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1 Introduction

A Radon measure � on a locally convex linear space F is called logarithmically
concave (log-concave in short) if for any compact nonempty sets K; L � F and
� 2 Œ0; 1�, �.�K C .1 � �/L/ � �.K/��.L/1��. A random vector with values in F
is called log-concave if its distribution is logarithmically concave.

The class of log-concave measures is closed under affine transformations,
convolutions, and weak limits. By the result of Borell [4] an n-dimensional vector
with a full dimensional support is log-concave iff it has a log-concave density, i.e.
a density of the form e�h, where h is a convex function with values in .�1; 1�.
A typical example of a log-concave vector is a vector uniformly distributed over a
convex body. It may be shown that the class of log-concave distributions on R

n is
the smallest class that contains uniform distributions on convex bodies and is closed
under affine transformations and weak limits.

Every full-dimensional logarithmically concave probability measure on R
n may

be affinely transformed into an isotropic distribution, i.e. a distribution with mean
zero and identity covariance matrix.

In recent years the study of log-concave vectors attracted attention of many
researchers, cf. monographs [2] and [5]. There are reasons to believe that logarithmi-
cally concave isotropic distributions have similar properties as product distributions.
The most important results confirming this belief are the central limit theorem of
Klartag [9] and Paouris’ large deviation for Euclidean norms [21]. However, many
important questions concerning log-concave measures are still open – in this note
we present and discuss some of them.
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Notation. By h�; �i we denote the standard scalar product on R
n. For x 2 R

n we
put kxkp D .

Pn
iD1 jxijp/1=p for 1 � p < 1 and kxk1 D maxi jxij, we also use jxj

for kxk2. We set Bn
p for a unit ball in lnp, i.e.. Bn

p D fx 2 R
nW kxkp � 1g. B.Rn/ stands

for the family of Borel sets on R
n.

By a letter C we denote absolute constants, value of C may differ at each
occurence. Whenever we want to fix a value of an absolute constant we use letters
C1; C2; : : :.

2 Optimal Concentration

Let � be a symmetric exponential measure with parameter 1, i.e. the measure on the
real line with the density 1

2
e�jxj. Talagrand [23] (see also [17] for a simpler proof

based on a functional inequality) showed that the product measure �n satisfies the
following two-sided concentration inequality

8A2B.Rn/ 8t>0 �n.A/ � 1

2
) 1 � �n.A C C

p
tBd

2 C CtBd
1/ � e�t.1 � �n.A//:

This is a very strong result – a simple transportation of measure argument shows
that it yields the Gaussian concentration inequality

8A2B.Rn/ 8t>0 �n.A/ � 1

2
) 1 � �n.A C C

p
tBn

2/ � e�t.1 � �n.A//;

where �n is the canonical Gaussian measure on R
n, i.e. the measure with the density

.2�/�d=2 exp.�jxj2=2/.
It is natural to ask if similar inequalities may be derived for other measures. To

answer this question we should first find a right way to enlarge sets.

Definition 1 Let � be a probability measure on R
n, for p � 1 we define the

following sets

Mp.�/ WD
n
v 2 R

nW
Z

jhv; xijpd�.x/ � 1
o
;

and

Zp.�/ WD .Mp.�//ı D
n
x 2 R

nW jhv; xijp �
Z

jhv; yijpd�.y/ for all v 2 R
n
o
:

Sets Zp.�K/ for p � 1, when �K is the uniform distribution on the convex
body K are called Lp-centroid bodies of K. They were introduced (under a different
normalization) in [16], their properties were also investigated in [21]. Observe that
for isotropic measures M2.�/ D Z2.�/ D Bn

2.
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Obviously Mp.�/ � Mq.�/ and Zp.�/ � Zq.�/ for p � q. Next definition
allows to reverse these inclusions.

Definition 2 We say that moments of a probability measure � on R
n grow

˛-regularly for some ˛ 2 Œ1; 1/ if for any p � q � 2 and v 2 R
n,

�Z

jhv; xijpd�.x/

�1=p

� ˛
p

q

�Z

jhv; xijqd�.x/

�1=q

:

It is easy to see that for measures with ˛-regular growth of moments and p �
q � 2 we have ˛ p

qMp.�/ � Mq.�/ and Zp.�/ � ˛ p
qZq.�/.

