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Core Message
HIV-associated neurocognitive disorders (HAND) remain highly prevalent among 
those with HIV-1 infection. Risk for HAND appears to vary as a function of host 
genotype, in particular with regard to immune- and dopamine-related genes. 
Because HAND is a dynamic syndrome within individual cases, gene expression 
and epigenetic processes are also informative about HAND pathogenesis and poten-
tial treatment targets. Additional topics arising at the intersection of genomics and 
HAND include the iron dysregulation, HIV-associated central nervous system 
impairment in children, and leveraging epigenetic changes to study the effect of 
HIV on biological aging in the brain. Finally, several shortcomings of current 
HAND phenotypes are explored, as are promising alternatives.
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19.1  �Introduction

Modern combination antiretroviral therapy (cART) has markedly improved the 
clinical outcomes of patients with human immunodeficiency virus-1 (HIV-1) infection. 
Severe neurological complications, such as HIV-associated dementia and HIV 
encephalitis, are now rare. However, milder forms of HIV-associated neurocogni-
tive disorders (HAND) are increasingly prevalent. The reasons for this continue to 
be investigated and include chronic immune activation, interactive effects with bio-
logical aging, and antiretroviral drug toxicities, among others. In addition, some 
individuals appear to have inherent resistance not only to infection but also to 
HAND and other HIV-related complications. In this chapter, we review previous 
human genetic studies of HAND risk. In addition, because HAND is such a dynamic 
syndrome, we explore studies employing transcriptomic screening, as well as those 
investigating epigenetic processes associated with HAND. We also explore specific 
topics at the intersection of HAND and genomics. This includes the influence of 
iron dysregulation, mediated in part by genetic variants of iron-regulatory and 
mitochondrial-related genes; HIV-associated central nervous system (CNS) impair-
ment in children, with a focus on host genetic variants that provide protection or 
added risk; the influence of aging on HAND risk and the genes that modify this risk; 
and research into a particularly exciting epigenetic measure of biological aging and 
its application to HAND. Finally, we address the difficulties of using current HAND 
phenotypes in genetic studies and offer some alternatives.

19.2  �Genetic, Transcriptomic, and Epigenetic Studies 
of Hand in Humans

cART has resulted in a largely beneficial change in the course and clinical compli-
cations associated with HIV infection. In regard to complications involving the 
CNS, cART has resulted in a marked decrease in the frequency of severe conditions 
such as HIV-associated dementia (HAD) and underlying neuropathological condi-
tions such as HIV encephalitis (HIVE) and microglial nodules [1–3]. However, in 
their place are milder forms of neurocognitive impairment, including asymptomatic 
neurocognitive disorder (ANI) and mild neurocognitive disorder (MND) [4]. The 
increasing prevalence of these milder forms is due to a variety of factors, including 
chronic immune activation, amplification of aging processes, and antiretroviral drug 
toxicities [5–10]. HIV-associated neurocognitive disorders (HAND), which include 
ANI, MND, and HAD, are diagnosed in 40–50% of unselected, chronically HIV-
infected (or HIV+) individuals in the cART era who are able to complete neuropsy-
chological testing [1, 11]. HAND is a public health concern, as it has adverse effects 
on medication adherence [12], activities of daily living [1, 13], employment, and 
overall quality of life [5].
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The neuropathogenesis of HAND remains incompletely understood; it may 
overlap that of other common neurodegenerative diseases in which genetics has a 
role and with which HAND shares certain similarities [14–18]. Studies of genomic 
factors underlying symptoms and disease have led to helpful insights about HAND 
neuropathogenesis and identified potential treatment targets. In particular, recogni-
tion of the critical importance of neuroinflammation, reflected by elevated expres-
sion of inflammation or immune activation biomarkers in the brain, CSF, and plasma 
[19–21], the central role played by mononuclear phagocytes [16, 22, 23], and the 
possible role of dopaminergic dysfunction [24, 25], has provided a framework for 
studies of the role of host genomics in HAND.

However, while the application of genomic and other “omics” approaches cou-
pled with bioinformatics and systems biology is promising, it faces a serious hurdle, 
the lack of a reliable phenotype for HAND. How can we, without a reliable neuro-
cognitive, neuropathological, or neurophysiological biomarker for HAND, apply 
these methods in an effective manner? In this review, we present the current state of 
research involving human genetic, gene expression, and epigenetic data to under-
stand HAND neuropathogenesis. We employ the term HAND to include all HIV-
related neurocognitive deficits and their putative neuropathological causes. The 
benefits and limitations of these methods as applied to HAND are discussed. Finally, 
we propose potential solutions to overcome the primary obstacle in this research 
area, namely, a shift from behavioral to biological phenotypes and the application of 
systems biology as a path toward understanding the complexities of this disease 
process.

The purpose of this first section is to summarize the current state of understand-
ing of host genomic, transcriptomic, and epigenetic factors that predispose indi-
viduals to HAND, with an emphasis on recent studies and reasonable conclusions 
that may be drawn from this rapidly growing volume of data. We then cover a num-
ber of special topics related to host genomic studies of HAND, including a focused 
examination of mitochondrial and iron-related genes, pediatric neuroAIDS, com-
plement activation pathway polymorphisms, and the intersection of aging and 
genomics. We also discuss the acute challenge of omic studies of HAND due to lack 
of validated biomarkers and shifting definitions. We then discuss future directions 
for research in this field, suggested by the current state of knowledge, including 
innovative statistical methods, emerging genomic technologies, and therapeutic 
areas of promise.

19.2.1  �Genetic Studies of HAND

19.2.1.1  �Candidate-Gene Studies

The field of neurogenetics has long been interested in the role of genes in relation to 
psychiatric and neurologic characteristics and disease. However, in the case of 
HAND, there are no heritable neurocognitive deficits or neuropsychiatric symptoms 
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that would provide a foothold from which to explore genetic contributors of disease. 
Instead, the focus has been variants of genes involved in various biological pro-
cesses that significantly impact risk of neurocognitive impairment, course of the 
disease, response to antiretroviral medications (ARVs), and also those associated 
with putative biomarkers of HAND.  As such, genetic association studies in the 
realm of HAND serve both as a means to identify risk factors and to help delineate 
the neuropathogenesis. In this section, the focus is on studies of neurocognitive 
dysfunction; other HAND-related phenomena are covered later in the chapter. By 
and large, candidate-gene association studies have focused on immune-related 
genes and dopamine-related genes, as both the immune system and dopaminergic 
system are implicated in HAND pathogenesis. A comprehensive list of gene asso-
ciation studies is shown in Table 19.1.

19.2.1.2  �Immune-Related Genes

There is a wide variety of immune factors that have been implicated in the chronic 
neuroinflammatory state leading to HAND, primarily involving cytokines, chemo-
kines, and their cell surface receptors [71–73], as well as other immune factors such 
as human leukocyte antigen [58] and mannose-binding lectin-2 [50]. Genetic vari-
ants of these immune factors can affect HAND neuropathogenesis via numerous 
routes. For example, because HIV requires chemokine co-receptors to enter cells 
[74, 75], structural changes in receptors or expression levels of ligands can affect 
HIV replication [76] and disease progression [77, 78]. Chemokines also affect mac-
rophage activation and chemotaxis of monocytes and other cells across the blood-
brain barrier [79, 80], thereby leading to increased inflammation and viral entry into 
the CNS. Further, chemokines can affect neuronal signaling with subsequent distur-
bance of glial and neuronal functions [81, 82]. Several candidate-gene association 
studies have characterized how specific genetic variants of immune-related genes 
modify risk for HAND [17, 45, 47]. The most widely cited studies are discussed 
below. A comprehensive list that includes important study information such as sam-
ple description, phenotype, and results is provided in Table 19.1.

C-C chemokine receptor type 5 (CCR5 gene). CCR5 is the most common HIV 
co-receptor, at least during the early course of infection. CCR5 mediates gp120 
neurotoxicity [83]. A 32-base-pair deletion in the CCR5 gene, resulting in the 
CCR5-Δ-32 allele (rs333), leads to structural changes within the HIV co-receptor 
that confers high resistance to HIV infection among those who are homozygous at 
this locus [84, 85]. More recently, evidence for neurocognitive improvement among 
patients treated with CCR5 antagonists lends support for the potential role of vari-
ants of this gene in HAND risk [86]. Early genetic association studies suggested 
that this allele conferred protection against HIV-associated dementia. For example, 
Boven and colleagues [30] found that not a single case among their samples of 
European-American individuals diagnosed with HAD had a CCR5-Δ-32 allele, 
which normally occurs in 10–20% of individuals with northern European ancestry. 
Although these findings were validated by another group shortly thereafter [31], 
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more recent studies have not replicated this association [39, 50], possibly due to the 
changing pathogenesis of HAND. For example, Bol et al. [57] observed that the 
CCR5-Δ-32 genotype was associated with HAD in individuals who developed 
AIDS prior to 1991, but not after, which was interpreted as reflecting the waning 
effect of this genotype on viral load set point. However, Singh and colleagues [36] 
found that children heterozygous for the CCR5-Δ-32 allele had slower disease pro-
gression and less cognitive impairment than homozygous wild-type individuals. 
The phenotype in that study was neurocognitive functioning rather than HAND 
diagnosis.

Monocyte chemoattractant protein-1 (MCP1 or CCL2 genes). MCP-1 is a che-
mokine that recruits monocytes and other immune cells into the CNS and is there-
fore believed to be responsible in part for the neuroinflammatory response. In vitro 
HIV infection of human leukocytes results in increased transmigration across the 
BBB in response to MCP-1, which in turn increases expression of MCP-1 [87]. 
Levels of MCP-1 are elevated in the brain and CSF of patients with HIVE and HAD 
as compared to controls [19, 20], and MCP-1 in CSF is associated with pathologic 
magnetic resonance spectroscopy (MRS) indicators [71]. The HIV protein Nef 
induces MCP-1 expression in astrocytes with subsequent infiltration of infected 
monocytes into the brain [88]. The most commonly studied polymorphism in the 
context of HAND is SNP rs1024611, resulting in the MCP1-2578 allele. This allele 
is associated with increased levels of MCP-1 in serum [89] and CSF [90] and has 
been linked to accelerated disease progression and a 4.5-fold increased risk of HAD 
[34]. However, this finding has not been consistently replicated [47, 50]. Also, while 
a recent study found evidence of a statistically significant rate of working memory 
ability change over time among carriers of this allele compared to noncarriers and 
HIV-uninfected individuals, the practical change was negligible [66]. Further, 
Thames et al. [91] reported that this polymorphism affects levels of inflammatory 
factors in CSF, which in turn affect neurocognition; however, no direct association 
between MCP1 genotype and neurocognitive functioning was found in that study. 
Other polymorphisms outside this gene that affect the impact of MCP1 on neuro-
cognitive functioning in HIV have been examined. For example, a recent study 
found a significant difference in PREP1 allele distribution among HAD cases and 
non-HAD HIV+ controls [57]. Prep1 is a transcription factor with preferential bind-
ing to the promoter region of the MCP1 gene. In addition, a polymorphism within 
the minor HIV co-receptor CCR2, the natural target receptor for MCP-1, may result 
in slower HIV disease progression [92]. Specifically, individuals heterozygous for 
the CCR2-V64I allele exhibited slower disease progression and developed AIDS 
2–4  years later than those who were homozygous for the wild-type allele. Still 
another study found CCR2-V64I to be associated with slower progression to neuro-
cognitive impairment [39].

Macrophage inflammatory protein 1-alpha (CCL3 gene). CCL3, or MIP-1α, is a 
chemokine and natural ligand of the HIV co-receptor CCR5. MIP-1α expression is 
increased in the brains of those with HIVE and is released by both microglia and 
astrocytes [93]. SNP rs1130371 within the CCL3 gene was previously associated 
with HIV disease progression [94] and was found to be associated with a twofold 

A.J. Levine et al.
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greater risk for HAD [47] in the National NeuroAIDS Tissue Consortium (NNTC) 
cohort. An interactive effect was found between another SNP (rs1719134) and HIV 
status on changes in learning ability over time, such that HIV+ individuals demon-
strate less improvement over multiple assessments as compared to their HIV-
negative counterparts; however, the difference was negligible from a practical 
standpoint [66].

HLA-DR.  HLA-DR*04 genotype was identified as a predictor of HAND, low 
CD4+ T-cell responses to HIV, and low plasma HIV RNA levels in a US cohort. It 
was hypothesized that low CD4+ T-cell activation may lead to poor immune control 
of HIV in the CNS, predisposing to HAND, but it may also provide fewer targets 
(activated CD4+ T cells) for HIV replication. To assess the consistency of these 
HLA Class II associations in a new cohort and extend analysis to HLA Class I, HLA 
types, neurocognitive, and virologic status were examined in a cohort of former 
plasma donors in China [58]. In this study, 178 HIV+ individuals in Anhui, China, 
were HLA typed and underwent assessment of neurocognitive function (using 
locally standardized norms) and neuromedical, treatment, and virologic status at 
baseline and 12 months. HLA-DR*04 was associated with a higher rate of baseline 
neurocognitive impairment (p  =  0.04), neurocognitive decline (p  =  0.04), and lower 
levels of HIV RNA in plasma (p  =  0.05). HLA Class I alleles (B*27,57,58,A*03,33) 
that specify a CD8+ T-cell response to conserved HIV sequences were neuroprotec-
tive, associated with less impairment at baseline (p   =   0.04) and at month 12 
(p  =   0.01) and less neurocognitive decline (p  =   0.02) in this interval. Consistent 
with the theory that effective CD8+ T-cell responses require CD4+ T-cell support, 
the HLA-DR*04 allele reduced the neuroprotective effect of the Class I alleles. The 
presence of HLA-DR*04 and the Alzheimer’s disease-associated allele APOE-ε4 in 
the same individual had a synergistic negative effect on cognition (p  < 0.01 ). Despite 
major background differences between US and Anhui, China, cohorts, HLA-DR*04 
predicted neurocognitive impairment and lower plasma HIV RNA levels in both 
populations. HLA Class I alleles associated with CD8+ T-cell control of HIV were 
associated with protection from HAND.

APOE-ε4 and MBL-2 genes [50]. For the above Chinese individuals, among 
43/201 patients with the APOE-ε4 allele, 58% were cognitively impaired, compared 
with 31% without the APOE-ε4 allele (p < 0.01, odds ratio 3.09, 95% confidence 
interval 1.54–6.18). The mean global deficit score (GDS, a composite score derived 
from a battery of neurocognitive tests) for APOE-ε4 carriers on antiretroviral drugs 
for 12  months was 0.88 [standard deviation (SD)  =  0.55] compared with 0.63 
(SD = 0.54) for APOE-ε4 noncarriers [p = .05, 95% confidence interval (CI) -0.004 
to 0.51]. For the MBL-2 gene, 52% of patients with the O/O genotype experienced 
cognitive decline over 12 months, compared with 23% with A/A genotype [odds 
ratio (OR) 3.62, 95% CI 1.46–9.03, p < 0.01)]. The APOE-ε4 allele was associated 
with increased risk for cognitive deficits, whereas the MBL2-O/O genotype was 
associated with increased risk for progressive cognitive decline in Chinese individu-
als infected with HIV through contaminated blood products.

