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Foreword

This volume is based on the research focus at the IMA during the Spring semester of
2015. The Annual Thematic Program covering this period was “Discrete Structures:
Analysis and Applications.” The program was organized by Sergey Bobkov, Jerrold
Griggs, Penny Haxell, Michel Ledoux, Benny Sudakov, and Prasad Tetali. Many of
the topics presented in this volume were discussed in the last five workshops that
took place during the year. We thank the organizers of the workshops, the speakers,
workshop participants, and visitors to the IMA who contributed to the scientific
life at the institute and to the successful program. In particular, we thank volume
editors Eric Carlen, Mokshay Madiman, and especially Elisabeth Werner, who also
served as associate director of the IMA during the year. Finally, we are grateful to
the National Science Foundation for its support of the IMA.

Minneapolis, MN, USA Fadil Santosa
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Preface

The 2014–2015 Annual Thematic Program at the Institute for Mathematics and
its Applications (IMA) was Discrete Structures: Analysis and Applications. The
program was organized by Sergey Bobkov (University of Minnesota), Jerrold
Griggs (University of South Carolina), Penny Haxell (University of Waterloo),
Michel Ledoux (Paul Sabatier University of Toulouse), Benny Sudakov (University
of California, Los Angeles), and Prasad Tetali (Georgia Institute of Technology).

Convexity and concentration phenomena were the focus during the spring
semester of 2015, and this volume presents some of the research topics discussed
during this period. We have particularly encouraged authors to write surveys of
research problems, thus making state-of-the-art results more conveniently and
widely available. The volume addresses the themes of five workshops held during
the spring semester of 2015:

• Convexity and Optimization: Theory and Applications, held February 23–27,
2015, at IMA and organized by Nina Balcan (Carnegie-Mellon University),
Henrik Christensen (Georgia Institute of Technology), William Cook (University
of Waterloo), Satoru Iwata (University of Tokyo), and Prasad Tetali (Georgia
Institute of Technology)

• The Power of Randomness in Computation, held March 16–20, 2015, at Georgia
Institute of Technology and organized by Dana Randall (Georgia Institute of
Technology), Prasad Tetali (Georgia Institute of Technology), Santosh Vempala
(Georgia Institute of Technology), and Eric Vigoda (Korea Advanced Institute of
Science and Technology (KAIST))

• Information Theory and Concentration Phenomena, held April 13–17, 2015, at
IMA and organized by Sergey Bobkov (University of Minnesota, Twin Cities),
Michel Ledoux (Université de Toulouse III (Paul Sabatier)), and Joel Tropp
(California Institute of Technology)

• Analytic Tools in Probability and Applications, held April 27–May 01, 2015, at
IMA and organized by Sergey Bobkov (University of Minnesota, Twin Cities),
Sergei Kislyakov (Russian Academy of Sciences), Michel Ledoux (Université de
Toulouse III (Paul Sabatier)), and Andrei Zaitsev (Russian Academy of Sciences)
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viii Preface

• Graphical Models, Statistical Inference, and Algorithms (GRAMSIA), held May
18–22, 2015, at IMA and organized by David Gamarnik (Massachusetts Insti-
tute of Technology), Andrea Montanari (Stanford University), Devavrat Shah
(Massachusetts Institute of Technology), Prasad Tetali (Georgia Institute of
Technology), Rüdiger Urbanke (École Polytechnique Fédérale de Lausanne
(EPFL)), and Martin Wainwright (University of California, Berkeley)

Discrete Structures: Analysis and Applications attracted intense interest from
the mathematical science community at large. Each of the five workshops drew up
to or more than 100 visitors. Aside from the workshops, an annual thematic year
at the IMA provided an ideal environment for collaborative work. This program
drew a mix of experts and junior researchers in various aspects of convex geometry
and probability together with numerous people who apply these areas to other
fields. This volume reflects many aspects of the semester, with chapters drawn
from workshop talks, annual program seminars, and the research interests of many
visitors.

The volume is organized into two parts. While the classification is of course
arbitrary to some extent given the fluid boundaries between probability and analysis,
Part I: Probability and Concentration contains those contributions that focus
primarily on problems motivated by probability theory, while Part II: Convexity
and Concentration for Sets and Functions contains those contributions that focus
primarily on problems motivated by convex geometry and geometric analysis.

Acknowledgments No single volume could possibly cover all the active and important areas of
research in convexity, probability, and related fields that were presented at the IMA, and we make
no claim of comprehensiveness. However, we think that this volume presents a reasonable selection
of interesting areas, written by leading experts who have surveyed the current state of knowledge
and posed conjectures and open questions to stimulate further research. We thank the authors for
their generous donation of time and expertise. Needless to say that without them, this volume
would not have been possible.

We thank A. Beveridge, J. R. Griggs, L. Hogben, G. Musiker, and P. Tetali, the editors of the
2014–2015 fall semester volume Recent Trends in Combinatorics, for their advice and their many
helpful comments.

We thank the IMA and their staff for wonderfully stimulating and productive long-term visits.
We believe that the IMA is a critical national resource for mathematics. The Discrete Structures:
Analysis and Applications program will have a lasting impact on research in convexity, probability,
and related fields, and we hope this volume will enhance that impact. We are grateful for the
opportunity to be part of it.

Piscataway, NJ, USA Eric Carlen
Newark, DE, USA Mokshay Madiman
Cleveland, OH, USA Elisabeth M. Werner
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Interpolation of Probability Measures
on Graphs

Erwan Hillion

Abstract These notes are a review of the author’s works about interpolation of
probability measures on graphs via optimal transportation methods. We give more
detailed proofs and constructions in the particular case of an interpolation between
two finitely supported probability measures on Z, with a stochastic domination
assumption. We also present other types of interpolations, in particular Léonard’s
entropic interpolations and discuss the relationships between these constructions.

1 Introduction

The main topic of these notes is the theory of optimal transportation on discrete
metric spaces, and in particular on graphs. We recall in this introduction some
basic facts about this theory. For additional information, the reader is referred to
Villani’s comprehensive textbooks [Vill03] and [Vill09] or to shorter lectures notes,
for instance by [AG13] or [Sant15].

Let .X; d/ be a metric space endowed with its Borel � -algebra. We consider two
probability measures �0, �1 and a parameter p � 1. The optimal transportation
theory is the study of the Monge-Kantorovitch minimization problem

inf
�2….�0;�1/

Ip.�/ WD inf
�2….�0;�1/

Z
X�X

d.x; y/pd�.x; y/; (1)

where….�0; �1/ is the set of couplings between�0 and�1, i.e. the set of probability
measures � on X � X with marginals �0 and �1.

Under mild assumptions which are always satisfied in these notes (it suffices,
for instance, to assume that .X; d/ is Polish, see [Vill09], Theorem 4.1.), the set of
optimal couplings, i.e. the set of minimizers for the functional Ip.�/, is non-empty.
Moreover, the application Wp defined by

E. Hillion (�)
Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
e-mail: erwan.hillion@univ-amu.fr

© Springer Science+Business Media LLC 2017
E. Carlen et al. (eds.), Convexity and Concentration, The IMA Volumes
in Mathematics and its Applications 161, DOI 10.1007/978-1-4939-7005-6_1
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4 E. Hillion

Wp.�0; �1/ WD inf
�2….�0;�1/

�Z
X�X

d.x; y/pd�.x; y/

�1=p

(2)

defines a distance on the set Pp.X/ of probability measures on X having a finite p-th
moment. Such distances are called Wasserstein distances.

We are interested in properties of the metric space .Pp.X/;Wp/. Recall that the
length of a continuous curve � W Œ0; 1� ! X in a metric space .X; d/ is given by

L.�/ WD sup
0Dt0�����tND1

N�1X
iD0

d.�.ti/; �.tiC1//:

This induces a new distance Qd on X given by

Qd.x; y/ WD inffL.�/ j �.0/ D x; �.1/ D yg: (3)

If the distances d and Qd coincide, the space .X; d/ is said to be a length space. If
furthermore the infimum is attained in (3) for some curve � , then .X; d/ is said to
be a geodesic space and � a geodesic curve. Compact length spaces are proven to
be geodesic spaces (see [Stu06a], Lemma 2.3). Compact Riemannian manifolds and
Euclidean spaces Rn are other important classes of geodesic spaces.

An important geometric property of Wasserstein spaces is the following :

Proposition 1 If .X; d/ is a geodesic space, then .Pp.X/;Wp/ is also a geodesic
space.

The study of Wasserstein Wp-geodesics, in particular for p D 2, has gained
importance in the last decade, mainly because of the development of Sturm-Lott-
Villani theory (see [Stu06a], [Stu06b] and [LV09]), which gives quite unexpected
links between some geometric properties of a compact Riemannian manifold .M; g/
and convexity properties of some functionals defined on .P2.M/;W2/. For instance,
the Ricci curvature tensor Ric on M satisfies Ric � K if and only if every couple of
measures �0; �1 2 P2.M/ can be joined by a W2-geodesic .�t/t2Œ0;1� along which
we have

H.�t/ � .1 � t/H.�0/C tH.�1/C K
t.1 � t/

2
W2
2 .�0; �1/; (4)

where the entropy functional H.�/ is defined by H.�/ WD �
R

M � log.�/dvol if
d� D �dvol is absolutely continuous w.r.t. the Riemannian volume measure, and
H.�/ D �1 elsewhere. (In the original papers by Sturm and Lott-Villani, H.�/
is defined as C

R
M � log.�/dvol and referred to as ‘the Boltzmann functional’, and

equation (4) is thus stated with a different sign.)
Equation (4) is called K-geodesic concavity for the entropy on P2.M/. The

purpose of Sturm-Lott-Villani theory is to use equation (4) to define the notion of
a measured length space (i.e. a length space .X; d/ with a reference measure �),
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satisfying Ric � K. This generalized notion of Ricci curvature bounds is consistent
with the classical one in the Riemannian setting, and under the assumption Ric �

K > 0, one can recover geometric properties and functional inequalities holding on
.X; d; �/.

The generalization of Sturm-Lott-Villani theory in the case where the underlying
space .X; d/ is discrete (and thus not a length space) has been the subject of several
research works. Among them, papers by Erbar-Maas [EM12] and Léonard [Leo14]
will be presented in these notes. These approaches are based on the same idea which
can be loosely summed up as follows: given a couple of probability measures f0,
f1 on a graph G, we first construct an interpolation .ft/t2Œ0;1� which shares some
similarities with Wasserstein W2-geodesics in length spaces. It is then possible to
define a notion of ‘Ricci curvature bounds’ by considering the behaviour of the
entropy functional along such interpolations.

A similar approach of discrete Ricci curvature is described in the paper [GRST14]
by Gozlan et al. In this article, the authors study the behaviour of the entropy
functional along particular interpolations in the space of probability measures on
a graph. The notion of discrete Ricci curvature thus obtained is strong enough to
imply interesting functional inequalities (for instance, a discrete HWI inequality, see
Proposition 5.1. of [GRST14]). The interpolating curves constructed in [GRST14]
are seen as mixtures of binomial families, which is also the case of the W1;C-
geodesics introduced in these notes in Section 4. Whether both interpolating
families coincide or not is still an open question, for which there is a positive
answer in particular cases (see Remark 2).

Other important works about discrete Ricci curvature which will not be discussed
here are Ollivier’s Ricci curvature, see [Oll09], Sturm-Bonciocat rough curvature
bounds, see [SB09], and the recent Bochner-type approach by Klartag et al, see
[KKRT15].

The main purpose of these notes is to present some of the results of the author’s
papers [Hill14a], [Hill14b], [Hill14c]. These articles are about the construction
of an interpolating family .ft.x//t2Œ0;1� between two finitely supported probability
measures f0, f1 on a graph G, and the study of the concavity properties of the
entropy functional H.t/ WD H.ft/ along this family. In these notes, we mainly focus
on the simpler case when the underlying graph is Z and explain briefly how these
constructions can be extended to the general case.

Section 2 is a study of a particular class of interpolations, known as thinning
of measures. We define the thinning and give some of its properties, among them
a result about the concavity of its entropy. We then give an overview of the
paper [Hill14a], about the contraction of probability measures, which is a natural
generalization of the thinning in the setting of graphs. In particular, we explain how
to adapt the proof of the concavity of the entropy in this new framework.

In Section 3, we recall some more notions on optimal transportation theory in
continuous spaces. As in the discrete case, we mainly focus on the one-dimensional
setting. We recall the Benamou-Brenier formula and how the description of
its solutions by the Hamilton-Jacobi equation can be used to obtain interesting
properties about Wasserstein geodesics. In particular, we obtain a concavity of
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entropy result by applying Proposition 8, which is formally similar to the discrete
Benamou-Brenier equation (11) used in Section 2. The methods used in this section,
especially Proposition 8, will be extended to the discrete setting in the next section.

In Section 4, we explain how to construct interpolating family between two
probability measures on a graph satisfying a generalized version of equation (11).
This leads to the definition of W1;C-geodesics (see Definition 13). In particular, the
similarity between equation (30) and Proposition 8 show that W1;C-geodesics share
similarities with thinning (or contractions) of measures in the discrete setting and
with Wasserstein geodesics in continuous spaces. This section is an overview of the
papers [Hill14b] and [Hill14c].

In Section 5, we construct other types of interpolating curves in P.Z/ along
which concavity of entropy results hold. These curves, known as entropic interpola-
tions, have been introduced by Léonard in a series of articles among which we can
cite [Leo12], [Leo13a], [Leo13b]. We explain with heuristic arguments why W1;C-
geodesics can be seen as limits of entropic interpolation when a certain parameter
is taken to 0.

In Section 6, we explain the proof of the Shepp-Olkin conjecture (see Theo-
rem 7), which is based on the ideas introduced in the theory of W1;C-geodesics. The
section sums up the results detailed in the papers [HJ14] and [HJ16].

2 A First Example: Entropy and Thinning of Measures

In this section, we study a particular method of interpolation known as the thinning
operation, and which is a natural way to interpolate a probability measure finitely
supported on ZC and the Dirac measure ı0. Moreover, the entropy along the thinning
of a measure is concave. We give a detailed proof of this result, which will serve as
a template for other concavity of entropy results.

2.1 The Thinning Operation on ZC

Let f be a probability measure supported on f0; : : : ;Ng and X be a random variable
distributed as f .

Definition 1 The thinning of f is the family .Ttf /t2Œ0;1� of probability measures on
f0; : : : ;Ng defined by

8k 2 f0; : : : ;Ng ; .Ttf /.k/ D
X

l W l�k

binl;t.k/f .l/; (5)

where binl;t.k/ WD
� l

k

�
tk.1 � t/l�k1k2f0;:::;lg is the binomial measure.
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The map t 7! Ttf can be seen as a curve in the space P.Z/, interpolating between
the Dirac measure T0f D ı0 and T1f D f . An equivalent point of view on the
thinning is the following:

Proposition 2 Let X be a random variable with probability mass function f . Let
.Bk/k�1 be an i.i.d. family of Bernoulli variables of parameter t, independent of X.
Then the random variable TtX WD

PX
iD1 Bi has probability mass function Ttf .

The thinning operation has been introduced by Rényi in [Ren56], and can be seen
as a discrete version of the scaling operation, which associates to a random variable
X (on R) the random variable tX, or equivalently associates to a density .f .x//x2R the
density ft.x/ WD 1=tf .x=t/, see the introduction of [HJK07] for further information.
For instance, the thinning operation is used to state the following Poisson limit
theorem, known as ‘law of thin numbers’ (see [HJK07]):

Theorem 1 Let f ?n denote the n-th convolution of f , or equivalently the probability
mass function of the independent sum X1C� � �CXn. Then T1=n.f ?n/ converges point-
wise to the Poisson distribution Poi.	/, where 	 WD E.f /.

2.2 Concavity of the Entropy Along the Thinning

We now state and prove a first concavity of entropy result.

Definition 2 The entropy H.f / of a finitely supported probabilty measure f on a
discrete space E is defined by

H.f / WD �
X
x2E

f .x/ log.f .x//;

where by convention 0 log.0/ D 0.

Theorem 2 Let f be a probability measure supported on f0; : : : ;Ng. The function
t 7! H.t/ WD H.Ttf / is concave on Œ0; 1�.

Theorem 2 has been first proven by Johnson and Yu in [JY09]. Their proof is
based on the decomposition H.Ttf / D �D.t/ � L.t/, where D.t/ is the relative
entropy of the measure ft with respect to the Poisson measure P.	t/ (with 	t D

EŒTtf � D tEŒf �), and L.t/ WD EŒlog .P.Xt; 	t//� where Xt as Ttf as p.m.f. The
convexity of D.t/ follows from the data-processing inequality, and the convexity
of L.t/ is proven by computing directly L00.t/ and by using the formula

@

@t
Ttf .k/ D �

�
k C 1

t
.Ttf /.k C 1/ �

k

t
.Ttf /.k/

�
: (6)
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We are giving a slightly different proof of Theorem 2, which does not need a
decomposition of H.Ttf /, but relies on a formula for @

@t Ttf .k/ which is quite similar
to (6).

Proof of Theorem 2 Using the equations k
�n

k

�
D n

�n�1
k�1

�
, .n � k/

�n
k

�
D n

�n�1
k

�
,

we prove the following transport equation for the binomial distributions:

@

@t
binn;t.k/ D �n .binn�1;t.k/ � binn�1;t.k � 1// ; (7)

where r is the left derivative operator. Setting ft.k/ WD .Ttf /.k/, it follows from
equation (7) that we have the transport equation

@

@t
ft.k/ D �rgt.k/ ;where gt.k/ WD

X
l�k

lbinl�1;t.k/f .l/: (8)

There is a similar second-order transport equation:

@2

@t2
ft.k/ D r2ht.k/ ;where ht.k/ WD

X
l�k

l.l � 1/binl�2;t.k/f .l/; (9)

and where r2 WD r ı r is the second left derivative operator.
Equations (8) and (9) allow us to express derivatives of ft.k/ with respect to t as

‘spatial derivatives’ of other families of functions.

�H00.t/ D
X

k

�
@2

@t2
ft.k/

�
log.ft.k//C

1

ft.k/

�
@

@t
ft.k/

�2

D
X

k

r2ht.k/ log.ft.k//C
.r1gt.k//2

ft.k/
:

Now, we notice that, for k � 1 and l1; l2 � k C 1, we have

l1

 
l1 � 1

k

!
l2

 
l2 � 1

k � 1

!
D

l1Šl2Š

.l1 � 1 � k/ŠkŠ.l2 � k/Š.k � 1/Š

D l1.l1 � 1/
.l1 � 2/Š

..l1 � 2/ � .k � 1//Š.k � 1/Š

l2Š

lŠ.l2 � k/Š

D l1.l1 � 1/

 
l1 � 2

k � 1

! 
l2
k

!
;

which implies

l1.l1 � 1/binl1�2;t.k � 1/binl2;t.k/ D l1binl1�1;t.k/l2binl2�1;t.k � 1/: (10)
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With the usual convention that binl;t.k/ D 0 if k … f0; : : : ; lg, we notice that
equation (10) is still true for any k � 0.

From equation (10) we deduce, by expanding the sums defining ft.k/, gt.k/ and
ht.k/, that for every k � 0,

ft.k/ht.k � 1/ D gt.k/gt.k � 1/: (11)

Equation (11) allows us to write:

X
k

r2ht.k/ log.ft.k// D
X

k

ht.k/ Œlog.ft.k// � 2 log.ft.k C 1//C log.ft.k C 2//�

D
X

k

ht.k/

�
log.ft.k// � log

�
gt.k C 1/2gt.k/2

ht.k/2

�
C log.ft.k C 2//

�

D
X

k

ht.k/

�
log

�
ft.k/ht.k/

gt.k/2

�
C log

�
ft.k C 2/ht.k/

gt.k C 1/2

��

�
X

k

ht.k/

�
1 �

gt.k/2

ft.k/ht.k/
C 1 �

gt.k C 1/2

ft.k C 2/ht.k/

�

D
X

k

2ht.k/ �
gt.k/2

ft.k/
�

gt.k C 1/2

ft.k C 2/
:

The only inequality we have used is an elementary one: log.x/ � 1 � 1=x.
On the other hand, we have:

X
k

.r1gt.k//2

ft.k/
D
X

k

gt.k/2

ft.k/
� 2

gt.k/gt.k � 1/

ft.k/
C

gt.k � 1/2

ft.k/

D
X

k

gt.k/2

ft.k/
� 2

gt.k/gt.k C 1/

ft.k C 1/
C

gt.k C 1/2

ft.k C 2/

D
X

k

�2ht.k/C
gt.k/2

ft.k/
C

gt.k C 1/2

ft.k C 2/
;

which finally proves that �H00.t/ � 0. �

Remark 1 The thinning operation can also be used to define an interpolation
.ft/t2Œ0;1� between two probability measures f0 and f1 supported on ZC, by defining
ft as the convolution ft WD .T1�tf0/ ? .Ttf1/. Theorem 2, about the concavity of the
entropy, is generalized to these interpolations under a technical assumption: if f0
and f1 are ultra-log-concave, which means that .kC1/fi.kC1/2 � .kC2/fi.k/fi.kC

2/ for i D 0; 1 and k 2 ZC, then the entropy H.ft/ is a concave function of t. This is
the main result of [JY09].
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2.3 Contraction of Measures on Graphs

There is a quite natural way to generalize the notion of thinning to the more general
setting of a general connected, locally finite graph G. This has been done by the
author in [Hill14a], and we recall here some definitions and theorems from this
paper.

A curve on G of length n is any application � W f0; : : : ; ng ! G. We will denote
L.�/ D n. A geodesic between two vertices x; y 2 G is a curve which minimizes
the length L.�/ among the set of curves � W f0; : : : ; ng ! G with �.0/ D x and
�.n/ D y. The length of a geodesic path joining x to y id denoted dG.x; y/, or d.x; y/
is there is no ambiguity, and this quantity defines a distance on the vertices of G,
called the graph distance.

We will denote by 
.G/ the set of geodesic paths on G, and 
x;y the set of
geodesic paths on G joining x to y. The cardinality of 
x;y will be denoted by j
x;yj.

Let o 2 G be a particular vertex, which will act as the vertex 0 in the thinning
case. Let f be a finitely supported distribution on G.

Definition 3 Let � 2 
.G/ be a geodesic path on G, of length n. The binomial
family along � is the family .bin�;t/t2Œ0;1� of probability distributions supported on
f�.0/; : : : ; �.n/g, defined by bin�;t.�.k// WD binn;t.k/.

Definition 4 The contraction of f on o is the family .ft/t2Œ0;1� of probability measures
defined by

ft.x/ WD
X
z2G

0
@ 1

j
o;zj

X
�2
o;z

bin�;t.x/

1
A f .z/; (12)

where, given a geodesic � 2 
.G/, the measure bin�;t is defined by

8j 2 f0; : : : ; lg ; bin�;t.�.j// WD binl;t.j/;

where l D L.�/, and by bin�;t.z/ D 0 if z ¤ �.j/.

Definition 5 We orient the graph G as follows: given an edge .xy/ 2 E.G/, we set
x ! y if there exists a geodesic � 2 
o;y of length l with �.l � 1/ D x. We then write
that x 2 E.y/ and y 2 F.x/.

Since G is connected, we have E.y/ ¤ ; for every y ¤ o. However, one may have
F.x/ D ;. Also notice that some edges may not be oriented with this definition, but
they do not play any role in the construction of the contraction of f or in the study
of the entropy of ft.

The oriented graph G;! is itself naturally oriented as follows: we orient
.x0y0/ ! .x1y1/ if we have x0 ! y0 D x1 ! y1. The triple .x0; x1; y1/ is called
an oriented triple. The set T.G/ of oriented triples on G can itself be oriented, the
graph .T.G/;!/ being equal to .E.E.G/;!/;!/.



Interpolation of Probability Measures on Graphs 11

Definition 6 The divergence of a function g W .E.G/;!/ ! R is the function
r � g W G ! R defined by

r � g.x1/ WD �
X

x02E.x1/
g.x0x1/C

X
x22F.x1/

g.x1x2/:

The iterated divergence of h W .T.G/;!/ ! R is the function r2 � h W G ! R

defined by

r2 � h.x2/ W D
X

x12E.x2/

X
x02E.x1/

h.x0x1x2/ � 2
X

x12E.x2/

X
x32F.x2/

h.x1x2x3/

C
X

x32F.x2/

X
x42E.x3/

h.x2x3x4/:

If we see .T.G/;!/ as .E.E.G/;!/;!/, then r2� is simply .r�/ ı .r�/.

Definition 7 Given a geodesic � W f0; : : : ; lg ! G, we define the families of
functions gt;� W .E.G/;!/ ! R and ht;� W .T.G/;!/ ! R by

8j 2 f0; : : : ; l � 1g ; gt;� ..�.j/�.j C 1/// WD lbinl�1;t.j/

and

8j 2 f0; : : : ; l � 2g; ht;� ..�.j/�.j C 1/�.j C 2/// WD l.l � 1/binl�2;t.j/;

the functions gt;� and ht;� taking the value 0 elsewhere.

The families .g�;t/ and .h�;t/ have been defined in order to have @
@t bin�;t.x/ D

�r � g�;t.x/ and @2

@t2
bin�;t.x/ D r2 � h�;t.x/. From this fact we deduce easily:

Proposition 3 Let .ft/ be a contraction family defined as in equation (12). We define
the families of functions .gt/t2Œ0;1� and .ht/t2Œ0;1�, respectively, on .E.G/;!/ and
.T.G/;!/ by

8.x0x1/ 2 .E.G/;!/ ; gt.x0x1/ WD
X
z2G

1

j
o;zj

X
�2
o;z

g�;t.x0x1/f .z/; (13)

8.x0x1x2/ 2 .E.G/;!/ ; ht.x0x1x2/ WD
X
z2G

1

j
o;zj

X
�2
o;z

h�;t.x0x1x2/f .z/: (14)

We then have the differential equations:

@

@t
ft.x/ D �r � gt.x/ ;

@2

@t2
ft.x/ D r2 � ht.x/: (15)
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The triple of functions .ft; gt; ht/ satisfies a generalized version of equation (11):

Proposition 4 Let .ft/ be the contraction family of a measure f1 to a point o 2 G,
and .gt/, .ht/ associated to f by equations (13) and (14). We then have:

8.x0x1x2/ 2 T.G/ ; ht.x0x1x2/ft.x1/ D gt.x0x1/gt.x1x2/: (16)

Equation (16) is then used to prove concavity of entropy results along contraction
families on a graph. Explicit bounds on the second derivative H00.t/ can be found
for particular graphs: the complete graph, the grid Z

n, the cube f0; 1gn or trees. The
reader is referred to [Hill14a] for detailed proofs and additional information.

Remark 2 As there is only one coupling between a Dirac measure and another
given probability measure on G, it is clear that the interpolation between ı0 and f ,
as constructed in the paper [GRST14] (see in particular the beginning of Section 2),
is identical to the contraction of f on o, as defined in Definition 4. In more general
cases, the links between the interpolating families of [GRST14] and W1;C-geodesics
(as defined in Section 4) remain unclear.

3 Optimal Transportation Theory

In this section, we recall some results about optimal transportation theory. We
focus on equation (21), or equivalently on equation (22), which is a continuous,
generalized version of equation (11) or equation (16) encountered in the previous
section. This continuous equation, will be seen as a consequence of a Hamilton-
Jacobi type equation (see equation (25)) which is satisfied by the velocity field
associated to a Wasserstein geodesic.

The first paragraph is about the one-dimensional case and the second paragraph
is about the general Riemannian setting. In both cases, the most important tool is the
Benamou-Brenier formula, see equation (18) and equation (23), stated and proven
in [BB99].

3.1 Optimal Transportation on the Real Line

We recall here some results from the continuous theory of optimal transportation,
in the special case where the underlying metric space is the real line R with the
usual Euclidian distance d.x; y/ D jx � yj. In order to avoid technical difficulties
that will not appear in the discrete setting, we will make the following additional
assumption: the densities f0 and f1 with respect to the Lebesgue measure on R are
supported on a compact interval K and are such that their respective cumulated
distribution functions F0 and F1 are smooth bijections between K and Œ0; 1�.
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We consider the Monge problem: we want to find

inf
T

Z
R

jx � T.x/jpf0.x/dx; (17)

where the infimum is taken over the set of measurable maps T W R ! R satisfying
T��0 D �1. If there exists a solution T to the Monge problem, then the coupling
� D .Id � T/��0 is solution to Monge-Kantorovitch problem (1).

It is possible to give an explicit expression for the optimal transport map
(see [Vill03] for a proof):

Proposition 5 The infimum in the Monge problem (17) is attained when T.x/ D

F�1
1 ı F0.x/. If p > 1, then this optimal T is unique.

It is also possible to describe the Wasserstein geodesics:

Proposition 6 Let T WD F�1
1 ı F0 be the solution to Monge problem (17). We set,

for t 2 Œ0; 1�, Tt.x/ WD .1 � t/x C tT.x/ and �t WD .Tt/��0. Then for any p � 1, the
family .ft/t2Œ0;1� is a Wp-Wasserstein geodesic between f0 and f1.

Proof We have:

Wp
p .�s; �t/ �

Z
R

jx � Tt ı T�1
s .x/jpd�s

D

Z
R

jTs.x/ � Tt.x/j
pd�0

D

Z
R

js � tjpjT0.x/ � T1.x/j
pd�0

D js � tjpWp
p .�0; �1/:

In particular, we have, for any 0 � s � t � 1,

Wp.�0; �1/ � Wp.�0; �s/C Wp.�s; �t/C Wp.�t; �1/

� ..s � 0/C .t � s/C .1 � t//Wp.�0; �1/ D Wp.�0; �1/;

so the previous inequalities are actually equalities, and in particular we have
Wp.�s; �t/ D jt � sjWp.�0; �1/, which proves that .�t/t2Œ0;1� is a Wasserstein Wp-
geodesic. �

In this one-dimensional framework, the Benamou-Brenier formula is written as
follows (see [Sant15], Remark 9):

Theorem 3 For p � 1, the Wasserstein distance Wp.f0; f1/ satisfies

Wp
p .f0; f1/ D inf

Z
R

Z 1

0

jvt.x/j
pft.x/dxdt; (18)
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where the infimum is taken over the families .ft.x//x2R;t2Œ0;1� joining f0 to f1 and the
velocity fields .vt.x//x2R;t2Œ0;1� satisfying the continuity equation

@

@t
ft.x/C

@

@x
.vt.x/ft.x// D 0: (19)

The velocity field .vt.x// associated to a Wasserstein geodesic by equation (19)
satisfies interesting properties:

Proposition 7 The Wasserstein geodesic .�t/t2Œ0;1� with d�t.x/ D ft.x/dx satisfies
the continuity equation (19) with the velocity field .vt.x//t2Œ0;1�;x2R defined by the
equation

8t 2 Œ0; 1� ; 8x 2 R ; vt.Tt.x// D T.x/ � x: (20)

Moreover, the velocity field satisfies the differential equation

@

@t
vt.x/ D �vt.x/

@

@x
vt.x/: (21)

Proof We first prove that equation (20) is unambiguous, i.e. that the mapping
x 7! Tt.x/ is injective when t is fixed. The equation Tt.x/ D Tt.y/ can be rewritten
.1 � t/.x � y/ C t.T.x/ � T.y// D 0. This shows that .x � y/.T.x/ � T.y// � 0,
with a strict inequality when x ¤ y. But this is a contradiction with the fact that
T D F0 ı F�1

1 is increasing, so Tt is injective.
In order to prove equation (21), we differentiate both sides of equation (20)

with respect to t. The differential of the right-hand side is clearly zero. To avoid
ambiguities, we will use the notations @1v.t; x/ WD @

@tvt.x/ and @2v.t; x/ WD @
@xvt.x/.

We then have:

0 D
@

@t
vt.Tt.x// D

�
@

@t
Tt.x/

�
@2v.t;Tt.x//C @1v.t;Tt.x//

D v.t;Tt.x//@2v.t;Tt.x//C @1v.t;Tt.x//;

which is equation (21) evaluated in t and Tt.x/. �

An equivalent form of Proposition 7 is stated as follows:

Proposition 8 Let .ft/t2Œ0;1� be a Wasserstein geodesic on R. We then have

@2

@t2
ft.x/ D

@2

@x2
�
vt.x/

2ft.x/
�
: (22)

Proof Equation (22) is simply obtained by differentiating the continuity equa-
tion (19) with respect to t and then by using equation (21). �
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This description of Wasserstein geodesics can be used to prove a concavity
of entropy property. Simple integration by parts allows us to prove the following
(see [HJ16], Theorem 2.1. for a detailed proof):

Proposition 9 Let .ft/t2Œ0;1� be a family of probability densities on R. We suppose
that there exist two families .gt.x// and .ht.x// such that

@

@t
ft.x/ D �

@

@x
gt.x/ ;

@2

@t2
ft.x/ D

@2

@x2
ht.x/:

Then the entropy H.t/ of ft satisfies

�H00.t/ D

Z
R

�
ht.x/ �

gt.x/2

ft.x/

�
@2

@x2
.log.ft.x///C

�
@gt.x/
@x ft.x/ � gt.x/

@ft.x/
@x

	2
ft.x/3

dx:

In the case where .ft/t2Œ0;1� is a Wasserstein geodesic, then gt.x/ D vt.x/ft.x/ and
ht.x/ D vt.x/2ft.x/, and we find

�H00.t/ D

Z
R

�
@vt.x/

@x

�2
ft.x/dx � 0:

3.2 Benamou-Brenier Theory in Higher Dimensions

The Benamou-Brenier formula stated in (18) in the one-dimensional setting can be
stated in the Riemannian setting, at least for p D 2: more precisely, if �0; �1 are
probability measures on a compact Riemannian manifold .M; g/, with finite second
moment, and with densities f0; f1 with respect to the Riemannian volume measure
dvol, then

W2.�; �1/
2 D inf

Z
M

Z 1

0

jvt.x/j
2ft.x/dtdvol.x/; (23)

where the infimum is taken over the set of smooth families .ft.x// of probability
densities joining f0 to f1, and where the velocity field vt W M ! TM satisfies the
continuity equation

@

@t
ft.x/ D �r � .vt.x/ft.x//; (24)

where r� is the divergence operator on the tangent bundle TM.
It can then be shown that this infimum is attained when .�t/ is the Wasserstein

W2-geodesic between �0 and �1. Moreover, the associated velocity field vt.x/ can
be written under the form vt.x/ D r‰t.x/, where r is the gradient operator and ‰t
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is a convex function on M. Moreover, this function‰t.x/ is solution to the Hamilton-
Jacobi equation

@

@t
‰t.x/C

1

2
jr‰t.x/j

2 D 0: (25)

The one-dimensional equation (21) can be seen as a consequence of this general
Hamilton-Jacobi equation.

Hamilton-Jacobi equation is a powerful tool to prove concavity of the entropy
results or functional inequalities holding on a Riemannian manifolds with Ricci
curvature uniformly bounded from below, as done, for instance, in the ‘heuristics
section’ of Otto-Villani’s paper [OV00].

Among the several propositions for a definition of discrete curvature bounds, one
of the most promising has been made by Erbar-Maas [EM12] and independently by
Mielke [Miel13] and is based on a generalization of the Benamou-Brenier formula
to the setting of discrete Markov chains:

Let K W X � X be an irreducible Markov Kernel on a finite space X , admitting
a reversible measure � on X . A density on X is a function � W X ! RC withP

x2X �.x/�.x/ D 1.
The following definition by Erbar-Maas (see [EM12]) is directly inspired by

Benamou-Brenier theory:

Definition 8 We define a distance W on the set P.X / by

W.�0; �1/
2 WD inf

�; 

8<
:
1

2

Z 1

0

X
x;y2X

. t.x/ �  t.y//
2 O�t.x; y/K.x; y/�.x/dt

9=
; ; (26)

where the infimum is taken on the set of regular families of densities .�t.x//t2Œ0;1�;x2X

joining �0 to �1 and satisfying the transport equation

@

@t
�t.x/ D �

X
y2X

. t.y/ �  t.x// O�t.x; y/K.x; y/;

where we define O�t.x; y/ WD
R 1
0
�.x/1�p�.y/pdp.

As in classical Sturm-Lott-Villani theory, Erbar and Maas define a notion of
Ricci curvature for the Markov kernel K by considering concavity properties of
the entropy along generalized Wasserstein geodesics:

Definition 9 The Markov kernel K satisfies Ric � � if for any geodesic .�t/t2Œ0;1�
for the distance W , we have

H.t/ � .1 � t/H.0/C tH.1/ � �
t.1 � t/

2
W.�0; �1/

2;

where the entropy function H is defined by H.t/ D �
P

x2X �t.x/ log.�t.x//�.x/.
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This definition of discrete Ricci curvature bounds is strong enough to recover
several results which hold in the continuous setting, for instance a tensorization
result ([EM12], Theorem 1.3) and functional inequalities satisfied on spaces with
Ric � � > 0, such as the modified logarithmic Sobolev inequality ([EM12],
Theorem 1.5). Moreover, explicit bounds on the Ricci curvature can be computed in
explicit fundamental examples, such as the complete graphs, the discrete hypercubes
or circle graphs.

There are a lot of similarities and a lot of differences between the geodesics
coming from the Erbar-Maas W-distance and the W1;C interpolations presented
below. In particular, both approaches are inspired by the continuous Benamou-
Brenier theory. An important difference is that Erbar-Maas interpolations are based
on a discrete version of the problem (23), whereas W1;C-interpolations are based on
the generalization of equation (21), which characterizes the solutions.

4 W1;C-Geodesics on Graphs

In this section, we construct and study curves .ft/ in the space of finitely supported
probability measures on a graph G along which equations similar to (11) and (16)
hold. These curves will be called W1;C-geodesics on G. We first focus on the case
where G D Z and f0 is stochastically dominated by f1 (see Definition 10), before
turning to the general case.

4.1 W1-Geodesics on Z

Before defining and constructing W1;C-geodesics on Z, we first recall in this
paragraph some results about the geometry of the space P.Z/ with the distance
W1. We consider the Monge-Kantorovitch problem

inf
�2….f0;f1/

I1.�/ WD inf
�2….f0;f1/

X
i;j

ji � jj�.i; j/; (27)

where f0, f1 are two finitely supported probability measures on Z.
The minimization problem (27) has been extensively studied :

Proposition 10 The set …1.f0; f1/ of minimizers for the problem (27) satisfy the
following properties:

• …1.f0; f1/ is non-empty.
• …1.f0; f1/ is a convex subset of P.Z � Z/.
• If …1.f0; f1/ has a unique element � , then either f0 or f1 is a Dirac measure.
• If neither f0 nor f1 is a Dirac measure, then …1.f0; f1/ has a non-empty interior.
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The proof of these facts is easy. The second and last points are proven by noticing
that, if �.i1; j1/ � a > 0 and �.i2; j2/ � a > 0 and .j1 � i1/.j2 � i2/ � 2, then the
coupling Q� defined by Q�.i; j/ D �.i; j/ � a if .i; j/ D .i1; j1/ or .i2; j2/, Q�.i; j/ D

�.i; j/Ca if .i; j/ D .i1; j2/ or .i2; j1/ and Q� D � elsewhere, satisfies I1. Q�/ D I1.�/.

Definition 10 Let f0, f1 be two probability measures on Z. We say that f0 is
stochastically dominated by f1, and we write f0 << f1, if we have 8k 2 Z ; F0.k/ �

F1.k/, where Fi.k/ WD
P

l�k fi.l/, i D 0; 1, is the cumulative distribution associated
to fi.

Proposition 11 We suppose that f0 << f1. Let � be in …1.f0; f1/. Then �.i; j/ >
0 ) i � j:

Proof Let � be a coupling between f0 and f1. The stochastic domination
assumption is equivalent to the following:

8k 2 Z ;
X

i�k;j>k

�i;j �
X

i>k;j�k

�i;j: (28)

Indeed, adding
P

i;j�k �i;j to both sides of equation (28) gives F0.k/ � F1.k/.
Suppose that we have �i0j0 > 0 for a couple i0 > j0. This means that the right-
hand side of equation (28), with k D j0, is non-zero, which implies that there exists
a couple i1 � j0 < j1 with �i1;j1 > 0. We now define c.i0; j1/ D c.i1; j0/ WD 1,
c.i0; j0/ D c.i1; j1/ WD �1 and c.i; j/ WD 0 for other couples .i; j/. If 0 < " <

min.�i0;j0 ; �i1;j1 /, then Q� WD � C "c is a coupling between f0 and f1 and we have

X
jj � ij Q� i;j �

X
jj � ij�i;j D 2".j0 � min.i0; j1// < 0;

which means that � is not a W1-optimal coupling. �

There is a converse to Proposition 11:

Proposition 12 We suppose that there exists a coupling � 2 …1.f0; f1/ such that
for all i; j 2 Z, �.i; j/ > 0 ) i � j: Then f0 << f1.

Proof It suffices to notice that the right-hand side of equation (28) is zero. �

We now prove that a W1-geodesic between f0 << f1 is monotonic for the
stochastic domination order:

Proposition 13 Let .ft/t2Œ0;1� be a W1-geodesic with f0 << f1. Then we have fs <<
ft for any 0 � s � t � 1. Moreover, we have

P
k kft.k/ D tW1.f0; f1/C

P
k kf0.k/.

Proof We fix t 2 Œ0; 1�. Let �0;t 2 …1.f0; f1/, �t;1 2 …1.ft; f1/ be two optimal
couplings. In particular, we have

P
k �0;t.i; k/ D f0.i/,

P
i �0;t.i; k/ D ft.k/ andP

i;k jk�ij�0;t.i; k/ D W1.f0; ft/ D tW1.f0; f1/. We construct a coupling � 2 ….f0; f1/
by setting

�.i; j/ WD
X

k

�0;t.i; k/�t;1.k; j/:
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The triangle inequality ji � jj � ji � kj C jk � jj easily implies

X
i;j

jj � ij�.i; j/ � W1.f0; ft/C W1.ft; f1/ D W1.f0; f1/;

so we have � 2 …1.f0; f1/. In particular, we have by Proposition 11 �.i; j/ > 0 )

i � j, and moreover there is equality in the triangle inequality: j � i D jj � ij D

jk � ij C jj � kj (thus i � k � j), whenever we have �0;t.i; k/�t;1.k; j/ > 0, which
implies by Proposition 12 that f0 << ft << f1. The inequality fs << ft for any s � t
comes from the fact that .f˛t/˛2Œ0;1� is a W1-geodesic between f0 and ft, and choosing
˛ WD s=t leads to f0 << fs << ft.

In order to prove the second point, we write

X
k

kft.k/ D
X

k

k
X

i

�0;t.i; k/

D
X

i

X
k

.k � i C i/�0;t.i; k/

D
X

i;k

jk � ij�0;t.i; k/C
X

i

i
X

k

�0;t.i; k/

D tW1.f0; f1/C
X

i

if0.i/: �

The following result will be seen as a particular case of Proposition 15:

Proposition 14 Let .ft/t2Œ0;1� be a W1-geodesic on Z with f0 << f1. Then there exist
two families of finitely supported functions .gt/t2Œ0;1�; .ht/t2Œ0;1�, such that:

• @
@t ft.k/ D �r1gt.k/.

• @
@t gt.k/ D �r1ht.k/.

• gt.k/ � 0.

In this setting, the families .gt/ and .ht/ are defined by

gt.k/ WD �
X
l�k

@

@t
ft.l/ ; ht.k/ WD �

X
l�k

@

@t
gt.l/:

The fact that .ft/ is a W1-geodesic between f0 << f1 is used as follows: we haveP
k kft.k/ D W1.f0; f1/:t C

P
k kf0.k/, so

P
k gt.k/ is constant, so ht.k/ is finitely

supported. The stochastic domination is also used to prove that gt.k/ � 0.
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4.2 W1;C-Geodesics on Z

The proof of the concavity of the entropy along thinning of measures (Theorem 2)
only uses the fact that

ft.k/ht.k � 1/ D gt.k/gt.k � 1/; (29)

therefore a natural question is to find other families .ft.k//t2Œ0;1�;k2Z of probability
measures on Z satisfying the same equation (29), because along such families the
concavity of the entropy would be already proven.

A very interesting fact is that the most natural continuous analogue of equa-
tion (29) is simply the equation fh D g2, which is satisfied by Wasserstein geodesics
on the real line. It thus seems natural to use equation (29) as a possible definition of
Wasserstein interpolation on Z.

We construct, with Theorem 5, an interpolation .ft/t2Œ0;1� satisfying equation (29),
where the families .gt.k// and .ht.k// are defined from .ft.k// by Proposition 14.
This interpolation is called W1;C-geodesic between f0 and f1. We will later explain
how to modify equation (29) in the general case to define W1;C-geodesics between
each couple f0; f1 of finitely supported probability measures on a graph.

Definition 11 Let f0 << f1 be two finitely supported probability measures on Z. A
W1;C-geodesic between f0 and f1 is a family .ft/t2Œ0;1� of probability measures on Z

such that

• .ft/ is a W1-geodesic.
• ft.k/ht.k � 1/ D gt.k/gt.k � 1/.
• gt.k/ > 0 whenever we have ft.k/ > 0,

where .gt/t2Œ0;1� and .ht/t2Œ0;1� are defined from .ft/t2Œ0;1� by Proposition 14.

The proof of Theorem 2 is still valid in this more general framework, which leads
to the following:

Theorem 4 Let .ft/t2Œ0;1� be a W1;C-geodesic on Z. The entropy H.t/ of ft is then a
concave function of t.

In order to make Theorem 4 relevant, an important question is to show the
existence of a W1;C-geodesic with prescribed f0 and f1. This question is answered
by the following:

Theorem 5 Let f0 << f1 be two probability measures on Z. There exists a unique
W1;C-geodesic .ft/t2Œ0;1� joining f0 to f1. Moreover, .ft/ can be written as a mixture
of binomial families:

ft.k/ D
X

i�k�j

bini;j;t.k/�.i; j/;
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where the coupling � is solution to the minimization problem

inf
�2…1.f0;f1/

X
i�j

�.i; j/ log .�.i; j/.j � i/Š/ � �.i; j/;

and where bini;j;t.k/ D binj�i;t.k � i/.

The proof of Theorem 5 is quite similar to the proof of Theorem 6, of which a
detailed proof is given. It is interesting to notice that the optimal coupling � can
be written under the form �.i; j/ D a.i/b.j/

.j�i/Š for a couple of functions a; b W G !

R. A detailed proof of Theorem 5, stated in a more general form, can be found
in [Hill14b]: see in particular Theorem 4.5 for the existence and Theorem 3.19 for
the binomial mixture.

4.3 W1;C-Geodesics on Graphs

In this paragraph we explain briefly how to define W1;C-geodesics between a couple
of finitely supported probability measures f0; f1 on a graph G. If we want an equation
similar to (16) to make sense, we first need to define an orientation on G.

Definition 12 We define the W1-orientation on G, with respect to the couple f0; f1,
in the following way: let .xy/ 2 E.G/ be any edge of G. If there exists an optimal
coupling � 2 …1.f0; f1/, a couple of vertices a; b 2 G with �.a; b/ > 0, a geodesic
path � 2 
.a; b/ and an integer l 2 f0; : : : ; d.a; b/ � 1g such that x D �.l/ and
y D �.l C 1/, then we orient the edge .xy/ by x ! y.

It is proven in [Hill14b], Theorem 2.18, that the orientation x ! y does not
depend on �; a; b; � , and so this orientation is well defined. As in the case of
contraction of measures, some edges may not be oriented by this process, but they
do not play any role in the construction of W1;C-geodesics.

Having an orientation on G allows us to define the divergence and iterated diver-
gence operators, respectively, on the oriented graphs .E.G/;!/ and .T.G/;!/.
We now associate a family .gt/t2Œ0;1� to each W1-geodesic as follows (see [Hill14b],
Theorem 2.23 and Proposition 2.25):

Proposition 15 Let .ft/t2Œ0;1� be a W1-geodesic on G. We orient G with the W1-
orientation with respect to f0, f1. There exists a family .gt/t2Œ0;1� of functions defined
on .E.G/;!/ such that 8x; y 2 .E.G/;!/; gt.xy/ > 0 and @

@t ft.x/ D �r � gt.x/.

Definition 13 Let G be a graph, W1-oriented with respect to f0; f1. A family .ft/t2Œ0;1�
of probability measures on G is said to be a W1;C-geodesic if:

• .ft/t2Œ0;1� is a W1-geodesic.
• There exist two families .gt/t2Œ0;1� and .ht/t2Œ0;1� defined, respectively, on
.E.G/;!/ and .T.G/;!/ such that
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@

@t
ft.x/ D �r � gt.x/ ;

@2

@t2
ft.x/ D r2 � ht.x/:

• For every .xy/ 2 .E.G/;!/, we have gt.xy/ > 0.
• The triple .ft; gt; ht/ satisfies the equation

8.x0x1x2/ 2 .T.G/;!/ ; ft.x1/ht.x0x1x2/ D gt.x0x1/gt.x1x2/: (30)

One can then prove the existence and uniqueness of a W1;C-geodesic .ft/t2Œ0;1�
with prescribed f0 and f1, just as in the one-dimensional case. See the whole
Section 4 of [Hill14b] for a rigorous construction of such geodesics.

5 About the Schrödinger-Léonard Theory

Proposition 9 can be used in setting different from Wasserstein geodesics. For
instance, it can be used to study the entropy of a family .ft.k//t2Œ0;1�;k2Z of probability
measures satisfying a diffusion equation @

@t ft.k/ D r2ft.k C 1/. Actually, we prove
a stronger fact:

Proposition 16 Let .ut.x//; .vt.x// be two families of smooth positive functions on
Œ0; 1� � R satisfying

@

@t
ut.x/ D

@2

@x2
ut.x/ ;

@

@t
vt.x/ D �

@2

@x2
vt.x/:

We set ft.x/ WD ut.x/vt.x/. Then the entropy H.t/ WD H.ft/ is a concave function
of t.

Proof We can write @
@t ft.x/ D � @

@x gt.x/ and @2

@t2
ft.x/ D @2

@x2
ht.x/, with

gt.x/ WD
@ut.x/

@x
vt.x/ � ut.x/

@vt.x/

@x

and

ht.x/ WD
@2ut.x/

@x2
vt.x/ � 2

@ut.x/

@x

@vt.x/

@x
C ut.x/

@2vt.x/

@x2
:

We then apply Proposition 9, which, after simplifications, gives

�H00.t/ D

Z
R

�
@2

@x2
log.ut.x//

�2
vt.x/C ut.x/

�
@2

@x2
log.vt.x//

�2
dx � 0: �
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This proposition has a discrete analogue:

Proposition 17 Let .ut.k//, .vt.k// be two families of non-negative functions
satisfying

@

@t
ut.k/ D r2ut.k C 1/ ;

@

@t
vt.k/ D �r2vt.k C 1/

Then the entropy H.t/ of the family .ft.k// WD .ut.k/vt.k// is a concave
function of t.

Proof We can write @ft.k/
@t D �rgt.k/ and @2ft.k/

@t2
D r2ht.k/ with

gt.k/ D ut.k C 1/vt.k/ � ut.k/vt.k C 1/ ; ht.k/

D ut.k C 2/vt.k/ � 2ut.k C 1/vt.k C 1/C ut.k/vt.k C 2/:

We then write

X
k

@2

@t2
ft.k/ log.ft.k// D

X
k

r2ht.k/ log.ft.k//

D
X

k

ht.k/ log

�
ft.k/ft.k C 2/

ft.k C 1/2

�

D
X

k

.ut.k C 2/vt.k/ � 2ut.k C 1/vt.k C 1/

Cut.k/vt.k C 2// log

�
ft.k/ft.k C 2/

ft.k C 1/2

�
:

The elementary inequality log.x/ � 1 � 1=x gives the bound

log

�
ft.k/ft.k C 2/

ft.k C 1/2

�
D log

�
ut.k/ut.k C 2/

ut.k C 1/2

�
C log

�
vt.k/vt.k C 2/

vt.k C 1/2

�

� 2 �
ut.k C 1/2

ut.k/ut.k C 2/
�

vt.k C 1/2

vt.k/vt.k C 2/
:

Similarly, the inequality � log.x/ D log.1=x/ � 1 � x gives

� log

�
ft.k/ft.k C 2/

ft.k C 1/2

�
� 2 �

ut.k/ut.k C 2/

ut.k C 1/2
�
vt.k/vt.k C 2/

vt.k C 1/2
:
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After simplifications, we obtain the inequality

X
k

@2

@t2
ft.k/ log.ft.k// �

X
k

2ut.k C 2/vt.k/ �
ut.k C 1/2

ut.k/
vt.k/ �

vt.k C 1/2

vt.k C 2/
ut.k C 2/

C4ut.k C 1/vt.k C 1/ � 2
ut.k/ut.k C 2/

ut.k C 1/
vt.k C 1/ � 2

vt.k/vt.k C 2/

vt.k C 1/
ut.k C 1/

C2ut.k/vt.k C 2/ �
ut.k C 1/2

ut.k C 2/
vt.k C 2/ �

vt.k C 1/2

vt.k/
ut.k/:

On the other hand, we have

X
k

1

ft.k/

�
@

@t
ft.k/

�2
D
X

k

.gt.k/ � gt.k � 1//2

ft.k/

D
X

k

gt.k/2

ft.k/
� 2

gt.k/gt.k C 1/

ft.k C 1/
C

gt.k C 1/2

ft.k C 2/

D
X

k

ut.k C 1/2

ut.k/
vt.k/ � 2ut.k C 1/vt.k C 1/C

vt.k C 1/2

vt.k/
ut.k/

�2ut.k C 2/vt.k/C 2ut.k C 1/
vt.k/vt.k C 2/

vt.k C 1/

C2vt.k C 1/
ut.k/ut.k C 2/

ut.k C 1/
� 2ut.k/vt.k C 2/

C
vt.k C 1/2

vt.k C 2/
u.k C 2/ � 2ut.k C 1/vt.k C 1/

C
ut.k C 1/2

ut.k C 2/
vt.k C 2/:

We then obtain immediately

�H00.t/ D
X

k

@2

@t2
ft.k/ log.ft.k/C

X
k

1

ft.k/

�
@

@t
ft.k/

�2
� 0: �

The equation @
@t2

ut.k/ D r2ut.k C 1/ is a linear PDE often referred to as the heat
equation on Z. The second derivative operator K D r2 can be seen as a Markov
semigroup generator: if u0 is (the density of) a probability measure on Z, then
.ut/t�0 WD .etKu0/t>0 is a family of probabilty measures on Z satisfying the heat
equation. If u0 D ı0 is the Dirac measure at 0, we denote .Pt.k//k2Z the measure
etKu0. If u0 D ıi, then we have .etKu0/.k/ D Pt.k � i/.

Proposition 17 shows the concavity of the entropy functional for a class of
families .ft/ 2 P.Z/. We now show that this class is large enough to contain
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interpolating families for any couple of prescribed initial and final measures f0; f1.
We will actually prove a more explicit statement:

Theorem 6 Let f0; f1 be two finitely supported probability measures on Z. There
exists a unique coupling � 2 ….f0; f1/ solution of the minimization problem

inf
� 02….f0;f1/

X
i;j

� 0.i; j/ log

�
� 0.i; j/

P1.i � j/

�
: (31)

Moreover, there are two functions a; b W Z ! R such that �.i; j/ D a.i/b.j/P1.i � j/
and the family .ft.k//t2Œ0;1�;k2Z defined by

ft.k/ WD
X

i;j

Pt.k � i/P1�t.k � j/

P1.i � j/
�.i; j/ (32)

satisfies ft.k/ D ut.k/vt.k/ with @
@t ut.k/ D r2ut.k C1/ and @

@tvt.k/ D �r2vt.k C1/.
In particular, the entropy H.t/ of ft is a concave function of t.

Sketch of proof We want to minimize the functional I.� 0/ WD
P

i;j �
0.i; j/

log
�
� 0.i;j/

P1.i�j/

	
over the set….f0; f1/. The set….f0; f1/ can be seen as a convex subset of

P.Z�Z/. More precisely, this is the set of probability measures � 0 on f0; : : : ;Ng �

f0; : : : ;Ng satisfying the constraints
P

j �
0.i; j/ D f0.i/ and

P
i �

0.i; j/ D f1.j/. If f0
or f1 are Dirac measures, then the set ….f0; f1/ has a unique element, and the family
.ft/ constructed as in equation (32) is similar to a thinning family. If neither f0 nor f1
are Dirac measures, then the interior of ….f0; f1/ is non-empty.

The mapping � 0 7! I.� 0/ is shown to be smooth and strictly convex on….f0; f1/,
and thus attains its infimum at a unique coupling � 2 ….f0; f1/. Moreover, it is
possible to show that this infimum cannot be attained on the boundary of ….f0; f1/,
which shows that � is a critical point for I. The coupling � is also a critical point
for the functional

J.� 0/ WD I.� 0/ � 1 D
X

i;j

� 0.i; j/ log
�
P1.i � j/� 0.i; j/

�
� � 0.i; j/:

We have @
@� 0.i;j/J.�

0/ D log.� 0.i; j// � log.P1.i � j//. Moreover, the constraints
defining ….f0; f1/ as a subset of P.Z � Z/ show that there exist two functions A;B W

Z ! R such that

8i; j ; log.� 0.i; j// � log.P1.i � j// D A.i/C B.j/:

Taking a.i/ D exp.A.i// and b.j/ D exp.B.j// proves the first part of the theorem.
We now notice that P0.k � i/ (resp. P1.k � j/) is equal to zero unless k D i

(resp. k D j). This proves that the family .ft/t2Œ0;1� interpolates the measures f0 and
f1. Moreover, we can write ft D utvt with ut.k/ WD

P
i Pt.k � i/a.i/ and vt.k/ WD
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P
j P1�t.j � k/b.j/. The fact that @

@t Pt.l/ D r2Pt.l C 1/ shows, by linearity, that
@
@t ut.k/ D r2ut.k C 1/ and similarly @

@tvt.k/ D �r2vt.k C 1/. �

Such an interpolation between f0 and f1 is called an entropic interpolation. The
continuous version of Theorem 6 is as follows:

Proposition 18 Let f0.x/, f1.x/ be two smooth, compactly supported probability
densities on R. There exist two families of functions .ut.x//t2Œ0;1�;x2R; .vt.x//t2Œ0;1�;x2R

such that:

• ft.x/ WD ut.x/vt.x/ interpolates the measures f0 and f1.
• @

@t ut.x/ D �ut.x/,
• @

@tvt.x/ D ��vt.x/,

where � is the Laplacian on R.
Moreover, there exists a coupling � between f0 and f1 which can be written

d�.x; y/ D a.x/b.y/P1.x � y/dxdy, such that

ft.z/ D

Z
x;y2R�R

Pt.z � x/P1�t.y � z/

P1.x � y/
d�.x; y/;

and this coupling � is solution to the minimization problem

inf
� 02….f0;f1/

Z
R�R

log

�
� 0.x � y/

P1.x � y/

�
d� 0.x � y/;

where we set, for t > 0, Pt.z/ WD 1p
t
exp

�
� z2

4t

	
.

The proof of Proposition 18 follows exactly the same lines as the proof of
Theorem 6.

The constructions of entropic interpolations on Z and R have so far been quite
similar. An important difference appears when we consider an additional parameter
 and study the same problem with equations

@

@t
ut.k/ D "r2ut.k C 1/ ;

@

@t
vt.k/ D �"r2vt.k C 1/; (33)

and

@

@t
ut.x/ D "�ut.x/ ;

@

@t
vt.x/ D �"�vt.x/:

In that case, one can prove as in Theorem 6 the existence, when f0 and f1 are
prescribed, of an interpolation .ft.k//t2Œ0;1� D .ut.k/vt.k//, such that ut.k/ and vt.k/
satisfy (33). Moreover, .ft.k// can be written under the form

ft.k/ WD
X

i;j

P"t.k � i/P".1�t/.k � j/

P".i � j/
�".i; j/
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where the coupling �" is solution to the minimization problem

inf
� 02….f0;f1/

I.� 0/ D inf
� 02….f0;f1/

X
i;j

� 0.i; j/ log

�
� 0.i; j/

P".i � j/

�
:

A similar statement can be deduced in the continuous case from Proposition 18.
In this setting, we consider families .ft.x// of the form

ft.z/ D

Z
x;y2R�R

P"t.z � x/P ve.1�t/.y � z/

P".x � y/
d�".x; y/;

where the coupling �" is solution to the minimization problem

inf
� 02….f0;f1/

Z
R�R

log

�
� 0.x � y/

P".x � y/

�
d� 0.x � y/;

The rigorous study of the behaviour of the minimization problems (5) when " !

0 is at the heart of the paper [Leo12] by Léonard. We explain here briefly why we
must expect different behaviours in the discrete and continuous cases:

In the continuous case, we have P".z/ D 1p
"

exp
�
�" z2

4"

	
, so the functional I.� 0/

we want to minimize can be written under the form

I.� 0/ D

Z
R�R

�
�1=2 log."/C ".x � y/2 C o."/

�
� 0.x; y/;

so we can expect, when " ! 0, that the infimum of I.� 0/ is getting close to the
solution of the minimization problem

inf
� 02….f0;f1/

Z
R�R

.x � y/2d� 0.x; y/;

which is exactly the Monge-Kantorovitch problem for the quadratic cost.

In the discrete case, we no longer have P".z/ D 1p
"

exp
�
�" z2

4"

	
, but P".l/ D

"l

lŠ C o."l/, so the minimization problem is written

I.� 0/ D
X

i;j

� 0.i; j/ .� log."/ji � jj C log .ji � jjŠ�.i; j/C o."/// :

When " ! 0, we have � log."/ >> 1 >> ", so the minimizer � of I is expected to
behave as follows:

• The coupling � minimizes the functional I0.� 0/ WD
P

i;j ji � jj�.i; j/, which
means that � is a W1-optimal coupling between f0 and f1.
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• Among the minimzers of I0, i.e. among the W1-optimal couplings, � minimizes
the functional

I1.�
0/ WD

X
i;j

� 0.i; j/ log.ji � jjŠ� 0.i; j//:

Moreover, we can describe the behaviour of the interpolating curves
P"t.z�x/P".1�t/.y�z/

P".x�y/ when " ! 0. As before, the continuous and discrete cases are
quite different:

• In the continuous case, we have

P"t.z � x/P".1�t/.y � z/

P".y � x/
D

1
p
"

exp

�
�
"

4

�
.x � z/2

t
C
.y � z/2

1 � t
� .x � y/2

��
;

which, as a function of z, is a probability density more and more concentrated
around z D .1 � t/x C ty, so we can expect the family of measures
.
R
R�R

P"t.z�x/P".1�t/.y�z/
P".x�y/ d�".x; y/dz/t2Œ0;1� to converge in some sense (the

rigorous statement use the 
-convergence) to the family of measures
.
R
R�R

ı.1�t/xCtyd�.x; y//t2Œ0;1�, which is exactly the W2-Wasserstein geodesic
between f0 and f1.

• In the discrete case, we have

8i � k � j 2 Z ;
P"t.k � i/P".1�t/.j � k/

P".j � i/
! bini;j;t.k/;

so the entropic interpolation
P

i;j
P"t.k�i/P".1�t/.k�j/

P".i�j/ �".i; j/ is expected to converge,
as " ! 0, to the W1;C-geodesic between f0 and f1.

In the general graph case, the question of the equivalence between W1;C-
geodesics and limit cases of entropic interpolations described as above remains
unclear and future research works will focus on the comparison between these two
constructions.

6 Shepp-Olkin Interpolations

We finish these notes by explaining how ideas coming from the optimal transporta-
tion theory on Z can be used to solve a problem about the entropy of sums of
independent Bernoulli random variables.

Let p1.t/; : : : ; pn.t/ be a family of affine functions with pi W Œ0; 1� ! Œ0; 1�. The
slope of pi.t/ will be denoted by p0

i. Let X1.t/; : : : ;Xn.t/ be independent Bernoulli
random variables of parameters p1.t/; : : : ; pn.t/. We denote by .ft.k//, or by .Bt.k//
the probability measure, supported on f0; : : : ; ng, defined by
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ft.k/ D Bt.k/ D P

 
nX

iD1

Xi.t/ D k

!
:

The following is easily proven by induction on the number n of parameters:

Proposition 19 When each function pi is linear, i.e. when pi.t/ D ai � t for some
constant ai 2 Œ0; 1�, then .ft/ is the thinning family of the measure f1.

Theorem 2 then gives a concavity of entropy result in this particular case. This
property actually holds in general:

Theorem 7 The entropy H.t/ of ft is a concave function of t.

Theorem 7 has been proven by the author and Johnson in [HJ14] and [HJ16]. In
the first paper, a restricted version of Theorem 7 is proven, in the particular case,
called ‘monotonic case’, where all the slopes p0

i are non-negative. In this section, we
explain the strategy of the proof in this case.

As Theorem 7 is a result about the concavity of the entropy along a family
of probability measures on Z, it is tempting to check if, by any chance, ft is a
W1;C-geodesic on Z. In that case, Theorem 4 would directly prove Theorem 7. The
definition of ft.k/ as a Bernoulli sum allows us to give quite explicit forms for the
families .gt/t2Œ0;1� and .ht/t2Œ0;1�:

Proposition 20 We set:

gt.k/ WD
X

i

p0
iBi;t.k/ ; ht.k/ WD

X
i;j

p0
ip

0
jBi;j;t.k/:

where, for i 2 f1; : : : ; ng, the family of measures .Bi;t.k// is defined as .Bt.k//,
but omitting the function pi.t/, and where Bi;j;t.k/ is defined similarly. We then
have:

@

@t
ft.k/ D �r1gt.k/ ;

@2

@t2
ft.k/ D r2ht.k/:

Apart from the thinning case, where pi.t/ D ai � t, one can check that the family
.ft/ is not in general a W1;C-geodesic. In the general case, the quantity ht.k/ft.k C

1/�gt.k/gt.kC1/ is no longer equal to zero, but it is possible to prove the following
upper bound:

.ht.k/ft.k C1/� gt.k/gt.k C1//2 � .ht.k/ft.k/� gt.k/
2/.ht.k/ft.k C2/� gt.k C1/2/

(34)

Inequality (34) can be seen as a weak form of the Benamou-Brenier
equation (11).
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As in Section 2, we have in the monotonic case:

� H00.t/ D
X

k

ht.k/

�
log

�
ft.k/ht.k/

gt.k/2

�
� 2 log

�
ft.k C 1/ht.k/

gt.k/gt.k C 1/

�

C log

�
ft.k C 2/ht.k/

gt.k C 1/2

��
(35)

C
X

k

gt.k/2

ft.k/
� 2

gt.k/gt.k C 1/

ft.k C 1/
C

gt.k C 1/2

ft.k C 2/
: (36)

The strategy to prove that �H00.t/ � 0 consists in replacing the elementary
inequality log.x/ � 1 � 1=x by a second order inequality:

8x � 0; .1C x/ log.1C x/ � x C x2=2 ;8x � 0; .1C x/ log.1C x/ � x C x2=2:
(37)

In the monotonic case, the following inequalities hold:

ft.k/ht.k/ � gt.k/
2;

ft.k C 1/ht.k/ � gt.k/gt.k C 1/;

ft.k C 2/ht.k/ � gt.k C 1/2;

We use the first inequality as follows:

X
k

ht.k/ log

�
ft.k/ht.k/

gt.k/2

�
D
X

k

gt.k/2

ft.k/

�
1C

ht.k/ft.k/ � gt.k/2

gt.k/2

�

log

�
1C

ht.k/ft.k/ � gt.k/2

gt.k/2

�

� ht.k/ �
gt.k/2

ft.k/
C
1

2

.ht.k/ft.k/ � gt.k/2/2

ft.k/gt.k/2
:

Similar inequalities can be obtained by using the second and third inequalities.
We can thus apply the second-order inequalities (37) to equation (35) to obtain

the bound

�H00.t/ �
X

k

.ht.k/ft.k/ � gt.k/2/2

2ft.k/gt.k/2
� 2

.ht.k C 1/ft.k/ � gt.k/gt.k C 1//2

2ft.k C 1/gt.k/gt.k C 1/

C
.ht.k/ft.k C 2/ � gt.k C 1/2/2

2ft.k C 2/gt.k C 1/2
:
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We finally use the log-concavity property ft.k C1/2 � ft.k/ft.k C2/, which holds
for any sum of independent Bernoulli variables, and inequality (34) to write:

�H00.t/ �
X

k

1

2

 
ht.k/ft.k/ � gt.k/2p

ft.k/gt.k C 1/
�

ht.k/ft.k C 2/ � gt.k C 1/2p
ft.k C 2/gt.k C 1/

!2
� 0;

which proves the concavity of the entropy.
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Entropy and Thinning of Discrete Random
Variables

Oliver Johnson

Abstract We describe five types of results concerning information and concentra-
tion of discrete random variables, and relationships between them, motivated by
their counterparts in the continuous case. The results we consider are information
theoretic approaches to Poisson approximation, the maximum entropy property of
the Poisson distribution, discrete concentration (Poincaré and logarithmic Sobolev)
inequalities, monotonicity of entropy and concavity of entropy in the Shepp–Olkin
regime.

1 Results in Continuous Case

This paper gives a personal review of a number of results concerning the entropy
and concentration properties of discrete random variables. For simplicity, we only
consider independent random variables (though it is an extremely interesting open
problem to extend many of the results to the dependent case). These results are
generally motivated by their counterparts in the continuous case, which we will
briefly review, using notation which holds only for Section 1.

For simplicity we restrict our attention in this section to random variables taking
values in R. For any probability density p, write 	p D

R1

�1 xp.x/dx for its mean
and Varp D

R1

�1.x � 	p/
2p.x/dx for its variance. We write h.p/ for the differential

entropy of p, and interchangeably write h.X/ for X � p. Similarly we write D.pkq/
or D.XkY/ for relative entropy. We write ��;�2.x/ for the density of Gaussian
Z�;�2 � N.�; �2/.

Given a function f , we wish to measure its concentration properties with respect
to probability density p; we write 	p.f / D

R1

�1 f .x/p.x/dx for the expectation of f
with respect to p, write Varp.f / D

R1

�1 p.x/.f .x/ � 	p.f //2dx for the variance and
define

Entp.f / D

Z 1

�1

p.x/f .x/ log f .x/dx � 	p.f / log	p.f /: (1)
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We briefly summarize the five types of results we study in this paper, the discrete
analogues of which are described in more detail in the five sections from Sections 3
to 7, respectively.

1. [Normal approximation] A paper by Linnik [70] was the first to attempt
to use ideas from information theory to prove the Central Limit Theorem,
with later contributions by Derriennic [37] and Shimizu [87]. This idea was
developed considerably by Barron [14], building on results of Brown [25].
Barron considered independent and identically distributed Xi with mean 0 and
variance �2. He proved [14] that relative entropy D..X1 C : : :C Xn/=

p
nkZ0;�2 /

converges to zero if and only if it ever becomes finite. Carlen and Soffer
[29] proved similar results for non-identical variables under a Lindeberg-type
condition.

While none of these papers gave an explicit rate of convergence, later work
[7, 11, 58] proved that relative entropy converges at an essentially optimal
O.1=n/ rate, under the (too strong) assumption of finite Poincaré constant (see
Definition 1.1 below). Typically (see [54] for a review), these papers did not
manipulate entropy directly, but rather used properties of projection operators to
control the behaviour of Fisher information on convolution. The use of Fisher
information is based on the de Bruijn identity (see [14, 17, 88]), which relates
entropy to Fisher information, using the fact that (see, for example, [88, Equation
(5.1)] for fixed random variable X, the density pt of X C Z0;t satisfies a heat
equation of the form

@pt

@t
.z/ D

1

2

@2pt

@z2
.z/ D

1

2

@

@z
.pt.z/�t.z// ; (2)

where �t.z/ WD @pt
@z .z/=pt.z/ is the score function with respect to location

parameter, in the Fisher sense.
More recent work of Bobkov, Chistyakov and Götze [19, 20] used properties

of characteristic functions to remove the assumption of finite Poincaré constant,
and even extended this theory to include convergence to other stable laws
[18, 21].

2. [Maximum entropy] In [84, Section 20], Shannon described maximum entropy
results for continuous random variables in exponential family form. That is, given
a test function  , positivity of the relative entropy shows that the entropy h.p/
is maximized for fixed values of

R1

�1 p.x/ .x/dx by densities proportional to
exp.�c .x// for some value of c.

This is a very useful result in many cases, and gives us well-known facts such
as that entropy is maximized under a variance constraint by the Gaussian density.
This motivates the information theoretic approaches to normal approximation
described above, as well as the monotonicity of entropy result of [8] described
later.

However, many interesting densities cannot be expressed in exponential
family form for a natural choice of  , and we would like to extend maximum
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entropy theory to cover these. As remarked in [40, p. 215], ‘immediate candidates
to be subjected to such analysis are, of course, stable laws’. For example, consider
the Cauchy density, for which it is not at all natural to consider the expectation of
 .x/ D log.1C x2/ in order to define a maximum entropy class. In the discrete
context of Section 4 we discuss the Poisson mass function, again believing that
E log XŠ is not a natural object of study.

3. [Concentration inequalities] Next we consider concentration inequalities; that
is, relationships between senses in which a function is approximately constant.
We focus on Poincaré and logarithmic Sobolev inequalities.

Definition 1.1 We say that a probability density p has Poincaré constant Rp, if
for all sufficiently well-behaved functions g,

Varp.g/ � Rp

Z 1

�1

p.x/g0.x/2dx: (3)

Papers vary in the exact sense of ‘well-behaved’ in this definition, and for the
sake of brevity we will not focus on this issue; we will simply suppose that both
sides of (3) are well defined.

Example 1.2 Chernoff [32] (see also [23]) used an expansion in Hermite
polynomials (see [91]) to show that the Gaussian densities ��;�2 have Poincaré
constant equal to �2. By considering g.t/ D t, it is clear that for any random
variable X with finite variance, Rp � Varp. Chernoff’s result [32] played a
central role in the information theoretic proofs of the Central Limit Theorem
of Brown [25] and Barron [14].

In a similar way, we define the log-Sobolev constant, in the form discussed in
[10]:

Definition 1.3 We say that a probability density p satisfies the logarithmic
Sobolev inequality with constant C if for any function f with positive values:

Entp.f / �
C

2

Z 1

�1


1.f ; f /.x/

f .x/
p.x/dx; (4)

where we write 
1.f ; g/ D f 0g0, and view the RHS as a Fisher-type expression.

This is an equivalent formulation of the log-Sobolev inequality first stated by
Gross [42], who proved that the Gaussian density ��;�2 has log-Sobolev constant
�2. In fact, Gross’s Gaussian log-Sobolev inequality [42] follows from Shannon’s
Entropy Power Inequality [84, Theorem 15], as proved by the Stam–Blachman
approach [17, 88].

However, we would like to find results that strengthen Chernoff and Gross’s
results, to provide inequalities of similar functional form, under assumptions
that p belongs to particular classes of densities. Gross’s Gaussian log-Sobolev
inequality can be considerably generalized by the Bakry–Émery calculus
[9] (see [6, 10, 43] for reviews of this theory). Assuming that the so-called
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Bakry-Émery condition is satisfied, taking U.t/ D t2 in [9, Proposition 5] we
deduce (see also [10, Proposition 4.8.1]):

Theorem 1.4 If the Bakry-Émery condition holds with constant c, then the
Poincaré inequality holds with constant 1=c.

Similarly [9, Theorem 1] (see also [10, Proposition 5.7.1]) gives that:

Theorem 1.5 If the Bakry-Émery condition holds with constant c, then the
logarithmic Sobolev inequality holds with constant 1=c.

If p is Gaussian with variance �2, since (see [43, Example 4.18]), the Bakry-
Émery condition holds with constant c D 1=�2, we recover the original Poincaré
inequality of Chernoff [32] and the log-Sobolev inequality of Gross [42]. Indeed,
if the ratio p=��;�2 is a log-concave function, then this approach shows that the
Poincare and log-Sobolev inequalities hold with constant �2.

4. [Monotonicity of entropy] While Brown [25] and Barron [14] exploited ideas of
Stam [88] to deduce that entropy of .X1 C : : :C Xn/=

p
n increases in the Central

Limit Theorem regime along the ‘powers of 2 subsequence’ n D 2k, it remained
an open problem for many years to show that the entropy is monotonically
increasing in all n. This conjecture may well date back to Shannon, and was
mentioned by Lieb [68]. It was resolved by Artstein, Ball, Barthe and Naor [8],
who proved a more general result using a variational characterization of Fisher
information (introduced in [11]):

Theorem 1.6 ([8]) Given independent continuous Xi with finite variance, for
any positive ˛i such that

PnC1
iD1 ˛i D 1, writing ˛.j/ D 1 � ˛j, then

nh

 
nC1X
iD1

p
˛iXi

!
�

nC1X
jD1

˛.j/h

0
@X

i¤j

q
˛i=˛.j/Xi

1
A : (5)

This result is referred to as monotonicity because, choosing ˛i D 1=.n C

1/ for independent and identically distributed (IID) Xi, (5) shows that
h
�Pn

iD1 Xi=
p

n
�

is monotonically increasing in n. Equivalently, relative entropy
D
�Pn

iD1 Xi=
p

n


 Z/ is monotonically decreasing in n. This means that the

Central Limit Theorem can be viewed as an equivalent of the Second Law
of Thermodynamics. An alternative proof of this monotonicity result is given
by Tulino and Verdú [94], based on the MMSE characterization of mutual
information of [44].

The form of (5) in the case n D 2 was previously a well-known result;
indeed (see, for example, [36]) it is equivalent to Shannon’s Entropy Power
Inequality [84, Theorem 15]. However, Theorem 1.6 allows a stronger form
of the Entropy Power Inequality to be proved, referring to ‘leave-one-out’
sums (see [8, Theorem 3]. This was generalized by Madiman and Barron [72],
who considered the entropy power of sums of arbitrary subsets of the original
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variables. The more recent paper [73] reviews in detail relationships between the
Entropy Power Inequality and results in convex geometry, including the Brunn-
Minkowski inequality.

5. [Concavity of entropy] In the setting of probability measures taking values on
the real line R, there has been considerable interest in optimal transportation
of measures; that is, given densities f0 and f1, to find a sequence of densi-
ties ft smoothly interpolating between them in a way which minimizes some
appropriate cost function. For example, using the natural quadratic cost function
induces the Wasserstein distance W2 between f0 and f1. This theory is extensively
reviewed in the two books by Villani [95, 96], even for probability measures
taking values on a Riemannian manifold. In this setting, work by authors
including Lott, Sturm and Villani [71, 89, 90] relates the concavity of the entropy
h.ft/ as a function of t to the Ricci curvature of the underlying manifold.

Key works in this setting include those by Benamou and Brenier [15, 16] (see
also [30]), who gave a variational characterization of the Wasserstein distance
between f0 and f1. Authors such as Caffarelli [27] and Cordero-Erausquin [33]
used these ideas to give new proofs of results such as log-Sobolev and transport
inequalities. Concavity of entropy also plays a key role in the field of information
geometry (see [2, 3, 78]), where the Hessian of entropy induces a metric on the
space of probability measures.

2 Technical Definitions in the Discrete Case

In the remainder of this paper, we describe results which can be seen as discrete
analogues of the results of Section 1. In that section, a distinguished role was played
by the set of Gaussian densities, a set which has attractive properties including
closure under convolution and scaling, and an explicit value for their entropies. We
argue that a similar role is played by the Poisson mass functions, a class which is
preserved on convolution and thinning (see Definition 2.2 below), even though (see
[1]) we only have entropy bounds.

We now make some definitions which will be useful throughout the remainder
of the paper. From now, we will assume all random variables take values on the
positive integers ZC. Given a probability mass function (distribution) P, we write
	P D

P1
xD0 xP.x/ for its mean and VarP D

P1
xD0.x � 	P/

2P.x/ for its variance. In
particular, write …	.x/ D e�		x=xŠ for the mass function of a Poisson random
variable with mean 	 and Bn;p.x/ D

�n
x

�
px.1 � p/n�x for the mass function of

a Binomial Bin.n; p/. We write H.P/ for the discrete entropy of a probability
distribution P, and interchangeably write h.X/ for X � P. For any random variable
X we write PX , defined by PX.x/ D P.X D x/, for its probability mass function.

Given a function f and mass function P, we write 	P.f / D
P1

xD0 f .x/P.x/ for
the expectation of f with respect to P, write VarP.f / D

P1
xD0 P.x/.f .x/ � 	P.f //2

and define
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EntP.f / D

1X
xD0

P.x/f .x/ log f .x/ � 	P.f / log	P.f /: (6)

Note that if f D Q=P, where Q is a probability mass function, then

EntP.f / D

1X
xD0

Q.x/ log

�
Q.x/

P.x/

�
D D.QkP/; (7)

the relative entropy from Q to P. We define the operators � and �� (which are
adjoint with respect to counting measure) by�f .x/ D f .xC1/� f .x/ and��f .x/ D

f .x � 1/ � f .x/, with the convention that f .�1/ D 0.
We now make two further key definitions, in Condition 1 we define the ultra-log-

concave (ULC) random variables (as introduced by Pemantle [77] and Liggett [69])
and in Definition 2.2 we define the thinning operation introduced by Rényi [79] for
point processes.

Condition 1 (ULC) For any 	, define the class of ultra-log-concave (ULC) mass
functions P

ULC.	/ D fP W 	P D 	 and P.v/=…	.v/ is log-concaveg:

Equivalently we require that vP.v/2 � .v C 1/P.v C 1/P.v � 1/; for all v:

The ULC property is preserved on convolution; that is, for P 2 ULC.	P/ and
Q 2 ULC.	Q/ then P ?Q 2 ULC.	P C 	Q/ (see [97, Theorem 1] or [69, Theorem
2]). The ULC class contains a variety of parametric families of random variables,
including the Poisson and sums of independent Bernoulli variables (Poisson–
Binomial), including the binomial distribution.

A weaker condition than ULC (Condition 1) is given in [57], which corresponds
to Assumption A of [28]:

Definition 2.1 Given a probability mass function P, write

EP.x/ WD
P.x/2 � P.x � 1/P.x C 1/

P.x/P.x C 1/
D

P.x/

P.x C 1/
�

P.x � 1/

P.x/
: (8)

Condition 2 (c-log-concavity) If EP.x/ � c for all x 2 ZC, we say that P is c-log-
concave.

[28, Section 3.2] showed that if P is ULC then it is c-log-concave, with c D

P.0/=P.1/. In [57, Proposition 4.2] we show that DBE(c), a discrete form of the
Bakry-Émery condition, is implied by c-log-concavity.

Another condition weaker than the ULC property (Condition 1) was discussed
in [35], related to the definition of a size-biased distribution. For a mass function
P, we define its size-biased version P� by P�.x/ D .x C 1/P.x C 1/=	P (note that
some authors define this to be xP.x/=	P; the difference is simply an offset). Now
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P 2 ULC.	P/ means that P� is dominated by P in likelihood ratio ordering (write
P� �lr P). This is a stronger assumption than that P� is stochastically dominated
by P (write P� �st P) – see [82] for a review of stochastic ordering results. As
described in [34, 35, 75], such orderings naturally arise in many contexts where P
is the mass function of a sum of negatively dependent random variables.

The other construction at the heart of this paper is the thinning operation
introduced by Rényi [79]:

Definition 2.2 Given probability mass function P, define the ˛-thinned version T˛P
to be

T˛P.x/ D

1X
yDx

 
y

x

!
˛x.1 � ˛/y�xP.y/: (9)

Equivalently, if Y � P, then T˛P is the distribution of a random variable T˛Y WDPY
iD1 Bi; where B1;B2 : : : are IID Bernoulli.˛/ random variables, independent of Y.

A key result for Section 4 is the fact that (see [55, Proposition 3.7]) if P 2

ULC.	P/ then T˛P 2 ULC.˛	P/. Further properties of this thinning operation are
reviewed in [47], including the fact that T˛ preserves several parametric families,
such as the Poisson, binomial and negative binomial. In that paper, we argue that
the thinning operation T˛ is the discrete equivalent of scaling by

p
˛ and that the

‘mean-preserving transform’ T˛X C T1�˛Y is equivalent to the ‘variance-preserving
transform’

p
˛X C

p
1 � ˛Y in the continuous case.

3 Score Function and Poisson Approximation

A well-known phenomenon, often referred to as the ‘law of small numbers’, states
that in a triangular array of ‘small’ random variables, the row sums converge in
distribution to the Poisson probability distribution …	. For example, consider the
setting where binomial laws Bin.n; 	=n/ ! …	 as n ! 1. This problem has been
extensively studied, with a variety of strong bounds proved using techniques such
as the Stein–Chen method (see, for example, [12] for a summary of this technique
and its applications).

Following the pioneering work of Linnik [70] applying information theoretic
ideas to normal approximation, it was natural to wonder whether Poisson approx-
imation could be considered in a similar framework. An early and important
contribution in this direction was made by Johnstone and MacGibbon [61], who
made the following natural definition (also used in [62, 76]), which mirrors the
Fisher-type expression of (4):
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Definition 3.1 Given a probability distribution P, define

I.P/ WD

1X
xD0

P.x/

�
P.x � 1/

P.x/
� 1

�2
: (10)

Johnstone and MacGibbon showed that this quantity has a number of desirable
features; first a Cramér-Rao lower bound I.P/ � 1=VarP (see [61, Lemma 1.2]),
with equality if and only if P is Poisson, second a projection identity which implies
the subadditivity result I.P ? Q/ � .I.P/ C I.Q//=4 (see [61, Proposition 2.2]).
In theory, these two results should allow us to deduce Poisson convergence in the
required manner. However, there is a serious problem. Expanding (10) we obtain

I.P/ D

 
1X

xD0

P.x � 1/2

P.x/

!
� 1: (11)

For example, if P is a Bernoulli(p) distribution, then the bracketed sum in (11)
becomes P.0/2=P.1/CP.1/2=P.2/ D .1�p/2=pCp2=0 D 1. Indeed, for any mass
function P with finite support I.P/ D 1. To counter this problem, a new definition
was made by Kontoyiannis, Harremoës and Johnson in [65].

