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Core Message
Injection drug use is a major risk behavior associated with transmission of HIV-1B.

Sociocultural and socioepidemiological studies are required to characterize net-
works of injection drug users (IDUs).
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The possibility of links between subject socioepidemiology and viral sequence 
diversity, phylogenetic relationships, signatures, thermodynamics, and glycosylation 
patterns is studied.

This chapter addresses whether in risk locales where many people inject together, 
there are variations in probability of relatedness of HIV-1B env sequences.

15.1  �Introduction

What became known as HIV-1 was discovered and first isolated in three different labo-
ratories, namely of Drs. J. Levy, L. Montagnier, and R.C. Gallo [1–4]. The complex 
distribution of human immunodeficiency virus type 1B (HIV-1B) genotypic variants, 
or quasispecies, within infected individuals has been characterized extensively [5]. 
There are many potential routes of HIV-1B transmission, including parenteral (injec-
tion drug use, injection drug user (IDU), heterosexual and homosexual sexual trans-
mission), blood transfusion, and perinatal (prepartum and postpartum). Upon 
transmission, some studies indicate that the major variant found in the donor is trans-
mitted [6], while others report transmission of a minor variant [7–9]. For either alterna-
tive, the person newly infected through these routes has an HIV-1B sequence population 
that is initially homogeneous [7, 10, 11], irrespective of the heterogeneity of the donor’s 
sequences. With time, the HIV-1B high mutation rate and selective pressures generate 
heterogeneous populations, quasispecies, or sequence variant clouds [8, 12–19].

Sequence heterogeneity in the envelope region occurs primarily in the hypervariable 
domains, designated V1–V5, which has attracted much attention for characterizing 
genotypic and phenotypic variants [20]. Because the env gene is particularly prone to 
mutation [21], it has proven invaluable in molecular epidemiological studies tracing the 
patterns of disease transmission and progression [9]. Several analytical approaches 
have been implemented using different variable domains of the HIV-1B ENV gene to 
investigate viral transmission: genetic distances, phylogenetic trees, and sequence sig-
nature patterns. Phylogenetic analysis has been used to establish the likelihood of 
HIV-1B transmission from infected health care workers to patients [11, 14]. Only 
recently, has such analysis been used to determine whether different transmission 
groups possess characteristic variants [22–24]. Risk group-associated variations in 
sequence signatures have been described between drug user, transfusion, and homo-

J.B. Page, PhD 
Department of Anthropology, University of Miami, Coral Gables, FL 33133, USA 

Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of 
Medicine, Miami, FL 33136, USA 

Department of Epidemiology, University of Miami Miller School of Medicine,  
Miami, FL 33136, USA 

Comprehensive Drug Research Center, University of Miami Miller School of Medicine, 
Miami, FL 33136, USA

P. Shapshak et al.



349

sexual/hemophiliac DNA sequences within the V3 loop domain [25, 26]. Mother-infant 
transmissions reveal that the V3 sequences are much more heterogeneous in the mother 
than in the infant after birth. The amino acid sequence signatures correlated with linked 
vertical transmission between these pairs [27]. Earlier in the epidemic, two predomi-
nant genotypes of HIV-1B (Thai A and B) were known to exist in Thailand [28]; inter-
estingly, they showed in studies of the V3 loop region that there had been independent 
introduction of the virus into two high-risk populations distinguished by mode of trans-
mission (sexual activity vs intravenous drug use). Characterization of recombinant seg-
ments in the C2–V3 region demonstrated transmission between both individuals within 
a sexual risk couple [7]. In addition, dual transmission of HIV-1B and C subtypes was 
detected in a family, husband to wife to child [29].

Injection drug use is a primary risk behavior associated with transmission of HIV 
[30–52]. Many sociological and epidemiological characterizations of drug abuse 
and HIV infection networks include NIDA. There have been many detailed studies 
characterizing the IDU and sexual transmission of HIV-1B and other epidemiologi-
cally linked viruses including HCV.  Detailed molecular studies identified and 
tracked virus strains in well-defined drug abuse networks as part of sociological and 
epidemiological studies.

One factor that complicates deducing HIV infection-related risk networks is the 
infectivity potential of virus strains. This involves inferring the probability that various 
virus strains infect new hosts after each single exposure due to use of contaminated 
drug injection needle-syringe, cotton, cooker, and washwater. The CDC reports that the 
average probability of HIV infection is 0.33 per 100 needlestick or cut exposures1. 
Consequently, the establishment of risk networks in which a single V1–V5 HIV-1B 
strain variant dominates is unlikely. There is also a lowered chance of transmission of 
any given strain, especially in circumstances of multiple IDUs injecting in the same 
risk locale. However, long-term intimate relations among socially characterized partici-
pants warrant a higher likelihood of exhibiting detectable clustering of HIV strains with 
increased sequence relatedness than diffusely distributed networks [53–57].

In this study, we characterized and defined the sociodynamics of four networks 
of seropositive IDUs. In addition, we characterized the viral sequence within spe-
cific hypervariable domains (V1–V5) of 37 HIV ENV genes derived from the IDUs.