Moments of log-concave measures grow 3-regularly (1-regularly for symmetric
measures and 2-regularly for centered measures). The following easy observation
was noted in [15].

Proposition 3 Suppose that � is a symmetric probability measure on R
n with ˛-

regular growth of moments. Let K be a convex set such that for any halfspace A,

�.A/ � 1

2
) 1 � �.A C K/ � 1

2
e�p:

Then K � c.˛/Zp if p � p.˛/, where c.˛/ and p.˛/ depend only on ˛.

The above motivates the following definition.

Definition 4 We say that a measure � satisfies the optimal concentration inequality
with constant ˇ (CI.ˇ/ in short) if

8p�2 8A2B.Rn/ �.A/ � 1

2
) 1 � �.A C ˇZp.�// � e�p.1 � �.A//:

By the result of Gluskin and Kwapien [6], Mp.�n/ � p�1Bn1 \ p�1=2Bn
2, so

Zp.�n/ � pBn
1 C p1=2Bn

2. Therefore Talagrand’s two-sided concentration inequality
states that �n satisfy CI.ˇ/ with ˇ � C.

Remark 5 By Proposition 2.7 in [15] CI.ˇ/ may be equivalently stated as

8p�2 8A2B.Rn/ �.A C ˇZp.�// � min

�
1

2
; ep�.A/

�

: (1)

In [15] a very strong conjecture was posed that every symmetric log-concave
measure on R

n satisfy CI.ˇ/ with a uniform constant ˇ. Unfortunately there are
very few examples supporting this conjecture.

Theorem 6 The following probability measures satisfy the optimal concentration
inequality with an absolute constant ˇ:

i) symmetric product log-concave measures;
ii) uniform distributions on Bn

p-balls, 1 � p � 1;
iii) rotationally invariant logconcave measures.
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Parts i) ii) were showed in [15], iii) may be showed using a radial transportation
and the Gaussian concentration inequality.

Property CI.ˇ/ is invariant under linear transformations, so it is enough to study
it for isotropic measures. For isotropic log-concave measures and p � 2 we have
Zp.�/ � pZ2.�/ D pBn

2, so CI.ˇ/ implies the exponential concentration:

8A2B.Rn/ �.A/ � 1

2
) 1 � �.A C ˇpBn

2/ � e�p for p � 2:

By the result of E. Milman [20] the exponential concentration for log-concave
measures is equivalent to Cheeger’s inequality:

8A2B.Rn/ �C.A/ WD lim
t!0C

�.A C tBn
2/ � �.A/

t
� 1

ˇ0 minf�.A/; 1 � �.A/g;

and constants ˇ; ˇ0 are comparable up to universal multiplicative factors. The
long-standing open conjecture of Kannan, Lovasz, and Simonovits [8] states that
isotropic log-concave probability measures satisfy Cheeger’s inequality with a
uniform constant.

The best known bound for the exponential concentration constant for isotropic
log-concave measures ˇ � Cn1=3

p
log n is due to Eldan [7]. We will show a weaker

estimate for the CI constant.

Proposition 7 Every centered log-concave probability measure on R
n satisfies the

optimal concentration inequality with constant ˇ � C
p

n.

Our proof is based on the following two simple lemmas.

