with effective vegetation classification, the homogeneity within map units is maxi-
mized while simultaneously maximizing heterogeneity among map units. The maps 
then generated by these categories pose the same assumption in a spatial context. 
The conventional response to significantly large areas of intergradation and ambigu-
ity is to create additional map units that capture those areas as themes unto them-
selves, the result being a map legend of lesser contrast but abiding mutual exclusivity. 
For example, in northwestern Montana of the USA there are significant swaths of 
forests heavily dominated by western larch (Larix occidentalis) and areas domi-
nated by subalpine fir (Abies lasiocarpa). There are also extensive areas where these 
two constituents are intermingled as codominants of the same object, necessitating 
the representation of a mixed cover type in both the classification and mapping of 
vegetation (Leavell 2000; Triepke et al. 2008), albeit at the cost of additional com-
plexity in vegetation classification and map development to address the practical 
needs of forest practitioners.

Fuzzy approaches can be helpful in forming vegetation classes and map units, in 
building maps, and then in assessing uncertainty of end products. As stated, while 
conventional mapping perspectives impose classical set theory on the assumption 
that map units are mutually exclusive rather than on continua within the landscape 
(Woodcock and Gopal 2000), fuzzy theory allows us to evaluate ambiguity in an 
ordered way and then to analyze uncertainty, both in terms of area estimates of 
mixed conditions and fuzziness and in terms of accuracy assessment itself. And 
fuzzy approaches can be applied both for thematic and spatial entities, the uncer-
tainty of which is often intertwined (Aspinall and Pearson 1995).

�Thematic Uncertainty

To explore thematic uncertainty, we will again use the example of codominant pon-
derosa pine and Douglas-fir and assume relative percentages of 60% and 40%, 
respectively, within a plant community. If an object representing the community is 
mapped as “Douglas-fir,” a fuzzy analysis would show that the degree of misclas-
sification is less than an object misclassified as “Douglas-fir” but made up entirely 
of ponderosa pine. Even a fuzzy assessment at a more superficial level, say broad-
leaf versus conifer, has utility over a crisp perspective that indicates total error with-
out nuance, as in the case of two misclassified objects that are dominated by 
ponderosa pine in reality but classified as Douglas-fir and quaking aspen (Populus 
tremuloides). A fuzzy approach may allow some credit for the misclassified 
Douglas-fir conifer object over the object misclassified as a broadleaf “Aspen” type, 
versus a crisp approach that would show the two objects in complete and equal 
error. A key advantage of a fuzzy technique is in being able to assign the degree of 
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deviation from truth, which may be defined simply as the theme of highest member-
ship according to an observation (accuracy sample). This theme may, in fact, hold 
marginal leads over other themes of partial membership. It can be very much worth 
knowing, for example, the degree of deviation in a misclassified pixel relative to the 
theme of highest membership and whether the deviation is small in comparison to 
other themes that, under a fuzzy approach, would reflect a much higher amount of 
error (Wang 1990).

In another perspective of uncertainty, Woodcock and Gopal (2000) demonstrate 
a means of area estimation using a vegetation map of the Plumas National Forest of 
northern California, to contrast the amount of extents that, respectively, fall within 
classic and fuzzy sets. Woodcock and Gopal applied Card’s method (Card 1982) 
and assigned degrees of map unit membership to each accuracy sample, and then 
integrated membership probabilities with area-weighting to determine the extent of 
the map that was relatively ambiguous for six map themes—water, barren-grass, 
meadow, brush, hardwood, and conifer. They found that aside from the water and 
conifer units, very few samples from other units reflected full membership to any 
particular theme, further implying that much of the map extent occurred as fuzzy 
sets. The general relationship is that as the threshold membership value for any 
particular map unit is reduced more map area is represented by that map unit 
(Fig. 7). The area estimate of brush in particular had a strong inverse relationship 
with membership. Using chaparral vegetation to illustrate the relationship, the 
authors describe a pattern where shrub species dominate the understories of plant 
communities with low tree cover that still meet the chief criterion of the conifer unit 
(>10% canopy cover of conifer trees), representing the circumstances of about a 
quarter of the entire analysis area. In these communities, shrubs often have an aerial 
extent on par or exceeding that of conifers so that they possess strong affinity to the 
shrub theme. While 61% of the map area was represented by conifer, only about half 
that area is estimated to have full membership to the theme. Figure 7 shows that 
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Fig. 7  Showing the relationship of fuzzy membership for six map units of the Plumas National 
Forest to the area estimated for each unit. Modified from Woodcock and Gopal (2000)
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most of the six map units in the project represent an increasing amount of area with 
reduced level of membership. Approximately 49% of the analysis area is repre-
sented by degrees of membership less than full membership, so that about half the 
map surface occurs as fuzzy sets.

The Woodcock and Gopal (2000) study illustrates an area estimation approach 
based on fuzzy sets that quantifies the amount of area for each map theme by degrees 
of membership. This type of area estimation provides important details to end users 
and those developing map unit descriptions. Such an approach allows for a consid-
erable range of analyses and queries within a GIS, and may be vital for accurate 
change detection and monitoring (Álvarez-Martínez et al. 2010).

Another study by Gopal and Woodcock (1994) provides an example of the use of 
fuzzy methods to assess thematic uncertainty for purposes of accuracy assessment. 
The study demonstrates a means of fuzzy accuracy assessment for crisp image clas-
sification outputs of map categories that reveals additional information about error 
structure, including the four dimensions of error given by the authors—the map 
categories in error, frequency (rate of error), magnitude (degree of confusion), and 
error source. As before, their approach provides a solution commensurate with 
inherently fuzzy ecological features and allows for variable membership by accu-
racy samples to each map category. They point to three main issues of conventional 
accuracy assessment:

•	 The premise of crisp assessments is that each object is unambiguously assigned 
to one map category.

•	 Accuracy results regarding the magnitude of error can only be inferred by the 
pattern of confusion between observations and predictions among map 
categories.

•	 The nature of accuracy results limits the ability of producers to interpret and 
respond to error, and limits the user’s ability to effectively apply map data.

In response to these issues, Gopal and Woodcock (1994) decompose the basic 
question “how accurate is the map?” into two more exacting inquiries: “How fre-
quently is the mapped category the best choice for the site?” “How frequently is the 
mapped category acceptable?” As mentioned, thematic accuracy assessment is most 
often facilitated with an error matrix or confusion matrix (Card 1982; Congalton 
and Green 1999), if map accuracy is evaluated at all. Accuracy results by this 
approach may only be derived for outputs of crisp classifiers and do not provide 
information on the true proximity of any map categories let alone the assigned cat-
egory. The lack of such information impedes the examination of the characteristics 
and sources of map error. As important, the lack of interpretation also limits aware-
ness of the error structure by end users, and precludes their ability to construct other 
outputs from the map data representing a posteriori mixed categories.

Accordingly, Gopal and Woodcock (1994) generated a scale, from 1 to 5, to rate 
the level of agreement in conditions at each accuracy sample site to each map unit 
concept, where 1 is “absolutely wrong” and 5 is “absolutely right.” This expert 
assessment resulted in a set of membership values for each accuracy sample site that 
represented every map category, while the mapped value remained unknown. 
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Table 1 summarizes the accuracy assessment that they generated from a hypotheti-
cal image classification with four crisp map categories, A, B, C, and D. The image 
classification was intersected by 40 accuracy samples that had each been rated on 
the scale of agreement between 1 and 5 for every map category.

For accuracy assessment, there is more value in knowing both crisp and fuzzy 
agreement than in knowing either one alone. Case in point, at only 40% agreement 
the crisp assessment of category C shows this map unit to be a considerable issue in 
terms of accuracy of the image classification (Table  1). But by considering the 
amount of agreement occurring at an acceptable level, the fuzzy assessment indi-
cates more promising results at 80% agreement. In fact, at the acceptable level of 
accuracy category C shows greater agreement than category B (60%) even though 
more samples in B are in agreement at the level of being “absolutely right.”

To compute the magnitude of error, shown in the final column of Table 1, Gopal 
and Woodcock (1994) constructed a difference Table 2, by tabulating the magnitude 
of error within each map category. Error was calculated by comparing the fuzzy 
rating of each accuracy sample of each assessment site to the highest agreement 
level assigned to all other map categories, generating a simple and relative index of 
error severity. If the agreement level given to the map category was higher than the 
highest rating for all other labels, the resulting difference value was positive. A 
negative value resulted when the agreement level for the map category was lower 
than the highest level assigned for a differing map category. Difference values of −1 
through 4 generally corresponded to the correct map labels. All difference values 
were averaged for each sample and map category, resulting in the values shown in 
the last column of Table 2.

Table 1  Accuracy assessment summary table adapted from Gopal and Woodcock (1994) showing 
agreement for both crisp (and absolutely right) and fuzzy (acceptable) assessments

Map category
Accuracy 
samples

Samples absolutely  
right (frequency)

Samples acceptable 
(frequency)

A 10 10 (100%) 10 (100%)
B 10 6 (60%) 6 (60%)
C 10 4 (40%) 8 (80%)
D 10 6 (60%) 8 (80%)

40 26 (65%) 32 (80%)

Table 2  Difference table adapted from Gopal and Woodcock (1994) used to detect the magnitude 
and source of error

Mismatches Matches
Map category Accuracy samples −4 −3 −2 −1 0 1 2 3 4 Mean

A 10 0 0 0 0 0 1 0 1 8 3.60
B 10 1 1 0 2 2 1 0 2 1 0.20
C 10 0 0 2 4 0 2 1 1 0 −0.10
D 10 0 0 1 3 4 0 0 2 0 0.10

The resulting differences between fuzzy ratings and the associated map categories are summarized 
in the columns and then averaged
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In terms of magnitude, Tables 1 and 2 show that map categories B and D have simi-
lar rates of error (60%) but vary substantially in the magnitude of error. Category D has 
a greater number of 0 differences as a general indication that the magnitude of error for 
B exceeds that of D. The last column of Table 2 has the arithmetic mean of all differ-
ence values for each map category, so that the categories with the least magnitude of 
error would have the highest corresponding mean. For example, the mean once again 
shows greater magnitude of error in D than in B. The most accurate class, A, also has 
the least magnitude of error, with a mean difference of 3.60. The least accurate cate-
gory, C, also shows the highest severity of error. Being able to convey the magnitude 
or seriousness of error is one of the main advantages of a fuzzy accuracy assessment.

Finally, the sources of error can also be explored using fuzzy accuracy assess-
ment techniques given by Gopal and Woodcock (1994). The frequency of matches 
and mismatches given in a difference table can give clues about ecological complex-
ity and error sources for map producers. In general, if there are greater numbers of 
mismatches in the single membership sites, then mapping issues may be concen-
trated in unambiguous locations (e.g., pure ponderosa pine stands of uniform struc-
ture). Conversely, if the mismatches are concentrated in the multiple membership 
sites, resources to improve map performance are better concentrated in areas of 
environmental heterogeneity. For instance in Table 2, notice that the frequency of 
multiple memberships is not the same for all categories, and that the proportion of 
matches for single membership sites, as in category A, is greater than in multiple 
membership sites (e.g., category B), contrary to a pattern expected by random 
effects. If the accuracy samples revealed single membership patterns across map 
categories, suggesting minimal ambiguity, there would be no need for a fuzzy accu-
racy assessment. Conversely, the number of accuracy samples representing multiple 
membership provides an indication of the extent of fuzzy sets on the landscape. The 
error structure expressed in a difference table can indicate the sources of map error 
among categories to map producers (Sarmento et al. 2010, 2013).

The studies cited in this section suggest several advantages of fuzzy techniques 
over more conventional crisp methods in assessing thematic uncertainty. Not only is 
it more problematic to explore and determine error patterns with crisp methods 
(Wang 1990), but fuzzy techniques also set the stage for a more functional integra-
tion of remote-sensed imagery with other ancillary census data. Techniques reflected 
in the Gopal and Woodcock (1994) study have since been applied over broad extents 
in the USA (Brewer et al. 2006). Though the Gopal and Woodcock approach is ideal 
for illustration, more sophisticated means of fuzzy assessment of both fuzzy and 
crisp outputs have since been created and applied (Zhang and Foody 1998).

�Spatial Uncertainty

As with solutions for thematic uncertainty, fuzzy approaches can assist in the for-
mation of map units, map development, and assessment of uncertainty of map prod-
ucts. Though fuzzy sets often represent an intertwining of thematic and spatial 
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uncertainty (Aspinall and Pearson 1995), the two dimensions are first treated sepa-
rately in this chapter for a clearer explanation of some of the concepts important 
within each dimension.

Conceptually, mapping that is produced by crisp classifiers could account for 
gradual boundaries and ambiguity among map themes if the grain of the objects, or 
pixels, is fine enough. That is, individual pixels can locally express the transitional 
nature of ecological features if class gradations are captured in the legend, and bar-
ring the commensurate spatial resolution of the imagery and effectiveness of the 
classifiers. In reality, mappers are often faced with relatively coarse imagery and 
census data, training data which are essentially crisp, and classifiers that may be 
limited in their ability to accurately portray fine gradation. The spatial uncertainty 
of mapping, in both developing and assessing the vagueness of boundaries, has been 
accommodated through other means, with some examples to follow.

Again from the perspective of thematic uncertainty, accuracy assessment is 
most often expressed in an error matrix without regard for spatial accuracy, where 
calculations for producer and user accuracies are generated on opposing axes 
based on a set of independent accuracy samples and the difference between pre-
dicted and observed outputs. By this conventional approach, overall accuracy, 
area-weighted user accuracy, and kappa statistic are often the measures of most 
interest (Rosenfield and Fitzpatrick-Lins 1986; Congalton 1991; Janssen and van 
der Wel 1994). The spatial uncertainty of boundaries between objects has been 
evaluated for positional error using different methods such as the epsilon band 
(Perkal 1956; Chrisman 1989), likely the most used error model for map delinea-
tions themselves (Leung and Yan 1998). The epsilon band allows for the character-
ization of spatial uncertainty and is most often directed at crisp map products. For 
purposes here, spatial uncertainty refers to the fuzziness and breadth of boundary 
conditions, and not to boundary location error for which the epsilon band is often 
applied (Shortridge and Shi 2012).

In its simplest form, the epsilon band produces a rectangular distribution of 
width 2Ɛ imposed on a mapped line to indicate an area of uncertainty, manifested in 
vagueness of the map data and controlled by specifications of the program or proj-
ect. The epsilon band was originally devised by Perkal as deterministic models rep-
resented in parallel-sided polygons such as running the length of map boundaries. 
The epsilon band has since been superseded by probabilistic data models (Leung 
and Yan 1998; Kronenfeld 2011), with the most recent adaptations of the model tak-
ing on irregular shape complexities to more realistically depict the uncertainty of 
horizontal transition zones between opposing map themes otherwise assumed as 
mutually exclusive (Fig. 8).

Whether deterministic or probabilistic, uncertainty banding offers a means of 
objectively characterizing ambiguity in boundaries among map categories. 
Advanced shape analysis tools, such as ShrinkShape2 (Remmel 2015), further give 
users the means to quantify boundary complexity. This tool creates internal polygon 
buffers iteratively, generating summary metrics with each shrinking iteration for the 
characterization of spatial structure and complexity. Such methods can in turn be 
used to refine classifier outputs by the way map features are depicted in a product. 
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Crisp maps can be rendered fuzzy in part by redrawing delineations or using sym-
bology to infer the fuzziness of boundaries according to distance-based functions 
(Lowell 1994).

Remmel (2009) introduced another means for assessing spatial uncertainty by 
applying coincidence matrices for separate map products of the same area. 
Coincidence matrices are often used for assessing map accuracy based on a set of 
observations, but can also be used in the comparison of different map products. In 
this way, Remmel applies the matrices to assess thematic uncertainty, and to assess 
spatial uncertainty by the geographic configuration of map features. Essentially the 
method uses the coincidence matrix as an expression of spatial complexity by 
applying two or more map products and representing the potential complexity by an 
accounting of the number of possible configurations in the matrix. A fixed amount 
of agreement can be reflected in multiple spatial configurations for the same set of 
map objects. The process results in a quantification of uncertainty that can be 
applied at local or full extents to determine both spatial and thematic uncertainty.

�Simultaneous Consideration of Thematic and Spatial 
Uncertainty

As mentioned the nature of thematic and spatial uncertainties can be intertwined 
(Aspinall and Pearson 1995) though most published works have treated the two 
entities separately. What follows is a brief summary of a study by Zhang and Stuart 
(2001) that demonstrates a means of concurrent assessment for thematic and spatial 
uncertainty, and how that uncertainty is characterized while producing spatial out-
puts that optimally balance uncertainty with utility. In this study, the authors devel-
oped a geodatabase of suburban land cover classes. They created a technique for 

Fig. 8  Spatial uncertainty at the boundary of two opposing map themes, X and Y, represented by 
a deterministic epsilon band of standard width (left), and a probabilistic model of variable width 
(right). Modified from Kronenfeld (2011)
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capturing the uncertainty of those map units using aerial photo interpretation and 
image classification procedures that produced a series of fuzzy surfaces for each 
map category, rather than establishing the fuzziness of individual sample points and 
then assessing the map product as in the case of Woodcock and Gopal (2000). These 
surfaces allow the user to quantitatively and graphically determine the underlying 
patterns of thematic and spatial uncertainty before assigning map categories to each 
object.

Zhang and Stuart (2001) began by summarizing the means of image classifica-
tion that results in a set of fuzzy surfaces that each represents a map category. That 
is, each surface is developed by classifier methods that result in membership values 
for each category and image object. Fuzzy surfaces can be derived through any 
number of classifiers including manual rule building within eCognition (Definiens 
2003), distance measures for spectral channels or other census data (Knick and 
Rotenberry 1998), from the Random Forest algorithm (Bonissone et al. 2008), or 
other classifier conventions. To be sure, both classic and fuzzy classifiers can result 
in fuzzy outputs, and the intention of this chapter is to highlight some advantages of 
both fuzzy classifiers and fuzzy map renderings. By the approach that Zhang and 
Stuart propose, it is necessary to use a classifier approach that produces membership 
values for every pixel or object, produced in surfaces of all potential land cover 
categories through the classification of spectral and other census data.

As a basis of the method proposed by Zhang and Stuart (2001), the most obvious 
land cover assignment within uniform extents of a landscape has more certainty 
than the most obvious assignment in transition zones, where vegetation conditions 
are heterogeneous and there is greater parity among potential categories. Their 
approach bears on the capacity to make fuzzy determinations in the development of 
training data that are very certain, a requirement that is operationally demanding but 
supports the creation of multiple fuzzy surfaces based on fixed points of knowledge. 
From there, a spatial technique of interpolation such as kriging (Krige 1951; Cressie 
1990) is applied to generate membership values across unsampled zones of greater 
uncertainty, anchored by sampled areas of relative certainty. With this type of inter-
mediate product, categorical maps can then be produced to the satisfaction of end 
users. For any given object, this process of post-classification typically represents a 
maxima among fuzzy membership values (Leekwijck and Kerre 1999; Islam and 
Metternicht 2005) from the underlying fuzzy surfaces to arrive at one land cover 
category—that is, a defuzzification resulting in one crisp value. Object attribution 
includes fuzzy membership values from all category surfaces, which can help to 
form various error models, not the least of which is the previously summarized 
epsilon band. Again, spatial uncertainty can be an expression of positional error as 
with orthorectification, but as mentioned the related focus of this chapter in on the 
uncertainty of classification.

In their approach to defuzzification, Zhang and Stuart (2001) demonstrate a 
thresholding technique that allows for the analysis of transitional zones among land 
cover types. Rather than simply classifying each object according to the maximum 
membership value among category surfaces, the application of thresholds provides 
a means of identifying areas of high thematic certainty to nominal map categories 
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while simultaneously characterizing uncertainty spatially according to tolerance 
thresholds of the producer (Islam and Metternicht 2005). In converting raw classi-
fier outputs to crisp map products, thresholding is achieved when all extents that 
meet the value of the threshold, α, are included within the given map categories. 
Given the capacity for quantitative analysis and solutions, this type of processing is 
compatible with the complex and nonuniform ecological patterns that make up 
fuzzy sets and that would otherwise require subjective responses or indifference. 
Extents that do not meet classification thresholds can simply be coded as highly 
uncertain. Figure 9 represents two contiguous shrubland units and the application of 
an uncertainty threshold. The region of uncertainty that exists between the two cat-
egories is shown by the width w in the figure and may be labeled as unclassified, or 
as a possible third mixed category not apparent in the initial map legend (Zhang and 
Foody 1998). To sum up, a thresholding technique can lead to zones of uncertainty 
that may either be represented thematically, by a legitimate mixed map unit (e.g., 
“Mixed Interior Chaparral-Mountain Mahogany Shrubland”), or spatially by an 
epsilon band of fixed uncertainty.

Zones of high uncertainty between map categories that are identified by thresh-
olding can form the basis of epsilon models and offer a means to generate widths as 
a quantitative and geometric approach to characterizing error (Fig. 8) and refining 
crisp map units. By varying the uncertainty threshold, α, the epsilon band can be 
widened or narrowed to generate a range of epsilon models according to expecta-
tions of producers or clients. This approach may be particularly useful for assessing 
habitat quality including those species with affinities towards ecotones (Lloyd et al. 
2012). In a sense the epsilon width can be varied continuously to reflect the relative 
certainty of all competing categories. In their study of suburban land cover map-
ping, Zhang and Stuart (2001) determined that epsilon band widths corresponded to 

Fig. 9  Fuzzy operators showing the hypothetical relationship between two neighboring shrubland 
units. Here, a threshold value of α has been added to Fig. 4 to discern extents of high and low 
uncertainty, with a resulting unclassified region of width “w”
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standard deviation values and resulted in sizable spatial variation as uncertainty 
thresholds were altered. The degree to which epsilon bands varied locally according 
to threshold values suggests that deterministic epsilon models, of constant width, 
may be less suited to spatially depict land cover patterns. The reader is again referred 
to Fig. 8 for a visual comparison of deterministic and probabilistic epsilon bands. 
Using classifiers that result in multiple fuzzy surfaces allows mappers the ability to 
build probabilistic epsilon models, and to characterize uncertainty and leverage the 
knowledge in many constructive ways.

�Multiple Outputs: Fuzzy Geodatabase

As examined in Chapter “Fuzzy Classification of Vegetation for Ecosystem 
Mapping,” the variability in fuzzy membership for a given pixel or image object 
suggests that fuzzy approaches lend themselves to a range of mapping and analysis 
applications for natural features. Membership values can be used to inform the 
development of more precise map themes, or conversely to suggest more general 
themes of higher accuracy. As previously discussed the development of geodatasets 
that are comprised of fuzzy membership surfaces for each map unit offers the great-
est flexibility in balancing map accuracy and precision for any given application, 
and for analyzing thematic and spatial uncertainty in the data.

Fuzzy surfaces can be constructed from satellite imagery, aerial photography, or 
other census data alone or in combination, using automated classifiers or manual 
interpretation to generate outputs that represent the ecological features of interest. 
The classification of map objects or pixels from the geodataset is usually a matter of 
assigning map units according to the surface of maximal membership value 
(Leekwijck and Kerre 1999; Islam and Metternicht 2005), so that each object is 
attributed by both the most likely category resulting in a conventional crisp map 
rendering. The thresholding technique described previously allows for outputs to be 
controlled by uncertainty criteria, with the possibility of disqualified extents that are 
significantly uncertain, or that comprise candidates for additional “mixed” feature 
classes.

Such a geodataset also permits a data-driven approach to describing uncertainty 
and estimating error. The overall effect is to allow substantial flexibility in generat-
ing multiple outputs from one spatial dataset, laying the groundwork to empower 
end users to generate map themes on their own terms in a GIS that are specific to a 
given purpose. The user is able to co-analyze uncertainty for an optimization of 
particular outputs along with a comprehensive characterization of uncertainty. In 
this way, the end user can develop rules and thresholds to produce tailored outputs 
for particular spatial applications and in response to their own uncertainty criteria. 
In his project on urban mapping, Hansen (2003) provides a helpful example of a 
fuzzy geodatabase using the case of urban land-use mapping in Denmark (Fig. 10). 
In this study, Hansen notes that fuzzy modeling offers a more useful product than a 
crisp map since it can simultaneously show the primary, secondary, etc. land use 
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Fig. 10  Urban land use for Copenhagen, Denmark, including crisp (a) and fuzzy (b) maps. The 
fuzzy map is of one class, “Industrial,” showing increasing levels of membership with darker 
shades of blue. Modified from Hansen (2003)
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categories. At the top of Fig. 10, the map gives the dominant land use category for 
each 100 m pixel across greater Copenhagen. This crisp map was developed through 
defuzzification of other map unit values, assigning each pixel a map unit according 
to the map unit of highest membership for that pixel. As with the second map at the 
bottom of Fig. 10, individual fuzzy membership surfaces for each map category can 
be displayed separately. The second map has one theme, “Industrial,” and shows 
that surfaces of continuous values for one theme reveal much more information 
about that theme than can be offered in the corresponding crisp output. In a variation 
on this approach, geodatasets comprised of the most basic themes, such as 
“Impervious Surface” or “Vegetation Life Form,” can be used as primitives from 
which to combine and produce any number of map typologies as part of a “legend-
less” mapping system (ADPC 2016), giving end users substantially more ability to 
determine and customize viewing and analysis.

It also bears mentioning that many legacy raster map, generated through conven-
tional image classification, can be augmented by combining the data with image 
segments using zonal processing techniques. In this way, multiple outputs can be 
generated from many existing ecological map datasets, not only by subjecting raster 
inputs to different rules and thus generating different outputs, but also by linking 
rule sets across more than one dataset or feature class to create polythematic outputs 
such as state-class units representing combinations of dominance, canopy cover, 
and size class (Westoby et al. 1989; Steele 2000). Though legacy raster mapping 
usually lacks fuzzy membership attribution, the pixels that fall within a given image 
object can be weighed collectively using crisp or fuzzy rules to classify the objects. 
The technique assumes that the imposing objects have ecological features that are 
relatively uniform, spatially and thematically, so that pixels are grouped in a mean-
ingful way (USDA Forest Service 2012). Depending on the rule set, this post-
processing method can be used to improve data accuracy beyond the underlying 
raster data by using majority, average, or other statistics that effectively combine 
pixel values within an object to reduce noise and improve accuracy with the 
exchange of thematic or spatial precision of the raster data. Alternatively, the 
approach can be used to derive additional map themes: the following section details 
a hypothetical example where fuzzy rules are used to develop an additional map 
theme from legacy raster data.

�Vertical Structure Mapping

Until now, the chapter has focused on fuzzy applications within two horizontal 
dimensions, thematic and spatial, where membership is determined by the degree of 
alignment of an object to multiple map themes of an area, or geometrically accord-
ing to the horizontal irregularities or gradation of boundary zones between map 
themes (Remmel and Perera 2009). This section focuses on another dimension 
based on vertical vegetation structure, where membership is determined for canopy 
layering, tree height stratification, or other local habitat attributes of canopy 
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architecture. In this dimension, the membership of an object bears on its affinity to 
one or more vertical features, such as canopy layering or “storiedness,” as in the 
example to come. The affordability of producing digital surface models (DSMs) 
from stereo imagery or from LiDAR data to detect vertical features, and the demand 
for information on vegetation structure, will only improve the technology and avail-
ability of these data sources with time. Hirschmuller (2005) and others have devel-
oped semi-global matching, or “phodar,” and other technologies to efficiently build 
digital surface models (DSMs) from high-resolution stereo imagery (Gehrke et al. 
2010; Clark et  al. 2016), thereby allowing for image classification of vegetation 
composition and dense terrain extraction for vegetation structure from the same 
data. Chapter “Mapping the Abstractions of Forest Landscape Patterns” provides 
further details of LiDAR for forest mapping.

What follows is a synopsis on how outputs for vertical diversity were rendered 
from raster map data of tree size class, leveraging size-height relationships in combi-
nation with the heterogeneity among contiguous pixels representing the same for-
ested stand (Helms 1998) (Fig. 11). In this example, the pixels retained their original 
classification for tree diameter size class from a previous mapping effort (USDA 
Forest Service 2014) and were expressed in different vector outputs for vertical diver-
sity, according to the relationships of neighboring pixels and the local inferences of 
tree diameter on vertical diversity. As is often the case, size class data, from forest 
inventory or map models, are more affordable and available than tree age data that are 
derived from tree coring and intensive field sampling (e.g., Triepke et al. 2012). Tree 
size is often used as a surrogate for tree age for locally characterizing cohort patterns 

Fig. 11  Polygon configuration generated from segmentation of Landsat ETM+ to represent exist-
ing vegetation and forested areas of similar tree composition and structure. Excerpt of 2011 aerial 
photography taken of the National Agriculture Imagery Program (NAIP 2014), for the northern 
San Mateo Mountains of New Mexico, USA
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(Curtis 1967; Huang et al. 1992; Schmidt et al. 2011), as with silvicultural applica-
tions that require the assessment and management of tree age diversity (Triepke et al. 
2011). Where the relationships between size and age are marginal at broad scales, the 
relationship is strengthened at more local scales (Ferguson and Carlson 2010).

Fuzzy math lends itself to analyzing the vertical complexity or “storiedness” of 
forest communities where vertical structure can be difficult to characterize objec-
tively. As a first step in mapping vertical diversity of forested systems in Arizona and 
New Mexico, a segmentation layer was generated from Landsat 7 ETM+ imagery to 
depict existing (actual) vegetation at the spatial scale of plant communities or stands 
(USDA Forest Service 2012). In this way, communities of similar tree dominance, 
size, canopy cover, and vertical diversity were delimited to the form of a polygon 
configuration of plant communities with similar vegetation pattern (Fig. 11).

With a polygon configuration of plant communities across Arizona and New 
Mexico in place, zonal processing techniques were used to vectorize raster mapping 
of existing vegetation and diameter class from the Integrated Landscape Assessment 
Project (ILAP) (USDA Forest Service 2014). Polygons averaged from 10 to 20 ha. 
In the zonal processing of raster data, various rule sets were applied to collectively 
assess the pixel values within each polygon using ILAP themes of tree size, canopy 
cover, and dominance to produce a range of feature class outputs for vegetation 
composition and structure. Rules were also generated for storiedness mapping, uti-
lizing the inference of tree diameter on tree height, and then assessing the pattern of 
height conditions among contiguous pixels of the same image segment (Fig. 12).

The rule set used in this case relates the variability and abundance of tree size 
classes, number of canopy layers, and fuzzy membership to the storiedness theme 
(USDA Forest Service 2012). Similar to the canopy cover class scenario illustrated 
in Fig. 5, fuzzy membership was expressed in categories, either 0.2 (one story), 0.4 
(two story), or 0.6 (three-plus story). In this case, forested image segments with a 
membership of 1 would represent layering maxima for a storiedness theme. The 
perspective of fuzzy logic assumes that a given object can have membership to more 
than one class of storiedness, which is fitting given the considerable structural vari-
ability of natural communities and the complexity in conceptualizing, interpreting, 
and conveying structure conditions meaningfully to biologists and land managers. 
Accordingly, storiedness rules have been written to accommodate different end-user 
needs and to produce different spatial and tabular outputs from the same input data, 
as in the case of tree canopy layering (Vandendriesche 2011). Canopy layering is 
but one possible variable of the third dimension of vertical structure (Fig. 13). Other 
structural variables, such as above-ground biomass, canopy base height, canopy 
texture, and stream embeddedness, likewise lend themselves to fuzzy classification 
algorithms for the interpretation of map data and vertical features. Also, vertical 
information can be stored in image stacks where each layer, either a crisp or fuzzy 
surface, represents an upward sequence of height classes that collectively reflect the 
vertical profile at any given point.

Fuzzy membership values and rules can simplify the integration of vertical and 
horizontal features and represent map objects with multiple attributes simultane-
ously. Membership thresholds among fuzzy surfaces can be used in image classifi-
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Fig. 12  Image segment derived from Landsat ETM+ showing multi-storied forest conditions in a 
ponderosa pine ecosystem of the Jemez Mountains of northwestern New Mexico, USA (Google 
Earth 2014b). The first illustration (a) shows tree diameter class mapping from the Integrated 
Landscape Assessment Project (USDA Forest Service 2014), while the second illustration (b) 
shows a true color image (NAIP 2014) of the same area and image segment
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cation (see section “Fuzzy Representation with Continuous and Categorical Data”) 
or to delineate areas of interest, like old growth forest, with rule sets that combine 
key surfaces. Having fuzzy membership values further allows users an easy means 
to apply compensatory factors, where appropriate, among the habitat variables at 
play (e.g., storiedness for tree cover). As with the scenario involving storiedness, 
fuzzy techniques give us many opportunities to integrate information sources and to 
make map data go further.

�A Look to the Future

This closing section briefly explores some of the immediate opportunities for fuzzy 
applications. By the innate potential of fuzzy systems, not to mention the accessibil-
ity and rate of related technology evolution, many advances remain underexploited 
and some latent applications for fuzzy systems are considered here.

Current mapping applications that output fuzzy membership values, some cov-
ered in this chapter, allow for end-user computation according to specific needs. 
The generation of fuzzy surfaces, as with the study by Zhang and Stuart (2001), 
offers the most obvious example of spatial outputs that can be readily interpreted 

Fig. 13  Pine flatwoods community in northern Florida, USA, showing longleaf pine (Pinus palus-
tris Mill.) of similar height in a single-story forest structure (photo by Jack Triepke)
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and post-processed into a tailored deliverable. In this case every object has a fuzzy 
membership value for every established map category. Although outputs are still 
constrained by the makeup of the original legend and the training data, the result-
ing fuzzy surface outputs offer what is otherwise a geodataset that is neutral of 
classification schemes and a priori stratifications. End users would, for example, 
be able to map a ponderosa pine cover type according to a given project design 
and specific class concepts of tree species proportions, and to assess thematic and 
spatial uncertainty according to the same fuzzy membership values. Having 
access to these values allows clients the power to post-process spatial information 
in GIS in response to specific uncertainty specifications. In the case of raster data, 
having an associated segmentation layer that depicts patterns of structure and 
composition at somewhat coarser scales (Figs. 11 and 12) would allows users yet 
another level of capacity in forming products by the rules used to classify parent 
segments by the makeup of resident pixels. Such an approach has also been used 
to generate a vertical dimension to mapping according to the relationship in struc-
tural attributes among pixels (USDA Forest Service 2012) (Fig.  12). Including 
fuzzy membership values in classifier outputs allows the generation of a range of 
map products from the same dataset within a common GIS platform according to 
the mapping and uncertainty analysis needs of natural resource managers and 
researchers.

Web-based interfaces are the obvious next step for user-derived map products, 
once spatial data are attributed with fuzzy membership values. While GIS environ-
ments offer an accessible means for organizations and specialists with software 
and training to manage and analyze spatial information, Web-based applications 
are the logical means of circulating spatial information and cultivating crowd-
sourcing and the development of post-products, analyses, and tools. OpenStreetMap 
(OSM 2014), Google Earth Plug-in (Earth 2014c), and other map viewers and data 
management applications employed by lay people offer potential outlets for shar-
ing, viewing, and processing geodata that has been attributed with fuzzy, continu-
ous, or categorical values (ADPC 2016). In this environment, end users can extract 
fuzzy data from Web resources, not only in terms of a specific extent, but also 
according to the precise characteristics of ecological features. While one user, for 
instance, interested is wildlife habitat is able to output a map of forest plant com-
munities of 20–45% tree cover with at least three canopy layers, the next user can 
generate an output for communities with 10–30% tree cover and four canopy lay-
ers from the same dataset without constraints of predetermined map categories 
(e.g., Zabihi et al. 2017). And by combining multiple datasets likewise attributed 
by fuzzy membership, the potential for developing wide-varying map themes 
becomes even less limited. Also, based on a range of potential outputs on available 
map themes, users will be able to game membership scenarios interactively on 
each of the themes to generate very precise outputs for a particular purpose. 
Finally, users will be able to build products that express the desired relationship of 
accuracy and precision, make adjustments to membership thresholds to satisfy 
uncertainty requirements, and characterize uncertainty similarly as spatial analysts 
in a GIS lab.
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The adoption and evolution of advanced classifier methods also hold promise for 
map development and spatial analysis. In addition to the classifier technology 
surveyed in section “Mapping with Fuzzy Classifiers,” other image classification 
methods that build on machine learning include neuro-fuzzy classifiers (Sun and 
Jang 1993; Nauck et al. 1997; Nauck and Kruse 1997). Neural networks, inspired 
by the nervous systems of animals, offer supervised learning ability to generate 
classification algorithms based on potentially large numbers of inputs (Aitkenhead 
and Dyer 2007). Neuro-fuzzy classifiers, that combine neural networks with fuzzy 
systems, have been applied in various fields for over a decade and have been used to 
map ecological features. Neuro-fuzzy systems combine the learning power of neu-
ral networks with the knowledge represented in fuzzy inferences, integrating key 
advantages of neural networks and fuzzy systems (Hosseini and Zekri 2012). 
Despite their obvious strengths, neuro-fuzzy classifiers have yet to realize their 
potential for purposes of mapping in natural resources.

Some discussion is warranted regarding the use of fuzzy random forest as a clas-
sifier approach for making maps. Although fuzzy random forest classifiers 
(Bonissone et al. 2008) have been used in other scientific fields (Bonissone et al. 
2010; Kulkarni and Sinha 2013; Lasota et al. 2013) it is as yet conventional for land 
cover mapping. The classification trees in conventional random forest classifiers are 
unpruned trees in that each terminal node is represented by one observation, leading 
to a crisp ruleset within each tree—i.e., one answer only. Yet, the amalgamation of 
outputs for multiple crisp trees results in information that is inherently fuzzy because 
of the disagreement among votes (Grossmann et  al. 2010). In their 2010 study, 
Bonissone and others (Bonissone et al. 2010) combined random forest classifiers 
made up of fuzzy decision trees to build classification outputs for various types of 
data. Their work included image segmentation, but not specifically ecological fea-
ture extraction. In short, the approach combines the flexibility found with fuzzy 
systems with the efficiency and interpretability of decision tree classifiers, with the 
robustness provided in a multiple-classifier approach, and the ability of randomness 
to build tree diversity and the most plausible range of outputs. The advantages of 
decision tree methods, fuzzy classifiers, and random forest were summarized in sec-
tion “Mapping with Fuzzy Classifiers.” Prior to the application of random forest 
(Breiman 2001), fuzzy systems had been combined with decision trees for classifier 
applications (Lee et al. 1999; Mendonça et al. 2007). Given the innate elasticity of 
fuzzy logic, the fuzzy component has the key advantage of bringing stability to 
noise, gaps, and incongruences in input data (Bonissone et al. 2008). It was with this 
premise that Bonissone and others generated a fuzzy random forest as a base classi-
fier (Bonissone et al. 2010). Several classifier methods were compared, all based on 
the “majority vote” for random forest ensembles, and including an algorithm using 
fuzzy membership values to weight decisions among classification trees. In the lat-
ter case, the underlying premise was that since classifiers of the ensemble are not of 
identical accuracy, the more capable classifiers would be weighted to reflect a 
greater competency. They found that the classification approach using weighted 
functions provided better accuracy in comparison to the non-weighted method typi-
cal of random forest ensembles. Overall the study showed that the fuzzy random 
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forest systems produced accuracy on par with the best classifiers when applied to 
the range of conventional datasets in the test. But unlike the non-fuzzy approaches, 
the fuzzy random forest classifiers had consistent accuracy results when faced with 
datasets of noisy and missing values. Fuzzy random forest classifiers will likely 
continue to improve technologically and see growing application for mapping pur-
poses in natural resources.

Fuzzy classifiers, online tools, and other technologies are advancing existing 
applications and creating new possibilities. Online tools that are accessible to the 
masses are the future in the way that open-source technology, citizen science, and 
big data are used to support shared environmental goals and concerns. Climate 
change, loss of habitat and biotic diversity, and other global issues are propelling 
both research and development and the widespread application of remote sensing 
technologies that were until understood and used by a relative few until recently. 
While fuzzy methods offer solutions to the ambiguities of natural landscapes, they 
are likewise suited to future problems, temporal analysis, and “what-if” scenarios 
involving drought, fire, sea-level rise, temperature and precipitation regimes, and 
other factors that, when considered as fuzzy parameters, can lead to output ranges 
that may be correlated with measures of prediction, uncertainty, and opportunity. 
Recent Web-based tools such as Collect Earth (FAO 2016) give users with mini-
mal experience simple means to quickly generate reference data for land cover 
mapping as well as for monitoring and capturing conditions at multiple points in 
time with readily available archived imagery. Collect Earth is a free open-source 
solution that integrates with Google Earth, Google Earth Engine, and other Web-
based tools to gather, analyze, and display geographic information and ecological 
features. These tools can be easily structured to capture current land cover and 
land-use attributes as well as change mechanisms depicted or inferred by multiple 
archived satellite scenes. Such technology enables fuzzy membership to be repre-
sented simultaneously across map themes, spatial scales, and temporal scales, 
giving fuzzy methods a growing role in addressing environmental challenges into 
the future.

�Summary

Widespread concerns about biodiversity and ecosystem integrity worldwide have 
spurred natural resource monitoring (Miura et al. 2008) and development of analy-
sis tools to assess current conditions and risk (Suter 2006). Emphasis on ecological 
restoration, climate change, and other important aspects of conservation has driven 
the gathering of observational data, analysis and interpretation, and development of 
technology such as advanced land cover mapping applications (Lillesand and Kiefer 
2000; Kulkarni and Sinha 2013; Li et al. 2014). Map data generated to depict vari-
ous ecological features are being used increasingly for purposes of research, 

F.J. Triepke



97

analyzing ecosystems, land management, and planning (Goetz and Maus 2006; 
Friggens et al. 2013; USDA Forest Service 2014; Triepke 2016). Ecological map-
ping can be developed through image classification or from mining of existing map 
sources as with the approach described in section “Multiple Outputs: Fuzzy 
Geodatabase.” Fuzzy approaches have given map producers advanced solutions for 
not only generating map outputs but also characterizing them through the analysis 
of uncertainty (Lowell 1994; Sarmento et al. 2010; Kronenfeld 2011).

Conventional mapping and uncertainty analysis has relied on crisp approaches, 
based on mutually exclusive hard ecological categories among the objects or pixels 
of a given extent. As described, these objects may reflect multiple categories (Wood 
and Foody 1993) as in the case of tree size (Fig. 2), or may reflect unrecognized 
categories of a more general nature as in mixed types (Fig. 9). Fuzziness can be 
expressed in mixed pixels, where the spatial resolution of the base models units is 
coarse relative to the resolution of ecological features being mapped (Foody 1997; 
Zhang and Foody 1998; Campbell 2002). Such objects may be an expression of a 
fuzzy set or simply be a mixture of map themes with hard boundaries at a local 
scale. In the latter situation, the pixel size is greater than the spatial extent of map 
themes so that multiple themes are expressed within the space of the same pixel. In 
either case, a crisp solution may be to create a mixed type in the map legend, pro-
vided that the type occurs often enough to warrant distinction. The problem may be 
remedied more efficiently and precisely with a fuzzy approach where partial mem-
bership is assigned to each theme present in the pixel.

In contrast to crisp approaches, and the constraints they impose on responding 
to ambiguity, fuzzy system classifications respond through assignment of varying 
levels of fuzzy membership (Zadeh 1965) for each object and apparent map cate-
gory. That is, fuzzy systems represent gradual change from membership to non-
membership among objects among multiple categories and dimensions. From the 
standpoint of logic, fuzziness is expressed in one of the two ways: first, ambiguity 
and the difficulty in classification may stem from the vagueness and authenticity 
among available categories (Rocchini and Ricotta 2007). Second, ambiguity may 
stem from the lack of distinctiveness in the object itself; or it may stem from both. 
The replacement of classical set theory with fuzzy set theory marks an advance in 
our ability to deal with ambiguity and to depict or analyze ecological features 
which are often inherently fuzzy (Rickel et al. 1998). In addition, fuzzy systems 
offer more wide-ranging and flexible solutions for representing geographic 
information.

As detailed in Chapter “Fuzzy Classification of Vegetation for Ecosystem 
Mapping,” the flexibility of fuzzy approaches demands clear spatial and thematic 
specifications in the development of map products. Their development and applica-
tion will only become more flexible in time, as specialists take advantage of the 
increasing availability of ecological mapping and the power of fuzzy operators in 
building and applying map data. Clear specifications and definitions are essential 
for consistency across themes in mapped data.
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Abstract  Boreal wildfires are characterized by internal heterogeneity that arises 
from variations in fuel availability, fuel moisture content, and weather conditions 
during a fire event. This heterogeneity extends from an uneven burn intensity that 
affects the degree of forest disturbance to inconsistency in boundary abruptness at 
the fire perimeter, in spot fires associated with the main fire, and in areas internal to 
the fire where residual vegetation and unburnable land cover types are encountered. 
We begin with a brief discussion of wildfire anatomy and how fires burn to create 
new and complex landscape patterns. We then describe some of the common 
approaches that are used to map wildfires, paying particular attention to the impor-
tance of scale in the mapping process. We address the complexities and heterogene-
ities of wildfire boundaries and internal structures by consistently linking their 
characterization and interpretation to spatial scale and statistical characteristics of 
mapping. Having outlined the variability in the formation and mapping of wildfire 
complexity, we propose a standardized terminology for describing these phenom-
ena and provide some thoughts on the future of efforts to map dynamic and complex 
landscape entities such as wildfires.
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MMU	 Minimum mapping unit
NDVI	 Normalized-difference vegetation index

�Introduction

Mapping natural entities is a different task than cartographic efforts that focus on 
human-constructed objects or features, which have clearer and more predictable 
boundaries. For instance, researchers must revise how they approach the tasks of 
entity definition (i.e., defining a “thing” that they want to map), boundary delinea-
tion, and thematic classification (i.e., grouping parts of a map into different catego-
ries, which are called “themes”) when they address natural entities that are inherently 
fuzzy, complex, and scale dependent. In this chapter, we address the topic of map-
ping discrete but complex objects, using wildfire “footprints” (the area directly 
affected by the fire) in boreal forests to demonstrate the problems and their potential 
solutions.

Wildfire is a natural disturbance agent that is prevalent in most forest landscapes, 
but especially in the boreal biome. Simultaneously, there are many anthropogenic 
influences on boreal fire regimes: people ignite many fires in boreal landscapes, and 
make concerted efforts to manage the economic and other impacts of fires by means 
of aggressive fire suppression. Regardless of the ignition source or the suppression 
effort applied, numerous environmental factors also influence fire behavior, leading 
to highly complex disturbance footprints within forested landscapes. These foot-
prints have a highly heterogeneous internal structure due to spatial and temporal 
variations in burn intensity and in the subsequent response of vegetation.

The footprint of a typical boreal forest fire, even when it results from an intense 
wildfire, will be spatially heterogeneous with respect to burn severity within its 
interior, and that interior will contain some amount of unburned vegetation with a 
varying species composition and a range of age- and height-class distributions 
(Perera and Buse 2014). Spatial heterogeneity of terrain and of the water table in 
boreal forest landscapes, even when subtle, adds to the complexity of the structural 
mosaic that is seen before, during, and after wildfires. Furthermore, the boundary of 
the burned area is convoluted and nonlinear, as it is formed by fire behavior that 
evolves in response to varying fuel, weather, and terrain conditions during the fire 
(Remmel and Perera 2009) in both the temporal dimension and the horizontal and 
vertical spatial dimensions. In addition, fire spread is not always contiguous. 
Wildfires may generate “spotting,” in which burning material is carried by the wind 
and jumps in advance of the fire to cause satellite burn patches that may merge with 
the main fire or remain disconnected, forming a complex mosaic of multiple burn 
patches that collectively define a single fire (Remmel and Perera 2009). For these 
reasons, boreal wildfire footprints represent great examples of discrete and complex 
entities that pose significant mapping challenges.
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Our use of wildfires as an example is not merely an academic pursuit. The 
scientific literature is rich with examples of wildfire mapping because under-
standing of boreal fire footprints, and especially their patterns of spatial extent, 
is of increasing ecological, economic, and social importance (e.g., see the 
review by Morgan et al. 2001). Many forest ecological processes are influenced 
by wildfires, including carbon and hydrologic cycling, creation and elimination 
of habitat, improvement or deterioration of biodiversity, and regeneration of 
forests. As well, the economic effects of wildfires include concerns such as 
changes in the timber supply, damage to property and communities, and evalu-
ation of fire management and suppression investments. Spatial information on 
fires is collected and reported both at a regional level (e.g., in Ontario, https://
www.ontario.ca/page/forest-fires) and at a national level (e.g., in Canada, http://
cwfis.cfs.nrcan.gc.ca/home). These data are also used in continental- and global-
level assessments, as in the case of EarthData (https://earthdata.nasa.gov/earth-
observation-data/near-real-time/firms/active-fire-data) and Global Forest Watch 
Fires (http://fires.globalforestwatch.org/home/), which are used to develop 
important forest management policies.

Our discussion of the approaches to mapping complex entities will follow a pro-
gression from points, lines, and areas to thematic classification (see Chapter 
“Mapping Forest Landscapes: Overview and a Primer”). Complex entities in a land-
scape, such as forest fires, can be mapped in ways that range from a collection of 
simple, discrete points or objects to continuous and complex objects with fuzzy 
boundaries (see Chapter “Fuzzy Classification of Vegetation for Ecosystem 
Mapping”) and heterogeneous internal structures. The approach typically depends 
on the goals of the mapping and the scale of the representation. We begin by describ-
ing the characteristics of a wildfire (its “anatomy”) and briefly describing the factors 
that determine their development and how this leads to the development of the com-
plex and heterogeneous phenomena that we wish to map. We then focus extensively 
on the scale dependence of these entities and how changes to the scale of measure-
ment and mapping will alter the final characterization of these entities on the map. 
We reflect on the assessment of mapping accuracy in remote areas and discuss 
emerging methods for quantifying and characterizing complexity.

�Wildfire Initiation and Anatomy

To understand the challenges involved in the mapping of wildfires in forest land-
scapes, it is necessary to understand how they form and spread. Even though this 
description will be, of necessity, somewhat rudimentary, we will provide an over-
view of the key mechanisms that cause the initiation, growth, and termination of 
wildfires. This will provide valuable context for perceiving the spatial complexity of 
the resulting objects and the mapping challenges.
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�Initiation and Growth 

Most wildfires start as a point-source ignition, typically caused either by a lightning 
strike or by human activities such as failure to extinguish a campfire or throwing a 
cigarette butt into a pile of dry wood at the side of a road. Wildfires initiated by 
anthropogenic sources are spatially biased, since they most commonly occur near 
human settlements, transportation corridors, and recreation areas. In contrast, natu-
ral ignitions are mostly random in forest landscapes, although there are spatial 
biases for lightning strikes (e.g., higher areas tend to be hit more often). In addition, 
trees in certain forest types and at certain topographic positions are more likely to 
burn than trees in other forest types and locations.

Once ignited, forest fuels will continue to burn until the fuel is consumed or 
weather conditions change enough to stop the fire. If the fire can spread into new 
fuel, the wildfire will grow outwards (radially) from the ignition point; each part of 
the fire that is expanding outwards is referred to as a “front.” Sometimes, this spread 
will cease due to lack of fuel or extinction by fire suppression activities; if this 
occurs sufficiently rapidly, the fire’s spatial signature will have a very small extent, 
easily represented at scales of interest as a point on a map. If not, the wildfire will 
spread by thermal radiation (transmission of heat through the air), conduction 
(transmission of heat through physical contact), convection (transmission of heat 
through moving air), and mass transport (movement of firebrands, which are burn-
ing pieces of wood, by the wind). These processes are influenced by a three-way 
spatial interaction among the forest fuel, weather, and topography. The spatial and 
temporal variation and the characteristics of these factors will determine the direc-
tion, distance, and rate of spread of the fire, as well as the thermal energy it releases.