19  Genetic, Epigenetic, and Transcriptomic Studies of NeuroAIDS
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19.2.1.3  �Dopamine-Related Genes

In recent years, there have been numerous reports of polymorphisms within dopa-
mine (DA)-related genes, resulting in measurable differences in neurophysiological 
and neurocognitive functioning in non-HIV cohorts. Among the most commonly 
examined are the catechol-O-methyltransferase (COMT) val158met allele [95–103], 
the dopamine transporter-1 (DAT1) 3’-UTR variable tandem repeat [104–109], and 
the brain-derived neurotrophic factor (BDNF) val66met allele [110–117]. While the 
effects of these variants on neurocognitive phenotypes have been small, it is con-
ceivable that among HIV+ individuals, in whom DA functioning may already be 
compromised [107, 118–121], the effects will be additive or synergistic. Despite 
this plausible hypothesis, cross-sectional studies to date have not found reliable 
evidence that DA genotype modifies risk of HAND [60]. For example, Levine et al. 
[60], examining cross-sectional data from the NNTC, did not detect any interactive 
effect of disease severity (as measured by CD4+ T-cell count) and COMT, DAT1, or 
BDNF genotypes described above upon a number of neurocognitive domains in an 
exclusively HIV+ sample. Bousman et  al. (2010) reported interactive effects of 
COMT val158met genotype (rs4680) and executive functioning on sexual risk tak-
ing in both HIV+ and HIV− individuals [122]. While no differences in executive 
functioning were noted between groups, they did find that among Met allele carri-
ers, those individuals with greater deficits in executive functioning reported a greater 
number of sexual partners and other risky sexual practices. Very recently, 
Sundermann et al. [68] examined interactive effects of COMT rs4680 genotype and 
HIV on executive functioning and frontal cortex metabolism among two samples of 
women enrolled in the Women’s Interagency HIV Study Consortium. While vastly 
underpowered for a genetic association study, they found that HIV+ Val/Val carriers 
performed significantly worse on working memory tests compared to uninfected 
Val/Val carriers and that HIV+ Val/Val carriers also showed greater prefrontal acti-
vation compared to uninfected Val/Val carriers during the task.

The additive or synergistic effects of DA-related alleles and stimulants such as 
methamphetamine and cocaine in HIV+ cohorts have also been examined. Gupta 
et al. [123] investigated the impact of a SNP (rs6280) within the dopamine recep-
tor-3 gene (DRD3) upon neurocognitive functioning in four groups, stratified for 
HIV status and methamphetamine use. The biological connection between DRD3 
and HAND is especially interesting, as macrophages are more likely to be infected 
by HIV in the presence of both methamphetamine and increased extracellular DA 
individually, and this process is mediated by DA receptors expressed on macro-
phages, including DRD3. As the authors hypothesized, only the HIV+ methamphet-
amine users were found to have genotype-related neurocognitive alterations.

Analyzing longitudinal neurocognitive data from the Multicenter AIDS Cohort 
Study (MACS), Levine et al. [66] examined the longitudinal interaction between 
HIV status, stimulant use, and DA-related genetic variants in a very large cohort 
(N = 952) that included both HIV+- and HIV-uninfected individuals. COMT geno-
type (rs4680) was found to influence the longitudinal neurocognitive functioning of 
uninfected individuals, but not HIV+ cases. Other DA-related genetic variants, 
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including those in genes for BDNF (rs6265), dopamine-β-hydroxylase (DBH) 
(rs1611115), dopamine receptor-2/ANKK1 (DRD2) (rs1800497), and DRD3 
(rs6280), did not affect the longitudinal neurocognitive functioning of HIV+ 
individuals.

19.2.1.4  �Genome-Wide Association Studies

Genome-wide association studies (GWAS) have become increasingly affordable 
and a practical means to study disease pathogenesis. Several such studies have iden-
tified additional risk variants associated with HIV disease progression (including 
so-called rapid progressors), viral set point, and other disease-related phenotypes, 
as previously reviewed [124, 125]. GWAS have also proven valuable for the study 
of already relatively well-characterized neurologic diseases, such as Alzheimer’s 
disease [126–129]. In the context of HAND, for which the cause remains poorly 
understood, GWAS also hold promise because of the potential to identify common 
genetic variants that contribute to neuropathogenesis. This potential to lead to 
improved mechanistic understanding of HAND and ultimately identification of 
pharmaceutical targets is tempered by the need for very large sample sizes to achieve 
the necessary power to detect those variants that influence phenotype. To date, only 
one GWAS focusing on HAND has been published [130]. The study sample con-
sisted of 1287 Caucasian adults enrolled in the MACS, leaving it vastly underpow-
ered by general standards. However, by leveraging a MACS protocol that includes 
serial neurocognitive testing and neuromedical examinations, several neurocogni-
tive phenotypes were examined for their association with over 2.5 million SNPs. 
The phenotypes decline in processing speed or executive functioning over time, 
prevalent HAD, and prevalent neurocognitive impairment based on a comprehen-
sive neuropsychological battery. Two SNPs within the SLC8A1 and NALCN genes 
had p-values just below the strict GWAS threshold in association with change in 
processing speed over time. These genes, involved in sodium transport across cel-
lular and intracellular membranes, support the role of mitochondrial dysfunction in 
HAD [131–133]. In the future, additional GWAS with larger samples will be pos-
sible by encouraging collaborative efforts across cohorts.

19.2.1.5  �Summary

Targeted candidate-gene association studies are valuable for investigating HAND 
neuropathogenesis, in part because HAND is a syndrome that is many degrees sepa-
rated from its molecular causes. However, a requisite for such studies is that the 
genes under investigation meet a standard of biological plausibility. Accordingly, 
genetic association studies have implicated a variety of immune-related genes for 
their role as risk or protective factors for HAND. However, very few of these asso-
ciations have been replicated across studies. As discussed further below, there are 
several reasons for this, including lack of a reliable and consistently applied 
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phenotype for HAND (or more accurately a consistent definition or valid bio-
marker), focus on a narrow range of polymorphisms, and study design issues, such 
as failing to consider population stratification and admixture, Hardy-Weinberg equi-
librium, and other factors. Going forward, investigators of genetic associations with 
HAND are encouraged to follow the strengthening the reporting of genetic associa-
tion (STREGA) studies guidelines [134], which set standards for reporting and 
transparency of such studies. In particular, recruitment methods and statistical strat-
egies must be especially rigorous. With regard to GWAS of HAND, collaborations 
across cohorts with the goal of increasing the statistical power to detect common 
variants contributing to neuropathogenesis will be necessary, and supplemental 
strategies to follow up GWAS analysis may also be useful for revealing associations 
that were undetected initially [135].

19.2.2  �Transcriptomic Studies of HAND

Gene expression alterations have been widely studied in the context of neuroAIDS, 
including studies in human tissue and cells, animals, and in vitro models. For the 
purposes of this chapter, we limit our discussion to those studies that employed 
genome-wide microarrays (i.e., transcriptomic studies).

19.2.2.1  �Brain-Based Gene Expression Studies

Most transcriptomic studies of neuroAIDS have taken advantage of genome-wide 
microarrays, allowing surveillance of virtually the entire transcriptome. The next-
generation sequencing method, RNA-seq, is also available but has not to our knowl-
edge been used for a published study of HAND. RNA-seq has several advantages, 
including increased coverage of the genome and the ability to assay miRNA, transfer 
RNA (tRNA), and other RNA in addition to mRNA. Regardless of the method, once 
expression data is generated, it must be evaluated using bioinformatics and systems 
biological methods that make it possible to discern biological networks associated 
with a chosen phenotype [136, 137]. There have been several transcriptomic studies 
of HAND or related phenotypes. Some focus on specific brain cells in vitro [136, 
138–140], using methods such as laser capture microdissection. However, most tran-
scriptomic studies to date have utilized brain tissue from HIV+ humans. Early stud-
ies focused on gene expression changes of frontal gray matter associated with HIVE 
and generally found altered regulation of genes involved in neuroimmune function-
ing; they also implicated neurodegenerative pathways based on dysregulation of 
genes involved in synaptodendritic functioning and integrity [141], toll-like recep-
tors [142], and interferon response [143]. Findings from human microarray studies 
have been partially replicated in simian immunodeficiency virus (SIV) models, espe-
cially with regard to interferon-related and neuroinflammatory-related genes [144–
146], providing some degree of validation. The overlap between animal and human 
brain transcriptomic studies was recently reviewed [147].
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In perhaps a more relevant model to contemporary HAND, Gelman et al. [148] 
analyzed transcriptome data derived from multiple brain regions of HIV+ individu-
als diagnosed premortem with HAND alone or with both HAND and HIVE (as 
found postmortem). That analysis led to the discovery of different transcriptome 
profiles between the groups, implicating two distinct etiological pathways to HAND 
[148]. Specifically, HIVE with concomitant HAND was associated with high RNA 
viral load in brain tissue, upregulation of inflammatory pathways across all brain 
regions, and downregulation of neuronal transcripts in frontal neocortex. In con-
trast, HAND without HIVE was characterized by low brain viral RNA burden with-
out evidence of increased inflammatory response and without downregulation of 
transcripts in frontal neocortical neurons. Only transcripts characteristically 
expressed by vascular- and perivascular-type cells were consistently dysregulated in 
HAND without HIVE. These data were recently reexamined by Levine et al. [149] 
using a systems biologic analysis method and weighted gene coexpression network 
analysis (WGCNA) [150]. While standard gene expression studies such as the study 
by Gelman et al. [148] utilize a group comparison approach, WGCNA enables a 
more systematic and global interpretation of gene expression data by examining 
correlations across all microarray probes, identifying biologically meaningful mod-
ules that are comprised of functionally related genes and/or correspond to cell types 
[151]. These modules can be examined for their association to clinical or biological 
variables of interest. Levine et al. [149] found a number of biologically meaningful 
gene expression modules that were correlated with a global neuropsychological 
functioning index and CNS penetration effectiveness (CPE). While the WGCNA 
largely validated the findings from Gelman et al., it also identified meta-networks 
composed of multiple gene ontology categories as well as oligodendrocyte and 
mitochondrial functioning. Levine et al. [149] also identified genes that were com-
monly associated with neurocognitive impairment in Alzheimer’s disease and HIV 
(Table 19.2). Specifically, common gene networks dysregulated in both conditions 
included mitochondrial genes, whereas upregulation of various cancer-related genes 
was found. An earlier meta-analysis by Borjabad and Volsky (2012) compared 
global transcriptomes derived from frontal gray and/or frontal white matter from 
individuals with HIVE (regardless of HAND status) to those derived from various 
brain regions of individuals who had Alzheimer’s disease, without consideration of 
NCI [152]. Both diseases (as well as multiple sclerosis) were associated with upreg-
ulation of a wide range of immune response genes, and HAND and AD also shared 
down-modulation of synaptic transmission and cell-cell signaling. However, there 
were several methodological differences between the studies, making it difficult to 
compare the results.

Transcriptomic studies have also been helpful in understanding the interaction of 
antiretroviral drug use and HAND. Borjabad et  al. were the first to examine the 
relationship between cART use and global brain gene expression [153]. They found 
that the transcriptomes in cART-treated cases more closely resembled those of HIV-
seronegative cases and had 83–93% fewer dysregulated genes, compared to 
untreated individuals if they were taking cART at the time of death. However, both 
cART-treated and untreated HIV+ brains were found to have approximately 100 
dysregulated genes related to immune functioning, interferon response, cell cycle, 
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and myelin pathways. Of note, gene expression in the HIV+ brains was not corre-
lated with brain viral RNA, suggesting that even high CPE [154], which has been 
shown to reduce CSF viral load [8], may not reverse transcriptomic dysregulation. 
This finding is supported by a study by Levine et al. that showed no association 
between CPE and brain transcriptome utilizing both standard differential expression 
analysis and WGCNA [149]. These findings might help to explain the equivocal 
findings regarding CPE and HIV-related neurocognitive dysfunction to date 
[155–159].

19.2.2.2  �Blood-Based Gene Expression Studies

Focus on peripheral (i.e., outside the CNS) mononuclear cells rather than brain tis-
sue in studies of HAND necessitates different hypotheses and careful interpretation 
of results. By examining transcriptome changes in peripheral blood mononuclear 
cells (PBMCs), it is possible to identify biomarkers of HAND or anticipatory 

Table 19.2  Mechanisms and biomarkers of relevance to HAND

Mechanisms of relevance to HAND Biomarkers

Mitochondrial and 
iron

Basic metabolic processes:
 � DNA, RNA, protein synthesis
 � Maintenance of mitochondrial 

membrane potential
 � Mitochondrial electron transport 

chain function
 � Calcium homeostasis
 � Lipid homeostasis
 � Numerous other metabolic 

reactions
 � Epigenetic modifications

Markers of oxidative and 
nitrosative damage to DNA, RNA, 
proteins, and lipids:
 � 8-oxo-DG
 � F2-isoprostanes (specific) and 

neuroprostanes
 � Isofurans, neurofurans
 � Malondialdehyde (less specific)
 � Protein carbonyls
 � 8-nitroguanine (RNA, DNA)
 � Oxysterols
 � Aβ and α-synuclein 

aggregations
Iron transport  � Mitochondrial biogenesis

 � Iron-sulfur cluster biogenesis
 � Neuronal repair/remyelination
 � Myelination
 � Monoamine neurotransmitter 

synthesis (dopamine, 5-HT)
 � Cellular glutamate uptake/

excitotoxicity
 � Amyloid protein processing
 � Calcium signaling
 � Heme-oxygenase-1 deficiency
 � Hypoxia-response pathways
 � Macrophage-monocyte 

polarization/activation
 � Macrophage-monocyte cytokine 

release
 � HIV replication
 � Endoplasmic reticulum (ER) 

stress
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cellular changes. These cells can be assayed easily, allowing for investigation of 
cellular events that occur considerably farther upstream to HAND onset. Due to 
their central role in HAND pathogenesis [160–166], monocytes have been the cells 
of choice for blood transcriptomic studies of HAND.

