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Abstract The Blaschke Santaló inequality and the Lp affine isoperimetric inequal-
ities are major inequalities in convex geometry and they have a wide range of
applications. Functional versions of the Blaschke Santaló inequality have been
established over the years through many contributions. More recently and ongoing,
such functional versions have been established for the Lp affine isoperimetric
inequalities as well. These functional versions involve notions from information
theory, like entropy and divergence.

We list stability versions for the geometric inequalities as well as for their
functional counterparts. Both are known for the Blaschke Santaló inequality.
Stability versions for the Lp affine isoperimetric inequalities in the case of convex
bodies have only been known in all dimensions for p D 1 and for p > 1 only for
convex bodies in the plane. Here, we prove almost optimal stability results for the Lp

affine isoperimetric inequalities, for all p, for all convex bodies, for all dimensions.
Moreover, we give stability versions for the corresponding functional versions of the
Lp affine isoperimetric inequalities, namely the reverse log Sobolev inequality, the
Lp affine isoperimetric inequalities for log concave functions, and certain divergence
inequalities.
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1 Introduction and Background

We present stability results for several geometric and functional inequalities.
Our main focus will be on geometric inequalities coming from affine convex
geometry, namely the Blaschke Santaló inequality, e.g., [24, 55], and the Lp affine-
isoperimetric and related inequalities [12, 21, 45, 51, 66] and also their functional
counterparts, which includes the functional Blaschke Santaló inequality [5, 7, 22, 35]
and the recently established divergence and entropy inequalities [6, 17, 20]. These
inequalities are fundamental in convex geometry and geometric analysis, e.g.,
[10, 29, 30, 45, 46, 48, 49, 60, 64, 66, 67], and they have applications throughout
mathematics. We only quote: approximation theory of convex bodies by polytopes
[11, 27, 37, 54, 57, 61], affine curvature flows [3, 4, 62, 63], information theory
[6, 17, 18, 20, 51, 65], valuation theory [2, 28, 29, 38, 40, 41, 42, 52, 56], and partial
differential equations [43]. Therefore, it is important to know stability results of
those inequalities.

Stability results answer the following question: Is the inequality that we consider
sensitive to small perturbations? In other words, if a function almost attains the
equality in a given inequality, is it possible to say that then this function is close
to the minimizers of the inequality? For the Blaschke Santaló inequality and the
functional Blaschke Santaló inequality such stability results have been established in
[8] and [9], respectively. Stability results for the Lp-affine isoperimetric inequalities
for convex bodies were proved in [13] for p D 1 and dimension n � 3. In [32, 33],
stability results for the Lp-affine isoperimetric inequality were proved in dimension
2 and for p � 1.

We present here stability results for the Lp-affine isoperimetric inequalities for all
p and in all dimensions. Stability results for the corresponding functional versions
of these inequalities are also given.

Throughout, we will assume that K is a convex body in R
n, i.e., a convex compact

subset of R
n with non-empty interior int.K/. We denote by @K the boundary of

K and by vol.K/ or jKj its n-dimensional volume. Bn
2 is the Euclidean unit ball

centered at 0 and Sn�1 D @Bn
2 its boundary. The standard inner product on R

n is h; i.
It induces the Euclidean norm, denoted by k � k2. We will use the Banach-Mazur
distance dBM.K;L/ to measure the distance between the convex bodies K and L,

dBM.K;L/ D minf˛ � 1 W K � x � T.L � y/ � ˛.K � x/;

for T 2 GL.n/; x; y 2 R
ng:

In the case when K and L are 0-symmetric, x and y can be taken to be 0,

dBM.K;L/ D minf˛ � 1 W K � T.L/ � ˛ K; for T 2 GL.n/g:
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2 Stability in Inequalities for Convex Bodies

2.1 The Blaschke Santaló Inequality

Let K be a convex body in R
n such that 0 2 int.K/. The polar Kı of K is defined as

Kı D fy 2 R
n W hx; yi � 1 for all x 2 Kg

and, more generally, the polar Kz with respect to z 2 int.K/ by .K � z/ı. The
classical Blaschke Santaló inequality (see, e.g., [55]) states that there is a unique
point s 2 int.K/, the Santaló point of K, such that the volume product jKjjKsj is
minimal and that

jKj jKsj � jBn
2j2

with equality if and only if K is an ellipsoid.
Ball and Böröczky [8] proved the following stability version of the Blaschke

Santaló inequality. It will be one of the tools to prove stability versions for the Lp-
affine isoperimetric inequalities.

Theorem 1 ([8]) Let K be a convex body in R
n, n � 3, with Santaló point at 0. If

jKjjKıj > .1 � "/jBn
2j2, for " 2 .0; 1

2
/, then for some � > 0, depending only on n,

we have

dBM.K;B
n
2/ < 1C �"

1
3.nC1/ j log "j 4

3.nC1/ :

Remark It was noted in [8] that if K is 0-symmetric, then the exponent 1
3.nC1/

occurring in Theorem 1 can be replaced by 2
3.nC1/ . Moreover, it was also noted in

[8] that taking K to be the convex body resulting from Bn
2 by cutting off two opposite

caps of volume ", shows that the exponent 1
.3.nC1/ cannot be replaced by anything

larger than 2
nC1 , even for 0-symmetric convex bodies with axial rotational symmetry.