In the simplest hypothetical case, in which the fuel is homogeneous, the terrain 
is flat, and there is no wind, the fire spread will be isotropic (i.e., equal in all direc-
tions) and will result in a circular wildfire, with the ignition point perfectly at its 
center (Fig. 1a). If wind is introduced, the fire spread will remain radial, but the fire 
will spread faster along the direction of the wind (the “head fire”), slower perpen-
dicular to the wind (the “flank fires”), and slowest in the direction opposite to the 
wind (the “backfire”). The result is an approximately elliptical wildfire with the 
ignition point no longer at its center (Fig. 1b), and the length-to-breadth ratio of the 
ellipse will increase with increasing wind speed. As the wind speed increases, flam-
ing pieces of fuel can become airborne; as we noted earlier, they can be transported 
and deposited ahead of the fire front. This spotting mechanism can ignite additional 
fires downwind, and these may eventually merge with the main body of the wildfire 
(Fig. 1c), though this is not inevitable.

In reality, fire spread is hardly ever this simple or even mechanistically determin-
istic, nor is the resulting shape a regular geometric object (e.g., an ellipse). Several 
factors are responsible for this:

•	 First, the forest fuel characteristics (e.g., flammability, mass, bulk density, mois-
ture content) vary widely, forming a mosaic of highly heterogeneous fuel types. 
Juxtaposition of different fuel types in a forest landscape causes a spreading 

T.K. Remmel and A.H. Perera



109

wildfire to vary its flame length, rate of spread, direction of travel, and thermal 
energy as it moves between fuel types.

•	 Second, terrain is typically not homogeneous, and that also affects the spread of 
fire. For example, changes in slope will affect spread rates, since fires spread 
faster uphill and slower downhill, and concave terrain such as the bogs that form 
in depressions tend to have a higher water table that slows the fire’s spread 
because water absorbs heat and lowers the fire’s intensity. Slope and the slope 
aspect relative to solar radiation and prevailing winds have effects (e.g., south- 
and west-facing slopes in the northern hemisphere tend to be drier than north- 
and east-facing slopes). The presence of bodies of water (e.g., lakes) and exposed 
bedrock creates natural barriers to the fire’s spread, but rapidly moving fires can 
jump vast distances, possibly even across a lake, to continue burning on the other 
side, and sufficiently hot fires can burn even wetlands and islands within lakes.
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Fig. 1  Illustration of how fires grow in a simplified scenario that assumes homogeneous fuel and 
flat terrain: (a) In the absence of wind, fires spread radially from the ignition point, resulting in a 
circular shape. (b) In the presence of a wind, the fire spreads at different rates on different sides, 
resulting in an approximately elliptical shape. (c) In the presence of high wind speeds, the shape 
becomes more elongated due to faster travel of the head fire, and spotting occurs downwind of the 
fire (gray spots). Dark spots within the circle or ellipse indicate the original ignition point. Modified 
from van Wagner (1969)
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•	 Third, the wind and local weather change spatially and temporally during a wild-
fire. Both wind direction and speed vary spatially and temporally during the day, 
and are in turn affected by the microscale weather created by intense fires; for 
example, horizontal and vertical vortices (whirlwinds) are often generated by 
wildfires. Such changes directly affect the fire’s rate of spread, its direction, and 
the thermal energy it generates.

•	 Fourth, these factors interact, leading to cumulative or even multiplicative influ-
ences on the expansion and intensity of a wildfire. For example, the effect of 
changing wind speed on fire spread may differ among fuel types, and the impact 
of the interaction will depend on the slope of the terrain and the depth of the 
water table.

Thus, the real-world physical processes that govern a fire’s spread are highly 
complex, as are the spatial patterns of the damage caused by the fire’s thermal 
energy, leading to a correspondingly complex burned area. The formation of a 
burned area is even more complex because it represents an emergent property of the 
spatial interaction between the heat generated by the fire and the ability of the forest 
fuel to tolerate the heat and avoid or delay combustion. These interactions are both 
deterministic and stochastic (i.e., subject to random or probabilistic factors).

Fires do not progress continuously. A spreading wildfire will often stop locally, and 
will eventually be extinguished altogether even in the absence of human intervention. 
The stoppage occurs when a fire front encounters fuel with low flammability (e.g., 
high moisture content), a place with no fuel (e.g., bedrock), or an unburnable barrier 
(e.g., a lake). In this case, the fire may stagnate and continue to burn slowly (i.e., smol-
der) until it consumes all its fuel or weather conditions change, in which case the fire 
is extinguished locally or diverted to spread in a different direction. Complete extinc-
tion of a wildfire occurs when progression stops along all fire fronts and all smolder-
ing ceases. In the case of managed fires, local or complete extinction may occur due 
to active fire suppression (e.g., dropping water from water-bomber aircraft), creation 
of fire barriers, and fuel reduction by means of controlled burns. The position where a 
fire front finally stops progressing forms a discrete or fuzzy local boundary between 
the burned area and the adjacent unburned area; that boundary outlines the area 
affected by the wildfire. The outermost extent of these boundaries represents the outer 
edge of the wildfire (i.e., the perimeter of the fire’s footprint).

In summary, a wildfire “event” (a temporally discrete and spatially stochastic 
process during which a fire grows from a point to an area) produces a spatially het-
erogeneous footprint (a surface that is interspersed with burned, partially burned, 
and unburned areas) that is demarcated by a perceived perimeter (the abovemen-
tioned outer edge, across which a discrete or fuzzy transition occurs from a burned 
area to an unburned area). Figure 2 presents two examples of simplified boreal wild-
fire footprints (i.e., with no depiction of internal heterogeneity, with a smoothed 
outer perimeter, and without considering satellite fires ignited by spotting). It none-
theless illustrates the complexities of the fire’s initiation and subsequent spread. 
First (Fig. 2a) is a 37,000-ha wildfire that resulted in an elongated shape due to high 
and sustained wind speeds for 2 days along its 40-km primary axis, and the many 
spot fires on the right flank that eventually merged with the main body. Second 
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(Fig. 2b) is a 56,000-ha wildfire that burned for 23 days under conditions with vari-
able wind directions and speeds, but also with merger of spot fires on both flanks.

Again, we want to stress that the description in this section is highly generalized 
in terms of how wildfires initiate, spread, and extinguish. If you want to learn more 
about the many exceptions to our generalizations, and intricate details of the sophis-
ticated and evolving field of fire behavior research, there are many excellent descrip-
tions of wildfire behavior (e.g., van Wagner 1969; Rothermel 1972; Chandler et al. 
1983; Johnson 1992; Whelan 1995; Johnson and Miyanishi 2001; Sullivan 2009; 
Albini et al. 2012; Finney et al. 2013). Nonetheless, our simplified representation is 
sufficient to illustrate that the key processes involved in a wildfire and their conse-
quences are highly complex, and produce complex and spatially heterogeneous 
objects that become the landscapes that we will attempt to describe using maps.

�Descriptors of Footprints

In this section, we describe some of the geometric and other descriptors that are 
used to characterize wildfire footprints.

Fig. 2  Examples of the footprints of boreal wildfires, showing only the ignition points and bound-
aries: (a) A 37,000-ha fire that evolved under conditions with high wind speeds from a single 
direction over 2 days. (b) A 56,000-ha fire that evolved under conditions with variable wind speeds 
and directions over 23 days. Dark spots at the bottom of each footprint indicate the original igni-
tion point
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�Point-Based Mapping

Points are often mapped when the goal is to identify the locations and positions of 
active or smoldering fires (“hot spots”) rather than the complete perimeter of a fire. 
One particularly useful type of point to be mapped is a “centroid.” Unlike the geo-
metric center, which can be difficult to identify for large objects with complex 
shapes, the centroid represents the center of mass; that is, it represents a weighted 
average. Because different weighting techniques exist, the location of the centroid 
will depend on the technique that is chosen (Farmer et al. 2011). Point indicators are 
typically selected to represent the centroid of some feature. Although the concept of 
a centroid is simple, various means for identifying its position (i.e., different weight-
ing methods) have been established and used, making even the seemingly simple 
decision to map a centroid challenging. For regular shapes (e.g., circles, squares), 
the geometric centroid is relatively easy to identify, and that point provides a rea-
sonable approximation for the location of that feature. However, for more complex 
shapes (e.g., a U-shaped feature, such as a fire that burns around two sides of an 
unburnable rock outcrop), the geometric centroid may exist outside of the shape 
itself. This leads to debate over whether the centroid should be constrained to exist 
within the boundaries of the feature or whether a more abstract definition should be 
permitted, in which the true geometric center reflects the properties and maximum 
extents of the shape in all directions or only in a certain key direction.

The approach can be extended to mapping extensive and complex fire damage 
using a single point to which attributes (e.g., time, burn intensity) can be attached. 
In this context, it is less important to accurately map the overall footprint than it is 
to map key points within the footprint such as the location of a burning activity (e.g., 
the initiation of a new fire). This method is commonly implemented to identify new 
fires or fires that have not yet been fully extinguished, or for isolated locations 
where detailed mapping may be difficult. It is also used when the outlines of a fire 
cannot be seen at the resolution of the map or other display being used to show the 
fire’s location. In the United States, the National Interagency Fire Center (https://
www.nifc.gov/index.html) records the locations of all fires that have burned in 
recent decades along with their size and cause (Morgan et al. 2001). Since complete 
mapping of the footprint is not required, this point-based approach can be relatively 
rapid and can be used as a monitoring tool that will (when appropriate) trigger fur-
ther mapping and updating of active fire records, as well as direct fire suppression 
efforts.

The earliest organized activity related to fire detection and mapping relied on 
human sightings of smoke or flames from observation points, which were typically 
tall towers that provided unobstructed views over large areas such as watersheds. In 
North America, most of these towers were erected between 1920 and 1950; eventu-
ally, thousands of these towers were in operation in the United States and Canada, 
with 325 in Ontario, Canada, alone (http://ontarioftl.bravehost.com/index.html).

Sometimes, active fires and their dynamic elements are of more interest than the 
footprints the disturbance leaves behind. In these cases, the ability to map high-
temperature anomalies (hot spots with a temperature significantly greater than the 
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average) is important and relies heavily on remote sensing technology capable of 
observing radiation in the infrared through thermal infrared wavelength range (0.7–
13.0 μm) of the electromagnetic spectrum. However, thermal remote sensing, par-
ticularly using data with coarse spatial resolution (e.g., NOAA-AVHRR, MODIS), 
is often used to guide subsequent analysis with higher spatial resolution (Siegert and 
Hoffmann 2000).

Thermal imaging is often conducted at times when the contrast with the ambient 
air or ground temperature is maximized (e.g., at night) to improve the detection of 
subtle thermal differences (Spichtinger et al. 2004). Generally, mapping of hot spots 
yields a map of points where heat was greater than normal, but the concept has been 
extended to predict the areal extent of a fire (Hessl et al. 2007) based on interpola-
tion between points or extrapolation beyond the points to generate boundaries that 
enclose the mapped hot spots (i.e., fire perimeters). That is, mapping of thermal 
hotspots can extend the analysis beyond instantaneous conditions. Pozo et al. (1997) 
assessed the thermal regimes in successive images and used the changes to map the 
growth of fires and ultimately produce maps of a burned area. Locating hot spots 
generally relies on thermal measurements, with the positions identified for optically 
bright cells or areas in satellite images or air photos. The thermal images often pro-
duce better results than optical approaches, since smoke and haze generated by a fire 
can obscure the position of hot spots in optical approaches.

Although point mapping can be used to identify the locations of instantaneous or 
short-term phenomena at appropriate scales, the points are also commonly used to 
identify larger areal features at scales that cover larger areas. In this case, the points 
become indicators of larger phenomena.

�Area-Based Mapping

Area-based mapping can be achieved in many ways, particularly when classifying 
gridded data such as satellite images or scanned aerial photographs. Although sim-
ple image classification algorithms that rely on discrimination of differences in per-
pixel spectral or tonal density are a straightforward option, more sophisticated 
options exist. Examples include methods that rely on “region growing” (Kettig and 
Landgrebe 1976), in which an area is defined moving outwards from a central point 
based on calculation of the degree of homogeneity; when the degree of homogene-
ity of the enclosed area decreases beyond a certain threshold value, the area stops 
growing (Hirata and Takahashi 2011). Such an approach has become part of the 
evolving group of methods for inventories of individual tree crowns (Breidenbach 
et al. 2010). Depending on the spatial resolution and the scale of the data acquisi-
tion, an individual tree crown can be considered as a homogeneous unit that forms 
the basis of a segmentation operation (in which the goal is to divide an image into 
individual components, such as trees) and classification (to define the characteristics 
of those components). Jakubowski et al. (2013) compared vector- and raster-based 
segmentation methods to delineate the crowns of individual trees based on point 
cloud data generated by a light detection and ranging (LiDAR) scanner and canopy 
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height models. (Here, for simplicity, we define raster data as gridded collections of 
point data, and vector data as collections of lines. Both types of data can be used to 
define an area, as in a cluster of points or the region inside a boundary line, respec-
tively.) Several examples in the literature identify combinations of methods (i.e., 
hybrid methods) for mapping complex dynamic features. In this chapter, we focus 
on examples that relate to wildfire mapping. For example, Fraser et al. (2000) used 
a combination of changes in the normalized-difference vegetation index (NDVI), 
statistical thresholds, clustering, and filtering to determine the area of a boreal fire 
and map its perimeter. Holden et al. (2005) used a series of spectral indices to map 
fires and then compare them with the rudimentary boundaries presented in fire 
atlases.

Remote sensing technologies that represent a wide spectrum of sensors, wave-
length sensitivities, orbital characteristics, and resolutions have been used to map 
both active fires and footprints of extinguished fires in forest landscapes (Remmel 
and Perera 2001; Merino-de-Miguel et al. 2010; Oliva et al. 2011; Schroeder et al. 
2011; Ruiz et al. 2012b). Yet despite decades of research and development in this 
domain, no clear approach has emerged as inherently superior. The enduring use of 
a variety of approaches to mapping likely has as much to do with the many different 
reasons for performing the mapping as it does with the rich availability of (or access 
to) data and the complexity of the landscapes to be mapped. Nonetheless, there have 
been numerous attempts to automate and standardize the methodology, coupled 
with arguments for using specific spectral indices such as NDVI (Kasischke and 
French 1995) or the differenced normalized burn ratio (Murphy et al. 2008), and 
studies that compare satellite-mapped fires with hand-digitized images or other ref-
erence data have continued to emerge (Remmel and Perera 2002; Holden et  al. 
2005).

Fires are dynamic (they change over time), but eventually they extinguish. 
Simultaneously, landscapes are dynamic because of biomass accumulation (e.g., 
forest growth), but fire disturbance regimes make them even more dynamic. Forest 
landscapes are mapped over decades to monitor disturbances and trends and to 
allow improved consistency in their mapping. Although the remote-mapping tradi-
tion stems from older photogrammetric methods devised for use in forest inventory 
(Leckie and Gillis 1995) or ecosystem mapping (Baker et al. 1995), much of the 
satellite-based effort has focused on remote boreal forests where field access is dif-
ficult and wildfire disturbances are both numerous and extensive (Kasischke et al. 
1993). Much of the effort has relied on data with coarse spatial resolution but cover-
age of wide areas to minimize the need to create image mosaics from a series of 
smaller images (French et al. 1995), with a specific emphasis on detecting changes 
to vegetation indices such as NDVI (Remmel and Perera 2001). Other researchers 
have used multiple seasons of satellite data to detect NDVI changes for identifying 
wildfire disturbances (Kasischke and French 1995). Efforts using imaging radar 
(Bourgeau-Chavez et al. 1997, 2002) are also finding a niche use due to the ability 
of this technology to detect differences in surface roughness (which affects the 
image texture), soil moisture (due to radar being affected by soil dielectric proper-
ties), and atmospheric effects (e.g., clouds, aerosols, and fine particulate material).
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�Interfaces Between Burned and Unburned Areas

As we noted earlier, mapping often begins with point data; these are considered to 
be zero-dimensional (0D) features because they do not extend in any dimension 
from a given point and therefore have no length, area, or volume. But it is also pos-
sible to directly measure and map features that extend in one dimension (1D fea-
tures), thereby creating lines that have length but no area or volume. If those lines 
are extended far enough to enclose an area, they produce a two-dimensional (2D) 
feature that has a length in each dimension and an area, but no volume. Three-
dimensional (3D) features have length in each dimension, but they also have a sur-
face area (both for the whole surface and for individual facets of that surface), a 
projected area (based on the cross section of the object), and a volume, and each 
facet of the feature represents a 2D surface with its own properties. Lines (1D fea-
tures) often represent interfaces between adjacent areas; thus, they may be either 
sharp demarcations (e.g., the stumps that represent the last row of harvested trees in 
a plantation) or 2D transitional areas that have a width, and can represent land cover 
gradients and transitions. Identifying such interfaces requires examination of the 
available data to detect a substantial contrast between neighboring cells in a grid (or 
cells separated by longer distances) with respect to some measured parameter value 
(or combination of values). The contrast is used to decide whether two areas with 
significantly different characteristics exist; in that case, a boundary should exist at 
the specified location or range of locations between them.

The spatial resolution, data format, classification scheme, and method for assess-
ing whether a boundary exists all affect whether a boundary will be identified. This 
approach is fundamentally and theoretically different from an area-centric approach, 
in which homogeneous regions are usually defined by growing outward from a cen-
tral point until the underlying characteristics change so much that they can no lon-
ger be considered homogeneous; at that point, new area stops being added and a 
boundary is considered to exist at that location. In mapping of boundaries, the con-
trasts are identified first and may eventually enclose homogeneous regions or sim-
ply identify linear features within the landscape matrix that identify regions with 
structurally different characteristics.

The remote-sensing and image-processing literature refers to searches for linear 
elements as “edge detection” (Heath et al. 1998). Edge detection algorithms can take 
several forms, including the use of thresholds applied to images that record the high-
frequency components of the image to identify areas with substantial rates of change 
between adjacent pixels; the use of Laplacian and Sobel filtering (Gonzalez and 
Woods 2008), which seeks to emphasize contrasts between neighbors; and the use of 
wombling, a technique for identifying points or edges where the rate of change in 
characteristics is particularly high. Within the ecological literature, categorical and 
lattice wombling (Fortin 1994; Fortin 1999; Philibert et al. 2008; Oden et al. 2010) 
have gained substantial traction due to their ability to assess the impact of spatial scale 
and intra-patch heterogeneity. The lattice wombling approach is particularly favored 
due to its simplicity. Wombling involves fitting a plane through a 2 × 2 matrix of cells 
that exist within a larger grid to identify potential boundaries (Fig. 3) and then apply-
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ing statistical analyses to assess the significance of the slope (rate of change between 
adjacent cells) and identify the presence of a true local contrast or edge (Hall and 
Maruca 2001). By altering the spatial resolution (e.g., aggregating cells), the com-
puted slopes can provide a cross-scale analysis. Boots (2001) developed the theoreti-
cal background for using local statistics to map the dominant boundaries between 
mapped polygons and their surroundings across multiple scales.

Increasingly modern modes of fire perimeter mapping use the global positioning 
system (GPS), which relies on a constellation of satellites whose real-time positions 
are precisely known and that broadcast unique signals that can be interpreted by 
receivers at or near the Earth’s surface. The lag between the time of each emitted satel-
lite signal and the reference time recorded by the receiver is used to compute the dis-
tance from each satellite to the receiver. The distance between the satellite and the 
receiver represents the radius of a sphere centered on each satellite; the intersections 
of the spheres from multiple satellites with the sphere that represents the Earth’s sur-
face (“trilateration”) identify a unique point on the Earth’s surface that corresponds to 
the position of the receiver. This position is represented by a coordinate pair (or a 
triplet if elevation is also calculated) that can be subsequently mapped. By collecting 
positional data continuously as the receiver moves along the perimeter of a surface 
feature such as a fire footprint (i.e., the interface between burned and unburned trees), 
a researcher establishes a collection of positions that can be connected by line seg-
ments to form a line with multiple vertices; when that line is closed by returning to the 
starting point of the survey, it forms a polygon that encloses the area of interest and 
defines the perimeter of the fire footprint. Note that although this approach is possible, 
it may not be feasible; in practice, difficulty of access to remote sites or sites with dif-
ficult terrain conditions often makes it more of a theoretical possibility than a rou-
tinely implemented methodology (Gillis and Leckie 1996).

Even in a situation where an extinguished fire’s perimeter could be walked with 
a GPS receiver or sketched onto a map of the region, accuracy could still be prob-
lematic. Walking the perimeter can be very difficult if the terrain is challenging, as 
in the case when there are many fallen trees after a fire, since the fallen trees often 
create a tangle of logs and branches that intertwine at multiple heights and make 

Fig. 3  Lattice wombling is used to identify rates of change across an image. Here, the technique 
uses (left) a 2 × 2 grid of cells (black square) within a larger grid, and (right) calculates the slope 
of a plane (the grey rectangle) that connects the centers of the two halves of the 2 × 2 grid. The 
black square is then moved one position to the right and the slope calculation is repeated. The 
approach can be used across scales (by changing the number of cells in the grid) to detect potential 
interfaces (boundaries). Reconstructed from Fortin (1999)
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walking nearly impossible (Fig. 4). Simply traversing the perimeter can be difficult 
enough; attempting to discriminate the boundary’s location and simultaneously fol-
lowing it is a much more difficult task. When walking a fire perimeter is difficult 
due to obstacles, the mapped boundary will be horizontally displaced from its true 
position. In addition, if the surveyor walks at different speeds along different parts 
of the boundary, the horizontal spacing between points (i.e., between the vertices 
that define the boundary’s position) will vary since the temporal measurement 
interval remains consistent, leading to inconsistent spatial variation in the map’s 
precision. Furthermore, when the surveyor stops (or begins to move very slowly) 
while continuing to collect positional measurements, the inherent horizontal posi-
tional error within GPS positioning can exceed the vertex spacing and produce ver-
tices that loop boundary lines back on themselves, thereby causing a variety of 
topological errors that need to be eliminated prior to use of the data.

When a boundary is defined as a single “object” defined by a contiguous set of 
lines that connect vertices, this represents an object-based view of reality. 
Unfortunately, this perspective forces us to represent the mapped entities as sets of 
discrete points, lines, and areas to form nonoverlapping spatial units that are sepa-
rated by crisp boundaries. This can be misleading because fires (and geographical 
phenomena in general) show inherent spatial variation, and boundaries are not 
always clearly demarcated, as shown in Fig. 4. Boundaries of natural phenomena 
are often better described as being “fuzzy,” a descriptive term that was chosen to 

Fig. 4  Fallen trees and debris along the interface between a boreal wildfire’s footprint and the 
surrounding forest in northwestern Ontario show the difficulty encountered when trying to traverse 
the fire’s perimeter on foot. In addition, the presence of unburned trees standing among burned 
trees shows that the boundary is sometimes “fuzzy” and difficult to precisely define. Photo by 
Tarmo Remmel
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distinguish these boundaries from the “crisp” geometric edges of human-made 
objects (see Chapter “Fuzzy Classification of Vegetation for Ecosystem Mapping”). 
In this sense, fuzzy means diffuse, uncertain, or extending over an appreciable dis-
tance, with categorization of whether any given point belongs to one side or the 
other of the boundary defined using a spatially varying membership function (Zhang 
and Stuart 2001). It has been demonstrated that forest patch interiors and interior 
edges (“perforations”) differ in many respects, including species composition, stem 
diameter, and shrub height (de Casanave et al. 1995), and that the implications of 
these differences for ecological fragmentation (in terms of the abundance of transi-
tions called “ecotones” between ecosystems) can be substantial; thus, interpreting 
these conditions from mapped boundaries can be biased if the interfaces are always 
considered to be abrupt and absolute.

In geographical information system software, it is much more convenient to rep-
resent boundaries as absolute lines. Given this tradition, ecotones, fuzzy boundar-
ies, and inherent complexity of patch edges have often been oversimplified. 
Although tools and approaches for handling fuzzy boundaries exist (Wang and Hall 
1996), their application requires more data than many practitioners are willing to 
obtain and more effort than they wish to expend. Even relatively simplistic diagnos-
tic methods, such as the implementation of “epsilon bands” that characterize the 
fuzziness of line segments (Dunn et  al. 1990), are not commonly implemented. 
Methods have emerged that indirectly consider positional errors by considering sta-
tistics on the overlap between mapped entities (Remmel and Perera 2002), or by 
assessing mapping errors by classifying mapped elements as either errors of com-
mission or errors of omission (Oliva et al. 2011).

In an attempt to characterize the abruptness of a wildfire interface, Remmel and 
Perera (2009) counted the neighboring cells that belonged to the fire footprint at each 
location using a spatial kernel (i.e., a fixed-size area that was iteratively moved through 
a grid that represents the landscape). This approach led to computation of a member-
ship probability at each pixel; this represented the probability that a given pixel 
belonged to the wildfire footprint class or the unburned class. Transects measured 
across the interface between the unburned matrix in which the fire occurred and the 
burned wildfire footprint allowed the membership strength to be plotted as a function 
of distance along the transect. In this analysis, steep slopes along subsets of these plots 
represented more abrupt interfaces, and were generally found where fires had burned 
right up to the edge of nonburnable land cover types (e.g., bedrock), whereas gradual 
slopes represented locations where the fire slowly burned out to form a more gradual 
transition zone. The interface’s width and abruptness were clearly influenced by the 
fire’s behavior and can thus be mapped as properties of the interface itself.

�Simplification

The mapping of complex entities, such as wildfires, generally requires some level of 
generalization and simplification; if nothing else, the map must be smaller than the 
real-world area it represents, and that requires the elimination of some amount of 
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detail. Wildfire events can be represented as simplified scale-independent objects 
for which a perimeter encompasses a singular entity (the footprint), implying that 
all of the area within that perimeter is burned and that the internal state is homoge-
neous. However, it has been well documented (Perera and Buse 2014) that these 
assumptions are not true and that wildfires contain a rich mixture of live and dead 
materials that have been heterogeneously affected by the fire. Similarly, the detail in 
which wildfire interfaces are recorded can vary substantially among practitioners 
and among the methods used to collect the data used for mapping.

For larger and less accessible fires, aerial mapping from fixed-wing aircraft has 
been implemented to generate maps that depict the location of the fires and their 
boundaries. Aerial mapping is typically conduced in one of the two ways: (1) an 
observer draws the boundaries onto a topographic map or photograph of the area 
(nowadays, perhaps displayed on a tablet computer equipped with a stylus), or (2) 
the observation platform (usually an aircraft) flies above the approximate perim-
eter while collecting GPS point data. The former method requires the observer to 
quickly assess the correspondence between the observed landscape and the 
medium onto which spatial data is being recorded; the latter requires fast reflexes 
of the pilot to ensure that the aircraft closely follows the perimeter. Obviously, 
larger and more distinct fires with clear and abrupt boundaries will be easier to 
map using both methods. However, aerial views are not necessarily effective for 
mapping local irregularities and highly detailed shapes of the burn interface. 
Helicopters offer some improvements over fixed-wing aircraft, since they allow 
slower travel along the boundary and therefore permit greater detail. However, 
helicopter time is substantially more expensive, and financial considerations are 
often more important than increased precision if precision is not absolutely 
necessary.

Regardless of the mapping platform, larger features will be mapped more accu-
rately, since flying along (or even identifying) boundaries will be easier when the 
boundaries pass through vast tracts of land rather than through subtle and irregular 
local patterns. Moreover, general sketches of fire boundaries created from fast-
moving aircraft tend to record more simplistic boundaries and areas than do methods 
that follow boundaries with a GPS unit that automatically collects approximately 
one geographic location each second. The latter approach may falsely increase the 
perceived level of detail due to the number of vertex positions that are collected and 
used to define the interface line; in a digital representation, these differences are 
difficult to discern without additional contextual information.

Detailed lines created in this way can be simplified by using well-known 
algorithms such as the Douglas–Peucker line-simplification algorithm or its 
derivatives (Wu and Marquez 2003). This results in boundary lines with fewer 
vertices and segments, but also distorts the representation because the elimina-
tion of detail is based on mathematical simplification rather than on actual mea-
surements, and the loss of detail may be problematic for some applications 
(Smith 2010). Here again, the consideration of an appropriate and consistent 
scale for mapping complex landscape features becomes inescapably tied to the 
data collection methods.
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�Scale Dependence

Whether mapping is conducted by sketching visual interpretations of the landscape 
while flying over an area affected by a wildfire or by collecting airborne or even 
field-level GPS positional information related to the boundary location, numerous 
factors will influence the scale of the data acquisition or the final representational 
scale of the maps that are produced. Variation in scale will lead to differences in 
interpretation, in utility, and in what can be depicted by maps. An understanding of 
scale and the scale dependence of mapping based on decisions made by the cartog-
rapher is fundamental to having a solid foundation in forest landscape mapping.

Scale itself can be considered from multiple perspectives, including the carto-
graphic scale of sketched or vector data described in the previous section, the spatial 
resolution (grain size) of remote-sensing data, the minimum mapping unit (MMU, 
which represents the smallest resolvable unit on the ground) in aerial photographs, 
or the spacing between adjacent GPS positional markers. In Canada, National 
Topographic Series base maps (https://www.nrcan.gc.ca/earth-sciences/geography/
topographic-information/maps/9767) are produced at 1:250,000 and 1:50,000 (car-
tographic) scales. Although local maps are sometimes produced at 1:20,000 or even 
1:10,000 scales, even large map sheets express relatively small spatial extents and 
thus are not used for mapping wildfires with vast extents (which would often extend 
beyond a single map sheet). The cartographic scale of base map chosen by an aerial 
observer above a wildfire footprint will substantially affect the resulting mapping 
scale. Similarly, the abruptness of changes in the boundary and the observer’s abil-
ity to match the real landscape they are observing to the topographic features of the 
map will influence how accurately the footprint can be sketched and the level of 
detail recorded.

In automated GPS data collection, the acquisition of positions (points) is done at 
a fixed time interval. Thus, if the GPS platform or surveyor changes velocity or 
altitude, then the spacing of points will change, thereby affecting the mapping scale, 
and the line’s complexity will change in response. Such variations in velocity will 
also affect the MMU, and will therefore affect the area and perimeter measurements 
being made. Fires mapped with different scales cannot be directly compared, other 
than in general terms, and will require some form of normalization to make the two 
images easier to compare. For example, Remmel and Perera (2001) coarsened hand-
digitized wildfire perimeters by rasterizing them at a spatial resolution that would 
override any local effects that resulted primarily from the image scale; this facili-
tated comparisons with the same fire footprint mapped using low spatial resolution 
AVHRR satellite images.

As the scales of measurement and mapping change, the effects on the MMU, 
spacing between points, and spatial resolution will also change. Assuming, for the 
sake of simplicity, that data is represented in raster format (i.e., as gridded points), 
then a coarser spatial resolution will result in a smoother surface, whereas a finer 
spatial resolution will result in a surface that becomes increasingly ragged and het-
erogeneous as the resolution increases. There will always be a trade-off between 
spatial resolution and the level of observable detail; the increased image heteroge-
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neity associated with higher spatial resolution can cause processing considerations 
that would otherwise be avoided. For example, greater storage capacity and faster 
computers are required to manipulate the larger amounts of data generated at high 
resolutions. A simple doubling of the spatial resolution will quadruple the number 
of cells and hence the storage and processing requirements. Of greater concern are 
the influences on parameters such as area, perimeter, and land-use types that result 
from changes in the MMU or the spatial resolution.

Using data with coarser spatial resolution than the phenomenon of interest (e.g., 
a poorly selected MMU) can conceal variations such as multiple land use or cover 
types residing within the area represented by a single pixel (i.e., a mixed pixel; 
Cracknell 1998). In such cases, it’s necessary to “unmix” the mixed pixels in end-
member analyses (Yu et al. 2017), which are intended to reveal where one land use 
or cover type transitions into another, to make sense of otherwise potentially con-
fusing information of multiple land cover types inhabiting the area of a single pixel. 
Although such techniques are powerful ways to improve the apparent resolution of 
the data, they are unable to reveal features that cannot be inferred without additional 
data; for example, in images with a pixel size of 250 m (e.g., MODIS satellite data), 
a narrow stream that runs through vegetated pixels will be invisible, and its presence 
cannot be inferred unless the vegetation type in those pixels is strongly associated 
with riparian habitats. It is also important to consider the choice of what will consti-
tute an edge and how that definition will affect the assessment of a landscape. For 
example, Zipperer (1993) notes the influence of spatial processes on the ratio of 
interior (core) forest areas to edges (ecotones); detection of these relationships will 
be affected by the choice of scale. Mapping approaches work for a given scale, a 
given goal, and a given method, but the resulting products and their interpretations 
are not necessarily globally accurate.

The English mathematician Lewis Fry Richardson demonstrated that the mea-
sured length of natural features (e.g., coastlines) increases without limit as the reso-
lution of the measurement increases; this is called the Richardson effect (Richardson 
1961). When the patterns can be defined mathematically by an equation that reveals 
self-similarity at all scales, the pattern is described as fractal. One way to describe 
this effect is by means of fractal analysis (McAlpine and Wotton 1993; Sun and 
Southworth 2013). In particular, a parameter called the “fractal dimension” (FD) 
can be mathematically computed for any pattern as a ratio that quantifies the change 
in complexity of the pattern in response to a change in the scale at which it was 
measured (Mandelbrot 1967). From a cartographic perspective, this leads to the 
seemingly paradoxical condition in which the measured length is directly influ-
enced by the MMU or the spatial resolution (Fig.  5). Thus, calculations (e.g., 
perimeter-to-area ratios), comparisons between or among data collected or pre-
sented at differing scales, and conclusions based on these calculations or compari-
sons may at best be inaccurate (because they change as the scale changes) and at 
worst completely meaningless.

FD values can be computed when self-similarity is evident in a boundary, and 
they fall somewhere between 1D and 2D representations. Thus, as a line becomes 
more complex and tends to contain self-similar pattern elements at multiple scales, 
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the fractal dimension increases toward that of a planar shape. Simpler features 
approach and approximate a straight line. This fractal notion can be extended from 
horizontal to vertical dimensions and used to characterize the complexity of land-
scape features. Figure 5 demonstrates the partitioning of space (and volume) into 
smaller but identical segments, highlighting a fractal property but also the effects of 
the MMU or the scale of representation.

Imagine a coastline, the edge of a lake, or the boundary of a wildfire footprint; in 
each case, there are elements of the pattern (the undulations, incisions, or protru-
sions) that repeat at multiple spatial scales. Thus, wildfire disturbances in boreal 
landscapes tend to produce complex fractal patterns. Replicating, measuring, and 
quantifying such landscape entities create many complexities.

The boundary between burned and unburned locations increases in complexity 
as we examine it more closely: it changes from being a simple line along which all 
boundary characteristics remain consistent as the boundary length increases but 

N = 3 N = 9 N = 27

i = 3

i = 2

i = 1

N = 2 N = 4 N = 8

N = 1 N = 1 N = 1

D = 1 D = 2 D = 3

Fig. 5  An illustration of geometric dimensions. D is the geometric dimension, i is the number of 
repetitions of the basic unit (here, a line segment for D = 1, a square for D = 2, and a cube for 
D = 3), and N is the number of units used to create the shape
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changes to a more complex pattern (perhaps a fractal) as the level of mapping 
becomes more detailed. As a boundary winds across a landscape to separate dis-
turbed from undisturbed locations, the stand and terrain conditions (e.g., burn inten-
sity or topographic variability) that define the boundary are likely to vary. The 
concept of the MMU is relevant, since the spatial resolution (for raster data) or the 
vertex spacing (for vector data) will alter the level of spatial detail available to rep-
resent the boundary. The selection of an appropriate MMU will depend on the abil-
ity to measure the boundary at a specific level of detail, the reasons for mapping the 
boundary, and the data-handling capabilities of the surveyor. Often, when the com-
plexity of the line is very high but the quality of the data is suspect, the line can be 
simplified by implementing an appropriate algorithm (Cromley 1991; Shi and 
Cheung 2006; Park and Yu 2011). Such algorithms simplify lines by eliminating 
inessential or misleading vertices, often by enforcing a minimum spacing between 
vertices along the boundary.

The abruptness of a boundary, which can be measured at any given point along 
the boundary, is both a defining property and an emergent property of the boundary. 
On the one hand, a high abruptness indicates that a change exists at that location and 
that a boundary should exist; on the other hand, the scale of the mapping will deter-
mine the abruptness that is measured at any given location.

The effects of scale on mapping and representation have been extensively stud-
ied (Turner 2005), but no universal or consistent understanding of its effect on pat-
terns or processes has been determined (Rouget et al. 2006; Peters et al. 2008). It is 
clear however that as the spatial scale changes, this produces noticeable effects on 
the area, perimeter, and thematic components (e.g., land-use classes) of maps. 
Remmel (2015) describes the ShrinkShape2 method, which incrementally shrinks a 
planar shape that was created to enclose a region of interest in a map, and then 
records the area, perimeter, and number of contiguous parts created from the origi-
nal planar shape as a result of this change. Once the shape has been eliminated (i.e., 
reduced to the point of extinction) by successive iterations, the software can display 
the changes in the area, perimeter, and counts of the shape’s features to provide 
detailed structural information about the shape. The goal of this analysis is to char-
acterize polygon shape complexity, and scales at which this complexity change.

Simple shapes tend to decrease in area and perimeter in a relatively smooth and 
monotonic fashion (i.e., there are no abrupt changes); irregular shapes will be char-
acterized by more complex functions that describe the decrease (e.g., slopes can 
change rapidly between iterations of the shrinking). Planar shapes that have lobe-
like characteristics (i.e., that have protrusions from the main body of the shape) will 
reveal pinch-points, which are areas (usually the “stem” of a lobe) that narrow until 
they disappear, causing the original shape to split into two or more parts. This can 
be seen in a plot of the frequency of contiguous parts during the shrinking process; 
an increase in the number of separate parts provides important clues to the shape’s 
overall complexity, particularly with respect to the existence of structural lobes. 
These characteristics are all scale dependent; the slopes (rates of change) and fre-
quencies of characteristics such as the number of parts will change as the amount of 
shrinkage is adjusted. Therefore, the spatial scale at which certain characteristics 
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manifest themselves will be revealed by differences in the plots of slopes and fre-
quencies over a range of shrinking distance settings. Topographic settings strongly 
influence the shapes of 2D spatial processes such as wildfire that act on landscapes, 
and thus the linkages among area, perimeter, and their associations with scaling will 
be affected by topography; however, although this hypothesis is logical, it has not 
yet been demonstrated conclusively in the field.

�Wildfires as Discrete and Complex Objects

As we described earlier in section “Initiation and Growth”, wildfire formation is a 
highly stochastic and complex process that results in spatially heterogeneous and 
complex objects. However, it is common in mapping approaches to perceive and 
represent wildfires as vector polygons associated with various attributes (e.g., fire 
intensity). The first step in such an analysis is to demarcate the fire’s perimeter and 
then denote the internal composition of those polygons as “burned.” In this section, 
we explain why that approach oversimplifies the complexity of fire footprints.

�The Outer Edge of a Wildfire is Scale Dependent

The wildfire interface (i.e., the boundary between burned and unburned areas) forms 
when spread of the fire stops due to local extinction. It is logical to perceive the 
outermost edge of a wildfire as its “perimeter,” but some characteristics of wildfire 
behavior complicate this choice. First, most wildfires, and especially the largest and 
most intense fires, create satellite fires a few meters to several kilometers from the 
main body due to spotting. Unlike the most distant spot fires, which form spatially 
distinct entities, many spot fires arise close to the main body of the wildfire, making 
it challenging to determine the outermost edge of the main fire perimeter: Should 
these spot fires be delineated as part of the main fire, or as separate fires? The answer 
depends, in part, on the scale at which we ask the question (Fig. 6). Figure 7 sum-
marizes the visual data in Fig. 6 to show the relationships between the spatial reso-
lution and the corresponding number and area of the spot fires and the total area of 
the fire footprint. In such instances, the location and properties of the fire perimeter, 
as well as the area of the wildfire polygon demarcated using that perimeter, will vary 
considerably in response to changes in the spatial resolution of the mapping 
exercise.

A second problem is that a spreading wildfire will not necessarily be extin-
guished abruptly (i.e., with a sharp spatial boundary) except at locations where fuel 
is absent or when burning conditions suddenly change (e.g., during a heavy rain-
fall). Even then, spotting could occur when the fire jumps over fire breaks such as 
bodies of water, exposed bedrock, and built-up areas. Instead, most spreading wild-
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fires will extinguish gradually over a certain distance, resulting in a gradient from 
completely burned, through partially burned, to unburned (Fig. 8).

When a fire’s interface is fuzzy, the resulting fire perimeter is not a discrete line; 
instead, it becomes a fuzzy line (i.e., a boundary whose width is not crisp or does 
not have a consistent width) whose location will depend on the spatial resolution of 
the mapping (Kim and Cho 1994; Pourghasemi et al. 2016). The fire’s perimeter 
will therefore be scale dependent.

0.40 m 2 m 4 m1 m

8 m 32 m 64 m16 m

128 m 512 m 1024 m256 m

Fig. 6  The same fire footprint depicted at spatial resolutions ranging from 0.4 to 1024 m. In each 
case, estimates of the area, perimeter, number of spot fires, and the area of the spot fires are 
affected. Figure 7 depicts these changes graphically
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�Width of the Ecotone

Ecotones represent regions of transition between ecosystems or between communi-
ties. In the context of wildfire, the ecotone width is defined perpendicular to the 
fire’s boundary. It represents the distance over which the boundary influences the 
landscape characteristics and therefore has a meaningful real-world existence. Over 
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this distance, land cover types and other conditions change sufficiently (from a 
practical or theoretical perspective) to warrant the use of different labels on different 
sides of the boundary. Ecotones can be treated as if they are boundary segments 
with a defined (nonzero) width or as distinct land cover units themselves (if the 
width is large). If we consider the degree to which an area belongs to a land cover 
class as a mathematical function, that function measures the value of some attribute 
(e.g., the proportion of burned stems) relative to the distance from the boundary. 
This membership function can be abrupt, in which case it exhibits a drastic change 
(a crisp transition) over a short distance, or it can occur gradually over a long dis-
tance (a fuzzy transition). However, there can be many different functional forms 
between these extremes. In terms of the slope (rate of change) of the two member-
ship functions, a crisp transition may be represented by a vertical line, with an 
undefined slope, whereas a horizontal line with a slope of zero would represent no 
change; a fuzzy transition would have a slope somewhere between these extremes. 
Here, a range of possibilities exist, from shallow to steep simple linear slopes to 
more complex (e.g., logarithmic or logistic) functions. Fuzzy transitions also blur 
the distinction between a weak boundary and no boundary. Ecologically, the pres-
ence and characteristics of ecotones can have an important meaning; mapping them 
therefore requires an appropriate spatial resolution coupled with a technique that 
can detect subtle land cover state changes across the landscape at that scale.

Fig. 8  Wildfire membership strength (white = high probability of having been burned, black = low 
probability) within the landscape mosaic (tan), with a lake (blue) acting as a firebreak. The transect 
through the burned area (red line) represents the probability of vegetation having been burned (i.e., 
the strength of membership in the burned class), which decreases moving from inside the wildfire 
(top left) toward the lake. The inset graph shows the changes in membership strength along this 
transect. This function is irregular and captures the complexity of the interface between the burned 
and unburned areas
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�Internal Heterogeneity

The mapped object that is bounded by the fire’s perimeter can only rarely be consid-
ered as a simple and uniform entity. It will be composed of at least two thematic 
classes: unburned land outside the footprint and burned land inside. The unburned 
class is not homogeneous: in addition to including fuel that has been partially burned 
to some extent, it will be composed of areas with no fuel (e.g., bodies of water, 
bedrock) and areas with flammable fuel but with no evidence of combustion. 
Potentially flammable fuel may have escaped combustion within a wildfire because 
of its high moisture content or because it was protected from the fire’s front by bar-
riers, shifts in the wind, precipitation, or any of many other factors that lead to vari-
able fire behavior. Consequently, both the composition and the properties of 
unburned areas within a wildfire will be complex and heterogeneous.

The “burned” class includes the area with evidence of combustion, and will also 
be heterogeneous because the degree of combustion will range from complete (e.g., 
all biomass consumed by the fire) to partial (e.g., only a fraction of the biomass 
consumed by the fire). This heterogeneity results initially from the type, arrange-
ment, and dryness of the fuel and the environmental conditions (especially wind) 
and their local interactions between fire intensity and the susceptibility of a given 
fuel to fire. As fires become increasingly intense, the fire itself becomes a greater 
factor in its own propagation. Furthermore, the variability and heterogeneity over 
time and space of these factors lead to stochastic effects that make fire behavior dif-
ficult to predict at all scales. Whether the degree of combustion is expressed as burn 
severity, fire damage, or vegetation mortality, it will vary spatially (Keeley 2009; 
Araya et al. 2016a).

When juxtaposed, the areas with different degrees of combustion form a com-
plex and heterogeneous spatial mosaic within the wildfire’s footprint, embedded 
within the spatial mosaic formed by the diversity of unburned areas (Fig. 9). As is 
the case with fire perimeters, the internal heterogeneity of a wildfire will also be 
scale dependent, and spatial properties will change when the spatial resolution of 
the representation changes.

�Area Complexity

The area recorded for any mapped areal feature will be directly related to the size of 
the MMU. For raster representations, the MMU is often equivalent to the spatial 
resolution (pixel size), since it is the smallest resolvable unit that can be mapped. 
For vector representations, this concept is somewhat more complex, as it relates to 
a number of controlling factors, including the cartographic scale of the mapping and 
representation, the minimum spacing between vertices along linear features, and the 
attribution resolution that will be used for labeling mapped features. Both for raster 
and vector data, increasing the MMU (making the resolution coarser) will cause a 
loss of detail, resulting in a more generalized representation of the characteristics of 
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Fig. 9  Images showing the internal heterogeneity of a northwestern Ontario, Canada, wildfire and 
the internal complexity based only on the burn severity. The top panel shows the near-infrared band 
from the Ikonos satellite, with 3.2 m spatial resolution; the lower panel classifies the burn severity 
into three categories based on supervised image classification
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most areas. Thus, selecting an appropriate MMU is critically important; to reduce 
information losses due to resampling, the MMU is generally selected to be close to 
the original data resolution (Knight and Lunetta 2003). The choice of an unsuitable 
MMU leads to errors in classifying the land cover composition, as well as to over- or 
underestimation of the diversity of land use and cover types; the problem is particu-
larly serious for rare classes (Saura 2002). The choice of MMU also affects the 
metrics that are used to quantify landscape patterns (Remmel and Csillag 2003; 
Baldwin et al. 2004).

The complexity of a fire footprint is most clearly exemplified by the presence of 
fully contained residual patches of unburned vegetation. These patches can be visu-
alized as holes or gaps within the matrix of burned areas inside the footprint, and 
typically comprise vegetated land, wetlands, open water, or exposed soil and rock. 
Although the identification and description of these residual patches can be scale 
and representation dependent (Perera et  al. 2004; Ostapowicz et  al. 2008), their 
boundaries are commonly referred to as “perforations” in the literature pertaining to 
spatial patterns (Vogt et al. 2007) to distinguish them from traditional edges such as 
those that form the perimeter of the overall footprint. As in the case of the individual 
spatial units that form the footprint, the individual residual patches can be further 
described based on their area, boundary, pattern, and geometry.

�Thematic Contrasts

Upon defining a land cover classification scheme with a certain number of classes, 
a fire footprint and its surrounding area can be described using the frequency distri-
bution of these classes. It is also possible to assess whether any land cover types are 
typically adjacent to other land cover types (i.e., whether there is a thematic con-
trast); taken together, the frequency distribution and adjacency relationships charac-
terize both the composition and the configuration of the land cover types at or near 
a fire site. It is possible to assess the relative frequencies of specific contrasts 
between classes within the fire’s footprint, such as defining the interfaces between 
burned and unburned pixels. These contrasts can be extended to describe the fire’s 
interface based on the relationships among land cover classes, topographic settings, 
site characteristics, or proximity to unburnable features, as well as connections 
among common land cover types.

Transects can be established that run through fires and cross their perimeter (as 
in Fig. 8), or a series of concentric rings can be positioned running outward from the 
center of the footprint and past its edge. By examining how the characteristics of the 
land change along the transects or with increasing distance from the fire’s center, we 
can examine changes in the thematic composition and configuration of the footprint 
and surrounding area. Thus, it becomes possible to assess whether the land cover 
composition or specific configurations of classes vary with respect to location. An 
unanswered question related to the composition and configuration of the resulting 
thematic map is whether the residual (unburned) patches within a fire’s footprint 
resemble the “normal” characteristics outside the footprint; that is, it’s unclear how 
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much the residual patches resemble the prefire conditions. Moreover, it’s unclear 
how the composition and configuration of the landscape change with increasing 
distance from the fire’s footprint. Analyzing these patterns can reveal the preference 
of fire for certain landscape structures, or the existence of certain structures that act 
as natural fire breaks.

Current (unpublished) research by the authors is developing a pattern learning 
algorithm capable of measuring and comparing binary landscape maps (i.e., maps 
with two land cover classes) and presenting the resulting compositional and con-
figuration states as conditional probability distributions. Thus, the presence or 
absence of a specified condition (e.g., a land cover class) could be predicted by the 
spatial distribution of land cover types in the surrounding cells of the grid to the 
north, south, east, and west (Table  1). Conditional probabilities of presence and 
absence across all combinations form the expectation for composition and configu-
ration on a landscape. Currently, this is only done in the four cardinal directions to 
reduce the demand on computational resources, but the approach could be extended 
to eight directions to include the northeast, southeast, southwest, and northwest 
directions. This approach is applicable at any scale, transferable to any landscape, 
and able to record numerous configurational blocks that combine to form higher 
order landscape patterns. The downfall of this approach is twofold: first, the large 
number of possible configurations means a high number of parameters and hence 
inherent complexity in summarizing the pattern, and second, it increases the likeli-
hood of gaps in the distribution if sample sizes are small (e.g., not all pattern com-
binations exist in a landscape, meaning that cover types with near-zero probabilities 
lead to limitations in using the data). This approach uses a focal window of four 

Table 1  Conditional probability distributions for the configuration of a composition class given 
the presence (1) or absence (0) of the same class in a given compass direction, summarized across 
all combinations

North South West East P (presence of class 0) P (presence of class 1)

0 0 0 0 0.0282 0.0120
0 0 0 1 0.0564 0.0334
0 0 1 0 0.0098 0.0440
0 0 1 1 0.0016 0.0063
0 1 0 0 0.0581 0.0093
0 1 0 1 0.0591 0.0019
0 1 1 0 0.0101 0.0196
0 1 1 1 0.0005 0.0469
1 0 0 0 0.0540 0.0581
1 0 0 1 0.0417 0.0047
1 0 1 0 0.0096 0.0431
1 0 1 1 0.0387 0.0461
1 1 0 0 0.0209 0.0590
1 1 0 1 0.0597 0.0467
1 1 1 0 0.0005 0.0380
1 1 1 1 0.0308 0.0513
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orthogonal neighbors (north, south, east, and west) centered on each cell within a 
data layer. The values in each compass direction represent frequencies that can be 
converted into conditional probabilities (P) for the presence or absence of the same 
class given that the neighboring configuration is known.

The spatial distribution of land cover types will vary across spatial scales because 
some types will be smaller than the pixels and therefore not included in the analysis 
or not visible. The distribution will also be influenced by numerous factors. These 
include biological competition for nutrients, moisture, and sunlight; the formation 
of symbiotic relationships; the availability of seed and other propagules; and topog-
raphy. As a result of these influences, certain species will colonize specific sites 
more readily than others. Depending on the states of these variables and their inter-
actions, species distributions will evolve into patterns that range from clustered 
(with a high and positive spatial autocorrelation) to randomly dispersed or evenly 
distributed (with a high and negative spatial autocorrelation), and the degree of clus-
tering will depend strongly on the scale of observation. Elkie and Rempel (2001) 
used spatial lacunarity methods (mathematical tools to describe the texture of frac-
tal features or the distribution of “holes” in a map) to identify boreal landscape 
textures along a continuum of patch dispersion in Ontario, a method that uses win-
dows of increasing size, with clustering reassessed at each new size.

