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Abstract The concentration of measure phenomenon may be summarized as
follows: a function of many weakly dependent random variables that is not too
sensitive to any of its individual arguments will tend to take values very close to its
expectation. This phenomenon is most completely understood when the arguments
are mutually independent random variables, and there exist several powerful com-
plementary methods for proving concentration inequalities, such as the martingale
method, the entropy method, and the method of transportation inequalities. The set-
ting of dependent arguments is much less well understood. This chapter focuses on
the martingale method for deriving concentration inequalities without independence
assumptions. In particular, we use the machinery of so-called Wasserstein matrices
to show that the Azuma-Hoeffding concentration inequality for martingales with
almost surely bounded differences, when applied in a sufficiently abstract setting,
is powerful enough to recover and sharpen several known concentration results
for nonproduct measures. Wasserstein matrices provide a natural formalism for
capturing the interplay between the metric and the probabilistic structures, which
is fundamental to the concentration phenomenon.

1 Introduction

At its most abstract, the concentration of measure phenomenon may be summarized
as follows: a function of several weakly dependent random variables that is not
too sensitive to any of the individual arguments will tend to take values very close
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to its expectation. This phenomenon is most completely understood in the case
of independent arguments, and the recent book [2] provides an excellent survey
(see also [30] for an exposition from the viewpoint of, and with applications to,
information theory).

The case of dependent arguments has yet to mature into such a unified,
overarching theory. The earliest concentration results for nonproduct measures were
established for Haar measures on various groups, and relied strongly on the highly
symmetric nature of the Haar measure in question. These results include Lévy’s
classic isoperimetric inequality on the sphere [20] and Maurey’s concentration
inequality on the permutation group [28]. To the best of our knowledge, the first
concentration result for a nonproduct, non-Haar measure is due to Marton [22],
where she proved a McDiarmid-type bound for contracting Markov chains. A
flurry of activity followed. Besides Marton’s own follow-up work [23, 24, 25], the
transportation method she pioneered was extended by Samson [33], and martingale
techniques [32, 6, 17], as well as methods relying on the Dobrushin interdependence
matrix [19, 4, 36], have been employed in obtaining concentration results for
nonproduct measures. The underlying theme is that the independence assumption
may be relaxed to one of weak dependence, the latter being quantified by various
mixing coefficients.

This chapter is an attempt at providing an abstract unifying framework that
generalizes and sharpens some of the above results. This framework combines
classical martingale techniques with the method of Wasserstein matrices [10]. In
particular, we rely on Wasserstein matrices to obtain general-purpose quantitative
estimates of the local variability of a function of many dependent random variables
after taking a conditional expectation with respect to a subset of the variables. A
concentration inequality in a metric space must necessarily capture the interplay
between the metric and the distribution, and, in our setting, Wasserstein matrices
provide the ideal analytical tool for this task. As an illustration, we recover (and, in
certain cases, sharpen) some results of [19, 6, 17] by demonstrating all of these to
be special cases of the Wasserstein matrix method.

The remainder of the chapter is organized as follows. Section 2 is devoted to
setting up the basic notation and preliminary definitions. A brief discussion of the
concentration of measure phenomenon in high-dimensional spaces is presented in
Section 3, together with a summary of key methods to establish concentration under
the independence assumption. Next, in Section 4, we present our abstract martingale
technique and then demonstrate its wide scope in Section 5 by deriving many of the
previously published concentration inequalities as special cases. We conclude in
Section 6 by listing some open questions.
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2 Preliminaries and Notation

2.1 Metric Probability Spaces

A metric probability space is a triple .˝;�; d/, where˝ is a Polish space equipped
with its Borel � -field, � is a Borel probability measure on ˝, and d is metric on
˝, assumed to be a measurable function on the product space ˝ � ˝. We do not
assume that d is the same metric that metrizes the Polish topology on ˝.

2.2 Product Spaces

Since concentration of measure is a high-dimensional phenomenon, a natural setting
for studying it is that of a product space. Let T be a finite index set, which we identify
with the set Œn� , f1; : : : ; ng, where n D jTj (this amounts to fixing some linear
ordering of the elements of T). We will use the following notation for subintervals
of T: Œi� , f1; : : : ; ig; Œi; j� , fi; i C 1; : : : ; jg for i ¤ j; .i; j� , fi C 1; : : : ; jg for
i < j; .i; j/ , fi C 1; : : : ; j � 1g for i < j � 1; etc.

With each i 2 T , we associate a measurable space .Xi;Bi/, where Xi is a Polish
space and Bi is its Borel � -field. For each I � T , we will equip the product space
XI ,

Q
i2I Xi with the product � -field BI ,

N
i2I Bi. When I D T , we will simply

write X and B. We will write xI and x for a generic element of XI and X, respectively.
Given two sets I; J � T with I \ J D ¿, the concatenation of xI 2 XI and zJ 2 XJ

is defined as y D xIzJ 2 XI[J by setting

yi D
(

xi; i 2 I

zi; i 2 J
:

Given a random object X D .Xi/i2T taking values in X according to a probability law
�, we will denote by P�Œ�� and E�Œ�� the probability and expectation with respect to
�, by �I.dxI jxJ/ the regular conditional probability law of XI given XJ D xJ , and by
�I.dxI/ the marginal probability law of XI . When I D fig, we will write �i.�/ and
�i.�jxJ/.

For each i 2 T , we fix a metric on Xi, which is assumed to be measurable with
respect to the product � -field Bi ˝ Bi. For each I � T , equip XI with the product
metric �I , where

�I.xI ; zI/ ,
X

i2I

�i.xi; zi/; 8xI ; zI 2 XI :

When I � T , we will simply write � instead of �T . In this way, for any Borel
probability measure � on X, we can introduce a “global” metric probability
space .X; �; �/, as well as “local” metric probability spaces .XI ; �I ; �I/ and
.XI ; �I.�jxJ/; �I/ for all I; J � T and all xJ 2 XJ .
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2.3 Couplings and Transportation Distances

Let ˝ be a Polish space. A coupling of two Borel probability measures � and �
on ˝ is a Borel probability measure P on the product space ˝ � ˝, such that
P.� �˝/ D � and P.˝ � �/ D �. We denote the set of all couplings of � and � by
C.�; �/. Let d be a lower-semicontinuous metric on˝. We denote by Lip.˝; d/ the
space of all functions˝ ! R that are Lipschitz with respect to d, and by Lipc.˝; d/
the subset of Lip.˝; d/ consisting of c-Lipschitz functions. The L1 Wasserstein (or
transportation) distance between � and � is defined as

Wd.�; �/ , inf
P2C.�;�/EPŒd.X;Y/�; (1)

where .X;Y/ is a random element of˝ �˝ with law P. The transportation distance
admits a dual (Kantorovich–Rubinstein) representation

Wd.�; �/ D sup
f 2Lip1.˝;d/

ˇ
ˇ
ˇ
ˇ

Z

˝

f d� �
Z

˝

f d�

ˇ
ˇ
ˇ
ˇ : (2)

For example, when we equip ˝ with the trivial metric d.!; !0/ D 1f! ¤ !0g, the
corresponding Wasserstein distance coincides with the total variation distance:

Wd.�; �/ D k� � �kTV D sup
A

j�.A/ � �.A/j;

where the supremum is over all Borel subsets of ˝.
In the context of the product space .X; �/ defined earlier, we will use the

shorthand Wi for W�i , WI for W�I , and W for W�.