Using an in vitro model, Buckner et al. (2011) examined dynamic transcription 
changes in monocytes derived from healthy donors [167]. The cells were infected 
with HIV to produce a CD4 + CD16 + CD11b + Mac387+ monocyte subpopulation 
capable of crossing a laboratory model of the BBB.  Gene expression analysis 
revealed upregulation of chemotactic- and metastasis-related genes but not inflam-
matory genes. Dynamic changes were also observed as the monocytes matured into 
macrophages, including an increase in the expression of enolase-2, followed by a 
decrease once the cell was fully differentiated. Osteopontin was also observed to 
have increased expression in the maturing monocytes.

Sun et al. (2010) reported the first study in which blood monocyte global tran-
scription was associated with neurocognitive functioning in HIV+ individuals. 
More specifically, the authors examined whether or not monocyte gene expression 
and other peripheral factors (CD4+ T-cell numbers, APOE genotype, viral load, 
lipopolysaccharide, and soluble CD14 levels) were associated with neurocognitive 
functioning in a group of 44 HIV+ individuals on cART and 11 HIV-seronegative 
controls [51]. Monocyte gene expression, which showed a chronic inflammatory 
profile in the HIV+ participants with high viral load, was not correlated with 
neurocognitive impairment. The other blood markers were also not found to be 
associated with neurocognitive functioning. More recently, the same group of 
researchers focused their analysis on a neurophysiological phenotype rather than 
HAND [168] by examining whether peripheral immune activation and monocyte 
gene expression were associated with brain metabolite concentrations, as measured 
by MRS.  Thirty-five HIV+ individuals on cART and 8 HIV-seronegative adults 
were examined. Among the HIV+ participants, an interferon-alpha-induced activa-
tion transcriptome phenotype was strongly correlated with N-acetyl aspartate in the 
frontal white matter. Notably, interferon-gamma inducible protein-10 (IP-10 or 
CXCL-10) was strongly correlated with plasma protein levels, and plasma CXCL-
10 was inversely correlated with N-acetyl aspartate in the anterior cingulate cortex. 
This study is remarkable, as it is the first to connect transcription changes with 
neurophysiological changes in the context of neuroAIDS. As discussed below, we 
believe that this tactic holds the greatest promise for elucidating the neuropathogen-
esis of HAND.

Levine et al. [169] utilized the Illumina HT-12 v1 Expression BeadChip to ana-
lyze monocyte-derived transcriptome data from 86 HIV+ individuals enrolled in the 
MACS. Examining all HIV+ samples, the standard differential expression analysis 
identified a number of individual gene transcripts that were significantly correlated 
with global neurocognitive functioning. Of the 16 genes identified, many implicated 
oxidative stresses, including those encoding interleukin-6 receptor (IL6R), casein 
kinase 1-alpha-1 (CSNK1A1), hypoxia upregulated-1 (HYOU1), low density lipo-
protein receptor-related protein-12 (LRP12), and Kelch-like ECH-associated pro-
tein-1 (KEAP-1) [170–185]. The KEAP-1 findings are especially interesting, as they 
support a recently described role for nuclear factor E2-related factor-2 (nrf-2) in 
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HAND [186]. There has been some interest in recent years by neuroAIDS research-
ers of factors that modify the activity of nrf-2 (e.g., GSK3-β inhibitors [187] and 
curcumin [188]) or that are modified by it [189]. As such, members of this pathway 
deserve further investigation as potential pharmacological targets during early 
stages of HAND or even as potential prophylactic agents.

19.2.2.3  �Summary

Genome-wide transcriptomic studies have implicated numerous genes and biologi-
cal pathways in the neuropathogenesis of HAND. Some results of human studies 
have been replicated in simian and murine models. One limitation of previous stud-
ies is the use of homogenized brain tissue, which contains mRNA from numerous 
cell types [141, 145, 190, 191], thus making it difficult to determine cell-specific 
molecular processes. In addition, most studies describe gene expression from one 
brain region (e.g., frontal lobe), and those regional disease-related transcription 
changes may not reflect the disease-related transcription changes occurring in brain 
regions also commonly implicated in HAND (e.g., basal ganglia). Also, most in vivo 
studies utilizing brain tissue have sought to understand alterations in gene expres-
sion in brain tissue of humans or animals that expired in an advanced state of dis-
ease (i.e., HIVE or HAD). Therefore, it is unclear if the findings of those studies 
will generalize to contemporary HAND.  In tandem with studies of brain tissue, 
there have been investigations of monocyte transcriptome, which may provide clues 
about the earlier stages of HAND pathogenesis. Finally, the interpretation of tran-
scriptome data utilizing systems biological methods such as WGCNA [150] may 
point the way to novel therapeutic targets.

19.2.3  �Epigenetic Studies of HAND

19.2.3.1  �MicroRNA Studies

MicroRNAs (miRNAs) are small RNA molecules that modify transcription and 
translation via interactions with mRNA and which regulate a variety of cellular 
processes, including within the CNS. A small number of studies have examined the 
role of miRNA in HAND. The first study evaluated the impact of Tat upon expres-
sion of candidate miRNAs in primary cortical neurons in vitro [192]. Tat was found 
to upregulate mir-128a, which in turn inhibited expression of SNAP25, a presynap-
tic protein. A second study involved examination of postmortem caudate and hip-
pocampal tissue of rhesus macaques with or without simian immunodeficiency 
virus encephalitis SIVE as well as caudate tissue from HIV-uninfected cases and 
humans with both HAND and HIVE [193]. Three miRNAs were found to be ele-
vated in both SIVE and HIVE (miR-142-5p, miR-142-3p, and miR-21). miR-21, 
linked to oncogenesis, was significantly upregulated in both HIVE and SIVE. 
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miR-21 also induced stimulation of N-methyl-D-aspartate (NMDA) receptors, lead-
ing to electrophysiological abnormalities. Further, miR-21 was found to target the 
mRNA of myocyte enhancer factor 2C (MEF2C), a transcription factor crucial for 
neuronal function and a target of miR-21, ultimately reducing mRNA expression. In 
a third study, Noorbakhsh et al. conducted miRNA profiling in the frontal lobe white 
matter of four HIV-negative and four HIVE cases who were matched by age and sex 
[131]. Several miRNAs were found to be differentially expressed between the 
groups, using a standard twofold cutoff. Bioinformatics analysis revealed that most 
of the upregulated miRNAs targeted genes involved in immune response and inflam-
mation, followed by nucleotide metabolism and cell cycle. A fourth study by Tatro 
et al. used both global mRNA and miRNA expression analysis in order to identify 
changes in miRNA expression in the frontal cortex of HIV+ individuals, determine 
whether miRNA expression profiles could differentiate HIV from HIV with concur-
rent major depressive disorder (MDD), and develop a method for integrating gene 
expression and miRNA expression data [194]. Their sample consisted of HIV-
negative controls, HIV+, and HIV+ with concurrent MDD. miRNAs from three 
individuals within each group were pooled and used for the miRNA profiling, and 
mRNAs for three individuals from both HIV+ groups were used for non-pooled 
mRNA profiling. Importantly, neurocognitive functioning was not considered in 
this study, ages varied widely between groups, and one of the HIV+/MDD brains 
had pathology consistent with HIVE. With these caveats in mind, the HIV+/MDD 
group showed a greater number of downregulated miRNAs compared to the HIV+ 
group. Further, the miRNAs tended to cluster more tightly around the same chromo-
somal regions. After identifying mRNAs that were significantly differentiated in the 
HIV+/MDD group, and then identifying miRNAs that were dysregulated by at least 
a twofold change relative to the HIV-only group, the authors employed a target bias 
analysis to determine the relationship between miRNA dysregulation and target 
gene dysregulation. Using this method, they identified miRNAs belonging to four 
categories: (1) those with many dysregulated mRNA targets but of marginal statisti-
cal significance, (2) those with fewer dysregulated target genes but with high statis-
tical significance, (3) those with numerous dysregulated gene targets that were of 
high statistical significance, and (4) those that did not have a significant number of 
dysregulated targets. The authors also identified a small number of genes with 
3′-UTR miRNA target sequences. Those genes were considered to be “hubs” for 
miRNA activity, and the authors outlined their biological roles and association with 
neuropsychiatric illnesses.

A fifth study examined the impact of HIV viral protein R (Vpr) in a human neu-
ronal cell line in order to investigate the mechanisms underlying the altered expres-
sion of cytokines and inflammatory proteins in CNS cells resulting from HIV 
infection. Both miRNA and gene expression assays of human neurons (primary 
cultures or cell lines) treated with recombinant Vpr proteins were used. Vpr was 
found to deregulate several miRNAs and their respective mRNAs [195]. As one 
potential mechanism for neuronal dysfunction, they found that expression of both 
miR-34a and one of its target genes (CREB) was dysregulated in the presence of 
Vpr. This study was the first to demonstrate a miRNA-dependent pathway through 
which Vpr damages neurons.
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Most recently, Kadri et  al. [196] sought to identify an epigenetic marker of 
HAND by screening over 750 miRNAs assayed from plasma in a group of 30 HIV+ 
adults who had been classified as neurocognitively impaired or normal based on a 
battery of cognitive tests. Utilizing a miRNA pairwise analysis to analyze the array 
data [197], the authors identified ten miRNA pairs that were differently expressed 
between impaired and unimpaired HIV+ cases and then validated their findings 
with qRT-PCR.  The miRNA pairs that best differentiated impaired from non-
impaired samples were miR-495-3p in combination with miRNA let-7b-5p, miR-
151a-5p or miR-744-5p, and the pair miR-376a-3p/miR-16-532-3p. Sensitivity was 
further improved through the combination of two microRNA pairs: miR-495-3p/
miR-744-5p and miR-376a-3p/miR-532-3p. Of note, none of these miRNA pairs 
were associated with other clinical characteristics. As the authors point out, it was 
also of interest that these miRNAs are all either enriched in brain tissue or have 
known neuronal functions.

19.2.3.2  �Histone Modification Studies

Chromatin structure, and therefore gene expression, can be modified by the acetyla-
tion and deacetylation of histone proteins, a process that is mediated by histone 
deacetylases (HDACs) [198]. HDAC inhibitors have been shown to improve cogni-
tive ability and may be candidates for treating a variety of neurologic diseases 
[199, 200]. We are aware of only one study examining histone modification in the 
context of HAND neuropathogenesis. Saiyed et al. examined the influence of Tat 
upon expression of HDAC2 in neuronal cells in vitro and the subsequent effect of 
HDAC2 modification on regulating genes involved in synaptic plasticity and neuro-
nal function [201]. HDAC2 expression was negatively correlated with expression of 
CREB and CaMKIIa genes, which were reported to be involved in neuronal 
regulation.

19.2.3.3  �DNA Methylation Studies

Genome-wide methylation platforms are now readily available (e.g., Illumina 
Infinium 450 K); however, very few studies have employed this method for the study 
of HAND. In addition to revealing information about cellular processes involved in 
HAND pathogenesis, whole-genome DNA methylation technology has been lever-
aged to create bioinformatics tools that can be used to study aging and HAND. DNA 
methylation levels are particularly promising biomarkers of aging, since chronologi-
cal age profoundly affects them in most human tissues and cell types. The recently 
developed biomarker of aging (referred to as epigenetic clock [202]) was recently 
applied to the study of accelerated biological aging due to HIV in brain and periph-
eral blood mononuclear cells [203]. It was found that the brains of HIV+ adults 
exhibited age acceleration of 7.4 years compared to uninfected controls according to 
the epigenetic clock, whereas the age of PBMC was accelerated by 5.2 years. This 
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marker of aging may also be clinically relevant in HIV+ individuals. As recently 
shown by Levine et  al. (2015), brain samples from individuals diagnosed with 
HAND within 1 year of death also showed an age acceleration of 3.5  years 
compared to samples from HIV+ neurocognitively normal individuals [204].

19.2.3.4  �Summary

Epigenetic studies of HAND neuropathogenesis are relatively recent, with most 
studies focusing on miRNA pathways in infected tissue or cells. A variety of miR-
NAs have been implicated, lending validation to previously identified neuropatho-
genic mechanisms, such as increased caspase-6 and mitochondrial dysfunction. 
CREB has been implicated in both miRNA and histone studies. Improved neuropsy-
chological performance was recently associated with global DNA demethylation, 
and a new biomarker of aging (the epigenetic clock) based on several hundred CpGs 
revealed that HIV infection accelerates aging in brain tissue and PBMC.

19.3  �Special Topics

19.3.1  �Roles for Iron and Mitochondrial Dysmetabolism 
in Neuro-HIV/AIDS

19.3.1.1  �Overview

Accumulating data provides evidence of altered systemic iron metabolism in HIV 
infection, with sequestration of iron within reticuloendothelial cells and elevated 
circulating levels of the pro-inflammatory, master iron-regulatory hormone, hepci-
din [205–207]. Furthermore, altered iron status (with or without anemia) has been 
associated with morbidity and mortality, even after accounting for potential disease-
related confounding factors, such as CD4+ T-cell count [208–210]. Hepcidin levels 
increase, and plasma iron falls, as part of the inflammatory cascade triggered during 
acute HIV infection, and hepcidin subsequently remains high in untreated individu-
als. Hepcidin levels decline as the virus is suppressed with cART, but longitudinal 
studies have shown that they remain elevated compared to HIV-negative persons, 
even when the virus becomes undetectable. Intracellular HIV replication requires 
iron, and hepcidin levels measured early in HIV infection appear to predict subse-
quent plasma viral load set point [207, 211]. Studies of the role of hepcidin and iron 
transport in determining CSF HIV RNA concentrations in HIV+ persons are ongo-
ing. By blocking gut iron absorption as well as the release of iron from cells of the 
monocyte-macrophage (M/M) lineage to erythroid and other metabolically active 
cells, hepcidin synthesis by the liver represents an important iron-withholding 
mechanism, leading also to anemia of chronic inflammation [212]. In addition, 
regional brain iron distribution may be abnormal in chronic HIV infection, based on 
brain imaging studies [213–215].
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Over the past decade, considerable advances have taken place in understanding 
the roles of iron and mitochondrial metabolism in neurodegenerative disorders. It is 
increasingly recognized that these processes are interconnected and that iron and 
mitochondrial dysregulation may go hand in hand. Therefore, not to include a dis-
cussion of recent studies implicating iron and mitochondrial dysfunction in non-
HIV-related inflammatory neurocognitive disorders would be to sidestep a 
burgeoning area of research with clear relevance to neuro-HIV/AIDS.