Lemma 8 Let � be a probabilistic measure on R
n. Then

�.10�Zp.�// � 1 � ��p for p � n; � � 1:

Proof Let T D fu1; : : : ; uNg be a 1=2-net in Mp.�/ of cardinality N � 5n, i.e.
such set T � Mp.�/ that Mp.�/ � T C 1

2
Mp.�/. Then the condition x … Zp.�/

implies huj; xi > 1=2 for some j � N. Hence

1 � �.10�Zp.�// D �.Rn n 10�Zp.�// �
NX

jD1

�fx 2 R
nW huj; xi > 5�g

� N.5�/�p � ��p;

where the second inequality follows by Chebyshev’s inequality. �

Lemma 9 Let � be a log-concave probability measure on R
n and K be a symmetric

convex set such that �.K/ � 1�e�p for some p � 2. Then for any Borel set A in R
n,

�.A C 9K/ � min

�
1

2
; ep�.A/

�

:
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Proof By Borell’s lemma [4] we have for t � 1,

1 � �.tK/ � �.K/

�
1 � �.K/

�.K/

� tC1
2

� e� tC1
3 p:

Let �.A/ D e�u for some u � 0. Set

Qu WD maxfu; 2pg and QA WD A \ 4
Qu
p

K:

We have

�. QA/ � �.A/ �
�

1 � �

�

4
Qu
p

K

��

� e�u � e� p
3 e� 4Qu

3 � 1

2
e�Qu:

Observe that if x 2 QA then 2p
Qu x 2 8K, therefore .1 � 2p

Qu / QA � QA C 8K and

�.A C 9K/ � �. QA C 8K C K/ � �

��

1 � 2p

Qu
�

QA C 2p

Qu K

�

� �. QA/1� 2p
Qu �.K/

2p
Qu

�
�

1

2
e�Qu

�1� 2p
Qu
�

1

2

� 2p
Qu D 1

2
e2p�Qu � min

�
1

2
; ep�.A/

�

:

�

Proof of Proposition 7. By the linear invariance we may and will assume that � is
isotropic.

Applying Lemma 8 with � D e and Lemma 9 with K D 10eZp.�/ we see
that (1) holds with ˇ D 90e for p � n. For p � p

n we have 2
p

nZp.�/ � Zp
p

n.�/

and we get (1) with ˇ D 180e
p

n in this case.
The Paouris inequality (4) gives

1 � �.C1t
p

nBn
2/ � e�t

p
n for t � 1:

Together with Lemma 9 this yields for any Borel set A and t � 1,

�.A C 9C1t
p

nBn
2/ � min

�
1

2
; et

p
n�.A/

�

:

Using the above bound for t D 1 and the inclusion Zp.�/ � Z2.�/ D Bn
2 we

obtain (1) with ˇ D 9C1

p
n for 2 � p � p

n. �

It would be of interest to improve the estimate from Proposition 7 to ˇ � Cn1=2�"

for some " > 0. Suppose that we are able to show that

�

�

C2

r
n

p
Zp.�/

�

� 1 � e�p for 2 � p � n: (2)
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Then (assuming again that � is isotropic)
i) if p � p0 WD n1=9.log n/�1=3, we obtain by the Eldan’s bound on Cheeger’s
constant

�.A C Cn4=9.log n/1=6Zp.�// � �.A C Cp0n1=3
p

log nBn
2/ � min

�
1

2
; ep0�.A/

�

� min

�
1

2
; ep�.A/

�

:

ii) if p0 � p � n, then by (2) and Lemma 9,

�.A C 9C2n4=9.log n/1=6Zp.�// � �

�

A C 9C2

r
n

p
Zp.�/

�

� min

�
1

2
; ep�.A/

�

:

So (2) would yield CI.ˇ/ for � with ˇ � Cn4=9.log n/1=3. Unfortunately we do
not know whether (2) holds for symmetric log-concave measures (we are able to
show it in the unconditional case).

A measure � on R
n is called unconditional if it is invariant under symmetries

with respect to coordinate axes. If � is a log-concave, isotropic, and unconditional
measure on R

n, then the result of Bobkov and Nazarov [3] yields Zp.�/ �
CZp.�n/. Therefore property CI.ˇ/ yields two-level concentration inequality for
such measures

8A2B.Rn/ 8t>0 �.A/ � 1

2
) 1��.ACCˇ.

p
tBd

2 C tBd
1// � e�t.1��.A//: (3)

Klartag [10] showed that unconditional isotropic log-concave measures satisfy
exponential concentration inequality with a constant ˇ � C log n. We do not know
if similar bound for ˇ holds for the optimal concentration inequality or its weaker
form (3).