2.4 Markov Kernels and Wasserstein Matrices

A Markov kernel on X is a mapping K W X � B ! Œ0; 1�, such that x 7! K.x;A/ is
measurable for each A 2 B, and K.x; �/ is a Borel probability measure on X for each
x 2 X. Given a Markov kernel K and a bounded measurable function f W X ! R,
we denote by Kf the bounded measurable function

Kf .x/ ,
Z

X
f .y/K.x; dy/; x 2 X:

Likewise, given a Borel probability measure � on X, we denote by �K the Borel
probability measure

�K.A/ ,
Z

X
K.x;A/�.dx/; A 2 B:
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It is not hard to see that
R

X f d.�K/ D R
X.Kf /d�.

Given a measurable function f W X ! R, we define the local oscillation of f at
i 2 T as

ıi.f / , sup
x;z2X

xTnfig
DzTnfig

jf .x/ � f .z/j
�i.xi; zi/

;

where we follow the convention 0=0 D 0. This quantity measures the variability of f
in its ith argument when all other arguments are held fixed. As will become evident
later on, our martingale technique for establishing concentration inequalities for a
given function f W X ! R requires controlling the local oscillations ıi.Kf / in terms
of the local oscillations ıi.f / for appropriately chosen Markov kernels K.

To get an idea of what is involved, let us consider the simple case when each Xi

is endowed with the scaled trivial metric �i.xi; zi/ , ˛i1fxi ¤ zig, where ˛i > 0 is
some fixed constant. Then

ıi.f / D 1

˛i
sup

n
jf .x/ � f .z/j W x; z 2 X; xTnfig D zTnfigo:

The corresponding metric � on X is the weighted Hamming metric

�˛.x; z/ ,
X

i2T

˛i1fxi ¤ zig: (3)

Fix a Markov kernel K on X. The Dobrushin contraction coefficient of K (also
associated in the literature with Doeblin’s name) is the smallest � � 0 for which
kK.x; �/ � K.z; �/kTV 	 � holds for all x; z 2 X. The term contraction is justified by
the well-known inequality (apparently going back to Markov himself [21, �5])

k�K � �KkTV 	 �k� � �kTV; (4)

which holds for all probability measures �; � on X. Then we have the following
estimate:

Proposition 2.1 If K is a Markov kernel on X with Dobrushin coefficient � , then
for every i 2 T and for every f 2 Lip.X; �˛/, we have

ıi.Kf / 	 �

˛i

X

j2T

˛jıj.f /: (5)

Proof Fix an index i 2 T and any two x; z 2 X that differ only in the ith coordinate:
xTnfig D zTnfig and xi ¤ zi. Pick an arbitrary coupling Px;z 2 C.K.x; �/;K.z; �//. Then

jKf .x/ � Kf .z/j D
ˇ
ˇ
ˇ
ˇ

Z

X
K.x; du/f .u/ �

Z

X
K.z; dy/f .y/

ˇ
ˇ
ˇ
ˇ
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D
ˇ
ˇ
ˇ
ˇ

Z

X�X
Px;z.du; dy/

�
f .u/ � f .y/

�
ˇ
ˇ
ˇ
ˇ

	
X

j2T

ıj.f /
Z

X�X
Px;z.du; dy/�j.uj; yj/

D
X

j2T

˛jıj.f /
Z

X�X
Px;z.du; dy/1fuj ¤ yjg

	
X

j2T

˛jıj.f / �
Z

X�X
Px;z.du; dy/1fu ¤ yg;

where the first inequality is by the definition of ıi.f /, while the second one follows
from the obvious implication uj ¤ yj ) u ¤ y. Taking the infimum of both sides
over all couplings Px;z 2 C.K.x; �/;K.z; �// yields

jKf .x/ � Kf .z/j 	
X

j2T

˛jıj.f / � kK.x; �/ � K.z; �/kTV

	 �
X

j2T

˛jıj.f /:

Finally, dividing both sides of the above inequality by ˛i and taking the supremum
over all choices of x; z that differ only in the ith coordinate, we obtain (5). ut

One shortcoming of the above result (which is nontrivial only under the rather
strong condition

� <
˛i

˛j
< ��1 (6)

for all i; j 2 T) is that it gives only a very rough idea of the influence of ıj.f / for
j 2 T on ıi.Kf /. For example, if ˛1 D : : : D ˛n D 1, then the condition (6) reduces
to the Dobrushin contraction condition � < 1, and the inequality (5) becomes

ıi.Kf / 	 �
X

j2T

ıj.f /;

suggesting that all of the ıj.f /’s influence ıi.Kf / equally. However, this picture can
be refined. To that end, we introduce the notion of a Wasserstein matrix following
Föllmer [10]. Let us denote by ı.f / the vector .ıi.f //i2T . We say that a nonnegative
matrix V D .Vij/i;j2T is a Wasserstein matrix for K if, for every f 2 Lip.X; �/ and
for every i 2 T ,

ıi.Kf / 	
X

j2T

Vijıj.f /; (7)

or, in vector form, if ı.Kf / 
 Vı.f /.
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One of our main objectives will be to show that concentration inequalities for
functions f of X � � can be obtained using Wasserstein matrices for certain Markov
kernels K related to �. In order to motivate the introduction of Wasserstein matrices,
we record a couple of contraction estimates for Markov kernels that may be of
independent interest. To that end, we introduce another coupling-based distance
between probability measures [2, Chap. 8]: for two Borel probability measures on
X, define

NW.�; �/ , inf
P2C.�;�/

sX

i2T

.EPŒ�i.Xi;Yi/�/
2; (8)

where .X;Y/ is a random element of X � X. Even though NW is not a Wasserstein
distance, we can use the inequality

p
a C b 	 p

a C p
b for a; b � 0 to show that

NW.�; �/ 	 W.�; �/.

Proposition 2.2 Let V be a Wasserstein matrix for a Markov kernel K on X. Then
for any Lipschitz function f W X ! R,

ˇ
ˇE�K Œf .X/� � E�K Œf .X/�

ˇ
ˇ 	 kVı.f /k`2.T/ NW.�; �/: (9)

Proof Fix an arbitrary coupling P 2 C.�; �/ and let .X;Y/ be a random element of
X � X with law P. Then

ˇ
ˇE�K Œf .X/� � E�K Œf .X/�

ˇ
ˇ D ˇ

ˇE�ŒKf .X/� � E�ŒKf .X/�
ˇ
ˇ

D jEP ŒKf .X/ � Kf .Y/�j
	
X

i2T

ıi.Kf / � EPŒ�i.Xi;Yi/�

	
X

i2T

X

j2T

Vijıj.f / � EPŒ�i.Xi;Yi/�:

where in the last step we have used the definition of the Wasserstein matrix. Using
the Cauchy–Schwarz inequality, we obtain