19.3.1.2  �Insights from Studies of Iron in Non-HIV-Related 
Neurodegenerative Disorders

Disrupted iron homeostasis in the brain has been a long-recognized feature of both 
common and rare neurodegenerative disorders, including Parkinson’s disease (PD), 
Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Huntington disease, 
multiple sclerosis (MS), and the so-called “neurodegeneration with brain iron accu-
mulation” (NBIA) disorders [216–221]. However, due to the ubiquitous nature of 
iron and its participation in so many fundamental metabolic processes, the indepen-
dent contribution of iron to neurodegenerative disease pathogenesis has been diffi-
cult to discern from its possibly innocent bystander role. Substantial evidence 
linking iron homeostasis with mitochondrial function, lipid homeostasis, and energy 
metabolism implicates systemic and/or CNS iron dysregulation in neurocognitive 
disorders [222–224]. Iron accumulates in some areas of the brain with healthy 
aging, but the distribution and total amounts are abnormal in many neurodegenera-
tive diseases, exceeding what is observed with normal aging. Inflammation is fre-
quently also present in these disorders in areas of regional iron excess and neuronal 
cell death [225]. Iron redistribution has the potential to promote oxidative injury in 
areas of increased iron deposition as well as possible functional iron deficiency due 
to low bioavailable iron in other brain regions. Both eventualities may contribute to 
disease pathogenesis [226, 227].

Iron is a required cofactor for numerous essential metabolic enzymes and a critical 
component of cytochromes and flavoproteins of the mitochondrial electron trans-
port chain [228–230]. Relevant to the CNS, iron is required for myelination, neuro-
nal repair, and monoamine (dopamine and serotonin) neurotransmitter synthesis, an 
imbalance of which contributes to mood disturbances, oxidative stress within the 
brain, and excitatory neuronal loss [231–234]. Access to a steady supply of iron in 
non-oxidatively reactive forms is therefore essential for maintenance of cellular 
health and metabolism. However, iron is also a biological hazard due to its effi-
ciency in catalyzing free radical reactions via Fenton chemistry. Most studies of the 
role of iron in CNS disorders have highlighted regional iron excess in the brain as 
the abnormality of interest and emphasized that iron accumulation is synonymous 
with oxidative stress, although there is relatively little direct evidence for this asser-
tion [235, 236]. Mitochondria also contain high concentrations of iron in the pres-
ence of oxygen and superoxide radicals, yet they function normally under these 
conditions for extended periods. Both iron excess and iron deficiency can lead to 
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mitochondrial and cellular dysfunction and oxidative injury. Organisms have there-
fore evolved mechanisms to maintain tissue iron concentrations within a narrow 
physiologic range, tightly compartmentalize it within cells, and transport it in a 
soluble, nonreactive state, bound to a variety of large and small transporters and 
gatekeeper proteins [206]. Hence, iron-related mechanisms of neurocognitive 
impairment other than direct oxidative injury due to increased brain iron content 
also deserve consideration in evaluating the impact of iron.

As in the periphery, cells within the CNS tightly regulate iron homeostasis via 
iron-responsive expression of select proteins required for iron efflux, cellular 
import, transport, and storage. Recently, proteins directly implicated in pathogene-
sis of the most prevalent neurodegenerative diseases, such as amyloid-β precursor 
protein, tau, α-synuclein, prion protein, and huntingtin, have been linked to neuro-
nal iron homeostatic control. This literature suggests that disrupted expression, pro-
cessing, or location of these proteins may result in a failure of their cellular iron 
homeostatic roles and augment the common underlying susceptibility to neuronal 
oxidative damage that is triggered in neurodegenerative disease [237, 238]. Despite 
intensive research over the past two decades, mechanisms regulating brain iron 
transport and egress of iron from the brain are still only partially understood. Iron 
enters the brain mainly by transport across the BBB, a process expected to be tightly 
regulated under normal circumstances in order to buffer the brain from systemic 
iron fluctuations [239]. Hepcidin and the iron export protein ferroportin-1 (FPN-1, 
encoded by the SLC40A1 gene) are linked to iron efflux and transport into the brain 
and, along with astrocytes, play key roles in iron release [238]; turnover of FPN-1 
is controlled by hepcidin [240]. In vitro studies replicating the BBB, which is com-
prised of brain microvascular endothelial cells and underlying astrocytes, and stud-
ies in nonhuman primates, have recently suggested a model in which brain 
endothelial cells, far from being a passive conduit for iron, play an active role in 
regulating iron transport into the brain [241]. Additional in vitro studies of human 
brain microvascular endothelial cells suggest that expression of iron-transport pro-
teins such as FPN-1, the copper ferroxidase ceruloplasmin (CP), transferrin (TF) 
and its receptor (TFR), and heavy chain ferritin are critical in regulating this process 
[242–244]. Other iron transporters such as iron-regulatory protein-2 (IRP-2) also 
play key roles in brain iron metabolism; IRP-2 knockout mouse models show altered 
tissue iron distribution and mild behavioral and neurological impairments, despite 
showing no specific areas of neurodegeneration in the brain [245].

A substantial literature, albeit not entirely consistent, associates iron-regulatory 
gene variants with healthy aging and with altered incidence and age of onset of com-
mon neurodegenerative diseases like AD and PD [233, 246–255]. Polymorphisms in 
the iron-loading HFE gene (H63D SNP in particular) have been best studied in this 
regard, with in vitro studies implicating a multitude of mechanisms for the increased 
risk of AD associated with this SNP: increased iron accumulation, disruption of 
mitochondrial membrane potential, increased influx of intracellular Ca2+, increased 
cellular glutamate uptake, increased secretion of pro-inflammatory MCP-1, 
increased endoplasmic reticulum stress, oxidative injury, β-amyloid (Aβ) peptide-
mediated mitochondrial toxicity, and decreased activity of PIN1, which contributes 
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to tau phosphorylation seen in AD [222]. Recent studies of Friedreich’s ataxia, 
NBIA disorders, and AD have also highlighted the interrelatedness of iron metabo-
lism, mitochondrial function, autophagy (the cellular clearance of senescent or dys-
functional organelles), and lipid metabolism, processes which are critical to CNS 
and peripheral nervous system function [248, 256–258]. These findings demonstrate 
that H63D-HFE expression promotes processes that can influence pathways in neu-
rons that ultimately lead to impaired cognition, such as lipid homeostasis, neuro-
transmission, and myelination. Iron, like other transitional metals, not only alters 
processing of β-amyloid, but soluble amyloid precursor protein has been shown to 
stimulate iron efflux from brain microvascular endothelial cells [243]. While changes 
in iron homeostasis may not be the primary triggering event that initiates the patho-
logical cascade leading to HAND, disrupted iron transport may be an important 
factor in altering metabolism of structural proteins like β-amyloid, thereby promot-
ing neuroinflammation and progression of these disorders (Table 19.2).

Disrupted iron metabolism has recently been confirmed in postmortem brain tis-
sues from patients with AD [259], in their cerebrospinal fluid (CSF) [260], and 
using R2*-based magnetic resonance imaging of the brain in AD patients [261]. A 
meta-analysis of over 2500 studies of iron in AD suggested that the weight of evi-
dence favors a role for iron dyshomeostasis in the serum and CSF, as well as in the 
brain in AD [262], but the literature is not entirely consistent in this regard [263, 
264]. Very recent studies by Ayton et al. strongly implicate iron dysregulation in the 
association of the APOE-ε4 genetic variants with AD risk; and APOE genotype may 
modulate CSF ferritin levels, which in turn are associated with AD outcomes [260, 
265]. Baseline CSF ferritin levels were inversely associated with cognitive perfor-
mance during a 7-year follow-up in normal, mildly impaired and AD subjects and 
also predicted conversion from mild cognitive impairment to AD. CSF ferritin and 
CSF APOE levels were strongly correlated, and CSF levels of ferritin were elevated 
in individuals harboring the APOE-ε4 allele. In PD, decreased brain iron levels have 
also been noted in individuals at postmortem [266]. Some studies even indicate 
abnormal systemic iron status in AD and PD, as well as in ALS [223, 267, 268]. 
Whether iron dysregulation in the brain in AD, PD, ALS, and other disorders is 
related to or induced by systemic iron dysregulation, or vice versa, remains unclear.

Taken together, these findings favor the concept that maldistribution of iron in 
the brain is not an epiphenomenon; rather that iron dysregulation is a likely patho-
genic mechanism common to many types of neurocognitive disorders, including 
HAND. Furthermore, interactions between brain iron transport and systemic iron 
status are likely to be dynamic and complex: the current concept that increased 
regional brain iron leads to neurocognitive impairment via oxidative injury may be 
a gross oversimplification.

19.3.1.3  �Links Between Iron Levels and HAND

Indications that HIV dysregulates systemic iron metabolism were first reported in the 
pre-cART era: HIV disease progression was found to be associated with altered iron 
metabolism in vitro, and increasing ferritin concentrations were linked to disease 
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progression [205, 269]. CSF ferritin was first measured in HIV+ individuals with 
AIDS Dementia Complex, individuals with CDC stage II HIV infection, and unin-
fected controls and found to be a possible marker of neurologic disease. Ferritin 
levels were detectable in CSF only in those with AIDS Dementia Complex, and it 
was speculated that the source of ferritin in CSF in these patients was activated mac-
rophages involved in promoting neuroinflammation [270]. In HIV+ individuals, CSF 
ferritin levels were shown to be elevated during acute neurological episodes but were 
considered non-specific for HAD [271]. In another study, limited proteomic profiling 
of serum in a small study of HAD cases and non-demented HIV+ controls identified 
CP as a possible biomarker of HAD [272]. Interpretation of iron-related biomarkers 
remains somewhat challenging in HIV infection, due to elevation of these proteins in 
acute and sometimes chronic infection; CP is also an acute-phase molecule.

Neuroimaging studies have also provided evidence that brain iron deposition in 
HIV+ persons is abnormal; neuropathological evaluations have correlated T2 
shortening (hypointensity) in magnetic resonance imaging (MRI) studies of the 
basal ganglia (putamen) with premature perivascular HIV-related iron deposition, 
but the significance of this observation was unclear [213]. A larger MRI study fol-
lowed, showing significantly greater deposition of iron in the basal ganglia (globus 
pallidus and caudate nucleus) of HIV+ persons than in HIV-negative controls [214]. 
More recently, multi-contrast, high-field MRI has detected subtle structural defects 
in the brains of HIV+ individuals with mild neurocognitive disorder (MND) on 
ART, including loss of structural integrity (myelin and cellular macromolecules) 
and micro-edema in global white, cortical gray matter, thalamus, and basal ganglia. 
These subcortical changes were also found to significantly influence executive func-
tion in patients with MND, compared to those without MND, who were similar with 
regard to baseline demographic and HIV-related factors. Iron-sensitive imaging 
using susceptibility-weighted imaging (SWI) was performed in a subset of study 
participants. Although linear discriminant analysis incorporating T1, magnetized 
transfer ratio (MTR) and SWI data provided valuable information for distinguishing 
MND from non-MND individuals, T2* data which is most sensitive to brain iron 
content did not add appreciably to the model. Although there were longer T2* relax-
ation times in the caudate of non-MND patients vs. MND individuals, this was also 
observed in HIV+/non-MND subjects compared to controls and did not reach statis-
tical significance; T1 relaxation times also suggested possibly lower iron content in 
HIV+ than in HIV− controls [215]. These findings clearly require further follow-up 
and study using iron-sensitive neuroimaging techniques, such as R2* MRI, func-
tional MRI, susceptibility-weighted imaging (SWI), and the newer technique of 
quantitative susceptibility mapping [273].

19.3.1.4  �Impact of Iron on HAND in the Setting of Substance Abuse/
Dependence

Iron-storage and transport proteins may have multiple functions within the brain. 
Pitcher et al. [274] reported elevated levels of ferritin heavy chain (FHC) in cortical 
neurons from individuals with HAND premortem and in opiate abusers. Prior 
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studies showed that FHC levels increase in neurons in response to mu-opioid ago-
nists. In neuroinflammation, the chemokine CXCL12 and its receptor CXCR4 per-
form many essential functions, and signaling through this receptor promotes 
neuronal survival and neuronal-glial communication [274]. CXCR4 is an HIV co-
receptor which has been implicated in HIV neuropathogenesis, including elevated 
levels of excitotoxic mediators, synaptodendritic loss or “simplification,” and 
release of inflammatory cytokines. Among HIV+ persons, opiate abuse, particularly 
intravenous opioids, may accelerate development of HAND. FHC regulates CXCR4 
signaling by inhibiting its activation and downstream, pro-survival signaling path-
ways. FHC also functions to bind, oxidize, and sequester iron in nonreactive forms 
for stable storage within the cell, and its production is regulated in response to 
changing iron levels and the inflammatory milieu; of particular importance to 
HAND is the ability of inflammatory cytokines to regulate FHC levels. Pitcher and 
colleagues showed that opiate abuse may exacerbate NCI in HIV through FHC-
dependent disruption of neuronal CXCL12-CXCR4 signaling. They determined 
that this signaling pathway increases dendritic spine density and that HIV+ persons 
with NCI had increased neuronal levels of FHC that correlated with reduced CXCR4 
activation. These results were further confirmed in a SIV-infected nonhuman pri-
mate model with morphine administration. In vitro, transfection of a CXCR4-
expressing human cell line with an iron-deficient FHC mutant resulted in increased 
FHC expression and dysregulated CXCR4 signaling, independent of iron binding. 
Furthermore, studies of neurons showed that FHC contributed to morphine-induced 
dendritic spine loss, suggesting that HIV (and SIV) infection independently dys-
regulate neuronal FHC, which in turn may actively contribute to neurocognitive 
decline in HIV infection among opioid abusers.

Synthesis of monoamine neurotransmitters requires iron; therefore, iron dys-
regulation may also impact the neurobehavioral outcomes of HIV infection, par-
ticularly in the setting of substance abuse [275, 276]. In animal models, iron 
deficiency has been shown to disrupt brain synthesis and metabolism of mono-
amine neurotransmitters and to contribute to memory deficits [277]. Specific stimu-
lant drugs of abuse like methamphetamine and its metabolites are believed to 
contribute to cognitive impairment via increased dopaminergic and serotonin sig-
naling in the brain, excitotoxicity to neurons, mitochondrial damage, and oxidative 
brain injury [234].

19.3.1.5  �Potential Effects of Altered Iron Transport on HIV Replication 
and Neuroinflammation

HIV replication within the CNS is consistently associated with an increased risk of 
neurocognitive impairment, and much research has been aimed at reducing CSF 
viral load and viral reservoirs [278]. Increasing evidence has confirmed that ele-
vated iron stores are positively associated with viral load and mortality in people 
infected with HIV, but interpretation of existing studies of HIV and iron must be 
interpreted with some caution, as most studies to date have been undertaken in 
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largely cART-naïve populations or those without access to modern combination 
antiretroviral regimens. Some work has suggested that both extremes of iron status 
are detrimental to HIV outcomes [209]. Insufficient attention has been given to the 
potential impact of functional iron deficiency to mitochondrial dysfunction, immune 
activation, and antiretroviral toxicity to mitochondria and neurons. Functional neu-
ronal iron deficiency is suggested in some dementing disorders (e.g., AD) character-
ized by deposition of β-amyloid, which is often observed in HAND and exhibits 
altered metabolism in the presence of HIV.

