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Core Message
Human immunodeficiency virus type 1, the virus responsible for the AIDS pandemic, 
is just one of a large group of primate lentiviruses. Although many aspects of the 
evolution of these viruses is known in great detail, other aspects remain shrouded in 
mystery due to large timescales and a lack of fossil records. Retroviruses in general 
are not primarily noted for their neurological effects, but a great many, including the 
lentiviruses, cause neurological problems in at least a subset of infected hosts. The 
lentiviruses are primarily noted as the cause of immunodeficiency, but they also 
cause neurological damage. Despite the vast genetic distances between the groups 
of primate lentiviruses, many aspects of their biology remain remarkably similar.

5.1  Introduction

The primate immunodeficiency viruses (PIVs) comprise a diverse group of lentivi-
ruses, all derived from a single common ancestor, which infect old world monkeys 
and apes. Many, but not all, species of old world monkeys each carry their own 
lineage of PIV and have apparently coevolved together for as much as several mil-
lion years. The evidence suggesting such an ancient origin includes the fact that 
some PIV lineages recapitulate their host evolution. For example, the African green 
monkeys (family, Cercopithecidae; genus, Chlorocebus; species, Ch. aethiops, Ch. 
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cynosurus, Ch. djamdjamensis, Ch. pygerythrus, Ch. sabaeus, and Ch. Tantalus) are 
known to carry at least three lineages of PIV (SIV-sabaeus, SIV-tantalus, and SIV- 
vervet) which are more closely related to each other than to lineages of PIVs found 
in other primates. Likewise the chimpanzees and gorillas carry PIVs that are related 
to each other and different than those carried by other primates [1–3] (Fig. 5.1).

The origins and evolution of retroviruses are not yet known. Mammals and many 
other vertebrates carry dozens of endogenous retroviruses in their germ line 
DNA.  Nearly all endogenous retroviruses have a simple LTR-gag-pol-env-LTR 
genome, whereas the T-cell leukemia viruses and the lentiviruses have accessory genes 
such as tat, rev, vif, and nef. Several mammal species have now been found with endog-
enous retroviruses that appear to be ancestral to the lentiviruses, but they all lack most 
of the accessory genes [4]. Thus, the origins of lentiviruses are also somewhat unknown, 
but the evidence suggests that they have been infecting mammals for more than 20 mil-
lion years [4–6]. In addition to primates being infected with primate immunodeficiency 
viruses, the felines, bovines, equines, ovines, and caprines each have lentiviruses which 
also infect T cells and cause immunodeficiencies and other pathologies.

Retroviruses in general tend to be quite host specific, and the lentiviruses are typi-
cal in this regard. Most primate lentiviruses cannot replicate in human cells primarily 
due to the host APOBEC enzymes but also due to other innate host defense mechanisms 

Fig. 5.1 Phylogenetic tree of primate lentiviruses. Phylogenetic tree constructed by maximum like-
lihood method using complete genomes of primate lentiviruses. Viruses infecting and spreading in 
humans are colored, shades of red and orange for HIV-1 viruses derived from chimpanzees and 
gorillas, and shades of green for HIV-2 viruses derived from sooty mangabeys. Several other viruses 
were transferred from sooty mangabeys to humans but have not been noted to spread in humans
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[7, 8]. Other factors above the cellular level also influence the relationship of a virus 
to a particular host species or geographical location. One factor is the frequency of 
interaction between infected individuals of one species with other species. It is quite 
likely that increased hunting of chimpanzees and gorillas with modern weapons lead 
to transfers of simian immunodeficiency viruses (SIVcpz and SIVgor) from these spe-
cies into humans. Another possibility is that humans have been exposed to these SIVs 
many times in the past, but it took higher human population densities and/or blood 
exposures via transfusions and needle reuse to jump- start the human epidemic [9, 10]. 
Iatrogenic transmission of HIV has been greatly reduced in the developed world, but 
unsafe medical practices continue in some developing nations [11].