3 Weak and Strong Moments

One of the fundamental properties of log-concave vectors is the Paouris inequality
[21] (see also [1] for a shorter proof).

Theorem 10 For any log-concave vector X in R
n,

.EjXjp/1=p � C.EjXj C �X.p// for p � 1;

where

�X.p/ WD sup
jvj�1

.Ejhv; Xijp/1=p :
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Equivalently, in terms of tails we have

P.jXj � CtEjXj/ � exp
����1

X .tEjXj/� for t � 1:

Observe that if X is additionally isotropic then �X.p/ � p�X.2/ D p for p � 2 and
EjXj � .EjXj2/1=2 D p

n, so we get

P.jXj � Ct
p

n/ � e�t
p

n for t > 1 and isotropic log-concave vector X: (4)

It would be very valuable to have a reasonable characterization of random vectors
which satisfy the Paouris inequality. The following example shows that the regular
growth of moments is not enough.

Example 11 Let Y D p
ngU, where U has a uniform distribution on Sn�1 and g is

the standard normal N .0; 1/ r.v., independent of U. Then it is easy to see that Y is
isotropic, rotationally invariant and for any seminorm on R

n

.EkYkp/1=p D p
n.Ejgjp/1=p.EkUkp/1=p � p

pn.EkUkp/1=p for p � 1:

In particular this implies that for any v 2 R
n,

.Ejhv; Yijp/1=p � C
p

q
.Ejhv; Yijq/1=q for p � q � 2:

So moments of Y grow C-regularly. Moreover

.EjYjp/1=p � p
pn; .EjYj2/1=2 D p

n; �Y.p/ � Cp;

thus for 1 	 p 	 n, .EjYjp/1=p 
 .EjYj2/1=2 C �Y.p/.

It is natural to ask whether Theorem 10 may be generalized to non-Euclidean
norms. In [11] the following conjecture was formulated and discussed.

Conjecture 12 There exists a universal constant C such that for any n-dimensional
log-concave vector X and any norm k k on R

n,

.EkXkp/1=p � C

 

EkXk C sup
kvk��1

.Ejhv; Xijp/1=p

!

for p � 1;

where kvk� D supfjhv; xijW kxk � 1g denotes the dual norm on R
n.

Note that obviously for any random vector X and p � 1,

.EkXkp/1=p � max

(

EkXk; sup
kvk��1

.Ejhv; Xijp/1=p

)

:
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The following simple observation from [15] shows that the optimal concentration
yields comparison of weak and strong moments.

Proposition 13 Suppose that the law of an n-dimensional random vector X is ˛-
regular and satisfies the optimal concentration inequality with constant ˇ. Then for
any norm k k on R

n,

.EjkXk � EkXkjp/1=p � C˛ˇ sup
kvk��1

.Ejhv; Xijp/1=p for p � 1:

Recall that log-concave measures are 3-regular. Therefore if the law of X is of
one of three types listed in Theorem 6 then for any norm k k,

.EkXkp/1=p � EkXk C C sup
kvk��1

.Ejhv; Xijp/1=p for p � 1:

We do not know if such inequality is satisfied for Euclidean norms and arbitrary
log-concave vectors, i.e. whether Paouris inequality holds with the constant 1 in
front of EjXj. This question is related to the so-called variance conjecture, discussed
in [2].

The following extension of the Paouris inequality was shown in [13].

Theorem 14 Let X be a log-concave vector with values in a normed space .F; k k/

which may be isometrically embedded in `r for some r 2 Œ1; 1/. Then for p � 1,

.EkXkp/1=p � Cr

 

EkXk C sup
'2F�;k'k��1

.Ej'.X/jp/1=p

!

:

Remark 15 Let X and F be as above. Then by Chebyshev’s inequality we obtain
large deviation estimate for kXk:

P.kXk � CrtEkXk/ � exp
����1

X;F.tEkXk/
�

for t � 1;

where

�X;F.p/ WD sup
'2F�;k'k��1

.E'.X/p/1=p for p � 1

denotes the weak p-th moment of kXk.