Definition 3.2 ([65]) For probability mass function P with mean 	P, define the
scaled score function �P and scaled Fisher information K by

�P.x/ WD
.x C 1/P.x C 1/

	PP.x/
� 1; (12)

K.P/ WD 	P

1X
xD0

P.x/�P.x/
2: (13)

Note that this definition does not suffer from the problems of Definition 3.1
described above.

Example 3.3 For P Bernoulli(p), the scaled score function can be evaluated as
�P.0/ D P.1/=	PP.0/� 1 D p=.1� p/ and �P.1/ D 2P.2/=	PP.1/� 1 D �1, and
the scaled Fisher information as K.P/ D p2=.1 � p/.

Further, K retains the desirable features of Definition 3.1; first positivity of the
perfect square ensures that K.P/ � 0 with equality if and only if P is Poisson
and second a projection identity [65, Lemma, p. 471] ensures that the following
subadditivity result holds:

Theorem 3.4 ([65], Proposition 3) If S D
Pn

iD1 Xi is the sum of n independent
random variables Xi with means 	i then writing 	S D

Pn
iD1 	i:
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K.PS/ �
1

	S

nX
iD1

	iK.PXi/; (14)

As discussed in [65], this result implies Poisson convergence at rates of an
optimal order, in a variety of senses including Hellinger distance and total variation.
However, perhaps the most interesting consequence comes via the following
modified logarithmic Sobolev inequality of Bobkov and Ledoux [22], proved via
a tensorization argument:

Theorem 3.5 ([22], Corollary 4) For any function f taking positive values:

Ent…	
.f / � 	

1X
xD0

…	.x/
.f .x C 1/ � f .x//2

f .x/
: (15)

Observe that (see [65, Proposition 2]) taking f D P=…	 for some probability
mass function P, the RHS of (15) can be written as

	

1X
xD0

…	.x/f .x/

�
f .x C 1/

f .x/
� 1

�2
D 	

1X
xD0

P.x/

�
.x C 1/P.x C 1/

	PP.x/
� 1

�2
;

(16)

and so (15) becomes D.Pk…	/ � K.P/. Hence, combining Theorems 3.4 and 3.5,
we deduce convergence in the strong sense of relative entropy in a general setting.

Example 3.6 (See [65, Example 1]) Combining Example 3.3 and Theorem 3.5 we
deduce that

D.Bn;	=nk…	/ �
	2

n.n � 	/
; (17)

so via Pinsker’s inequality [66] we deduce that

kBn;	=n �…	kTV � .2C /
	

n
; (18)

giving the same order of convergence (if not the optimal constant) as results stated
in [12].

We make the following brief remarks, the first of which will be useful in the
proof of the Poisson maximum entropy property in Section 4:

Remark 3.7 An equivalent formulation of the ULC property of Condition 1 is that
P 2 ULC.	P/ if and only if the scaled score function �P.x/ is a decreasing function
of x.
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Remark 3.8 In [13], definitions of score functions and subadditive inequalities
are extended to the compound Poisson setting. The resulting compound Poisson
approximation bounds are close to the strongest known results, due to authors such
as Roos [81].

Remark 3.9 The fact that two competing definitions of the score function and
Fisher information are possible (see Definition 3.1 and Definition 3.2) corresponds
to the two definitions of the Stein operator in [67, Section 1.2].

4 Poisson Maximum Entropy Property

We next prove a maximum entropy property for the Poisson distribution. The first
results in this direction were proved by Shepp and Olkin [86] and by Mateev [74],
who showed that entropy is maximized in the class of Poisson-binomial variables
with mean 	 by the binomial Bin.n; 	=n/ distribution. Using a limiting argument,
Harremoës [46] showed that the Poisson …	 maximizes the entropy in the closure
of the set of Poisson-binomial variables with mean 	 (though note that the Poisson
itself does not lie in this set).

Johnson [55] gave the following argument, based on the idea of ‘smart paths’.
For some function ƒ.˛/, surprisingly, it can be easiest to prove ƒ.1/ � ƒ.0/ by
proving the stronger result that ƒ0.˛/ � 0 for all ˛ 2 Œ0; 1�. The key idea in this
case is to introduce an interpolation between probability measures using the thinning
operation of Definition 2.2, and to show that it satisfies a partial differential equation
corresponding to the action of the M=M=1 queue (see also [31]).

Lemma 4.1 Write P˛.z/ D P.T˛X C T1�˛Y D z/, where X � PX with mean 	 and
Y � …	 then (in a form reminiscent of (2) above):

@

@˛
P˛.x/ D

	

˛
��.P˛.x/�˛.x//; (19)

where �˛ WD �P˛ is the score in the sense of Definition 3.2 above.

The gradient form of the RHS of this partial derivative is key for us, and is rem-
iniscent of the continuous probability models studied in [4]. Such representations
will lie at the heart of the analysis of entropy in the Shepp–Olkin setting [50, 51, 86]
in Section 7.

Theorem 4.2 If P 2 ULC.	/, then

H.P/ � H.…	/; (20)

with equality if and only if P � …	.

Proof We consider the functional ƒ.˛/ D �
P1

xD0 P˛.x/ log…	.x/ as a function
of ˛. Using Lemma 4.1 and the adjoint property of � and �� we deduce that
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ƒ0.˛/ D �

1X
xD0

@

@˛
P˛.x/ log…	.x/ D �

	

˛

1X
xD0

��.P˛.x/�˛.x// log…	.x/

D
	

˛

1X
xD0

P˛.x/�˛.x/ log

�
x C 1

	

�
: (21)

Now, the assumption that P 2 ULC.	/means that P˛ 2 ULC.	/ so by Remark 3.7,
the score function �˛.z/ is decreasing in z. Hence (21) is the covariance of an
increasing and a decreasing function, so by ‘Chebyshev’s other inequality’ (see [63,
Equation (1.7)]) it is negative.

In other words, X 2 ULC.	/ makes ƒ0.˛/ � 0 so ƒ.˛/ is a decreasing function
in ˛. Since P0 D …	, and P1 D P, we deduce that

H.X/ � �

1X
xD0

P.x/ log…	.x/ (22)

D ƒ.1/ � ƒ.0/ D �

1X
xD0

…	.x/ log…	.x/ D H.…	/;

and the result is proved. Here (22) follows by the positivity of relative entropy. ut

Remark 4.3 These ideas were developed by Yu [103], who proved that for any n; 	
the binomial mass function Bn;	=n maximizes entropy in the class of mass functions
P such that P=Bn;	=n is log-concave (this class is referred to as the ULC(n) class by
[77] and [69]).

Remark 4.4 A related extension was given in the compound Poisson case in [59],
one assumption of which was removed by Yu [105]. Yu’s result [105, Theorem
3] showed that (assuming it is log-concave) the compound Poisson distribution
CP.	;Q/ is maximum entropy among all distributions with ‘claim number distri-
bution’ in ULC.	/ and given ‘claim size distribution’ Q. Yu [105, Theorem 2] also
proved a corresponding result for compound binomial distributions.

Remark 4.5 The assumption in Theorem 4.2 that P 2 ULC.	P/ was weakened in
recent work of Daly [34, Corollary 2.3], who proved the same result assuming that
P� �st P.

5 Poincaré and Log-Sobolev Inequalities

We give a definition which mimics Definition 1.1 in the discrete case:

Definition 5.1 We say that a probability mass function P has Poincaré constant RP,
if for all sufficiently well-behaved functions g,
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VarP.g/ � RP

1X
xD0

P.x/ .�g.x//2 : (23)

Example 5.2 Klaassen’s paper [64] (see also [26]) showed that the Poisson
random variable …	 has Poincaré constant 	. As in Example 1.2, taking g.t/ D t,
we deduce that RP � VarP for all P with finite variance. The result of Klaassen can
also be proved by expanding in Poisson–Charlier polynomials (see [91]), to mimic
the Hermite polynomial expansion of Example 1.2.

However, we would like to generalize and extend Klaassen’s work, in the spirit
of Theorems 1.4 and 1.5 (originally due to Bakry and Émery [9]). Some results in
this direction were given by Chafaï [31], however we briefly summarize two more
recent approaches, using ideas described in two separate papers.

In [35, Theorem 1.1], using a construction based on Klaassen’s original paper
[64], it was proved that RP � 	P, assuming that P� �st P. Recall (see [82]) that this
implies P� �lr P, which is a restatement of the ULC property (Condition 1). We
deduce the following result [35, Corollary 2.4]:

Theorem 5.3 For P 2 ULC.	/:

VarP � RP � 	P:

The second approach, appearing in [57], is based on a birth-and-death Markov
chain construction introduced by Caputo, Dai Pra and Posta [28], generalizing the
thinning-based interpolation of Lemma 4.1. In [57], ideas based on the Bakry-Émery
calculus are used to prove the following two main results, taken from [57, Theorem
1.5] and [57, Theorem 1.3], which correspond to Theorems 1.4 and 1.5, respectively.

Theorem 5.4 (Poincaré inequality) Any probability mass function P whose sup-
port is the whole of the positive integers ZC and which satisfies the c-log-concavity
condition (Condition 2) has Poincaré constant 1=c.

Note that (see the discussion at the end of [57]), Theorem 5.4 typically gives
a weaker result than Theorem 5.3, under weaker conditions. Next we describe a
modified form of log-Sobolev inequality proved in [57]:

Theorem 5.5 (New modified log-Sobolev inequality) Fix probability mass func-
tion P whose support is the whole of the positive integers ZC and which satisfies the
c-log-concavity condition (Condition 2). For any function f with positive values:

EntP.f / �
1

c

1X
xD0

P.x/f .x C 1/

�
log

�
f .x C 1/

f .x/

�
� 1C

f .x/

f .x C 1/

�
: (24)

Remark 5.6 As described in [57], Theorem 5.5 generalizes a modified log-Sobolev
inequality of Wu [100], which holds in the case where P D …	 (see [104] for a
more direct proof of this result). Wu’s result in turn strengthens Theorem 3.5, the
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modified logarithmic Sobolev inequality of Bobkov and Ledoux [22]. It can be seen
directly that Theorem 5.5 tightens Theorem 3.5 using the bound log u � u � 1 with
u D f .x C 1/=f .x/.

Note that since Theorems 5.4 and 5.5 are proved under the c-log-concavity
condition (Condition 2), they hold under the stronger assumption that P 2 ULC.	/
(Condition 1), taking c D P.0/=P.1/.

Remark 5.7 Note that (for reasons similar to those affecting the Johnstone–
MacGibbon Fisher information quantity I.P/ of Definition 3.1), Theorems 5.4
and 5.5 are restricted to mass functions supported on the whole of ZC. In order
to consider mass functions such as the Binomial Bn;p, it would be useful to remove
this assumption.

However, one possibility is that in this case, we may wish to modify the form of the
derivative used in Definition 5.1. In the paper [52], for mass functions P supported
on the finite set f0; 1; : : : ; ng, a ‘mixed derivative’

rnf .x/ D
�
1 �

x

n

	
.f .x C 1/ � f .x//C

x

n
.f .x/ � f .x � 1// (25)

was introduced. This interpolates between left and right derivatives, according to
the position where the derivative is taken. In [52] it was shown that the Binomial Bn;p

mass function satisfies a Poincaré inequality with respect to rn. The proof was based
on an expansion in Krawtchouk polynomials (see [91]), and exactly parallels the
results of Chernoff (Example 1.2) and Klaassen (Example 5.2). It would be of inter-
est to prove results that mimic Theorem 5.4 and 5.5 for the derivative rn of (25).

6 Monotonicity of Entropy

Next we describe results concerning the monotonicity of entropy on summation
and thinning, in a regime described in [47] as the ‘law of thin numbers’. The first
interesting feature is that (unlike the Gaussian case of Theorem 1.6) monotonicity
of entropy and of relative entropy is not equivalent. By convex ordering arguments,
Yu [104] showed that:

Theorem 6.1 Given a random variable X with probability mass function PX and
mean 	, we write D.X/ for D.PXk…	/. For independent and identically distributed
Xi, with mass function P and mean 	:

1. relative entropy D
�Pn

iD1 T1=nXi
�

is monotone decreasing in n,
2. If P 2 ULC.	/, the entropy H

�Pn
iD1 T1=nXi

�
is monotone increasing in n.
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In fact, implicit in the work of Yu [104] is the following stronger theorem:

Theorem 6.2 Given positive ˛i such that
PnC1

iD1 ˛i D 1, and writing ˛.j/ D 1 � ˛j,
then for any independent Xi,

nD

 
nC1X
iD1

T˛i Xi

!
�

nC1X
jD1

˛.j/D

0
@X

i¤j

T˛i=˛.j/
Xi

1
A :

In [60, Theorem 3.2], the following result was proved:

Theorem 6.3 Given positive ˛i such that
PnC1

iD1 ˛i D 1, and writing ˛.j/ D 1 � ˛j,
then for any independent ULC Xi,

nH

 
nC1X
iD1

T˛i Xi

!
�

nC1X
jD1

˛.j/H

0
@X

i¤j

T˛i=˛.j/
Xi

1
A :

Comparison with (5) shows that this is a direct analogue of the result of Artstein
et al. [8], replacing differential entropies h with discrete entropy H, and replacing
scalings by

p
˛ by thinnings by ˛. Since the result of Artstein et al. is a strong one,

and implies strengthened forms of the Entropy Power Inequality, this equivalence is
good news for us. However, there are two serious drawbacks.

Remark 6.4 First, the proof of Theorem 6.3, which is based on an analysis of
‘free energy’ terms similar to the ƒ.˛/ of Section 4, does not lend itself to easy
generalization or extension. It is possible that a different proof (perhaps using a
variational characterization similar to that of [7, 11]) may lend more insight.

Remark 6.5 Second, Theorem 6.3 does not lead to a single universally accepted
discrete Entropy Power Inequality in the way that Theorem 1.6 did. As discussed
in [60], several natural reformulations of the Entropy Power Inequality fail, and
while [60, Theorem 2.5] does prove a particular discrete Entropy Power Inequality,
it is by no means the only possible result of this kind. Indeed, a growing literature
continues to discuss the right formulation of this inequality.

For example, [83, 99, 101, 102] consider replacing integer addition by binary
addition, with the paper [102] introducing the so-called Mrs. Gerber’s Lemma,
extended to a more general group context by Anantharam and Jog [5, 53].
Harremoës and Vignat [48] (see also [85]) consider conditions under which
the original functional form of the Entropy Power Inequality continues to hold.
Other authors use ideas from additive combinatorics and sumset theory, with
Haghighatshoar, Abbe and Telatar [45] adding an explicit error term and Wang,
Woo and Madiman [98] giving a reformulation based on rearrangements. It appears
that there is considerable scope for extensions and unifications of all this theory.
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7 Entropy Concavity and the Shepp–Olkin Conjecture

In 1981, Shepp and Olkin [86] made a conjecture regarding the entropy of Poisson-
binomial random variables. That is, for any vector p WD .p1; : : : ; pm/ where 0 �

pi � 1, we can write Pp for the probability mass function of the random variable
S WD X1 C : : : C Xm, where Xi are independent Bernoulli(pi) variables. Shepp and
Olkin conjectured that the entropy of H.Pp/ is a concave function of the parameters.
We can simplify this conjecture by considering the affine case, where each pi.t/ D

.1 � t/pi.0/C tpi.1/.
This result is plausible since Shepp and Olkin [86] (see also [74]) proved that

for any m the entropy H.Bm;p/ of a Bernoulli random variable is concave in p,
and also claimed in their paper that it was true for the sum of m independent
Bernoulli random variables when m D 2; 3. Since then, progress was limited. In
[106, Theorem 2] it was proved that the entropy is concave when for each i either
pi.0/ D 0 or pi.1/ D 0. (In fact, this follows from the case n D 2 of Theorem 6.3
above). Hillion [49] proved the case of the Shepp–Olkin conjecture where all pi.t/
are either constant or equal to t.

However, in recent work of Hillion and Johnson [50, 51], the Shepp–Olkin
conjecture was proved, in a result stated as [51, Theorem 1.2]:

Theorem 7.1 (Shepp-Olkin Theorem) For any m � 1, function p 7! H.Pp/ is
concave.

We briefly summarize the strategy of the proof, and the ideas involved. In [50],
Theorem 7.1 was proved in the monotone case where each p0

i WD p0
i.t/ has the same

sign. In [51], this was extended to the general case; in fact, the monotone case of
[50] is shown to be the worst case. In order to bound the second derivative of entropy
@2

@t2
H.Pp.t//, we need to control the first and second derivatives of the probability

mass function Pp.t/, in the spirit of Lemma 4.1. Indeed, we write (see [51, Equations
(8),(9)]) the derivative of the mass function in gradient form (see (2) and (19) for
comparison):

@Pp.t/

@t
.k/ D g.k � 1/ � g.k/ (26)

@2Pp.t/

@t2
.k/ D h.k � 2/ � 2h.k � 1/C h.k/ (27)

for certain functions g.k/ and h.k/, about which we can be completely explicit. The
key property (referred to as Condition 4 in [50]) is that for all k:

h.k/
�
f .k C 1/2 � f .k/f .k C 2/

�
� 2g.k/g.k C 1/f .k C 1/ � g.k/2f .k C 2/ � g.k C 1/2f .k/; (28)
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which allows us to bound the non-linear terms arising in the 2nd derivative
@2

@t2
H.Pp.t//. The proof of (28) is based on a cubic inequality [50, Property(m)]

satisfied by Poisson-binomial mass functions, which relates to an iterated log-
concavity result of Brändén [24].

The argument in [50] was based around the idea of optimal transport of
probability measures in the discrete setting, where it was shown that if all the p0

i
have the same sign then the Shepp–Olkin path provides an optimal interpolation, in
the sense of a discrete formula of Benamou–Brenier type [15, 16] (see also [38, 41]
which also consider optimal transport of discrete measures, including analysis of
discrete curvature in the sense of [28]).

8 Open Problems

We briefly list some open problems, corresponding to each research direction
described in Sections 3 to 7. This is not a complete list of open problems in the
area, but gives an indication of some possible future research directions.

1. [Poisson approximation] The information theoretic approach to Poisson
approximation described in Section 3 holds only in the case of independent
summands. In the original paper [65] bounds are given on the relative
entropy, based on the data processing inequality, which hold for more general
dependence structures. However, these data processing results do not give
Poisson approximation bounds of optimal order. It is an interesting problem
to generalize the projection identity [65, Lemma, P.471] to the dependent case
(perhaps resulting in an inequality), under some appropriate model of (negative)
dependence, allowing Poisson approximation results to be proved.

Further, although (as described above) such information theoretic approxima-
tion results hold for Poisson and compound Poisson limit distributions, it would
be of interest to generalize this theory to a wider class of discrete distributions.

2. [Maximum entropy] While not strictly a question to do with discrete random
variables, as described in Section 1 it remains an interesting problem to find
classes within which the stable laws are maximum entropy. As with the ULC
class of Condition 1, or the fixed variance class within which the Gaussian
maximizes entropy, we want such a class to be well-behaved on convolution and
scaling. Preliminary work in this direction, including the fact that stable laws
are not in general maximum entropy in their own domain of normal attraction
(in the sense of [39]), is described in [56], and an alternative approach based on
non-linear diffusion equations and fractional calculus is given by Toscani [92].

3. [Concentration inequalities] As described at the end of Section 5, it would be
of interest to extend these results to the case of mass functions supported on a
finite set f0; 1; : : : ; ng. We would like to introduce concavity conditions mirroring
Conditions 1 or 2, under which results of the form Theorem 5.4 and 5.5 can be
proved for the derivative rn of (25). In addition, it would be of interest to see
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whether a version of Theorem 5.5 holds under a stochastic ordering assumption
P� �st P, in the spirit of [34].

4. [Monotonicity] As in Section 6, it is of interest to develop a new and more
illuminating proof of Theorem 6.3, perhaps based on transport inequalities as
in [8]. It is possible that such a proof will give some indication of the correct
formulation of the discrete Entropy Power Inequality, which is itself a key open
problem.

5. [Entropy concavity] As described in [51], it is natural to conjecture that the q-
Rényi [80] and q-Tsallis [93] entropies are concave functions for q sufficiently
small. Note that while they are monotone functions of each other, the q-Rényi and
q-Tsallis entropies need not be concave for the same q. We quote the following
generalized Shepp-Olkin conjecture from [51, Conjecture 4.2]:

(a) There is a critical q�
R such that the q-Rényi entropy of all Bernoulli sums

is concave for q � q�
R, and the entropy of some interpolation is convex for

q > q�
R.

(b) There is a critical q�
T such that the q-Tsallis entropy of all Bernoulli sums

is concave for q � q�
T , and the entropy of some interpolation is convex for

q > q�
T .

Indeed we conjecture that q�
R D 2 and q�

T D 3:65986 : : :, the root of 2�4qC2q D

0. We remark that the form of discrete Entropy Power Inequality proposed by
[98] (based on the theory of rearrangements) also holds for Rényi entropies.

In addition, Shepp and Olkin [86] made another conjecture regarding
Bernoulli sums, that the entropy H.Pp/ is a monotone increasing function in
p if all pi � 1=2, which remains open with essentially no published results.
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Abstract The concentration measure principle is presented in an abstract way to
encompass and unify different concentration properties. We give a general overview
of the links between concentration properties, transport-entropy inequalities, and
logarithmic Sobolev inequalities for some specific transport costs. By giving few
examples, we emphasize optimal weak transport costs as an efficient tool to establish
new transport inequality and new concentration principles for discrete measures (the
binomial law, the Poisson measure, the uniform law on the symmetric group).
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1 Introduction

Of isoperimetric inspiration, the concentration of measure phenomenon has been
pushed forward by V. Milman in the 70s in the study of the asymptotic geometry
of Banach spaces and then in-depth studied by many authors including Gromov
[GM83, Gro99], Talagrand [Tal95], Maurey [Mau91], Ledoux [Led97, BL97],
Bobkov [Bob97, BL00]. This principle has applications in numerous fields of
mathematics. The book by M. Ledoux [Led01] is devoted to this subject. It
presents numerous examples and probabilistic, analytical, and geometrical technics
related to this notion. We also refer to the monographs [BLM13, Mas07] for more
applications of this principle in statistics and probability theory. We also warmly
recommend the surveys [GL10, Goz15] by Gozlan and Léonard about transport-
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entropy inequalities. The main purpose of this paper is to complement these surveys
in view of the recent developments.

In the present paper, the concentration of measure principle is formalized in an
abstract way to encompass and unify different concentration properties investigated
in the literature. The definition of this principle with enlargements of sets takes
its origin from the papers by M. Talagrand [Tal95, Tal96b, Tal96a]. We propose
a functional formulation of the concentration principle, rigorously introduced in
[GRST14b]. We emphasize three types of cost functions that provide most of
the enlargements of sets considered in the literature, the usual cost functions, the
barycentric cost functions, and the universal cost functions.

The concentration properties associated to usual cost functions and its related
functional inequalities have been widely studied these last years. Now, it is a
challenge to develop new concentration inequalities that could capture precise
dimensional concentration behavior for particular classes of functions, especially in
discrete setting. In this document, we present some concentration results for discrete
measures associated to the above weak transport costs. In the spirit of the early
works by Talagrand [Tal95, Tal96b, Tal96a], we believe that entropy-functional
inequalities associated to new weak transport costs could be adapted to understand
some concentration challenging problems.

The third section of this paper put forward the transport-entropy inequality
(also called transport inequality) associated to the above different cost functions,
as a fundamental tool in the study of concentration properties in product spaces.
This entropy-inequality is an alternative to the logarithmic Sobolev inequality
and its variants, to establish concentration properties in product spaces. The main
feature of these two inequalities is for each, a tensorization property, that provides
concentration results in high dimension spaces. We will briefly recall the links
between these two kinds of entropy-inequalities and the concentration of measure
principle.

Section 4 is focussed on the concentration properties and transport inequalities
related to the so-called barycentric costs. These transport costs, weaker than the
usual one, are adapted to derive new transport inequalities for discrete measures (see
Section 4.2). Indeed, let us recall that the Talagrand’s transport inequality T2 is never
satisfied by discrete measures. Recently, in the context of the study of curvature
notion in discrete spaces, other transport inequalities have been proposed, mainly
in the works by Erbar-Maas [Maa11, EM12]. However, due to the very abstract
definition of the optimal transport costs, the associated concentration of measure
phenomenon remains difficult to interpret.

Barycentric optimal transport costs can be expressed using optimal transport
costs by considering the notion of convex order on probability measures (see
Proposition 4.1). Moreover, most of the results with usual transport costs can
be adapted for barycentric transport costs. First, barycentric transport inequalities
are equivalent to logarithmic Sobolev inequalities restricted to a class of convex
or concave functions (see Section 4.1). In an other direction, on the real line,
as for usual transport costs, for any optimal barycentric transport cost, there
exists an optimal coupling which is independent of the convex function involved
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in the barycentric cost (see Section 4.3). This independence property allows to
characterize the probability measures satisfying a barycentric transport inequality
on the real line. As a by-product of this characterization, the “convex” Poincaré
inequality on the real line is equivalent to a barycentric transport inequality with
some specific convex cost function (see Section 4.4).

Section 5 is devoted to examples of universal transport inequalities such as the so-
called Csizár-Kullback-Pinsker inequality. The most emblematic universal transport
inequality of this document is the Marton’s transport inequality with its weak costeT 2 [Mar96b]. In the papers [Sam03, Sam07], the Marton’s cost has been improved
to reach optimal Bernstein bounds for suprema of empirical bounded independent
processes (see Section 5.1). This method is an alternative to the so-called Herbst’s
method, first used by Ledoux to get deviation bounds for suprema of empirical
processes [Led97]. In Section 5.2, we recall the results of [Sam00] and [Pau14]
that extends Marton’s inequality to any measure on a product space, with weak
dependences of its marginals.

The last Section 5.3 concerns recent transport inequalities obtained for the uni-
form probability measure on the symmetric group. These inequalities are obtained
from the Csizár-Kullback-Pinsker inequality or the Marton’s inequalityeT2, by using
other tensorization arguments. The proofs are inspired by the work by Talagrand on
the symmetric group [Tal95].

The works presented in this survey could be extended in different directions.
A first challenge is to define other cost functions that may capture new concen-

tration’s properties, as for the uniform measure on the symmetric group, for Gibbs
measure or for other non-product measures under dependence properties. The new
cost functions presented in this survey are of particular interest in discrete setting
(discrete cube, binomial law, Poisson measure) and we may use it in other discrete
framework such as Poisson processes.

Another direction is to develop the multimarginal transport inequalities in
discrete and continuous setting. We wonder whether this multimarginal approach
allows to reach superconcentration-properties. In this field, the works by Dembo
[Dem97] and Talagrand [Tal96a] are also a guideline.

These last years, the concept of curvature in discrete setting has emerged [Oll09,
OV12, EM12, EMT15, Hil14] by analogy of the concept of lower bounded curvature
in continuous setting in metric spaces [Vil09, AGS14, AGS15]. These notions could
be revisited by relating the notion of curvatures to different cost functions, the paper
[GRST14a] is a first attempt in that direction.

2 A General Concentration of Measure Principle

Let .X ; d/ be a Polish metric space (separable, complete), with Borel � -field B.X /.
We denote by P.A/ the set of probability measures on a subset A 2 B.X /, and
for q � 1, we denote by Pq.A/ the set of probability measures p on A such thatR

d.x0; y/qdp.y/ < C1 for a point x0.
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We assume that a notion of pseudo-distance from a point x 2 X to a subset
A 	 X is given, denoted by c.x;A/ 2 Œ0;C1�, and such that c.x;A/ � 0 and
c.x;A/ D 0 if x 2 A. The usual example is

c.x;A/ D d.x;A/ D inf
y2A

d.x; y/:

One could also choose c.x;A/ D ˛.d.x;A//; where ˛ W RC ! Œ0;C1� is such that
˛.0/ D 0.

For r � 0, the enlargement of A associated to this pseudo-distance is defined by

Ar;c D fx 2 X ; c.x;A/ � rg:

Definition 2.1 Let ˇ W RC ! Œ0;C1� be an increasing function with ˇ.0/ D 0. A
probability measure � satisfies a concentration principle with profile ˇ and cost c,
if there exist a1; a2 > 0 such that for all subsets A 2 B.X / and for all r � 0,

�.A/a1�.X n Ar;c/
a2 � e�ˇ.r/:

If � satisfies a concentration principle with profile ˇ, then for all A 2 B.X / with
measure �.A/ � 1=2, one has

�.X n Ar;c/ � 2a1=a2e�ˇ.r/=a2 D e� Q̌.r/; 8r � 0:

This last property is the classical formulation of a concentration of measure
principle. Actually, these two formulations are equivalent, up to constants, as soon as

A 	 X n .X n Ar;c/r; 8r � 0; 8A 2 B.X /;

(see Lemma 5.6 [GRST14b]). This inclusion depends on the kind of enlargement
and is not satisfied for some enlargements.

In all this document, the pseudo-distance c.x;A/ is defined from a cost function.

Definition 2.2 A cost function is a function

c W X � P.X / ! Œ0;C1�;

such that the function p 7! c.x; p/ is convex, and c.x; ıx/ D 0 for all x 2 X (ıx

denotes the Dirac measure at point x). Then we define the pseudo-distance c by

c.x;A/ D inf
p2P.A/

c.x; p/; x 2 X ; A 2 B.X /:

Here, for the sake of simplicity, the same notation c is used for the pseudo-
distance and the cost function c.
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In this document, we consider three kinds of cost functions with the following
definitions.

The Usual Cost Functions

Usually, the transport cost is a function defined on X � X rather than X � P.X /.
Definition 2.3 A cost function c W X � P.X / ! Œ0;C1� is called usual if there
exists a measurable function ! W X � X ! Œ0;C1� such that for all x 2 X and all
p 2 P.X /, !.x; x/ D 0 and

c.x; p/ D

Z
!.x; y/dp.y/:

In that case, p 7! c.x; p/ is an affine function. The pseudo-distance
infp2P.A/ c.x; p/ is reached at Dirac measures, the extremal points of the convex
set P.A/, therefore

c.x;A/ D inf
y2A
!.x; y/:

By the way, the pseudo-distance is exactly the classical one associated to the cost
!. The most studied cost functions ! are !.x; y/ D d.x; y/q, q > 0 or !.x; y/ D

˛.d.x; y//, with ˛ W RC ! RC.
In the case !.x; y/ D d.x; y/ one has c.x;A/ D d.x;A/ and we simply denote by

Ar the enlargement Ar;c.

The Universal Cost Functions

These cost functions have been introduced by Talagrand [Tal96b] and Marton
[Mar96b] in order to solve different types of concentration’s problems, for exam-
ple the deviations of suprema of empirical processes, of the largest increasing
subsequence, the bin-packing problem, etc. These transport costs are the main
tools of the so-called convex hull method of [Tal96b, Tal96a] and in the papers
[Mar97, Sam00, Sam03, Sam07, Pau14].

We denote by 1x¤y the Hamming distance between two points x and y in X ,
defined by 1x¤y D �.d.x; y//; where � W RC ! RC is the function defined by
�.h/ D 1 if h ¤ 0 and �.0/ D 0.

Definition 2.4 Let ˛ W RC ! Œ0;C1� be a lower semi-continuous convex function
and let �0 be a probability measure on X . We define two classes of universal cost
functions.
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• A cost function c W X � P.X / ! Œ0;C1� is called universal and associated to
the function ˛, if

c.x; p/ D ˛

�Z
1x¤y dp.y/

�
;

for all x 2 X and for all p 2 P.X /.
• A cost function c W X � P.X / ! Œ0;C1� is called universal, associated to the

function ˛ and to the measure �0, if

c.x; p/ D

Z
˛

�
1x¤y

dp

d�0
.y/

�
d�0.y/;

for all .x; p/ 2 X �P.X / such that p is absolutely continuous with respect to �0
on the set X n fxg, and c.x; p/ D C1 otherwise.

These universal cost functions are independent of the distance d on X , and
therefore of the geometry of the space X .

The Barycentric Cost Functions

The so-called barycentric costs are defined on X D Rn equipped with the Euclidean
distance, d.x; y/ D jx � yj, x; y 2 Rn. They have been introduced in the paper
[GRST14b] to reach optimal concentration properties for discrete measures (see
Section 4.2). As explained in [GRST14b], they are also related to the convex .�/-
property by Maurey [Mau91].

Definition 2.5 A cost function c W X � P1.X / ! Œ0;C1� is called barycentric if
there exists a lower semi-continuous convex function � W Rn ! Œ0;C1� such that
for all x 2 Rn and all p 2 P1.Rn/,

c.x; p/ D �

�
x �

Z
y dp.y/

�
:

Let us observe that the concentration property associated to this cost function
is weaker than the one associated to the usual cost function with !.x; y/ D �.x �

y/; x; y 2 X , since by Jensen’s inequality

c.x; p/ �

Z
�.x � y/dp.y/:

A functional formulation of the concentration principle of Definition 2.1 is
presented in [GRST14b]. This second definition is associated to the following
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type of infimum-convolution operator, introduced in [Sam07, GRST14b]: for any
measurable function ' W X ! R [ f1g bounded from below

Rc'.x/ D inf
p2P.X /

�Z
'dp C c.x; p/

�
; x 2 X : (1)

Since c.x; ıx/ D 0, one has Rc'.x/ � '.x/.
For a usual cost function, c.x; p/ D

R
!.x; y/dp.y/, since the function p 7!R

'dp C c.x; p/ is affine, the operator Rc' is the classical infimum-convolution
operator associated to the cost function !,

Rc'.x/ D inf
y2X

f'.y/C !.x; y/g D Q!'.x/:

The functional formulation of the concentration principle is given by the
following result.

Proposition 2.1 Let a1; a2 > 0 and ˇ W RC ! Œ0;C1� be a function. The
following properties are equivalent.

(i) For all A 2 B.X /, and all r � 0,

�.A/a1�.X n Ar;c/
a2 � e�ˇ.r/:

(ii) For all measurable functions ' W X ! R [ f1g bounded from below,

�.' � m/a1�.Rc' > m C r/a2 � e�ˇ.r/ 8m 2 R; 8r � 0:

Proof Given A 2 B.X /, let iA be the zero function on A and equal to C1 on
X n A. By applying (ii) with the function ' D iA and with m D 0, we get (i) since
f' � 0g D A and RciA.x/ D c.x;A/, x 2 X .

Conversely, given a function ', we apply (1) with A D f' � mg. Then, (2)
follows from the fact that fRc' > m C rg 	 .X n Ar;c/. Indeed, if x 2 Ar;c, then for
all " > 0, there exists p" 2 P.A/ such that c.x; p"/ � r C ". Since

Rc'.x/ �

Z
'dp" C c.x; p"/ � m C r C ";

when " goes to 0, we get x 2 fRc' � mCrg. As a consequence Ar;c 	 fRc' � mCrg
and �.Rc' > m C r/ � �.X n Ar;c/. ut

For a usual cost function of type c.x; p/ D
R
˛.d.x; y//dp.y/, x 2 X , p 2 P.X /,

where ˛ W RC ! RC is one-to-one, the common way to write the concentration
principle is to use the classical enlargement At D fx 2 X ; d.x;A/ � tg. Since
Ar;c D At for r D ˛.t/, (i) can be rewritten as follows: for all A 2 B.X / and all
t � 0,

�.A/a1�.X n At/
a2 � e�ˇ.˛.t//:
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In that case, going back to early P. Lévy’s ideas, we may formalize the concentration
property by using the class of 1-Lipschitz functions f (cf. [Led01]). As in the
previous proof, by choosing A D ff � mg, m 2 R, we show that At 	 ff � m C tg,
t � 0. This provides the following equivalent functional formulation : for all 1-
Lipschitz functions f W X ! R,

�.f � m/a1�.f > m C t/a2 � e�ˇ.˛.t//; 8m 2 R; 8t � 0: (2)

Let us assume moreover that ˛ is convex. The inequality (2) can be also derived
from (ii) applied to the function ' D 	f , 	 > 0, assuming first that f is bounded
from below. Since f is 1-Lipschitz, Rc' is close to ' and its closeness is controlled
by 	. More precisely, one has for any x 2 X

Rc'.x/ D inf
y2X

f'.y/C ˛.d.x; y//g

� '.x/ � sup
y2X

f	d.x; y/ � ˛.d.x; y//g � '.x/ � ˛�.	/;

with ˛�.	/ D supv�0f	v � ˛.v/g. Therefore, by replacing m by 	m, (ii) provides:
for all 1-Lipschitz function f , bounded from below, and for all 	 � 0,

�.f � m/a1�.	f > 	m C r C ˛�.	//a2 � e�ˇ.r/; 8m 2 R; 8r � 0:

Since ˛ W RC ! RC is one-to-one convex and ˛.0/ D 0, ˛ is increasing and
for all t > 0, @˛.t/ 	 .0;C1/, where @˛.t/ denotes the subdifferential of ˛ at
point t. As a consequence, the last inequality implies property (2) for all 1-Lipschitz
functions bounded from below by choosing r D ˛.t/ and 	 2 @˛.t/ such that
	t D ˛.t/C˛�.	/. Then, by monotone convergence, the property (2) extends to all
1-Lipschitz functions.

Finally, the property (2) implies the classical concentration property for 1-
Lipschitz functions f around their median mf (see [Led01], Chapter 1). By
applying (2) to f or to �f , and by choosing m D mf or m D �mf , we get

�.jf � mf j > t/ � 2:2a1=a2e�ˇ.˛.t//=a2 ; 8t � 0:

3 Transport-Entropy Inequalities

This section emphasizes the transport-entropy inequalities in the study of concen-
tration of measure phenomenon on product spaces. As for the logarithmic Sobolev
inequalities, the tensorization properties of the transport inequalities make it an
effective tool to prove concentration properties in product spaces. The last part of
this section briefly recalls the links between the transport-entropy inequalities and
the logarithmic Sobolev inequalities.
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Let us first recall the original links between isoperimetric properties and concen-
tration of measure properties. Let � be a measure on a metric space .X ; d/. For any
Borel set A, the surface measure of A is defined by

�C.@A/ D lim inf
t!0C

�.At/ � �.A/

t
:

The isoperimetric problem is to determine the smaller surface measure �C.@A/
among all Borel set A of fixed measure �.A/. Namely, we want to find the largest
function, denoted by I� W RC ! RC such that for all A 2 B.X /,

�C.@A/ � I�.�.A//: (3)

The function I� is called isoperimetric profile of the measure �.
If I� � v0 ı v�1, where v W R ! Œ0; �.X/� is an increasing smooth function,

the isoperimetric inequality (3) provides a lower estimate of the measure of At (see
Proposition 2.1 [Led01]): for all t � 0,

�.At/ � v.v�1.�.A//C t/: (4)

Therefore, if � is a probability measure, we get the following concentration
property, for all A 2 B.X / with �.A/ � 1=2,

�.X n At/ � 1 � v.v�1.1=2/C t/; 8t � 0:

When .X; d/ D .Rn; j�j/ is the Euclidean space and� is the Lesbegue measure, or
when X D Sn is the unit Euclidean sphere of RnC1 with its geodesic distance d and
� D �n is the uniform law on Sn, the isoperimetric profile is given by I� D v0 ı v�1

where for all r � 0, v.r/ is the measure of a ball of radius r (see [Lév51]). As a
consequence, if �.A/ D �.B/ D v.r/ where B is a ball of X , then

v.v�1.�.A//C t/ D v.r C t/ D �.Bt/:

Therefore the property (4) implies that the balls are extremal sets with the following
meaning: for all Borel sets A and for all balls B with measure �.B/ D �.A/,

�.At/ � �.Bt/;

for all t � 0. Actually, this property is equivalent to the isoperimetric inequality
since it implies,

�C.@A/ D lim inf
t!0C

�.At/ � �.A/

t
� lim inf

t!0C

�.Bt/ � �.B/

t
D I�.�.A//;

by using �.A/ D �.B/.
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In this way, the concentration profile of �n is given by the estimate of the
measures of the spherical balls: for all A 2 B.Sn/ with �n.A/ � 1=2,

�n.X n At/ � 1 � �n.Bt/ D v.v�1.1=2/C t/ � e�.n�1/t2=2; 8t � 0; (5)

where B is a half-sphere, �n.B/ D 1=2. The proof of the estimate given by the last
inequality is given after Corollary 2.2 in [Led01].

By volume expansion, since the uniform law of the sphere of RnC1 of radius
p

n
goes to the canonical Gaussian measure on RN, we get the isoperimetric profile of
the Gaussian measure (cf. [Led93, Led01]). Half hyperplanes are extremal sets for
the standard Gaussian measure �n on Rn and one has

I�n.s/ D ' ıˆ�1.s/ �
0C

s

r
2 log

1

s
;

with ˆ.r/ D 1p
2�

R r
�1 e�u2=2du; r 2 R, and ' D ˆ0, ˆ is the cumulative

distribution function of the standard Gaussian law on R. It provides the following
concentration property: for all A 2 B.Rn/ such that �n.A/ � 1=2,

�n.Rn n At/ � 1 �ˆ.t/ � e�t2=2; t � 0: (6)

On the discrete cube, X D f0; 1gn, equipped with the uniform probability
measure �n and the Hamming distance defined by

d.x; y/ D

nX
iD1

1xi¤yi ; x; y 2 f0; 1gn;

the extremal sets A minimizing �n.At/ for �n.A/ � 1=2 have been identified (see
[Har66, WW77]). This provides the following concentration property: for any subset
A 	 f0; 1gn such that �n.A/ � 1=2,

�n.X n At/ � e�2t2=n; t � 0: (7)

In the last three basic examples, the sphere (5), the Gaussian space (6), and the
discrete cube (7), we observe that in high dimension, n >> 1, dimension is a crucial
parameter that quantifies the measure concentration phenomenon.

In high dimension, isoperimetric problems are often hard to establish and few
of them are solved. Therefore, we need other methods to prove concentration
properties. Moreover, it is well known that the concentration property does not
tensorize properly. For that purpose, “entropic” methods are efficient alternative
tools. They enable to enlarge considerably the class of examples of concentration
properties on high dimensional spaces, thanks to the tensorization properties of the
entropy.
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For concentration, the main two useful entropic methods are the one associated
to the logarithmic Sobolev inequality with the so-called Herbst’s argument (cf.
chapter 5. [Led01]), and the one based on transport inequalities with the so-called
Marton’s argument (cf. chapter 6. [Led01]). This paper mainly concerns this second
one. For example, the concentration results (6) for the Gaussian measure on Rn,
or (7) for the uniform law on the discrete cube, are easy consequences of the
tensorization property of the transport inequalities.

3.1 Transport Inequalities and Concentration Properties

Let….�; �/ denote the set of probability measures on the product space X �X , with
first marginal � and second marginal �. The probability space P.X / is endowed
with the � -field generated by the applications

P.X / ! .Œ0; 1�;B/
� 7! �.A/;

:

where A is any Borel set of X and B is the Borel � -field on Œ0; 1�.
Since X is a Polish space, any measure � 2 ….�; �/ can be decomposed as

follows:

d�.x; y/ D d�.x/dpx.y/;

where p W x 2 X 7! px 2 P.X / is a measurable map �-almost-surely uniquely
determined; p is a probability kernel satisfying

�p.A/ D

Z
px.A/d�.x/ D �.A/; 8A 2 B.X /:

The cost function c defines the following optimal transport cost Tc, introduced in
[GRST14b].

Definition 3.1 The optimal transport cost between probability measures � and �
on X , associated to c W X � P.X / ! Œ0;C1�, is the quantity

Tc.�j�/ D inf
�2….�;�/

Z
c.x; px/d�.x/;

where, given � 2 ….�; �/, the kernel p D .px/x2X is such that d�.x; y/ D

d�.x/dpx.y/.
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At first sight, Tc.�j�/ is not a symmetric quantity of � and �. As example, for a
usual cost,

c.x; px/ D

Z
!.x; y/dpx.y/; x 2 X ;

the optimal cost Tc.�j�/ corresponds to the usual optimal transport cost linked to
the cost function !,

T!.�; �/ D inf
�2….�;�/

“
!.x; y/d�.x; y/ D inf

�2….�;�/

Z
c.x; px/d�.x/ D Tc.�j�/:

If the function ! is symmetric, !.x; y/ D !.y; x/ for all x; y 2 X , then T! and
therefore Tc is symmetric, T!.�; �/ D T!.�; �/.

Let us present transport inequalities associated to the optimal transport costs
Tc.�j�/. We emphasize a general version that exactly provides the concentration
of measure property of Definition 2.1 by the Marton’s argument.

Definition 3.2 Let a1; a2 > 0 and let ˇ W RC ! RC be a non-decreasing function.
The probability measure � 2 P.X / satisfies the transport inequality Tc;ˇ.a1; a2/ if

Tc;ˇ.a1; a2/ W ˇ .Tc.�1j�2// � a1H.�1j�/C a2H.�2j�/; 8�1; �2 2 P.X /;

where H.�1j�/ is the relative entropy of �1 with respect to � defined by

H.�1j�/ D

Z
log

d�1
d�

d�1;

if �1 is absolutely continuous with respect to � (�1 << �), and H.�1j�/ D C1

otherwise.

In most cases, the inequality Tc;ˇ.a1; a2/ is called weak transport inequality, and
for some particular costs c W X � �P.X / ! Œ0;C1�, with inequality is called
barycentric transport inequality (see Section 4), or universal transport inequality
(see Section 5).

Generally, the transport inequalities Tc;ˇ.0; a2/ or Tc;ˇ.a1; 0/ do not make sense.
Indeed, they should imply ˇ.Tc.�1j�// D 0;8�1 2 P.X /, or even ˇ.Tc.�j�2// D

0;8�2 2 P.X /, which are never satisfied, except in degenerated cases (for example,
c D 0 or ˇ D 0). However, with the convention 0:1 D 0, the transport inequality
Tc;ˇ.b;1/ corresponds to the common transport inequality

TC
c;ˇ.b/ W ˇ .Tc.�j�// � bH.�j�/; 8� 2 P.X /;

and Tc;ˇ.1; b/ corresponds to the common transport inequality

T�
c;ˇ.b/ W ˇ .Tc.�j�// � bH.�j�/; 8� 2 P.X /:
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These two inequalities are identical for symmetric optimal transport costs. When ˇ
is the identity, we simply denote by Tc.a1; a2/, TC

c .b/ and T�
c .b/ the last transport

inequalities.
Let us recall the Marton’s argument. Given A 2 B.X /, if �1 is the renormalized

restriction of � to A and �2 the renormalized restriction of � to B D X n Ar;c, r � 0,

d�1
d�

D
1A

�.A/
and

d�2
d�

D
1B

�.B/
;

then H.�1j�/ D � log�.A/, H.�2j�/ D � log�.B/, and Tc.�1j�2/ � r (since for
all x 2 X n Ar;c and all p 2 P.A/, c.x:p/ � r). Consequently, since ˇ is non-
decreasing, the transport inequality Tc;ˇ.a1; a2/ provides

ˇ.r/ � log .�.A/�a1 /C log .�.B/�a2 / ; 8r � 0:

which is the concentration property of Definition 2.1.
For a better comprehension, let us illustrate Definition 3.2 by few examples of

transport inequalities.
If c is the usual cost function c.x; p/ D

R
d.x; y/qp.dy/, q � 1, then Tc.�j�/ D

Tc.�j�/ is associated to the Wasserstein distance Wq of order q,

Tc.�j�/ D Wq
q .�; �/ D inf

�2….�;�/

“
d.x; y/q�.dx; dy/:

The transport inequality T2.b/, first considered by Talagrand [Tal96c], and satisfied
by the standard Gaussian measure � D �n on Rn for b D 2, corresponds to the
transport inequalities TC

c .b/ or T�
c .b/ with q D 2,

T2.b/ W W2
2 .�; �/ � bH.�j�/; 8� 2 P.X /:

A special feature of the inequality T2.b/ is its equivalence to the family of transport
inequalities Tc.b=t; b=.1 � t//, for t 2 .0; 1/. Indeed, if � satisfies T2.b/, then by
the triangular inequality for the Wasserstein metric,

W2
2 .�1; �2/ � .W2.�1; �/C W2.�; �2//

2 � b
�p

H.�1j�/C
p

H.�2j�/
	2
:

From the identity
�p

u C
p
v
�2

D inft2.0;1/
˚

u
t C v

1�t


, we get that for all t 2 .0; 1/,

� satisfies Tc.b=t; b=.1 � t//,

W2
2 .�1; �2/ �

b

t
H.�1j�/C

b

1 � t
H.�2j�/; 8�1; �2 2 P.X /:

Conversely if � verifies Tc.b=t; b=.1�t// for all t 2 .0; 1/, then by choosing �2 D �

and then when t goes to 1, we recover the transport inequality T2.b/.
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More generally, assume that c is a usual cost of type c.x; p/ D
R
˛.d.x; y//p.dy/,

where ˛ W RC ! R is a convex function. In that case we note T˛.�; �/ D Tc.�j�/ D

Tc.�j�/. If moreover ˛ is increasing, ˛.0/ D ˛0.0/ D 0 and ˛ satisfies the following
�2-condition, [RR91]: there exists a positive constant C such that

˛.2h/ � C˛.h/; 8h � 0; (8)

then, we may use the following change of metric Lemma given in [GRS13].

Lemma 3.1 With the above conditions, setting p˛ D suph>0
h˛0

C
.h/

˛.h/ , the function

h 7! ˛1=p˛ .h/ is sub-additive, namely

˛1=p˛ .h C k/ � ˛1=p˛ .h/C ˛1=p˛ .k/; 8h; k 2 RC:

As a consequence, d˛.x; y/ D ˛1=p˛ .d.x; y//; x; y 2 X is a distance on X .

This lemma together with the triangular inequality gives for all �1; �2 2 P.X /,

T˛.�1; �2/ D Wp˛
p˛ .�1; �2/

�
�
Wp˛ .�1; �/C Wp˛ .�; �2/

�p˛
D
�
T 1=p˛
˛ .�1; �/C T 1=p˛

˛ .�; �2/
�p˛
;

where the Wasserstein distance Wp˛ is understood with respect to the distance d˛ of
Lemma 3.1 Then, observing that p˛ > 1 when the function ˛ is not linear, and using
the identity

�
u1=p C v1=p

�p
D inf

t2.0;1/

�
u

tp�1
C

v

.1 � t/p�1

�
; p > 1;

we get that � satisfies the usual transport inequality

T˛.�; �/ � H.�j�/; 8� 2 P.X /;

if and only if � satisfies the following transport inequalities: for all t 2 .0; 1/,

T˛.�1; �2/ �
H.�1j�/

tp˛�1
C

H.�2j�/

.1 � t/p˛�1
; 8�1; �2 2 P.X /: (9)

Here is another example of transport inequality. When c.x; p/ D 2
R

1x¤ydp.y/,
the universal optimal transport cost Tc.�j�/ is in fact the total variation distance
between the measures � and �

Tc.�j�/ D k� � �kTV D 2 sup
A�X

j�.A/ � �.A/j:
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The Csizár-Kullback-Pinsker inequality [Pin64, Csi67, Kul67] that holds for any
(reference) probability measure �,

k� � �k2TV � 2H.�j�/; 8� 2 P.X /:

corresponds to the transport inequalities TC
c;ˇ.b/ or T�

c;ˇ.b/with ˇ.r/ D r2=2, r � 0.
Here again, this inequality is equivalent to Tc;ˇ.b=t; b=.1 � t// for all t 2 .0; 1/.
This inequality and its improvements are known for their numerous applications in
probability, in analysis, and in information theory (cf. [Vil09], page 636).

As a last example, let us consider the universal cost function

c.x; p/ D

�Z
1x¤ydp.y/

�2
; x 2 X ; p 2 P.X /:

Then, the transport inequalities TC
c .2/ and T�

c .2/ correspond to the weak transport
inequalities introduced by Marton [Mar96b]. As for the Csizár-Kullback-Pinsker
inequality, TC

c .2/ and T�
c .2/ hold for any (reference) probability measure �. In

that case, TC
c .b/ and T�

c .b/ are equivalent to the family of transport inequalities
Tc.b=t; b=.1 � t// for t 2 .0; 1/, since the weak-transport cost Tc, also denoted byeT 2, satisfies the following triangular inequality [Mar97],

qeT 2.�1j�2/ �

qeT 2.�1j�/C

qeT 2.�j�2/; 8�; �1; �2 2 P.X /: (10)

3.2 Functional Formulation of Transport Inequality, the Dual
Kantorovich Theorem

The dual functional formulation of usual transport inequalities has been obtained by
Bobkov and Götze [BG99] and then expanded in the paper [GL10].

This dual form is based on the duality between the relative entropy and the log-
Laplace transform. Namely, for any continuous bounded function g W X ! R,

log
Z

egd� D sup
�2P.X /

�Z
gd� � H.�j�/

�
: (11)

A simple proof of this identity is given in [GL10] and one more general in
[GRS11a].

The second argument is the dual Kantorovich Theorem. This theorem is well
known for usual lower semi-continuous cost functions ! W X � X ! .�1;C1�

(cf. [Vil09])

T!.�1; �2/ D sup
'2Cb.X /

�Z
Q!' d�2 �

Z
'd�1

�
; �1; �2 2 P.X /; (12)
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where Cb.X / is the set of continuous bounded functions on X and

Q!'.y/ D inf
x2X

f'.x/C !.x; y/g ; y 2 X :

In the paper [GRST14b], as the function p 2 P.X / ! c.x; p/ is convex, this result
is extended to weak transport costs Tc, under weak regularity additional assumptions
on the cost c W X � P.X / ! Œ0;C1� (see Theorem 3.5, [GRST14b]). Overall, the
result is the following,

Tc.�1j�2/ D sup
'2Cb.X /

�Z
Rc' d�2 �

Z
'd�1

�
; �1; �2 2 P.X /; (13)

where Rc' is the infimum-convolution operator (1) previously defined,

Rc'.x/ D inf
p2P.X /

�Z
'dp C c.x; p/

�
:

To be precise, we should slightly modify the sets Cb.X / and P.X /, depending on
the type of involved cost function c (see [GRST14b]).

The two duality identities (11) and (13) provide the following functional
formulation of the transport-entropy inequality Tc;ˇ.a1; a2/.

Proposition 3.1 Let � 2 P.X / and ˇ W RC ! Œ0;C1� be a lower semi-
continuous convex function such that ˇ.0/ D 0. The following statements are
equivalent.

(1) The probability measure � satisfies Tc;ˇ.a1; a2/.
(2) For all functions ' 2 Cb.X / and for all 	 � 0,

�Z
e
	Rc'

a2 d�

�a2 �Z
e�

	'
a1 d�

�a1

� eˇ
�.	/;

with ˇ�.	/ D supt�0 f	t � ˇ.t/g.

Point (2) generalizes the infimum-convolution viewpoint of transport inequalities
introduced by Maurey [Mau91], the so-called .�/-property.

Idea of the proof .1/ ) .2/ One has ˇ.t/ D sup	�0 f	t � ˇ�.	/g, 8t � 0. If �
satisfies Tc;ˇ.a1; a2/, then the general dual Kantorovich identity (13) implies that
for all ' 2 Cb.X / and all 	 � 0,

	

�Z
Rc' d�2 �

Z
'd�1

�
�ˇ�.	/ � a2H.�2j�/Ca1H.�1j�/; 8�1; �2 2 P.X /:
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Point (2) follows by reordering the terms of this inequality, by optimizing over all
probability measures �1 and �2, and then by applying the dual formula (11), with
the function g D 	Rc'=a2 and with the function g D �	'=a1. ut

By density of the set of the bounded continuous functions in L1.�/, and then
by monotone convergence, (2) also holds for all measurable functions ' W X !

.�1;C1� bounded from below.
Given A 2 B.X /, let us consider the function iA equal to 0 on A, and to C1

on its complement. Applying (2) to the function ' D iA, since RciA.x/ D c.x;A/,
x 2 X , the transport inequality Tc;ˇ.a1; a2/ provides the Talagrand’s formulation of
concentration properties (cf. [Tal95, Tal96a, Tal96b]):

Z
e
	c.x;A/

a2 d� �
eˇ

�.	/=a2

�.A/a1=a2
; 8	 � 0; 8A 2 B.X /:

When the function ˇ is the identity, one has ˇ� D i.�1;1� and Proposition 3.1 is
written as follows.

Proposition 3.2 ([GRST14b]) The following statements are equivalent.

(1) The probability � satisfies Tc.a1; a2/.
(2) For all function ' 2 Cb.X /,

�Z
e

Rc'
a2 d�

�a2 �Z
e�

'
a1 d�

�a1

� 1:

3.3 Tensorization: Characterization by Dimension-Free
Concentration Properties

The transport entropy inequalities tensorize, and this provides concentration results
in high dimension.

Proposition 3.3 Let X1 and X2 be Polish spaces. Let ˇ1 W RC ! RC, ˇ2 W RC !

RC be convex functions and let ˇ W RC ! RC be defined by

ˇ.t/ D ˇ1�ˇ2.t/ D inffˇ1.t1/C ˇ2.t2/; t D t1 C t2g; t � 0:

If �1 2 P.X1/ and �2 2 P.X2/ satisfy, respectively, the transport inequalities
Tc1;ˇ1.a1; a2/ and Tc2;ˇ2.a1; a2/, then �1 ˝�2 2 P.X1 � X2/ satisfies the transport
inequality Tc;ˇ.a1; a2/ with for all x D .x1; x2/ 2 X1 � X2, and all p 2 P.X1 � X2/
with marginals p1 2 P.X1/ and p2 2 P.X2/

c.x; p/ D c1 ˚ c2.x; p/ D c1.x1; p1/C c2.x2; p2/:
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The proof of this proposition exactly follows the one of Theorem 4.11
[GRST14b] for which ˇ1.t/ D ˇ2.t/ D ˇ.t/ D t, t � 0. We could also follow
the tensorization proof given in [Sam07] on the dual functional form of such
transport inequalities.

This tensorization property is a consequence of the tensorization properties of the
relative entropy and of the optimal transport cost: for any measure � 2 P.X1 � X2/
with decomposition d�.x1; x2/ D d�1.x1/d�

x1
2 .x2/, one has

H.�j�/ D H.�1j�1/C

Z
H.�x1

2 j�2/d�1.x1/;

and for any other measure �0 2 P.X1 � X2/ with decomposition d�0.x0
1; x

0
2/ D

d�1.x0
1/d�

x0

1

2 .x
0
2/, for all " � 0, there exists �"1 2 ….�1; �

0
1/ such that

Tc.�j�0/ � Tc1 .�1j�
0
1/C

“
Tc2 .�

x1
2 j�

0x0

1

2 / d�"1.x1; x
0
1/C ";

where c D c1 ˚ c2. The error term " can be chosen equal to 0 when X1 and X2 are
compact spaces.

Therefore, if � 2 P.X / satisfies the transport inequality Tc;ˇ.a1; a2/, then �n D

�˝� � �˝� 2 P.X n/ satisfies Tcn;ˇ�n.a1; a2/, with for all p 2 P.X n/, with marginals
pi 2 P.X /; i 2 f1; : : : ; ng,

cn.x; p/ D c˚n.x; p/ WD c.x1; p1/C � � � C c.xn; pn/; x D .x1; : : : ; xn/ 2 X n;

and since ˇ is convex,

ˇ�n.t/ WD ˇ� � � � �ˇ.t/ D nˇ.t=n/; t � 0:

From the transport inequality Tcn;ˇ�n.a1; a2/, we get that �n satisfies the following
concentration property, for all A 2 B.X n/,

�n.A/a1�n.X n Ar;cn/a2 � e�nˇ.r=n/; 8r � 0:

The concentration profile in the right-hand side is independent of n if and only
if ˇ is linear. In that case, we say that � satisfies a dimension-free concentration
property.

Definition 3.3 A measure � 2 P.X / satisfies a dimension-free concentration
property associated to a cost function c W X � P.X /, if for all n � 1, and for
all A 2 B.X n/,

�n.A/a1�n.X n Ar;cn/a2 � e�r; 8r � 0:
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Actually, Gozlan has proved that for usual enlargements associated to the
cost function !.x; y/ D ˛.d.x; y//, this dimension-free concentration property
is equivalent to a transport inequality (see [Goz09]). Its proof is based on large
deviation technics. In the paper [GRST14b], a simpler approach, starting from the
dual formulation of transport inequalities, allows to extend Gozlan’s result to any
transport inequality Tc.a1; a2/.

Proposition 3.4 ([GRST14b]) The following statements are equivalent.

(i) � satisfies Tc.a1; a2/: for all functions  2 Cb.X /,
�Z

e
Rc 
a2 d�

�a2 �Z
e�

 
a1 d�

�a1

� 1:

(ii) For all integers n � 1 and for all functions ' 2 Cb.X n/,

�n.' � m/a1�n.Rcn' > m C r/a2 � e�r; 8m 2 R; 8r � 0: (14)

Idea of the proof As already explained, .i/ ) .ii/ is a consequence of the
tensorization properties of the inequality Tc.a1; a2/.

In order to get .ii/ ) .i/, we estimate the product of exponential moments of
Rc˚n' and �' using the tail distribution estimates given by .ii/. More precisely, .ii/
provides: for all " > 0,

�Z
e

Rcn '
.1C"/a2 d�n

�a2 �Z
e�

'
.1�"/a1 d�n

�a1

� K."; a1; a2/;

where K."; a1; a2/ is a constant independent of n. We want to “tighten” this
inequality by replacing this constant by 1. For that purpose, let us choose '.x/ D

 .x1/C � � � C  .xn/, x D .x1; : : : ; xn/ 2 X n, for which

Rcn'.x/ D Rc .x1/C � � � C Rc .xn/:

By independence, the last inequality can be rewritten as follows:

�Z
e

Rc 
.1C"/a2 d�

�a2 �Z
e�

 
.1�"/a1 d�

�a1

� K."; a1; a2/
1=n:

The result follows from this inequality as n goes to C1 and then " goes to 0. ut

3.4 Connections with Logarithmic Sobolev Inequalities

In this section, we assume that the closed balls of the Polish metric space .X ; d/ are
compact. In this part, the transport costs are associated to usual cost functions on a
metric space .X ; d/:
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c.x; p/ D

Z
˛.d.x; y//dp.y/; x 2 X ; p 2 P.X /;

where ˛ W RC ! RC is a convex function such that ˛.0/ D ˛0.0/ D 0 satisfying the
�2-condition (8). In this case, we note T˛.�; �/ D Tc.�j�/ and T˛.b/ the transport
inequality TC

c .b/ that coincides with T�
c .b/.

For any locally Lipschitz function f W X ! R, the gradient norms of f at a
non-isolated point x 2 X are defined by

jrCf j.x/ D lim sup
y!x

Œf .y/ � f .x/�C
d.x; y/

; or jr�f j.x/ D lim sup
y!x

Œf .y/ � f .x/��
d.x; y/

;

and jrCf j.x/ D jr�f j.x/ D 0 if x is an isolated point. If X is a Riemannian
manifold and f is smooth, jrCf j.x/ and jr�f j.x/ are the norm of rf .x/ in the
tangent space TxX at point x.

Definition 3.4 A measure � 2 P.X / satisfies the modified logarithmic Sobolev
inequality LogSobC

˛ .b/, b � 0, associated to the cost ˛, if for any locally Lipschitz
function f W X ! R, one has

LogSobC
˛ .b/ W Ent�.e

f / � b
Z
˛�.jrCf j/ef d�;

where ˛�.h/ D supt�0fht � ˛.t/g and for any function g W X ! RC,

Ent�.g/ D

Z
g log g d� �

Z
g d� log

Z
gd�:

In the same way, we define the logarithmic Sobolev inequality LogSob�
˛ .b/

by replacing jrCf j by jr�f j. If X is a Riemannian manifold, we simply note
LogSob˛.b/. When ˛ is quadratic, ˛.t/ D t2, t � 0, ˛�.h/ D h2=4, h � 0, the
logarithmic Sobolev inequalities are denoted by LogSobC

2 .b/ or LogSob�
2 .b/.

As a first result, the well-known Otto-Villani Theorem asserts that the Tala-
grand’s transport inequality is a consequence of the logarithmic Sobolev inequality.

Theorem 3.1 ([OV00]) Let X be a Riemannian manifold. If � 2 P2.X / satisfies
the logarithmic Sobolev inequality LogSob2.b/, then � satisfies the Talagrand’s
transport inequality T2.b/.

In the heuristic part of [OV00], Otto and Villani give the idea of their proof of this
result by interpreting the Wasserstein space .P2.X/;W2/ as a Riemannian manifold
and by considering the gradient flow of the relative entropy � 7! H.�j�/. Bobkov,
Gentil, and Ledoux [BGL01] give another proof based on the Hopf-Lax formula
for the solutions of the Hamilton-Jacobi equation. More precisely, on a Riemannian
manifold X , the infimum-convolution operator



Concentration Principle and Entropy-Inequalities 75

v.x; t/ D Qtf .x/ D inf
y2X

�
f .y/C

1

2t
d.x; y/2

�
; x 2 X ; t > 0;

is a semi-group, solution of the Hamilton-Jacobi equation

@v

@t
D �

1

2
jrvj2; avec v.x; 0/ D f .x/; 8x 2 X :

A counterexample, showing that Otto-Villani’s Theorem cannot be reversed in
full generality, has been given by Cattiaux and Guillin [CG06] (see also [Goz07]).

Then Otto-Villani’s result has been complemented by Gozlan et al. in a series
of papers [GRS11b, GRS13, GRS14]. Following the Hamilton-Jacobi approach by
Bobkov-Gentil-Ledoux, the modified logarithmic Sobolev inequality LogSob�

˛ .b/
is characterized in terms of hypercontractivity property of the operator Qtf defined
by

Qtf .x/ D inf
y2X

�
f .y/C t˛

�
d.x; y/

t

��
; x 2 X ;

for all bounded function f W X ! R.

Theorem 3.2 ([GRS14]) Assume that ˛ satisfies the �2-condition (8). Then the
exponents r˛ � p˛ defined by

r˛ D inf
x>0

x˛0
�.x/

˛.x/
� 1 and 1 < p˛ D sup

x>0

x˛0
C.x/

˛.x/

are both finite. Moreover, the measure � satisfies LogSob�
˛ .b/ if and only if for all

t > 0, for all to � b.p˛ � 1/ and for all bounded continuous functions f W X ! R,



eQtf




k.t/ �


ef




k.0/ ;

with

k.t/ D

8̂
<
:̂

�
1C b�1.t�to/

p˛�1

	p˛�1

1t�to C
�
1C b�1.t�to/

r˛�1

	r˛�1

1t>to if r˛ > 1

min

�
1I
�
1C b�1.t�to/

p˛�1

	p˛�1
�

if r˛ D 1
;

where kgkk D
�R

jgjkd�
�1=k

for k ¤ 0 and kgk0 D exp
�R

log g d�
�
.

By choosing to D b.p˛ � 1/ and after some easy computations this theorem
implies the following Otto-Villani Theorem, extended to any metric space and for
any cost function ˛ satisfying the �2-condition.
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Theorem 3.3 ([GRS14]) Suppose that ˛ verifies the�2-condition (8). If � verifies
LogSob�

˛ .b/, then it verifies T˛.B/, with

B D max
�
..p˛ � 1/b/r˛�1I ..p˛ � 1/b/p˛�1

�
;

where the numbers r˛; p˛ are defined in Theorem 3.2.

This result exactly recovers Otto-Villani Theorem 3.1 since p˛ D r˛ D 2 for
˛.h/ D h2, h � 0.

Popular functions ˛ appearing as cost functions in the literature are the functions
˛ D ˛p1;p2 , with p1 � 2 and p2 � 1 defined by

˛p1;p2 .h/ D

(
hp1 if 0 � h � 1;
p1
p2

hp2 C 1 � p1
p2

if h � 1:

Any such function satisfies the �2-condition with r˛ D min.p1; p2/ and p˛ D

max.p1; p2/.
As examples, the best known measures on Rn satisfying the logarithmic Sobolev

inequality LogSob˛2;p.b/ for some b > 0 are the standard Gaussian measure for
p D 2 [Gro75], the exponential measure for p D 1 [BL97], and more generally the
probability measures d�p D e�jtjp=Zpdt, for p � 1 (see [GGM07, BR08, Goz07]).
For these measures, Theorem 3.2 provides the related transport inequalities obtained
in different papers [Tal91, BK08, GGM05].

To end the comparisons between logarithmic Sobolev inequalities and transport
inequalities, let us recall the reversed Otto-Villani’s Theorem obtained in the papers
[GRS11b, GRS13, GRS14]. It characterizes the transport inequalities in terms of
modified logarithmic Sobolev inequalities restricted to a class of K � ˛-convex
functions. By definition, a function f W X ! R is K � ˛-convex if there exists a
function h W X ! R such that

f .x/ D sup
y2X

fh.y/ � K˛.d.x; y//g D PK
˛ h.x/; 8x 2 X :

On the Euclidean space, if ˛.h/ D h2, h � 0, then a smooth K � ˛-convex function
is exactly a function with Hessian bounded from below.

Let us summarize the results of Theorem 1.12 [GRS11b], Theorem 5.1 [GRS13]
when .X ; d/ is a geodesic space: for any x; y 2 X , there exists a path .�t/t2Œ0;1� in
X , such that �0 D x, �1 D y and d.�s; �t/ D jt � sjd.x; y/, for all s; t 2 Œ0; 1�.

Theorem 3.4 ([GRS11b, GRS13]) Let .X ; d/ be a geodesic space and ˛ W RC !

RC be a convex function satisfying the �2-condition (8) and such that ˛.0/ D

˛0.0/ D 0. The following properties are equivalent.

(1) There exists C1 > 0, such that � satisfies the transport inequality T˛.C1/.
(2) There exist C2 > 0 and 	 > 0, such that � satisfies the following .�/-log-

Sobolev inequality: for all locally Lipschitz functions f W X ! R,
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.�/ � LogSob˛.C2; 	/ Ent�.e
f / � C2

Z
.f � Q	

˛f /ef d�;

where Q	
˛f .x/ WD infy2X ff .y/C 	˛.d.x; y//g, x 2 X .

(3) There exist C3 > 0 and 	 > 0,such that � satisfies the following restricted
modified logarithmic Sobolev inequality: for all K � ˛-convex functions f W

X ! R, with 0 � K < 	

r � LogSob˛.C3; 	/ Ent�.e
f / � C3

Z
˛�.jrCf j/ef d�:

The logarithmic Sobolev inequality at point (2) is called .�/ � LogSob˛.C2; 	/,
as a reference to the .�/-property by Maurey [Mau91] for which the infimum-
convolution operator also occurs.

A main application of this characterization is the following perturbation result.

Corollary 3.1 (Theorem 1.9 [GRS11b]) Let .X ; d/ be a geodesic space and ˛ W

RC ! RC be a convex function satisfying the �2-condition (8) and such that
˛.0/ D ˛0.0/ D 0. Let � 2 P.X / and Q� 2 P.X / with density e� with respect
to �, � W X ! R. If � satisfies T˛.C/, then Q� satisfies T˛

�
8CeOsc�

�
with

Osc� D sup� � inf�.

This type of perturbation’s result has been established by Holley and Stroock
[HS87] for usual logarithmic Sobolev inequalities. This corollary follows by
applying their arguments to logarithmic Sobolev inequalities restricted to a class
of functions.

4 Some Results Around “Barycentric” Costs

In all this part, c is a barycentric cost function,

c.x; p/ D �

�
x �

Z
y dp.y/

�
; x 2 Rn; p 2 P1.Rn/;

where � W Rn ! RC is a convex function. Most of the results of this section extend
to lower semi-continuous convex functions � W Rn ! Œ0;C1�.

In that case, the optimal transport cost Tc.�j�/ between � and � in P.Rn/

is denoted by T � .�j�/. The following specific Kantorovich dual expression of
T � .�j�/ has been obtained in [GRST14b] (see Theorem 2.11)

T � .�j�/

D sup

�Z
Q' d� �

Z
' d� I ' convex, Lipschitz, bounded from below

�
:

(15)



78 P.-M. Samson

In the supremum, Q' is the usual infimum-convolution operator,

Q'.x/ D inf
y2Rn

f'.y/C �.x � y/g ; x 2 Rn:

Therefore, by a restriction to convex functions, the operator Q' replaces the operator
Rc' in the dual formula (13).

Let � and � be two probability measures on Rn. By definition, the measure � is
dominated by � in the convex order, and we note � 
 �, if for all convex functions
f W Rn ! R, Z

fd� �

Z
fd�:

The following Strassen’s Theorem provides an alternative definition of the convex
order.

Theorem 4.1 ([Str65]) Let � and � be two probability measures on Rn, then � 
 �

if and only if there exists a martingale .X;Y/ for which X has law � and Y has law
�. Namely, if � is the law of the couple .X;Y/, with decomposition d�.x; y/ D

d�.x/dpx.y/; where p is a Markov Kernel such that �p D �, then one has for � -
almost every x,

Z
y dpx.y/ D x:

Idea of the proof A simple proof follows from the dual Kantorovich expression of
the optimal barycentric cost:

T 1.�j�/ D inf
�2….�;�/

Z ˇ̌
ˇ̌x �

Z
y dpx.y/

ˇ̌
ˇ̌ d�.x/

D sup

�Z
f d� �

Z
f d� I f convex, 1-lipschitz, lower bounded

�
;

(see Proposition 3.2. [GRST14b]). Therefore, if d��.x; y/ D d�.x/dp�
x .y/ is the law

of .X;Y/, with marginals � and �, then

0 � T 1.�j�/ �

Z ˇ̌
ˇ̌x �

Z
y dp�

x .y/

ˇ̌
ˇ̌ d�.x/ D 0:

It follows that T 1.�j�/ D 0 and the dual expression of T 1.�j�/ gives

Z
fd� �

Z
fd�;
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for every convex, 1-Lipschitz, lower bounded function f . This inequality extends to
any lower bounded convex function and then to any convex function by monotone
convergence, which means that � 
 � . One way to prove this is to use the fact
that if f is convex lower-bounded then the classical infimum convolution operator
Qtf .x/ WD infy2Rn

˚
f .y/C 1

t jx � yj


is convex 1=t-Lipschitz and Qtf .x/ is increasing
to f .x/ as t goes to 0 for all x 2 Rn. ut

Let � 2 P.Rn/ be such that for any � 2 P.Rn/, there exists an optimal transport
map S� W Rn ! Rn such that S�#� D � and

T� .�; �/ D inf
�2….�;�/

Z
�.x � y/d�.x; y/ D

Z
�.x � S�.x//d�.x/:

This assumption is satisfied, for example, when � is absolutely continuous with
respect to the Lebesgue measure and � is smooth and strictly convex (see, e.g.,
[Vil09], Theorem 9.4, Theorem 10.28). Then the optimal barycentric transport cost
T � can be expressed in terms of the usual transport cost T� as follows.

Proposition 4.1 Under the above conditions on the probability measure � 2

P.Rn/, for any probability measure � such that T � .�j�/ < 1,

T � .�j�/ D inf
�2P.Rn/;�	�

T� .�; �/:

Proof Let � 
 �. From the previous Strassen’s Theorem, there exists a kernel p�

such that �p� D � and x D
R

y dp�
x .y/ � -almost surely. Furthermore, by hypotheses,

there exists a transport map S� W Rn ! Rn such that S�#� D � and

T� .�; �/ D

Z
�.x � S�.x//d�.x/:

Let us consider the kernel defined by px.dy/ D p�
S�.x/.dy/. We may simply check

that �p D � and for �-almost every x,
R

y dpx.y/ D
R

y dp�
S�.x/.y/ D S�.x/:

Therefore, T� .�; �/ D
R
�
�
x �

R
y dpx.y/

�
d�.x/ � T � .�j�/; and by optimizing

over all probability measures � , with � 
 �, we get

inf
�2P.Rn/;�	�

T� .�; �/ � T � .�j�/:

To prove the reverse inequality, let us consider a kernel p such that �p D � and

Z
�

�
x �

Z
y dpx.y/

�
d�.x/ < 1:

Let S W Rn ! Rn be the measurable map defined by S.x/ D

Z
y dpx.y/; for�-almost

every x. Let � be the push forward measure of � by the map S, � D S#�. Then, one
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has � 
 �, since by Jensen’s inequality, for all convex functions f W Rn ! R,

Z
f d� D

Z
f

�Z
y dpx.y/

�
d�.x/ �

“
f .y/ dpx.y/d�.x/ D

Z
f d�I

and moreover
Z
�

�
x �

Z
y dpx.y/

�
d�.x/ D

Z
.x � S.x// d�.x/ � T� .�; �/ � inf

�2P.Rn/;���
T� .�; �/:

We get the expected inequality by optimizing this inequality over all kernels p such
that �p D �. ut

4.1 Barycentric Transport Inequality and Logarithmic Sobolev
Inequalities

As for the usual transport costs, connections have been established between
barycentric transport inequalities and logarithmic Sobolev inequalities restricted to
a class of functions (see [GRST14b, AS15]). To simplify, in this section we only
consider the case �.h/ D khk2 where k � k is a fixed norm on Rn. In that case we
note T � D T 2.

The next results have been obtained by Gozlan et al. [GRST14b] thanks to the
Kantorovich dual expression (15) of T 2, and by applying the technics linked to the
Hamilton-Jacobi equation satisfied by the semi-group Qt',

Qt'.x/ D inf
y2Rn

�
'.y/C

1

t
kx � yk2

�
; x 2 Rn:

From the non-symmetry of the optimal transport cost T 2.�j�/, they establish two
different results one corresponding to the transport inequality TC

c .C/ and the other
associated to T�

c .C/.

Theorem 4.2 see Theorem 8.15 [GRST14b] Let � 2 P1.Rn/. The following
properties are equivalent.

(1) There exists C1 > 0 such that � satisfies

T 2.�j�/ � C1H.�j�/; 8� 2 P1.Rn/:

(2) There exists C2 > 0 such that for all convex Lipschitz functions ' W Rn ! R
bounded from below,

Z
e�'=C2d� � e�

R
Q1'=C2 d�:
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(3) There exist C3 > 0 and 	 > 0, such that for all concave Lipschitz functions
 W Rn ! R, bounded from below and 	k � k2-convex,

Ent�.e
 / � C3

Z
kr k2�e d�;

where k � k� is the dual norm k � k on Rn.

Recall that if k � k D j � j is the Euclidean norm, a function  is 	k � k2-convex
if and only if its Hessian is bounded from below by �2	I (in the sense of quadratic
forms).

Let us observe that in Theorem 4.2, point (1) is equivalent to point (2) with the
same constant C1 D C2.

Theorem 4.3 see Theorem 8.8 [GRST14b] Let � 2 P1.Rn/. The following
properties are equivalent.

(1) There exists C1 > 0 such that � satisfies

T 2.�j�/ � C1H.�j�/; 8� 2 P1.Rn/:

(2) There exists C2 > 0 such that for all Lipschitz convex functions ' W Rn ! R,
bounded from below,

Z
eQ1'=C2d� � e

R
'=C2 d�:

(3) There exists C3 > 0 such that for all Lipschitz convex functions ' W Rn ! R,
bounded from below,

Ent�.e
'/ � C3

Z
kr'k2�e'd�;

where k � k� is the dual norm of k � k on Rn.
(4) There exists C4 > 0 such that for all Lipschitz convex functions ' W Rn ! R,

bounded from below,



eQt'




aCt=.2C4/;.�/
� ke'ka;.�/ ; 8t > 0;

where for all h W Rn ! R, p � 0, khkp;.�/ D
�R

jhjpd�
�1=p

.

Let us observe that in this theorem, point (1) is equivalent to point (2) with the
same constant C1 D C2, and point (3) is equivalent to point (4) with the same
constant C3 D C4. The other links between the constants in the two last theorems
are given in [GRST14b].
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The logarithmic Sobolev inequality restricted to the class of convex functions of
point (3) has been investigated in [Ada05, AS15], where sufficient conditions on the
probability measure � are given for such an inequality to hold.

4.2 Barycentric Transport Inequalities for the Binomial Law
and the Poisson Measure

Discrete probability measures do not generally satisfy the Talagrand’s transport
inequality T2. To be convinced, it suffices to consider ��, a convex combination of
two Dirac measures at two distinct points a and b, �� D �ıa C .1��/ıb, � 2 .0; 1/.
The measure �� satisfies T2.C/, C > 0 if and only if for all q 2 Œ0; 1�

W2
2 .��; �q/ D T2.��; �q/ D ja � bj2jq � �j � CH.�qj��/

D q log
q

�
C .1 � q/ log

1 � q

1 � �
:

We get a contradiction as q goes to � by observing that H.�qj��/ D o.jq � �j/.
However the measure �� satisfies the transport inequality

W2
1 .��; �/ �

d.a; b/2

2
H.�; ��/; 8� << ��:

To get other transport inequalities, one strategy is to replace the usual transport cost
by a barycentric cost. To simplify, let �� be the Bernoulli measure of parameter
� 2 .0; 1/ (a D 0 and b D 1). In [Sam03] and [GRST14b] (see Proposition 7.1), the
barycentric transport inequality Tc.1=.1 � t/; 1=t/ , t 2 .0; 1/ with cost

c.x; p/ D ��;t

�
x �

Z
y dp.y/

�
; x 2 R; p 2 P.R/;

is established for the Bernoulli measure ��, with an optimal cost function ��;t : one
has

T ��;t.�1j�2/ �
1

1 � t
H.�1j��/C

1

t
H.�2j��/; 8�1; �2 << ��:

By tensorization, it provides a barycentric transport inequality for the product
measure �n

� D �� ˝ � � � ˝ �� associated to the cost

cn.x; p/ D c.x1; p1/C � � � C c.xn; pn/; x D .x1; : : : ; xn/ 2 Rn; p 2 P1.Rn/:

By projection, and observing that by convexity
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cn.x; p/ � n c

�Pn
i xi

n
;

Pn
i pi

n

�
;

a barycentric transport inequality follows for the binomial law �n;� with parameters
n and � (see [GRST14b], Corollary 7.7),

T ��;t;n.�1j�2/ �
1

1 � t
H.�1j�n;�/C

1

t
H.�2j�n;�/; 8�1; �2 << �n;�;

where ��;t;n.h/ D n��;t.h=n/, h 2 R: Finally, by the weak convergence of the
measure �n;�n towards the Poisson measure p	 with parameter 	 > 0 when
�n D 	=n, an optimal barycentric transport inequality is obtained for the Poisson
measure

T c	;t.�1j�2/ �
1

1 � t
H.�1jp	/C

1

t
H.�2jp	/; 8�1; �2 << p	;

with c	;t.h/ D limn!1 n��n;t.h=n/, h 2 R. One specific feature of the cost function
c	;t is to be zero for h � 0. For more details, we refer to Proposition 7.11
[GRST14b].

One other famous strategy to establish transport inequalities in discrete setting
is coming from the notion of curvature on discrete spaces introduced by Maas
[Maa11]. Transport inequalities for invariant reversible measures of Markov chains
are obtained from curvature type conditions (see also [EM12, EM14, EMT15]).
The optimal transport cost is defined by an abstract Benamou-Brenier type formula
which is not associated to a transport cost function. This optimal cost is not
comparable to a barycentric cost.

In an other direction, transport inequalities for Poisson processes of different
types are proposed by Ma et al. in [MSWW11].

4.3 Optimal Transport Coupling for Barycentric Costs on R

This part concerns the construction of an optimal coupling �� that optimizes the
optimal barycentric cost on the real line (in dimension one).

The cost function � W R ! R is assumed to be even (we believe that this condition
can be removed). For any probability measure �, we denote by F� its cumulative
distribution function, F�.x/ D �.�1; x�, and by F�1

� its general inverse

F�1
� .u/ D inffx 2 R;F�.x/ � ug; u 2 Œ0; 1�:

Let � and � be two probability measures on R. Assume that � has no atoms, then
it is well known that for all convex cost functions � , the usual optimal transport cost
T� .�; �/ is reached for the optimal deterministic coupling measure
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d��.x; y/ D d�.x/dıS�.x/.y/;

where S� is the monotone transport map defined by S�.x/ D F�1
� ı F�.x/, x 2 R: In

other words, there exists a monotone transport map S�, independent of � and such
that

T� .�; �/ D

Z
�.x � S�.x// d�.x/:

We want the same kind of result of independence of the function � for an
optimal coupling of the barycentric cost T � .�j�/. For that purpose, we will use
the following preliminary result of [GRSC15] (Theorem 1.3).

Theorem 4.4 Let �; � 2 P1.R/. There exists O� 2 P1.R/ such that O� 
 � and for
any even convex function � , one has

T � .�j�/ D T� . O�; �/:

This result is still available when� has atoms and it seems that the even condition
on � can be removed.

Based on the facts set out above, if � has no atoms,

T � .�j�/ D T� . O�; �/ D

Z
�.x � S�.x// d�.x/; with S� D F�1

O� ı F�;

and since O� 
 �, according to Strassen’s Theorem 4.1, there exists a kernel p� such
that O�p� D � and O� -almost surely

R
y dp�

x .y/ D x: Since O� is independent of � , le
kernel p� is also independent of � . Moreover, since S�#� D O� , we get for �-almost
every x,

Z
y dp�

S�.x/.y/ D S�.x/;

and it finally gives

T � .�j�/ D

Z
�

�
x �

Z
y dp�

S�.x/.y/

�
d�.x/:

This shows that if � has no atoms, then the optimal barycentric cost T � .�j�/ is
reached for the optimal coupling

��.dx; dy/ D �.dx/p�
S�.x/.dy/;

which is independent of the even convex function � .
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4.4 Characterization of Probability Measures Satisfying
a Barycentric Transport Inequality on R

We know how to characterize the probability measures on R satisfying different
functional inequalities as the Poincaré inequality [Muc72], the logarithmic Sobolev
inequality [BG99, BR03] (see also chapter 6, [ABCC00]), the usual transport
inequalities [Goz12]. In each of these cases, the characterization can be given by
criteria of Hardy type, on the tails of distribution and on the densities of the involved
measures. This section concerns the characterization of the barycentric transport
inequalities. The approach is the one introduced by Gozlan [Goz12].