After a cross-species transfer event takes place, such as transfer from chimpanzee 
into humans, the virus evolves from the single point source of the transfer into lin-
eages that diversify from that single common ancestral virus to form what is known 
as a “star phylogeny” except when multiple viruses infect any one individual and 
then recombine. Inter-lineage recombination creates a network or web relationship 
between lineages rather than a perfect star or tree. Within any one infected individual, 
recombination within the viral swarm or population is a highly frequent occurrence 
because each virion packages two ssRNA viral genomes and the reverse transcriptase 
skips between the two genomes when synthesizing the first strand complementary 
DNA. There is some, but not a complete, blockage of multiple infections of a single 
cell with more than one virion, but many of the billions of infected cells in an indi-
vidual will be multiply infected. The vast majority of humans infected sexually are 
singly infected from a single-donor sex partner. In IV drug user communities, mul-
tiple infections from more than one donor are common. Within a single community, 
whether sexual or IV drug user, it is more common for a set of highly related viruses 
within a single subtype than for multiple subtypes of virus to be circulating (Fig. 5.2).

Selection pressure on virions within each infected individual is quite extreme. Both 
CTL-mediated and antibody (B-cell-mediated) immune responses vastly reduce the 
viral load from as high as the tens of millions of virions in the first weeks of infection 
to a “set point,” a typical reduction four orders of magnitude lower than the peak. That 
is, 99.99% of virions are being removed, and only 0.01% survives to reproduce in 
each round of replication. This can result in nearly complete replacement of one popu-
lation, be it one that is sensitive to attack of a single CTL epitope or one that is sensi-
tive to a drug, by a mutant-resistant population, in a matter of weeks [12, 13]. The host 
immune system attacks many virus epitopes at once, some CTL and some antibody, 
and also evolves over time to become more efficient at attacking the virus. Drugs on 
the other hand can only target one viral factor per drug and do not evolve over time. 
Using multiple drugs simultaneously is thus critical to success. Combination antiret-
roviral therapy (cART) goes by various names such as highly active retroviral therapy 
(HAART). The most common combinations include drugs that target two sites in the 
reverse transcriptase enzyme and one target in the protease enzyme.

Selection pressure driving the virus to change over time such as to evade the host 
immune system or to evade (become resistant to) drugs is known as positive selec-
tion. The other major selection pressure on the virus is for the virus to be “highly fit” 
in terms of replication rate within each individual and in terms of being transmis-
sible to other individuals.

5 HIV and SIV Evolution



74

5.2  Mutations

5.2.1  Bias

Retroviruses are observed to evolve at a rate nearly ten million-fold faster than 
mammalian nuclear genes. The exact rate of evolution depends on the region of the 
genome, with the envelope gene evolving faster than the polymerase gene, for 
example, due to differences in selection pressures. Moreover, the rate of evolution 

A1
A1

A1

A6
A6A6

A6
A6

A2

A2
A2

B

B

B

B

D

D

D D

F1

F1
F1

F1

F2F2

F2F2

K

K

C
C

C
C

H
H

H
H

J

JJ

G
G

G
G

A4
A4

A4

A3
A3A3

HIV−1 M group

0.05

Fig. 5.2 HIV-1 M group phylogenetic tree. Phylogenetic tree constructed by maximum likelihood 
method using complete genomes of HIV-1  M group major subtypes. CRF26_AU is included 
because the authors defined the A-like regions as subsubtype A5. It is noteworthy that subtypes B 
and D are related to each other, and recent standards of nomenclature and classification would be 
subsubtypes (as are F1–F2, A1–A6) rather than full subtypes, but they were classified very early in 
the study of HIV-1 as subtypes
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is a function of both the mutation rate and the selection pressures on the genes under 
study. It is generally accepted that mutations occur at random and selection creates 
differences in the observed patterns of change over time [14], but there are several 
biases in the mutation step of the process as well. Transition mutations (A <-> G and 
C <-> T) occur much more frequently than transversion mutations ( A <-> T, A 
<-> C, G <-> T, and G <-> C) for a number of reasons, and for retroviruses, the G 
to A mutation rate is far higher than any other rate including A to G. Also, the con-
text of bases surrounding a given base can influence the mutation rate. One well- 
known example is that C followed by G is prone to mutation to T because of DNA 
methyltransferases. Methylcytosine can deaminate to uracil, which then pairs with 
adenosine so that the cytosine is replaced by thymidine in the next round of replica-
tion. Most mammalian DNA is depleted of CpG dinucleotides except for regions 
known as CpG islands [15], and many viruses also have a lack of CpG.