Remark 16 If iW F ! `r is a nonisometric embedding and � D kikF!`r ki�1ki.F/!F ,
then we may define another norm on F by kxk0 WD ki.x/k=kikF!`r . Obviously
.F; k k0/ isometrically embeds in `r, moreover kxk0 � kxk � �kxk0 for x 2 F.
Hence Theorem 14 gives
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.EkXkp/1=p � �.E.kXk0/p/1=p � C2r�

 

EkXk0 C sup
'2F�;k'k0

��1

.Ej'.X/jp/1=p

!

� C2r�

 

EkXk C sup
'2F�;k'k��1

.Ej'.X/jp/1=p

!

:

Since log-concavity is preserved under linear transformations and, by the Hahn-
Banach theorem, any linear functional on a subspace of lr is a restriction of
a functional on the whole lr with the same norm, it is enough to prove Theorem 14
for F D lr. An easy approximation argument shows that we may consider finite
dimensional spaces lnr . This way Theorem 14 reduces to the following finite
dimensional statement.

Theorem 17 Let X be a log-concave vector in R
n and r 2 Œ1; 1/. Then

.EkXkp
r /1=p � Cr .EkXkr C �r;X.p// for p � 1;

where

�r;X.p/ WD �X;lnr .p/ D sup
kvkr0 �1

.Ejhv; Xijp/1=p

and r0 denotes the Hölder’s dual of r, i.e. r0 D r
r�1

for r > 1 and r0 D 1 for r D 1.

Any finite dimensional space embeds isometrically in `1, so to show Conjec-
ture 12 it is enough to establish Theorem 17 (with a universal constant in place of
Cr) for r D 1. Such a result was shown for isotropic log-concave vectors.

Theorem 18 ([12]) Let X be an isotropic log-concave vector in R
n. Then for any

a1; : : : ; an and p � 1,

.Emax
i

jaiXijp/1=p � C

�

Emax
i

jaiXij C max
i

.EjaiXijp/1=p

�

for p � 1:

However a linear image of an isotropic vector does not have to be isotropic, so to
establish the conjecture we need to consider either isotropic vectors and an arbitrary
norm or vectors with a general covariance structure and the standard `1-norm.

In the case of unconditional vectors slightly more is known.

Theorem 19 ([11]) Let X be an n-dimensional isotropic, unconditional, log-
concave vector and Y D .Y1; : : : ; Yn/, where Yi are independent symmetric
exponential r.v’s with variance 1 (i.e., with the density 2�1=2 exp.�p

2jxj/). Then
for any norm k k on R

n and p � 1,

.EkXkp/1=p � C

 

EkYk C sup
kvk��1

.Ejhv; Xijp/1=p

!

:
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Proof is based on the Talagrand generic-chaining type two-sided estimate of
EkYk [24] and the Bobkov-Nazarov [3] bound for the joint d.f. of X, which implies
.Ejhv; Xijp/1=p � C.Ejhv; Yijp/1=p for p � 1 and v 2 R

n.
Using the easy estimate EkYk � C log n EkXk we get the following.

Corollary 20 For any n-dimensional unconditional, log-concave vector X, any
norm k k on R

n and p � 1 one has

.EkXkp/1=p � C

 

log n EkXk C sup
kvk��1

.Ejhv; Xijp/1=p

!

:

The Maurey-Pisier result [18] implies EkYk � CEkXk in spaces with nontrivial
cotype.

Corollary 21 Let 2 � q < 1 and F D .Rn; k k/ has a q-cotype constant bounded
by ˇ < 1. Then for any n-dimensional unconditional, log-concave vector X and
p � 1,

.EkXkp/1=p � C.q; ˇ/

 

EkXk C sup
kvk��1

.Ejhv; Xijp/1=p

!

:

where C.q; ˇ/ is a constant that depends only on q and ˇ.

For a class of invariant measures Conjecture 12 was established in [12].