ˇ
ˇE�K Œf .X/� � E�K Œf .X/�

ˇ
ˇ 	

v
u
u
t
X

i2T

ˇ
ˇ
ˇ
X

j2T

Vijıj.f /
ˇ
ˇ
ˇ
2 �
X

i2T

.EPŒ�i.Xi;Yi/�/
2

D kVı.f /k`2.T/ �
sX

i2T

.EPŒ�i.Xi;Yi/�/
2:

Taking the infimum of both sides over all P 2 C.�; �/, we obtain (9). ut
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Corollary 2.3 Let V be a Wasserstein matrix for a Markov kernel K on X. Then,
for any two Borel probability measures � and � on X,

W.�K; �K/ 	 kV1k`2.T/ NW.�; �/; (10)

where 1 2 R
T is the vector of all ones, and therefore

W.�K; �K/ 	 kV1k`2.T/W.�; �/:

Proof A function f W X ! R belongs to Lip1.X; �/ if and only if ı.f / 2 Œ0; 1�T .
Using the dual representation (2) of W and applying Proposition 2.2, we can write

W.�K; �K/ D sup
f 2Lip1.X;�/

ˇ
ˇE�K Œf .X/� � E�K Œf .X/�

ˇ
ˇ

	 sup
	2Œ0;1�T

kV	k`2.T/ NW.�; �/:

Since V is a nonnegative matrix, the supremum is achieved by 	 D 1. ut

2.5 Relative Entropy

Finally, we will need some key notions from information theory. The relative
entropy (or information divergence) between two probability measures �; � on a
space ˝ is defined as

D.�k�/ ,
8
<

:

Z

˝

d� f log f ; if � � � with f D d�=d�

C1; otherwise
:

We use natural logarithms throughout the chapter. The relative entropy is related to
the total variation distance via Pinsker’s inequality1

k� � �kTV 	
r
1

2
D.�k�/: (11)

1Though commonly referred to as Pinsker’s inequality, (11) as given here (with the optimal
constant 1

2
) was proven by Csiszár [7] and Kullback [18] in 1967.
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3 Concentration of Measure and Sufficient Conditions

In this section, we give a precise definition of the concentration of measure
phenomenon, review several sufficient conditions for it to hold, and briefly discuss
how it can be established under the independence assumption via tensorization. For
more details and further references, the reader can consult [2] or [30].

We say that the metric probability space .X; �; �/ has the concentration of
measure property if there exists a positive constant c > 0, such that, for every
Lipschitz function f W X ! R,

P�

˚
f .X/ � E�Œf .X/� � t

� 	 e�t2=2ckf k2Lip ; 8t > 0 (12)

where

kf kLip , sup
x;y2X
x¤y

jf .x/ � f .y/j
�.x; y/

is the Lipschitz constant of f . A sufficient (and, up to constants, necessary) condition
for (12) is that, for every f 2 Lip1.X; �/, the random variable f .X/ with X � � is
c-subgaussian, i.e.,

logE�
�
e
.f .X/�E�Œf .X/�/

� 	 c
2

2
; 8
 2 R: (13)

A fundamental result of Bobkov and Götze [1] states that the subgaussian esti-
mate (13) holds for all f 2 Lip1.X; �/ if and only if � satisfies the so-called
transportation-information inequality

W.�; �/ 	
p
2c D.�k�/; (14)

where � ranges over all Borel probability measures on X. We will use the shorthand
� 2 T�.c/ to denote the fact that the inequality (14) holds for all �. The key
role of transportation-information inequalities in characterizing the concentration
of measure phenomenon was first recognized by Marton in a breakthrough paper
[22], with further developments in [23, 24, 25].

The entropy method (see, e.g., [2, Chap. 6] and [30, Chap. 3]) provides another
route to establishing (13). Its underlying idea can be briefly described as follows.
Given a measurable function f W X ! R, consider the logarithmic moment-
generating function

 f .
/ , logE�
�
e
.f .X/�E�Œf .X/�/

�

of the centered random variable f .X/�E�Œf .X/�. For any 
 ¤ 0, introduce the tilted
probability measure �.
f / with
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d�.
f /

d�
D e
f

E�Œe
f �
D e
.f �E�f /

e f .
/
:

Then a simple calculation shows that the relative entropy D.�.
f /k�/ can be
expressed as

D.�.
f /k�/ D 
 0
f .
/ �  f .
/ � 
2

�
 f .
/




�0

where the prime denotes differentiation with respect to 
. Using the fact that
 f .0/ D 0 and integrating, we obtain the following formula for  f .
/:

 f .
/ D 


Z 


0

D.�.tf /k�/
t2

dt: (15)

This representation is at the basis of the so-called Herbst argument, which for our
purposes can be summarized as follows:

Lemma 3.1 (Herbst) The metric probability space .X; �; �/ has the concentration
property with constant c if, for any f 2 Lip1.X; �/,

D.�.tf /k�/ 	 ct2

2
; 8t > 0: (16)

Remark 3.2 Up to a constant, the converse is also true [34, Prob. 3.12]: if the
subgaussian estimate (13) holds for every f 2 Lip1.X; �/, then

D.�.tf /k�/ 	 2ct2; 8t > 0

for every f 2 Lip1.X; �/.

In this way, the problem of establishing the concentration phenomenon reduces to
showing that (16) holds for every f 2 Lip1.X; �/, typically via logarithmic Sobolev
inequalities or other functional inequalities.

3.1 Concentration of Measure Under the Independence
Assumption

To set the stage for the general treatment of the concentration phenomenon in
high dimensions, we first consider the independent case, i.e., when coordinates Xi,
i 2 T , of the random object X � � are mutually independent. In other words, the
probability measure � is equal to the product of its marginals: � D �1 ˝ : : :˝ �n.
The key to establishing the concentration property in such a setting is tensorization,
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which is an umbrella term for any result that allows one to derive the “global”
concentration property of the high-dimensional product space .X1˝: : :˝Xn; �; �1˝
: : :˝�n/ from “local” concentration properties of the coordinate spaces .Xi; �i; �i/,
i 2 T .

Below, we list two such tensorization results, one for the transportation-
information inequalities and one for the relative entropy. Both of these results
are deep consequences of the interplay between the independence structure of �
and the metric structure of �. Indeed, a function f W X ! R belongs to Lip1.X; �/
if and only if ıi.f / 	 1 for all i 2 T , i.e., if and only if, for every i 2 T and every
xTnfig 2 XTnfig, the function fi W Xi ! R given by fi.yi/ , f .yixTnfig/ is 1-Lipschitz
with respect to the metric �i on Xi. With this in mind, it is reasonable to expect that
if one can establish a concentration property for all 1-Lipschitz functions on the
coordinate spaces Xi, then one can deduce a concentration property for functions on
the product space X that are 1-Lipschitz in each coordinate.

Lemma 3.3 (Tensorization of transportation-information inequalities) Suppose
that there exist constants c1; : : : ; cn � 0, such that

�i 2 T�i.ci/; 8i 2 T:

Then � D �1 ˝ : : :˝ �n 2 T�.c/ with c D Pn
iD1 ci.