Thematic complexity results from a number of land cover types being mapped in 
some configuration within a landscape. Because that configuration can be measured and 
mapped at a range of scales, this can lead to as many representations as there are mea-
surements and scales, potentially creating a different representation at each scale. If the 
measurement framework does not align with the resolution of the actual field data, then 
mixtures of classes may occur within individual cells in gridded or raster data formats. 
To identify these mixtures, various forms of mixture analysis and various object-based 
classifications can be used (Fernandez-Manso et  al. 2009; see also Chapter “Fuzzy 
Classification of Vegetation for Ecosystem Mapping” of this book). As the number of 
thematic classes increases, the possible number of spatial configurations will also 
increase, and landscapes will appear more complex than the same landscape with fewer 
classes. Such differences in thematic complexity make comparisons of patterns between 
disparate representations more complex due to the potential introduction of a bias that 
results from the difference in resolutions. To illustrate this point, consider a scenario in 
which pre-wildfire data on the land cover types and their distribution is available at a 
spatial resolution of 30 m for 21 cover types. If the post-disturbance landscape is mapped 
at a spatial resolution of 4 m and with 14 cover types, the two configurations cannot be 
directly compared. To allow such a comparison, both maps will need to be brought to a 
common spatial resolution and will need to use the same thematic classes.

�Probability of Fire and Other Phenomena

Statistical mapping, which focuses on the probabilities of certain events or proper-
ties, has received much less attention than traditional land cover mapping due to its 
abstract nature (see Chapters “Regression Tree Modeling of Spatial Pattern and 
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Process Interactions” and “Mapping the Abstractions of Forest Landscape Patterns”). 
The thematic representations in land cover maps are highly intuitive, since the labels 
on the map match the physical conditions on the ground. In contrast, statistical maps 
range from descriptive summaries to probabilities, or to frequency and other distri-
butions measured at or near the sites where labels appear in the map; as a result, they 
can be far more abstract than thematic representations. Perhaps the easiest way to 
visualize this is to consider a statistical map layer that summarizes the average 
annual temperature in each cell of a regular grid. If you were to visit that cell, it’s 
unlikely that the temperature displayed for that cell would match the temperature 
during your visit; however, if you visited sufficiently often, you would eventually 
arrive on a day with the right temperature. Here, the mean temperature is a statistical 
summary that describes an expectation over time and not the actual value at a spe-
cific point in time.

Sometimes fire maps are produced by spatially explicit models (Parisien et al. 
2011), and the mapped values represent the probabilities of a particular outcome 
from a process (e.g., the risk of a fire) rather than precise states at a specific time 
(Araya et al. 2016b). Dickson et al. (2006) used this approach to map fire probabili-
ties in northern Arizona, USA. Liu et al. (2013) used this approach to assess wildfire 
susceptibility and risk under different fuel management scenarios within a basin in 
northeastern China. In these examples, the focus was on a map that depicted statisti-
cal probabilities to characterize the potential of some event occurring, rather than 
recording the absolute conditions at any given location at the time of mapping. Such 
representations can identify a landscape’s susceptibility to disturbance or the likeli-
hood of disturbance occurring given a suite of underlying factors (e.g., for fires, the 
Canadian Fire Weather Index system; http://cwfis.cfs.nrcan.gc.ca/background/sum-
mary/fwi). As such, they provide useful data for land management or the develop-
ment of simulation scenarios.

�Standardized Depiction of Wildfires as Discrete Complex 
Objects

As a collection of interacting dynamic processes, wildfire is a driver of landscape 
change that results in new spatial patterns. To begin studying, understanding, and 
mapping these processes, their complexity, and their results, we will propose stan-
dardized terminology for wildfires and aspects of the resulting modified landscape. 
Figure 10 illustrates the effects of a wildfire at a given point in space and time, and 
in the rest of this section, we refer to this illustration to support our proposal of 
standard terms for the various aspects of the affected area.

A fire “event” includes all burned areas (across a range of disturbance intensities) 
caused by a specific disturbance that originates from an external ignition source (e.g., 
lightning), including all unburned areas completely internal to the footprint. Internal 
ignitions, originating from the burning fire itself, could create new fires termed “spot 
fires.” These may merge with the main body of the fire or remain disjoint. In some 
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instances, multiple fire events may merge, thereby creating a single fire footprint and 
eliminating distinct inter-event boundaries. A fire event develops from the set of phys-
ical and direct short-term ecological interactions that affect the landscape during a 
period of burning. The map of a wildfire disturbance includes the area burned and all 
enclosed residual (unburned or partially burned) patches of vegetation along with all 
nearby spot fires that are attributed to the same burning event. In this context, the 
unburned background area in which the fire occurred represents the “matrix” (a term 
from the landscape ecology literature that describes the dominant land cover type in 
an area). The matrix is separated from the burned area by the fire perimeter—the 
interface between the burned and unburned land cover classes. The interface gradient 
represents how abruptly conditions change between the two sides of the interface; as 
we noted earlier, the gradient can occur over a short distance (crisp) or a longer dis-
tance (fuzzy). Perimeters can be either external, in which case they represent the out-
ermost edge of the main fire polygon or polygons (possibly including one or more 
spot fires), or they can be internal, in which case they surround unburned areas within 
the burned area (including residual vegetation and unburnable land cover types).

The footprint can be visualized as the geometric union of the bounding polygons 
of all identified burned areas at the specified mapping scale (including all interior 
unburned patches and residuals) and all spot fire areas. Thus, the footprint is an 

Fire footprint (burned area)

Unburnable land cover type

Residual vegetation

Fire event (all of the burnt 
area resulting primarily from 

a single external ignition, 
and secondarily from 

multiple internal ignitions)

Spot fires

Burned–unburned 
interface

Fire perimeter
(outer interface)

Interface gradient 
(degree of 

abruptness)

Fig. 10  Illustration of a typical wildfire event, which serves as a reference for defining the key 
descriptive terms
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instantaneous concept and is not necessarily spatially contiguous, since some areas 
may escape burning (e.g., if they are protected by an unburnable obstacle such as a 
lake) and since wildfire may also spread by spotting. Thus, footprints represent one 
or more spatial units that preserve the two-dimensional record of a single fire 
through its impacts on the landscape. This footprint (or its components) can be fur-
ther described and quantified based on various spatial and geometric properties, 
such as its area, boundary length, pattern, or shape.

The footprint provides a means by which we can represent the extent of a complex 
process that occurred in both horizontal and vertical dimensions within a defined time 
period as a collection of one or more shapes in a map. The specific details of how these 
shapes are recorded will depend on whether data is represented in raster or vector 
format, and on the spatial scale used to construct the representation. Each decision 
regarding the representation will influence the final form of the footprint.

The choice of a classification scheme for the landscape attributes will influence 
the spatial patterns within the landscape, and hence the complexity of the represen-
tation. For example, a smaller number of land cover types to be mapped will lead to 
a simpler representation than if many land cover types were mapped for the same 
landscape. Using more classes permits division of the landscape into an increased 
number of smaller but more homogeneous areas, but related classes differ by a 
smaller amount than if there were fewer classes. Thus, the increased classification 
complexity is inevitably linked to greater potential complexity of the depiction of 
the landscape’s composition and configuration and can help determine the scale 
required (e.g., the MMU) to adequately represent the landscape’s complexity. 
Researchers commonly develop hierarchically nested classification schemes, such 
as the one shown in Table 2; these hierarchical levels can be collapsed or expanded 
to support assessments at different thematic scales (Baldwin et al. 2004; Remmel 

Table 2  An example of a hierarchically nested land classification scheme with coarser (more 
inclusive) thematic classes at the left and increasingly finer (less inclusive) classes at the right

Level 1 Level 2 Level 3 Level 4

Land Bedrock and non-vegetated
Burned Completely burned

Partially burned
Old burn

Vegetated Forest Coniferous Dense conifer
Sparse conifer

Deciduous
Non-forest Shrub Tall shrub

Low shrub
Wetland Open wetland

Treed wetland
Marsh

Water
Other Cloud and shadow
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et  al. 2005; Nadeau and Englefield 2006; Remmel and Csillag 2006) or to draw 
equivalencies between different classification regimes (Remmel et al. 2005).

Fine divisions of thematic classes (e.g., vegetation density classes that result 
from canopy layering) can be difficult to discern from aerial photos or remote-
sensing imagery, and at certain spatial scales may be impossible to discern; thus, 
some levels of thematic classification may be inappropriate if they are not supported 
by the image resolution. As the thematic scale or complexity changes, the classifica-
tion’s ability to reveal or mask trends and states also changes. In fire disturbance 
scenarios, the potential abruptness of the footprint’s perimeter or the width of eco-
tones is particularly affected. Recent improvements to remote sensing technology 
have seen spatial resolutions increasing from kilometers to tens of meters, and now 
even tens of centimeters. Although these images provide beautiful contextual layers 
for use in interpretive mapping and offer the potential for detailed mapping of spa-
tial and thematic classes, the increased heterogeneity they reveal can complicate the 
analysis more than the results justify. Higher spatial resolutions result in vastly 
more pixels and variability to contend with, image analysis algorithms need to be 
adjusted to handle this increased complexity, and the level of detail is often more 
than is required for basic forest landscape mapping tasks. Increased spatial detail 
also increases the need to quantify fragmentation or the porosity of landscape 
patches, which results from the ability to detect finer gaps in landscape classes that 
would appear homogeneous at coarser mapping resolutions. Furthermore, the 
assessment of accuracy at a very high spatial resolution becomes increasingly dif-
ficult compared to more general estimates of the composition and distribution of 
land cover classes.

�The Future of Mapping Wildfires

Mapping and the related cartographic techniques have undergone great changes 
during the past two centuries. In the early phases, cartographic development was 
largely driven by human understanding of the Earth’s surface and its shape. This 
eventually gave way to improved technology for measuring distances and angles, 
driven largely by the needs of maritime navigation and the ability to measure lati-
tudes and longitudes at sea. However, truly radical changes began with technologi-
cal advances in photography, starting in the 1800s, and twentieth-century digital 
tools for data acquisition and map representation have offered many innovative 
means of data acquisition, storage, encoding, and presentation. Although technol-
ogy continues to drive development, the new methods and tools are also pushing 
cartographers to develop new ways of creating and presenting maps, including 3D, 
dynamic, and interactive maps; much of the need for these new modes of map con-
struction and delivery has been created by new research questions and the needs for 
improved capture and use of spatial data. These forces will lead to exciting new 
tools in the years ahead.
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Much of what is happening in the realm of forest mapping encompasses new 
sensors and technologies for landscape imaging and data capture, the assessment of 
sources of uncertainty and of the accuracy of derived products, and the integration 
of data from multiple sources to produce interconnected and dynamic maps of com-
plex ecosystems and their functioning. Other researchers are working to make data 
and maps available online through portals that facilitate collaboration in the creation 
of huge geographical databases and improve our ability to interact with maps.

The importance of selecting an appropriate scale or MMU and its impact on the 
construction of maps of complex phenomena that cross multiple scales remains an 
area that requires continued attention. The constant struggle between increasingly 
available high-resolution data and complexity of handling and interpreting that 
information is likely to spur continued studies on how to identify the optimal map-
ping scale.

�Accuracy Assessment in Remote Regions

Accuracy, uncertainty, and error assessment are central problems that must be 
solved to establish the credibility of scientific results and claims. These problems 
have been mitigated using well-developed techniques such as error matrices 
(Congalton 1991), yet they have not yet been solved; doing so is one of the more 
difficult and often-neglected aspects of geospatial work, particularly for remote 
locations. When access to sites is difficult, as is often the case with wildfires that 
burn in the far northern boreal forests, field validation efforts are both costly and 
difficult due to restrictions on reaching the site and exploring it once one arrives at 
the site. In such situations, alternative means for quantifying accuracy and uncer-
tainty are desirable. Much attention has been turned to using data with a higher 
spatial resolution or a greater level of detail as a source of validation information. 
Unfortunately, this approach can be somewhat circular in terms of the logic, since 
the more detailed data would also require validation, negating its benefits.

Work by Mitchell et al. (2008) investigated the use of typically ignored statistical 
data from traditional satellite image classifications, such as the probability of a pixel 
belonging to land cover classes other than the most probable one, to assess the 
uncertainty of assigning class labels to pixels, and found that these data can be 
incorporated in an uncertainty assessment when true validation data is not available. 
Although additional statistical simulation methods exist (Csillag et al. 2006) to esti-
mate confidence intervals around summary metrics used in classification, tools that 
focus on pattern variability (Remmel 2009) provide additional methods that can be 
implemented when it is necessary to compare data for the identical location from 
two periods. However, a comprehensive accuracy assessment method that would be 
applicable across spatial and temporal scales does not exist, and it would be valu-
able to develop such a method or perhaps a small suite of methods that are opti-
mized for specific situations.
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The quantification of spatial patterns to allow statistical comparisons among 
multiple landscapes has been studied from many angles, by many researchers, over 
several decades (e.g., O'Neill et al. 1988; Foody 2007; Ruiz et al. 2012a, 2012b), but 
no all-encompassing method has yet emerged. The ecological literature describes 
hundreds of metrics (McGarigal and Marks 1995) that assess specific aspects of 
spatial patterns, generally at patch, cover class, and landscape scales, and subsets of 
these metrics are often used as a suite to describe specific traits of certain landscapes 
(Riitters et al. 1995). Although these metrics can be excellent diagnostic indicators, 
a lack of knowledge of their underlying statistical properties makes it difficult to 
assess their value. Some more recent work, and software to facilitate the analysis, 
has begun to mitigate these limitations (Remmel and Csillag 2003; Remmel and 
Fortin 2013). There have also been attempts to assess the composition and configu-
ration of landscape elements using common measurement units—“bits”—from 
information theory (Remmel and Csillag 2006). These units have been used to 
assess uncertainty in patterns using combinatorics computed from coincidence 
matrices to quantify pattern uncertainty (Remmel 2009), or to provide uncertainty 
maps along with a mapped variable (Wang et al. 2009), yet widespread adoption of 
these methods has not been achieved due to the complexity and effort involved.

Efforts to map spatial statistics and summarize pattern metrics (see Chapters 
“Regression Tree Modeling of Spatial Pattern and Process Interactions” and 
“Mapping the Abstractions of Forest Landscape Patterns” of this book) are provid-
ing visualization tools for complex data. New measurement and representation 
frameworks based on morphological pattern elements (Vogt et al. 2007) are spur-
ring new conceptualizations in the domain of pattern analysis. We believe that the 
future of spatial pattern analysis and assessment lies in the fusion and seamless 
scalability of methods that measure and statistically compare spatial patterns across 
scales and produce spatial summaries of the comparisons. The ability to adjust the 
boundary abruptness, fuzziness of attributes, and permitted positional accuracy 
across a range of scales, combined with an improved understanding of the correla-
tions with explanatory factors, will permit more powerful hypothesis testing than is 
currently possible with the current unstructured approach, which is based on an ad 
hoc and nonintegrated combination of methods for each research project.

Traditional forest inventory methods have assumed the mapping of measured 
variables onto a flat plane. Whether the mapped features represent forest stands, 
disturbed areas, or residual vegetation, there is an increasing trend to include a verti-
cal component to the assessment and to explore new forms of data presentation, 
such as virtual reality or three-dimensional visualization. Forest landscapes are 
inherently complex in the horizontal plane, but the vertical dimension is likely to 
prove equally complex given how it evolves over time even in the absence of distur-
bance. However, coping with this complexity can reveal interesting aspects of bio-
mass allocation, the distributions of taxonomic or functional groups, or structural 
aspects of forest stands (Ko et al. 2013).

Although 3D data can be obtained using photogrammetric methods such as tra-
ditional examination of stereophotos, more recent methods such as structure from 
motion analyses (Mancini et  al. 2013) represent rejuvenated photogrammetric 
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methods that allow extraction of LiDAR-style point cloud data (the x, y, and z coor-
dinates of typically reflected laser pulses) from digital stereo-images. These point 
clouds can be further processed in a number of ways to extract vertical profiles of 
point density that let researchers define crown and stem positions and even identify 
a tree’s species. This approach can also unlock information regarding tree heights, 
biomass, branching structures, and other biophysical metrics that improve the qual-
ity of forest inventory data (Lim et  al. 2003). More recent developments in this 
technology take advantage of the full-waveform data obtained from interactions of 
the laser pulse with the forest canopy (see Chapter “Airborne LiDAR Applications 
in Forest Landscapes” of this book for details). Although this approach is poten-
tially more informative, the dramatically increased data volumes lead to a require-
ment for more powerful computers with high storage capacity, and LiDAR surveys 
are constrained (for the moment) by reduced (horizontal) spatial resolution. 
Manipulation, handling, and visualization of these newer data types also require 
specialized software and data structures that let researchers effectively read, pro-
cess, and display the vast quantities of data.

Conversion of point clouds into a series of rectangular solids or prisms called 
“voxels’ (i.e., “volumetric pixels”; Wu et al. 2013) has let researchers simplify for-
est structures into standardized shapes (e.g., cones for spruce canopies, cylinders for 
tree stems, spheres on a stick to represent deciduous canopies and stems). This 
approach allows the resulting 3D models to describe forest aspects such as the verti-
cal canopy distribution or even the branching structures of plants (Prusinkiewicz 
and Lindenmayer 1990). Similarly, the popularity of images with very high spatial 
resolution from unmanned aerial vehicles (also called “drones”) is reinvigorating 
the use of digital photogrammetric methods; as a result, 3D topographic reconstruc-
tions, continuous orthomosaics, and hybrid products that fuse image data with 
LiDAR data are becoming more common (Alonso-Benito et  al. 2016). These 
developments are producing new forms of mapping that resemble virtual reality 
more than traditional 2D cartography.

�Landscape Persistence

Dynamic landscapes are often assessed to detect changes through time and across 
space. Whether these changes are brought about by wildfires, harvesting, or any 
other disturbance or regeneration process, it is the change that is typically detected, 
measured, quantified, and mapped. In contrast, the areas that are (as yet) unaffected 
by change exhibit “persistence,” a state that is easily ignored due to the seeming 
lack of activity. However, a growing body of literature focuses on the characteristics 
of spatial persistence (Pontius et al. 2004). In particular, researchers have studied 
the stability of landscapes to describe the spatial legacies that have been imprinted 
on fire-dominated landscapes (James et al. 2007), many of which have persisted for 
hundreds of years and may serve as ideal locations for conservation efforts (Rayfield 
et  al. 2007). Given that change is a minor factor in landscapes dominated by 
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persistence (Flamenco-Sandoval et al. 2007), these inverted notions of landscape 
behavior and resilience are likely to attract increasing interest within the research 
community. The concepts of ecosystem resilience, recovery from disturbance, rates 
of change, and fluctuations within natural ranges of variability will all be combined 
to characterize landscapes better than if we were to only examine extreme changes.

�Hierarchical Data Formats for Capturing Scale Effects

Forests form horizontally, vertically, and temporally complex and dynamic land-
scapes that can be conceptualized at multiple scales for competing, cooperating, and 
interacting reasons. As a result, forest landscapes have been and will continue to be 
studied across multiple scales. We foresee a substantive change in how research is 
conducted because of the need to account for the influence of scale. Rather than 
focusing on only one or a small subset of scales, analyses should increasingly move 
toward handling the full spectrum of scales (see Quattrochi and Goodchild 1997), 
as has been done in studies based on wavelets (Csillag and Kabos 2002) or quadtrees 
(Csillag and Kabos 1996). Some novel approaches to pattern analysis across spatial 
and thematic scales, as well as external attribute scales (e.g., grouping maps by an 
external factor such as regulatory jurisdiction) exist (Remmel and Csillag 2006), but 
are not yet ubiquitously implemented. As another example, Remmel (2015) devel-
oped the tools to run the ShrinkShape algorithm for decomposing areas, perimeters, 
and complexity of shapes across multiple representational scales.

The fusion of data from multiple sources, at multiple scales, will permit integra-
tive data analyses, which will dominate the coming decades. The mapping of such 
complex and multidimensional results will keep cartographers occupied finding 
new means by which data and results can be processed, presented, consumed, and 
interacted with by the growing variety of audience who want to consume this infor-
mation in real time, often on mobile application platforms such as smartphone-
based GPS navigation systems, and who increasingly want to access the information 
remotely via Internet-based queries.

Landscape complexity forces us to deal with not only different scales of mea-
surement, but also terminology adjustments to reflect changes to the context, scope, 
focus, and measurable details. At one scale, wildfire disturbances are merely points 
scattered within an extensive landscape. However, as one zooms in on that land-
scape, those points begin to evolve into patches that have an area and a perimeter, 
and begin to exhibit emergent properties that the individual points could not display. 
The point patterns therefore morph into more sophisticated spatial patterns that can 
be described using terminology developed to describe the patchy mosaics that form 
the landscape structure. However, the focus can also grow closer, allowing individ-
ual patches to be characterized as complex objects that comprise multiple contigu-
ous and unconnected parts. Each part would then possess its own spatial, thematic, 
and temporal properties that permit more detailed characterization of patterns within 
the footprint of disturbances such as wildfire. This idea can be further extended to 

T.K. Remmel and A.H. Perera



141

individual stands, trees, or even finer scales. This complexity raises an important 
philosophical and practical question: What is the optimal scale at which to study 
forest landscapes? Although it is not wrongs to suggest that the optimal scale 
depends on the purpose of the analysis, the potential of multi-scalar solutions sug-
gests that the correct answer may become “all scales at the same time.”
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Airborne LiDAR Applications in Forest 
Landscapes

Connie Ko and Tarmo K. Remmel

Abstract  This chapter provides an introduction and overview of using light detec-
tion and ranging (LiDAR) in forest applications. The first section explains the prin-
ciples and basic terminology for LiDAR and introduces the use of LiDAR on three 
different platforms (spaceborne, airborne, and terrestrial) for forest applications. 
The second section discusses applications in relation to the primary measurements 
from a LiDAR point cloud, primarily information derived from distance (from the 
aircraft to the target). We cover concepts related to different representations of sur-
faces (e.g., digital surface model, digital terrain model, digital elevation model, and 
canopy height model). Typically, single trees can be identified from the canopy 
height model and there are two different ways to assign LiDAR points to individual 
trees, the surface-based method and the point-based method. The third section dis-
cusses forest applications in relation to secondary measurement from a LiDAR 
point cloud, information derived from point cloud geometry rather than direct dis-
tance measurements. This section covers tree genera classification; the use of allo-
metric equations for deriving DBH, biomass, and other forest attributes; and the 
classification of vegetation types. Three ways of getting genera information are dis-
cussed, including the vertical profile method, methods relying on geometry derived 
from individual tree point clouds, and methods that incorporate spectral informa-
tion. The fourth section provides a case study for identifying potential tree hazards 
along a powerline corridor in Ontario, Canada. We conclude by discussing the 
future of this technology.
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2D	 Two-dimensional
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CHM	 Canopy height model
DBH	 Diameter at breast height
DEM	 Digital elevation model
DSM	 Digital surface model
DTM	 Digital terrain model
GIS	 Geographical information system
GLAS	 Geoscience laser altimeter system
GPS	 Global positioning system
ICESat	 Ice, cloud and land elevation satellite
IMU	 Inertial measurement unit
Lt	 The travel time of a light pulse
LiDAR	 Light detection and ranging
MODIS	 Moderate resolution imaging spectroradiometer
MVCD	 Minimum vegetation clearance distance
p	 Number of points projected into a horizontal area  

(i.e., the point density)
R	 Range for LiDAR
SLS	 Spaceborne laser scanning
tL	 The total travel time of a single energy pulse
trise	 Rise time of an energy pulse
TLS	 Terrestrial laser scanning
UAV	 Unmanned aerial vehicle

�Introduction

During the past few decades, the use of light detection and ranging (LiDAR) 
systems for mapping forests and their characteristics has become highly popu-
lar. Specifying the platform for a LiDAR system identifies whether it is mounted 
on a spacecraft (spaceborne laser scanning, SLS), aircraft (airborne laser scan-
ning, ALS), or a tripod at ground level (terrestrial laser scanning, TLS), each of 
which provides slightly different data characteristics. Each of these types of 
LiDAR system provide precise distance measurements between the sensor and 
targets by measuring the total transmission and return time of laser pulses with 
known velocity (i.e., distance = velocity × time) and then halving that distance 
to compensate for the fact that the signal travels the same path once in each 
direction. When measuring forests from the ground (TLS), but more typically 
from above the canopy (ALS), height metrics for vegetation and landscape fea-
tures can be attained if the sensor’s location and attitude are accurately known 
based on data streams from the instrument’s inertial measurement unit (IMU) 
and global positioning system (GPS) receiver. This arrangement makes it pos-
sible to accurately describe the three-dimensional (3D) characteristics of ter-
rain, of a vegetated canopy, or of another surface that is capable of reflecting the 
signal.
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Because lasers often pass partially through their targets and return a pulse from 
one or more subsequent targets, LiDAR systems generally provide more than a 
single return pulse of energy for any outgoing laser pulse, so processing of the mul-
tiple return signals can extend the mapping capability to penetrate vegetated cano-
pies and can often reach all the way to ground level, especially for ALS systems. 
Therefore, LiDAR has the potential to provide detailed spatial and vertical charac-
terizations of landscapes, even when used over vegetated land cover classes.

Detailed, accurate estimation of forest attributes is important for producing and 
updating forest inventories, monitoring disturbances or other dynamic processes, 
and supporting the management of natural and commercial forests. The 3D charac-
terization of landscapes with LiDAR provides insights about forest structures that 
go beyond the typically available surface reflectance imagery (e.g., airphotos, pas-
sive satellite sensors), and this allows the measurement and estimation of supple-
mentary forest characteristics, including vegetation height, diameter at breast height 
(DBH), biomass, and canopy volume. However, the problem of species identifica-
tion has not yet been solved, and remains an active area of research.

LiDAR produces a point cloud rather than a flat image, and each point has a 3D 
coordinate that represents the location where a reflection occurred within a particu-
lar frame of reference. A point cloud scene can be generated from systems that 
record discrete points with (x, y, z) position triplets in space; however, point clouds 
can also be derived from full-waveform systems that record a continuum of received 
power signals from the reflected targets, and this approach is becoming more com-
mon. (We will discuss discrete and waveform systems in section “Defining ALS 
LiDAR” of this chapter.) Most LiDAR systems can also provide additional attri-
butes pertaining to these reflections, including the scan angle, intensity of the reflec-
tion, and number of reflections; however, it is the position of the points in space that 
has thus far received the greatest attention. The points in the cloud represent reflec-
tions from footprints that represent the areas on a surface that have intercepted the 
laser beam, perpendicular to the incidence angle; that is, they represent the area 
“painted” by the laser, and that area depends on the angle of the beam and its orien-
tation with respect to the surface. Footprints are circular to elliptical and their size 
is a function of both the beam divergence (i.e., how much the beam spreads during 
its travel) and sensor altitude (i.e., the distance to the target).

The footprint area (and thus the cost of data acquisition for a given area) is gener-
ally greatest for SLS LiDAR, followed by ALS and then TLS due to the decreasing 
distance from the scanner to the target. Small-footprint systems (with footprints 
approximately 0.1–0.3 m in diameter) and large-footprint systems (approximately 
8–70 m in diameter) can both be used to estimate and map forest inventory attributes 
(Bouvier et al. 2015). However, small-footprint systems are often preferred because 
they provide a more detailed characterization of the forest canopy and therefore 
improve analyses at the levels of individual trees, plots, or stands (Maltamo et al. 
2014). Furthermore, ALS allows better estimates of ground elevation than TLS or 
SLS due to its combination of a close vantage point with a small footprint, thereby 
allowing more accurate measurement of tree heights. In this chapter, we discuss 
LiDAR in general, but focus our review, examples, and discussion on the use of 
small-footprint ALS to retrieve forest attributes for landscape-scale mapping.
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�Defining ALS LiDAR

LiDAR describes a family of methods that use active remote sensing technology. 
Active means that these sensors generate and emit energy pulses and then record the 
timing and quantity of that energy that is reflected (returned) back to the incorpo-
rated detector. This approach differs substantially from passive imaging systems 
such as most satellite sensors, which record reflected or emitted energy that origi-
nated from other sources, such as sunlight. The primary data acquired by LiDAR 
systems are range (distance) measurements that provide high-precision measure-
ments of the distance between the LiDAR sensor and the target that reflected the 
energy pulse. When these systems are mounted on airplanes, helicopters, or other 
airborne platforms, they are referred to as ALS, primarily to clarify the expectations 
for footprint size and swath width, which differ substantially among SLS, ALS, and 
TLS LiDAR.

Single-channel ALS systems emit energy pulses (signals) at a particular wave-
length and record the reflection time and amplitude. The nature of the interaction of 
the energy pulse with a target will be determined by a combination of the target 
material, the incidence angle, and the wavelength of the energy pulse. Some newer 
multichannel LiDAR systems are capable of multispectral scanning; they emit sig-
nals at multiple wavelengths and record the returned characteristics independently 
for each wavelength, thereby providing a 3D structural point cloud with multispec-
tral attributes. Although the travel time is identical for all of the wavelengths, the 
wavelengths differ in their ability to penetrate or reflect from targets with different 
characteristics. Thus, one wavelength may provide reflections from surfaces that 
completely absorb or completely reflect a different wavelength.

The range (R) for LiDAR is computed using Eq. (1), in which c is the constant 
speed of light (approximately 3 × 108 m s−1), tL is the total travel time of a single 
energy pulse, and dividing by 2 compensates for the fact that tL actually records the 
time for a pulse to travel both to the target and back again (i.e., twice the actual 
distance). Thus, the range between the sensor and the target is only half the distance 
recorded by the time variable.

	
R c t= ( )´ L / 2

	
(1)

The process of emitting pulses and recording their returns, converting this data 
into distances, attaching the scanning attributes, and obtaining the coordinates of 
the actual reflection point (x, y, z) by corrections based on the platform’s position is 
repeated while flying over an area. The number of points recorded will depend on 
the scanning rate (in Hz, which represents the number of energy pulses per second). 
The collection of points, which is called a point cloud scene, is generated when all 
points from a given survey are mapped collectively in the same 3D space.

Figure 1 provides an example of a point cloud scene created from nearly 500,000 
points, representing approximately 1 ha of a forested area. The image is shaded such 
that darker points represent lower elevations (i.e., positions closer to the ground). 
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Although the point cloud appears dense, it is not continuous and the sense of conti-
nuity is a function of the small size of the image and the large number of points 
covering the targeted area. The number of points (p) projected into a horizontal area 
is referred to as the point density (points per m2), and is often interpreted similarly 
to the spatial resolution of an image.

The point density can vary greatly among studies, and although a higher point 
density can provide greater detail about the study area, the amount of data, the pro-
cessing time, and the computational complexity also increase. Conversely, if the 
point density is low, objects may not be portrayed sufficiently accurately, and 
smaller objects may not even be discernable; thus, a balance between point density 
and analytical needs is required. The optimal point density is affected not only by a 
user’s needs (or desires) in terms of the required detail, but also by the reality of a 
landscape’s complexity and by budgetary constraints. Flight altitude also imposes 
trade-offs: a higher altitude provides a wider data collection swath width in exchange 
for a decreased point density and a larger footprint, whereas lower altitude provides 
increased point density and reduced footprint size, but at the cost of a narrower 
swath width. Unless local flight regulations constrain the permitted altitude, the 
flight altitude is a subjective choice that represents the researcher’s compromise 
among the swath width, point density, and footprint area. For example, Persson 
et al. (2002) used a point density of about 4 points per m2 to derive a tree height 
model. Among studies with a higher point density, Persson et al. (2006) used LiDAR 
data with a density of about 50 points per m2 to identify tree species and Vauhkonen 
et al. (2008, 2009) used LiDAR data with a density of 40 points per m2. In contrast, 

Fig. 1  Point cloud scene with approximately 500,000 points, covering an area of approximately 
1 ha. Darker shades represent lower elevations. White represents areas from which no signal was 
received
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Woods et al. (2010) successfully predicted forest attributes using a LiDAR point 
density of 0.5 points per m2.

LiDAR systems can be categorized into two subtypes: (1) waveform digitization 
systems that record a continuous wave of reflection intensity, and (2) discrete-return 
systems that retain only intensities greater than a specified threshold value. 
Waveform digitization produces a continuous waveform (a time series) that fully 
describes the vertical structure (along the scan axis) of targets on the ground, 
whereas a discrete-return system detects peaks when the return signal exceeds a 
detection threshold (Fig. 2). The figure illustrates the intensity (amplitude) recorded 
by the sensor with respect to time; these recorded signal profiles result from the 
interaction between the emitted pulse and the target. The forms of these waveforms 
(described by descriptive statistics such as the peak width, amplitude, and skew-
ness) depend on a target’s properties (e.g., reflectance, roughness) and on the scan-
ning incidence angle. Figure  2 also shows that the intensity increases when the 
LiDAR signals interact with the relatively flat reflective surface of the canopy and 
then decreases at the gap between the bottom of the canopy and the understory (or 
a lower, immature canopy), where the vertical space is dominated primarily by 
woody stems. Once the energy pulse reaches the understory, the intensity increases 
again as it reflects from either the understory or a secondary canopy. Finally, the 
intensity increases again when the signal reflects from the ground.

To obtain discrete returns from the waveform, a threshold is introduced, and each 
time the intensity exceeds the specified threshold, a return is generated (e.g., the 
grey line in Fig. 2 results in three returns). Depending on the nature and geometry 
of the target, one LiDAR pulse can generate a single return or multiple returns. For 
example, pulses that reflect from a flat surface, such as exposed bedrock, may only 
generate a single return, whereas pulses reflected from vegetated targets may gener-

Fig. 2  Comparison of a waveform-digitization system’s data (the black line) with data from a 
discrete-return system (blue bars, based on the threshold identified by the grey line). Signals refer 
to the hypothetical forest depicted at the left
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ate multiple returns, often distributed throughout the vertical canopy structure. In 
theory, the first return represents the top of the canopy and the last return represents 
the ground, but this assumes that the LiDAR pulse had sufficient energy to penetrate 
obstacles such as leaves and reach the ground or was not prevented from reaching 
the ground by leaves, branches, or other materials. The reality is much more com-
plex, as we will see shortly.

To further conceptualize the idea of waveform pulses, Fig. 3 illustrates a single 
emitted pulse and the received (reflected) pulse. For a waveform system, the range 
is measured based on the phase difference between the transmitted and received 
signal (Mallet and Bretar 2009). Here, the phase difference represents the time dif-
ference between the peaks of the emitted and received pulses. The distance between 
the two vertical red lines represents the travel time of a light pulse (Lt), which is 
used to calculate the distance between the scanner and the target. The rise time (trise) 
represents the time needed for the system to amplify the signal sufficiently to gener-
ate a detectable return signal. The amplitude of the received pulse is always lower 
than that of the emitted pulse due to a loss of energy to the environment (e.g., atmo-
spheric absorption, energy absorption by structures contacted by the beam). For all 
LiDAR systems, a delay is added between pulses to allow a sufficient time gap that 
allows data from one pulse to be distinguished from data from the next one.

Obtaining the precise location of a point and using this data to generate a point 
cloud scene requires more than just a LiDAR scanner. For ALS, it’s necessary to 
obtain a precise measurement of the flight path and sensor location while each mea-
surement was made, along with detailed sensor orientation information. Flight path 
data is easily recorded by means of an onboard GPS receiver, but the position of the 
scanner relative to the aircraft’s true position is documented by the IMU that is 
mounted on the aircraft to measure its yaw, pitch, and roll attributes (Fig. 4). As the 
LiDAR sensor emits energy pulses, the return reflections from targets are accurately 
measured and associated with the corresponding IMU measurements, which are 

Fig. 3  Travel time of a single energy pulse in a waveform system. Lt represents the travel time of 
the LiDAR pulse and trise represents the time required for the system to amplify the signal suffi-
ciently to generate a detectable return signal. The amplitude of the received pulse is lower than that 
of the emitted pulse due to a loss of energy to the environment
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used to compute the correct range and absolute position. Because the accuracy of a 
height measurement depends critically on the accuracy of the platform’s measured 
height, the measurement error ranges from a few centimeters to a few decimeters, 
depending on the platform and the quality of its instrumentation.

For any LiDAR system, the selection of a signal wavelength suitable for the pur-
pose of the study is important. For vegetation studies, common wavelengths include 
900, 1064, 1470, and 1560 nm for single-channel ALS due to the high reflectance in 
those regions (Petrie and Toth 2009). In the near-infrared region of the electromag-
netic spectrum, energy emitted from the sensor is easily refracted and reflected by 
leaves, resulting in an easily recorded data point. This makes the near-infrared 
wavelengths popular for studying vegetation. For multispectral LiDAR or multi-
channel LiDAR (e.g., the Titan system; Teledyne Optech, http://www.teledyneop-
tech.com), common combinations of wavelengths include 532, 1065, and 1550 nm; 
the TLS Dual-Wavelength Echidna LiDAR (DWEL) simultaneously scans at 1064 
and 1548 nm (Douglas et al. 2012).

�Introduction to the Three Common LiDAR Platforms

The three common LiDAR platforms for vegetation applications are SLS, ALS, and 
TLS. SLS LiDAR offers the possibility of mapping a forest’s vertical structure glob-
ally, albeit with large footprints and a sparse point density. The ice, cloud and land 
elevation satellite with the geoscience laser altimeter system (ICESat/GLAS) 
acquired waveform LiDAR data globally from 2003 to 2009 (Abshire et al. 2005; 
Simard et al. 2011). Although GLAS did not provide complete global coverage, it 
was the only LiDAR platform that came close (Los et al. 2012). GLAS scanned at a 
wavelength of 1065 nm, recording reflected energy from footprints spaced 172 m 
apart (Harding and Carabajal 2005). This dataset allowed Lefsky (2010) to generate 
global forest height maps by combining the LiDAR data with other variables 

Fig. 4  Illustration of an 
ALS system, showing the 
vertical (nadir) direction 
(black vertical line), the 
scanning angle, flight 
platform, GPS, IMU, and 
LiDAR components as 
they collect data over a 
forested surface. White 
represents areas from 
which no signal was 
received
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obtained from the moderate resolution imaging spectroradiometer (MODIS). This 
approach permitted values for gaps in the LiDAR coverage to be estimated from the 
ancillary data. Figure  5 presents a top-down organization of LiDAR analytical 
methods that is discussed in this chapter to organize the terminology and relation-
ships among the methods.

ALS has become a popular tool for forestry applications because of its combina-
tion of relatively low cost and high resolution (Nelson 2013), but proposals for this 
technology date back to the 1960s (e.g., Rempel and Parker 1964), when suggested 
uses included measuring micro-relief and tree heights with a laser terrain profiler 
from airborne platforms (Ritchie 1996). The continued commercialization of 
LiDAR equipment has vastly increased the number of studies that employ this tech-
nology. Hyyppä et al. (2008, 2012) reviewed the numerous applications of small-
footprint ALS for forest inventory collection and mapping, and concluded that 
individual tree-based features and inventories are improving and that in addition to 
the first return the last return can contain important information for estimating tree, 
stand, or forest characteristics.

Primary information 
from distance

Canopy 
summaries

Tree height 
distribution

Vegetation 
class

Surface-
based 

models

Point-based 
models

Genera & 
species
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Derived point cloud attributes: distance, 
intensity, scan angle, type of return

Statistical 
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DSM, DTM, 
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Secondary information 
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Fig. 5  Schema for organizing LiDAR analysis methodologies. CHM canopy height model, DBH 
diameter at breast height, DEM digital elevation model, DSM digital surface model, DTM digital 
terrain model
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Conventionally, sensors are mounted on an airplane or helicopter (the airborne 
platform), although the use of unmanned aerial vehicles (UAVs) has begun to attract 
many users due to their increasing availability and relatively low cost. Wallace et al. 
(2012) describe an example of using UAV-based LiDAR to acquire forest inventory 
attributes. Another stream of research closely related to the use of UAVs is the deri-
vation of photogrammetric point clouds for forests. Instead of acquiring point 
clouds from laser scanning, photogrammetric point clouds are created from pro-
cessing stereo-pairs of aerial photographs. This method of data acquisition is less 
expensive than LiDAR, as a laser scanning sensor is not required. The recent devel-
opment of software to support such analyses has initiated research on using this 
technique in forests, such as the studies by Baltsavias et al. (2008) and by Rosnell 
and Honkavaara (2012).

To characterize forests or single trees, ALS studies can be categorized into two 
broad groups: area-based approaches and single-tree approaches. Area-based 
approaches extract, analyze, and compare statistical characteristics of LiDAR point 
clouds for representative stands of trees, whereas single-tree approaches require an 
initial segmentation of LiDAR point clouds into separate clouds that represent indi-
vidual trees before detailed statistical, structural, and geometric descriptors or sum-
maries can be calculated for the points contained within the point clouds for 
individual trees.

Typically, for an area-based approach (White et al. 2013), descriptive statistics 
can be computed to characterize forest canopy heights within a region of interest, 
and then specific attributes (e.g., timber volume, DBH, or biomass) can be modeled 
by regression (Woods et al. 2010; Treitz et al. 2012) or other statistical methods. 
Means et al. (2000) successfully predicted the characteristic stand height, basal area 
(BA), and volume of a forest by using LiDAR-derived attributes to build relation-
ships in the Western Cascades of Oregon. Lim et al. (2003) derived ten biophysical 
forest metrics in Ontario: maximum tree height, Lorey’s mean tree height, mean 
DBH, total BA, percent of canopy openness, leaf area index, ellipsoidal crown clo-
sure, total aboveground biomass, total wood volume, and stem density (number per 
unit area). The R2 values ranged from 0.63 to 0.86. Næsset et al. (2005) used regres-
sion analyses to predict tree height, BA, and volume in southern Norway. For 
surface-based methods, where trees (or small clusters of trees) are represented by a 
simplified polygon, data representation can be greatly simplified to minimize the 
volume of data. In these cases, attributes such as tree height, crown width, or DBH 
can easily be attached to the polygons using a geographical information system 
(GIS) once the attributes have been determined.

Single-tree approaches begin by segmenting the LiDAR point clouds into groups 
of data for individual trees. There are generally two ways to achieve this: the surface-
based method (see section “Detection and Delineation of Individual Trees: Surface-
Based Methods”) and the point-based method (see section “Detection and 
Delineation of Individual Trees: Point-Based Methods”). The surface-based method 
relies on drawing a polygonal boundary around each observed tree crown on a hori-
zontal (nadir view) two-dimensional (2D) surface and using that boundary as a ver-
tical cookie-cutter to identify all points within the polygonal solid volume as 
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belonging to the same tree. Obvious concerns arise where trees grow in close prox-
imity, since their crowns can touch or overlap, thus causing segmentation assump-
tion errors (i.e., errors that result from classifying a point as belonging to the wrong 
tree). In contrast, the point-based methods classify points to a single tree using 
clustering based on properties of the individual points, rather than the brute-force 
vertical section through the 3D data product that is used in area-based methods.

For forest applications, LiDAR is well recognized for measuring tree height and 
estimating volume and biomass. However, species recognition is a tantalizing area 
of continuing research. More often, only the genus is identified, since that coarser 
hierarchical classification leads to higher classification accuracy. Two approaches 
have been used extensively to scrutinize the distribution of signal returns for clas-
sifying the genus. The first approach considers the vertical distribution of LiDAR 
returns (points) within a point cloud segmented for each tree (see section “Vertical 
Profile for a Single Tree”). Visually, these summaries include plots of the frequency 
of points along the x-axis relative to height above the ground on the y-axis. The full 
resolution of this distribution can be used to characterize a whole tree, or to sum-
marize the point frequencies grouped into vertical height bins (often by slicing the 
height axis into deciles); together, these methods form the category of vertical pro-
file approaches (Holmgren and Persson 2004; Brandtberg 2007; Ørka et al. 2007, 
2009; Korpela et al. 2010; Kim et al. 2011). The second approach is to derive geo-
metric attributes from the segmented single-tree point clouds (Kato et  al. 2009; 
Vauhkonen et  al. 2008, 2009, 2010; Ko et  al. 2013) and to use those geometric 
descriptors to infer the genus or species (see section “Tree Genus and Species 
Classification”).

TLS LiDAR can be mounted on a stationary object (e.g., tripod) or on moving 
objects (e.g., a vehicle or a person; in the latter case, this is called mobile laser scan-
ning). TLS has been used to derive DBH estimates in the Kielder Forest District of 
Northern England (Watt and Donoghue 2005), whereas Tansey et al. (2009) mea-
sured stem densities and tree DBH using an automatic stem recognition model, and 
used the resulting data to compute BA. These metrics were extended to include stem 
counts (Liang et al. 2012), aboveground woody biomass (Yao et al. 2011; Yu et al. 
2013), and tree canopy volume and BA by means of voxel-based point cloud slicing 
(Moskal and Zheng 2012). (A voxel is the 3D equivalent of a 2D pixel. We’ll discuss 
this in more detail in section “Detection and Delineation of Individual Trees: Point-
Based Methods”) Although many studies using TLS for forestry applications relate 
to attribute extraction and mapping, Doneus et al. (2010) used TLS as a validation 
data source for full-waveform ALS data.

�Intensity, Point Density, and Multispectral LiDAR

The primary measurement obtained from LiDAR is the range to a target, and by 
extension, tree, or canopy height. However, most LIDAR systems are capable of 
recording additional information during the scanning process, such as the scan 
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angle, return type, and return intensity. The scan angle represents the angle of the 
laser pulse between the vertical nadir line and the directional vector that points away 
from the nadir point, originating at the scanner and making contact with a target 
(Fig. 4). The return type indicates the sequence in which subcomponents of a laser 
pulse are recorded based on sequence of the returns (e.g., the first return from a 
pulse vs. the last return). The intensity is the amplitude of the laser radiation 
returned.

A single laser pulse can generate either a single return or multiple returns (Fig. 2), 
depending on the target and the characteristics of its interaction with the signal. 
Knowledge of the type of return can be valuable for classifying objects, for separat-
ing points that belong to either terrain or non-terrain features, and for generating 
digital elevation models (DEMs; Fig. 6). There are four main types of return: (1) a 
single return, with only one reflected return received from the emitted pulse; (2) the 
first of multiple returns, with the first reflected return normally interpreted as the top 
of the canopy for a forested area; (3) the last of multiple returns, with the reflected 
return normally interpreted as the ground level; and (4) intermediate returns, with 
the reflected returns arriving between the first and last of multiple returns.

Intensity is the amplitude of the returned energy for a laser pulse. This intensity 
is affected by the scan angle, flight path, flight altitude, and incidence angle at the 
point of interaction. Intensity is also affected by the target orientation and material 
(whose reflectivity determines the amount of energy reflected by the material); thus, 
unless intensity data is calibrated using known targets, the values recorded from the 
sensor are relative measurements and should be used with caution. In some studies, 
attributes derived from the intensity have been used to classify tree species and 
heights (Ørka et al. 2007, 2009; Korpela et al. 2010; Morsdorf et al. 2010; Vauhkonen 
et al. 2010; Kim et al. 2011.

It has been suggested that the minimum pulse density for retrieving reliable esti-
mates of forest parameters is 0.1  points  per  m2 (Næsset 1997; Holmgren 2004; 
Vauhkonen et  al. 2014). However, to delineate individual trees, at least five and 
potentially more than 10 points per m2 are necessary (Hyyppä and Inkinen 1999; 

Fig. 6  A hypothetical example depicting the travel vectors for laser pulses (black lines) and reflec-
tion points from features, color-coded to identify the type of return
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Persson et al. 2002; Vauhkonen et al. 2008), and the accuracy of the estimated tree 
attribute decreases substantially as the pulse density decreases (Magnusson et al. 
2007; Vauhkonen et al. 2008). Strunk et al. (2012) suggested that there was almost 
no loss in precision when using 0.05 points per m2 rather than 3 points per m2 in 
western Washington state, USA.  In contrast, Ko et  al. (2014) concluded that the 
accuracy of classifying boreal tree genera in Ontario, Canada, decreases signifi-
cantly below a pulse density of 5 points per m2. Although both Strunk et al. (2012) 
and Ko et al. (2014) studied forests dominated by conifers, differences in the terrain, 
tree species, and forest characteristics may explain their different results. Finding 
the lower limit for point density is important in terms of lowering the overall cost of 
data acquisition, but this value is often subjective and related more to the extent of 
the study area and budgetary constraints than to scientifically and statistically deter-
mined optimal values.

Although LiDAR data is often used independently, its full potential is realized 
when it is combined with additional data sources (e.g., aerial photographs, multi-
spectral satellite imagery). Improved tree and canopy height estimates have been 
obtained by combining segmented Landsat-5 Thematic Mapper data (Wulder and 
Seemann 2003) and QuickBird images (Hilker et  al. 2008) with LiDAR point 
clouds. Hyperspectral imagery from the HyMap sensor (Hill and Thomson 2005), 
the multispectral Airborne Thematic Mapper (Koukoulas and Blackburn 2005), and 
the QuickBird satellite images (Ke et  al. 2010) have been fused with LiDAR to 
produce classified vegetation and species maps.

Another way of fusing information is to combine LiDAR data acquired at differ-
ent wavelengths. Although this technology is still being developed, Gaulton et al. 
(2013) used dual-wavelength LiDAR to estimate the vegetation moisture content 
and Wang et  al. (2014) used this tool for land cover classification. Although the 
former study experimented on leaf samples, the results nonetheless indicate the 
potential to scale up the approach to a canopy level.

�Primary Measurements

Primary measurements generally relate directly to the range values measured by 
LiDAR and refer in some way to various vegetation canopy height components. 
Height is the most direct information that can be derived from the recorded loca-
tions of points in a 3D space (x, y, z), and is therefore a primary measurement. Most 
other information is inferred or modeled from the locations of the points within the 
cloud and from secondary information, including many forestry attributes (e.g., spe-
cies, BA, biomass); we will discuss this information in section “Secondary 
Measurements”.

Displays of unprocessed point clouds normally color each point based on its 
height attribute to aid in visualization, but these representations do not necessarily 
provide much information beyond a cursory visualization of the study area (Fig. 1). 
Height, however, can provide valuable information and is often a key variable 
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depicted in forest maps, as in the global forest height map generated by combining 
MODIS data with 500 m spatial resolution and GLAS data to derive canopy heights 
(Lefsky 2010).

To improve on the results of Lefsky (2010), Simard et al. (2011) used the Random 
Forests software to predict heights that were not covered by the GLAS LiDAR data, 
basing their predictions on seven global ancillary variables: annual mean precipitation 
(mm), precipitation seasonality (the difference, in mm, between the mean growing-
season and dormant-season precipitation), annual mean temperature (°C), tempera-
ture seasonality (the temperature difference, in °C, between the winter minimum and 
summer maximum temperature), elevation (m), tree cover (%), and protection status. 
The modeled canopy height (Fig. 7) had a root-mean-square error of 6.1 m (R2 = 0.5); 
when seven outliers were removed, the error improved to 4.4 m (R2 = 0.7).