Therefore the exponent of " is of the correct order.

2.2 Lp-Affine Isoperimetric Inequalities

Now we turn to stability results for the Lp-affine isoperimetric inequalities for
convex bodies. These inequalities involve the Lp-affine surface areas which are a
central part of the rapidly developing Lp and Orlicz Brunn Minkowski theory and
are the focus of intensive investigations (see, e.g., [19, 23, 25, 26, 30, 39, 40, 41, 42,
43, 44, 45, 46, 47, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66]).

The Lp-affine surface area asp.K/ of a convex body K in R
n was introduced

by Lutwak for all p > 1 in his seminal paper [45] and for all other p by Schütt
and Werner [60](see also [31]). The case p D 1 is the classical affine surface area
introduced by Blaschke in dimensions 2 and 3 [12] (see also [36, 59]).



544 U. Caglar and E.M. Werner

Let p 2 R, p ¤ �n and assume that K is a convex body with centroid or Santaló
point at the origin. Then

asp.K/ D
Z
@K

�.x/
p

nCp

hx;N.x/i n.p�1/
nCp

d�K.x/; (1)

where N.x/ is the unit outer normal in x 2 @K, the boundary of K, �.x/ is the
(generalized) Gaussian curvature in x and �K is the surface area measure on @K. In
particular, for p D 0

as0.K/ D
Z
@K

hx;NK.x/i d�K.x/ D njKj:

For p D 1,

as1.K/ D
Z
@K
�K.x/

1
nC1 d�K.x/

is the classical affine surface area which is independent of the position of K in space.
Note also that asp.Bn

2/ D voln�1.@Bn
2/ D njBn

2j for all p ¤ �n. If the boundary of
K is sufficiently smooth, (1) can be written as an integral over the boundary Sn�1 of
the Euclidean unit ball Bn

2,

asp.K/ D
Z

Sn�1

fK.u/
n

nCp

hK.u/
n.p�1/

nCp

d�.u/:

Here, � is the usual surface area measure on Sn�1, hK.u/ D maxx2Khx; ui is the
support function of K in direction u 2 Sn�1, and fK.u/ is the curvature function, i.e.
the reciprocal of the Gaussian curvature �K.x/ at this point x 2 @K that has u as
outer normal. In particular, for p D ˙1,

as˙1.K/ D
Z

Sn�1

1

hK.u/n
d�.u/ D njKıj: (2)

The Lp-affine surface area is invariant under linear transformations T with
determinant 1. More precisely (see, e.g., [60]), if T W Rn ! R

n is a linear, invertible
map, then

asp.T.K// D jdetTj n�p
nCp asp.K/: (3)

The Lp-affine surface area is a valuation [40, 42, 58], i.e., for convex bodies K and
L such that K [ L is convex,

asp.K [ L/C asp.K \ L/ D asp.K/C asp.L/:
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Valuations have become a major topic in convex geometry in recent years. We refer
to, e.g., [2, 28, 29, 38, 40, 41, 42, 52, 56].

We now state the Lp-affine isoperimetric inequalities for the quantities asp.K/.
They were proved by Lutwak for p > 1 [45] and for all other p by Werner and Ye
[66]. The case p D 1 is the classical affine isoperimetric inequality [12, 21].

Theorem 2 (p D 1 [12, 21], p > 1 [45], all other p [66]) Let K be a convex body
with centroid at the origin.

(i) If p > 0, then

asp.K/

asp.Bn
2/

�
� jKj

jBn
2j
� n�p

nCp

;

with equality if and only if K is an ellipsoid. For p D 0, equality holds trivially
for all K.

(ii) If �n < p < 0, then

asp.K/

asp.Bn
2/

�
� jKj

jBn
2j
� n�p

nCp

;

with equality if and only if K is an ellipsoid.
(iii) If K is in addition in C2C and if p < �n, then

c
np

nCp

� jKj
jBn
2j
� n�p

nCp

� asp.K/

asp.Bn
2/
:

The constant c in (iii) is the constant from the inverse Blaschke Santaló inequality
due to Bourgain and Milman [15]. This constant has recently been improved by
Kuperberg [34] (see also [50] for a different proof).

2.3 Stability for the Lp-Affine Isoperimetric Inequality for
Convex Bodies

Stability results for the Lp-affine isoperimetric inequalities for convex bodies were
proved by Böröczky [13] for p D 1 and dimension n � 3. Ivaki [32, 33] gave
stability results for the Lp-affine isoperimetric inequality in dimension 2 and p � 1.
We present here stability results for the Lp-affine isoperimetric inequalities for all p
and in all dimensions. Before we do so, we first quote the results by Böröczky [13]
and Ivaki [33].

Theorem 3 ([13]) If K is a convex body in R
n, n � 3, and

�
as1.K/

as1.Bn
2/

�nC1
> .1 � �/

� jKj
jBn
2j
�n�1

for � 2
�
0;
1

2

�
; (4)
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then for some � > 0, depending only on n, we have

dBM.K;B
n
2/ < 1C �"

1
6n j log "j 16 :

Later, in [8], the above approximation was improved to

dBM.K;B
n
2/ < 1C �"

1
3.nC1/ j log "j 4

3.nC1/ :

Ivaki [33] gave a stability version for the Blaschke Santaló inequality from which
the following stability result for the Lp-affine isoperimetric inequality in dimension
2 and p � 1 follows easily.