Let � be the exponential law on R, with density e�jxj=2. For any � 2 P.R/, let
us note U� the unique left-continuous monotone transport map from the measure �
to the measure �, U� D F�1

� ı F� ; namely,

U�.x/ D

(
F�1
�

�
1 � 1

2
e�jxj

�
if x � 0;

F�1
�

�
1
2
e�jxj

�
if x � 0:

Here is one of the main results of [Goz12]: a probability measure � satisfies
the transport inequality T2.C/ with C > 0 if and only if it satisfies the Poincaré
inequality and the following condition: there exists b � 0 such that

sup
x2R

�
U�.x C u/ � U�.x/

�
� b

p
1C u; 8u � 0;

that enforces a particular behavior of the tails of distribution of the measure �.
In [GRSC15], an analogous result is obtained for the barycentric transport

inequality with costs T � . Let us note �a.t/ D �.at/, t 2 R, for any a > 0.

Theorem 4.5 (Theorem 1.2, [GRSC15]) Let � be an even convex function such
that �.t/ D t2 for all jtj � t0, t0 > 0. A probability measure � satisfies the
barycentric transport cost inequalities

T
�

�a W T �a.�j�/ � H.�j�/; 8� 2 P1.R/;

and

T
C

�a W T �a.�j�/ � H.�j�/; 8� 2 P1.R/;

for some positive constant a if and only if there exists b � 0 such that

sup
x

�
U�.x C u/ � U�.x/

�
� b ��1

�
u C t2o

�
8u � 0: (16)

Probability measures satisfying a barycentric transport inequality do not neces-
sarily verify a Poincaré inequality since there support is not necessarily connected
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(for example, the Bernoulli and the binomial laws as explained in Section 4.2).
However, the condition (16) of the above theorem implies for u D 1: there exists
h > 0 such that

sup
x2R

�
U�.x C 1/ � U�.x/

�
� h: (17)

Bobkov and Götze [BG99] have proved that this condition is equivalent to the
existence of a Poincaré inequality restricted to convex functions satisfied by the
measure �. Therefore, probability measures satisfying (16) necessarily satisfy a so-
called convex Poincaré inequality. More precisely, the following result has been
established by Feldheim et al. [FMNW15], and also independently by Gozlan et al.
[GRSC15], as an intermediate key result of their proof of Theorem 4.5.

Theorem 4.6 Let � be a probability measure on R. The condition (17) is equivalent
to each of the following properties.

(a) There exists C > 0 such that for all convex functions f on R,

Var�.f / � C
Z

R
f 02 d�:

(b) There exist a; t0 > 0 such that

T
�

�a
1

W T �a
1
.�j�/ � H.�j�/; 8� 2 P1.R/;

and

T
C

�a
1

W T �a
1
.�j�/ � H.�j�/; 8� 2 P1.R/;

where the function �1 is defined by �1.t/ D

�
t2 if jtj � t0;
2jtjt0 � t20 if jtj > t0:

5 Universal Transport Inequalities

We call universal any transport inequality that holds for any (reference) probability
measure � on X .

The most popular and commonly used universal transport inequality, mentioned
in Section 3.1, is the Csizár-Kullback-Pinsker inequality [Csi67, Kul67, Pin64],

1

2
k� � �k2TV � H.�j�/; 8�; � 2 P.X /; (18)

where k� � �kTV is the total variation distance between � and �,
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k� � �kTV D 2 inf
�2….�;�/

“
1x¤y d�.x; y/:

The functional dual formulation of the Csizár-Kullback-Pinsker inequality is the
following exponential inequality, for any function f W X ! R such that
supx;y2X jf .x/ � f .y/j � c,

Z
etf d� � et

R
f d�Ct2c2=8; t � 0:

This inequality, commonly used, gives the Hoeffding inequality by applying
Markov’s inequality,

�

�
f �

Z
f d�C t

�
� e�2t2=c2 t � 0:

The Csizár-Kullback-Pinsker inequality (18) can be improved in different ways.
We may change the function of the total variation distance on the left-hand side (see
[FHT03, Gil10]), or we may replace the total variation distance by a comparable
optimal weak transport cost of Definition 2.4. More precisely, given a convex
function ˛ W RC ! Œ0;C1�, and �; �1; �2 2 P.X /, we note

eT ˛.�1j�2/ D inf
�2….�2;�1/

�Z
c.x; px/d�2.x/; d�.x; y/ D d�2.x/dpx.y/

�
;

when c.x; p/ D ˛

�Z
1x¤ydp.y/

�
; x 2 X , p 2 P.X /; and

bT ˛.�1j�2/ D inf
�2….�2;�1/

�Z
c.x; px/d�2.x/; d�.x; y/ D d�2.x/dpx.y/

�
;

when

c.x; p/ D

Z
˛

�
1x¤y

dp

d�
.y/

�
d�.y/;

if .x; p/ is such that p is absolutely continuous with respect to � on X n fxg, and
c.x; p/ D C1 otherwise. In [Sam07], Theorem 1.1 and 1.2 give the following
variants of the Csizár-Kullback-Pinsker inequality.

Theorem 5.1 ([Sam07, GRST14b]) Let X be a compact metric space, � 2 P.X /
and t 2 .0; 1/.

(a) For any probability measures �1 and �2 on X , one has

eT ˛t.�1j�2/ �
1

1 � t
H.�1j�/C

1

t
H.�2j�/;
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where the convex cost function ˛t W RC ! Œ0;C1� is defined by

˛t.u/ D
t.1 � u/ log.1 � u/ � .1 � tu/ log.1 � tu/

t.1 � t/
; 0 � u � 1;

and ˛t.u/ D C1 if u > 1.
As t goes to 0, it implies

eT ˛0.�1j�/ � H.�1j�/;

with ˛0.u/ D .1 � u/ log.1 � u/C u if 0 � u � 1, and ˛0.u/ D C1 if u > 1.
As t goes to 1, it implies

eT ˛1.�j�2/ � H.�2j�/;

with ˛1.u/ D � log.1 � u/ � u, if 0 � u < 1 and ˛0.u/ D C1 if u � 1.
(b) For any probability measures �1 and �2 on X , one has

bT ˇt.�1j�2/ �
1

1 � t
H.�1j�/C

1

t
H.�2j�/;

where the convex cost function ˇt W RC ! Œ0;C1� is defined by

ˇt.u/ WD sup
s2RC

˚
su � ˇ�

t .s/

; u 2 RC;

with

ˇ�
t .s/ D

te.1�t/s C .1 � t/e�ts � 1

t.1 � t/
; s 2 RC:

When t goes to 0 this implies

bT ˇ0.�1j�/ � H.�1j�/; (19)

with ˇ0.u/ D .1C u/ log.1C u/ � u, u � 0, and when t goes to 1, it implies

bT ˇ1.�j�2/ � H.�2j�/;

with ˇ1.u/ D .1 � u/ log.1 � u/C u, if u � 1 and ˇ1.u/ D C1 if u > 1.

By using the estimate , ˛t.u/ � u2=2 D ˛.u/, for all t 2 Œ0; 1�, u � 0,
the transport inequalities of point .a/ provide the Marton’s transport inequalities
[Mar96b] associated to the quadratic cost function ˛:

eT 2.�1j�/ � 2H.�1j�/; eT 2.�j�2/ � 2H.�2j�/; (20)
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or even for every t 2 .0; 1/,

1

2
eT 2.�1j�2/ �

1

1 � t
H.�1j�/C

1

t
H.�2j�/:

By optimizing in t, this inequality can be rewritten

1

2
eT 2.�1j�2/ �

�p
H.�1j�/C

p
H.�2j�/

	2
:

As explained in Section 3.3, these transport inequalities can be tensorised on
product spaces, and provide concentration results for product measures, or even
weakly dependent measures. The concentration principle related to this kind of n-
dimensional costs has been introduced by Talagrand [Tal96a, Tal96c], especially to
prove deviations inequalities for suprema of empirical processes of Bernstein type.

The optimal deviation results for suprema of empirical processes that follow
from Theorem 5.1 are briefly recalled in Section 5.1 below. Then in Section 5.2,
we summarize results obtained in a weak dependence framework concerning the
Marton’s transport inequalities (20) in [Sam00] and [Pau14]. Finally, in Section 5.3,
we suggest a different way to tensorize the Csizár-Kullback-Pinsker inequality
or the Marton’s inequality. It provides new weak transport inequalities for the
uniform law on the symmetric group (see [Sam16]). These results are guided by
the concentration results by Talagrand [Tal95].

5.1 Bernstein’s Type of Deviation Inequalities for Suprema
of Independent Empirical Processes

The first Bernstein’s type of deviation inequalities for suprema of independent
empirical processes have been obtained by Talagrand [Tal96b, Tal96a] with the so-
called convex hull method. These inequalities are of particular interest in statistics
[Mas00b, Mas07].

Ledoux [Led97] has proposed an “entropic” method that allows to simply recover
the results by Talagrand. This approach is based on the tensorization property of the
entropy and the so-called Herbst’s argument. Then, it has been widely developed,
mainly to reach optimal deviation bounds for the suprema of independent empirical
processes [Mas00a, BLM00, Rio01, BLM03, Rio02, Bou03, KR05, Rio12, Rio13,
BLM13].

In the continuation of the works by Talagrand, Marton [Mar96a, Mar96b],
Dembo [Dem97] and Maurey [Mau91], the transport-entropy method has been
developed in [Sam07] as an alternative approach to achieve the best constants in
the deviation inequalities of suprema of empirical processes.

Another approach has been proposed by Panchenko, based on symmetrization
technics [Pan01, Pan02, Pan03]. Finally, to complete the picture, Stein’s methods
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have been pushed forward by Chatterjee to reach similar concentration properties to
the one by Talagrand [Cha05, Cha07, CD10, Pau14]. The main interest of this last
method is that it extends to dependence cases, under Dobrushin type of conditions.

Let us present some concentration results for suprema of empirical processes that
follow from the transport inequalities of Theorem 5.1 after tensorization. Let F be
a countable set and let .X1;t/t2F ; : : : ; .Xn;t/t2F be n independent processes. We are
interested by the deviations of the random variable

Z D sup
t2F

nX
iD1

Xi;t:

Let us note

V D sup
t2F

nX
iD1

E
�
ŒXi;t � X0

i;t�
2
C

ˇ̌
Xi;t
�
;

where .X0
i;t/t2F is an independent copy of Xi D .Xi;t/t2F and EŒ � jXi;t� denotes the

conditional expectation, given Xi;t. In the following theorem, for all t 2 F and all
i 2 f1; : : : ; ng, Mi;t and mi;t are numerical constants limiting the random variables
Xi;t.

Theorem 5.2 (a) Assume that Xi;t � Mi;t, and E
�
.Mi;t � Xi;t/

2
�

� 1; for all i and
all t, then for all u � 0,

P.Z � EŒZ�C u/ � exp

2
4�

u

2
�
1C "

�
u

EŒV�

		 log

�
1C

u

EŒV�

�3
5

� exp

�
�

u2

2EŒV�C 2u

�
;

with ".u/ D ˇ0.u/
.1Cu/ log.1Cu/ and ˇ0.u/ WD .1C u/ log.1C u/ � u.

(b) Assume that mi;t � Xi;t � Mi;t, with Mi;t � mi;t D 1 for all i and all t, then for
all u � 0,

P.Z � EŒZ� � u/ � exp

�
�EŒV�ˇ0

�
u

EŒV�

��
� exp

"
�

u2

2EŒV�C 2
3

u

#
;

with ˇ0.u/ D .1C u/ log.1C u/ � u.

The optimality of these results is discussed in [Sam07]. Recall that by usual
symmetrization’s technics ([LT91], Lemma 6.3 and Theorem 4.12), the variance
term EŒV� can be estimated as follows:
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EŒV� � sup
t2F

nX
iD1

Var.Xi;t/C 16E

"
sup
t2F

ˇ̌
ˇ̌
ˇ

nX
iD1

.Xi;t � EŒXi;t�/

ˇ̌
ˇ̌
ˇ
#
:

In [Ada08], by using Hoffman-Jørgensen’s inequality and some other results
by Talagrand, Adamczak extends the concentration properties to suprema of
unbounded random variables, by truncation arguments of the random variables.

Idea of the proof We only present one elementary proof of (b) to show the links
between the transport inequality with cost bT ˇt and the deviations of a function
around its mean.

Let �i denote the law of the process Xi D .Xi;t/t2F . Point (b) simply follows
from the dual form of the tensorized transport inequality (19): X D RF , for any
function g W X n ! R,

Z
e�gd� � exp

�
�

Z
OQg d�

�
; (21)

where � D �1 ˝ � � � ˝ �n and for all x D .x1; : : : ; xn/ 2 X n

bQg.x/ D inf
p2P.X n/

( Z
g.y/ dp.y/C

nX
iD1

Z
ˇ0

�
1xi¤yi

dpi

d�i
.yi/

�
d�i.yi/

)
;

the probability measures pi are the marginals of p. Let us choose g D 	f with 	 � 0

and

f .x/ D sup
t2F

nX
iD1

xi;t; x D .x1; : : : ; xn/ 2 X n:

To simplify, we assume that for all x 2 X n, the supremum is reached at a single
point �.x/ 2 F :

sup
t2F

nX
iD1

xi;t D

nX
iD1

xi;�.x/:

Then for all x; y 2 X n

f .y/ � f .x/C

nX
iD1

.yi;�.x/ � xi;�.x// D f .x/C

nX
iD1

.yi;�.x/ � xi;�.x//1xi¤yi :

as a consequence, for all x,
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bQg.x/

� 	f .x/ � sup
p

( Z nX
iD1

	.xi;�.x/ � yi;�.x//1xi¤yi dp.y/

�

nX
iD1

Z
ˇ0

�
1xi¤yi

dpi

d�i
.yi/

�
d�i.yi/

)

D 	f .x/ �

nX
iD1

sup
pi2P.X /

�Z
	.xi;�.x/ � yi;�.x//1xi¤yi

dpi

d�i
.yi/d�i.yi/

�

Z
ˇ0

�
1xi¤yi

dpi

d�i
.yi/

�
d�i.yi/

�

� 	f .x/ �

nX
iD1

Z
sup
h�0

˚
	.xi;�.x/ � yi;�.x//h � ˇ0.h/


d�i.yi/

D 	f .x/ �

nX
iD1

Z
ˇ�
0

�
	Œxi;�.x/ � yi;�.x/�C

�
d�i.yi/

� 	f .x/ � ˇ�
0 .	/

nX
iD1

Z
Œxi;�.x/ � yi;�.x/�

2
Cd�i.yi/

� 	f .x/ � ˇ�
0 .	/ sup

t2F

nX
iD1

Z
Œxi;t � yi;t�

2
Cd�i.yi/;

where ˇ�
0 .s/ D es � s � 1, s � 0. The second last inequality is a consequence of the

fact that Œxi;�.x/ � yi;�.x/�C � Mi;t � mi;t � 1 and ˇ�
0 .	u/ � u2ˇ�

0 .	/ for 0 � u � 1.
By inserting the previous estimate of bQg.x/ in the transport inequality (21), we get
for all 	 � 0,

E
�
e�	Z

�
� e�	EŒZ�CEŒV�ˇ�

0 .	/:

The deviation inequality of (b) directly follows by the Markov inequality, optimizing
over all 	 � 0. ut

5.2 Marton’s Transport Inequality for Weakly Dependent
Random Variables

The paper [Sam00] presents a tensorization scheme of the Marton’s inequality (20)
when � is a probability measure on the product space X n, whose marginals are
weakly dependent on each other, more precisely if � is the law the n first random
variables X1; : : : ;Xn of a ˆ-mixing process. This tensorization scheme is based on
the construction of couplings similar to the one of [Mar03].
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To simplify, one may assume that X is a finite set. Given a sequence of random
variables X1; : : : ;Xn with values in X , for 1 � i < j � n, let us note

L.Xn
j jXi�1

1 D xi�1
1 ;Xi D xi/

the law of .Xj; : : : ;Xn/ knowing that X1 D x1; : : : ;Xi�1 D xi�1;Xi D xi, and let

 D .�i;j/1�i;j�n be the upper triangular matrix defined by

�2ij D sup
xi�1
1 ;xi;yi



L.Xn
j jXi�1

1 D xi�1
1 ;Xi D xi/ � L.Xn

j jXi�1
1 D xi�1

1 ;Xi D yi/




TV
;

for i < j and �ii D 1.

Theorem 5.3 ([Sam00]) According to the previous notations, for all probability
measures � and � on X n, one has

eT 2.�j�/ � 2k
k2H.�j�/ and eT 2.�j�/ � 2k
k2H.�j�/;

where k
k denotes the operator norm of the matrix 
 from .Rn; j � j/ to .Rn; j � j/.

Note that since the Marton’s cost eT 2 in dimension n also satisfies the triangular
inequality (10), the two weak transport inequalities of this theorem are equivalent
to the following family of transport inequalities, for all t 2 .0; 1/, for all �; �1; �2 2

P.X n/,

1

2k
k2
eT 2.�1j�2/ �

1

1 � t
H.�1j�/C

1

t
H.�2j�/;

or equivalently, applying Theorem 3.1 for all functions g W X n ! R bounded from
below,

�Z
et QQgd�

�1=t �Z
e�.1�t/gd�

�1=.1�t/

� 1;

where

QQg.x/ D inf
p2P.X n/

( Z
gdp C

1

2k
k2

nX
iD1

�Z
1xi¤yi dp.y/

�2)
:

In particular, applying this inequality to the function g D iA, with A 	 X n, we get
the Talagrand’s concentration result extended to any measure � 2 P.X n/: for all
subsets A 	 Xn, for all t 2 .0; 1/,

Z
e

t
2k
k

2 D2T .x;A/d�.x/ �
1

�.A/t=.1�t/
; (22)
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where DT.x;A/ is the Talagrand’s convex distance defined by

D2
T.x;A/ D

 
sup

˛2Rn;j˛j�1

inf
y2A

nX
iD1

˛i1xi¤yi

!2

D

 
sup

˛2Rn;j˛j�1

inf
p2P.A/

nX
iD1

˛i

Z
1xi¤yi dp.y/

!2

D

 
inf

p2P.A/
sup

˛2Rn;j˛j�1

nX
iD1

˛i

Z
1xi¤yi dp.y/

!2

D inf
p2P.A/

nX
iD1

�Z
1xi¤yi dp.y/

�2
D QQiA.x/:

The second equality follows from the linearity of the expression in p and from the
fact that Dirac measures are the extremal points of the convex set P.A/. The third
equality is a consequence of Sion’s minimax Theorem [Sio58, Kom88] since the
expression is linear in p and ˛, and therefore convex in p and concave in ˛.

When � is the law of some independent random variables, the property (22)
exactly recovers Talagrand’s concentration results [Tal95] since k
k D kIdk D 1.

Theorem 5.3 complements the results by Marton for contracting Markov chains
[Mar96b, Mar97]. More generally, assume that the sequence .Xk/k�1 is a Doeblin
recurrent Markov chain with kernel K; in other words, there exists a probability
measure m, an integer r and a real � 2 .0; 1/ such that for all x 2 X and all subsets
A 	 X

Kr.x;A/ � �m.A/:

Then the coefficient k
k is bounded independently of n,

k
k �

p
2

1 � �1=2r
:

In any case, if .ˆk/k�1 represents the sequence of ˆ-mixing coefficients of the
sequence of random variables X1; : : : ;Xn (see [Sam00], [Dou94]), then one has

k
k �

nX
kD1

p
ˆk:

After this result, many authors have obtained transport inequalities under weak
different dependence assumptions, for example under Dobrushin type conditions
[DGW04, Mar04, Mar10, Wu06, Kon12, Pau12, WW14, Wan14, Pau14].
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Among these results, we want to emphasize a result by Paulin [Pau14] that
exactly concerns the Talagrand’s concentration property (22) obtained by using
Stein’s methods, following Chatterjee’s approach [Cha07].

For 1 � i � n, let us note X�i the random vector defined by

X�i D .X1; : : : ;Xi�1;XiC1; : : : ;Xn/:

The Dobrushin’s interdependence matrix D D .dij/ is a matrix of non-negative
entries such that for every i 2 f1; : : : ; ng, for every x; y 2 X n,

kL.XijX�i D x�i/ � L.XijX�i D y�i/kTV �
X
j;j¤i

dij1xj¤yj :

Theorem 5.4 (Theorem 3.3, [Pau14]) Let kDk1 D max1�j�n
Pn

iD1 dij and
kDk1 D max1�i�n

Pn
jD1 dij. If kDk1 < 1 and kDk1 � 1, then for all subsets

A 	 X n, one has

Z
e
1�kDk1
26:1 D2T .x;A/d�.x/ �

1

�.A/
:

Examples of applications of this concentration result are presented in [Pau14]
(the stochastic travelling salesman problem, Steiner trees).

5.3 Transport Inequalities for the Uniform Law
on the Symmetric Group

In this section we present transport inequalities for the uniform law on the symmetric
group Sn, that provide concentration results obtained by Maurey [Mau79] and
Talagrand [Tal95].

Let � be the uniform law on Sn, �.�/ D 1
nŠ ; � 2 Sn:

Theorem 5.5 ([Mau79]) Let d be the Hamming distance on the symmetric group,
for all �; � 2 Sn,

d.�; �/ D

nX
iD1

1�.i/¤�.i/:

Then for any subset A 	 Sn such that �.A/ � 1=2, and for all t � 0, one has

�.At/ � 1 � 2e� t2
64n ;

where At D fy 2 Sn; d.x;A/ � tg.
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This result has been generalized by Milman and Schechtman, to some groups
whose distance is invariant by translation [MS86]. Talagrand has obtained another
concentration property, stronger in terms of the dependence in n, obtained by the so-
called convex-hull method. Here is the Talagrand’s property with slightly modified
notations. This implies the one of the previous theorem up to constant.

Theorem 5.6 ([Tal95]) For any subset A 	 Sn,

Z
Sn

ef .A;�/=16d�.�/ �
1

�.A/
;

where the quantity f .A; �/ measures the distance from � to A as follows:

f .A; �/ D inf
p2P.A/

nX
iD1

�Z
1�.i/¤�.i/dp.�/

�2
:

This result has been first generalized to product of symmetric groups by
McDiarmid [McD02], and then further by Luczak and McDiarmid, to cover more
general permutation groups which act suitably “locally” [LM03].

Theorems 5.5 and 5.6 are consequences of the following transport inequalities.

Theorem 5.7 ([Sam16]) Let � be the uniform law on the symmetric group.

(a) For all probability measures �1 and �2 on Sn,

1

2.n � 1/
W2
1 .�2; �1/ �

�p
H.�1j�/C

p
H.�2j�/

	2
;

where W1.�1; �2/ D inf
�2….�2;�1/

“
d.�; �/d�.�; �/.

(b) For all probability measures �1 and �2 on Sn,

1

8
T2.�1j�2/ �

�p
H.�1j�/C

p
H.�2j�/

	2
;

where T2.�1j�2/ D inf
�2….�2;�1/

Z nX
iD1

�Z
1�.i/¤�.i/dp� .�/

�2
d�2.�/;

with �.�; �/ D �2.�/p� .�/.

The proof of (b), inspired from the Talagrand’s results, is given in the preprint
[Sam16]. We present a simpler proof of (a) of the same nature at the end of this
section. In fact, the dual formulation of the transport inequality of (a) is more
popular: for all 1-Lipschitz functions f W Sn ! R (with respect to the Hamming
distance d),
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Z
ef d� � e

R
f d�C.n�1/t2=2; 8t � 0:

This exponential inequality is a consequence of Hoeffding inequalities for bounded
martingales. It is widely commented and a proof is given in the paper [BHT06].

Point (b) implies the following useful concentration property.

Theorem 5.8 ([Sam16]) Let � be the uniform law on the symmetric group Sn. Let
g W Sn ! R and ˛k W Sn ! RC, k 2 f1; : : : ; ng be functions such that for all
�; � 2 Sn,

g.�/ � g.�/ �

nX
kD1

˛k.�/1�.k/¤�.k/:

Then, for all t � 0, one has

�

�
g �

Z
g d� � t

�
� exp

�
�

t2

8
R

j˛j2d�

�
;

and

�

�
g �

Z
g d�C t

�
� exp

�
�

t2

8 sup�2Sn j˛.�/j2

�
;

with j˛.�/j2 D

nX
kD1

˛2k .�/, � 2 Sn.

By applying this result to the particular function g.�/ D '.x� / where ' W

Œ0; 1�n ! R is a Lipschitz convex function and given .x1; : : : ; xn/ 2 Œ0; 1�n,
x� D .x�.1/; : : : ; x�.n//, we recover the deviation inequality by Adamczak, Chafaï,
and Wolff [ACW14] (Theorem 3.1) obtained from Theorem 5.6 by Talagrand. This
concentration property plays a key role in their approach, to study the convergence
of the empirical spectral measure of random matrices with exchangeable entries,
when the size of these matrices is increasing.

Proof of point (a) in Theorem 5.7 Since the distance W1 satisfies a triangular
inequality, it suffices to prove that for all probability measures �1 on Sn,

1

2.n � 1/
W2
1 .�1; �/ � H.�1j�/:

According to Proposition 3.1, the dual formulation of this inequality is the follow-
ing, for all function ' on Sn and all 	 � 0,

Z
e	Q'd� � e

R
	' d�C.n�1/	2=2; (23)
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with

Q'.�/ D inf
p2P.Sn/

�Z
'dp C

Z
d.�; �/ dp.�/

�

D inf
p2P.Sn/

( Z
'dp C

nX
kD1

Z
1�.k/¤�.k/ dp.�/

)
:

We will prove the inequality (23) by induction on n.
When n D 2, Sn is the two point space

Q'.�/ D inf
p2P.Sn/

�Z
'dp C 2

Z
1�¤� dp.�/

�
:

The inequality (23) corresponds exactly to the dual form of the Csizár-Kullback-
Pinsker inequality given by Proposition 3.1: for any probability measure � on a
separable metric space X , for any measurable function f W X ! R,

Z
e	Rf d� � e	

R
f d�C	2=2; 8	 � 0; (24)

with Rf .x/ D inf
p2P.X /

�Z
fdp C 2

Z
1x¤ydp.y/

�
; x 2 X :

The induction step is also a consequence of the dual form (24) of the Csizár-
Kullback-Pinsker inequality. Let .Hi/1�i�n be the partition of Sn defined by,

Hi D f� 2 Sn; �.i/ D ng

If p is a probability measure on Sn, it admits a unique decomposition defined by

p D

nX
iD1

Op.i/pi; with pi 2 P.Hi/ and Op.i/ D p.Hi/:

Thus, we define a probability measure Op on f1; : : : ; ng. In particular, for the uniform
law � on Sn, one has

� D
1

n

nX
iD1

�i;

where �i is the uniform law on Hi, �i.�/ D 1
.n�1/Š

, for any � 2 Hi. Therefore, one
has

Z
e	Q'd� D

1

n

nX
iD1

Z
e	Q'.�/d�i.�/:
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For any function f W Hi ! R, let us note

QHi f .�/ D inf
p2P.Hi/

8<
:
Z

f dp C
X
k¤i

Z
1�.k/¤�.k/dp.�/

9=
; :

We denote by �ij the transposition that exchanges the indices i and j. The application
from Hi to Hn defined by � 7! ��in is one to one, and therefore by a change of index
in the sum, we get

QHi f .�/ D inf
p2P.Hi/

8<
:
Z

f .�/ dp.�/C
X
k¤n

Z
1��in.k/¤��in.k/dp.�/

9=
;

D inf
q2P.Hn/

8<
:
Z

f .��in/ dq.�/C
X
k¤n

Z
1��in.k/¤�.k/dq.�/

9=
; D QHn f �in.��in/:

where f �in.�/ D f .��in/ for all � 2 Hn. Consequently, by induction, one has for all
function f W Hi ! R, for all 	 � 0,

Z
e	QHi f d�i D

Z
e	QHn f �in .��in/d�i.�/ D

Z
e	QHn f �in d�n

� exp

�
	

Z
f �in d�n C .n � 2/

	2

2

�
D exp

�
	

Z
fd�i C .n � 2/

	2

2

�
:

Then the proof relies on the following Lemma.

Lemma 5.1 For any function ' W Hi ! R and any � 2 Hi, one has

Q'.�/ � inf
Op2P.f1;:::;ng/

(
nX

lD1

QHi'
�il Op.l/C 2

nX
lD1

1l¤i Op.l/

)
:

The proof of this lemma is by decomposition of the probability measures p on
the Hj’s, we get that if � 2 Hi then

Q'.�/ D inf
Op2P.f1;:::;ng/

inf
p12P.H1/;:::;pn2P.Hn/8<

:
nX

lD1

2
4
Z
' dpl C

X
k…fl;ig

Z
1�.k/¤��il.k/dpl.�/

3
5 Op.l/C 2

nX
lD1

1l¤i Op.l/

9=
; :

The proof of (a) continues by applying consecutively this lemma, the Hölder
inequality, and the induction hypotheses, this gives
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Z
e	Q'.�/d�i.�/ � inf

Op2P.f1;:::;ng/

(
nY

lD1

�Z
e	QHi'

�il d�i

�Op.l/

e2	
Pn

lD1 1l¤i Op.l/

)

� exp

"
inf

Op2P.f1;:::;ng/

(
	

nX
lD1

�Z
'�il d�i

�
Op.l/C .n � 2/

	2

2
C 2	

nX
lD1

1l¤i Op.l/

)#

D exp

"
	 inf

Op2P.f1;:::;ng/

(
nX

lD1

O'.l/Op.l/C 2

nX
lD1

1l¤i Op.l/

)
C .n � 2/

	2

2

#
;

where O'.l/ D
R
'�il d�i D

R
'd�l. Let us consider again the above infimum-

convolution R O' defined on the space X D f1; : : : ; ng, one has

R O'.i/ D inf
Op2P.f1;:::;ng/

(
nX

lD1

O'.l/Op.l/C 2

nX
lD1

1l¤i Op.l/

)
:

As a consequence, by applying (24) with the uniform law � on f1; : : : ; ng, the
previous inequality gives

Z
e	Q'd� D

1

n

nX
iD1

Z
e	Q'.�/d�i.�/ �

 
1

n

nX
iD1

e	R O'.i/

!
e.n�2/	2=2

� exp

"
	

n

nX
iD1

O'.i/C
	2

2
C .n � 2/

	2

2

#
D exp

�
	

Z
' d�C .n � 1/

	2

2

�
:

ut
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Structured Random Matrices

Ramon van Handel

Abstract Random matrix theory is a well-developed area of probability theory that
has numerous connections with other areas of mathematics and its applications.
Much of the literature in this area is concerned with matrices that possess many
exact or approximate symmetries, such as matrices with i.i.d. entries, for which
precise analytic results and limit theorems are available. Much less well understood
are matrices that are endowed with an arbitrary structure, such as sparse Wigner
matrices or matrices whose entries possess a given variance pattern. The challenge
in investigating such structured random matrices is to understand how the given
structure of the matrix is reflected in its spectral properties. This chapter reviews
a number of recent results, methods, and open problems in this direction, with
a particular emphasis on sharp spectral norm inequalities for Gaussian random
matrices.

1 Introduction

The study of random matrices has a long history in probability, statistics, and
mathematical physics, and continues to be a source of many interesting old and
new mathematical problems [2, 25]. Recent years have seen impressive advances
in this area, particularly in the understanding of universality phenomena that are
exhibited by the spectra of classical random matrix models [8, 26]. At the same time,
random matrices have proved to be of major importance in contemporary applied
mathematics, see, for example, [28, 32] and the references therein.

Much of classical random matrix theory is concerned with highly symmetric
models of random matrices. For example, the simplest random matrix model,
the Wigner matrix, is a symmetric matrix whose entries above the diagonal are
independent and identically distributed. If the entries are chosen to be Gaussian
(and the diagonal entries are chosen to have the appropriate variance), this model
is additionally invariant under orthogonal transformations. Such strong symmetry
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properties make it possible to obtain extremely precise analytic results on the
asymptotic properties of macroscopic and microscopic spectral statistics of these
matrices, and give rise to deep connections with classical analysis, representation
theory, combinatorics, and various other areas of mathematics [2, 25].

Much less is understood, however, once we depart from such highly symmetric
settings and introduce nontrivial structure into the random matrix model. Such
models are the topic of this chapter. To illustrate what we mean by “structure,” let
us describe some typical examples that will be investigated in the sequel.

• A sparse Wigner matrix is a matrix with a given (deterministic) sparsity pattern,
whose nonzero entries above the diagonal are i.i.d. centered random variables.
Such models have interesting applications in combinatorics and computer sci-
ence (see, for example, [1]), and specific examples such as random band matrices
are of significant interest in mathematical physics (cf. [22]). The “structure” of
the matrix is determined by its sparsity pattern. We would like to know how the
given sparsity pattern is reflected in the spectral properties of the matrix.

• Let x1; : : : ; xs be deterministic vectors. Matrices of the form

X D

sX
kD1

gkxkx�
k ;

where g1; : : : ; gs are i.i.d. standard Gaussian random variables, arise in functional
analysis (see, for example, [20]). The “structure” of the matrix is determined by
the positions of the vectors x1; : : : ; xs. We would like to know how the given
positions are reflected in the spectral properties of the matrix.

• Let X1; : : : ;Xn be i.i.d. random vectors with covariance matrix ˙ . Consider

Z D
1

n

nX
kD1

XkX�
k ;

the sample covariance matrix [32, 10]. If we think of X1; : : : ;Xn are observed
data from an underlying distribution, we can think of Z as an unbiased estimator
of the covariance matrix ˙ D EZ. The “structure” of the matrix is determined
by the covariance matrix ˙ . We would like to know how the given covariance
matrix is reflected in the spectral properties of Z (and particularly in kZ �˙k).

While these models possess distinct features, we will refer to such models collec-
tively as structured random matrices. We emphasize two important features of such
models. First, the symmetry properties that characterize classical random matrix
models are manifestly absent in the structured setting. Second, it is evident in the
above models that it does not make much sense to investigate their asymptotic
properties (that is, probabilistic limit theorems): as the structure is defined for the
given matrix only, there is no natural way to take the size of these matrices to infinity.
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Due to these observations, the study of structured random matrices has a signif-
icantly different flavor than most of classical random matrix theory. In the absence
of asymptotic theory, our main interest is to obtain nonasymptotic inequalities
that identify what structural parameters control the macroscopic properties of the
underlying random matrix. In this sense, the study of structured random matrices
is very much in the spirit of probability in Banach spaces [12], which is heavily
reflected in the type of results that have been obtained in this area. In particular, the
aspect of structured random matrices that is most well understood is the behavior of
matrix norms, and particularly the spectral norm, of such matrices. The investigation
of the latter will be the focus of the remainder of this chapter.

In view of the above discussion, it should come as no surprise that some
of the earliest general results on structured random matrices appeared in the
functional analysis literature [27, 13, 11], but further progress has long remained
relatively limited. More recently, the study of structured random matrices has
received renewed attention due to the needs of applied mathematics, cf. [28] and
the references therein. However, significant new progress was made in the past few
years. On the one hand, surprisingly sharp inequalities were recently obtained for
certain random matrix models, particularly in the case of independent entries, that
yield nearly optimal bounds and go significantly beyond earlier results. On the other
hand, very simple new proofs have been discovered for some (previously) deep
classical results that shed new light on the underlying mechanisms and that point the
way to further progress in this direction. The opportunity therefore seems ripe for
an elementary presentation of the results in this area. The present chapter represents
the author’s attempt at presenting some of these ideas in a cohesive manner.

Due to the limited capacity of space and time, it is certainly impossible to provide
an encyclopedic presentation of the topic of this chapter, and some choices had to
be made. In particular, the following focus is adopted throughout this chapter:

• The emphasis throughout is on spectral norm inequalities for Gaussian random
matrices. The reason for this is twofold. On the one hand, much of the difficulty
of capturing the structure of random matrices arises already in the Gaussian
setting, so that this provides a particularly clean and rich playground for
investigating such problems. On the other hand, Gaussian results extend readily
to much more general distributions, as will be discussed further in section 4.4.

• For simplicity of presentation, no attempt was made to optimize the universal
constants that appear in most of our inequalities, even though many of these
inequalities can in fact be obtained with surprisingly sharp (even optimal)
constants. The original references can be consulted for more precise statements.

• The presentation is by no means exhaustive, and many variations on and
extensions of the presented material have been omitted. None of the results in this
chapter are original, though I have done my best to streamline the presentation.
On the other hand, I have tried to make the chapter as self-contained as possible,
and most results are presented with complete proofs.

The remainder of this chapter is organized as follows. The preliminary section 2
sets the stage by discussing the basic methods that will be used throughout this
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chapter to bound spectral norms of random matrices. Section 3 is devoted to a
family of powerful but suboptimal inequalities, the noncommutative Khintchine
inequalities, that are applicable to the most general class of structured random
matrices that we will encounter. In section 4, we specialize to structured random
matrices with independent entries (such as sparse Wigner matrices) and derive
nearly optimal bounds. We also discuss a few fundamental open problems in this
setting. We conclude this chapter in the short section 5 by investigating sample
covariance matrices.

2 How to Bound Matrix Norms

As was discussed in the introduction, the investigation of random matrices with
arbitrary structure has by its nature a nonasymptotic flavor: we aim to obtain
probabilistic inequalities (upper and lower bounds) on spectral properties of the
matrices in question that capture faithfully the underlying structure. At present, this
program is largely developed in the setting of spectral norms of random matrices,
which will be our focus throughout this chapter. For completeness, we define:

Definition 2.1 The spectral norm kXk is the largest singular value of the matrix X.

For convenience, we generally work with symmetric random matrices X D X�.
There is no loss of generality in doing so, as will be explained below.

Before we can obtain any meaningful bounds, we must first discuss some basic
approaches for bounding the spectral norms of random matrices. The most important
methods that are used for this purpose are collected in this section.

2.1 The Moment Method

Let X be an n � n symmetric random matrix. The first difficulty one encounters
in bounding the spectral norm kXk is that the map X 7! kXk is highly nonlinear.
It is therefore not obvious how to efficiently relate the distribution of kXk to the
distribution of the entries Xij. One of the most effective approaches to simplifying
this relationship is obtained by applying the following elementary observation.

Lemma 2.2 Let X be an n � n symmetric matrix. Then

kXk � TrŒX2p�1=2p for p � log n:

The beauty of this observation is that unlike kXk, which is a very complicated
function of the entries of X, the quantity TrŒX2p� is a polynomial in the matrix entries.
This means that EŒTrŒX2p��, the 2p-th moment of the matrix X, can be evaluated
explicitly and subjected to further analysis. As Lemma 2.2 implies that
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EŒkXk2p�1=2p � EŒTrŒX2p��1=2p for p � log n;

this provides a direct route to controlling the spectral norm of a random matrix.
Various incarnations of this idea are referred to as the moment method.

Lemma 2.2 actually has nothing to do with matrices. Given x 2 R
n, everyone

knows that kxkp ! kxk1 as p ! 1, so that kxkp � kxk1 when p is large. How
large should p be for this to be the case? The following lemma provides the answer.

Lemma 2.3 If p � log n, then kxkp � kxk1 for all x 2 R
n.

Proof It is trivial that

max
i�n

jxij
p �

X
i�n

jxij
p � n max

i�n
jxij

p:

Thus kxk1 � kxkp � n1=pkxk1, and n1=p D e.log n/=p � 1 when log n � p. ut

The proof of Lemma 2.2 follows readily by applying Lemma 2.3 to the spectrum.

Proof (Proof of Lemma 2.2) Let 	 D .	1; : : : ; 	n/ be the eigenvalues of X. Then
kXk D k	k1 and TrŒX2p�1=2p D k	k2p. The result follows from Lemma 2.3. ut

The moment method will be used frequently throughout this chapter as the first
step in bounding the spectral norm of random matrices. However, the moment
method is just as useful in the vector setting. As a warmup exercise, let us use this
approach to bound the maximum of i.i.d. Gaussian random variables (which can
be viewed as a vector analogue of bounding the maximum eigenvalue of a random
matrix). If g � N.0; I/ is the standard Gaussian vector in R

n, Lemma 2.3 implies

ŒEkgkp
1�

1=p � ŒEkgkp
p�
1=p � ŒEgp

1�
1=p for p � log n:

Thus the problem of bounding the maximum of n i.i.d. Gaussian random variables
is reduced by the moment method to computing the log n-th moment of a single
Gaussian random variable. We will bound the latter in section 3.1 in preparation for
proving the analogous bound for random matrices. For our present purposes, let us
simply note the outcome of this computation ŒEgp

1�
1=p . p

p (Lemma 3.1), so that

Ekgk1 � ŒEkgklog n
1 �1= log n .

p
log n:

This bound is in fact sharp (up to the universal constant).

Remark 2.4 Lemma 2.2 implies immediately that

EkXk � EŒTrŒX2p�1=2p� for p � log n:

Unfortunately, while this bound is sharp by construction, it is essentially useless: the
expectation of TrŒX2p�1=2p is in principle just as difficult to compute as that of kXk
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itself. The utility of the moment method stems from the fact that we can explicitly
compute the expectation of TrŒX2p�, a polynomial in the matrix entries. This suggests
that the moment method is well suited in principle only for obtaining sharp bounds
on the pth moment of the spectral norm

EŒkXk2p�1=2p � EŒTrŒX2p��1=2p for p � log n;

and not on the first moment EkXk of the spectral norm. Of course, as EkXk �

ŒEkXk2p�1=2p by Jensen’s inequality, this yields an upper bound on the first moment
of the spectral norm. We will see in the sequel that this upper bound is often, but not
always, sharp. We can expect the moment method to yield a sharp bound on EkXk

when the fluctuations of kXk are of a smaller order than its mean; this was the case,
for example, in the computation of Ekgk1 above. On the other hand, the moment
method is inherently dimension-dependent (as one must choose p � log n), so that
it is generally not well suited for obtaining dimension-free bounds.

We have formulated Lemma 2.2 for symmetric matrices. A completely analogous
approach can be applied to non-symmetric matrices. In this case, we use that

kXk2 D kX�Xk � TrŒ.X�X/p�1=p for p � log n;

which follows directly from Lemma 2.2. However, this non-symmetric form is often
somewhat inconvenient in the proofs of random matrix bounds, or at least requires
additional bookkeeping. Instead, we recall a classical trick that allows us to directly
obtain results for non-symmetric matrices from the analogous symmetric results. If
X is any n � m rectangular matrix, then it is readily verified that k QXk D kXk, where
QX denotes the .n C m/ � .n C m/ symmetric matrix defined by

QX D

�
0 X

X� 0

�
:

Therefore, to obtain a bound on the norm kXk of a non-symmetric random matrix,
it suffices to apply the corresponding result for symmetric random matrices to the
doubled matrix QX. For this reason, it is not really necessary to treat non-symmetric
matrices separately, and we will conveniently restrict our attention to symmetric
matrices throughout this chapter without any loss of generality.

Remark 2.5 A variant on the moment method is to use the bounds

et	max.X/ � TrŒetX� � net	max.X/;

which gives rise to the so-called matrix concentration inequalities. This approach
has become popular in recent years (particularly in the applied mathematics
literature) as it provides easy proofs for a number of useful inequalities. Matrix
concentration bounds are often stated in terms of tail probabilities PŒ	max.X/ > t�,
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and therefore appear at first sight to provide more information than expected
norm bounds. This is not the case, however: the resulting tail bounds are highly
suboptimal, and much sharper inequalities can be obtained by combining expected
norm bounds with concentration inequalities [5] or chaining tail bounds [7]. As
in the case of classical concentration inequalities, the moment method essentially
subsumes the matrix concentration approach and is often more powerful. We
therefore do not discuss this approach further, but refer to [28] for a systematic
development.

2.2 The Random Process Method

While the moment method introduced in the previous section is very powerful, it has
a number of drawbacks. First, while the matrix moments EŒTrŒX2p�� can typically be
computed explicitly, extracting useful information from the resulting expressions is
a nontrivial matter that can result in difficult combinatorial problems. Moreover, as
discussed in Remark 2.4, in certain cases the moment method cannot yield sharp
bounds on the expected spectral norm EkXk. Finally, the moment method can only
yield information on the spectral norm of the matrix; if other operator norms are of
interest, this approach is powerless. In this section, we develop an entirely different
method that provides a fruitful approach for addressing these issues.

The present method is based on the following trivial fact.

Lemma 2.6 Let X be an n � n symmetric matrix. Then

kXk D sup
v2B

jhv;Xvij;

where B denotes the Euclidean unit ball in R
n.

When X is a symmetric random matrix, we can view v 7! hv;Xvi as a random
process that is indexed by the Euclidean unit ball. Thus controlling the expected
spectral norm of X is none other than a special instance of the general probabilistic
problem of controlling the expected supremum of a random process. There exist a
powerful methods for this purpose (see, e.g., [24]) that could potentially be applied
in the present setting to generate insight on the structure of random matrices.

Already the simplest possible approach to bounding the suprema of random
processes, the "-net method, has proved to be very useful in the study of basic
random matrix models. The idea behind this approach is to approximate the
supremum over the unit ball B by the maximum over a finite discretization B" of
the unit ball, which reduces the problem to computing the maximum of a finite
number of random variables (as we did, for example, in the previous section when
we computed kgk1). Let us briefly sketch how this approach works in the following
basic example. Let X be the n � n symmetric random matrix with i.i.d. standard
Gaussian entries above the diagonal. Such a matrix is called a Wigner matrix.
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Then for every vector v 2 B, the random variable hv;Xvi is Gaussian with variance
at most 2. Now let B" be a finite subset of the unit ball B in R

n such that every point
in B is within distance at most " from a point in B". Such a set is called an "-net, and
should be viewed as a uniform discretization of the unit ball B at the scale ". Then
we can bound, for small ",1

EkXk D E sup
v2B

jhv;Xvij . E sup
v2B"

jhv;Xvij .
p

log jB"j;

where we used that the expected maximum of k Gaussian random variables with
variance . 1 is bounded by .

p
log k (we proved this in the previous section using

the moment method: note that independence was not needed for the upper bound.)
A classical argument shows that the smallest "-net in B has cardinality of order "�n,
so the above argument yields a bound of order EkXk . p

n for Wigner matrices.
It turns out that this bound is in fact sharp in the present setting: Wigner matrices
satisfy EkXk �

p
n (we will prove this more carefully in section 3.2 below).

Variants of the above argument have proved to be very useful in random matrix
theory, and we refer to [32] for a systematic development. However, "-net arguments
are usually applied to highly symmetric situations, such as is the case for Wigner
matrices (all entries are identically distributed). The problem with the "-net method
is that it is sharp essentially only in this situation: this method cannot incorporate
nontrivial structure. To illustrate this, consider the following typical structured
example. Fix a certain sparsity pattern of the matrix X at the outset (that is, choose
a subset of the entries that will be forced to zero), and choose the remaining entries
to be independent standard Gaussians. In this case, a “good” discretization of the
problem cannot simply distribute points uniformly over the unit ball B, but rather
must take into account the geometry of the given sparsity pattern. Unfortunately, it
is entirely unclear how this is to be accomplished in general. For this reason, "-net
methods have proved to be of limited use for structured random matrices, and they
will play essentially no role in the remainder of this chapter.

Remark 2.7 Deep results from the theory of Gaussian processes [24] guarantee
that the expected supremum of any Gaussian process and of many other random
processes can be captured sharply by a sophisticated multiscale counterpart of
the "-net method called the generic chaining. Therefore, in principle, it should
be possible to capture precisely the norm of structured random matrices if one
is able to construct a near-optimal multiscale net. Unfortunately, the general
theory only guarantees the existence of such a net, and provides essentially no
mechanism to construct one in any given situation. From this perspective, structured
random matrices provide a particularly interesting case study of inhomogeneous
random processes whose investigation could shed new light on these more general
mechanisms (this perspective provided strong motivation for this author’s interest in

1The first inequality follows by noting that for every v 2 B, choosing Qv 2 B" such that kv�Qvk � ",
we have jhv;Xvij D jhQv;X Qvi C hv � Qv;X.v C Qv/ij � jhQv;X Qvij C 2"kXk.
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random matrices). At present, however, progress along these lines remains in a very
primitive state. Note that even the most trivial of examples from the random matrix
perspective, such as the case where X is a diagonal matrix with i.i.d. Gaussian entries
on the diagonal, require already a delicate multiscale net to obtain sharp results; see,
e.g., [30].

As direct control of the random processes that arise from structured random
matrices is largely intractable, a different approach is needed. To this end, the key
idea that we will exploit is the use of comparison theorems to bound the expected
supremum of one random process by that of another random process. The basic
idea is to design a suitable comparison process that dominates the random process
of Lemma 2.6 but that is easier to control. For this approach to be successful, the
comparison process must capture the structure of the original process while at the
same time being amenable to some form of explicit computation. In principle there
is no reason to expect that this is ever possible. Nonetheless, we will repeatedly
apply different variations on this approach to obtain the best known bounds on
structured random matrices. Comparison methods are a recurring theme throughout
this chapter, and we postpone further discussion to the following sections.

Let us note that the random process method is easily extended also to non-
symmetric matrices: if X is an n � m rectangular matrix, we have

kXk D sup
v;w2B

hv;Xwi:

Alternatively, we can use the same symmetrization trick as was illustrated in the
previous section to reduce to the symmetric case. For this reason, we will restrict
attention to symmetric matrices in the sequel. Let us also note, however, that unlike
the moment method, the present approach extends readily to other operator norms
by replacing the Euclidean unit ball B by the unit ball for other norms. In this sense,
the random process method is substantially more general than the moment method,
which is restricted to the spectral norm. However, the spectral norm is often the most
interesting norm in practice in applications of random matrix theory.

2.3 Roots and Poles

The moment method and random process method discussed in the previous sections
have proved to be by far the most useful approaches to bounding the spectral norms
of random matrices, and all results in this chapter will be based on one or both
of these methods. We want to briefly mention a third approach, however, that has
recently proved to be useful. It is well known from linear algebra that the eigenvalues
of a symmetric matrix X are the roots of the characteristic polynomial

�.t/ D det.tI � X/;
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or, equivalently, the poles of the Stieltjes transform

s.t/ WD TrŒ.tI � X/�1� D
d

dt
log�.t/:

One could therefore attempt to bound the extreme eigenvalues of X (and therefore
the spectral norm kXk) by controlling the location of the largest root (pole) of the
characteristic polynomial (Stieltjes transform) of X, with high probability.

The Stieltjes transform method plays a major role in random matrix theory [2],
as it provides perhaps the simplest route to proving limit theorems for the spectral
distributions of random matrices. It is possible along these lines to prove asymptotic
results on the extreme eigenvalues, see [3] for example. However, as the Stieltjes
transform is highly nonlinear, it seems to be very difficult to use this approach
to address nonasymptotic questions for structured random matrices where explicit
limit information is meaningless. The characteristic polynomial appears at first sight
to be more promising, as this is a polynomial in the matrix entries: one can therefore
hope to compute E� exactly. This simplicity is deceptive, however, as there is no
reason to expect that maxroot.E�/ has any relation to the quantity E maxroot.�/
that we are interested in. It was therefore long believed that such an approach does
not provide any useful tool in random matrix theory. Nonetheless, a deterministic
version of this idea plays the crucial role in the recent breakthrough resolution of the
Kadison-Singer conjecture [15], so that it is conceivable that such an approach could
prove to be fruitful in problems of random matrix theory (cf. [23] where related ideas
were applied to Stieltjes transforms in a random matrix problem). To date, however,
these methods have not been successfully applied to the problems investigated in
this chapter, and they will make no further appearance in the sequel.

3 Khintchine-Type Inequalities

The main aim of this section is to introduce a very general method for bounding
the spectral norm of structured random matrices. The basic idea, due to Lust-
Piquard [13], is to prove an analog of the classical Khintchine inequality for scalar
random variables in the noncommutative setting. This noncommutative Khintchine
inequality allows us to bound the moments of structured random matrices, which
immediately results in a bound on the spectral norm by Lemma 2.2.

The advantage of the noncommutative Khintchine inequality is that it can be
applied in a remarkably general setting: it does not even require independence of
the matrix entries. The downside of this inequality is that it almost always gives rise
to bounds on the spectral norm that are suboptimal by a multiplicative factor that
is logarithmic in the dimension (cf. section 4.2). We will discuss the origin of this
suboptimality and some potential methods for reducing it in the general setting of
this section. Much sharper bounds will be obtained in section 4 under the additional
restriction that the matrix entries are independent.
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For simplicity, we will restrict our attention to matrices with Gaussian entries,
though extensions to other distributions are easily obtained (for example, see [14]).

3.1 The Noncommutative Khintchine Inequality

In this section, we will consider the following very general setting. Let X be an n�n
symmetric random matrix with zero mean. The only assumption we make on the
distribution is that the entries on and above the diagonal (that is, those entries that
are not fixed by symmetry) are centered and jointly Gaussian. In particular, these
entries can possess an arbitrary covariance matrix, and are assumed to be neither
identically distributed nor independent. Our aim is to bound the spectral norm kXk

in terms of the given covariance structure of the matrix.
It proves to be convenient to reformulate our random matrix model somewhat.

Let A1; : : : ;As be nonrandom n � n symmetric matrices, and let g1; : : : ; gs be
independent standard Gaussian variables. Then we define the matrix X as

X D

sX
kD1

gkAk:

Clearly X is a symmetric matrix with jointly Gaussian entries. Conversely, the reader
will convince herself after a moment’s reflection that any symmetric matrix with
centered and jointly Gaussian entries can be written in the above form for some
choice of s � n.n C 1/=2 and A1; : : : ;As. There is therefore no loss of generality in
considering the present formulation (we will reformulate our ultimate bounds in a
way that does not depend on the choice of the coefficient matrices Ak).

Our intention is to apply the moment method. To this end, we must obtain bounds
on the moments EŒTrŒX2p�� of the matrix X. It is instructive to begin by considering
the simplest possible case where the dimension n D 1. In this case, X is simply
a scalar Gaussian random variable with zero mean and variance

P
k A2k , and the

problem in this case reduces to bounding the moments of a scalar Gaussian variable.

Lemma 3.1 Let g � N.0; 1/. Then EŒg2p�1=2p �
p
2p � 1.

Proof We use the following fundamental gaussian integration by parts property:

EŒgf .g/� D EŒf 0.g/�:

To prove it, simply note that integration by parts yields

Z 1

�1

xf .x/
e�x2=2

p
2�

dx D

Z 1

�1

df .x/

dx

e�x2=2

p
2�

dx
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for smooth functions f with compact support, and the conclusion is readily extended
by approximation to any C1 function for which the formula makes sense.

We now apply the integration by parts formula to f .x/ D x2p�1 as follows:

EŒg2p� D EŒg � g2p�1� D .2p � 1/EŒg2p�2� � .2p � 1/EŒg2p�1�1=p;

where the last inequality is by Jensen. Rearranging yields the conclusion. ut

Applying Lemma 3.1 yields immediately that

EŒX2p�1=2p �
p
2p � 1

"
sX

kD1

A2k

#1=2
when n D 1:

It was realized by Lust-Piquard [13] that the analogous inequality holds in any
dimension n (the correct dependence of the bound on p was obtained later, cf. [17]).

Theorem 3.2 (Noncommutative Khintchine inequality) In the present setting

EŒTrŒX2p��1=2p �
p
2p � 1Tr

" 
sX

kD1

A2k

!p#1=2p

:

By combining this bound with Lemma 2.2, we immediately obtain the following
conclusion regarding the spectral norm of the matrix X.

Corollary 3.3 In the setting of this section,

EkXk .
p

log n







sX

kD1

A2k







1=2

:

This bound is expressed directly in terms of the coefficient matrices Ak that
determine the structure of X, and has proved to be extremely useful in applications
of random matrix theory in functional analysis and applied mathematics. To what
extent this bound is sharp will be discussed in the next section.

Remark 3.4 Recall that our bounds apply to any symmetric matrix X with centered
and jointly Gaussian entries. Our bounds should therefore not depend on the choice
of representation in terms of the coefficient matrices Ak, which is not unique. It is
easily verified that this is the case. Indeed, it suffices to note that

EX2 D

sX
kD1

A2k ;

so that we can express the conclusion of Theorem 3.2 and Corollary 3.3 as

EŒTrŒX2p��1=2p . p
p TrŒ.EX2/p�1=2p; EkXk .

p
log n kEX2k1=2
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without reference to the coefficient matrices Ak. We note that the quantity kEX2k
has a natural interpretation: it measures the size of the matrix X “on average” (as the
expectation in this quantity is inside the spectral norm).

We now turn to the proof of Theorem 3.2. We begin by noting that the proof
follows immediately from Lemma 3.1 not just when n D 1, but also in any
dimension n under the additional assumption that the matrices A1; : : : ;As commute.
Indeed, in this case we can work without loss of generality in a basis in which all
the matrices Ak are simultaneously diagonal, and the result follows by applying
Lemma 3.1 to every diagonal entry of X. The crucial idea behind the proof of
Theorem 3.2 is that the commutative case is in fact the worst case situation! This
idea will appear very explicitly in the proof: we will simply repeat the proof of
Lemma 3.1, and the result will follow by showing that we can permute the order
of the matrices Ak at the pivotal point in the proof. (The simple proof given here
follows [29].)

Proof (Proof of Theorem 3.2) As in the proof of Lemma 3.1, we obtain

EŒTrŒX2p�� D EŒTrŒX � X2p�1��

D

sX
kD1

EŒgkTrŒAkX2p�1��

D

2p�2X
`D0

sX
kD1

EŒTrŒAkX`AkX2p�2�`��

using Gaussian integration by parts. The crucial step in the proof is the observation
that permuting Ak and X` inside the trace can only increase the bound.

Lemma 3.5 TrŒAkX`AkX2p�2�`� � TrŒA2kX2p�2�.

Proof Let us write X in terms of its eigendecomposition X D
Pn

iD1 	iviv
�
i , where

	i and vi denote the eigenvalues and eigenvectors of X. Then we can write

TrŒAkX`AkX2p�2�`� D

nX
i;jD1

	`i 	
2p�2�`
j jhvi;Akvjij

2 �

nX
i;jD1

j	ij
`j	jj

2p�2�`jhvi;Akvjij
2:

But note that the right-hand side is a convex function of `, so that its maximum in
the interval Œ0; 2p � 2� is attained either at ` D 0 or ` D 2p � 2. This yields

TrŒAkX`AkX2p�2�`� �

nX
i;jD1

j	jj
2p�2jhvi;Akvjij

2 D TrŒA2kX2p�2�;

and the proof is complete. ut
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We now complete the proof of the noncommutative Khintchine inequality.
Substituting Lemma 3.5 into the previous inequality yields

EŒTrŒX2p�� � .2p � 1/

sX
kD1

EŒTrŒA2kX2p�2��

� .2p � 1/Tr

" 
sX

kD1

A2k

!p#1=p

EŒTrŒX2p��1�1=p;

where we used Hölder’s inequality TrŒYZ� � TrŒjYjp�1=pTrŒjZjp=.p�1/�1�1=p in the last
step. Rearranging this expression yields the desired conclusion. ut

Remark 3.6 The proof of Corollary 3.3 given here, using the moment method, is
exceedingly simple. However, by its nature, it can only bound the spectral norm of
the matrix, and would be useless if we wanted to bound other operator norms. It is
worth noting that an alternative proof of Corollary 3.3 was developed by Rudelson,
using deep random process machinery described in Remark 2.7, for the special case
where the matrices Ak are all of rank one (see [24, Prop. 16.7.4] for an exposition of
this proof). The advantage of this approach is that it extends to some other operator
norms, which proves to be useful in Banach space theory. It is remarkable, however,
that no random process proof of Corollary 3.3 is known to date in the general setting.

3.2 How Sharp Are Khintchine Inequalities?

Corollary 3.3 provides a very convenient bound on the spectral norm kXk: it is
expressed directly in terms of the coefficients Ak that define the structure of the
matrix X. However, is this structure captured correctly? To understand the degree to
which Corollary 3.3 is sharp, let us augment it with a lower bound.

Lemma 3.7 Let X D
Ps

kD1 gkAk as in the previous section. Then







sX

kD1

A2k







1=2

. EkXk .
p

log n







sX

kD1

A2k







1=2

:

That is, the noncommutative Khintchine bound is sharp up to a logarithmic factor.

Proof The upper bound in Corollary 3.3, and it remains to prove the lower bound.
A slightly simpler bound is immediate by Jensen’s inequality: we have

EkXk2 � kEX2k D







sX

kD1

A2k






:
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It therefore remains to show that .EkXk/2 & EkXk2, or, equivalently, that VarkXk .
.EkXk/2. To bound the fluctuations of the spectral norm, we recall an important
property of Gaussian random variables (see, for example, [16]).

Lemma 3.8 (Gaussian concentration) Let g be a standard Gaussian vector in R
n,

let f W Rn ! R be smooth, and let p � 1. Then

ŒE.f .g/ � Ef .g//p�1=p . p
p ŒEkrf .g/kp�1=p:

Proof Let g0 be an independent copy of g, and define g.'/ D g sin' C g0 cos'.
Then

f .g/ � f .g0/ D

Z �=2

0

d

d'
f .g.'// d' D

Z �=2

0

hg0.'/;rf .g.'//i d';

where g0.'/ D d
d' g.'/. Applying Jensen’s inequality twice gives

E.f .g/ � Ef .g//p � E.f .g/ � f .g0//p �
2

�

Z �=2

0

E.�
2
hg0.'/;rf .g.'//i/p d':

Now note that .g.'/; g0.'//
d
D .g; g0/ for every '. We can therefore apply

Lemma 3.1 conditionally on g.'/ to estimate for every '

ŒEhg0.'/;rf .g.'//ip�1=p . p
p Ekrf .g.'//kp�1=p D

p
p Ekrf .g/kp�1=p;

and substituting into the above expression completes the proof. ut

We apply Lemma 3.8 to the function f .x/ D k
Ps

kD1 xkAkk. Note that

jf .x/ � f .x0/j �







sX

kD1

.xk � x0
k/Ak






 D sup
v2B

ˇ̌
ˇ̌
ˇ

sX
kD1

.xk � x0
k/hv;Akvi

ˇ̌
ˇ̌
ˇ

� kx � x0k sup
v2B

"
sX

kD1

hv;Akvi2

#1=2
DW ��kx � x0k:

Thus f is ��-Lipschitz, so krf k � ��, and Lemma 3.8 yields VarkXk . �2�. But as

�� D

r
�

2
sup
v2B

E

ˇ̌
ˇ̌
ˇ

sX
kD1

gkhv;Akvi

ˇ̌
ˇ̌
ˇ �

r
�

2
EkXk;

we have VarkXk . .EkXk/2, and the proof is complete. ut

Lemma 3.7 shows that the structural quantity � WD k
Ps

kD1 A2kk1=2 D kEX2k1=2

that appears in the noncommutative Khintchine inequality is very natural: the
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expected spectral norm EkXk is controlled by � up to a logarithmic factor in the
dimension. It is not at all clear, a priori, whether the upper or lower bound in
Lemma 3.7 is sharp. It turns out that either the upper bound or the lower bound
may be sharp in different situations. Let us illustrate this in two extreme examples.

Example 3.9 (Diagonal matrix) Consider the case where X is a diagonal matrix

X D

2
6664

g1
g2
: : :

gn

3
7775

with i.i.d. standard Gaussian entries on the diagonal. In this case,

EkXk D Ekgk1 �
p

log n:

On the other hand, we clearly have

� D kEX2k1=2 D 1;

so the upper bound in Lemma 3.7 is sharp. This shows that the logarithmic factor in
the noncommutative Khintchine inequality cannot be removed.

Example 3.10 (Wigner matrix) Let X be a symmetric matrix

X D

2
6664

g11 g12 � � � g1n

g12 g22 g2n
:::

: : :
:::

g1n g2n � � � gnn

3
7775

with i.i.d. standard Gaussian entries on and above the diagonal. In this case

� D kEX2k1=2 D
p

n:

Thus Lemma 3.7 yields the bounds

p
n . EkXk .

p
n log n:

Which bound is sharp? A hint can be obtained from what is perhaps the most
classical result in random matrix theory: the empirical spectral distribution of the
matrix n�1=2X (that is, the random probability measure on R that places a point
mass on every eigenvalue of n�1=2X) converges weakly to the Wigner semicircle
distribution 1

2�

p
.4 � x2/C dx [2, 25]. Therefore, when the dimension n is large, the

eigenvalues of X are approximately distributed according to the following density:
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0−2
√
n 2

√
n

This picture strongly suggests that the spectrum of X is supported at least approxi-
mately in the interval Œ�2

p
n; 2

p
n�, which implies that kXk �

p
n.

Lemma 3.11 For the Wigner matrix of Example 3.10, EkXk �
p

n.

Thus we see that in the present example it is the lower bound in Lemma 3.7
that is sharp, while the upper bound obtained from the noncommutative Khintchine
inequality fails to capture correctly the structure of the problem.

We already sketched a proof of Lemma 3.11 using "-nets in section 2.2. We take
the opportunity now to present another proof, due to Chevet [6] and Gordon [9], that
provides a first illustration of the comparison methods that will play an important
role in the rest of this chapter. To this end, we first prove a classical comparison
theorem for Gaussian processes due to Slepian and Fernique (see, e.g., [5]).

Lemma 3.12 (Slepian-Fernique inequality) Let Y � N.0;˙Y/ and Z � N.0;˙Z/

be centered Gaussian vectors in R
n. Suppose that

E.Yi � Yj/
2 � E.Zi � Zj/

2 for all 1 � i; j � n:

Then

E max
i�n

Yi � E max
i�n

Zi:

Proof Let g; g0 be independent standard Gaussian vectors. We can assume that
Y D .˙Y/1=2g and Z D .˙Z/1=2g0. Let Y.t/ D

p
tZ C

p
1 � tY for t 2 Œ0; 1�.

Then

d

dt
EŒf .Y.t//� D

1

2
E
��

rf .Y.t//;
Z

p
t

�
Y

p
1 � t

��

D
1

2
E
�
1

p
t

�
.˙Z/1=2rf .Y.t//; g0

�
�

1
p
1 � t

�
.˙Y/1=2rf .Y.t//; g

��

D
1

2

nX
i;jD1

.˙Z
ij �˙Y

ij /E
�
@2f

@xi@xj
.Y.t//

�
;
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where we used Gaussian integration by parts in the last step. We would really like to
apply this identity with f .x/ D maxi xi: if we can show that d

dt EŒmaxi Yi.t/� � 0, that
would imply EŒmaxi Zi� D EŒmaxi Yi.1/� � EŒmaxi Yi.0/� D EŒmaxi Yi� as desired.
The problem is that the function x 7! maxi xi is not sufficiently smooth: it does not
possess second derivatives. We therefore work with a smooth approximation.

Previously, we used kxkp as a smooth approximation of kxk1. Unfortunately, it
turns out that Slepian-Fernique does not hold when maxi Yi and maxi Zi are replaced
by kYk1 and kZk1, so this cannot work. We must therefore choose instead a one-
sided approximation. In analogy with Remark 2.5, we choose

fˇ.x/ D
1

ˇ
log

 
nX

iD1

eˇxi

!
:

Clearly maxi xi � fˇ.x/ � maxi xi Cˇ�1 log n, so fˇ.x/ ! maxi xi as ˇ ! 1. Also

@fˇ
@xi
.x/ D

eˇxiP
j eˇxj

DW pi.x/;
@2fˇ
@xi@xj

.x/ D ˇfıijpi.x/ � pi.x/pj.x/g;

where we note that pi.x/ � 0 and
P

i pi.x/ D 1. The reader should check that

d

dt
EŒfˇ.Y.t//� D

ˇ

4

X
i¤j

fE.Zi � Zj/
2 � E.Yi � Yj/

2g EŒpi.Y.t//pj.Y.t//�;

which follows by rearranging the terms in the above expressions. The right-hand
side is nonnegative by assumption, and thus the proof is easily completed. ut

We can now prove Lemma 3.11.

Proof (Proof of Lemma 3.11) That EkXk & p
n follows from Lemma 3.7, so it

remains to prove EkXk . p
n. To this end, define Xv WD hv;Xvi and Yv D 2hv; gi,

where g is a standard Gaussian vector. Then we can estimate

E.Xv � Xw/
2 � 2

nX
i;jD1

.vivj � wiwj/
2 � 4kv � wk2 D E.Yv � Yw/

2

when kvk D kwk D 1, where we used 1�hv;wi2 � 2.1�hv;wi/when jhv;wij � 1.
It follows form the Slepian-Fernique lemma that we have

E	max.X/ D E sup
kvkD1

hv;Xvi � 2E sup
kvkD1

hv; gi D 2Ekgk � 2
p

n:

But as X and �X have the same distribution, so do the random variables 	max.X/
and �	min.X/ D 	max.�X/. We can therefore estimate
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EkXk D E.	max.X/ _ �	min.X// � E	max.X/C 2Ej	max.X/ � E	max.X/j

D 2
p

n C O.1/;

where we used that Var.	max.X// D O.1/ by Lemma 3.8. ut

We have seen above two extreme examples: diagonal matrices and Wigner
matrices. In the diagonal case, the noncommutative Khintchine inequality is sharp,
while the lower bound in Lemma 3.7 is suboptimal. On the other hand, for Wigner
matrices, the noncommutative Khintchine inequality is suboptimal, while the lower
bound in Lemma 3.7 is sharp. We therefore see that while the structural parameter
� D kEX2k1=2 that appears in the noncommutative Khintchine inequality always
crudely controls the spectral norm up to a logarithmic factor in the dimension, it fails
to capture correctly the structure of the problem and cannot in general yield sharp
bounds. The aim of the rest of this chapter is to develop a deeper understanding of
the norms of structured random matrices that goes beyond Lemma 3.7.

3.3 A Second-Order Khintchine Inequality

Having established that the noncommutative Khintchine inequality falls short of
capturing the full structure of our random matrix model, we naturally aim to
understand where things went wrong. The culprit is easy to identify. The main idea
behind the proof of the noncommutative Khintchine inequality is that the case where
the matrices Ak commute is the worst possible, as is made precise by Lemma 3.5.
However, when the matrices Ak do not commute, the behavior of the spectral norm
can be strictly better than is predicted by the noncommutative Khintchine inequality.
The crucial shortcoming of the noncommutative Khintchine inequality is that it
provides no mechanism to capture the effect of noncommutativity.

Remark 3.13 This intuition is clearly visible in the examples of the previous
section: the diagonal example corresponds to choosing coefficient matrices Ak of
the form eie�

i for 1 � i � n, while to obtain a Wigner matrix we add additional
coefficient matrices Ak of the form eie�

j C eje�
i for 1 � i < j � n (here

e1; : : : ; en denotes the standard basis in R
n). Clearly the matrices Ak commute in

the diagonal example, in which case noncommutative Khintchine is sharp, but they
do not commute for the Wigner matrix, in which case noncommutative Khintchine
is suboptimal.

The present insight suggests that a good bound on the spectral norm of random
matrices of the form X D

Ps
kD1 gkAk should somehow take into account the

algebraic structure of the coefficient matrices Ak. Unfortunately, it is not at all clear
how this is to be accomplished. In this section we develop an interesting result in this
spirit due to Tropp [29]. While this result is still very far from being sharp, the proof
contains some interesting ideas, and provides at present the only known approach to
improve on the noncommutative Khintchine inequality in the most general setting.
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The intuition behind the result of Tropp is that the commutation inequality

EŒTrŒAkX`AkX2p�2�`�� � EŒTrŒA2kX2p�2��

of Lemma 3.5, which captures the idea that the commutative case is the worst case,
should incur significant loss when the matrices Ak do not commute. Therefore, rather
than apply this inequality directly, we should try to go to second order by integrating
again by parts. For example, for the term ` D 1, we could write

EŒTrŒAkXAkX2p�3�� D

sX
lD1

EŒglTrŒAkAlAkX2p�3��

D

sX
lD1

2p�4X
mD0

EŒTrŒAkAlAkXmAlX
2p�4�m��:

If we could again permute the order of Al and Xm on the right-hand side, we would
obtain control of these terms not by the structural parameter

� D







sX

kD1

A2k







1=2

that appears in the noncommutative Khintchine inequality, but rather by the second-
order “noncommutative” structural parameter







sX

k;lD1

AkAlAkAl







1=4

:

Of course, when the matrices Ak commute, the latter parameter is equal to � and
we recover the noncommutative Khintchine inequality; but when the matrices Ak do
not commute, it can be the case that this parameter is much smaller than � . This
back-of-the-envelope computation suggests that we might indeed hope to capture
noncommutativity to some extent through the present approach.

In essence, this is precisely how we will proceed. However, there is a technical
issue: the convexity that was exploited in the proof of Lemma 3.5 is no longer
present in the second-order terms. We therefore cannot naively exchange Al and
Xm as suggested above, and the parameter k

Ps
k;lD1 AkAlAkAlk

1=4 is in fact too small
to yield any meaningful bound (as is illustrated by a counterexample in [29]). The
key idea in [29] is that a classical complex analysis argument [18, Appendix IX.4]
can be exploited to force convexity, at the expense of a larger second-order term.
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Theorem 3.14 (Tropp) Let X D
Ps

kD1 gkAk as in the previous section. Define

� WD







sX

kD1

A2k







1=2

; Q� WD sup
U1;U2;U3







sX

k;lD1

AkU1AlU2AkU3Al







1=4

;

where the supremum is taken over all triples U1;U2;U3 of commuting unitary
matrices.2 Then we have a second-order noncommutative Khintchine inequality

EkXk . � log1=4 n C Q� log1=2 n:

Due to the (necessary) presence of the unitaries, the second-order parameter Q� is
not so easy to compute. It is verified in [29] that Q� � � (so that Theorem 3.14 is
no worse than the noncommutative Khintchine inequality), and that Q� D � when
the matrices Ak commute. On the other hand, an explicit computation in [29] shows
that if X is a Wigner matrix as in Example 3.10, we have � �

p
n and Q� � n1=4.

Thus Theorem 3.14 yields in this case EkXk . p
n.log n/1=4, which is strictly better

than the noncommutative Khintchine bound EkXk . p
n.log n/1=2 but falls short of

the sharp bound EkXk �
p

n. We therefore see that Theorem 3.14 does indeed
improve, albeit ever so slightly, on the noncommutative Khintchine bound. The real
interest of Theorem 3.14 is however the very general setting in which it holds, and
that it does capture explicitly the noncommutativity of the coefficient matrices Ak. In
section 4, we will see that much sharper bounds can be obtained if we specialize to
random matrices with independent entries. While this is perhaps the most interesting
setting in practice, it will require us to depart from the much more general setting
provided by the Khintchine-type inequalities that we have seen so far.

The remainder of this section is devoted to the proof of Theorem 3.14. The proof
follows essentially along the lines already indicated: we follow the proof of the
noncommutative Khintchine inequality and integrate by parts a second time. The
new idea in the proof is to understand how to appropriately extend Lemma 3.5.

Proof (Proof of Theorem 3.14) We begin as in the proof of Theorem 3.2 by writing

EŒTrŒX2p�� D

2p�2X
`D0

sX
kD1

EŒTrŒAkX`AkX2p�2�`��:

Let us investigate each of the terms inside the first sum.
Case ` D 0; 2p � 2. In this case there is little to do: we can estimate

sX
kD1

EŒTrŒA2kX2p�2�� � Tr

" 
sX

kD1

A2k

!p#1=p

EŒTrŒX2p��1�1=p

precisely as in the proof of Theorem 3.2.

2For reasons that will become evident in the proof, it is essential to consider (complex) unitary
matrices U1;U2;U3, despite that all the matrices Ak and X are assumed to be real.
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Case ` D 1; 2p�3. This is the first point at which something interesting happens.
Integrating by parts a second time as was discussed before Theorem 3.14, we obtain

sX
kD1

EŒTrŒAkXAkX2p�3�� D

2p�4X
mD0

sX
k;lD1

EŒTrŒAkAlAkXmAlX
2p�4�m��:

The challenge we now face is to prove the appropriate analogue of Lemma 3.5.

Lemma 3.15 There exist unitary matrices U1;U2 (dependent on X and m) such that

sX
k;lD1

TrŒAkAlAkXmAlX
2p�4�m� �

ˇ̌
ˇ̌
ˇ

sX
k;lD1

TrŒAkAlAkU1AlU2X
2p�4�

ˇ̌
ˇ̌
ˇ:

Remark 3.16 Let us start the proof as in Lemma 3.5 and see where things go wrong.
In terms of the eigendecomposition X D

Pn
iD1 	iviv

�
i , we can write

sX
k;lD1

TrŒAkAlAkXmAlX
2p�4�m� D

sX
k;lD1

nX
i;jD1

	m
i 	

2p�4�m
j hvj;AkAlAkviihvi;Alvji:

Unfortunately, unlike in the analogous expression in the proof of Lemma 3.5, the
coefficients hvj;AkAlAkviihvi;Alvji can have arbitrary sign. Therefore, we cannot
easily force convexity of the above expression as a function of m as we did in
Lemma 3.5: if we replace the terms in the sum by their absolute values, we will
no longer be able to interpret the resulting expression as a linear algebraic object (a
trace).

However, the above expression is still an analytic function in the complex
plane C. The idea that we will exploit is that analytic functions have some hidden
convexity built in, as we recall here without proof (cf. [18, p. 33]).

Lemma 3.17 (Hadamard three line lemma) If ' W C ! C is analytic, the function
t 7! sups2R log j'.t C is/j is convex on the real line (provided it is finite).

Proof (Proof of Lemma 3.15) We can assume that X is nonsingular; otherwise we
may replace X by X C " and let " # 0 at the end of the proof. Write X D VjXj

according to its polar decomposition, and note that as X is self-adjoint, V D sign.X/
commutes with X and therefore Xm D VmjXjm. Define

'.z/ WD

sX
k;lD1

TrŒAkAlAkVmjXj.2p�4/zAlV
2p�4�mjXj.2p�4/.1�z/�:

As X is nonsingular, ' is analytic and '.t C is/ is a periodic function of s for every
t. By the three line lemma, sups2R j'.t C is/j attains its maximum for t 2 Œ0; 1� at
either t D 0 or t D 1. Moreover, the supremum itself is attained at some s 2 R by
periodicity. We have therefore shown that there exists s 2 R such that
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ˇ̌
ˇ̌
ˇ

sX
k;lD1

TrŒAkAlAkXmAlX
2p�4�m�

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌'
�

m

2p � 4

�ˇ̌
ˇ̌ � j'.is/j _ j'.1C is/j:

But, for example,

j'.is/j D

ˇ̌
ˇ̌
ˇ

sX
k;lD1

TrŒAkAlAkVmjXjis.2p�4/AlV
2p�4�mjXj�is.2p�4/X2p�4�

ˇ̌
ˇ̌
ˇ;

so if this term is the larger we can set U1 D VmjXjis.2p�4/ and U2 D

V2p�4�mjXj�is.2p�4/ to obtain the statement of the lemma (clearly U1 and U2 are
unitary). If the term j'.1C is/j is larger, the claim follows in precisely the identical
manner. ut

Putting together the above bounds, we obtain

sX
kD1

EŒTrŒAkXAkX2p�3��

� .2p � 3/E

"
sup

U1;U2

ˇ̌
ˇ̌
ˇ

sX
k;lD1

TrŒAkAlAkU1AlU2X
2p�4�

ˇ̌
ˇ̌
ˇ
#

� .2p � 3/ sup
U

Tr

"ˇ̌
ˇ̌
ˇ

sX
k;lD1

AkAlAkUAl

ˇ̌
ˇ̌
ˇ
p=2#2=p

EŒTrŒX2p��1�2=p:

This term will evidently yield a term of order Q� when p � log n.
Case 2 � ` � 2p � 4. These terms are dealt with much in the same way as in the

previous case, except the computation is a bit more tedious. As we have come this
far, we might as well complete the argument. We begin by noting that

sX
kD1

EŒTrŒAkX`AkX2p�2�`�� �

sX
kD1

EŒTrŒAkX2AkX2p�4��

for every 2 � ` � 2p � 4. This follows by convexity precisely in the same way as
in Lemma 3.5, and we omit the (identical) proof. To proceed, we integrate by parts:

sX
kD1

EŒTrŒAkX2AkX2p�4�� D

sX
k;lD1

EŒglTrŒAkAlXAkX2p�4��

D

sX
k;lD1

EŒTrŒAkA2l AkX2p�4��C

2p�5X
mD0

sX
k;lD1

EŒTrŒAkAlXAkXmAlX
2p�5�m��:

We deal separately with the two types of terms.
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Lemma 3.18 There exist unitary matrices U1;U2;U3 such that

sX
k;lD1

TrŒAkAlXAkXmAlX
2p�5�m� �

ˇ̌
ˇ̌
ˇ

sX
k;lD1

TrŒAkAlU1AkU2AlU3X
2p�4�

ˇ̌
ˇ̌
ˇ:

Proof Let X D VjXj be the polar decomposition of X, and define

'.y; z/ WD

sX
k;lD1

EŒTrŒAkAlVjXj.2p�4/yAkVmjXj.2p�4/zAlV
2p�5�mjXj.2p�4/.1�y�z/��:

Now apply the three line lemma to ' twice: to '.�; z/with z fixed, then to '.y; �/with
y fixed. The omitted details are almost identical to the proof of Lemma 3.15. ut

Lemma 3.19 We have for p � 2

sX
k;lD1

TrŒAkA2l AkX2p�4� � Tr

" 
sX

kD1

A2k

!p#2=p

TrŒX2p�1�2=p:

Proof We argue essentially as in Lemma 3.5. Define H D
Ps

lD1 A2l and let

'.z/ WD

sX
kD1

TrŒAkH.p�1/zAkjXj.2p�2/.1�z/�;

so that the quantity we would like to bound is '.1=.p � 1//. By expressing '.z/
in terms of the spectral decompositions X D

Pn
iD1 	iviv

�
i and H D

Pn
iD1 �iwiw�

i ,
we can verify by explicit computation that z 7! log'.z/ is convex on z 2 Œ0; 1�.
Therefore

'.1=.p � 1// � '.1/1=.p�1/'.0/.p�2/=.p�1/ D TrŒHp�1=.p�1/TrŒHX2p�2�.p�2/=.p�1/:

But TrŒHjXj2p�2� � TrŒHp�1=pTrŒX2p�1�1=p by Hölder’s inequality, and the conclu-
sion follows readily by substituting this into the above expression. ut

Putting together the above bounds and using Hölder’s inequality yields

sX
kD1

EŒTrŒAkX`AkX2p�2�`�� � Tr

" 
sX

kD1

A2k

!p#2=p

EŒTrŒX2p��1�2=p

C .2p � 4/ sup
U1;U2

Tr

"ˇ̌
ˇ̌
ˇ

sX
k;lD1

AkAlU1AkU2Al

ˇ̌
ˇ̌
ˇ
p=2#2=p

EŒTrŒX2p��1�2=p:
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Conclusion Let p � log n. Collecting the above bounds yields

EŒTrŒX2p�� . �2EŒTrŒX2p��1�1=p C p .�4 C p Q�4/EŒTrŒX2p��1�2=p;

where we used Lemma 2.2 to simplify the constants. Rearranging gives

EŒTrŒX2p��2=p . �2EŒTrŒX2p��1=p C p .�4 C p Q�4/;

which is a simple quadratic inequality for EŒTrŒX2p��1=p. Solve this inequality using
the quadratic formula and apply again Lemma 2.2 to conclude the proof. ut

4 Matrices with Independent Entries

The Khintchine-type inequalities developed in the previous section have the advan-
tage that they can be applied in a remarkably general setting: they not only allow an
arbitrary variance pattern of the entries, but even an arbitrary dependence structure
between the entries. This makes such bounds useful in a wide variety of situations.
Unfortunately, we have also seen that Khintchine-type inequalities yield suboptimal
bounds already in the simplest examples: the mechanism behind the proofs of these
inequalities is too crude to fully capture the structure of the underlying random
matrices at this level of generality. In order to gain a deeper understanding, we must
impose some additional structure on the matrices under consideration.

In this section, we specialize to what is perhaps the most important case of
the random matrices investigated in the previous section: we consider symmetric
random matrices with independent entries. More precisely, in most of this section,
we will study the following basic model. Let gij be independent standard Gaussian
random variables and let bij � 0 be given scalars for i � j. We consider the n � n
symmetric random matrix X whose entries are given by Xij D bijgij, that is,

X D

2
6664

b11g11 b12g12 � � � b1ng1n

b12g12 b22g22 b2ng2n
:::

: : :
:::

b1ng1n b2ng2n � � � bnngnn

3
7775 :

In other words, X is the symmetric random matrix whose entries above the diagonal
are independent Gaussian variables Xij � N.0; b2ij/, where the structure of the matrix
is controlled by the given variance pattern fbijg. As the matrix is symmetric, we will
write for simplicity gji D gij and bji D bij in the sequel.

The present model differs from the model of the previous section only to the
extent that we imposed the additional independence assumption on the entries. In
particular, the noncommutative Khintchine inequality reduces in this setting to
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EkXk . max
i�n

vuut nX
jD1

b2ij
p

log n;

while Theorem 3.14 yields (after some tedious computation)

EkXk . max
i�n

vuut nX
jD1

b2ij .log n/1=4 C max
i�n

 
nX

jD1

b4ij

!1=4p
log n:

Unfortunately, we have already seen that neither of these results is sharp even
for Wigner matrices (where bij D 1 for all i; j). The aim of this section is to
develop much sharper inequalities for matrices with independent entries that capture
optimally in many cases the underlying structure. The independence assumption
will be crucially exploited to control the structure of these matrices, and it is an
interesting open problem to understand to what extent the mechanisms developed
in this section persist in the presence of dependence between the entries (cf.
section 4.3).

4.1 Latała’s Inequality and Beyond

The earliest nontrivial result on the spectral norm Gaussian random matrices with
independent entries is the following inequality due to Latała [11].

Theorem 4.1 (Latała) In the setting of this section, we have

EkXk . max
i�n

vuut nX
jD1

b2ij C

 
nX

i;jD1

b4ij

!1=4
:

Latała’s inequality yields a sharp bound EkXk . p
n for Wigner matrices, but

is already suboptimal for the diagonal matrix of Example 3.9 where the resulting
bound EkXk . n1=4 is very far from the correct answer EkXk �

p
log n. In

this sense, we see that Theorem 4.1 fails to correctly capture the structure of the
underlying matrix. Latała’s inequality is therefore not too useful for structured
random matrices; it has however been widely applied together with a simple
symmetrization argument [11, Theorem 2] to show that the sharp bound EkXk �
p

n remains valid for Wigner matrices with general (non-Gaussian) distribution of
the entries.