15.2  �Materials and Methods

15.2.1  �Network Epidemiology

Epidemiological methods for assessment and outreach of individuals who inject 
drugs included several approaches and protocols. Four epidemiological networks 
linked by sexual interactions and/or IDU behavior were studied (Table  15.1). 

1 For comparison, the average risks for HCV and HBV infections are 1.8 per 100 and 6–30 per 100 
needlestick or cutaneous cut exposures, respectively [53]. 
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Fieldwork with questionnaires was used to investigate injection drug use in Miami. 
Factors including frequency of participation in shooting galleries, high-risk con-
tacts, injection drug use, sex, gender, age, and mobility were characterized to eluci-
date the dynamic temporal and spatial relationships between risk and network 
members [30, 36, 37, 42–46, 48, 58, 59]. Confidentiality was strictly maintained 
throughout this work. The laboratory studies were all done devoid of any personal 
identifiers. The Internal Review Board (IRB) rules of the University of Miami were 
all maintained and strictly enforced. Human subject approvals were obtained at the 
time of these studies from the IRB at the University of Miami.

15.2.2  �Specimens

Blood was obtained from 15 heterosexual HIV-positive subjects (Tables 15.1 and 
15.2). Blood samples were obtained for individuals in networks 1, 2, and 3 at the 
same initial time, whereas those in network 4 were obtained 14  months later. 
Follow-up samples were subsequently obtained 12 months afterward for members 
of the first three networks. Blood was obtained from study individuals using stan-
dard EDTA-containing vacutainer tubes. Peripheral blood lymphocyte (PBMNC) 
pellets were produced using Ficoll–Hypaque density gradient centrifugation and 
were cryopreserved at −85 °C until needed [15–17, 19].

15.2.3  �Polymerase Chain Reaction

Genomic DNA was extracted from the cryopreserved PBMC pellets using DNA 
isolation kits (United States Biochemicals, Cleveland, OH) and subsequently 
precipitated with ethanol and resuspended in Tris-EDTA (THE) buffer (pH 7.5). 

Table 15.2  Patient networks (15 participants, 4 networks)

Network Risk locale Patient Duration in networka Additional information

1 Overtown 1001, 1002 4y IDU and sex Recent couple
2 Overtown 1003, 1004, 

1005, 1006
10y IDU Couples with greater than 

8 years of relations
1003, 1004 13y IDU and sex
1005, 1006 8y IDU and sex

3 Opa-Locka 1008, 1011 20y IDU Female support group
1015, 1011 20y IDU

4 Liberty City 1017, 1018 20y IDU Brothers
1017, 1019 20y IDU Brothers
1012, 1013, 
1014

15y IDU Running partners

ay years, duration of risk activity

15  Socioepidemiology of Injection Drug Users in Miami and HIV-1B…
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The V1–V5 region of the HIV-1B ENV gene was amplified using two rounds of 
PCR with a set of nested primers as previously described [19]. For the first PCR, 
we used approximately 1  mg genomic DNA in a 100 ul reaction containing 
10 mM Tris-HCl (pH 8.3), 50 mM KCl, 2.5 mM MgCl2, 20 nmoles (200 mM) 
each of dNTPs, 2.5 U AmpliTaq DNA polymerase (Perkin Elmer, Foster City, 
CA), and primers XPR1 (GGGATCAAAGCCTAAAGCCA, sense, nucleotide 
positions 6558–6577  in HXB2) and XPR7 (ACTTCTCCAATTGTCCCTCA, 
antisense, positions 7647–7666). Amplification consisted of a hot start (95 °C, 
5′), then 30 cycles of 94 °C, 0′35″; 60 °C, 1′35″; and 72 °C, 2′35″, followed by 
a final extension (72  °C, 10′). For the nested PCR reaction, primers XPR2 
(GAATTCACCCCACTCTGTGTTA, sense, positions 6590–6605) and XPR6 
(AAGCTTCTCCTCCAGGTCTGA, antisense, positions 7625–7639) were used 
to amplify 1 ml of the first PCR reaction under the same conditions as above. 
The size of the PCR amplicon was determined by analysis on 1.2% agarose gel-
1X TAE in 0.5-mg/ml ethidium bromide. Typically, a single PCR band was 
observed using only 10 ul of the nested PCR reaction.

Negative controls consisted of a water sample (instead of peripheral blood mono-
nuclear cells), RT reaction mixtures without added reverse transcriptase, and reagent 
controls run in parallel with the tested samples [15–17, 19].

To minimize the possibility of carryover contamination, separate rooms (neither 
connected by airflow nor by air conditioning) were always used for the addition of 
reagents and sample DNA template vs performance of PCR and the handling of PCR 
products. Only one subject’s sample was ever handled at any time during processing as 
well as subsequent amplification and cloning steps. In addition, sentinel tubes were 
evaluated weekly for contamination. Several subjects had blood samples redrawn after 
12 months so that cloned sequences could be compared to verify phylogenetic relation-
ships and to rule out sample mix-up and/or contamination [15–17, 19]. Sequence integ-
rity was analyzed – Rodrigo and Learn [60] produced a review of several methods.