In addition to mapping forest stand heights or individual tree heights, height 
information can also be used to generate variations of 2D surface (raster) models. 
The simplification of 3D data into a 2D surface reduces the volume of data and 
allows algorithms designed for analyzing 2D data to be utilized. Although consen-
sus is lacking in the literature regarding the definitions of the names for some sur-
face models, such as digital surface models (DSMs), DEMs, canopy height models 
(CHMs), and digital terrain models (DTMs), all of these elevation surfaces can be 
generated from a LiDAR point cloud. (We will provide our own definitions of these 
model types in section “Surface Models (DEM, DSM, DTM, CHM)”.) CHMs are 
particularly useful for detecting and delineating individual trees (see section 

Fig. 7  Global forest height map simulated using predictions from the Random Forests software 
and seven global ancillary variables for regions where GLAS LiDAR coverage did not exist. 
Source: Marc Simard, after Simard et al. (2011)
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“Canopy Height Models and Detection and Delineation of Individual Trees”), since 
these models can potentially identify individual curved tree crowns and the local 
minima (valleys) between adjacent crowns.

�Surface Models (DEM, DSM, DTM, CHM)

The term DEM is used to refer to a superset of both DSMs and DTMs. DSMs are 
surfaces that represent the upper surface of any scanned area. In a forested area, the 
DSM represents the top of the canopy (where vegetation is present) or the top of 
whatever highest feature exists at a location without a tree that is illuminated by the 
LiDAR pulse. DSMs are normally generated from the first returns of the laser pulse 
and represent the features closest to the sensor. Conversely, DTMs represent the 
topography of the bare ground (with all living natural or artificial features removed) 
and are usually generated from the last returns of the laser pulses.

Both surface types (i.e., DSMs, DTMs) are useful for retrieving forest attributes and 
in other applications such as hydrological modeling, flood prediction, and urban stud-
ies. CHMs are easily obtained by subtracting the DTM for an area from the correspond-
ing DSM, thereby providing the local heights of the trees or canopy. Figure 8 illustrates 
the difference between a site’s DSM (red line), DTM (blue line), and CHM (black line).

The advantage of simplifying the 3D point cloud into 2D raster data is that this 
allows further processing by using neighborhood operations (i.e., calculations based 
on data in the area surrounding a particular target such as a tree) in a substantially 
more efficient manner than if it were necessary to work with 3D data, but results in 
a loss of precision because interpolation of the raster height in areas with few to no 
data points may introduce errors. A classic example of this would be where a bridge 
crosses a chasm; in reality, this location has two elevations (the bridge surface and 
the bottom of the chasm), but only one of them can be depicted in the surface model 
(Pfeifer and Mandlburger 2009).

Fig. 8  Differences among three standard surface models for a hypothetical forest stand growing 
on a slope: DSM, DTM, and CHM
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To generate these surfaces, the first step is to classify a point cloud scene into two 
major groups of points: terrain and non-terrain points. To generate a DTM, the clas-
sified terrain points become candidate points for generation of the DTM. The sec-
ond step is generation of the surface by interpolation. Interpolation is a process of 
estimating height values for locations where they do not exist (i.e., between pairs of 
known and measured points obtained from the LiDAR data) to generate a continu-
ous surface. The surfaces can be represented as triangulated irregular networks, in 
which the surface is represented as a series of triangles with shared sides, or as 
raster surfaces. The selection of an interpolation method is beyond the scope of this 
chapter, but some options include inverse distance-weighted interpolation (Shepard 
1968), nearest-neighbor interpolation (Sibson 1981; Sambridge et  al. 1995), and 
kriging (Cressie 1988; Caruso and Quarta 1998). Each type of interpolation has 
advantages and drawbacks (Caruso and Quarta 1998).

Obtaining a precise DTM is crucial for precise estimation of tree heights and there-
fore affects many other estimates of secondary attributes (e.g., volume) that depend on 
tree height. There are many algorithms and filters that extract ground points from a 
LiDAR point cloud and use these points for generating a DTM or DEM; here, we will 
introduce a few popular methods. Further details are presented by Sithole and 
Vosselman (2004), who reviewed eight filters and tested their relative performance 
using 12 datasets. Kraus and Pfeifer (1998) identified terrain points by comparing 
LiDAR data with an approximation of the terrain surface. Residuals were calculated 
between the LiDAR data and the surface, with the points assigned weights according 
to the calculated residuals; a new surface was then constructed according to the 
assigned weights, and this process was repeated until the minimum error was reached 
or the maximum number of iterations was attained. Vosselman (2000) identified non-
terrain points by comparing the height differences between neighboring points that 
were above a certain threshold. Another example is given by Tóvári and Pfeifer (2005), 
who used a segmentation method based on growing the region around randomly 
selected points based on the similarity of normal vectors to a plane fit through n nearby 
points to group LiDAR points into segments. By assuming homogeneity of the terrain 
surface, segments are obtained by allowing grouping of adjacent points so that the 
points are separated by a distance of 2 m or less and the normal vectors at these points 
differ by 5° or less. Alternatively, Evans and Hudak (2007) used a multiscale curvature 
algorithm to iteratively separate LiDAR data into ground and non-ground points.

DTMs have many applications, such as to support the development of a hydro-
logical model, to understand the effects of slope on erosion, and in urban planning 
to determine where structures should be built.

�Canopy Height Models and Detection and Delineation 
of Individual Trees

In forested areas, CHMs provide a raster surface that represents the absolute 
height of the canopy (Fig. 8). Although a CHM can be used as a map to represent 
the height of the vegetation within a study area, the most popular use of a CHM is 
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for detection and delineation of individual trees. However, CHMs have also been 
used to estimate canopy density and tree height. Figure 9 shows an example of a 
CHM created using inverse distance-weighted interpolation over a forested area 
consisting mainly of pine (genus Pinus), poplar (genus Populus), and maple 
(genus Acer). In another example, St-Onge et al. (2008) produced a hybrid photo-
grammetric LiDAR CHM by subtracting the DTM from a photogrammetric DSM 
(derived from archived aerial photographs) and used that to retroactively map 
forest structures.

�Detection and Delineation of Individual Trees: Surface-Based Methods

For the surface-based (raster) method of single-tree detection, it is assumed that the 
CHM is either available or can be produced. Tree locations are subsequently 
detected using the local maxima in the CHM. However, this usually results in a 
large number of false-positive detections because individual tree crowns are often 
highly variable and may contain multiple local maxima. In this approach, local 
maxima are minimized within a window that is an arbitrary number of pixels wide 
by computing the local average, then the window is moved by one pixel, and the 
process is repeated. The smoothing of the CHM is influenced by the characteristics 
of the study area (e.g., slope) and the expected areas of the tree crowns; the optimal 
smoothing window will be large enough to eliminate local variations within a single 
tree but small enough to be able to detect trees growing in close proximity. A 3 
pixel × 3 pixel filter (Hyyppä et al. 2001; Persson et al. 2002; Morsdorf et al. 2004) 
and larger filters (Popescu and Wynne 2004; Weinacker et al. 2004) have been used 
successfully.

Fig. 9  An example of a CHM created using inverse distance-weighted interpolation over a for-
ested area consisting mainly of pine (genus Pinus), poplar (genus Populus), and maple (genus 
Acer). This image represents the same study area depicted in Fig. 1
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The tree detection results are usually validated using field data whose position is 
determined using a GPS Global Navigation Satellite System (GNSS) receiver 
(Solberg et al. 2006; Ørka et al. 2007). Success rates for tree counts at validated 
study sites have ranged from 45.4 to 61% for coniferous trees (Heurich 2008) and 
averaged 44% for deciduous trees (Reitberger et  al. 2007). A study by Yu et  al. 
(2004) detected 61/83 trees, for a 73% success rate, whereas Koukoulas and 
Blackburn (2005) detected 82/103 trees (80%), but this value decreased to 50% at a 
site with high stem density.

The top of a forest canopy, when inverted, often resembles a collection of small 
depressions (the tree crowns) separated by ridges (the edges of individual tree 
crowns). A parallel to watersheds can be drawn, and hence research on watershed 
identification also provides some insights into surface-based analysis for segment-
ing LiDAR data into individual tree crown maps (Koch et al. 2006). Watersheds 
represent all upstream areas drained by a single river or stream and watershed algo-
rithms refer to tools for processing an image or DEM to automatically or semiauto-
matically identify features that define watershed boundaries based on a predefined 
threshold that determines their minimum area. Typically, terrain elevation is used as 
an input based on the assumption that water flows from high elevations to low eleva-
tions. Boundaries of watersheds can be delineated by detecting and connecting the 
areas (pixels) with the highest elevations.

This approach can also be applied to identify tree crown perimeters, since a 
canopy comprising multiple crowns is similar to an inverted watershed map. For 
crown delineation, the edges represent the “valleys” between maxima for adjacent 
tree crowns and trees, and are delineated using methods similar to those used for 
watershed delineation (Fig. 10), except that the surface is inverted (i.e., the valleys 

Fig. 10  Individual trees can be detected through local maxima in the derived CHM, and tree 
crowns can be delineated as polygons by following the valleys in the CHM
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represent the boundaries, not the ridges). For example, Hyyppä et al. (2001) used a 
CHM method similar to delineating an inverted watershed to avoid inappropriate 
shapes for tree crowns, but included a condition related to the center of gravity to 
make sure that the segmented area was roughly circular (i.e., that it conformed to a 
realistic tree crown shape). Similarly, Weinacker et al. (2004) used rules to identify 
shapes with a boundary length that was more than 2.5 times the crown diameter to 
ensure realistic tree crown detection, and then further analyzed the delineated 
crowns to split overly elongated shapes (which probably represented more than one 
tree) into multiple parts.

In addition to watershed methods, Persson et al. (2002) used an active-contour 
method to generate a DSM for use in tree crown segmentation, and Holmgren and 
Persson (2004) used a parabolic surface-fitting method to identify tree crown shape 
for use in segmentation and identification of stem positions. Researchers have also 
grown regions outward, starting from seed points, with these points normally repre-
senting the local maxima in the CHM. For example, Leckie et al. (2003) employed 
a valley-following approach to isolate crowns, whereas other researchers have 
developed methods for segmentation that integrated LiDAR data with satellite 
imagery or with aerial photos (Brandtberg et  al. 2003; Popescu et  al. 2003). 
Brandtberg et  al. (2003) converted LiDAR points into a raster image in which 
brightness levels were used to represent the recorded height. The authors then used 
a second-derivative filter to detect blob-shaped structures (i.e., tree crowns). Solberg 
et al. (2006) imposed a restriction on the region-growing algorithm so that the delin-
eation could only grow in a star shape, thereby preventing the growth of long and 
thin shapes that were unlikely to represent trees. However, because individual trees 
are detected from 2D surfaces in all surface-based methods, this approach may 
become problematic when the canopy has multiple strata and when crowns touch or 
intersect. The delineation also assumes perfectly vertical boundaries at the CHM 
valley locations, which is unrealistic.

�Detection and Delineation of Individual Trees: Point-Based Methods

With point-based methods, LiDAR points are not interpolated onto a surface; 
instead, all points of interest are taken into consideration for processing. For exam-
ple, Morsdorf et al. (2003) used 3D k-means clustering to create groups of points by 
using local maxima of the CHM as starting locations for the cluster centroids. 
Korpela et  al. (2007) used a template-matching method in which templates with 
different crown shapes were created using explicit mathematical functions; the tem-
plates were designed to match the LiDAR points so that tree crowns that were envel-
oped within the templates could be segmented. Popescu and Zhao (2008) used a 
voxel-based approach to divide single trees into height bins and then fitted a fourth-
order polynomial function to the height profile to arrive at height estimates at the 
base of the tree crown. In this context, “voxels” (3D equivalents of 2D pixels) rep-
resent rectangular solids (normally cubes) distributed through the 3D space of a site; 
each voxel can contain no, one, or multiple LiDAR points. This is analogous to 2D 
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pixels, which can contain either no spectral signature or a pure or mixed signature. 
Holmgren et al. (2008) defined an “alpha shape” for each tree, which resembles a 
3D convex hull but allows inward curvature at some point locations on the hull (in 
this field of research, the surface is called a hull because it resembles the hull of an 
inverted ship). The amount of allowed curvature is determined by a user-defined 
parameter called alpha (α), which represents the radius of a circle (in 2D) or sphere 
(in 3D) at a position where it contains no points. The smaller the value of α, the 
more curvature is allowed for the alpha shape; therefore, as α approaches ∞, the 
alpha shape becomes a perfectly convex hull. Since the alpha shape is based on a 
series of tetrahedrons, Holmgren et al. (2008) calculated the sum of the surface area 
of the tetrahedrons within a voxel defined with respect to tree height and obtained 
the base of the tree crown by locating the minimum calculated area.

Reitberger et al. (2009) combined a normalized graph-cut function with water-
shed segmentation and was able to improve the tree detection rate compared with 
using the watershed method alone. Graph-cut segmentation is a method for separat-
ing objects according to a mathematical model, in which the best separation of 
objects occurs when the model attains a minimum, since the goal is to identify 
individual objects (i.e., trees), which have maximum internal similarity, while sepa-
rating points into different objects based on minimum similarity among canopies. 
The proportion of the trees detected in this example increased from 47 to 56% when 
3D normalized-cut segmentation was used in addition to the 2D watershed segmen-
tation. In another example of 3D detection, Kato et al. (2009) developed a method 
based on radial basis functions to create an iso-surface that wrapped around surface 
points that represented tree crowns.

A study comparing six tree detection algorithms for a variety of forests in Brazil, 
Germany, Norway, and Sweden showed that detection rates decrease when tree den-
sity increases (Vauhkonen et al. 2011). None of the compared algorithms exhibited 
a significantly better detection rate, which suggests that the overall performance 
depends more on the forest structure than on the actual algorithm that is used.

An advantage of point-based methods is that they make no assumptions about the 
degree of canopy intersection and therefore are not constrained by prior assump-
tions, but this limits the ability to detect individual trees in dense stands (where 
canopy overlaps are common) or where multiple strata of crowns exists. A disad-
vantage is that the computational cost is much higher for 3D data than for a flattened 
(2D raster) representation of the study site.

�Secondary Measurements

In this section, we discuss the secondary level of information that can be retrieved 
from LiDAR data, beyond simply using range information to measure tree height. 
Secondary measurements exploit information from the 3D distribution of points and 
allow derivation of attributes for vertical columns of points. By studying the charac-
teristics of the spatial distributions of LiDAR points, it becomes possible to infer or 
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model stand attributes such as DBH, biomass, BA, and wood volume (yield). In the 
following sections, we will discuss three approaches for extracting secondary infor-
mation from LiDAR point clouds. For studies involving wide extents or for opera-
tional forest management, both of which generate vast quantities of data to be 
processed, area-based approaches are often preferred. The first approach combines 
LiDAR data with allometric equations and other regression models to compute and 
map forest characteristics such as biomass, DBH, and wood volume over vast areas. 
Next, we discuss mapping of vegetation types using approaches similar to land 
cover classification. Finally, we examine methods for obtaining species information 
from LiDAR point clouds. We conclude these sections with a case study conducted 
near Thessalon, Ontario, Canada, where LiDAR and geometric spatial processing 
were used to detect potentially hazardous trees near a power transmission line cor-
ridor to support vegetation management.

�Regression Models and Allometric Equations

Allometric equations and other regression models have been useful for many 
applications of forest description because the concepts are easy to implement and 
are easily applied to area-based models. Users define a region of interest that con-
tains points to which attributes are attached and are subsequently used in the cal-
culation of metrics. Examples of metrics include the mean, standard deviation, 
skewness, and kurtosis of height (or height percentiles), and the values can be used 
as inputs for regression models that typically predict forest inventory attributes 
such as biomass, BA, DBH, stem density, tree crown size, height of the base of the 
crown, and stem volume. Using field-validation data, prediction equations can be 
empirically established and then applied elsewhere. As in the case of regression 
models and allometric equations, these equations are popular for estimating forest 
parameters. Allometric equations are mathematical models that relate tree biomass 
to variables such as DBH or tree height. Allometric equations are empirically 
derived, normally through field measurements, and are often site specific, but can 
sometimes be applied locally, regionally, or even more broadly within specific and 
clearly defined scopes (i.e., under conditions similar to those for which the model 
was developed).

A major benefit is that as long as a forest’s composition and the environmental 
conditions that influence its composition and structure remain consistent, the equa-
tions can be reused. Conversely, allometric equations cannot be applied in areas 
where the underlying characteristics of the sites differ from those at the sites used to 
develop the equations. Lefsky et al. (1999) effectively predicted biomass in eastern 
Maryland, USA, with an allometric equation derived by Monk et  al. (1970) that 
relates biomass per stem to DBH, but estimated the DBH values from LiDAR data. 
Lefsky et al. (2005) predicted biomass at three field sites (in Oregon and Tennessee, 
USA, and in Santarém, Brazil) using equations derived from Brown (1997) and 
Nelson et al. (1999).
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These examples show that with different study areas and LiDAR datasets, mea-
suring the same forest parameters can lead to different allometric equations. 
Similarly, regression equations can be generated for site- or study-specific purposes 
when ground-truthing data are available. Drake et al. (2003) estimated the quadratic 
mean stem diameter, BA, and aboveground biomass near the Sarapiquí River in 
northeastern Costa Rica. In their study, the stem diameter, BA, and biomass were 
estimated at the footprint level (0.05 ha) and the plot level (0.25–0.50 ha) using two 
separate sets of allometric equations.

The allometric equations derived by Brown (1997) have been used for estimating 
oven-dried aboveground biomass for each stem. In another example, from eastern 
Texas, USA, Zhao et al. (2009) estimated tree height, crown width, and height of the 
base of the crown for pines and deciduous trees from LiDAR-derived height metrics. 
Biomass and DBH were estimated using four different models derived by Jenkins 
et al. (2003), namely two regression equations for DBH and two allometric equations 
for biomass (each separating pines and deciduous trees). Careful calibration and 
selection of equations are essential for accurate estimates, since empirically deter-
mined coefficients can vary greatly among sites and influence allometric predictions.

The area-based regression method is efficient and simple for mapping large study 
areas. For example, Maltamo et  al. (2016) predicted the aboveground biomass in 
mountain forests in Norway, in a study area that was 1500 km long and approxi-
mately 200 m wide. Næsset (2004) studied forest stand attributes such as mean diam-
eter, number of stems, BA, and volume for a 6500-ha study area. In Ontario, Woods 
et al. (2010) predicted forest variables for each 400-m2 tile in a 630,000-ha forest 
using data provided by the local forestry company (Tembec Inc.). These large-area 
studies have proven the effectiveness of using LiDAR to support forest operations.

�Vertical Profile for a Single Tree

The approach described in section “Regression Models and Allometric Equations” 
can also let researchers calculate statistical parameters for individual trees. Attributes 
can be derived from the vertical point distribution of a group of points (such as a 
single tree or single tree crown) for classification purposes. In many cases, species 
have characteristic crown forms and the vertical frequency distribution of points 
differs among species, allowing them to be classified. To visually illustrate how dif-
ferent species may lead to a different vertical profile of LiDAR points, Fig. 11 shows 
an example of vertical profiles for a pine, poplar, and maple tree based on the first 
return, single (i.e., only) return, last return, and all return types combined.

There are three primary families of features that can be extracted from vertical 
profiles. The first considers the distribution of returns in the entire column or with that 
column sliced into vertical groups as a percentile (or other intervals such as deciles) of 
the height: the total count or proportion of the return types, height summaries, and 
descriptive statistics such as means and standard deviations. Since a single LiDAR 
pulse can reflect multiple times and produce multiple returns, it is possible to calculate 
the proportions of first, single (i.e., only), intermediate, and last returns for each height 
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interval within the point cloud column. In the second family, the relationship between 
height and return frequency can be used to characterize the abundance of returns 
within a vertical column through the forest canopy. The third family of features can 
represent any summary or descriptive statistic (e.g., mean, standard deviation, coeffi-
cient of variation, kurtosis, skewness) for the height or intensity measurements in each 
interval. Calculating vertical profile features based on the entire tree emphasizes the 
importance of analyzing a tree as a whole object, whereas analyzing the features 
derived from intervals can identify and exploit the internal variations of returns rela-
tive to their position within the tree. Both groups of features can be used as inputs for 
classifiers or models for estimating or inferring secondary features of a tree or stand.

�Classification of Vegetation Types

The application of LiDAR to classify land types or land covers is a complex topic, 
and is beyond the scope of this chapter. In summary, LiDAR data can be used to 
classify forest types or vegetation cover types with characteristically different 
LiDAR profiles. For example, Brennan and Webster (2006) generated surfaces 

Fig. 11  Frequency distributions of LiDAR points as a function of height for three tree species. The 
frequency distributions are provided for all returns, the first return, the last return, and the single 
return for (a) pine, (b) poplar, and (c) maple
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(DSM, DEM, intensity, multiple echoes, and normalized heights) from LiDAR data 
and classified their study area into ten classes, including four vegetation classes: 
arid low vegetation, and coniferous, deciduous, and low vegetation growing in wet 
soils. Similarly, Antonarakis et al. (2009) generated eight surfaces from LiDAR data 
in 10 m × 10 m cells: the canopy surface, terrain, vegetation height, intensity, inten-
sity difference, skewness, kurtosis, and percentage canopy model (the percentage of 
LiDAR hits that were reflected from the canopy compared to the total LiDAR hits 
in a 10 m × 10 m cells). They used two methods to classify the area into nine catego-
ries, the first included the influence of ground and the other had ground points 
removed before classification. The result was six vegetation classes, including short 
vegetation, young planted forest, intermediate planted forest, mature planted forest, 
young natural forest, and mature natural forest.

Instead of using LiDAR data to generate multiple surfaces, as in the two previous 
methods, vertical profile metrics (statistical attributes derived from height percen-
tiles) can also be used as features for classification. For example, Falkowski et al. 
(2009) used 34 features derived from a vertical column to classify different succes-
sional stages, including open, stand initiation, young multi-stratum, mature multi-
stratum, and old multi-stratum stages. Although the classification of vegetation is 
not forest specific (classification classes often contain non-forest vegetation types), 
the classified maps are useful in many forest-related studies.

�Tree Genus and Species Classification

It is common to further classify points in the LiDAR point cloud that have been iden-
tified as non-terrain points into subclasses that are related to the types of objects being 
scanned. In urban areas, possible subclasses include buildings, roads, and vegetation, 
whereas in natural areas, possible subclasses include vegetated areas, open water, and 
exposed rock. Classification of vegetation to the genus or species level can provide 
valuable information for forest management, particularly for predicting the growth 
and yield rates used to update a forest resource inventory or for scheduling harvests.

To classify LiDAR points belonging to a single tree, features (attributes) must be 
extracted to describe the associated point cloud. To classify LiDAR points into indi-
vidual tree genera or species, it is often easiest to base the classification on features 
obtained from the whole column of LiDAR points that represent a single tree. These 
features can be calculated from either the entire column of LiDAR points or the 
summarized aggregates of the points after they have been grouped into percentiles, 
deciles, or other statistical bins. Feature descriptors are then computed from each 
vertical bin of LiDAR points to produce a vertical profile. A second way to classify 
tree species from LiDAR data is by exploiting the geometry of the tree, since geo-
metric descriptors can be constructed or extracted from points in the LiDAR point 
cloud (e.g., convex hull attributes, reconstruction of the branching pattern). Third, 
classification can involve the combination or fusion of spectral information with the 
LiDAR point cloud data. Each of the three methods has shown promising results.
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Holmgren and Persson (2004) used features of the vertical profile to identify 
Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) individuals by utiliz-
ing the proportion of return types (i.e., the proportion of single returns and the pro-
portion of the first returns), with an accuracy of 95%. Furthermore, consideration of 
the height attributes from the 90th height percentile divided by the estimated tree 
height and the relative standard deviation of heights helped to separate the species. 
The authors also used attributes related to the signal intensity from the surface 
returns, such as its standard deviation or mean, for the classification. Additional 
attributes, such as parameters of the fitting of parabolic surfaces to the top of each 
tree, described the tree crown geometry; these concepts are described in more detail 
in the next section.

In another example, Moffiet et al. (2005) used the proportions of return types, 
heights, and intensity attributes of the canopy to identify cypress pine (Callitris 
columellaris), poplar box (Eucalyptus populnea), silver-leaved ironbark (Eucalyptus 
melanophloia), smooth-barked apple (Angophora costata), and brigalow (Acacia 
harpophylla). LiDAR data are often acquired during the summer (leaf-on condi-
tions), but vegetation classification by Kim et al. (2009) used both leaf-on and leaf-
off data separately and jointly, along with attributes such as the proportion of return 
types, heights, and intensities to identify eight broadleaved species and seven conif-
erous species with up to 74.9% classification accuracy.

Many other studies have used similar approaches. For example, Suratno et al. 
(2009) used the proportion of return types and the mean and standard deviations of 
heights and intensity to identify ponderosa pine (Pinus ponderosa), Douglas-fir 
(Pseudotsuga menziesii), western larch (Larix occidentalis), and lodgepole pine 
(Pinus contorta). Using attributes derived from the 10th, 50th, and 90th height percen-
tiles for return types, heights, and intensities, Ørka et  al. (2009) classified large 
Norway spruce and birch (Betula spp.) successfully, with 74% accuracy. Using two 
LiDAR sensors, Korpela et al. (2010) achieved an accuracy of up to 90% by identi-
fying Scots pine, Norway spruce, and birch based on the proportion of return types, 
height, and intensity attributes calculated for height deciles.

The vertical-profile approach leverages variations of the point distributions 
within the vertical column, and whether or not the attributes are related to the entire 
tree or to a particular percentile, these attributes take advantage of LiDAR’s ability 
to penetrate the canopy and see past the upper surface. The attributes derived from 
the point cloud relate to the geometry of the tree crown, but by not explicitly deriv-
ing geometric information; another set of attribute options can be derived that 
unambiguously capture a tree’s geometric characteristics.

Trees grow in a variety of shapes and sizes, but trees of the same species tend to 
have general similarity with respect to the positioning and shape of the crown and 
the arrangement of branches; together, these similarities define the form of the tree. 
The general form that a species exhibits in the vertical plane facilitates tree identifi-
cation from silhouettes. This property has been exploited for species classification 
in the field. Since LiDAR provides 3D information about trees (i.e., in essence, their 
form), research into incorporating the geometric measurements that define tree form 
into the classification of point clouds has become increasingly popular. Holmgren 
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and Persson (2004) used vertical profile attributes and attributes derived from fitting 
a parabolic surface to LiDAR points at tree tops, and therefore included the extent 
of the curvature of the parabola in their analysis. Yao et al. (2012) also used attri-
butes related to the curvature of a parabolic surface along with attributes of the verti-
cal profile to classify individuals as coniferous and deciduous trees and to further 
discriminate between spruce (Picea spp.) and fir (Abies spp.).

Alpha shapes include a set of 2D or 3D points, and are similar to convex hulls 
that allow internal curvature; to understand this, imagine shrink-wrapping a tree’s 
crown. Vauhkonen et al. (2008, 2009, 2010) used attributes from the alpha shapes of 
individual trees to estimate tree parameters such as DBH, volume, age, and crown 
diameter. Vauhkonen et al. (2008) used alpha shape metrics to classify Scandinavian 
commercial species, including pine, spruce, and deciduous trees. Ko et al. (2013) 
discussed and derived geometric attributes related to linear features derived within 
tree crowns (i.e., stems and branches), convex hulls, point clustering within crowns, 
and ratios between tree height and relative canopy vertical thickness, and used this 
approach to identify pine, poplar (Populus spp.), and maple (Acer spp.) genera. 
Subsequently they combined these geometric attributes with vertical profile metrics 
to further improve the classification accuracy (Ko et al. 2014).

Ensemble classification is a strategy that is being used to improve classification 
accuracy that works by combining results from more than one base classifier to 
solve a common classification problem. The advantage of using ensemble classifi-
cation is that the training can be conducted independently for each base classifier. 
Because the base classifiers are trained independently, each base classifier makes an 
independent decision which may be the same or different among each base classi-
fier. A vote among the base classifier results yields the final decision and this is seen 
as more robust than using only a single classifier. Combining information from 
multiple sources by means of ensemble classification can solve certain problems. In 
this approach, outputs from two or more related models are combined to provide 
insights that neither model could provide by itself. This is particularly useful when 
the information sources or types are mutually exclusive, such as using the combina-
tion of geometric and vertical profiles to classify tree species (Holmgren and Persson 
2004; Ko et al. 2014).

Spectral information obtained from the top of the canopy can be combined with 
LiDAR data to further improve the ability to classify features. Typically, the sim-
plest fusion method is to associate a pixel’s spectral values with the nearest LiDAR 
point to produce combinations of positional, geometric, and spectral features. 
Koukoulas and Blackburn (2005) used LiDAR data to generate a CHM; they then 
obtained tree top and crown delineation polygons from a combination of LiDAR 
data and Airborne Thematic Mapper (ATM, type 1268) imagery and used this data 
to estimate the location, height, and species of individual trees. Holmgren et  al. 
(2008) combined LiDAR data with airborne spectral data to consider the mean pixel 
values from each delineated tree polygon using three spectral bands obtained from 
the Digital Mapping Camera (Hexagon Safety & Infrastructure) at 500–650 nm, 
590–675 nm, and 675–850 nm and LiDAR-derived attributes such as height distri-
butions, canopy shape, proportion of pulse types, and intensity of returns.
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In the previous examples, spectral information was obtained from another plat-
form and subsequently combined with the LiDAR data, which differs from the use 
of multispectral LiDAR; in the latter, data from multiple LiDAR bands is obtained 
simultaneously during the same survey. Generally, spectral information obtained 
from imagery does not form a one-to-one relationship with the acquired LiDAR 
points, and in this case, there may be multiple LiDAR points within the 2D extent 
of the given pixels of the multispectral image. In this case, the spectral information 
is normally associated with the LiDAR point that has the highest elevation, but vari-
ous averaging options could be used, including weighted averaging or linear combi-
nations spanning multiple spectral channels. To overcome this problem, newer 
multispectral LiDAR scanners are increasingly capable of recording multiple chan-
nels simultaneously, and thus, each LiDAR point contains positional information 
and multispectral data acquired simultaneously for the same point.

�Case Study: Identifying Potentially Hazardous Trees

In this section, we provide details of a case study (Ko et al. 2012, 2013, 2014) that 
used high-density ALS LiDAR to identify and map potentially hazardous trees 
along a hydroelectric power transmission corridor near Thessalon, Ontario, Canada. 
This study sought to identify trees that had the potential to endanger the hydroelec-
tric transmission lines by either growing into the lines or falling onto the lines. The 
assessment was based on interpreting LiDAR point clouds to identify individual 
trees and assess the angle at which the trees were leaning from interpreted geomet-
ric features; the information was then combined with the genus of each tree to map 
the trees that represented potential hazards.

LiDAR data was acquired on 7 August 2009 from an altitude of 140 m above the 
local ground level with a pulse density of approximately 40 points per m2, and up to 
five returns per pulse. Individual trees (n = 186) were surveyed in the field to form 
a validation dataset; for each tree, their location, species, and DBH were recorded. 
Species identified in the field included white birch (Betula papyrifera), sugar maple 
(Acer saccharum), northern red oak (Quercus rubra), jack pine (Pinus banksiana), 
trembling aspen (Populus tremuloides), white pine (Pinus strobus), white spruce 
(Picea glauca), and eastern larch or tamarack (Larix laricina). Of the validation 
samples, 67 were pines, 59 poplars, and 34 maples; the remaining 26 trees formed 
a mixture of minor species and are not part of this case study. Pre-processing 
required manual segmentation of the LiDAR point cloud to extract individual trees; 
this step was not automated because it was not the focus of the geometric analysis.

For each tree, 24 geometric features were derived to characterize the form of the 
tree (Ko et al. 2013). To reduce the complexity of subsequent data processing, an 
automated feature reduction method was implemented (Ko et  al. 2014), which 
decreased the number of geometric features that were considered to be six. First, 
each tree crown was segmented into different point clusters, with each cluster rep-
resenting a branch. The best-fit lines, planes, and volume metrics were calculated 
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for each cluster and used to identify the genus. The six geometric features were the 
average derived best-fit line segment lengths divided by tree height; the average line 
segment lengths multiplied by the ratio of crown height to tree height; the volume 
of the tree crown’s convex hull divided by the number of points in the tree crown; 
the average distance from each LiDAR point to the closest facet of the derived con-
vex hull; and the tree’s crown height divided by the tree height. To calculate the 6th 
metric, a buffer was extended from each LiDAR point outward to a radius of 5% of 
the tree height, then the overlap volume of that sphere with all adjacent spheres was 
calculated for each point and divided by the number of points in the tree’s crown.

Genus classes were determined using the Random Forests software (Breiman 
2001; Liaw and Wiener 2002), which can perform nonparametric ensemble classifi-
cation to classify tree genus based on training from a subset of the data. The method 
uses a ranking system of numerous randomized classifications to ultimately select 
the most likely prediction.

To detect and map potentially hazardous trees, we first identified the location 
of the transmission line, then we identified the individual trees near the trans-
mission line, and delineated the trees using planar polygons. According to the 
North American Electric Reliability Corporation FAC-003-2 standard (http://www.
nerc.com/filingsorders/us/fercordersrules/e-5_order_fac-003-2_2013.3.21.pdf), the 
transmission line at the field site requires 15.24 m (50 ft) of clearance. Therefore, 
we constructed a buffer zone that extended outwards from both sides of the trans-
mission line to create a minimum vegetation clearance distance (MVCD) zone. 
Next, we delineated trees that intersected the MVCD zone, even if only partially. 
These marked trees form the first subset of trees that represent potential hazards. We 
then identified trees taller than 15.24 m as having the potential to contact the trans-
mission line if they fell in that direction. To identify the angle of each potentially 
hazardous tree from the vertical, we connected the centroids of a vertically moving 
voxel for each individual tree’s LiDAR point cloud to obtain the best estimate for 
the location of the main stem. By fitting a best-fit line through these points, we 
approximated the general form and lean of the main stem. To determine whether the 
tree was leaning towards or away from the transmission lines, we calculated the 
perpendicular distances from each tree’s top and base to the transmission line. If the 
distance was smaller for the top, then the tree was leaning towards the transmission 
line. Finally, we flagged trees that could potentially contact the power lines if they 
fell in the direction of their lean and linked the genus classification with the lean 
angle for mapping in GIS software.

Figure 12 shows an overview of the LiDAR data for the study site. Site 1 
(Fig.  12a) is illustrated in Figs.  12b–d. To identify trees to the genus level, tree 
samples were taken from all eight sites (Fig. 12a) to capture some of the growth 
variability caused by environmental variation. Figure 13 shows a plan view of Site 
1, with the MVCD zone (grey) and trees that had been surveyed in the field in color. 
The crowns of trees that overlapped this zone are shown in yellow or red. Red trees 
indicate trees that are in the MVCD zone and taller than 15.24 m and yellow trees 
indicate trees that are in the MVCD zone and shorter than 15.24 m. Green trees are 
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the trees that were surveyed in the field but that do not intersect the MVCD zone. 
Therefore, red trees are tall enough to potentially contact the transmission lines if 
they fall. Figure 14 displays both the trees and their angle from the vertical, shown 
as a line through each tree’s point cloud based on the estimated position of the main 
stem. Treetops marked with a cross are leaning towards the transmission lines and 
pose a potential hazard. Figure  15 combines the information obtained from the 
genus classification with the MVCD zone hazard assessment.

This case study demonstrates LiDAR’s ability to monitor trees over a large 
area and to support an assessment of the potential hazards they pose to the power 
lines in a hydroelectric transmission corridor. Since trees can grow toward and 
potentially fall on critical infrastructure, the same approach could be used in other 
contexts to detect, map, and react to potential hazards in a timely manner. The 
ability to identify trees to the genus level based on geometric summary metrics 
extracted from LiDAR point clouds and to integrate this data with GIS buffering, 
voxel analysis, and measurements of distances and angles demonstrates the utility 
of LiDAR data. The distance parameters, species identities, and any additional 
filters that might be deemed necessary to identify hazards can be chosen by the 
user of the data based on their specific needs. The ability to integrate geometric 
and 3D data into a unified analytical framework underscores the potential of 
LiDAR technology.

Fig. 12  (a) A plan view of the study site, showing the locations of the hydroelectric transmission 
corridor and of the eight sampling sites in the adjacent forest. (b) Site 1 is shown from an oblique 
perspective, with LiDAR points shaded based on reflection height (lighter = taller). (c) 3D view of 
the transmission line and surrounding forest. (d) 3D perspective, indicating individual trees that 
were identified within the MVCD, with the transmission lines shown in blue
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�The Future of LiDAR

The use of LiDAR technology in forest applications is still developing rapidly to 
take advantage of improved (and cheaper) laser scanning technology, multispectral 
scanners, faster computers, vastly expanded data storage capacities, improved ana-
lytical algorithms, and integration with other geospatial sectors. With greater num-
bers of users, there is also more incentive to build more tools and write more 
software to support processing, handling, interpretation, and manipulation of the 
LiDAR data; thus, opportunities for using these data sources will become increas-
ingly abundant, but the tools will also become increasingly user friendly and acces-
sible. Although the costs associated with SLS are still prohibitive, the costs 
associated with ALS are reasonable and users of the technology now regularly 
mount scanners on airplanes, helicopters, and unmanned aerial vehicles to perform 
their surveys. This flexibility is leading to new and innovative uses of the 
technology.

Fig. 13  Map of tree crowns sampled along the hydroelectric transmission corridor (grey area). 
Color codes identify trees that were validated in the field, the subset of trees that overlap the 
MVCD buffer zone (red and yellow), and the subset of the latter trees that are taller than 15.24 m 
and that could potentially fall on the lines (red). The forest outside the grey area represents the 
LiDAR point cloud flattened into a 2D plan view
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In contrast with the past, software is becoming less expensive or even available 
at no cost. Although “open-source” software is a relatively recent development, it 
has quickly become popular among LiDAR users. Open-source software is devel-
oped for the benefit of a community, and is made available freely for researchers and 
other users to use, modify, and distribute. Because of the large benefits this approach 
offers to the community of LiDAR users and the growing pool of talented users, 
tools for viewing and processing massive datasets are rapidly advancing. The 
increased availability of free or inexpensive data and software is leading to rapid 
advances in the acquisition, processing, and analysis of LiDAR data. Such 
developments, in turn, attract investment from the business sector, creating a self-
perpetuating cycle of improvement.

Hardware advances such as more powerful computers with better storage have 
also advanced LiDAR development. For example, storage capacity and the associ-
ated cost have decreased substantially, and the speed and memory of video cards 
have increased to the point where real-time manipulation and viewing of 3D data is 
a reality.

GIS software increasingly includes the ability to process and display 3D data. For 
example, ESRI’s ArcGIS software (http://www.esri.com/software/arcgis) includes 
an integrated application (ArcScene) for processing 3D data, with specific tools pro-
vided for importing, exporting, processing, and analyzing LiDAR point cloud data. 
Such developments have encouraged the GIS community to incorporate LiDAR data 

Fig. 14  Example of results showing the main growth direction of the subsample of trees that could 
potentially fall on the transmission lines. The straight vertical lines are drawn through the centers 
of the point cloud and connect the tip of the crown with the stem’s contact with the ground. Only 
trees that are within the MVCD zone and that are taller than 15.24 m and leaning towards the lines 
(circled trees) are considered hazardous
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into their projects. File format standards for LiDAR data have (nearly) been stan-
dardized, with the American Society for Photogrammetry and Remote Sensing 
(https://www.asprs.org) developing the .las file format to replace older formats such 
as .xyz, .ascii, or .txt. This will greatly simplify the process of data sharing.

Although the area of coverage is smaller when the scanner is mounted on a plat-
form that flies at a lower altitude, the flexibility increases, and although the time 
required to cover a given area increases, the frequency and density of the coverage 
can be much greater than with SLS or TLS LiDAR. Miniaturization of the technol-
ogy is reducing payload weight, increasingly allowing the use of LiDAR technology 
on lightweight platforms such as UAVs, and increasing the potential for remote and 
mobile data collection. Once it becomes possible to design multiple sensors that can 
be carried by platforms that can currently only carry a single sensor, the opportuni-
ties for increased multi- and hyperspectral data acquisition and real-time data fusion 
will improve greatly.

Coupling these improved data collection options with truly mobile data acquisi-
tion platforms (e.g., UAVs, automobiles, humans) will allow changes in the per-
spectives for data collection (e.g., above, below, and within a canopy) and will allow 
data collection for specific purposes (e.g., mapping hiking trails, tracking large-
mammal movement through a dense understory, nest selection by migratory birds, 

Fig. 15  Map of the hydroelectric transmission corridor (grey), showing the trees that were vali-
dated in the field, those that overlap the MVCD, and those that pose a leaning hazard. Areas outside 
the transmission corridor are the flattened LiDAR point cloud for the surrounding forest
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access to an area using all-terrain vehicles). It is foreseeable that small, rugged 
technology such as that which permits the now-ubiquitous GoPro camera (https://
gopro.com) and its cinema-quality videography will become available to allow 
equally portable remote sensing, ranging, and detection tools that will revolutionize 
LiDAR data collection. In the not too distant future, animals may be outfitted with 
LiDAR-enabled GPS collars that provide information on both their movements and 
their habitat characteristics.

GIS software has only recently started to harness the third and fourth dimen-
sions. Ongoing development from technical, data handling, processing, display, and 
analytical perspectives will improve opportunities to benefit from the ample data 
streams that an expanding multispectral LiDAR data collection network will pro-
vide. Multispectral LiDAR that provides information such as red, green, blue, infra-
red, or near-infrared bands will allow the processing of environmental objects, and 
especially living objects such as vegetation, which is important in the context of this 
chapter (i.e., forestry applications). Multispectral LiDAR information, combined 
with precise location information for individual points, has great potential to 
improve the identification and classification of individual trees, species, character-
istics of the forest structure, and environmental conditions.

Spectral information can provide additional classification of features, particu-
larly when used in conjunction with the geometric features and vertical profile char-
acteristics that we have discussed in this chapter. Classification features derived 
from spectral information have great potential for extraction of new information 
because the features are often independent of the vertical profile features or geomet-
ric features; thus, the additional features derived from the spectral information are 
less likely to be correlated with traditional LiDAR metrics. The intensity values 
provided by either single-channel or multiple-channel LiDAR systems require care-
ful geometric and radiometric calibration before the values can be used effectively. 
Moving forward, research will continue in this domain to find ways to use the inten-
sity values measured by LiDAR scanners as true measured quantities rather than 
simple indicators.

As LiDAR data becomes cheaper and more readily available, and as data collec-
tion becomes easier, data acquisition will become increasingly frequent. A key hur-
dle to overcome will then be the development of new algorithms to handle the 
increasing variety, volume, and frequency of the data streams being collected. 
Newer algorithms and methods for handling data are needed that will permit the 
handling and analysis of big data; related challenges include the storage, process-
ing, sharing, and extraction of tremendous volumes of multidimensional data. There 
are still some challenges that must be overcome to meet the high demand for 
onboard LiDAR data processing (e.g., onboard classification, onboard object recog-
nition) to accelerate decision-making processes and final product generation to sup-
port environmental, political, planning, and other purposes without requiring 
time-consuming post-processing of the data.

In terms of classification, ensemble theory has become a popular tool for han-
dling complex cases; efforts to combine multiple classifiers to support better deci-
sions (e.g., to obtain higher classification accuracy) is an area of current emphasis. 
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As the data volumes increase, ensemble classification can also become an effective 
method to process the data by grouping it into smaller chunks. The final classifica-
tion decisions can then be made by combining the decisions from multiple classifi-
ers both to increase classification accuracy and to reduce the processing time (e.g., 
by taking advantage of parallel rather than serial computing). In ensemble theory, 
the best scenario is the use of multiple classifiers simultaneously, working with 
highly diverse classification feature sets, so that the classification features are not 
redundant; as a result, the development of multiple-channel LiDAR is well suited 
for these types of methods.

Another popular LiDAR-related project for studies of forested landscapes is the 
single-photon LiDAR space mission (https://spinoff.nasa.gov/Spinoff2016/ps_6.html) 
funded by the National Aeronautics and Space Administration (NASA) as part of the 
ICESat-2 project. In this project, the LiDAR scanner will record every photon that is 
reflected from targets (at a density of about 12 points per m2). This mission is sched-
uled to launch in 2017 and the scanner is expected to generate 32,000 pulses per sec-
ond within each of its 100 channels (arranged in a 10-by-10 array), thereby providing 
3.2 million measurements per second. Since this will be a spaceborne LiDAR system, 
with a very high altitude and a swath width of several kilometers, the areal coverage 
will be vast and coverage will be rapid, which should result in lower costs per unit area 
than with airborne data acquisition. Once this data becomes available, it is likely to 
become one of the major foci for mapping forest landscapes.

The use of bathymetric LiDAR, which is capable of penetrating shallow water 
for mapping the bottom of bodies of water, is beyond the scope of this chapter, but 
a significant amount of research has been completed on this topic. One of the major 
differences between the LiDAR scanners used for bathymetry and those used for 
forestry (topographic LiDAR) is the choice of wavelength. Bathymetric LiDAR 
tends to use a shorter wavelength (e.g., 532 nm) rather than the longer wavelengths 
(e.g., 1064 nm) that are typically used with vegetation studies such that water pen-
etration can be achieved. The near-infrared part of the electromagnetic spectrum, 
where vegetation has high reflectivity, is where absorption by water is high, so near-
infrared scanners are not suitable for studies involving bodies of water. However, 
bathymetric LiDAR has many potential uses in terrestrial-aquatic environments 
such as wetlands, where the land is saturated with water.

To keep up with the accelerating capacity for data collection, researchers will 
need to improve tools and algorithms for dissecting the 3D LiDAR point clouds. This 
research will ultimately lead to revolutionary methods for data classification and 
analysis. The current problems encountered as a result of intersecting tree canopies 
(i.e., difficulty identifying which data points belong to each canopy) will need to be 
solved. Similarly, accurate separation of the ground from understory vegetation and 
overstory vegetation will continue to improve. Although rudimentary tree species 
classification has been achieved, there is considerable room for improvement of 
accuracy along with detailed calculations of wood volume (e.g., with branches and 
leaves removed), rather than relying on regression-type and other allometric relation-
ships. Better estimation of the woody and non-woody biomass fractions will provide 
precious information to support the forest industry and environmental studies.
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There is a push by the forest industry and governments to develop individual-tree 
inventories rather than the current stand-level products; the reality of this is still 
distant, but progress is being made. The use of smaller LiDAR instruments has 
increased mobility and provided us with an opportunity to automatically combine 
data efficiently from multiple scans with different scanning angles. Individual-tree 
inventories and improved maps of individual tree crowns are valuable information 
that will benefit both industrial users and researchers, and will continue to motivate 
research. Particular challenges will be to decipher the inherent complexities of for-
est landscapes and automate extraction of this information to support forest 
management.
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Regression Tree Modeling of Spatial Pattern 
and Process Interactions

Trisalyn A. Nelson, Wiebe Nijland, Mathieu L. Bourbonnais, and Michael 
A. Wulder

Abstract  In forestry, many fundamental spatial processes cannot be measured 
directly and data on spatial patterns are used as a surrogate for studying processes. 
To characterize the outcomes of a dynamic process in terms of a spatial pattern, we 
often consider the probability of certain outcomes over a large area rather than on 
the scale of the particular process. In this chapter we demonstrate data mining 
approaches that leverage the growing availability of forestry-related spatial data sets 
for understanding spatial processes. We present classification and regression trees 
(CART) and associated methods, including boosted regression trees (BRT) and ran-
dom forests (RT). We demonstrate how data mining or machine learning approaches 
are useful for relating spatial patterns and processes. Methods are applied to a wild-
fire data and covariate data are used to contextualize the quantified patterns. Results 
indicate that fire patterns are mostly related to processes influenced by people. 
Given the growing number of multi-temporal and large area datasets on forests and 
ecology machine learning and data mining approaches should be leveraged to quan-
tify dynamic space-time relationships.

�Spatial Pattern and Processes

Many scientific disciplines are interested in quantifying the relationships between 
spatial patterns and spatial processes (Nelson 2012). Intuitively, we understand that 
geographic patterns present at a given date can tell a story about a prior sequence of 
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events, or reveal information on the functioning of a system. Investigation of spatial 
patterns may lead to a better understanding of processes otherwise obscured from 
measurement. Popular culture is full of examples of the link between pattern and pro-
cess. A familiar example of the link between mapped patterns and processes is the use 
of maps to plot and link events to solve a crime in TV dramas. Perhaps more relevant 
is the use of pattern-based jargon like hot spots, a spatial pattern of abundance, to 
indicate locations with important ecological processes (Nelson and Boots 2008).

Owing to the popularity of global positioning systems (GPS), geographic infor-
mation systems (GIS), remote sensing, and increasingly user-friendly access to 
these data via Internet applications like Google Maps, there has been an explosion 
in the availability and interest of mappable data (Nelson 2012). Citizens, managers, 
and scientists have an increasing interest in extracting the information available 
from maps. As the amount of spatial data increases concurrently with improved 
access, the spatial co-location of data from different sources is becoming increas-
ingly powerful for the analysis of spatial patterns and processes. Users from novices 
to experts, confronted with spatial data, are posing questions and requesting appli-
cations that continue to drive a need for new analytical methods. Rather than con-
sidering single points or events, increasingly knowledgeable users desire integration 
and refinement of the data available. We consider a spatial pattern as the expression 
of one or many spatial processes and a spatial process as a sequence of events car-
ried out in some definite manner (Haining 1990). While spatial patterns are typi-
cally considered a snapshot in time, processes are temporally dynamic and expected 
to change (Getis and Boots 1978).

�Describing Spatial Patterns

To describe the outcomes of a dynamic process in terms of a spatial pattern, we 
often consider the probability of certain outcomes over a large area rather than on 
the scale of the particular process. Forest fire occurrence is a good example of this. 
Fires are short-lived, localized events that are highly dependent on weather condi-
tions and the presence of a source of ignition. The specific location of fires is there-
fore not readily predictable. However, over larger areas patterns in fire occurrence 
become clear with more frequent fires in areas with high fuel loads, dry climates, 
and more ignition sources (Parisien and Moritz 2009; Gralewicz et  al. 2011; 
Gralewicz et al. 2012). Measurement of fuel or climate conditions on a landscape 
may therefore inform us about the probability of wildfire occurrence in a specific 
place (Chuvieco and Salas 1996; Parisien and Moritz 2009).

A similar ratio is used to map the ecological niche of a plant or tree species. We 
can create a model of the preferred climate and soil condition of a particular tree 
showing where it can grow and where it is more likely to thrive (Nijland et al. 2014; 
Waring et al. 2014), but within that range it still may or may not be present because 
of past events like the presence of a seed source and the availability of any free 
space.
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Spatial patterns can either be directly related to the spatial processes by occur-
ring in the same place or have a more complex relationship acting as a function of 
distance to another location. The nature of the relationship influences how we map 
the spatial patterns involved. The spatial pattern of forest logging operation pro-
vides an example of co-located and more complex spatial interactions: Forest log-
ging is done in places with merchantable wood present, a simple co-location. 
Logging also occurs in places with access to a mill or other processing plant; the 
spatial relationship between logging and mills is more complex because they inter-
act dependent on distance or connectivity to the mill. Even for simple co-location of 
spatial variables we still need to consider what “the same place” actually means.

When working with data from different sources, as is often the case, the data 
needs to be unified to a common spatial unit. The size of the principal spatial unit is 
dependent on the process we are studying (Nijland et al. 2009). In some cases a 
predefined or natural spatial unit is available, such as tenure areas in forests or 
watersheds in hydrology; in other cases, we may need to find our own solution by 
imposing a grid or other regular pattern, or else segment the area by other boundar-
ies, perhaps roads or administrative areas (Dark and Bram 2007). Naturally, the 
detail of our environmental data needs to match the principal spatial unit and pro-
cess. If we use climate patterns only to model the distribution of a plant or tree spe-
cies, the results will be limited to regional patterns. If more detail is required, 
additional information with finer detail, for example, soil conditions or forest struc-
ture, may be included in the model (Nijland et al. 2014).

With complex spatial relationships we need to define the connection between our 
location and nearby features. In many cases our best approximation is by simple 
distance. With other cases the connection may be limited by physical boundaries or 
operate over a network. For instance, when transporting logs to a mill, the travel 
time or cost over the road network is more relevant than the simple Euclidean dis-
tance to the mill (Anderson et al. 2011).