Taken together, data from studies of HIV-infected individuals thus far point to 
independent effects of both HIV and aging on extracellular amyloid-β (specifically 
Aβ42) deposition [279]. Drakesmith et al. showed that HIV Nef downregulates the 
HFE expression on the surface of M/M, leading to iron accumulation and increased 
intracellular viral replication [280]. In addition, HIV infection in vitro alters cellular 
iron levels, which promotes viral replication, and several antiretroviral drugs alter 
the expression of iron-regulatory genes, increasing cellular iron content indepen-
dent of HIV infection [281]. Over the past 15 years, research has also revealed close 
links between the iron-hepcidin-ferroportin axis and M/M-mediated inflammation, 
M/M polarization (M1 vs. M2 states) and activation, and regulation of innate 
immune responses [282]. The central role of M/M and microglia in mediating neu-
roinflammation and HAND has been consistently borne out by genetic, transcrip-
tomic, and epigenetic studies to date, and it therefore begs further exploration of the 
role of cellular iron content in M/M polarization/activation in this phenotype. M/M 
with increased iron content produce more pro-inflammatory mediators and are more 
likely to have an activated M1 phenotype [283]. HIV replication within M/M in the 
CNS is associated with deficiency of heme-oxygenase-1, a neuroprotective enzyme 
produced by M/M, oxidative stress, and glutamate toxicity [189]. Recent ultrastruc-
tural studies have identified so-called dark microglia, which become abundant in 
areas of the brain affected by chronic stress, aging, depression, and AD pathology, 
and these cells play a role in remodeling of neuronal circuits, particularly at syn-
apses [284]. These microglia exhibit signs of increased oxidative stress, with 
increased phagocytosis of synaptic elements as is seen in mouse models of HAND 
[285] and extensive engulfment of axonal terminals and dendritic spines. Hence, 
effects of iron in activating M/M or microglia, or in altering their polarization, may 
promote HAND.

19.3.1.6  �Anemia and Erythrocyte Morphology as Predictors of HAND

Anemia, which is always associated with abnormal iron transport and occasionally 
with systemic iron deficiency, has been a consistently poor prognostic indicator in 
HIV infection in both retrospective and prospective studies [212]. Its relationship to 
dementia in HIV+ individuals was reported previously in the MACS and in another 
study [286, 287], and hemoglobin <12 mg/dl was one of the components of the 
Veterans Aging Cohort Study (VACS) index associated with neurocognitive impair-
ment status in a cross-sectional analysis of the VACS, which was not designed to 
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evaluate anemia and therefore understandably did not include adjustment for comor-
bid conditions and ethnicity [288]. Until recently, its impact on milder forms of 
HAND prevalent in the cART era has therefore remained unclear. We conducted the 
first cART era prospective study in CHARTER which was designed to address the 
impact of anemia and erythrocyte indices in predicting milder forms of HAND. This 
study in >1200 individuals enrolled in the CHARTER study included a time-
dependent analysis of anemia as a predictor of GDS-defined impairment and a 
cross-sectional analysis of erythrocyte indices in association with HAND defined 
by either Frascati criteria or GDS impairment. Anemia, defined as a hemoglobin 
<11.5 mg/dL in women and <13 mg/dL in men, was associated with incident GDS-
defined HAND independent of numerous potential confounding factors, including 
zidovudine (ZDV) use and contributing comorbidities [adjusted hazard ratio (HR) 
1.55, p < 0.01] [210]. Similarly, in a recently published longitudinal sub-study of 
CHARTER, current hematocrit emerged as an independent predictor of neurocogni-
tive decline in multivariable analyses [289]. In addition, the Kallianpur et al. study 
determined that routinely available red blood cell indices such as the mean corpus-
cular volume (MCV) and mean corpuscular hemoglobin (MCH) were significantly 
and positively associated with the GDS-defined HAND, GDS as a continuous mea-
sure, and with HAND by Frascati criteria. These measures were also associated 
with milder forms of HAND (i.e., ANI and MND) in addition to HAD when these 
phenotypes were evaluated in separate models. Erythrocyte indices are often abnor-
mal in HIV infection, commonly in association with ZDV use, protease inhibitors, 
or other cART, and they have also been shown to correlate with systemic mitochon-
drial dysfunction in human and animal studies [290, 291]. Erythrocyte indices may 
therefore indicate subclinical mitochondrial dysfunction and/or lipid dysmetabo-
lism in HIV infection, which promotes HAND. Red cell membrane fatty acid com-
position was found to correlate with brain volumes [292]. To date, few studies have 
examined the value of evaluating and treating anemia in HIV infection, but in light 
of these findings, such studies would seem to be of value in potentially ameliorating 
HAND and preventing its progression [293]. Initiation of cART improves iron uti-
lization, coincident with decreased immune activation. Fuchs et al. further demon-
strated associations between anemia (low hemoglobin levels) and immune activation 
markers such as serum neopterin and β2-microglobulin in HIV+ subjects; interest-
ingly, the latter is also a protein important in regulation of HFE protein stability and 
expression in M/M [294, 295].

19.3.2  �Iron-Related Genetics, RNA Expression, and Associated 
Biomarkers in HAND

19.3.2.1  Overview

Investigation of the role of altered iron transport in HIV infection on neurocognitive 
function is challenging due to the fact that many iron transporters are also acute-
phase proteins and increased in acute inflammatory states. Until very recently, no 
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studies had been undertaken to measure iron and the levels of iron-transport pro-
teins in CSF among HIV+ persons. CP and haptoglobin (HP), an iron-binding chap-
erone protein which serves as a ligand for the M/M scavenger receptor molecule 
CD163, were recently measured in CSF in CHARTER study participants [296]. 
Higher levels of CP were associated with an increased risk of GDS-defined HAND 
in multivariable regression analyses [adjusted odds ratio (OR) 1.8, p < 0.05], and 
higher levels of both CP and HP were associated with GDS in persons with only 
minimal comorbidities (ORs 2.4 and 2.1, respectively, both p < 0.05). In this sub-
group, CSF CP and HP levels were also associated with GDS impairment and 
HAND in individuals with undetectable plasma HIV RNA (ORs 5.6 and 3.0, respec-
tively, both p < 0.01). These associations were not merely due to inflammation, as 
only very weak correlations were observed between iron biomarkers and concur-
rently measured IL-6, CXCL-10, and TNF-α.

In neuroimaging studies of CHARTER participants who had minimal comor-
bidities, we identified five highly significant SNPs in iron-regulatory genes includ-
ing TFRC, CP, and SLC11A1, which predicted alterations in brain imaging traits 
that are commonly associated with HAND. These traits included subcortical gray 
matter volume, frontal gray matter N-acetyl aspartate (a marker of neuronal integ-
rity), abnormal white matter volume, and basal ganglia choline (a marker of neuro-
inflammation) [297]. Additional iron-related genes whose expression in monocytes 
has been associated with neurocognitive impairment also include: NRF-2 (regulator 
of heme metabolism), the “hemoglobin complex” gene module, heme-carrier pro-
tein-1 (HCP1), CD163, IL6R (required for hepcidin regulation of iron metabolism), 
and BOLA2 (which binds iron-sulfur clusters in glutaredoxin and may play a role in 
sensing cellular iron status) [169].

In a collaboration with the NNTC, expression of transferrin receptor (TFR) mes-
senger RNA in brain tissue (frontal neocortex) was evaluated for association with 
HAND; levels of TFR RNA were, surprisingly, unrelated to brain HIV burden but 
were significantly associated with all HAND (adjusted OR 5.2, p < 0.05) and for 
milder forms of HAND. Perhaps most interesting was the negative association seen 
between TFR RNA levels in the neocortex and specific domains of executive neuro-
cognitive function, such as speed of information processing, and working memory 
[298]. Studies such as these support roles for altered iron regulation in HAND.

19.3.2.2  �Iron and Vascular Disease in HIV Infection

HIV is associated with a significantly increased risk of atherosclerotic vascular dis-
ease, which may contribute significantly to HAND in older HIV+ individuals [6, 
299]. Therefore, while elevated iron stores and resulting hepcidin-mediated degra-
dation of the macrophage iron exporter FPN-1 may increase HIV replication within 
M/M and resulting immune activation, hepcidin may also increase development of 
foam cells and lipid peroxidation, destabilizing atherosclerotic plaques. Disorders 
of vascular remodeling such as pulmonary arterial hypertension (PAH) also occur 
with increased frequency in HIV+ individuals, and there is a well-described increase 
in prevalence of iron deficiency among persons suffering from PAH [300, 301]. 
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Studies of the regulation of iron-sulfur clusters in PAH and HIV have revealed a role 
for epigenetic factors (hypoxia-related miRNAs or hypoxamirs) in the pathophysi-
ology of vascular remodeling in PAH [302, 303]. Few studies of PAH in HIV infec-
tion have been performed [304]. The hypoxia-regulated response is modulated by 
iron-regulatory and RNA binding proteins [305]; studies in this area may help to 
elucidate potential common mechanisms linking iron-related chronic immune acti-
vation and vascular complications, which in turn promote neurocognitive decline.

19.3.2.3  �Mitochondrial Genetics and Biomarkers in HAND

Evidence continues to accumulate supporting a role for abnormal mitochondrial 
metabolism in the pathogenesis of neurodegenerative disorders in non-HIV-infected 
persons, implicating defects in iron-sulfur cluster biogenesis. Iron-sulfur cluster 
dysfunction may contribute to cognitive decline and mitochondrial dysfunction 
with normal aging, as well as in specific neurocognitive diseases associated with 
premature aging like HAND, with brain iron accumulation and maldistribution in 
the basal ganglia [256]. Future studies will need to determine how iron-sulfur clus-
ter defects may participate in the natural history of these disorders and whether 
targeted interventions can interrupt neuronal damage.

Until recently, few studies of mitochondrial genomic variation in HAND had 
been undertaken. The mitochondrial DNA (mtDNA) is a separate chromosome 
comprised of 37 genes that encode mitochondrial proteins; the remaining proteins 
required for mitochondrial function are encoded by nuclear genomic DNA. We per-
formed a mtDNA haplogroup analysis in 1027 HIV+ participants from the 
CHARTER study, approximately two-thirds of whom were receiving cART and 
46% of whom were diagnosed with HAND [306]. In this study, ancestry was geneti-
cally defined using principal components from genome-wide genetic data and cat-
egorized as European, African, or admixed Hispanic ancestry. Recent work in 
CHARTER has shown a consistently higher risk of HAND and, in longitudinal 
studies, a higher risk of neurocognitive decline over time, among self-reported 
Hispanic individuals. A reduced frequency of HAND among individuals of self-
reported African ancestry in CHARTER has also been noted previously [210, 289]. 
The reasons for these differences have been widely debated. However, analyses 
within CHARTER have carefully accounted for differences in race/ethnicity and 
education, as well as for practice or learning effects in repeat neurocognitive assess-
ments. The study by Hulgan et  al. confirmed that individuals with genetically 
defined admixed Hispanic ancestry had a higher risk of neurocognitive impairment 
or HAND, as defined by the GDS, than did persons of European or African ancestry. 
The study also identified a subgroup of persons of admixed Hispanic ancestry with 
mitochondrial haplogroup B as having significantly reduced risk of GDS-defined 
impairment (adjusted OR, 0.16, p  <  0.01) compared to other admixed Hispanic 
haplogroups. No other significant haplogroup associations were observed among 
CHARTER participants of European or African ancestry. Hence, mtDNA variation 
may constitute an ancestry-specific factor that influences risk of neurocognitive 
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impairment in HIV+ individuals [306]. Mitochondrial haplogroups have been 
shown in cytoplasmic hybrid (cybrid) studies to be associated with differing levels 
of systemic inflammation and ROS production [307, 308].

Samuels et  al. recently evaluated a new measure of mtDNA copy number in 
PBMCs, estimated using genome-wide microarray data and comparisons of probe 
fluorescence intensities of mtDNA SNPs relative to all nuclear DNA SNPs, with 
neurocognitive impairment in CHARTER participants. Lower predicted mtDNA 
copy number per cell by this measure was associated with longer duration of cART, 
higher platelet count, and higher hemoglobin levels but surprisingly was not 
significantly associated with age. Adjusting for these factors as well as age, mtDNA 
copy number was inversely associated with neurocognitive performance (GDS 
impairment or HAND by Frascati criteria) in study participants (Samuels et  al., 
manuscript submitted for publication) [309]. Higher mtDNA content may therefore 
indicate increased mtDNA replication in response to systemic mitochondrial 
dysfunction in HIV+ individuals, although further studies are needed to replicate 
these associations and clarify underlying mechanisms.

The role of cART in mitochondrial toxicity within the CNS in HIV infection has 
been extensively debated but remains understudied as a possible contributor to 
aging-related neurocognitive impairment [310]. Nevertheless, long-term systemic 
and brain mtDNA depletion and damage may occur after exposure to some nucleo-
side reverse-transcriptase inhibitors (NRTIs), and mitochondrial host genomics may 
interact with antiretrovirals in potentiating injury; this requires further study [311, 
312]. Higher levels of oxidant damage to nuclear and mtDNA in the brains of 
HAND patients at autopsy suggest the possibility that mtDNA damage in these 
persons may promote chronic neuroinflammation and neuronal apoptosis during 
HIV infection [313]. These findings are supported by in vitro studies and studies in 
nonhuman primates [310], which show that cART can generate increased oxidative 
stress and lead to neuronal death. Measurement of biomarkers of oxidative damage 
to DNA and proteins (e.g., oxidatively modified DNA and protein carbonyls mea-
sured in CSF) may be helpful in clarifying these issues.