15.2.4  �Molecular Cloning and DNA Sequencing

The PCR product was purified and concentrated using the High Pure PCR Product 
Purification Kit (Boehringer Mannheim, Mannheim, Germany) and quantified by 
fluorescence (Hoefer Instruments, San Francisco, CA). The amplified product 
(40 ng) was subcloned into pCR2.1 vector using the TA cloning kit (Invitrogen, San 
Diego, CA). An aliquot of the ligation reaction (110 ng) was then used to transform 
INVaF’ cells. Plasmid DNA was isolated from positive clones, which were selected 
by kanamycin resistance and lacZa complementation (blue/white), using the Wizard 
Miniprep (Promega Corporation, Madison, WI). After digestion with EcoRI, the 
size of the cloned insert DNA was verified by agarose gel electrophoresis. Glycerol 
stocks of positive clones were prepared for long-term storage. A variety of sequenc-
ing primers both internal and external to the cloned fragment were used to sequence 
the primary and complementary strands (ACGT Inc., Northbrook, IL) [15–17, 19]. 
Clone designation: number designates subject ID; “L” designates blood, followed 
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by clone number; and then “D” or “R” designates DNA or RNA nucleic acid source, 
respectively. The addition of “+12”, e.g., 1004 + 12L4D, designates follow-up sam-
ples, obtained 12 months after the initial samples.

15.2.5  �Sequence Analysis

15.2.5.1  �DNA and Protein Alignments

The env sequences of HIV-1B IDUs from two different risk locales such as Overtown 
and Opa-Locka, Dade County, Florida (Table 15.2), made a total of 37 nucleotide 
sequences, and their corresponding proteins were also used for sequence align-
ments. The alignment files were generated using Clustal X 1.83 [61] with default 
parameters. Both intra- and intermolecular sequence variations were analyzed using 
Clustal X. The sequence variations and consensus patterns (signatures) were dis-
played using Weblogo 2.8.2 http://weblogo.berkeley.edu/, [62].

15.2.5.2  �Entropy Analysis

Shannon entropy [63] is a simple quantitative measure in uncertainty units in a 
dataset and was used to measure the variation in DNA and protein sequence align-
ments. Entropy calculation was done for each position of the input sequence set. It 
can be used as a measure of the relative variation in the regions of an aligned gene 
or protein. The online web server available at the Los Alamos National Laboratories 
(LANL) (Los Alamos, NM) (http://www.lanl.gov) and (https://www.hiv.lanl.gov/
content/sequence/ENTROPY/entropy_one.html) were used.

15.2.5.3  �Neutrality Hypothesis

The null hypothesis assumes that in most protein-coding genes, the number of syn-
onymous nucleotide substitutions per site (dS) is equal to the number of non-
synonymous nucleotide substitutions per site (dN), i.e., (H0: dN  =  dS), and the 
alternate hypothesis is (H1: dN ≠ dS). The probability (P) of rejecting the null hypoth-
esis of strict neutrality (dN = dS) is less than 0.05, considered significant at the 5% 
level. This may favor the alternative hypothesis. The variance of the difference was 
computed using the bootstrap method with 500 replicates [64]. Analyses were con-
ducted using the Nei-Gojobori method [65] in MEGA5 [66]. All positions contain-
ing gaps and missing data were eliminated from the dataset. Tajima’s test of 
neutrality [67] was conducted using MEGA5 to compare the number of segregating 
sites per site with the nucleotide diversity. An essential parameter in the theory of 
neutral evolution is “4Nu,” where “N” is the effective population size and “u” is the 
mutation rate per site. The difference in the estimate obtained provides an indication 
of non-neutral evolution. Codon-based Z-test was also conducted using MEGA5 to 
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test whether positive selection is operating on a gene by comparing the relative 
abundance of synonymous and non-synonymous substitutions that have occurred in 
the gene sequences.

15.2.5.4  �Estimates of Transition/Transversion Bias

Evolutionary analyses were conducted in MEGA5 [66]. Two statistical methods 
such as maximum likelihood (ML) and maximum composite likelihood (MCL) 
were used. Substitution pattern and rates were estimated for nucleotide sequences 
using Tamura-Nei model (+G) [68, 69]. A discrete gamma distribution was used to 
model evolutionary rate differences among sites (5 categories, [+G], parame-
ter = 0.6115). All positions containing gaps and missing data were eliminated. The 
analysis involved 37 nucleotide sequences. Codon positions included were 
1st + 2nd + 3rd + Noncoding.

15.2.5.5  �Disparity Index Test

A simple statistic (disparity index test) measures the homogeneity of substitution 
patterns between a pair of sequences [70]. It works by randomly comparing the 
nucleotide (or amino acid) frequencies of the two descendent sequences and using 
the number of observed differences between them. MEGA5 computed the disparity 
index per site, which is given by the total disparity index between two sequences 
divided by the number of positions compared, excluding gaps and missing data. It 
is more powerful than a chi-square test of the equality of base frequencies between 
sequences (http://www.megasoftware.net/manual.pdf). The test was performed to 
infer substitution pattern homogeneity on pairwise nucleotide sequence compari-
sons. Monte Carlo simulations with 500 replicates were computed. All positions 
containing gaps and missing data were eliminated.