In this section, we develop a nearly sharp improvement of Latała’s inequality that
can yield optimal results for many structured random matrices.
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Theorem 4.2 ([31]) In the setting of this section, we have

EkXk . max
i�n

vuut nX
jD1

b2ij C max
i�n

 
nX

jD1

b4ij

!1=4p
log i:

Let us first verify that Latała’s inequality does indeed follow.

Proof (Proof of Theorem 4.1) As the matrix norm kXk is unchanged if we permute
the rows and columns of X, we may assume without loss of generality that

Pn
jD1 b4ij

is decreasing in i (this choice minimizes the upper bound in Theorem 4.2). Now
recall the following elementary fact: if x1 � x2 � � � � � xn � 0, then xk � 1

k

Pn
iD1 xi

for every k. In the present case, this observation and Theorem 4.2 imply

EkXk . max
i�n

vuut nX
jD1

b2ij C

 
nX

i;jD1

b4ij

!1=4
max
1�i<1

p
log i

i4
;

which concludes the proof of Theorem 4.1. ut

The inequality of Theorem 4.2 is somewhat reminiscent of the bound obtained
in the present setting from Theorem 3.14, with a crucial difference: there is no
logarithmic factor in front of the first term. As we already proved in Lemma 3.7
that

EkXk & max
i�n

vuut nX
jD1

b2ij;

we see that Theorem 4.2 provides an optimal bound whenever the first term
dominates, which is the case for a wide range of structured random matrices. To get
a feeling for the sharpness of Theorem 4.2, let us consider an illuminating example.

Example 4.3 (Block matrices) Let 1 � k � n and suppose for simplicity that n is
divisible by k. We consider the n�n symmetric block-diagonal matrix X of the form

X D

2
6664

X1

X2

: : :

Xn=k

3
7775 ;

where X1; : : : ;Xn=k are independent k � k Wigner matrices. This model interpolates
between the diagonal matrix of Example 3.9 (the case k D 1) and the Wigner matrix
of Example 3.10 (the case k D n). Note that kXk D maxi kXik, so we can compute

EkXk . EŒkX1k
log n�1= log n � EkX1kCEŒ.kX1k�EkX1k/

log n�1= log n .
p

kC
p

log n
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using Lemmas 2.3, 3.11, and 3.8, respectively. On the other hand, Lemma 3.7
implies that EkXk &

p
k, while we can trivially estimate EkXk � E maxi Xii �p

log n. Averaging these two lower bounds, we have evidently shown that

EkXk �
p

k C
p

log n:

This explicit computation provides a simple but very useful benchmark example for
testing inequalities for structured random matrices.

In the present case, applying Theorem 4.2 to this example yields

EkXk .
p

k C k1=4
p

log n:

Therefore, in the present example, Theorem 4.2 fails to be sharp only when k is in
the range 1  k  .log n/2. This suboptimal parameter range will be completely
eliminated by the sharp bound to be proved in section 4.2 below. But the bound
of Theorem 4.2 is already sharp in the vast majority of cases, and is of significant
interest in its own right for reasons that will be discussed in detail in section 4.3.

An important feature of the inequalities of this section should be emphasized:
unlike all bounds we have encountered so far, the present bounds are dimension-free.
As was discussed in Remark 2.4, one cannot expect to obtain sharp dimension-free
bounds using the moment method, and it therefore comes as no surprise that the
bounds of the present section will therefore be obtained by the random process
method. The original proof of Latała proceeds by a difficult and very delicate
explicit construction of a multiscale net in the spirit of Remark 2.7. We will follow
here a much simpler approach that was developed in [31] to prove Theorem 4.2.

The basic idea behind our approach was already encountered in the proof of
Lemma 3.11 to bound the norm of a Wigner matrix (where bij D 1 for all i; j):
we seek a Gaussian process Yv that dominates the process Xv WD hv;Xvi whose
supremum coincides with the spectral norm. The present setting is significantly
more challenging, however. To see the difficulty, let us try to adapt directly the proof
of Lemma 3.11 to the present structured setting: we readily compute

E.Xv � Xw/
2 � 2

nX
i;jD1

b2ij.vivj � wiwj/
2 � 4max

i;j�n
b2ij kv � wk2:

We can therefore dominate Xv by the Gaussian process Yv D 2maxi;j bij hv; gi.
Proceeding as in the proof of Lemma 3.11, this yields the following upper bound:

EkXk . max
i;j�n

bij
p

n:

This bound is sharp for Wigner matrices (in this case the present proof reduces to
that of Lemma 3.11), but is woefully inadequate in any structured example. The
problem with the above bound is that it always crudely estimates the behavior of the
increments EŒ.Xv�Xw/�

1=2 by a Euclidean norm kv�wk, regardless of the structure
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of the underlying matrix. However, the geometry defined by EŒ.Xv�Xw/�
1=2 depends

strongly on the structure of the matrix, and is typically highly non-Euclidean. For
example, in the diagonal matrix of Example 3.9, we have EŒ.Xv � Xw/�

1=2 D kv2 �

w2k where .v2/i WD v2i . As v2 is in the simplex whenever v 2 B, we see that the
underlying geometry in this case is that of an `1-norm and not of an `2-norm. In
more general examples, however, it is far from clear what is the correct geometry.

The key challenge we face is to design a comparison process that is easy to
bound, but whose geometry nonetheless captures faithfully the structure of the
underlying matrix. To develop some intuition for how this might be accomplished,
let us consider in first instance instead of the increments EŒ.Xv � Xw/

2�1=2 only the
standard deviation EŒX2v�

1=2 of the process Xv D hv;Xvi. We easily compute

EX2v D 2
X
i¤j

v2i b2ijv
2
j C

nX
iD1

b2iiv
4
i � 2

nX
iD1

xi.v/
2;

where we defined the nonlinear map x W Rn ! R
n as

xi.v/ WD vi

vuut nX
jD1

b2ijv
2
j :

This computation suggests that we might attempt to dominate the process Xv by
the process Yv D hx.v/; gi, whose increments EŒ.Yv � Yw/

2�1=2 D kx.v/ � x.w/k
capture the non-Euclidean nature of the underlying geometry through the nonlinear
map x. The reader may readily verify, for example, that the latter process captures
automatically the correct geometry of our two extreme examples of Wigner and
diagonal matrices.

Unfortunately, the above choice of comparison process Yv is too optimistic: while
we have chosen this process so that EX2v . EY2v by construction, the Slepian-
Fernique inequality requires the stronger bound E.Xv � Xw/

2 . E.Yv � Yw/
2. It

turns out that the latter inequality does not always hold [31]. However, the inequality
nearly holds, which is the key observation behind the proof of Theorem 4.2.

Lemma 4.4 For every v;w 2 R
n

E.hv;Xvi � hw;Xwi/2 � 4kx.v/ � x.w/k2 �

nX
i;jD1

.v2i � w2i /b
2
ij.v

2
j � w2j /:

Proof We simply compute both sides and compare. Define for simplicity the
seminorm k � ki as kvk2i WD

Pn
jD1 b2ijv

2
j , so that xi.v/ D vikvki. First, we note

that

E.hv;Xvi � hw;Xwi/2 D Ehv C w;X.v � w/i2

D

nX
iD1

.vi � wi/
2kv C wk2i C

nX
i;jD1

.v2i � w2i /b
2
ij.v

2
j � w2j /:
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On the other hand, as 2.xi.v/� xi.w// D .vi C wi/.kvki � kwki/C .vi � wi/.kvki C

kwki/,

4kx.v/ � x.w/k2 D

nX
iD1

.vi C wi/
2.kvki � kwki/

2 C

nX
iD1

.vi � wi/
2.kvki C kwki/

2

C 2

nX
i;jD1

.v2i � w2i /b
2
ij.v

2
j � w2j /:

The result follows readily from the triangle inequality kvC wki � kvki C kwki. ut

We can now complete the proof of Theorem 4.2.

Proof (Proof of Theorem 4.2) Define the Gaussian processes

Xv D hv;Xvi; Yv D 2hx.v/; gi C hv2;Yi;

where g � N.0; I/ is a standard Gaussian vector in R
n, .v2/i WD v2i , and

Y � N.0;B�/ is a centered Gaussian vector that is independent of g and whose
covariance matrix B� is the negative part of the matrix of variances B D .b2ij/
(if B has eigendecomposition B D

P
i 	iviv

�
i , the negative part B� is defined as

B� D
P

i max.�	i; 0/viv
�
i ). As �B 
 B� by construction, it is readily seen that

Lemma 4.4 implies

E.Xv � Xw/
2 � 4kx.v/ � x.w/k2 C hv2 � w2;B�.v2 � w2/i D E.Yv � Yw/

2:

We can therefore argue by the Slepian-Fernique inequality that

EkXk . E sup
v2B

Yv � 2E sup
v2B

hx.v/; gi C E max
i�n

Yi

as in the proof of Lemma 3.11. It remains to bound each term on the right.
Let us begin with the second term. Using the moment method as in section 2.1,

one obtains the dimension-dependent bound E maxi Yi . maxi Var.Yi/
1=2

p
log n.

This bound is sharp when all the variances Var.Yi/ D B�
ii are of the same order,

but can be suboptimal when many of the variances are small. Instead, we will use a
sharp dimension-free bound on the maximum of Gaussian random variables.

Lemma 4.5 (Subgaussian maxima) Suppose that g1; : : : ; gn satisfy EŒjgij
k�1=k .p

k for all k; i, and let �1; : : : ; �n � 0. Then we have

E max
i�n

j�igij . max
i�n

�i

p
log.i C 1/:
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Proof By a union bound and Markov’s inequality

P
�

max
i�n

j�igij � t

�
�

nX
iD1

PŒj�igij � t� �

nX
iD1

�
�i

p
2 log.i C 1/

t

�2 log.iC1/

:

But we can estimate

1X
iD1

s�2 log.iC1/ D

1X
iD1

.i C 1/�2.i C 1/�2 log sC2 � 2�2 log sC2
1X

iD1

.i C 1/�2 . s�2 log 2

as long as log s > 1. Setting s D t=maxi �i

p
2 log.i C 1/, we obtain

E max
i�n

j�igij D max
i
�i

p
2 log.i C 1/

Z
1

0

P
�

max
i�n

j�igij � s max
i
�i

p
2 log.i C 1/

�
ds

. max
i
�i

p
2 log.i C 1/

�
e C

Z
1

e
s�2 log 2ds

�
. max

i
�i

p
log.i C 1/;

which completes the proof. ut

Remark 4.6 Lemma 4.5 does not require the variables gi to be either independent
or Gaussian. However, if g1; : : : ; gn are independent standard Gaussian variables
(which satisfy EŒjgij

k�1=k .
p

k by Lemma 3.1) and if �1 � �2 � � � � � �n > 0

(which is the ordering that optimizes the bound of Lemma 4.5), then

E max
i�n

j�igij � max
i�n

�i

p
log.i C 1/;

cf. [31]. This shows that Lemma 4.5 captures precisely the dimension-free behavior
of the maximum of independent centered Gaussian variables.

To estimate the second term in our bound on EkXk, note that .B�/2 
 B2 implies

Var.Yi/
2 D .B�

ii /
2 � .B�/2ii � .B2/ii D

nX
jD1

.Bij/
2 D

nX
jD1

b4ij:

Applying Lemma 4.5 with gi D Yi=Var.Yi/
1=2 yields the bound

E max
i�n

Yi . max
i�n

 
nX

jD1

b4ij

!1=4p
log.i C 1/:

Now let us estimate the first term in our bound on EkXk. Note that

sup
v2B

hx.v/; gi D sup
v2B

nX
jD1

gjvj

vuut nX
iD1

v2i b2ij � sup
v2B

vuut nX
i;jD1

v2i b2ijg
2
j D max

i�n

vuut nX
jD1

b2ijg
2
j ;
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where we used Cauchy-Schwarz and the fact that v2 is in the `1-ball whenever v is
in the `2-ball. We can therefore estimate, using Lemma 3.8 and Lemma 4.5,

E sup
v2B

hx.v/; gi � max
i�n

E

vuut nX
jD1

b2ijg
2
j C E max

i�n

ˇ̌
ˇ̌
ˇ
vuut nX

jD1

b2ijg
2
j � E

vuut nX
jD1

b2ijg
2
j

ˇ̌
ˇ̌
ˇ

. max
i�n

vuut nX
jD1

b2ij C max
i;j�n

bij

p
log.i C 1/:

Putting everything together gives

EkXk . max
i�n

vuut nX
jD1

b2ij C max
i;j�n

bij

p
log.i C 1/C max

i�n

 
nX

jD1

b4ij

!1=4p
log.i C 1/:

It is not difficult to simplify this (at the expense of a larger universal constant) to
obtain the bound in the statement of Theorem 4.2. ut

4.2 A Sharp Dimension-Dependent Bound

The approach developed in the previous section yields optimal results for many
structured random matrices with independent entries. The crucial improvement of
Theorem 4.2 over the noncommutative Khintchine inequality is that no logarithmic
factor appears in the first term. Therefore, when this term dominates, Theorem 4.2
is sharp by Lemma 3.7. However, the second term in Theorem 4.2 is not quite sharp,
as is illustrated in Example 4.3. While Theorem 4.2 captures much of the geometry
of the underlying model, there remains some residual inefficiency in the proof.

In this section, we will develop an improved version of Theorem 4.2 that is
essentially sharp (in a sense that will be made precise below). Unfortunately, it is
not known at present how such a bound can be obtained using the random process
method, and we revert back to the moment method in the proof. The price we pay
for this is that we lose the dimension-free nature of Theorem 4.2.

Theorem 4.7 ([4]) In the setting of this section, we have

EkXk . max
i�n

vuut nX
jD1

b2ij C max
i;j�n

bij

p
log n:

To understand why this result is sharp, let us recall (Remark 2.4) that the moment
method necessarily bounds not the quantity EkXk, but rather the larger quantity
EŒkXklog n�1= log n. The latter quantity is now however completely understood.
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Corollary 4.8 In the setting of this section, we have

EŒkXklog n�1= log n � max
i�n

vuut nX
jD1

b2ij C max
i;j�n

bij

p
log n:

Proof The upper bound follows from the proof of Theorem 4.7. The first term on
the right is a lower bound by Lemma 3.7. On the other hand, if bkl D maxi;j bij, then
EŒkXklog n�1= log n � EŒjXklj

log n�1= log n & bkl
p

log n as EŒjXklj
p�1=p � bkl

p
p. ut

The above result shows that Theorem 4.7 is in fact the optimal result that could
be obtained by the moment method. This result moreover yields optimal bounds
even for EkXk in almost all situations of practical interest, as it is true under mild
assumptions that EkXk � EŒkXklog n�1= log n (as will be discussed in section 4.3).
Nonetheless, this is not always the case, and will fail in particular for matrices
whose variances are distributed over many different scales; in the latter case, the
dimension-free bound of Theorem 4.2 can give rise to much sharper results. Both
Theorems 4.2 and 4.7 therefore remain of significant independent interest. Taken
together, these results strongly support a fundamental conjecture, to be discussed in
the next section, that would provide the ultimate understanding of the magnitude of
the spectral norm of the random matrix model considered in this chapter.

The proof of Theorem 4.7 is completely different in nature than that of
Theorem 4.2. Rather than prove Theorem 4.7 in the general case, we will restrict
attention in the rest of this section to the special case of sparse Wigner matrices. The
proof of Theorem 4.7 in the general case is actually no more difficult than in this
special case, but the ideas and intuition behind the proof are particularly transparent
when restricted to sparse Wigner matrices (which was how the authors of [4] arrived
at the proof). Once this special case has been understood, the reader can extend the
proof to the general setting as an exercise, or refer to the general proof given in [4].

Example 4.9 (Sparse Wigner matrices) Informally, a sparse Wigner matrix is a
symmetric random matrix with a given sparsity pattern, whose nonzero entries are
independent standard Gaussian variables. It is convenient to fix the sparsity pattern
of the matrix by specifying a given undirected graph G D .Œn�;E/ on n vertices,
whose adjacency matrix we denote as B D .bij/1�i;j�n. The corresponding sparse
Wigner matrix X is the symmetric random matrix whose entries are given by Xij D

bijgij, where gij are independent standard Gaussian variables (up to symmetry gji D

gij). Clearly our previous Examples 3.9, 3.10, and 4.3 are all special cases of this
model.

For a sparse Wigner matrix, the first term in Theorem 4.7 is precisely the maximal
degree k D deg.G/ of the graph G, so that Theorem 4.7 reduces to

EkXk .
p

k C
p

log n:

We will see in section 4.3 that this bound is sharp for sparse Wigner matrices.
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The remainder of this section is devoted to the proof of Theorem 4.7 in the setting
of Example 4.9 (we fix the notation introduced in this example in the sequel). To
understand the idea behind the proof, let us start by naively writing out the central
quantity that appears in moment method (Lemma 2.2): we evidently have

EŒTrŒX2p�� D

nX
i1;:::;i2pD1

EŒXi1i2Xi2i3 � � � Xi2p�1i2p Xi2pi1 �

D

nX
i1;:::;i2pD1

bi1i2bi2i3 � � � bi2pi1 EŒgi1i2gi2i3 � � � gi2pi1 �:

It is useful to think of � D .i1; : : : ; i2p/ geometrically as a cycle i1 ! i2 ! � � � !

i2p ! i1 of length 2p. The quantity bi1i2bi2i3 � � � bi2pi1 is equal to one precisely when
� defines a cycle in the graph G, and is zero otherwise. We can therefore write

EŒTrŒX2p�� D
X

cycle � in G of length 2p

c.�/;

where we defined the constant c.�/ WD EŒgi1i2gi2i3 � � � gi2pi1 �.
It turns out that c.�/ does not really depend on the position of the cycle � in

the graph G. While we will not require a precise formula for c.�/ in the proof, it is
instructive to write down what it looks like. For any cycle � in G, denote by m`.�/

the number of distinct edges in G that are visited by � precisely ` times, and denote
by m.�/ D

P
`�1 m`.�/ the total number of distinct edges visited by � . Then

c.�/ D

1Y
`D1

EŒg`�m`.�/;

where g � N.0; 1/ is a standard Gaussian variable and we have used the
independence of the entries. From this formula, we read off two important facts
(which are the only ones that will actually be used in the proof):

• If any edge in G is visited by � an odd number of times, then c.�/ D 0 (as the
odd moments of g vanish). Thus the only cycles that matter are even cycles, that
is, cycles in which every distinct edge is visited an even number of times.

• c.�/ depends on � only through the numbers m`.�/. Therefore, to compute c.�/,
we only need to know the shape s.�/ of the cycle � .

The shape s.�/ is obtained from � by relabeling its vertices in order of appearance;
for example, the shape of the cycle 7 ! 3 ! 9 ! 7 ! 3 ! 9 ! 7 is given
by 1 ! 2 ! 3 ! 1 ! 2 ! 3 ! 1. The shape s.�/ captures the topological
properties of � (such as the numbers m`.�/ D m`.s.�//) without keeping track of
the manner in which � is embedded in G. This is illustrated in the following figure:
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i1

i2

i3

G

1

2

3

s(g )g

Putting together the above observations, we obtain the useful formula

EŒTrŒX2p�� D
X

shape s of even cycle of length 2p

c.s/ � #fembeddings of s in Gg:

So far, we have done nothing but bookkeeping. To use the above bound, however,
we must get down to work and count the number of shapes of even cycles that can
appear in the given graph G. The problem we face is that the latter proves to be
a difficult combinatorial problem, which is apparently completely intractable when
presented with any given graph G that may possess an arbitrary structure (this is
already highly nontrivial even in a complete graph when p is large!) To squeeze
anything useful out of this bound, it is essential that we find a shortcut.

The solution to our problem proves to be incredibly simple. Recall that G is a
given graph of degree deg.G/ D k. Of all graphs of degree k, which one will admit
the most possible shapes? Obviously the graph that admits the most shapes is the
one where every potential edge between two vertices is present; therefore, the graph
of degree k that possesses the most shapes is the complete graph on k vertices.
From the random matrix point of view, the latter corresponds to a Wigner matrix of
dimension k � k. This simple idea suggests that rather than directly estimating the
quantity EŒTrŒX2p�� by combinatorial means, we should aim to prove a comparison
principle between the moments of the n � n sparse matrix X and the moments of a
k � k Wigner matrix Y , which we already know how to bound by Lemma 3.11. Note
that such a comparison principle is of a completely different nature than the Slepian-
Fernique method used previously: here we are comparing two matrices of different
dimension. The intuitive idea is that a large sparse matrix can be “compressed” into
a much lower dimensional dense matrix without decreasing its norm.

The alert reader will note that there is a problem with the above intuition. While
the complete graph on k points admits more shapes than the original graph G, there
are less potential ways in which each shape can be embedded in the complete graph
as the latter possesses less vertices than the original graph. We can compensate for
this deficiency by slightly increasing the dimension of the complete graph.

Lemma 4.10 (Dimension compression) Let X be the n � n sparse Wigner matrix
(Example 4.9) defined by a graph G D .Œn�;E/ of maximal degree deg.G/ D k, and
let Yr be an r � r Wigner matrix (Example 3.10). Then, for every p � 1,
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EŒTrŒX2p�� �
n

k C p
EŒTrŒY2p

kCp��:

Proof Let s be the shape of an even cycle of length 2p, and let Kr be the complete
graph on r > p points. Denote by m.s/ the number of distinct vertices in s, and note
that m.s/ � p C 1 as every distinct edge in s must appear at least twice. Thus

#fembeddings of s in Krg D r.r � 1/ � � � .r � m.s/C 1/;

as any assignment of vertices of Kr to the distinct vertices of s defines a valid
embedding of s in the complete graph. On the other hand, to count the number
of embeddings of s in G, note that we have as many as n choices for the first vertex,
while each subsequent vertex can be chosen in at most k ways (as deg.G/ D k).
Thus

#fembeddings of s in Gg � nkm.s/�1:

Therefore, if we choose r D k C p, we have r � m.s/C 1 � r � p � k, so that

#fembeddings of s in Gg �
n

r
#fembeddings of s in Krg:

The proof now follows from the combinatorial expression for EŒTrŒX2p��. ut

With Lemma 4.10 in hand, it is now straightforward to complete the proof of
Theorem 4.7 for the sparse Wigner matrix model of Example 4.9.

Proof (Proof of Theorem 4.7 in the setting of Example 4.9) We begin by noting that

EkXk � EŒkXk2p�1=2p � n1=2p EŒkYkCpk2p�1=2p

by Lemma 4.10, where we used kXk2p � TrŒX2p� and TrŒY2p
r � � rkYrk

2p. Thus

EkXk . EŒkYkCblog nck
2 log n�1=2 log n

� EkYkCblog nck C EŒ.kYkCblog nck � EkYkCblog nck/
2 log n�1=2 log n

.
p

k C log n C
p

log n;

where in the last inequality we used Lemma 3.11 to bound the first term and
Lemma 3.8 to bound the second term. Thus EkXk .

p
k C

p
log n, completing

the proof. ut
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4.3 Three Conjectures

We have obtained in the previous sections two remarkably sharp bounds on the
spectral norm of random matrices with independent centered Gaussian entries: the
slightly suboptimal dimension-free bound of Theorem 4.2 for EkXk, and the sharp
dimension-dependent bound of Theorem 4.7 for EŒkXklog n�1= log n. As we will shortly
argue, the latter bound is also sharp for EkXk in almost all situations of practical
interest. Nonetheless, we cannot claim to have a complete understanding of the
mechanisms that control the spectral norm of Gaussian random matrices unless we
can obtain a sharp dimension-free bound on EkXk. While this problem remains
open, the above results strongly suggest what such a sharp bound should look like.

To gain some initial intuition, let us complement the sharp lower bound of
Corollary 4.8 for EŒkXklog n�1= log n by a trivial lower bound for EkXk.

Lemma 4.11 In the setting of this section, we have

EkXk & max
i�n

vuut nX
jD1

b2ij C E max
i;j�n

jXijj:

Proof The first term is a lower bound by Lemma 3.7, while the second term is a
lower bound by the trivial pointwise inequality kXk � maxi;j jXijj. ut

The simplest possible upper bound on the maximum of centered Gaussian
random variables is E maxi;j jXijj . maxi;j bij

p
log n, which is sharp for i.i.d.

Gaussian variables. Thus the lower bound of Lemma 4.11 matches the upper bound
of Theorem 4.7 under a minimal homogeneity assumption: it suffices to assume that
the number of entries whose standard deviation bkl is of the same order as maxi;j bij

grows polynomially with dimension (which still allows for a vanishing fraction of
entries of the matrix to possess large variance). For example, in the sparse Wigner
matrix model of Example 4.9, every row of the matrix that does not correspond to
an isolated vertex in G contains at least one entry of variance one. Therefore, if G
possesses no isolated vertices, there are at least n entries of X with variance one, and
it follows immediately from Lemma 4.11 that the bound of Theorem 4.7 is sharp for
sparse Wigner matrices. (There is no loss of generality in assuming that G has no
isolated vertices: any isolated vertex yields a row that is identically zero, so we can
simply remove such vertices from the graph without changing the norm.)

However, when the variances of the entries of X possess many different scales,
the dimension-dependent upper bound E maxi;j jXijj . maxi;j bij

p
log n can fail to be

sharp. To obtain a sharp bound on the maximum of Gaussian random variables, we
must proceed in a dimension-free fashion as in Lemma 4.5. In particular, combining
Remark 4.6 and Lemma 4.11 yields the following explicit lower bound:
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EkXk & max
i�n

vuut nX
jD1

b2ij C max
i;j�n

bij

p
log i;

provided that maxj b1j � maxj b2j � � � � � maxj bnj > 0 (there is no loss of
generality in assuming the latter, as we can always permute the rows and columns of
X to achieve this ordering without changing the norm of X). It will not have escaped
the attention of the reader that the latter lower bound is tantalizingly close both to the
dimension-dependent upper bound of Theorem 4.7 and to the dimension-free upper
bound of Theorem 4.2. This leads us to the following very natural conjecture [31].

Conjecture 1 Assume without loss of generality that the rows and columns of X
have been permuted such that maxj b1j � maxj b2j � � � � � maxj bnj > 0. Then

EkXk � kEX2k1=2 C E max
i;j�n

jXijj

� max
i�n

vuut nX
jD1

b2ij C max
i;j�n

bij

p
log i:

Conjecture 1 appears completely naturally from our results, and has a surprising
interpretation. There are two simple mechanisms that would certainly force the
random matrix X to have large expected norm EkXk: the matrix X is can be large
“on average” in the sense that kEX2k is large (note that the expectation here is inside
the norm), or the matrix X can have an entry that exhibits a large fluctuation in the
sense that maxi;j Xij is large. Conjecture 1 suggests that these two mechanisms are,
in a sense, the only reasons why EkXk can be large.

Given the remarkable similarity between Conjecture 1 and Theorem 4.7, one
might hope that a slight sharpening of the proof of Theorem 4.7 would suffice to
yield the conjecture. Unfortunately, it seems that the moment method is largely
useless for the purpose of obtaining dimension-free bounds: indeed, the Corol-
lary 4.8 shows that the moment method is already exploited optimally in the proof
of Theorem 4.7. While it is sometimes possible to derive dimension-free results
from dimension-dependent results by a stratification procedure, such methods either
fail completely to capture the correct structure of the problem (cf. [19]) or retain
a residual dimension-dependence (cf. [31]). It therefore seems likely that random
process methods will prove to be essential for progress in this direction.

While Conjecture 1 appears completely natural in the present setting, we should
also discuss a competing conjecture that was proposed much earlier by R. Latała.
Inspired by certain results of Seginer [21] for matrices with i.i.d. entries, Latała
conjectured the following sharp bound in the general setting of this section.
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Conjecture 2 In the setting of this section, we have

EkXk � E max
i�n

vuut nX
jD1

X2ij:

As kXk2 � maxi
P

j X2ij holds deterministically, the lower bound in Conjecture 2
is trivial: it states that a matrix that possesses a large row must have large spectral
norm. Conjecture 2 suggests that this is the only reason why the matrix norm can be
large. This is certainly not the case for an arbitrary matrix X, and so it is not at all
clear a priori why this should be true. Nonetheless, no counterexample is known in
the setting of the Gaussian random matrices considered in this section.

While Conjectures 1 and 2 appear to arise from different mechanisms, it is
observed in [31] that these conjectures are actually equivalent: it is not difficult
to show that the right-hand side in both inequalities is equivalent, up to the universal
constant, to the explicit expression recorded in Conjecture 1. In fact, let us note
that both conjectured mechanisms are essentially already present in the proof of
Theorem 4.2: in the comparison process Yv that arises in the proof, the first term
is strongly reminiscent of Conjecture 2, while the second term is reminiscent of
the second term in Conjecture 1. In this sense, the mechanism that is developed in
the proof of Theorem 4.2 provides even stronger evidence for the validity of these
conjectures. The remaining inefficiency in the proof of Theorem 4.2 is discussed in
detail in [31].

We conclude by discussing briefly a much more speculative question. The
noncommutative Khintchine inequalities developed in the previous section hold in
a very general setting, but are almost always suboptimal. In contrast, the bounds
in this section yield nearly optimal results under the additional assumption that the
matrix entries are independent. It would be very interesting to understand whether
the bounds of the present section can be extended to the much more general setting
captured by noncommutative Khintchine inequalities. Unfortunately, independence
is used crucially in the proofs of the results in this section, and it is far from clear
what mechanism might give rise to analogous results in the dependent setting.

One might nonetheless speculate what such a result might potentially look like. In
particular, we note that both parameters that appear in the sharp bound Theorem 4.7
have natural analogues in the general setting: in the setting of this section

kEX2k D sup
v2B

Ehv;X2vi D max
i

X
j

b2ij; sup
v2B

Ehv;Xvi2 D max
i;j

b2ij:

We have already encountered both these quantities also in the previous section:
� D kEX2k1=2 is the natural structural parameter that arises in noncommutative
Khintchine inequalities, while �� WD supv EŒhv;Xvi2�1=2 controls the fluctuations
of the spectral norm by Gaussian concentration (see the proof of Lemma 3.7). By
analogy with Theorem 4.7, we might therefore speculatively conjecture:
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Conjecture 3 Let X D
Ps

kD1 gkAk as in Theorem 3.2. Then

EkXk . kEX2k1=2 C sup
v2B

EŒhv;Xvi2�1=2
p

log n:

Such a generalization would constitute a far-reaching improvement of the
noncommutative Khintchine theory. The problem with Conjecture 3 is that it is
completely unclear how such a bound might arise: the only evidence to date for
the potential validity of such a bound is the vague analogy with the independent
case, and the fact that a counterexample has yet to be found.

4.4 Seginer’s Inequality

Throughout this chapter, we have focused attention on Gaussian random matrices.
We depart briefly from this setting in this section to discuss some aspects of
structured random matrices that arise under other distributions of the entries.

The main reason that we restricted attention to Gaussian matrices is that most
of the difficulty of capturing the structure of the matrix arises in this setting; at the
same time, all upper bounds we develop extend without difficulty to more general
distributions, so there is no significant loss of generality in focusing on the Gaussian
case. For example, let us illustrate the latter statement using the moment method.

Lemma 4.12 Let X and Y be symmetric random matrices with independent entries
(modulo symmetry). Assume that Xij are centered and subgaussian, that is, EXij D 0

and EŒX2p
ij �

1=2p . bij
p

p for all p � 1, and let Yij � N.0; b2ij/. Then

EŒTrŒX2p��1=2p . EŒTrŒY2p��1=2p for all p � 1:

Proof Let X0 be an independent copy of X. Then EŒTrŒX2p�� D EŒTrŒ.X �EX0/2p�� �

EŒTrŒ.X �X0/2p�� by Jensen’s inequality. Moreover, Z D X �X0 a symmetric random
matrix satisfying the same properties as X, with the additional property that the
entries Zij have symmetric distribution. Thus EŒZp

ij�
1=p . EŒYp

ij �
1=p for all p � 1

(for odd p both sides are zero by symmetry, while for even p this follows from the
subgaussian assumption using EŒY2p

ij �
1=2p � bij

p
p). It remains to note that

EŒTrŒX2p�� D
X

cycle � of length 2p

Y
1�i�j�n

EŒX
#ij.�/

ij �

� C2p
X

cycle � of length 2p

Y
1�i�j�n

EŒY
#ij.�/

ij � D C2p EŒTrŒY2p��

for a universal constant C, where #ij.�/ denotes the number of times the edge .i; j/
appears in the cycle � . The conclusion follows immediately. ut
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Lemma 4.12 shows that to upper bound the moments of a subgaussian random
matrix with independent entries, it suffices to obtain a bound in the Gaussian case.
The reader may readily verify that the completely analogous approach can be
applied in the more general setting of the noncommutative Khintchine inequality.
On the other hand, Gaussian bounds using the random process method extend to the
subgaussian setting by virtue of a general subgaussian comparison principle [24,
Theorem 2.4.12]. Beyond the subgaussian setting, similar methods can be used for
entries with heavy-tailed distributions, see, for example, [4].

The above observations indicate that, in some sense, Gaussian random matrices
are the “worst case” among subgaussian matrices. One can go one step further
and ask whether there is some form of universality: do all subgaussian random
matrices behave like their Gaussian counterparts? The universality phenomenon
plays a major role in recent advances in random matrix theory: it turns out that
many properties of Wigner matrices do not depend on the distribution of the entries.
Unfortunately, we cannot expect universal behavior for structured random matrices:
while Gaussian matrices are the “worst case” among subgaussian matrices, matrices
with subgaussian entries can sometimes behave much better. The simplest example
is the case of diagonal matrices (Example 3.9) with i.i.d. entries on the diagonal:
in the Gaussian case EkXk �

p
log n, but obviously EkXk � 1 if the entries

are uniformly bounded (despite that uniformly bounded random variables are
obviously subgaussian). In view of such examples, there is little hope to obtain a
complete understanding of structured random matrices for arbitrary distributions
of the entries. This justifies the approach we have taken: we seek sharp bounds
for Gaussian matrices, which give rise to powerful upper bounds for general
distributions of the entries.

Remark 4.13 We emphasize in this context that Conjectures 1 and 2 in the
previous section are fundamentally Gaussian in nature, and cannot hold as stated
for subgaussian matrices. For a counterexample along the lines of Example 4.3,
see [21].

Despite these negative observations, it can be of significant interest to go beyond
the Gaussian setting to understand whether the bounds we have obtained can be
systematically improved under more favorable assumptions on the distributions of
the entries. To illustrate how such improvements could arise, we discuss a result of
Seginer [21] for random matrices with independent uniformly bounded entries.

Theorem 4.14 (Seginer) Let X be an n � n symmetric random matrix with
independent entries (modulo symmetry) and EXij D 0, kXijk1 . bij for all i; j.
Then

EkXk . max
i�n

vuut nX
jD1

b2ij .log n/1=4:
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The uniform bound kXijk1 . bij certainly implies the much weaker subgaussian
property EŒX2p

ij �
1=2p . bij

p
p, so that the conclusion of Theorem 4.7 extends

immediately to the present setting by Lemma 4.12. In many cases, the latter bound
is much sharper than the one provided by Theorem 4.14; indeed, Theorem 4.14
is suboptimal even for Wigner matrices (it could be viewed of a variant of the
noncommutative Khintchine inequality in the present setting with a smaller power in
the logarithmic factor). However, the interest of Theorem 4.14 is that it cannot hold
for Gaussian entries: for example, in the diagonal case bij D 1iDj, Theorem 4.14
gives EkXk . .log n/1=4 while any Gaussian bound must give at least EkXk &p

log n. In this sense, Theorem 4.14 illustrates that it is possible in some cases to
exploit the effect of stronger distributional assumptions in order to obtain improved
bounds for non-Gaussian random matrices. The simple proof that we will give
(taken from [4]) shows very clearly how this additional distributional information
enters the picture.

Proof (Proof of Theorem 4.14) The proof works by combining two very different
bounds on the matrix norm. On the one hand, due to Lemma 4.12, we can directly
apply the Gaussian bound of Theorem 4.7 in the present setting. On the other hand,
as the entries of X are uniformly bounded, we can do something that is impossible
for Gaussian random variables: we can uniformly bound the norm kXk as

kXk D sup
v2B

ˇ̌
ˇ̌
ˇ

nX
i;jD1

viXijvj

ˇ̌
ˇ̌
ˇ � sup

v2B

nX
i;jD1

.jvij jXijj
1=2/.jXijj

1=2jvjj/

� sup
v2B

nX
i;jD1

v2i jXijj D max
i�n

nX
jD1

jXijj � max
i�n

nX
jD1

bij;

where we have used the Cauchy-Schwarz inequality in going from the first to the
second line. The idea behind the proof of Theorem 4.14 is roughly as follows. Many
small entries of X can add up to give rise to a large norm; we might expect the
cumulative effect of many independent centered random variables to give rise to
Gaussian behavior. On the other hand, if a few large entries of X dominate the norm,
there is no Gaussian behavior and we expect that the uniform bound provides much
better control. To capture this idea, we partition the matrix into two parts X D

X1 C X2, where X1 contains the “small” entries and X2 contains the “large” entries:

.X1/ij D Xij1bij�u; .X2/ij D Xij1bij>u:

Applying the Gaussian bound to X1 and the uniform bound to X2 yields
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EkXk � EkX1k C EkX2k

. max
i�n

vuut nX
jD1

b2ij1bij�u C u
p

log n C max
i�n

nX
jD1

bij1bij>u

� max
i�n

vuut nX
jD1

b2ij C u
p

log n C
1

u
max
i�n

nX
jD1

b2ij:

The proof is completed by optimizing over u. ut

The proof of Theorem 4.14 illustrates the improvement that can be achieved
by trading off between Gaussian and uniform bounds on the norm of a random
matrix. Such tradeoffs play a fundamental role in the general theory that governs the
suprema of bounded random processes [24, Chapter 5]. Unfortunately, this tradeoff
is captured only very crudely by the suboptimal Theorem 4.14.

Developing a sharp understanding of the behavior of bounded random matrices
is a problem of significant interest: the bounded analogue of sparse Wigner matrices
(Example 4.9) has interesting connections with graph theory and computer science,
cf. [1] for a review of such applications. Unlike in the Gaussian case, however, it is
clear that the degree of the graph that defines a sparse Wigner matrix cannot fully
explain its spectral norm in the present setting: very different behavior is exhibited
in dense vs. locally tree-like graphs of the same degree [4, section 4.2]. To date, a
deeper understanding of such matrices beyond the Gaussian case remains limited.

5 Sample Covariance Matrices

We finally turn our attention to a random matrix model that is somewhat different
than the matrices we considered so far. The following model will be considered
throughout this section. Let ˙ be a given d � d positive semidefinite matrix, and
let X1;X2; : : : ;Xn be i.i.d. centered Gaussian random vectors in R

d with covariance
matrix ˙ . We consider in the following the d � d symmetric random matrix

Z D
1

n

nX
kD1

XkX�
k D

XX�

n
;

where we defined the d � n matrix Xik D .Xk/i. In contrast to the models considered
in the previous sections, the random matrix Z is not centered: we have in fact EZ D

˙ . This gives rise to the classical statistical interpretation of this matrix. We can
think of X1; : : : ;Xn as being i.i.d. data drawn from a centered Gaussian distribution
with unknown covariance matrix ˙ . In this setting, the random matrix Z, which
depends only on the observed data, provides an unbiased estimator of the covariance
matrix of the underlying data. For this reason, Z is known as the sample covariance
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matrix. Of primary interest in this setting is not so much the matrix norm kZk D

kXk2=n itself, but rather the deviation kZ �˙k of Z from its mean.
The model of this section could be viewed as being “semi-structured.” On the one

hand, the covariance matrix˙ is completely arbitrary, and it therefore allows for an
arbitrary variance and dependence pattern within each column of the matrix X (as
in the most general setting of the noncommutative Khintchine inequality). On the
other hand, the columns of X are assumed to be i.i.d., so that no nontrivial structure
among the columns is captured by the present model. While the latter assumption is
limiting, it allows us to obtain a complete understanding of the structural parameters
that control the expected deviation EkZ �˙k in this setting [10].

Theorem 5.1 (Koltchinskii-Lounici) In the setting of this section

EkZ �˙k � k˙k

 r
r.˙/

n
C

r.˙/

n

!
;

where r.˙/ WD TrŒ˙�=k˙k is the effective rank of ˙ .

The remainder of this section is devoted to the proof of Theorem 5.1.

5.1 Upper Bound

The proof of Theorem 5.1 will use the random process method using tools that were
already developed in the previous sections. It would be clear how to proceed if we
wanted to bound kZk: as kZk D kXk2=n, it would suffice to bound kXk which is the
supremum of a Gaussian process. Unfortunately, this idea does not extend directly
to the problem of bounding kZ � ˙k: the latter quantity is not the supremum of a
centered Gaussian process, but rather of a squared Gaussian process

kZ �˙k D sup
v2B

ˇ̌
ˇ̌
ˇ
1

n

nX
kD1

fhv;Xki
2 � Ehv;Xki

2g

ˇ̌
ˇ̌
ˇ:

We therefore cannot directly apply a Gaussian comparison method such as the
Slepian-Fernique inequality to control the expected deviation EkZ �˙k.

To surmount this problem, we will use a simple device that is widely used in the
study of squared Gaussian processes (or Gaussian chaos), cf. [12, section 3.2].

Lemma 5.2 (Decoupling) Let QX be an independent copy of X. Then

EkZ �˙k �
2

n
EkX QX�k:
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Proof By Jensen’s inequality

EkZ �˙k D
1

n
EkEŒ.X C QX/.X � QX/�jX�k �

1

n
Ek.X C QX/.X � QX/�k:

It remains to note that .X C QX;X � QX/ has the same distribution as
p
2 .X; QX/. ut

Roughly speaking, the decoupling device of Lemma 5.2 allows us to replace the
square XX� of a Gaussian matrix by a product of two independent copies X QX�.
While the latter is still not Gaussian, it becomes Gaussian if we condition on one of
the copies (say, QX). This means that kX QX�k is the supremum of a Gaussian process
conditionally on QX. This is precisely what we will exploit in the sequel: we use the
Slepian-Fernique inequality conditionally on QX to obtain the following bound.

Lemma 5.3 In the setting of this section

EkZ �˙k . EkXk

p
TrŒ˙�

n
C k˙k

r
r.˙/

n
:

Proof By Lemma 5.2 we have

EkZ �˙k �
2

n
E
�

sup
v;w2B

Zv;w

�
; Zv;w WD

nX
kD1

hv;Xkihw; QXki:

Writing for simplicity EQXŒ�� D EŒ�j QX�, we can estimate

EQX.Zv;w � Zv0;w0/2 � 2hv � v0; ˙.v � v0/i

nX
kD1

hw; QXki
2 C 2hv0; ˙v0i

nX
kD1

hw � w0; QXki
2

� 2k QXk2k˙1=2.v � v0/k2 C 2k˙k k QX�.w � w0/k2

D EQX.Yv;w � Yv0;w0/2;

where we defined

Yv;w D
p
2 k QXk hv;˙1=2gi C .2k˙k/1=2 hw; QXg0i

with g; g0 independent standard Gaussian vectors in R
d and R

n, respectively. Thus

EQX

�
sup
v;w2B

Zv;w

�
� EQX

�
sup
v;w2B

Yv;w

�
. k QXk Ek˙1=2gk C k˙k1=2 EQXk QXgk

� k QXk
p

TrŒ˙�C k˙k1=2 TrŒ QX QX��1=2
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by the Slepian-Fernique inequality. Taking the expectation with respect to QX and
using that Ek QXk D EkXk and EŒTrŒ QX QX��1=2� �

p
n TrŒ˙� yields the conclusion.

ut

Lemma 5.3 has reduced the problem of bounding EkZ � ˙k to the much more
straightforward problem of bounding EkXk: as kXk is the supremum of a Gaussian
process, the latter is amenable to a direct application of the Slepian-Fernique
inequality precisely as was done in the proof of Lemma 3.11.

Lemma 5.4 In the setting of this section

EkXk .
p

TrŒ˙�C
p

nk˙k:

Proof Note that

E.hv;Xwi � hv0;Xw0i/2 � 2E.hv � v0;Xwi/2 C 2E.hv0;X.w � w0/i/2

D 2k˙1=2.v � v0/k2kwk2 C 2k˙1=2v0k2kw � w0k2

� E.X0
v;w � X0

v0;w0/
2

when kvk; kwk � 1, where we defined

X0
v;w D

p
2 hv;˙1=2gi C

p
2 k˙k1=2 hw; g0i

with g; g0 independent standard Gaussian vectors in R
d and R

n, respectively. Thus

EkXk D E
�

sup
v;w2B

hv;Xwi

�
� E

�
sup
v;w2B

X0
v;w

�
. Ek˙1=2gk C k˙k1=2Ekgk

by the Slepian-Fernique inequality. The proof is easily completed. ut

The proof of the upper bound in Theorem 5.1 is now immediately completed by
combining the results of Lemma 5.3 and Lemma 5.4.

Remark 5.5 The proof of the upper bound given here reduces the problem of
controlling the supremum of a Gaussian chaos process by decoupling to that of
controlling the supremum of a Gaussian process. The original proof in [10] uses
a different method that exploits a much deeper general result on the suprema of
empirical processes of squares, cf. [24, Theorem 9.3.7]. While the route we have
taken is much more elementary, the original approach has the advantage that it
applies directly to subgaussian matrices. The result of [10] is also stated for norms
other than the spectral norm, but proof given here extends readily to this setting.
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5.2 Lower Bound

It remains to prove the lower bound in Theorem 5.1. The main idea behind the proof
is that the decoupling inequality of Lemma 5.2 can be partially reversed.

Lemma 5.6 Let QX be an independent copy of X. Then for every v 2 R
d

Ek.Z �˙/vk �
1

n
EkX QX�vk �

k˙vk
p

n
:

Proof The reader may readily verify that the random matrix

X0 D

�
I �

˙vv�

hv;˙vi

�
X

is independent of the random vector X�v (and therefore of hv;Zvi). Moreover

.Z �˙/v D
XX�v

n
�˙v D

X0X�v

n
C

�
hv;Zvi

hv;˙vi
� 1

�
˙v:

As the columns of X0 are i.i.d. and independent of X�v, the pair .X0X�v;X�v/ has
the same distribution as .X0

1kX�vk;X�v/ where X0
1 denotes the first column of X0.

Thus

Ek.Z �˙/vk D E





X0
1kX�vk

n
C

�
hv;Zvi

hv;˙vi
� 1

�
˙v





 �
1

n
EkX�vk EkX0

1k;

where we used Jensen’s inequality conditionally on X0. Now note that

EkX0
1k � EkX1k � k˙vk

Ejhv;X1ij

hv;˙vi
� EkX1k �

k˙vk

hv;˙vi1=2
:

We therefore have

Ek.Z�˙/vk �
1

n
EkX1k Ek QX�vk�

1

n
EkX�vk

k˙vk

hv;˙vi1=2
�
1

n
EkX QX�vk�

k˙vk
p

n
;

as EkX�vk �
p

n hv;˙vi1=2 and as X1k QX�vk has the same distribution as X QX�v.
ut

As a corollary, we can obtain the first term in the lower bound.

Corollary 5.7 In the setting of this section, we have

EkZ �˙k & k˙k

r
r.˙/

n
:
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Proof Taking the supremum over v 2 B in Lemma 5.6 yields

EkZ �˙k C
k˙k
p

n
� sup

v2B

1

n
EkX QX�vk D

1

n
EkX1k sup

v2B
Ek QX�vk:

Using Gaussian concentration as in the proof of Lemma 3.7, we obtain

EkX1k & EŒkX1k
2�1=2 D

p
TrŒ˙�; Ek QX�vk & EŒk QX�vk2�1=2 D

p
n hv;˙vi:

This yields

EkZ �˙k C
k˙k
p

n
& k˙k

r
r.˙/

n
:

On the other hand, we can estimate by the central limit theorem

k˙k
p

n
. sup

v2B
Ejhv; .Z �˙/vij � EkZ �˙k;

as hv; .Z � ˙/vi D hv;˙vi 1n
Pn

kD1fY2k � 1g with Yk D hv;Xki=hv;˙vi1=2 �

N.0; 1/. ut

We can now easily complete the proof of Theorem 5.1.

Proof (Proof of Theorem 5.1) The upper bound follows immediately from Lem-
mas 5.3 and 5.4. For the lower bound, suppose first that r.˙/ � 2n. Thenp

r.˙/=n & r.˙/=n, and the result follows from Corollary 5.7. On the other hand,
if r.˙/ > 2n,

EkZ �˙k � EkZk � k˙k �
EkX1k2

n
� k˙k

r.˙/

2n
D k˙k

r.˙/

2n
;

where we used that Z D 1
n

Pn
kD1 XkX�

k � 1
n X1X�

1 . ut
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Rates of Convergence for Empirical Spectral
Measures: A Soft Approach

Elizabeth S. Meckes and Mark W. Meckes

Abstract Understanding the limiting behavior of eigenvalues of random matrices
is the central problem of random matrix theory. Classical limit results are known
for many models, and there has been significant recent progress in obtaining
more quantitative, non-asymptotic results. In this paper, we describe a systematic
approach to bounding rates of convergence and proving tail inequalities for the
empirical spectral measures of a wide variety of random matrix ensembles. We
illustrate the approach by proving asymptotically almost sure rates of convergence
of the empirical spectral measure in the following ensembles: Wigner matrices,
Wishart matrices, Haar-distributed matrices from the compact classical groups,
powers of Haar matrices, randomized sums and random compressions of Hermitian
matrices, a random matrix model for the Hamiltonians of quantum spin glasses,
and finally the complex Ginibre ensemble. Many of the results appeared previously
and are being collected and described here as illustrations of the general method;
however, some details (particularly in the Wigner and Wishart cases) are new.

Our approach makes use of techniques from probability in Banach spaces, in
particular concentration of measure and bounds for suprema of stochastic processes,
in combination with more classical tools from matrix analysis, approximation
theory, and Fourier analysis. It is highly flexible, as evidenced by the broad list
of examples. It is moreover based largely on “soft” methods, and involves little hard
analysis.

The most fundamental problem in random matrix theory is to understand the
limiting behavior of the empirical spectral distribution of large random matrices,
as the size tends to infinity. The first result on this topic is the famous Wigner
semi-circle law, the first version of which was proved by Wigner in 1955 [52, 53].
A random matrix is called a Wigner matrix if it is Hermitian, with independent
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entries on and above the diagonal. Wigner showed that, under some conditions
on the distributions of the entries, the limiting empirical spectral measure of a
(normalized) Wigner matrix is the semi-circular law �sc.

Wigner’s first version of the semi-circle law gave convergence in expectation
only; i.e., he showed that the expected number of eigenvalues of a Wigner matrix in
an interval converged to the value predicted by the semi-circle law, as the size of the
matrix tended to infinity. His second paper improved this to convergence “weakly
in probability.” The analog for random unitary matrices, namely that their spectral
measures converge to the uniform measure on the circle, seems intuitively obvious;
surprisingly, convergence in mean and weak convergence in probability were not
proved until nearly 40 years after Wigner’s original work [9].

While these results are fundamental, the limitations of limit theorems such
as these are well known. Just as the Berry–Esseen theorem and Hoeffding-type
inequalities provide real tools for applications where the classical central limit
theorem only justifies heuristics, it is essential to improve the classical limit results
of random matrix theory to quantitative approximation results which have content
for large but finite random matrices. See [8, 49] for extended discussions of this
so-called “non-asymptotic” random matrix theory and its applications.

In this paper, we describe a systematic approach to bounding rates of convergence
and proving tail inequalities for the empirical spectral measures of a wide variety of
random matrix ensembles. This approach makes use of techniques from probability
in Banach spaces, in particular concentration of measure and bounds for suprema of
stochastic processes, in combination with more classical tools from matrix analysis,
approximation theory, and Fourier analysis. Our approach is highly flexible, and can
be used for a wide variety of types of matrix ensembles, as we will demonstrate
in the following sections. Moreover, it is based largely on “soft” methods, and
involves little hard analysis. Our approach is restricted to settings in which there is a
concentration of measure phenomenon; in this sense, it has rather different strengths
than the methods used in, for example, [13, 17, 47] and many other works referred
to in those papers. Those approaches achieve sharper results without requiring a
measure concentration hypothesis, but they require many delicate estimates and
are mainly restricted to random matrices constructed from independent random
variables, whereas our methods have no independence requirements.

The following key observation, a consequence of the classical Hoffman–
Wielandt inequality (see [2, Theorem VI.4.1]), underlies the approach.

Lemma 1 (see [36, Lemma 2.3]) For an n � n normal matrix M over C, let
	1; : : : ; 	n denote the eigenvalues, and let �M denote the spectral measure of M;
i.e.,

�M WD
1

n

nX
jD1

ı	j :
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Then

(a) if f W C ! R is 1-Lipschitz, then the map

M 7�!

Z
f d�M

is 1p
n
-Lipschitz, with respect to the Hilbert–Schmidt distance on the set of

normal matrices; and
(b) if � is any probability measure on C and p 2 Œ1; 2�, the map

M 7�! Wp.�M; �/

is 1p
n
-Lipschitz.

Here Wp denotes the Lp-Kantorovich (or Wasserstein) distance on probability
measures on C, defined by

Wp.�; �/ D

�
inf
�

Z
jx � yjp d�.x; y/

�1=p

;

where the infimum ranges over probability measures � on C � C with marginals �
and �. The Kantorovich–Rubinstein theorem (see [50, Theorem 1.14]) gives that

W1.�; �/ D sup
jf jL�1

�Z
f d� �

Z
f d�

�
;

where jf jL denotes the Lipschitz constant of f ; this connects part (a) of Lemma 1
with estimates on W1.

In many random matrix ensembles of interest there is a concentration of measure
phenomenon, meaning that well-behaved functions are “essentially constant,” in the
sense that they are close to their means with high probability. A prototype is the
following Gaussian concentration phenomenon (see [28]).

Proposition 2 If F W R
n ! R is a 1-Lipschitz function and Z is a standard

Gaussian random vector in R
n, then

P ŒF.Z/ � EF.Z/ � t� � e�t2=2

for all t > 0.

Suppose now that M is a random matrix satisfying such a concentration property.
Lemma 1 means that one can obtain a bound on Wp.�M; �/ which holds with high
probability if one can bound EWp.�M; �/. That is, a bound on the expected distance
to the limiting measure immediately implies an asymptotically almost sure bound.
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The tail estimates coming from measure concentration are typically exponential or
better, and therefore imply almost sure convergence rates via the Borel–Cantelli
lemma.

We are thus left with the problem of bounding the expected distance from the
empirical spectral measure �M to some deterministic reference measure �. There
are two different methods used for this step, depending on the properties of the
ensemble:

(1) Eigenvalue rigidity. In some ensembles, each of the (ordered) individual
eigenvalues can be assigned a predicted location based on the limiting spectral
measure for the ensemble, such that all (or at least many) eigenvalues con-
centrate strongly near these predicted locations. In this case � is taken to be a
discrete measure supported on those predicted locations, and the concentration
allows one to easily estimate EWp.�M; �/.

(2) Entropy methods. If instead we set � D E�M , then the Kantorovich–
Rubinstein theorem implies that

W1.�M; �/ D sup
jf jL�1

�Z
f d�M � E

Z
f d�M

�
;

so that W1.�M; �/ is the supremum of a centered stochastic process indexed
by the unit ball of the space of Lipschitz functions on C. In ensembles with
a concentration phenomenon for Lipschitz functions, part (a) of Lemma 1
translates to an increment condition on this stochastic process, which gives a
route to bounding its expected supremum via classical entropy methods.

Finally, it may still be necessary to estimate the distance from the measure � to
the limiting spectral measure for the random matrix ensemble. The techniques used
to do this vary by the ensemble, but this is a more classical problem of convergence
of a sequence of deterministic measures to a limit, and any of the many techniques
for obtaining rates of convergence may be useful.

Applications of concentration of measure to random matrices date from at least as
long ago as the 1970s; a version of the argument for the concentration of W1.�M; �/

essentially appears in the 2000 paper [22] of Guionnet and Zeitouni. See [8, 29, 48]
for surveys of concentration methods in random matrix theory.

The method of eigenvalue rigidity to bound Kantorovich distances is particularly
suited to situations in which the empirical spectrum is a determinantal point process;
this was first observed in the work of Dallaporta [6, 7]. The entropy approach to
random Kantorovich distances was introduced in the context of random projections
in [33, 34]; it was first applied for empirical spectral measures in [35, 36]. A further
abstraction was given by Ledoux [30].

Organization The rest of this paper is a series of sections sketching some version
of the program described above for a number of random matrix ensembles. Section 1
and section 2 discuss Wigner and Wishart matrices, combining eigenvalue rigidity
arguments of Dallaporta [6, 7] with measure concentration. Section 3 discusses
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random matrices drawn uniformly from classical compact matrix groups, and
Section 4 discusses powers of such matrices; both those sections follow [37] and
also use the eigenvalue rigidity approach. The next three sections use the entropy
method: Sections 5 and 6 discuss randomized sums and random compressions
of Hermitian matrices, following [36], and Section 7 discusses Hamiltonians of
quantum spin glasses, following [3]. Finally, Section 8, following [38], demonstrates
in case of the complex Ginibre ensemble, how eigenvalue rigidity alone allows one
to carry our much of our program even without the use of a general concentration
phenomenon together with Lemma 1.

1 Wigner Matrices

In this section we outline how our approach can be applied to the most central model
of random matrix theory, that of Wigner matrices. We begin with the most classical
case: the Gaussian Unitary Ensemble (GUE). Let Mn be a random n � n Hermitian
matrix, whose entries

˚
ŒMn�jk

ˇ̌
1 � j � k � n


are independent random variables,

such that each ŒMn�jj has a N.0; n�1/ distribution, and each ŒMn�jk for j < k has
independent real and imaginary parts, each with an N.0; .2n/�1/ distribution. Since
Mn is Hermitian, it has real eigenvalues 	1 � � � � � 	n. Wigner’s theorem implies
that the empirical spectral measure

�n D
1

n

nX
jD1

ı	j

converges to the semicircle law �sc. The following result quantifies this convergence.

Theorem 3 Let Mn be as above, and let �n denote its spectral measure. Then

(a) EW2.�n; �sc/ � C

p
log.n/

n
;

(b) P

"
W2.�n; �sc/ � C

p
log.n/

n
C t

#
� e�n2t2=2 for all t � 0, and

(c) with probability 1, for sufficiently large n, W2.�n; �sc/ � C0

p
log.n/

n
:

Here and in what follows, symbols such as c;C;C0 denote constants which are
independent of dimension.

Part (a) of Theorem 3 was proved by Dallaporta in [6] using the eigenvalue
rigidity approach; the proof is outlined below.

Lemma 1 and the Gaussian concentration of measure property (Proposition 2),
implies that if F is a 1-Lipschitz function (with respect to the Hilbert–Schmidt
distance) on the space of Hermitian matrices, then

P ŒF.Mn/ � EF.Mn/C t� � e�nt2=2 (1)
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for all t � 0. This fact, together with part (b) of Lemma 1 and part (a) of Theorem 3
now imply part (b). Finally, part (c) follows from part (b) by the Borel–Cantelli
lemma. So it remains only to prove part (a).

Define �j 2 R such that �sc..�1; �j�/ D j
n ; this is the predicted location of the

jth eigenvalue 	j of Mn. The discretization �n of the semi-circle law �sc is given by

�n WD
1

n

nX
jD1

ı�j :

It can be shown that that W2.�sc; �n/ � C
n . Furthermore, by the definition of W2,

EW2
2 .�n; �n/ �

1

n

nX
jD1

E
ˇ̌
	j � �j

ˇ̌2
:

This reduces the proof of part (a) to estimating the latter expectations.
It is a classical fact that the eigenvalues of the GUE form a determinantal point

process with kernel

Kn.x; y/ D

nX
jD0

hj.x/hj.y/e
�.x2Cy2/=2;

where the hj are the orthonormalized Hermite polynomials [39, Section 6.2]. (The
reader is referred to [24] for the definition of a determinantal point process.)
The following is then a special case of some important general properties of
determinantal point processes [24, Theorem 7], [23].

Proposition 4 For each x 2 R, let Nx denote the number of eigenvalues of Mn

which are less than or equal to x. Then

Nx
d
D

nX
iD1

�i;

where the �i are independent f0; 1g-valued Bernoulli random variables.
Moreover,

ENx D

Z x

�1

Kn.u; u/ du and VarNx D

Z x

�1

Z 1

x
Kn.u; v/

2 du dv:

The first part of this result can be combined with the classical Bernstein
inequality to deduce that for each t > 0,

P ŒjNx � ENxj > t� � 2 exp

�
�

t2

2�2x C t

�
;
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where �2x D VarNx. Using estimates on ENx due to Götze and Tikhomirov [18] and
on �2x due to Gustavsson [23] (both of which can be deduced from the second part
of Proposition 4), this implies that for x 2 .�2C ı; 2 � ı/,

P ŒjNx � n�sc..�1; x�/j > t C C� � 2 exp

�
�

t2

2cı log.n/C t

�

for each t � 0. Combining this with the observation that

P
�
	j > �j C t

�
D P

�
N�jCt < j

�
;

one can deduce, upon integrating by parts, that

E
ˇ̌
	j � �j

ˇ̌2
� C"

log.n/

n2

for j 2 Œ"n; .1 � "/n�. This provides the necessary estimates in the bulk of the
spectrum. Dallaporta established similar but weaker bounds for the soft edge of the
spectrum using essentially the last part of Proposition 4, and for the hard edge using
tail estimates due to Ledoux and Rider [31]. This completes the proof of Theorem 3.

The real symmetric counterpart of the GUE is the Gaussian Orthogonal Ensem-
ble (GOE), whose entries

˚
ŒMn�jk

ˇ̌
1 � j � k � n


are independent real random

variables, such that each ŒMn�jj has an N.0; n�1/ distribution, and each ŒMn�jk for
j < k has a N.0; .

p
2n/�1/ distribution. The spectrum of the GOE does not form

a determinantal point process, but a close distributional relationship between the
eigenvalue counting functions of the GOE and GUE was found in [16, 41]. Using
this, Dallaporta showed that part (a) of Theorem 3 also applies to the GOE. Part (b)
then follows from the Gaussian concentration of measure property as before, and
part (c) from the Borel–Cantelli lemma.

To move beyond the Gaussian setting, Dallaporta invokes the Tao–Vu four
moment theorem [46, 45] and a localization theorem due to Erdős, Yau, and Yin [14]
to extend Theorem 3(a) to random matrices with somewhat more general entries.
The proofs of these results involve the kind of hard analysis which it is our purpose
to avoid in this paper. However, it is straightforward, under appropriate hypotheses,
to extend the measure concentration argument for part (b) of Theorem 3, and we
indicate briefly how this is done.

A probability measure � on R is said to satisfy a quadratic transportation cost
inequality (QTCI) with constant C > 0 if

W2.�; �/ �
p

CH.�j�/

for any probability measure � which is absolutely continuous with respect to �,
where H.�j�/ denotes relative entropy.
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Proposition 5 (see [28, Chapter 6]) Suppose that X1; : : : ;Xn are independent
random variables whose distributions each satisfy a QTCI with constant C. If
F W Rn ! R is a 1-Lipschitz function, then

P ŒF.X/ � EF.X/ � t� � e�t2=C

for all t > 0.

A QTCI is the most general possible hypothesis which implies subgaussian tail
decay, independent of n, for Lipschitz functions of independent random variables;
see [19]. It holds in particular for any distribution satisfying a logarithmic Sobolev
inequality, including Gaussian distributions, or a distribution with a density on a
finite interval bounded above and below by positive constants. Using Dallaporta’s
arguments for part (a) and substituting Proposition 5 in place of the Gaussian
concentration phenomenon, we arrive at the following generalization of Theorem 3.

Theorem 6 Let Mn be a random Hermitian matrix whose entries satisfy each of the
following:

• The random variables
˚
Re Mjk


1�j�k�n and

˚
Im Mjk


1�j<k�n are all independent.

• The first four moments of each of these random variables is the same as for the
GUE (respectively, GOE).

• Each of these random variables satisfies a QTCI with constant cn�1=2.

Let �n denote the spectral measure of Mn. Then

(a) EW2.�n; �sc/ � C

p
log.n/

n
;

(b) P

"
W2.�n; �sc/ � C

p
log.n/

n
C t

#
� e�cn2t2 for all t � 0, and

(c) with probability 1, for sufficiently large n, W2.�n; �sc/ � C0

p
log.n/

n
:

As mentioned above, a QTCI is a minimal assumption to reach exactly this result
by these methods. A weaker and more classical assumption would be a Poincaré
inequality, which implies subexponential decay for Lipschitz functions, and is the
most general hypothesis implying any decay independent of n; see [20] and the
references therein. If the third condition in Theorem 6 is replaced by the assumption
of a Poincaré inequality with constant cn�1=2, then the same kind of argument leads
to an almost sure convergence rate of order log.n/

n ; we omit the details.

2 Wishart Matrices

In this section we apply the strategy described in the introduction to Wishart
matrices (i.e., random sample covariance matrices). Let m � n, and let X be an m�n
random matrix with i.i.d. entries, and define the Hermitian positive-semidefinite
random matrix
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Sm;n WD
1

m
X�X:

We denote the eigenvalues of Sm;n by 0 � 	1 � � � � � 	n and the empirical spectral
measure by

�m;n D
1

n

nX
jD1

ı	j :

It was first proved in [32] that, under some moment conditions, if n
m ! � > 0 as

n;m ! 1, then �m;n converges to the Marchenko–Pastur law �� with parameter �,
with compactly supported density given by

f�.x/ D
1

2�x

q
.b� � x/.x � a�/;

on
�
a�; b�

�
, with a� D .1 �

p
�/2 and b� D .1 C

p
�/2. The following result

quantifies this convergence for many distributions.

Theorem 7 Suppose that for each n, 0 < c � n
m � 1, and that X is an m�n random

matrix whose entries satisfy each of the following:

• The random variables
˚
Re Xjk


1�j�m
1�k�n

and
˚
Im Xjk


1�j�m
1�k�n

are all independent.

• The first four moments of each of these random variables are the same as for a
standard complex (respectively, real) normal random variable.

• Each of these random variables satisfies a QTCI with constant C.

Let � D n
m and let �m;n denote the spectral measure of Sm;n D 1

m X�X. Then

(a) EW2.�m;n; ��/ � C

p
log.n/

n
;

(b) P

"
W2.�m;n; ��/ � C

p
log.n/

n
C t

#
� e�cm minfnt2;

p
ntg for all t � c

p
log.n/

n , and

(c) with probability 1, for sufficiently large n, W2.�m;n; ��/ � C0

p
log.n/

n
:

Strictly speaking, part (c) does not, as stated, imply almost sure convergence of
�m;n, since � and hence �� itself depends on n. However, if � D �.n/ has a limiting
value �� as n ! 1 (as in the original Marchenko–Pastur result), then the measures
�� converge to ��� . This convergence can easily be quantified, but we will not
pursue the details here.

Proof Part (a) was proved by Dallaporta in [7], by the same methods as in
Theorem 6(a) discussed in the last section. First, when the entries of X are complex
normal random variables (in which Sm;n is the unitary Laguerre ensemble), the
eigenvalues of Sm;n form a determinantal point process. This implies an analogue
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of Proposition 4, from which eigenvalue rigidity results can be deduced, leading to
the estimate in part (a) in this case. The result is extended to real Gaussian random
matrices using interlacing results, and to more general distributions using versions
of the four moment theorem for Wishart random matrices. The reader is referred to
[7] for the details.

The proof of part (b) is more complicated than in the previous section, because
the random matrix Sm;n depends quadratically on the independent entries of X.
However, we can still apply the machinery of measure concentration by using
the fact that Sm;n possesses local Lipschitz behavior, combined with a truncation
argument. Indeed, if X;Y are m � n matrices over C,





 1mX�X �
1

m
Y�Y






HS

�
1

m
kX�.X � Y/kHS C

1

m
k.X� � Y�/Y/kHS

�
1

m

�
kXkop C kYkop

�
kX � YkHS ;

(2)

where we have used the facts that both the Hilbert–Schmidt norm k�kHS and the
operator norm k�kop are invariant under conjugation and transposition, and that
kABkHS � kAkop kBkHS.

Thus, for a given K > 0, the function

X 7!
1

m
X�X

is 2Kp
m

-Lipschitz on
˚
X 2 Mm;n .C/ j kXkop � K

p
m

; and so by Lemma 1(b), the

function

F W X 7! W2.�m;n; ��/

is 2Kp
mn

-Lipschitz on this set. We can therefore extend F to a 2Kp
mn

-Lipschitz function
eF W Mm;n .C/ ! R (cf. [15, Theorem 3.1.2]); we may moreover assume thateF.X/ �

0 and

sup
X2Mm;n.C/

eF.X/ D sup
kXkop�K

p
m

W2.�m;n; ��/: (3)

Proposition 5 now allows us to control eF.X/ and kXkop, which are both Lipschitz
functions of X.

First, an elementary discretization argument using Proposition 5 (cf. [49, Theo-
rem 5.39], or alternatively Lemma 15 below) shows that

P
�
kXkop > K

p
m
�

� 2e�cm (4)

for some K; c > 0. We will use this K in the following.
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Next, Proposition 5 implies that

P
�eF.X/ > t

�
� Ce�cmnt2 (5)

as long as t � 2EeF.X/. Now

EeF.X/ D EW2.�m;n; ��/C E

h�eF.X/ � W2.�m;n; ��/
�
1kXkop>K

p
m

i

� C

p
log.n/

n
C

 
sup

kXkop�K
p

m

W2.�m;n; ��/

!
PŒkXkop > K

p
m�

(6)

by part (a) and (3). Since �� is supported on Œa�; b��, and �m;n is supported onh
0;


 1

m XX�




op

i
D
h
0; 1m kXk2op

i
,

sup
kXkop�K

p
m

W2.�m;n; ��/ � maxfb�;K
2g � C;

and so by (4) and (6),

EeF.X/ � C

p
log.n/

n
C Ce�cm � C0

p
log.n/

n
:

Finally, we have

P
�
W2.�m;n; ��/ > t

�
� P

�
W2.�m;n; ��/ > t; kXkop � K

p
m
�

CP
�
kXkop>K

p
m
�

� P
�eF.X/ > t

�
C P

�
kXkop > K

p
m
�

� C0e�cmnt2

(7)
for c1

p
log.n/

n � t � c2p
n

by (4) and (5). We omit the details of the similar argument

to obtain a subexponential bound for t > c2p
n
. This concludes the proof of part (b).

Part (c) follows as before using the Borel–Cantelli lemma. ut

An alternative approach to quantifying the limiting behavior of the spectrum of
Wishart matrices is to consider the singular values 0 � �1 � � � � � �n of 1p

m
X;

that is, �j D
p
	j. Lemma 1 can be applied directly in that context, by using the

fact that the eigenvalues of the Hermitian matrix

�
0 X

X� 0

�
are f˙�jg. However, if

one is ultimately interested in the eigenvalues f	jg, then translating the resulting
concentration estimates to eigenvalues ends up requiring the same kind of analysis
carried out above.
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3 Uniform Random Matrices from the Compact Classical
Groups

Each of the compact classical matrix groups O .n/, SO .n/, U .n/, SU .n/, Sp .2n/
possesses a uniform (Haar) probability measure which is invariant under translation
by a fixed group element. Each of these uniform measures possesses a concentration
of measure property making it amenable to the program laid out in the introduction;
moreover, the eigenvalues of a random matrix from any of these groups is a
determinantal point process, meaning that the eigenvalue rigidity approach used in
Section 1 applies here as well. The limiting empirical spectral measure for all of
these groups is the uniform probability measure on the circle, as first shown in [9].
This convergence is quantified in the following result, proved in [37].

Theorem 8 Let Mn be uniformly distributed in any of O .n/, SO .n/, U .n/, SU .n/,
Sp .2n/, and let�n denote its spectral measure. Let� denote the uniform probability
measure on the unit circle S

1 � C. Then

(a) EW2.�n; �/ � C

p
log.n/

n
;

(b) P

"
W2.�n; �/ � C

p
log.n/

n
C t

#
� e�cn2t2 ; and

(c) with probability 1, for sufficiently large n, W2.�n; �/ � C

p
log.n/

n
:

We briefly sketch the proof below; for full details, see [37].
Part (a) is proved using the eigenvalue rigidity approach described in Section 1

for the GUE. We first order the eigenvalues of Mn as fei�jg1�j�n with 0 � �1 � � � � �

�n < 2� , and define the discretization �n of � by

�n WD
1

n

nX
jD1

ıe2� ij=n :

It is easy to show that W2.�; �n/ � C
n , and by the definition of W2,

EW2
2 .�n; �n/ �

1

n

nX
jD1

E
ˇ̌
ei�j � e2� ij=n

ˇ̌2
�
1

n

nX
jD1

E

ˇ̌
ˇ̌�j �

2� j

n

ˇ̌
ˇ̌2 ;

so that part (a) can be proved by estimating the latter expectations.
For these estimates, as for the GUE, one can make use of the determinantal

structure of the eigenvalue processes of uniformly distributed random matrices. For
the case of the unitary group U .n/, the eigenvalue angles f�jg form a determinantal
point process on Œ0; 2�/ with kernel



Rates of Convergence for Empirical Spectral Measures: A Soft Approach 169

Kn WD
sin
�

n.x�y/
2

	

sin
�
.x�y/
2

	 I

this was first proved by Dyson [11]. The determinantal structure provides an
analogue of Proposition 4:

Proposition 9 For each 0 � x < 2� , let Nx denote the number of eigenvalues ei�j

of Mn 2 U .n/ such that �j � x. Then

Nx
d
D

nX
iD1

�i; (8)

where �i are independent f0; 1g-valued Bernoulli random variables.
Moreover,

ENx D

Z x

0

Kn.u; u/ du and VarNx D

Z x

0

Z 2�

x
Kn.u; v/

2%1du dv:

(9)

Appropriately modified versions of Proposition 9 hold for the other groups as
well, due to determinantal structures in those contexts identified by Katz and Sarnak
[26].

Using (9), one can estimate ENx and VarNx, and then use (8) and Bernstein’s
inequality to deduce that

P

hˇ̌
ˇNx �

nx

2�

ˇ̌
ˇ > t C C

i
� 2 exp

�
�

t2

2c log.n/C t

�
(10)

for all t > 0. Combining this with the observation that

P

�
�j >

2� j

n
C t

�
D P

h
N 2� j

n Ct < j
i
;

one can deduce, upon integrating by parts, that

E

ˇ̌
ˇ̌�j �

2� j

n

ˇ̌
ˇ̌2 � C

log.n/

n2

for each j, which completes the proof of part (a). Observe that this is made slightly
simpler than the proof of Theorem 3(a) for the GUE by the fact that all of the
eigenvalues of a unitary matrix behave like “bulk” eigenvalues.

Part (b) of Theorem 8 follows from part (a) and the following concentration of
measure property of the uniform measure on the compact classical groups. (There
is an additional subtlety in dealing with the two components of O .n/, which can be
handled by conditioning on det Mn.)
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Proposition 10 Let Gn be one of SO .n/, U .n/, SU .n/, or Sp .2n/, and let F W

Gn ! R be 1-Lipschitz, with respect to either the Hilbert–Schmidt distance or the
geodesic distance on Gn. Let Mn be a uniformly distributed random matrix in Gn.
Then

P ŒjF.Mn/ � EF.Mn/j > t� � e�cnt2

for every t > 0.

For SO .n/, SU .n/, and Sp .2n/, this property goes back to the work of Gromov
and Milman [21]; for the precise version stated here see [1, Section 4.4]. For U .n/
(which was not covered by the results of [21] because its Ricci tensor is degenerate),
the concentration in Proposition 10 was proved in [37].

Finally, part (c) follows from part (b) via the Borel-Cantelli lemma, thus
completing the proof of Theorem 8.

4 Powers of Uniform Random Matrices

The approach used with random matrices from the compact classical groups in the
previous section can be readily generalized to powers of such matrices, as follows.

Theorem 11 Let Mn be uniformly distributed in any of O .n/, SO .n/, U .n/, SU .n/,
Sp .2n/. Let m � 1, and let �m;n denote the spectral measure of Mm

n . Let � denote
the uniform probability measure on the unit circle S

1 � C. There are universal
constants C; c such that

(a) EW2.�m;n; �/ � C

q
m
�
log

�
n
m

�
C 1

�
n

;

(b) P

2
64W2.�m;n; �/ � C

q
m
�
log

�
n
m

�
C 1

�
n

C t

3
75 � e�cn2t2 ; and

(c) with probability 1, for sufficiently large n, W2.�m;n; �/ � C

q
m
�
log

�
n
m

�
C 1

�
n

:

In fact, the same proof works for m > 1 as in the previous section, because of the
following result of Rains [42]. The result is stated in the unitary case for simplicity,
but analogous results hold in the other compact classical matrix groups.

Proposition 12 Let m � n be fixed. If Mn is uniformly distributed in U .n/,
the eigenvalues of Mm

n are distributed as those of m independent uniform unitary
matrices of sizes

�
n
m

˘
WD max

˚
k 2 N j k � n

m


and

˙
n
m

�
WD min

˚
k 2 N j k � n

m


,

such that the sum of the sizes of the matrices is n.
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As a consequence, if Nx is the number of eigenvalues of Mm
n lying in the arc from

1 to eix, then

Nx
d
D

m�1X
jD0

Nj
x;

where the N
j
� are the counting functions of m independent random matrices, each

uniformly distributed in U
��

n
m

˘�
or U

�˙
n
m

��
. In particular, by Proposition 9 Nx is

equal in distribution to a sum of independent Bernoulli random variables, and its
mean and variance can be estimated using the available estimates for the individual
summands established in the previous section. One can thus again apply Bernstein’s
inequality to obtain eigenvalue rigidity, leading to a bound on EW2.�m;n; �/.

Crucially, the concentration phenomenon on the compact classical groups ten-
sorizes in a dimension-free way: the product of uniform measure on the m smaller
unitary groups above has the same concentration property as any one of those
groups. This is a consequence of the fact that the uniform measures on the compact
classical groups satisfy logarithmic Sobolev inequalities; see [1, Section 4.4] and
the Appendix of [37]. This allows for the full program laid out in the introduction
to be carried out in this case, yielding Theorem 11 above.

5 Randomized Sums

In this section we show how our approach can be applied to randomized sums of
Hermitian matrices. In this and the following two sections, we no longer have a
determinantal structure allowing us to use eigenvalue rigidity. Instead we will use
entropy methods to bound the expected distance between the empirical spectral
measure and its mean.

Let An and Bn be fixed n�n Hermitian matrices, and let Un 2 U .n/ be uniformly
distributed. Define

Mn WD UnAnU�
n C BnI

the random matrix Mn is the so-called randomized sum of An and Bn. This random
matrix model has been studied at some length in free probability theory; the
limiting spectral measure was studied first by Voiculescu [51] and Speicher [43],
who showed that if fAng and fBng have limiting spectral distributions �A and
�B respectively, then the limiting spectral distribution of Mn is given by the free
convolution �A � �B.

The following sharpening of this convergence is a special case of Theorem 3.8
and Corollary 3.9 of [36]; we present below a slightly simplified version of the
argument from that paper.
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Theorem 13 In the setting above, let �n denote the empirical spectral measure of
Mn, and let �n D E�n. Then

(a) EW1.�n; �n/ �
C kAnk2=3op .kAnkop C kBnkop/

1=3

n2=3
;

(b) P

"
W1.�n; �n/ �

C kAnk2=3op .kAnkop C kBnkop/
1=3

n2=3
C t

#
� e�cn2t2=kAnk2op , and

(c) with probability 1, for sufficiently large n,

W1.�n; �n/ � C0 kAnk2=3op .kAnkop C kBnkop/
1=3n�2=3:

In the most typical situations of interest, kAnkop and kBnkop are bounded
independently of n. If fAng and fBng have limiting spectral distributions �A and
�B respectively, then the rate of convergence of the (deterministic) measures �n to
�A � �B will depend strongly on the sequences fAng and fBng; we will not address
that question here.

The Lipschitz property which is a crucial ingredient of our approach to prove
Theorem 13 is provided by the following lemma.

Lemma 14 For each 1-Lipschitz function f W R ! R, the maps

Un 7!

Z
f d�n and Un 7! W1.�n; �n/

are
2kAnkopp

n
-Lipschitz on U .n/.

Proof Let A and B be n � n Hermitian matrices, and let U;V 2 U .n/. Then it is
straightforward to show that



�UAU� C B
�

�
�
VAV� C B

�


HS � 2 kAkop kU � VkHS

(see [36, Lemma 3.2]). The lemma now follows by Lemma 1. ut

Part (b) of Theorem 13 now follows from part (a) using Lemma 14 and the
concentration of measure phenomenon for U .n/ (Proposition 10), and part (c)
follows as usual by the Borel–Cantelli lemma. It remains to prove part (a); as
mentioned above, this is done using entropy techniques for bounding the supremum
of a stochastic process.

The following lemma summarizes what is needed here. This fact is well known
to experts, but we were not able to find an explicit statement in the literature.

Lemma 15 Suppose that .V; k�k/ be a finite-dimensional normed space with unit
ball B.V/, and that fXv j v 2 Vg is a family of centered random variables such that

PŒjXu � Xvj � t� � 2e�t2=K2ku�vk2
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for every t � 0. Then

E sup
v2B.V/

Xv � CK
p

dim V:

Proof This can be proved via an elementary "-net argument, but a quicker proof can
be given using Dudley’s entropy bound (see [44, p. 22] for a statement, and [44, p.
70] and [10] for discussions of the history of this result and its name).

By rescaling it suffices to assume that K D 1. Let N."/ denote the number of
"-balls in V needed to cover the unit ball B.V/. A standard volumetric argument
(see, e.g., [49, Lemma 5.2]) shows that N."/ � .3="/dim V for each 0 < " < 1; of
course N."/ D 1 for " � 1. Then Dudley’s bound yields

E sup
v2B.V/

Xv � C
Z 1

0

p
log.N."// d" � C

p
dim V

Z 1

0

p
log.3="/ d" � C0

p
dim V:

ut

To apply this lemma in our setting, denote by

Lip0 WD ff W R ! R j jf jL < 1 and f .0/ D 0g ;

so that Lip0 is a Banach space with norm j�jL. For each f 2 Lip0, define the random
variable

Xf WD

Z
f d�n � E

Z
f d�n: (11)

By the Kantorovich–Rubinstein theorem,

W1.�n; �n/ D sup
˚
Xf W f 2 B.Lip0/


: (12)

Lemma 14 and Proposition 10 imply that

P
�ˇ̌

Xf � Xg

ˇ̌
� t
�

D P
�ˇ̌

Xf �g

ˇ̌
� t
�

� 2 exp

"
�

cn2t2

kAnk2op jf � gj2L

#
: (13)

We would like to appeal to Lemma 15, but unfortunately, Lip0 is infinite-
dimensional. We can get around this problem with an additional approximation
argument.

Observing that �n is supported on Œ� kMnkop ; kMnkop� and kMnkop � kAnkop C

kBnkop, we begin by replacing Lip0 with

Lip0.Œ�R;R�/ WD ff W Œ�R;R� ! R j jf jL < 1 and f .0/ D 0g ;
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with R D kAnkop CkBnkop, for (11), (12), and (13) above. Now for an integer m � 1,
let Lipm

0 .Œ�R;R�/ be the 2m-dimensional space of piecewise affine functions f 2

Lip0.Œ�R;R�/ such that f is affine on each interval
h
�R C .k�1/R

m ;�R C kR
m

i
for k D

1; : : : ; 2m. Given f 2 Lip0.Œ�R;R�/, there is a unique function g 2 Lipm
0 .Œ�R;R�/

such that g. jR
m / D f . jR

m / for each integer j 2 Œ�m;m�; and this g satisfies

jgjL � jf jL and kf � gk1 �
jf jL R

2m
:

Thus by (12),

W1.�n; �n/ �
R

2m
C sup

˚
Xg j g 2 B.Lipm

0 .Œ�R;R�//

:

Now by (13) and Lemma 15,

EW1.�n; �n/ �
R

2m
C C

kAnkop

p
m

n
:

Part (a) now follows by optimizing over m. This completes the proof of Theorem 13.
An additional conditioning argument allows one to consider the case that An and

Bn are themselves random matrices in Theorem 13, assuming a concentration of
measure property for their distributions. We refer to [36] for details.

It seems that the entropy method does not usually result in sharp rates; for
example, in [36], we used the entropy approach for Wigner and Haar-distributed
matrices, and the results were not as strong as those in Sections 1 and 3. On the
other hand, the entropy method is more widely applicable than the determinantal
point process methods which yielded the results of Sections 1 and 3. In addition
to the randomized sums treated in this section, we show in Sections 6 and 7 how
the entropy method can be used for random compressions and for the Hamiltonians
of quantum spin glasses. The paper [36] also used the entropy approach to prove
convergence rates for the empirical spectral measures of the circular orthogonal
ensemble and the circular symplectic ensemble, which we have omitted from this
paper.

6 Random Compressions

Let An be a fixed n � n Hermitian (respectively, real symmetric) matrix, and let Un

be uniformly distributed in U .n/ (respectively, O .n/). Let Pk denote the projection
of Cn (respectively R

n) onto the span of the first k standard basis vectors. Finally,
define a random matrix Mn by

M WD PkUnAnU�
n P�

k : (14)
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Then Mn is a compression of An to a random k-dimensional subspace. In the case
that fAngn2N has a limiting spectral distribution and k

n ! ˛, the limiting spectral
distribution of Mn can be determined using techniques of free probability (see
[43]); the limit is given by a free-convolution power related to the limiting spectral
distribution of An and the value ˛.

For this random matrix model, the program laid out in the introduction produces
the following (cf. Theorem 3.5 and Corollary 3.6 in [36]).