�Process Complexity

In forestry, many fundamental spatial processes cannot be measured directly and 
data on spatial patterns are used as a surrogate for studying processes (Levin 1992; 
Sokal et al. 1998; Jacquez 2000). As an example, consider landscape-scale forest 
insect infestations (e.g., Bone et al. 2013). The spatial processes of large-area insect 
infestations cannot be measured directly and the pattern of infested trees is the 
expression of the process of infestation (Robertson et al. 2008). By quantifying the 
spatial and temporal patterns of insect infestation, we generate new hypotheses or 
knowledge on the spatial processes of infestation. For instance, knowing the dis-
tance at which beetle infestation patterns are aggregated on the landscape provides 
information on the spatial scale of infestation processes (Powers et al. 1999) and 
identifying hot spots of infestation in space and time provides evidence of how for-
est susceptibility changes as an infestation progresses (Nelson et al. 2006).
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Relating spatial pattern and process can be complex. Spatial patterns and pro-
cesses are connected through a positive feedback; patterns are an expression of 
process, but processes are influenced by pattern (Fortin et al. 2003). For instance, in 
a forestry context the spatial pattern of the forest age is known to influence the risk 
of fire, while at the same time fire changes the age distribution of the forest 
(Gralewicz et al. 2012). The constant interplay between fire and forest age distribu-
tion is just one example of the feedback between pattern and process that can com-
plicate interpretation. Interactions between pattern and process can be further 
concealed by the complicated one-to-many relationship between pattern and pro-
cess. Many processes will express similar spatial pattern on the landscape and it can 
be near impossible to assign a pattern to a precise process (Fortin and Dale 2005 
pp. 3–4; Langford et al. 2006). In reality most patterns are the result of many pro-
cesses interacting together and through time.

�Data Mining

Growing availability of forestry-related spatial data sets is creating an opportunity 
to use the spatial patterns in those data sets to explore and quantify spatial pro-
cesses. Well-known spatial methods like kriging or k-nearest neighbor interpolation 
do use spatial patterns to generate predictions for unmeasured locations, but do not 
provide information on the process side (Hastie et al. 2009). Data mining methods 
are specifically suited to model patterns and processes in large volumes of informa-
tion (Shekhar et  al. 2003). Classification and regression trees (CART) (Breiman 
et al. 1984) and associated methods, such as boosted regression trees (BRT) (Elith 
et al. 2008; Hastie et al. 2009) and random forests (RT) (Breiman 2001), represent 
data mining or machine learning approaches useful for relating spatial patterns and 
processes. Exploratory in nature, CART and CART-based approaches are increas-
ingly used in forestry and ecology research where there is an interest in quantifying 
and predicting spatial pattern and process dynamics and identifying influential driv-
ers of these dynamics (De’ath and Fabricius 2000; Hawkins 2012). CART-based 
approaches have been used to understand natural and human drivers of spatial pat-
terns of forest fire ignition (Gralewicz et  al. 2012; Bourbonnais et  al. 2013a, b), 
potential spatial variability in vegetation and forest composition under different 
climate change scenarios (Holmes et al. 2013), spatial patterns of species distribu-
tions based on environmental gradients (Elith et al. 2006; Leathwick et al. 2006), 
and wildlife health in the context of habitat conditions and human disturbance 
(Bourbonnais et al. 2013b).

CART-based methods are well suited to the study of spatial pattern and process 
as they can handle large datasets, complex nonlinear relationships, and missing data 
that are prevalent in spatial datasets, and can accommodate continuous and categori-
cal variables, as well as variable interactions (De’ath and Fabricius 2000). The abil-
ity to handle mixed data types and the relatively straightforward interpretation of the 
resultant model structure put CART at an advantage over neural nets and support 
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vector machines which are other machine learning methods designed to handle 
large data volumes and complex relationships (Hastie et al. 2009). Unlike paramet-
ric regression methods, such as ordinary least-squares regression and generalized 
linear models, CART-based methods make no assumptions about the structure of 
the data and the underlying processes, which in forestry and ecology are complex 
and may be unknown, and as such represent a flexible data-driven nonparametric 
regression approach.

In this chapter we provide an overview of CART, and two CART-based methods, 
BRT and RF. We demonstrate each approach, illustrate how to interpret the results, 
and comment on the strengths of each method through a case study that aims to 
quantify how spatial patterns of mountain pine beetle infestation are changing fire 
processes in British Columbia, Canada. While we highlight the utility of these 
approaches, we refer the reader who requires additional theoretical background to 
comprehensive reviews provided by Berk (2008) and Hastie et al. (2009). We intro-
duce the theory of each method and then demonstrate how it applies to the case 
study of the interaction of mountain pine infestations on large forest fires. We con-
clude with an interpretation of modeling results and highlight future directions.

�Methods

�CART Models

CART models, originally implemented by Breiman et al. (1984), recursively parti-
tion (i.e., split) the response, in our case the spatial pattern of interest, into increas-
ingly homogeneous subsets based on information provided by the predictor variables 
considered (Berk 2008). At each binary split, a threshold value (for continuous vari-
ables) or group level (for categorical variables) that best reduces the error sum of 
squares in the case of a continuous response, or the Gini index in the case of a cat-
egorical response, is selected to partition the data into two subsets. Data partitioning 
continues in a stagewise manner, meaning earlier split values are not considered in 
subsequent partitions, until no further meaningful reductions in the error sum of 
squares or Gini index can be found based on the data. This exhaustive approach 
generally leads to a very large tree being grown, or many splits, which is then pruned 
to remove splits that over-fit the data identified through cross-validation (Hastie 
et al. 2009).

When displayed graphically, a CART model is an inverted tree with the root node 
representing the undivided data at the top and branches defined by partition values 
and leaves, or terminal nodes, representing the response values or groups beneath 
(De’ath and Fabricius 2000). In our case, the branches and partition values represent 
the spatial processes considered and the terminal nodes the spatial pattern of inter-
est. The hierarchical structure of the CART model is interpreted based on the parti-
tion values and terminal node assignments. At each split, observations that satisfy 
the decision rule are assigned to the group to the left while those that do not are 
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assigned to the group to the right. The split values of the process variables, and 
associated terminal node value assignments representing the spatial pattern, allow 
us to infer the directionality of the spatial pattern-process dynamics. Additionally, 
the hierarchical structure of the CART model automatically incorporates interaction 
effects among process variables as terminal node assignments are dependent on all 
the preceding splits. For continuous response variables, CART model (i.e., regres-
sion tree) performance can be assessed based on the total sum of squares variance 
explained or the deviance explained (De’ath and Fabricius 2000). CART model 
performance for categorical response variables (i.e., classification tree) can be 
determined using a variety of classification accuracy assessments including mis-
classification error rates (De’ath and Fabricius 2000), confusion matrices (Berk 
2008), and area under the receiver operating characteristic curve (Hastie et al. 2009). 
However, while CART models are easy to fit and interpret they do have a number of 
drawbacks. As mentioned, they are prone to over-fitting and defining stopping crite-
ria and pruning large trees is not trivial (Murthy 1998; Berk 2008). CART models 
are also overly sensitive to changes in input data that can result in major changes in 
tree structure and split values (Hastie et al. 2009), making them a temporally static 
modeling approach. As a result, more robust methods that combine multiple sto-
chastic trees have been developed.

�BRT

BRTs use boosting algorithms to improve model accuracy by combining and aver-
aging many CART models, rather than relying on a single tree to explain the asso-
ciation among spatial pattern and process(es) (De’ath 2007; Elith et  al. 2008). 
Similar to CART, BRT is a stagewise procedure. However, unlike CART where 
binary splits are selected at each stage, BRT iteratively fits a completely new tree at 
each stage in order to minimize a loss function such as the deviance explained. 
Beginning with the first tree, a random subset of the data was selected and a tree is 
built that best minimized the loss in deviance explained. At each subsequent stage, 
a new tree using randomly selected data was built based on the residuals, or the 
unexplained variance in the response, from the combination of trees that already 
exist. Only the fitted values are reestimated at each iteration, while the existing trees 
and split values are unchanged. The final stochastic BRT model is a linear combina-
tion of hundreds or thousands of trees, rather than a single tree, resulting in a more 
robust model compared to the single tree produced by CART (Elith et al. 2008). 
However, unlike CART, which has few user-defined parameters, BRT models 
require the user to define the bag fraction, which specifies the proportion of the data 
randomly drawn at each iteration; the model learning rate, which determines the 
contribution of each tree to the model; and the tree complexity, which specifies the 
complexity of interaction effects included in the model (De’ath 2007; Elith et al. 
2008). Combined, the learning rate and tree complexity determine the optimal num-
ber of trees required in the BRT model to minimize the loss in deviance explained 

T.A. Nelson et al.



193

while avoiding over-fitting the data. We refer the reader to Elith et al. (2008) for an 
in-depth review of BRT parameters and model fitting procedures.

Similar to CART, the performance of BRT models can be assessed using the 
deviance explained or a classification accuracy assessment usually based on cross-
validation using withheld data (De’ath 2007; Elith et  al. 2008). While variable 
importance and directionality in CART models are easily interpreted using a tree 
diagram, no such output is produced by BRT as it combines numerous trees. Instead, 
the influence of each variable is determined based on the number of times each vari-
able is chosen as a split, weighted by its improvement to the model at each split 
averaged over the total number of trees in the model (Friedman 2001; Friedman and 
Meulman 2003; Elith et al. 2008). Partial dependence plots, which average out the 
influence of all other variables besides the variable selected, are used to visualize 
the associations between influential process variables and the spatial pattern 
response (Friedman 2001; Friedman and Meulman 2003).

�RF Models

RF models (for the statistical background see Breiman 2001) are another machine 
learning approach that combine and average many CART models. RFs use bootstrap 
samples of the data to fit numerous (generally 500–2000) individual regression or 
classification trees. Unlike BRT, a limited number of predictor variables are also 
drawn at random in each bootstrap sample and used for the recursive partitioning to fit 
each tree. The number of variables to be randomly selected in each bootstrap sample 
is the only user-defined parameter in a RF. Also, bootstrap sampling and recursive 
partitioning of individual trees are usually not done in a stagewise manner meaning 
influential predictors and thresholds may be selected more than once. However, as 
observations from all the trees are aggregated through averaging, RFs are quite robust 
to over-fitting. Observations in the data that do not occur in the bootstrap samples are 
referred to as the out-of-bag data (Cutler et al. 2007). Each tree is grown to its maxi-
mum size and used to predict the out-of-bag data, eliminating the need to retain data 
for cross-validation (Prasad et al. 2006; Cutler et al. 2007).

The comparison of predicted values or classes from the bootstrap aggregation of 
trees used to build the RF with those retained in the out-of-bag data provide the 
mean square error (regression) or misclassification error rate based on the Gini 
index (classification) of the RF model. Similar to BRT, partial dependence plots are 
used to visualize associations between process-based variables and the spatial pat-
tern response (Cutler et al. 2007; Hastie et al. 2009), and variable importance is 
assessed based on the number of times a variable is included as a split in the model 
and how well it performs. In the case of RF, the accuracy of a variable is determined 
by randomly permuting values from the out-of-bag data and then comparing predic-
tions made with these new data to those of the model. The difference, divided by the 
standard error, between the permuted and original out-of-bag data values or mis-
classification rate represents the importance of the variable (Cutler et al. 2007).
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�Case Study Context: Influence of Beetle Infestation Spatial 
Patterns on Fire Spatial Processes

Disturbance plays an important role in defining landscape pattern and can cause 
substantial change in ecosystem processes (Turner 1989). In Canadian forests, 
anthropogenic and natural disturbances, such as harvesting (Masek et al. 2011), for-
est fires (Stocks et al. 2002), and insect infestations and disease (Hall and Moody 
1994; Volney and Fleming 2000), are the primary determinants of forest structure.

While mountain pine beetle (Dendroctonus ponderosae Hopkins [Coleoptera: 
Scolytidae]) infestations are endemic in North American lodgepole pine ecosystems 
(Amman 1977), the infestation that occurred in western Canada during the 1990s 
and 2000s was the largest on record and affected over 16 million ha (Walton 2010), 
leading to widespread mortality of adult lodgepole pine trees in the region. Across 
the large area affected the severity of infestation varied substantially (Robertson 
et al. 2009a; Wulder et al. 2010). However, the spatial pattern of forests affected by 
the infestation has been altered considerably, generally resulting in smaller, more 
complex, more numerous forest patches (Robertson et al. 2009b; Coops et al. 2010).

Impacts of mountain pine beetle infestation on forest fire regimes are of particu-
lar concern, as outbreak-related tree mortality is anticipated to increase the fre-
quency and severity of forest fires (Shore et  al. 2006; Negrón et  al. 2008). The 
theory that mountain pine beetle-induced tree mortality results in more severe fires 
has only recently been tested empirically (Jenkins et al. 2012), and initial results of 
retrospective studies and empirical testing of mountain pine beetle-fire dynamics 
have been contradictory (e.g., Page and Jenkins 2007; Simard et al. 2011).

The complex spatial pattern-process interaction between mountain pine beetle 
infestations and fires seems dependent on the severity of mountain pine beetle attack 
(Hawkes et al. 2004). When trees are killed, foliar moisture content of both needles 
and fine fuels decreases (Reid 1961; Shore et al. 2006), causing severely affected 
mountain pine beetle stands to have increased flammability, higher capacity to sup-
port sustained crown fires, and high rates of spread (Turner et al. 1999, Page and 
Jenkins 2007; Jenkins et al. 2008, 2012; Jolly et al. 2012). However, a decreased 
amount and spatial continuity in crown fuel loading and contiguity, due to forests 
having a range of attack severity (i.e., light to severe), have also been found to lessen 
the probability of crown fire ignition (Klutsch et al. 2011; Simard et al. 2011).

Given the extent of mountain pine beetle damage in British Columbia, Canada, 
and availability of spatial data, the interaction between infestation patterns and for-
est fire processes is an ideal case study for demonstrating how interactions between 
spatial pattern and process can be quantified using spatial data and regression trees.

�Study Area

The study area includes the spatial extent of the mountain pine beetle infestation in 
British Columbia from 1999 to 2009, an area of ~16 million ha (Walton 2010). In 
order to represent the temporal variability observed in the spread of mountain pine 
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beetle across the province, we divided the study area into Core and Periphery 
regions, based on ecoregions (Fig. 1). Ecoregions partition the province into regions 
of homogenous vegetation structure (Demarchi 2011). The Core region encom-
passes the epicenter of the mountain pine beetle epidemic, which transitioned from 
an incipient mountain pine beetle population in the mid-1990s to an epidemic popu-
lation in 1999, and has experienced the most severe and widespread mortality 
(Aukema et al. 2006). While synchronous outbreaks were seen early in the outbreak 
in the south (Aukema et  al. 2006), the epidemic predominantly spread from the 
study area center towards the south and north (Robertson et al. 2009b; Wulder et al. 
2010). The Periphery region has a large abundance of host trees remaining, and 
mountain pine beetle-induced tree mortality is expected to continue (Walton 2010; 
Wulder et al. 2010).

Fig. 1  The cumulative area impacted by mountain pine beetle from 1999 to 2009, divided into 
three regions (northern Periphery, Core, and southern Periphery) to account for spatial and tempo-
ral variability in the spread of the outbreak
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�Spatial Data

We use a spatial database of past fire activity as well as covariate data sets repre-
sented as anthropogenic influences, climate, terrain, elevation, and mountain pine 
beetle infestation to model the most influential predictors of the spatial pattern of 
large fires. An overview of data characteristics is provided in Table 1 and all data 
sets are visualized as maps in Fig. 2.

Fig. 2  Covariate layers used in classification tree modeling: (a) Temperature. (b) Precipitation. (c) 
Maximum average wind speed. (d) Distance to people. (e) Distance to roads. (f) Topography. (g) Solar 
radiation. (h) Time since mountain pine beetle attack. (I) Severity of mountain pine beetle attack
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�Wildfire Data

The Canadian National Fire Database (NFDB), a national repository of fire data 
from provincial, territorial, and Parks Canada fire agencies, provides spatial data 
for forest fires occurring in Canada (see Stocks et al. 2002). For this study, NFDB 
polygon data from 1999 to 2009 were used (Canadian Forest Service 2010). To 
promote reliable fire data only large fires were used. Large fires were defined as 
≥32 ha. The 32 ha threshold removed the stochastic influence of small fires from 
the fire data distribution while providing an adequate number of mapped fires. 
Large fires were aggregated into the three study regions and stratified based on 
size into three classes: (a) 32 ha–200 ha; (b) 200 ha–1000 ha; and (c) > 1000 ha. 
In the Core region there were 82 large fires: 51 in Class A, 18 in Class B, and 13 in 
Class C. In the Periphery region there were 444 large fires: 256 in Class A, 119 in 
Class B, and 69 in Class C.

�Climate Data

Climate is an important determinant of spatial patterns and processes of forest fire 
(Table 1) (e.g., van Wagner 1977; Flannigan and Harrington 1989; Flannigan et al. 
2005; Parisien et al. 2006). In order to account for topographic variation in climate, 
ClimateWNA (Hamann and Wang 2005; Wang et  al. 2011) was used to create 
weather variables for only the fire season (e.g., April 1–September 30). For the fire 
season, averages of maximum temperature and precipitation were calculated from 
1999 to 2009 at a 1 ha spatial resolution. Hourly wind speed data were interpolated 
using spline interpolation from a provincial network of nearly 200 fire weather sta-
tions maintained by the BC Wildfire Management Branch. Data were stored in a 
1 ha grid cell.

�Anthropogenic Covariates

Human proximity and access have been found to be drivers of elevated fire inci-
dence in Canada (Gralewicz et al. 2012). However, areas with high densities of 
human settlement are also subject to extensive fire suppression efforts, which can 
be a limiting factor of fire size (Parisien et al. 2006). In order to assess anthropo-
genic influence on fire size, proximity to the nearest populated place was calcu-
lated for each 1 ha cell in British Columbia based on persistent nighttime light 
derived from the DMSP Operational Linescan System (see Wulder et al. 2011). 
Similarly, the Euclidean distance to the nearest road of any size was calculated for 
each 1 ha cell in British Columbia using the 2008 road network file from Statistics 
Canada (2008).
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Table 1  Relevance of covariates as determinants of fire size

Covariate Driver (units) Abbreviation
Relevance to fire 
severity Reference

Weather 1. Temperature 
(degrees 
Celsius)
2. Precipitation
(mm)
3. Wind speed 
(m per second)

1. temp_avg
2. precip_avg
3. Wind

1. Contributes to 
drying of fuels and 
increased fire 
behavior.
2. Influences fuel 
moisture content. 
Acts as a moderator 
of fire severity.
3. Direct 
determinant of fire 
intensity, shape, and 
size.

Parisien et al. 
(2006)
Flannigan et al. 
(2005)
Flannigan and 
Harrington 
(1989)
van Wagner 
(1977)

Mountain pine 
beetle

1. Time since 
attack (years)
2. Percent pine 
infested (%)

1. tsa
2. comp_mpb

1 and 2. Stand 
structure following 
mountain pine 
beetle infestation is 
changed 
significantly over a 
temporal scale. 
Changes in fuel 
loading, continuity, 
and moisture caused 
by mountain pine 
beetle mortality are 
believed to be key 
determinants of fire 
severity.

Simard et al. 
(2011)
Klutsch et al. 
(2011)
Axelson et al. 
(2010)
Jenkins et al. 
(2008)
Page and 
Jenkins (2007)
Lynch et al. 
(2006)
Shore et al. 
(2006)
Bigler et al. 
(2005)
Turner et al. 
(1999)

Topography 1. Elevation(m)
2. Solar 
radiation (WH/
m2)

1. Elev
2. Rad

1. Impacts 
temperature, 
precipitation, wind 
speed, and 
vegetation type.
2. Impacts air 
temperature and 
composition of 
vegetation.

Parisien et al. 
(2006)
Díaz-Avalos 
et al. (2001)
Miller and 
Urban (2000)
Kumar et al. 
(1997)
Franklin (1995)

Anthropogenic
Land use

1. Proximity to 
roads (md)
2. Proximity to 
populated places 
(m)

1. dist2rd
2. dist2lt

1 and 2. Regions 
with greater 
anthropogenic 
influence can both 
contribute (i.e., 
ignition source) and 
restrict (i.e., fire 
suppression) fire 
size.

Gralewicz et al. 
(2012)
Parisien et al. 
(2006)
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�Topographic Data

Elevation may influence temperature, precipitation, and wind speed, as well as veg-
etation type and contiguity, which have an impact on fire incidence (Díaz-Avalos 
et al. 2001; Gralewicz et al. 2012) and fire size (Miller and Urban 2000). We used a 
digital elevation model (DEM) obtained from the Government of Canada portal 
Geobase and resampled to 1 ha grid cells. Annual shortwave radiation (Watt hours 
per m2—WH/m2) (Wulder et al. 2010) as derived from the elevation data was also 
used because solar energy has been found to influence fire size (Kumar et al. 1997).

�Mountain Pine Beetle Data

Previous studies of mountain pine beetle and fire dynamics used attack severity 
(e.g., Turner et al. 1999; Page and Jenkins 2007; Simard et al. 2011) and time since 
mortality (e.g., Bigler et al. 2005; Lynch et al. 2006) to predict interaction with fire. 
We employed spatial products generated by Robertson et al. (2009a) at a spatial 
resolution of 1 ha to represent the spatial pattern of infestation severity, as percent 
of pixel infested, and time (year) since infestation. Robertson et al. (2009a) inte-
grated aerial overview surveys (AOS) and ground surveys of mountain pine beetle 
infestation with data on percent pine to map the annual percent pine infested, from 
1999 to 2009 within a 1 ha pixel. Time since mortality was also calculated based on 
when the forest in a pixel reached 50% mortality.

�Model Evaluation

In this section we evaluate the three regression tree methods, CART, RF, and BRT, 
and demonstrate how each can be applied to explore the impact of mountain pine 
beetle infestation on the spatial patterns of forest fires. Within our modeling frame-
work we assume that covariate data are surrogates for spatial processes. Climate and 
topography are associated to fire by direct co-location, while anthropogenic influ-
ences are modeled as distance to roads and populated areas. By including covariate 
data sets that represent mountain pine beetle infestation conditions, as well as 
anthropogenic influences, climate and weather, and elevation, we can determine 
which processes are the most influential predictors of the spatial pattern of large 
fires.

We generated separate regression models for the Core and Periphery geographic 
regions in order to determine how and if various levels of infestation severity and/or 
duration influenced the spatial pattern of fire. To assess the accuracy of each method 
we used 70% of data for training and held back a random sample of 30% of data for 
testing each model. Confusion matrices for classes A, B, and C were provided for 
each of the models as well as overall accuracy as a percentage.
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�Cart

The CART model had 82.9% classification accuracy in the Core (Table  2) and 
65.5% accuracy in the Periphery (Table 3). In the Core model, the largest fire class 
(>1000 ha) was most accurately predicted (92.3%). Some of the smallest fires (32–
200 ha) were misclassified as midsized fires (11.8%) or as the largest fires (5.9%). 
The midsize fires (200–1000 ha) were classified 77.8% accurately with the remain-
der split between the smaller and larger fire classes, 16.7% and 5.6%, respectively. 
In the Periphery, the midsize fires (200–1000 ha) were most accurately predicted, 
with 87.5% correct. The smallest fires (32–200 ha) were classified with 66.1% accu-
racy and most of the misclassified fires were predicted to be midsize (26.5%). The 
largest fires were predicted with 60.0% accuracy and misclassified as both small 
(18.6%) and midsize (21.4%) fires.

In Fig. 3 we show CART results for both the Core and Periphery. In the model of 
the Core, the primary predictor of fire size class was percent pine infested. Values less 
than 35.0 percent pine infested (comp_mpb) were generally associated with the small 
and midsize fires (32–200 ha and 200–1000 ha), and the smallest fire class (32–200 ha) 
was predicted near roads (<3306  m) in  locations with higher rainfall (precip_
avg ≥ 52.4). Variable associations could indicate that wetter conditions and access that 
enables quick response to fires are helping to limit the size of fires in the Core, when 
percent pine infested was less than approximately one-third of a forest stand.

Table 2  For the Core, confusion matrices for classification and regression trees (CART), random 
forests (RF), and boosted regression trees (BRT)

CART CART CART BRT BRT BRT RF RF RF
A B C A B C A B C

A 82.4 11.8 5.9 72.1 19.8 8.1 63.0 23.5 13.6
B 16.7 77.8 5.6 16.1 79.0 4.8 30.0 20.0 50.0
C 0.0 7.7 92.3 12.2 8.2 79.6 25.0 56.3 18.8

Due to small sample sizes the confusion matrices are made from training and test data and are 
percentages. The overall accuracy of classification is calculated from only test data and for 
CART = 82.9%, RF = 49.6%, and BRT = 88.0%. A, B, and C are categories of smaller to larger fire 
size: 32–200 ha, 200–1000 ha, and >1000 ha

Table 3  For the Periphery, confusion matrices for classification and regression trees (CART), 
random forests (RF), and boosted regression trees (BRT)

CART CART CART BRT BRT BRT RF RF RF
A B C A B C A B C

A 66.1 26.5 7.4 85.7 10.0 4.3 64.7 25.5 9.8
B 12.5 87.5 0.0 3.4 86.2 10.3 39.6 52.1 8.3
C 18.6 21.4 60.0 0.0 0.0 100.0 15.4 7.7 76.9

Due to small sample sizes the confusion matrices are made from training and test data and are 
percentages. The overall accuracy of classification is calculated from only test data and for 
CART = 65.5%, RF = 64.4%, and BRT = 73.9%. A, B, and C are categories of smaller to larger fire 
size: 32–200 ha, 200–1000 ha, and >1000 ha
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A benefit of CART is shown by the nuanced predictions associated with the right 
branches. By allowing multiple splits on a single variable CART can represent complex 
relationships. When percent pine infested is ≥81.0% the smallest fire class is predicted, 
which may be explained because very dead stands may limit the fuel load available for 
fire. However, the largest fires also occur when there is more fuel available, only 35.0% 
to 51.0% of the stand infested, or at high temperature (<18.2 degrees).

Compared to the CORE, different variables in the Periphery were found to be impor-
tant predictors of fire size, indicating that the fire processes in the Core and Periphery 
likely vary. Most notably, no mountain pine beetle infestation variables were important 
predictors of fire size in the Periphery. The lack of importance of beetle infestation indi-
cates that in the Periphery from 1999 to 2009 the mountain pine beetle infestation pro-
cesses were not sufficiently severe to be a dominant driver of fire process. Distance to 
road, average precipitation, and elevation were the only variables used to predict fire 
size. The smallest fires (32–200 ha), which are more plentiful, occurred near roads. The 
largest fires occurred far from roads (≥990.3 m) with average precipitation <48.2 mm, 
and at elevations >889.2 m, or else far from roads (≥990.3 m), with average precipita-
tion between 48.2 and 103.4 mm and elevation >1372 m.

�BRTs

The BRT model had the best overall classification accuracy with 88.0% of fires in 
Core being correctly classified (Table 2) and 73.9% in the Periphery (Table 3). In 
the Core, the smallest (32–200 ha), midsize (200–1000 ha), and largest (>1000 ha) 

Fig. 3  CART results for Core and Periphery
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fire classes had accurate predictions for 72.1%, 79.0%, and 79.6% of fires, respec-
tively. In the Periphery the accuracies were even higher with 85.7%, 86.2%, and 
100.0% of the smallest, midsize, and largest fires accurately predicted.

Examples of BRT outputs are shown in Fig.  3. The variable importance plot 
(Fig. 4) indicates the importance, in terms of rank and strength, of each variable for 
prediction. In the case of the Core, the percent pine infested was the most important 
predictor of fire size. Distance to road and populated place were the next strongest 
predictors, followed by average temperature and wind. In the Periphery, distance to 
road was the most important predictor. Weather variables were the next most impor-
tant (solar radiation and average precipitation). Time since attack was the fourth 
most important variable, while percent pine infested was the least important 
predictor.

Directionality of associations between fire size and each predictor variable can 
be explored in the partial dependence plots which are shown for the Core in Fig. 5. 
Each class has a unique line and color: green, red, and black are the smallest (32–
200 ha), midsize (200–1000 ha), and largest (>1000 ha) fire classes, respectively. 
Partial dependence plots can provide very useful information. For instance, where 
average temperatures were approximately 19 °C and higher, there was an increased 
probability of the largest fires. The highest probabilities of midsize fires occurred 
when temperatures ranged from 16 to 18 °C. Average temperature did not have a 
large influence on prediction of the smallest fire class. As indicated by the improved 
accuracy of prediction, there are statistical benefits to using BRT over 
CART.  However, the CART regression trees allowed for intuitive exploration of 
variable relationships. Though similar information is available from partial depen-
dence plots, the visualization was not as easy to interpret.

Fig. 4  Boosted regression tree results for Core and Periphery
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�RF Models

The RF model had 49.6% classification accuracy in the Core (Table 2) and 64.4% 
accuracy in the Periphery (Table 3). Compared to both the CART and BRT models, 
the RF model performed poorly, particularly in the Core. The smallest fires (32–
200 ha) were most accurately predicted, 63.0%, and the largest fires (>1000 ha) had 
the lowest number of correct classifications (18.8%), which may reflect sensitivity 
to sample size. In the Periphery, where the sample size was much larger, the largest 
fires (>1000 ha) were most accurately predicted (76.9%).

The RF results are shown in Fig. 6 and included both the mean square error or 
accuracy plot and the plot of misclassification error rate-based change in the Gini 
index. We have not included partial dependence plots, though they were available in 
similar format to the plots shown for the BRT. The accuracy plot was similar to the 
BRT variable importance plot. In the Core, the percent pine infested is the most 
important variable for accurately predicting fire size, followed by distance to road 
and average temperature. Typically, the misclassification plot will rank variables 
similarly to the variable importance plots. The key difference is how much the pre-
diction is influenced by the removal of a variable. As with all the models, the results 
for the Periphery are quite different from the Core and indicate different spatial 
processes operating in each region. In terms of variable importance, distance to road 
was the most important variable. The second most important variable was time 
since attack. However, time since attack has a much lower impact on the Gini index, 
suggesting that it does not impact the misclassification rate. The next highest ranked 
variables in the accuracy plot were all weather related.

Fig. 5  Boosted regression tree partial dependence plots for Core. The green, red, and black lines are 
the smallest (32–200 ha), midsize (200–1000 ha), and largest (>1000 ha) fire classes, respectively
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�Comparing Modeling Approaches

CART, BRT, and RF each have unique strengths and weaknesses. CART results are 
easy to interpret. Relationships between variables are intuitively observed making it 
possible to develop hypotheses about spatial pattern and process relationships. 
Information on the directionality of variable relationships is available from partial 
dependence plots, but they are not as intuitive and require a careful eye to examine 
and summarize. The difficulty with CART is that a different tree may be produced 
each time the model is run and as such the results may not be robust. The BRT and 

Fig. 6  Random forest 
results for Core and 
Peripheral regions showing 
differences in the 
predictive ability of each 
variable
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RF have statistical benefits. While they are similar in that they fit many forests, the 
algorithms are sufficiently unique that the accuracy of each was quite different in 
our case study. The key difference is that BRT fits each tree to a different subsample 
of unique data. Given that each sample is unique, each new fit is to the residuals of 
the previous model. In contrast, RFs create a cross validation from the bootstrapped 
samples and therefore do not require separate testing data to determine how well the 
model fits. As a general guide, we recommend using CART for exploratory analysis 
and BRT for prediction. RF may be advantageous when samples are small.

Beyond the statistical fits, it is important to consider the different results obtained 
from each model that will impact our interpretation of pattern and process. However, 
it is encouraging that there was consistency in the results. In the Core, consistently, 
percent pine infested and distance to road were important predictors. Weather vari-
ables also emerged consistently, though depending on the model average temperature 
or average precipitation they may be more important. The variables that were lowest 
ranked on the variable importance plots were also not included in the pruned trees. 
In the Periphery, the distance to road variable was consistently the most important 
predictor. It is interesting that in both the CART and BRT, which performed better 
that the RF, weather variables were the next most important predictors. The RF 
includes time since attack as the second most important predictor, which was not 
included in the pruned CART though it is the fourth most important variable in the 
BRT. Given the complexities of relating spatial patterns and processes, scientists 
have advocated for confirmatory analysis whereby several analyses are carried out 
and the consistent trends become the strongest signal of pattern and process interac-
tions. Ensemble modeling, for example, is a similar idea and allows the strengths of 
many models to be leveraged together (Grenouillet et al. 2011). In many instances, 
we strongly advocate for using CART in conjunction with either BRT or RF to pro-
vide a more complete understanding of interactions.

�Interpreting Regression Tree Results within the Context 
of Spatial Pattern and Process

In pattern and process studies, often the most difficult part of the research is the 
interpretation. By including spatial data sets representing different spatial processes 
in a model, we invite the spatial patterns to indicate which processes are most 
important. While CART and related methods are very flexible in taking on large 
volumes of data, it remains of crucial importance to have a theoretical basis for each 
of the covariate data sets or in the presented study for stratifying the area in a Core 
and Periphery. One of the most notable results of our models was the difference in 
the variables that were important for predicting fire in the Core and Periphery. The 
Core has experienced extensive mountain pine beetle attack (Wulder et al. 2010) 
and the level of severity impacts the spatial pattern of large fires. From CART, we 
see evidence that the relationship is not linear. Rather, moderate levels of beetle 
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infestation in locations with high temperature were predicted to support the largest 
fires. As well, large fires occurred where beetle infestations were relatively low, but 
forests were far from roads and had dry conditions, and trees had been attacked by 
beetles about 5 years previously.

In the Periphery, our results indicated that the mountain pine beetle infestation 
did not impact the spatial pattern of fire size. However, distance to road and weather 
were both consistently important predictors of fire size.

The relationship between roads and fire patterns we found in our spatial data is 
consistent with existing knowledge. Gralewicz et al. (2011, 2012) documented that 
fire patterns in Canada were more related to people than any other variable. Forests 
closer to roads have more opportunities for a human-induced fire to start. On the 
other hand, fires may burn longer and larger in areas with little access for fire sup-
pression and a lower economic stake in the standing wood. Given the extensive 
logging road networks in British Columbia, access to forested areas is greatly influ-
enced by roads. Fuel moisture content (Hayes 1942) and temperature have also been 
well documented to directly impact surface fire intensity and crown fire initiation 
(van Wagner 1977; Turner and Romme 1994; Bessie and Johnson 1995; Turner 
et al. 1999; Hély et al. 2000; Simard et al. 2011). In general, our model supports 
weather as an important driver of spatial patterns of large fires (Parisien et al. 2006; 
Parisien and Moritz 2009).

We included topographical variables as generic spatial covariates in the spatial 
model, but hypothesized that their relation to fire severity is indirect through weather 
conditions or vegetation composition (Table 1). In the model results they have low 
relative importance compared to more the more direct measures included. The 
inclusion of generic variables provides the model with a way to account for spatial 
patterns unresolved by the selected theory-loaded data sets. Elevation is a com-
monly used generic variable, but even latitude and longitude or projected coordi-
nates can function as generic covariates (Guisan and Zimmermann 2000; Michaud 
et al. 2014; Nijland et al. 2014). A high importance of generic spatial patterns in 
selected models is an indication that spatial processes are present that are not well 
represented by more specific covariates (Cressie and Chan 1989). In such cases 
model inputs and underlying hypotheses should be reevaluated. The low importance 
of generic descriptors in our models strengthens our confidence that all relevant 
processes are included in the spatial covariates.

In our own work we have found CART, BRT, and RF as useful tools for making 
linkages between spatial patterns and processes. Data mining methods are usually 
bound by the assumption of spatial stationarity. Spatial stationarity occurs when the 
mean of a spatial pattern, the expression of a process, is similar in all parts of the study 
area (Bailey and Gatrell 1995, pp. 33–35). When data sets are small, spatial stationar-
ity is possible, but as study extents increase this assumption often becomes invalid. In 
our case study we accounted for spatial non-stationarity by using two study regions, 
each with unique mountain pine beetle infestation processes and patterns. However, 
other methods such as geographically weighted regression are gaining momentum 
due to inherent ability to deal with variation in process interactions that are expected 
at landscape and regional scales (Brunsdon et al. 1996; Wang et al. 2005).
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�Future Direction

Geographers have developed a host of statistical techniques for quantifying spatial 
pattern (Nelson and Boots 2005; Robertson et al. 2007) and ecologists are adept at 
developing and applying methods that explore how covariate data predict patterns. 
There are many existing useful statistical methods for analyzing interaction between 
pattern and process including the tree-based models we focus on in this chapter. 
Inherent to spatial pattern analysis is the assumption that patterns observed in data 
represent a process. Historically, we have been limited to a few snapshots of spatial 
patterns in time. With the growing availability of satellite remotely sensed data, the 
temporal resolution and extent of data have changed. Archives of Landsat data are 
freely available from the mid-1980s at a temporal resolution of 16 days and a spatial 
resolution of 30 m, and back to 1972 with a slightly more coarse spatial resolution 
(resampled into products at 60 m). The United States Geological Survey Landsat 
archive has over 500,000 images of Canada (White and Wulder 2014). Landsat data 
are of special interest due to the capture of relatively large areas over a single imag-
ing footprint at a level of detail that is informative of anthropogenic activities 
(Wulder et al. 2012). Moderate-resolution imaging spectroradiometer (MODIS) is 
also freely available but collects data with a more coarse spatial resolution, and 
images the entire earth every 1– 2 days. Higher spatial resolution images are avail-
able from a number of commercial vendors, including RapidEye that can be cap-
tured daily. Changing temporal resolution of imagery requires that we consider the 
temporal resolution maps of a spatial pattern in the measurement of a process. 
Remote sensing science is moving away from temporally static representations of 
space to more dynamic representations of pattern (Verbesselt et al. 2010; Gómez 
et al. 2011). Multi-temporal spatial pattern data sets are better representing spatial 
processes, and in some cases, the temporal resolution is allowing broad-scale mea-
surement of dynamic spatial process. As has been a constant issue in spatial sci-
ences, development of methods to harness the content of new data sets has not kept 
pace with data acquisition technology. As data sets continue to grow, it is our view 
that data mining approaches, such as regression trees and related methods, will 
become more heavily utilized.

In addition to data mining approaches, it is common to model spatial processes 
and compare the patterns generated by models to observed data (Nelson and Boots 
2005). Research is required to explore the benefits of integrating data-driven and 
modeling-based approaches for studying pattern and process interactions. Bayesian 
statistics are gaining momentum and offer a unique mechanism for linking spatial 
data and process modeling perspectives (Ghazoul and McAllister 2003; van Oijen 
et al. 2005). Bayesian statistics represent variables using distributions, allowing pat-
terns to be represented by a range of values (Gelman et al. 2009). Given that patterns 
are only one possible realization of a process, representing patterns as distributions 
of values is more realistic. From a practical standpoint, Bayesian methods deal well 
with uncertainty as the distribution can be thought of as a mechanism for providing 
a confidence interval around observed values (van Oijen and Thomson 2010). Given 
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uncertainty in both spatial data and our understanding of forestry spatial processes, 
Bayesian approaches offer support for multiple issues. Growing spatial data archives 
provide data for building informative priors. It is common in Bayesian statistics to 
use uninformed priors based on uniform distributions, but archives, such as that 
available with Landsat (Wulder et al. 2012), are a mechanism for informing priors 
and analysis with multi-temporal representations of spatial patterns.
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Mapping the Abstractions of Forest 
Landscape Patterns

Evelyn Uuemaa and Tõnu Oja

Abstract  The evaluation of landscape patterns is necessary to explain the relation-
ships between ecological processes and spatial patterns and between the processes 
and patterns and the factors that control them or that they control. For decades, 
landscape metrics have been used to measure and abstract landscape patterns. Since 
the emergence of FRAGSTATS in 1993, the measures and methods incorporated in 
this software have become widely used and are now a de facto standard tool for 
calculating landscape metrics. However, there are no special metrics unique to for-
est landscapes. The selection of metrics depends on the purpose of the study rather 
than on the land use or cover type. However, some metrics are more often used for 
forested landscapes (e.g., core area metrics). Forest landscape patterns are changing 
fast due to both natural and human disturbances. Remote sensing offers a rapid 
method of acquiring up-to-date information over a large geographical area and is 
therefore widely used as a source of the data needed for pattern assessment and the 
calculation of landscape metrics. However, to obtain meaningful results, correct 
preparation of the data is essential. In this chapter, we review the various metrics 
used to measure forest landscapes for different purposes. We deal with five main 
issues from the perspective of forest landscape patterns: (1) data preparation before 
the calculation of metrics (e.g., vector vs. raster data, scale, classification) and the 
associated uncertainties, (2) measurements of a landscape’s configuration and com-
position using metrics, (3) interpretation of the results, (4) possible uses of the out-
comes, and (5) future perspectives (e.g., 3D and 4D landscape metrics).

�Introduction

Sustainable forest management practices aim to promote multifunctionality in for-
est ecosystems (Diaz-Varela et al. 2009) and increasingly integrate aspects of biodi-
versity such as the abundance and type of dead wood, monitoring of endangered 
species, use of natural regeneration, and establishment of stands of mixed tree spe-
cies (Forest Europe 2011). Therefore, it is necessary to examine forest landscape 

E. Uuemaa (*) • T. Oja 
Department of Geography, University of Tartu, Vanemuise 46, Tartu 51014, Estonia
e-mail: evelyn.uuemaa@ut.ee

mailto:evelyn.uuemaa@ut.ee


214

patterns so we can explain the relationships between ecological processes and spa-
tial patterns they control or that control them.

Hundreds of landscape metrics have been developed to quantify landscape pat-
terns. The term is generally used to describe all measures that quantify the spatial 
patterns of landscapes, and range from topographic measures (Vivoni et al. 2005) to 
the proportions of land use and cover types and a range of shape and area metrics 
(Palmer 2004). Spatial patterns are represented and quantified in a number of ways, 
which we discuss in the rest of this chapter. However, most landscape pattern analy-
sis is performed using categorical maps, which tend to ignore the spatial variation 
within landscape units and trends in system properties across landscapes (Gustafson 
1998). A large number of metrics have been developed to quantify spatial heteroge-
neity in categorical maps.

Landscape-level metrics provide simple measures of a landscape’s structure, and 
their main advantage is that they can be easily calculated with readily available data 
and free open-source software (Kupfer 2012). These metrics fall into two general 
categories: those that evaluate the composition of the map without reference to spa-
tial attributes, and those that evaluate the spatial configuration of system properties, 
and therefore require spatially explicit information to support the calculation 
(McGarigal et al. 2012; Zaragozi et al. 2012). It is, however, important to note that 
there are no specific metrics unique to forest landscapes.

�Tools for Evaluating Landscape Patterns

Many indices and software packages have been designed to calculate and analyze 
parameters that describe landscape structure patterns using categorical maps. Spatial 
metrics may be calculated using either raster or vector data as inputs and the corre-
sponding processing methods. Raster processes are more commonly used because 
raster data from a range of time periods is more easily available (e.g., satellite imag-
ery), and the variety of spatial metrics developed for raster data is significantly 
greater than that for vector data (see the more detailed discussion in the section 
Raster vs. vector data). Most of these metrics are included in the FRAGSTATS 
software (McGarigal et al. 2012). Since the emergence of FRAGSTATS in 1993, it 
has become the de facto standard tool for calculating landscape metrics (Corry 
2005). However, there are several other tools for calculating landscape metrics, and 
most of these are free open-source software. Steiniger and Hay (2009) have pre-
pared an extensive overview of the freely available open-source software for land-
scape analysis. Table 1 summarizes the available software.

There are two main groups of tools: one based mainly on landscape metrics and 
another that is more suitable for modeling patterns and the processes that influence 
or are influenced by these patterns. Most tools require raster data as their input, and 
this format is also better suited to modeling. Vector-based programs can only com-
pute a limited selection of landscape metrics. The broadest selection of metrics for 
vector data is available in PolyFrag.
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Because of the necessity of handling spatially explicit data, many landscape 
modules have been integrated into geographical information system (GIS) software. 
Examples include V-Late and Patch Analyst for ArcGIS, LecoS for QGis, and sev-
eral packages (r.le, r.li, r.patch, r.diversity) for the Geographic Resources Analysis 
Support System (GRASS; Zaragozi et al. (2012). Typically, GIS software is needed 
for data preparation and later for visualization of the results. Often, however, the 
results of the landscape pattern analysis are simple numerical values rather than 
visualizations, although most tools make it possible to generate spatially explicit 
output, for example by using the moving window method in FRAGSTATS or the 
Patch Analysis layer in Patch Analyst.

Free open-source software is gaining in popularity, and programs such as the free 
R software environment for statistical computing and graphics (https://
www.r-project.org/) are increasingly widely used in Earth sciences and therefore in 
landscape ecology. The Species Distribution Modelling Tools (SDMTools) library 
is designed for use in R, and provides a set of tools for post-processing to determine 
the outcomes of species distribution modeling exercises. The tools include methods 
for visualizing outcomes, selecting thresholds, calculating measures of accuracy, 
and calculating landscape fragmentation statistics (VanDerWal et al. 2011). Remmel 
and Fortin (2013) have produced additional R tools for assessing significant differ-
ences between the values of pattern metrics.

In addition to calculating common landscape metrics, several programs focus on 
modeling changes in spatial patterns (Table 1). SaTScan and STAMP have been 
used to determine spatial changes in phenomena. SaTScan has been used to identify 
the spatial and temporal distribution of various diseases (Haque et al. 2009; Naish 
et al. 2011), and STAMP has been used to support spatial and temporal analysis of 
mountain pine beetle range expansion (Robertson et al. 2007).

Forests are important habitats, and their connectivity is an important factor 
because it strongly affects species movement through a landscape. Conefor and 
Guidos enable analysis of landscape connectivity. Guidos also includes morpho-
logical spatial pattern analysis (MSPA), a customized sequence of mathematical 
morphological operators targeted at describing the geometry and connectivity of the 
components of an image. Conefor is based on graph theory, which has proven to be 
a promising approach for analyzing the functional and structural connectivity within 
landscapes (Decout et al. 2012). For example, it has been used to determine forest 
habitat connectivity in relation to species movement (Decout et al. 2012; Trainor 
et al. 2013) and to evaluate the impact of highways on forest connectivity (Gurrutxaga 
et al. 2011).

Forests change in response to human influences, to processes such as competi-
tion and wildfire that are intrinsic to ecosystems, to extrinsic factors such as climate 
change, as well as to their interactions. Forest landscape models have become 
increasingly important tools for predicting these changes over large areas (Fraser 
et al. 2013). These models usually require data in raster format, since the inputs and 
processes are modeled for each cell of a grid. One of the most widely used tools for 
simulating forest landscape change is LANDIS PRO (Wang et  al. 2014), which 
makes it possible to simulate processes over a range of scales (from individual trees 
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and stands to the landscape scale). Landscape-scale processes simulated in LANDIS 
PRO include seed dispersal (e.g., exotic species invasion), fire, windthrow, spread of 
insects and diseases, and forest harvesting (Wang et al. 2014). LANDIS PRO has 
been popular for modeling the effects of climate change on forests (Gustafson and 
Sturtevant 2013; Duveneck et al. 2014). Another model, SELES, has been used to 
model anthropogenic influences in forest management (Tittler et al. 2012) and to 
assess forest habitat suitability for a species (Reunanen et al. 2010).

There are also several programs (e.g., SIMMAP, Qrule) for generating neutral 
landscape models to test the effect of a measured process (e.g., fire, logging) on 
landscape patterns. Neutral landscape models have mainly been used to test land-
scape hypotheses, but have also been used to develop and test landscape metrics that 
can be used to characterize landscape-scale patterns (Gardner and Urban 2007).

�Data Preparation and Uncertainties Within Metrics

Multiple factors related to the representation of geographic phenomena have been 
shown to affect the characterization of landscape patterns, resulting in spatial uncer-
tainty. The uncertainties can be caused during (1) data collection (e.g., errors in 
fieldwork, problems with satellite sensors), (2) preprocessing (e.g., image classifi-
cation, pixel size, format conversions), and (3) post-processing (statistical analyses 
of landscape metrics). In this chapter, we focus only on the problems related to 
preprocessing of the data. It is crucial to understand the magnitude of the influence 
of data preprocessing on detection of the real landscape pattern and whether this 
influence varies among landscapes. If the same processing methods are used, land-
scapes should retain their ranking when their landscape metrics are compared. For 
example, highly fragmented landscapes will always have larger values for the land-
scape metric “number of patches” than less fragmented landscapes. However, the 
magnitude of the difference between the landscapes may change, and the absolute 
values of landscape metrics may therefore need to be interpreted with caution 
(Lechner et al. 2013).

�Raster Vs. Vector Data

Different data types can be used to analyze landscape structure. Depending on the 
data source, one can use either vector or raster data (Zaragozi et al. 2012). The raster 
format divides data into a grid consisting of individual cells or pixels, each of which 
is associated with a numeric or descriptive value. Raster data is usually derived from 
aerial photography and satellite imagery. In contrast, vector data characterize each 
object explicitly as points, lines, or polygons. Vector data is often obtained from 
topographic mapping and the vectorizing of historical maps. Both formats have 
several pros and cons (Table 2; Fig. 1). The problems illustrated in Fig. 1 mostly 
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result from scale issues. Despite its several drawbacks, the raster format is more 
widely used for landscape analysis because of the ease of conducting complex spa-
tial computations on grids, and because there is a greater variety of landscape met-
rics designed for use with the raster format (Cushman et al. 2008). Moreover, raster 
data is more available due to quickly evolving remote sensing technologies. Open 
data policies are also making more and more remote sensing imagery free, starting 
with LANDSAT images and ending with the Sentinel program, which enables 
researchers to download near-real-time high-resolution satellite imagery.

In landscape ecology, edges are among the most important features, and because 
vector and raster formats represent lines differently, metrics involving edges or 
perimeters will be affected by the choice of format. Edge lengths will be biased 
upward in raster data because of the stair-step outline that results from the use of 
pixels (Cushman et al. 2008). Moreover, the presentation of points and lines in ras-
ter format is somewhat problematic. In vector format, points can be represented by 
explicit x, y coordinates, but in raster format they are represented as single cells, 
which are the smallest unit of a rasterized image. By definition, points have no area, 
but with raster data must be converted to cells that have a finite area whose size 
depends on the pixel size. Lines are represented as spatially connected cells that 

Table 2  Pros and cons of using raster and vector data in landscape pattern analysis (Laurent 2006; 
Wade et al. 2003; Zaragozi et al. 2012)

Pros Cons

Raster Simple data structure, calculations are 
faster, easy-to-represent continuous 
data, suitable for modeling

Large files, no topology, objects are 
generalized based on the cell size, 
representing points and lines are 
problematic

Vector Small files, permits topology, objects 
are represented explicitly, enables 
more attribute data than raster

Complex data structure that makes 
calculations slow

Fig. 1  Possible errors that occur when converting vector data to raster data. Adapted from Laurent 
(2006)
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have been assigned the same attribute value, but a line that is continuous in reality 
(e.g., a river) may be broken into separate groups of pixels (i.e., into discontinuous 
lines) when it does not align with the pixels of the grid (as shown for “One or two 
objects?” at the top of Fig. 1). This can also happen with polygonal objects (Fig. 1). 
Vector to raster conversion usually also generates a small change in the extent of a 
study area because the edges of the area may not map precisely to the edges of the 
pixels, particularly with large pixels (Fig. 1).