Theorem 4 ([33]) Let K be an origin symmetric convex body in R
2, and p � 1.

There exists an �p > 0, depending on p, such that the following holds. If for an �,
0 < � < �p,

�
asp.K/

2�

�pC2
> .1 � �/p

�
area.K/

�

�2�p

then for some � > 0, we have

dBM.K;B
2
2/ < 1C �"

1
2 : (5)

The same author also considered the case when K is a not necessarily origin
symmetric convex body in R

2 [33]. Then the order of approximation becomes 1
4

instead of 1
2
. Note also that there are results in dimension n D 2 by Böröczky and

Makai [14] on stability of the Blaschke Santaló inequality, from which a stability
result of the form (5) for the Lp-affine isoperimetric inequality in dimension 2
follows easily. But the order of approximation in the origin-symmetric case is 1=3
and in the general case 1=6.

We now present almost optimal stability results for the Lp-affine isoperimetric
inequalities, for all p, for all convex bodies, for all dimensions. To do so, we use the
above stability version of the Blaschke Santaló inequality by Ball and Böröczky [8],
together with inequalities proved in [66].

Theorem 5 Let K be a convex body in R
n, n � 3, with Santaló point or centroid at

0.

(i) Let p > 0. If
�

asp.K/
asp.B

n
2/

�nCp
> .1�"/p

� jKj
jBn
2j
�n�p

, then for some � > 0, depending

only on n, we have

dBM.K;B
n
2/ < 1C �"

1
3.nC1/ j log "j 4

3.nC1/ :



Stability Results for Some Geometric Inequalities and Their Functional Versions 547

(ii) Let �n < p < 0. If
�

asp.K/
asp.B

n
2/

�nCp
< .1 � "/p

� jKj
jBn
2j
�n�p

, then for some � > 0,

depending only on n, we have

dBM.K;B
n
2/ < 1C �"

1
3.nC1/ j log "j 4

3.nC1/ :

Remarks (i) If K is 0-symmetric, then "
1

3.nC1/ can be replaced by "
2

3.nC1/ . This
follows from [8]. See also the Remark after Theorem 1.

(ii) The example in [8] already quoted in the Remark after Theorem 1 shows that

"
1

3.nC1/ cannot be replaced by anything smaller than "
2

n�1 , even for 0-symmetric
convex bodies with axial rotational symmetry. Indeed, let K be the convex body
obtained from Bn

2 by removing two opposite caps of volume " each. Then

�
asp.K/

asp.Bn
2/

�nCp

> .1 � k"
n�1
nC1 /p

� jKj
jBn
2j
�n�p

D .1 � ı/p
� jKj

jBn
2j
�n�p

;

where we have put ı D k"
n�1
nC1 and where k is a constant that depends on n only,

except for 0 < p < n, where it also depends on p. And dBM.K;Bn
2/ D 1C�ı 2

n�1 .

Proof of Theorem 5. (i) As asp.Bn
2/ D njBn

2j, we observe that the inequality

�
asp.K/

asp.Bn
2/

�nCp

> .1 � "/p
� jKj

jBn
2j
�n�p

is equivalent to the inequality

asp.K/
nCp > .1 � "/pnnCpjKjn�pjBn

2j2p: (6)

It was proved in [66] that for all p > 0,

asp.K/
nCp � nnCpjKjnjKıjp:

Hence we get from the assumption that

nnCpjKjnjKıjp > .1 � "/pnnCpjKjn�pjBn
2j2p;

or equivalently, that

jKjjKıj > .1 � "/ jBn
2j2;

and we conclude with the Ball and Böröczky stability result in Theorem 1.
(ii) The proof of (ii) is done similarly. We use the inequality

asp.K/
nCp � nnCpjKjnjKıjp;

which holds for �n < p < 0 and which was also proved in [66]. �
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Another stability result for the Lp-affine isoperimetric inequalities for convex
bodies is obtained as a corollary to Proposition 17 below. We list it now, as we want
to compare the two. Let K be a convex body in R

n with 0 in its interior and let the
function  of Proposition 17 be  .x/ D kxk2K=2, where k � kK is the gauge function
of the convex body K,

kxkK D minf˛ � 0 W x 2 ˛Kg D max
y2Kı

hx; yi:

Let

as�. / D
Z
Rn

e.2��1/ .x/��hr ;xi �det
�r2 .x/

���
dx (7)

be the L�-affine surface area of the function  . This quantity is discussed in detail
in Section 3.3. Differentiating  .x/ D kxk2K=2, we get hx;r .x/i D 2 .x/. Thus,
for  .x/ D kxk2K=2, the expression (7) simplifies to

as�. / D
Z
Rn

�
det r2 .x/

��
e� .x/dx: (8)

Note that for the Euclidean norm k:k2, as�
� k�k22

2

�
D .2�/

n
2 and it was proved in

[20] that

as�
� k�k2K

2

�

as�
� k�k22

2

� D asp.K/

asp.Bn
2/
; (9)

where � and p are related by � D p
nCp . Together with Proposition 17, this immedi-

ately implies another stability result for the Lp-affine isoperimetric inequalities for
convex bodies.