15.2.5.6  �Molecular Relatedness and Phylogenetic Analysis

Neighbor-joining (NJ) method was used to generate phylogenetic trees. MCL 
method assumed substitutions included transitions and transversions. Substitutions 
among lineages were treated as uniform rates, and the pattern among lineages was 
set homogeneous. All positions containing gaps and missing data were deleted. 
Codon positions included were 1st + 2nd + 3rd + Noncoding [69].

The generated sequence alignment files were imported from Clustal X to 
SplitsTree4 version 4.13.1, built 16 Apr 2013 [71], to compute splits as well as to 
infer variations among the sequences. The nucleotide dataset (37 sequences, each 
1086  bp) had 578 constant sites, 277 non-parsimony-informative sites, and 196 
gapped sites (no missing data). Whereas the translated proteins of the nucleotide 
dataset (37 sequences, each 367 residues) had 157 constant sites, 127 non-

P. Shapshak et al.
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parsimony-informative sites, and 71 gapped sites (no missing data). The distances 
were computed from characters (nucleotides) with default parameters, and then 
splits were generated from distances using neighbor-net [72] approach to produce a 
set of circular splits on the network as defined in split decomposition [73], and the 
amino acid distances used a neighbor-net variance approach performed using 
ordinary least squares.

15.2.5.7  �Confidence in the Resulting Phylogenetic Trees

Confidence in the resulting phylogenetic trees was assessed using bootstrap analysis 
[64]. One thousand bootstrap replicates were generated to assess the reliability of 
each edge in the tree as well as the network.

15.2.5.8  �Phi Test for Recombination

The characters were analyzed using Phi test [74] and found informative sites using 
window size of 100.

15.2.6  �Nucleotide Sequence Accession Numbers

Sequences were submitted to GenBank and the Los Alamos National Laboratory 
HIV sequence database, and the accession numbers obtained are KT984127–
KT984163 (Table 15.3).

15.3  �Results

15.3.1  �Socioepidemiology

The four IDU networks consisted of (i) a male/female dyad (subjects 1002/1001) 
with sexual relations and shared IDU habits for 4  years; (ii) two separate male/
female dyads each of whom maintained sexual relationships for 13 years (subjects 
1004/1003) and 8 years (subjects 1006/1005) and all of whom have shared IDU 
habits for 10 years; (iii) a female triad (subjects 1008, 1011, and 1015) with shared 
IDU habits for over 20 years; and (iv) a familial triad (subjects 1017, 1018, and 
1019) with shared IDU habits. Shared IDU habits would include common use of 
needle-syringes, cookers, cottons, and rinse water. All individuals in these networks 
were located in Dade County, Florida. Subjects in networks 1 and 2 resided in 
Overtown (Dade County, Florida) that was a separate locale from those in network 
3 who lived in Opa-Locka (Dade County, Florida) (Tables 15.1 and 15.2, Fig. 15.1).

15  Socioepidemiology of Injection Drug Users in Miami and HIV-1B…
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Table 15.3  HIV-1B ENV 
clones (37 sequences) Patients

Clone 
identification NCBI accession numbers

1001 1001L6D KT984127
1001L7D KT984128
1001L8D KT984129

1002 1002L1D KT984130
1002L2D KT984131
1002L3D KT984132
1002L5D KT984133
1002L7D KT984134

1003 1003L4D KT984135
1003L8D KT984136

1004 1004L1D KT984137
1004L2D KT984138
1004L4D KT984139
1004L5D KT984140
1004_12L1D KT984142
1004_12L4D KT984143
1004_12L8D KT984144
1004_12L9D KT984145
1004_12L11D KT984141

1005 1005L1D KT984146
1005L2D KT984147
1005L3D KT984148
1005L4D KT984149

1006 1006L1R KT984152
1006L2R KT984153
1006L3R KT984154
1006L4R KT984155
1006L5R KT984156
1006L6R KT984157
1006L7R KT984158
1006L8R KT984159
1006_L12R KT984150
1006_L13R KT984151

1008 1008L4D KT984160
1008L5D KT984161

1015 1015_12L6D KT984163
1015_12L12 KT984162

P. Shapshak et al.



357

15.3.2  �DNA and Protein Alignments

Nucleotide variations were analyzed based on sequence alignments and are pre-
sented in Fig. 15.2a. The transition/transversion bias was also estimated (Table 15.4). 
The protein translations of the variable regions (V1–V5) showed lesser variation in 
the V1 loop in comparison with the published global sequence variations of HIV-1 
B isolates of blood and brain [75], whereas V2 loop is variable but not hypervari-
able. However, V3 is hypervariable especially between 182 and 190 and after the 
starting residues CTRP (Fig. 15.2b). The variable region (V4) is less variable com-
pared to blood env proteins [75].