With human infections we can almost never know the exact sequence of the 
infecting virus, and we therefore always observe changes over time that are at least 
partially influenced by selection as well as the underlying mutations. In experimen-
tal infections of macaques, a single infectious molecular clone with a known genome 
sequence can be used, but even in this case, lethal mutations are eliminated, and 
with sampling over time, we observe evolution that is influenced by selection. Other 
ways to study the fidelity of HIV reverse transcriptase and thus mutations without 
selection include using single-round replication vectors in vitro or in cell cultures 
and sequencing cDNA made from RNA templates of known sequence after a single 
round of reverse transcription.

The base composition of lentiviruses is A-rich and C-poor with the A:C ratio 
close to 2:1. The base composition bias is fairly uniform across the genome and 
even more uniform between different viruses. The same regions that are less A-rich 
in one primate virus are also less A-rich in others. The result of this is that many 
so-called “silent” sites in the genome, third codon positions where any of the four 
bases can be used to encode the same amino acid when translated, appear to be 
under strong purifying selection. Many phylogenetic analysis programs can be set 
to assume that silent sites are neutral and freer to change than nonsilent sites in 
protein coding regions.

For most purposes, there is no need to separate mutation rate from evolution rate, 
and in fact it is counterproductive to do so when the observed virus sequences are 
the product of both mutation and selection over time. Likewise, selection processes 
vary slightly from one patient to another or even within a single patient over time, 
but the average behavior over many sites in the genome and over larger timescales 
can be remarkably consistent. Conversely the study of very small regions of the 
genome and/or using very small or not well-chosen data sets (not randomly selected 
from the population under study) can result in very poor estimations of rates and/or 
patterns of evolution [16–19].
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5.2.2  Hypermutation

A large source of mutation in retroviruses is the activity of APOBEC enzymes. The 
APOBEC enzymes recognize DNA/RNA heteroduplex molecules in the cytoplasm 
and deaminate cytidines in the RNA strand. The result is that many stop codons are 
introduced into the genes, and functional proteins can no longer be produced by the 
mutated viral genome [8, 20]. Because the retrovirus brings some reverse transcrip-
tase and integrase protein into the cell, the mutated nonfunctional provirus can be 
integrated into the host genome, and it is not uncommon to find hypermutated viral 
sequences when proviral DNA is amplified and sequenced. Although dead or non-
functional genomes cannot continue to replicate and evolve, each one is just one 
replication round away from its parental virus and so can contribute valid informa-
tion about the host virus population.

5.2.3  Insertions/Deletions

Duplications of motifs such as NK-kappa-B binding site, PSAPP/PTAPP motif in 
gag. Duplications of nearby DNA RNY in env. Length of Env loops. Vpr/Vpx 
duplication.

In addition to point mutations, insertions and deletions contribute to the evolu-
tion of DNA. Insertions and deletions are usually not counted in phylogenetic analy-
ses of evolution because there are many different types of insertions and deletion 
events, and it is not possible to directly compare them to rates of single base muta-
tions. One common type of insertion and deletion event is known as variable num-
bers of tandem repeats, where a simple repetitive element increases or decreases in 
copy number. Gene duplication events are also relatively common in most organ-
isms, but in retroviruses there are constraints on genome size, which would limit the 
viability of most such events. One gene duplication event in the primate lentiviruses 
is hypothesized to have created the Vpx plus Vpr gene pair in some lineages, while 
other lineages have Vpr plus Vpu genes [21, 22].