Corollary 6 Let K be a convex body in R
n with the centroid or the Santaló point at

the origin.
(i) Let 0 < p � 1 and suppose that for some " 2 .0; "0/,

asp.K/

asp.Bn
2/
> .1 � "/ p

nCp

� jKj
jBn
2j
� n�p

nCp

:

(i) Let �n < p < 0 and suppose that for some " 2 .0; "0/,

asp.K/

asp.Bn
2/
< .1 � "/ p

nCp

� jKj
jBn
2j
� n�p

nCp

:
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Then, in both cases (i) and (ii), there exist c > 0 and a positive definite matrix A
such that

Z
R."/Bn

2

ˇ̌kAxk2K � kxk22 � c
ˇ̌
dx < 	"

1

129n2 ;

where R."/ D j log "j 12
8n and "0; 	 depend on n.

Proof It is easy to see (e.g., [20]) that

jKj D 1

2
n
2 

�
1C n

2

�
Z

e� kxk2K
2 dx:

As jBn
2j D �

n
2


.1C n
2 /

, we get, with  .x/ D kxk2K
2

, by (9) and the assumptions of the

theorem, that for 0 < p � 1,

as�. / > .1 � "/� .2�/n�
�Z

e� .x/dx

�1�2�
:

We have also used that � D p
nCp . The result for 0 < p � 1 then follows

immediately from Proposition 17. The case �n < p < 0 is treated similarly. �

Remarks In general, one cannot deduce Theorem 5 from Corollary 6. However, it
follows from Theorem 5 that there exists T 2 GL.n/ and x0; y0 2 R

n such that

K � x0 � T.Bn
2 � y0/ �

�
1C �"

1
3.nC1/ j log "j 4

3.nC1/

�
.K � x0/:

For simplicity, assume that x0 D y0 D 0, which corresponds to the case that K is
0-symmetric. Then this means that for all x 2 R

n,

j kxkK � kT.x/k2 j � kTk
�
�"

1
3.nC1/ j log "j 4

3.nC1/

�
kxk2

and thus
Z

R."/Bn
2

ˇ̌ kxk2K � kT.x/k22
ˇ̌
dx

�
�
1C �"

1
3.nC1/ j log "j 4

3.nC1/

�
jBn
2j kTk2RnC2."/

�
�"

1
3.nC1/ j log "j 4

3.nC1/

�

D
�
1C �"

1
3.nC1/ j log "j 4

3.nC1/

� jBn
2j

.8n/nC2 kTk2
�
�"

1
3.nC1/ j log "j 4

3.nC1/C nC2
2

�
:

Hence, allowing general T , the exponent of " can be improved.
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2.4 Stability Result for the Entropy Power �K

An affine invariant quantity that is closely related to the Lp-affine surface areas is the
entropy power �K . It was introduced in [51] as the limit of Lp-affine surface areas,

�K D lim
p!1

�
asp.K/

njKıj
�nCp

: (10)

The quantity�K is related to the relative entropy of the cone measures of K and Kı.
We refer to [51] for the details and only mention an affine isoperimetric inequality
for �K proved in [51].

Theorem 7 ([51]) If K is a convex body of volume 1, then

�Kı � � 
Bn
2

jBn
2j
1
n

!ı : (11)

Equality holds if and only if K is a normalized ellipsoid.

We now use the previous theorems to prove stability results for inequality (11).
Using the invariant property (3) and the fact that asp.Bn

2/ D njBn
2j, this inequality

can be written as

�Kı � jBn
2j2n:

Theorem 8 Let K be a convex body in R
n, n � 3, of volume 1 and such that the

Santaló point or the centroid is at 0. Suppose that for some " 2 .0; 1
2
/,

�Kı > .1 � "/jBn
2j2n: (12)

Then for some � > 0, depending only on n, we have

dBM.K
ı;Bn

2/ < 1C �

�
2"

n

� 1
3.nC1/

ˇ̌
ˇ̌log

2"

n

ˇ̌
ˇ̌

4
3.nC1/

:

Remarks similar to the ones after Theorem 5 hold.

Proof It was shown in [66] that
�

asp.Kı/

njKj
�nCp

is decreasing in p 2 .0;1/. By

definition (7), limp!1
�

asp.Kı/

njKj
�nCp D �Kı . Therefore we get with assumption (12)

that for all p > 0

�
asp.Kı/

njKj
�nCp

> .1 � "/jBn
2j2n:
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Or, equivalently, as jKj D 1,

asp.K
ı/nCp > .1 � "/nnCpjKjnCpjBn

2j2n D .1 � "/nnCpjBn
2j2p jBn

2j2.n�p/

� .1 � "/nnCpjKıjn�pjBn
2j2p:

In the last inequality we have used the Blaschke Santaló inequality jKj jKıj � jBn
2j2,

which we can apply as long as n � p � 0. Note that for all " 2 .0; 1
2
/ and p > 0

1 � " >
�
1 � 2"

p

�p

:

Hence, using the elementary inequality above, we get for all 0 < p � n that

asp.K
ı/nCp >

�
1 � 2"

p

�p

nnCpjKıjn�pjBn
2j2p:

Inequality (6) and the arguments used after it imply that for all 0 < p � n,

dBM.K
ı;Bn

2/ < 1C �

�
2"

p

� 1
3.nC1/

ˇ̌
ˇ̌log

2"

p

ˇ̌
ˇ̌

4
3.nC1/

:

Since the right-hand side of above equation is decreasing in p; minimizing over p in
the interval .0; n� gives the result. �

The second stability result and the corresponding comparisons (see the Remark
after Corollary 6) are obtained accordingly. We skip the proof.