The overall amino acid variation in V1–V4 is lesser in comparison with blood 
isolates, and the variations are moderate in brain isolates. The differences in the 
variability of V1–V4 may be due to the accessibility of loops that may reflect muta-
tions to escape from the immune system as well as in vivo variation in biological 
properties, such as tropism for macrophages or other cell types or ability to form 
syncytia [76, 77]. The analyzed dataset had a partial V5 start region. Hence, gp41 
start, fusion peptide, and immunodominant regions were not available for further 
comparison.

It was observed that the residues in the start and end of the variable regions (V1–
V4) are well conserved (Fig.  15.2b). There were no differences observed in the 

Network 1. 

1001 1002

Network 2. 

1003 1004

1005 1006

Network 3. 

1008 1011

1015

Network 4. 

1018 1019

1017

a b

c d

Fig. 15.1  (a–d) Four socioepidemiological networks. Refer to Tables 15.1 and 15.2 for additional 
information. IDU = injection drug use with sharing needle-syringes, cottons, cookers, and wash-
waters. Solid arrow = IDU. Dotted arrow = sex
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Fig. 15.2  (a) Env coding genes V1–V4 of HIV-1B IDU patients; (b) The translated env proteins 
show sequence conservations (tall characters), semi-conserved substitutions (stacked with similar 
colored characters), and variations (stacked with different colors). The annotation is based on the 
benchmark HXB2 sequence (accession K03455) provided in HIV Sequence Compendium [90]

Table 15.4  Maximum composite likelihood estimate of the pattern of nucleotide substitution

A T C G

A – 3.43 2.34 14.53
T 5.37 – 12.11 2.81

C 5.37 17.73 – 2.81

G 27.73 3.43 2.34 –

Note: Each entry shows the probability of substitution (r) from one base (row) to another base 
(column [69]). For simplicity, the sum of r values is made equal to 100. Rates of different transi-
tional substitutions are shown in bold, and those of transversional substitutions are shown in ital-
ics. The nucleotide frequencies are 38.48% (A), 24.57% (T/U), 20.17% (C), and 16.78% (G). The 
transition/transversion rate ratios are k1 = 5.165 (purines) and k2 = 5.172 (pyrimidines). The overall 
transition/transversion bias is R = 2.532, where R = [A*G*k1 + T*C*k2]/[(A + G)*(T + C)]
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glycosylation patterns and CD4 regions of the analyzed dataset as in blood- and 
brain-derived Env sequences of HIV-1, as it recognizes the same CD4 receptor in all 
strains of HIV. The CD4 located between V3 and V4 is sequentially flanked by well-
conserved residues from positions ranging between 254 and 274, except a single 
residue variation at 263. The most conserved residues throughout the sequences 
(V1–V4) are A, D, E, F, G, K, L, M, N, P, R, and W.

Intra- and inter-sample variations were compared using protein sequence 
alignment. The intra-clonal variations of patient (1005) shows a variation at the 
93rd position for the clone 1005L2D (instead of “F” it is “S”). This variation occurs 
only in this clone. The clones (L4D and L5D) of the subject 1008, at position 120, 
“S” were found instead of “K,” whereas in the following patients 1004 (L1D, L2D, 
12L1D, and 12L11D) and 1006 (L5R, L6R, L7R, and L8R), it is “T,” and the rest it 
is “K.” In the subject (1004) at position 125, “T” is replaced with “Q” in L1D, L2D, 
12L4D, and 12L9D, whereas in L4D, L5D, 12L1D, and 12L8D, it is replaced by 
“R.” At position 155, the subjects 1001, 1002, and 1005 had “K,” whereas the rest 
(1003, 1004, 1006, 1008, and 1015) it was replaced by “E,” except two clones of 
1004 (L4D and L5D), where “E” is replaced with “G.” At position 186, the subject 
1004 (all clones) had “Y,” whereas the subjects 1001, 1002, and 1005 had “G,” and 
in others 1003, 1006, 1008, and 1015, it is replaced by “N.” At positions 200–210, 
there were some insertions and deletions only for 1004, and for all others it is absent. 
There are some sequence-specific signatures between 290 and 310; for 1001, 1002, 
and 1005, it is “FNGTWNNTERSNT”; for 1003 it is “NNNTWNSPNRLNS”; for 
1008 it is “STSINANNTEGNE”; for 1004 it is “VTGESNNTVGNG” except for 
12L1D and 12L11D (“GTEMSVENDT” and “FTRESNNTVGNGT”); for 1006 it 
is “VTEGSNNTEGN”; for 1015 it is “WSLNGTNTTNTNE.” These unique 
subject-specific signatures can drive diversity at the molecular level.