5.3  Selection

There are many different types of selection forces acting on viral genome sequences, 
usually with overlapping and either conflicting or supporting roles. The most obvi-
ous selection forces on protein coding regions of the virus are conserving the amino 
acid codons needed for a given protein function and changing the surface of the 
envelope protein to evade the host antibody immune responses [23].
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5.3.1  Positive by CTL

Cytotoxic T lymphocytes possess HLA (system?) that cleaves viral proteins into 
primarily 9-mer peptides which are then presented on the cell surface of infected 
cells by xxx and recognized by killer T cells. Viral protein cleavage is not random, 
but dozens of 9-mers per viral protein can be presented by the average infected cell. 
Not all epitopes are equally effective at eliminating virus-infected cells, so there are 
dominant epitopes responsible for the majority of viral reduction plus many more 
weak epitopes that are much less effective. Different human HLA genotypes tend to 
target different viral epitopes such that the dominant epitope in one individual is not 
dominant in most others.

5.3.2  Positive by Antibody

Infected individuals produce antibody responses to nearly all viral proteins, with a 
general trend in the order of appearance of strong antibody responses appearing in 
the first weeks of infection. Most antibodies do not neutralize the virus and have 
little impact on viral load and thus have little impact on viral evolution. Neutralizing 
antibodies, which bind to the viral envelope glycoprotein, prevent the virus from 
binding to cell surface receptors on uninfected cells (CD4 and either CCR5 or 
CXCR4 coreceptor). Neutralizing antibodies are often highly specific for only a 
single lineage of virus. In relatively rare cases, a single antibody can bind to and 
neutralize a wide variety of lineages, and these are called broadly neutralizing anti-
bodies (BNabs).

Elimination of virions that are bound by neutralizing antibodies drives the evolu-
tion of escape mutants. The most common mechanism of escape is addition and/or 
subtraction of glycosylation sites, which are highly prevalent and variable on the 
surface of the envelope glycoprotein. The glycosylation of envelope is referred to as 
“the glycan shield” [24].

5.3.3  Positive by Drug

In contrast to host immune responses, which are variable between infected individu-
als and even variable over time within each individual, an antiretroviral drug is 
always the same and thus exerts the same selection pressure in all individuals who 
take the drug. Detection of immune system escape mutations is complex and 
requires many viral sequences and immune reaction tests for each individual. 
Detection of drug resistance mutations can be done with as little as one viral 
sequence per individual and rather simple tests for viral replication rate in the pres-
ence or absence of each drug.
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For one example, the change of wild-type methionine to valine at amino acid 184 
(M184V) in the reverse transcriptase protein results in nearly complete resistance of 
the virus to azidothymidine (AZT) and some related nucleoside analog reverse tran-
scriptase inhibitors. The M184V mutation also partially cripples the reverse tran-
scriptase enzyme such that although the virus is resistant to any level of AZT, it 
replicates slower than wild-type virus. Maintaining AZT therapy in the presence of 
M184V mutant virus can be of benefit to infected people because the drug still sup-
presses all of the wild-type viruses; thus viral load is reduced. Also, each drug resis-
tance mutation first occurs in a single virion, so that populations of drug-resistant 
virions, which descend from that mutant, have low diversity and greater chance for 
control by the individual’s immune responses.

A major concern with drug resistance mutations is the transmission of drug- 
resistant virus from one infected person to others such that whole populations of 
people are infected with drug-resistant viruses, and the effectiveness of treatment 
and especially the ability to prevent mother-to-child transmissions with simple drug 
regimens proven to be safe for fetuses and infants is reduced. Surveillance for trans-
mitted drug resistance (TDR) is thus an important public health issue as well as 
being beneficial to individuals who will get a report of which drug combinations are 
most suitable for treating the particular virus they are infected with.