Theorem 9 Let K be a convex body in R
n, n � 3, of volume 1 and with Santaló

point or centroid at 0, such that �Kı > .1� "/jBn
2j2n. Then there exists c > 0 and a

positive definite matrix A such that

Z
R."/Bn

2

ˇ̌kAxk2K � jxj22 � c
ˇ̌
dx < 	"

1

129n2 ;

R."/ D j log "j 12
8n and "0; 	 depend on n.

3 Stability Results for Functional Inequalities

3.1 Stability for the Functional Blaschke Santaló Inequality

We will first state a functional version of the Blaschke Santaló inequality. To do so,
we recall that the Legendre transform of a function  W Rn ! R[ fC1g at z 2 R

n

is defined by
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Lz .y/ D sup
x2Rn

.hx � z; yi �  .x// ; for y 2 R
n: (13)

The function Lz W Rn ! R [ fC1g is always convex and lower semicontinuous.
If is convex, lower semicontinuous and < C1, then LzLz D  . When z D 0,
we write

 �.y/ D L0 .y/ D sup
x
.hx; yi �  .x// : (14)

Work by K.M. Ball [7], S. Artstein-Avidan, B. Klartag, V.D.Milman [5], M.
Fradelizi, M. Meyer [22], and J. Lehec [35] led to the functional version of the
Blaschke Santaló inequality which we now state.

Theorem 10 ([5, 7, 22, 35]) Let  W R ! RC be a log-concave non-increasing
function and  W Rn ! R [ fC1g be measurable. Then

inf
z2Rn

Z
Rn
. .x//dx

Z
Rn
.Lz .x//dx �

�Z
Rn


�kxk22
2

�
dx

�2
:

If  is decreasing, there is equality if and only if there exist a, b, c in R, a < 0,
z 2 R

n and a positive definite matrix A W Rn ! R
n such that

 .x/ D kA.x C z/k22
2

C c; for x 2 R
n

and moreover either c D 0, or .t/ D eatCb, for t > �jcj.
Remark If .t/ D e�t and if ' D e� has centroid at 0, i.e.,

R
Rn xe� dx D 0, then

the inequality of the above theorem simplifies to

Z
Rn
. .x//dx

Z
Rn
.Lz .x//dx D

�Z
Rn

e� .x//dx

� �Z
Rn

e� �.x//dx

�

�
�Z

Rn
e� kxk22

2 dx

�2
: (15)

Barthe, Böröczky, and Fradelizi [9] established the following stability theorem
for the functional Blaschke Santaló inequality.

Theorem 11 ([9]) Let  W R ! RC be a log-concave and decreasing function withR
RC
 < 1. Let  W Rn ! R be a convex, measurable function. Assume that for

some " 2 .0; "0/ and all z 2 R
n the following inequality holds

Z
Rn
. .x//dx

Z
Rn
.Lz .x//dx > .1 � "/

�Z
Rn


�kxk22
2

�
dx

�2
:
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Then there exists some z 2 R
n, c 2 R and a positive definite n � n matrix A such

that

Z
R."/Bn

2

ˇ̌
ˇ̌kxk22
2

C c �  .Ax C z/

ˇ̌
ˇ̌ dx < 	"

1

129n2 ;

where lim"!0 R."/ D 1 and "0; 	;R."/ depend on n and .

3.2 Stability for Divergence Inequalities

A function ' W Rn ! Œ0;1/ is log concave, if it is of the form '.x/ D e� .x/, where
 W Rn ! R is a convex function. Recall that we say that ' D e� has centroid at
0, respectively, the Santaló point, at 0 if,

Z
x'.x/dx D

Z
xe� .x/dx D 0; respectively

Z
xe� �.x/dx D 0:

The following entropy inequality for log concave functions was established in [17],
Corollary 13.

Theorem 12 ([17]) Let ' W R
n ! Œ0;1/ be a log-concave function that has

centroid or Santaló point at 0. Let f W .0;1/ ! R be a convex, decreasing function.
Then

Z
supp.'/

' f

�
eh

r'
' ;xi

'�2
�
det

�r2 .� log'/
��� � f

 
.2�/n�R
'dx

�2
!  Z

supp.'/
'dx

!
: (16)

If f is a concave, increasing function, the inequality is reversed.
Equality holds in both cases if and only if '.x/ D ce�hAx;xi, where c is a positive
constant and A is an n � n positive definite matrix.

Theorem 12 was proved under the assumptions that the convex or concave functions
f and the log concave functions ' have enough smoothness and integrability
properties so that the expressions considered in the above statement make sense.
Thus, in this section, we will make the same assumptions on f and ', i.e., we will
assume that 'ı 2 L1.supp.'/; dx/, the Lebesgue integrable functions on the support
of ', that

' 2 C2.supp.'// \ L1.Rn; dx/; (17)

where C2.supp.'// denotes the twice continuously differentiable functions on their
support, and that

'f

0
@e

hr';xi

'

'2
det

�r2 .� log'/
�
1
A 2 L1.supp.'/; dx/: (18)
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Recall that '.x/ D e� .x/ and put d� D e� dx. Then the left-hand side of
inequality (16) can be written as

Z
Rn

f
�

e2 �hr ;xi det
�r2 

��
d�:

It was shown in [17] that the left-hand side of the inequality (16) is the natural
definition of f -divergence Df .'/ for a log concave function ', so that (16) can be
rewritten as

Df .'/ � f

 
.2�/n�R
'dx

�2
!  Z

supp.'/
'dx

!
: (19)

In information theory, probability theory, and statistics, an f -divergence is a function
that measures the difference between two (probability) distributions. We refer to,
e.g., [17] for details and references about f -divergence.