15.3.3  �Entropy Analysis

The sequence variations and conservations are analyzed using entropy plots for 
DNA (Fig. 15.3) and protein (Fig. 15.4). The entropy values >1 were observed at the 
following positions 23, 64, 70, 77, 200, 203, 336, 570, 601, 607, 608, 617, 721, 722, 
744, 856, 869, 895–897, 900, 909, 1055, 1062, 1063, and 1070. The entropy values 
at positions 23, 200, and 203 were due to gapped alignment instead of variations. 
Similarly for the protein sequence alignment, the entropy values >1 were observed 
at following positions: 8 (N), 17 (N), 18 (S), 21 (I), 24 (W), 26 (R), 29 (K), 47 (M), 
65, 70 (N), 71 (D), 123 (T), 184 (G), 186 (V), 187 (V), 189 (R), 190 (H), 203 (A), 
205 (T), 206 (G), 226 (T), 228 (E), 236 (G), 239 (G), 243 (P), 253 (K), 263 (M), 286 
(K), 292 (F), 294 (G), 295 (T), 296 (W), 300 (E), 301 (R), 302 (S), 304 (T), 337 (H), 
356 (D), 357 (T), 361, 362 (N), 363 (K), and 364 (T). The entropy values at posi-
tions 65 and 361 were due to gapped alignment [63].

15  Socioepidemiology of Injection Drug Users in Miami and HIV-1B…



360

15.3.4  �Tajima’s Neutrality Test

The analysis involved 37 nucleotide sequences (m), and the number of segregating 
sites (S) is 32, the nucleotide diversity (π = 0.097), and the Tajima’s test statistic, 
D = 0.593. The positive test statistic reflects intermediate-frequency mutations, sug-
gesting diversifying selection [78]. The HIV-1 sequences have not revealed evi-
dence for natural selection in env [79]. Although the test assumes that nucleotides 
are equally mutable, it is not true for coding regions because the polymorphism is 

Fig. 15.3  Entropy plot of Env nucleotide sequence alignment. The plot is generated by comparing 
residue positions of the first sequence of the input (L6D_1001) with the rest

Fig. 15.4  Entropy plot of Env protein sequence alignment. The plot is generated by comparing 
residue positions of the first sequence of the input (L6D_1001) with the rest
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not same for first, second, and third codon positions, and codon usage biases may 
further complicate the mutation pattern. The difference in the estimate obtained 
provides an indication of non-neutral evolution. Since Tajima’s test is not very pow-
erful and DNA polymorphisms are largely synonymous, it should be verified further 
with experimental work [80].

15.3.5  �Codon-Based Z-Test of Selection

Only two random pair of clones (L2D 1005 vs L5D 1002) and (L2D 1004 vs L1D 
1004) had probability (P)-value less than 0.05, i.e., 0.04 and 0.01, respectively, 
agreeing the null hypothesis. The rest of the sequence pairs suggest rejecting the 
null hypothesis of neutrality and preferring to accept the alternate hypothesis.

15.3.6  �Estimates of Transition/Transversion Bias

There was a total of 890 transition/transversion positions in 37 nucleotide sequences. 
The estimated value of the shape parameter for the discrete gamma distribution is 
0.6115. Mean evolutionary rates in these categories were 0.04, 0.21, 0.54, 1.16, and 
3.05 substitutions per site. The nucleotide frequencies are A = 38.48%, T/U = 24.57%, 
C = 16.78%, and G = 20.17%. The maximum log likelihood for this computation 
was −3618.371. The ML-estimated transition/transversion bias (R) is 1.97, and 
MCL-estimated transition/transversion bias is R = 2.532 (Table 15.4).

15.3.7  �Disparity Index Analysis

The substitution pattern between lineages was calculated by assuming that the 
sequences have evolved with the same evolutionary pattern of nucleotide substitu-
tion. The following sequences had disparity index (ID > 0) indicated evolutionary 
divergence between sequences based on composition bias. Therefore, we can reject 
the null hypothesis at the 5% level. The sequences of patients 1004 and 1006 (the 
clones are L1D 1004, L2D 1004, 12L1D 1004, 12L11D 1004, L5R 1006, L6R 
1006, L3R 1006, L13R 1006, L4R 1006, L12R 1006, and L1R 1006.) had composi-
tion bias (ID = 0.1) in random comparison with patient 1005 (clone: L2D 1005), no 
bias with others. The sequences of patients 1001, 1002, and 1005 (their correspond-
ing clones L8D 1001, L5D 1002, L3D 1002, L7D 1002, L2D 1002, L1D 1002, L7D 
1001, L6D 1001, L4D 1005, L1D 1005, and L2D 1005) showed composition bias 
(ID = 0.1) with the patient 1005 (clone 12L6D 1015). A different clone of patient 
1005 (12L12D 1015) showed composition bias (ID  =  0.1) with the following 
sequences of patients 1001, 1002, and 1005 (their corresponding clones are L8D 
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1001, L5D 1002, L3D 1002, L7D 1002, L2D 1002, L1D 1002, L7D 1001, L6D 
1001, L4D 1005, and L3D 1005). It is to be noted that for a couple of clonal 
sequences (L1D 1005 and L2D 1005) ID = 0.2, when compared with a patient clone 
1015 (12L12D 1015). Thus, the test identified lineages and genes that are evolving 
with substantially different evolutionary processes as reflected in the atypical pat-
terns of change [70].