Proposition 22 Let X be an n-dimensional random vector with the density of the
form e�'.kxkr/, where 1 � r � 1 and 'W Œ0; 1/ ! .�1; 1� is nondecreasing and
convex. Then for any norm k k on R

n and any p � 1,

.EkXkp/1=p � C.r/EkXk C C sup
kvk��1

.Ejhv; Xijp/1=p :

4 Sudakov Minoration

For any norm k k on R
n we have

kxk D sup
kvk��1

hv; xi D 1

2
sup

kvk�;kwk��1

hv � w; xi for x 2 R
n:

Thus to estimate the mean of a norm of a random vector X one needs to investigate
E supv;w2Vhv � w; Xi for bounded subsets V in R

n.
There are numerous powerful methods to estimate suprema of stochastic pro-

cesses (cf. the monograph [25]), let us however present only a very easy upper
bound. Namely for any p � 1,



On Some Problems Concerning Log-Concave Random Vectors 535

E sup
v;w2V

hv � w; Xi �
 

E sup
v;w2V

jhv � w; Xijp
!1=p

�
 

E

X

v;w2V

jhv � w; Xijp
!1=p

� jVj2=p sup
v;w2V

.Ejhv � w; Xijp/1=p :

In particular,

E sup
v;w2V

hv � w; Xi � e2 sup
v;w2V

.Ejhv � w; Xijp/1=p if jVj � ep:

It is natural to ask when the above estimate may be reversed. Namely, when
is it true that if the set V � R

n has large cardinality (say at least ep) and variables
.hv; Xi/v2V are A-separated with respect to the Lp-distance then E supv;w2Vhv�w; Xi
is at least of the order of A? The following definition gives a more precise
formulation of such property.

Definition 23 Let X be a random n-dimensional vector. We say that X satisfies the
Lp-Sudakov minoration principle with a constant 	 > 0 (SMPp.	/ in short) if for
any nonempty set V � R

n with jVj � ep such that

dX;p.v; w/ WD .Ejhv � w; Xijp/1=p � A for all v; w 2 V; v ¤ w; (6)

we have

E sup
v;w2V

hv � w; Xi � 	A: (7)

A random vector X satisfies the Sudakov minoration principle with a constant 	

(SMP.	/ in short) if it satisfies SMPp.	/ for any p � 1.

Example 24 If X has the canonical n-dimensional Gaussian distribution N .0; In/

then .Ejhv; Xijp/1=p D �pjvj, where �p D .EjN .0; 1/jp/1=p � p
p for p � 1. Hence

condition (6) is equivalent to jv � wj � A=�p for distinct vectors v; w 2 V and the
classical Sudakov minoration principle for Gaussian processes [22] then yields

E sup
v;w2V

hv � w; Xi D 2E sup
v2V

hv; Xi � A

C�p

p
log jVj � A

C

provided that jVj � ep. Therefore X satisfies the Sudakov minoration principle with
a universal constant. In fact it is not hard to see that for centered Gaussian vectors the
Sudakov minoration principle in the sense of Definition 23 is formally equivalent to
the minoration property established by Sudakov.

The Sudakov minoration principle for vectors X with independent coordinates
was investigated in detail in [14]. It was shown there that for SMP in such a case the
sufficient (and necessary if coordinates of X have identical distribution) condition is
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the regular growth of moments of coordinates of X, i.e. the existence of ˛ < 1 such
that .EjXijp/1=p � ˛ p

q .EjXijq/1=q for all i and p � q � 1. In particular log-concave
vectors X with independent coordinates satisfy SMP with a universal constant 	.

In the sequel we will discuss the following conjecture.

Conjecture 25 Every n-dimensional log-concave random vector satisfies the
Sudakov-minoration principle with a universal constant.

Remark 26 Suppose that X is log-concave and (6) is satisfied, but jVj D eq with
1 � q � p. Since dX;q.v; w/ � q

3p dX;p.v; w/, the Sudakov minoration principle for
a log-concave vector X implies the following formally stronger statement – for any
nonempty V � R

n and A > 0,

E sup
v;w2V

hv � w; Xi � 	

C
sup
p�1

min

�
A

p
log N.V; dX;p; A/; A

�

;

where N.V; d; "/ denotes the minimal number of balls in metric d of radius " that
cover V .