For example, by an appropriate rescaling of Pinsker’s inequality (11), we see that,
if each coordinate space Xi is endowed with the scaled trivial metric �i.xi; zi/ D
˛i1fxi ¤ zig for some ˛i > 0, then any Borel probability measure �i on Xi

satisfies the transportation-information inequality with ci D ˛2i =4. By the above
tensorization lemma, any product measure �1 ˝ : : : ˝ �n on the product space
X1 ˝ : : : ˝ Xn equipped with the weighted Hamming metric �˛ defined in (3)
satisfies T�˛.c/ with c D 1

4

P
i2T ˛

2
i . Consequently, by the Bobkov–Götze theorem,

the subgaussian estimate (13) holds for any function f 2 Lip1.X; �˛/, which in turn
implies, via the Chernoff bound, that

P�

n
f � E�f � t

o
	 exp

�

� 2t2
P

i2T ˛
2
i

�

; 8t � 0:

This provides an alternative derivation of McDiarmid’s inequality (with the sharp
constant in the exponent), which was originally proved using the martingale method.

Lemma 3.4 (Tensorization of relative entropy) Consider a product measure � D
�1 ˝ : : :˝ �n. Then for any other probability measure � on X we have

D.�k�/ 	
X

i2T

E�D
	
�i.�jXTnfig/k�i



: (17)

The idea is to apply this lemma to � D �.tf / for some t � 0 and an arbitrary f 2
Lip1.X; �/. In that case, a simple calculation shows that the conditional probability
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measure �i.dxijxTnfig/ D �
.tf /
i .dxijxTnfig/ is equal to the tilted distribution �.tfi/i with

fi.xi/ D f .xixTnfig/, and therefore

D.�.tf /k�/ 	
nX

iD1
E�.tf /D

�
�
.tfi/
i

�
��i

�
:

If f 2 Lip1.X; �/, then fi 2 Lip1.Xi; �i/. Thus, if we can show that, for any g 2
Lip1.Xi; �i/,

D.�.tg/i k�i/ 	 cit2

2
; 8t � 0;

then the estimate

D.�.tf /k�/ 	 ct2

2
; 8t � 0

holds with c D Pn
iD1 ci for all f 2 Lip.X; �/ by the tensorization lemma. Invoking

the Herbst argument, we conclude that .X; �; �/ has the concentration property with
the same c.

4 The Abstract Martingale Method

In this section, we present a general martingale-based scheme for deriving con-
centration inequalities for functions of many dependent random variables. Let
f W X ! R be the function of interest, and let X D .Xi/i2T be a random element of
the product space X with probability law �. Let F0 � F1 � : : : � Fm be a filtration
(i.e., an increasing sequence of � -fields) on X, such that F0 is trivial and Fm D B.
The idea is to decompose the centered random variable f .X/�E�Œf .X/� as a sum of
martingale differences

M.j/ , E�Œf .X/jFj� � E�Œf .X/jFj�1�; j D 1; : : : ;m:

By construction, E�Œf .X/jFm� D f .X/ and E�Œf .X/jF0� D E�Œf .X/�, so the problem
of bounding the probability P�

˚jf �E�f j � t
�

for a given t � 0 reduces to bounding
the probability

P�

(
ˇ
ˇ
ˇ

mX

jD1
M.j/

ˇ
ˇ
ˇ � t

)

:

The latter problem hinges on being able to control the martingale differences M.j/.
In particular, if each M.j/ is a.s. bounded, we have the following:
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Theorem 4.1 (Azuma–Hoeffding inequality) Let fM.j/gm
jD1 be a martingale differ-

ence sequence with respect to a filtration fFjgm
jD0. Suppose that, for each j, there

exist Fj�1-measurable random variables A.j/ and B.j/, such that A.j/ 	 M.j/ 	 B.j/

a.s. Then

E

2

4exp

0

@


mX

jD1
M.j/

1

A

3

5 	 exp

 

2
Pm

jD1 kB.j/ � A.j/k21
8

!

; 8
 2 R: (18)

Consequently, for any t � 0,

P

(
ˇ
ˇ
ˇ

mX

jD1
M.j/

ˇ
ˇ
ˇ � t

)

	 2 exp

 

� 2t2
Pm

jD1 kB.j/ � A.j/k21

!

: (19)

The most straightforward choice of the filtration is also the most natural one: take
m D jTj D n, and for each i 2 T take Fi D �.XŒi�/. For i 2 T , define a Markov
kernel K.i/ on X by

K.i/.x; dy/ , ıxŒi�1� .dyŒi�1�/˝ �Œi;n�.dyŒi;n�jxŒi�1�/: (20)

Then, for any f 2 L1.�/ we have

K.i/f .x/ D
Z

X
f .y/K.i/.x; dy/

D
Z

XŒi;n�
f .xŒi�1�yŒi;n�/�Œi;n�.dyŒi;n�jxŒi�1�/

D E�Œf .X/jXŒi�1� D xŒi�1��I

in particular, K.1/f D E�f . We extend this definition to i D n C 1 in the obvious
way:

K.nC1/.x; dy/ D ıx.dy/;

so that K.nC1/f D f . Then, for each i 2 T , we can write M.i/ D K.iC1/f �K.i/f . With
this construction, we can state the following theorem that applies to the case when
each coordinate space Xi is endowed with a bounded measurable metric �i:

Theorem 4.2 Assume that, for all i,

k�ik , sup
xi;zi2Xi

�i.xi; zi/ < 1:

For each i 2 f1; : : : ; n C 1g, let V.i/ be a Wasserstein matrix for the Markov
kernel K.i/ defined in (20), in the sense that ı.K.i/f / 
 V.i/ı.f / holds for each
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f 2 Lip.X; �/ as in (7). Define the matrix � D .�ij/i;j2T with entries

�ij , k�ikV.iC1/
ij :

Then, for any f 2 Lip.X; �/ and for any t � 0, we have

P�

n
jf .X/ � E�Œf .X/�j � t

o
	 2 exp

 

� 2t2

k� ı.f /k2
`2.T/

!

: (21)

Proof For each i 2 T , using the tower property of conditional expectations, we can
write

M.i/ D E�Œf .X/jXŒi� D xŒi�� � E�Œf .X/jXŒi�1� D xŒi�1��

D E�Œf .X/jXŒi� D xŒi�� � E�

�
E�Œf .X/jXŒi�1� D xŒi�1�;Xi�

ˇ
ˇXŒi�1� D xŒi�1�

�

D
Z

XŒi;n�
�Œi;n�.dyŒi;n�jxŒi�1�/

	 Z

X.i;n�
�.i;n�.dz.i;n�jxŒi�/f .xŒi�1�xiz

.i;n�/

�
Z

X.i;n�
�.i;n�.dz.i;n�jxŒi�1�yi/f .x

Œi�1�yiz
.i;n�/




D
Z

XŒi;n�
�Œi;n�.dyŒi;n�jxŒi�1�/ �K.iC1/f .xŒi�1�xiy

.i;n�/ � K.iC1/f .xŒi�1�yiy
.i;n�/

�
:

From this, it follows that A.i/ 	 M.i/ 	 B.i/ a.s., where

A.i/ ,
Z

XŒi;n�
�Œi;n�.dyŒi;n�jxŒi�1�/ inf

xi2Xi

�
K.iC1/f .xŒi�1�xiy

.i;n�/ � K.iC1/f .xŒi�1�yiy
.i;n�/

�

B.i/ ,
Z

XŒi;n�
�Œi;n�.dyŒi;n�jxŒi�1�/ sup

xi2Xi

�
K.iC1/f .xŒi�1�xiy

.i;n�/ � K.iC1/f .xŒi�1�yiy
.i;n�/

�
;

and

kB.i/ � A.i/k1 	 k�ikıi
�
K.iC1/f

�
: (22)

By definition of the Wasserstein matrix, we have

ıi
�
K.iC1/f

� 	
X

j2T

V.iC1/
ij ıj.f /:

Substituting this estimate into (22), we get

nX

iD1
kB.i/ � A.i/k21 	

nX

iD1
j.� ı.f //ij2 � k� ı.f /k2`2.T/ : (23)
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The probability estimate (21) then follows from the Azuma–Hoeffding
inequality (19). ut

We can also use the martingale method to obtain a tensorization result for
transportation inequalities without independence assumptions. This result, which
generalizes a theorem of Djellout, Guillin, and Wu [8, Thm. 2.11], can be used even
when the metrics �i are not necessarily bounded.

Theorem 4.3 Suppose that there exist constants c1; : : : ; cn � 0, such that

�i.�jxŒi�1�/ 2 T�i.ci/; 8i 2 T; xŒi�1� 2 XŒi�1�: (24)

For each i 2 f1; : : : ; nC1g, let V.i/ be a Wasserstein matrix for K.i/. Then � 2 T�.c/
with

c D
X

i2T

ci

	X

j2T

V.iC1/
ij


2
: (25)

Proof By the Bobkov–Götze theorem [1], it suffices to show that, for every f W X !
R with kf kLip 	 1, the random variable f .X/ with X � � is c-subgaussian, with c
given by (25). To that end, we again consider the martingale decomposition

f � E�Œf � D
X

i2T

M.i/

with M.i/ D K.iC1/f � K.i/f . We will show that, for every i,

logE�
h
e
M.i/

ˇ
ˇ
ˇXŒi�1�

i
	

ci

	P
j2T V.iC1/

ij


2

2

2
; 8
 2 R: (26)

This, in turn, will yield the desired subgaussian estimate

E�

�
e
.f �E�Œf �/

� D E�

"

exp

 



X

i2T

M.i/

!#

	 exp

�
c
2

2

�

for every 
 2 R.
To proceed, note that, for a fixed realization xŒi�1� of XŒi�1�, M.i/ D K.iC1/f �K.i/f

is �.Xi/-measurable, and

kM.i/kLip 	 sup
x;y2X

xTnfig
DyTnfig

ˇ
ˇK.iC1/f .x/ � K.iC1/f .y/

ˇ
ˇ

�i.xi; yi/
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� ıi
�
K.iC1/f

�

	
X

j2T

V.iC1/
ij ıj.f /

	
X

j2T

V.iC1/
ij ;

where we have used the definition of the Wasserstein matrix, as well as the fact that
kf kLip 	 1 is equivalent to ıj.f / 	 1 for all j 2 T . Since �i.�jxŒi�1�/ 2 T�i.c/ by
hypothesis, we obtain the estimate (26) by the Bobkov–Götze theorem. ut

As a sanity check, let us confirm that, in the case when � is a product measure
and the product space X is endowed with the weighted Hamming metric �˛ defined
in (3), Theorems 4.2 and 4.3 both reduce to McDiarmid’s inequality. To see this, we
first note that, when the Xi’s are independent, we can write

K.i/f .x/ D
Z

XŒi;n�
f .xŒi�1�yŒi;n�/�i.dyi/�iC1.dyiC1/ : : : �n.dyn/

for each i 2 T , f 2 L1.�/, and x 2 X. This, in turn, implies that

ıi.K
.iC1/f / D ˛�1

i sup
x;z2X

xTnfig
DzTnfig

ˇ
ˇK.iC1/f .x/ � K.iC1/f .z/

ˇ
ˇ

D ˛�1
i sup

x;z2X
xTnfig

DzTnfig

ˇ
ˇ
ˇ

Z

X.i;n�
f .xŒi�y.i;n�/�iC1.dyiC1/ : : : �n.dyn/

�
Z

X.i;n�
f .zŒi�y.i;n�/�iC1.dyiC1/ : : : �n.dyn/

ˇ
ˇ
ˇ

	 ˛�1
i sup

x;z2X
xTnfig

DzTnfig

jf .x/ � f .z/j

D ıi.f /;

where we have used the fact that, with �i.xi; zi/ D ˛i1fxi ¤ zig, k�ik D ˛i for every
i 2 T . Therefore, for each i 2 T , we can always choose a Wasserstein matrix V.iC1/
for K.iC1/ in such a way that its ith row has zeroes everywhere except for the ith
column, where it has a 1. Now, for any function f W X ! R which is 1-Lipschitz with
respect to �˛, we can take ı.f / D 1. Therefore, for any such f Theorem 4.2 gives

P�

(

jf .X/ � E�Œf .X/�j � t

)

	 2 exp

�

� 2t2
Pn

iD1 ˛2i

�

; 8t � 0



Concentration Without Independence 199

which is precisely McDiarmid’s inequality. Since the constant 2 in McDiarmid’s
inequality is known to be sharp, this shows that the coefficient 2 in the exponent
in (21) is likewise optimal. Moreover, with our choice of �i, condition (24) of
Theorem 4.3 holds with ci D ˛2i =4, and, in light of the discussion above, we can

arrange
P

j V.iC1/
ij D 1. Therefore, by Theorem 4.3, any function f W X ! R which

is 1-Lipschitz with respect to �˛ is c-subgaussian with constant

c D
X

i2T

ci

 
X

j2T

V.iC1/
ij

!2

D 1

4

X

i2T

˛2i ;

which is just another equivalent statement of McDiarmid’s inequality.
It is also possible to consider alternative choices of the filtration fFjgm

jD0. For
example, if we partition the index set T into m disjoint subsets (blocks) T1; : : : ;Tm,
we can take

Fj , �
�
Xi W i 2 �j

�
; 8i 2 T

where �j , T1 [ : : : [ Tj. Defining for each j 2 Œm� the Markov kernel

QK.j/.x; dy/ , ıx�i�1 .dy�i�1 /˝ �Tn�i�1 .dyTn�i�1 jx�i�1 /;

we can write

M.j/ D E�Œf .X/jFj� � E�Œf .X/jFj�1� D K.jC1/f � K.j/f

for every j 2 Œm�. As before, we take K.1/f D E�Œf � and K.mC1/f D f . Given a
measurable function f W X ! R, we can define the oscillation of f in the jth block
Tj, j 2 Œm�, by

Qıj.f / , sup
x;z2X

x
TnTj

Dz
TnTj

jf .x/ � f .z/j
�Tj.xTj ; zTj/

:

The definition of a Wasserstein matrix is modified accordingly: we say that a
nonnegative matrix QV D . QVjk/j;k2Œm� is a Wasserstein matrix for a Markov kernel K
on X with respect to the partition fTjgm

jD1 if, for any Lipschitz function f W X ! R,

Qıj.Kf / 	
mX

kD1
QVjk

Qık.f /

for all j 2 Œm�. With these definitions at hand, the following theorem, which
generalizes a result of Paulin [29, Thm. 2.1], can be proved in the same way as
Theorem 4.2:
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Theorem 4.4 For each j 2 Œm C 1�, let QV.j/ D . QV.j/
k` /k;`2Œm� be a Wasserstein matrix

for QK.j/ with respect to the partition fTjg. Define the matrix Q� D . Q�k`/k;`2Œm� with
entries

Q�k` , k�Tk k QV.kC1/
k` ;

where

k�Tk k , sup
xTk ;zTk

�Tk.xTk ; zTk/

is the diameter of the metric space .XTk ; �Tk/. Then, for any f 2 Lip.X; �/ and for
any t � 0,

P�

n
jf .X/ � E�Œf .X/�j � t

o
	 2 exp

0

@� 2t2
�
� Q� Qı.f /��2

`2.m/

1

A :

5 The Martingale Method in Action

We now show that several previously published concentration inequalities for
functions of dependent random variables arise as special cases of Theorem 4.2
by exploiting the freedom to choose the Wasserstein matrices V.i/. In fact, careful
examination of the statement of Theorem 4.2 shows that, for each i 2 T , we only
need to extract the ith row of V.iC1/.

5.1 Concentration Inequalities Under the Dobrushin
Uniqueness Condition

One particularly clean way of constructing the desired Wasserstein matrices is via
the classical comparison theorem of Dobrushin for Gibbs measures [9]. For our
purposes, we give its formulation due to Föllmer [11]:

Lemma 5.1 Let � and Q� be two Borel probability measures on X. Define the matrix
C� D .C�

ij/i;j2T and the vector b�;Q� D .b�;Q�i /i2T by

C�
ij D sup

x;z2X
xTnfjg

DzTnfjg

Wi
�
�i.�jxTnfig/; �i.�jzTnfig/

�

�j.xj; zj/
(27)
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and

b�;Q�i D
Z

XTnfig
Q�Tnfig.dxTnfig/Wi

�
�i.�jxTnfig/; Q�i.�jxTnfig/

�
: (28)

Suppose that the spectral radius of C� is strictly smaller than unity. Then, for any
f 2 L1.�/,

jE� f � EQ� f j 	
X

j;k2T

ıj.f /D
�
jkb�;Q�k ; (29)

where D� ,
P1

mD0.C�/m.

Remark 5.2 The matrix C� is called the Dobrushin interdependence matrix of �.
When the spectral radius of C� is strictly smaller than unity, we say that � satisfies
the Dobrushin uniqueness condition. This condition is used in statistical physics to
establish the absence of phase transitions, which is equivalent to uniqueness of a
global Gibbs measure consistent with a given local specification (see the book of
Georgii [12] for details).

Given an index i 2 T , we will extract the ith row of a Wasserstein matrix
for K.iC1/ by applying the Dobrushin comparison theorem to a particular pair of
probability measures on X. Let x; z 2 X be two configurations that differ only in the
ith coordinate: xTnfig D zTnfig and xi ¤ zi. Thus, we can write z D xŒi�1�zix.i;n�, and

K.iC1/f .x/ � K.iC1/f .z/

D E�Œf .X/jXŒi� D xŒi�1�xi� � E�Œf .X/jXŒi� D xŒi�1�zi�

D
Z

X.i;n�
f .xŒi�1�xiy

.i;n�/�.i;n�.dy.i;n�jxŒi�1�xi/ �
Z

X.i;n�
f .xŒi�1�ziy

.i;n�/�.i;n�.dy.i;n�jxŒi�1�zi/

D
Z

X.i;n�

�
f .xŒi�1�xiy

.i;n�/ � f .xŒi�1�ziy
.i;n�/

�
�.i;n�.dy.i;n�jxŒi�1�xi/

C
Z

X.i;n�
f .xŒi�1�ziy

.i;n�/�.i;n�.dy.i;n�jxŒi�1�xi/

�
Z

X.i;n�
f .xŒi�1�ziy

.i;n�/�.i;n�.dy.i;n�jxŒi�1�zi/: (30)

By definition of the local oscillation, the first integral in (30) is bounded by
ıi.f /�i.xi; zi/. To handle the remaining terms, define two probability measures �; Q�
on X by

�.dy/ , ıxŒi�1�zi
.dyŒi�/˝ �.i;n�.dy.i;n�jxŒi�1�xi/

Q�.dy/ , ıxŒi�1�zi
.dyŒi�/˝ �.i;n�.dy.i;n�jxŒi�1�zi/:



202 A. Kontorovich and M. Raginsky

Using this definition and Lemma 5.1, we can write

Z

X.i;n�
f .xŒi�1�ziy

.i;n�/�.i;n�.dy.i;n�jxŒi�1�xi/ �
Z

X.i;n�
f .xŒi�1�ziy

.i;n�/�.i;n�.dy.i;n�jxŒi�1�zi/

D
Z

f d� �
Z

f d Q�

	
X

j;k2T

ıj.f /D
�
jkb�;Q�k : (31)

It remains to obtain explicit upper bounds on the entries of D� and b�;Q� . To that end,
we first note that, for a given j 2 T and for any u; y 2 X,

Wj
�
�j.�juTnfjg/; �j.�jyTnfjg/

�

D
(
0; j 	 i

Wj
�
�j.�jxŒi�1�xiu.i;n�nfjg/; �j.�jxŒi�1�ziu.i;n�nfjg/

�
; j > i

:

Therefore, C�
jk 	 C�

jk. Likewise, for a given k 2 T and for any y 2 X,

Wk
�
�k.�jyTnfkg/; Q�k.�jyTnfkg/

�

D
(
0; k 	 i

Wk
�
�k.�jxŒi�1�xiy.i;n�nfkg/; �k.�jxŒi�1�ziy.i;n�nfkg/

�
; k > i

Therefore, b�;Q�k 	 C�
ki�i.xi; zi/. Since the matrices C� and C� are nonnegative, D�

jk 	
D�

jk. Consequently, we can write

Z

f d� �
Z

f d Q� 	
X

j;k2T

ıj.f /D
�
jkC�

ki�i.xi; zi/

D
X

j2T

ıj.f /.D
�C�/ji�i.xi; zi/

D
X

j2T

ıj.f /.D
� � id/ji�i.xi; zi/: (32)

Therefore, from (31) and (32), we have

K.iC1/f .x/ � K.iC1/f .z/
�i.xi; zi/

	 ıi.f /C
X

j2T

.D� � 1/T
ijıj.f /

D
X

j2T

.D�/T
ijıj.f /: (33)
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We have thus proved the following:

Corollary 5.3 Suppose that the probability measure � satisfies the Dobrushin
uniqueness condition, i.e., the spectral radius of its Dobrushin interdependence
matrix C� is strictly smaller than unity. Then, for any t � 0, the concentration
inequality (21) holds with

�ij D k�ik.D�/T
ij; i; j 2 T: (34)

For example, when each Xi is equipped with the trivial metric �i.xi; zi/ D 1fxi ¤ zig,
we have k�ik D 1 for all i, and consequently obtain the concentration inequality

P�

n
jf .X/ � E�Œf .X/�j � t

o
	 2 exp

 

� 2t2

k.D�/Tı.f /k2
`2.T/

!