Extracellular (cell-free) mtDNA, which contains CpG motifs that act as immu-
nogenic toll-like receptor-9 ligands and damage-associated mitochondrial patterns, 
has emerged as a biomarker of neuroinflammation and mitochondrial damage in 
HIV infection and HAND. Cell-free mtDNA is released during cellular injury and 
as part of the innate immune response to viral pathogens, and it may also relate to 
altered autophagy, the process by which cells under stress conditions recycle and 
dispose damaged organelles. Recent studies by Mehta et al. (Mehta et al., manu-
script submitted for publication) evaluated relationships between mtDNA in CSF, 
neurocognitive impairment, and biomarkers of neuroinflammation and immune 
activation in HIV infection [314]. In a cross-sectional analysis of 28 HIV+ individu-
als, cell-free mtDNA levels measured in CSF by droplet digital PCR were strongly 
associated with CSF levels of CXCL-10 and with severity of neurocognitive impair-
ment in impaired individuals, but not with neurocognitive impairment itself. In five 
individuals who participated in a longitudinal treatment interruption study, mtDNA 
levels rose in CSF preceding the onset of CSF pleocytosis and the rise in CSF HIV 
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RNA. In the first neuropathological study to evaluate mitochondrial injury in the 
brain in HIV infection, Var et al. compared levels of mtDNA (copies per cell) and 
the relative proportion of the mitochondrial common deletion (a 4977-bp deletion 
associated with mtDNA damage) in autopsy brain tissues from HIV+ persons with 
and without a history of methamphetamine (METH) use and in HIV-negative con-
trols; all decedents in this study had undergone premortem neurocognitive charac-
terization as NNTC participants [315]. Individuals with known AD were excluded 
from analyses. While no regional differences were seen in mtDNA copy number per 
cell in gray matter, higher mtDNA levels were seen in certain white matter regions 
(e.g., Brodmann’s area), and a significantly higher abundance of the common 
mtDNA deletion mutation was also observed in these regions. Higher levels of 
mtDNA were observed in specific brain regions in HIV+ METH users compared to 
METH nonusers and HIV-negative controls, but mitochondrial injury, as evidenced 
by the abundance of the common deletion, was lower in the HIV+ METH users. 
MtDNA levels per cell were not associated with age in brain tissues, although the 
abundance of the common deletion was associated with age, as anticipated. In the 
HIV + METH+ group, a higher abundance of the “common deletion” was associ-
ated with lower GDS (p < 0.01); however, in the HIV + METH group, higher abun-
dance of the “common deletion” was associated with higher GDS (p < 0.01). Finally, 
in both HIV+ groups, mtDNA injury was associated with HIV DNA levels in the 
brain, but not with mtDNA content. Nor were levels of extracellular (cell-free) 
mtDNA in CSF associated with GDS, inflammatory markers, or METH use.

19.3.2.4  �Novel Iron-Modifying and Mitochondrial-Targeted Therapeutics

As noted by other investigators, there is a need to carefully balance trophic and toxic 
properties of iron in the CNS when designing and testing iron-modulating therapies 
[316]. The evidence suggests that treatment of HAND should be based on a combi-
nation of anti-inflammatory, regenerative, and neuroprotective strategies. Boelaert 
et al. [205] first discussed the possibility that iron chelators may have a role in treat-
ing the iron dysregulation of HIV infection. Iron chelators have shown considerable 
promise in AD and PD and need to be investigated in HAND. Future studies evalu-
ating and treating even milder forms of anemia in HIV+ persons hold promise for 
reducing the impact of HIV on cognition. Studies of erythrocyte membrane and 
other properties of whole blood may provide a clue the pathophysiology of cogni-
tive decline in this population [317].

Data linking brain iron redistribution and increased extracellular iron accumula-
tion with dysregulation of calcium transport, abnormalities of NMDA receptors, 
and malfunction of voltage-operated calcium channels suggest that mitochondrial 
targeting of therapeutic agents could be a fruitful strategy for addressing HIV-
induced iron-mitochondrial dysmetabolism in the brain [318].

Recent studies in nonhuman primate SIV models of neurologic disease have sug-
gested that fluconazole and paroxetine are protective against HIV gp120- and Tat-
mediated neurotoxicity. As evidenced by neurofilament light chain levels in CSF, 
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amyloid precursor protein accumulates in axons and calcium in the frontal cortex, 
although markers of neuroinflammation and plasma or CSF viral loads were not 
impacted. This study points out that neuroprotection is possible even in the face of 
viral replication and neuroinflammation [319]. Drugs such as paroxetine and defer-
oxamine (an iron chelator) may modulate iron levels in the brain and suppress iron-
mediated Aβ accumulation in the CNS, with significant neuroprotective potential in 
HIV+ individuals [320]. A recently completed randomized, double-blind, placebo-
controlled clinical trial showed particular promise for paroxetine [321]. Naturally 
occurring iron-containing molecules, including mitochondrial ferritin and 
(H)-ferritin, may also hold therapeutic promise in neurocognitive disorders like 
HAND [322]. Mitochondrial ferritin is a relatively recently identified iron-storage 
protein unique to mitochondria and important for proper iron partitioning between 
mitochondria and the cytosol. It is primarily expressed in the brain and structurally 
similar to (H)-ferritin. Mitochondrial ferritin is upregulated in AD and its overex-
pression attenuates β-amyloid neurotoxicity; its neuroprotective effects also include 
maintaining mitochondrial iron homeostasis and preventing dopaminergic cell 
death [322]. Chelation of extracellular iron released from activated macrophages 
and microglia may also be a way to address iron accumulation in certain brain 
regions and oxidative injury to the brain in chronic inflammatory disorders of the 
CNS, such as HAND [225, 323]. Neurons and glial cells may export iron via a 
glycophosphatidylinositol-anchored form of CP, and CP levels may promote iron 
deposition in certain parts of the brain. As in vitro and animal studies have 
suggested that excess iron in the brain can be chelated and that iron chelators 
hold promise in the treatment of neurological disorders like AD and PD, such inter-
ventions may have therapeutic benefit in HAND [323]. Ongoing studies addressing 
iron-mitochondrial dysregulation in the CNS promise new interventions to evaluate 
in clinical trials soon, providing hope for improving quality of life for this growing 
population of individuals surviving (and aging) with HIV infection.

19.3.3  �Genetic Factors in CNS Impairment in HIV+ Children

19.3.3.1  �Introduction

HIV infection has different effects on neurocognitive function in pediatric HIV dis-
ease as compared to adults. The natural history of HIV disease also differs between 
children and adults. Children generally do not have the same confounding factors 
such as drug abuse encountered in HIV+ adults. Since children’s immune systems 
are immature, they are unable to fight HIV infection, and there is a risk of more 
rapid disease progression. Also, normal CD4+ T-lymphocyte counts are higher in 
young children than in adults, dependent on age; hence, these cell counts need to be 
interpreted differently from CD4 cell counts in adults. However, children also have 
higher potential for immune system reconstitution, as they have higher numbers of 
CD4+ T cells than adults.
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HIV crosses the BBB and enters the brain early in infection. Compared to HIV 
infection in the CNS of adults, there have been fewer studies in children. Absence of 
coinfections or confounding factors in the CNS of children with HIV infection has 
allowed better understanding of the brain damage and lesions associated with pri-
mary HIV brain infection. In a comparison of primary HIV infection of the brain in 
children and adults, it was observed that children had more florid inflammation, 
more frequent multinucleated giant cell localization in the cerebral cortex, and more 
basophilic mineralization compared to adults. In contrast, adults had more perivas-
cular brown pigment and more obvious white matter changes [324]. These 
neuropathological observations support the presence of more fulminant CNS disease 
in HIV-infected children, due to increased virulence of HIV in the immature CNS.

HIV+ infants may manifest early, catastrophic encephalopathy, with loss of brain 
growth, motor abnormalities, and cognitive dysfunction [325]. HIV-infected infants 
score lower than seroconverters on developmental measures, particularly language 
acquisition. Symptoms similar to adult HAD are occasionally seen in adolescents 
with advanced AIDS, including dementia, bradykinesia, and spasticity. The risk of 
HIV encephalopathy increases with very early age of infection and with high viral 
loads.

In a study of the French Perinatal Cohort of children born to HIV+ mothers and 
followed from birth with the French SEROCO Cohort of adults with a known date 
of infection, early encephalopathy in infants had a different pathophysiologic mech-
anism from that occurring in children, which showed similarities with mechanisms 
observed in adults [326]. Early encephalopathy was probably related to the occur-
rence of pathologic events during late fetal life.

Another study evaluated neuropsychological development, prevalence of neuro-
logical impairment, and neuroimaging in nine HIV-infected children for a period of 
10 years using electroencephalography every 6 months and computed tomography/
MRI once a year, which were very informative tools to follow the course of neuro-
psychological problems of HIV+ children [327].

Antiretroviral agents can improve or even reverse the course of neurological 
impairment in children due to various degrees of CNS drug penetration. Addition of 
the protease inhibitor ritonavir to nucleoside analogue therapy has been reported to 
delay disease progression and prolong life in adults with moderate to advanced HIV 
disease [328].

As part of the neurodevelopmental examination of children, the Clinical Adaptive 
Test/Clinical Linguistic and Auditory Milestone Scale (CAT/CLAMS) detected 
neurodevelopmental differences between HIV+ and uninfected children at 12 and 
18 months of age [329].

In a study of HIV-related encephalopathy in 50 pediatric patients, born to HIV-
seropositive mothers or infected by contaminated blood, 17 pediatric patients with 
HIV-related neurological impairment, 16 cases of encephalopathy, and 1 case of 
neurotoxoplasmosis were observed, demonstrating a high frequency of neurological 
impairment in HIV+ infants and children [330].
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In a follow-up study of 784 HIV+ Argentinian children infected by vertical trans-
mission, 311 developed neuroAIDS [331]. Also, antiretroviral treatment showed 
complete remission or noteworthy improvement of progressive and nonprogressive 
encephalopathy, conversion of the most severe cases of progressive encephalopathy 
(severe developmental delay, acquired microcephaly, spastic quadriparesis, and 
fatal progression) into a more moderate phenotype (less developmental delay, nor-
mal head growth, spastic paraparesis, and chronic evolution of the disease), and 
reversion of acquired microcephaly observed in the first years of the epidemic. 
Another study recently summarized the spectrum of neuro-HIV in children, the 
neurocognitive and behavioral sequelae, the effects of treatment on the primary 
neurologic effects of the disease, and the specific challenges of identifying and 
managing these problems in resource-limited contexts, such as those found on the 
African continent [332].

19.3.3.2  �Effects of Host Genetic Variants on CNS Disease in HIV+ 
Children in the United States

Several studies in HIV+ children from two US cohorts are described here; 1053 
children with symptomatic HIV infection from Pediatric AIDS Clinical Trial Group 
(PACTG) protocols P152 [333] and P300 [334] were studied. P152 and P300 were 
multicenter, prospective, randomized, double-blind, placebo-controlled protocols 
that assessed the efficacy of single or combination NRTI treatment regimens in 
symptomatic HIV+ children in the United States, prior to the availability of 
cART. Important eligibility criteria included an age range of 3 months to 18 years 
with symptomatic HIV infection for P152 [333], an age range of 42 days to 15 years 
with symptomatic HIV infection for P300 [334], and meeting the requirements that 
the original Centers for Disease Control (CDC) classification system had estab-
lished to diagnose HIV infection in children at the time of these studies [335]. In 
these two protocols, CD4+ T-lymphocyte count and percentage and HIV RNA con-
centration were measured at entry, prior to initiation of therapy and baseline CD4+ 
T-cell count, and HIV RNA data were used as dependent variables in analyses to 
determine their associations with host genetic variants. Of the 1053 subjects, 1045 
had baseline CD4+ T-cell counts, and 871 had baseline HIV RNA data.

The primary endpoints of the analyses were progression-free survival (PFS) and 
CNS impairment. PFS was defined as either time from study randomization to pro-
gression to first clinical HIV-related disease outcome or death, whichever occurred 
earlier. The disease outcomes included weight growth failure, ≥2 opportunistic 
infections, malignancy, CDC clinical disease category C, and/or abnormality of the 
CNS (e.g., neurological deterioration, decline in neurocognitive test scores, and/or 
brain growth failure). The CNS impairment endpoint, a subset of PFS, was defined 
as time from randomization to deterioration in brain growth, psychological func-
tion, and/or neurological status.
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19.3.3.3  �Chemokine and Chemokine Receptor Polymorphisms in CNS 
Disease in HIV+ Children

The prevalence of chemokine and chemokine receptor polymorphisms in symptom-
atic HIV+ children in the United States was determined first [336]. Furthermore, the 
genetic influence of CCR5, CCR2, and SDF1 variants on HIV-related disease pro-
gression and neurological impairment in children with symptomatic HIV infection 
was studied [36]. Variants including CCR2-V64I, CCR5-wt/Δ32, CCR5-59029-G/A, 
CCR5-59353-T/C, CCR5-59356-C/T, and SDF1-3'-G/A were evaluated. Children 
with the CCR5-wt/Δ32 genotype experienced significantly delayed disease progres-
sion, including less neurocognitive impairment.

The presence of genetic polymorphisms in the CX3CR1 gene, a minor chemo-
kine co-receptor of HIV, predicted HIV disease progression in children indepen-
dently of CD4+ lymphocyte count and HIV RNA load [337]. Children with the 
CX3CR1 I/I249 genotype experienced more rapid disease progression (I/I249 vs. V/
V249, HR 2.19 (95% CI, 1.30–3.68), p < 0.01; I/I249 vs. V/I249, HR 1.77 [95% CI, 
1.00–3.14], p = 0.05) and a trend toward more CNS impairment (I/I249 vs. V/V249, 
HR 2.19 [95% CI, 1.00–4.78], p < 0.05; I/I249 vs. V/I249, HR 2.02 [95% CI, 0.85–
4.83], p = 0.11). Children with the V249-T280 haplotype experienced significantly 
less disease progression (HR 0.42 [95% CI, 0.24–0.73]; p < 0.01) and CNS impair-
ment (HR 0.39 [95% CI, 0.39–0.22]; p < 0.01). Of note, these effects remained 
significant after adjusting for CD4+ T-lymphocyte count and plasma HIV RNA load 
at baseline and in a longitudinal, multivariable analysis. CX3CR1 genotypes and 
haplotypes impacted HIV disease progression independently of CD4+ T-lymphocyte 
count and plasma HIV RNA load, suggesting that the fundamental role of 
CX3CR1 in the alteration of disease progression might be the recruitment of immu-
nomodulatory cells responsible for the control of HIV.  MCP-1 is the ligand for 
CCR2, a minor co-receptor of HIV. The MCP1 2518-G allele was marginally asso-
ciated with CNS impairment at study entry [338]. Alone or in combination with 
CCR2-64I, the MCP1 2518-G allele did not alter disease progression or subsequent 
CNS impairment. These findings differ from studies in adults and suggest that 
MCP-1-CCR2 protein interactions may play a different role in HIV immunopatho-
genesis in children. The interleukin (IL)4 589-C/T polymorphism has been reported 
to protect against HIV-related disease progression in white adults. The IL4 589-T 
allele was more prevalent in Hispanic and in black, non-Hispanic children, com-
pared with white, non-Hispanic children. We found that the IL4 589-C/T polymor-
phism does not affect the risk of HIV-related disease progression or CNS impairment 
in children, and this result did not differ by race/ethnicity [339]. These findings 
suggest that the IL4 589-C/T polymorphism is not an important determinant of HIV 
disease progression in children.
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19.3.3.4  �Polymorphisms in Intracellular Antiviral APOBEC3G Gene 
Alter HIV Disease and CNS Impairment in Children

Apolipoprotein B mRNA-editing catalytic polypeptide 3G (APOBEC3G) protein is 
incorporated into nascent virus particles and mediates cytidine deamination (C-to-U) 
of first-strand reverse transcripts of HIV in target cells, resulting in G-to-A hyper-
mutation of the coding strand and premature degradation. Genetic variants in the 
APOBEC3G gene were found to be associated with HIV-related disease progression 
and CNS impairment in children [63]. APOBEC3G-H186R homozygous G/G geno-
type was associated with more rapid HIV disease progression (HR 1.69; p = 0.01] 
and CNS impairment (HR, 2.00; p  =  0.02) compared with the wild-type A/A or 
heterozygous A/G genotype in a recessive model. In both additive and dominant 
models, APOBEC3G-F119F-C allele was associated with protection against dis-
ease progression (HR [additive] 0.69, p < 0.01, and HR [dominant] 0.60, p < 0.01, 
respectively) and CNS impairment (HR [additive] 0.65, p = 0.02, and HR [domi-
nant] 0.54, p < 0.01, respectively). These associations remained significant in mul-
tivariate analyses controlling for baseline characteristics or previously identified 
genetic variants known to alter HIV-related disease in this cohort of children.