Theorem 16 In the setting above, let �n denote the empirical spectral distribution
of Mn, and let �n D E�n. Then

(a) EW1.�n; �n/ �
C kAnkop

.kn/1=3
;

(b) P

�
W1.�n; �n/ �

C kAnkop

.kn/1=3
C t

�
� e�cknt2=kAnk2op , and

(c) with probability 1, for sufficiently large n, W1.�n; �n/ � C0 kAnkop .kn/�1=3:

The proof is essentially identical to the one in the previous section; the k-
dependence in the bounds is a consequence of the fact that k, not n, is the size of the
matrix when Lemma 1 is applied. As with Theorem 13, an additional conditioning
argument allows one to consider the case that An is random, with distribution
satisfying a concentration of measure property.

7 Hamiltonians of Quantum Spin Glasses

In this section we consider the following random matrix model for the Hamiltonian
of a quantum spin glass: let fZa;b;jg1�a;b�3

1�j�n
be independent standard Gaussian random

variables, and define the 2n � 2n random Hermitian matrix Hn by

Hn WD
1

p
9n

nX
jD1

3X
a;bD1

Za;b;j�
.a/
j �

.b/
jC1; (15)

where for 1 � a � 3,

�
.a/
j WD I˝.j�1/

n ˝ �.a/ ˝ I˝.n�j/
2 ;

with I2 denoting the 2 � 2 identity matrix, �.a/ denoting the 2 � 2 matrices

�.1/ WD

�
0 1

1 0

�
�.2/ WD

�
0 �i
i 0

�
�.3/ WD

�
1 0

0 �1

�
;
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and the labeling cyclic so that �.b/nC1 WD �
.b/
1 : The random matrix Hn acts on the space

.C2/˝n of n distinguishable qubits; the specific structure of Hn above corresponds
to nearest neighbor interaction on a circle of qubits.

If �n denotes the empirical spectral measure of Hn, then the ensemble average
�n D E�n is known in this context as the density of states measure �DOS

n . Recently,
Keating, Linden, and Wells [27] showed that �DOS

n converges weakly to Gaussian,
as n ! 1; i.e., they showed that the empirical spectral measure of Hn converges to
Gaussian in expectation. The paper [27] gives a similar treatment for more general
collections of (still independent) coupling coefficients, and more general coupling
geometries than that of nearest-neighbor interactions. In more recent work, Erdös
and Schröder [12] have considered still more general coupling geometries, and
found a sharp transition in the limiting behavior of the density of states measure
depending on the size of the maximum degree of the underlying graph, relative to
its number of edges.

The following result, essentially proved in [3], quantifies this convergence.

Theorem 17 Let �n be the spectral measure of Hn and let � denote the standard
Gaussian distribution on R. Then

(a) EW1.�n; �/ �
C

n1=6
;

(b) P

�
W1.�n; �/ �

C

n1=6
C t

�
� e�9nt2=2; and

(c) with probability 1, for all sufficiently large n,

W1.�n; �/ �
C0

n1=6
:

Because the coefficients Za;b;j in (15) are taken to be i.i.d. Gaussian random
variables, the Gaussian concentration of measure phenomenon (Proposition 2) can
be combined with Lemma 1 to carry out a version of the approach used in the cases
of random sums and random compressions (Sections 5 and 6). The following lemma
provides the necessary link between Lemma 1 and Proposition 2 for this random
matrix model.

Lemma 18 Let x D fxa;b;jg 2 R
9n (with, say, lexicographic ordering), and assume

that n � 3. Define Hn.x/ by

Hn.x/ WD
1

3
p

n

3X
a;bD1

nX
jD1

xa;b;j�
.a/
j �

.b/
jC1:

Then the map x 7! Hn is 2n=2

3
p

n
-Lipschitz.

Lemma 18 and Lemma 1(b) together show that

x 7! W1.�n; �/
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is a 1

3
p

n
-Lipschitz function of x. Part (b) of Theorem 17 then follows from part (a)

and Proposition 2, and part (c) follows by the Borel–Cantelli lemma.
The proof of part (a) has two main components. First, W1.�n;E�n/ is estimated

via the approach used in Sections 5 and 6: Lemma 18, Lemma 1(a), and Proposi-
tion 2 show that the stochastic process

Xf WD

Z
f d�n � E

Z
f d�n

satisfies a subgaussian increment condition as in Lemma 15, which can then be used
to show that

EW1.�n;E�n/ �
C

n1=6
:

Second, the convergence in expectation proved in [27] was done via a pointwise
estimate of the difference between the characteristic functions of E�n and � ; this
estimate can be parlayed into an estimate on W1.E�n; �/ via Fourier analysis. This
is carried out in detail in [3] for the bounded-Lipschitz distance; a similar argument
shows that

W1.E�n; �/ �
C

n1=6
;

completing the proof of Theorem 17.

8 The Complex Ginibre Ensemble

Let Gn be an n � n random matrix with i.i.d. standard complex Gaussian entries;
Gn is said to belong to the complex Ginibre ensemble. It was first established by
Mehta that if �n is the empirical spectral measure of 1p

n
Gn, then as n ! 1, �n

converges to the circular law; i.e., to the uniform measure � on the unit disc D WD

fz 2 C j jzj � 1g.
This is the one ensemble we treat in which the general concentration of measure

approach does not apply. The issue is that while there is a concentration phe-
nomenon for the i.i.d. Gaussian entries of Gn, the spectral measure of a nonnormal
matrix (Gn is nonnormal with probability 1) is not a Lipschitz function of the matrix.
Nevertheless, the eigenvalue process of Gn is a determinantal point process, and
so some of the techniques used above are still available. We sketch the basic idea
below; full details can be found in [38]

The eigenvalues of Gn form a determinantal point process on C with the kernel

K.z;w/ D
1

�
e�.jzj2Cjwj2/=2

n�1X
kD0

.zw/k

kŠ
: (16)
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This means that in principle, the determinantal approach to eigenvalue rigidity used
in the case of the GUE (Section 1) and of the compact classical groups (Section 3)
can be used for this model. A challenge, however, is the lack of an obvious order
on the eigenvalues of an arbitrary matrix over C; without one, there is no hope to
assign predicted locations around which the individual eigenvalues concentrate. We
therefore impose an order on C which is well adapted for our purposes; we refer to
this as the spiral order. Specifically, the linear order � on C is defined by making 0
initial, and for nonzero w; z 2 C, we declare w � z if any of the following holds:

• b
p

n jwjc < b
p

n jzjc.
• b

p
n jwjc D b

p
n jzjc and arg w < arg z.

• b
p

n jwjc D b
p

n jzjc, arg w D arg z, and jwj � jzj.

Here we are using the convention that arg z 2 .0; 2��.
We order the eigenvalues according to �: first the eigenvalues in the disc of

radius 1p
n

are listed in order of increasing argument, then the ones in the annulus

with inner radius 1p
n

and outer radius 2p
n

in order of increasing argument, and so

on. We then define predicted locations Q	j for (most of) the eigenvalues based on the
spiral order: Q	1 D 0, fQ	2; Q	3; Q	4g are 1p

n
times the 3rd roots of unity (in increasing

order with respect to �), the next five are 2p
n

times the 5th roots of unity, and so on.

Letting �n denote the normalized counting measure supported on the fQ	jg, it is easy
to show that

W2.�n; �/ �
C

p
n
:

(In fact, there is a slight modification for about
p

n log.n/ of the largest eigenvalues,
the details of which we will not discuss here.)

The same type of argument as in the earlier determinantal cases gives a Bernstein-
type inequality for the eigenvalue counting function on an initial segment with
respect to the spiral order, which in turn leads to eigenvalue rigidity for most of
the eigenvalues. The largest eigenvalues can be treated with a more elementary
argument, leading via the usual coupling argument to the bound

EW2.�n; �n/ � C

�
log.n/

n

�1=4
:

(One can deduce a slightly tighter bound for EWp.�n; �n/ for 1 � p < 2, and a
weaker one for p > 2.)

In this setting we cannot argue that the concentration of W1.�n; �/ is immediate
from general concentration properties of the ensemble, but the eigenvalue rigidity
itself can be used as a substitute. Indeed,

W2.�n; �n/
2 �

1

n

nX
jD1

ˇ̌
ˇ	j � Q	j

ˇ̌
ˇ2 ;
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and so

P
�
W2.�n; �n/

2 > t
�

� P

2
4 nX

jD1

ˇ̌
ˇ	j � Q	j

ˇ̌
ˇ2 > nt

3
5 �

nX
jD1

P

�ˇ̌
ˇ	j � Q	j

ˇ̌
ˇ2 > t

�
:

For most of the eigenvalues the eigenvalue rigidity about Q	j is strong enough to
bound this quite sharply; as before, for about

p
n log.n/ of the largest eigenvalues

a more trivial bound is used. Since this approach does not produce a particularly
clean tail inequality for W2.�n; �n/, we will instead simply state the almost-sure
convergence rate which follows by the Borel–Cantelli lemma.

Theorem 19 Let �n denote the empirical spectral measure of 1p
n
Gn, and let �

denote the uniform measure on the unit disc in C. Then with probability 1, for
sufficiently large n,

W2.�n; �/ � C

p
log n

n1=4
:
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Concentration of Measure Without
Independence: A Unified Approach
Via the Martingale Method

Aryeh Kontorovich and Maxim Raginsky

Abstract The concentration of measure phenomenon may be summarized as
follows: a function of many weakly dependent random variables that is not too
sensitive to any of its individual arguments will tend to take values very close to its
expectation. This phenomenon is most completely understood when the arguments
are mutually independent random variables, and there exist several powerful com-
plementary methods for proving concentration inequalities, such as the martingale
method, the entropy method, and the method of transportation inequalities. The set-
ting of dependent arguments is much less well understood. This chapter focuses on
the martingale method for deriving concentration inequalities without independence
assumptions. In particular, we use the machinery of so-called Wasserstein matrices
to show that the Azuma-Hoeffding concentration inequality for martingales with
almost surely bounded differences, when applied in a sufficiently abstract setting,
is powerful enough to recover and sharpen several known concentration results
for nonproduct measures. Wasserstein matrices provide a natural formalism for
capturing the interplay between the metric and the probabilistic structures, which
is fundamental to the concentration phenomenon.

1 Introduction

At its most abstract, the concentration of measure phenomenon may be summarized
as follows: a function of several weakly dependent random variables that is not
too sensitive to any of the individual arguments will tend to take values very close
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to its expectation. This phenomenon is most completely understood in the case
of independent arguments, and the recent book [2] provides an excellent survey
(see also [30] for an exposition from the viewpoint of, and with applications to,
information theory).

The case of dependent arguments has yet to mature into such a unified,
overarching theory. The earliest concentration results for nonproduct measures were
established for Haar measures on various groups, and relied strongly on the highly
symmetric nature of the Haar measure in question. These results include Lévy’s
classic isoperimetric inequality on the sphere [20] and Maurey’s concentration
inequality on the permutation group [28]. To the best of our knowledge, the first
concentration result for a nonproduct, non-Haar measure is due to Marton [22],
where she proved a McDiarmid-type bound for contracting Markov chains. A
flurry of activity followed. Besides Marton’s own follow-up work [23, 24, 25], the
transportation method she pioneered was extended by Samson [33], and martingale
techniques [32, 6, 17], as well as methods relying on the Dobrushin interdependence
matrix [19, 4, 36], have been employed in obtaining concentration results for
nonproduct measures. The underlying theme is that the independence assumption
may be relaxed to one of weak dependence, the latter being quantified by various
mixing coefficients.

This chapter is an attempt at providing an abstract unifying framework that
generalizes and sharpens some of the above results. This framework combines
classical martingale techniques with the method of Wasserstein matrices [10]. In
particular, we rely on Wasserstein matrices to obtain general-purpose quantitative
estimates of the local variability of a function of many dependent random variables
after taking a conditional expectation with respect to a subset of the variables. A
concentration inequality in a metric space must necessarily capture the interplay
between the metric and the distribution, and, in our setting, Wasserstein matrices
provide the ideal analytical tool for this task. As an illustration, we recover (and, in
certain cases, sharpen) some results of [19, 6, 17] by demonstrating all of these to
be special cases of the Wasserstein matrix method.

The remainder of the chapter is organized as follows. Section 2 is devoted to
setting up the basic notation and preliminary definitions. A brief discussion of the
concentration of measure phenomenon in high-dimensional spaces is presented in
Section 3, together with a summary of key methods to establish concentration under
the independence assumption. Next, in Section 4, we present our abstract martingale
technique and then demonstrate its wide scope in Section 5 by deriving many of the
previously published concentration inequalities as special cases. We conclude in
Section 6 by listing some open questions.



Concentration Without Independence 185

2 Preliminaries and Notation

2.1 Metric Probability Spaces

A metric probability space is a triple .˝;�; d/, where˝ is a Polish space equipped
with its Borel � -field, � is a Borel probability measure on ˝, and d is metric on
˝, assumed to be a measurable function on the product space ˝ � ˝. We do not
assume that d is the same metric that metrizes the Polish topology on ˝.

2.2 Product Spaces

Since concentration of measure is a high-dimensional phenomenon, a natural setting
for studying it is that of a product space. Let T be a finite index set, which we identify
with the set Œn� , f1; : : : ; ng, where n D jTj (this amounts to fixing some linear
ordering of the elements of T). We will use the following notation for subintervals
of T: Œi� , f1; : : : ; ig; Œi; j� , fi; i C 1; : : : ; jg for i ¤ j; .i; j� , fi C 1; : : : ; jg for
i < j; .i; j/ , fi C 1; : : : ; j � 1g for i < j � 1; etc.

With each i 2 T , we associate a measurable space .Xi;Bi/, where Xi is a Polish
space and Bi is its Borel � -field. For each I � T , we will equip the product space
XI ,

Q
i2I Xi with the product � -field BI ,

N
i2I Bi. When I D T , we will simply

write X andB. We will write xI and x for a generic element of XI and X, respectively.
Given two sets I; J 	 T with I \ J D ¿, the concatenation of xI 2 XI and zJ 2 XJ

is defined as y D xIzJ 2 XI[J by setting

yi D

(
xi; i 2 I

zi; i 2 J
:

Given a random object X D .Xi/i2T taking values in X according to a probability law
�, we will denote by P�Œ�� and E�Œ�� the probability and expectation with respect to
�, by �I.dxI jxJ/ the regular conditional probability law of XI given XJ D xJ , and by
�I.dxI/ the marginal probability law of XI . When I D fig, we will write �i.�/ and
�i.�jxJ/.

For each i 2 T , we fix a metric on Xi, which is assumed to be measurable with
respect to the product � -field Bi ˝ Bi. For each I � T , equip XI with the product
metric �I , where

�I.xI ; zI/ ,
X
i2I

�i.xi; zi/; 8xI ; zI 2 XI :

When I � T , we will simply write � instead of �T . In this way, for any Borel
probability measure � on X, we can introduce a “global” metric probability
space .X; �; �/, as well as “local” metric probability spaces .XI ; �I ; �I/ and
.XI ; �I.�jxJ/; �I/ for all I; J 	 T and all xJ 2 XJ .
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2.3 Couplings and Transportation Distances

Let ˝ be a Polish space. A coupling of two Borel probability measures � and �
on ˝ is a Borel probability measure P on the product space ˝ � ˝, such that
P.� �˝/ D � and P.˝ � �/ D �. We denote the set of all couplings of � and � by
C.�; �/. Let d be a lower-semicontinuous metric on˝. We denote by Lip.˝; d/ the
space of all functions˝ ! R that are Lipschitz with respect to d, and by Lipc.˝; d/
the subset of Lip.˝; d/ consisting of c-Lipschitz functions. The L1 Wasserstein (or
transportation) distance between � and � is defined as

Wd.�; �/ , inf
P2C.�;�/

EPŒd.X;Y/�; (1)

where .X;Y/ is a random element of˝ �˝ with law P. The transportation distance
admits a dual (Kantorovich–Rubinstein) representation

Wd.�; �/ D sup
f 2Lip1.˝;d/

ˇ̌
ˇ̌
Z
˝

f d� �

Z
˝

f d�

ˇ̌
ˇ̌ : (2)

For example, when we equip ˝ with the trivial metric d.!; !0/ D 1f! ¤ !0g, the
corresponding Wasserstein distance coincides with the total variation distance:

Wd.�; �/ D k� � �kTV D sup
A

j�.A/ � �.A/j;

where the supremum is over all Borel subsets of ˝.
In the context of the product space .X; �/ defined earlier, we will use the

shorthand Wi for W�i , WI for W�I , and W for W�.

2.4 Markov Kernels and Wasserstein Matrices

A Markov kernel on X is a mapping K W X � B ! Œ0; 1�, such that x 7! K.x;A/ is
measurable for each A 2 B, and K.x; �/ is a Borel probability measure on X for each
x 2 X. Given a Markov kernel K and a bounded measurable function f W X ! R,
we denote by Kf the bounded measurable function

Kf .x/ ,
Z

X
f .y/K.x; dy/; x 2 X:

Likewise, given a Borel probability measure � on X, we denote by �K the Borel
probability measure

�K.A/ ,
Z

X
K.x;A/�.dx/; A 2 B:
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It is not hard to see that
R

X f d.�K/ D
R

X.Kf /d�.
Given a measurable function f W X ! R, we define the local oscillation of f at

i 2 T as

ıi.f / , sup
x;z2X

xTnfig
DzTnfig

jf .x/ � f .z/j

�i.xi; zi/
;

where we follow the convention 0=0 D 0. This quantity measures the variability of f
in its ith argument when all other arguments are held fixed. As will become evident
later on, our martingale technique for establishing concentration inequalities for a
given function f W X ! R requires controlling the local oscillations ıi.Kf / in terms
of the local oscillations ıi.f / for appropriately chosen Markov kernels K.

To get an idea of what is involved, let us consider the simple case when each Xi

is endowed with the scaled trivial metric �i.xi; zi/ , ˛i1fxi ¤ zig, where ˛i > 0 is
some fixed constant. Then

ıi.f / D
1

˛i
sup

n
jf .x/ � f .z/j W x; z 2 X; xTnfig D zTnfig

o
:

The corresponding metric � on X is the weighted Hamming metric

�˛.x; z/ ,
X
i2T

˛i1fxi ¤ zig: (3)

Fix a Markov kernel K on X. The Dobrushin contraction coefficient of K (also
associated in the literature with Doeblin’s name) is the smallest � � 0 for which
kK.x; �/ � K.z; �/kTV � � holds for all x; z 2 X. The term contraction is justified by
the well-known inequality (apparently going back to Markov himself [21, �5])

k�K � �KkTV � �k� � �kTV; (4)

which holds for all probability measures �; � on X. Then we have the following
estimate:

Proposition 2.1 If K is a Markov kernel on X with Dobrushin coefficient � , then
for every i 2 T and for every f 2 Lip.X; �˛/, we have

ıi.Kf / �
�

˛i

X
j2T

˛jıj.f /: (5)

Proof Fix an index i 2 T and any two x; z 2 X that differ only in the ith coordinate:
xTnfig D zTnfig and xi ¤ zi. Pick an arbitrary coupling Px;z 2 C.K.x; �/;K.z; �//. Then

jKf .x/ � Kf .z/j D

ˇ̌
ˇ̌
Z

X
K.x; du/f .u/ �

Z
X

K.z; dy/f .y/

ˇ̌
ˇ̌
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D

ˇ̌
ˇ̌
Z

X�X
Px;z.du; dy/

�
f .u/ � f .y/

�ˇ̌ˇ̌

�
X
j2T

ıj.f /
Z

X�X
Px;z.du; dy/�j.uj; yj/

D
X
j2T

˛jıj.f /
Z

X�X
Px;z.du; dy/1fuj ¤ yjg

�
X
j2T

˛jıj.f / �

Z
X�X

Px;z.du; dy/1fu ¤ yg;

where the first inequality is by the definition of ıi.f /, while the second one follows
from the obvious implication uj ¤ yj ) u ¤ y. Taking the infimum of both sides
over all couplings Px;z 2 C.K.x; �/;K.z; �// yields

jKf .x/ � Kf .z/j �
X
j2T

˛jıj.f / � kK.x; �/ � K.z; �/kTV

� �
X
j2T

˛jıj.f /:

Finally, dividing both sides of the above inequality by ˛i and taking the supremum
over all choices of x; z that differ only in the ith coordinate, we obtain (5). ut

One shortcoming of the above result (which is nontrivial only under the rather
strong condition

� <
˛i

˛j
< ��1 (6)

for all i; j 2 T) is that it gives only a very rough idea of the influence of ıj.f / for
j 2 T on ıi.Kf /. For example, if ˛1 D : : : D ˛n D 1, then the condition (6) reduces
to the Dobrushin contraction condition � < 1, and the inequality (5) becomes

ıi.Kf / � �
X
j2T

ıj.f /;

suggesting that all of the ıj.f /’s influence ıi.Kf / equally. However, this picture can
be refined. To that end, we introduce the notion of a Wasserstein matrix following
Föllmer [10]. Let us denote by ı.f / the vector .ıi.f //i2T . We say that a nonnegative
matrix V D .Vij/i;j2T is a Wasserstein matrix for K if, for every f 2 Lip.X; �/ and
for every i 2 T ,

ıi.Kf / �
X
j2T

Vijıj.f /; (7)

or, in vector form, if ı.Kf / 
 Vı.f /.
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One of our main objectives will be to show that concentration inequalities for
functions f of X � � can be obtained using Wasserstein matrices for certain Markov
kernels K related to �. In order to motivate the introduction of Wasserstein matrices,
we record a couple of contraction estimates for Markov kernels that may be of
independent interest. To that end, we introduce another coupling-based distance
between probability measures [2, Chap. 8]: for two Borel probability measures on
X, define

NW.�; �/ , inf
P2C.�;�/

sX
i2T

.EPŒ�i.Xi;Yi/�/
2; (8)

where .X;Y/ is a random element of X � X. Even though NW is not a Wasserstein
distance, we can use the inequality

p
a C b �

p
a C

p
b for a; b � 0 to show that

NW.�; �/ � W.�; �/.

Proposition 2.2 Let V be a Wasserstein matrix for a Markov kernel K on X. Then
for any Lipschitz function f W X ! R,

ˇ̌
E�K Œf .X/� � E�K Œf .X/�

ˇ̌
� kVı.f /k`2.T/ NW.�; �/: (9)

Proof Fix an arbitrary coupling P 2 C.�; �/ and let .X;Y/ be a random element of
X � X with law P. Then

ˇ̌
E�K Œf .X/� � E�K Œf .X/�

ˇ̌
D
ˇ̌
E�ŒKf .X/� � E�ŒKf .X/�

ˇ̌
D jEP ŒKf .X/ � Kf .Y/�j

�
X
i2T

ıi.Kf / � EPŒ�i.Xi;Yi/�

�
X
i2T

X
j2T

Vijıj.f / � EPŒ�i.Xi;Yi/�:

where in the last step we have used the definition of the Wasserstein matrix. Using
the Cauchy–Schwarz inequality, we obtain

ˇ̌
E�K Œf .X/� � E�K Œf .X/�

ˇ̌
�

vuutX
i2T

ˇ̌
ˇX

j2T

Vijıj.f /
ˇ̌
ˇ2 �

X
i2T

.EPŒ�i.Xi;Yi/�/
2

D kVı.f /k`2.T/ �

sX
i2T

.EPŒ�i.Xi;Yi/�/
2:

Taking the infimum of both sides over all P 2 C.�; �/, we obtain (9). ut
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Corollary 2.3 Let V be a Wasserstein matrix for a Markov kernel K on X. Then,
for any two Borel probability measures � and � on X,

W.�K; �K/ � kV1k`2.T/ NW.�; �/; (10)

where 1 2 R
T is the vector of all ones, and therefore

W.�K; �K/ � kV1k`2.T/W.�; �/:

Proof A function f W X ! R belongs to Lip1.X; �/ if and only if ı.f / 2 Œ0; 1�T .
Using the dual representation (2) of W and applying Proposition 2.2, we can write

W.�K; �K/ D sup
f 2Lip1.X;�/

ˇ̌
E�K Œf .X/� � E�K Œf .X/�

ˇ̌

� sup
�2Œ0;1�T

kV�k`2.T/ NW.�; �/:

Since V is a nonnegative matrix, the supremum is achieved by � D 1. ut

2.5 Relative Entropy

Finally, we will need some key notions from information theory. The relative
entropy (or information divergence) between two probability measures �; � on a
space ˝ is defined as

D.�k�/ ,

8<
:

Z
˝

d� f log f ; if �  � with f D d�=d�

C1; otherwise
:

We use natural logarithms throughout the chapter. The relative entropy is related to
the total variation distance via Pinsker’s inequality1

k� � �kTV �

r
1

2
D.�k�/: (11)

1Though commonly referred to as Pinsker’s inequality, (11) as given here (with the optimal
constant 1

2
) was proven by Csiszár [7] and Kullback [18] in 1967.
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3 Concentration of Measure and Sufficient Conditions

In this section, we give a precise definition of the concentration of measure
phenomenon, review several sufficient conditions for it to hold, and briefly discuss
how it can be established under the independence assumption via tensorization. For
more details and further references, the reader can consult [2] or [30].

We say that the metric probability space .X; �; �/ has the concentration of
measure property if there exists a positive constant c > 0, such that, for every
Lipschitz function f W X ! R,

P�

˚
f .X/ � E�Œf .X/� � t


� e�t2=2ckf k2Lip ; 8t > 0 (12)

where

kf kLip , sup
x;y2X
x¤y

jf .x/ � f .y/j

�.x; y/

is the Lipschitz constant of f . A sufficient (and, up to constants, necessary) condition
for (12) is that, for every f 2 Lip1.X; �/, the random variable f .X/ with X � � is
c-subgaussian, i.e.,

logE�
�
e	.f .X/�E�Œf .X/�/

�
�

c	2

2
; 8	 2 R: (13)

A fundamental result of Bobkov and Götze [1] states that the subgaussian esti-
mate (13) holds for all f 2 Lip1.X; �/ if and only if � satisfies the so-called
transportation-information inequality

W.�; �/ �
p
2c D.�k�/; (14)

where � ranges over all Borel probability measures on X. We will use the shorthand
� 2 T�.c/ to denote the fact that the inequality (14) holds for all �. The key
role of transportation-information inequalities in characterizing the concentration
of measure phenomenon was first recognized by Marton in a breakthrough paper
[22], with further developments in [23, 24, 25].

The entropy method (see, e.g., [2, Chap. 6] and [30, Chap. 3]) provides another
route to establishing (13). Its underlying idea can be briefly described as follows.
Given a measurable function f W X ! R, consider the logarithmic moment-
generating function

 f .	/ , logE�
�
e	.f .X/�E�Œf .X/�/

�

of the centered random variable f .X/�E�Œf .X/�. For any 	 ¤ 0, introduce the tilted
probability measure �.	f / with
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d�.	f /

d�
D

e	f

E�Œe	f �
D

e	.f �E�f /

e f .	/
:

Then a simple calculation shows that the relative entropy D.�.	f /k�/ can be
expressed as

D.�.	f /k�/ D 	 0
f .	/ �  f .	/ � 	2

�
 f .	/

	

�0

where the prime denotes differentiation with respect to 	. Using the fact that
 f .0/ D 0 and integrating, we obtain the following formula for  f .	/:

 f .	/ D 	

Z 	

0

D.�.tf /k�/

t2
dt: (15)

This representation is at the basis of the so-called Herbst argument, which for our
purposes can be summarized as follows:

Lemma 3.1 (Herbst) The metric probability space .X; �; �/ has the concentration
property with constant c if, for any f 2 Lip1.X; �/,

D.�.tf /k�/ �
ct2

2
; 8t > 0: (16)

Remark 3.2 Up to a constant, the converse is also true [34, Prob. 3.12]: if the
subgaussian estimate (13) holds for every f 2 Lip1.X; �/, then

D.�.tf /k�/ � 2ct2; 8t > 0

for every f 2 Lip1.X; �/.

In this way, the problem of establishing the concentration phenomenon reduces to
showing that (16) holds for every f 2 Lip1.X; �/, typically via logarithmic Sobolev
inequalities or other functional inequalities.

3.1 Concentration of Measure Under the Independence
Assumption

To set the stage for the general treatment of the concentration phenomenon in
high dimensions, we first consider the independent case, i.e., when coordinates Xi,
i 2 T , of the random object X � � are mutually independent. In other words, the
probability measure � is equal to the product of its marginals: � D �1 ˝ : : :˝ �n.
The key to establishing the concentration property in such a setting is tensorization,
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which is an umbrella term for any result that allows one to derive the “global”
concentration property of the high-dimensional product space .X1˝: : :˝Xn; �; �1˝

: : :˝�n/ from “local” concentration properties of the coordinate spaces .Xi; �i; �i/,
i 2 T .

Below, we list two such tensorization results, one for the transportation-
information inequalities and one for the relative entropy. Both of these results
are deep consequences of the interplay between the independence structure of �
and the metric structure of �. Indeed, a function f W X ! R belongs to Lip1.X; �/
if and only if ıi.f / � 1 for all i 2 T , i.e., if and only if, for every i 2 T and every
xTnfig 2 XTnfig, the function fi W Xi ! R given by fi.yi/ , f .yixTnfig/ is 1-Lipschitz
with respect to the metric �i on Xi. With this in mind, it is reasonable to expect that
if one can establish a concentration property for all 1-Lipschitz functions on the
coordinate spaces Xi, then one can deduce a concentration property for functions on
the product space X that are 1-Lipschitz in each coordinate.

Lemma 3.3 (Tensorization of transportation-information inequalities) Suppose
that there exist constants c1; : : : ; cn � 0, such that

�i 2 T�i.ci/; 8i 2 T:

Then � D �1 ˝ : : :˝ �n 2 T�.c/ with c D
Pn

iD1 ci.

For example, by an appropriate rescaling of Pinsker’s inequality (11), we see that,
if each coordinate space Xi is endowed with the scaled trivial metric �i.xi; zi/ D

˛i1fxi ¤ zig for some ˛i > 0, then any Borel probability measure �i on Xi

satisfies the transportation-information inequality with ci D ˛2i =4. By the above
tensorization lemma, any product measure �1 ˝ : : : ˝ �n on the product space
X1 ˝ : : : ˝ Xn equipped with the weighted Hamming metric �˛ defined in (3)
satisfies T�˛

.c/ with c D 1
4

P
i2T ˛

2
i . Consequently, by the Bobkov–Götze theorem,

the subgaussian estimate (13) holds for any function f 2 Lip1.X; �˛/, which in turn
implies, via the Chernoff bound, that

P�

n
f � E�f � t

o
� exp

�
�

2t2P
i2T ˛

2
i

�
; 8t � 0:

This provides an alternative derivation of McDiarmid’s inequality (with the sharp
constant in the exponent), which was originally proved using the martingale method.

Lemma 3.4 (Tensorization of relative entropy) Consider a product measure � D

�1 ˝ : : :˝ �n. Then for any other probability measure � on X we have

D.�k�/ �
X
i2T

E�D
�
�i.�jX

Tnfig/k�i

	
: (17)

The idea is to apply this lemma to � D �.tf / for some t � 0 and an arbitrary f 2

Lip1.X; �/. In that case, a simple calculation shows that the conditional probability
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measure �i.dxijxTnfig/ D �
.tf /
i .dxijxTnfig/ is equal to the tilted distribution �.tfi/i with

fi.xi/ D f .xixTnfig/, and therefore

D.�.tf /k�/ �

nX
iD1

E�.tf /D
�
�
.tfi/
i



�i
�
:

If f 2 Lip1.X; �/, then fi 2 Lip1.Xi; �i/. Thus, if we can show that, for any g 2

Lip1.Xi; �i/,

D.�.tg/i k�i/ �
cit2

2
; 8t � 0;

then the estimate

D.�.tf /k�/ �
ct2

2
; 8t � 0

holds with c D
Pn

iD1 ci for all f 2 Lip.X; �/ by the tensorization lemma. Invoking
the Herbst argument, we conclude that .X; �; �/ has the concentration property with
the same c.

4 The Abstract Martingale Method

In this section, we present a general martingale-based scheme for deriving con-
centration inequalities for functions of many dependent random variables. Let
f W X ! R be the function of interest, and let X D .Xi/i2T be a random element of
the product space X with probability law �. Let F0 	 F1 	 : : : 	 Fm be a filtration
(i.e., an increasing sequence of � -fields) on X, such that F0 is trivial and Fm D B.
The idea is to decompose the centered random variable f .X/�E�Œf .X/� as a sum of
martingale differences

M.j/ , E�Œf .X/jFj� � E�Œf .X/jFj�1�; j D 1; : : : ;m:

By construction, E�Œf .X/jFm� D f .X/ and E�Œf .X/jF0� D E�Œf .X/�, so the problem
of bounding the probability P�

˚
jf �E�f j � t


for a given t � 0 reduces to bounding

the probability

P�

( ˇ̌
ˇ

mX
jD1

M.j/
ˇ̌
ˇ � t

)
:

The latter problem hinges on being able to control the martingale differences M.j/.
In particular, if each M.j/ is a.s. bounded, we have the following:
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Theorem 4.1 (Azuma–Hoeffding inequality) Let fM.j/gm
jD1 be a martingale differ-

ence sequence with respect to a filtration fFjg
m
jD0. Suppose that, for each j, there

exist Fj�1-measurable random variables A.j/ and B.j/, such that A.j/ � M.j/ � B.j/

a.s. Then

E

2
4exp

0
@	

mX
jD1

M.j/

1
A
3
5 � exp

 
	2
Pm

jD1 kB.j/ � A.j/k21
8

!
; 8	 2 R: (18)

Consequently, for any t � 0,

P

( ˇ̌
ˇ

mX
jD1

M.j/
ˇ̌
ˇ � t

)
� 2 exp

 
�

2t2Pm
jD1 kB.j/ � A.j/k21

!
: (19)

The most straightforward choice of the filtration is also the most natural one: take
m D jTj D n, and for each i 2 T take Fi D �.XŒi�/. For i 2 T , define a Markov
kernel K.i/ on X by

K.i/.x; dy/ , ıxŒi�1� .dyŒi�1�/˝ �Œi;n�.dyŒi;n�jxŒi�1�/: (20)

Then, for any f 2 L1.�/ we have

K.i/f .x/ D

Z
X

f .y/K.i/.x; dy/

D

Z
XŒi;n�

f .xŒi�1�yŒi;n�/�Œi;n�.dyŒi;n�jxŒi�1�/

D E�Œf .X/jX
Œi�1� D xŒi�1��I

in particular, K.1/f D E�f . We extend this definition to i D n C 1 in the obvious
way:

K.nC1/.x; dy/ D ıx.dy/;

so that K.nC1/f D f . Then, for each i 2 T , we can write M.i/ D K.iC1/f �K.i/f . With
this construction, we can state the following theorem that applies to the case when
each coordinate space Xi is endowed with a bounded measurable metric �i:

Theorem 4.2 Assume that, for all i,

k�ik , sup
xi;zi2Xi

�i.xi; zi/ < 1:

For each i 2 f1; : : : ; n C 1g, let V.i/ be a Wasserstein matrix for the Markov
kernel K.i/ defined in (20), in the sense that ı.K.i/f / 
 V.i/ı.f / holds for each
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f 2 Lip.X; �/ as in (7). Define the matrix � D .�ij/i;j2T with entries

�ij , k�ikV.iC1/
ij :

Then, for any f 2 Lip.X; �/ and for any t � 0, we have

P�

n
jf .X/ � E�Œf .X/�j � t

o
� 2 exp

 
�

2t2

k� ı.f /k2
`2.T/

!
: (21)

Proof For each i 2 T , using the tower property of conditional expectations, we can
write

M.i/ D E�Œf .X/jX
Œi� D xŒi�� � E�Œf .X/jX

Œi�1� D xŒi�1��

D E�Œf .X/jX
Œi� D xŒi�� � E�

�
E�Œf .X/jX

Œi�1� D xŒi�1�;Xi�
ˇ̌
XŒi�1� D xŒi�1�

�

D

Z
XŒi;n�

�Œi;n�.dyŒi;n�jxŒi�1�/
� Z

X.i;n�
�.i;n�.dz.i;n�jxŒi�/f .xŒi�1�xiz

.i;n�/

�

Z
X.i;n�

�.i;n�.dz.i;n�jxŒi�1�yi/f .x
Œi�1�yiz

.i;n�/
	

D

Z
XŒi;n�

�Œi;n�.dyŒi;n�jxŒi�1�/
�
K.iC1/f .xŒi�1�xiy

.i;n�/ � K.iC1/f .xŒi�1�yiy
.i;n�/

�
:

From this, it follows that A.i/ � M.i/ � B.i/ a.s., where

A.i/ ,
Z

XŒi;n�
�Œi;n�.dyŒi;n�jxŒi�1�/ inf

xi2Xi

�
K.iC1/f .xŒi�1�xiy

.i;n�/ � K.iC1/f .xŒi�1�yiy
.i;n�/

�

B.i/ ,
Z

XŒi;n�
�Œi;n�.dyŒi;n�jxŒi�1�/ sup

xi2Xi

�
K.iC1/f .xŒi�1�xiy

.i;n�/ � K.iC1/f .xŒi�1�yiy
.i;n�/

�
;

and

kB.i/ � A.i/k1 � k�ikıi
�
K.iC1/f

�
: (22)

By definition of the Wasserstein matrix, we have

ıi
�
K.iC1/f

�
�
X
j2T

V.iC1/
ij ıj.f /:

Substituting this estimate into (22), we get

nX
iD1

kB.i/ � A.i/k21 �

nX
iD1

j.� ı.f //ij
2 � k� ı.f /k2`2.T/ : (23)
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The probability estimate (21) then follows from the Azuma–Hoeffding
inequality (19). ut

We can also use the martingale method to obtain a tensorization result for
transportation inequalities without independence assumptions. This result, which
generalizes a theorem of Djellout, Guillin, and Wu [8, Thm. 2.11], can be used even
when the metrics �i are not necessarily bounded.

Theorem 4.3 Suppose that there exist constants c1; : : : ; cn � 0, such that

�i.�jx
Œi�1�/ 2 T�i.ci/; 8i 2 T; xŒi�1� 2 XŒi�1�: (24)

For each i 2 f1; : : : ; nC1g, let V.i/ be a Wasserstein matrix for K.i/. Then � 2 T�.c/
with

c D
X
i2T

ci

�X
j2T

V.iC1/
ij

	2
: (25)

Proof By the Bobkov–Götze theorem [1], it suffices to show that, for every f W X !

R with kf kLip � 1, the random variable f .X/ with X � � is c-subgaussian, with c
given by (25). To that end, we again consider the martingale decomposition

f � E�Œf � D
X
i2T

M.i/

with M.i/ D K.iC1/f � K.i/f . We will show that, for every i,

logE�
h
e	M.i/

ˇ̌
ˇXŒi�1�

i
�

ci

�P
j2T V.iC1/

ij

	2
	2

2
; 8	 2 R: (26)

This, in turn, will yield the desired subgaussian estimate

E�

�
e	.f �E�Œf �/

�
D E�

"
exp

 
	
X
i2T

M.i/

!#

� exp

�
c	2

2

�

for every 	 2 R.
To proceed, note that, for a fixed realization xŒi�1� of XŒi�1�, M.i/ D K.iC1/f �K.i/f

is �.Xi/-measurable, and

kM.i/kLip � sup
x;y2X

xTnfig
DyTnfig

ˇ̌
K.iC1/f .x/ � K.iC1/f .y/

ˇ̌
�i.xi; yi/
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� ıi
�
K.iC1/f

�

�
X
j2T

V.iC1/
ij ıj.f /

�
X
j2T

V.iC1/
ij ;

where we have used the definition of the Wasserstein matrix, as well as the fact that
kf kLip � 1 is equivalent to ıj.f / � 1 for all j 2 T . Since �i.�jxŒi�1�/ 2 T�i.c/ by
hypothesis, we obtain the estimate (26) by the Bobkov–Götze theorem. ut

As a sanity check, let us confirm that, in the case when � is a product measure
and the product space X is endowed with the weighted Hamming metric �˛ defined
in (3), Theorems 4.2 and 4.3 both reduce to McDiarmid’s inequality. To see this, we
first note that, when the Xi’s are independent, we can write

K.i/f .x/ D

Z
XŒi;n�

f .xŒi�1�yŒi;n�/�i.dyi/�iC1.dyiC1/ : : : �n.dyn/

for each i 2 T , f 2 L1.�/, and x 2 X. This, in turn, implies that

ıi.K
.iC1/f / D ˛�1

i sup
x;z2X

xTnfig
DzTnfig

ˇ̌
K.iC1/f .x/ � K.iC1/f .z/

ˇ̌

D ˛�1
i sup

x;z2X
xTnfig

DzTnfig

ˇ̌
ˇ
Z

X.i;n�
f .xŒi�y.i;n�/�iC1.dyiC1/ : : : �n.dyn/

�

Z
X.i;n�

f .zŒi�y.i;n�/�iC1.dyiC1/ : : : �n.dyn/
ˇ̌
ˇ

� ˛�1
i sup

x;z2X
xTnfig

DzTnfig

jf .x/ � f .z/j

D ıi.f /;

where we have used the fact that, with �i.xi; zi/ D ˛i1fxi ¤ zig, k�ik D ˛i for every
i 2 T . Therefore, for each i 2 T , we can always choose a Wasserstein matrix V.iC1/

for K.iC1/ in such a way that its ith row has zeroes everywhere except for the ith
column, where it has a 1. Now, for any function f W X ! R which is 1-Lipschitz with
respect to �˛, we can take ı.f / D 1. Therefore, for any such f Theorem 4.2 gives

P�

(
jf .X/ � E�Œf .X/�j � t

)
� 2 exp

�
�

2t2Pn
iD1 ˛

2
i

�
; 8t � 0
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which is precisely McDiarmid’s inequality. Since the constant 2 in McDiarmid’s
inequality is known to be sharp, this shows that the coefficient 2 in the exponent
in (21) is likewise optimal. Moreover, with our choice of �i, condition (24) of
Theorem 4.3 holds with ci D ˛2i =4, and, in light of the discussion above, we can

arrange
P

j V.iC1/
ij D 1. Therefore, by Theorem 4.3, any function f W X ! R which

is 1-Lipschitz with respect to �˛ is c-subgaussian with constant

c D
X
i2T

ci

 X
j2T

V.iC1/
ij

!2
D
1

4

X
i2T

˛2i ;

which is just another equivalent statement of McDiarmid’s inequality.
It is also possible to consider alternative choices of the filtration fFjg

m
jD0. For

example, if we partition the index set T into m disjoint subsets (blocks) T1; : : : ;Tm,
we can take

Fj , �
�
Xi W i 2 �j

�
; 8i 2 T

where �j , T1 [ : : : [ Tj. Defining for each j 2 Œm� the Markov kernel

QK.j/.x; dy/ , ıx�i�1 .dy�i�1 /˝ �Tn�i�1 .dyTn�i�1 jx�i�1 /;

we can write

M.j/ D E�Œf .X/jFj� � E�Œf .X/jFj�1� D K.jC1/f � K.j/f

for every j 2 Œm�. As before, we take K.1/f D E�Œf � and K.mC1/f D f . Given a
measurable function f W X ! R, we can define the oscillation of f in the jth block
Tj, j 2 Œm�, by

Qıj.f / , sup
x;z2X

x
TnTj

Dz
TnTj

jf .x/ � f .z/j

�Tj.xTj ; zTj/
:

The definition of a Wasserstein matrix is modified accordingly: we say that a
nonnegative matrix QV D . QVjk/j;k2Œm� is a Wasserstein matrix for a Markov kernel K
on X with respect to the partition fTjg

m
jD1 if, for any Lipschitz function f W X ! R,

Qıj.Kf / �

mX
kD1

QVjk
Qık.f /

for all j 2 Œm�. With these definitions at hand, the following theorem, which
generalizes a result of Paulin [29, Thm. 2.1], can be proved in the same way as
Theorem 4.2:
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Theorem 4.4 For each j 2 Œm C 1�, let QV.j/ D . QV.j/
k` /k;`2Œm� be a Wasserstein matrix

for QK.j/ with respect to the partition fTjg. Define the matrix Q� D . Q�k`/k;`2Œm� with
entries

Q�k` , k�Tk k QV.kC1/
k` ;

where

k�Tk k , sup
xTk ;zTk

�Tk.xTk ; zTk/

is the diameter of the metric space .XTk ; �Tk/. Then, for any f 2 Lip.X; �/ and for
any t � 0,

P�

n
jf .X/ � E�Œf .X/�j � t

o
� 2 exp

0
@�

2t2

 Q� Qı.f /


2
`2.m/

1
A :

5 The Martingale Method in Action

We now show that several previously published concentration inequalities for
functions of dependent random variables arise as special cases of Theorem 4.2
by exploiting the freedom to choose the Wasserstein matrices V.i/. In fact, careful
examination of the statement of Theorem 4.2 shows that, for each i 2 T , we only
need to extract the ith row of V.iC1/.

5.1 Concentration Inequalities Under the Dobrushin
Uniqueness Condition

One particularly clean way of constructing the desired Wasserstein matrices is via
the classical comparison theorem of Dobrushin for Gibbs measures [9]. For our
purposes, we give its formulation due to Föllmer [11]:

Lemma 5.1 Let � and Q� be two Borel probability measures on X. Define the matrix
C� D .C�

ij/i;j2T and the vector b�;Q� D .b�;Q�i /i2T by

C�
ij D sup

x;z2X
xTnfjg

DzTnfjg

Wi
�
�i.�jxTnfig/; �i.�jzTnfig/

�
�j.xj; zj/

(27)
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and

b�;Q�i D

Z
XTnfig

Q�Tnfig.dxTnfig/Wi
�
�i.�jx

Tnfig/; Q�i.�jx
Tnfig/

�
: (28)

Suppose that the spectral radius of C� is strictly smaller than unity. Then, for any
f 2 L1.�/,

jE� f � EQ� f j �
X
j;k2T

ıj.f /D
�
jkb�;Q�k ; (29)

where D� ,
P1

mD0.C
�/m.

Remark 5.2 The matrix C� is called the Dobrushin interdependence matrix of �.
When the spectral radius of C� is strictly smaller than unity, we say that � satisfies
the Dobrushin uniqueness condition. This condition is used in statistical physics to
establish the absence of phase transitions, which is equivalent to uniqueness of a
global Gibbs measure consistent with a given local specification (see the book of
Georgii [12] for details).

Given an index i 2 T , we will extract the ith row of a Wasserstein matrix
for K.iC1/ by applying the Dobrushin comparison theorem to a particular pair of
probability measures on X. Let x; z 2 X be two configurations that differ only in the
ith coordinate: xTnfig D zTnfig and xi ¤ zi. Thus, we can write z D xŒi�1�zix.i;n�, and

K.iC1/f .x/ � K.iC1/f .z/

D E�Œf .X/jX
Œi� D xŒi�1�xi� � E�Œf .X/jX

Œi� D xŒi�1�zi�

D

Z
X.i;n�

f .xŒi�1�xiy
.i;n�/�.i;n�.dy.i;n�jxŒi�1�xi/ �

Z
X.i;n�

f .xŒi�1�ziy
.i;n�/�.i;n�.dy.i;n�jxŒi�1�zi/

D

Z
X.i;n�

�
f .xŒi�1�xiy

.i;n�/ � f .xŒi�1�ziy
.i;n�/

�
�.i;n�.dy.i;n�jxŒi�1�xi/

C

Z
X.i;n�

f .xŒi�1�ziy
.i;n�/�.i;n�.dy.i;n�jxŒi�1�xi/

�

Z
X.i;n�

f .xŒi�1�ziy
.i;n�/�.i;n�.dy.i;n�jxŒi�1�zi/: (30)

By definition of the local oscillation, the first integral in (30) is bounded by
ıi.f /�i.xi; zi/. To handle the remaining terms, define two probability measures �; Q�

on X by

�.dy/ , ıxŒi�1�zi
.dyŒi�/˝ �.i;n�.dy.i;n�jxŒi�1�xi/

Q�.dy/ , ıxŒi�1�zi
.dyŒi�/˝ �.i;n�.dy.i;n�jxŒi�1�zi/:
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Using this definition and Lemma 5.1, we can write

Z
X.i;n�

f .xŒi�1�ziy
.i;n�/�.i;n�.dy.i;n�jxŒi�1�xi/ �

Z
X.i;n�

f .xŒi�1�ziy
.i;n�/�.i;n�.dy.i;n�jxŒi�1�zi/

D

Z
f d� �

Z
f d Q�

�
X
j;k2T

ıj.f /D
�
jkb�;Q�k : (31)

It remains to obtain explicit upper bounds on the entries of D� and b�;Q� . To that end,
we first note that, for a given j 2 T and for any u; y 2 X,

Wj
�
�j.�ju

Tnfjg/; �j.�jy
Tnfjg/

�

D

(
0; j � i

Wj
�
�j.�jxŒi�1�xiu.i;n�nfjg/; �j.�jxŒi�1�ziu.i;n�nfjg/

�
; j > i

:

Therefore, C�
jk � C�

jk. Likewise, for a given k 2 T and for any y 2 X,

Wk
�
�k.�jy

Tnfkg/; Q�k.�jy
Tnfkg/

�

D

(
0; k � i

Wk
�
�k.�jxŒi�1�xiy.i;n�nfkg/; �k.�jxŒi�1�ziy.i;n�nfkg/

�
; k > i

Therefore, b�;Q�k � C�
ki�i.xi; zi/. Since the matrices C� and C� are nonnegative, D�

jk �

D�
jk. Consequently, we can write

Z
f d� �

Z
f d Q� �

X
j;k2T

ıj.f /D
�
jkC�

ki�i.xi; zi/

D
X
j2T

ıj.f /.D
�C�/ji�i.xi; zi/

D
X
j2T

ıj.f /.D
� � id/ji�i.xi; zi/: (32)

Therefore, from (31) and (32), we have

K.iC1/f .x/ � K.iC1/f .z/

�i.xi; zi/
� ıi.f /C

X
j2T

.D� � 1/T
ijıj.f /

D
X
j2T

.D�/T
ijıj.f /: (33)
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We have thus proved the following:

Corollary 5.3 Suppose that the probability measure � satisfies the Dobrushin
uniqueness condition, i.e., the spectral radius of its Dobrushin interdependence
matrix C� is strictly smaller than unity. Then, for any t � 0, the concentration
inequality (21) holds with

�ij D k�ik.D
�/T

ij; i; j 2 T: (34)

For example, when each Xi is equipped with the trivial metric �i.xi; zi/ D 1fxi ¤ zig,
we have k�ik D 1 for all i, and consequently obtain the concentration inequality

P�

n
jf .X/ � E�Œf .X/�j � t

o
� 2 exp

 
�

2t2

k.D�/Tı.f /k2
`2.T/

!
: (35)

The same inequality, but with a worse constant in the exponent, was obtained by
Külske [19, p. 45].

5.2 Concentration Inequalities Via Couplings

Another method for constructing Wasserstein matrices for the Markov kernels K.i/ is
via couplings. One notable advantage of this method is that it does not explicitly rely
on the Dobrushin uniqueness condition; however, some such condition is typically
necessary in order to obtain good bounds for the norm k� ı.f /k`2.T/.

Fix an index i 2 T and any two x; z 2 X that differ only in the ith coordinate:
xTnfig D zTnfig and xi ¤ zi. Let PŒi�x;z be any coupling of the conditional laws
�.i;n�.�jxŒi�/ and �.i;n�.�jzŒi�/. Then for any f 2 L1.�/ we can write

K.iC1/f .x/ � K.iC1/f .z/

D

Z
X.i;n��X.i;n�

PŒi�x;z.du.i;n�; dy.i;n�/
�
f .xŒi�; u.i;n�/ � f .zŒi�; y.i;n�/

�

� ıi.f /�i.xi; zi/C
X

j2TW j>i

ıj.f /
Z

X.i;n��X.i;n�
PŒi�x;z.du.i;n�; dy.i;n�/�j.uj; yj/:

Therefore,

jK.iC1/f .x/ � K.iC1/f .z/j

�i.xi; zi/
� ıi.f /C

X
j2TW j>i

R
�jdPŒi�x;z

�i.xi; zi/
ıj.f /

� ıi.f /C
X

j2TW j>i

sup
x;z2X

xTnfig
DzTnfig

R
�jdPŒi�x;z

�i.xi; zi/
ıj.f /:
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Remembering that we only need the ith row of a Wasserstein matrix for K.iC1/, we
may take

V.iC1/
ij D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

0; i > j

1; i D j

sup
x;z2X

xTnfig
DzTnfig

Z
�jdPŒi�x;z

�i.xi; zi/
; i < j

: (36)

We have thus proved the following:

Corollary 5.4 For each index i 2 T and for each pair x; z 2 X of configurations
with xTnfig D zTnfig, pick an arbitrary coupling PŒi�x;z of the conditional laws�fig.�jxŒi�/
and �fig.�jzŒi�/. Then, for any t � 0, the concentration inequality (21) holds with

�ij D k�ikV.iC1/
ij ; i; j 2 T (37)

where the entries V.iC1/
ij are given by (36).

In the case when each Xi is equipped with the trivial metric �i.xi; zi/ D 1fxi ¤ zig,
the entries �ij for j > i take the form

�ij D sup
x;z2X

xTnfig
DzTnfig

PŒi�x;z

n
Y.0/j ¤ Y.1/j

o
; (38)

where .Y.0/;Y.1// D
�
.Y.0/iC1; : : : ;Y

.0/
n /; .Y.1/iC1; : : : ;Y

.1/
n /
�

is a random object taking
values in X.i;n��X.i;n�. A special case of this construction, under the name of coupling
matrix, was used by Chazottes et al. [6]. In that work, each PŒi�x;z was chosen to
minimize

PfY.0/ ¤ Y.1/g;

over all couplings P of �.i;n�.�jxŒi�/ and �.i;n�.�jzŒi�/, in which case we have

PŒi�x;zfY.0/ ¤ Y.1/g D inf
P2C.�.i;n�.�jxŒi�/;�.i;n�.�jzŒi�//

PfY.0/ ¤ Y.1/g

D


�.i;n�.�jxŒi�/ � �.i;n�.�jzŒi�/




TV
:

However, it is not clear how to relate the quantities PŒi�x;z

n
Y.0/j ¤ Y.1/j

o
and

PŒi�x;z
˚
Y.0/ ¤ Y.1/


, apart from the obvious bound

PŒi�x;zfY.0/j ¤ Y.1/j g � PŒi�x;zfY.0/ ¤ Y.1/g D


�.i;n�.�jxŒi�/ � �.i;n�.�jzŒi�/




TV
;
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which gives

�ij � sup
x;z2X

xTnfig
DzTnfig



�.i;n�.�jxŒi�/ � �.i;n�.�jzŒi�/




TV
:

An alternative choice of coupling is the so-called maximal coupling due to Goldstein
[13], which for our purposes can be described as follows: let U D .U`/

m
`D1 and Y D

.Y`/m`D1 be two random m-tuples taking values in a product space E D E1� : : :�Em,
where each E` is Polish. Then there exists a coupling P of the probability lawsL.U/
and L.Y/, such that

P
˚
UŒ`;m� ¤ Y Œ`;m�


D


L.UŒ`;m�/ �L.Y Œ`;m�/




TV
; ` 2 f1; : : : ;mg: (39)

Thus, for each i 2 T and for every pair x; z 2 X with xTnfig D zTnfig, let PŒi�x;z be the
Goldstein coupling of �.i;n�.�jxŒi�/ and �.i;n�.�jzŒi�/. Then for each j 2 fi C 1; : : : ; ng,
using (39) we have

PŒi�x;zfY.0/j ¤ Y.1/j g � PŒi�x;zf.Y
.0/
j ; : : : ;Y.0/n / ¤ .Y.1/j ; : : : ;Y.1/n /g

D


�Œj;n�.�jxŒi�/ � �Œj;n�.�jzŒi�/




TV
:

This choice of coupling gives rise to the upper-triangular matrix � D .�ij/i;j2T with

�ij D

8̂
ˆ̂̂<
ˆ̂̂̂
:

0; i > j

1; i D j

sup
x;z2X

xTnfig
DzTnfig



�Œj;n�.�jxŒi�/ � �Œj;n�.�jzŒi�/




TV
; i < j

: (40)

Substituting this matrix into (21), we recover the concentration inequality of
Kontorovich and Ramanan [17], but with an improved constant in the exponent.

Remark 5.5 It was erroneously claimed in [16, 14, 15] that the basic concen-
tration inequalities of Chazottes et al. [6] and Kontorovich and Ramanan [17]
are essentially the same, only derived using different methods. As the discussion
above elucidates, the two methods use different couplings (the former, explicitly,
and the latter, implicitly) — which yield quantitatively different and, in general,
incomparable mixing coefficients.

Remark 5.6 Kontorovich and Ramanan obtained the matrix (40) using analytic
methods without constructing an explicit coupling. In 2012, S. Shlosman posed the
following question: could this matrix have been derived using a suitable coupling?
We can now answer his question in the affirmative: the coupling is precisely
Goldstein’s maximal coupling.
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As an illustration, let us consider two specific types of the probability law �: a
directed Markov model (i.e., a Markov chain) and an undirected Markov model (i.e.,
a Gibbsian Markov random field). In the directed case, suppose that the elements of
T are ordered in such a way that � can be disintegrated in the form

�.dx/ D �1.dx1/˝ K1.x1; dx2/˝ K2.x2; dx3/˝ : : :˝ Kn�1.xn�1; dxn/; (41)

where �0 is a Borel probability measure on .X1;B1/, and, for each i 2 Œ1; n � 1�, Ki

is a Markov kernel from Xi to XiC1. For each i 2 Œ1; n/, let

�i , sup
xi;zi2Xi

kKi.xi; �/ � Ki.zi; �/kTV

be the Dobrushin contraction coefficient of Ki. Fix 1 � i < j � n and xŒi�1� 2

XŒi�1�; yi; y0
i 2 Xi. An easy calculation [14] shows that, defining the signed measures

�i on XiC1 by �.dxiC1/ D Ki.yi; dxiC1/ � Ki.y0
i; dxiC1/ and �j on Xj by

�j D �iKiKiC1KiC2 : : :Kj�1;

we have



�Œj;n�.�jxŒi�1�yi/ � �Œj;n�.�jxŒi�1�y0
i/




TV
D


�j




TV

� �i�iC1 : : : �j�1; (42)

where (4) was repeatedly invoked to obtain the last inequality. The above yields
an upper bound on the �ij in (40) and hence in the corresponding concentration
inequality in (21). When more delicate (e.g., spectral [15, 29]) estimates on



�j




TV

are available, these translate directly into tighter concentration bounds.
In the undirected case, � is a Gibbsian Markov random field induced by pair

potentials [12]. To keep things simple, we assume that the local spaces Xi are all
finite. Define an undirected graph with vertex set T D Œn� and edge set E D

fŒi; i C 1� W 1 � i < ng (i.e., a chain graph with vertex set T). Associate with each
edge .i; j/ 2 E a potential function  ij W Xi � Xj ! Œ0;1/. Together, these define a
probability measure � on X via

�.x/ D

Q
.i;j/2E  ij.xi; xj/P

y2X

Q
.i;j/2E  ij.yi; yj/

:

Since � is a Markov measure on X, there is a sequence of Markov kernels
K1; : : : ;Kn�1 generating � in the sense of (41). It is shown in [14] that the
contraction coefficient �i of the kernel Ki is bounded by

�i �
Ri � ri

Ri C ri
;
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where

Ri D sup
.xi;xiC1/2Xi�XiC1

 i;iC1.xi; xiC1/; ri D inf
.xi;xiC1/2Xi�XiC1

 i;iC1.xi; xiC1/:

The estimate above implies a concentration result, either via (42) or via (35). To
apply the latter, recall that D� D

P1
kD1.C

�/k, where C� is the Dobrushin inter-
dependence matrix defined in (27). Assuming that � is the unweighted Hamming
metric (i.e., �i.xi; zi/ D 1fxi ¤ zig for all i) and that the �i’s are all majorized by
some � < 1, it is easy to see that .C�/ij � � ji�jj.

6 Open Questions

Our focus in this chapter has been on the martingale method for establishing
concentration inequalities. In the case of product measures, other techniques, such
as the entropy method or transportation-information inequalities, often lead to
sharper bounds. However, these alternative techniques are less developed in the
dependent setting, and there appears to be a gap between what is achievable using
the martingale method and what is achievable using other means. We close the
chapter by listing some open questions that are aimed at closing this gap:

• (Approximate) tensorization of entropy. In the independent case, it is possible
to derive the same concentration inequality (e.g., McDiarmid’s inequality) using
either the martingale method or the entropy method, often with the same sharp
constants. However, once the independence assumption is dropped, the situation
is no longer so simple. Consider, for example, tensorization of entropy. Several
authors (see, e.g., [26, 3, 27]) have obtained so-called approximate tensorization
inequalities for the relative entropy in the case of weakly dependent random
variables: under certain regularity conditions on �, there exists a constant A� �

1, such that, for any other probability measure �,

D.�k�/ � A� �
X
i2T

E�D
�
�i.�jX

Tnfig/


�i.�jX

Tnfig/
�
: (43)

Having such an inequality in hand, one can proceed to prove concentration
for Lipschitz functions in exactly the same way as in the independent case.
However, it seems that the constants A� in (43) are not sharp in the sense
that the resulting concentration inequalities are typically worse than what one
can obtain using Theorems 4.2 or 4.3 under the same assumptions on � and
f . This motivates the following avenue for further investigation: Derive sharp
inequalities of the form (43) by relating the constant A� to appropriately chosen
Wasserstein matrices.

• General Wasserstein-type matrices. Using the techniques pioneered by Mar-
ton, Samson proved the following concentration of measure result: Consider a
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function f W X ! R satisfying an “asymmetric” Lipschitz condition of the form

f .x/ � f .y/ �
X
i2T

˛i.x/1fxi ¤ yig; 8x; y 2 X

for some functions ˛i W X ! R, such that
P

i2T ˛
2
i .x/ � 1 for all x 2 X. Then,

for any Borel probability measure � on X, we have

P�

n
f .X/ � E�Œf .X/� � t

o
� exp

�
�

t2

2k�k22

�
; (44)

where the matrix � has entries �ij D
p
�ij with �ij given by (40), and

k�k2 , sup
v2RT nf0g

k�vk`2.T/

kvk`2.T/

is the operator norm of �. A more general result in this vein was derived by
Marton [24], who showed that an inequality of the form (44) holds with �
computed in terms of any matrix � of the form (36), where each �i is the trivial
metric. Samson’s proof relies on a fairly intricate recursive coupling argument.
It would be interesting to develop analogs of (44) for arbitrary choices of the
metrics �i and with full freedom to choose the Wasserstein matrices V.i/ for each
i 2 T . A recent paper by Wintenberger [35] pursues this line of work.

• The method of exchangeable pairs and Wasserstein matrices. An alternative
route towards concentration inequalities in the dependent setting is via Stein’s
method of exchangeable pairs [4, 5]. Using this method, Chatterjee obtained the
following result [4, Chap. 4]: Let f W X ! R be a function which is 1-Lipschitz
with respect to the weighted Hamming metric �˛ defined in (3). Let � be a Borel
probability measure on X, whose Dobrushin interdependence matrix C� satisfies
the condition kC�k2 < 1. Then, for any t � 0,

P�

n
jf .X/ � E�Œf .X/� � tj

o
� 2 exp

�
�
.1 � kC�k2/t2P

i2T ˛
2
i

�
: (45)

The key ingredient in the proof of (45) is the so-called Gibbs sampler, i.e., the
Markov kernel NK on X given by

NK.x; dy/ , 1

jTj

X
i2T

ıxTnfig.dyTnfig/˝ �i.dyijx
Tnfig/:

This kernel leaves � invariant, i.e., � D � NK, and it is easy to show (see, e.g.,
[27]) that it contracts the NW distance: for any other probability measure � on X,
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NW.� NK; � NK/ �

�
1 �

1 � kC�k2

jTj

�
NW.�; �/:

Since one can obtain contraction estimates for Markov kernels using Wasserstein
matrices, it is natural to ask whether Chatterjee’s result can be derived as a special
case of a more general method, which would let us freely choose an arbitrary
Markov kernel K that leaves � invariant and control the constants in the resulting
concentration inequality by means of a judicious choice of a Wasserstein matrix
for K. Such a method would most likely rely on general comparison theorems for
Gibbs measures [31].
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Strong Data-Processing Inequalities
for Channels and Bayesian Networks

Yury Polyanskiy and Yihong Wu

Abstract The data-processing inequality, that is, I.UI Y/ � I.UI X/ for a Markov
chain U ! X ! Y , has been the method of choice for proving impossibil-
ity (converse) results in information theory and many other disciplines. Various
channel-dependent improvements (called strong data-processing inequalities, or
SDPIs) of this inequality have been proposed both classically and more recently.
In this note we first survey known results relating various notions of contraction
for a single channel. Then we consider the basic extension: given SDPI for each
constituent channel in a Bayesian network, how to produce an end-to-end SDPI?

Our approach is based on the (extract of the) Evans-Schulman method, which
is demonstrated for three different kinds of SDPIs, namely, the usual Ahlswede-
Gács type contraction coefficients (mutual information), Dobrushin’s contraction
coefficients (total variation), and finally the FI-curve (the best possible non-linear
SDPI for a given channel). Resulting bounds on the contraction coefficients are
interpreted as probability of site percolation. As an example, we demonstrate how
to obtain SDPI for an n-letter memoryless channel with feedback given an SDPI for
n D 1.

Finally, we discuss a simple observation on the equivalence of a linear SDPI and
comparison to an erasure channel (in the sense of “less noisy” order). This leads to
a simple proof of a curious inequality of Samorodnitsky (2015), and sheds light on
how information spreads in the subsets of inputs of a memoryless channel.

1 Introduction

Multiplication of a componentwise non-negative vector by a stochastic matrix
results in a vector that is “more uniform”. This observation appears in several
classical works [Mar06, Doe37, Bir57] differing in their particular way of making
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quantitative estimates. For example, Birkhoff’s work [Bir57] initiated a study
(sometimes known as geometric ergodicity) of contraction of the projective distance
dP.x; y/ , log maxi

xi
yi

�log mini
xi
yi

between vectors in R
n
C. Here, instead, we will be

interested in contraction of statistical distances and information measures involving
probability distributions, which we define next.

Fix a transition probability kernel (channel) PYjX W X ! Y acting between two
measurable spaces. We denote by PYjX ı P the distribution on Y induced by the
push-forward of the distribution P, which is the distribution of the output Y when
the input X is distributed according to P, and by P � PYjX the joint distribution PXY

if PX D P. We also denote by PZjY ı PYjX the serial composition of channels.1

We define three quantities that will play key role in our discussion: the total
variation, the Kullback-Leibler (KL) divergence and the mutual information

dTV.P;Q/ , sup
E

jPŒE� � QŒE�j D
1

2

Z
jdP � dQj; (1)

D.PkQ/ ,
Z

log
dP

dQ
dP; (2)

I.AI B/ , D.PABkPAPB/: (3)

The purpose of this paper is to give exposition to the phenomenon that upon
passing through a non-degenerate noisy channel distributions become strictly closer
and this leads to a loss of information. Namely we have three effects:

1. Total-variation (or Dobrushin) contraction:

dTV.PYjX ı P;PYjX ı Q/ < dTV.P;Q/ :

2. Divergence contraction:

D.PYjX ı PkPYjX ı Q/ < D.PkQ/

3. Information loss: For any Markov chain2 U ! X ! Y we

I.UI Y/ < I.UI X/ :

1More formally, we should have written PYjX W P.X / ! P.Y/ as a map between spaces of
probability measures P.�/ on respective bases. The rationale for our notation PYjX W X ! Y is
that we view Markov kernels as randomized functions. Then, a single distribution P on X is a
randomized function acting from a space of a single point, i.e. P W Œ1� ! X , and that in turn
explains our notation PYjX ı P for denoting the induced marginal distribution.
2The notation A ! B ! C simply means that A ?? CjB.
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These strict inequalities are collectively referred to as strong data-processing
inequalities (SDPIs). The goal of this paper is to show intricate interdependencies
between these effects, as well as introducing tools for quantifying how strict these
SDPIs are.

Organization In Section 2 we overview the case of a single channel. Notably, most
of the results in the literature are proved for finite alphabets, i.e., jX jjYj < 1,
with a few exceptions such as [CKZ98, PW16b]. We provide in Appendix A a self-
contained proof of some of these results for general alphabets.

From then on we focus on the question: Given a multi-terminal network with
a single source and multiple sinks, and given SDPIs for each of the channels
comprising the network, how do we obtain an SDPI for the composite channel
from source to sinks? It turns out that this question has been addressed implicitly
in the work of Evans and Schulman [ES99] on redundancy required in circuits of
noisy gates. Rudiments also appeared in Dawson [Daw75] as well as Boyen and
Koller [BK98].

In Section 3 we present the essence of the Evans-Schulman method and derive
upper bounds on the mutual information contraction coefficient �KL for Bayesian
networks (directed graphical models). We also interpret the resulting bounds as
probabilities of disrupting end-to-end connectivity under independent removals of
graph vertices (site percolation). Then in Section 4 we derive analogous estimates
for Dobrushin’s coefficient �TV that governs the contraction of the total variation
on networks. While the results exactly parallel those for mutual information, the
proof relies on new arguments using coupling. Finally, Section 5 extends the
technique to bounding the FI-curves (the non-linear SDPIs). Section 6 concludes
with an alternative point of view on mutual information contraction, namely that of
comparison to an erasure channel. As an example we give a short proof of a result
of Samorodnitsky [Sam15] about distribution of information in subsets of channel
outputs.

Notation Elements of the Cartesian product X n are denoted xn , .x1; : : : ; xn/ to
emphasize their dimension. Given a transition probability kernel from PYjX W X !

Y we denote Pn
YjX D PYnjXn the kernel acting from X n ! Yn componentwise

independently:

PYnjXn.ynjxn/ ,
nY

jD1

PYjX.yjjxj/:

To demonstrate the general bounds we consider the running example of PYjX being
an n-letter binary symmetric channel (BSC), given by

Y D X C Z; X;Y 2 F
n
2; Z � Bern.ı/n (4)

and denoted by BSC.ı/n. Throughout this paper Nı , 1 � ı.
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2 SDPI for a Single Channel

2.1 Contraction Coefficients for f -Divergence and Mutual
Information

Let f W .0;1/ ! R be a convex function that is strictly convex at 1 and
f .1/ D 0. Let Df .PjjQ/ , EQŒf .

dP
dQ /� denote the f -divergence of P and Q with

P  Q, cf. [Csi67].3 For example, the total variation (1) and the KL divergence (2)
correspond to f .x/ D 1

2
jx�1j and f .x/ D x log x, respectively; taking f .x/ D .x�1/2

we obtain the �2-divergence: �2.PkQ/ ,
R
. dP

dQ /
2dQ � 1.

For any Q that is not a point mass, define:

�f .PYjX;Q/ , sup
PW0<Df .PkQ/<1

Df .PYjX ı PkPYjX ı Q/

Df .PkQ/
; (5)

�f .PYjX/ , sup
Q
�f .Q/ : (6)

It is easy to show that the supremum is over a non-empty set whenever Q is not a
point mass (see Appendix A). For notational simplicity when the channel is clear
from context we abbreviate �f .PYjX/ as �f . For contraction coefficients of total
variation, �2 and KL divergence, we write �TV; ��2 and �KL, respectively, which
play prominent roles in this exposition.

One of the main tools for studying ergodicity property of Markov chains as well
as Gibbs measures, �TV.PYjX/ is known as the Dobrushin’s coefficient of the kernel
PYjX . Dobrushin [Dob56] showed that the supremum in the definition of �TV can be
restricted to point masses, namely,

�TV.PYjX/ D sup
x;x0

dTV.PYjXDx;PYjXDx0/; (7)

thus providing a simple criterion for strong ergodicity of Markov processes.
Later [CKZ98, Proposition II.4.10(i)] (see also [CIRC93, Theorem 4.1] for finite
alphabets) demonstrated that all other contraction coefficients are upper bounded
by the Dobrushin’s coefficient, with inequality being typically strict (cf. the BSC
example below):

Theorem 1 ([CKZ98, Proposition II.4.10]) For every f -divergence, we have

�f .PYjX/ � �TV.PYjX/: (8)

3More generally, Df .PjjQ/ , E�

h
f
�

dP=d�
dQ=d�

	i
, where � is a dominating probability measure of

P and Q, e.g., � D .P C Q/=2, with the understanding that f .0/ D f .0C/, 0f . 0
0
/ D 0 and

0f . a
0
/ D limx#0 xf . a

x / for a > 0.
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For the opposite direction, lower bounds on �f typically involves ��2 , the contrac-
tion coefficient of the �2-divergence. It is well known, e.g. Sarmanov [Sar58], that
��2.PYjX;PX/ is the squared second largest eigenvalue of the conditional expectation
operator, which in turn equals the maximal correlation coefficient of the joint
distribution PXY :

S.XI Y/ , sup
f ;g
�.f .X/; g.Y// D

q
��2.PYjX;PX/ ; (9)

where �.�; �/ denotes the correlation coefficient and the supremum is over real-
valued functions f ; g such that f .X/ and g.Y/ are square integrable.

The relationship between �KL and ��2 on finite alphabets has been systematically
studied by Ahlswede and Gács [AG76]. In particular, [AG76] proved

��2.PYjX;PX/ � �KL.PYjX;PX/; (10)

and noticed that the inequality is frequently strict.4 Furthermore, for finite alphabets,
the following equivalence is demonstrated in [AG76]:

��2.PX;PYjX/ < 1 ” �KL.PX;PYjX/ < 1 (11)

” graph f.x; y/ W PX.x/ > 0;PYjX.yjx/ > 0g is connected:
(12)

As a criterion for �f .PYjX;PX/ < 1, this is an improvement of (8) only for channels
with �TV.PYjX/ D 1. The lower bound (10) can in fact be considerably generalized:

Theorem 2 Let f be twice continuously differentiable on .0;1/ with f 00.1/ > 0.
Then for any PX that is not a point mass,

��2.PYjX;PX/ � �f .PYjX;PX/ ; (13)

and

��2.PYjX/ � �f .PYjX/ : (14)

See Appendix A.1 for a proof of (13) for the general case, which yields (14)
by taking suprema over PX on both sides. Note that (14) (resp. (13)) have been
proved in [CKZ98, Proposition II.6.15] for the general alphabet (resp. in [Rag14,
Theorem 3.3] for finite alphabets).

4See [AG76, Theorem 9] and [AGKN13] for examples.
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Moreover, (14) in fact holds with equality for all nonlinear and operator convex f ,
e.g., for KL divergence and for squared Hellinger distance; see [CRS94, Theorem 1]
and [CKZ98, Proposition II.6.13 and Corollary II.6.16]. Therefore, we have:

Theorem 3

��2.PYjX/ D �KL.PYjX/ : (15)

See Appendix A.1 for a self-contained proof. This result was first obtained
in [AG76] using different methods for discrete space. Rather naturally, we also
have [CKZ98, Proposition II.4.12]:

�f .PYjX/ D 1 ” �TV.PYjX/ D 1

for any non-linear f .
As an illustrating example, for BSC.ı/ defined in (4), we have cf. [AG76]

��2 D �KL D .1 � 2ı/2 < �TV D j1 � 2ıj: (16)

Appendix B presents general results on the contraction coefficients for binary-input
arbitrary-output channels, which can be bounded using Hellinger distance within a
factor of two.

We next discuss the fixed-input contraction coefficient �KL.PYjX;Q/. Unfor-
tunately, there is no simple reduction to the �2-case as in (15). Besides the
lower bound (10), there is a variety of upper bounds relating �KL and ��2 . We
quote [MZ15, Theorem 11], who show for finite input-alphabet case:

�KL.PYjX;Q/ �
1

minx Q.x/
��2.PYjX;Q/ :

Another bound (which also holds for all �f with operator-convex f ) is in [Rag14,
Theorem 3.6]:

�KL.PYjX;Q/ � max

 
��2.PYjX;Q/; sup

0<ˇ<1

�LCˇ .PYjX;Q/

!
;

where �LCˇ denotes contraction coefficient of an f -divergence LCˇ.PkQ/ D

ˇ Ň
R

.P�Q/2

ˇPC ŇQ
with ˇ 2 .0; 1/ and Ň D 1 � ˇ (see also Appendix B).

We also note in passing that SDPIs are intimately related to hypercontractivity
and maximal correlation, as discovered by Ahlswede and Gács [AG76] and recently
improved by Anantharam et al. [AGKN13] and Nair [Nai14]. Indeed, the main result
of [AG76] characterizes �KL.PYjX;PX/ as the maximal ratio of hyper-contractivity
of the conditional expectation operator EŒ�jX�.

The fixed-input contraction coefficient �KL.Q/ is closely related to the (modified)
log-Sobolev inequalities. Indeed, if �KL.Q/ < 1 where Q is the invariant measure
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for the Markov kernel PYjX , i.e., PYjX ı Q D Q, then any initial distribution P such
that D.PkQ/ < 1 converges to Q exponentially fast since

D.Pn
YjX ı PjjQ/ � �n

KL.PYjX;Q/D.PjjQ/;

where the exponent �KL.PYjX;Q/ can in turn be estimated from log-Sobolev
inequalities, e.g. [Led99]. When Q is not invariant, it was shown [DMLM03] that

1 � ˛.Q/ � �KL.PYjX;Q/ � 1 � C˛.Q/

holds for some universal constant C, where ˛.Q/ is a modified log-Sobolev (also
known as 1-log-Sobolev) constant:

˛.Q/ D inf
f ¤1;kf k2D1

E

h
f 2.X/ log f 2.X/

f 2.X0/

i

EŒf 2.X/ log f 2.X/�
; PXX0 D Q � .PXjY ı PYjX/:

For further connections between �KL and log-Sobolev inequalities on finite alpha-
bets, see [Rag13, Rag14].

There exist several other characterizations of �KL, such as the following one in
terms of the contraction of mutual information (cf. [CK81, Exercise III.3.12, p. 350]
for finite alphabet):

�KL.PYjX/ D sup
I.UI Y/

I.UI X/
; (17)

where the supremum is over all Markov chains U ! X ! Y with fixed PYjX

(or equivalently, over all joint distributions PXU) such that I.UI X/ < 1. This
result is an immediate consequence of the following input-dependent version (see
Appendix A.3 for a proof in the general case; the finite alphabet case has been shown
in [AGKN13])

Theorem 4 For any PX that is not a point mass,

�KL.PYjX;PX/ D sup
I.UI Y/

I.UI X/
; (18)

where the supremum is taken over all Markov chains U ! X ! Y with fixed
PXY D PX ı PYjX such that 0 < I.UI X/ < 1.

Another characterization of �KL, in view of (15) and (9), is

�KL.PYjX/ D sup �2.f .X/; g.Y// ;

where the supremum is over all PX and real-valued square-integrable f .X/ and g.Y/.
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2.2 Non-linear SDPI

How to quantify the information loss if �KL D 1 for the channel of interest? In fact
this situation can arise in very basic settings, such as the additive-noise Gaussian
channel under the moment constraint on the input distributions (cf. [PW16b,
Theorem 9, Section 4.5]), where the mutual information does not contract linearly as
in (17), but can still contract non-linearly. In such cases, establishing a strong-data
processing inequality can be done by following the joint-range idea of Harremoës
and Vajda [HV11]. Namely, we aim to find (or bound) the best possible data-
processing function FI defined as follows.

Definition 1 (FI-curve) Fix PYjX and define

FI.t;PYjX/ , sup
PUX

˚
I.UI Y/W I.UI X/ � t;PUXY D PUXPYjX


: (19)

Equivalently, the supremum is taken over all joint distributions PUXY with a given
conditional PYjX and satisfying U ! X ! Y . The upper concave envelope of FI is
denoted by Fc

I :

Fc
I .t;PYjX/ , infff .t/ W 8t0 � 0 FI.t

0;PYjX/ � f .t0/; f –concaveg :

Equivalently, we have

Fc
I .t;PYjX/ D sup

PVUX

˚
I.UI YjV/W I.UI XjV/ � t;PVUXY D PVUXPYjX


; (20)

where I.AI BjC/ , I.A;CI B/ � I.CI B/ is the conditional mutual information, and
averaging over V serves the role of concavification (so that V can be taken binary).
Whenever it does not lead to confusion we will write FYjX.t/ instead of FI.t;PYjX/.

The operational significance of the FI-curve is that it gives the optimal input-
independent strong data processing inequality:

I.UI Y/ � FI.I.UI X//;

which generalizes (17) since F0
I.0/ D �KL.PYjX/ and t 7! 1

t FI.t/ is decreasing (see,
e.g., [CPW15, Section I]). See [CPW15] for bounds and expressions for BSC and
Gaussian channels.

Frequently it is more convenient to work with the concavified version Fc
I as

it allows for some natural extension of the results about contraction coefficients.
Proposition 18 shows that FI may not be concave.
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2.3 Some Applications: Classical and New

The main example of a strong data-processing inequality (SDPI) was discovered
by Ahlswede and Gács [AG76]. They have shown, using the characterization (11),
that whenever PYjX is a discrete memoryless channel that does not admit zero-error
communication, we have �KL.PYjX/ � � < 1 and

I.WI Y/ � �I.WI X/ (21)

for all Markov chains W ! X ! Y .
SDPIs have been popular for establishing lower (impossibility) bounds in various

setups, in both classical and more recent works. We mention only a few of these
applications:

• By Dobrushin for showing non-existence of multiple phases in Ising models at
high temperatures [Dob70];

• By Erkip and Cover in portfolio theory [EC98];
• By Evans and Schulman in analysis of noise-resistant circuits [ES99];
• By Evans, Kenyon, Peres, and Schulman in the analysis of inference on trees and

percolation [EKPS00];
• By Courtade in distributed data-compression [Cou12];
• By Duchi, Wainwright, and Jordan in statistical limitations of differential

privacy [DJW13];
• By the authors to quantify optimal communication and optimal control in line

networks [PW16b];
• By Liu, Cuff, and Verdú in key generation [LCV15];
• By Xu and Raginsky in distributed estimation [XR15].

All of the applications above use SDPI (21) to prove negative (impossibility)
statements. A notable exception is the work of Boyen and Koller [BK98], who
considered the basic problem of computing the posterior-belief vector of a hidden
Markov model: that is, given a Markov chain fXjg observed over a memoryless
channel PYjX , one aims to recompute P

XjjY
j
�1

as each new observation Yj arrives.
The problem arises when X is of large dimension and then for practicality one is
constrained to approximate (quantize) the posterior. However, due to the recursive
nature of belief computations, the cumulative effect of these approximations may
become overwhelming. Boyen and Koller [BK98] proposed to use the SDPI similar
to (21) with � < 1 for the Markov chain fXjg and show that this cumulative effect
stays bounded since

P
�n < 1. Similar considerations also enable one to provide

provable guarantees for simulation of inter-dependent stochastic processes.
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3 Contraction of Mutual Information in Networks

We start by defining a Bayesian network (also known as a directed graphical model).
Let G be a finite directed acyclic graph with set of vertices fYv W v 2 Vg denoting
random variables taking values in a fixed finite alphabet.5 We assume that each
vertex Yv is associated with a conditional distribution PYv jYpa.v/ where pa.v/ denotes
parents of v, with the exception of one special “source” node X that has no inbound
edges (there may be other nodes without inbound edges, but those have to have
their marginals specified). Notice that if V 	 V is an arbitrary set of nodes we
can progressively chain together all the random transformations and unequivocally
compute PVjX (here and below we use V and YV D fYv W v 2 Vg interchangeably).
We assume that vertices in V are topologically sorted so that v1 > v2 implies there
is no path from v1 to v2. Associated to each node we also define

�v , �KL.PYv jYpa.v/ / :

See the excellent book of Lauritzen [Lau96] for a thorough introduction to a
graphical model language of specifying conditional independencies.

The following result can be distilled from [ES99]:

Theorem 5 Let W 2 V and V 	 V such that W > V. Then

�KL.PV;WjX/ � �W � �KL.PV;pa.W/jX/C .1 � �W/ � �KL.PVjX/ : (22)

Furthermore, let perc.V/ denote the probability that there is a path from X to V6

in the graph if each node v is removed independently with probability 1 � �v (site
percolation). Then, we have for every V 	 V

�KL.PVjX/ � perc.V/ : (23)

In particular, if �v < 1 for all v 2 V , then �KL.PVjX/ < 1.

Proof Consider an arbitrary random variable U such that

U ! X ! .V;W/ :

Let A D pa.W/ n V . Without loss of generality we may assume A does not contain
X: indeed, if A includes X, then we can introduce an artificial node X0 such that

5At the expense of technical details, the alphabet can be replaced with any countably generated
(e.g. Polish) measurable space. For clarity of presentation we focus here on finite alphabets.
6More formally, perc.V/ equals probability that there exists a sequence of nodes v1; : : : ; vn with
v1 D X, vn 2 V satisfying two conditions: 1) for each i 2 Œn � 1� the pair .vi; viC1/ is a directed
edge in G; and 2) each vi is not removed.
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X0 D X and include X0 into A instead of X. Relevant conditional independencies are
encoded in the following graph:

U X V

A W

From the characterization (17) it is sufficient to show

I.UI V;W/ � .1 � �W/I.UI V/C �WI.UI V;A/ : (24)

Denote B D Vnpa.W/ and C D V \ pa.W/. Then pa.W/ D .A;C/ and V D .B;C/.
To verify (24) notice that by assumption we have

U ! X ! .V;A/ ! W :

Therefore conditioned on V we have the Markov chain

U ! X ! A ! W jV

and the channel A ! W is a restriction of the original PWjpa.W/ to a subset of
the inputs. Indeed, PWjA;V D PWjpa.W/;B D PWjpa.W/ by the assumption of the
graphical model. Thus, for every realization v D .b; c/ of V , we have PWjADa;VDv D

PWjADa;CDc and therefore

I.UI WjV D v/ � �.PWjA;CDc/I.UI AjV D v/ � �.PWjA;C/I.UI AjV D v/; (25)

where the last inequality uses the following property of the contraction coefficient
which easily follows from either (6) or (17):

sup
c
�.PWjA;CDc/ � �.PWjA;C/: (26)

Averaging both sides of (25) over v � PV and using the definition �W D

�.PWjpa.W// D �.PWjA;C/, we have

I.UI WjV/ � �WI.UI AjV/ : (27)

Adding I.UI V/ to both sides yields (24).
We now move to proving the percolation bound (23). First, notice that if a vertex

W satisfies W > V , then letting f9� W X ! Vg be the event that there exists a
directed path from X to (any element of) the set V under the site percolation model,
we notice that fW removedg is independent from f9� W X ! Vg and f9� W X !