: (35)

The same inequality, but with a worse constant in the exponent, was obtained by
Külske [19, p. 45].

5.2 Concentration Inequalities Via Couplings

Another method for constructing Wasserstein matrices for the Markov kernels K.i/ is
via couplings. One notable advantage of this method is that it does not explicitly rely
on the Dobrushin uniqueness condition; however, some such condition is typically
necessary in order to obtain good bounds for the norm k� ı.f /k`2.T/.

Fix an index i 2 T and any two x; z 2 X that differ only in the ith coordinate:
xTnfig D zTnfig and xi ¤ zi. Let PŒi�x;z be any coupling of the conditional laws
�.i;n�.�jxŒi�/ and �.i;n�.�jzŒi�/. Then for any f 2 L1.�/ we can write

K.iC1/f .x/ � K.iC1/f .z/

D
Z

X.i;n��X.i;n�
PŒi�x;z.du.i;n�; dy.i;n�/

�
f .xŒi�; u.i;n�/ � f .zŒi�; y.i;n�/

�

	 ıi.f /�i.xi; zi/C
X

j2TW j>i

ıj.f /
Z

X.i;n��X.i;n�
PŒi�x;z.du.i;n�; dy.i;n�/�j.uj; yj/:

Therefore,

jK.iC1/f .x/ � K.iC1/f .z/j
�i.xi; zi/

	 ıi.f /C
X

j2TW j>i

R
�jdPŒi�x;z

�i.xi; zi/
ıj.f /

	 ıi.f /C
X

j2TW j>i

sup
x;z2X

xTnfig
DzTnfig

R
�jdPŒi�x;z

�i.xi; zi/
ıj.f /:
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Remembering that we only need the ith row of a Wasserstein matrix for K.iC1/, we
may take

V.iC1/
ij D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

0; i > j

1; i D j

sup
x;z2X

xTnfig
DzTnfig

Z

�jdPŒi�x;z

�i.xi; zi/
; i < j

: (36)

We have thus proved the following:

Corollary 5.4 For each index i 2 T and for each pair x; z 2 X of configurations
with xTnfig D zTnfig, pick an arbitrary coupling PŒi�x;z of the conditional laws�fig.�jxŒi�/
and �fig.�jzŒi�/. Then, for any t � 0, the concentration inequality (21) holds with

�ij D k�ikV.iC1/
ij ; i; j 2 T (37)

where the entries V.iC1/
ij are given by (36).

In the case when each Xi is equipped with the trivial metric �i.xi; zi/ D 1fxi ¤ zig,
the entries �ij for j > i take the form

�ij D sup
x;z2X

xTnfig
DzTnfig

PŒi�x;z

n
Y.0/j ¤ Y.1/j

o
; (38)

where .Y.0/;Y.1// D �
.Y.0/iC1; : : : ;Y

.0/
n /; .Y.1/iC1; : : : ;Y

.1/
n /
�

is a random object taking
values in X.i;n��X.i;n�. A special case of this construction, under the name of coupling
matrix, was used by Chazottes et al. [6]. In that work, each PŒi�x;z was chosen to
minimize

PfY.0/ ¤ Y.1/g;

over all couplings P of �.i;n�.�jxŒi�/ and �.i;n�.�jzŒi�/, in which case we have

PŒi�x;zfY.0/ ¤ Y.1/g D inf
P2C.�.i;n�.�jxŒi�/;�.i;n�.�jzŒi�//

PfY.0/ ¤ Y.1/g

D �
��.i;n�.�jxŒi�/ � �.i;n�.�jzŒi�/��

TV
:

However, it is not clear how to relate the quantities PŒi�x;z

n
Y.0/j ¤ Y.1/j

o
and

PŒi�x;z
˚
Y.0/ ¤ Y.1/

�
, apart from the obvious bound

PŒi�x;zfY.0/j ¤ Y.1/j g 	 PŒi�x;zfY.0/ ¤ Y.1/g D �
��.i;n�.�jxŒi�/ � �.i;n�.�jzŒi�/��

TV
;
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which gives

�ij 	 sup
x;z2X

xTnfig
DzTnfig

�
��.i;n�.�jxŒi�/ � �.i;n�.�jzŒi�/��

TV
:

An alternative choice of coupling is the so-called maximal coupling due to Goldstein
[13], which for our purposes can be described as follows: let U D .U`/

m
`D1 and Y D

.Y`/m`D1 be two random m-tuples taking values in a product space E D E1� : : :�Em,
where each E` is Polish. Then there exists a coupling P of the probability laws L.U/
and L.Y/, such that

P
˚
UŒ`;m� ¤ Y Œ`;m�

� D �
�L.UŒ`;m�/ � L.Y Œ`;m�/��

TV
; ` 2 f1; : : : ;mg: (39)

Thus, for each i 2 T and for every pair x; z 2 X with xTnfig D zTnfig, let PŒi�x;z be the
Goldstein coupling of �.i;n�.�jxŒi�/ and �.i;n�.�jzŒi�/. Then for each j 2 fi C 1; : : : ; ng,
using (39) we have

PŒi�x;zfY.0/j ¤ Y.1/j g 	 PŒi�x;zf.Y.0/j ; : : : ;Y.0/n / ¤ .Y.1/j ; : : : ;Y.1/n /g
D �
��Œj;n�.�jxŒi�/ � �Œj;n�.�jzŒi�/��

TV
:

This choice of coupling gives rise to the upper-triangular matrix � D .�ij/i;j2T with

�ij D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0; i > j

1; i D j

sup
x;z2X

xTnfigDzTnfig

�
��Œj;n�.�jxŒi�/ � �Œj;n�.�jzŒi�/��

TV
; i < j

: (40)

Substituting this matrix into (21), we recover the concentration inequality of
Kontorovich and Ramanan [17], but with an improved constant in the exponent.

Remark 5.5 It was erroneously claimed in [16, 14, 15] that the basic concen-
tration inequalities of Chazottes et al. [6] and Kontorovich and Ramanan [17]
are essentially the same, only derived using different methods. As the discussion
above elucidates, the two methods use different couplings (the former, explicitly,
and the latter, implicitly) — which yield quantitatively different and, in general,
incomparable mixing coefficients.