19.3.3.5  �An Age-Dependent Association of Mannose-Binding Lectin-2 
Genetic Variants on HIV-Related Disease in Children

Mannose-binding lectin (MBL) is part of the lectin pathway of complement activa-
tion against various pathogens; however, its role in innate immune responses against 
HIV infection in children is unknown. The effects of mannose-binding lectin-2 
(MBL2) alleles on HIV disease progression and CNS impairment in children [340] 
were determined. Children with the homozygous variant MBL2-O/O genotype were 
more likely to experience rapid disease progression and CNS impairment than those 
with the wild-type AA genotype. The effects were predominantly observed in chil-
dren younger than 2 years. In unadjusted Cox proportional hazards models, children 
younger than 2 years with MBL2-O/O experienced more rapid disease progression 
(O/O vs. AA, HR 1.54; 95% CI, 1.07–2.22; p = 0.02; O/O vs. A/O, HR 2.28; 95% 
CI, 1.09–4.79; p = 0.03). Similarly, children with MBL2-O/O were more likely to 
experience rapid progression to CNS impairment (O/O vs. A/A, HR 1.69; 95% CI, 
1.06–2.69; p = 0.03; O/O vs. A/O, HR 2.78; 95% CI, 1.07–7.21; p = 0.03). These 
effects remained significant after adjustment for CD4+ lymphocyte count, plasma 
HIV RNA, and other genotypes (MBL2-H/L, MBL2-P/Q, MBL2-X/Y, and CCR5-wt/
Δ32−59029-G/A, CX3CR1-249-V/I, −280-T/M, and SDF-1-180-G/A). MBL2-O/O 
genotypes, which result in lower expression of MBL, were associated with more 
rapid HIV disease progression, including CNS impairment, predominantly in chil-
dren younger than 2 years.
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19.3.3.6  �HLA Alleles Are Associated with Altered Risk for Disease 
Progression and CNS Impairment of HIV+ Children

Five hundred seventy-two HIV+ children, identified as disease progressors or non-
progressors, were selected from PACTG P152 and P300 through a case-cohort sam-
pling scheme. Study endpoints were HIV-related disease PFS and time to CNS 
impairment. DNA was genotyped for HLA alleles using a Luminex 100 platform. 
Weighted Kaplan-Meier methods and Cox proportional hazards models were used 
to assess the effects of HLA alleles on study endpoints [56]. The presence of the 
B-27 allele (n = 20) was associated with complete protection against disease pro-
gression and CNS impairment over the median follow-up of 26 months (p < 0.0001 
for both). These findings held in multivariate analyses controlling for baseline 
covariates, including race, gender, age, HIV viral load, CD4+ T-lymphocyte count 
and percent, weight-for-age z score, and treatment, and for other genotypes known 
to affect HIV-related disease progression. Also, the presence of the A-24 allele was 
associated with more rapid CNS impairment (HR 2.01; 95% CI, 1.04 to 3.88; 
p = 0.04). The HLA Class II DQB1-2 allele was associated with a delayed disease 
progression (HR 0.66; 95% CI, 0.47–0.92; p  =  0.01) and CNS impairment (HR 
0.58; 95% CI, 0.36–0.93; p = 0.02) in children.

19.3.4  �The Interaction of Age and Host Genomics on Hand

19.3.4.1  Overview

Although cART has been highly effective at preventing AIDS-related complica-
tions, treated patients are at significant risk for a number of diseases typically asso-
ciated with aging, including cardiovascular disease, osteoporosis, cancer, cognitive 
impairment, and frailty [341–353]. Among the aging HIV+ population, it has 
become evident that the incidence of HIV-associated non-AIDS (HANA) condi-
tions is increasing [354]. HANA conditions affect virtually every organ system and 
have as a common theme an association with advancing age and a pathogenesis 
likely based on chronic inflammation. Arguably, given its somewhat liberal inclu-
sion criteria, the most common HANA condition is HAND. Early studies indicated 
that older individuals were at increased risk for HAND [355]. Additional evidence 
that HAND is related at least partially to accelerated aging includes studies of CSF 
metabolomics [356], in vitro analysis in astrocytes [357], and neurophysiological 
studies [358, 359].

In order to effectively investigate accelerated aging in HAND, one first needs to 
understand what is meant by normal aging and to find a way of measuring it. 
Telomere length, which relates to cellular senescence, has been the most popular 
method to date for studying biological aging. In the context of HAND, telomere 
length has not been consistently associated with neurocognitive impairment or other 
indicators of neuro-HIV/AIDS [360, 361], and reported associations have been 
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weak and difficult to interpret. For example, Malan-Müller et al. [361] found a posi-
tive correlation between telomere length and learning performance in HIV+ South 
African women and a negative correlation between telomere length and verbal flu-
ency among HIV+ subjects who had also experienced psychological trauma. More 
recently, the utility of epigenomics as a tool for studying age acceleration has been 
demonstrated in HIV+ individuals. A recent study examining DNA methylation 
derived from HIV+ and HIV-uninfected brains indicates that infection accelerates 
aging by as much as 9.3 years [203], based on the recently developed epigenetic 
clock [202]. Similar accelerated aging has been found in PBMC, with an accelera-
tion of 14 years in HIV+ adults compared to uninfected adults [362] and 3.6 years 
in individuals with detectable plasma viral loads as compared to those with unde-
tectable plasma viral loads [203]. Whether or not these changes correlate with 
HAND remains to be seen. However, these findings are consistent with clinico-
pathological studies in which age-related pathology has been observed in relatively 
young HIV+ cases, including reduced Aβ-42 in CSF [363] and increased amyloid-β 
deposits in brain tissue [364]. These findings also suggest a role for APOE genotype 
in HAND. Despite these observations, the relationship between the APOEε4 allele 
and HAND remains equivocal. Early studies appeared to show a robust relationship 
between this allele and risk for HAND. For example, Corder and colleagues [28] 
found that twice as many individuals carrying at least one ε4 allele were given a 
diagnosis of HAD over the course of the 5-year study. Subsequent studies over the 
last decade, however, have yielded inconsistent findings. Potential mitigating fac-
tors include the deleterious influence of the ε4 allele on disease progression and 
survival rates, methodological differences between studies in the operationalization 
of HAND, and differences between studies in terms of the inclusion of a (HIV) 
seronegative control sample [43, 365, 366]. Recent studies using such a control 
sample and objective measures of neurocognitive functioning suggest synergistic 
deleterious effects of the APOE-ε4 allele and HIV on cognition [52, 54]. Within 
HIV+ samples, age has been found to be a modulating factor in some studies [41, 
367] but not others [50, 54, 368]. In support of a modulating factor, Valcour and 
colleagues [41] observed older (age ≥ 50 years) ε4 carriers to have higher rates of 
HAD compared to age-matched ε4 noncarriers. This was not observed in their 
younger (<40-year-old) participants. Using more broadly defined HAND as the out-
come variable, similar findings were recently documented by Panos et al. [367]. Of 
the published longitudinal studies of APOE genotype and HAND [28, 43, 50, 69], 
none employed a design aimed at measuring individual changes on objective neuro-
cognitive measures over time while also accounting for mitigating factors such as 
disease severity. Such an approach may help clarify the nature of the relationship 
between APOE genotype and HAND. Most recently, Becker et al. [69] examined 
time to incident cognitive impairment in 1481 HIV+ individuals who were cogni-
tively normal at their first neuropsychological evaluation. No association between 
APOE-ε4 and time to develop neurocognitive impairment was found, nor did they 
observe interactions between ε4, HIV infection, age, and either death or neurocog-
nitive impairment. However, that study was largely limited to younger (<65-year-
old) individuals.
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Looking beyond behavioral phenotypes, Diaz-Arrastia and colleagues [38] and 
Dunlop and colleagues [26] probed associations between APOE-ε4 and pathologi-
cal findings of HIVE or HAND; no associations were observed. However, while 
HIVE is thought to be a common pathological substrate for HAD, the two can occur 
independently of one another [369]. It should also be noted that these studies were 
conducted with patients who died in the pre-cART era. Given the deleterious rela-
tionship between the APOE-ε4 allele and disease severity, individuals may have 
died before pathological effects emerged in the brain. APOE-ε4 is associated with 
faster disease progression, possibly due to enhanced HIV fusion/cell entry [43]. 
More recently, Cutler and colleagues [37] found evidence for lipid metabolism 
derangements in the brain tissue of ε4 carriers, although their sample also consisted 
of patients who died in the pre-cART era. Soontornniyomkij et al. [370] found that 
APOE-ε4 and older age were independently associated with the increased likeli-
hood of cerebral Aβ plaque deposition in HIV+ adults. While the Aβ plaques in HIV 
brains were immunohistologically different from those in brains of individuals who 
died with symptomatic AD, this study is among the first to provide a link between 
genotype and neuropathological findings in HIV.

19.3.4.2  �Host Iron-Mitochondrial Interactions with Age and Age 
Acceleration in HAND

Despite being only a few percent of the total body mass, the brain is responsible for 
approximately half of the oxygen consumption and 20% of the mitochondrial oxy-
gen consumption [371]. In the brain, a very high metabolic requirement for iron, 
coupled with the high susceptibility of brain tissue to iron-generated lipid peroxida-
tive damage, requires particularly stringent regulation of iron availability and mito-
chondrial iron utilization in order to preserve structural integrity and energy 
metabolism. Mitochondrial dysfunction leads to neuromuscular degeneration, 
aging, energy depletion, and free radical production; defects in iron-sulfur cluster 
biosynthesis are important mitochondrial mediators of aging [372]. Iron-sulfur clus-
ters are essential components of respiratory electron transport chain complexes as 
well as specific tricarboxylic acid cycle enzymes, including the iron-regulated cyto-
plasmic and mitochondrial isoforms of aconitase, succinate dehydrogenase, and 
DNA repair enzymes. Iron-sulfur cluster assembly and disassembly based on ambi-
ent iron levels in cells determines the binding of IRPs to their mRNA targets [373]. 
Disruption of iron homeostasis may therefore have significant impact on shifts in 
brain energy metabolism in the brain via effects on cytoplasmic and mitochondrial 
enzyme function [374].

Trace metals including but not limited to iron may also interact with proteins 
directly or indirectly involved in the pathogenesis of HAND. In non-HIV-related 
neurocognitive disorders (AD, prion diseases, and Lewy body dementia), there is 
accumulating evidence that misfolding of disease-associated proteins such as 
β-amyloid and α-synuclein is effected by interactions of these proteins with iron and 
that these proteins are also in part responsible for the iron dysregulation seen in 
disorders of aging [375].
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Increased brain iron has been associated with age-related decline in motor 
strength as well as cognitive decline, and one study recently evaluated the associa-
tion between iron content in the basal ganglia and hand grasp performance in older 
women [376]. Higher basal ganglia iron content assessed by T2* MRI was associ-
ated in this study with an increased number of errors committed during learned 
handgrasp tasks with the same and contralateral hands, suggesting a direct link 
between brain iron content and motor dysfunction.

Finally, it is significant to note that the effects of caloric restriction, long known 
to be neuroprotective and to slow the aging, have recently been shown in mouse 
models to include downregulation of hepcidin in the brain, which would be expected 
to limit aging-related iron accumulation in the brain parenchyma [377].

19.3.4.3  �Aging, Host Iron-Mitochondrial Genomics, and HAND

Genomic, transcriptomic, and metabolomic studies have determined that HAND is 
associated with global mitochondrial dysfunction and a downregulation of mitochondrial 
protein expression, as have studies in animal models [149, 356, 378, 379]. These 
studies are consistent with the concept of age acceleration and increased oxidative 
stress in HIV infection. Changes in iron transport and mitochondrial function contrib-
ute to systemic oxidative stress. In HIV+ men, higher circulating iron levels are asso-
ciated with increased levels of oxidative stress as measured by plasma F2-isoprostane 
levels, a sensitive and relatively specific measure of in vivo oxidative injury. However 
women, in whom iron stores are significantly lower than in men, had higher F2-
isoprostane levels than men overall; the reasons for this finding are unclear [380].

The epigenetic clock, recently reported to show accelerated aging in HIV infec-
tion, also highlights the importance of nuclear-encoded mitochondrial genes [204, 
381]. Whether mtDNA-encoded genes contribute to epigenetic aging is not known, 
but mtDNA methylation has recently been linked to neurodegenerative disease 
[382, 383]. Iron metabolism regulates mitochondrial biogenesis, and iron transport 
is itself regulated in part by mitochondrial function [384], so iron-related genes 
likely play a role in mediating age acceleration and neurocognitive impairment. 
Ongoing studies by our group are actively investigating interactive effects of nuclear 
and mtDNA variants in HAND.

Although studies in the modern cART era have generally not associated APOE 
alleles with HAND, APOE genotype interactions with age and HIV serostatus have 
been postulated [54, 69, 370, 385–387]. Increased influence of APOE-ɛ4 genotypes in 
HAND among older HIV+ persons may therefore relate to iron dysregulation.