5.3.4  Negative by Replication Rate

Although Darwin’s theory of evolution is most often said to be “survival of the fit-
test,” it is actually more accurately described as “elimination of the weakest” for 
most living things. It is not typically the single most fit individual that survives each 
generation and huge advancements in fitness are rarely realized in a single round of 
replication. Highly unfit or lethal mutations on the other hand occur very frequently 
and are eliminated from the gene pool nearly instantly. The dominant population of 
any group of organisms is generally referred to as “wild type,” and the vast majority 
of mutants are observed to be less fit than wild type. When nonlethal but slightly 
less fit mutants arise, they can be eliminated from the population over time either by 
being outcompeted by wild-type individuals or by reverting to wild type. They can 
persist in the population by acquiring compensatory mutations, which allow them to 
regain fitness, or by spreading into habitats where they are no longer in competition 
with wild-type individuals.

Nearly all organisms have many stages in their life cycles where changes in fit-
ness can influence the longer-term evolution of the population or species as a whole. 
Although a fast replication rate will benefit a lineage of virus within an individual 
in the short term, killing the host or making the host too sick to interact with poten-
tial new hosts to pass on the infection leads to an evolutionary dead end. Replication 
rate within an individual can thus be in conflict with overall epidemic growth rate. 
The lentiviruses require close physical contact for host to host spread, and tend to 
have long asymptomatic periods during which an infected individual can pass the 
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virus on to others. The term “lenti” in Lentivirus is Latin for slow, and these viruses 
were named long before the primate immunodeficiency viruses were discovered 
[25, 26].

One important factor in controlling HIV viral replication rate seems to be the 
very poor codon use in the viral genome. The genetic code is redundant, with 61 
codons (plus 3 stop codons) for 20 amino acids, and different organisms have differ-
ent levels of transfer RNAs matching the various synonymous codons. The lentivi-
ral genomes have a very high frequency of codons that are read by low-level tRNAs 
in mammals. When synthetic DNA encoding HIV proteins but with high-level 
“fast” mammalian codon use is transfected into mammalian cells, protein produc-
tion can be nearly 200-fold higher than transfection with DNA using the lentiviral 
codons.

5.3.5  Negative by Infectivity

To be passed from cell to cell within an individual and to be transmitted between 
host individuals, a virus must bind to cell surface receptors and maintain an ability 
to penetrate the host cell membrane. Although the virus evolves rapidly, host cell 
receptors are nearly invariant within any mammalian species. For the lentiviruses, 
the CD4 T-cell receptor, which is also expressed on macrophages, dendritic cells, 
and several other cell types, is the primary host cell receptor. The CD4 binding site 
on the envelope protein is thus quite highly conserved (Fig. 5.3).

5.3.6  Negative by Codon Use Bias

Codon use bias is a conundrum in HIV-1 M group and most other lentiviruses. The 
synonymous codons selected for use by the virus are very slow for translating the 
viral messenger RNA to protein in human cells. In the study of protein production 
levels, changing the codons from native HIV-1 sequences to codons optimized for 
mammalian expression, results in as much as a 200-fold increase in the level of 
protein produced [28, 29]. Lentiviral genomes are nearly uniformly A-rich and 
C-poor with the A:C ratio in any given region of the genome close to 2:1.

5.3.7  3.8 Negative by RNA Secondary Structure

In addition to encoding all of the proteins needed for viral replication and defeat of 
host immune defense mechanisms, the virus must also provide mechanisms of 
packaging viral genomes into virions and regulating gene expression levels and 
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timing, and several other functions, which are known to involve self-complementarity 
and RNA secondary and tertiary structures [30, 31] (Fig. 5.4).