V [ pa.W/g. Thus we have
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perc.V [ fWg/ , PŒ9� W X ! V [ fWg�

D PŒ9� W X ! V [ fWg;W removed�C PŒ9� W X ! V [ fWg;W kept�

D PŒ9� W X ! V;W removed�C PŒ9� W X ! V [ pa.W/;W kept�

D PŒ9� W X ! V�.1 � �W/C �WPŒ9� W X ! V [ pa.W/�

D .1 � �W/perc.V/C �Wperc.V [ pa.W// :

That is, the set-function perc.�/ satisfies the recursion given by the right-hand side
of (22). Now notice that (23) holds trivially for V D fXg, since both sides are equal
to 1. Then, by induction on the maximal element of V and applying (22) we get
that (23) holds for all V . ut

Theorem 5 allows us to estimate contraction coefficients in arbitrary (finite)
networks by peeling off last nodes one by one. Next we derive a few corollaries:

Corollary 6 Consider a fixed (single-letter) channel PYjX and assume that it is used
repeatedly and with perfect feedback to send information from W to .Y1; : : : ;Yn/.
That is, we have for some encoder functions fj

PYnjW.y
njw/ D

nY
jD1

PYjX.yjjfj.w; y
j�1//;

which corresponds to the graphical model:

Then

�KL.PYnjW/ � 1 � .1 � �KL.PYjX//
n < n � �KL.PYjX/

Proof Apply Theorem 5 n times. ut

Let us call a path � D .X; � � � ; v/ with v 2 V to be shortcut-free from X to V,

denoted X
sf
! V , if there does not exist another path � 0 from X to any node in V

such that � 0 is a subset of � . (In particular v necessarily is the first node in V that �
visits.) Also for every path � D .X; v1; : : : ; vm/ we define

�� ,
mY

jD1

�vj :
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Corollary 7 For any subset V we have

�KL.PVjX/ �
X

�WX
sf
!V

�� : (28)

In particular, we have the estimate of Evans-Schulman [ES99]:

�KL.PVjX/ �
X

�WX!V

�� : (29)

Proof Both results are simple consequence of union-bounding the right-hand side
of (23). But for completeness, we give an explicit proof. First, notice the following
two self-evident observations:

1. If A and B are disjoint sets of nodes, then

X
�WX

sf
!A[B

�� D
X

�WX
sf
!A; avoid B

�� C
X

�WX
sf
!B; avoid A

��: (30)

2. Let � W X ! V and �1 be � without the last node, then

� W X
sf
! V ” �1 W X

sf
! fpa.V/ n Vg: (31)

Now represent V D .V 0;W/ with W > V 0, denote P D pa.W/ n V and assume
(by induction) that

�KL.PV0jX/ �
X

�WX
sf
!V

�� (32)

�KL.PV0;PjX/ �
X

�WX
sf
!fV0;Pg

�� : (33)

By (30) and (31) we have

X
�WX

sf
!V

�� D
X

�WX
sf
!V0

�� C
X

�WX
sf
!W; avoid V0

�� (34)

D
X

�WX
sf
!V0

�� C �W

X
�WX

sf
!P; avoid V0

�� (35)
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Then by Theorem 5 and induction hypotheses (32)–(33) we get

�KL.PVjX/ � �W

X
�WX

sf
!fV0;Pg

�� C .1 � �W/
X

�WX
sf
!V0

�� (36)

D �W

0
B@ X
�WX

sf
!P; avoid V0

�� �
X

�WX
sf
!V0; pass P

��

1
CAC

X
�WX

sf
!V0

�� (37)

� �W

X
�WX

sf
!P; avoid V0

�� C
X

�WX
sf
!V0

�� (38)

where in (37) we applied (30) and split the summation over � W X
sf
! V 0 into paths

that avoid and pass nodes in P. Comparing (35) and (38) the conclusion follows. ut

Both estimates (28) and (29) are compared to that of Theorem 5 in Table 1 in
various graphical models.

Evaluation for the BSC We consider the contraction coefficient for the n-letter
binary symmetric channel BSC.ı/n defined in (4). By (16), for n D 1 we have
�KL D .1 � 2ı/2. Then by Corollary 6 we have for arbitrary n:

Table 1 Comparing bounds on the contraction coefficient �KL.PYjX/. For simplicity, we assume
that the �KL coefficients of all constituent kernels are bounded from above by �.

Name Graph Theorem 5

Estimate (28) via
shortcut-free
paths

Original
Evans-Schulman
estimate (29)

Markov chain 1 � � �C �3

Markov chain 2 �2 �2 �2 C �3

Parallel channels 2�� �2 2� 2�

Parallel channels
with feedback 2�� �2 2� 3�
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�KL � 1 � .4ı.1 � ı//n : (39)

A simple lower bound for �KL can be obtained by considering (17) and taking
U � Bern.1=2/ and U ! X being an n-letter repetition code, namely, X D

.U; : : : ;U/. Let7  D PŒjZj � n=2� be the probability of error for the maximal
likelihood decoding of U based on Y , which satisfies the Chernoff bound  �

.4ı.1 � ı//n=2. We have from Jensen’s inequality

I.UI Y/ D H.U/ � H.UjY/ � 1 � h./ D 1 � .4ı.1 � ı//
n
2CO.log n/ ;

where we used the fact that the binary entropy h.x/ D �x log x�.1�x/ log.1�x/ D

�x log x C O.x2/ as x ! 0. Consequently, we get

�KL � 1 � .4ı.1 � ı//
n
2CO.log n/ : (40)

Comparing (39) and (40) we see that �KL ! 1 exponentially fast. To get the exact
exponent we need to replace (39) by the following improvement:

�KL � �TV � 1 � .4ı.1 � ı//
n
2CO.log n/ ;

where the first inequality is from (8) and the second is from (48) below. Thus, all in
all we have for BSC.ı/n as n ! 1

�KL; �TV D 1 � .4ı.1 � ı//
n
2CO.log n/ : (41)

4 Dobrushin’s Coefficients in Networks

The proof of Theorem 5 relies on the characterization (17) of �KL via mutual
information, which satisfies the chain rule. Neither of these two properties is
enjoyed by the total variation. Nevertheless, the following is an exact counterpart
of Theorem 5 for total variation.

Theorem 8 Under the same assumption of Theorem 5,

�TV.PV;WjX/ � .1 � �W/�TV.PVjX/C �W�TV.Ppa.W/;VjX/ ; (42)

where �W D �TV.PWjpa.W//. Furthermore, let perc.V/ denote the probability that
there is a path from X to V in the graph if each node v is removed independently
with probability 1 � �v (site percolation). Then, we have for every V 	 V

�TV.PVjX/ � perc.V/ : (43)

In particular, if �v < 1 for all v 2 V, then �TV.PVjX/ < 1.

7For elements of Fn
2, j � j is the Hamming weight.
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Proof Fix x; Qx and denote by P (resp. Q) the distribution conditioned on X D x
(resp. x0). Denote Z D pa.W/. The goal is to show

dTV.PVW ;QVW/ � .1 � �W/dTV.PV ;QV/C �WdTV.PZV ;QZV/ : (44)

which, by the arbitrariness of x; x0 and in view of the characterization of � in (7),
yields the desired (42). By Lemma 22 in Appendix C, there exists a coupling of PZV

and QZV , denoted by �ZVZ0V0 , such that

�Œ.Z;V/ ¤ .Z0;V 0/� D dTV.PZV ;QZV/ ;

�ŒV ¤ V 0� D dTV.PV ;QV/

simultaneously (that is, this coupling is jointly optimal for the total variation of the
joint distributions and one pair of marginals).

Conditioned on Z D z and Z0 D z0 and independently of VV 0, let WW 0 be
distributed according to a maximal coupling of the conditional laws PWjZDz and
PWjZDz0 (recall that QWjZ D PWjZ D PWjpa.W/ by definition). This defines a joint
distribution �ZVWZ0V0W0 , under which we have the Markov chain VV 0 ! ZZ0 !

WW 0. Then

�ŒW ¤ W 0jZVZ0V 0� D �ŒW ¤ W 0jZZ0� D dTV.PWjpa.W/DZ ;PWjpa.W/DZ0/ � �W 1fZ¤Z0g:

Therefore we have

�ŒW ¤ W 0jV D V 0� D EŒ�ŒW ¤ W 0jZZ0�jV D V 0�

� �W�ŒZ ¤ Z0jV D V 0�:

Multiplying both sides by �ŒV D V 0� and then adding �ŒV ¤ V 0�, we obtain

�Œ.W;V/ ¤ .W 0;V 0/� � .1 � �W/�ŒV ¤ V 0�C �W�Œ.Z;V/ ¤ .Z0;V 0/�

D .1 � �W/dTV.PV ;QV/C �WdTV.PZV ;QZV/;

where the LHS is lower bounded by dTV.PWV ;QWV/ and the equality is due to the
choice of � . This yields the desired (44), completing the proof of (42). The rest of
the proof is done as in Theorem 5. ut

As a consequence of Theorem 8, both Corollary 6 and 7 extend to total variation
verbatim with �KL replaced by �TV:

Corollary 9 In the setting of Corollary 6 we have

�TV.PYnjW/ � 1 � .1 � �TV.PYjX//
n < n � �KL.PYjX/ : (45)
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Corollary 10 In the setting of Corollary 7 we have

�TV.PVjX/ �
X

�WX
sf
!V

��TV �
X

�WX!V

��TV ;

where for any path � D .X; v1; : : : ; vm/ we denoted ��TV ,
mQ

jD1
�TV.Pvjjpa.vj//.

Evaluation for the BSC Consider the n-letter BSC defined in (4), where Y D XCZ
with Z � Bern.ı/n and jZj � Binom.n; ı/. By Dobrushin’s characterization (7), we
have

�TV D max
x;x02Fn

2

dTV.PYjXDx;PYjXDx0/

D dTV.Bern.ı/n;Bern.1 � ı/n/

D dTV.Binom.n; ı/;Binom.n; 1 � ı// (46)

D 1 � 2PŒjZj > n=2� � PŒjZj D n=2� (47)

D 1 � .4ı.1 � ı//
n
2CO.log n/ ; (48)

where (46) follows from the sufficiency of jZj for testing the two distributions, (47)
follows from dTV.P;Q/ D 1 �

R
P ^ Q and (48) follows from standard binomial

tail estimates (see, e.g., [Ash65, Lemma 4.7.2]). The above sharp estimate should
be compared to the bound obtained by applying Corollary 9:

�TV � 1 � .2ı/n : (49)

Although (49) correctly predicts the exponential convergence of �TV ! 1 whenever
ı < 1

2
, the exponent estimated is not optimal.

5 Bounding FI-Curves in Networks

In this section our goal is to produce upper bound bounds on the FI-curve of a
Bayesian network FVjX in terms of those of the constituent channels. For any vertex
v of the network, denote the FI-curve of the channel Pvjpa.v/ by Fvjpa.v/, abbreviated
by Fv , and the concavified version by Fc

v .

Theorem 11 In the setting of Theorem 5,

FV;WjX � FVjX C Fc
W ı .Fpa.W/;VjX � FVjX/ ; (50)

Fc
V;WjX � Fc

VjX C Fc
W ı .Fc

pa.W/;VjX � Fc
VjX/ : (51)

Furthermore, the right-hand side of (51) is non-negative, concave, nondecreasing
and upper bounded by the identity mapping id.
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Remark 1 The FI-curve estimate in Theorem 11 implies that of contraction
coefficients of Theorem 5. To see this, note that since Fpa.W/;VjX � id, the following
is a relaxation of (50):

id � FV;WjX � .id � FW/ ı .id � FVjX/: (52)

Consequently, if each channel in the network satisfies an SDPI, then the end-to-end
SDPI is also satisfied. That is, if each vertex has a non-trivial FI-curve, i.e., Fv < id
for all v 2 V , then the channel X ! V also has a strict contractive property, i.e.,
FVjX < id.

Furthermore, since Fc
W.t/ � �Wt, noting the fact that F0

VjX.0/ D �KL.PVjX/ and
taking the derivative on both sides of (50) we see that the latter implies (22).

Proof We first show that for any channel PYjX , its FYjX-curve satisfies that t 7!

t � FYjX.t/ is nondecreasing. Indeed, it is known, cf. [CPW15, Section I], that t 7!
FYjX.t/

t is non-increasing. Thus, for t1 < t2 we have

t2 � FYjX.t2/ � t2 �
t2
t1

FYjX.t1/

D
t2
t1

�
t1 � FYjX.t1/

�

� t1 � FYjX.t1/ ;

where the last step follows from the fact that FYjX.t/ � t. Similarly, for any concave
function ˆ W RC ! RC s.t. ˆ.0/ D 0 we have ˆ.t2/

t2
� ˆ.t1/

t1
. Therefore, the

argument above implies t 7! t � ˆ.t/ is nondecreasing and, in particular, so is
t 7! t � Fc

W.t/.
Let PUX be such that I.UI X/ � t and I.UI W;V/ D FV;WjX.t/. By the same

argument that leads to (27) we obtain

I.UI WjV D v0/ � FW.I.UI AjV D v0//

� Fc
W.I.UI AjV D v0// :

Averaging over v0 � PV and applying Jensen’s inequality we get

I.UI W;V/ � Fc
W.I.UI pa.W/;V/ � I.UI V//C I.UI V/:

Therefore,

FV;WjX.t/ � Fc
W.I.UI pa.W/;V/ � I.UI V//C I.UI V/

� Fc
W.Fpa.W/;VjX.t/ � I.UI V//C I.UI V/ (53)

D Fpa.W/;VjX.t/ � .id � Fc
W/.Fpa.W/;VjX.t/ � I.UI V//

� Fpa.W/;VjX.t/ � .id � Fc
W/.Fpa.W/;VjX.t/ � FVjX.t// (54)
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D FVjX.t/C Fc
W.Fpa.W/;VjX.t/ � FVjX.t//

� Fc
VjX.t/C Fc

W.F
c
pa.W/;VjX.t/ � Fc

VjX.t// (55)

where (53) and (54) follow from the facts that t 7! FW.t/ and t 7! t � FW.t/ are
both nondecreasing, and (55) follows from that a C Fc

W.b � a/ is nondecreasing in
both a and b.

Finally, we need to show that the right-hand side of (55) is nondecreasing
and concave (this automatically implies that (55) is an upper-bound to the con-
cavification Fc

VjX). To that end, denote t	 D 	t1 C .1 � 	/t0, f	 D Fc
VjX.t	/,

g	 D Fc
pa.W/;VjX.t	/ and notice the chain

f	 C Fc
W.g	 � f	/ � 	f1 C .1 � 	/f0 C Fc

W.	.g1 � f1/C .1 � 	/.g0 � f0//
(56)

� 	.f1 C Fc
W.g1 � f1//C .1 � 	/.f0 C Fc

W.g0 � f0// (57)

where (56) is from concavity of Fc
VjX , Fc

pa.W/;VjX and monotonicity of .a; b/ 7! a C

Fc
W.b � a/, and (57) is from concavity of Fc

W . ut

Corollary 12 In the setting of Corollary 6 we have

FYnjW.t/ � t �  .n/.t/ ;

where  .1/ D  ,  .kC1/ D  .k/ ı  and  W RC ! RC is a convex function such
that

FYjX.t/ � t �  .t/ :

Proof The case of n D 1 follows from the assumption on  . The case of n > 1

is proved by induction, with the induction step being an application of Theorem 11
with V D Yn�1 and W D Yn. ut

Generally, the bound of Corollary 12 cannot be improved in the vicinity of zero.
As an example where this is tight, consider a parallel erasure channel, whose FI-
curve for t � log q is computed in Theorem 17 below.

Evaluation for the BSC To ease the notation, all logarithms are with respect to
base two in this section. Let h.y/ D y log 1

y C .1 � y/ log 1
1�y denote the binary

entropy function and h�1 W Œ0; 1� ! Œ0; 1
2
� its functional inverse. Let p � q , p.1 �

q/C q.1 � p/ for p; q 2 Œ0; 1� denote binary convolution and define

 .t/ , t � 1C h.ı � h�1.max.1 � t; 0/// (58)



230 Y. Polyanskiy and Y. Wu

which is convex and increasing in t on RC. For n D 1 it was shown in [CPW15,
Section 2] that the FI-curve of BSC.ı/ is given by

FI.t;BSC.ı// D Fc
I .t;BSC.ı// D t �  .t/ :

Applying Corollary 12 we obtain the following bound on the FI-curve of BSC of
blocklength n (even with feedback):

Proposition 13 Let Z1; : : : ;Zn
i.i.d.
� Bern.ı/ be independent of U. For any (encoder)

functions fj; j D 1; : : : ; n, define

Xj D fj.U;Y
j�1/; Yj D Xj C Zj :

Then

I.UI Yn/ � I.UI Xn/ �  .n/.I.UI Xn// ; (59)

where  .1/ D  ,  .kC1/ D  .k/ ı  and  is defined in (58).

Remark 2 The estimate (59) was first shown by A. Samorodnitsky (private com-
munication) under extra technical constraints on the joint distribution of .Xn;W/
and in the absence of feedback. We have then observed that Evans-Schulman type
of technique yields (59) generally.

Since  .t/ D 4ı.1 � ı/t C o.t/ as t ! 0 we get

Fc
I .t;BSC.ı/n/ � t � t.4ı.1 � ı//nCo.n/

as n ! 1 for any fixed t. A simple lower bound, for comparison purposes, can be
inferred from (40) after noticing that there we have I.UI X/ D 1, and so

Fc
I .1;BSC.ı/n/ � 1 � .4ı.1 � ı//

n
2CO.log n/ ;

This shows that the bound of Proposition 13 is order-optimal: F.t/ ! t exponen-
tially fast. Exact exponent is given by (41).

As another point of comparison, we note the following. Existence of capacity-
achieving error-correcting codes then easily implies

lim
n!1

1

n
Fc

I .n�;BSC.ı/n/ D min.�;C/ ;

where C D 1 � h.ı/ is the Shannon capacity of BSC.ı/. Since for t > 1 we have
 .t/ D t � C one can show that

lim
n!1

1

n
 .n/.n�/ D j� � CjC ;

and therefore we conclude that in this sense the bound (59) is asymptotically tight.
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6 SDPI via Comparison to Erasure Channels

So far our leading example has been the binary symmetric channel (4). We now
consider another important example:

Example 1 For any set X , the erasure channel on X with erasure probability ı is
a random transformation from X to X [ f‹g, where ‹ … X defined as

PEjX.ejx/ D

(
ı; e D‹

1 � ı; e D x
:

For X D Œq�, we call it the q-ary erasure channel denoted by ECq.ı/. In the

binary case, we denote the binary erasure channel by BEC.ı/ , EC2.ı/. A simple
calculation shows that for every PUX we have

I.UI E/ D .1 � ı/I.UI X/ (60)

and therefore for ECq.ı/ we have �KL.PEjX/ D 1 � ı and FI.t/ D min..1 �

ı/t; log q/.

Next we recall a standard information-theoretic ordering on channels,
cf. [EGK11, Section 5.6]:

Definition 2 Given two channels with common input alphabet, PYjX and PY0jX , we
say that PY0jX is less noisy than PYjX , denoted by PYjX �l:n: PY0jX if for all joint
distributions PUX we have

I.UI Y/ � I.UI Y 0/ : (61)

We also have an equivalent formulation in terms of divergence:

Proposition 14 PYjX �l:n: PY0jX if and only if for all PX;QX we have

D.QYkPY/ � D.QY0kPY0/ (62)

where PY ;PY0 ;QY ;QY0 are the output distributions induced by PX;QX over PYjX and
PY0jX, respectively.

See Appendix A.4 for the proof.8

8It is tempting to put forward a fixed-PX version of the previous criterion (similar to Theorem 4).
That would, however, require some extra assumptions on PX . Indeed, knowing that I.WI Y/ �
I.WI Y 0/ for all PW;X with a given fixed PX tells us nothing about how distributions PYjXDx

and PY0
jXDx compare outside the support of PX . (For discrete channels and strictly positive PX ,

however, it is easy to argue that indeed (62) holds for all QX if and only if (61) holds for all PU;X

with a given marginal PX .)
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The following result shows that the contraction coefficient of KL divergence
can be equivalently formulated as being less noisy than the corresponding erasure
channel:9

Proposition 15 For an arbitrary channel PYjX we have

�KL.PYjX/ � � ” PYjX �l:n: PEjX ; (63)

where PEjX is the erasure channel on the same input alphabet and erasure
probability 1 � �.

Proof The definition of �KL.PYjX/ guarantees for every PUX

I.UI Y/ � .1 � ı/I.UI X/; (64)

where the right-hand side is precisely I.UI E/ by (60). ut

It turns out that the notion of less-noisiness tensorizes:

Proposition 16 If PY1jX1 �l:n: PY0

1jX1
and PY2jX2 �l:n: PY0

2jX2
then

PY1jX1 � PY2jX2 �l:n: PY0

1jX1
� PY0

2jX2

In particular,

�KL.PYjX/ � � H) Pn
YjX �l:n: Pn

EjX : (65)

where PEjX is the erasure channel on the same input alphabet and erasure
probability 1 � �.

Proof Construct a relevant joint distribution U ! X2 ! .Y2;Y 02/ and consider

I.UI Y1;Y2/ D I.UI Y1/C I.UI Y2jY1/ : (66)

Now since U ?? Y2jY1 we have by PY2jX2 �l:n: PY0

2jX2

I.UI Y2jY1/ � I.UI Y 0
2jY1/

and putting this back into (66) we get

I.UI Y1;Y2/ � I.UI Y1/C I.UI Y 0
2jY1/ D I.UI Y1;Y

0
2/ :

9Note that another popular partial order for random transformations – that of stochastic degradation
– may also be related to contraction coefficients, see [Rag14, Remark 3.2].



Strong Data-Processing Inequalities for Channels and Bayesian Networks 233

Repeating the same argument, but conditioning on Y 0
2 we get

I.UI Y1;Y2/ � I.UI Y 0
1;Y

0
2/ ;

as required. The last claim of the proposition follows from Proposition 15. ut

Consequently, everything that has been said in this paper about �KL.PYjX/ can
be restated in terms of seeking to compare a given channel in the sense of the �l:n:

order to an erasure channel. It seems natural, then, to consider erasure channel in
somewhat greater details.

6.1 FI-Curve of Erasure Channels

Theorem 17 Consider the q-ary erasure channel of blocklength n and erasure
probability ı. Its FI-curve is bounded by

Fc
I .t;ECq.ı/

n/ � EŒmin.B log q; t/�; B � Binom.n; 1 � ı/ : (67)

The bound is tight in the following cases:

1. at t D k log q with integral k � n if and only if an .n; k; n � k C 1/q MDS code
exists10

2. for t � log q and t � .n � 1/ log q;
3. for all t when n D 1; 2; 3.

Remark 3 Introducing B0 � Binom.n � 1; 1 � ı/ and using the identity
EŒB1fB�ag� D n.1 � ı/PŒB0 � a � 1�, we can express the right-hand side of (67) in
terms of binomial CDFs:

EŒmin.B; x/� D x C PŒB0 � bxc � 1�.1 � ı/.n � x/ � xıPŒB0 � bxc�

This implies that the upper bound (67) is piecewise-linear, increasing and concave.

Proof Consider arbitrary U ! Xn ! En with PEnjXn D ECq.ı/
n. Let S be random

subset of Œn� which includes each i 2 Œn� independently with probability 1 � ı. A
direct computation shows that

I.UI En/ D I.UI XS; S/ D
X
��Œn�

PŒS D ��I.UI X� / (68)

�
X
��Œn�

PŒS D ��min.j� j log q; t/ D EŒmin.B log q; t/� : (69)

From here (67) follows by taking supremum over PU;Xn .

10We remind that a subset C of Œq�n is called an .n; k; d/q code if jCj D qk and Hamming distance
between any two points from C is at least d. A code is called maximum-distance separable (MDS)
if d D n � k C 1. This is equivalent to the property that projection of C onto any subset of k
coordinates is bijective.
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Claims about tightness follow by constructing U D Xn and taking Xn to be
the output of the MDS code (so that H.X� / D min.j� j log q; t/) and invoking the
concavity of FI.t/. One also notes that Œn; 1; n�q (repetition code) and Œn; n � 1; 2�

(single parity check code) show tightness at t D log q and t D .n � 1/ log q.
Finally, we prove that when t D k log q and the bound (67) is tight then a

(possibly non-linear) .n; k; n � k C 1/q MDS code must exist. First, notice that the
right-hand side of (67) is a piecewise-linear and concave function. Thus the bound
being tight for FI.t/ (that is a concave-envelope of FI.t/) should also be tight as
a bound for FI.t/. Consequently, there must exist U ! Xn ! En such that the
bound (69) is tight with t D I.UI Xn/. This implies that we should have

I.UI X� / D min.� log q; t/ (70)

for all � 	 Œn�. In particular, we have I.UI Xi/ D log q and thus H.XijU/ D 0

and without loss of generality we may assume that U D Xn. Again from (70)
we have that H.Xn/ D H.Xk/ D k log q. This implies that Xn is a uniform
distribution on a set of size qk and projection on any k coordinates is injective. This is
exactly the characterization of an MDS code (possibly non-linear) with parameters
.n; k; n � k C 1/q. ut

We also formulate some interesting observations for binary erasure channels:

Proposition 18 For BEC.n; ı/ we have:

1. For n � 3 we have that FI.t/ is not concave. More exactly, FI.t/ < Fc
I .t/ for

t 2 .1; 2/.
2. For arbitrary n and t � log 2 or t � .n � 1/ log 2 we have FI.t/ D Fc

I .t/ D

EŒmin.B log 2; t/� with B defined in in (67).
3. For t D 2; n D 4 the bound (67) is not tight and Fc

I .t/ < EŒmin.B log 2; t/�.

Proof First note that in Definition 1 of FI.t/ the supremum is a maximum and and
U can be restricted to alphabet of size jX j C 2. So in particular, FI.t/ D f if and
only if there exists I.UI Yn/ D f , I.UI Xn/ � t.

Now consider t 2 .1; 2/ and n D 3 and suppose .U;Xn/ achieves the bound. For
the bound to be tight we must have I.UI X3/ D t. For the bound to be tight we must
have I.UI Xi/ D 1 for all i, that is H.Xi/ D 1, H.XijU/ D 0 and H.XnjU/ D 0.
Consequently, without loss of generality we may take U D Xn. So for the bound to
be tight we need to find a distribution s.t.

H.X3/ D H.X1;X2/ D H.X2;X3/ D H.X1;X3/ D t;H.X1/ D H.X2/ D H.X3/ D 1:

(71)
It is straightforward to verify that this set of entropies satisfies Shannon inequalities
(i.e. submodularity of entropy checks), so the main result of [ZY97] shows that there
does exist a sequence of triples X3 (over large alphabets) which attains this point.
We will show, however, that this is impossible for binary-valued random variables.
First, notice that the set of achievable entropy vectors by binary triplets is a closed
subset of R7C (as a continuous image of a compact set). Thus, it is sufficient to show
that (71) itself is not achievable.



Strong Data-Processing Inequalities for Channels and Bayesian Networks 235

Second, note that for any pair A;B of binary random variables with uniform
marginals we must have

A D B C Z; B ?? Z � Bern.p/ :

Without loss of generality, assume that X2 D X1 C Z where H.Z/ D t � 1 > 0.
Moreover, H.X3jX1;X2/ D 0 implies that X3 D f .X1;X2/ for some function f .

Given X1 we have H.X3jX1 D x/ D H.X3jX2 D x/ D t � 1 > 0. So the
function X1 7! f .X1; x/ should not be constant for either choice of x 2 f0; 1g and
the same holds for X2 7! f .x;X2/. Eliminating cases leaves us with f D X1 C X2
or f D X1 C X2 C 1. But then X3 D X1 C X2 D Z and H.X3/ < 1, which is a
contradiction.

Since by Theorem 17 we know that the bound (67) is tight for FI.t/ we conclude
that

FI.t/ < Fc
I .t/; 8t 2 .1; 2/ :

To show the second claim consider U D Xn and X1 D � � � D Xn � Bern.p/ for
t � log 2. For t � .n � 1/ log 2 take Xn�1 to be iid Bern. 1

2
/ and

Xn D X1 C � � � C Xn�1 C Z ;

where Z � Bern.p/. This yields I.UI X� / D H.X� / D j� j log 2 for every subset
� 	 Œn� of size up to n � 1. Consequently, the bound (67) must be tight.

Finally, third claim follows from Theorem 17 and the fact that there is no Œ4; 2; 3�
binary code, e.g. [MS77, Corollary 7, Chapter 11]. ut

Putting together (65) and (67) we get the following upper bound on the concav-
ified FI-curve of n-letter product channels in terms of the contraction coefficient of
the single-letter channel.

Corollary 19 If �KL.PYjX/ D �, then

Fc
I .t;P

n
YjX/ � EŒmin.B log q; t/�; B � Binom.n; 1 � ı/ :

This gives an alternative proof of Corollary (6) for the case of no feedback.

6.2 Samorodnitsky’s SDPI

So far, we have been concerned with bounding the “output” mutual information in
terms of a certain “input” one. However, frequently, one is interested in bounding
some “output” information given knowledge of several input ones. For example, for
the parallel channel we have shown that
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I.WI Yn/ � .1 � .1 � �KL.PYjX//
n/I.WI Xn/ :

But it turns out that a stronger bound can be given if we have finer knowledge about
the joint distribution of W and Xn.

The following bound can be distilled from [Sam15]:

Theorem 20 (Samorodnitsky) Consider the Bayesian network

U ! Xn ! Yn ;

where PYnjXn D
Qn

iD1 PYijXi is a memoryless channel with �i , �KL.PYijXi/. Then we
have

I.UI Yn/ � I.UI XSjS/ D I.UI XS; S/ ; (72)

where S ?? .U;Xn;Yn/ is a random subset of Œn� generated by independently
sampling each element i with probability �i. In particular, if �i D � for all i, then

I.UI Yn/ �
X
��Œn�

�j� j.1 � �/n�j� jI.UI X� / (73)

Proof Just put together characterization (63), tensorization property Proposition 16
to get I.UI Yn/ � I.UI En/, where En is the output of the product of erasure channels
with erasure probabilities 1� �i. Then the calculation (68) completes the proof. ut

Remark 4 Let us say that “total” information I.UI Xn/ is distributed among subsets
of Œn� as given by the following numbers:

Ik ,
 

n

k

!�1 X
T2.Œn�k /

I.UI XT/ :

Then bound (73) says (replacing Binom.n; �/ by its mean value �n):

I.UI Yn/ . I�n :

Informally: the only kind of information about U that has a chance to be inferred on
the basis of Yn is one that is contained in subsets of X of size at most �n.

Remark 5 Another implication of the Theorem is a strengthening of the
Mrs. Gerber’s Lemma. Fix a single-letter channel PYjX and suppose that for some
increasing convex function m.�/ and all random variables X we have

H.Y/ � m.H.X// :
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Then, in the setting of the Theorem we have

H.Yn/ � m

�
1

�n
H.XSjS/

�
: (74)

Note that by Han’s inequality (74) is strictly better than the simple consequence
of the chain rule: H.Yn/ � nm.H.Xn/=n/. For the case of PYjX D BSC.ı/ the
bound (74) is a sharpening of the Mrs. Gerber’s Lemma, and has been the focus
of [Sam15], see also [Ord16]. To prove (74) let Xn ! En be EC.1 � �/. Then, by
Theorem 20 applied to U D Xi, n D i � 1 we have

H.XijY
i�1/ � H.XijE

i�1/ :

Thus, from the chain rule and convexity of m.�/ we obtain

H.Yn/ D
X

i

H.YijY
i�1/ � nm

 
1

n

X
i

H.XijE
i�1/

!
;

and the proof is completed by computing H.En/ in two ways:

nh.�/C H.XSjS/ D H.En/

D
X

i

H.EijE
i�1/ D

X
i

h.�/C �H.XijE
i�1/ :

Remark 6 Using Proposition 14 we may also state a divergence version of the
Theorem: In the setting of Theorem 20 for any pair of distributions PXn and QXn we
have

D.PYnkQYn/ � D.PXSjSkQXSjSjPS/ :

Similarly, we may extend the argument in the previous remark: If for a fixed QX;QY

(not necessarily related by PYjX) there exists an increasing concave function f such
that for all PX and PY D PYjX ı PX we have

D.PXkQX/ � f .D.PYkQY// 8PX

then

D.PYnk.QY/
n/ � nf

 
1

�n
D.PXSjSk

Y
i2S

QXjPS/

!
:
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A Contraction Coefficients on General Spaces

A.1 Proof of Theorem 2

We show that

�f .PYjX;PX/ D sup
QX

Df .QYkPY/

Df .QXkPX/
� ��2.PYjX;PX/ D sup

QX

�2.QYkPY/

�2.QXkPX/
; (75)

where both suprema are over all QX such that the respective denominator is in
.0;1/. With the assumption that PX is not a point mass, namely, there exists
a measurable set E such that PX.E/ 2 .0; 1/, it is clear that such QX always
exists. For example, let QX D 1

2
.PX C PXjX2E/, where PXjX2E.�/ , PX.�\E/

PX.E/
. Then

1
2

� dQX
dPX

� 1
2
.1 C 1

PX.E/
/ and hence Df .QXkPX/ < 1 since f is continuous.

Furthermore, QX ¤ PX implies that Df .QXkPX/ ¤ 0 [Csi67].
The proof follows that of [CIRC93, Theorem 5.4] using the local quadratic

behavior of f -divergence; however, in order to deal with general alphabets, addi-
tional approximation steps are needed to ensure the likelihood ratio is bounded away
from zero and infinity.

Fix QX such that �2.QXkPX/ < 1. Let A D fx W dQX
dPX
.x/ < ag where a > 0 is

sufficiently large such that QX.A/ � 1=2. Let Q0
X D QXjX2A and Q0

Y D PYjX ı Q0
X .

Then dQ0

Y
dPY

� a
QX.A/

� 2a. Let Q00
X D 1

a PX C .1 � 1
a /Q

0
X and Q00

Y D PYjX ı Q0
X D

1
a PY C .1 � 1

a /Q
0
Y . Then we have

1

a
�

dQ00
X

dPX
� 2a C

1

a
;

1

a
�

dQ00
Y

dPY
� 2a C

1

a
: (76)

Note that �2.Q0
XkPX/ D 1

Q.X2A/EPŒ.
dQX
dPX
/21fX2Ag� � 1. By dominated convergence

theorem, �2.Q0
XkPX/ ! �2.QXkPX/ as a ! 1. On the other hand, since

Q0
Y ! QY pointwise, the weak lower-semicontinuity of �2-divergence yields

lim infa!1 �2.Q0
YkPY/ � �2.QYkPY/. Furthermore, using the simple fact that

�2.PC.1�/QkP/ D .1�/2�2.QkP/, we have �2.Q00

X kPX/

�2.Q00

Y kPY /
D

�2.Q0

XkPX/

�2.Q0

Y kPY /
. Therefore,

to prove (75), it suffices to show for each fixed a, for any ı > 0, there exists QPX such

that Df .QPXkQPY /

Df .QXkPX/
�

�2.Q00

X kPX/

�2.Q00

Y kPY /
� ı.

For 0 <  < 1, let QPX D NPX C Q00
X , which induces QPY D PYjX ı QPX D

NPY C Q00
Y . Then Df . QPXkPX/ D EPX Œf .1 C .

dQ00

X
dPX

� 1//�. Recall from (76) that
dQ00

X
dPX

2 Œ 1a ;
1
a C 2a�. Since f 00 is continuous and f 00.1/ D 1, by Taylor’s theorem and

dominated convergence theorem, we have Df . QPXkPX/ D 2

2
�2.Q00

XkPX/.1 C o.1//.

Analogously, Df . QPYkPY/ D 2

2
�2.Q00

YkPY/.1 C o.1//. This completes the proof of
�f .PX/ � ��2.PX/.
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Remark 7 In the special case of KL divergence, we can circumvent the step
of approximating by bounded likelihood ratio: By [PW16a, Lemma 4.2], since
�2.QYkPY/ � �2.QXkPX/ < 1, we have D. QPXkPX/ D 2�2.QXkPX/=2 C o.2/

and D. QPYkPY/ D 2�2.QYkPY/=2 C o.2/, as  ! 0. Therefore �2.QY kPY /

�2.QXkPX/
�

lim!0
D.QPY kPY /

D.QPXkPX/
� �KL.PX/. Therefore �KL.PX/ � ��2.PX/

A.2 Proof of Theorem 3

We prove

�KL D ��2 : (77)

First of all, �KL � ��2 follows from Theorem 2. For the other direction we closely
follow the argument of [CRS94, Theorem 1]. Below we prove the following integral
representation:

D.QkP/ D

Z 1

0

�2.QkPt/dt; (78)

where Pt , tQCP
1Ct . Then

D.QYkPY/ D

Z 1

0

�2.QYkPt
Y/dt

�

Z 1

0

��2 � �2.QXkPt
X/dt D ��2D.QXkPX/:

where we used Pt
Y D PYjX ı Pt

X . It remains to check (78). Note that

� log x D

Z 1

0

1 � x

.x C t/.1C t/
dt

Therefore

D.QkP/ D

Z 1

0

1

1C t
EQ

�
dQ � dP

dP C tdQ

�
dt

Note that tEQ

h
dQ�dP
dPCtdQ

i
D �EP

h
dQ�dP
dPCtdQ

i
. Therefore EQ

h
dQ�dP
dPCtdQ

i
D 1

1Ct

R
.dQ�dP/2

dPCtdQ

D .1C t/�2.QkPt/, completing the proof of (78).
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It is instructive to remark how this result was established for finite alphabets
originally in [AG76]. Consider the map

PX 7! Vr.PX;QX/ , D.PYjX ı PXkPYjX ı QX/ � rD.PXkQX/ :

A simple differentiation shows that Hessian of this map at PX is negative-definite
if and only if r > ��2.PYjX;PX/ and negative semidefinite if and only if r �

��2.PYjX;PX/ (note that this does not depend on QX). Thus, taking r D ��2.PYjX/

the map PX 7! Vr.PX;QX/ is concave in PX for all QX . Thus, its local extremum at
PX D QX is a global maximum and hence Vr.PX;QX/ � 0.

A.3 Proof of Theorem 4

We shall assume that PX is not a point mass, namely, there exists a measurable set
E such that PX.E/ 2 .0; 1/. Define

�KL.PX/ D sup
QX

D.QYkPY/

D.QXkPX/

where the supremum is over all QX such that 0 < D.QXkPX/ < 1. It is clear that
such QX always exists (e.g., QX D PXjX2E and D.QXkPX/ D log 1

PX.E/
2 .0;1/).

Let

�I.PX/ D sup
I.UI Y/

I.UI X/

where the supremum is over all Markov chains U ! X ! Y with fixed PXY such
that 0 < I.UI X/ < 1. Such Markov chains always exist, e.g., U D 1fX2Eg and then
I.UI X/ D h.PX.E// 2 .0; log 2/. The goal of this appendix is to prove (18), namely

�KL.PX/ D �I.PX/ :

The inequality �I.PX/ � �KL.PX/ follows trivially:

I.UI Y/ D D.PYjUkPY jPU/ � �KL.PX/D.PXjUkPXjPU/ D �KL.PX/I.XI U/ :

For the other direction, fix QX such that 0 < D.QXkPX/ < 1. First, consider the
case where dQX

dPX
is bounded, namely, dQX

dPX
� a for some a > 0 QX-a.s. For any

 � 1
2a , let U � Bern./ and define the probability measure QPX D PX�QX

1�
. Let

PXjUD0 D QPX and PXjUD1 D QX , which defines a Markov chain U ! X ! Y such
that X;Y is distributed as the desired PXY . Note that

I.UI Y/

I.UI X/
D

ND. QPYkPY/C D.QYkPY/

ND. QPXkPX/C D.QXkPX/
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where N D 1 �  and QPY D PYjX ı QPX . We claim that

D. QPXkPX/ D o./; (79)

which, in view of the data processing inequality D. QPXkPX/ � D. QPYkPY/, implies
I.UIY/
I.UIX/

#0
��! D.QY kPY /

D.QXkPX/
as desired. To establish (79), define the function

f .x; / ,
(

1�x
.1�/

log 1�x
1�

;  > 0

.x � 1/ log e;  D 0 :

One easily notices that f is continuous on Œ0; a� � Œ0; 1
2a � and thus bounded. So we

get, by bounded convergence theorem,

1


D. QPXkPX/ D EPX

�
f

�
dQX

dPX
; 

��
! EPX

�
dQX

dPX
� 1

�
log e D 0 :

To drop the boundedness assumption on dQX
dPX

we simply consider the conditional

distribution Q0
X , QXjX2A where A D fx W dQX

dPX
.x/ < ag and a > 0 is sufficiently

large so that QX.A/ > 0. Clearly, as a ! 1, we have Q0
X ! QX and Q0

Y ! QY

pointwise (i.e. Q0
Y.E/ ! QY.E/ for every measurable set E), where Q0

Y , PYjX ıQ0
X .

Hence the lower-semicontinuity of divergence yields

lim inf
a!1

D.Q0
YkPY/ � D.QYkPY/ :

Furthermore, since dQ0

X
dPX

D 1
QX.A/

dQX
dPX

1A, we have

D.Q0
XkPX/ D log

1

QX.A/
C

1

QX.A/
EQ

�
log

dQX

dPX
1
�

dQX

dPX
� a

��
: (80)

Since QX.A/ ! 1, by dominated convergence (note: EQŒj log dQX
dPX

j� < 1) we have
D.Q0

XkPX/ ! D.QXkPX/. Therefore,

lim inf
a!1

D.Q0
YkPY/

D.Q0
XkPX/

�
D.QYkPY/

D.QXkPX/
;

completing the proof.
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A.4 Proof of Proposition 14

First, notice the following simple result:

D.Qk	P C N	Q/ D o.	/; 	 ! 0 ” P  Q (81)

Indeed, if P 6 Q, then there is a set E with p D PŒE� > 0 D QŒE�. Denote the
binary divergence by d.pkq/ , D.Bern.p/kBern.q//. Applying data-processing for
divergence to X 7! 1E.X/, we get

D.Qk	P C N	Q/ � d.0k	p/ D log
1

1 � 	p

and the derivative at 	 ! 0 is non-zero. If P  Q, then let f D dP
dQ and notice

log N	 � log. N	C 	f / � 	.f � 1/ log e :

Dividing by 	 and assuming 	 < 1
2

we get

ˇ̌
ˇ̌ 1
	

log. N	C 	f /

ˇ̌
ˇ̌ � C1f C C2 ;

for some absolute constants C1;C2. Thus, by the dominated convergence theorem
we get

1

	
D.Qk	P C N	Q/ D �

Z
dQ

�
1

	
log. N	C 	f /

�
!

Z
dQ.1 � f / D 0 :

Another observation is that

lim
	!0

D.Pk	P C N	Q/ D D.PkQ/ ; (82)

regardless of the finiteness of the right-hand side (this is a property of all convex
lower-semicontinuous functions).

Now, we prove Proposition 14. One direction is easy: if D.QYkPY/ �

D.QY0kPY0/, then

I.WI Y/ D D.PYjWkPY jPW/ � D.PY0jWkPY0 jPW/ D I.WI Y 0/ :

For the other direction, consider an arbitrary pair .PX;QX/. Let W D Bern./ and
PXjWD0 D PX , PXjWD1 D QX . Then, we get

I.WI Y/ D ND.PYkNPY C QY/C D.QYkNPY C QY/ ;
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and similarly for I.WI Y 0/. Assume that D.QY0kPY0/ < 1, for otherwise (62) holds
trivially. Then QY0  PY0 and we get from (81) and (82) that

I.WI Y 0/ D D.QY0kPY0/C o./ : (83)

On the other hand, again from (82)

I.WI Y/ � D.QYkNPY C QY/ D D.QYkPY/C o./ : (84)

Since by assumption I.WI Y/ � I.WI Y 0/ we conclude from comparing (83) to (84)
that D.QYkPY/ � D.QY0kPY0/ < 1, completing the proof.

B Contraction Coefficients for Binary-Input Channels

In this appendix we provide a tight characterization of the KL contraction coefficient
for binary-input channel PYjX , where X 2 f0; 1g and Y is arbitrary. Clearly,

�KL.PYjX/ is a function of P , PYjXD0 and Q , PYjXD1, which we abbreviate
as �.fP;Qg/. The behavior of this quantity closely resembles that of divergence
between distributions. Indeed, we expect �.fP;Qg/ to be bigger if P and Q are
more dissimilar and, furthermore, �.fP;Qg/ D 0 (resp. 1) if and only if P D Q
(resp. P ? Q). Next we show that �.fP;Qg/ is essentially equivalent to Hellinger
distance:

Theorem 21 Consider a binary input channel PYjX W f0; 1g ! Y with PYjXD0 D

P and PYjXD1 D Q. Then, its contraction coefficient �KL.PYjX/ D ��2.PYjX/ ,
�.fP;Qg/ satisfies

H2.P;Q/

2
� �.fP;Qg/ � H2.P;Q/ �

H4.P;Q/

2
; (85)

where Hellinger distance is defined as H2.P;Q/ , 2 � 2
R p

dPdQ.

Remark 8 An obvious upper bound is �.fP;Qg/ � dTV.P;Q/ by Theorem 1,
which is worse than Theorem 21 since dTV is smaller than the square-root of
the right-hand side of (85). In fact it is straightforward to verify that the upper
bound holds with equality when the output Y is also binary-valued. In particular,
Theorem 21 implies that �.fP;Qg/ is always within a factor of two of H2.P;Q/.

Proof First notice the identities:

�2.Bern.˛/kBern.ˇ// D
.˛ � ˇ/2

ˇ Ň
;
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�2.˛P C N̨QkˇP C ŇQ/ D .˛ � ˇ/2
Z
.P � Q/2

ˇP C ŇQ
;

where we denote N̨ D 1 � ˛. Therefore the (input-dependent) �2-contraction
coefficient is given by

��2.Bern.ˇ/;PYjX/D sup
˛¤ˇ

�2.˛P C N̨QkˇP C ŇQ/

�2.Bern.˛/kBern.ˇ//
Dˇ Ň

Z
.P � Q/2

ˇP C ŇQ
,LCˇ.PkQ/;

where LCˇ.PkQ/, clearly an f -divergence, is known as the Le Cam divergence (see,
e.g., [Vaj09, p. 889]). In view of Theorem 3, the input-independent KL-contraction
coefficient coincides with that of �2 and hence

�.fP;Qg/ D sup
ˇ2.0;1/

LCˇ.PkQ/:

Thus the desired bound (85) follows from the characterization of the joint range
between pairs of f -divergence [HV11], namely, H2 versus LCˇ , by taking the
convex hull of their joint range restricted to Bernoulli distributions. Instead of
invoking this general result, next we prove (85) using elementary arguments.
Since LC1=2.PkQ/ D 1 � 2

R dPdQ
dPCdQ � 1 �

R p
dPdQ D 1

2
H2.P;Q/, the

left inequality of (85) follows immediately. To prove the right inequality, by
Cauchy-Schwartz, note that we have .1 � 1

2
H2.P;Q//2 D .

R p
dPdQ/2 D

.
R q

ˇdP C ŇdQ
q

dPdQ
ˇdPC ŇdQ

/2 �
R dPdQ
ˇdPC ŇdQ

D 1 � LCˇ.PkQ/, for any ˇ 2 .0; 1/.
ut

C Simultaneously Maximal Couplings

Lemma 22 Let X and Y be Polish spaces. Given any pair of Borel probability
measures PXY ;QXY on X � Y , there exists a coupling � of PXY and QXY, namely,
a joint distribution of .X;Y;X0;Y 0/ such that L.X;Y/ D PXY and L.X0;Y 0/ D QXY

under � , such that

�f.X;Y/ ¤ .X0;Y 0/g D dTV.PXY ;QXY/ and �fX ¤ X0g D dTV.PX;QX/:

(86)

Remark 9 After submitting this manuscript, we were informed that this result is
the main content of [Gol79]. For interested reader we keep our original proof which
is different from [Gol79] by relying on Kantorovich’s dual representation and, thus,
is non-constructive.
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Remark 10 A triply-optimal coupling achieving in addition to (86) also �ŒY ¤

Y 0� D dTV.PY ;QY/ need not exist. Indeed, consider the example where X;Y are
f0; 1g-valued and

PXY D

�
1
2
0

0 1
2

�
; QXY D

�
0 1
2

1
2
0

�
:

In other words, X;Y � Bern.1=2/ under both P and Q; however, X D Y under P
and X D 1 � Y under Q. Furthermore, since dTV.PX;QX/ D dTV.PY ;QY/ D 0,
under any coupling �XYX0Y0 of PXY and QXY that simultaneously couples PX to QX

and PY to QY maximally, we have X D X0 and Y D Y 0, which contradicts X D Y
and X0 D 1 � Y 0. On the other hand, it is clear that a doubly optimal coupling (as
claimed by Lemma 22) exists: just take X D X0 D Y � Bern.1=2/ and Y 0 D 1� X0.
It is not hard to show that such a coupling also attains the minimum

min
�
�Œ.X;Y/ ¤ .X0;Y 0/�C �ŒX ¤ X0�C �ŒY ¤ Y 0� D 2:

Proof Define the cost function c.x; y; x0; y0/ , 1f.x;y/¤.x0;y0/g C 1fx¤x0g D 21fx¤x0g C

1fxDx0;y¤y0g. Since the indicator of any open set is lower semicontinuous, so is
.x; y; x0; y0/ 7! c.x; y; x0; y0/. Applying Kantorovich’s duality theorem (see, e.g.,
[Vil03, Theorem 1.3]), we have

min
�2….PXY ;QXY /

E�c.X;Y;X0;Y 0/ D max
f ;g

EPŒf .X;Y/� � EQŒg.X;Y/�: (87)

where f 2 L1.P/; g 2 L1.Q/ and

f .x; y/ � g.x0; y0/ � c.x; y; x0; y0/: (88)

Since the cost function is bounded, namely, c takes values in Œ0; 2�, applying [Vil03,
Remark 1.3], we conclude that it suffices to consider 0 � f ; g � 2. Note that
constraint (88) is equivalent to

f .x; y/ � g.x0; y0/ � 2;8x ¤ x0;8y ¤ y0

f .x; y/ � g.x; y0/ � 1;8x;8y ¤ y0

f .x; y/ � g.x; y/ � 0;8x;8y

where the first condition is redundant given the range of f ; g. In summary, the
maximum on the right-hand side of (87) can be taken over all f ; g satisfying the
following constraints:

0 � f ; g � 2

f .x; y/ � g.x; y0/ � 1;8x; y ¤ y0

f .x; y/ � g.x; y/ � 0;8x; y
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Then

max
f ;g

EPŒf .X;Y/� � EQŒg.X;Y/� D

Z
X

max
�; 

�Z
Y

p.x; y/�.y/ � q.x; y/ .y/

�

(89)

where the maximum on the right-hand side is over �; W Y ! R satisfying

0 � �; � 2

�.y/ �  .y0/ � 1;8y ¤ y0

�.y/ �  .y/ � 0;8y

(90)

The optimization problem in the bracket on the RHS of (89) can be solved using
the following lemma:

Lemma 23 Let p; q � 0. Let .x/C , maxfx; 0g. Then

max
�; 

�Z
Y

p� � q W 0 � � �  � 2; sup� � 1C inf 

�

D

Z
.p � q/C C

�Z
.p � q/

�
C

: (91)

Proof First we show that it suffices to consider � D  . Given any feasible pair
.�;  /, set �0 D maxf�; inf g. To check that .�0; �0/ is a feasible pair, note that
clearly �0 takes values in Œ0; 2�. Furthermore, sup�0 � sup� � 1 C inf � 1 C

inf�0. Therefore the maximum on the left-hand side of (91) is equal to

max
�

�Z
Y
.p � q/� W 0 � � � 2; sup� � 1C inf�

�
:

Let a D inf�. Then

max
�

�Z
.p � q/� W 0 � � � 2; sup� � 1C inf�

�

D sup
0�a�2

max
�

�Z
.p � q/� W a � � � 2 ^ .1C a/

�

D sup
0�a�1

max
�

�Z
.p � q/� W a � � � 1C a

�

D sup
0�a�1

�
.1C a/

Z
.p � q/C C a

Z
.p � q/�

�
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D sup
0�a�1

�Z
.p � q/C C a

Z
.p � q/

�

D

Z
.p � q/C C

�Z
.p � q/

�
C

:

ut

Applying Lemma 23 to (89) for fixed x, we have

max
f ;g

EPŒf .X;Y/� � EQŒg.X;Y/�

D

Z
X

�Z
Y
.p.x; y/ � q.x; y//C C .p.x/ � q.x//C

�

D

Z
X

Z
Y
.p.x; y/ � q.x; y//CC

Z
X
.p.x/ � q.x//C D dTV.PXY ;QXY/C dTV.PX;QX/

Combining the above with (87), we have

min
�XYX0Y0

�f.X;Y/ ¤ .X0;Y 0/g C �fX ¤ X0g D dTV.PXY ;QXY/C dTV.PX;QX/:

Since �f.X;Y/ ¤ .X0;Y 0/g � dTV.PXY ;QXY/ and �fX ¤ X0g � dTV.PX;QX/

for any � , the minimizer of the sum on the left-hand side achieves equality
simultaneously for both terms, proving the theorem. ut
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An Application of a Functional Inequality
to Quasi-Invariance in Infinite Dimensions

Maria Gordina

Abstract One way to interpret smoothness of a measure in infinite dimensions
is quasi-invariance of the measure under a class of transformations. Usually such
settings lack a reference measure such as the Lebesgue or Haar measure, and
therefore we cannot use smoothness of a density with respect to such a measure. We
describe how a functional inequality can be used to prove quasi-invariance results in
several settings. In particular, this gives a different proof of the classical Cameron-
Martin (Girsanov) theorem for an abstract Wiener space. In addition, we revisit
several more geometric examples, even though the main abstract result concerns
quasi-invariance of a measure under a group action on a measure space.

Keywords and phrases Quasi-invariance • Group action • Functional
inequalities
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1 Introduction

Our goal in this paper is to describe how a functional inequality can be used to prove
quasi-invariance of certain measures in infinite dimensions. Even though the original
argument was used in a geometric setting, we take a slightly different approach
in this paper. Namely, we formulate a method that can be used to prove quasi-
invariance of a measure under a group action.

Such methods are useful in infinite dimensions when usually there is no natural
reference measure such as the Lebesgue measure. At the same time quasi-invariance
of measures is a useful tool in proving regularity results when it is reformulated as
an integration by parts formula. We do not discuss significance of such results, and
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moreover we do not refer to the extensive literature on the subject, as it is beyond
the scope of our paper.

We start by describing an abstract setting of how finite-dimensional approxi-
mations can be used to prove such a quasi-invariance. In [11] this method was
applied to projective and inductive limits of finite-dimensional Lie groups acting
on themselves by left or right multiplication. In that setting a functional inequality
(integrated Harnack inequality) on the finite-dimensional approximations leads to
a quasi-invariance theorem on the infinite-dimensional group space. As we pointed
out in [11], this is an abstraction of results in [9] for loop groups, and while there
were probably earlier results of similar flavor, the most relevant later publications
include [1] and [13]. Similar methods were used in the elliptic setting on infinite-
dimensional Heisenberg-like groups in [10], and on semi-infinite Lie groups in [17].
Note that the assumptions we make below in Section 3 have been verified in these
settings, including the sub-elliptic case for infinite-dimensional Heisenberg group
in [2]. Even though the integrated Harnack inequality we use in these situations has
a distinctly geometric flavor, we show in this paper that it does not have to be.

The paper is organized as follows. The general setting is described in Sections 2
and 3, where Theorem 3.2 is the main result. One of the ingredients for this result
is quasi-invariance for finite-dimensional approximations which is described in
Section 3. We review the connection between an integrated Harnack inequality and
Wang’s Harnack inequality in Section 4. Finally, Section 5 gives several examples
of how one can use Theorem 3.2. We describe in detail the case of an abstract
Wiener space, where the group in question is identified with the Cameron-Martin
subspace acting by translation on the Wiener space. In addition we discuss elliptic
(Riemannian) and sub-elliptic (sub-Riemannian) infinite-dimensional groups which
are examples of a subgroup acting on the group by multiplication.

2 Notation

Suppose G is a topological group with the identity e, X is a topological space,
.X;B; �/ is a measure space, where B is the Borel � -algebra, and � is a probability
measure. We assume that G is endowed with the structure of a Hilbert Lie group
(e.g., [8]), and further that its Lie algebra g WD Lie .G/ D TeG is equipped with
a Hilbertian inner product, h�; �i. The corresponding distance on G is denoted by
d .�; �/. In addition, we assume that G is separable, and therefore we can use what is
known about Borel actions of Polish groups [3, 4]. Once we have an inner product
on the Lie algebra g, we can define the length of a path in G as follows. Suppose
k 2 C1 .Œ0; 1�;G/, k .0/ D e, then

lG .k .�// WD

Z 1

0

jLk.t/�1�
Pk .t/ jdt; (2.1)

where Lg is the left translation by g 2 G.
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We assume that G acts measurably on X, that is, there is a (Borel) measurable
map ˆ W G � X �! X such that

ˆ.e; x/ D x; for all x 2 X;

ˆ .g1; ˆ .g2; x// D ˆ.g1g2; x/ ; for all x 2 X; g1; g2 2 G:

We often will use ˆg WD ˆ.g; �/ for g 2 G.

Definition 2.1 Suppose ˆ is a measurable group action of G on X.

(1) In this case we denote by
�
ˆg
�

�
� the pushforward measure defined by

�
ˆg
�

�
� .A/ WD �

�
ˆ
�
g�1;A

��
; for all A 2 B; g 2 GI

(2) the measure � is invariant under the action ˆ if

�
ˆg
�

�
� D � for all g 2 GI

(3) the measure � is quasi-invariant with respect to the action ˆ if
�
ˆg
�

�
� and �

are mutually absolutely continuous for all g 2 G.

Notation 2.2 For a topological group G acting measurably on the measure space
.X;B; �/ in such a way that � is quasi-invariant under the action by G, the Radon-
Nikodym derivative of

�
ˆg
�

�
� with respect to � is denoted by

Jg .x/ WD

�
ˆg
�

�
� .dx/

� .dx/
for all g 2 G; x 2 X:

For a thorough discussion of the Radon-Nikodym derivative in this setting we refer
to [6, Appendix D]

3 Finite-Dimensional Approximations and Quasi-Invariance

We start by describing approximations to both the group G and the measure space
.X;B; �/. At the end we also need to impose certain conditions to have consistency
of the group action defined on these approximations. As X is a topological space,
we denote by Cb .X/ the space of continuous bounded real-valued functions.

Assumption 1 (Lie group assumptions). Suppose fGngn2N is a collection of finite-
dimensional unimodular Lie subgroups of G such that Gn 	 Gm for all n < m.
We assume that there exists a smooth section fsn W G �! Gngn2N, that is, sn ı in D

idGn , where in W Gn �! G is the smooth injection. We suppose that
S

n2N Gn is a
dense subgroup of G. In addition, we assume that the length of a path in G can be
approximated by the lengths in Gn, namely, if k 2 C1 .Œ0; 1�;G/, k .0/ D e, then
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lG .k .�// D lim
n!1

lGn .sn .k .�/// : (3.1)

Note that sn does not have to be a group homomorphism.

Assumption 2 (Measure space assumptions). We assume that X is a separable
topological space with a sequence of topological spaces Xn 	 X which come with
corresponding continuous maps �n W X �! Xn satisfying the following properties.
For any f 2 Cb .X/

Z
X

fd� D lim
n!1

Z
Xn

f ı jnd�n; (3.2)

where jn W Xn �! X is the continuous injection map, and �n is the pushforward
measure .�n/� �.

Our last assumption concerns the group action for these approximations.

Assumption 3 (Group action assumptions). The approximations to group G and
the measure space .X; �/ are consistent with the group action in the following way

ˆ.Gn � Xn/ 	 Xn for each n 2 N;

ˆg W X ! X is a continuous map for each g 2 G:

We denote by ˆn the restriction of ˆ to Gn � Xn. Observe that ˆn D ˆ ı .in; jn/
which together with Assumption 3, it is clear that ˆn is a measurable group action
of Gn on .Xn;Bn; �n/.

Suppose now that �n is quasi-invariant under the group action ˆn, and let Jn
g be

the Radon-Nikodym derivative
�
ˆn

g

�
�
�n with respect to �n. We assume that there

is a positive constant C D C .p/ such that for any p 2 Œ1;1/ and g 2 Gn

kJn
gkLp.Xn;�n/ 6 exp

�
C .p/ d2Gn

.e; g/
�
: (3.3)

Note that the constant C .p/ does not depend on n.

Remark 3.1 The fact that this estimate is Gaussian (with the square of the distance)
does not seem to be essential. But as we do not have examples with a different
exponent, we leave (3.3) as is. Moreover, we could consider a more general function
on the right-hand side than an exponential of the distance squared.

Theorem 3.2 (Quasi-invariance of �) Suppose we have a group G and a measure
space .X;B; �/ satisfying Assumptions 1, 2, and 3. In addition, we assume that the
uniform estimate (3.3) on the Radon-Nikodym derivatives holds.
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Then for all g 2 G the measure � is quasi-invariant under the action ˆg.
Moreover, for all p 2 .1;1/,







d
�
ˆg
�

�
�

d�







Lp.X;�/

6 exp
�
C .p/ d2G .e; g/

�
: (3.4)

Proof Using (3.3) we see that for any bounded continuous function f 2 Cb .X/,
n 2 N, and g 2 G

Z
Xn

j.f ı jn/.ˆ
n
sn.g/

.x//jd�n.x/ D

Z
Xn

Jn
sn.g/

.x/j.f ı jn/.x/jd�n.x/

6 kf ı jnkLp0
.Xn;�n/

exp
�
C .p/ d2Gn

.e; sn .g//
�
;

where p0 is the conjugate exponent to p. Note that by Assumption 3 and definitions
of jn and ˆn for all .g; x/ 2 Gn � Xn

jn
�
ˆn

g .x/
�

D ˆn
g .x/ D ˆg .x/ D ˆg .jn .x//

and therefore

f ı jn.ˆ
n
g .x// D f

�
ˆn

g .x/
�

D f ıˆg .jn .x// ; .g; x/ 2 Gn � Xn:

Thus
Z

Xn

j .f ı jn/
�
ˆn

g .x/
�

jd�n.x/ D

Z
Xn

j
�
f ıˆg

�
.jn .x// jd�n.x/:

Allowing n ! 1 in the last identity and using (3.2) and the fact that f ıˆg 2 Cb .X/
yields

Z
X

jf
�
ˆg .x/

�
jd�.x/ 6 kf kLp0

.X;�/ exp
�
C .p/ d2Gn

.e; g/
�
; for all g 2 Gn: (3.5)

Thus, we have proved that (3.5) holds for f 2 Cb .X/ and g 2 Gn. Now we would
like to prove (3.5) for the distance dG instead of dGn with g still in Gn. Take any path
k 2 C1 .Œ0; 1�;G/ such that k .0/ D e and k .1/ D g, and observe that then sn ı k 2

C1 .Œ0; 1�;Gn/ and therefore (3.5) holds with d2Gn
.e; g/ replaced by lGn .sn ı k/ .1/.

Now we can use (3.2) in Assumption 1 and optimizing over all such paths k to see
that

Z
X

jf
�
ˆg .x/

�
jd�.x/ 6 kf kLp0

.X;�/ exp
�
C .p/ d2G .e; g/

�
; for all g 2

[
n2N

Gn:

(3.6)
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By Assumption 1 this union is dense in G, therefore dominated convergence along
with the continuity of dG .e; g/ in g implies that (3.6) holds for all g 2 G. Since
the bounded continuous functions are dense in Lp0

.X; �/ (see, for example, [14,
Theorem A.1, p. 309]), the inequality in (3.6) implies that the linear functional 'g W

Cb.X/ ! R defined by

'g.f / WD

Z
X

f
�
ˆg .x/

�
d�.x/

has a unique extension to an element, still denoted by 'g, of Lp0

.X; �/� which
satisfies the bound

j'g.f /j 6 kf kLp0
.X;�/ exp

�
C .p/ d2G .e; g/

�

for all f 2 Lp0

.X; �/. Since Lp0

.X; �/� Š Lp.W; �/, there exists a function Jg 2

Lp.X; �/ such that

'g.f / D

Z
X

f .x/Jg.x/d�.x/; (3.7)

for all f 2 Lp0

.X; �/, and

kJgkLp.X;�/ 6 exp
�
C .p/ d2G .e; g/

�
:

Now restricting (3.7) to f 2 Cb .X/, we may rewrite this equation as

Z
X

f
�
ˆg .x/

�
d�.x/ D

Z
W

f .x/Jg.x/d�.x/: (3.8)

Then a monotone class argument (again use [14, Theorem A.1]) shows that (3.8) is
valid for all bounded measurable functions f on W. Thus, d

�
ˆg
�

�
�=d� exists and

is given by Jg, which is in Lp for all p 2 .1;1/ and satisfies the bound (3.4). ut

4 A Functional Inequality

In this section we would like to revisit an observation made in [11]. Namely, [11,
Lemma D.1] connects Wang’s Harnack inequality with an estimate similar to (3.3).
It is easy to transfer this argument from the setting of Riemannian manifolds to a
more general situation.

We start with an integral operator on L2 .X; �/, where .X; �/ is a � -finite measure
space. Namely, let

Tf .x/ WD

Z
X

p .x; y/ f .y/ d� .y/ ; f 2 L2 .X; �/ ;
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where the integral kernel p .x; y/ is assumed to satisfy the following properties.

positive p .x; y/ > 0 for all x; y 2 X;

conservative
Z

X
p .x; y/ d� .y/ D 1 for all x 2 X;

symmetric p .x; y/ D p .y; x/ for all x; y 2 X;

continuous p .�; �/ W X � X �! R is continuous:

Some of these assumptions might not be needed for the proof of Proposition 4.1,
but we make them to simplify the exposition. Note that in our applications this
integral kernel is the heat kernel for a strongly continuous, symmetric, Markovian
semigroup in L2 .X; �/, therefore the corresponding heat kernel is positive, symmet-
ric with the total mass not exceeding 1, in addition to having the semigroup property
or being the approximate identity in L2 .X; �/. In our examples this heat semigroup is
also conservative, therefore the heat kernel is conservative (stochastically complete),
and thus p .x; y/ d� .y/ is a probability measure.

The following proposition is a generalization of [11, Lemma D.1], and it simply
reflects the fact that .Lp/� and Lp0

are isometrically isomorphic Banach spaces for
1 < p < 1 and p0 D p= .p � 1/, the conjugate exponent to p.

Proposition 4.1 Let x; y 2 X, p 2 .1;1/ and C 2 .0;1� which might depend on x
and y. Then

Œ.Tf / .x/�p 6 Cp .Tf p/ .y/ for all f > 0 (4.1)

if and only if

 Z
X

�
p .x; z/

p .y; z/

�p0

p .y; z/ d� .z/

!1=p0

6 C: (4.2)

Proof Since p .�; �/ is positive, we can write

.Tf / .x/ D

Z
X

p .x; z/

p .y; z/
f .z/ p .y; z/ d� .z/ :

We denote d�y .�/ WD p .y; �/ d� .�/ and gx;y .�/ WD p.x;�/
p.y;�/ , then

.Tf / .x/ D

Z
X

f .z/ gx;y .z/ d�y .z/ : (4.3)
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Since gx;y > 0 and Lp .�/� is isomorphic to Lp0

.�/, the pairing in (4.3) implies that



gx;y




Lp0.�y/

D sup
f >0

R
X f .z/ gx;y .z/ d�y .z/

kf kLp.�y/
D sup

f >0

.Tf / .x/

Œ.Tf p/ .y/�1=p
:

The last equation may be written more explicitly as

 Z
X

�
p .x; z/

p .y; z/

�p0

p .y; z/ d� .z/

!1=p0

D sup
f >0

.Tf / .x/

Œ.Tf p/ .y/�1=p
;

and from this equation the result follows. ut

Remark 4.2 In the case when T is a Markov semigroup Pt and p .�; �/ D pt .�; �/

is the corresponding integral kernel, Proposition 4.1 shows that a Wang’s Harnack
inequality is equivalent to an integrated Harnack inequality. Subsection 5.2 gives
more details on this equivalence for Riemannian manifolds, see Corollary 5.10.

Remark 4.3 The connection between Proposition 4.1 and (3.3) can be seen if we
choose x and y in (4.2) as the endpoints of the group action as follows. Let x; y 2 X
and g 2 G be such that ˆe .x/ D x and ˆg .x/ D y, then to apply Proposition 4.1 we
can take the constant in (4.2) to be equal to

exp
�
C .p � 1/ d2Gn

.e; g/
�
:

Here the measure on X is d�x .z/ D p .x; z/ d� .z/.

5 Examples

5.1 Abstract Wiener Space

Standard references on basic facts on the Gaussian measures include [5, 15]. Let
.H;W; �/ be an abstract Wiener space, that is, H is a real separable Hilbert space
densely continuously embedded into a real separable Banach space W, and � is the
Gaussian measure defined by the characteristic functional

Z
W

ei'.x/d� .x/ D exp

 
�

j'j2H�

2

!

for any ' 2 W� 	 H�. We will identify W� with a dense subspace of H such that
for any h 2 W� the linear functional h�; hi extends continuously from H to W. We
will usually write h';wi WD ' .w/ for ' 2 W�, w 2 W. More details can be found in
[5]. It is known that � is a Borel measure, that is, it is defined on the Borel � -algebra
B .W/ generated by the open subsets of W.



An Application of a Functional Inequality to Quasi-Invariance in Infinite Dimensions 259

We would like to apply the material from Sections 4 3 with .X; �/ D .W; �/ and
the group G D EW being the group of (measurable) rotations and translations by
the elements from the Cameron-Martin subspace H. We can view this group as an
infinite-dimensional analogue of the Euclidean group.

Notation 5.1 We call an orthogonal transformation of H which is a topological
homeomorphism of W� a rotation of W�. The space of all such rotations is denoted
by O .W/. For any R 2 O .W/ its adjoint, R�, is defined by

h';R�wi WD hR�1';wi; w 2 W; ' 2 W�:

Proposition 5.2 For any R 2 O .W/ the map R� is a B .W/-measurable map from
W to W and

� ı
�
R�
��1

D �:

Proof The measurability of R� follows from the fact that R is continuous on H. For
any ' 2 W�

Z
W

ei'.x/d�
��

R�
��1

x
	

D

Z
W

eih';xid�
��

R�
��1

x
	

D

Z
W

eih';R�xid� .x/ D

exp

 
�

jR�1'j2H�

2

!
D exp

 
�

j'j2H�

2

!
D

Z
W

ei'.x/d� .x/

since R is an isometry. ut

Corollary 5.3 Any R 2 O .W/ extends to a unitary map on L2 .W; �/.

Definition 5.4 The Euclidean group EW is a group generated by measurable
rotations R 2 O .W/ and translation Th W W ! W, Th .w/ WD w C h.

To describe finite-dimensional approximations as in Section 3 we need to give
more details on the identification of W� with a dense subspace of H. Let i W H ! W
be the inclusion map, and i� W W� ! H� be its transpose, i.e. i�` WD ` ı i for all
` 2 W�. Also let

H� WD fh 2 H W h�; hiH 2 Ran.i�/ 	 H�g

or in other words, h 2 H is in H� iff h�; hiH 2 H� extends to a continuous linear
functional on W. We will continue to denote the continuous extension of h�; hiH to
W by h�; hiH . Because H is a dense subspace of W, i� is injective and because i
is injective, i� has a dense range. Since h 7! h�; hiH as a map from H to H� is a
conjugate linear isometric isomorphism, it follows from the above comments that
for any h 2 H we have h 7! h�; hiH 2 W� is a conjugate linear isomorphism too,
and that H� is a dense subspace of H.



260 M. Gordina

Now suppose that P W H ! H is a finite rank orthogonal projection such that
PH 	 H�. Let

˚
ej
n

jD1 be an orthonormal basis for PH and `j D
˝
�; ej
˛
H 2 W�. Then

we may extend P to a (unique) continuous operator from W ! H (still denoted by
P) by letting

Pnw WD

nX
jD1

˝
w; ej

˛
H ej D

nX
jD1

`j .w/ ej for all w 2 W: (5.1)

As we pointed out in [10, Equation 3.43] there exists C < 1 such that

kPwkH 6 C kwkW for all w 2 W: (5.2)

Notation 5.5 Let Proj .W/ denote the collection of finite rank projections on W
such that PW 	 H� and PjH W H ! H is an orthogonal projection, i.e. P has the
form given in Equation (5.1).

Also let
˚
ej
1

jD1 	 H� be an orthonormal basis for H: For n 2 N, define Pn 2

Proj .W/ as in Notation 5.5, i.e.

Pn .w/ D

nX
jD1

˝
w; ej

˛
H ej D

nX
jD1

`j .w/ ej for all w 2 W: (5.3)

Then we see that Pn jH " IdH .

Proposition 5.6 The Gaussian measure � is quasi-invariant under the translations
from H and invariant under orthogonal transformations of H.

Proof The second part of the statement is the content of Proposition 5.2. We now
prove quasi-invariance of � under translation by elements in H. Let fPngn2N be a
collection of operators defined by (5.3)for an orthonormal basis fejg

1
jD1 of H such

that fejg
1
jD1 � H�. Then Hn WD Pn .H/ Š R

n, and the pushforward measure .Pn/� �

is simply the standard Gaussian measure pn .x/ dx on Hn. So if we identify the group
of translation G with H and sn WD Pn jH , then the group action is given byˆh .w/ WD

w C h;w 2 W; h 2 H. Note that Assumptions 1, 2, and 3 are satisfied, where
jn D Pn W W �! Hn, etc. In particular, if we denote hn WD Pn .h/ 2 R

n; h 2 H, then
for any measurable function f W W �! R we see that

f ı Pn .w C h/ D f ı Pn ıˆhn .w/ D f ıˆhn ı Pn .w/ :

Therefore
Z

W
f ı Pn .w C h/ d� .w/ D

Z
Hn

f .x C Pnh/ pn .x/ dx D



An Application of a Functional Inequality to Quasi-Invariance in Infinite Dimensions 261

Z
Hn

f .x/ pn .x � hn/ dx D

Z
Hn

f .x/
pn .x � hn/

pn .x/
pn .x/ dx

D

Z
Hn

f .x/ Jhn .x/ pn .x/ dx:

Using an explicit form of the Radon-Nikodym derivative Jhn .x/, we see that for any
f 2 Lp0

.W; �/

Z
W

jf ı Pn .w C h/ jd� .w/ 6 kf kLp0
.pn.x/dx/





pn .x � hn/

pn .x/






Lp.pn.x/dx/

6 kf ı PnkLp0
.pn.x/dx/ exp

�
.p � 1/ khnk2H

2

�
:

Thus (3.3) is satisfied, and therefore Theorem 3.2 is applicable, which proves the
quasi-invariance with the Radon-Nikodym derivative satisfying

kJhkLp.W;�/ 6 exp

�
.p � 1/ khk2H

2

�
: (5.4)

ut

Remark 5.7 The statement of Proposition 5.6 of course follows from the Cameron-
Martin theorem which states that � is quasi-invariant under translations by elements
in H with the Radon-Nikodym derivative given by

d .Th/� �

d�
.w/ D

d
�
� ı T�1

h

�
d�

.w/ D
d .� ı T�h/

d�
.w/ D e�hh;wi� jhj

2

2 ; w 2 W; h 2 H:

Thus (5.4) is sharp.

Remark 5.8 Following [12] we see that quasi-invariance of the Gaussian measure
� induces the Gaussian regular representation of the Euclidean group EW on
L2 .W; �/ by

.UR;hf / .w/ WD

�
d .� ı .ThR�//

d�
.w/

�1=2
f
��

ThR�
��1

.w/
	

D

�
d .� ı Th/

d�
.w/

�1=2
f
��

R�
��1

.w � h/
	

D

ehh;wi� jhj
2

2 f
��

R�
��1

.w � h/
	
; w 2 W

which is well defined by Corollary 5.3. It is clear that this is a unitary representation.
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5.2 Wang’s Harnack Inequality

This follows [11, Appendix D]. The following theorem appears in [18, 19] with
k D �K, V � 0. We will use the following notation

c .t/ WD

� t
et�1

t 6D 0;

1 t D 0:
(5.5)

Theorem 5.9 (Wang’s Harnack inequality) Suppose that M is a complete con-
nected Riemannian manifold such that Ric > kI for some k 2 R. Then for all
p > 1, f > 0, t > 0, and x; y 2 M we have

.Ptf /
p .y/ 6 .Ptf

p/ .z/ exp

�
p0k

ekt � 1
d2 .y; z/

�
: (5.6)

Corollary 5.10 Let .M; g/ be a complete Riemannian manifold such that Ric > kI
for some k 2 R. Then for every y; z 2 M, and p 2 Œ1;1/

�Z
M

�
pt .y; x/

pt .z; x/

�p

pt .z; x/ dV .x/

�1=p

6 exp

�
c .kt/ .p � 1/

2t
d2 .y; z/

�
(5.7)

where c .�/ is defined by (5.5), pt .x; y/ is the heat kernel on M and d .y; z/ is the
Riemannian distance from x to y for x; y 2 M.

Proof From Lemma 4.1 and Theorem 5.9 with

C D exp

�
p0

p

k

ekt � 1
d2 .y; z/

�
D exp

�
1

p � 1

k

ekt � 1
d2 .y; z/

�
;

it follows that

 Z
M

�
pt .x; z/

pt .y; z/

�p0

pt .y; z/ dV .z/

!1=p0

6 exp

�
1

p � 1

k

ekt � 1
d2 .y; z/

�
:

Using p � 1 D .p0 � 1/
�1 and then interchanging the roles of p and p0 gives (5.7).

ut

The reason we call (4.2) an integrated Harnack inequality on a d-dimensional
manifold M is as follows. Recall the classical Li–Yau Harnack inequality ([16] and
[7, Theorem 5.3.5]) which states that if ˛ > 1, s > 0, and Ric > �K for some
K > 0, then

pt .y; x/

ptCs .z; x/
6
�

t C s

t

�d˛=2

exp

�
˛d2 .y; z/

2s
C

d˛Ks

8 .˛ � 1/

�
; (5.8)
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for all x; y; z 2 M and t > 0. However, when s D 0, (5.8) gives no information
on pt .y; x/ =pt .z; x/ when y ¤ z. This inequality is based on the Laplacian �=2
rather than �, t and s should be replaced by t=2 and s=2 when applying the results
in [16, 7].

5.3 Infinite-Dimensional Heisenberg-Like Groups:
Riemannian and Sub-Riemannian Cases

These examples represent infinite-dimensional versions of the group action of a Lie
group on itself by left or right multiplication. The difference is in geometry of the
space on which the group acts on: Riemannian and sub-Riemannian. In both cases
we proved (3.3), where the constant C depends on the geometry, and the distance
used is Riemannian or Carnot-Carathéodory.

Let .W;H; �/ be an abstract Wiener space and let C be a finite-dimensional inner
product space. Define g WD W �C to be an infinite-dimensional Heisenberg-like Lie
algebra, which is constructed as an infinite-dimensional step 2 nilpotent Lie algebra
with continuous Lie bracket. Namely, let ! W W � W ! C be a continuous skew-
symmetric bilinear form on W. We will also assume that ! is surjective.

Let g denote W � C when thought of as a Lie algebra with the Lie bracket given
by

Œ.X1;V1/; .X2;V2/� WD .0; !.X1;X2//: (5.9)

Let G denote W � C when thought of as a group with multiplication given by

g1g2 WD g1 C g2 C
1

2
Œg1; g2�;

where g1 and g2 are viewed as elements of g. For gi D .wi; ci/, this may be written
equivalently as

.w1; c1/ � .w2; c2/ D

�
w1 C w2; c1 C c2 C

1

2
!.w1;w2/

�
: (5.10)

Then G is a Lie group with Lie algebra g, and G contains the subgroup GCM D H�C
which has Lie algebra gCM . In terms of Section 2 the Cameron-Martin (Hilbertian)
subgroup GCM is the group that is acting on the Heisenberg group G by left or right
multiplication.

Using Notation 5.5 we can define finite-dimensional approximations to G by
using P 2 Proj.W/. We assume in addition that PW is sufficiently large to
satisfy Hörmander’s condition (that is, f!.A;B/ W A;B 2 PWg D C). For each
P 2 Proj.W/, we define GP WD PW � C 	 H� � C and a corresponding projection
�P W G ! GP

�P.w; x/ WD .Pw; x/:
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We will also let gP D Lie.GP/ D PW � C. For each P 2 Proj.W/, GP is a finite-
dimensional connected unimodular Lie group.

Notation 5.11 (Riemannian and horizontal distances on GCM)

(1) For x D .A; a/ 2 GCM , let

jxj2gCM
WD kAk2H C kak2C:

The length of a C1-path � W Œ0; 1� ! GCM is defined as

`.�/ WD

Z 1

0

jL��1.s/� P�.s/jgCM ds:

By C1
CM we denote the set of paths � W Œ0; 1� ! GCM .

(2) A C1-path � W Œ0; 1� ! GCM is horizontal if L�.t/�1� P�.t/ 2 H � f0g for a.e. t.

Let C1;h
CM denote the set of horizontal paths � W Œ0; 1� ! GCM .

(3) The Riemannain distance between x; y 2 GCM is defined by

d.x; y/ WD inff`.�/ W � 2 C1
CM such that �.0/ D x and �.1/ D yg:

(4) The horizontal distance between x; y 2 GCM is defined by

dh.x; y/ WD inff`.�/ W � 2 C1;h
CM such that �.0/ D x and �.1/ D yg:

The Riemannian and horizontal distances are defined analogously on GP and will
be denoted by dP and dh

P correspondingly. In particular, for a sequence fPng1
nD1 	

Proj.W/, we will let Gn WD GPn , dn WD dPn , and dh
n WD dh

Pn
.

Now we are ready to define the corresponding heat kernel measures on G. We
start by considering two Brownian motions on g

bt WD .B .t/ ;B0 .t// ; t > 0;

bh
t WD .B .t/ ; 0 .t// ; t > 0;

with variance determined by

E
�
h.B .s/ ;B0 .s// ; .A; a/igCM

h.B .t/ ;B0 .t// ; .C; c/igCM

�
D Re h.A; a/ ; .C; c/igCM

min .s; t/

for all s; t 2 Œ0;1/, A;C 2 H� and a; c 2 C.
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A (Riemannian) Brownian motion on G is the continuous G-valued process defined
by

g .t/ D

�
B .t/ ;B0 .t/C

1

2

Z t

0

! .B .�/ ; dB .�//

�
: (5.11)

Further, for t > 0; let �t D Law .g .t// be a probability measure on G. We refer to
�t as the time t heat kernel measure on G.

Similarly a horizontal Brownian motion on G is the continuous G-valued process
defined by

gh .t/ D

�
B .t/ ;

1

2

Z t

0

! .B .�/ ; dB .�//

�
: (5.12)

Then for t > 0; let �h
t D Law

�
gh .t/

�
be a probability measure on G. We refer to �t

as the time t horizontal heat kernel measure on G.
As the proof of [10, Theorem 8.1] explains, in this case Assumptions 1, 2, and 3

are satisfied, and moreover, (3.3) is satisfied as follows. Namely, [10, Corollary 7.3]
says that the Ricci curvature is bounded from below by k .!/ uniformly for all Gn,
so (3.3) holds as follows.



Jn
k




Lp.�n/

6 exp

�
c .k .!/ t/ .p � 1/

2t
d2n .e; k/

�
; k 2 Gn; (5.13)

where c .�/ is defined by (5.5).
In the sub-Riemannian case we have




Jh;n
k





Lp.�n

h/
6 exp

  
1C

8k!k22;n

�2;n

!
.1C p/

�
dh

n.e; k/
�2

4t

!
; (5.14)

where the geometric constants are defined as in [2, p. 25].
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Borell’s Formula on a Riemannian Manifold
and Applications

Joseph Lehec

Abstract Borell’s formula is a stochastic variational formula for the log-Laplace
transform of a function of a Gaussian vector. We establish an extension of this to
the Riemannian setting and give a couple of applications, including a new proof of
a convolution inequality on the sphere due to Carlen, Lieb and Loss.

1 Introduction

Throughout the article .�;A;P/ is a probability space, equipped with a filtration
.Ft/t�T and carrying a standard n–dimensional Brownian motion .Bt/t�T . The time
horizon T shall vary along the article, most of the time it will be finite. By standard
we mean that .Bt/ starts from 0 and has quadratic covariation given by ŒB�t D tIn

for all t � T . Let H be the Cameron-Martin space, namely the space of absolutely
continuous paths uW Œ0;T� ! R

n, starting from 0 and equipped with the norm

kukH D

�Z T

0

jPusj
2 ds

�1=2
;

where jPusj denotes the Euclidean norm of the derivative of u at time s. In this context
a drift is a process which is adapted to the filtration .Ft/ and which belongs to H

almost surely. Let �n be the standard Gaussian measure on R
n. The starting point of

the present article is the so-called Borell formula: If f WRn ! R is measurable and
bounded from below, then

log

�Z
Rn

ef d�n

�
D sup

U

�
E
�

f .B1 C U1/ �
1

2
kUk2

H

��
(1)

where the supremum is taken over all drifts U (here the time horizon is T D 1).
Actually a more general formula holds true, where the function f is allowed to
depend on the whole trajectory of .Bt/ rather than just B1. More precisely, let
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.W;B; �/ be the n–dimensional Wiener space: W is the space of continuous paths
from Œ0;T� to R

n, B is the Borel �–field associated to the topology given by the
uniform convergence (uniform convergence on compact sets if T D C1) and � is
the law of the standard Brownian motion. If FWW ! R is measurable and bounded
from below, then

log

�Z
W

eF d�

�
D sup

U

�
E
�

F.B C U/ �
1

2
kUk2

H

��
(2)

This is due to Boué and Dupuis [6]. Of course, applying this formula to a functional
F of the form F.w/ D f .w1/ we recover Borell’s formula (1).