Theorem 13 Let f W .0;1/ ! R be a concave, strictly increasing function.
Let  W R

n ! R be a convex function such that e� 2 C2.Rn/ and such thatR
Rn xe� .x/dx D 0 or

R
Rn xe� �.x/dx D 0. Suppose that for some " 2 .0; "0/,

Z
Rn

f
�

e2 �hr ;xi det
�r2 

��
d� >

f

 
.2�/n�R
Rn d�

�2
!�Z

Rn
d�

�
� "f 0

 
.2�/n�R
Rn d�

�2
!�Z

Rn
d�

��1
:

Then there exist c > 0 and a positive definite matrix A such that

Z
R."/Bn

2

ˇ̌
ˇ̌kxk22
2

C c �  .Ax/

ˇ̌
ˇ̌ dx < 	"

1

129n2 ;

where lim"!0 R."/ D 1 and "0; 	;R."/ depend on n.
The analogue stability result holds, if f is convex and strictly decreasing.

Proof We treat the case when f is concave and strictly increasing. The case when
f is convex and strictly decreasing is done similarly. We set d� D e� dxR

e� dx
D �R

d�
.

Then � is a probability measure and by Jensen’s inequality and a change of variable,

�Z
d�

�Z
Rn

f
�

e.2 .x/�hr ;xi/ �det
�r2 .x/

���
d� �

�Z
d�

�
f

�Z
Rn

e.2 .x/�hr ;xi/ �det
�r2 .x/

��
d�

�
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D f

�
1R
d�

Z
Rn

e� �.x/dx

� �Z
d�

�
:

Thus, by the assumption of the theorem, we get

f

�
1R
d�

Z
Rn

e� �.x/dx

� �Z
d�

�

>

�Z
d�

�
f

 
.2�/n�R

d�
�2
!

� "R
d�

f 0
 
.2�/n�R

d�
�2
!

�
�Z

d�

�
f

 
.2�/n � "�R

d�
�2
!
:

The last inequality holds as by Taylor’s theorem and the assumptions on f (i.e.,
f 00 � 0), for " small enough, there is a real number � such that

f

 
.2�/n � "�R

d�
�2
!

D f

 
.2�/n�R

d�
�2
!

� "�R
d�
�2 f 0

 
.2�/n�R

d�
�2
!

C "2

2
�R

d�
�4 f 00 .�/

� f

 
.2�/n�R

d�
�2
!

� "�R
d�
�2 f 0

 
.2�/n�R

d�
�2
!
:

Therefore we arrive at

f

�
1R
d�

Z
Rn

e� �.x/dx

�
> f

 
.2�/n � "�R

d�
�2
!
:

Since f is strictly increasing we conclude that

1R
d�

Z
Rn

e� �.x/dx >
.2�/n � "�R

d�
�2 ;

which is equivalent to

�Z
Rn

e� .x/dx

��Z
Rn

e� �.x/dx

�
> .2�/n � ":

From that we get

�Z
Rn

e� .x/dx

��Z
Rn

e� �.x/dx

�
> .1 � "/ .2�/n :



556 U. Caglar and E.M. Werner

As � has its centroid at 0, we have by (15) that

inf
z2Rn

�Z
Rn

e� .x/dx

��Z
Rn

e�Lz .y/ dy

�
D
�Z

Rn
e� dx

��Z
Rn

e� �.y/ dy

�

and the theorem follows from the result by Barthe, Böröczky and Fradelizi [9],
Theorem 11, with .t/ D e�t. �

3.3 Stability for the Reverse Log Sobolev Inequality

We now prove a stability result for the reverse log Sobolev inequality. This
inequality was first proved by Artstein-Avidan, Klartag, Schütt, and Werner [6]
under strong smoothness assumptions. Those were subsequently removed in [20]
and there, also equality characterization was achieved.

We first recall the reverse log Sobolev inequality. Let �n be the standard Gaussian
measure on R

n. For a log-concave probability measure � on R
n with density e� ,

i.e.,  D � log.d�=dx/, let

S.�/ D
Z
Rn
 d�

be the Shannon entropy of �.

Theorem 14 ([6, 20]) Let � be a log-concave probability measure on R
n with

density e� with respect to the Lebesgue measure. Then

Z
Rn

log
�
det.r2 /

�
d� � 2 .S.�n/ � S.�// : (20)

Equality holds if and only if� is Gaussian (with arbitrary mean and positive definite
covariance matrix).

Inequality (20) is a reverse log Sobolev inequality as it can be shown that the log
Sobolev inequality is equivalent to

2
�

S.�n/ � S.�/
�

� n log

�R
Rn � d�

n

�
;

where � is the Laplacian. We refer to, e.g., [6, 20] for the details.
Note that inequality (20) follows from inequality (16) with f .t/ D log t. However,

because of the assumptions on ' in Theorem 13, the result would only hold under
those assumptions and not in the full generality stated in Theorem 14. Similarly,
a stability result for Theorem 14 follows from Theorem 13 with f .t/ D log t. But
again, because of the assumptions of Theorem 13, the result would only hold for
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those  such that e� is in C2.Rn/ and has centroid at 0. We can prove a stability
result for Theorem 14 without these assumptions. The proof is similar to the one
of Theorem 13. We include it for completeness. But first we need to recall various
items.