The Sudakov minoration principle and Conjecture 25 were posed independently
by Shahar Mendelson, Emanuel Milman, and Grigoris Paouris (unpublished) and by
the author in [12]. In [19] there is discussed approach to the Sudakov minoration and
its dual version based on variants of the Johnson-Lindenstrauss dimension reduction
lemma. The results presented below were proven in [12].

It is easy to see that the Sudakov minoration property is affinely invariant, so
it is enough to investigate it only for isotropic random vectors. Using the fact that
isotropic log-concave vectors satisfy exponential concentration with constant Cn�

with � < 1=2 one may show that the lower bound (6) holds for special classes of
sets.

Proposition 27 Suppose that X is an n-dimensional log-concave random vector,
p � 2, V � R

n satisfies (6) and Cov.hv; Xi; hw; Xi/ D 0 for v; w 2 V with v ¤ w.
Then (7) holds with a universal constant 	 provided that jVj � ep.

In the case of general sets we know at the moment only the following much
weaker form of the Sudakov minoration principle.

Theorem 28 Let X be a log-concave vector, p � 1 and V � R
n be such that

jVj � eep
and (6) holds. Then

E sup
v;w2V

hv � w; Xi � 1

C
A:

Stronger bounds may be derived in the unconditional case. Comparing uncon-
ditional log-concave vectors with vectors with independent symmetric exponential
coordinates one gets the following bound on 	.
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Proposition 29 Suppose that X is an n-dimensional log-concave unconditional
vector. Then X satisfies SMP.1=C log.n C 1//.

The next result presents a bound on 	 independent of dimension but under a
stronger assumptions on the cardinality of V than in the definition of SMP.

Theorem 30 Let X be a log-concave unconditional vector in R
n, p � 1 and V � R

n

be such that jVj � ep2
and (6) holds. Then

E sup
v;w2V

hv � w; Xi D 2E sup
v2V

hv; Xi � 1

C
A:

Remark 31 Theorems 28 and 30 may be rephrased in terms of entropy numbers as
in Remark 26. Namely, for any nonempty set V � R

n and log-concave vector X,

E sup
v;w2V

hv � w; Xi � 1

C
sup

p�1;A>0

min

�
A

p
log log N.V; dX;p; A/; A

�

:

If X is unconditional and log-concave, then

E sup
v;w2V

hv � w; Xi � 1

C
sup

p�1;A>0

min

�
A

p

q
log N.V; dX;p; A/; A

�

:

We know that a class of invariant log-concave vectors satisfy SMP.	/ with
uniform 	.

Theorem 32 All n-dimensional random vectors with densities of the form
exp.�'.kxkp//, where 1 � p � 1 and 'W Œ0; 1/ ! .�1; 1� is nondecreasing
and convex satisfy the Sudakov minoration principle with a universal constant. In
particular all rotationally invariant log-concave random vectors satisfy the Sudakov
minoration principle with a universal constant.

One of the important consequences of the SMP-property is the following
comparison-type result for random vectors.

Proposition 33 Suppose that a random vector X in R
n satisfies SMP.	/. Let Y be

a random n-dimensional vector such that Ejhv; Yijp � Ejhv; Xijp for all p � 1,
v 2 R

n. Then for any norm k k on R
n and p � 1,

.EkYkp/1=p � C
�1

	
logC

�en

p

	
EkXk C sup

kvk��1

.Ejhv; Yijp/1=p
	

� C
�1

	
logC

�en

p

	
C 1

	
.EkXkp/1=p: (8)

As a consequence we know that for random vectors which satisfy Sudakov
minoration principle weak and strong moments are comparable up to a logarithmic
factor.
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Corollary 34 Suppose that X is an n-dimensional random vector, which satisfies
SMP.	/. Then for any norm k k on R

n and any p � 1,

�
EkXkp

�1=p � C
�1

	
logC

�en

p

	
EkXk C sup

kvk��1

�
Ejhv; Xijp�1=p

	
:
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