Recall that if � is a probability measure on R
n the relative entropy of � with

respect to the Gaussian measure �n is by definition

H.� j �n/ D

Z
Rn

log

�
d�

d�n

�
d�;

if � is absolutely continuous with respect to �n and H.� j �n/ D C1 otherwise. It
is well known that there is a convex duality between the Laplace transform and the
relative entropy. Namely for every function f we have

log

�Z
Rn

ef d�n

�
D sup

�

�Z
Rn

f d� � H.� j �n/

�
(3)

where the supremum is taken on every probability measure � on R
n. In our previous

work [13], we established the following dual version of Borell’s formula (1). If � is
a probability measure on R

n satisfying certain mild technical assumptions, then

H.� j �n/ D inf

�
1

2
E
�
kUk2

H

��
(4)

where the infimum is taken over all drifts U such that B1CU1 has law �. Informally
this says that the minimal energy needed to constrain the Brownian motion to have a
prescribed law at time 1 coincides with the relative entropy of this law with respect
to �n. Note that combining this with the convex duality (3) we easily retrieve Borell’s
formula (1):

log

�Z
Rn

ef d�n

�
D sup

�

�Z
Rn

f d� � H.� j �n/

�

D sup
�

�Z
Rn

f d� � inf
UWB1CU1
�

�
1

2
E
�
kUk2

H

���

D sup
U

�
E
�

f .B1 C U1/ �
1

2
kUk2

H

��
:
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The article [13] also contains a path space version of (4) allowing to recover the
Boué–Dupuis formula (2), but we shall not spell this out here.

We are interested in the use of such formulas to prove functional inequalities.
This was initiated by Borell in [5], in which he proved (1) and showed that it
yields the Prékopa–Leindler inequality very easily. This was further developed in
the author’s works [13, 14] where many other functional inequalities were derived
from (1), (2) and (4). The main purpose of the present article is to establish a
version of Borell’s formula (1) for the Brownian motion on a Riemannian manifold
and to give a couple of applications, including a new proof of the Brascamp–Lieb
inequality on the sphere of Carlen, Lieb and Loss. We also give a Riemannian
version of the dual formula (4) and we apply it to recover the log–Sobolev inequality
under a curvature condition.

2 Borell’s Formula for a Diffusion

Let � WRn ! Mn.R/, let bWRn ! R
n and assume that the stochastic differential

equation

dXt D �.Xt/ dBt C b.Xt/ dt (5)

has a unique strong solution. Assume also for simplicity that the explosion time is
C1. Then there exists a measurable functional

GWRn � W ! W

(it is probably safer to complete the �–field B at this stage) such that for every
x 2 R

n the process X D G.x;B/ is the unique solution of (5) starting from x. This
hypothesis is satisfied in particular if � and b are locally Lipschitz and grow at most
linearly, see, for instance, [11, Chapter IV]. The process .Xt/ is then a diffusion with
generator L given by

Lf D
1

2
h��T ;r2f i C hMab

for every C2–smooth function f . We denote the associated semigroup by .Pt/: for
any test function f

Ptf .x/ D Ex Œf .Xt/� ;

where as usual the subscript x denotes the starting point of .Xt/. Fix a finite time
horizon T . Fix x 2 R

n, let f W Rn ! R and assume that f is bounded from below.
Applying the representation formula (2) to the functional

FW w 2 W 7! f .G.x;w/T/
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we get

log
Z
W

ef .G.x;w/T / �.dw/ D sup
U

�
E
�

f .G.x;B C U/T/ �
1

2
kUk2

H

��

where the supremum is taken on all drifts U. By definition of the semigroup .Pt/ we
have

log
Z
W

ef .G.x;w/T / �.dw/ D log PT.e
f /.x/:

Also, we have the following lemma.

Lemma 1 Let .Ut/t�T be a drift. The process XU D G.x;B C U/ is the unique
process satisfying

XU
t D x C

Z t

0

�.XU
s / .dBs C dUs/C

Z t

0

b.XU
s / ds; t � T (6)

almost surely.

Proof Assume first that kUkH is bounded. Then by Novikov’s criterion the process
.Dt/ given by

Dt D exp

�
�

Z t

0

h PUs; dBsi �
1

2

Z t

0

j PUsj
2 ds

�

is a uniformly integrable martingale. Moreover, according to Girsanov’s formula,
under the measure Q given by dQ D DT dP, the process B C U is a standard
Brownian motion on Œ0;T�, see, for instance, [12, section 3.5] for more details.
Now since the stochastic differential equation (5) is assumed to have a unique strong
solution and by definition of G, almost surely for Q, the unique process satisfying (6)
is XU D G.x;B C U/. Since Q and P are equivalent this is the result. For general U,
the result follows by applying the bounded case to .Ut/ D .Ut^Tn/ where Tn is the
stopping time

Tn D inf

�
t � 0W

Z t

0

j PUsj
2 ds � n

�
;

and letting n tend to C1. ut

To sum up, we have established the following result.

Theorem 2 For any function f WRn ! R bounded from below we have

log PT.e
f /.x/ D sup

U

�
E
�

f .XU
T / �

1

2
kUk2

H

��
;
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where the supremum is taken over all drifts U and the process XU is the unique
solution of (6).

Remarks This direct consequence of the representation formula (2) was already
noted by Boué and Dupuis. They used it to recover Freidlin and Wentzell’s large
deviation principle as the diffusion coefficient tends to 0. Let us also note that the
non-explosion hypothesis is not essential. One can consider Rn [f1g, the one point
compactification of Rn, set Xt D 1 after explosion time, and restrict to functions
f that tend to 0 at infinity. In the same way we could also deal with a Dirichlet
boundary condition.

3 Borell’s Formula on a Riemannian Manifold

Let .M; g/ be a complete Riemannian manifold of dimension n. In this section we
wish to establish a Borell type formula for the Brownian motion on M. To do so we
need to recall first the intrinsic construction of the Brownian motion on M.

Let us start with some definitions from Riemannian geometry. Recall that the
orthonormal frame bundle O.M/ is the set of .n C 1/–tuples

� D .x; �1; : : : ; �n/

where x is in M and .�1; : : : ; �n/ is an orthonormal basis of Tx.M/. Given an element
� D .x; �1; : : : ; �n/ of O.M/ and a vector v 2 Tx.M/, the horizontal lift of v at �,
denoted H.v/, is an element of T�.O.M// defined as follows: Choose a curve .xt/

starting from x with speed v and for i � n let � i
t be the parallel translation of � i

along .xt/. Since parallel translation preserves the inner product, we thus obtain a
smooth curve .�t/ on O.M/ and we can set

H.v/ D P�0:

This is a lift of v in the sense that for any smooth f on M

H.v/.f ı �/ D v.f /;

where � WO.M/ ! M is the canonical projection. Now for i � n we define a vector
field on O.M/ by setting

Hi.x; �1; : : : ; �n/ D H.� i/:

The operator

�H D

nX
iD1

.Hi/2
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is called the horizontal Laplacian. It is related to the Laplace–Beltrami operator on
M, denoted�, through the following commutation property: for any smooth f on M
we have

�H.f ı �/ D �.f / ı �: (7)

Note that the horizontal Laplacian is by definition a sum of squares of vector fields,
and that this is typically not the case for the Laplace–Beltrami operator. We are now
in a position to define the horizontal Brownian motion on O.M/. Let

Bt D .B1t ; : : : ;B
n
t /

be a standard n–dimensional Brownian motion. We consider the following stochas-
tic differential equation on O.M/

dˆt D

nX
iD1

Hi.ˆt/ ı dBi
t: (8)

Throughout the rest of the article, the notation H ı dM denotes the Stratonovitch
integral. The equation (8) is a short way of saying that for any smooth function g on
O.M/ we have

g.ˆt/ D g.ˆ0/C

nX
iD1

Z t

0

Hi.g/.ˆt/ ı dBi
t:

This always has a strong solution, see [11, Theorem V.1.1.]. Let us assume
additionally that it does not explode in finite time. This is the case in particular if
the Ricci curvature of M is bounded from below, see, for instance, [10, section 4.2],
where a more precise criterion is given. Translating the equation above in terms of
Itô increments we easily get

dg.ˆt/ D

nX
iD1

Hi.g/.ˆt/ dBi
t C

1

2
�Hg.ˆt/ dt:

Let .Xt/ be the process given by Xt D �.ˆt/. Applying the previous formula and (7)
we see that for any smooth f on M

df .Xt/ D

nX
iD1

ˆi
t.f /.Xt/ dBi

t C
1

2
�f .Xt/ dt: (9)

In particular

f .Xt/ �
1

2

Z t

0

�f .Xs/ ds; t � 0
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is a local martingale. This shows that .Xt/ is a Brownian motion on M. The process
.Xt/ is called the stochastic development of .Bt/. In the sequel, it will be convenient
to identify the orthogonal basis ˆ1t ; : : : ; ˆ

n
t with the orthogonal map

x 2 R
n !

nX
iD1

xiˆ
i
t 2 TXt.M/:

Then the equation (9) can be rewritten

df .Xt/ D hrf .Xt/; ˆt dBti C
1

2
�f .Xt/ dt:

Similarly the equation (8) can be rewritten in a more concise form

dˆt D H.ˆt/ ı dBt: (10)

To sum up, the process .ˆt/ is an orthonormal basis above .Xt/ which is used to
map the Brownian increment dBt from R

n to the tangent space of M at Xt.
Now we establish a Borell type formula for the process .Xt/. We know that there
exists a measurable functional

GWO.M/ � W ! C.R;O.M//

such that the process ˆ D G.�;B/ is the unique solution of (10) starting from �.
Let � 2 O.M/, let T > 0, let f W M ! R and assume that f is bounded from below.
Applying the representation formula (2) to the functional

FW w 2 W 7! f ı � .G.�;w/T/

we get

log

�Z
W

ef ı�.G.�;B/T / d�

�
D sup

U

�
E
�

f ı �.G.�;B C U/T/ �
1

2
kUk2

H

��
:

Let x D �.�/. Since �.G.�;B// is a Brownian motion on M starting from x we
have

log

�Z
W

ef ı�.G.�;B/T / d�

�
D log PT.e

f /.x/;

where .Pt/ is the heat semigroup on M. Also, letting ˆU D G.�;B C U/ and
reasoning along the same lines as in the proof of Lemma 1, we obtain that ˆU

is the only solution to

dˆU
t D H.ˆU

t / ı .dBt C dUt/
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starting from �. We also let XU D �.ˆU/ and call this process the stochastic
development of BCU starting from �. To sum up, we have established the following
result.

Theorem 3 Let f W M ! R, let � 2 O.M/, let x D �.�/ and let T > 0. If f is
bounded from below, then

log PT
�
ef
�
.x/ D sup

U

�
E
�

f .XU
T / �

1

2
kUk2

H

��
;

where the supremum is taken on all drifts U and where given a drift U, the process
XU is the stochastic development of B C U starting from �.

4 Brascamp–Lieb Inequality on the Sphere

In the article [14], we explained how to derive the Brascamp–Lieb inequality and its
reversed version from Borell’s formula. In this section we extend this to the sphere,
and give a proof based on Theorem 3 of the spherical version of the Brascamp–Lieb
inequality, due to Carlen, Lieb and Loss in [7].

Theorem 4 Let g1; : : : ; gnC1 be non–negative functions on the interval Œ�1; 1�. Let
�n be the Haar measure on the sphere S

n, normalized to be a probability measure.
We have

Z
Sn

nC1Y
iD1

gi.xi/ �n.dx/ �

nC1Y
iD1

�Z
Sn

gi.xi/
2 �n.dx/

�1=2

Remark The inequality does not hold if we replace the L2 norm in the right–hand
side by a smaller Lp norm, like the L1 norm. Somehow this 2 accounts for the fact
that the coordinates of a uniform random vector on S

n are not independent. We refer
to the introduction of [7] for a deeper insight on this inequality.

In addition to the Borell type formulas established in the previous two sections,
our proof relies on a sole inequality, spelled out in the lemma below. Let PiWS

n !

Œ�1I 1� be the application that maps x to its i–th coordinate xi. The spherical gradient
of Pi at x is the projection of the coordinate vector ei onto x?:

rPi.x/ D ei � xix:

Lemma 5 Let x 2 S
n and let y 2 x?. For i � n C 1, if rPi.x/ ¤ 0 let

� i D
rPi.x/

jrPi.x/j
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and let � i be an arbitrary unit vector of x? otherwise. Then for any y 2 x? we have

nC1X
iD1

h� i; yi2 � 2jyj2:

Proof Assume first that rPi.x/ ¤ 0 for every i. Since rPi.x/ D ei � xix and y is
orthogonal to x we then have

h� i; yi2 D y2i C x2i h� i; yi2 � y2i C x2i jyj2:

Summing this over i � n C 1 yields the result. On the other hand, if there exists i
such that rPi.x/ D 0 then x D ˙ei and it is almost immediate to check that the
desired inequality holds true. ut

Proof of Theorem 4. Let us start by describing the behaviour of a given coordinate
of a Brownian motion on S

n. Let .Bt/ be a standard Brownian motion on R
n, let �

be a fixed element of O.Sn/ and let .ˆt/ be the horizontal Brownian motion given
by

ˆ0 D � and dˆt D H.ˆt/ ı dBt:

We also let Xt D �.ˆt/ be the stochastic development of .Bt/ and Xi
t D Pi.Xt/, for

every i � n C 1. We have

dXi
t D hrPi.Xt/; ˆtdBti C

1

2
�Pi.Xt/ dt: (11)

Let � be an arbitrary unit vector of Rn and define a process .� i
t / by

� i
t D

(
ˆ�

t

�
rPi.Xt/

jrPi.Xt/j

	
; if rPi.Xt/ ¤ 0;

� otherwise.

Sinceˆt is an orthogonal map �t belongs to the unit sphere of Rn. Consequently the
process .Wi

t / defined by dWi
t D h� i

t ; dWti is a one dimensional standard Brownian
motion. Observe that jrPij D .1 � P2i /

1=2 and recall that Pi is an eigenfunction for
the spherical Laplacian: �Pi D �nPi. Equality (11) becomes

dXi
t D

�
1 � .Xi

t/
2
�1=2

dWi
t �

n

2
Xi

t dt:

This stochastic differential equation is usually referred to as the Jacobi diffusion
in the literature, see, for instance, [2, section 2.7.4]. What matters for us is that it
does possess a unique strong solution. Indeed the drift term is linear and although
the diffusion factor .1 � x2/1=2 is not locally Lipschitz, it is Hölder continuous
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with exponent 1=2, which is sufficient to insure strong uniqueness in dimension
1, see [11, Chapter 4, Theorem 3.2]. Let .Qt/ be the semigroup associated to the
process .Xi

t/. The stationary measure �n is easily seen to be given by

�n.dt/ D cn1Œ�1;1�.t/.1 � t2/
n
2�1 dt;

where cn is the normalization constant. Obviously �n coincides with the pushforward
of �n by Pi.
We now turn to the actual proof of the theorem. Let g1; : : : ; gnC1 be non-negative
functions on Œ�1; 1� and assume (without loss of generality) that they are bounded
away from 0. Let fi D log.gi/ for all i and let

f W x 2 S
n 7!

nC1X
iD1

fi.xi/:

The functions fi; f are bounded from below. Fix a time horizon T , let U be a drift
and let .ˆU

t / be the process given by

�
ˆU
0 D �

dˆU
t D H.ˆU

t / ı .dBt C dUt/; t � T:

We also let XU
t D �.ˆU

t / be the stochastic development of B C U. These processes
are well defined by the results of the previous section. We want to bound f .XU

T / �
1
2
kUk2

H
from above. By definition

f .XU
T / D

nC1X
iD1

fi.PiX
U
T //:

Let .� i
t / be the process given by

� i
t D ˆ�

t

�
rPi.XU

t /

jrPi.XU
t /j

�

(again replace this by an arbitrary fixed unit vector if rPi.XU
t / D 0). Then let .Wi

t /

be the one dimensional Brownian motion given by dWi
t D h� i

t ; dWti and let .Ui
t/

be the one dimensional drift given by dUi
t D h� i

t ; dUti. The process .Pi.XU
t // then

satisfies

dPi.X
U
t / D

�
1 � Pi.X

U
t /

2
�1=2 �

dWi
t C dUi

t

�
�

n

2
Pi.X

U
t / dt: (12)
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Applying Lemma 5, we easily get

nC1X
iD1

kUik2
H

� 2kUk2
H
;

almost surely (note that in the left-hand side of the inequality H is the Cameron–
Martin space of R rather than R

n). Therefore

f .XU
T / �

1

2
kUk2

H
�

nC1X
iD1

�
fi.Pi.X

U
T // �

1

4
kUik2

H

�
: (13)

Recall (12) and apply Theorem 2 to the semigroup .Qt/ and to the function 2fi rather
than fi. This gives

E
�

fi.Pi.X
U
t // �

1

4
kUik2

H

�
�
1

2
log QT.e

2fi/.xi/;

for every i � n C 1. Taking expectation in (13) thus yields

E
�

f .XU
T / �

1

2
kUk2

H

�
�
1

2

nC1X
iD1

log QT
�
e2fi
�
.xi/:

Taking the supremum over all drifts U and using Theorem 3 we finally obtain

PT.e
f /.x/ �

nC1Y
iD1

�
QT.e

2fi/.xi/
�1=2

:

The semigroup .Pt/ is ergodic and converges to �n as t tends to C1. Similarly .Qt/

converges to �n. So letting T tend to C1 in the previous inequality gives

Z
Sn

ef d�n �

nC1Y
iD1

�Z
Œ�1;1�

e2fi d�n

�1=2
;

which is the result. ut

Remark Barthe, Cordero–Erausquin and Maurey in [3] and together with Ledoux
in [4] gave several extensions of Theorem 4. The method exposed here also allows
to recover most of their results. We chose to stick to the original statement of Carlen,
Lieb and Loss for simplicity.
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5 The Dual Formula

Recall the dual version of Borell’s formula: If� is an absolutely continuous measure
on R

n satisfying some (reasonable) technical assumptions, then

H.� j �n/ D inf

�
1

2
E
�
kUk2

H

��
(14)

where the infimum is taken over all drifts U such that B1 C U1 has law �. Moreover
the infimum is attained and the optimal drift can be described as follows. Let f be the
density of � with respect to �n and .Pt/ be the heat semigroup on R

n. The following
stochastic differential equation

�
X0 D 0

dXt D dBt C r log P1�tf .Xt/ dt; t � 1:

has a unique strong solution. The solution satisfies X1 D � in law and is optimal in
the sense that there is equality in (14) for the drift U given by PUt D r log P1�tf .Xt/.
We refer to [13] for a proof of these claims. The purpose of this section is to
generalize this to the case of a Brownian motion on a Riemannian manifold.
Diffusions such as the ones considered in section 2 could be treated in a very similar
way but we shall omit this here.

The setting of this section is thus the same as that of section 3: .M; g/ is a
complete Riemannian manifold of dimension n whose Ricci curvature is bounded
from below and .Bt/ is a standard Brownian motion on R

n. We denote the heat
semigroup on M by .Pt/.

Theorem 6 Fix x 2 M and a time horizon T. Let � be a probability measure on M,
assume that � is absolutely continuous with respect to ıxPT and let f be its density.
If f is Lipschitz and bounded away from 0, then

H.� j ıxPT/ D inf

�
1

2
E
�
kUk2

H

��

where the infimum is taken on all drifts U such that the stochastic development of
B C U starting from x has law � at time T.

Proving that any drift satisfying the constraint has energy at least as large as the
relative entropy of � is a straightforward adaptation of Proposition 1 from [13], and
we shall leave this to the reader. Alternatively, one can use Theorem 3 and combine
it with the following variational formula for the entropy:

H.� j ıxPT/ D sup
f

�Z
M

f d� � log PT.e
f /.x/

�
:
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Moreover, as in the Euclidean case, there is actually an optimal drift, whose energy
is exactly the relative entropy of �. This is the purpose of the next result.

Theorem 7 Let � be a fixed element of O.M/. Let x D �.�/ and let T be a time
horizon. Let � have density f with respect to ıxPT , and assume that f is Lipschitz
and bounded away from 0. The stochastic differential equation

8<
:
ˆ0 D �

dˆt D H.ˆt/ ı
�
dBt Cˆ�

t r log PT�tf .Yt/
�

Yt D �.ˆt/

(15)

has a unique strong solution on Œ0;T�. The law of the process .Yt/ is given by the
following formula: For every functional HW C.Œ0;T�I M/ ! R we have

E ŒH.Y/� D E ŒH.X/f .X1/� ; (16)

where .Xt/ is a Brownian motion on M starting from x. Moreover, letting U be the
drift given by

Ut D

Z t

0

ˆ�
s r log PT�sf .Ys/ ds; t � T; (17)

we have

H.� j ıxPT/ D
1

2
E
�
kUk2

H

�
:

Remark Equality (16) can be reformulated as: The vector YT has law � and the
conditional laws of X and Y given their endpoints coincide. So in some sense Y is
as close to being a Brownian motion as possible while having law � at time T .

Proof Since Ric � �	 g, we have the following estimate for the Lipschitz norm
of f :

kPtf kLip � e	t=2kf kLip:

One way to see this is to use Kendall’s coupling for Brownian motions on a
manifold, see, for instance, [10, section 6.5]. Alternatively, it is easily derived from
the commutation property jrPtf j2 � e	tPt.jrf j2/ which, in turn, follows from
Bochner’s formula, see [2, Theorem 3.2.3]. Recall that f is assumed to be bounded
away from 0, and for every t � T let Ft D log PT�tf . Then .t; x/ 7! rFt.x/ is
smooth and bounded on Œ0;TŒ�M, which is enough to insure the existence of a
unique strong solution to (15). Besides an easy computation shows that

@tFt D �
1

2
.�Ft C jrFtj

2/: (18)
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Then using (15) and Itô’s formula we get

dFt.Yt/ D hrFt.Yt/; ˆtdBti C
1

2
jrFt.Yt/j

2 dt:

D h PUt; dBti C
1

2
j PUtj

2 dt

(recall the definition (17) of U). Therefore

1

f .YT/
D e�FT .YT / D exp

�
�

Z T

0

h PUt; dBti �
1

2
kUk2

H

�
: (19)

Observe that the variable kUkH is bounded (just because rF is bounded). So Gir-
sanov’s formula applies: 1=f .YT/ has expectation 1 and under the measure Q given
by dQ D .1=f .YT// dP the process B C U is a standard Brownian motion on R

n.
Since Y is the stochastic development of BCU starting from x, this shows that under
Q the process Y is a Brownian motion on M starting from x. This is a mere refor-
mulation of (16). For the entropy equality observe that since YT has law �, we have

H.� j ıxPT/ D EŒlog f .YT/�:

Using (19) again and the fact that
R

h PUt; dBti is a martingale we get the desired
equality. ut

To conclude this article, let us derive from this formula the log–Sobolev inequality
for a manifold having a positive lower bound on its Ricci curvature. This is of course
well known, but our point is only to illustrate how the previous theorem can be
used to prove inequalities. Recall the definition of the Fisher information: if � is a
probability measure on M having Lipschitz and positive density f with respect to
some reference measure m, the relative Fisher information of � with respect to m is
defined by

I.� j m/ D

Z
M

jrf j2

f
dm D

Z
M

jr log f j2 d�:

By Bishop’s Theorem, if Ric � � g pointwise for some positive �, then the volume
measure on M is finite. We let m be the volume measure normalized to be a
probability measure.

Theorem 8 If Ric � � g pointwise for some � > 0, then for any probability
measure � on M having a Lipschitz and positive density with respect to m we have

H.� j m/ �
n

2
log

�
1C

I.� j m/

n �

�
: (20)
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Remarks Since log.1C x/ � x this inequality is a dimensional improvement of the
more familiar inequality

H.� j m/ �
1

2�
I.� j m/: (21)

Theorem 8 is not new, it is due to Bakry, see [1, Corollaire 6.8]. Note that in the
same survey (Proposition 6.6) he obtains another sharp form of (21) that takes the
dimension into account, namely

H.� j m/ �
n � 1

2� n
I.� j m/: (22)

Unfortunately we were not able to recover this one with our method. Note also that
depending on the measure �, the right-hand side of (22) can be smaller than that
of (20), or the other way around.

Proof By the Bonnet–Myers theorem M is compact. Fix x 2 M and a time horizon
T . Let pT.x; �/ be the density of the measure ıxPT with respect to m (in other words
let .pt/ be the heat kernel on M). If d� D � dm, then � has density f D �=pT.x; �/
with respect to ıxPT . Since pT.x; �/ is smooth and positive (see, for instance, [8,
chapter 6]) f satisfies the technical assumptions of the previous theorem. Let Ft D

log PT�tf and let .Yt/ be the process given by (15). We know from the previous
theorem that

H.� j ıxPT/ D
1

2
E
�Z T

0

jrFt.Yt/j
2 dt

�
: (23)

Using (18) we easily get

@t.jrFj2/ D �hr�F;rFi � hrjrFj2;rFi:

Applying Itô’s formula we obtain after some computations (omitting variables in
the right-hand side)

djrF.t;Yt/j
2 D hrjrFj2; ˆtdBti � hr�F;rFi dt C

1

2
�jrFj2 dt:

Now recall Bochner’s formula

1

2
�jrFj2 D hr�F;rFi C kr2Fk2HS C Ric.rF;rF/:

So that

djrF.t;Yt/j
2 D hrjrFj2; ˆtdBti C kr2Fk2HS dt C Ric.rF;rF/ dt: (24)
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Since rF is bounded and the Ricci curvature non-negative, the local martingale
part in the above equation is bounded from above. So by Fatou’s lemma it is a sub–
martingale, and its expectation is non-decreasing. So taking expectation in (24) and
using the hypothesis Ric � � g we get

d

dt
E
�
jrFt.Yt/j

2
�

� E
�
kr2Ft.Yt/k

2
HS

�
C � E

�
jrFt.Yt/j

2
�
: (25)

Throwing away the Hessian term would lead us to the inequality (21). Let us exploit
this term instead. Using Cauchy–Schwarz and Jensen’s inequalities we get

E
�
kr2Ft.Yt/k

2
HS

�
�
1

n
E
�
�Ft.Yt/

2
�

�
1

n
EŒ�Ft.Yt/�

2:

Also, by (16) and recalling that .Pt/ is the heat semigroup on M we obtain

E
�
�Ft.Yt/C jrFt.Yt/j

2
�

D E
�
�PT�tf .Yt/

PT�tf .Yt/

�
D E

�
�PT�tf .Xt/

PT�tf .Xt/
f .XT/

�

D E Œ�PT�tf .Xt/� D �PT.f /.x/:

Letting ˛.t/ D E
�
jrFt.Yt/j

2
�

and CT D �PTf .x/ we thus get from (25)

˛0.t/ � �˛.t/C
1

n
.˛.t/ � CT/

2

�
1

n
˛.t/ .˛.t/C n � � 2CT/

Since PTf tends to a constant function as T tends to C1, CT tends to 0. So if T is
large enough n� � 2CT is positive and the differential inequality above yields

˛.t/ �
n �.T/ ˛.T/

e�.T/.T�t/ .n �.T/C ˛.T// � ˛.T/
; t � T

where �.T/ D � � 2CT=n. Integrating this between 0 and T we get

Z T

0

˛.t/ dt � n log

�
1C

˛.T/.1 � e��.T/T/

n �.T/

�
: (26)

Observe that �.T/ ! � as T tends to C1. By (23) and since .ıxPt/ converges to m
measure on M we have

Z T

0

˛.t/ dt ! 2H.� j m/;
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as T tends to C1. Also, since YT has law �

˛.T/ D E
�
jr log f .YT/j

2
�

D I.� j ıxPT/ ! I.� j m/:

Therefore, letting T tend to C1 in (26) yields

H.� j m/ �
n

2
log

�
1C

I.� j m/

n �

�
;

which is the result. ut

Let us give an open problem to finish this article. We already mentioned that
Borell recovered the Prékopa–Leindler inequality from (1). It is natural to ask
whether there is probabilistic proof of the Riemannian Prékopa–Leindler inequality
of Cordero, McCann and Schmuckenschlger [9] based on Theorem 3. Copying
naively Borell’s argument, we soon face the following difficulty: If X and Y are
two Brownian motions on a manifold coupled by parallel transport, then unless the
manifold is flat, the midpoint of X and Y is not a Brownian motion. We believe that
there is a way around this but we could not find it so far.
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Fourth Moments and Products: Unified
Estimates

Ivan Nourdin and Giovanni Peccati

Abstract We provide a unified discussion, based on the properties of eigenfunc-
tions of the generator of the Ornstein-Uhlenbeck semigroup, of quantitative fourth
moment theorems and of the weak Gaussian product conjecture. In particular,
our approach illustrates the connections between moment estimates for non-linear
functionals of Gaussian fields, and the general semigroup approach towards fourth
moment theorems, recently initiated by Ledoux and further investigated by Poly
et al.

Keywords Fourth moment theorem • Gaussian fields • Gaussian vectors •
Moment inequalities • Ornstein-Uhlenbeck semigroup • Polarization conjecture •
Probabilistic approximations • Variance inequalities • Wiener chaos

1 Introduction

1.1 Overview

The concept of a fourth moment theorem for sequences of non-linear functionals
of a Gaussian field has been first introduced in [14] (see also [13]), where it was
proved that, if fFn W n > 1g is a sequence of normalized random variables living in
a fixed Wiener chaos of a Gaussian field, then Fn converges in distribution towards
a Gaussian random variable if and only if the fourth moment of Fn converges to
3 (note that the value 3 equals the fourth moment of a standard centered Gaussian
random variable). A quantitative version of such a result was then obtained in [10],
by combining the Malliavin calculus of variations with the so-called Stein’s method
for normal approximations (see Section 3 below, as well as [11, Chapter 5]). Since
then, the results from [10, 14] have been the seeds of a large number of applications
and generalizations to many fields, ranging from non-commutative probability, to
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random fields on homogeneous spaces, stochastic geometry, and computer science.
See the constantly updated webpage [17] for an overview of this area.

A particularly fruitful direction of research has been recently opened in the
references [1, 2, 7], where these results have been generalized to the framework of
sequences of random variables that are eigenfunctions of a diffusive Markov semi-
group generator, thus paving the way for novel functional estimates connected to
logarithmic Sobolev and transport inequalities—see [8, 12]. An in-depth discussion
of some recent developments in this direction can be found, e.g., in [5].

The aim of this paper is to provide a unified discussion of the main inequalities
leading to the results of [11, 14], and of one of the crucial estimates used in [9] in
order to prove the following remarkable estimate: let �n denote the n-dimensional
standard Gaussian measure, and let F1; : : : ;Fd 2 L2.�n/ be such that each Fi is an
eigenfunction of the associated generator L of the Ornstein-Uhlenbeck semigroup.
One then has

Z
Rn
.F1 � � � Fd/

2 d�n >
dY

iD1

Z
Rn

F2i d�n: (1.1)

As discussed in [9], relation (1.1) represents a weak form of the (still open)
Gaussian product conjecture discussed in [6], that would in turn imply a complete
solution of the (still unsolved) real polarization problem introduced in [3, 16]. We
recall that the Gaussian product conjecture (yet unproved, we stress, even in the case
d D 3) states that, for every collection of linear mappings li W Rn ! R, i D 1; : : : ; d,
and for every positive integer k > 1,

Z
Rn

l2k
1 � � � l2k

d d�n >
Z
Rn

l2k
1 d�n � � �

Z
Rn

l2k
d d�n (1.2)

As we will see below, the main estimates discussed in this paper rely on the
fundamental property that, if the random variable Fi is an eigenfunction of L with
eigenvalue �ki, i D 1; : : : ; d, then the product F1 � � � Fd is an element of the direct
sum of the first r WD k1 C � � � C kd eigenspaces of L, that is:

F1 � � � Fd 2

rM
kD0

Ker.L C kI/;

where I is the identity operator. This property of eigenfunctions (which can be
encountered in a large number of probabilistic structures—much beyond the Gaus-
sian framework) is central in the theory of probabilistic approximations developed
in [1, 2, 7].

We shall now formally present our general framework, together with some well-
known preliminary facts. For the rest of the paper, we focus for simplicity on the
case of a finite dimensional underlying Gaussian space. It is easily shown that, at
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the cost of some slightly heavier notation, the arguments developed below carry
on almost verbatim to an infinite-dimensional setting. See, e.g., [11] for proofs and
further details.

1.2 Setting

For n > 1, let �n denote the standard Gaussian measure on R
n, given by

d�n.x/ D .2�/�n=2 expf�kxk2=2gdx;

with k�k the Euclidean norm on R
n. In what follows, we shall denote by fPt W t > 0g

the Ornstein-Uhlenbeck semigroup on R
n, with infinitesimal generator

Lf D �f � hx;rf i D

nX
iD1

@2f

@x2i
�

nX
iD1

xi
@f

@xi
: (1.3)

(Note that L acts on smooth functions f as an invariant and symmetric operator with
respect to �n.)

We denote by fHk W k D 0; 1; : : :g the collection of Hermite polynomials on the
real line, defined recursively as H0 � 1, and HkC1 D ıHk, where ıf .x/ WD xf .x/ �

f 0.x/. It is a well-known fact that the family fkŠ�1=2Hk W k D 0; 1; ::g constitutes an
orthonormal basis of L2.�1/ WD L2.R;B.R/; �1/.

Another well-known fact is that the spectrum of L coincides with the set of
negative integers, that is, Sp.L/ D Z� D f0;�1;�2; : : :g. Also, the kth eigenspace
of L, corresponding to the vector space Ker.L C k I/ (with I the identity operator)
and known as the kth Wiener chaos associated with �n, coincides with the class of
those polynomial functions F.x1; � � � ; xn/ having the form

F.x1; � � � ; xn/ D
X

i1Ci2C���CinDk

˛.i1; � � � ; in/
nY

jD1

Hij.xj/; (1.4)

for some collection of real weights
˚
˛.i1; � � � ; in/


. We will use many times the fact

that the generator L satisfies the integration by parts formula

Z
Rn

f Lg d�n D �

Z
Rn

hrf ;rgid�n (1.5)

for every pair of smooth functions f ; g W Rn ! R.
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1.3 Key Estimates

Let F1; � � � ;Fd be eigenfunctions of L corresponding to eigenvalues �k1, � � � , �kd,
respectively. Using (1.4) we note that each Fi is a multivariate polynomial of degree
ki. Hence, the product F1 � � � Fd is a multivariate polynomial of degree r D k1 C

� � � C kd. As a result, and after expanding F1 � � � Fd over the basis of multivariate
Hermite polynomials (that is, the complete orthogonal system constituted by x 7!Qn

iD1 Hij.xj/ for any n 2 N and ij > 1), we obtain that F1 � � � Fd has a finite expansion
over the first eigenspaces of L, that is,

F1 � � � Fd 2

rM
kD0

Ker.L C k I/: (1.6)

From this, we deduce in particular that

Z
Rn

F1 � � � Fd .L C rI/.F1 � � � Fd/ d�n > 0 (1.7)

and
Z
Rn

L.F1 � � � Fd/ .L C rI/.F1 � � � Fd/ d�n 6 0: (1.8)

The two estimates (1.7)–(1.8) are the key of the entire paper. In Section 3,
relation (1.8) will be fruitfully combined with the following Malliavin-Stein
inequality, according to which, for every sufficiently smooth F 2 L2.�n/ (for
instance, one can take F to be an element of the direct sum of a finite collection
of Wiener chaoses), one has the following bound:

sup
A2B.R/

ˇ̌
ˇ̌
Z
Rn

1fF2Agd�n � �1.A/

ˇ̌
ˇ̌ 6 2

sZ
Rn
.1 � hrF;�rL�1Fi/

2 d�n; (1.9)

where L�1 is the pseudo-inverse of L. See, e.g., [11, Theorem 5.1.3] for a proof.

1.4 Plan

The rest of the paper is organized as follows. In Section 2 we provide a self-
contained and alternate proof on the main estimate from [9]. Section 3 contains
a proof of the quantitative fourth moment theorem in dimension one, whereas a
multidimensional version is discussed in Section 4.
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2 A Weak (Wick) Form of the Gaussian Product Conjecture

We start by presenting an alternate proof of the main results from [9], that is
crucially based on the inequality (1.7).

Theorem 2.1 Let F1; : : : ;Fd be eigenfunctions of L. Then

Z
Rn
.F1 � � � Fd/

2 d�n >
Z
Rn

F1
2d�n � � �

Z
Rn

Fd
2 d�n: (2.10)

Proof For i D 1; : : : ; d, denote by �ki the eigenvalue associated with Fi. We
proceed by induction on the integer r D k1 C � � � C kd. Since inequality is clear
when r D 0 and r D 1, we only have to explain how to pass from r � 1 to r. As
anticipated, to do so, we will make an important use of (1.7). Set G WD F1 � � � Fd and
let us compute LG using the very definition of L. In what follows, a hat “ b ” over
a symbol indicates that the corresponding term is omitted (that is, replaced by 1) in
a product. We have

LG D

dX
iD1

F1 � � �bFi � � � Fd LFi C
X

16i¤j6d

F1 � � �bFi � � �bFj � � � Fd hrFi;rFji

D �rG C
X

16i¤j6d

F1 � � �bFi � � �bFj � � � Fd hrFi;rFji;

the last equality coming from LFi D �kiFi. It thus follows from (1.7) that

X
16i¤j6d

Z
Rn

F1
2 � � �bFi

2 � � �bFj
2 � � � Fd

2 FiFjhrFi;rFji d�n > 0: (2.11)

On the other hand, one has also that

L.G2/ D

dX
iD1

F1
2 � � �bFi

2 � � � Fd
2 L.Fi

2/C
X

16i¤j6d

F1
2 � � �bFi

2 � � �bFj
2 � � � Fd

2 hr.F2i /;r.F
2
j /i:

Since
R
Rn L.G2/d�n D 0 and hr.F2i /;r.F

2
j /i D 4FiFjhrFi;rFji, we deduce

from (2.11) that

dX
iD1

Z
Rn

F1
2 � � �bFi

2 � � � Fd
2 L.Fi

2/ d�n 6 0:



290 I. Nourdin and G. Peccati

But L.F2i / D 2FiLFi C 2krFik
2 D �2kiF2i C 2krFik

2. As a result,

r
Z
Rn

G2 d�n >
dX

iD1

Z
Rn

F1
2 � � �bFi

2 � � � Fd
2 krFik

2 d�n

D

dX
iD1

dX
`D1

Z
Rn

F1
2 � � �bFi

2 � � � Fd
2 .r`Fi/

2 d�n;

where we used the vector notation r D .r1; : : : ;rd/. For any fixed `, r`Fi

is an eigenfunction of L associated with eigenvalue �.ki � 1/. Thus, by the
induction assumption applied to the family F1; � � � ;Fi�1;r`Fi;FiC1; � � � ;Fd (which
corresponds to integer r � 1), we deduce that

r
Z
Rn

G2d�n >
dX

iD1

Z
Rn

F1
2d�n � � �

Z
Rn

Fi
2d�n � � �

Z
Rn

F2dd�n

Z
Rn

krFik
2d�n

D r
Z
Rn

F1
2d�n � � �

Z
Rn

Fd
2d�n;

the last equality being a consequence of
R
Rn krFik

2d�n D ki
R
Rn Fi

2d�n. The proof
of Theorem 2.1 is concluded. �

3 A Proof of the Fourth Moment Theorem Based
on Integration by Parts

Following the approach developed in [1] (see also [2]), we now provide a self-
contained proof, based on (1.7), of one of the main estimates from [10]. As
anticipated, this is a quantitative version of the fourth moment theorem first proved
in [14].

Theorem 3.1 Let F be a non-constant eigenfunction of L. Assume further thatR
Rn F2d�n D 1. We have

sup
A2B.R/

ˇ̌
ˇ̌
Z
Rn

1fF2Agd�n � �1.A/

ˇ̌
ˇ̌ 6 2

p
3

sZ
Rn

F4d�n � 3:

Proof Denote by �k the eigenvalue associated with F, and note that, since F is
non-constant, then necessarily k > 1. Using the definition of L we have that

L.F2/ D �2kF2 C 2krFk2: (3.12)
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Relation (1.8) (in the case d D 2 and F1 D F2 D F) yields that

Z
Rn

L.F2/ .L C 2kI/.F2/ d�n 6 0: (3.13)

From this, we deduce that

Z
Rn

krFk4d�n D
1

4

Z
Rn
.L.F2/C 2kF2/2d�n

D
1

4

Z
Rn

L.F2/ .L C 2kI/.F2/ d�n C
k

2

Z
Rn

F2 .L C 2kI/.F2/ d�n

6 k
Z
Rn

F2 krFk2 d�n:

But F D � 1
kLF, so we have

1 D

Z
Rn

F2d�n D �
1

k

Z
Rn

FLFd�n D
1

k

Z
Rn

krFk2d�n;

as well as
Z
Rn

F4d�n D �
1

k

Z
Rn

F3LFd�n D
1

k

Z
hr.F3/;rFid�n D

3

k

Z
Rn

F2krFk2d�n:

Combining the previous estimates, one deduces that

3

Z
Rn

�
1 �

1

k
krFk2

�2
d�n 6

Z
Rn

F4d�n � 3: (3.14)

The conclusion now follows from (1.9).
�

4 Multivariate Fourth Moment Theorems

To conclude the paper, we now provide a proof of a multidimensional CLT taken
from [15]—see also the discussion contained in [11, Chapter 6]. We follow the
approach developed in [4]. To avoid the use of contractions, we will restrict
ourselves only to the case of pairwise distinct eigenvalues. In what follows, we
denote by N.0; 1/ and Nd.0; Id/, respectively, a one dimensional standard Gaussian
random variable, and a d dimensional centered Gaussian vector with identity

covariance matrix. As usual, the symbol
d

! stands for convergence in distribution of
random variables with values in a Euclidean space, whereas Var indicates a variance.
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Theorem 4.1 Fix d integers k1; � � � ; kd > 1 and suppose they are pairwise distinct;
consider also a sequence fn.m/ W m > 1g of positive integers such that n.m/ ! 1,
as m ! 1. For every m > 1 let Fm D .F1;m; : : : ;Fd;m/ be a vector of random
variables defined on the probability space .Rn.m/;B.Rn.m//; �n.m//, such that Fi;m 2

ker.L C kiI/, for 1 6 i 6 d, where L is the generator of the Ornstein-Uhlenbeck
semigroup associated with �n.m/. For simplicity, assume also that

R
Rn.m/ F2i;m d�n.m/ D

1 for any i and m. If Fi;m
d
�! N.0; 1/ for every i D 1; : : : ; d, then Fm

d
! Nd.0; Id/, as

m ! 1.

Proof We write n.m/ D n in order to simplify the discussion. According to [11,

Theorem 6.1.1], it suffices to show that, if Fi;m
d
�! N.0; 1/ as m ! 1 for every

i D 1; : : : ; d then, for 1 6 i; j 6 d and as m ! 1,

Z
Rn

�
hrFi;m;�rL�1Fj;mi � ıij

�2
d�n ! 0;

where ıij stands for the Kronecker symbol. In our situation, it is equivalent to show
that

Z
Rn

�
hrFi;m;rFj;mi � kjıij

�2
d�n ! 0: (4.15)

For i D j, this follows from (3.14) since, by hypercontractivity, Fi;m
d
�! N.0; 1/

implies that
R
Rn Fi;m

4d�n ! 3. Let us thus assume that i ¤ j. For the sake of
readability, we temporarily suppress the index m from Fi;m and Fj;m. We can write

hrFi;rFji D
1

2

�
L C .ki C kj/I

� �
FiFj

�
:

Thus, using the symmetry of L,

Z
Rn

hrFi;rFji
2d�n D

1

4

Z
Rn

��
L C .ki C kj/I

� �
FiFj

��2
d�n

D
1

4

Z
Rn

FiFj
�
L C .ki C kj/I

�2 �
FiFj

�
d�n:

Now, due to (1.6), observe that FiFj 2
LkiCkj

rD1 Ker.L C rI/. As a result, noting �r

the projection onto Ker.L C rI/ and with sij D ki C kj,

Z
Rn

FiFj
�
L C sijI

�2 �
FiFj

�
d�n

D

Z
Rn

FiFj
�
L
�
L C sijI

�� �
FiFj

�
d�n C sij

Z
Rn

FiFj
�
L C sijI

� �
FiFj

�
d�n
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D �

sijX
rD1

r.sij � r/
Z
Rn

kr�r.FiFj/k
2d�n C sij

Z
Rn

FiFj
�
L C sijI

� �
FiFj

�
d�n

6 sij

Z
Rn

FiFj
�
L C sijI

� �
FiFj

�
d�n:

Therefore
Z
Rn

hrFi;rFji
2d�n 6 ki C kj

4

Z
Rn

FiFj
�
L C .ki C kj/I

� �
FiFj

�
d�n

D
ki C kj

2

Z
Rn

FiFj hrFi;Fjid�n: (4.16)

Now, using the definition of L and integrating by parts yields

Z
Rn

FiFjhrFi;rFjid�n D
1

4

Z
Rn

hr.F2i /;r.F
2
j /id�n D �

1

4

Z
Rn

F2i L.F2j /d�n

D �
1

2

Z
Rn

F2i
�
FjLFj C krFjk

2
�

d�n D
kj

2

Z
Rn

F2i F2j d�n �
1

2

Z
Rn

F2i krFjk
2d�n

D
kj

2

Z
Rn

F2i
�
F2j � 1

�
d�n �

1

2

Z
Rn

F2i
�
krFjk

2 � kj
�

d�n

6 kj

2

Z
Rn

F2i
�
F2j � 1

�
d�n C

1

2

sZ
Rn

F4i d�n

q
Var.krFjk2/

D
kj

2

�Z
Rn

F2i F2j d�n � 1

�
C
1

2

sZ
Rn

F4i d�n

q
Var.krFjk2/:

Plugging such an estimate into (4.16) and reintroducing the index m, we can thus
write

Z
Rn

hrFi;m;rFj;mi2d�n 6 ki C kj

2

 
1

2

sZ
Rn

F4i;md�n

q
Var.krFj;mk2/C Ri;j.m/

!
;

where

Rij.m/ D
kj

2

�Z
Rn

F2i;mF2j;md�n � 1

�
:

By a classical hypercontractivity argument, the fact that Fi;m
d
�! N.0; 1/ for every i

implies that
R
Rn Fi;m

4d�n ! 3 as m ! 1 for every i. In particular, due to (3.14),
we have that

Var.krFi;mk2/ ! 0 as m ! 1 for every i: (4.17)
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Thus, in order to show (4.15) we are left to check that Rij.m/ ! 0, as m ! 1. By
symmetry, we can assume without loss of generality that kj < ki. Now, we note that,
by (3.12), it holds that

2krFi;mk2 � 2EkrFi;mk2 D .L C 2	ki I/ .F
2
i;m/ � EŒ.L C 2	ki I/ .F

2
i;m/�

D

2kiX
rD1

.2ki � r/�r.F
2
i;m/;

where �r denotes the projection onto Ker.L C rI/. By orthogonality of the
projections corresponding to different eigenvalues and by using (4.17), we deduce
that

Z
Rn
�r.F

2
i;m/

2d�n ! 0 for r 2 f1; � � � ; 2ki � 1g: (4.18)

We exploit this fact by writing

Z
Rn

F2i;mF2j;md�n D 1C

2ki�1X
rD1

Z
Rn
�r
�
F2i;m

�
F2j;md�n C

Z
Rn
�2ki

�
F2i;m

�
F2j;md�n:

By Cauchy-Schwarz and (4.18), all integrals
R
Rn �r.F2i;m/F

2
j;md�n inside the sum in

the middle vanish in the limit. Finally, the fact that ki > kj ensures that the third
term is actually equal to zero. Thus, one has that Rij.m/ ! 0 as m ! 1, and the
proof of the multivariate fourth moment theorem for different orders is complete.�
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Asymptotic Expansions for Products of
Characteristic Functions Under Moment
Assumptions of Non-integer Orders

Sergey G. Bobkov

Abstract This is mostly a review of results and proofs related to asymptotic
expansions for characteristic functions of sums of independent random variables
(known also as Edgeworth-type expansions). A number of known results is refined
in terms of Lyapunov coefficients of non-integer orders.

Let X1; : : : ;Xn be independent random variables with zero means, variances �2k D

Var.Xk/, such that
Pn

kD1 �
2
k D 1, and with finite absolute moments of some integer

order s � 2. Introduce the Lyapunov coefficients

Ls D

nX
kD1

E jXkj
s .s � 2/:

If L3 is small, the distribution Fn of the sum Sn D X1 C � � � C Xn will be close in a
weak sense to the standard normal law with density and distribution function

'.x/ D
1

p
2�

e�x2=2; ˆ.x/ D

Z x

�1

'.y/ dy .x 2 R/:

This variant of the central limit theorem may be quantified by virtue of the classical
Berry-Esseen bound

sup
x

jPfSn � xg �ˆ.x/j � cL3

(where c is an absolute constant). Moreover, in case s > 3, in some sense the rate
of approximation of Fn can be made much better – to be of order at most Ls, if we
replace the normal law by a certain “corrected normal” signed measure �s�1 on the
real line. The density 's�1 of this measure involves the cumulants �p of Sn of orders
up to s � 1 (which are just the sums of the cumulants of Xk); for example,
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'3.x/ D '.x/
�
1C

�3

3Š
H3.x/

	
;

'4.x/ D '.x/
�
1C

�3

3Š
H3.x/C

�4

4Š
H4.x/C

�23
2Š 3Š2

H6.x/
	
;

where Hk denotes the Chebyshev-Hermite polynomial of degree k. More generally,

's�1.x/ D '.x/
X 1

k1Š : : : ks�3Š

��3
3Š

	k1
: : :
� �s�1

.s � 1/Š

	ks�3

Hk.x/; (0.1)

where k D 3k1 C � � � C .s � 1/ks�3 and where the summation is running over all
collections of non-negative integers k1; : : : ; ks�3 such that k1 C 2k2 C � � � C .s �

3/ks�3 � s � 3.
When the random variables Xk D 1p

n
�k are identically distributed, the sum

in (0.1) represents a polynomial in 1p
n

of degree at most s � 3 with free term 1.
In that case, the Lyapunov coefficient

Ls D E j�1j
s n� s�2

2

has a smaller order for growing n in comparison with all terms of the sum.
The closeness of the measures Fn and �s�1 is usually studied with the help of

Fourier methods. That is, as the first step, it is established that on a relatively long
interval jtj � T the characteristic function fn.t/ D E eitSn together with its first s
derivatives are properly approximated by the Fourier-Stieltjes transform

gs�1.t/ D

Z 1

�1

eitx d�s�1.x/

and its derivatives. In particular, it is aimed to achieve relations such as

ˇ̌
f .p/n .t/ � g.p/s�1.t/

ˇ̌
� CsLs minf1; jtjs�pg e�ct2 ; p D 0; 1; : : : ; s; (0.2)

in which case one may speak about an asymptotic expansion for fn by means of
gs�1. When it turns out possible to convert these relations to the statements about
the closeness of the distribution function associated to Fn and �s�1, one obtains an
Edgeworth expansion for Fn (or for density of Fn, when it exists). Basic results in
this direction were developed by many researchers in the 1930–1970s, including
Cramér, Esseen, Gnedenko, Petrov, Statulevičius, Bikjalis, Bhattacharya and Ranga
Rao, Götze and Hipp among others (cf. [C, E, G1, G-K, P1, P2, P3, St1, St2, Bi1,
Bi2, Bi3, B-C-G1, B-C-G2, B-C-G3, Pr1, Pr2, Bi1, Bi2, B-RR, G-H, Se, B1]).

In these notes, we focus on the questions that are only related to the first part
of the problem, i.e., to the asymptotic expansions for fn. We review several results,
clarify basic technical ingredients of the proofs, and make some refinements where
possible. In particular, the following questions are addressed: On which intervals
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do we have asymptotic expansions for the characteristic functions? How may the
constants Cs depend on the growing parameter s? Another issue, which is well
motivated, e.g., by limit problems about the normal approximation in terms of
transport distances (cf. [B2]), is how to extend corresponding statements to the case
of non-integer (or, fractional) values of s.

In a separate (first) part, we collect several results about the distributions of single
random variables, including general inequalities on the moments, cumulants, and
derivatives of characteristic functions, which lead to corresponding Taylor’s expan-
sions. In the second part, there have been collected some results on the behavior of
Lyapunov’s coefficients and moment inequalities for sums of independent random
variables, with first applications to products of characteristic functions. Asymptotic
expansions gs�1 for fn are constructed and studied in the third part. In particular, in
the interval jtj � cL�1=3.s�2/

s (in case Ls is small), we derive a sharper form of (0.2),

ˇ̌
f .p/n .t/ � g.p/s�1.t/

ˇ̌
� CsLs maxfjtjs�p; jtj3.s�2/Cpg e�t2=2:

This interval of approximation, which we call moderate, appears in a natural way
in many investigations, mostly focused on the case p D 0 and when Xk’s are
equidistributed. The fourth part is devoted to the extension of this interval to the
size jtj � 1=L3 which we call a long interval. This is possible at the expense of
the constant in the exponent and with a different behavior of s-dependent factors, by
showing that both f .p/n .t/ and g.p/s�1.t/ are small in absolute value outside the moderate
interval. All results are developed for real values of the main parameter s. More
precisely, we use the following plan.

PART I. Single random variables

1. Generalized chain rule formula.
2. Logarithm of the characteristic functions.
3. Moments and cumulants.
4. Bounds on the derivatives of the logarithm.
5. Taylor expansion for Fourier-Stieltjes transforms.
6. Taylor expansion for logarithm of characteristic functions.

PART II. Lyapunov coefficients and products of characteristic functions

7. Properties of Lyapunov coefficients.
8. Logarithm of the product of characteristic functions.
9. The case 2 < s � 3.

PART III. “Corrected normal characteristic” functions

10. Polynomials Pm in the normal approximation.
11. Cumulant polynomials Qm.
12. Relations between Pm and Qm.
13. Corrected normal approximation on moderate intervals.
14. Signed measures �m associated with gm.
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PART IV Corrected normal approximation on long intervals

15. Upper bounds for characteristic functions fn.
16. Bounds on the derivatives of characteristic functions.
17. Upper bounds for approximating functions gm.
18. Approximation of fn and its derivatives on long intervals.

PART I. Single random variables

1 Generalized Chain Rule Formula

The following calculus formula is frequently used in a multiple differentiation.

Proposition 1.1 Suppose that a complex-valued function y D y.t/ is defined and
has p derivatives in some open interval of the real line .p � 1/. If z D z.y/ is
analytic in the region containing all values of y, then

dp

dtp
z.y.t// D pŠ

X dsp z.y/

dysp

ˇ̌
ˇ
yDy.t/

pY
rD1

1

krŠ

�
1

rŠ

dry.t/

dtr

�kr

; (1.1)

where sp D k1C� � �Ckp and where the summation is performed over all non-negative
integer solutions .k1; : : : ; kp/ to the equation k1 C 2k2 C � � � C pkp D p.

This formula can be used to develop a number of interesting identities and
inequalities like the following ones given in the next lemma.

Lemma 1.2 With the summation as before, for any 	 2 R and any integer p � 1,

X
.sp � 1/Š

pY
rD1

1

krŠ
	kr D

.1C 	/p � 1

p
(1.2)

X
spŠ

pY
rD1

1

krŠ
	kr D 	 .1C 	/p�1: (1.3)

In particular, if 0 � 	 � 2�p 	0, then

X pY
rD1

1

krŠ
	kr � 	 e	0=4: (1.4)

In addition,

X pY
rD1

1

krŠ

�	r

r

	kr

D 	p: (1.5)
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Proof First, apply Proposition 1.1 with z.y/ D � log.1� y/, in which case (1.1)
becomes

�
dp

dtp
log.1 � y.t// D pŠ

X .sp � 1/Š

.1 � y.t//sp

pY
rD1

1

krŠ

� 1
rŠ

dry.t/

dtr

	kr

: (1.6)

Choosing y.t/ D 	 t
1�t D �	 C 	.1 � t/�1 so that dry.t/

dtr D rŠ 	.1 � t/�.rC1/, the
above sum on the right-hand side equals

X
.sp � 1/Š .1 � y.t//�sp .1 � t/�p�sp	sp

pY
rD1

1

krŠ
:

On the other hand, writing � log.1� y.t// D log.1� t/� log
�
.1C 	/.1� t/� 	

�
;

we get

�
dp

dtp
log.1 � y.t// D �

.p � 1/Š

.1 � t/p
C .1C 	/p

.p � 1/Š�
.1C 	/.1 � t/ � 	

�p :

Therefore, (1.6) yields

.p�1/Š

�
.1C 	/p�

.1C 	/.1 � t/ � 	
�p �

1

.1 � t/p

�
D pŠ

X .sp � 1/Š 	sp

.1 � y.t//sp .1 � t/pCsp

pY
rD1

1

krŠ
:

Putting t D 0, we obtain the identity (1.2). Differentiating it with respect to 	 and
multiplying by 	, we arrive at (1.3). In turn, using spŠ � 1 and the property that the
function p ! .p � 1/2�p is decreasing in p � 2, (1.3) implies that, for all p � 2,

.1C 	/p�1 � e.p�1/	 � e	0.p�1/2�p
� e	0=4;

which obviously holds for p D 1 as well.
Finally, let us apply (1.1) with z.y/ D ey, when this identity becomes

dp

dtp
ey.t/ D pŠ ey.t/

X pY
rD1

1

krŠ

� 1
rŠ

dry.t/

dtr

	kr

: (1.7)

It remains to choose here y.t/ D � log.1� 	t/, so that dry.t/
dtr D 	r .r � 1/Š .1� t/�r,

and then this equality yields (1.5) at the point t D 0. ut

For an illustration, consider Gaussian functions g.t/ D e�t2=2. By the definition,

g.p/.t/ D .�1/p�1Hp.t/g.t/;
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where Hp denotes the Chebyshev–Hermite polynomial of degree p with leading term
1. From (1.7) with y.t/ D �t2=2, we have

g.p/.t/ D pŠ g.t/
X

k1C2k2Dp

.�t/k1

k1Šk2Š
2�k2 :

Using jtjk1 � maxf1; jtjpg and applying the identity (1.5), we get a simple upper
bound

jHp.t/j � pŠ maxf1; jtjpg: (1.8)

2 Logarithm of the Characteristic Functions

If a random variable X has finite absolute moment ˇp D E jXjp for some integer
p � 1, its characteristic function f .t/ D E eitX has continuous derivatives up to
order p and is non-vanishing in some interval jtj � t0. Hence, in this interval the
principal value of the logarithm log f .t/ is well defined and also has continuous
derivatives up to order p, which actually can be expressed explicitly in terms of the
first derivatives of f . More precisely, the chain rule formula of Proposition 1.1 with
z.y/ D log y immediately yields the following identity:

Proposition 2.1 Let ˇp < 1 .p � 1/. In the interval jtj � t0, where f .t/ is non-
vanishing,

dp

dtp
log f .t/ D pŠ

X .�1/sp�1 .sp � 1/Š

f .t/sp

pY
rD1

1

krŠ

� 1
rŠ

f .r/.t/
	kr

; (2.1)

where sp D k1 C � � � C kp and the summation is running over all tuples .k1; : : : ; kp/

of non-negative integers such that k1 C 2k2 C � � � C pkp D p.

As was shown by Sakovič [Sa], in the interval
p
ˇ2 jtj � �

2
we necessarily have

Re.f .t// � 0. This result was sharpened by Rossberg [G2] proving that

Re.f .t// � cos.
p
ˇ2 jtj/ for

p
ˇ2 jtj � �:

See also Shevtsova [Sh2] for a more detailed exposition of the question. Thus, the
representation (2.1) holds true in the open interval

p
ˇ2 jtj < �

2
.

To quickly see that f .t/ is non-vanishing on a slightly smaller interval, one can
just apply Taylor’s formula. Indeed, if EX D 0, EX2 D ˇ2 D �2 .0 < � < 1/,
then f .0/ D 1, f 0.0/ D 0, jf 00.t/j � �2, and we get

j1 � f .t/j � sup
jzj�jtj

jf 00.z/j
t2

2
�
�2t2

2
< 1
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for � jtj <
p
2. In particular, jf .t/j � 1

2
for � jtj � 1, so that in this interval the

principal value of the logarithm log f .t/ is continuous and has continuous derivatives
up to order p.

Let us mention several particular cases in (2.1). Clearly, .log f /0 D f 0f �1 and
.log f /00 D f 00f �1 � f 02f �2. The latter formula can be given in an equivalent form.

Proposition 2.2 If the variance �2 D Var.X/ is finite, then at any point t such that
f .t/ ¤ 0, we have

.log f .t//00 D �
1

2f .t/2
E .X � Y/2 eit.XCY/;

where Y is an independent copy of X. In particular,

j.log f .t//00j �
�2

jf .t/j2
: (2.2)

Indeed, the right-hand side of the equality f .t/2 .log f .t//00 D f 00.t/f .t/ � f 0.t/2

may be written as

�
�
EX2eit.XCY/ � EXY eit.XCY/

�
D �

�
E

X2 C Y2

2
eit.XCY/ � EXY eit.XCY/

	

D �
1

2
E .X � Y/2 eit.XCY/:

Therefore,

jf .t/j2 j.log f .t//00j �
1

2
E .X � Y/2 D Var.X/:

For the next two derivatives, let us note that

f .t/3 .log f .t//000 D f 000.t/f .t/2 � 3f 00.t/f 0.t/f .t/C 2f 0.t/3; (2.3)

f .t/4 .log f .t//0000 D f 0000.t/f .t/3 � 4f 000.t/f 0.t/f .t/2 � 3f 00.t/2f .t/2

C 12f 00.t/f 0.t/2f .t/ � 6f 0.t/4: (2.4)

3 Moments and Cumulants

Again, let a random variable X have a finite absolute moment ˇp D E jXjp for an
integer p � 1. Since the characteristic function f .t/ D E eitX is non-vanishing in
some interval jtj � t0, and log f .t/ has continuous derivatives up to order p, one may
introduce the normalized derivatives at zero
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�r D �r.X/ D
dr

ip dtr
log f .t/

ˇ̌
tD0; r D 0; 1; 2; : : : ; p;

called the cumulants of X. Each �p is determined by the first moments ˛r D EXr,
r D 1; : : : ; p. Namely, at t D 0, the identity (2.1) of Proposition 1.1 gives:

Proposition 3.1 Let ˇp < 1 .p � 1/. For jtj � t0, we have

�p D pŠ
X

.�1/sp�1 .sp � 1/Š

pY
rD1

1

krŠ

�˛r

rŠ

	kr

; (3.1)

where sp D k1 C � � � C kp and where the summation is running over all tuples
.k1; : : : ; kp/ of non-negative integers such that k1 C 2k2 C � � � C pkp D p.

For example, �1 D ˛1, �2 D ˛2 � ˛21 . Moreover, if ˛1 D EX D 0, �2 D EX2,
then

�1 D ˛1; �2 D ˛2 D �2; �3 D ˛3; �4 D ˛4 � 3˛22 D ˇ4 � 3�4:

One may reverse (3.1) by applying the generalized chain rule to the composition
f .t/ D elog f .t/, see (1.7). We then get a similar formula

˛p D pŠ
X pY

rD1

1

krŠ

��r

rŠ

	kr

: (3.2)

Let us now turn to the question of bounding the cumulants in terms of the
moments. By Markov’s inequality, there are uniform bounds on the derivatives
jf .r/.t/j � ˇr � ˇ

r=p
p for r D 1; : : : ; p. Hence, the combination of identity (1.2)

of Lemma 1.2 with 	 D 1
jf .t/j and identity (2.1) of Proposition 2.1 leads to the

bound

ˇ̌
ˇ dp

dtp
log f .t/

ˇ̌
ˇ �

h�
1C

1

jf .t/j

	p
� 1

i
.p � 1/Š ˇp: (3.3)

This inequality may be compared to the result of Bikjalis [Bi3], who showed that

ˇ̌
ˇ dp

dtp
log f .t/

ˇ̌
ˇ �

1

jf .t/jp
2p�1 .p � 1/Š ˇp: (3.4)

In particular, when jf .t/j � 1
2
, it gives the relation

ˇ̌
dp

dtp log f .t/
ˇ̌

� 22p�1 .p � 1/Š ˇp.
However, in this case (3.3) yields a better bound

ˇ̌
ˇ dp

dtp
log f .t/

ˇ̌
ˇ � .3p � 1/ .p � 1/Š ˇp:
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We will discuss further sharpenings in the next section, and now just note that at the
point t D 0, (3.4) provides a bound on the cumulants, j�pj � .2p�1 � 1/ .p � 1/Š ˇp.
Another result of Bikjalis [Bi3] provides an improvement for mean zero random
variables.

Proposition 3.2 If ˇp D E jXjp < 1 for some integer p � 1, and EX D 0, then

j�pj � .p � 1/Š ˇp: (3.5)

Proof The case p D 1 is obvious. Since �2 D ˛2 D ˇ2 in case EX D 0,
the desired bound also follows for p D 2. So, let p � 3. Differentiating the identity
f 0.t/ D f .t/ .log f .t//0 near zero p�1 times in accordance with the binomial formula,
one gets

dp

dtp
f .t/ D

p�1X
rD0

Cr
p�1

dp�1�r

dtp�1�r
f .t/

drC1

dtrC1
log f .t/;

where here and in the sequel we use the notation Ck
n D nŠ

kŠ.n�k/Š for the binomial
coefficients. Equivalently,

dp

dtp
log f .t/ D

1

f .t/

dp

dtp
f .t/ �

1

f .t/

p�2X
rD0

Cr
p�1

dp�1�r

dtp�1�r
f .t/

drC1

dtrC1
log f .t/: (3.6)

At t D 0, this identity becomes

�p D ˛p �

p�3X
rD0

Cr
p�1 ˛p�1�r �rC1;

where we used the assumption ˛1 D 0. One can now proceed by induction on p.
Since j˛p�1�rj � ˇ

.p�1�r/=p
p and �rC1 � rŠˇ.rC1/=p

p (the induction hypothesis), we
obtain that

j�pj � ˇp C ˇp

p�3X
rD0

Cr
p�1 rŠ D .p � 1/Š ˇp

�
1

.p � 1/Š
C

p�3X
rD0

1

.p � 1 � r/Š

�
:

The expression in the square brackets 1
.p�1/Š

C . 1
2Š

C � � � C 1
.p�1/Š

/ is equal to 1 for

p D 2 and is smaller than 1
6

C .e � 2/ < 1 for p � 3. ut

The factorial growth of the constant in the inequality (3.5) is optimal, up to an
exponentially growing factor, which was noticed by Bulinskii [Bu] in his study
of upper bounds in a more general scheme of random vectors and associated
mixed cumulants. To illustrate possible lower bounds, he considered the symmetric
Bernoulli distribution assigning the mass 1

2
to the points ˙1. In this case, the

characteristic function is f .t/ D cos t, and one may use the Taylor expansion
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log f .t/ D log cos t D �

1X
pD1

22p .22p � 1/

.2p/Š
Bp

t2p

2p
; jtj <

�

4
;

involving Bernoulli numbers Bp D 2 .2p/Š
.2�/2p d2p, where d2p D

P1
nD1

1
n2p . Thus, for even

integer values of p,

j�pj D
2p .2p � 1/

p
Bp=2 D

2 .2p � 1/

�p
.p � 1/Š dp:

From Stirling’s formula, one gets j�pj � . p
�e /

p
p
2� . To compare with the upper

bound of Proposition 2.2, note that in this Bernoulli case, ˇp D 1 for all p.

4 Bounds on the Derivatives of the Logarithm

We will now extend the Bikjalis argument, so as to obtain the following improve-
ment of the bounds (3.3)–(3.4), assuming that X has mean zero and t is small
enough. More precisely, we are going to derive the bound

ˇ̌
ˇ dp

dtp
log f .t/

ˇ̌
ˇ � .p � 1/Š ˇp (4.1)

in the interval � jtj � " D 1
5

(except for the value p D 2), where �2 D ˇ2 D EX2.
This can be done with the help of the lower bound

jf .t/j � 1 �
�2t2

2
� 1 �

"2

2
; � jtj � ": (4.2)

First let us check (4.1) for the first 4 values of p. Since jf 0.t/j � �2jtj, we have

j.log f .t//0j �
ˇ2jtj

jf .t/j
�
0:2 ˇ

1=2
2

1 � "2

2

� 0:21ˇ
1=2
2 : (4.3)

When p D 2, according to inequality (2.2) of Proposition 2.2,

j.log f .t//00j �
ˇ2

jf .t/j2
�

ˇ2

.1 � "2

2
/2

� 1:05ˇ2: (4.4)

When p D 3, we use (2.3) giving

j.log f .t//000j �
1C 3"C 2"3

jf .t/j3
ˇ3 �

1C 3"C 2"3

.1 � "2

2
/3

ˇ3 � 2ˇ3:
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When p D 4, we use (2.4) giving similarly

j.log f .t//0000j �
4C 4"C 12"2 C 6"4

jf .t/j4
ˇ4 �

4C 4"C 12"2 C 6"4

.1 � "2

2
/4

ˇ4 � 6ˇ4:

In order to derive (4.1) for p � 5, we perform the induction step, applying
(4.3)–(4.4) and assuming that, in the interval � jtj � ",

j.log f .t//.r/j � .r � 1/Š ˇr for 3 � r � p � 1: (4.5)

By this hypothesis, using the recursive formula (3.6) and the bounds (4.3)–(4.4), we
have

jf .t/j j.log f .t//.p/j � jf .p/.t/j C

p�2X
rD0

Cr
p�1 jf .p�1�r/.t/j j.log f .t//.rC1/j

D jf .p/.t/j C .p � 1/ jf 0.t/j j.log f .t//.p�1/j

C

p�3X
rD2

Cr
p�1 jf .p�1�r/.t/j j.log f .t//.rC1/j

C jf .p�1/.t/j j.log f .t//0j C .p � 1/ jf .p�2/.t/j j.log f .t//00j

� ˇp C .p � 1/ ˇ1=p
p " � ˇp�1.p � 2/Š

C

p�3X
rD2

Cr
p�1 ˇp�1�r ˇrC1 rŠC ˇp�1 � 0:21ˇ

1=2
2

C.p � 1/ˇp�2 � 1:05 ˇ2:

Here we apply again ˇr � ˇ
r=p
p , giving

jf .t/j

ˇp
j.log f .t//.p/j � 1C .p � 1/Š

�
"C

p�3X
rD2

1

.p � 1 � r/Š

�
C 0:21C 1:05 .p � 1/

� 1C .p � 1/Š

�
"C

p�1X
kD2

1

kŠ

�
C 0:05 .p � 1/

� 1C 0:05 .p � 1/C .p � 1/Š ."C e � 2/:

Applying the lower bound (4.2), we obtain that

1

ˇp
j.log f .t//.p/j �

1

1 � "2

2

�
1C 0:05 .p � 1/C .p � 1/Š ."C e � 2/

�
:
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The latter expression does not exceed .p�1/Š (which is needed to make the induction
step, i.e., to derive (4.5) for r D p), if and only if this is true for p D 5 (since after
division by .p � 1/Š the expression on the right will be decreasing in p). That is,
we need to verify that 1

1� "2

2

.1:2 C 24 ." C e � 2// � 24; which is indeed true for

" D 0:2. Hence, we have proved:

Proposition 4.1 Let X be a random variable such that EX D 0, EX2 D �2 .� > 0/

and ˇp D E jXjp < 1 for some integer p � 2. Then, in the interval � jtj � 1
5
, the

characteristic function f .t/ of X is not vanishing and satisfies

j.log f .t//0j � 0:21 �; j.log f .t//00j � 1:05 �:

Moreover, if p � 3, then

ˇ̌
ˇ dp

dtp
log f .t/

ˇ̌
ˇ � .p � 1/Š ˇp:

5 Taylor Expansion for Fourier-Stieltjes Transforms

Let X be a random variable with finite absolute moment ˇs D E jXjs of a real order
s > 0, not necessarily integer. Put

EXk D ˛k; E jXjk D ˇk .k D 0; 1; : : : ; Œs�/:

In general, suitable expansions for the characteristic function f .t/ D E eitX can be
developed according to the Taylor formula. Since f has Œs� continuous derivatives
with f .k/.0/ D ik˛k, it admits the Taylor expansion

f .t/ D

mX
kD0

˛k
.it/k

kŠ
C ı.t/ (5.1)

with ı.t/ D o.tm/, where here and elsewhere we represent s D m C ˛ with integer
m and 0 < ˛ � 1. The remainder term can be bounded in terms of ˇs as follows:

Proposition 5.1 For all t,

ˇ̌
ˇ dp

dtp
ı.t/

ˇ̌
ˇ � 2ˇs

jtjs�p

.m � p/Š
; p D 0; 1; : : : ;m: (5.2)

Moreover, if s D m C 1 is integer, then

ˇ̌
ˇ dp

dtp
ı.t/

ˇ̌
ˇ � ˇs

jtjs�p

.s � p/Š
; p D 0; 1; : : : ; s:
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Proof By the very definition, ı.t/ D ERm.tX/, where Rm.u/ D eiu �
Pm

lD0
.iu/l

lŠ ,
so that

ı.p/.t/ D E .iX/p Rm�p.tX/:

Given an integer number k � 1, note that R.j/k .0/ D 0 for all j D 0; : : : ; k with

jR.kC1/
k .u/j D 1. In addition, R.k/k .u/ D ik.eiu � 1/, so that jR.k/k .u/j � 2. Hence, by

Taylor’s formula,

jRk.u/j �
jujkC1

.k C 1/Š
and jRk.u/j � 2

jujk

kŠ
:

Although some other interesting bounds on the functions Rk are available (cf., e.g.,
[Sh1]), these two inequalities are sufficient to conclude that, for any ˛ 2 Œ0; 1�,

jRk.u/j � min
n
2

jujk

kŠ
;

jujkC1

.k C 1/Š

o

D
jujk

kŠ
min

n
2;

juj

k C 1

o
�

jujk

kŠ
�
21�˛

.k C 1/˛
juj˛ �

2jujkC˛

kŠ
:

Therefore,

jı.p/.t/j � E

�
jXjp

2 jtXj.m�p/C˛

.m � p/Š

�
D
2 jtj.s�p/

.m � p/Š
ˇs:

In case s D m C 1, the function w.t/ D ı.p/.t/ has zero derivatives at t D 0 up to
order s � p � 1, while w.s�p/.t/ D ı.s/.t/ D E .iX/seitX is bounded in absolute value
by ˇs. Hence, by Taylor’s formula,

jw.t/j � max
jzj�jtj

jw.s�p/.z/j
jtjs�p

.s � p/Š
� ˇs

jtjs�p

.s � p/Š
:

ut

More generally, consider the Fourier-Stieltjes transform a.t/ D
R1

�1 eitx d�.x/ of
a Borel signed measure � on the real line and introduce the corresponding absolute
moment

ˇs.�/ D

Z 1

�1

jxjs j�.dx/j;

where j�j is the variation of� treated as a positive measure on the line, and s > 0 is a
real number. Clearly, a is Œs� times continuously differentiable on R with derivatives
at the origin
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a.p/.0/ D

Z 1

�1

.ix/p d�.x/; p D 0; 1; : : : ; Œs�:

Here is a natural generalization of Proposition 5.1.

Proposition 5.2 Let s D m C ˛ with m � 0 integer and 0 < ˛ � 1. If a.p/.0/ D 0

for all p D 0; 1; : : : ;m, then for all t 2 R,

ja.p/.t/j � 2ˇs.�/
jtjs�p

.m � p/Š
; p D 0; 1; : : : ;m:

Moreover, if s D m C 1 is integer, then

ja.p/.t/j � ˇs.�/
jtjs�p

.s � p/Š
; p D 0; 1; : : : ; Œs�:

Proof Note that �.R/ D 0 due to a.0/ D 0. To prove the statement, one
can repeat the arguments used in the proof of Proposition 5.1. By the moment
assumption, a.t/ D

R1

�1 Rm.tx/ d�.x/, so

a.p/.t/ D

Z 1

�1

.ix/p Rm�p.tx/ d�.x/:

Using the previous bound jRk.u/j � 2jujkC˛

kŠ with k D m � p, we conclude that

ja.p/.t/j �

Z 1

�1

�
jxjp

2 jtxj.m�p/C˛

.m � p/Š

�
jd�.x/j D

2 jtj.s�p/

.m � p/Š
ˇs.�/:

The case s D m C 1 is similar. ut

6 Taylor Expansion for Logarithm of Characteristic
Functions

Our next task is to develop the Taylor expansion for log f .t/ in analogy with the
expansion (5.1) for the characteristic function f .t/ with a bound similar to (5.2),
which would hold even if t is close to zero. Note that, in the most important case
p D m, that bound yields

jf .m/.t/ � im˛mj � 2ˇs jtj˛: (6.1)

Hence, we need to derive a similar bound for log f .t/, by replacing ˛m with the
cumulant �m.
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We keep the same assumption as in the previous section: EX D 0, ˇs D E jXjs <

1, s D m C ˛ with m � 2 integer and 0 < ˛ � 1. Let us return to the recursive
formula

f .t/ .log f .t//.m/ D f .m/.t/ �

m�1X
rD1

Cr�1
m�1 f .m�r/.t/ .log f .t//.r/; (6.2)

which at t D 0 becomes

im�m D im˛m �

m�1X
rD1

Cr�1
m�1 im�r˛m�r ir�r: (6.3)

Since ˛1 D �1 D 0, the last summation may be reduced to the values 2 � r � m �2

for m � 4, while there is no sum for m D 3.
To argue by induction on m, our induction hypothesis will be

j.log f .t//.r/ � ir�rj � ABr.r � 1/Š ˇrC˛jtj˛; r D 1; 2; : : : ;m � 1; (6.4)

in the interval � jtj � 1
5
, where the parameters A;B � 1 are to be chosen later on.

Recall that Proposition 4.1 provides in this interval the bound

j.log f .t//.r/j � Ar.r � 1/Š ˇr; r D 2; : : : ;m; (6.5)

with constants A2 D 1:05 and Ar D 1 for r � 3. Now, let us apply (6.1) with
s D .m � r/C ˛. Then we have a similar relation

jf .m�r/.t/ � im�r˛m�rj � 2ˇm�rC˛jtj˛; r D 0; 1; : : : ;m � 1; (6.6)

which is valid for all t. Write

f .m�r/.t/ .log f .t//.r/ D .f .m�r/.t/ � im�r˛m�r/ .log f .t//.r/

C im�r˛m�r
�

log f .t//.r/ � ir�r
�

C im�r˛m�r ir�r:

Applying the bounds (6.4)–(6.6) for r D 2; : : : ;m � 1, we get

jf .m�r/.t/ .log f .t//.r/ � im�r˛m�r ir�rj � 2ˇm�rC˛jtj˛ � Ar.r � 1/Š ˇr

Cˇm�r � ABr.r � 1/Š ˇrC˛jtj˛

� .r � 1/Š ˇsjtj
˛ .2Ar C ABr/:

When r D 1, we use a different bound based on the assumption that ˛1 D �1 D 0.
Namely, by Proposition 4.1 in part concerning the first derivative, we have

jf .m�1/.t/ .log f .t//0j � 2ˇm�1C˛jtj˛ � A1ˇ
1=2
2 � 2A1 ˇsjtj

˛;
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where A1 D 0:21. Hence, subtracting the representation (6.3) from (6.2) and
applying the bound (6.1), we get

jf .t/ .log f .t//.m/ � im�mj � 2ˇsjtj
˛ C .m � 1/Š ˇsjtj

˛

m�1X
rD1

1

.m � r/Š
.2Ar C ABr/

D ABm .m � 1/Š ˇsjtj
˛

�
2

ABm
C

m�1X
kD1

1

kŠ

�2Am�k

ABm
C B�k

	�
:

In addition, since jf .t/ � 1j � 2ˇ˛jtj˛ , we have

jf .t/ .log f .t//.m/ � .log f .t//.m/j � Am.m � 1/Š ˇm � 2ˇ˛jtj˛ � 2.m � 1/Š ˇsjtj
˛:

Hence

j.log f .t//.m/ � im�mj � ABm .m � 1/Š ˇsjtj
˛

�
4

ABm
C

m�1X
kD1

1

kŠ

�2Am�k

ABm
C B�k

	�
;

and we can make an induction step by proving (6.4) for r D m, once the parameters
satisfy

4

ABm
C

m�1X
kD1

1

kŠ

�2Am�k

ABm
C B�k

	
� 1:

To simplify, let us use a uniform bound Am�k � 1:05, so that to estimate the above
left-hand side from above by

4

ABm
C

1X
kD1

1

kŠ

� 2:1
ABm

CB�k
	

D
4C 2:1 .e � 1/

ABm
C.e1=B �1/ <

7:61

ABm
C.e1=B �1/:

For example, for B D 2, the last term
p

e � 1 < 0:65. Hence, in case m � 3, we
need 7:61

8A � 0:35, where A D 2:72 fits well. Then we obtain (6.4) for r D m, i.e.,

j.log f .t//.m/ � im�mj � A � 2m.m � 1/Š ˇmC˛jtj˛ (6.7)

for all m � 1 and with any A � 2:72, once we have this inequality for the first two
values m D 1 and m D 2 (induction hypothesis).

When m D 1, according to (6.1) with s D 1C ˛, we have jf 0.t/j � 2ˇ1C˛jtj˛ , so

j.log f .t//0j D
jf 0.t/j

jf .t/j
�
2ˇ1C˛jtj˛

1 � "2

2

� 2:05 ˇ1C˛jtj˛;
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so (6.7) is fulfilled. When m D 2,

.log f .t//00 C �2 D
f 00.t/f .t/ � f 0.t/2

f .t/2
C �2

D
.f 00.t/C �2/f .t/C �2f .t/.f .t/ � 1/ � f 0.t/2

f .t/2
:

According to (6.1), jf 00.t/C �2j � 2ˇ2C˛jtj˛ and jf .t/ � 1j � 2ˇ˛jtj˛ . Hence,

j.log f .t//00 C �2j �
2ˇ2C˛jtj˛ C 2�2ˇ˛jtj˛ C 2ˇ1ˇ1C˛jtj˛

jf .t/j2

�
6ˇ2C˛jtj˛

.1 � "2

2
/2

� 6:25 ˇ2C˛jtj˛:

In both cases, (6.7) is fulfilled with A D 2:72. Thus, we have proved:

Lemma 6.1 Let X be a random variable such that EX D 0, EX2 D �2 (� > 0),
and ˇmC˛ < 1 for some integer m � 2 and 0 < ˛ � 1. Then, in the interval
� jtj � 1

5
, the characteristic function f .t/ of X is not vanishing and satisfies

ˇ̌
ˇ dm

dtm
log f .t/ � im�m

ˇ̌
ˇ � 2:72 � 2m .m � 1/Š ˇmC˛jtj˛:

This inequality remains to hold for m D 1 as well, if EX2 is finite.

Now, if s is integer, for any p D 0; 1; : : : ; s, the function

w.t/ D
dp

dtp
log f .t/ �

dp

dtp

s�1X
kD2

�k
.it/k

kŠ

has zero derivatives at t D 0 up to order s � p � 1, while w.s�p/.t/ D ds

dts log f .t/.
Hence, by Proposition 4.1 and Taylor’s formula,

jw.t/j � sup
jzj�jtj

jw.s�p/.z/j
jtjs�p

.s � p/Š
� .s � 1/Š ˇs

jtjs�p

.s � p/Š
; if � jtj �

1

5
:

In the general case s D m C ˛ with integer m � 2 and 0 < ˛ � 1, for any
p D 0; 1; : : : ;m, consider the function

w.t/ D
dp

dtp
log f .t/ �

dp

dtp

mX
kD2

�k
.it/k

kŠ
:
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It has zero derivatives at t D 0 up to order m�p�1, while w.m�p/.t/ D dm

dtm log f .t/�
�mim. Hence, for p � m � 1, by Taylor’s integral formula,

w.t/ D
tm�p

.m � p � 1/Š

Z 1

0

.1 � u/m�p�1 w.m�p/.tu/ du

D
tm�p

.m � p � 1/Š

Z 1

0

.1 � u/m�p�1
�
.log f /.m/.tu/ � �mim

�
du:

Applying Lemma 6.1, we then get that

jw.t/j �
jtjm�p

.m � p � 1/Š

Z 1

0

.1 � u/m�p�1 2:72 � 2m.m � 1/Š ˇs jtuj˛ du

D 2:72 � 2m .m � 1/Š ˇs jtjs�p 
.˛ C 1/


.s � p C 1/
:

The obtained inequality is also true for p D m (Lemma 6.1). Using 
.˛ C 1/ � 1,
we arrive at:

Proposition 6.2 Let f be the characteristic function of a random variable X with
EX D 0 and ˇs D E jXjs < 1 for some s > 2. Put s D m C ˛ with m integer and
0 < ˛ � 1. Then in the interval � jtj � 1

5
,

log f .t/ D

mX
kD2

�k
.it/k

kŠ
C ".t/

with

ˇ̌
ˇ dp

dtp
".t/

ˇ̌
ˇ � 2:72 � 2m.m � 1/Š ˇs

jtjs�p


.s � p C 1/

for all p D 0; 1; : : : ;m. If ˛ D 1, in the same interval, for all p D 0; 1; : : : ;m C 1,

ˇ̌
ˇ dp

dtp
".t/

ˇ̌
ˇ � mŠ ˇs

jtjs�p


.s � p C 1/
:

Let us state particular cases in this statement corresponding to the values s D 3

and s D 4.