It is well known that errors are introduced when converting vector data into raster 
data or vice versa. However, little work has been done to characterize how raster and 
vector methods and their associated conversion errors affect landscape metrics, or 
how those errors affect the final analysis and results (Wade et al. 2003). As a general 
rule, errors are greater when the pixel size is large in relation to the patch (polygon) 
size, and when the patches have complex shapes (Congalton 1997). Piwowar (1987) 
suggests that the optimal cell size in a grid should be one-fourth the size of the mini-
mum mapping unit (MMU) to maintain the integrity of the objects. The error also 
depends on which rasterization method is used. For land use and cover data, the 
majority rule has been suggested. However, Bregt et al. (1991) found that when suf-
ficiently small pixels are used, the difference in rasterizing error between the central 
point method and the majority rule method is not significant.

�Scale and Classification Issues

Quantitative geographers long ago recognized that the results of spatial data analy-
sis depend on the data aggregation methods and classification scheme. The general 
formulation of this issue is known as the modifiable areal unit problem (Openshaw 
and Taylor 1981). The scale dependence of spatial patterns also affects the relation-
ships between ecological processes and the landscape metrics that have been 
designed to evaluate landscape patterns. Most landscape metrics are scale depen-
dent, and many authors have pointed out that the scale of the data (observations) and 
the scale of the analysis must be similar in order to calculate and interpret these 
metrics correctly (Simova and Gdulova 2012).

Two primary scaling factors affect measures of landscape pattern: grain refers to 
the resolution of the data (i.e., the pixel size) and extent refers to the size of the area 
being mapped or studied (Gustafson 1998; Simova and Gdulova 2012). Changes in 
image scale may affect the landscape metrics in at least three cases: changes in reso-
lution, changes in extent, and changes in both resolution and extent. Wu (2004) 
divided landscape metrics into three categories based on their responses to changes 
in scale: simple scaling functions, unpredictable behavior, and staircase patterns.

Saura and Martinez-Millan (2001) noted that the variation in the values of met-
rics caused by changes of extent depends strongly on the landscape pattern and the 
magnitude of the change in extent. It is difficult to determine whether the sensitivity 
to the change in extent comes from the definition of the metric or from the landscape 
configuration (Baldwin et al. 2004). Kelly et al. (2011) found that several landscape 
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metrics were more sensitive to scale at the level of the land use class, and that this 
should be especially kept in mind when dealing only with pure forest landscapes. 
Wu (2004) emphasized that the effect of changes in the extent on the metrics’ values 
is less predictable than the effect of the change in pixel size. Small MMUs lead to 
larger variation in patch size, whereas large MMUs decrease the classification accu-
racy (e.g., due to the presence of two or more classes in each MMU) and patches 
relevant to the study may merge, leading to a loss of important information con-
tained in a mapping unit. For example, an aerial photograph polygon labeled as 
coniferous may contain many coniferous trees, a few hardwood trees, and a grassy 
opening. These different stand elements can be resolved if the pixel size is suffi-
ciently small, but if the MMU is large, then they are not classified as separate 
patches (Fassnacht et al. 2006).

As we noted earlier, raster models are often used for landscape analysis. 
Therefore, some geometric generalization takes place, and the issue of optimal 
grain size (i.e., scale) becomes important. It is essential to find the optimal grain size 
for each study based on the study’s scale (e.g., stand vs. landscape). The influence 
of scale has been widely studied using real and artificial landscapes, but the results 
often differ among studies (Simova and Gdulova 2012).

Marceau et al. (1994) found that the optimum grain size to obtain the best clas-
sification accuracy differed for different image elements. For example, the most 
accurate classification of maple (Acer L.) forest required a grain size of 5 m, whereas 
poplar (Populus L.) and birch (Betula L.) had optimal grain sizes of 20 and 30 m, 
respectively. Based on this result, they suggested that researchers should use a mul-
tiscale approach instead of looking for a single overall resolution. Fassnacht et al. 
(2006) also suggested the use of landscape metric scalograms. Given these sensitivi-
ties, they recommended the use of scalograms to describe and compare landscapes 
rather than seeking a single optimum scale at which to calculate metrics.

Grain size also often determines the thematic resolution, which refers to the 
number and kind of classes that are defined (i.e., classification). Small or linear 
objects may not be revealed if the grain size is too big (Lausch and Herzog 2002) 
and may therefore disappear from a map. Thematic resolution may also be affected 
by the extent, since a bigger extent provides more opportunities to map rare classes 
(Fassnacht et al. 2006). Researchers have found that many landscape metrics are 
more sensitive to classification than to resolution or extent, and that class-level met-
rics are more sensitive than landscape-level metrics to classification accuracy 
(Buyantuyev and Wu 2007; Peng et al. 2007). Therefore, the classification scheme 
chosen by researchers has important effects on the calculation of landscape 
metrics.

Both composition and configuration metrics are sensitive to the classification 
scheme. Brown et al. (2004) estimated the errors in an analysis of changes in forest 
fragmentation, and found that the average patch size and number of patches were 
more sensitive to characteristics of the satellite image and contained more frequent 
measurement errors than the percentage forest cover and edge density. Moreover, 
both the number of classes and their definition are important (Lechner et al. 2012). 
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The same land cover class can be defined in different ways, and the differences 
depend on whether a land use or land cover definition is used.

Another problem is that natural phenomena are often not discrete, and present no 
clear boundaries. Therefore, the classification process becomes even more compli-
cated. Traditional categorical maps require a strong simplification of reality, par-
ticularly when they depict a Boolean landscape where any location is represented as 
having a membership value of 1 in one and only one of the candidate classes and a 
value of 0 in all other classes. Fuzzy set theory has been proposed as an alternative 
(Foody 1992). In the application of fuzzy set theory to mapping, all locations have 
a membership value represented by a real number between 0 and 1 in all classes (see 
Chapter “Fuzzy Classification of Vegetation for Ecosystem Mapping” for details). 
If the value is 1, then there is the maximum similarity between the concept of that 
class and the properties at the real-world location, whereas if the value is 0, then 
there is no similarity between the two. Arnot et al. (2004) attempted to determine 
the extent to which a subset of landscape metrics is influenced by the way that the 
landscape is characterized and found that when landscape metrics are analyzed 
using a fuzzy approach, their behavior varies; in most cases, the values of the land-
scape metrics for a Boolean landscape can be considered representative of the land-
scape, but in some cases they are not. Arnot et al. (2004) suggested that when the 
ecotone is reliably smaller than the spatial unit of measurement (i.e., the pixel), 
there may be little point in exploring fuzzy memberships.

Most analyses are planimetric, and assume that landscapes can be adequately 
described using two-dimensional (2D) metrics. Another approach is to incorporate 
a third dimension (3D) when determining forest boundaries and calculating land-
scape metrics. Hou and Walz (2013) used the difference in elevation to identify 
transitions between forest and grassland. They used a normalized digital surface 
model to calculate the average heights, and found that forests in their study area 
were typically taller than 15 m, whereas grassland was shorter than 1 m. Using a 
moving window analysis, they generated transition zones in which pixels were 
between 1 and 15 m in height (Fig. 2). This in an interesting approach because it 
uses simple filtering based on concrete physical values (i.e., height) to classify a 
generally fuzzy ecotone. It is often difficult to find such clear parameters that can be 
used for classification. However, increasing availability of high-resolution measure-
ments of the environment provides excellent data that lets us perform such classifi-
cation. Because Hou and Walz (2013) used a third dimension in landscape 
classification, they also introduced several landscape metrics suitable for 3D analy-
sis of landscape structures that increased the realism of their representation of land-
scape diversity (see the section 3D landscape metrics for details).

When researchers use remote sensing data, the classification method itself can 
create significant variation in the values of landscape metrics. Langford et al. (2006) 
demonstrated that misclassification rates typically considered low by remote sens-
ing standards (<15%) led to large errors (over 50%) in landscape pattern analysis, 
with limited and inconsistent increases in the accuracy of landscape pattern analysis 
when filtering was applied. Narusk (2014) reached similar results in a comparison 
of the impact of different classification methods (supervised, unsupervised, and 
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object oriented) and different software (Erdas Imagine, ENVI 5.0, IDRISI Selva, 
and eCognition) on classification and the resulting calculation of landscape indica-
tors. Narusk also found that results of clustering algorithms such as ISODATA and 
k-means differed in different image processing software and that the classifications 
produced by these algorithms differed by up to 38%. The main reason for these dif-
ferences lay in the initialization method used to define the initial clusters, which 
affected the final results. Narusk found that the most stable group of landscape-level 
metrics comprised the diversity metrics, whose indices had low coefficients of vari-
ation, whereas the core area metrics were most sensitive to differences in the clas-
sification methods. Landscape metrics calculated from satellite images classified 
using an object-oriented method tended to vary more than those calculated by means 
of pixel-based classification.

Because most studies of landscape pattern analysis use classified thematic maps 
based on remote sensing data, the accuracy or uncertainty associated with the maps 
is a critical factor in reliably characterizing spatial patterns, detecting changes, and 
relating patterns to processes. Without knowing the magnitude of the errors or 
uncertainties in landscape data, the characterization of landscape patterns is poten-
tially unreliable. Due to the high costs involved in accuracy assessment, the accu-
racy of many remotely sensed map products has not been assessed; thus, the 
accuracy of landscape metrics computed based on such remote sensing products is 

Fig. 2  Detection of transitions between forest and grassland: (1) boundary optimization, (2) estab-
lishment of transition zones, and (3) elimination of impurities inside the transition zones. Adapted 
from Hou and Walz (2013)
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unknown (Shao and Wu 2008). As a rule of thumb, Shao and Wu found that the 
values of most landscape metrics tend to stabilize when the overall accuracy of 
image classification approaches 90%. This means that a high degree of classifica-
tion accuracy is required to ensure the consistency and reliability of calculated land-
scape metrics. Of course, the degree of the accuracy required for landscape metrics 
always depends upon the specific objective of the study (Shao and Wu 2004).

Researchers have debated our ability to compare landscape-level metrics (Wu 
et  al. 2002; Remmel and Csillag 2003; Wang and Cumming 2011; Remmel and 
Fortin 2013). Apart from implementing a suitable method to compare the metrics, it 
is also beneficial to obtain background information on what the pattern actually 
represents (Boots and Csillag 2006). Landscape-level metrics are difficult to com-
pare, and because of this difficulty, many researchers consider them to be most use-
ful as diagnostic indicators. For example, Remmel and Fortin (2013) proposed a 
method for assessing whether an observed pattern formed as a result of random 
chance or whether some process caused the formation of the pattern. Because relat-
ing patterns to processes is a key question in landscape ecology, assessing the sig-
nificance of pattern metrics is a major step in our ability to relate a spatial structure 
to the underlying processes that generated the structure.

�Mapping Different Aspects of a Landscape Pattern

Landscape composition and configuration can affect ecological processes both 
independently and interactively. Thus, it is important to understand what aspect of 
the landscape pattern is being evaluated by each metric (McGarigal et al. 2012).

�Composition

Landscape composition describes the amount and type of landscape elements with-
out measuring their spatial arrangement (Farina 2000). Because composition 
requires integration over all patch types, composition metrics are only applicable at 
the landscape level (McGarigal et al. 2012). However, when evaluating only forest 
fragmentation and deforestation, the most common approach in land use classifica-
tion is to reclassify land cover classes into forest and non-forest types and then focus 
on the distribution of the forest and configuration of its patterns. Composition is 
then only measured in terms of the presence or absence of the forest. However, in 
terms of management of habitat quality, it may also be important to know the struc-
ture of the matrix that surrounds the forest (Garmendia et al. 2013), and therefore 
more land use classes should be used in the study (Fig. 3).

Often, calculating a single numerical value for the whole landscape is insuffi-
ciently informative, although it is easy to calculate that number and compare it with 
other landscapes. To improve visualization of the results and support more 
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complicated spatial analysis, the moving window approach is often used, in which 
a kernel of a specified size and shape is passed over the landscape, and for each 
focal cell in the window, the software returns a value for each selected metric by 
means of averaging, kriging, or some other method (McGarigal et al. 2012). Figure 4 
illustrates how this can be done. This method can be used to evaluate both the com-
position and the configuration of the spatial pattern.

This approach is problematic because the window of one focal pixel overlaps 
that of the next focal pixel (Hagen-Zanker 2016); this makes the data processing 
time consuming and resource intensive. In moving window analysis, the size of the 
window determines the scale of the analysis, and constraints on computer speed and 
working memory often limit the window to a small size, so that only small areas fit 
in the window. Hagen-Zanker (2016) proposed an algorithm that counts and sums 
up the pixel values in a window centered on the first pixel. But for the second and 
subsequent pixels, it only updates the count and summation by adding the pixels 
that are in the window surrounding the next focal pixel, and not the pixels surround-
ing the previous focal pixel; it then subtracts the pixels that are in the window sur-
rounding the previous, but not subsequent, focal pixel (Fig. 5). This significantly 
shortens processing times. However, it does not solve the problem of overlapping 
values. To overcome this problem, block analysis has been used in several studies 

Fig. 3  (a) To evaluate deforestation and forest fragmentation, a simple binary forest versus non-
forest classification may be sufficient. However, to determine habitat quality, it is often essential to 
know (b) the inner structure of the forest and (c) the structure and quality of the matrix that sur-
rounds the forest

Fig. 4  Using moving window analysis to calculate landscape-level metrics
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(Albeke et al. 2010; Mokhtari et al. 2014). In block analysis, a transect is divided 
into equal-sized but nonoverlapping blocks (e.g., 100 m × 100 m) and landscape 
metrics are calculated separately for each block.

In addition to fragmentation at the landscape level, it is also essential to investi-
gate changes in the inner structure of patches, such as the species composition 
inside the patch. The degree of canopy closure is used for this purpose, and this 
parameter can also describe the degree of degradation of a forest patch (Rikimaru 
et al. 1999). Jomaa et al. (2009) observed forest loss over time by allocating patch 
boundaries in a series of years and measuring the changes inside and outside of the 
boundaries (Fig. 6). They used patch shapes and sizes to determine whether patch 
configuration is related to forest loss inside the patches, and found that the smaller 
patches had a higher likelihood of forest loss over time.

Hou and Walz (2013) combined open-source software with RapidEye satellite data 
to analyze small groves and tree lines. To obtain forest height information, they calcu-

Fig. 5  As the circular 
window moves from left to 
right, green pixels are 
added, red pixels are 
subtracted, and white 
pixels are not recalculated. 
The red “o” marks the 
center of the window 
before the move and the 
green “o” marks its 
position after the move. 
Based on Hagen-Zanker 
(2016)

Fig. 6  Canopy closure at different times: >80% on the left and < 60% on the right. Based on 
Jomaa et al. (2009)
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lated the normalized digital surface model by subtracting a digital elevation model 
(DEM) from a digital surface model. They also used the normalized model to analyze 
transitions between forest and grassland and used the difference in elevation to repre-
sent the environmental gradient at the forest boundary and calculate the edge contrast.

�Configuration

Landscape configuration describes the spatial arrangement of landscape elements 
(Farina 2000), and Fig. 7 illustrates key components of the configuration. In terms 
of forest fragmentation, both the size of the patches and their distance from each 
other are crucial. Configuration can be measured at the patch, land use or cover 
class, and landscape levels.

Most studies measuring forest fragmentation and deforestation have used a 
patch-based approach (De Chant et al. 2010). Patch metrics are appropriate at large 
scales, but many processes are only revealed at smaller scales. The influence of the 

Fig. 7  Examples of patch configurations. The size, density, shape, core area, edge, and connectiv-
ity are commonly used to characterize the configuration of patches in a landscape. Adapted from 
Spearman (2003)
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adjacent non-forest environment on forest structure and species biodiversity at cre-
ated edges is also well known (Harper et al. 2005). For example, many species need 
core areas to survive or reproduce, but if the fragmentation is too extensive, the area 
influenced by edges may be the dominant characteristic of the landscape (i.e., there 
may be insufficient core areas). Moreover, forest edges change more frequently and 
more rapidly than core areas at a landscape scale, and they are also highly dynamic 
structures at small, physiologically relevant scales (De Chant et al. 2010).

De Chant et al. (2010) used an interesting approach to evaluate the effects of 
urbanization on forest edges at a local scale. They quantified the complexity of 
urban forest edges (measured by their sinuosity, calculated as the total path length 
of each segment divided by its straight-line length between endpoints) in 3 years, 
and found that edges exhibited low sinuosity immediately after development, but 
grew significantly more complex over time (Fig. 8). This is an example of a fine-
scale study of forest edge structure. Such studies increase our understanding of how 
urban edges influence forest responses to disturbance and can improve planning 
strategies.

To promote or protect biodiversity, both the landscape’s physical configuration 
(i.e., structural connectivity) and its functional connectivity are important. 
Functional connectivity is a complex concept and depends on more than the land-
scape pattern. It also depends on interactions between the landscape pattern and the 
biological characteristics of the target species (e.g., their ability to move between 
patches) and of the corridors, which must have characteristics suitable for the spe-
cies (Sieving et al. 1996). As the ability to exploit a given type of corridor differs 
among species, functional connectivity is scale dependent and species specific. For 

Fig. 8  An example of changing edge sinuosity from De Chant et al. (2010). The lines represent 
the maximum continuous canopy extent in 1968, 1982, and 2003
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example, several studies have shown that under some conditions, birds can consider 
disconnected forest patches to be connected homogeneous patches (Uezu et  al. 
2005; Mueller et al. 2014); in contrast, those patches may not be connected for spe-
cies that cannot fly between them. This makes functional connectivity harder to 
measure than other landscape characteristics, and obtaining data on this parameter 
may require tracking movements of the species.

�Criteria for Selecting Metrics

One of the most critical issues with landscape metrics is that there are so many, and 
it is difficult to interpret them all. It is desirable to use the smallest number of inde-
pendent metrics that can sufficiently quantify landscape structure and that are also 
linked with the ecological process under study (Leitao and Ahern 2002; Cushman 
et al. 2008). Finding a suitable set of metrics is complicated, because the metrics 
may simultaneously measure multiple aspects of the same structure (Cushman et al. 
2008), or may measure the same aspect from a different perspective (e.g., patch 
density and mean patch size are reciprocals). Many studies have attempted to deter-
mine the most parsimonious suite of independent metrics (Riitters et al. 1995; Cain 
et al. 1997; Lausch and Herzog 2002; Cushman et al. 2008; Schindler et al. 2008). 
Although these studies agreed about some metrics (e.g., all included patch density 
and edge density as key metrics), they generally disagreed on the other members of 
the set. This suggests that there is no universally appropriate set of metrics, and that 
the optimal metrics are those that best support the goals of a given study.

As we mentioned earlier, there are no specific metrics for evaluating forest pat-
terns, and the selection of metrics depends on the purpose of the study. Abdullah 
and Nakagoshi (2007) and Sitzia et al. (2010) reported that the mean patch size, 
connectivity, and edge length are the most commonly used metrics for evaluating 
changes in forest landscapes. Wulder et al. (2008) and Cardille et al. (2012) used the 
following landscape metrics to identify representative forest landscapes and repre-
sent land cover in other ecozones: proportion of that area covered by forest, propor-
tion of patches that contain forest, number of forest patches, mean forest patch size, 
standard deviation of the forest patch size, length of forest edge, forest edge density, 
forest–forest connections, and forest/non-forest connections. They selected these 
metrics because they depicted fragmentation accurately and were easily interpreta-
ble. In our opinion, this selection of metrics is generally good for evaluating frag-
mentation and deforestation and also for evaluating changes in forest landscapes 
over time and space. We would, however, omit the length of forest edge, as it dupli-
cates information included in the forest edge density. It is also important to know 
that the amount of forest edge and the number of forest patches are only comparable 
across study sites if the study sites have the same area. Otherwise, densities (i.e., 
values per unit area) are more effective. In addition, Echeverria et al. (2006) and 
Kouba and Alados (2012) used the mean distance between forest patches, which is 
an important parameter for measuring habitat structural connectivity.
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Bogaert et al. (2000), Butler et al. (2004), and Abdullah and Nakagoshi (2007) 
combined multiple forest fragmentation metrics into a single index to quantify frag-
mentation and allow comparisons across landscapes. They based their indices on the 
same components: the proportions of forested and non-forested area, length of for-
est edge compared to the length of edge of other land use types, and patch size 
(measured by the coefficient of variation of the patch size). Fragmentation itself 
consists of two aspects: the amount of forest in the study area and how it is distrib-
uted within that area (i.e., the composition and configuration). There may be much 
forest in the area, but if it is divided into small and scattered patches, then the forest 
is still fragmented. Therefore, the proportion of forest alone is not an adequate indi-
cator of fragmentation, and the proportion of the area that contains forest (composi-
tion) and patch size (configuration) should both be measured. Although the 
proportion of forest alone may be sufficient in studies of deforestation, deforesta-
tion is rarely observed separately from fragmentation, as these two phenomena are 
closely related from a forest management perspective.

All patch metrics can be summarized at the land use or cover class level or at the 
landscape level using various distribution statistics (McGarigal et  al. 2012): the 
median, mean, area-weighted mean, range, standard deviation, and coefficient of 
variation (Fig. 9). The most commonly used statistic is the frequency distribution 
for patch size, in which each patch is considered in describing the landscape’s struc-
ture, regardless of its size. In evaluating habitats, however, larger patches often have 
greater influence, and area-weighted statistics would be more meaningful for assess-
ing habitats (McGarigal et al. 2012). Moreover, the distribution of metric values is 
often does not follow a normal distribution, and therefore the mean value gives a 
somewhat biased evaluation for the whole landscape. In that case, the median will 
be more meaningful, but we also suggest calculating the coefficient of variation, 
which describes the variability of the metric for the forest patches. One of the basic 
symptoms of forest fragmentation is an increase in the number of smaller patches 
(Echeverria et  al. 2006). In these cases, the distribution of patch areas provides 
important information about the degree of fragmentation (Fig. 10).

Fig. 9  Distribution of values for a landscape metric (here, patch size) and the associated statistical 
parameters. Adapted from McGarigal et al. (2012)
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When selecting metrics for a study, consider the following aspects:

	1.	 Is it necessary to evaluate composition, configuration, or both? Previous 
studies have shown that composition is more important for the relationships 
between patterns and processes, especially for biodiversity (Uuemaa et al. 2013). 
However, in assessing fragmentation and deforestation, it is relevant to measure 
configuration (e.g., patch size, contagion). In many cases, there is little difficulty 
analyzing both landscape characteristics, and both should be evaluated because 
of the different insights they provide.

	2.	 What are the impacts of a metric’s range of values? Metrics differ in their 
range of values, with some being range limited and others not (Plexida et  al. 
2014). Comparing metrics with different ranges can be difficult, and it is 

Fig. 10  Temporal changes in the distributions of forest fragment size in a Chilean temperate forest 
(Echeverria et al. 2006). In 1975, the landscape was dominated by large forest patches, but by 
2000, the area of forest had decreased significantly and the large forest patches had disappeared
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challenging to define an ecologically significant change in index values (Remmel 
and Csillag 2003; Lafortezza et al. 2005). It may be better to use range-limited 
metrics, as it is easier to understand their expected behavior (Neel et al. 2004).

	3.	 Should landscape metrics be computed at multiple scales? To adequately 
quantify spatial heterogeneity and detect the characteristic scales of landscapes, 
it can be useful to evaluate metrics at more than one scale (Li and Wu 2004). The 
behavior of some metrics in response to increasing grain size can be accurately 
predicted, and this makes them applicable at multiple scales (Li and Wu 2004; 
Uuemaa et al. 2005).

	4.	 Should a metric focus on only a single characteristic? Most indices account 
for more than one aspect of the spatial pattern, which makes them more difficult 
to interpret. Therefore, we recommend using simple metrics that are easy to 
calculate and understand.

�Applications of Forest Pattern Mapping

�Improving Forest Management

Global deforestation is widely recognized as one of the world’s leading environ-
mental problems (Yu et al. 2011). Deforestation not only decreases forest area, but 
also changes the landscape’s configuration (Skole and Tucker 1993), which can 
exacerbate habitat degradation (Gasparri and Grau 2009). However, several studies 
have shown that habitat loss is more important than fragmentation itself (Fahrig 
2003), which suggests that composition metrics can be more meaningful than con-
figuration metrics for evaluating deforestation. Therefore maps of the proportion of 
forest are useful in decision making. It is common to analyze forest patterns in 
fishnet polygons, with the land use map overlaid with the rectangular cells. For each 
cell, different indicators can be calculated. The simplest indicator (e.g., the 

Fig. 11  Spatial distribution of forest cover visualized with a quantitative legend on the left and a 
categorical legend on the right. The distribution of forest cover is more easily perceived using the 
color scheme on the left
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proportion of forest in each cell) could be useful in determining core areas (Fig. 11). 
Large areas with a high proportion of forest (>85%) can be considered to be core 
areas. Although landscape metrics are calculated for qualitative data (mostly land 
use and cover types), the outcome is always quantitative. Therefore, the results 
should be presented using visualization methods for quantitative data—a point that 
is often forgotten. It is advisable to use graduated colors to present proportions of 
forest cover, as the map is then more easily comprehensible. Colors can be used in 
many ways to enhance the meaning and clarity of data display, but when used 
improperly, some important information may be lost (Fig. 11).

Another phenomenon that can be mapped and visualized using a grid is the 
change over time (Fig. 12). It is possible to show trends for the proportion of forest, 
its spatial configuration (e.g., edge length, core area), and connectivity in this man-
ner. This method makes it possible to determine the critical areas in which negative 
changes took place and thus which areas need immediate action or improvement.

Remote sensing data has a relatively long time series, dating back to the 1970s 
(Landsat), and therefore provides an excellent opportunity to study historical 
changes in forest cover and relate the spatiotemporal pattern of such changes to 
other environmental and human factors. Several studies have evaluated the effects 
of different management strategies on forest pattern (Staus et al. 2002; Miyamoto 
and Sano 2008). It is also possible to evaluate the spatial pattern of forest fragmenta-
tion globally. Li et al. (2010) assessed the differences in forest fragmentation pat-
terns and drivers between China and the conterminous United States using a 
300-m-resolution global land cover product (GlobCover) and the moving window 
method, and found that forests were more fragmented in China than in the United 

< -5%

-5% to 1%

-1% to 1%

1% to 5%

> 5%

Change in
connectivity

Fig. 12  Trends in forest connectivity in the Iberian Peninsula from 1990 to 2006 using 25 km × 
25 km landscape units. Source Estreguil et al. (2012)
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States because of a lack of management. Miyamoto and Sano (2008) also found that 
the size and spacing between patches depend on the nature of the forest 
management.

Using landscape metrics in pattern evaluation makes it easy to monitor future 
landscape conditions to detect changes, and their present values can be used as 
baseline data to create alternative scenarios for future management plans and to 
compare the resulting changes in spatial processes. Moreover, if these studies are 
linked with species habitat data, the analysis may help develop more effective man-
agement strategies and programs for maintaining biodiversity. Identifying which 
forested areas in a particular landscape are highly threatened is essential informa-
tion for decision makers, as is assessing their value for one or more species. The 
value is either positive, in which case the forest should be conserved, or negative, in 
which case the forest area may be too small to justify protection at the expense of 
further development (Abdullah and Nakagoshi 2007).

A particular challenge is how to best achieve landscape-scale restoration and for-
est defragmentation (Quine and Watts 2009). Plantations make it possible to 
decrease fragmentation, and with pattern analysis one can determine where the new 
plantations should be located so that they can be most effective at improving con-
nectivity. However, plantations usually have low conservation value in terms of bio-
diversity. Sano et  al. (2009) provided detailed suggestions on how to improve 
management in study areas with different spatial characteristics. For example, the 
size of the core area in their study area indicated that the areas of most natural forest 
cover types were too small to support selective cutting, which requires larger areas. 
Baskent (1999) indicated that harvesting patterns could be used to design manage-
ment regimes for the creation of alternative forest landscapes with significantly dif-
ferent spatial structures. The sizes of modern clear-cut areas determine in large 
measure the patches of timber that will be economically available for harvesting in 
the distant future (Baskent 1999). Baskent and Jordan (1996) and Sano et al. (2009) 
stressed that biodiversity could be provided not by the conservation of individual 
habitats but rather by the maintenance of a diverse spatial structure, and that the 
biodiversity-related properties of spatial harvesting patterns should be considered in 
forest management. The pattern created and the size and location of the plantations 
also determine their susceptibility to fire. Hayes and Robeson (2011) and Soares 
et al. (2012) used landscape metrics to determine the relationship between forest 
fragmentation and forest fires, and found that the major current and future driver of 
understory fires was fragmentation rather than climate change, and that fire intensity 
was closely related to the landscape structure of the remaining (post-harvesting) 
forest.

Riparian forests are special cases in forest mapping. The fragmentation of and 
loss of complexity in riparian woodland reduce the efficient functioning of these 
ecosystems (Garofano-Gomez et al. 2013). In addition, it is necessary to more fully 
understand the structural variation in riparian forests to support their management 
and restoration (Fernandes et al. 2011, 2013). Field surveys are the usual data source 
in such cases, but they may take an infeasible amount of time, and because of their 
expense, they are spatially limited (Baker et al. 2007; Fernandes et al. 2013). A rela-
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tively common approach is to use fixed-distance riparian metrics (e.g., buffers), but 
these do not correctly depict the variation in the spatial configuration of riparian 
patterns within watersheds (Baker et al. 2007), and fixed-distance metrics are also 
strongly correlated with whole-watershed land cover proportions (Baker et  al. 
2006). The limited width of the riparian zone and the complexity of its internal 
structure mean that imagery with high spatial resolution (<5 m) is needed to permit 
spectral analysis of riparian vegetation (Aguiar et al. 2011; Fernandes et al. 2011). 
Fernandes et al. (2011) demonstrated that the spatial patterns of riparian vegetation 
are heterogeneous, but can nonetheless be identified from digital images with reso-
lutions of 5 m or better, and landscape metrics can then be used to describe the 
spatial patterns of riparian vegetation (Fig. 13).

In terms of conservation efforts, landscape metrics enable managers to quickly 
evaluate the influence of interventions such as the creation of natural parks on forest 
fragmentation (Southworth et al. 2004). Soverel et al. (2010) found that all national 
parks in Canada have at least one significantly different aspect of spatial configura-
tion compared with other parks in the national park system. These metrics also 
provide a baseline for evaluating the effectiveness of management inside national 
parks. However, Remmel and Csillag (2003) found that comparisons of landscape 
metrics and testing for significant differences among various landscapes or studies 
produced uncertain results when the distributions of the landscape metrics were not 
known. Fortin et al. (2003), Remmel and Csillag (2003), and Remmel and Fortin 
(2013) provided insights into how statistical differences between landscape metrics 
can be determined. They stressed the importance of knowing the expected range of 
variation about landscape metrics’ values so that statistical comparisons can be 

Fig. 13  Illustration of riparian patches, with perpendicular lines used to divide contiguous sam-
pling units. Source: Fernandes et al. (2011)
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made. This issue is related to the wider topic of comparing categorical maps. Boots 
and Csillag (2006) comprehensively studied map comparisons and concluded that 
although pattern characterization and comparisons benefit from the choice of appro-
priate methods, meaningful hypotheses can only be tested when we remember that 
patterns are the results of spatial processes.

�Assessment of Forest Habitats

The conservation of fragmented landscapes requires an understanding of the value 
of the remaining forest patches for the organisms that inhabit the forest (Holland 
and Bennett 2009). The quality of forest habitats in landscape mosaics can be 
assessed based on the forest’s patch size, quality, connectivity, and boundary con-
figuration (Hardt et al. 2013). In evaluating habitat quality, scale plays an essential 
role; for example, the landscape elements that are important for a mouse are not 
relevant for a deer (McGarigal et al. 2012). The general rule is that the smaller the 
organism’s body, the more detailed the spatial resolution that is needed to map the 
corresponding habitats. However, as home ranges interact with the size and configu-
ration of landscape features to determine the actual use of the available habitats 
(Macdonald and Rushton 2003; Zapponi et al. 2013), the scale of the analysis must 
be species specific. Moreover, it is necessary to assess existing natural areas and 
prioritize conservation actions across multiple spatial scales. For habitat analyses, 
knowledge of the forest’s vertical structure and its compositional structure (i.e., 
plant species richness) is often essential. Light detection and ranging (LiDAR) and 
synthetic aperture radar (SAR) are emerging as important tools for vegetation with 
a pronounced vertical structure, but for assessments of a forest’s compositional 
structure, vegetation sampling is often needed (Corona et  al. 2011; Chirici et  al. 
2012). Plant species richness is a useful measure of biodiversity, but because of the 
cost and the time requirements for field sampling can typically only be evaluated in 
small areas of a given landscape (Schetter et al. 2013). It is often useful to combine 
field data with remotely sensed data and landscape pattern metrics to evaluate habi-
tat quality or predict species richness (Schetter et al. 2013).

Many studies have been performed to study how fragmentation affects the diver-
sity and abundance of mammals (Corona et  al. 2011; Garmendia et  al. 2013). 
However, in most research, only the land use or cover type was used as the basis for 
landscape analysis. However, Li et al. (2000) found that simple land use and cover 
boundaries often lack ecological relevance and are therefore unsuitable for evaluat-
ing habitat quality, because no single map can represent the diverse habitat require-
ments of many species. Kintz et al. (2006) have also pointed out that land use maps 
derived from satellite imagery may not contain all the necessary information to 
support a biodiversity assessment. For example, it is not always possible to distin-
guish between natural forest and plantations, and this distinction is important for 
habitat quality. Plantations often have a lower habitat value than natural forest, and 
their spatial configuration is often much more regular than that of natural forests. To 
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overcome this drawback, Li and Wu (2004) suggested creating habitat rank maps 
for each target species by aggregating adjacent patches with the same suitability 
rank for a given species.

Previous studies of mammals have shown that forest composition is the most 
significant factor that influences species diversity (Uuemaa et al. 2013). However, 
many authors stress that increasing fragmentation caused by anthropogenic land-
use change is one of the most common threats to species and genetic diversity 
worldwide (McAlpine and Eyre 2002; Martinez et al. 2010). Therefore, the effect of 
fragmentation on animal diversity has also been widely analyzed. Different species 
have different correlations with landscape metrics that depend on their landscape 
preferences. For example, large, compact (simple) patches are preferred by wild 
hogs (Sus scrofa) (Gaines et al. 2005), moose (Alces alces) (Maier et al. 2005), and 
deer (Odocoileus virginianus) (Plante et al. 2004), whereas ocelots (Leopardus par-
dalis) (Jackson et al. 2005) and gliders (Petaurus spp.) (McAlpine and Eyre 2002; 
Masse and Cote 2012) preferred areas that had a greater degree of fragmentation 
(i.e., a larger number of smaller patches with more edge).

In addition to the shape and size of the habitats, connectivity is an essential indi-
cator for biodiversity. Forest connectivity combines the availability of forest with 
the distance between patches and characteristics of the corridors between patches; 
it refers to the degree to which the landscape facilitates or impedes the movement of 
species with specific dispersal capabilities and requirements (Estreguil et al. 2012). 
Several landscape metrics have been designed to measure connectivity (e.g., the 
connectance index, cohesion), but special software has also been developed to ana-
lyze connectivity, including Conefor and Guidos (see the section Tools for evaluat-
ing landscape patterns for details).

Many studies on mammals are performed with low-resolution data (Corona et al. 
2011), but more detailed data is often needed, as low-resolution satellite imagery 
(e.g., Landsat data) often has low overall accuracy for identifying habitat types and 
corridors. However, maps derived from high-resolution imagery are expensive (Lu 
and Weng 2007). Ramezani et al. (2010) proposed using point sampling as an alter-
native to wall-to-wall mapping to estimate landscape metrics on a more detailed 
scale. They found that the sample-based estimates are competitive in terms of time 
consumption (thus, cost), as they required less time than wall-to-wall mapping.

To evaluate habitat quality for birds, more detailed information about canopy 
closure and the forest’s vertical structure is needed (Kirk et al. 2012). Moreover, 
Saveraid et al. (2001) argued that satellite data are useful for identifying areas where 
certain species may be located, but more detailed vegetation and habitat data col-
lected in the field are necessary to accurately determine nesting and breeding habi-
tats. The combination of remotely sensed and ground-based data provides a 
researcher with more complete information and the ability to determine species 
occurrences. For example, canopy gaps caused by natural disturbances such as 
treefall are a significant source of heterogeneity in intact forests, and avian species 
richness and abundance are influenced by these gaps (Gharehaghaji et al. 2012). 
Bird censuses are usually undertaken using point counts, and buffer zones are 
generated around each counting point based on home ranges; landscape metrics are 
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then calculated only for these buffer zones and not for the entire landscape (Gillespie 
and Walter 2001).

Landscape metrics have been used most widely to evaluate the influence of envi-
ronmental changes on bird species richness (Thompson et al. 2008). Similarly to the 
case of mammals, studies have shown that bird species generally also respond more 
strongly to the composition of the land use and cover classes than to the landscape’s 
configuration (Uuemaa et al. 2013). Among the configuration metrics, edge density 
has given good results in predicting bird abundance (Fauth et al. 2000). The shape 
of the patches appears to play less of a role for bird diversity (Uuemaa et al. 2013).

Patch area and isolation alone are often weak determinants of habitat quality, 
since the distance to the feeding or breeding locations and the distance to major 
disturbances have a greater effect on species abundance and richness (McGarigal 
et al. 2012). There must be enough bodies of water near the home forest patch, and 
it must be sufficiently far from sources of disturbance such as highways. Moreover, 
the forest’s inner structure (e.g., stand age, vertical structure) is often more impor-
tant than the size of the forest patch or the isolation between patches (Uuemaa et al. 
2013). Obtaining information about a forest’s inner structure assumes that the for-
ests are mapped at a detailed scale and that fieldwork is also conducted. In addition, 
using the moving window approach helps researchers to map the inner structure of 
the forest patches. Many forest species are edge specific or core specific, so map-
ping core areas and edges would be of special interest. However, most previous 
studies have only measured the structural edges of the habitats and did not account 
for the habitat’s functional characteristics (Uuemaa et al. 2013).

Researchers should focus more on incorporating the magnitude of the change 
that occurs at an edge (edge contrast) into habitat analyses (Uuemaa et al. 2013). 
For many species, there is a significant difference between whether the edge sepa-
rates forest from artificial or natural land use types (McGarigal et al. 2012). There 
are multiple ways of determining the contrast between edges, such as using light 
conditions in the weighting system. However, although there have been many stud-
ies about the habitat preferences of different species in relation to forest fragmenta-
tion, there has been little analysis of conservation effectiveness based on this context 
(Uuemaa et al. 2013).

It is therefore necessary to evaluate whether protected areas actually support 
biodiversity conservation. More and more focus has recently been placed outside of 
protected areas, since reserves alone often cannot ensure the necessary habitat qual-
ity required to maintain biodiversity and the matrix that contains a reserve can have 
an important effect. For example, even a relatively severely logged forest outside a 
reserve may represent a significant resource for biodiversity conservation, and sec-
ondary forests are an often-overlooked resource that could be managed to help 
reduce pressures elsewhere (Gillespie et al. 2008). Off-reserve areas complement 
existing reserves by minimizing edge effects, reducing fragmentation, and increas-
ing habitat quality and extent (Lethbridge et al. 2010). There has been some prog-
ress in developing probabilistic habitat quality models that use parameters based on 
species responses to the landscape configuration (i.e., landscape metrics) to 
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determine habitat restoration priorities (Westphal et al. 2007). For example, Watts 
et al. (2009) used the Marxan algorithm to prioritize habitat restoration using land-
scape metrics as parameters that described the landscape preferences of different 
species. Westphal et al. (2007) and Lethbridge et al. (2010) also developed the con-
servation decision support tool “Optimal Restoration of Altered Habitats” (OPRAH), 
which combines species preferences for certain landscape configurations with habi-
tat quality information to select the optimal habitat restoration priorities for single 
or multiple species.

�Mapping Landscape Metrics by Using GIS

There are many simple ways to evaluate forest patterns using ordinary GIS software 
without requiring the installation of specific landscape analysis extensions. In all 
GIS software, it is possible to calculate the area and perimeter of polygons. From 
these parameters, several distribution statistics are easily calculated (e.g., patch and 
edge density; the mean, median, standard deviation, and range of patch areas and 
shapes; the nearest-neighbor distance).

There are also simple ways to generate different types of buffers inside forest 
habitat patches, thereby supporting an analysis of core areas (Fig.  14). In most 
cases, a single buffer zone is enough, but the width of the zone depends on the spe-
cies under study. The advantage of using GIS software instead of classical programs 
for calculating landscape metrics is the ability to create multiple buffers. Sometimes 
the edges have a complex structure (Fig. 15), especially in riparian forests. All the 
same simple statistics can be calculated, in addition to statistics on the core areas 
and the edges (i.e., buffers).

To evaluate a forest’s habitat quality, additional habitat parameters such as the 
distance to bodies of water and roads may be essential, as we noted earlier. GIS 
software can easily perform proximity analysis and find the distances to the closest 
defined objects (e.g., the nearest lake to each forest patch). Raster data enables the 
creation of a proximity map (Fig. 16), which identifies the distances from all loca-

Fig. 14  Buffers created for forest patches at (left) a specified distance, (middle) at multiple dis-
tances, and (right) at different distances based on an attribute of the forest
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tions in the study area to the nearest polygon containing a given feature (e.g., a 
river). Proximity maps are useful for identifying equidistant “ridges” that bisect a 
set of forest parcels (Berry 2007). Proximity maps also better handle changes in 
landscape structure. If one of the forest patches is removed (e.g., by timber harvest-
ing or wildfire), the proximity map shows the influence on the surrounding areas 
(Berry 2007).

The moving window approach is also easily applicable in GIS software for sim-
ple focal statistics. It is also possible to use different kernel sizes and shapes to 
calculate a variety of statistics.

Fig. 15  Multiple-layered edge structures can be presented as multiple buffers

Fig. 16  Creating a proximity map from a land use and cover map by first identifying forests and 
then calculating Euclidean distances from all locations to the forest patches
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�Using Landscape Metrics in Modeling

There are many ways to use landscape metrics in modeling. The most common 
approach is to use landscape metrics to capture the patterns of real and modeled 
landscape attributes. This approach is mostly used to evaluate forest landscapes 
(Fig.  17), especially in terms of deforestation (McConnell et  al. 2004). Another 
group of studies have used landscape metrics as indicators of species richness, with 
the landscape metrics used as input parameters for the models (Gillespie et  al. 
2008).

Echeverria et al. (2008) used landscape metrics in forest fragmentation modeling 
and predicted the future trends in deforestation patterns. Analysis of landscape pat-
terns revealed that the loss of forests was concentrated around the edges of forest 
fragments located in slightly undulating terrain because local people use trees near 
the borders of forest patches to produce fuelwood and then clear these areas for 
crops and pasture. McConnell et al. (2004) used proximity maps created based on 
the distance from the forest edge and villages as one of the input factors to model 
deforestation in Madagascar, and found that the prior land use was the best predictor 
of deforestation (Fig. 18). Their results were similar to those of Echeverria et al. 
(2008), who found that the clearing of the land took place closer to settlements and 
roads, and was most likely to start at forest edges. These results suggest that forest 
edges are important predictors of future deforestation. Moreover, Echeverria et al. 
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Fig. 17  Illustrations of two approaches to using landscape metrics in modeling: (top) as model 
outputs and (bottom) as model inputs
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(2008) also found that patch size was an important factor, since small patches 
appeared to be more vulnerable to deforestation.

Proximity maps are widely used as suitability maps for modeling the spread of 
forest fires (Clarke et al. 1994) and forest succession (Favier and Dubois 2004), with 
cellular automata and landscape metrics together enabling a comprehensive evalua-
tion of the modeling results. However, landscape metrics can also be used to cali-
brate cellular automata by incorporating them during multiple runs (trial solutions) 
of genetic algorithms (Li et al. 2013). Moreover, maps of the values of landscape 
metrics created by a moving window approach can also be used as suitability maps 
for modeling inputs.

As we mentioned earlier, landscape metrics are often used as predictors in habi-
tat modeling. Schindler et al. (2013) found that landscape metrics were good indica-
tors for overall species richness and for the richness of woody plants, orthopterans, 
and reptiles in Mediterranean forest landscapes. They also noted that the perfor-
mance of the metrics was scale dependent; the diversity of woody plants, orthopter-
ans, and small terrestrial birds was usually better predicted by using larger buffer 
zones, whereas the diversity of reptiles was frequently predicted better using larger 
buffer zones. Monitoring landscape metrics may help to identify critical changes in 
forest patterns that might contribute to a loss of forest biodiversity. It has been 
argued that linking sample data on biodiversity indicators to ecologically meaning-
ful forest type units has substantial advantages for forest biodiversity assessment 
(Corona et al. 2011).

Fig. 18  Modeling deforestation probabilities (McConnell et al. 2004). The explanatory factors 
were (a) distance from the nearest village (centroids) and (b) the distance from the forest’s edge. 
The resulting images show the predicted changes (c) in land use and cover type based on cross-
tabulation of land cover maps from 1957 to 2000 and (d) in the probability of change based on a 
logistic regression model, in which the probability is expressed ranging from 0 (low) to 1 (high). 
Cells that were not candidates for conversion were excluded from the regression
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Choosing input parameters for modeling can be improved by classifying forest 
areas into different forest types (e.g., evergreen coniferous vs. deciduous broad-
leaved) to reframe biodiversity indicators collected over wide areas into smaller, 
more homogeneous units characterized by similar key determinants of biodiversity 
(Larsson 2001). Moreover, this classification also helps to improve our understand-
ing, interpretation, and communication of data on biodiversity variables by enabling 
comparison of ecologically similar forests (Rego et al. 2004). This can be done by 
integrating forest inventories into biodiversity assessment studies.

�Future Perspectives on Mapping Patterns

�3D Landscape Metrics

In the past several years, one of the most important developments has been integra-
tion of the third dimension into the analysis of landscape metrics. There are two 
aspects that should be considered when dealing with 3D in mapping forest land-
scapes: topography as the third dimension and forest’s vertical structure. Topography 
plays an important role in ecosystem functions and structure, even though tradi-
tional pattern analysis only considers a planimetric surface, which can produce mis-
leading results in mountainous areas. The technological progress in the field of 
remote sensing has led to a rapid improvement in the quality of DEMs created from 
LiDAR measurements, which provide elevation data good enough for use in land-
scape analysis. A variety of methods exist for measuring terrain irregularity, ranging 
from the concept of a “fractal dimension” (Mandelbrot 1983) to the widely used 
terrain ruggedness index (Riley et al. 1999), which expresses the elevation differ-
ence between adjacent cells in a grid. Although the fractal dimension is quite widely 
used in landscape analysis, it has only been implemented in a planar system and 
does not account for 3D. There are few approaches that have been used to integrate 
topography in the calculation of landscape metrics. Jenness (2005) proposed a 
method for calculating true surfaces that is based on a moving window algorithm 
and that estimates the true surface area for each grid cell using a triangulation 
method based on the use of triangular polygons to cover a surface (Fig. 19).

Hoechstetter et al. (2008) and Batista et al. (2012) showed that there is a signifi-
cant difference between the values estimated using the 2D and 3D forms of most 
landscape metrics, although shape metrics appear to be not influenced by surface 
roughness. Therefore, using 3D landscape metrics to evaluate forest patterns in 
mountainous areas should be seriously considered because these metrics provide 
more realistic results. For example, Hou and Walz (2013) introduced several metrics 
suitable for analysis of the 3D landscape structure and found that the basic effect of 
switching from 2D to 3D metrics was to increase the patch area and perimeter. For 
diversity metrics, the 3D metrics produced a lower evenness index, leading to a cor-
respondingly lower diversity index. The values of an edge contrast index (ECON)  
also decreased because the transitions caused by the use of 3D data acted as buffer 
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regions that could be used to smooth the “terrain barrier” between vegetation 
patches, thereby smoothing “edge effects” between patches and leading to more 
realistic quantification of fragmentation. However, the effective mesh size (MESH), 
which serves as an example of the group of fragmentation metrics, proved to be 
sensitive to transitions, and the values of MESH for each land use or cover class or 
the whole landscape increased when the 3D transition zones were included in the 
calculation.

McGarigal et al. (2009) proposed using various surface metrics, such as the topo-
graphic wetness index of Moore et al. (1993) and the topographic position index of 
Jenness (2005), because many of these indices had no analogues among patch met-
rics and had the potential to offer new insights into landscape patterns. In addition, 
we propose combining surface metrics with patch metrics, which can be easily done 
using map algebra, to take advantage of the strengths of both types of metric 
(Fig. 20). The terrain ruggedness index is widely used and easily calculable using 
free software (e.g., SAGA GIS; http://www.saga-gis.org/). Another way to evaluate 
topographic complexity is to use patch metrics that can be applied to quantitative 
data (e.g., contrast metrics). Contrast metrics can be computed based on elevation 
values.

The forest’s vertical structure is another important aspect of habitat analyses, and 
is also important for assessing fire susceptibility. LiDAR datasets have become 
widely used to assess variations in leaf area index as a function of height above the 
ground (Solberg et al. 2009), which can be used to estimate forest canopy fuel loads 
(Erdody and Moskal 2010). This is important because the continuity of the fuel 
between the ground surface and the canopy strongly influences the risk of fire reach-
ing the tree crowns, leading to the development of severe fires. Fire also behaves 
differently in forests with dense patches separated by open ground than in areas 

Fig. 19  Illustration of the Jenness (2005) method to determine the true surface area and true sur-
face perimeter of patches in a 3D landscape. The true surface area of each cell in the raster grid is 
obtained by adding the areas of the eight shaded triangles, and the true surface perimeter is obtained 
by summation of the lengths of the eight bold line segments
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with equal distances between all trees, such as plantations (Richardson and Moskal 
2011). Therefore, both the stand’s leaf area distribution and stem density are valu-
able information for forest managers. The individual-tree-crown approach, in which 
LiDAR data is first segmented into individual tree crowns, enables researchers to 
delineate individual trees within the forest and predict tree density. However, there 
are also limitations because LiDAR tends to underestimate the density of smaller 
trees. Richardson and Moskal (2011) developed an approach to assess forest struc-
ture by estimating the density and spatial configuration of trees in four height 
classes, and evaluated the results by using landscape metrics (Fig. 21). Landscape 
metrics let researchers measure spatial patterns of tree densities at different spatial 
scales. LiDAR-based 3D metrics offer insights into the “within-patch diversity,” 
which improves the assessment of vegetation patterns in terms of potential forest 
vulnerability to fire or to insect pests (Blaschke et al. 2004) and will help managers 
to develop management plans and researchers to assess habitat quality.

�4D Landscape Metrics

In addition to accounting for topography, more and more time series data (4D) is 
needed. Location-based environmental information is required in near real time dur-
ing crisis situations to permit timely responses (Klug and Kmoch 2015). Remote 

Fig. 20  Integrating topographic characteristics into landscape analysis. The values of the land-
scape metrics can be combined with terrain ruggedness indices by using simple techniques from 
map algebra
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sensing and Web-based technologies are developing fast and will enable sharing and 
presenting of data as they become more accessible (Granell et al. 2016). This will 
let researchers perform interactive analysis and modeling using up-to-date datasets. 
Geosensor networks are specialized applications of wireless sensor network 
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technology in a geographic space that can detect, monitor, and report data on envi-
ronmental phenomena and processes (Nittel 2009). Sensor networks add the possi-
bility of regional- and even local-scale observations at many points by implementing 
a higher density of sensor nodes in a given area; thus, they can deliver a more accu-
rate description of the temporal and spatial variations that are occurring.

A particularly important aspect of this approach is the possibility of real-time 
data delivery. Both the real-time aspect and the increased spatial and temporal reso-
lutions have brought new research challenges. For example, the availability of sen-
sor platforms with different sizes provides huge collections of concurrent streams of 
georeferenced sensor data in real time (Nittel 2009). Leveraging this technology 
will let us observe phenomena that were impossible or prohibitively difficult to 
measure before.