Remark 5.6 Kontorovich and Ramanan obtained the matrix (40) using analytic
methods without constructing an explicit coupling. In 2012, S. Shlosman posed the
following question: could this matrix have been derived using a suitable coupling?
We can now answer his question in the affirmative: the coupling is precisely
Goldstein’s maximal coupling.
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As an illustration, let us consider two specific types of the probability law �: a
directed Markov model (i.e., a Markov chain) and an undirected Markov model (i.e.,
a Gibbsian Markov random field). In the directed case, suppose that the elements of
T are ordered in such a way that � can be disintegrated in the form

�.dx/ D �1.dx1/˝ K1.x1; dx2/˝ K2.x2; dx3/˝ : : :˝ Kn�1.xn�1; dxn/; (41)

where �0 is a Borel probability measure on .X1;B1/, and, for each i 2 Œ1; n � 1�, Ki

is a Markov kernel from Xi to XiC1. For each i 2 Œ1; n/, let

�i , sup
xi;zi2Xi

kKi.xi; �/ � Ki.zi; �/kTV

be the Dobrushin contraction coefficient of Ki. Fix 1 	 i < j 	 n and xŒi�1� 2
XŒi�1�; yi; y0

i 2 Xi. An easy calculation [14] shows that, defining the signed measures

i on XiC1 by 
.dxiC1/ D Ki.yi; dxiC1/ � Ki.y0

i; dxiC1/ and �j on Xj by

�j D 
iKiKiC1KiC2 : : :Kj�1;

we have

�
��Œj;n�.�jxŒi�1�yi/ � �Œj;n�.�jxŒi�1�y0

i/
�
�

TV
D �
��j

�
�

TV
	 �i�iC1 : : : �j�1; (42)

where (4) was repeatedly invoked to obtain the last inequality. The above yields
an upper bound on the �ij in (40) and hence in the corresponding concentration
inequality in (21). When more delicate (e.g., spectral [15, 29]) estimates on

�
��j

�
�

TV

are available, these translate directly into tighter concentration bounds.
In the undirected case, � is a Gibbsian Markov random field induced by pair

potentials [12]. To keep things simple, we assume that the local spaces Xi are all
finite. Define an undirected graph with vertex set T D Œn� and edge set E D
fŒi; i C 1� W 1 	 i < ng (i.e., a chain graph with vertex set T). Associate with each
edge .i; j/ 2 E a potential function  ij W Xi � Xj ! Œ0;1/. Together, these define a
probability measure � on X via

�.x/ D
Q
.i;j/2E  ij.xi; xj/

P
y2X

Q
.i;j/2E  ij.yi; yj/

:

Since � is a Markov measure on X, there is a sequence of Markov kernels
K1; : : : ;Kn�1 generating � in the sense of (41). It is shown in [14] that the
contraction coefficient �i of the kernel Ki is bounded by

�i 	 Ri � ri

Ri C ri
;
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where

Ri D sup
.xi;xiC1/2Xi�XiC1

 i;iC1.xi; xiC1/; ri D inf
.xi;xiC1/2Xi�XiC1

 i;iC1.xi; xiC1/:

The estimate above implies a concentration result, either via (42) or via (35). To
apply the latter, recall that D� D P1

kD1.C�/k, where C� is the Dobrushin inter-
dependence matrix defined in (27). Assuming that � is the unweighted Hamming
metric (i.e., �i.xi; zi/ D 1fxi ¤ zig for all i) and that the �i’s are all majorized by
some � < 1, it is easy to see that .C�/ij 	 � ji�jj.

6 Open Questions

Our focus in this chapter has been on the martingale method for establishing
concentration inequalities. In the case of product measures, other techniques, such
as the entropy method or transportation-information inequalities, often lead to
sharper bounds. However, these alternative techniques are less developed in the
dependent setting, and there appears to be a gap between what is achievable using
the martingale method and what is achievable using other means. We close the
chapter by listing some open questions that are aimed at closing this gap:

• (Approximate) tensorization of entropy. In the independent case, it is possible
to derive the same concentration inequality (e.g., McDiarmid’s inequality) using
either the martingale method or the entropy method, often with the same sharp
constants. However, once the independence assumption is dropped, the situation
is no longer so simple. Consider, for example, tensorization of entropy. Several
authors (see, e.g., [26, 3, 27]) have obtained so-called approximate tensorization
inequalities for the relative entropy in the case of weakly dependent random
variables: under certain regularity conditions on �, there exists a constant A� �
1, such that, for any other probability measure �,

D.�k�/ 	 A� �
X

i2T

E�D
�
�i.�jXTnfig/

�
��i.�jXTnfig/

�
: (43)

Having such an inequality in hand, one can proceed to prove concentration
for Lipschitz functions in exactly the same way as in the independent case.
However, it seems that the constants A� in (43) are not sharp in the sense
that the resulting concentration inequalities are typically worse than what one
can obtain using Theorems 4.2 or 4.3 under the same assumptions on � and
f . This motivates the following avenue for further investigation: Derive sharp
inequalities of the form (43) by relating the constant A� to appropriately chosen
Wasserstein matrices.

• General Wasserstein-type matrices. Using the techniques pioneered by Mar-
ton, Samson proved the following concentration of measure result: Consider a
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function f W X ! R satisfying an “asymmetric” Lipschitz condition of the form

f .x/ � f .y/ 	
X

i2T

˛i.x/1fxi ¤ yig; 8x; y 2 X

for some functions ˛i W X ! R, such that
P

i2T ˛
2
i .x/ 	 1 for all x 2 X. Then,

for any Borel probability measure � on X, we have

P�

n
f .X/ � E�Œf .X/� � t

o
	 exp

�

� t2

2k�k22

�

; (44)

where the matrix � has entries �ij D p
�ij with �ij given by (40), and

k�k2 , sup
v2RT nf0g

k�vk`2.T/
kvk`2.T/

is the operator norm of �. A more general result in this vein was derived by
Marton [24], who showed that an inequality of the form (44) holds with �
computed in terms of any matrix � of the form (36), where each �i is the trivial
metric. Samson’s proof relies on a fairly intricate recursive coupling argument.
It would be interesting to develop analogs of (44) for arbitrary choices of the
metrics �i and with full freedom to choose the Wasserstein matrices V.i/ for each
i 2 T . A recent paper by Wintenberger [35] pursues this line of work.

• The method of exchangeable pairs and Wasserstein matrices. An alternative
route towards concentration inequalities in the dependent setting is via Stein’s
method of exchangeable pairs [4, 5]. Using this method, Chatterjee obtained the
following result [4, Chap. 4]: Let f W X ! R be a function which is 1-Lipschitz
with respect to the weighted Hamming metric �˛ defined in (3). Let � be a Borel
probability measure on X, whose Dobrushin interdependence matrix C� satisfies
the condition kC�k2 < 1. Then, for any t � 0,

P�

n
jf .X/ � E�Œf .X/� � tj

o
	 2 exp

�

� .1 � kC�k2/t2
P

i2T ˛
2
i

�

: (45)

The key ingredient in the proof of (45) is the so-called Gibbs sampler, i.e., the
Markov kernel NK on X given by

NK.x; dy/ , 1

jTj
X

i2T

ıxTnfig.dyTnfig/˝ �i.dyijxTnfig/:

This kernel leaves � invariant, i.e., � D � NK, and it is easy to show (see, e.g.,
[27]) that it contracts the NW distance: for any other probability measure � on X,
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NW.� NK; � NK/ 	
�

1 � 1 � kC�k2
jTj

�
NW.�; �/:

Since one can obtain contraction estimates for Markov kernels using Wasserstein
matrices, it is natural to ask whether Chatterjee’s result can be derived as a special
case of a more general method, which would let us freely choose an arbitrary
Markov kernel K that leaves � invariant and control the constants in the resulting
concentration inequality by means of a judicious choice of a Wasserstein matrix
for K. Such a method would most likely rely on general comparison theorems for
Gibbs measures [31].
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