15.3.8  �Molecular Relatedness and Dendrogram

Dendrograms are suitable to display and infer evolutionary model assuming muta-
tions and speciation events. A consensus tree is displayed after 1000 bootstrap rep-
lications (Fig. 15.5). However, it is well known that for some complex evolutionary 
scenarios involving gene loss, duplication, hybridization, horizontal gene transfer, 
or recombination, a dendrogram is not suitable for an appropriate representation of 
evolutionary events. Hence, the incompatible and ambiguous signals in the dataset 
(such as socioepidemiological data) were represented by split networks that provide 
only an “implicit” representation of evolutionary history [71]. The estimated pro-
portion of invariant sites of nucleotides is 0.334 and for proteins is 0.427 [81].

As depicted in Fig. 15.1 (network 1), the IDU and sexual relationship between 
1001 and 1002 agrees with the molecular connections as represented in the dendro-
gram with 92% confidence on the branch. The network 2 of the same figure is 
inconsistent with the molecular data, having 1003 and 1004 in two separate clusters 
with 100% confidence on the branch. Whereas the other subjects (1005 and 1006) 
were also distributed into two different clusters, 1005 is clustered along with 1001 
at a confidence of 92%, and 1006 is entirely a unique cluster with 99% confidence. 
The network 3 is also in disagreement with the molecular data of 1015 and 1008. 
However, the sequence details of 1011 are required to confirm with 1015. (No 
molecular data is available to compare with network 4.)

The resulting nucleotide-based split network is showed in Fig.  15.6, and the 
protein-based split network is showed in Fig. 15.7. This pattern suggests that the 
dataset contains conflicting evolutionary signals (such as duration of IDUs, sexual 
relationship, hypervariable regions, recombination, risk locale, random genetic 
drift, etc.) and is consistent with the hypothesis of recombination events (refer, vi. 
Phi test) among the major lineages. Two of clones belonging to IDU patient (1004) 
appear isolated from the clusters, whereas few others clones of 1004 show sequence 
admixtures, preferably due to recombination events. Compared to all other subjects, 
1004 cluster is more diverse and some clones converge. It is to be noted that split 
networks provide only an “implicit” picture of an evolutionary relationship and 
“nodes” in the “split network” do not represent ancestral species.
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Fig. 15.5  Evolutionary relationships of HIV-1 B Env based on nucleotide alignment (37 
sequences). The branching pattern was generated by the neighbor-joining (NJ) method, and the 
confidence of the clades was assessed by bootstrap values (n = 1000 replicates)
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15.3.9  �Phi Test for Recombination

The nucleotide and amino acid characters were analyzed using Phi test [74]. The 
results are summarized in Table 15.5. Although the split network based on nucleo-
tides and proteins had a similar tree topology (Figs. 15.6 and 15.7), only the net-
work based on nucleotides showed significant evidence for recombination in the Phi 
test, which was not reflected in proteins.

15.4  �Discussion

We address the question as to whether clustering observed in IDU networks reported 
in this chapter may reflect relatively concentrated shared co-injection behaviors. 
The dyads that we characterized injected with each other feasibly hundreds of times 
between 1982 and 1988, by which time all had seroconverted. The participants in 
the double dyad, additionally, had injected with each member of the group many 

Fig. 15.6  A split decomposition network for 37 Env sequences of IDU HIV-1 B patients based on 
nucleotide sequence alignment, computed using the neighbor-net method with bootstrap values 
(n = 1000 replicates). The computed splits are displayed as a network with equal angle. Two of the 
IDU patient sequences appear isolated from the clusters and are encircled
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times. There is no evidence of direct interpersonal connections between participants 
1005 and 1002 and 1001. It is relevant to note that the carrier of a founding HIV-1B 
infection need not be personally present when the next victim is exposed. That indi-
vidual may no longer be on the premises; just his/her paraphernalia need be present 
for additional individuals to become HIV-1B infected with the strains at hand. These 
paraphernalia include contaminated needle-syringes, cottons, cookers, and wash-
waters, all generally used in the IDU venue. IDU paraphernalia have been exten-
sively characterized in Miami-Dade County and shown to be contaminated with 
HIV-1B [42, 82, 83].

One observed condition in which this kind of exposure takes place is when a 
group of injectors arrives at a risk locale and uses needle-syringes and paraphernalia 
contaminated by the people who just finished ‘shooting up’ (injecting drugs). They 
use the contaminated available paraphernalia and syringes, not necessarily sharing 
them, but often not adequately cleansing them of prior contaminants. The primary 
hypothesis to be tested by sequencing ENV variable loops is, if we can expect 
sequence characteristics of strains of virus will reflect interpersonal risk behaviors 
characterized by sociocultural studies. In cases where people who run together 
(socialize) also inject together under private circumstances, we would expect cluster-
ing to reflect that fact. In cases where people who inject together do so in risk locales 

Fig. 15.7  A split decomposition network for 37 Env sequences of IDU HIV-1 B patients based on 
protein sequence alignment, computed using the neighbor-net method with bootstrap values 
(n = 1000 replicates). The computed splits are displayed as a network with equal angle. Two of the 
IDU patient sequences appear isolated from the clusters and are encircled
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where many inject, we would expect lower levels of clustering of virus strains. 
Additional study in more localities would aid in understanding the importance of 
shooting companions and shooting venues in the spread of HIV-1B (as well as addi-
tional viruses including HCV and HBV). Moreover, the extent to which individuals 
participate in out-of-network HIV-1B risk activity needs socioepidemiological com-
parisons and sequence relatedness characterization as well [42, 47, 48, 49, 84–89].