In addition, unmanned aerial vehicles (UAVs) offer new opportunities to obtain 
near-real-time data from forests. UAVs have already been used to map insect dam-
age. Näsi et al. (2015) used a UAV-mounted hyperspectral imaging sensor to iden-
tify mature Norway spruce (Picea abies) trees suffering from infestation by the 
invasive bark beetle Ips typographus. They developed a processing approach that let 
them analyze the spectral characteristics of the sensor images with high spatial and 
spectral resolution in a forested environment, and were able to identify damaged 
trees.

Moreover, new space programs such as the Sentinel satellite program (https://
sentinel.esa.int/web/sentinel/home) will provide open access to near-real-time high-
resolution SAR images. Majasalmi and Rautiainen (2016) demonstrated the poten-
tial of Sentinel-2 bands in estimating canopy biophysical properties for boreal 
forests in Finland. They found that the Sentinel-2 data could be used to estimate the 
effective leaf area index and the inverted red-edge chlorophyll index.

There is no longer a problem getting access to up-to-date high-resolution data. 
We are now able to detect and map forest fires and illegal logging in real time. The 
problem has become one of being able to process the data fast enough. In terms of 
quickly quantifying changes and effects, landscape metrics offer the advantage of 
being easily and quickly calculated. The challenge will be to build appropriate data 
management technologies that can query, process, mine, and analyze the data 
streams in real time to find trends and identify events (Li et al. 2016). One increas-
ingly acknowledged need is for open and standard-compliant distribution and access 
to data to ensure interoperability among and harmonization of geospatial datasets 
and time series for use in environmental analysis (Klug and Kmoch 2015).

�Conclusions

For decades, landscape metrics have been used to measure and abstract landscape 
patterns. Because there are hundreds of different metrics available, many programs 
have been developed to compute these metrics. At present, there are no special-
purpose metrics that are uniquely suited to forest landscapes. However, because 
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forests have unique characteristics that differ from those of other ecosystems, and 
particularly from artificial anthropogenic ecosystems, future research should look 
for new metrics that capture these unique characteristics. For example, vertical 
structure is an important characteristic of forests, but has not yet been adequately 
described. Many researchers have attempted to define an optimal set of metrics, but 
thus far, it appears that the selection of metrics depends more strongly on the pur-
pose of the study than on the land use or cover type. However, some metrics are 
used more often for forest habitats than for other ecosystems, such as the edge and 
core area metrics.

Forest landscape patterns are changing fast due to natural factors (e.g., climate 
change) and human disturbances (e.g., land use or management changes). Remote 
sensing offers a rapid, cost-effective method for acquiring up-to-date information 
over a large geographical area and is therefore widely used as a source of the data 
needed for pattern assessment. However, to obtain meaningful results from the cal-
culation of landscape metrics, correct preparation of the data is essential. Variations 
in the value of landscape metrics can result from different pixel sizes, classification 
methods, or filtering applied to the images.

When researchers map forests, they must always consider whether to map only 
the forests or to include the matrix in which the forests are embedded, which raises 
the issue of how to consider the boundaries and internal heterogeneity. The subse-
quent pattern analysis will depend greatly on how forest is defined (e.g., how it 
differs from transitional vegetation types). Modern technology lets us map every-
thing in high detail, but we might not always need so much detail; sometimes, too 
much detail becomes noise. Similarly, it is possible to obtain too much information. 
In pattern analysis, it is often better to choose fewer and more meaningful indicators 
than a larger number of metrics that are harder to interpret.

Landscape metrics have a wide array of uses, ranging from forest management 
and habitat monitoring to modeling of deforestation or forest fire susceptibility. 
Their advantage is the simplicity of calculation and relatively easy comparison of 
the resulting numbers. However, in any kind of spatial analysis, visualization of the 
results becomes important. We believe that this aspect of landscape research has 
received too little attention in the research literature. Choosing the wrong visualiza-
tion method can lead to misinterpretation of the results, or a failure to see important 
patterns.

Although many successes have been achieved using simple planimetric analyses, 
there is considerable room for improvement. The future of the landscape metrics 
will lie in finding ways to integrate topographic information (i.e., to move from 2D 
to 3D analysis) and temporal information (i.e., to move to 3D or 4D analysis). 
Because of the huge quantities of data that are becoming available, finding ways to 
perform near-real-time calculations and modeling will be an important challenge, 
but if that challenge can be met will permit the development of Web-based services 
that make data more widely available.
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�Appendix: Technical Terms

Categorical maps—Maps that define each unit of a landscape in terms of a descrip-
tive category (e.g., forest vs. grassland) rather than quantitatively.

Central point method—A method used to convert vector data to raster data by 
assigning a value to a cell in a grid based on the value for the polygon that overlaps 
the center of the cell. See also majority rule method.

Fractal dimension—A ratio that provides a statistical index of the degree of com-
plexity of a pattern by examining how the level of detail in a pattern changes in 
response to changes in the scale at which it is measured.

Free open-source software (FOSS)—Software whose source code is made avail-
able to anyone under a license in which the copyright holder provides the rights to 
study, change, and distribute the software to anyone and for any purpose.

Geographical information system (GIS)—A system designed to capture, store, 
manipulate, analyze, manage, and present all types of spatial or geographical data.

Graph theory—A mathematical description of the properties of graphs and, thus, 
of the pairwise relationships between variables or objects.

Image rectification—A transformation process used to project an image from a 
sensor’s coordinate system into a geographical coordinate system.

Landscape metrics—Algorithms that quantify specific spatial characteristics of 
patches, classes of patches, or entire landscape mosaics.

Leaf area index—A dimensionless quantity that characterizes plant canopies by 
dividing the total one-sided area of leaf tissue by the ground surface area covered by 
the canopy that contains those leaves.

LiDAR (light detection and ranging)—A remote sensing method that uses pulsed 
laser light to measure the distance between the sensor and a surface.

Majority rule method—A method used to convert vector data to raster data by 
using the feature that accounts for the largest area within a cell of a grid to define the 
attribute value assigned to the cell. See also central point method.

Map algebra—A set of primitive operations in a geographic information system 
(GIS) that allow two or more raster layers (“maps”) of similar dimensions to pro-
duce a new raster layer (map) using algebraic operations such as addition or 
subtraction.

Marxan algorithm—An algorithm used in conservation planning that aims to 
minimize the sum of the site-specific costs and connectivity costs for selected plan-
ning units, subject to the constraint that the conservation features in a reserve sys-
tem must achieve predetermined targets.

Minimum mapping unit (MMU)—The size of the smallest feature that can be 
delineated within the boundaries of a map.
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Modifiable areal unit problem—A challenge that occurs during the spatial analy-
sis of aggregated data, in which the results differ when the same analysis is applied 
to the same data under different aggregation schemes.

Neutral landscape models—The minimum set of rules required to generate a pat-
tern in the absence of a particular process; neutral models provide a means of testing 
the effect of the measured process on the patterns that are actually observed.

Open data—Data that can be freely used, reused, and redistributed by anyone, 
without restrictions from copyright, patents, or other mechanisms of control.

Red-edge chlorophyll index—A method used to estimate canopy chlorophyll 
and nitrogen contents based on remote sensing data.

SAR (synthetic aperture radar)—A form of radar that can be used to create 
images of objects, such as landscapes; the images can be two- or three-dimensional 
representations of the object.

Landscape metric scalograms—The response curves of landscape metrics to 
changing grain size that allow the detection of the most representative scales.
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Towards Automated Forest Mapping
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Abstract  The need for up-to-date and accurate information on forest resources has 
rapidly increased in recent years. Forest mapping is an important source of informa-
tion for the assessment of woodland resources and a key issue for any National 
Forest Inventory (NFI). Nowadays, new perspectives for automated forest mapping 
are emerging through the latest developments in remote sensing data and tech-
niques. In this chapter, an overview of current remote sensing data and techniques 
for mapping woodland and forests, the challenges and requirements for optimiza-
tion and automation, and the need for validating final products are presented. Special 
attention is paid to land use—a crucial criterion for forest mapping which, in con-
trast to land cover, cannot be easily derived from remotely sensed data. Three differ-
ent approaches for extracting woodland areas (i.e., patches of trees and shrubs) are 
presented, all of which involve a high degree of automation. Two additional 
approaches, which are based on NFI forest definitions, are presented. These require 
the subdivision of woodlands into the classes “used for forestry” and “other use” 
and implement the criteria “height,” “minimum crown coverage,” “minimum area,” 
“minimum width,” and “land use”. Special attention is paid to connecting patches 
using distance criteria from national forest definitions. The main points of this chap-
ter are as follows: (1) forest needs an exact definition which may differ depending 
on the country, (2) mapping woodland can be highly automated and is indispensable 
prior to mapping forests, and (3) forest mapping is now feasible using remote sens-
ing data and techniques; however, it is less automated due to the implementation of 
a forest definition.
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DSM	 Digital surface model
DTM	 Digital terrain model
GLM	 Generalized linear model
GSD	 Ground sample distance
IGBP	 International geosphere biosphere program
IP	 Interpretation plot
ITC	 Individual tree crowns
k-NN	 K-nearest neighbor
LiDAR	 Light detection and ranging
NDVI	 Normalized difference vegetation index
NFI	 National forest inventory
REDD	 Reducing emissions from deforestation and degradation
SAR	 Synthetic aperture radar
TOF	 Trees outside forest
VHM	 Vegetation height model
VHR	 Very high resolution

�Introduction

This chapter is organized into four main sections: (1) the requirements for auto-
mated forest mapping regarding forest definitions, remote sensing datasets and 
techniques, and existing maps; (2) commonly used data sources and processing 
techniques; (3) three highly automated approaches for woodland mapping; and (4) 
two highly automated approaches for forest mapping. The content of each section is 
briefly summarized.

Forest mapping is a critical task because the resulting datasets are fundamental 
input for a broad range of users and applications, ranging from global environmen-
tal change assessment to local forest management planning (see, for example, the 
“Modelling Wildfire Regimes” and “Mapping Insect Defoliation” Chapters in this 
volume). Precise, up-to-date, and regularly gathered information on the area cov-
ered by trees and shrubs is an important basis for assessing woodland resources and 
understanding the functionality of forests.

The need for consistency and the reduction of manual workload are key reasons 
for automation in forest mapping. Thus, a high degree of automation in the process 
of assessing woodland is essential for governmental authorities, international report-
ing (including the Kyoto protocol), activities within the Reducing Emissions from 
Deforestation and Degradation (REDD) framework, forest disturbance assessments, 
and biodiversity and restoration programs. Based on mapped woodland, other 
forest-related parameters (e.g., forest structure, biomass, and carbon storage) are 
estimated, which are, in turn, needed for resource management by public and pri-
vate authorities.

L.T. Waser et al.
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One particular challenge to forest mapping is the fact that the term forest is often 
defined similarly to woodland by the remote sensing community. In most studies, a 
simplified and generalized definition for forest is applied, which is mainly based on 
minimal tree height, minimal tree area, and width and crown coverage, and less on 
land use according to National Forest Inventories (NFI)s. Thus, besides the avail-
ability, processing, and quality of remotely sensed data, in order to map forest, an 
appropriate definition of forest must be applied. The need to clarify the difference 
between woodland and the varying definitions of the term forest is highlighted 
below.

�Definitions

The goal of this section is to emphasize the difference between woodland, trees, and 
forests since a variety of forest-related terms and a wide range of forest definitions 
exist. Prior to defining the term forest, however, a short explanation of the difference 
between land cover and land use should be given, since the criteria used to define 
forests are usually based on their definitions or sometimes a combination of them. 
Problems arise regarding land use, which, while a key parameter in the NFI defini-
tion of forest, is not easily assessable when using remotely sensed data—in contrast 
to land cover which is assessable.

Usually, land cover is distinct from land use, despite the two terms often being 
used interchangeably. In short, land cover indicates the physical land type, whereas 
land use indicates how people are using the land. For example, a temporarily un-
stocked area (e.g., after impacts such as fires, storms, or harvesting) will be identi-
fied as a non-forest land cover type when using remote sensing data and techniques, 
but will in fact maintain its status as a forest land use type within the NFI. According 
to the Food and Agriculture Organization (FAO) (FAO 1997) land cover refers to 
the physical forms of land cover observable from airborne and spaceborne remote 
sensing data, and to their structure. It includes vegetation (e.g., grassland and trees) 
which may be natural or planted, and non-vegetated areas (e.g., bare ground, asphalt, 
and water). One of the major land cover issues is that similarly named categories are 
often defined in different ways (Alford 1993). For example, areas without trees may 
be classified as forest if the intention is to replant (such as in the UK and Ireland), 
and areas with many trees may not be labeled as forests if the trees are not growing 
fast enough (such as in Norway and Finland).

Land use refers to the function of land and how it is used by people, that is, the 
activities undertaken on it to produce goods and services. Land use is characterized 
by the arrangements, activities, and inputs people undertake within a certain land 
cover type to produce, change, or maintain the land. Many land use classification 
systems and programs have been developed worldwide. The most commonly used 
terms in use include urban, agricultural, forest, water, and wetlands (FAO/UNEP 
1999). A good overview and more details may be found in Fisher et al. (2005).

Towards Automated Forest Mapping
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�Forest

Even though a precise and unambiguous definition of forest is indispensable when 
mapping and comparing forest areas, this is frequently neglected by using a simpli-
fied term woodland (Fig. 1). This term can be used to include both trees and shrubs 
and is one of the most important parameters in forestry. In most NFI, the estimation 
of forest cover is a crucial parameter and should therefore be easily understood and 
reproducible. NFI programs are required to produce timely and accurate estimates 
for a wide range of forest resource variables for a variety of users and applications. 
They aim to periodically report the current state of forests and changes in forests by 
providing quantitative statistical information on area, species composition, volume, 
and growing stock. Clearly, the definition of forest is also crucial to assess areas of 
deforestation which refer to areas where a forest has formerly been. Using exactly 
the same unambiguous definitions of forest over time is essential—otherwise, the 
stated deforestation cannot be properly understood.

The term forest always implies a definition (usually the percentage of area cov-
ered by trees, with a minimum area and tree height)—although the commonly used 
terms stocked area, tree area, or area covered by trees are often handled in a similar 
manner. To classify an area as forest or as non-forest, different forest definitions are 
available which should be defined based on exact geometric terms. Unfortunately, 
current definitions of forest are imprecise in most cases. Differing from country to 
country, a standardized and generally valid definition is nonexistent, since the term 
forest can be defined according to different criteria. Moreover, the definition of 

Fig. 1  Woodland in the temporal zone of Switzerland consisting of individual trees and shrubs of 
different ages may belong to a forest or not—depending on the definition of forest used
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forest varies depending on the context. For example, there may be differences from 
a silvicultural, ecological, or legal point of view. According to Lund (2016), over 
960 forest definitions exist worldwide, while the minimum thresholds for degree of 
tree cover in these definitions vary between 5% and 80%.

The FAO of the United Nations has defined forest as lands which are larger than 
0.5 hectares in area, with a tree cover of more than 10% (FAO 2000, 2001, 2010). In 
most national and global forest definitions, the key parameters defining forest are 
height, width or area, and crown coverage. According to Tomppo et al. (2010), tree 
cover thresholds for forest definition in NFIs range from 10% to 50% among differ-
ent national definitions. For example, this threshold is 10% for France and 
Scandinavian countries; 20% for Great Britain, Spain, and Switzerland; 25% for the 
United States, rising to 30% for Austria and New Zealand; and 50% in Germany and 
Hungary. Even on a national level, forest is often defined differently by various 
authoritative bodies within individual countries. Despite the fact that these measur-
able items describe land cover, land use cannot be easily calculated out of measur-
able data. Even in the field, the main use of trees is difficult to determine. Deciding 
whether extensively used fruit trees, olive trees, or Christmas tree plantations close 
to a forest’s edges belong to forestry land or not is highly subjective.

�Remote Sensing for Automated Mapping of Woodland and Forest

Remote sensing used in the forestry sector covers a wide variety of techniques and 
applications for extracting woodland, and while some have been operational for 
decades, others have only appeared recently and are undergoing fast development 
(Koch et al. 2008). Providing consistent, reproducible, and up-to-date information 
on various forest parameters proves to be the main advantage of using remote sens-
ing as a tool for monitoring, for example, in the framework of NFIs, and for map-
ping purposes, for instance, in national map products.

Traditionally, woodland mapping approaches have been the product of visual 
image interpretations and delineation of aerial imagery in combination with field 
visits. Thus, their development is time consuming, and restricted to relatively small 
areas. In addition, shadow effects limit the exact detection of forest borders or small 
gaps.

In the two last decades, NFI data has been combined with remote sensing data 
and techniques (Tomppo et al. 2008; McRoberts et al. 2014) to map forest precisely. 
This has been achieved mostly by extrapolating estimates from field plot samples 
using the k-nearest neighbor (k-NN) algorithm (Tomppo and Halme 2004). A good 
overview of remote sensing support for NFIs can be found in McRoberts and 
Tomppo (2007) and Barrett et al. (2016). While visual image interpretation is quite 
time consuming and more subjective—which, depending on the experience of the 
interpreter, may be appropriate for small-area applications—mapping woodland 
based on entire satellite images is feasible with high accuracy within short time-
frames thanks to highly automated approaches. Existing remote sensing-based for-
est maps vary in scale (global, continental, pan-European, and national levels), and 
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also in the level of detail (sources of information, forest definition, and target inter-
est groups). While forest stand maps provide very detailed information, forest layers 
of map products are much more generalized, with scales ranging from a few meters 
up to 1 km. How accurate and up-to-date the maps are may vary in both products 
due to coarse image resolution and a certain time gap between image acquisition 
and production. Consequently, forest borders, gaps, and areas with close dense for-
est may not be sufficiently represented to a large degree.

Over the last decade, many at least partly automated forest mapping approaches 
have been implemented based on remote sensing techniques and data in the frame-
work of research case studies, national forest inventories, and mapping or resource 
assessment programs. Highly automated mapping approaches that are mostly 
restricted to relatively small areas have been used in the framework of change detec-
tion studies in general (Waser et al. 2008a; Wang et al. 2015), FAO forest definition 
applications (Magdon et al. 2014), and the assessment of deforestation such as REDD 
(Gebhardt et al. 2014). Recently, Waser et al. (2015) presented a wall-to-wall forest 
mapping approach for all of Switzerland incorporating the NFI forest definition.

At the global scale, particularly worth mentioning are the Global Forest Resources 
Assessment Remote Sensing Survey (FAO 2012) initiated by the Food and 
Agriculture Organization (FAO), the Global Forest Watch (GFW) (GFW 2016) ini-
tiative of the World Resources Institute, the Global Land Cover mapping approach 
(GLC) (Bartholomé and Belward 2005), the global forest/non-forest mapping initi-
ated by the Japan Aerospace Exploration Agency (JAXA 2016), and the European 
2006 Forest cover map (JRC 2016) from the Joint Research Center (JRC). Recently, 
Hansen et al. (2013) generated a spatially and temporally detailed global forest and 
forest change map, which provides valuable information for many land use-related 
applications at the regional level. More recently, Schepaschenko et al. (2015) pre-
sented a global hybrid forest map approach based on remote sensing data, maps, and 
FAO statistics, and new global forest/non-forest maps based on ALOS PALSAR 
data (2007–2010) were developed by Shimada et al. (2014).

�Data and Preprocessing

In this section, we review the current state of research and technology required for 
automated mapping of woodland and forest.

�Reference Data

Satellite imagery, large mosaics of aerial imagery, or a combination of both have become 
well-accepted sources of landscape information that contribute to the construction of land 
cover maps. While forest maps are constructed using such images, forest inventory data or 
derivatives often come from other existing maps. However, these maps are not always 
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sufficiently validated for various reasons. Often, no adequate reference data is available to 
evaluate maps. The need for reference data and accurate assessment tools for maps that 
distinguish between the three land cover classes of non-forest, coniferous forest, and 
deciduous forest is raised in McRoberts (2012). The minimum requirements of reference 
datasets commonly used for evaluating woodland and forest maps are given in this section. 
An adequate reference dataset can be characterized by the following traits:

•	 Minimal time span between acquisition of reference data and data the mapping 
is based on

•	 Minimal differences between the reference data and mapping scales
•	 Reproducibility (by different users)
•	 Reliable data source (e.g., from inventory data or field measurements—and not 

digitized from existing map products)
•	 Representative of the area under investigation (size, dispersion)

The collection of reference data remains time consuming and is the least auto-
mated step in the implementation of any mapping approach. In the following sec-
tions, examples of practicable and reliable (best practice) reference datasets with 
pros and cons are presented:

�Digitized Polygons

In these datasets, acquisition is carried out at the individual tree level and suitable for 
fine-scale applications and small areas (a few to a few dozen square kilometers), for 
instance, at stand, local, or community levels. In order to be representative of trees 
within an area of interest, different types of randomly sampled digitized polygons 
such as tree crowns or crown clusters that belong to entire tree groups anywhere in the 
woodland—preferably at borders, and in open land as single trees—should be consid-
ered. The delineation can be carried out either by digitizing polygons of tree crowns 
on orthorectified aerial images or by stereo-interpretation of aerial images. While both 
methods of collecting reference data can be regarded as very effective—depending on 
the pre-knowledge and expertise of the interpreter and time availability—the latter 
depends on the extent of the area to be investigated. Figure 2 shows examples of these 
different types of tree and non-tree polygons, which were digitized on true-color 
orthoimages in a study area in Switzerland. While a certain degree of experience is 
needed on the part of the interpreter, little technical or forest-related knowledge is 
required. The collected reference data is reliable and reproducible. Depending on the 
area under investigation, the manual workload can increase rapidly.

�Regular Point Raster

Tree/non-tree decisions at each grid point in a regular point raster are another very 
effective method for validating mapped woodland or forest. The regular point raster 
can either cover the entire area of interest or consist of a limited number of regular 
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points at the edges of a regular grid with a larger mesh size. The optimal mesh size 
depends on the required level of detail, area of interest, and time resources available. 
If the interpretation is based on stereo-images, the regular grid must be extracted 
from the digital surface model (DSM)—the same one used for the orthoimage gen-
eration. A raster point is assigned as non-tree if the cursor is on the ground or within 
a shadow on the ground. Problems may occur with areas that have shadows if it is 
not clear where the exact position of the cursor is set. In these cases, each point must 
be handled consistently for the entire area of investigation, regardless of the assign-
ment decision. In practice, a 10–50 m mesh size is generally most appropriate for 
small areas of few square kilometers, and up to 500 m for large areas of several 
thousand square kilometers. Figure 3 shows an example of aerial image-interpreted 
tree/non-tree decisions based on a 10 m regular point grid.

The interpreter’s requirements for this approach are similar to those needed for 
the digitized polygons for which little technical and forest-related knowledge is 
required. Again, the collected reference data is a reliable and reproducible data 
source. Depending on the area under investigation, the manual workload can 
increase rapidly.

Another example of the regular point raster approach is the stereo-image inter-
pretation of NFI plots, which usually use a much larger mesh size (see Fig. 4).

0 10 20
Meters

tree samples
non-tree samples

Fig. 2  Examples of digitized tree and non-tree polygons based on a true-color orthoimage in a 
mixed temperate forest in Switzerland
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Fig. 3  True-color aerial image-interpreted point raster for the same area with tree/non-tree deci-
sions. The grid has a spacing of 10 m and shadows on the ground are assigned as non-trees

Fig. 4  Stereo-interpretation of 25 points of a regular raster for tree/non-tree decisions and the 
distinction between deciduous (flowers) and coniferous trees (stars) on a false-color-infrared aerial 
image (left). The grid has a spacing of 5 m and is part of the 500 m regular raster for stereo-
interpretation in the framework of the Swiss NFI (right)
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�External Datasets

Another method is to use external datasets to validate mapped woodlands or forest, 
either from existing forest-related datasets such as stand maps and tree cover maps 
or from side products such as layers from any kind of available map (thematic and 
topographic). The latter are often produced in a context different from forestry. 
Examples include forest border delineation or the identification of forest areas for 
layers in topographic maps or for layers in thematic maps, such as land cover/land 
use vegetation maps or maps from CORINE provided by the European Environmental 
Agency’s International Geosphere Biosphere Program (IGBP—an international 
research program that studies the phenomenon of global change). The disadvan-
tages of using such datasets are manifold. Issues of concern include dataset up-to-
dateness (they are often old and rarely updated regularly), and the fact that, as side 
products, they tend to be less accurate and less detailed than digitized polygons or 
raster points. An example of delineated forest borders identified as a side product 
within the framework of a project—which aimed at updating the measurement of 
agricultural area to match registered cadastral surveying in Switzerland—is illus-
trated in Fig. 5.

0 10 20 Meters
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Fig. 5  Forest border delineation (yellow line) based on a LiDAR vegetation height model. Large 
forest gaps are well represented in the true-color aerial image, whereas smaller strips of trees or 
gaps may not be entirely detected

L.T. Waser et al.



273

�Remote Sensing Systems

Before giving an overview of existing remote sensing systems, we first provide a 
short explanation of passive/active systems and their history in the context of map-
ping woodland areas. Passive sensor systems measure energy wavelengths of the 
electromagnetic spectrum that are reflected or emitted by objects on the earth’s 
surface. Active sensor systems send out energy, in waves or pulses, in the direction 
of interest and record the energy coming back from the surface. One advantage in 
favor of active sensors is the ability to obtain measurements at any time, regardless 
of the season or cloud cover. Passive systems are still more common than active 
systems.

Historically, the first images taken from airplanes date from the beginning of the 
twentieth century, followed by the initial development of photogrammetry and 
applications of aerial photography in the 1920s. In the 1950s, as aerial photography 
became widely used, tree mapping was done by simple delineation or interpretation 
based on aerial stereo-images, mostly at regional and national levels (Spurr 1960; 
Gillis and Leckie 1996). Soon after, spaceborne optical systems proved to be par-
ticularly useful for mapping and monitoring forests at the national or even global 
level. Nowadays, the pace of technical advancement of sensors and platforms is 
more rapid than ever before. New developments in sensor technology for airborne 
(digital aerial cameras, hyperspectral sensors, airborne laser scanning) and space-
borne (multispectral sensors, radar, airborne laser scanning) systems, such as greatly 
increased geometric, radiometric, and spectral resolution, has led to new perspec-
tives for mapping woodland. In the last decade, great progress has been made in 3D 
remote sensing, including digital aerial stereo-imagery, light detecting and ranging 
(LiDAR), and synthetic aperture radar (SAR) interferometry. The potential and use 
of currently implemented sensor systems for mapping woodland in general and 
individual tree species in particular, both passive and active, are described in more 
detail below. An overview of commercially available and frequently used sensors is 
given in Table 1. Principally, current digital data from any sensor system enables a 
high degree of automation in the forest mapping approach. The choice of the most 
adequate dataset depends on several considerations such as temporal availability, 
costs, continuity, and technical know-how of the operators. For large-area woodland 
mapping purposes, 30 m Landsat data might be a good alternative regarding costs 
and availability, since a huge worldwide archive exists. Archived images can be 
searched and obtained using the LandsatLook Viewer provided by the U.S. Geological 
Survey (USGS).

To guarantee a homogenous and integral woodland or forest cover map several 
factors need to be eliminated or at least minimized. First, the time span between the 
acquisition of data the mapping is based on and that for validation purposes should 
be minimized. This is an essential point because forest cover usually changes within 
a few years. Second, external factors (e.g., atmospheric influence, clouds, shadows, 
dust, and illumination factors such as sun angle and topography) should be reduced. 
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While clouds and shadows might cover the area of interest, dust or illumination 
effects affect the reflectance of the forest canopy. Both result in a decrease in the 
accuracy of the mapped areas. Third, the optimal time of data acquisition is during 
the vegetation period. Thus, phenology is crucial, as certain differences in woodland 
can be distinguished by remote sensing techniques only within a restricted period, 
for example, under leaves-on conditions.

Table 1  Overview of studies utilizing airborne and spaceborne remote sensing data for mapping 
forest and woodland

Study Country Data source Methoda

Brandtberg (2002) Sweden Aerial images FA
Leckie et al. (2003) Canada Aerial images LM/ML
Laliberte et al. (2004) USA-New Mexico Aerial images NN
Leckie et al. (2005) Canada Aerial images LM/ML
Næsset and Gobakken (2005) Norway LiDAR REG
Reitberger et al. (2006) Germany LiDAR KM
Straub et al. (2008) Germany LiDAR REG
Hirschmugl et al. (2007) Austria Aerial images RM
Wang et al. (2007) Switzerland LiDAR, aerial 

images
RM

Straub et al. (2008) Germany LiDAR REG
Waser et al. (2008a, b) Switzerland Aerial images REG
Koch et al. (2009) Germany LiDAR LM
Waser et al. (2010) Germany Aerial images REG
Waser et al. (2011) Switzerland Aerial images REG
Eysn et al. (2012) Austria LiDAR LM
Kaartinen et al. (2012) Finland LiDAR LM, RM, KM
Waser (2012) Switzerland Aerial images REG
Dalponte et al. (2014) Norway LiDAR, aerial 

images
LM

Eysn et al. (2015) Central Europe LIDAR LM
Waser et al. (2015) Switzerland Aerial images TH
Dees et al. (1998) Germany Landsat REG
Kennedy and Bertolo (2002) Europe AVHRR REG
Stibig et al. (2004) SE Asia SPOT-4 KM
Laliberte et al. (2004) USA-New Mexico Quickbird NN
Förster et al. (2005) Germany ASTER, SPOT-5 FA
Förster and Kleinschmit (2008) Germany Quickbird-2 FA
Pekkarinen et al. (2009) Europe Landsat ETM NN
Hansen et al. (2013) Global Landsat TM, ETM REG

The table provides author references, location, data source, and method used
aMethods: FA Fuzzy algorithms, KM k-means clustering, kNN k-nearest neighbor, LDA linear dis-
criminant analysis, LM local minima/maxima, ML maximum likelihood, NN nearest-neighbor, 
REG regression techniques, RM region growing or merging, QDA quadratic discriminant analysis, 
US unsupervised, TH thresholds
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�Passive Systems

Over the past decade, airborne photogrammetric film cameras used to extract indi-
vidual tree crowns (e.g., Brandtberg 2002) or to extract shrub and tree cover (e.g., 
Waser et al. 2008b) have been replaced by high-resolution digital airborne sensors 
(Petrie and Walker 2007), which provide higher spectral and radiometric resolution, 
and are regularly updated and available in almost all countries. Different studies 
have successfully used digital aerial imagery to extract individual tree crowns 
(Hirschmugl et al. 2007; Chubey et al. 2009), trees, and shrubs (Waser et al. 2010), 
and to generate a countrywide wall-to-wall forest cover map (Waser et al. 2015). 
Other studies (e.g., Darvishsefat et al. 2002; APEX 2011) underscore the advan-
tages of using hyperspectral imagery with a spectrum range from 400 to 2500 nm 
and between 100 and 300 image bands for tree species classifications and fewer for 
mapping forest.

Over the past 30 years, spaceborne systems have also been successfully used for 
mapping woodland or forest, resulting in many mapping products (see Mapping 
Woodland and Forest). There is a broad range of spaceborne systems, including 
low-spatial-resolution (GSD 0.5–1 km) satellite systems such as NOAA AVHRR 
(e.g., Kennedy and Bertolo 2002) and SPOT4-VEGETATION (e.g., Stibig et  al. 
2004) for global applications, medium-resolution satellites (GSD 10–30 m) such as 
Landsat TM, ETM+ for national and continental applications (e.g., Keil et al. 1990; 
Pekkarinen et al. (2009), and ASTER (e.g., Stoffels et al. 2012).

Since the launch of IKONOS at the end of 1999, different series of very-high-
resolution (VHR) satellite images exist (e.g., KOMPSAT-2, ORBVIEW-3, 
QUICKBIRD-2, RAPIDEYE, and WORLDVIEW-2) for mapping forest and forest 
type (e.g., Förster and Kleinschmit 2008; Immitzer et  al. 2012, and Waser et  al. 
2014). With the exception of RAPIDEYE (only multispectral bands with GSD 
6.5 m), they provide all spatial resolutions for panchromatic images between 0.5 
and 1 m, and for multispectral images between 1.8 and 6.5 m. New perspectives for 
woodland and forest mapping regarding temporal and spatial resolution are pro-
vided by a group of upcoming new satellite sensors (e.g., WORLDVIEW-3 and 
Sentinel-2 which carries an innovative wide-swath high-resolution multispectral 
imager at 13 spectral bands). In addition to currently operational programs, there is 
continuous development of novel observation techniques, methodologies, and tech-
nology related to land use and land cover applications at a more scientific level.

�Active Systems

Approximately 15 years ago, airborne laser scanning (ALS) generated considerable 
interest in the forestry sector. Providing 3D information to assess forest conditions 
has improved from the average forest stand scale to the individual tree scale. In the 
last decade, ALS has revolutionized the process of automated mapping of forest/
non-forest and has been frequently implemented (e.g., Næsset 2007; Straub et al. 
2008; Eysn et  al. 2015). Recently, full-waveform light detecting and ranging 
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(LiDAR) systems have opened new perspectives by providing representations of 
both canopy profiles and surface topography. ALS campaigns have become more 
feasible at the countrywide scale, and new technologies have facilitated a more 
precise mapping of forest (Næsset and Gobakken 2005; Koch et al. 2009; Lindberg 
and Hollaus 2012; Straub et al. 2013). A good overview of individual tree cover and 
extraction using ALS data can be found in Kaartinen et al. (2012). Promising results 
for the extraction of woodland areas are obtained by combining LiDAR with multi-
spectral images (Wang et  al. 2007; Waser et  al. 2015) or hyperspectral images 
(Dalponte et al. 2014).

Radar systems with synthetic aperture radar (SAR) sensors, such as ERS-1, 
ERS-2, ENVISAT, and RADARSAT, have increased rapidly over the last few years, 
and have been used particularly in tropical regions for the detection of forest gaps 
or for delineation of forest boundaries (Fransson et al. 2007; Hajnsek et al. 2009). 
Since this method is unaffected by cloud cover and sun illumination, frequent 
updates of forest conditions of entire regions are possible (Rosenquist et al. 2007). 
SAR sensors have frequently been used to detect fragmentation (Dong et al. 2014), 
deforestation, and entire forest areas (e.g., Wagner et al. 2003; Thiel et al. 2006; 
Rahman and Sumantyo 2010).

�Processing of Input Datasets

Prior to mapping woodland and forest, input data has to be prepared. The degree of 
automation possible and the number of steps required for this preparation will vary 
depending on the input data used and the chosen mapping approach. The most com-
mon steps are briefly described below. From a methodological point of view, 
improved methods in image processing, automatic generation of DSM using new 
image matching methods, and image classification based on objects have been 
developed in recent years. Meanwhile, computer systems and software packages are 
fast and typically easy to set up so that application can be made to large areas, for 
instance, when providing wall-to-wall products.

�Preprocessing of Image Data

Data preprocessing incorporates atmospheric and radiometric corrections of images, 
stereo-image matching, and derivation of image features required for forest map-
ping. Atmospheric and radiometric corrections were originally developed for satel-
lite images, and are frequently and necessarily applied to optimize image quality. 
The objective of atmospheric correction is to retrieve the surface reflectance (that 
characterizes surface properties) from image data by removing atmospheric effects 
that cause absorption and scattering of solar radiation. Radiometric correction is 
applied to remove radiometric errors or distortions (correction for sun angle and 
topography). Recently, new software packages also enable radiometric corrections 
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for airborne sensors. For multi-scene applications and for image strips, it is strongly 
suggested to analyze radiometric corrections at least within—but preferably 
between as well—image strips from the same acquisition date.

�Image-Based Point Clouds

Image-based point clouds from stereo-images of airborne sensors are frequently 
used to calculate a digital surface model (DSM) in the context of forest mapping. In 
cases where both a digital surface model (DSM) and a digital terrain model (DTM) 
(e.g., obtained from LiDAR) are available, the mapping can be based on calculating 
a potential canopy cover by subtracting the DTM from the DSM (see Figs. 6 and 7). 
While DSM and DTM on open ground can be derived from both ALS and from 
stereo-images, DTM generation of forests is restricted to ALS.  Point cloud data 
from images or ALS data have been used operationally to map forest via automated 
delineation of forest/non-forest vegetation (Straub et  al. 2008; Koch et  al. 2009; 
Waser et al. 2011, 2015). Enhanced image matching algorithms, such as semi-global 
image matching (for example in Hirschmüller 2008) permit the extraction of wood-
land with high accuracy and degree of detail (e.g., forest borders and small openings 
between trees).

To separate non-vegetation objects (e.g., buildings) from high vegetation (tall 
shrubs or trees), spectral information from aerial images (preferably from the near-
infrared band) or other types of information extracted from them are used. For 
example, Ginzler and Hobi (2015) used the normalized difference vegetation index 
(NDVI) to separate vegetation from non-vegetation areas and produced a wall-to-
wall vegetation height model (VHM) for Switzerland in its entirety. Since the near-
infrared is crucial for the detection of vegetation, separation problems arise if only 
true-color images are available. In this case, a canopy height model (CHM) can be 
used—if stereo-images are available. If only a 3D point cloud from an airborne laser 

Fig. 6  Example of airborne true-color orthoimage (left) with the corresponding hillshade of the 
potential canopy cover for a study area in Switzerland (right)
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scanning campaign is available, methods of echo-ratio are used to separate vegeta-
tion from artificial objects (Eysn et al. 2012).

To summarize, image matching provides essential information—such as height 
information as shown in Fig. 7—about the surface of vegetation. Since it can be 
done using commercial software packages and carried out semiautomatically, it 
requires relatively little expert knowledge. More expertise may be necessary to fully 
understand the algorithms employed.

�Image Segmentation

The extraction of individual trees or groups of tree clusters is needed in the work-
flow of many highly automated mapping approaches and is often based on image 
segmentation. In this step, homogeneous image parts are subdivided into smaller 
patches or partitions. Nowadays, commercially available software packages are 
widely used making it possible to obtain optimal (according to the requirements of 
the mapping approach) image segments by iteratively adapting parameters such as 
the degree of homogeneity and the shape of image objects (Baatz and Schäpe 2000). 
Successful segmentation is followed by adjusting the size of objects to the scale of 
the assessment. For example, tree crowns and tree clusters must be adjusted differ-
ently when the mapping is set to the individual tree level or to the forest stand level. 
While image segmentation is carried out with a high degree of automation and is 
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Fig. 7  Hillshade of four different height classes obtained from a normalized DSM
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relatively simple using most software packages, problems occur when the area of 
interest increases. Depending on the level of detail and the spatial resolution of the 
images, these problems may already arise for areas of a few square kilometers. In 
such cases, subdividing the area into smaller parts can resolve the issue, but this will 
increase the required effort in terms of time and handling and consequently result in 
a loss of automation.

Thus, from a practical point of view, operational use on larger areas must be a 
compromise between the size of the area to be investigated and the level of detail. 
For example, it may be necessary to proceed at the stand-level scale rather than at 
the individual tree level. Figures 8 and 9 illustrate aerial image segmentation at the 
individual tree level for mixed temperate stands.

�Image Classification

There are several other methods—with varying degrees of automation—of classify-
ing images that are appropriate for mapping woodland areas and forest. Since image 
classification is crucial to the mapping process, important principles and back-
ground information are briefly outlined below.

Over the past decade, a number of significant developments in object-based 
image analysis—such as multi-resolution image segmentation and identification of 
object relationships—have become available for classification purposes. According 
to Jensen (2005), the general objective of image classification is the automatic allo-
cation of all pixels to land cover classes or specific themes. The most appropriate 

Fig. 8  True-color aerial image of different forest stands in a mixed temperate forest in Switzerland
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classification strategy depends on the biophysical characteristics of the research 
area. These include the topography or heterogeneity of the land cover, the homoge-
neity of the remote sensing data, the illumination level, the date of acquisition, the 
training data, the representative samples, and a priori knowledge.

Broadly, classification techniques can be categorized as follows:

•	 Supervised: Imposing our perceptions on the spectral data. Pixels or image 
objects are assigned to classes by matching them with spectral properties found 
in training datasets. Examples include minimum distance algorithms, maximum 
likelihood, more advanced techniques such as neural networks, fuzzy logic (see 
Chapter “Fuzzy Classification of Vegetation for Ecosystem Mapping”), support 
vector machine, and regression techniques.

•	 Unsupervised: Spectral data imposes constraints on our interpretation and 
involves grouping data into categories based on some measure of inherent 
similarity. Separability of image clusters must be maximized. Class names are 
assigned to image clusters after classification (for example, k-means).

•	 Parametric: Based on probability density functions and the assumption that the 
data has come from a type of probability distribution (for example, discriminant 
analysis).

•	 Non-parametric: Based on probability density functions and no assumptions 
regarding the distribution of the data (for example, nearest neighbor).

Mapping woodland and forest is either carried out on entire forest patches or at 
the individual tree level (Leckie et al. 2003; Chubey et al. 2009). Several studies 

Fig. 9  The same area with the corresponding image objects (different shades of green) after seg-
mentation at the individual tree crown level
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highlight the advantages of combining multi-resolution segmentation with object-
based classification (Laliberte et al. 2004; Lamonaca et al. 2008; Waser 2012).

In some studies, simple regression techniques were used to extract tree areas 
(Næsset and Gobakken 2005) or generalized linear models to assess tree and shrub 
probability (Waser et al. 2008a, b, 2011), since it is well known that a deterministic 
representation expressed in terms of a limited number of land cover categories (e.g., 
trees, non-trees) leads to a loss of information. Still other studies are based on local 
maxima algorithms (Koch et al. 2009; Dalponte et al. 2014; Eysn et al. 2015) or in 
combination with a maximum likelihood classifier (Leckie et al. 2003). Examples 
of other techniques include the use of fuzzy algorithms at the individual tree level 
(Brandtberg 2002), nearest-neighbor techniques (Laliberte et  al. 2004), k-means 
clustering (Reitberger et  al. 2006), and region merging techniques (Wang et  al. 
2007).

An overview of studies that have successfully used remotely sensed data with the 
methods applied for mapping woodland or forest is provided in Table 1.

�Mapping Woodland

This section illustrates three highly automated approaches to mapping woodland in 
different bio-geographical regions in Switzerland. For each approach, the basics of 
each method, data, results (tables, but especially figures and illustrations), and a 
discussion of pros and cons are given.

�A Hierarchical Segmentation Approach for Mapping Woodland

The principles of image segmentation are given in the section Image segmentation. 
Mean shift—a non-parametric statistical method—is a special form of segmenta-
tion which was originally presented by Fukunaga and Hostetler (1975) and general-
ized by Cheng (1995) 20 years later. It is a robust and highly automated algorithm, 
and is based on a simple iterative procedure that shifts each data point in the feature 
space (n-dimensions where the imagery variables or canopy height are) to the aver-
age of data points in its neighborhood. The algorithm is frequently applied to color 
images because most of the generated regions can be delineated semantically. The 
algorithm starts by converting the image data into a feature space. For each data 
point, the mean shift algorithm defines a window around it and computes the mean 
of the data point. The algorithm associates each data point with the nearby peak as 
identified by the dataset’s probability function. The center of the window then shifts 
to the mean. The algorithm is repeated until it converges. Finally, each pixel is 
grouped together based on all corresponding convergence points. Figure 10 shows 
an example of the resulting segmentation of one false-color-infrared (CIR) aerial 
image with the segmented region borders indicated with yellow lines.
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This relatively simple technique for most pixel-based tree canopy mapping cre-
ates thresholds for either single bands of the image or derived data such as 
NDVI.  Similarly, there are two important thresholds, one of which is the NDVI 
value and the other is the CHM value. In general, the rule is set whereby a segment 
is identified as woodland if the mean values of NDVI and CHM of all pixels within 
one segment are higher than the predefined thresholds. Segments containing shad-
ows, for example, along the boundaries of a woodland, may also include groups of 
trees. Since these segments can be extracted as woodland, a slight overestimation of 
woodland is thus obtained. Consequently, a hierarchical segmentation approach is 
implemented because of the advantages of color-infrared and NDVI images. 
Figure 11 shows a hierarchical segmentation method flowchart. The two thresholds 
ψ are applied to NDVI and λ to CHM data. The segment is classified as wooded area 
if its mean values of NDVI and CHM are higher than the predefined thresholds. 
Woodland is then classified using the segments as obtained in woody1 and woody2.

The results produced provide the basis for various forest applications, including 
the calculation of canopy cover, forest area delineation using explicit definitions, 
and extraction of gaps in forest masks. Due to the highly automated processing 
chain, further extended study areas would need to be investigated in order to verify 
the different threshold combinations. The resulting mapped woodland is illustrated 
for close forest, open forest, and a mixture of the two in Fig. 12.

�Individual Tree and Tree Crown Detection

Tree height and crown geometry are two basic woodland features from a remote 
sensing perspective and complement spectral information with rigid geometry. 
Numerous highly automated approaches based on ALS or image matching have 
been proposed to detect individual trees (ITD) and individual tree crowns (ITC). 

Fig. 10  False-color-infrared aerial image of woodland (left) and the segmented crowns obtained 
by mean shift segmentation (right)

L.T. Waser et al.



283

Most of these focus on the reconstruction of the DSM or CHM, which provides a 
representation of the outer geometry of tree canopies. DSMs from ALS data or 
from image matching are the starting point for the detection of individual tree 
crowns and the calculation of tree parameters, such as height and crown diameter. 
Depending on the available point density of the DSM, the location of individual 
trees, the shape of tree crowns, or the canopy cover can be estimated with decreas-
ing point density. The average point density mainly controls the selection of an 
appropriate smooth or coarse shape model. Robust ITD using ALS data requires a 
point density of 2 points/m2 or higher. Most approaches start by finding a local 
height maxima in the DSM.  For subsequent processing of local neighborhood 
region-growing (Solberg et al. 2006), height histogram (Kaartinen and Hyyppä 
2008), watershed (Straub and Heipke 2001), or cluster analysis (Kaartinen et al. 
2012) methods are used.

In the case of coarser CHMs, tree crown or canopy shape models can be applied, 
of which the most common shape approximations use an ellipsoid of rotation 
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Mean-shift segmentation
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mean value of NDVI
(NDVImean-infra) and the mean

value of CHM (CHMmean-chm)
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and CHMmean-chm > 3

NDVImean-NDVI > y and
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value of CHM (CHMmean-NDVI)

Apply Mean-shift segmentation to the
corresponding NDVI image
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OR
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Fig. 11  Flowchart of the hierarchical segmentation method implemented to map woodland based 
on NDVI and CHM thresholds
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(Nilson and Peterson 1991; Li and Strahler 1992; Li et al. 1995; Kuusk and Nilson 
2000; Garcia-Haro and Sommer 2002; Gerard and North 1997; Gerard 2003). 
Slightly refined models use a combination of a cone on top of a cylinder (Nilson and 
Peterson 1991; Chen and Leblanc 1997; Kuusk and Nilson 2000), implement a 
fixed shape model with adaptive diameter (Vosselman 2003), or use a predefined set 
of fixed shape models (Rutzinger et al. 2010). For low point densities—which are 
often the case with large DSMs—less sophisticated shape models are required. A 
very common terrain shape indicator is curvature (second derivative, and has been 
used in many applications for terrain analysis—Zeverbergen and Thorne 1987). The 
most prominent disadvantages of the curvature feature are the limited neighborhood 
(3×3 box), the requirement of an interpolated grid, and the fact that it has no fitting 
with a shape model. Curvature processing often results in a highly overestimated 
number of tree crowns and is consequently only of limited use.

For example, in Switzerland, 40% of the coverage area of the Swiss National 
DSM has a point density of less than one point per square meter. As a result, robust 
detection of ITCs is not possible with the shape models discussed above. 
Consequently, another model is required, which combines local maxima value with 
a shape fitting approach. The so-called Spider model (Fig. 13) implements a non-
parametric shape description with few global spatial constraints, mainly to avoid 
finding a suitable parameter set for the processing of a national dataset. In the first 
step, a local maxima must exist within a 3×3 neighborhood. In the second step, for 

Fig. 12  Examples of CIR images with different woodland and different types of mapped forests
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each of the eight directions from the center, the slope values are accumulated for 
each direction independently. Each slope accumulator contains (n − 1)/2 values, 
i.e., four slope values for each leg of a 9×9 box. Each slope value in the accumulator 
must be within the limits of 5°–85° to be considered valid. In this way, horizontal 
and vertical slope extremes are rejected. If all slope values are valid, the correspond-
ing direction is classified as a canopy leg candidate (invalid legs are dashed in 
Fig. 13). If six out of eight canopy legs are valid and radially contiguous, then the 
area of the eight slope accumulators will be defined as a canopy patch. The robust-
ness of shape matching is achieved with the nonparametric evaluation of the slope 
accumulator and the concept of allowed limited local distortions (invalid legs). 
Using a moving window, the processing of the DSM results in a point cloud of 
canopy patch centers. The result of this detection process is defined as a canopy 
patch, mainly due to the given Swiss DSM’s coarse resolution of 1 m.

The presented shape model requires only a few parameters compared to other 
shape models, which is a clear advantage with regard to the degree of automation, 
robustness, and parameter evaluation. With the increasing spatial resolution power 
of future aerial cameras, the spider-shaped model is still appropriate to extract single 
tree crowns from low-quality digital surface models. On the other hand, the lack of 
a rigid shape model can be seen as a conceptual disadvantage, which occasionally 
results in the matching of distorted tree canopies. This compromise, however, 
achieves the desired degree of robustness.

Fig. 13  The Spider model which combines local maxima and a minimal shape fitting of an indi-
vidual tree crown. The height classes of an individual tree are indicated in gray to black. The six 
canopy legs are yellow, of which the two dashed legs are invalid (the cells of these legs are not 
within the 5°–85° limits)
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�Fractional Tree Cover Approach

The fractional tree cover approach has been applied to several forest ecosystems in 
central Europe and involves the continuous representation of probabilities (P wood-
land) that each image segment is a tree/shrub or not. The fractional tree cover 
approach is based on logistic regression models and is described in detail by Waser 
et al. (2008a, 2010). The logistic regression model is a special case of the general-
ized linear model (GLM). The linear result is run through a logistic function, which 
runs from 0 (negative infinity) and rises monotonically to 1 (positive infinity). Tree 
probability (P woodland) ranges between 0 and 1 for each pixel that belongs to the 
class woodland (for more details, see Hosmer and Lemeshow 2000). Thus, wood-
land is continuously mapped in detail and is, therefore, particularly useful for detect-
ing single trees, small trees, and shrubs. Waser (2012) reported that a high degree of 
automation was achieved with the developed methods, and that trees and shrubs 
were extracted with a correct classification rate (CCR) of 96%–99%. Visual image 
inspection revealed that the fractional cover approach was also accurate in areas with 
complex forest structures, such as open forest and gaps, afforestation, and fuzzy 
borders—especially in steep terrain. The fractional tree cover approach consists of 
four main steps. Figure 14 gives an overview of the methodological workflow.

First, potential tree crowns are segmented (as described in Image Segmentation) 
and a high-resolution CHM is generated by subtracting the DTM (derived from 
LiDAR) from the DSM (derived from image matching). Second, geometric features 
(height, slope) are generated from the CHM, and spectral features from digital aerial 
images (original image bands, color transformation, and NDVI). Digitized polygons 
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of woodland/non-woodland samples (as described above in the section Reference 
Data) are used as training and validation data. Third, stepwise feature selection is used 
as an analytical tool to find redundant features which are then excluded from the 
model. Fourth, the predictive power of the models is then verified by a tenfold cross-
validation process using different combinations of selected features.