5.4  Recombination

Retroviruses package two copies of the viral RNA in each virion. During reverse 
transcription, the viral reverse transcriptase enzyme can switch between the two 
template RNA molecules and thus produce a complementary DNA that is partially 
derived from each of the two template genomes which were packaged in the virion. 
Although many or most cells are infected with only one virion such that the progeny 
viral genomes being packaged are identical to each other, multiple infections of a 
single cell are common and result in progeny virions with two different genomes 
packaged. Dual infection of a single individual with two different subtypes of HIV-1 
can thus result in intersubtype recombination (Fig. 5.5).

Fig. 5.3 Three-dimensional rendering of HIV/SIV envelope protein structure. Red balls illus-
trate the V1–V2 hypervariable loop region, green highlights the V3 loop region, and yellow high-
lights the relatively conserved CD4 cell surface receptor binding site (The figure is adapted from 
Ref. [27])
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5.4.1  Recombination Within an Individual Virus Lineage

The vast majority of HIV-1 infections are derived from a single virus. This is known 
as the transmission bottleneck. It remains unproven whether the transmission bottle-
neck is the result of a single virion crossing the mucosal surface at the time of trans-
mission or alternatively whether several viruses typically are transmitted but one of 
them rapidly outgrows the others in the initial days of infection. Multiple infections 
with more than one strain of virus are somewhat rare, but in populations of people 
at high risk of infection, such as commercial sex workers and IV drug users, it is not 
unusual to find people infected with more than one strain. If a person is infected 
with a second virus before seroconversion to the first virus has taken place, it is 
termed a dual infection. Infection with a second strain after seroconversion is known 
as superinfection.

Within an individual that was infected with only one virus, recombination hap-
pens, but the recombinants are derived from two nearly identical template genomes 
such that detecting the recombination events is often impossible. However, after 
many years of infection, the viruses within an individual have acquired some diver-
sity, and it then becomes possible to detect the recombinant genomes [33, 34]. 
Although intrapatient recombination in a singly infected individual does not have 

Fig. 5.4 Viral RNA secondary structure stem-loops in the 5′ long terminal repeat (LTR)
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any significant impact on virus evolution for vaccine design or phylogenetic analy-
ses of the overall epidemic, it does have large impacts on the ability of the virus to 
escape numerous selection pressures. For example, recombination between a virion 
with a drug resistance mutation in the pol gene and another virion with a mutation 
allowing it to escape immune selection in the env gene can produce progeny viruses 
that are resistant to both of these selection pressures.

5.4.2  Intrasubtype Recombination

Virus recombination is typically only noted when the two participating viruses are 
of different genetic subtypes. Intrasubtype recombination is of course far more fre-
quent, but it is usually difficult to detect and so commonplace that it is usually not 
of interest to report on it. Dual infections and superinfections with the same subtype 
of virus but from a different donor are more common than infection with multiple 
subtypes, because in most communities in the world, only one subtype of the virus 
is present [34, 35]. Intrasubtype recombination has little or no impact on epidemiol-
ogy, vaccine design, and many other aspects of HIV biology, but it can be a driving 
influence for recombining different regions of the viral genome carrying different 
selective advantages within an individual such as antibody escape mutations in the 
envelope gene and CTL escape mutations in the gag gene [33].

5.4.3  Intersubtype Recombination

Multiple infections with different subtypes soon result in intersubtype recombinant 
viruses. Although in theory recombination could happen often enough within such 
an individual to soon generate scrambled genomes with only very short regions 
derived from each of the parental viruses, in practice the observed intersubtype 
recombinants are not scrambled and usually have fewer than ten recombination 
breakpoints [36, 37]. It is possible that genetic distance between the subtypes has 
resulted in genomes that are not fully compatible with each other, and thus not all 
recombinants are equally fit [38]. This would prevent many intersubtype recombi-
nant virions from thriving in an individual and prevent the scrambling of genomes 
over time. It is also possible that recombination just does not happen as often as 
theory would predict [39].
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5.5  Phylogenetic Reconstruction

Phylogenetics is the study of the evolutionary relationships between organisms. 
Although the evolutionary histories of many plants and animals can be accurately 
inferred by analyzing phenotypic traits such as leaf structures or wing and beak 
shapes, the use of DNA sequences is much more common today and more accurate 
[3, 40]. Reconstructing the evolutionary tree or ancestral history of viruses has 
many uses, and there are many data sets available in which the biology is very well 
known such that the theory and practice can be tested [16, 41, 42].