The full V1–V5 ENV domains are included in this study to characterize social 
effects and molecular changes. The structure and genomes of HIV strains are well 
known and on a firm basis for such studies [90]. For  example, previous studies 
suggest that the overall tertiary conformation of the entire env protein may be 
important in tropism-determining activity. In particular, domains within the V1/V2 
[91, 92] and/or V3 are critical determinants of macrophage cellular tropism [12, 25, 
85, 91, 93–95]. A 94-amino acid domain, including the V3 loop, is involved with 
HIV-1B infection of macrophages being both necessary and sufficient for virus 

Table 15.5  Phi test for recombination in the split network

Sl. 
No Subject ID

Informative 
sites k Mean Variance Observed P-value

Statistical 
significance

1. 1001–1006, 
1008, and 
1015 
(genes)

360 33 0.899 6.703 0.080 1.190 Yes

2. 1003–1006 
(genes)

286 27 0.692 7.459 0.056 7.143 Yes

3. 1003 and 
1004 
(genes)

192 18 0.053 1.160 0.039 1.695 Yes

4. 1005 and 
1006 
(genes)

116 11 – – – – No

5. 1008 and 
1015 
(genes)

131 13 – – – – No

6. 1001–1006, 
1008, and 
1015 
(proteins)

168 46 0.090 2.008 0.090 0.497 No

7. 1001 and 
1002 
(proteins)

Non-
informative

– – – – – –

8. 1003 and 
1004 
(proteins)

105 30 0.029 7.989 0.030 0.595 No

9. 1005–1006 
(proteins)

72 21 – – – – No

10. 1008 and 
1015 
(proteins)

81 23 – – – – No
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entry [91, 93]. A mutation of residue 287 from a lysine to a glutamic acid converts 
a non-macrophagetropic isolate of HIV-1B to one capable of replicating in macro-
phages. In addition, the V3 domain is a 35–37-amino acid loop bounded by a pair of 
disulfide-bonded cysteine residues [96]. It forms two antiparallel beta turns and a 
short C-terminal alpha helix [97]. It is an epitope for neutralizing antibodies as well 
as cytotoxic T lymphocytes [98, 99].

Based on sequence analysis, specific signatures, transition/transversion bias, sta-
tistical test of neutrality, and molecular diversity as reflected in dendrograms, we 
conclude that there are genetic variations in V1–V4 region of HIV-1 B env. For 
example, disparity index confirmed composition bias in a couple of clones 
(12L1D_1004 and 12L11D_1004) belonging to 1004 with patient 1005 (clone: L2D 
1005). This is very well reflected as isolated branches of split network. Similarly, 
the sequences of patients 1004 and 1006 had composition bias with patient 1005, 
and the sequences of patients 1001, 1002, and 1005 showed composition bias with 
the clone 12L6D of 1015 as reflected in the split network (Figs. 15.6 and 15.7), 
which confirms non-neutral evolution as indicated by Tajima’s test. The unsystem-
atic variations introduced by recombination may set an evidence for non-neutral 
evolution. It is also known that the natural selection is frequently masked by recom-
bination and the natural selection over the env V1–V4 region had a minor role in 
driving diversity [76, 100, 101].

Finally, there is a non-intuitive and unexpected relationship between needle-
syringe and paraphernalia sharing and psychiatric morbidities associated with IDU 
risk behavior. In the current volume of Global Virology II, Thames and Jones (Chap. 
12) indicate that IDU needle-syringe and paraphernalia-sharing as well as reduced 
needle-syringe cleansing behaviors are associated with psychiatric comorbidities 
due to HIV-1 infection. These comorbidities include antisocial personality disorder 
(ASPD) and exhibit such as remorseless, impulsive, and irresponsible behaviors. 
Thames and Jones further report and discuss additional comorbidities associated 
with such behaviors including DSM-III axis II diagnosis as well as opioid and 
cocaine consumption. [102]. Additionally, marijuana use is also associated with 
such set of behaviors and conditions. [103].

15.5  �Conclusions

The results described here may lead to new directions of understanding natural 
selection, random genetic drift, and recombination in the HIV-1B env protein as 
well as diversity during HIV-1 infections in a defined socioepidemiological context. 
Additional work is needed to characterize in detail the effects of differing risk activ-
ities including contemporaneously in the post-HAART, cART era as the world pro-
gresses into the next era of more advanced molecular and immunological therapies. 
Moreover, the contextual application of studies of IDU risk behaviors and molecu-
lar epidemiology should also include characterization of the associated psychiatric 
morbidities as well as the possible role of brain-related HIV-1 infections.
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