19.3.4.4  �Iron-Sensitive Neuroimaging in Aging-Related NCI

Differentiating HAND from other neurocognitive disorders of aging such as AD 
and PD is increasingly challenging as the HIV+ population ages, and the use of 
neuroimaging techniques particularly sensitive to iron deposition in the brain may 
be of value, assuming that the characteristic patterns of iron deposition in these 
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disorders will differ from those in HAND. In addition, reliable estimates of brain 
tissue iron concentration are likely to be important in monitoring individuals with 
HIV infection for physiological age-related and pathological conditions such as 
HAND, AD, and vascular disorders. Several imaging techniques are helpful in this 
regard, including T2-weighted or T2*/R2* MRI, because they can detect differ-
ences derived from changes in signal due to the magnetic properties of the major 
tissue iron-storage proteins, ferritin, and hemosiderin; the magnetic properties of 
these iron-carrier proteins shorten the relaxation time of nearby water protons, lead-
ing to signal extinction in iron-rich areas. However these methods are not altogether 
specific for iron, due to the potential influence of water content of the surrounding 
tissue, other trace metals, and myelin density. More iron-specific imaging tech-
niques under development are relaxometry, magnetic field correlation imaging, and 
phase-based multi-contrast imaging (covering susceptibility-weighted imaging and 
quantitative susceptibility mapping) [215, 388]. Diffusion tensor imaging is also 
reflective of white matter integrity and fractional anisotropy changes in HIV infec-
tion that appear to be impacted by iron [246]. In the future, monitoring changes in 
iron storage and content may serve as sensitive biomarker for diagnosis as well as 
treatment monitoring.

19.3.5  �Alternative Phenotypes for the Study of Hand Genomics

One possible reason for the lack of replicability of findings in the genetic association 
studies described above is the use of different phenotypes across studies. Earlier 
studies primarily used HAD or similar diagnoses (e.g., AIDS Dementia Complex) as 
the phenotype [30, 34, 41, 45, 47]. Others have used composite measures of global 
neurocognitive functioning, usually derived from a comprehensive battery of neuro-
psychological tests [36, 39, 389], as the determination of neurocognitive impairment 
is more reliable than a formal diagnosis of HAND [390]. Perhaps the greatest short-
coming of these phenotypes is that they are influenced by a number of environmen-
tal, psychometric, and endogenous factors. This might be most problematic for 
detecting mild neurocognitive impairment characteristic of ANI or MND, which 
have a relatively low threshold to meet criteria [391, 392]. Furthermore, the numer-
ous nongenetic contributors to variance in these measures (e.g., measurement error) 
make them less suitable targets for genetic analysis, especially when effect sizes for 
genetic variants are small. Finally, the use of global measures of neurocognitive 
function, which have become the norm in such studies, runs the risk of missing 
domain-specific associations with genes of interest. One partial solution is to utilize 
domain-specific composite scores (e.g., memory or processing speed) composed of 
measures with documented heritability. However, this strategy also increased Type I 
error rate, necessitating more strict corrections for multiple testing.

Unlike genomic studies, the majority of transcriptomic studies have focused 
on  encephalitis (either SIVE or HIVE) as the disease phenotype. Prior to the 
development cART, HAD was common, and HIVE was considered to be its 
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neuropathological basis [19, 71, 87, 164, 286, 393–398]. In the current era of wide-
spread cART use, however, the vast majority of HAND cases present with milder 
symptoms [399, 400], and upon autopsy examination, they do not have neuropatho-
logical findings consistent with HIVE as defined in the pre-cART era [401]. 
Increasingly, evidence suggests that for the vast majority of cART era HAND cases, 
HAND is the result of potentially reversible neurodegeneration driven by chronic 
neuroinflammation [164, 394, 396, 401]. The relevance of this concept to transcrip-
tomic studies was best demonstrated recently in a study comparing transcriptome 
changes in individuals who had premortem HAND but no evidence of postmortem 
HIVE to those changes in individuals with premortem HAND, who also showed 
postmortem HIVE [148]. Despite the similar neurobehavioral phenotype, the result-
ing transcriptome profiles were highly distinct, as described above. This study 
underscored the need to evaluate currently relevant disease phenotypes.

Due to difficulties in using neuropsychological tests or diagnoses based primar-
ily on such tests, as phenotypic measures of HAND, some investigators have 
explored alternative outcome measures. Among these are various neuroimaging 
indices. While beyond the scope of this review, a variety of MRI and MRS markers 
have been associated with HIV disease progression, neurocognitive impairment, 
and response to putative treatments [402–407]. Several studies have employed neu-
roimaging in conjunction with genotyping. A recent neuroimaging study of 177 (80 
HIV+ and 97 HIV-) did not find interactions between APOE genotype and brain 
metabolite levels as measured via MRS [67], despite group differences in neurocog-
nitive measures. Sundermann et  al. [68] examined interactive effects of COMT 
rs4680 and HIV on executive functioning and frontal cortex metabolism using func-
tional MRI in two samples of women enrolled in the Women’s Interagency HIV 
Study Consortium. In the first sample, HIV+ participants who possessed Val/Val 
genotype performed significantly worse on the N-back tests than the uninfected 
controls with similar genotype, whereas those with a Met allele performed similarly 
to uninfected controls. In a second sample in which the N-back task was performed 
during fMRI, HIV+ Val/Val carriers showed greater prefrontal activation compared 
to uninfected Val/Val carriers during the task, suggesting that increased cortical acti-
vation was required by HIV+ Val/Val carriers in order to complete the task. 
Conversely, uninfected Met allele carriers demonstrated significantly greater activa-
tion as compared to HIV+ Met allele carriers; however, this activation occurred 
outside the prefrontal cortex and therefore may not be indicative of compensatory 
recruitment. Importantly, because the participants who generated the imaging data 
did not show the serostatus x genotype effects that the behavioral sample showed, it 
remains unclear if the altered metabolism in the prefrontal cortex is related to work-
ing memory deficits in HIV+ Val/Val carriers. It is important to point out that, as 
with candidate-gene studies of behavioral HAND phenotypes, these imaging stud-
ies are likely to be underpowered and difficult to validate. One potential solution is 
to pool imaging data across cohorts. One current endeavor with great potential of 
linking neuroimaging biomarkers of HAND with genetic variation is the ENIGMA-
HIV consortium (http://enigma.ini.usc.edu/ongoing/enigma-HIV-working-group/), 
which ties together several hundred participants from a growing number of cohorts.
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Another promising focus for alternative phenotypes is the histopathological 
changes in HIV+ brains that can be quantified via immunohistochemistry. Markers 
of dendritic simplification [408], or a combination of synaptic and dendritic mark-
ers, appear to have the strongest relationship with the neurocognitive deficit char-
acteristic of HAND.  For example, Moore et  al. found that a combined 
histopathological phenotype consisting of synaptodendritic neurodegeneration, as 
measured by synaptophysin (SYP) and microtubule-associated protein-2 (MAP2), 
was associated with HAND across both subcortical and cortical brain regions 
[393]. Another histopathological candidate is β-amyloid deposition, which has 
been observed in the cortex in HIV+ individuals [409–412]. In addition to these 
markers of neurodegeneration and abnormal protein aggregation, markers of neu-
roinflammation have also been shown to be associated with neurocognitive impair-
ment or HIV-related brain dysfunction [413–415]. Indeed, macrophage proliferation, 
microglial activation, astrocytes activation, and increased chemokine levels have 
all been found in CSF and brains from HIV+ individuals [19, 17, 87, 164, 394–
398]. While these may all represent candidates for neuropathogenic processes 
underlying HAND, new methods are necessary to determine which ones are rele-
vant. Toward that end, an innovative approach for simultaneously determining 
which histopathological markers are HAND relevant and which genetic suscepti-
bility loci influence HAND is to examine the association between host genotype, 
histopathological findings, and behavioral (i.e., neurocognitive) outcomes. In this 
scenario, neuropathological changes (or neurophysiological changes, in the case of 
neuroimaging) are considered intermediate phenotypes. To put it more simply, if 
HAND is considered at its most basic level to be the end result of a sequence of 
physiological events that commences with HIV-induced cellular changes that are 
modified by genetic factors, then determining the extent to which known genetic 
susceptibility loci for HAND perturb candidate neuropathological and neurophysi-
ological intermediate phenotypes may reveal which ones are most contributory. 
The advantage of this approach is that histopathological intermediate phenotypes, 
like neuroimaging phenotypes, are less prone to exogenous factors and have a 
stronger association with genetic susceptibility loci than neurobehavioral pheno-
types. This approach has been successfully employed in genetic association studies 
of AD [416, 417], for example, delineating the relationship between APOE geno-
type and Alzheimer’s-related cognitive impairment as a function of the sequential 
cascade of amyloid plaque formation and neurofibrillary tangle formation 
[416–419]. Relevant to HAND, to our knowledge, only three studies have exam-
ined the relationship between genetic susceptibility loci and neuropathological out-
comes. Sato-Matsumura et  al. [29], with a sample of 44 AIDS patients with 
autopsy-verified HIVE or HIV leukoencephalopathy and 30 AIDS patients without 
these neuropathologies, did not find an association between TNF-α genotype at 
rs1800629 and either of the neuropathological conditions. Diaz-Arrastia et al. [38] 
assessed for HIVE or vacuolar myelopathy in the brains of 270 HIV+ individuals 
who died with AIDS between 1989 and 1996. Neurocognitive functioning and 
HAND were not considered. They determined the presence of microglial nodules, 
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multinucleated giant cells, myelin pallor, and vacuolar myelopathy in the brains 
and/or spinal cords. None of the alleles examined were associated with the pres-
ence of these markers. More recently, Soontornniyomkij et al. found that APOE-ε4 
and older age were independently associated with an increased likelihood of cere-
bral amyloid-β plaque deposition in HIV+ adults [370]. While the amyloid-β 
plaques in HIV+ brains were immunohistologically different from those in brains 
of individuals who died with symptomatic AD, this study is the first to provide a 
link between genotype and neuropathological findings in HIV infection. However, 
neither study considered clinical manifestations of HAND in their design.

CSF and blood-based biomarkers of HAND have been difficult to identify and 
replicate. Still, studies relating host genomic factors with these markers have 
yielded interesting results. Morales et  al. [65] examined differences in the fre-
quency of YWHAE polymorphisms and protein levels between HIV+ and HIV− 
individuals who were neurocognitively characterized. The YWHAE gene product 
(also called 14-3-3ε protein) is considered a reliable biomarker for neurodegen-
eration and interacts with HIV. Drawing from 20 HIV+ and 16 seronegative, ran-
domly selected samples from the Hispanic-Latino Longitudinal Cohort of Women, 
they found that HIV+ participants heterozygous at rs4790084/rs1204828 had a 
threefold higher risk of cognitive deficits, of HAND diagnosis, and they had less 
CSF 14-3-3ε protein expression as compared to homozygotes. Genotype did not 
affect neurocognitive function in the seronegative group. Furthermore, CSF 14-3-
3ε protein levels were 4.5-fold lower in women with HAND as compared to 
HIV+, cognitively normal women. This latter finding was at odds with studies 
cited by the authors in which 14-3-3ε protein was not found in the CSF of healthy 
individuals and occurred almost exclusively in individuals with neurological ill-
ness (e.g., CJD and HAD). The authors explained these findings by suggesting 
that 14-3-3ε protein expression may be elevated in the early stages of neurological 
illness but depleted in advanced stages. This would not seem to be an adequate 
explanation for their findings, however, since the women in their study did not 
have advanced neurologic disease. Furthermore, the conclusion of a genetic asso-
ciation between YWHAE genotype and risk for HAND was based on an extremely 
small sample.

Thames et al. [91] examined interrelationship between CCL2 (rs1024611) geno-
type, expression of inflammatory markers in CSF, HIV disease markers, and neuro-
cognitive functioning in 145 HIV+ adults enrolled in the NNTC, hypothesizing that 
carriers of the −2578-G allele would have higher concentration of CCL2 and other 
inflammatory markers in CSF and worse neurocognitive function. That analysis 
revealed that while there was no difference in neurocognitive function between 
genotype groups, carriers of the CCL2-2578-G allele had higher levels of CCL2 in 
CSF, which was in turn associated with higher levels of other pro-inflammatory 
markers and poorer neurocognitive function. This study is particularly useful in 
demonstrating the importance of CSF markers as intermediate phenotypes of 
HAND in genomic studies (Table 19.3).
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19.4  �Summary

In this chapter we have summarized all genetic association and epigenetic studies of 
HAND of which we are aware, as well as gene expression studies employing whole-
genome screening (i.e., transcriptomic studies). The reader will notice the general 
lack of replicability across genetic association studies and, to a lesser extent, across 
transcriptomic studies. This may be a function of inconsistent or variable neurocog-
nitive phenotypes but may also reflect other aspects of study design (e.g., thresholds 
for statistical significance). A large portion of this chapter was dedicated to iron and 
mitochondrial dysregulation as it relates to genetic variants. This line of research is 

Table 19.3  Summary of genetic, epigenetic, and transcriptomic mechanisms of relevance to 
HAND

Genetic factors Mechanisms
Immune-related genes (CCR5, 
CCR2, CX3CR1, MIP1alpha, 
RANTES, MCP-1, MBL2, HLA)

Chemokine receptors, chemokine ligands and for viral 
entry, immune response macrophage activation, monocyte 
chemotaxis across blood-brain barrier (BBB), viral epitope 
recognition and CD4 and CD8 cell lysis in brain, and 
neuroinflammation

Dopamine-related genes (DA, 
DAT-1, DRD2, DRD3, DBH, 
COMT, BDNF)

Impairment of dopamine receptor or dopamine expression, 
transport, or functioning

Intracellular antiviral genes 
(APOBEC3G)

Intracellular viral genome editing and deactivation

Genes affecting sodium transport 
across cellular and intracellular 
membranes (SLC8A1, NALCN)

Mitochondrial dysfunction

Epigenetic factors Mechanisms
miRNA (miR-21, miR-34a, 
miR-495-3p, miR-151a-5p or 
miR-744-5p, miR-376a-3p/
miR-16-532-3p)

Interference in gene transcription, translation, and viral gene 
expression in brain

Histone modifications (HDACS) Modification of brain gene expression, viral gene expression 
in brain affecting neuronal function

DNA Methylation (DNMTs) Modification of global brain gene expression related to 
neurodegeneration, DA metabolism and transport, and 
oxidative phosphorylation

Brain/blood transcriptomic 
factors

Mechanisms

Brain gene expression in HAND 
and HIV encephalitis

Altered pathways of neuroimmune functioning, 
synaptodendritic functioning and integrity, myelin, 
neurodegeneration, neuroinflammation, neuropsychological 
functioning, mitochondrial functioning, cell cycle, cell-cell 
signaling

Peripheral blood gene expression Peripheral blood-based markers of HAND: monocytes 
(BBB crossover), CD4, nadir CD4, CD8, viral load, 
oxidative stress, hypoxia, transcription factors

A.J. Levine et al.



497

particularly exciting as it may open doors to novel research efforts. We have also 
discussed the epigenetic clock as a tool for the study of HAND, but this tool may 
also be useful for the study of HIV disease progression in general. In sum, genetic, 
transcriptomic, and epigenetic studies continue to provide important information 
about HAND pathogenesis, lay foundations for novel and innovative methods, and 
uncover potential candidates for therapeutic drug development.
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