5.5.1  Data Set Choices

Several factors influence the types of information that can be gained by phyloge-
netic analysis of virus genetic sequences. When analyzing the evolution of the 
viruses within a single patient, the most common type of sample is a blood sample, 
but the viruses present in the blood at any one moment in time may not be an accu-
rate representation of the viruses present in lymph nodes, central nervous system, or 
other sites in the body. Several studies have attempted to assess the degree to which 
different sites in the body tend to host their own sublineages of virus, which is 
known as compartmentalization [43–46]. Within a population of people, it is simi-
larly difficult to obtain a truly random sample of infected people. In addition to the 
choice of biological samples to use, there are choices to be made about which 
region(s) of the genome to sequence and how many sequences will be needed to 
obtain the desired statistical power.

In all cases, some compromise must be reached between the theoretically ideal 
data set and the data that can actually be obtained given biological, ethical, funding, 
and other constraints. In many cases it is possible to enhance the statistical power of 
a given study by supplementing the new data from a given study with data obtained 
by other studies and available in the genetic databases such as GenBank and the 
HIV Databases at the Los Alamos National Laboratory [47, 48].

5.5.2  Method and Model Choices

The simplest model of evolution assumes that all DNA base changes are equally 
likely and that there is no selection pressure or other influence on the rate of evolu-
tion of different sites in each gene. The Kimura two-parameter model adds just one 
factor, stating that transitions and transversions have different rates [49]. More com-
plex models can evaluate a different rate for each base change and also allow each 
site in a gene (column in a multiple sequence alignment) to have a different rate of 
evolution. There are programs such as ModelTest and PartitionFinder to assist in the 
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rational decision of which model of evolution to use on a given data set [50, 51]. As 
the size of the data set grows, the computational resources needed to perform the 
most complex analyses increase factorially with the number of sequences and lin-
early with the length of the sequences. Although it is impossible to compute the 
absolutely correct or best tree from large data sets, there are heuristics employed to 
greatly reduce the number of computations needed to arrive at a very reasonable 
result. Poor choice of samples, sequencing errors, and other problems with the input 
data sets are far more often the cause of serious problems than suboptimal choices 
of computational methods.

5.5.3  Recombination Detection

Phylogenetic reconstruction of evolutionary history in general assumes that the 
sequences being analyzed are not recombinant and that each sequence has one his-
tory. Although in practice HIV does undergo recombination, the scope of the recom-
bination is limited. The viruses in one infected individual are not recombining with 
viruses in any other infected individual. Recombination can confound or invalidate 
phylogenetic analyses, but it is not always a problem, and there are many methods 
available for detecting recombination [34, 40, 52].

5.5.4  Alignment

Almost any analysis of multiple sequences from the same organism requires that all 
of the sequences be aligned to one another in a multiple sequence alignment. 
Pairwise alignment of any two sequences, or of each sequence in a set to one refer-
ence sequence, is usually simple using the Smith-Waterman algorithm [53]. 
Aligning many sequences to each other, when each of the sequences has insertions 
and deletions relative to other sequences, becomes a much more difficult problem, 
but many programs have been written to automate the task [54]. The HIV Databases 
at Los Alamos National Laboratory have developed tools specifically designed for 
aligning HIV sequences, which take into account the multiple overlapping reading 
frames used by the virus [47, 55].