For a convex function  W Rn ! R [ fC1g, we define D to be the convex
domain of  , D D fx 2 R

n;  .x/ < C1g. We always consider convex functions
 such that int

�
D 

� ¤ ;. In the general case, when  is neither smooth nor
strictly convex, the gradient of  , denoted by r , exists almost everywhere by
Rademacher’s theorem (e.g., [53]), and a theorem of Alexandrov [1], Busemann
and Feller [16], guarantees the existence of its Hessian r2 almost everywhere in
int

�
D 

�
. We let X be the set of points of int

�
D 

�
at which its Hessian r2 in

the sense of Alexandrov, Busemann, and Feller exists and is invertible. Then, by
definition of the Legendre transform, for a convex function  W Rn ! R [ fC1g
we have

 .x/C  �.y/ � hx; yi

for every x; y 2 R
n, and with equality if and only if x 2 D and y D r .x/, i.e.,

 �.r .x// D hx;r .x/i �  .x/; a:e: in D : (21)

Theorem 15 Let  W R
n ! R [ fC1g be a convex function and let � be a

log-concave probability measure on R
n with density e� with respect to Lebesgue

measure. Suppose that for some " 2 .0; "0/,
Z
Rn

log
�
det.r2 /

�
d� > 2

�
S.�n/ � S.�/

�
� ":

Then there exist c > 0 and a positive definite matrix A such that

Z
R."/Bn

2

ˇ̌
ˇ̌kxk22
2

C c �  .Ax/

ˇ̌
ˇ̌ dx < 	"

1

129n2 ;

where lim"!0 R."/ D 1 and "0; 	;R."/ depend on n.

Proof Both terms of the inequality are invariant under translations of the measure
�, so we can assume that � has its centroid at 0.

Put " D logˇ > 0. Since S.�n/ D n
2

log.2�e/, the inequality of the theorem
turns into

Z
D 

log
�
ˇ det.r2 /

�
d�C 2

Z
D 

 d� > log.2�e/n;
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which in turn is equivalent to

Z
D 

log
�
ˇ det.r2 /

�
d�C

Z
D 

log
�
e2 

�
d� � n > log.2�/n: (22)

We now use the divergence theorem and get

Z
D 

hx;r .x/i d� D
Z

int.D /
div.x/ d� �

Z
@D 

hx;ND .x/ie� .x/d�D ;

where ND .x/ is an exterior normal to the convex set D at the point x and �D is
the surface area measure on @D . Since D is convex, the centroid 0 of � is in D .
Thus hx;ND .x/i � 0 for every x 2 @D and div.x/ D n hence

�n � �
Z

D 

hx;r .x/i d� D
Z

D 

log
�

e�hx;r .x/i� d�

Thus we get from inequality (22),

Z
D 

log
�
ˇ det.r2 / e2 .x/�hx;r .x/i� d� > log.2�/n:

With Jensen’s inequality, and as d� D e� dx,

ˇ

Z
D 

det.r2 / e .x/�hx;r .x/idx > .2�/n: (23)

By (21),

Z
D 

det.r2 / e .x/�hx;r .x/idx D
Z

D 

det.r2 / e� �.r .x//dx:

The change of variable y D r .x/ gives

Z
D 

e� �.r .x//det.r2 .x// dx D
Z

D �

e� �.y/ dy; (24)

and inequality (23) becomes

Z
D �

e� �.y/ dy >
1

ˇ
.2�/n:
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As
R

D 
e� dx D 1 and ˇ�1 D e�" � 1 � ", we therefore get that

�Z
Rn

e� dx

��Z
Rn

e� �.y/ dy

�
�
 Z

D 

e� dx

! Z
D �

e� �.y/ dy

!

> .1 � "/.2�/n:

As � has its centroid at 0, we have by (15) that

inf
z2Rn

�Z
Rn

e� .x/dx

��Z
Rn

e�Lz .y/ dy

�
D
�Z

Rn
e� dx

��Z
Rn

e� �.y/ dy

�
:

The theorem now follows from Theorem 11, the stability result for the functional
Blaschke Santaló inequality, due to Barthe, Böröczky, and Fradelizi [9]. �

3.4 Stability for the L�-Affine Isoperimetric Inequality for Log
Concave Functions

The following divergence inequalities were proved in [17]. In fact, inequali-
ties (25), (26) and consequently (16) are special cases of a more general divergence
inequality proved in [17].