Usually, good mapping results are obtained if all tree segments with P woodland 
probabilities of greater than 0.5 are included. In the case of overestimated wood-
land—for example because of grassland on boulders which may be wrongly mapped 
as trees because of their similarity to real trees and shrubs—the P woodland thresh-
old can be adapted accordingly by lowering it, for example, to 0.3. This must be 
done after the first run and is strongly dependent on the individual terrain and veg-
etation characteristics of the area to be investigated. Thus, the fractional tree cover 
approach enables the averaging out of possible over- and underestimations, and has 
high potential to successfully extract shrubs and small single trees. The limitations 
of this approach include constraints regarding full automation, and the potential lack 
of sufficient reference data, in particular when mapping large areas with time restric-
tions or when reference data simply does not exist. Applying the latest image match-
ing algorithms may improve accuracy at forest borders and small openings between 
them by improving the generation of the geometric features. An example is provided 
from a mountainous test site in central Switzerland (Fig. 15: photo of the test site; 
Fig. 16: true-color orthoimage; Fig. 17: estimated woodland probabilities).

Fig. 15  Example of mountain woodland where the fractional cover is tested from the center of 
Fig. 16 to the south west. Larch, spruce, and shrubs dominate the area
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�Forest Mapping

As stressed several times in this chapter, in contrast to mapping woodland, forest 
mapping implies an unambiguous definition for forest. Two highly automated 
approaches are presented here for forest mapping which are based on merging the 
wooded areas with forest areas using distance and height criteria. Thus, they can be 
easily adapted to any forest definition. Each approach includes a short description 
of method, data, results (tables, but especially figures and illustrations), use of dif-
ferent definitions for forest, and a discussion of pros (potential) and cons. The 
impact of minimum areas, minimum width, and crown coverage; the importance of 
land use definitions; and their impact on forest areas are also discussed. The results 
derived from these applications are highly dependent on the fundamental input 
parameters’ size, and position of the delineated forest areas.

�Moving Window Approach

A highly automated workflow based on ArcGIS functions implemented in Python 
scripts was developed to generate a wall-to-wall forest cover map of Switzerland. 
The approach is based on the four key criteria: (1) minimum tree height; (2) mini-
mum tree crown coverage; (3) minimum width; and (4) land use. The description of 
this approach below was originally published in Waser et  al. (2015) and is only 
partly modified.

Whereas fairly straightforward and automated methods to obtain criteria 1–3 
from remote sensing data exist, the land use criterion is not easily assessable when 
using remotely sensed data. Due to the limitations explained in the Introduction, 
the land use criterion cannot be directly obtained from remotely sensed data. Instead, 
existing map products must be taken into account, which may have a different scale 
or level of detail compared to the remote sensing data used for forest mapping. The 
forest mapping approach is suitable for very-high-resolution data from airborne 
laser scanning (ALS) or digital stereo aerial images. The moving window approach 
is highly automated and uses threshold techniques in combination with the three 
criteria above and a land use definition. Thus, its suitability for NFI purposes is 
entirely supported by the application of the land use criterion and its high level of 
detail, especially regarding forest borders and gaps.

An overview of the main steps and input datasets is shown in Fig. 18. The four 
key criteria of the NFI forest definition are explained separately and in more detail 
below. Figure 18a shows a vegetation height model (VHM) based on image-based 
point clouds with a spatial resolution of 1 m—which was derived from aerial image 
blocks of 0.5 × 0.5 km (Ginzler and Hobi 2015). Figure 18b shows a preliminary 
forest cover map based on the criteria of the NFI forest definition (minimum tree 
height, crown coverage, and minimum width). Figure 18c shows the application of 
the land use criterion in order to remove forest on other land (e.g., orchards, urban 
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Fig. 16  A true-color aerial image of woodland in the central Alps of Switzerland
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Fig. 17  Mapped woodland (trees and large shrubs) for the same area. The higher the probability 
for trees and shrubs, the darker the color. Small trees are extracted as well
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parks) while adding temporarily unstocked forests (e.g., wind throw, harvesting). 
Finally, in Fig. 18d, the calculated forest cover map that implements all criteria of 
the forest definition as used in the stereo-image interpretation of the Swiss NFI is 
shown.

�Height

Terrestrial height measurements are often time consuming for several reasons. In 
dense forests, it is more challenging to see tree tops from the ground than in open 
forests. Furthermore, broadleaf trees are even more difficult and ambiguous to mea-
sure than coniferous trees, because of the round shape of the crown. Height infor-
mation—measured remotely using active systems such as ALS or passive systems 
such as stereo-images—can be applied to large areas with high densities. Given a 
precise DTM from an ALS campaign, the height of objects can be calculated by 
subtracting the DTM from the elevation above sea level of the surface model. The 
result is a CHM with a level of detail which depends on the resolution (point den-
sity) of the input DTM and DSM.
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DSM generation
 1 x 1m

Tree threshold
>= 3 m

Crown coverage
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25 m100%
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Fig. 18  Workflow of the forest cover map implementing the existing Swiss NFI forest definition. 
(a) Image matching, (b) preliminary forest cover map based on land cover and the thresholds and 
criteria of the NFI forest definition (minimum tree height, crown coverage, and width), (c) removal 
of forest on other land and addition of temporarily unstocked forests, (d) final forest cover map 
(source: Waser et al. 2015)
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To separate trees from other woodland, a height threshold, as specified by a par-
ticular forest definition, is used. In the Swiss National Forest Inventory, the mini-
mum tree height is set to 3 m (see Fig. 19). In contrast, in most NFIs and the FAO, 
the definition of forest specifies a higher minimum tree height of 5 m. Regardless of 
the NFI, height is always clearly defined as “height in situ,” which in fact refers to 
the height a tree may reach under site-specific conditions in the field and not the 
actual height. In this way, temporarily unstocked areas (e.g., harvested areas) retain 
the classification of forest in the framework of a forest inventory, but are not detected 
as forests when using a CHM.

�Crown Coverage

For the calculation of crown coverage, a well-defined reference area is essential, 
which is usually an interpretation area of a fixed size, as used by forest inventories 
(an area of 50 × 50 m is used by the Swiss NFI). Alternatively, forest stand maps can 
be used to estimate canopy cover. Crown coverage is calculated using a moving 
window approach, with a rectangle of 51 × 51 m (odd number in order to obtain the 
center pixel) which almost corresponds to the interpretation area used in the Swiss 
NFI terrestrial survey and in the stereo-image interpretation. For each center pixel, 
the proportion of vegetation greater than or equal to 3 m in height inside the window 
is calculated and the defined minimum crown coverage of 20% (Swiss NFI defini-
tion) is applied. Other definitions of forest are in the range of 10%–50% minimum 
crown coverage. The results vary substantially if different window sizes are applied 
(see Fig. 20). With this technique, forested area is particularly overestimated at the 
forest border (see Fig. 21).

Fig. 19  Stocked areas in the true-color aerial image (left). CHM with extracted trees based on the 
3-m height criterion as applied in the Swiss NFI (right)
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Figure 21 (left) illustrates that crown coverage is still 20% at the position of the 
dashed line, even though the center of the interpretation area is clearly outside the 
desired forested area as defined by the NFI. After the preliminary forest cover map 
was generated using the 20% crown coverage threshold, the map was shrunk using 
morphological functions. The number of pixels for the shrinkage process at a spe-
cific position i (XY-coordinates of this pixel) is a function of the size of the interpre-
tation area and the minimum crown coverage threshold as described in Eq. (1).

Number of pixels toshrink Window sizei = ´ 0 5. – Crown coverage thhreshold

Crown coverage

( )
´ i 	

(1)

Applying the Swiss NFI forest definition this value is 51  m (window size) × 
(0.5–0.2) (20% crown coverage threshold) × 1 (100% crown coverage at this loca-
tion inside the forest) = 15.3 pixels (rounded to 15). For the sake of simplification, 

Fig. 20  Extracted tree coverage (crown coverage of 0%—red, 100%—green) based on the mov-
ing window approach as applied in Switzerland (left). Example of the same subset after applying a 
minimal crown coverage threshold of 20% (right)

Fig. 21  Problems related to the forest area at forest borders within the interpretation area (blue 
line) when its center (dashed line) is clearly outside the forest (left) and exactly at the forest border 
(right). Source: Waser et al. (2015)
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the crown coverage inside the forest border at any location can be set to 100%, 
resulting in Eq. (2).

	

Number of pixels to shrink

Window size
i =

´ 0.5 – Threshold of crrown coverage( ) 	
(2)

Figure 21 (right) illustrates the example for a 50% crown coverage threshold 
within the interpretation area. In this case, no shrinkage would be applied.

�Minimum Area and Width

Minimum area and width are two other essential parameters needed for forest map-
ping. However, both are handled differently by many NFIs. Minimum width is more 
frequently used to separate areas of narrow tree elements—which do not fulfill the 
minimum requirements of the forest definition—from clearly defined forest areas. 
While minimum area is relatively simple to calculate using standard GIS functions, 
more effort is needed for minimum width. A frequently used method is to place a 
circle, with the radius of the minimum width inside the stocked area. In this ideal 
case, the minimum width criteria is fulfilled. If not, another possibility is to calcu-
late these distances with triangulation by setting the length of the minimum triangle 
to the required width threshold. In the given example (Fig. 22 on the left), narrow 
tree groups below the minimum width of 25 m were removed using morphological 
functions while preserving the shape and size of larger objects. The forest cover 
map was first shrunk by half of the minimum width of the forest definition and then 
expanded by half of the minimum width. Parts smaller than the minimum width 
criterion were assigned the value zero (non-forest) and thus remain non-forest after 
the expansion of the shrunk forest cover map.

�Land Use

Since the land use criterion could not be obtained from the VHM or from aerial 
images, it was implemented using the respective cover from the Topographic 
Landscape Model (TLM) (for more details see Swisstopo 2016). It is superior to the 
currently available CORINE 2006 land cover (CLC2006) with respect to the level 
of detail and updating, and is the best available proxy for the forestry land use. Two 
classes from the TLM were integrated into the present forest mapping approach: the 
land cover class closed forest—which is actually a land use class—to compensate 
for temporarily unstocked forests, and the land use class orchards and settlement to 
eliminate forest area on other land uses. In contrast to the three other criteria, addi-
tional manual work was necessary since the exact forest definition applied in the 
TLM is not entirely clear. Both TLM land layers were visually checked and poly-
gons that were obviously wrong or too generalized were manually deleted.
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�Distance Criterion Approach

Another often used approach for forest mapping is based on the distance criterion. 
The approach is highly automated and aggregates point clouds from both image 
matching and ALS to forest layers within a spatial grouping process as described 
below. Similar to the moving window approach, the three criteria of height, mini-
mum width, and minimum crown coverage are used from the forest definition. 
Thus, in the first step, the height criterion of greater than 3 m based on the VHM 
according to the Swiss NFI forest definition is applied to the woodland. Figure 23 
gives an overview of the distance criterion approach.

In the first step, the two criteria of minimum crown coverage and minimum 
width/area from the NFI forest definition are obtained indirectly using the distance 
criterion as described below. The previously extracted centers of individual tree 
crowns (>3 m) are connected in a non-overlapping mesh using Delaunay triangula-
tion based on a distance criterion (e.g., minimum width of 25 m as defined by the 
Swiss NFI). In the second step, the shape of the point sample on its surface is recon-
structed using alpha shapes. The alpha shapes define a piecewise linear curve around 
the meshed points. The resulting alpha hull (Fig. 24 on the right) surrounds the tree 

Fig. 22  Removal of narrow tree elements from the forest cover map using morphological filters. 
Forest cover map after applying the crown coverage threshold of 20% (left). Removed narrow ele-
ments (circles) in the expanded forest cover map with half of the minimum width threshold (right) 
(source: Waser et al. 2015)
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Fig. 23  Overview of the 
methodological workflow 
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Fig. 24  The principle of convex and alpha hulls (red line) of points belonging to tree crown cen-
ters. Based on the distance criterion, a tree crown lies within a certain distance from its neighbors
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crown centers and avoids the overestimation of forest area resulting from the overin-
clusion of empty areas as in Fig. 24 (on the left) (Mottus et al. 2006; Vauhkonen 
et al. 2012; Edelsbrunner 1995).

The triangulation of point clouds and the calculation of the alpha hull are closely 
related to the problem of correct connectivity within a given point cloud (Fig. 25).

The definition of an appropriate connectivity distance is a crucial point. For the 
Swiss NFI, this distance corresponds to a minimum width of 25 m. The required 
control of connectivity can be achieved by a preliminary triangulation with a strict 
distance constraint. Thus, points within a certain distance metric (<25 m) belong to 
the same object, and only for these points will the alpha hull be calculated (regions 
A, B, and C in Fig. 26). The maximum distance is required for all three vertices 
within each triangle. Therefore, linearly aligned points (narrow tree areas such as 
tree rows, single trees) do not meet the requirements for a spatial object (region E in 
Fig. 26). If the distance is too great from surrounding points, topological holes will 
be created (region D in Fig. 25). Thus, forest gaps and clearings are well extracted.

Grouping methods for forest data are strongly related to the application-defined 
requirements for connectivity and generalization. This approach makes it possible 
to control the distance- and shape-related grouping process with only two parame-
ters, and can therefore be easily adapted for a wide range of forest applications. 
Triangulation enables a more appropriate handling of the spatial distribution of 
point data compared to cluster approaches. For some applications, it could be neces-
sary to use weighted point data, mainly when specific features of forest data are 
much more important than spatial distributions (e.g., diameter, health status).

�Lessons Learned

Nowadays, most existing forest cover maps are still the product of visual interpreta-
tion of aerial or satellite images with automation mostly restricted to the processing 
of the input data. While only a few of these automated methods are currently 

Fig. 25  Convex (green boundary) and alpha (red boundary) hulls of tree crown centers
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operationalized and applied to large areas, most have been tested within the frame-
work of case studies.

In this chapter, the potential of remote sensing data and techniques towards auto-
mated woodland and, in particular, forest mapping has been illustrated. The pre-
sented approaches are promising and, because of their automation potential, superior 
to existing approaches. Because they make use of airborne or spaceborne sensors, 
and optical datasets can be applied entailing lower costs and less complex data pro-
cessing and handling, they can be regarded as state of the art, and may be used to 
gather accurate up-to-date information on forest areas at different scales, including 
small wooded patterns and single trees. The most likely interest groups that could 
benefit from the presented mapping approaches are public or private authorities 
with environmental or forest-related concerns, private environmental agencies, for-
est districts, private forest owners, and NFIs.

The approaches illustrated here are straightforward from a methodological point 
of view (well-defined input and output data, with several processing steps), facilitat-
ing handling at the operational level and not only at the case study level. They are 
also highly automated and applicable to larger areas. However, each of the illus-
trated approaches still consist of steps that need some manual adaptation of param-
eters. This applies both regarding the processing of datasets, such as the segmentation 

Fig. 26  Triangulation with the distance-constraint and alpha hulls (red lines) of tree crown centers 
(dots) with a true-color orthoimage as background. Calculated alpha hulls for points within dense 
forests (A), forest aisles (B), and open forest (C). The building is extracted as a topological hole 
(D). Tree rows are not extracted due to their linear point alignment
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of images, and the checking of existing training data, or, if not available, the genera-
tion of such training data (e.g., digitizing polygon samples).

Automation is reduced when mapping forest is entirely based on a NFI defini-
tion, less because of the calculation of geometric parameters (minimum height, 
minimum crown coverage, and minimum width/area), but more because of the 
implementation of a land use criterion. The latter may require the appropriate col-
lection of relevant land use information.

From a technical point of view, current handling of large datasets is no longer a prob-
lem. In theory, processing and data storage can be done using standard personal comput-
ers. However, for wall-to-wall forest cover maps, multi-core computers with large 
physical memories are recommended. This is not only in order to minimize processing 
time but also to optimize and speed up each step of the applied mapping approach 
because most software packages enable the use of clusters for faster calculations.

There are, however, several significant constraints that remain. First, the implicit 
term forest is not always correctly used by the remote sensing community and is 
confused with woodland, since it only comprises a minimum height criterion. Thus, 
prior to the use of any mapping approach, unambiguous definitions of forest and 
non-forest are indispensable. Regardless of the applications, the FAO definitions 
seem to be reliable. Problems regarding automation increase for cross-border map-
ping approaches because harmonization of existing forest definitions is additionally 
necessary. Manual interactions and processing steps are also required, such as merg-
ing different remote sensing datasets, and harmonizing different forest definition 
criteria (minimum height, crown coverage, and width/area).

A second area of concern is the implementation of a land use criterion, which, in 
turn, has an impact on the definition of forest. Although remote sensing methods 
enable woodland mapping, the limitations of forest mapping increase if land use is 
incorporated. Although land cover can be easily and directly assessed using remote 
sensing data and techniques, for land use it is less straightforward, requiring a com-
bination of image classification expertise and external knowledge. Interviewing for-
esters or performing in situ field visits of the areas under examination are 
recommended. Problems may also arise if remote sensing-based mapping products 
are combined with statistically estimated NFI products. In addition to the decreased 
processing automation, comparisons of the extracted mapped forest areas must be 
handled with care.

A third concern is that forest mapping may also be challenging because of the 
huge variety of existing remote sensing data and methods. However, the value of the 
final map product strongly depends on the requirements of the end user. Thus, in 
order to maximize automation, a precise understanding of these requirements—that 
incorporates the end user’s needs, budget, availability of training, and validation, 
quality, and handling of the remote sensing data—must be worked out. In addition, 
weather conditions (clouds) may also affect the planning process, and a certain 
degree of flexibility may be needed if alternative data material must be used. 
Furthermore, the time span between datasets should be kept to a minimum.

A fourth issue is that automation strongly depends on the collection of training 
data which—although a labor-intensive part of the mapping process—will substan-
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tially reduce future work by the implementation of existing NFI sample plot data, 
such as tree/non-tree information (based on stereo-image interpretation), and ter-
restrial information (obtained from field visits) within the framework of a NFI.

�Future Perspectives

Technical developments in remote sensing data and collection methods in the near 
future, and the increasing need and demand for long-term forest cover maps, will 
further push and improve the automation of such products.

Current trends in spaceborne remote sensing also appear promising in a number 
of ways for the land use and land cover assessment community. The provision of 
larger swath widths in combination with more bands and high temporal resolution 
(on the order of a few days) will significantly enhance the operational forest moni-
toring capabilities of entire countries. Sustainability of such applications is cur-
rently supported by the Landsat data continuity mission and systems that are being 
promoted by the European Space Agency (ESA) and the European Commission 
(EC) Global Monitoring for Environment and Security (GMES) program. The 
ESA’s Sentinel program—which provides dedicated spaceborne satellite missions 
that address the operational user and institutional needs within the wider European 
Copernicus (former GMES) initiative—already represents a major step forward. 
Dedicated to Copernicus, Sentinel-1 already ensures the continuity of C-band SAR 
data collection (planned launch of Sentinel-2b in March 2017, building on ESA’s 
and Canada’s heritage SAR systems on ERS-1, ERS-2, ENVISAT, and RADARSAT). 
Full-waveform and multispectral LiDAR data (as presented in Chapter “Airborne 
LiDAR Applications in Forest Landscapes”) also has great potential. These pro-
grams provide high-quality 3D information as required by many processing steps in 
the derivation of CHM or geometric features for forest definitions. Moreover, they 
are the current standard in many countries and acquired in cycles of 3–6 years.

A higher degree of automation can be achieved by simplifying the methodologi-
cal workflow using modern machine learning algorithms, scripting, and entire pro-
cess chains. Focusing on a remote sensing-based derivation of land use by using 
additional existing information on land use (e.g., from stand maps or forest invento-
ries) can substantially increase the degree of automation for forest mapping. 
Additionally, newer information and information provided within shorter time 
spans on the extent of woodland/forest areas by NFIs—which combine terrestrial 
sampling with remotely sensed estimations—may be used with positive results.

With a higher degree of automation, high-quality forest maps based on remote 
sensing can be derived more frequently and help provide the latest information on 
forest resources for entire countries and continents in the future. In turn, retrospec-
tive analysis of changes in these areas will become feasible and increasing interest 
will lead to the development of wall-to-wall forest maps that will become standard 
in many countries. While future NFIs will be based on both terrestrial surveys and 
remotely sensed parameter estimations, mapped forest area will play a key role. It is 
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expected that the future of NFIs will be characterized by a complementary combina-
tion of diverse types of information and sources of information, such as remotely 
sensed parameters—e.g., forest cover and trees outside forest (TOF)—enquiries by 
the local forest service, stereo-image interpretation, and, of course, terrestrial 
information.
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Epilogue: Toward More Efficient and Effective 
Applications of Forest Landscape Maps

Ajith H. Perera and Tarmo K. Remmel

Abstract  Significant advances in geospatial sciences are being made, aided by 
multibillion dollar technological industries that focus on remote sensing, geographic 
information systems (GIS), global positioning system (GPS), and computing. As a 
result of these improvements, forest landscape ecologists and forest managers now 
have access to increasingly comprehensive and accurate georeferenced information 
that is frequently updated. However, the knowledge of forest landscape patterns and 
processes and the ability to convey this knowledge for applications have not grown 
in proportion to the advances in mapping technology. Thus, there are vast opportu-
nities to improve the knowledge of forest landscape patterns, especially in remote 
regions that are difficult to study in the field. There are numerous avenues to improve 
the efficacy and efficiency of map use. Here we highlight the importance of resisting 
the allure of excessive detail and instead focus on identifying the most appropriate 
scale, which may not be the most detailed resolution available, to support a user’s 
research or management goals. It is also crucial to improve our awareness of the 
many embedded assumptions that shape how information is mapped and the sources 
and magnitude of the errors that are inherent to any map, however advanced the sci-
ence and technology that produced it. We emphasize that ongoing communication 
and interaction between the communities of map developers and map users will be 
essential to achieve wise use of forest landscape maps.
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3D	 Three-dimensional
GIS	 Geographic information system

A.H. Perera (*) 
Ontario Forest Research Institute, Ontario Ministry of Natural Resources and Forestry,  
1235 Queen Street East, Sault Ste. Marie, ON, Canada, P6A 2E5
e-mail: ajith.perera@ontario.ca 

T.K. Remmel 
Department of Geography, York University,  
4700 Keele Street, Toronto, ON, Canada, M3J 1P3
e-mail: remmelt@yorku.ca

mailto:ajith.perera@ontario.ca
mailto:remmelt@yorku.ca


306

GPS	 Global positioning system
LiDAR	 Light detection and ranging
UAV	 Unmanned aerial vehicle (drone)

�Background

Forest landscapes occupy more than 30% of Earth’s land surface and occur on every 
continent except Antarctica. They therefore represent one of the most important 
global ecosystem resources. Forests are highly valued for ecological reasons (e.g., 
conservation of biodiversity, protective functions), economic reasons (e.g., supply 
of wood and other products), and social reasons (e.g., aesthetics, cultural values). 
There are many management activities that correspond to these roles of forest land-
scapes. These include developing plans for extracting and conserving resources; 
detecting and monitoring changes in the composition, functions, and patterns of 
forests; and assessing the ecological impacts of human activities. Forest landscape 
maps are essential for planning and executing all such management activities, 
whether these applications are simple and subjective approaches, or involve com-
plex and more objective methods such as decision support systems. Mapped infor-
mation about forest landscapes also provides the basis for periodic official reports 
on the status of a region’s forests that are generated by governmental and nongov-
ernmental agencies at global, national, and regional scales.

All of these applications are informed by numerous ongoing research efforts that 
study all facets of forest landscapes. It is now common for researchers to use forest 
landscape maps as an essential input for such academic investigations. For example, 
the mathematical models developed to simulate most forest landscape characteris-
tics—composition, patterns, structure, function, processes, and utility—are based 
on spatially explicit information about forest landscapes. The output from these 
models is also presented in the form of maps that aid exploration, discovery, predic-
tion, and discovery. The demand for such spatially explicit information about forest 
landscapes is increasing globally, at a rapidly increasing rate, and both the develop-
ers and users of this information must be aware of the potential and the limitations 
of the knowledge and of the technologies and methods used to generate it.

This demand is being met by concurrent developments in several theoretical and 
technological fields during the last several decades. First, data collection techniques 
have advanced rapidly since the widespread adoption of coarse-resolution aerial 
photography in the 1950s, and the launch of the Landsat satellite in 1972. Now, 
there are many global platforms that support an array of sensors capable of detect-
ing a wide range of signals from forest landscapes. With these tools, it has become 
possible not only to map the most remote forest landscapes, but also to make these 
methods and the resulting data readily accessible and affordable to a wide audience 
of potential users. Second, researchers in the fields of geography and spatial statistics 
have developed a variety of methods for data analysis, most notably geographic 
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information systems—the ubiquitous GIS. Because these techniques for analysis of 
spatial data are now provided by GIS software, sophisticated and comprehensive 
spatial pattern analyses are increasingly available to an increasingly broad spectrum 
of individuals who are interested in the mapping of forest landscapes. Third, con-
tinuous advances in computer science and technology have made it feasible to store 
and consistently analyze massive quantities of spatial data. The data storage and 
analysis capabilities that were only available to supercomputer users as little as a 
decade ago are now available in inexpensive personal computers.

The net result of these developments is the availability of highly advanced tech-
niques for the capture, storage, and analysis of spatial data, combined with readily 
available and relatively cheap access to high-resolution thematic, spatial, and tem-
poral data about forest landscapes. Furthermore, the detection, analysis, and visual-
ization of forest landscape characteristics have become a global enterprise for both 
the academic and the commercial sectors.

Despite the expanding demand for this data, and the ready and advanced supply 
of mapped information, our knowledge about forest landscape patterns and pro-
cesses and our wisdom about how to use this knowledge appear to be lagging 
behind. In fact, the gap between the supply of information and its judicious applica-
tion in forest landscape management may even have widened over time.

�Goals of This Chapter

Our goal in this concluding chapter is to offer a narrative on how to improve the 
application of forest landscape maps that bridges the intent of the first chapter and 
the contents of the other chapters. It is mostly based on our observations, interac-
tions, and experiences with applications and uses of forest landscape maps for more 
than five decades. This is not a review based on a compilation of details from an 
exhaustive search of the scientific literature; the topic that we address is rarely writ-
ten about by scientists for other scientists, and typically does not appear in the sci-
entific literature in relation to forest landscape mapping applications. Scientists who 
develop forest landscape maps appear to implicitly assume that map users, whether 
they are researchers or forestry practitioners, understand the limitations and the 
scope of the utility of their maps. In our experience, this assumption does not appear 
to be valid.

Here, we also contemplate the future of forest landscape mapping by focusing on 
improved efficiency and effectiveness of map use. By use, we mean the application 
of mapped information to support forest landscape management by professionals 
(the end users), although researchers and the public also use maps. The maps we 
address here are not only primary cartographic products, but also include spatially 
portrayed secondary information that is generated by intermediate applications such 
as simulation models and predictive models. By efficiency we mean the ratio of the 
useful information content to the total cost (including time) of acquiring and 
utilizing that information, and by effectiveness, we mean that the map provides the 
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optimal information content to support the goal of using the map. Both efficiency 
and effectiveness are judged from the perspective of users of the maps.

In brief, efficient and effective applications of forest landscape maps involve 
three activities: generating a demand among practitioners for forest landscape maps 
that are relevant and pertinent to real-world questions, meeting that demand by sup-
plying mapped information with the highest possible reliability, and applying the 
mapped information to achieve real-world goals with minimum effort. Though 
these may appear to be simple tasks, in practice they involve complex and fuzzy 
decisions, perhaps made more complex by ambiguities in the user’s goals, miscom-
prehension of the mapped products, and (most of all) poor communication between 
the developers and users of maps.

Our discussion in the rest of this chapter involves considerations that could help 
improve the efficiency and effectiveness of forest landscape maps. These may be 
implicitly obvious to the scientists and technicians who develop maps, and may 
even be considered mundane and trivial. However, our experience suggests that 
these considerations are rarely explicit for most users, or may not be readily evident 
in many applications. We anticipate that users of forest landscape maps will benefit 
directly from the contents of this chapter by familiarizing themselves with the points 
we discuss, and will benefit indirectly by learning to improve communication with 
those who generate the information.

�Considerations in Forest Landscape Mapping

�The Community of Map Developers and Users is Broad

It is perhaps not readily apparent that the overall forest landscape mapping process 
includes multiple participants. In practice, map developers and users form a broad 
community that represents the confluence of expertise from several academic fields 
(e.g., remote sensing, GIS, spatial statistics, and ecology), several professional 
groups (e.g., natural resource policy developers and managers, professionals 
employed by the natural resource extraction sector, environmental monitoring and 
conservation researchers, educators), governments, and even the general public. 
Mapped information about forest landscapes is used directly by the research com-
munity and by professionals who manage the land, and (to a smaller extent) indi-
rectly by the public, who may rely on the secondary information generated by 
researchers and land managers (Fig.  1). Even though the public is not generally 
considered an important user group, they play a significant role in shaping forest 
landscape policies and management, both of which are informed by the use of forest 
landscape maps. Representatives of all these domains of expertise interact to create 
a dynamic demand and supply for forest landscape maps.

A key to successful development and application of these maps is communica-
tion—a clear, two-way flow of relevant information between those who obtain and 
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present the information and those who use the information. This involves continu-
ous and active engagement of all parties, although only pairs of these parties may be 
involved in any particular situation. Communication and information exchanges 
between some groups are well established, and function effectively, with feedback 
loops to improve the maps. For example, such exchanges occur between the com-
munities of researchers and map developers, who converse both via the research 
literature and in the many forums for communication of scientific knowledge (e.g., 
conferences, online discussion groups). Though land managers represent the crucial 
end users of forest landscape maps, the flow of information they receive is less for-
mal and explicit, and is often ad hoc (i.e., inspired by a specific need rather than 
being part of an ongoing process). Information exchanges with the public are mostly 
ad hoc, and feedback loops may not exist; that is, researchers and map developers 
rarely ask the public about their needs.

�Maps are Model Outputs

All forest landscape maps are abstractions of reality, and not just the first maps that 
were produced, since any map is a representation of one or more implicit mental 
models. This is true even for the most “realistic” modern maps that have been 

Research

• Policy development

• Land use planning

• Resource conservation

• Environmental management 

• Resource management

Forest 
landscape 

maps

• Remote 
sensing

• GIS

• Spatial 
statistics

• Ecology

Public

Fig. 1  Illustration of the overall process of forest landscape mapping, which includes both the 
demand for and the supply of forest landscape maps. Various user groups (researchers, land man-
agers, the public) generate the demand and use the information from forest landscape maps, and 
that supply is met by a group of interacting specialists (e.g., remote-sensing specialists, geogra-
phers, spatial statisticians, and ecologists). The width of the arrows is roughly proportional to the 
relative importance of the information flow. The arrows are depicted as one-way for simplicity, but 
in reality, they may consist of many feedback loops
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generated by applying explicit methods of gathering, processing, and portraying 
spatial data based on sophisticated technology and advanced scientific methods 
(Fig.  2). For example, a map of a forest landscape generated two centuries ago 
would probably portray navigability and extractable values such as timber volumes 
based on the mental model of the explorer who created the map. The corresponding 
map of the same landscape generated today may represent the age and species com-
position of the forest stands, tree heights and wood volumes, estimates of the best 
route for accessibility without damaging the site, and even economic and ecological 
optima for timber extraction—all based on data gathered by optical sensors, geore-
ferenced by GPS, and then interpreted, analyzed, and predicted by an array of math-
ematical models. Forest landscape maps still remain (mathematical and statistical) 
simplifications and are only estimates of the vast complexities of nature, spatially 
portrayed as simulations and predictions. Maps are therefore method specific. That 
is, maps may differ in their information content based on the procedures used for 
data collection, analysis, and spatial portrayal.

As in the case of all quantitative models, forest landscape maps are based on 
many assumptions; some are inherent to the scientific and statistical methods used 
by the developer, whereas others stem from limitations in technological, scientific, 
and expert knowledge. To follow the example of good science, these assumptions 
should be made explicit for each method that is applied. Applications of the model’s 
outputs (in this case, maps) are valid only if the assumptions are appropriate for the 
intended use, and this consideration must be made explicit. Some map production 
methods are more robust than others, but the assumptions and methods of any 
method will create method- and assumption-specific limits to the scope of their 
applications.

�Maps are Probabilistic

The contents of forest landscape maps, however rigorously obtained, processed, and 
represented, are probabilistic; that is, they represent some level of confidence, not 
absolute certainty. This probability arises, in part, from the many assumptions, 
errors, and uncertainties in the methods used to obtain, process, and represent the 

Detection of 
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reflectance
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information
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representation

Fig. 2  Some major steps involved in producing a forest landscape map. This example uses 
remotely sensed data from a satellite as the starting point. All subsequent steps involve mathemati-
cal and statistical models, each with specific assumptions and methods. The final map product 
embodies the assumptions and limitations of all models employed in each step of the process
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data. The problem of probabilistic mapped information also arises because natural 
objects and their patterns (in this case, the characteristics of forest landscapes) are 
inherently variable, and our perceptions of them are fuzzy. Consequently, the assign-
ment of thematic classes to the parts of a landscape and georeferencing the objects 
to mapped features of the forest landscape are not about establishing absolute cer-
tainty, but rather about maximizing the probability of being correct. For example, a 
feature mapped as “old coniferous forest” may not have old conifers throughout 
each entity that has been assigned that classification, and entities within such a the-
matic class may not be identical because of such variations. This classification 
means only that the classified entities have a high probability of containing old 
conifers and of being more similar to each other than to entities in other thematic 
classes. Explicit articulation of the spatial variability of the probabilities associated 
with thematic classifications is uncommon, but is necessary, especially if the 
mapped information will be used in subsequent models and decision support sys-
tems (Fig. 3).

The probabilistic nature of maps is even more evident around boundaries and 
transitions between mapped entities. Because discrete boundaries are relatively rare 
in natural forest landscapes, thematic classifications could be less certain at the 
boundaries within vectorized maps (Fig. 4).

Furthermore, the probability of an entity belonging to a specific class could also 
vary over time in the case of dynamic maps, in which the mapped information (e.g., 
vegetation cover) explicitly changes over time. As we discuss later, in section “Map 
Contents are Scale Related”, the probabilities of mapped information are also scale 
dependent.

Fig. 3  An example of a 3D rasterized map of forest cover types (colors), with changes in elevation 
of each point above the plane representing spatial variability of the probabilities of each pixel 
belonging to the indicated forest type: the greater the elevation, the greater the probability of being 
assigned to the correct thematic class. These probabilities vary among the pixels within a cluster, 
among clusters with the same theme, and among clusters with different themes. Such explicit 
expressions of uncertainty illustrate the degree of confidence in all mapped thematic classes and 
pixels within those classes
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�Maps Contain Errors

Even forest landscape objects that have been mapped with the most rigorous and 
advanced methods have some misclassification or location errors, and such inaccu-
racies are commonplace in maps. When the errors are detected, typically through a 
validation process (e.g., ground-truthing), specific errors can be corrected and 
details about the possibility of these errors elsewhere in the map can be included in 
the methodological descriptions. A common means of expressing thematic errors is 
by cross-tabulating mapped versus validated entities for a sample of landscape posi-
tions to create a table known as a “confusion matrix” (Fig. 5). This table describes 
the matches and mismatches, which can be further analyzed quantitatively. The 
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Fig. 4  (Top) A typical vectorized forest cover classification map with a hypothetical transect 
drawn across the boundaries between three polygons. (Bottom) The probability of correct thematic 
classification along the transect. The boundaries (at points B and C) are not discrete; rather, they 
represent a transition zone in which both thematic classes could occur. In reality, the probability 
distribution may not be smoothly unimodal, as depicted in the example, but could be a multimodal 
distribution like the one illustrated in Fig. 3
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expression of georeferencing errors is not common in mapping, perhaps because it 
is sometimes difficult to separate thematic errors from location errors during assess-
ment of the final map product (i.e., empirical map validation), and necessitates 
sophisticated evaluations of detection methods and instruments. Consequently, clas-
sification errors and georeferencing errors are typically not separated in accuracy 
assessments (Table 1).

Another aspect of these errors that affects map use is related to precision. The 
concept of map precision is often confused with map accuracy. Precision refers to 
variability of the prediction of a given mapped property (i.e., the ability to repeat-
edly assign the same label to pixels in a specific thematic class), whereas accuracy 
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Forest 2 94 3 99

Bedrock 12 0 37 49

Total 79 99 47 225

Fig. 5  An example of a confusion matrix that summarizes the match and mismatch frequencies 
between mapped categories and their corresponding validated categories. The diagonal entries are 
the matches and off-diagonal entries are mismatches. Column and row totals are the “marginal 
distributions” and are used for computing overall, user, and producer accuracy values and nonspa-
tial accuracy summaries. The total number of observations (i.e., 255 in this example) is a function 
of the desired level of sampling locations to validate

Table 1  A summary of mapping errors that illustrates partitioning of the error sources into either 
thematic (categorization) or positional (georeferencing) errors, with specific examples of each case

Error type Example errors

Thematic Wrong label (e.g., forest rather than shrubs)
Wrong label level (e.g., dense rather than open conifers)
Validation data incorrect (e.g., false-positive or false-negative accuracy 
assessment)

Positional Inappropriate vector representation for a given resolution (point, line, polygon)
Inappropriate spatial resolution for the minimum mappable unit
Features mapped to incorrect coordinates (e.g., either systematic or 
nonsystematic coordinate errors)
Boundaries mapped at incorrect locations (e.g., either systematic or 
nonsystematic coordinate errors)
Coordinate precision not appropriate for a given resolution (e.g., too much detail 
for coarse-resolution mapping)
Boundary complexity not matched to actual complexity (e.g., boundary too 
simple or too complex)
Boundary width not characterized properly (e.g., ecotones not recognized)
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refers to the correctness of the labeling. They are independent (perhaps even orthog-
onal) concepts, and express two different types of mapping error. For example, a 
mapped entity could be very precisely expressed (i.e., in minute detail and low vari-
ability in prediction), but inaccurately classified (i.e., incorrect labeling), as in the 
case of domain D in Fig. 6, or can be imprecisely expressed (i.e., described in broad 
terms), but accurately classified (i.e., correct), as in the case of domain B in Fig. 6. 
It is also possible that increasingly fine resolution can lead to a false sense of preci-
sion, as is the case when the measurements become finer than the phenomenon 
being measured. Domain A in Fig. 5 represents an ideal situation (i.e., the optimal 
balance between the effectiveness and efficiency of information): it represents the 
most accurate and most precise mapped information. Domain B will be efficient, 
but perhaps less effective than domain A. Domain D is less accurate, and represents 
a common trap for map users, who are attracted by high precision. As with all 
aspects of mapping, errors are scale dependent. Even though spatial portrayals of 
error estimates offer important information, equivalent in importance to estimates 
of the mapped themes, they are rarely reported in real-world applications. As in the 
case of probability surfaces (e.g., Fig. 3), communicating the spatial variability of 
errors in the estimates would provide additional evidence about the reliability of 
mapped information.

�Map Contents are Scale Related

By “scale,” we refer here to the level of detail (i.e., resolution of information) in the 
maps—not the ecological scale that refers to the hierarchy of ecological organiza-
tion or the cartographic scale that refers to the ratio between distances portrayed on 
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Fig. 6  Map errors can be described in terms of the accuracy (correctness) of the classification and 
the precision (repeatability) of the classification. Domains A, B, C, and D represent different com-
binations of accuracy and precision, which have different implications for the efficiency and effec-
tiveness of the map

A.H. Perera and T.K. Remmel



315

a map relative to their real-world distances on the Earth’s surface. As described with 
examples in Table 2, a coarse-scale map will have less detail (lower resolution in 
thematic, spatial, and temporal information) and a fine-scale map will have more 
detail (higher resolution in thematic, spatial, and temporal information).

The map resolution (high or low) is related to the thematic information (e.g., 
classification details), spatial information (e.g., pixel size), or temporal information 
(e.g., interval between changes). Mapped information could be gathered, analyzed, 
and portrayed with higher resolution (e.g., more thematic classes, smaller pixel size, 
more frequent updates) or at a lower resolution (e.g., fewer thematic classes, larger 
pixel size, and less frequent updates). This concept of resolution is imperative when 
considering all aspects of map contents and use, but is often ignored, misunder-
stood, or incorrectly applied. High-resolution maps with more thematic detail, finer 
spatial resolution, and shorter temporal intervals are often considered to be more 
informative and better than low-resolution maps with less thematic detail, coarser 
spatial resolution, and longer temporal intervals. This is not universally true. Fine-
resolution maps may be more precise, but may have lower accuracy, higher 
uncertainty, and lower predictive capability than the corresponding coarse-resolu-
tion map. Coarse-resolution maps are often more accurate, more certain, and more 
valid, and may have higher predictive ability than fine-resolution maps that contain 
the same information, despite the lower precision of the coarser maps (Fig.  7). 
Because of technological advances and the decreasing cost of production, maps of 
forest landscapes are increasingly produced at finer resolutions—with smaller fea-
tures, more thematic detail, and more frequent updates. However, this should not 
mislead their users into believing that these maps are inherently superior to coarser 
maps. Maps with finer resolution may include unnecessary information that requires 
the user to ignore or exclude the information (i.e., a higher cognitive burden), may 
be more expensive to produce (without providing benefits that justify the additional 

Table 2  Relationships between the scale (resolution) of the map contents and the relative level of 
detail with respect to the thematic, spatial, and temporal information. Here, we have illustrated 
these relationships using the example of a boreal forest landscape

Map content
Map resolution
Coarse Fine

Thematic 
classification

Broader forest cover 
classes (e.g., dense 
coniferous forest)

Detailed forest community types (e.g., an 
overstorey of 40% black spruce, 20% white 
spruce, 20% jack pine, 15% poplar, and 5% 
larch, with an understorey of Labrador tea, 
sheep-laurel and blueberry, and herbaceous 
ground cover)

Spatial 
differentiation

Large pixel size (e.g., 
1 ha) or a large 
minimum mappable 
unit (e.g., 20 ha)

Small pixel size (e.g., 1 m2) or a small minimum 
mappable unit (e.g., 1 ha)

Temporal interval Long frequency of 
map updates (e.g., 
decadal)

Short frequency of map updates (e.g., annual)
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cost), and may mislead users into focusing on smaller details than would be appro-
priate (e.g., varying the width of a riparian buffer strip in 1-m intervals instead of 
using a single width for the whole length of a river).

�Map Applications are Scale Related

Each map application dictates a specific optimal resolution for its different purposes 
(i.e., a range of thematic, spatial, and temporal resolutions). This is true whether the 
maps are used to support management activities (e.g., policy development, land use 
planning, timber extraction, biodiversity conservation) or academic pursuits (e.g., 
simulating environmental impacts, predicting ecosystem processes). Using maps 
with resolutions coarser than that optimal resolution will not be effective because 
users will lack sufficient detail on certain characteristics of the mapped area. 
Conversely, use of maps with resolutions finer than the optimal resolution will not 
be efficient (or potentially effective) because there will be too much information, 
thereby requiring the user to ignore or eliminate the information they cannot use.

Both of these instances of resolution mismatches have adverse consequences 
for users of the maps. The consequences of using maps with too coarse resolution 
and inadequate information to support the intended use are generally recognized 
by users of forest landscape maps: they risk missing small but important areas that 
require different treatment. However, the consequences of using maps with too 

Fig. 7  Three 1 km × 1 km maps of the same forest landscape, obtained from different sources at 
different resolutions: (a) a recent forest inventory from the Leica ADS 40 airborne sensor at 0.4 m 
spatial resolution and vectorized; (b) an old forest inventory map created from 1:20,000 aerial 
photographs; and (c) a land cover map from the Landsat TM sensor at 30 m spatial resolution. The 
thematic details differ among the maps: (a) 14 forest community types based on tree, shrub, and 
ground vegetation species composition, basal area, age, and height of the canopy species; (b) 9 
forest stand types based on tree species composition, basal area, tree age, and height of the tree 
canopy; (c) 4 generalized forest cover types based on the overstorey composition. The minimum 
mappable unit sizes also vary: 10 ha in (a) and (b), and 1 ha in (c). The temporal resolution also 
varies: 10 years for (a) and (b), and 16 days for (c)
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fine resolution are less commonly recognized. Indeed, there appears to be a gen-
eral belief that increasing map resolution will always better inform the user. It is 
less obvious that, in addition to the higher cost of acquisition, storage, analysis, 
and updating, finer map resolutions have a hidden cost: they overinformed users 
and complicate use of the map. For example, the information content and relative 
accuracy and certainty of that information (as well as the cost) differ among the 
three maps in Fig. 7. Of these, the best suited map is the one that matches the reso-
lution (thematic, spatial, and temporal) of the application. The key to selecting the 
optimal map resolution lies in determining the level of detail required for a given 
application right from the start; only then should the user determine the map reso-
lution that can provide that level of detail. We do not mean to imply that choosing 
the optimal resolution is a simple task, nor that this resolution will be readily 
evident. Researchers have been examining the problem of defining an optimal 
resolution for studies of ecosystem structure and processes for many decades, 
without achieving consensus on the best solution, and land managers continue to 
struggle with choosing the optimal resolution to support planning, decision mak-
ing, monitoring, and assessment. Nonetheless, determination of the optimal map 
resolution to support real-world applications is essential, especially when multi-
ple options are readily available.

�Mapping Methods are Advancing Rapidly

Sensors have improved, allowing narrower regions of the electromagnetic spectrum 
to be measured at higher spatial, temporal, and radiometric resolutions than ever 
before. Software for handling and manipulating these new data sources (e.g., GIS 
and remote sensing software) permits efficient analysis of these data and their con-
version into increasingly informative maps. Delivery and sharing of these data 
sources and maps online are increasingly bringing maps into the hands of nontech-
nical users, and anyone with a smartphone, tablet, or computer and a connection to 
the Internet can now view, interpret, and enjoy rich map data more easily than ever 
before.

Laser 3D scanning and light detection and ranging (LiDAR) are making new 
dimensions of data collection available to map developers. Low-altitude images 
obtained from unmanned aerial vehicles (UAVs, which are also called “drones”) 
using custom cameras and sensors are creating a resurgence in photogrammetric 
technologies, assisted by powerful computers and software capable of processing 
vast quantities of 2D and 3D data. The rapid advances that are currently under way 
in 3D printing technology will make it possible to convert maps into tactile and 
multidimensional representations that will provide new opportunities for visualiza-
tion of landscape data. We imagine that in time, with increasing miniaturization of 
technology, forest landscape mapping will become increasingly rapid, informative, 
readily available, and affordable from these new lightweight UAV platforms.
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�A Brief List of Best Practices for Using Forest 
Landscape Maps

In this section, we provide a short list of suggestions for best practices that would 
improve the efficiency and effectiveness of forest landscape map applications. 
Many other practical and conceptual considerations could have been included, but 
we chose to focus on those that we deemed most important but that have been most 
overlooked in practice. Even though we primarily address the users of mapped 
information in this section, developers of maps must also pay attention to these 
considerations. They also have a responsibility to ensure that the users are aware of 
these and other considerations that affect how they will use maps.

•	 Determine the resolution required to provide enough detail for the application 
before acquiring the mapped information.

Ideally, whether by means of formal sensitivity analyses and risk assessments or 
based on expert knowledge, users should determine the levels of thematic and 
spatial detail necessary to support their use of the eventual map. They also should 
assess the expected life span of the map application, and determine the interval 
(temporal resolution) required for information updates. If the applications span a 
range of resolutions (thematic, spatial, and temporal), then users should assess 
the best method for hierarchical nesting of the required levels of thematic, spa-
tial, and temporal details (i.e., to allow users to efficiently increase and decrease 
the resolution of the information).

•	 Select the maps with optimum level of detail for the application.

Based on the resolution required by the application, users should select a map 
resolution that will provide the optimum level of detail and information. Maps 
that are too coarse will not be effective because they will not provide enough 
detail to support the application, whereas maps whose resolution is too fine will 
not be efficient. In our experience, most map users understand the negative con-
sequences of maps that are too coarse, but incorrectly assume that maps with 
finer resolution are a better option. This results in higher cost of acquisition, 
processing, interpreting, and updating of the maps while creating a false sense of 
the true precision and accuracy of the resulting products.

•	 Scrutinize and assess the methods involved in generating maps.

Users can discern the quality of maps by evaluating the methods used to create 
them and the assumptions those methods rely upon; these will affect the level of 
confidence that users can place in the maps. Even though the mapping process 
may be complicated and may involve sophisticated techniques, all map develop-
ment procedures, including assumptions and terminology, must be made explicit 
so their consequences can be accounted for. The repeatability of all methodologi-
cal steps (including data acquisition, analysis, interpretation, and verification) is 
as important to assure the reliability of a map as the empirical validation of the 
results that is typically carried out as a means of quality assurance.
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•	 Acquire estimates of all sources of uncertainty associated with maps.

The many sources of uncertainty included in mapped information must be made 
explicit to the users. The spatial distribution of errors (e.g., noise, classification 
inaccuracy, incorrect georeferencing), probabilities, and confidence limits of the 
predictions provides important insights into the reliability of mapped informa-
tion and helps users to use mapped products more prudently. A 3D map (with 
error estimates and confidence limits represented by elevations) will be more 
illustrative and valuable than a typical 2D map that assumes a homogeneous 
distribution of errors and uncertainties.

•	 Interact and communicate with map developers.

All of these best practices require continuous engagement and dialogue between 
map developers and map users. This communication must not end after maps 
have been produced and delivered to their users. Interactions between developers 
and users of maps must continue through all stages of development and applica-
tion of the map products. With rapid advances in mapping processes, maps are 
progressively becoming better, less expensive, and more accessible. However, 
because the range of options available is becoming broader, clarity of informa-
tion exchange is mandatory to support wise use of maps. Efficient and effective 
use of forest landscape maps will occur only through active, continued, and open 
dialogue between those who generate maps and those who use them.

�Conclusions

There have been several significant advances in forest landscape mapping over the 
past 100 years; these include the advent of aerial photography, launch of satellites 
such as Landsat, emergence of GIS technology, expansion of GPS use, and arrival 
of new sensing technologies such as LiDAR. Our recent ability to map the most 
remote regions of the Earth with high spatial and thematic resolutions, and to moni-
tor changes through frequent reimaging of an area, is increasingly commonplace. 
These scientific and technological advances will soon make it possible to rapidly 
portray forest landscapes in three dimensions, accompanied by real-time informa-
tion on their dynamics in composition, structure, and even functions. Though the 
technologies of forest landscape mapping are advancing rapidly, it is not yet clear 
that applications of the mapped information are advancing in parallel. Our focus in 
this chapter has been to reveal ways to improve these applications by capitalizing on 
the rapid progress in mapping capability.

We contend that an important new role of the professionals responsible for devel-
oping forest landscape maps (i.e., geographers, cartographers, landscape ecologists, 
statisticians, software developers) will be to interact and communicate with all users 
of their products to ensure that the mapped information is understood and applied 
correctly. These professionals must communicate that maps, however advanced, are 
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only abstractions and are, at best, approximations of the complex, fuzzy, nonlinear, 
and dynamic patterns that exist in nature; the simplicity, certainty, linearity, and 
self-similarity that may exist in most maps of the human world cannot be expected 
from forest landscape maps. Furthermore, maps depend on many assumptions, and 
include multiple sources of error; awareness of these problems and cautious use of 
maps are therefore essential. Map users must also understand that there are optimal 
thematic, spatial, and temporal resolutions for any application, and that the finest 
and most detailed map is not always the most suitable. This point must be empha-
sized repeatedly to avoid the trap of providing more information than is appropriate; 
this leads to high costs of acquiring, storing, and updating maps, and the excess 
information can overwhelm both users of the map and the processing systems used 
to create it. Goal- and resolution-specific maps are the most efficient solution, and 
are most informative in revealing and understanding relevant spatial patterns.

Finally, we reiterate that all professionals involved in the process of developing 
and using maps must seek ways to ensure that the enormous richness of spatial 
information that is available to us will translate into an equivalent wealth of advanced 
and reliable knowledge. Only then will we achieve the true potential of forest land-
scape maps as indispensable tools in advancing ecological sciences and discoveries 
to support the development of forest management strategies and decisions and to 
educate the general public.

A.H. Perera and T.K. Remmel
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