Obtaining a very good multiple sequence alignment often involves iterations of 
producing a multiple sequence alignment, analyzing the alignment by methods such 
as building a phylogenetic tree and using Simplot to look for uniform diversity 
between sequences, and then adjusting the alignment if the analyses indicated any 
region of the alignment or sequences in the alignment were aberrant.
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5.6  Rates and Dates

5.6.1  Molecular Clock Tests

The gene sequences of viruses and other organisms change over time due to muta-
tions and selection pressures. The consistency of the rate of change over time is 
known as the molecular clock hypothesis. Individual mutations happen in a stochas-
tic manner with little predictability, but the sum of changes over large regions of the 
genome and longer timescales tends to be more uniform. Many factors including 
population sizes, selection pressures, generation times, and fidelity of replication 
influence the clock rate; thus most data sets do not show evidence of a strict molecu-
lar clock. However, given large data sets, the average behavior is clocklike enough 
to allow many inferences about the past history of populations such as effective 
population sizes and dates of divergence from a common ancestor [3, 40, 56].

5.6.2  Examples

Very early in the study of the HIV/AIDS pandemic, it was noted that there was a 
great diversity between HIV isolates in comparison to the diversity observed in 
most other viruses [57, 58]. The first estimates to estimate the rates of evolution and 
to use the rate to date the origin of the pandemic were hampered by small sample 
sizes and by missing information about the natural history of the primate lentivi-
ruses. Very good estimates have now been made by many groups, using independent 
methods and sample collections, with very high levels of agreement between them 
[3, 9, 59–62].

Within the HIV-1 M group, many studies have analyzed the growth of subsets 
of the AIDS pandemic using sequences from viruses collected over time in various 
parts of the world. Several studies, for example, have attempted to pinpoint the 
time and location of the beginning of the HIV-1 subtype B epidemic in the USA 
[63–65]. Molecular clock analyses of HIV-1 subtype B in the USA and Europe 
agree that the date of the common origin of subtype B was between 1960 and 1970, 
and many papers speculate that HIV was incubating in the USA for nearly 20 years 
before being detected in 1981. However, it is also possible that the subtype B 
viruses were evolving in other parts of the world, and then multiple introductions 
of HIV-1 subtype B entered the USA in the late 1970s and early 1980s [66]. 
Analyses of virus sequences can provide accurate information on the date of the 
common ancestor of the viruses, but this does not provide information on the geo-
graphic location of the ancestor.
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5.6.3  Saturation Effects

The DNA bases thymine and cytosine are pyrimidines with one ring, while guanine 
and adenine are purines with two rings. Because of the size difference and other 
factors, substitutions of one base for another do not all happen equally. Transitions 
far outnumber transversions, with the lentiviruses being especially prone to G to A 
transitions. Rather than simply counting all point differences between sequences 
equally, models of evolution can calculate different rates for different types of muta-
tions and attempt to correct for multiple mutations at a given site. One method of 

Fig. 5.6 Saturation of sequences, multiple hits per site. Transitions (G <-> A and C <-> T) out-
number transversions (A <-> C, A <-> T, G <-> C, and G <-> T) when distances are relatively 
small, but as mutations accumulate such that more variable sites have mutated more than once, 
saturation is reached, and computation of the phylogenetic or molecular clock time distance from 
the observed distance becomes difficult to impossible. (a) complete genomes of HIV-1 M group 
viruses were analyzed. (b) the complete genomes of all primate immunodeficiency viruses were 
analyzed
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testing for saturation of mutable sites is to calculate the transition to transversion 
ratios of all pairs of sequences in the data set. The DAMBE phylogenetic analysis 
package [40] provides a tool for producing a graphical plot of transitions and trans-
versions versus pairwise distances. Figure 5.6 shows the results of analyzing the 
data sets used to make Figs. 5.1 and 5.2.

Most phylogenetic tree building programs also calculate a matrix of substitutions 
observed in the data and have an option for outputting the full matrix. However, this 
matrix is an average over all comparisons and will not show whether or not satura-
tion is observed in the data.
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