For 0 � � � 1, it says

Z �
e2 �hr ;xi det

�r2 
���

d� �
 R

Rn e� �

dxR
Rn d�

!� �Z
Rn

d�

�
(25)

and for � … Œ0; 1�,
Z �

e2 �hr ;xi det
�r2 

���
d� �

 R
Rn e� �

dxR
Rn d�

!� �Z
Rn

d�

�
: (26)

The left-hand sides of the above inequalities are the L�-affine surface areas as�. /.
For a general log concave function ' D e� (and not just a log concave function in
C2.Rn/) they were introduced in [20],

as�. / D
Z

X 

e.2��1/ .x/��hr ;xi �det
�r2 .x/

���
dx: (27)

Since det
�r2 .x/

� D 0 outside X , the integral may be taken on D for � > 0. In
particular,

as0. / D
Z

X 

e� .x/dx and as1. / D
Z

X �

e� �.x/dx:
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Assume now that
R

xe� .x/dx D 0 or
R

xe� �.x/dx D 0. Then we can apply the
functional Blaschke Santaló inequality (15) and get from (25) that for � 2 Œ0; 1�,

as�. / � .2�/n�
�Z

Rn
e� .x/dx

�1�2�
:

Similarly, for � � 0, we get from (26)

as�. / � .2�/n�
�Z

Rn
e� .x/dx

�1�2�
;

provided that ' 2 C2.Rn/, which is the assumption on ' in inequality (16).
However, these inequalities hold without such a strong smoothness assumption.
This, together with characterization of equality, was proved in [20].

Theorem 16 ([20]) Let  W Rn ! R [ f1g be a convex function. For � 2 Œ0; 1�,

as�. / � .2�/n�

 Z
X 

e� .x/dx

!1�2�
(28)

and for � � 0,

as�. / � .2�/n�

 Z
X 

e� .x/dx

!1�2�
: (29)

For � D 0 equality holds trivially in these inequalities. Moreover, for 0 < � � 1,
or � < 0, equality holds in above inequalities if and only if  .x/ D 1

2
hAx; xi C c,

where A is a positive definite n � n matrix and c is a constant.

A stability result for these inequalities is again an immediate consequence of
Theorem 13. But again, we would then get the stability result for log concave
functions ' 2 C2.Rn/ only, so we include the proof for general functions.

Proposition 17 Let  W R
n ! R [ fC1g be a convex function such thatR

xe� .x/dx D 0 or
R

xe� �.x/dx D 0.

(i) Let 0 < � � 1 and suppose that for some " 2 .0; "0/,

as�. / > .1 � "/� .2�/n�
 Z

X 

e� .x/dx

!1�2�
:

(ii) Let � < 0 and suppose that for some " 2 .0; "0/,

as�. / < .1 � "/� .2�/n�
 Z

X 

e� .x/dx

!1�2�
:
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Then, in both cases (i) and (ii), there exists c > 0 and a positive definite matrix
A such that

Z
R."/Bn

2

ˇ̌
ˇ̌kxk22
2

C c �  .Ax/

ˇ̌
ˇ̌ dx < 	"

1

129n2 ;

where lim"!0 R."/ D 1 and "0; 	;R."/ depend on n.

Proof (i) The case � D 1 is the stability case for the functional Blaschke Santaló
inequality of Theorem 11. Therefore we can assume that 0 < � < 1. We put d� D
e� dx. By Hölder’s inequality with p D 1=� and q D 1=.1 � �/,

as�. / D
Z

X 

e�.2 .x/�hr ;xi/ �det
�r2 .x/

���
d�

�
 Z

X 

e2 .x/�hr ;xidet
�r2 .x/

�
d�

!�  Z
X 

d�

!1��

D
 Z

D 

e .x/�hr ;xidet
�r2 .x/

�
dx

!�  Z
X 

e� .x/dx

!1��

�
�Z

Rn
e� �.x/dx

��  Z
X 

e� .x/dx

!1��
;

where, in the last equality, we have used (21) and (24). Therefore, by the assumption
(i) of the proposition

�Z
Rn

e� �.x/dx

��  Z
X 

e� .x/dx

!1��
> .1 � "/� .2�/n�

 Z
X 

e� .x/dx

!1�2�
;

which is equivalent to

�Z
Rn

e� �.x/dx

��Z
Rn

e� .x/dx

�
>

�Z
Rn

e� �.x/dx

� Z
X 

e� .x/dx

!

> .1 � "/ .2�/n ;

and the result is again a consequence of Theorem 11 by Barthe, Böröczky, and
Fradelizi [9].

Similarly, in the case (ii) the proposition follows by applying the reverse Hölder
inequality. �

The following Blaschke Santaló type inequality follows directly from inequal-
ity (28). It was also proved, together with its equality characterization in [20].
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Corollary 18 ([20]) Let � 2 Œ0; 1
2
� and let  W R

n ! R [ fC1g be a convex

function such that
R

xe� .x/dx D 0 or
R

xe� �.x/dx D 0. Then

as�. / as�.. 
�// � .2�/n:

Equality holds if and only if there exist a 2 R and a positive definite matrix A such
that  .x/ D 1

2
hAx; xi C a, for every x 2 R

n.

We have the following stability result as a direct consequence of Theorem 11.

Proposition 19 Let  W R
n ! R [ fC1g be a convex function such thatR

xe� .x/dx D 0 or
R

xe� �.x/dx D 0. Let 0 � � � 1
2

and suppose that for some
" 2 .0; "0/,

as�. / as�.. 
�// � .1 � �/.2�/n:

Then, there exist c > 0 and a positive definite matrix A such that

Z
R."/Bn

2

ˇ̌
ˇ̌kxk22
2

C c �  .Ax/

ˇ̌
ˇ̌ dx < 	"

1

129n2 ;

where lim"!0 R."/ D 1 and "0; 	;R."/ depend on n.
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