Corollary 6.3 Let f .t/ be the characteristic function of a random variable X
with EX D 0. If ˇ3 D E jXj3 < 1, then in the interval � jtj � 1

5
,

log f .t/ D �
�2t2

2
C ".t/ with

ˇ̌
ˇ dp

dtp
".t/

ˇ̌
ˇ � 6ˇ3

jtj3�p

.3 � p/Š
; p D 0; 1; 2; 3:
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Moreover, if ˇ4 D EX4 < 1, then

log f .t/ D �
�2t2

2
C ˛3

.it/3

6
C ".t/ with

ˇ̌
ˇ dp

dtp
".t/

ˇ̌
ˇ � 24 ˇ4

jtj4�p

.4 � p/Š
;

p D 0; 1; 2; 3; 4:

PART II. Lyapunov coefficients and products of characteristic functions

7 Properties of Lyapunov Coefficients

From now on, we deal with a sequence X1; : : : ;Xn of independent random variables
such that EXk D 0, EX2k D �2k .�k � 0/ and

Pn
kD1 �

2
k D 1. The latter insures that

the sum

Sn D X1 C � � � C Xn

has the first two moments ESn D 0 and ES2n D 1. For s � 2, consider the absolute
moments ˇs;k D E jXkj

s and the corresponding Lyapunov coefficients

Ls D

nX
kD1

E jXkj
s:

First, below we state a few simple, but useful auxiliary results about these quantities.

Proposition 7.1 The function L
1

s�2
s is non-decreasing in s > 2. In particular, L3 �

L
1

s�2
s for all s � 3.

Proof Let Fk denote the distribution of Xk. By the basic assumption on the
variances �2k , the equality d�.x/ D

Pn
kD1 x2 dFk.x/ defines a probability measure

on the real line. Moreover,

Ls D

nX
kD1

Z 1

�1

jxjs dFk.x/ D

Z 1

�1

jxjs�2 d�.x/ D E j�js�2;

where � is a random variable distributed according to �. Hence, L
1

s�2
s D

.E j�js�2/
1

s�2 . Here the right-hand side represents a non-decreasing function in
s. ut

Proposition 7.2 We have maxk �k � L1=s
s .s � 2/. In particular, L1=33 � maxk �k.

Proof Using � s
k � ˇs;k, we have maxk �k �

�Pn
kD1 �

s
k

�1=s
�
�P

kD1 ˇs;k
�1=s

D

L1=s
s : ut
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There is also a uniform lower bound on the Lyapunov coefficients depending
upon n, only.

Proposition 7.3 We have Ls � n� s�2
2 .s � 2/. In particular, L3 � 1p

n
and L4 � 1

n .

Proof Let s > 2. By Hölder’s inequality with exponents p D s
s�2 and q D s

2
,

1 D

nX
kD1

�2k � n1=p

� nX
kD1

� s
k

�1=q

� n1=p

� nX
kD1

ˇs;k

�1=q

D n1=p L1=q
s :

Hence, Ls � n�q=p. ut

Note that the finiteness of the moments ˇs;k for all k � n is equivalent to
the finiteness of the Lyapunov coefficient Ls. In this case, one may introduce the
corresponding cumulants

�p;k D �p.Xk/ D
dp

ip dtp
log vk.t/

ˇ̌
tD0; p D 0; 1; 2; : : : ; Œs�;

where vk D E eitXk denote the characteristic functions of Xk. Since the characteristic
function of Sn is given by the product

fn.t/ D E eitSn D v1.t/ : : : vn.t/;

the cumulants of Sn exist for the same values of p and are given by

�p D �p.Sn/ D
dp

ip dtp
log fn.t/

ˇ̌
tD0 D

nX
kD1

�p;k:

The first values are �0 D �1 D 0, �2 D 1.
Applying Proposition 3.2 (Bikjalis inequality), we immediately obtain a similar

relation between the Lyapunov coefficients and the cumulants of the sums.

Proposition 7.4 For all p D 2; : : : ; Œs�,

j�pj � .p � 1/ŠLp: (7.1)

The Lyapunov coefficients may also be used to bound absolute moments of the
sums Sn. In particular, there is the following observation due to Rosenthal [R].

Proposition 7.5 With some constants As depending on s, only,

E jSnjs � As maxfLs; 1g: (7.2)
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Moment inequalities of the form (7.2) are called Rosenthal’s or Rosenthal-type
inequalities. The study of the best value As has a long story, and here we only
mention several results.

Define A�
s to be an optimal constant in (7.2), when it is additionally assumed that

the distributions of Xk are symmetric about the origin. By Jensen’s inequality, for
the optimal constant As there is a simple general relation

A�
s � As � 2s�1A�

s ;

which reduces in essence the study of Rosenthal-type inequalities to the symmetric
case.

Johnson, Schechtman, and Zinn [J-S-Z] have derived the two-sided bounds

s
p
2 e log.max.s; e//

� .A�
s /
1=s �

7:35 s

log.max.s; e//
:

Hence, asymptotically A1=s
s is of order s= log s for growing values of s. They

have also obtained an upper bound with a better numerical factor, .A�
s /
1=s �

s=
p

log max.s; e/, which implies a simple bound

As � .2s/s; s > 2: (7.3)

As for the best constant in the symmetric case, it was shown by Ibragimov
and Sharakhmetov [I-S] that A�

s D E j� � �js for s > 4, where � and � are
independent Poisson random variables with parameter 	 D 1

2
(cf. also [Pi] for a

similar description without the symmetry assumption). In particular, .A�
s /
1=s � s

e log s
as s tends to infinity. This result easily yields

A�
s � sŠ for s D 3; 4; 5; : : : ;

and thus As � 2s�1sŠ For even integers s, there is an alternative argument.
Applying the expression (3.2) to Sn (for the cumulants in terms of the moments)
and recalling (7.1), we get

E jSnjs D ˛s.Sn/ D sŠ
X sY

rD1

1

krŠ

��r.Sn/

rŠ

	kr

� sŠ
X sY

rD1

1

krŠ

�Lr�

r

	kr

; (7.4)

where r� D max.r; 2/, and where the summation is performed over all tuples
.k1; : : : ; ks/ of non-negative integers such that k1 C 2k2 C � � � C sks D s. (The left

representation was emphasized in [P-U].) Now, by Proposition 7.1, Lr � L
r�2
s�2
s �

.max.Ls; 1//
r=s. Hence, by Lemma 1.2 (cf. (1.5)), the last sum in (7.4) does not

exceed
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X sY
rD2

1

krŠ

�
.max.L1=s

s ; 1//r

r

�kr

� max.Ls; 1/:

Hence, As � sŠ for s D 4; 6; 8; : : :

To involve real values of s, for our further purposes it will be sufficient to use the
upper bound (7.3).

8 Logarithm of the Product of Characteristic Functions

We keep the same notations and assumptions as in the previous section. Let us return
to the characteristic function

fn.t/ D E eitSn D v1.t/ : : : vn.t/

of the sum Sn D X1 C � � � C Xn in terms of the characteristic functions vk D E eitXk .
To get the Taylor expansion for fn, recall that, by Proposition 6.2, applied to each
Xk, we have

vk.t/ D exp

� mX
lD2

�l;k
.it/l

lŠ
C "k.t/

�
: (8.1)

As we know, the function "k has Œs� continuous derivative, satisfying in the interval
�kjtj � 1

5

ˇ̌
ˇ dp

dtp
"k.t/

ˇ̌
ˇ � 2:72 � 2m.m � 1/Š ˇs;k

jtjs�p


.s � p C 1/
; p D 0; 1; : : : ;m:

This assertion also extends to the case p D m C 1, when ˛ D 1 (with better
constants). Multiplying the expansions (8.1) and using �2 D 1, we arrive at a similar
expansion for f .

Lemma 8.1 Assume that Ls < 1 for some s D m C ˛ with m � 2 integer and
0 < ˛ � 1. Then, in the interval maxk �kjtj � 1

5
, we have

et2=2fn.t/ D exp
˚
Qm.it/C ".t/


; Qm.it/ D

mX
lD3

�l
.it/l

lŠ
; (8.2)

where the function " has Œs� continuous derivatives, satisfying for all p D

0; 1; : : : ;m,

ˇ̌
ˇ dp

dtp
".t/

ˇ̌
ˇ � 2:72 � 2m.m � 1/ŠLs

jtjs�p


.s � p C 1/
: (8.3)
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In addition, if s D m C 1 � 3, then in the same interval, for all p D 0; 1; : : : ;m C 1,

ˇ̌
ˇ dp

dtp
".t/

ˇ̌
ˇ � mŠLs

jtjs�p


.s � p C 1/
: (8.4)

Both bounds hold in the interval L
1
s
s jtj � 1

5
, since L

1
s
s � maxk �k (Proposi-

tion 8.2). In case s � 3, these bounds hold in the interval L3jtj3 � 1.
As a next natural step, we want to replace the term e".t/ in (8.2) with a simpler

one, 1 C ".t/, keeping similar bounds on the remainder term as in (8.3)–(8.4). To
this aim, in the smaller interval L1=s

s jtj � 1
8
, we consider the function

ı.t/ D e".t/ � 1:

By Proposition 1.1, for any p D 1; : : : ;m,

ı.p/.t/ D
dp

dtp
e".t/ D pŠ e".t/

X pY
rD1

1

krŠ

� 1
rŠ
".r/.t/

	kr

; (8.5)

where the summation is performed over all non-negative integer solutions k D

.k1; : : : ; kp/ to k1 C 2k2 C � � � C pkp D p. By (8.3) with p D 0,

j".t/j � 2:72 �
2m

m
Lsjtj

s � 2:72
2m

m 8s
� 1:36

�1
4

	s
< 0:09;

since s � m � 2. Hence,

jı.t/j � e0:09 j".t/j �
3 � 2m

m
Lsjtj

s:

As for derivatives of order 1 � r � m, applying (8.3) and the bound Cr
m � 2m�1, we

have

1

rŠ
j".r/.t/j � 2:72 � 2m.m � 1/Š

Lsjtjs�r

rŠ 
.s � r C 1/

� 2:72 �
2m

m

mŠ

rŠ .m � r/Š
Lsjtj

s�r � 1:36 �
4m

m
Lsjtj

s�r:

Here 	 � 1:36 � 4
m

m Lsjtjs � 0:68 � 2�m � 0:68 � 2�p whenever 1 � p � m. Hence,
by Lemma 1.2 with this value of 	 and with 	0 D 0:68 (cf. (1.4)), we have

X pY
rD1

1

krŠ

�
1:36 �

4m

m
Lsjtj

s�r
	kr

� e0:17 1:36 �
4m

m
Lsjtj

s�p:
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As a result, from (8.5) we get

1

pŠ
jı.p/.t/j � ej".t/j

X pY
rD1

1

krŠ

ˇ̌
ˇ 1
rŠ
".r/.t/

ˇ̌
ˇkr

� e0:09
X pY

rD1

1

krŠ

�
1:36 �

4m

m
Lsjtj

s�r
�kr

D e0:09 e0:17 1:36 �
4m

m
Lsjtj

s�p � 2 �
4m

m
Lsjtj

s�p:

As we have seen, the resulting bound also holds for p D 0 (with a better constant).
More precisely, we thus get

1

pŠ
jı.p/.t/j � 2 �

4m

m
Lsjtj

s�p .1 � p � m/; jı.t/j � 3 �
2m

m
Lsjtj

s .p D 0/:

Scenario 2. In case s D m C 1 is integer, m � 2, one may involve an additional
value p D m C 1. In case p D 0, (8.4) gives j".t/j � Lsjtjs � . 1

8
/3, and then

jı.t/j � e1=8
3

j".t/j � 1:002Lsjtj
s:

For the derivatives of order 1 � r � m C 1, we have

1

rŠ
j".r/.t/j � mŠ

Lsjtjs�r

rŠ 
.s � r C 1/

D
mŠ

rŠ ..m C 1/ � r/Š
Lsjtj

s�r �
2m

m C 1
Lsjtj

s�r:

Here 2m

mC1
Lsjtjs � 1

3
. 2
8
/m < 1

12
2�p, if 1 � p � m C 1. Hence, by Lemma 1.2 with

	0 D 1
12

,

X pY
rD1

1

krŠ

� 2m

m C 1
Lsjtj

s�r
	kr

� e1=48 �
2m

m C 1
Lsjtj

s�p:

As a result, for any p D 1; : : : ;m C 1,

1

pŠ
jı.p/.t/j � ej".t/j

X pY
rD1

1

krŠ

ˇ̌
ˇ 1
rŠ
".r/.t/

ˇ̌
ˇkr

� 1:002
X pY

rD1

1

krŠ

� 2m

m C 1
Lsjtj

s�r
	kr
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D 1:002 e1=48 �
2m

m C 1
Lsjtj

s�p � 1:1 �
2m

m C 1
Lsjtj

s�p:

We thus get

1

pŠ
jı.p/.t/j � 1:1 �

2m

m C 1
Lsjtj

s�p .1 � p � m C 1/; jı.t/j � 1:1Lsjtj
s .p D 0/:

Let us summarize, replacing ı with " (as the notation, only).

Proposition 8.2 Assume that Ls < 1 for s D m C ˛ with m � 2 integer and

0 < ˛ � 1. Then in the interval L
1
s
s jtj � 1

8
, we have

et2=2fn.t/ D eQm.it/ .1C ".t//; Qm.it/ D

mX
lD3

�l
.it/l

lŠ
; (8.6)

where the function " has Œs� continuous derivatives, satisfying

1

pŠ

ˇ̌
ˇ dp

dtp
".t/

ˇ̌
ˇ � CmLsjtj

s�p; p D 0; 1; : : : ;m;

with Cm D 2 � 4
m

m . Moreover, if s D m C 1, one may take Cm D 1:1 � 2m

mC1
for all

0 � p � m C 1. If p D 0, this bound holds with Cm D 3 � 2
m

m . Moreover, one may
take Cm D 1:1 when s D m C 1.

9 The Case 2 < s � 3

For the values 2 < s � 3, the cumulant sum in (8.2) and (8.6) does not contain any
term, that is, Qm D 0, so

fn.t/ D e�t2=2 .1C ".t//:

Let us specify Proposition 8.2 in this case. If Ls < 1 for s D 2C ˛, 0 < ˛ � 1, we
obtain that in the interval L1=s

s jtj � 1
8
, the function ".t/ has Œs� continuous derivatives

satisfying

j".t/j � 6Lsjtj
s;

ˇ̌
ˇ dp

dtp
".t/

ˇ̌
ˇ � 16Lsjtj

s�p .p D 1; 2/:

Moreover, in case s D 3,

j".t/j � 1:1Lsjtj
3;

ˇ̌
ˇ dp

dtp
".t/

ˇ̌
ˇ � 1:5L3jtj

3�p .p D 1; 2; 3/:

Using these representations, one may easily derive the following two propositions.
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Proposition 9.1 Let Ls < 1 for s D 2 C ˛ .0 < ˛ < 1/. Then in the interval

L
1
s
s jtj � 1

8
,

ˇ̌
fn.t/ � e�t2=2

ˇ̌
� 6Lsjtj

s e�t2=2;

ˇ̌
ˇ d

dt

�
fn.t/ � e�t2=2

�ˇ̌ˇ � 16Ls
�
jtjs�1 C jtjsC1

�
e�t2=2;

ˇ̌
ˇ d2

dt2
�
fn.t/ � e�t2=2

�ˇ̌ˇ � 32Ls
�
jtjs�2 C jtjsC2

�
e�t2=2:

Proof Introduce the function h.t/ D fn.t/ � e�t2=2 D e�t2=2 ".t/: The first
inequality is immediate. Next,

et2=2 jh0.t/j D j"0.t/ � t".t/j � 16Ls .jtj
s�1 C jtjsC1/:

For the second derivative, we get

et2=2 jh00.t/j � j"00.t/j C 2jtj j"0.t/j C jt2 � 1j j".t/j

� 16Ls
�
jtjs�2 C 2jtj jtjs�1 C jt2 � 1j jtjs

�
D 16Lsjtj

s�2
�
1C 2t2 C jt2 � 1j t2

�
:

If jtj � 1, then the expression in the last brackets is equal to 1C2t2� t4 � 2 .1C t4/.
If jtj � 1, it is equal to 1C t2 C t4 � 2.1C t4/. ut

Proposition 9.2 Let L3 < 1. Then in the interval L1=33 jtj � 1
8
,

ˇ̌
fn.t/ � e�t2=2

ˇ̌
� 1:1L3jtj

3 e�t2=2;

ˇ̌
ˇ d

dt

�
fn.t/ � e�t2=2

�ˇ̌ˇ � 1:5L3 .t
2 C t4/ e�t2=2;

ˇ̌
ˇ d2

dt2
�
fn.t/ � e�t2=2

�ˇ̌ˇ � 3L3 .jtj C jtj5/ e�t2=2;

ˇ̌
ˇ d3

dt3
�
fn.t/ � e�t2=2

�ˇ̌ˇ � 12L3 .1C t6/ e�t2=2:

Proof Again, consider the function h.t/ D fn.t/ � e�t2=2 D e�t2=2 ".t/. The case
p D 0 is immediate. For p D 1,we have

et2=2 jh0.t/j D j"0.t/ � t".t/j � 1:5L3 .t
2 C t4/:
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For p D 2, we get, using the previous arguments,

et2=2 jh00.t/j � j"00.t/j C 2jtj j"0.t/j C jt2 � 1j j".t/j

� 1:5L3
�
jtj C 2jtj t2 C jt2 � 1j jtj3

�
� 3L3jtj

�
1C t4

�
:

Finally, for p D 3, using j".p/.t/j � 2:2L3jtj3�p for p D 0; 1; 2; 3, we get

et2=2 jh000.t/j � j"000.t/j C 3jtj j"00.t/j C 3 jt2 � 1j j"0.t/j C jt3 � 3tj j".t/j

� 1:5L3
�
1C 3t2 C 3 jt2 � 1j t2 C jt3 � 3tj jtj3

	
:

If jtj � 1, the expression in the brackets equals and does not exceed 1C 6t2 � t6 �

1C 4
p
2 < 8. If jtj � 1, it does not exceed 1C 6t4 C t6 � 8t6. ut

PART III. “Corrected normal characteristic” functions

10 Polynomials Pm in the Normal Approximation

Let us return to the approximation given in Proposition 8.2, i.e.,

et2=2fn.t/ D eQm.it/ .1C ".t//; where Qm.it/ D

mX
lD3

�l
.it/l

lŠ
.�l D �l.Sn//:

We are now going to simplify the expression eQm.it/ .1C".t// to the form 1CPm.it/C
".t/ with a certain polynomial Pm and with a new remainder term, which would be
still as small as the Lyapunov coefficient Ls (including the case of derivatives). This
may indeed be possible on a smaller interval in comparison with L1=s

s jtj � 1. In view
of Propositions 9.1–9.2, one may naturally assume that s > 3, so that s D m C ˛,
m � 3 (integer), 0 < ˛ � 1.

Using Taylor’s expansion for the exponential function, one can write

eQm.it/ D

1X
k1D0

��3
3Š

	k1 .it/3k1

k1Š
� � �

1X
ks�3D0

��m

mŠ

	km�2 .it/mkm�2

km�2Š

D
X

k1;:::;km�2�0

�
k1
3 : : : �

km�2
m

3Šk1 : : :mŠkm�2

.it/3k1C���Cmkm�2

k1Š : : : km�2Š
D

1X
kD0

ak .it/
k

with coefficients

ak D
X

3k1C���Cmkm�2Dk

1

k1Š : : : km�2Š

��3
3Š

	k1
: : :
��m

mŠ

	km�2

:
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Clearly, all these series are absolutely convergent for all t. A certain part of the last
infinite series represents the desired polynomial Pm.

Definition 10.1 Put

Pm.it/ D
X 1

k1Š : : : km�2Š

��3
3Š

	k1
: : :
��m

mŠ

	km�2

.it/3k1C���Cmkm�2 ;

where the summation runs over all collections of non-negative integers
.k1; : : : ; km�2/ that are not all zero and such that d � k1C2k2C� � �C.m�2/km�2 �

m � 2.

Here the constraint d � m � 2 has the aim to involve only those terms and
coefficients in Pm that may not be small in comparison with Ls. Indeed, as we know
from Proposition 7.4,

j�lj � .l � 1/ŠLl � .l � 1/ŠL.l�2/=.s�2/s ; 3 � l � Œs�;

which gives

ˇ̌
ˇ
��3
3Š

	k1
: : :
��m

mŠ

	km�2
ˇ̌
ˇ �

Ld=.s�2/
s

3k1 : : :mkm�2
: (10.1)

So, the left product is at least as small as Ls in case d � m � 1, when Ls is small. Of
course, this should be justified when comparing eQm.it/ and 1 C Pm.it/ on a proper
interval of the t-axis. This will be done in the next two sections.

The index m for P indicates that all cumulants up to �m participate in the
constructions of these polynomials. The power

k D 3k1 C � � � C mkm�2 D d C 2.k1 C k2 C � � � C km�2/

may vary from 3 to 3.m � 2/, with maximum 3.m � 2/ attainable when k1 D m � 2

and all other kr D 0. Anyway, deg.Pm/ � 3.m � 2/.
These observations imply a simple general bound on the growth of Pm, which will

be needed in the sequel. First, jtjk � max
˚
jtj3; jtj3.m�2/


: Hence, by Definition 10.1,

jPm.it/j � max
˚
jtj3; jtj3.m�2/

 X 1

k1Š : : : km�2Š

Ld=.s�2/
s

3k1 : : :mkm�2
:

Using the elementary bound

X 1

k1Š : : : km�2Š

1

3k1 : : :mkm�2
< e1=3 : : : e1=m < m; (10.2)
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we arrive at:

Proposition 10.2 For all t real,

jPm.it/j � m max
˚
jtj3; jtj3.m�2/


max

˚
L

1
s�2
s ;L

m�2
s�2

s

:

Let us describe the first three polynomials. Clearly, P3.it/ D �3
.it/3

3Š
, while for

m D 4,

P4.it/ D
X

0<k1C2k2�2

1

k1Š k2Š

��3
3Š

	k1��4
4Š

	k2
.it/3k1C4k2 D �3

.it/3

3Š
C �4

.it/4

4Š
C �23

.it/6

2Š 3Š2
:

Correspondingly, for m D 5,

P5.it/ D
X

0<k1C2k2C3k3�3

1

k1Š k2Š k3Š

��3
3Š

	k1��4
4Š

	k2��5
5Š

	k3
.it/3k1C4k2C5k3

D �3
.it/3

3Š
C �4

.it/4

4Š
C �5

.it/5

5Š
C �23

.it/6

2Š 3Š2
C �33

.it/9

3Š 3Š3
:

11 Cumulant Polynomials Qm

Properties of the polynomials Pm will be explored via the study of the cumulant
polynomials

Qm.z/ D

mX
lD3

�l

lŠ
zl;

which will be treated as polynomials in the complex variable z. In this section we
collect auxiliary facts, assuming that Ls < 1 for some s D m C ˛, m � 3, where m
is integer and 0 < ˛ � 1. In that case, the first term in Qm is �3

3Š
z3.

Lemma 11.1 If jzj max
˚
L

1
s�2
s ;L

1
3.s�2/
s


� 1

4
, then jQm.z/j < 0:007. Moreover,

jQm.z/j � 0:42L
1

s�2
s jzj3:

Proof Since s ! L
1

s�2
s is non-decreasing, we have jzj max

˚
L

1
m�2
m ;L

1
3.m�2/
m


� 1

4
.

As we know, for any integer 3 � l � m,

j�lj � .l � 1/ŠLl � .l � 1/ŠL
l�2
m�2
m :
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Hence,

jQm.z/j �

mX
lD3

1

l
Lljzj

l �

mX
lD3

1

l
L

l�2
m�2
m jzjl D L

1
m�2
m jzj3

mX
lD3

1

l

�
L

1
m�2
m jzj

	l�3

� 0:42L
1

m�2
m jzj3 � 0:42L

1
s�2
s jzj3;

where we used L
1

m�2
m jzj � 1

4
together with

P1
lD3

4�.l�3/

l D 64 log 4
3

� 18 < 0:42.

This gives the second assertion. Finally, apply L
1

s�2
s jzj3 � 1

64
to get the uniform

bound on jQm.z/j. ut

Lemma 11.2 In the interval jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s


� 1

8
, we have

eQm.it/ D

m�2X
kD0

Qm.it/k

kŠ
C ".t/

with

1

pŠ

ˇ̌
ˇ dp

dtp
".t/

ˇ̌
ˇ � 4s�2 Lsjtj

3.s�2/�p; p D 0; 1; : : :

Proof Consider the function of the complex variable ‰.w/ D ew �
Pm�2

kD0
wk

kŠ DP1
kDm�1

wk

kŠ : If jwj � 1, then jwjk � jwjm�1 � jwjs�2 for all k � m � 1, so,

j‰.w/j � jwjs�2
1X

kDm�1

1

kŠ
� jwjs�2:

This inequality will be used with w D Qm.z/. The function ‰.Qm.z// is analytic in
the complex plane. So, we may apply Cauchy’s contour integral formula

dp

dtp
‰.Qm.it// D

pŠ

2�

Z
jz�itjD�

‰.Qm.z//

.z � it/pC1
dz

with an arbitrary � > 0, which gives

ˇ̌
ˇ dp

dtp
‰.Qm.it//

ˇ̌
ˇ �

pŠ

�p
max

jz�itjD�
j‰.Qm.z//j:

Assume that jtj > 0 and choose � D jtj. Then on the circle jz � itj D �, necessarily
jzj � 2jtj and, by the assumption on t,

jzj max
˚
L

1
m�2
m ;L

1
3.m�2/
m


� 2jtj max

˚
L

1
m�2
m ;L

1
3.m�2/
m


�
1

4
:
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Hence, we may apply the uniform estimate of Lemma 11.1, jQm.z/j � 0:007 < 1,
so that, involving also the non-uniform estimate of the same lemma, we get

j‰.Qm.z//j � jQm.z/j
s�2 �

�
0:42L

1
s�2
s jzj3

	s�2

� .0:42/s�2 � Ls � .2jtj/3.s�2/ D 3:36s�2 Ls � jtj3.s�2/:

As a result,

ˇ̌
ˇ dp

dtp
‰.Qm.it//

ˇ̌
ˇ �

pŠ

jtjp
3:36s�2Lsjtj

3.s�2/:

ut

Note that, using
P1

kDm�1
1
kŠ � 1:5

.m�1/Š
, the assertion of Lemma 11.2 could be

sharpened to

1

pŠ

ˇ̌
ˇ dp

dtp
".t/

ˇ̌
ˇ � 3:2 �

4s

.m C 1/Š
Lsjtj

3.s�2/�p; p D 0; 1; : : :

Lemma 11.3 In the interval jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s


� 1

8
, we have

ˇ̌
ˇ dp

dtp
eQm.it/

ˇ̌
ˇ � 1:01 pŠ jtj�p; p D 1; 2; : : :

Proof By Cauchy’s contour integral formula, for any � > 0,

ˇ̌
ˇ dp

dtp
eQm.it/

ˇ̌
ˇ �

pŠ

�r
exp

n
max

jz�itjD�
jQm.z/j

o
:

Assume jtj > 0 and choose again � D jtj. Then on the cicrle jz � itj D � we have

jzj max
˚
L

1
s�2
s ;L

1
3.s�2/
s


� 2jtj max

˚
L

1
s�2
s ;L

1
3.s�2/
s


�
1

4
:

Hence, we may apply the uniform estimate of Lemma 11.1 and notice that e0:007 <
1:01. ut

12 Relations Between Pm and Qm

The basic relation between polynomials Pm and Qm is described in the following
statement.

Proposition 12.1 If Ls < 1 .s > 3/, then for jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s


� 1

8
, we have

eQm.it/ D 1C Pm.it/C ı.t/
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with

jı.t/j � 0:2 � 4sLs max
˚
jtjs; jtj3.s�2/


:

Moreover, for all p D 1; : : : ; Œs�,

1

pŠ

ˇ̌
ˇ dp

dtp
ı.t/

ˇ̌
ˇ � 0:5 � 7sLs max

˚
jtjs�p; jtj3.s�2/�p


:

Proof In view of Lemma 11.2, we may only be concerned with the remainder
term

r.t/ D

m�2X
kD1

Qm.it/k

kŠ
� Pm.it/;

which we consider in the complex plane (by replacing it with z 2 C). Using the
polynomial formula, let us represent the above sum as

m�2X
kD1

1

kŠ

� mX
lD3

�l
zl

lŠ

�k

D

m�2X
kD1

X
k1C���Ckm�2Dk

1

k1Š : : : km�2Š

��3
3Š

	k1

: : :
��m

mŠ

	km�2

z3k1C���Cmkm�2 :

Here the double sum almost defines Pm.it/ with the difference that Definition 10.1
contains the constraint k1 C 2k2 C � � � C .m � 2/km�2 � m � 2, while now we have
a weaker constraint k1 C k2 C � � � C km�2 � m � 2. Hence, all terms appearing in
Pm.it/ are present in the above double sum, so

r.t/ D
X 1

k1Š : : : km�2Š

��3
3Š

	k1
: : :
��m

mŠ

	km�2

.it/3k1C���Cmkm�2

with summation subject to

k1 C k2 C � � � C km�2 � m � 2; k1 C 2k2 C � � � C .m � 2/km�2 � m � 1:

Necessarily, all kj � m �2 and at least one kj � 1. Using j�lj � .l �1/ŠL
l�2
s�2
s , we get

jr.z/j �
X 1

k1Š : : : km�2Š

mY
lD3

L
kl�2

l�2
s�2

s jzjN D
X 1

k1Š : : : km�2Š
LM

s jzjN ;

where

M D M.k1; : : : ; km�2/ D
1

s � 2
.k1 C 2k2 C � � � C .m � 2/km�2/;
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N D N.k1; : : : ; km�2/ D 3k1 C � � � C mkm�2

D .k1 C 2k2 C � � � C .m � 2/km�2/

C2 .k1 C k2 C � � � C km�2/:

Note that m C 1 � N � m.m � 2/, which actually will not be used, and .s � 2/M D

N � 2k. If L
1

s�2
s jzj � 1, using the property 1 � k � s � 2, we have

LM�1
s jzjN � jzjN�.s�2/.M�1/ D jzj.s�2/C2k � max

˚
jzjs; jzj3.s�2/


:

Hence

jr.z/j � Ls max
˚
jzjs; jzj3.s�2/

X mY
lD3

1

kl�2Š

�1
l

	kl�2

:

The latter sum is dominated by em�2 � es�2, so

jr.z/j � es�2Ls max
˚
jzjs; jzj3.s�2/


;

which can be used to prove Proposition 12.1 in case p D 0. Indeed, by Lemma 11.2

with its function ".t/ for the interval jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s


� 1

8
, we have

jı.t/j � j".t/j C jr.t/j � 4s�2Lsjtj
3.s�2/ C es�2Ls max

˚
jtjs; jtj3.s�2/


:

Here 4�2 C e�2 < 0:2, and we arrive at the first conclusion for p D 0.
In fact, one can a little sharpen the bound on jr.z/j, by noting that

X mY
lD3

1

kl�2Š

�1
l

	kl�2

� exp
n mX

lD3

1

l

o
� 1 � elog m�log 2 � 1 D

m � 2

2
:

Hence

jr.z/j �
s � 2

2
Ls max

˚
jzjs; jzj3.s�2/


:

This bound can be used for the remaining cases 1 � p � Œs�. One may apply the
Cauchy contour integral formula to get that

jr.p/.t/j �
pŠ

�p
max

jz�itjD�
jr.z/j:
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Let us choose � D 1
2

jtj and use the assumption jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s


� 1

8
. On the

circle jz � itj D � it is necessary that jzj � 3
2

jtj and thus jzj max
˚
L

1
s�2
s ;L

1
3.s�2/
s


� 1

4
:

Hence, we may apply the previous step with bounding r.z/ which was made under

the weaker assumption L
1

s�2
s jzj � 1. This gives

jr.p/.z/j �
pŠ

j0:5 tjp
s � 2

2
Ls max

˚
jzjs; jzj3.s�2/



�
pŠ

jtjp
2s s � 2

2
Ls max

˚
j1:5 tjs; j1:5 tj3.s�2/


:

This yields

jr.p/.t/j � 2pŠ 6:75s�2.s � 2/Ls max
˚
jtjs�p; jtj3.s�2/�p


:

Again, by Lemma 11.2 with its function ".t/,

jı.t/j � j".t/j C jr.t/j

� 4�2 pŠ 4sLsjtj
3.s�2/ C 2pŠ 6:75s�2 .s � 2/Ls max

˚
jtjs�p; jtj3.s�2/�p


:

Here 2 � 6:75s�2.s � 2/ � 2

e log 7
6:75

7s�2 < 0:413 � 7s, and then we arrive at the desired

conclusion. ut

Corollary 12.2 Let Ls < 1 .s � 3/. In the interval jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s


� 1

8
,

we have jPm.it/j � 0:1. Moreover, for all p D 1; : : : ; Œs�,

1

pŠ

ˇ̌
ˇ dp

dtp
Pm.it/

ˇ̌
ˇ � 1:4 jtj�p:

Proof First consider the case p D 0. By Lemma 11.1, jQm.it/j � 0:007, which
implies, using the second estimate of Lemma 11.1 and our assumption,

ˇ̌
eQm.it/�1

ˇ̌
�

e0:007 � 1

0:007
jQm.it/j � 1:004 �0:42L

1
s�2
s jtj3 � 1:004 �0:42 �

1

83
< 0:001:

In addition, by Proposition 12.1 (the obtained bound in case p D 0),

jı.t/j � 0:2 � 4sLs max
˚
jtjs; jtj3.s�2/


:

By the assumption, Lsjtjs � 1
j8tjs�2

jtjs D 1
8s�2 t2 and Lsjtjs � 1

j8tj3.s�2/
jtjs D

1

83.s�2/
t6�2s. Both estimates yield Lsjtjs � 8�s. Since also Lsjtj3.s�2/ � 8�s, we

have

Ls max
˚
jtjs; jtj3.s�2/


� 8�s;
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so

jPm.it/j �
ˇ̌
eQm.it/ � 1

ˇ̌
C jı.t/j � 0:001C 0:2 �

�4
8

	s
< 0:1;

which proves the corollary in this particular case.
Now, let 1 � p � Œs�. Combining Lemma 11.3 and Proposition 12.1, we have,

using the previous step and the assumption s � 3:

ˇ̌
ˇ dp

dtp
Pm.it/

ˇ̌
ˇ �

ˇ̌
ˇ dp

dtp
eQm.it/

ˇ̌
ˇC

ˇ̌
ˇ dp

dtp
ı.t/

ˇ̌
ˇ

� 1:01 pŠ jtj�p C 0:5 pŠ 7sLs max
˚
jtjs�p; jtj3.s�2/�p



� pŠ jtj�p
h
1:01C 0:5

�7
8

	si
� pŠ jtj�p

h
1:01C 0:5

�7
8

	3i
:

ut

13 Corrected Normal Approximation on Moderate Intervals

We are now prepared to prove several assertions about the corrected normal
approximation for the characteristic function fn.t/ of the sum Sn D X1 C � � � C Xn

of independent random variables Xk. As usual, we assume that EXk D 0, EX2k D �2k
.�k � 0/ with

Pn
kD1 �

2
k D 1. Recall that Lyapunov’s coefficients are defined by

Ls D

nX
kD1

E jXkj
s; s � 2:

As before, we write s D m C ˛, where m is integer and 0 < ˛ � 1. The range
2 < s � 3 was considered in Propositions 9.1–9.2, so our main concern will be the
case s > 3. As a preliminary step, let us prove the following statement, including
the value s D 3 (a limit case).

Lemma 13.1 Let Ls < 1. In the interval jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s


� 1

8
, we have

fn.t/ D e�t2=2
�
1C Pm.it/C r.t/

�
(13.1)

with

ˇ̌
ˇ dp

dtp
r.t/

ˇ̌
ˇ � CsLs max

˚
jtjs�p; jtj3.s�2/�p


; p D 0; 1; : : : ; Œs�; (13.2)

where one may take Cs D 0:4 � 4s in case p D 0 and Cs D 1:8 � 7s for 1 � p � Œs�.
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Proof Combining Proposition 12.1 and Corollary 12.2 with Proposition 8.2, we
may write

fn.t/ D e�t2=2 eQm.it/ .1C ".t// D e�t2=2 .1C Pm.it/C ı.t// .1C ".t//

with

jı.t/j � 0:2 � 4sLs max
˚
jtjs; jtj3.s�2/


; j".t/j � 2sLs jtjs; jPm.it/j � 0:1;

where the second inequality was derived under the assumption that L
1
s
s jtj � 1

8
. It is

fulfilled, since in general L
1
s
s � max

˚
L

1
s�2
s ;L

1
3.s�2/
s


. In particular, we get Lsjtjs �

8�s, so j".t/j � 4�s.
Since

r.t/ D .1C Pm.it//".t/C ı.t/.1C ".t//;

we obtain that

jr.t/j � 1:1 � 2sLsjtj
s C 0:2 � 4sLs max

˚
jtjs; jtj3.s�2/


� .1C 4�s/

� 4sLs max
˚
jtjs; jtj3.s�2/

 h
1:1 �

�2
4

	s
C 0:2C 0:2 � 4�s

i
:

The expression in square brackets does not exceed 1:1 � . 2
4
/3C0:2C0:2 �4�3 < 0:4,

which proves the assertion in case p D 0.
Now, let us turn to the derivatives of order p D 1; : : : ; Œs� and apply other bounds

given in Proposition 12.1, Corollary 12.2, and Proposition 8.2,

1

pŠ
jı.p/.t/j � 0:5 � 7sLs max

˚
jtjs�p; jtj3.s�2/�p


;

1

pŠ
j".p/.t/j � 2 �

4s

s
Ls jtjs�p;

1

pŠ
jP.p/m .it/j � 1:4 jtj�p

(which remain to hold in case p D 0 as well). Differentiating the product Pm.it/".t/
according to the Newton binomial formula, let us write

�
.1C Pm.it// � ".t/

�.p/
D

pX
kD0

pŠ

kŠ .p � k/Š

�
1C Pm.it/

�.k/
".t/.p�k/:
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Applying the above estimates, we then get

ˇ̌�
.1C Pm.it// � ".t/

�.p/ ˇ̌
�

pX
kD0

pŠ

kŠ .p � k/Š
kŠ 1:4 � jtj�k � .p � k/Š

2 � 4s

s
Lsjtj

s�.p�k/

D 2:8
.p C 1/Š

s
4s Lsjtj

s�p

� 2:8 � pŠ 4s Lsjtj
s�p:

To derive a similar bound for the product ı.t/".t/, we use Lsjtj3.s�2/ � 8�3.s�2/

together with Lsjtjs � 8�s. Then, the estimate on the p-th derivative of ı implies

jı.p/.t/j � pŠ 0:5 � 7s 8�s jtj�p � 0:4 pŠ jtj�p:

Hence, again according to the binomial formula,

ˇ̌�
ı.t/".t/

�.p/ ˇ̌
�

pX
kD0

pŠ

kŠ .p � k/Š
0:4 kŠ jtj�k � .p � k/Š 4sLs jtjs�.p�k/

D 0:4 .p C 1/Š 4s Lsjtj
s�p:

Collecting these estimates, we obtain that

jr.p/.t/j �
ˇ̌
.Pm.it/".t//

.p/
ˇ̌
C
ˇ̌
.ı.t/".t//.p/

ˇ̌
C
ˇ̌
".p/.t/

ˇ̌
C
ˇ̌
ı.p/.t/

ˇ̌

� pŠ
�
2:8 � 4s C 0:4 .p C 1/ 4s C 4s C 0:5 � 7s

�
Ls max

˚
jtjs�p; jtj3.s�2/�p


:

Here, since the function t ! te�ˇt is decreasing for t > 1=ˇ (ˇ > 0), we have

.p C 1/ 4s �
7

4
.s C 1/

�4
7

	sC1
7s � 4

�4
7

	3
7s < 0:75 � 7s:

In addition, 4s D . 4
7
/s 7s < 0:2 � 7s. So the expression in the brackets in front of Ls

is smaller than .2:8 � 0:2C 0:4 � 0:75C 0:2C 0:7/ 7s < 1:8 � 7s. ut

In the representation for fn.t/ in (13.1), one can take the term r.t/ out of the
brackets, and then we get a more convenient form (at the expense of a larger power
of t). Thus, put

gm.t/ D e�t2=2 .1C Pm.it//;

which serves as the corrected normal “characteristic” function. For the first values
of m, one may recall the formulas for Pm at the end of Section 10, which give
g2.t/ D e�t2=2,
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g3.t/ D e�t2=2
�
1C �3

.it/3

3Š

	
;

g4.t/ D e�t2=2
�
1C �3

.it/3

3Š
C �4

.it/4

4Š
C �23

.it/6

2Š 3Š2

	
;

g5.t/ D e�t2=2
�
�3
.it/3

3Š
C �4

.it/4

4Š
C �5

.it/5

5Š
C �23

.it/6

2Š 3Š2
C �33

.it/9

3Š 3Š3

	
:

Proposition 13.2 Let Ls < 1 .s � 3/. In the interval jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s


� 1

8
,

for every p D 0; 1; : : : ; Œs�,

ˇ̌
ˇ dp

dtp

�
fn.t/ � gm.t/

�ˇ̌ˇ � CsLs max
˚
jtjs�p; jtj3.s�2/Cp


e�t2=2; (13.3)

where one may take Cs D 0:5 � 4s in case p D 0 and Cs D 6 � 8s for 1 � p � Œs�.

Proof Using the remainder term in (13.1), consider the function

R.t/ � fn.t/ � e�t2=2 .1C Pm.it// D e�t2=2 r.t/:

In case p D 0, (13.2) gives the bound

jr.t/j � 0:5 � 4sLs max
˚
jtjs; jtj3.s�2/


:

Hence, the same uniform bound holds for R.t/ as well.
Turning to the derivatives, we use the bounds

1

pŠ
jr.p/.t/j � 1:8 � 7sLs max

˚
jtjs�p; jtj3.s�2/�p



together with jg.p/.t/j � pŠ maxf1; jtjpg g.t/ for the Gaussian function g.t/ D e�t2=2

(cf. (1.8)). Differentiating the product according to the binomial formula,

R.p/.t/ D

pX
kD0

pŠ

kŠ .p � k/Š
g.p�k/.t/r.k/.t/;

we therefore obtain that the absolute value of the above sum is bounded by

g.t/
pX

kD0

pŠ

kŠ .p � k/Š
.p � k/Š max

˚
1; jtjp�k


� kŠ 1:8 � 7sLs max

˚
jtjs�k; jtj3.s�2/�k



� 1:8 � 7spŠLsg.t/
pX

kD0

max
˚
1; jtjp�k


max

˚
jtjs�k; jtj3.s�2/�k
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� 1:8 � 7spŠLsg.t/ .p C 1/ max
˚
jtjs�p; jtj3.s�2/Cp


:

Here

.p C 1/ 7s �
8

7
.s C 1/

�7
8

	sC1
8s �

8

7

1

e log 8
7

8s � 3:15 � 8s;

while 3:15 � 1:8 < 5:7. ut

Remarks In the literature one can find different variations of the inequal-
ity (13.3). For integer values s D m C 1 and for p D 0, it was proved by
Statulevičius, cf. [St1, St2] (with a similar behavior of the constants). A somewhat
more complicated formulation describing the multidimensional expansion was
given by Bikjalis [Bi2] (in the same situation).

14 Signed Measures �m Associated with gm

Once it is observed that the characteristic function fn.t/ of Sn is close on a relatively
long interval to the corrected normal “characteristic function” gm.t/ D e�t2=2 .1 C

Pm.it//; it is reasonable to believe that in some sense the distribution of Sn is close
to the signed measure �m, whose Fourier-Stieltjes transform is exactly gm.t/, that
is, with

Z 1

�1

eitx d�m.x/ D gm.t/; t 2 R:

In order to describe �m, let us recall the Chebyshev-Hermite polynomials

Hk.x/ D .�1/k .e�x2=2/.k/ ex2=2; k D 0; 1; 2; : : : .x 2 R/;

or equivalently, '.k/.x/ D .�1/k Hk.x/'.x/ in terms of the normal density '.x/ D
1p
2�

e�x2=2: Each Hk is a polynomial of degree k with leading coefficient 1. For
example,

H0.x/ D 1; H2.x/ D x2 � 1; H4.x/ D x4 � 6x2 C 3;

H1.x/ D x; H3.x/ D x3 � 3x; H5.x/ D x5 � 10x3 C 15x;

H6.x/ D x6 � 15x4 C 45x2 � 15;

and so on. These polynomials are orthogonal on the real line with weight '.x/
and form a complete orthogonal system in the Hilbert space L2.R; '.x/ dx/. By the
repeated integration by parts (with t ¤ 0),

e�t2=2 D

Z 1

�1

eitx'.x/ dx D
1

�it

Z 1

�1

eitx'0.x/ dx D
1

.�it/k

Z 1

�1

eitx'.k/.x/ dx:
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In other words, we have the identity
R1

�1 eitx Hk.x/'.x/ dx D .it/k e�t2=2: Equiva-
lently, using the inverse Fourier transform, one may write

Hk.x/ '.x/ D
1

2�

Z 1

�1

e�itx .it/p e�t2=2 dt;

which may be taken as another definition of Hk.
Returning to Definition 10.1, we therefore obtain:

Proposition 14.1 Let Ls < 1 for s D mC˛ with an integer m � 2 and 0 < ˛ � 1.
The measure �m with Fourier-Stieltjes transform gm.t/ D e�t2=2 .1 C Pm.it// has
density

'm.x/ D '.x/C '.x/
X 1

k1Š : : : km�2Š

��3
3Š

	k1
: : :
��m

mŠ

	km�2

Hk.x/;

where k D 3k1 C � � � C mkm�2 and where the summation runs over all collections of
non-negative integers .k1; : : : ; km�2/ that are not all zero and such that k1 C 2k2 C

� � � C .m � 2/km�2 � m � 2:

Recall that the cumulants �p of Sn are well defined for p D 1; : : : ;m and also
for p D m C 1 when s is integer. However, in this case �mC1 is not present in the
construction of 'm. By the definition, if 2 < s � 3, the above sum is empty, that is,
'2 D '.

In a more compact form, one may write 'm.x/ D '.x/.1C Rm.x//; where Rm is
a certain polynomial of degree at most 3.m � 2/, defined by

Rm.x/ D
X 1

k1Š : : : km�2Š

��3
3Š

	k1
: : :
��m

mŠ

	km�2

Hk.x/;

where k D 3k1 C � � � C mkm�2 and the summation is as before. For m D 3, we have
R3.x/ D �3

3Š
H3.x/ D �3

3Š
.x3 � 3x/; while for m D 4,

R4.x/ D
�3

3Š
H3.x/C

�4

4Š
H4.x/C

�23
2Š 3Š2

H6.x/

D
�3

3Š
.x3 � 3x/C

�4

4Š
.x4 � 6x2 C 3/C

�23
2Š 3Š2

.x6 � 15x4 C 45x2 � 15/:

Correspondingly, for m D 5,

R5.x/ D
�3

3Š
H3.x/C

�4

4Š
H4.x/C

�5

5Š
H5.x/C

�23
2Š 3Š2

H6.x/C
�33
3Š 3Š3

H9.x/:

Let us briefly describe a few basic properties of the measures �m.
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Proposition 14.2 The moments of Sn and �m coincide up to order m, that is,

f .p/n .0/ D g.p/m .0/; p D 0; 1; : : : ;m:

In particular, �m.R/ D
R1

�1 'm.x/ dx D 1:

The latter immediately follows from the Fourier transform formula

Z 1

�1

eitx'm.x/ dx D gm.t/ D e�t2=2 .1C Pm.it//;

applied at t D 0. The more general assertion immediately follows from Proposi-
tion 13.2, which gives jf .p/n .t/ � g.p/m .t/j D O.jtjs�p/ as t ! 0.

Proposition 14.3 If Ls < 1 for s D m C ˛ with m � 2 integer and 0 < ˛ � 1,
then the measure �m has a total variation norm satisfying

ˇ̌
k�mkTV � 1

ˇ̌
� m

p
.3.m � 2//Š maxfL

1
s�2
s ;L

m�2
s�2

s g: (14.1)

In addition,

Z 1

�1

jxjs j�m.dx/j � s2s maxfLs; 1g: (14.2)

Proof In the definition of Pm, the tuples .k1; : : : ; km�2/ participating in the sum
satisfy 1 � d � m � 2, where d D k1 C 2k2 C � � � C .m � 2/km�2. Thus (cf. (10.1)),

ˇ̌
ˇ
��3
3Š

	k1
: : :
��m

mŠ

	km�2
ˇ̌
ˇ �

1

3k1 : : :mkm�2
L

d
s�2
s

�
1

3k1 : : :mkm�2
maxfL

1
s�2
s ;L

m�2
s�2

s g �
1

3k1 : : :mkm�2
maxfLs; 1g:

Hence

ˇ̌
k�mkTV � 1

ˇ̌
D

Z 1

�1
jRm.x/j'.x/ dx

� maxfL
1

s�2
s ;L

m�2
s�2

s g
X 1

k1Š : : : km�2Š

1

3k1 : : :mkm�2

Z 1

�1
jHk.x/j'.x/ dx;

where k D 3k1 C � � � C mkm�2 (which may vary from 3 to 3.m � 2/). Let Z be a
random variable with the standard normal distribution. As is well known,

Z 1

�1

Hk.x/
2 '.x/ dx D EHk.Z/

2 D kŠ
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Hence, by the Cauchy inequality,

Z 1

�1

jHk.x/j'.x/ dx D E jHk.Z/j �
p

kŠ �
p
.3.m � 2//Š

implying that

ˇ̌
k�mkTV�1

ˇ̌
�
p
.3.m � 2//Š maxfLs;L

.m�2/=.s�2/
s g

X 1

k1Š : : : km�2Š

1

3k1 : : :mkm�2
:

The latter sum does not exceed e1=3 : : : e1=m < m, cf. (10.2), and we obtain (14.1).
Let us now turn to the second assertion. If m D 2, then 'm D ' and �m is the

standard Gaussian measure on the real line. In this case,

Z 1

�1

jxjs j�m.dx/j D E jZjs D
2s=2

p
�


� s C 1

2

	
�
23=2
p
�

.2/ < 1:6 < s2s:

In case m � 3, again by the Cauchy inequality, for the same value of k as before,
we have

Z 1

�1

jxjs jHk.x/j'.x/ dx D E jZjs jHk.Z/j �
p
E jZj2s

p
kŠ

�
p
E jZj2s

p
.3.m � 2//Š

Hence, applying once more the inequality (10.2) together with the last bound on the
product of the cumulants, we obtain that

Z 1

�1

jxjs j�m.dx/j �

Z 1

�1

jxjs '.x/ dx C

Z 1

�1

jxjs jRm.x/j'.x/ dx

� E jZjs C
p
E jZj2s m

p
.3.m � 2//Š maxfLs; 1g

� 2
p
E jZj2s m

p
.3.m � 2//Š maxfLs; 1g:

To simplify the right-hand side, one may use

.3.m � 2//Š � 
.3s � 5/ D

.3s C 1/

3s .3s � 1/.3s � 2/.3s � 3/.3s � 4/.3s � 5/
:

Since 3s � 1 � 8
3

s, 3s � 2 � 7
3

s, 3s � 3 � 6, 3s � 4 � 5, 3s � 5 � 4, we have

.3s � 5/ � 1

280 s3

.3s C 1/ and thus

�
1

max.Ls; 1/

Z 1

�1

jxjs j�.dx/j

�2
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� 4E jZj2s m2

280 s3

.3s C 1/ �

1

70 s
E jZj2s 
.3s C 1/

D
1

70 s

2s

p
�


�

s C
1

2

	

.3s C 1/ <

1

70 s

2s

p
�

.s C 1/ 
.3s C 1/:

By Stirling’s formula, 
.x C 1/ � 2 . x
e /

x
p
2�x .x � 3/, which allows us to bound

the above right-hand side by

1

70 s

2s

p
�

� 2
� s

e

	sp
2�s � 2

�3s

e

	3sp
6�s D

2
p
12�

35

�54
e4

	s
s4s < s4s:

ut

As a consequence, one can complement Proposition 14.3 with the following
statement which is of a special interest when Ls is large (since in that case the
interval of approximation in this proposition is getting small).

Corollary 14.4 Let Ls < 1 for s D m C ˛ with m � 2 integer and 0 < ˛ � 1.
Then, for all t 2 R and p D 0; 1; : : : ; Œs�,

ˇ̌
ˇ dp

dtp

�
fn.t/ � gm.t/

�ˇ̌ˇ � 4s2s maxfLs; 1g
jtjs�p

.Œs� � p/Š
:

Proof Let Pn denote the distribution of Sn. By Proposition 5.2 applied to the
signed measure � D Pn � �m, we have

ˇ̌
ˇ dp

dtp

�
fn.t/ � gm.t/

�ˇ̌ˇ � 2Cs
jtjs�p

.m � p/Š
; where Cs D

Z 1

�1

jxjs jPn.dx/ � �m.dx/j:

Here

Cs �

Z 1

�1

jxjs Pn.dx/C

Z 1

�1

jxjsj�m.dx/j D E jSnjs C

Z 1

�1

jxjsj�m.dx/j:

The last integral may be estimated with the help of the bound (14.2), while the
s-th absolute moment of Sn is estimated with the help of Rosenthal’s inequality
E jSnjs � .2s/s maxfLs; 1g; cf. (7.3). Since .2s/s � s2s, we get Cs � 2s2s. ut

PART IV. Corrected normal approximation on long intervals
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15 Upper Bounds for Characteristic Functions fn

Let X1; : : : ;Xn be independent random variables with EXk D 0, EX2k D �2k .�k � 0/,
assuming that

Pn
kD1 �

2
k D 1. Recall that

L3 D

nX
kD1

E jXkj
3:

On long intervals of the t-axis, we are aimed to derive upper bounds on the absolute
value of the characteristic function fn.t/ D E eitSn of the sum Sn D X1 C � � � C Xn.
Assume that Xk have finite 3-rd moments, and put ˇ3;k D EjXkj

3. We will need:

Lemma 15.1 Let X be a random variable with characteristic function v.t/. If EX D

0, EX2 D �2, E jXj3 D ˇ3 < 1, then for all t 2 R,

jv.t/j � e� 1
2 �

2t2C 1
3 ˇ3jtj

3

:

In addition, if ˇs D E jXjs is finite for s � 3, then for all p D 1; : : : ; Œs�,

jv.p/.t/j � e1=6 ˇp� maxf1; jtjg e� 1
2 �

2t2C 1
3 ˇ3jtj

3

; p� D maxfp; 2g:

Proof Let X0 be an independent copy of X. Since X has mean zero, E jX �X0j3 �

4ˇ3, cf. [B-RR], Lemma 8.8. Hence, by Taylor’s expansion, for any t real,

jv.t/j2 D E eit.X�X0/ D 1 � �2t2 C
4�

3Š
ˇ3jtj

3 � exp
n

� �2t2 C
4�

3Š
ˇ3jtj

3
o

with some � D �.t/ such that j� j � 1. The first inequality now easily follows.
Since jv00.t/j � �2 and v0.0/ D 0, we also have jv0.t/j � �2jtj. On the other

hand, putting x D � jtj and using ˇ � �3, we have

�
1

2
�2t2 C

1

3
ˇ3jtj

3 � �
1

2
x2 C

1

3
x3 � �

1

6
.x � 0/:

This proves the second inequality of the lemma in case p D 1. If p � 2, then we
only need to apply jv.p/.t/j � ˇp. ut

Denoting by vk the characteristic function of Xk, by the first inequality of
Lemma 15.1, jvk.t/j � expf� 1

2
�2k t2 C 1

3
ˇ3;kjtj3g. Multiplying these inequalities,

we get

jfn.t/j � exp
n

�
1

2
t2 C

1

3
L3jtj

3
o
:

If jtj � 1
L3

, then L3jtj3 � t2 for jtj � 1
L3

. Hence, the above bound yields:
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Proposition 15.2 We have jfn.t/j � e�t2=6 whenever jtj � 1
L3

.

One can sharpen the statement of Proposition 15.2 by developing Taylor’s
expansion for vk.t/, rather than for jvk.t/j2. By Taylor’s integral formula,

vk.t/ D 1 �
�2k t2

2
C
1

2

Z t

0

v000
k .�/.t � �/2 d�;

so
ˇ̌
vk.t/�.1�

�2k t2

2
/
ˇ̌

�
ˇ3;k
6

jtj3. Here the left-hand side dominates jvk.t/j�.1�
�2k t2

2
/

in case �kjtj �
p
2, and then we obtain that

jvk.t/j � 1 �
�2k t2

2
C
ˇ3;k jtj3

6
� exp

n
�
�2k t2

2
C
ˇ3;k jtj3

6

o
:

Multiplying these inequalities, we get:

Proposition 15.3 If maxk �kjtj �
p
2, we have

jfn.t/j � exp
n

�
t2

2
C

L3jtj3

6

o
:

Hence, if additionally jtj � 1
L3

, then jfn.t/j � e�t2=3:

This statement has an advantage over Proposition 15.2 in case of i.i.d. summands.
Now let us consider the case of the finite Ls with 2 < s � 3 and define ˇs;k D

E jXkj
s. Here is an adaptation of Lemma 15.1.

Lemma 15.4 Let X be a random variable with characteristic function v.t/. If EX D

0, EX2 D �2, E jXjs D ˇs < 1 for 2 < s � 3, then, for all t 2 R,

jv.t/j � e� 1
2 �

2t2C2ˇsjtjs :

In addition,

jv0.t/j � e1=24 �2jtj e� 1
2 �

2t2C2ˇsjtjs ; jv00.t/j � e1=24 �2e� 1
2 �

2t2C2ˇsjtjs :

Proof Let X0 be an independent copy of X. Then Var.X � X0/ D 2�2. Write

jX � X0js D .X � X0/2 jX � X0js�2

� .X � X0/2
�
jXjs�2 C jX0js�2

�
D .X2 � 2XX0 C X0/

�
jXjs�2 C jX0js�2

�
;

implying that

E jX � X0js � E jXjs C E jX0js C EX2 E jX0js�2 C EX02
E jXjs�2

D 2E jXjs C 2EX2 E jXjs�2:
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Here EX2 � ˇ
2=s
s and E jXjs�2 � ˇ

.s�2/=s
s , so that we obtain E jX � X0js � 4ˇs:

Now, by Proposition 5.1 with p D 0, m D 2, applied to X � X0,

jv.t/j2 D E eit.X�X0/ D 1 � �2t2 C ı.t/; jı.t/j � 4ˇsjtj
s:

Hence, for any t real,

jv.t/j2 � 1 � �2t2 C 4ˇsjtj
s � exp

˚
� �2t2 C 4ˇsjtj

s

;

proving the first inequality. Since jv00.t/j � �2 and v0.0/ D 0, we also have jv0.t/j �

�2jtj, jv00.t/j � �2. On the other hand, putting x D � jtj and using ˇs � � s, we have

�
1

2
�2t2 C 2ˇsjtj

s � �
1

2
x2 C 2xs D  .x/:

On the positive half-axis the function attains minimum at the point xs D .2s/�
1

s�2 ,
at which

 .xs/ D �
1

2
.2s/�

2
s�2 C 2 .2s/�

s
s�2 D �

s � 2

2s

� 1
2s

	 2
s�2

� �
1

24
:

ut

Now, returning to the random variables Xk, by the first inequality of this lemma,
we have jvk.t/j � exp

˚
� 1

2
�2k t2 C 2ˇs;kjtjs


: Multiplying them, we get jfn.t/j �

expf� t2

2
.1 � 4Lsjtjs�2/g, which yields:

Proposition 15.4 If 2 < s � 3, then jfn.t/j � e�t2=6 in the interval jtj � .6Ls/
� 1

s�2 .

Remarks The first inequality in Lemma 15.1 first appeared apparently in the
work by Zolotarev [Z1]. Later in [Z2] he sharpened this bound to

log jv.t/j � �
1

2
�2t2 C 2�3 ˇ3jtj

3; �3 D sup
x>0

cos x � 1C x2

2

x3
D 0:099 : : :

Further refinements are due to Prawitz [Pr1, Pr2]. Sharper forms of Lemma 15.4,
including s-dependent constants in front of jtjs for the values 2 < s � 3, were
studied by Ushakov and Shevtsova, cf. [U], [Sh2].

16 Bounds on the Derivatives of Characteristic Functions

Keeping notations of the previous section together with basic assumptions on the
random variables Xk’s, here we extend upper bounds on the characteristic function
fn.t/ D E eitSn to its derivatives up to order Œs�. Put p� D max.p; 2/.
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Proposition 16.1 Let Ls < 1, for some s � 3. Then, for all p D 0; : : : ; Œs�,

ˇ̌
ˇ dp

dtp
fn.t/

ˇ̌
ˇ � 2:03p pŠ maxfLp� ; 1g maxf1; jtjpg e�t2=6; if jtj �

1

L3
: (16.1)

Proof The case p D 0 follows from Proposition 15.2. For p � 1, denote by vk.t/
the characteristic functions of Xk. We use the polynomial formula

f .p/n .t/ D
X�

p
q1 : : : qn

�
v
.q1/
1 .t/ : : : v.qn/

n .t/

with summation running over all integers qk � 0 such that q1 C � � � C qn D p. By
Lemma 15.1,

jvk.t/j � e� 1
2 �

2
k t2C 1

3 ˇ3;kjtj3 ;

jv
.qk/
k .t/j � e1=6 ˇq�

k ;k
maxf1; jtjg e� 1

2 �
2
k t2C 1

3 ˇ3;kjtj3 ; qk � 1;

where ˇq;k D E jXkj
q and q�

k D maxfqk; 2g. Applying these inequalities and noting
that the number

l D cardfk � n W qk � 1g

is smaller than or equal to p, we get

nY
kD0

jv
.qk/
k .t/j � ep=6 maxf1; jtjpg e� 1

2 t2C 1
3 L3jtj3 ˇq�

1 ;1
: : : ˇq�

n ;n:

Write .q1; : : : ; qn/ D .0; : : : ; qk1 ; : : : ; qkl ; : : : ; 0/, specifying all indexes k for which
qk � 1. Put p1 D qk1 ; : : : ; pl D qkl . Thus, pj � 1, p1 C � � � C pl D p, so 1 � l � p,
and the above bound takes the form

nY
kD0

jv
.qk/
k .t/j � ep=6 maxf1; jtjpg e� 1

2 t2C 1
3 L3jtj3 ˇp�

1 ;k1
: : : ˇp�

l ;kl
:

Using it in the polynomial formula and performing summation over all kj’s, we
arrive at

jf .p/n .t/j � ep=6 maxf1; jtjpg e� 1
2 t2C 1

3 L3jtj3eLp

with

eLp D
X�

p
p1 : : : pl

�
Lp�

1
: : : Lp�

l
;
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where the sum runs over all integers l D 1; : : : ; p and p1; : : : ; pl � 1 such that
p1 C � � � C pl D p.

Clearly, eL1 D 1 and eL2 D 2. If p � 3, using the property that the function
q ! L1=.q�2/

q is not decreasing in q > 2 (Proposition 7.1), we get

Lp�

1
: : : Lp�

l
D

Y
jW pj�2

Lpj �
Y

jW pj�2

L
pj�2
p�2

p D L�p :

Here

.p � 2/� D

lX
jD1

.pj � 2/ 1fpj�2g D p � 2l C
X

jW pjD1

1 � p � 2

with the last inequality holding for l � 2. Also, when l D 1, necessarily
P

jWpjD1
1 D

0, so � � 1 in all cases. But then L�p � maxfLp; 1g, which implies

eLp � maxfLp; 1g

pX
lD1

X
p1C���CplDp

�
p

p1 : : : pl

�

� maxfLp; 1g pŠ
pY

lD1

1X
plD1

1

plŠ
� maxfLp; 1g .e � 1/p pŠ

This inequality remains to hold for p D 1 and p D 2. Thus, for all p � 1,

jf .p/n .t/j �
�
.e � 1/ e1=6

�p
pŠ maxfLp� ; 1g maxf1; jtjpg e� 1

2 t2C 1
3 L3jtj3 :

Here .e � 1/e1=6 < 2:03. Also, if jtj � 1
L3

, then L3jtj3 � t2. ut

Let us now turn to the case 2 < s < 3 with finite Lyapunov coefficient Ls rather
than L3. In terms of the characteristic functions vk.t/, the first derivative of fn.t/ is
just the sum

f 0
n.t/ D

nX
kD1

v1.t/ : : : vk�1.t/ v
0
k.t/ vkC1.t/ : : : vn.t/:

Here, by Lemma 15.4, the k-th term is dominated by e1=24 �2k jtj e� 1
2 t2C2Lsjtjs .

Performing summation over all k � n, we then arrive at

jf 0
n.t/j � e1=24 jtj e� 1

2 t2C2Lsjtjs :
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Now, let us turn to the second derivative. Assuming that n � 2, first write

f 00
n .t/ D

nX
kD1

v1.t/ : : : vk�1.t/ v
00
k .t/ vkC1.t/ : : : vn.t/

C 2
X

1�k<l�n

v1.t/ : : : vk�1.t/ v
0
k.t/ vkC1.t/ : : : vl�1.t/ v

0
l.t/ vlC1.t/ : : : vn.t/:

Again by Lemma 15.4, we get

jv1.t/ : : : vk�1.t/ v
00
k .t/ vkC1.t/ : : : vn.t/j � e1=24 �2k e� 1

2 t2C2Lsjtjs

and

jv1.t/ : : : vk�1.t/ v
0
k.t/ vkC1.t/ : : : vl�1.t/ v

0
l.t/ vlC1.t/ : : : vn.t/j

� e1=12 �2k �
2
l t2 e� 1

2 t2C2Lsjtjs :

Performing summation in the representation for f 00
n .t/ we arrive at

jf 00
n .t/j �

�
e1=24 C e1=12 t2

�
e� 1

2 t2C2Lsjtjs :

If n D 1, the estimate is simplified to jf 00
1 .t/j � e1=24 e� 1

2 t2C2Lsjtjs : One can
summarize.

Proposition 16.2 If 2 < s < 3, then in the interval jtj � .6Ls/
� 1

s�2 ,

jfn.t/j � e�t2=6; jf 0
n.t/j � e1=24 jtj e�t2=6; jf 00

n .t/j � e1=12.1C t2/ e�t2=6:

17 Upper Bounds for Approximating Functions gm.t/

Our next step is to get bounds, similar to the ones in Sections 15–16, for the
corrected normal “characteristic function”

gm.t/ D e�t2=2 .1C Pm.it//

with large values of jtj, more precisely – outside the interval of Proposition 13.2.

Proposition 17.1 Let s � 3. In the region jtj maxfL
1

s�2
s ;L

1
3.s�2/
s g � 1

8
, we have

jgm.t/j � .142 s/3s=2 Ls e�t2=8: (17.1)
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Moreover, for every p D 1; 2; : : : ; Œs�,

jg.p/m .t/j � .573 s/2s Ls e�t2=8: (17.2)

Recall that, for real values s D m C ˛, where m � 2 is integer and 0 < ˛ � 1,

Pm.it/ D
X 1

k1Š : : : km�2Š

��3
3Š

	k1
: : :
��m

mŠ

	km�2

.it/k;

where the summation runs over all collections of non-negative integers
.k1; : : : ; km�2/ that are not all zero and such that

k � 3k1 C � � � C mkm�2; d � k1 C 2k2 C � � � C .m � 2/km�2 � m � 2:

Note that all tuples that are involved satisfy 1 � d � s�2 and 1 � k � 3d � 3.s�2/.

Proof of Proposition 17.1 We use the bound (10.1), implying that, for all
complex t,

jPm.it/j �
X 1

k1Š : : : km�2Š

1

3k1 : : :mkm�2
L

d
s�2
s jtjk:

If Ls � 1, then L
d

s�2
s � Ls. In this case, using a simple inequality

xˇe�x � .ˇe�1/ˇ .x; ˇ � 0/ (17.3)

together with the property k � 3.s � 2/, we have

jtjk e�3t2=8 �
�8k

3e

	k=2
�
�8s

e

	 3
2 .s�2/

< .3s/
3
2 .s�2/:

Hence L
d

s�2
s jtjk e�t2=2 � .3s/

3
2 .s�2/ Ls e�t2=8. Using the inequality (10.2), we then

get

jgm.t/j � .1C jPm.it/j/ e�t2=2 � m.3s/
3.s�2/
2 Ls e�t2=8 � .3s/3s=2 Ls e�t2=8;

which provides the desired estimate (17.1).
In the (main) case Ls � 1, it will be sufficient to bound the products

L
d

s�2�1
s jtjk e�3t2=8 by the s-dependent constants uniformly for all admissible tuples.

Put x D L
� 1

s�2
s . Using the hypothesis jtj � 1

8
x1=3, let us rewrite every such product

and then estimate it as follows:

L
d

s�2�1
s jtjk e�3t2=8 D x.s�2/�d e�t2=4 � jtjk e�t2=8
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� x.s�2/�d e� 1
256 x2=3 � jtjk e�t2=8

D .256 y/
3
2 ..s�2/�d/ e�y � .8u/k=2 e�u;

where we changed the variables x D .256 y/3=2, t D .8u/1=2. Next, again we apply
inequality (17.3), which allows us to bound the last expression by

�
256 �

3

2e
.s � 2 � d/

	 3
2 .s�2�d/

�
�8k

2e

	k=2
�
�384 s

e

	 3
2 .s�2�d/

�
�12 s

e

	k=2

�
�384 s

e

	 1
2 .3.s�2�d/Ck/

:

Here 3.s � 2 � d/C k D 3.s � 2/ � .3d � k/ � 3.s � 2/: Hence, the last quantity

may further be estimated by
�
384 s

e

� 3.s�2/
2 < .142 s/

3.s�2/
2 , so

L
d

s�2
s jtjk e�t2=2 � .142 s/

3.s�2/
2 Ls e�t2=8:

This inequality remains to hold, when all kj D 0 as well. Thus, similarly to the
previous case,

.1C jPm.it/j/ e�t2=2 � m.142 s/
3.s�2/
2 Ls e�t2=8 � .142 s/3s=2 Ls e�t2=8;

proving the first part of the proposition, i.e. for p D 0.
To treat the case of derivatives of an arbitrary order p � 1, one may use the

property that gm is an entire function and apply Cauchy’s contour integral formula.
This would reduce our task to bounding jgmj in a strip of the complex plane. Indeed,
first consider the functions of the complex variable

Rk.z/ D zk e�z2=2; z D t C u; .t ¤ 0 real/; juj �
jtj

4
.u complex/:

We have jzj � 5
4

jtj and Re.z2/ � t2 � 2 jtj juj � juj2 � 7
16

t2; implying that

jRk.z/j D jzjk e�Re.z2/=2 �
�5
4

jtj
	k

e�7t2=32:

For any � > 0, by Cauchy’s integral formula, jR.p/k .t/j � pŠ ��p maxjz�tjD� jRk.z/j:

Choosing � D jtj
4

and applying the constraints p � s C 1, k � 3.s � 2/, we get

jR.p/k .t/j � pŠ
� 4

jtj

	p
�
�5
4

jtj
	k

e�7t2=32 � pŠ 4sC1
�5
4

	3.s�2/
� jtjk�p e�7t2=32:

(17.4)
Case 1. First assume that k � p.
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If Ls � 1, putting x D L
� 1

s�2
s as before and using the hypothesis jtj � 1

8
x1=3, we

have:

pŠL
d

s�2�1
s jtjk�p e�3t2=32 D pŠ x.s�2/�d e�t2=16 � jtjk�p e�t2=32

� pŠ x.s�2/�d e� 1

82 �16
x2=3

� jtjk�p e�t2=32

D pŠ .82 � 16 y/
3
2 ..s�2/�d/ e�y � .32 u/

1
2 .k�p/ e�u:

Again using the general inequality (17.3), one can bound the last expression by

pŠ
�
82 � 16 �

3

2e
.s � 2 � d/

	 3
2 .s�2�d/

�
�
32

k � p

2e

	 1
2 .k�p/

� pŠ .566 s/
3
2 ..s�2/�d/ �

�48s

e

	 1
2 .k�p/

� sp .566 s/
1
2 .3.s�2�d/C.k�p//;

where we applied elementary relations pŠ � mp � sp for the values p � m C 1 on
the last step. Also note that

3.s � 2 � d/C .k � p/ D 3.s � 2/ � .3d � k/ � p � 3.s � 2/ � p:

Hence,

sp .566 s/
1
2 .3.s�2�d/C.k�p// � 566

3
2 .s�2/ s

1
2 .3.s�2/Cp/

� 1162.s�2/ s2s�2 < .116 s/2s�2;

and thus

pŠL
d

s�2�1
s jtjk�p e�3t2=32 � .116 s/2s�2: (17.5)

If Ls � 1, the argument is similar and leads to a better constant. Since now
jtj � 1

8
x,

pŠL
d

s�2�1
s jtjk�p e�3t2=32 D pŠ x.s�2/�d e�t2=16 � jtjk�p e�t2=32

� pŠ x.s�2/�d e� 1

82 �16
x2

� jtjk�p e�t2=32

D pŠ .82 � 16 y/
1
2 ..s�2/�d/ e�y � .32 u/

1
2 .k�p/ e�u:
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The last expression is bounded by

pŠ
�
82 � 16 �

1

2e
.s � 2 � d/

	 1
2 .s�2�d/

�
�
32

k � p

2e

	 1
2 .k�p/

� pŠ .189 s/
1
2 ..s�2/�d/ �

�48s

e

	 1
2 .k�p/

� sp .189 s/
1
2 ..s�2�d/C.k�p//:

Replacing here s �2� d with the larger value 3.s �2� d/, we return to the previous
step with constant 189 in place of 566. So, the bound (17.5) remains to hold in this
case as well.

Case 2. Assume that k < p and Ls � 1. In this case, the function jtjk�p e�3t2=32 is

decreasing in jtj. Using again jtj � 1
8

x1=3 with x D L
� 1

s�2
s , we have, by (17.3), for

any ˇ � 0,

pŠL
d

s�2�1
s jtjk�p e�3t2=32 � pŠ x.s�2/�d

�1
8

x1=3
	k�p

e� 3

82 �32
x2=3

� pŠ 8s x.s�2/�dC 1
3 .k�p/ e� 3

82 �32
x2=3

D pŠ 8s
�82 � 32 ˇ

3e

	ˇ
x.s�2/�dC 1

3 .k�p/� 2
3 ˇ:

Here we choose ˇ such that the power of x would be zero, that is, ˇ D 3
2
.s �

2 � d/ C 1
2
.k � p/: Let us verify that this number is indeed non-negative, that is,

.3d � k/ C p � 3.s � 2/. This is obvious, when all kj D 0. From the definition, it
also follows that, when at least one kj > 0,

3d � k D 2

m�2X
jD1

.j � 1/kj D 2d � 2

m�2X
jD1

kj � 2.m � 2/ � 2:

If p � m, we conclude that .3d �k/Cp � 2.m�2/�2Cm D 3.m�2/ < 3.s�2/,
which was required. If s D m C 1 is integer, and p D m C 1, we also have

.3d � k/C p � 2.m � 2/ � 2C .m C 1/ D 3m � 5 < 3.s � 2/:

Thus, one may use the chosen value of ˇ. Since ˇ D 1
2
.3.s � 2/� .3d � k/� p/ �

3.s�2/�p
2

; we then get that

pŠL
d

s�2�1
s jtjk�p e�3t2=32 � pŠ 8s

�82 � 32 ˇ

3e

	ˇ

� sp 8s
�82 � 32 s

2e

	 3.s�2/�p
2
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� 8s
�82 � 32

2e

	 3.s�2/
2

� s
3.s�2/Cp

2 < .242 s/2s�2:

Case 3. Assume that k < p and Ls � 1, jtj � 1. In this case one may just write

pŠL
d

s�2�1
s jtjk�p e�3t2=32 � pŠ � sp � s2s�2:

Thus, in all these three cases,

pŠL
d

s�2�1
s jtjk�p e�3t2=32 � .242 s/2s�2;

and therefore, according to (17.4),

jR.p/k .t/j � 4sC1
�5
4

	3.s�2/
e�t2=8 � pŠ jtjk�p e�3t2=32

� 4sC1
�5
4

	3.s�2/
.242 s/2s�2 L

1� d
s�2

s e�t2=8

< 5732s s2s�2 L
1� d

s�2
s e�t2=8: (17.6)

Case 4. Assume that k < p, Ls � 1 and jtj � 1.
Returning to the Cauchy integral formula, let us now choose � D 1. For z D tCu,

juj � 1 (u complex), we have jzj � 2 and Re.z2/ � t2 � 2 jtj juj � juj2 � 1
2

t2 � 3:

Hence

jRk.z/j D jzjk e�Re.z2/=2 � e�3 2k e�t2=2 � e�3 2sC1 e�t2=2

and

jR.p/k .t/j � pŠ max
jz�tjD1

jRk.z/j � pŠ e�3 2sC1 e�t2=2 � e�3 .2s/2s�2 e�t2=2:

This is better than the bound (17.6) obtained for the previous cases (note that the

above right-hand side may be multiplied by the factor L
1� d

s�2
s which is larger than 1).

As result, in all cases,

jR.p/k .t/j � 5732s s2s�2 L
1� d

s�2
s e�t2=8;

so

jg.p/m .t/j �
X 1

k1Š : : : km�2Š

ˇ̌
ˇ
��3
3Š

	k1
: : :
��m

mŠ

	km�2
ˇ̌
ˇ jR.p/k .t/j
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�
X 1

k1Š : : : km�2Š

1

3k1 : : :mkm�2
L

d
s�2
s � 5732s s2s�2 L

1� d
s�2

s e�t2=8

� m � 5732s s2s�2 Ls e�t2=8:

ut

18 Approximation of fn and Its Derivatives on Long Intervals

Again, let X1; : : : ;Xn be independent random variables with EXk D 0, �2k D EX2n
.�k � 0/ such that

Pn
kD1 �

2
k D 1, and finite Lyapunov coefficient Ls. On a relatively

long (moderate) interval Is, Proposition 13.2 (for s � 3) and Propositions 9.1–9.2
(for 2 < s � 3) provide an approximation for the characteristic function fn.t/ of the
sum Sn D X1 C � � � C Xn by the corrected normal “characteristic function”

gm.t/ D e�t2=2 .1C Pm.it//:

This approximation also includes closeness of the derivatives of fn and gm up to
order Œs�. On the other hand, according to Propositions 15.2 and 16.1–16.2, fn.t/ and
their derivatives are very small in absolute value outside the interval Is, although still
inside jtj � 1

L3
when s � 3. Since gm.t/ is also small (section 17), one can enlarge

the interval Is and thus simplify these approximations at the expense of a constant
in the exponent appearing in the bounds.

As before, let s D m C ˛, where m � 2 is integer and 0 < ˛ � 1.

Theorem 18.1 Let Ls < 1 for s � 3. In the interval jtj � 1
L3

,

ˇ̌
fn.t/ � gm.t/

ˇ̌
� .Cs/3s=2Ls min

˚
1; jtjs


e�t2=8: (18.1)

Moreover, for all p D 0; 1; : : : ; Œs�,

ˇ̌
ˇ dp

dtp
.fn.t/ � gm.t//

ˇ̌
ˇ � .Cs/3sLs min

˚
1; jtjs�p


e�t2=8; (18.2)

where C is an absolute constant. One may take C D 990 in .18:1/ and C D 70 in
.18:2/.

Proof We distinguish between several cases.

Case 1a. Moderate interval Is W jtj maxfL
1

s�2
s ;L

1
3.s�2/
s g � 1

8
. By Proposition 13.2,

in this interval

jfn.t/ � gm.t/j � 4sLs max
˚
jtjs; jtj3.s�2/


e�t2=2:
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If jtj � 1, the above maximum is equal to jtjs, and we are done with C D 4.
If jtj � 1, the above maximum is equal to jtj3.s�2/, and then one may use a general
inequality xˇe�x � .

ˇ

e /
ˇ .x; ˇ > 0/. For x D 3t2=8 it gives

jtj3.s�2/ e�3t2=8 D
�8x

3

	 3.s�2/
2

e�x �
�4 .s � 2/

e

	 3.s�2/
2

< .1:48 s/3s=2;

so

jtj3.s�2/ e�t2=8 D jtj3.s�2/ e�3t2=8 e�t2=8 < .1:48 s/3s=2 e�t2=8:

Since also 4s � 2:523s=2 and 2:52 � 1:48 < 4, we conclude that

jfn.t/ � gm.t/j � .4s/3s=2 Ls minf1; jtjsg e�t2=8; t 2 Is;

which is the required inequality (18.1) with C D 4.
This bound may serve as a simplified version of Proposition 13.2 in the case

p D 0. This is achieved at the expense of a worse constant in the exponent, although
it contains a much larger s-dependent factor in front of Ls.

Case 2a. Large region I0
s W jtj maxfL

1
s�2
s ;L

1
3.s�2/
s g � 1

8
with 1 � jtj � 1

L3
. In this

case, we bound both fn.t/ and gm.t/ in absolute value by appropriate quantities.
First, we involve the bound of Proposition 15.2, jfn.t/j � e�t2=6, which is valid

for jtj � 1
L3

, and derive an estimate of the form

e�t2=24 � CsLs:

If Ls � 8�3.s�2/, it holds with Cs D 83.s�2/. If Ls � 8�3.s�2/, then necessarily

jtj � 1
8

L
� 1
3.s�2/

s , and therefore one may take

Cs D
1

Ls
exp

n
�

1

24 � 82
L

� 2
3.s�2/

s

o
:

Putting L
� 2
3.s�2/

s D 1536 x, the right-hand side equals and may be bounded with the
help of (17.3) by

.1536 x/
3.s�2/
2 e�x �

�1536 � 3.s � 2/

2e

	 3.s�2/
2

< .848 s/3s=2:

As a result, we arrive at the upper bound

jfn.t/j � e�t2=24 � e�t2=8 � .848 s/3s=2 Ls minf1; jtjsg e�t2=8:
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A similar bound also holds for the approximating function gm.it/ D e�t2=2 C

Pm.it/e�t2=2. Recall that, by Proposition 17.1, whenever jtj � 1,

jgm.t/j � .142 s/3s=2 Ls e�t2=8 � .142 s/3s=2 Ls minf1; jtjsg e�t2=8;

implying

jfn.t/ � gm.t/j �
�
.848 s/3s=2 C .142 s/3s=2

�
Ls minf1; jtjsg e�t2=8:

Since s > 3, the constant in front of Ls is smaller than 9903s=2.

Case 3a. Consider the region I0
s W jtj maxfL

1
s�2
s ;L

1
3.s�2/
s g � 1

8
with jtj �

minf1; 1L3 g. Necessarily Ls � 8�3.s�2/, so maxfLs; 1g � 83.s�2/Ls. Hence, by
Corollary 14.4 with p D 0,

jfn.t/ � gm.t/j � 4s2s 83.s�2/Ls
jtjs

mŠ

�
4

86
s2s

.m=e/m
83s Lsjtj

s �
4

86
s2s

.s=2/s=2
es 83s Lsjtj

s <
1

2
.158 s/3s=2 Lsjtj

s:

This implies (18.1), since e�t2=8 � e�1=8.
The first assertion (18.1) is thus proved, and we now extend this inequality to

the case of derivatives, although with a different dependence of the constants in
s indicated in (18.2). We distinguish between several cases in analogy with the
previous steps.

Case 1b. By Proposition 13.2, in the interval Is,

jf .p/n .t/ � g.p/m .t/j � 6 � 8sLs max
˚
jtjs�p; jtj3.s�2/Cp


e�t2=2:

If jtj � 1, the above maximum is equal to jtjs�p, and we are done.
If jtj � 1, the above maximum is equal to jtj3.s�2/Cp. Using once more (17.3) with
x D 3t2=8, we have

jtj3.s�2/Cp e�3t2=8 D
�8x

3

	 3.s�2/Cp
2

e�x �
�4 .3.s � 2/C p/

3e

	 3.s�2/Cp
2

< .2s/2s;

so

jtj3.s�2/ e�t2=8 D jtj3.s�2/ e�3t2=8 e�t2=8 < .2s/2s e�t2=8:

Since also 6 � 8s � 42s, we conclude that

jf .p/n .t/ � g.p/m .t/j � .8s/2sLs minf1; jtjs�pg e�t2=8; t 2 Is;

which implies the required inequality (18.2) with C D 8.
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Case 2b. Large region I0
s with 1 � jtj � 1

L3
. Let us involve Proposition 16.1.

Using pŠ � ss and maxfLp� ; 1g � maxfLs; 1g, the bound (16.1) of this proposition
readily implies

jf .p/n .t/j � .2:03 s/s maxfLs; 1g jtjs e�t2=6; 1 � jtj �
1

L3
:

Thus, we need to derive an estimate of the form

.2:03 s/s maxfLs; 1g jtjs e�t2=24 � CsLs:

If Ls � 8�3.s�2/, the latter inequality holds with

Cs D .2:03 s/s 83.s�2/ max
t

jtjs e�t2=24 D .2:03 s/s 83.s�2/
�12s

e

	s=2
< .13s/3s:

If Ls � 8�3.s�2/, then necessarily jtj � 1
8

L
� 1
3.s�2/

s , i.e., 1
Ls

� .8t/3.s�2/. Hence,

1

Ls
.2:03 s/s jtjs e�t2=24 � .8t/3.s�2/ .2:03 s/s jtjs e�t2=24

D 8�6 .83 � 2:03 s/s .24y/2s e�y

� 8�6 .83 � 2:03 s/s
�48 s

e

	2s
< 8�6 693s:

As a result, we arrive at the upper bound

jf .p/n .t/j � .69 s/3s Ls minf1; jtjsg e�t2=8:

As we know, a better bound holds for the function gm.it/ D e�t2=2CPm.it/e�t2=2.
By Proposition 17.1, whenever jtj � 1,

jg.p/m .t/j � .573 s/2s Ls e�t2=8 � .69 s/3s Ls minf1; jtjsg e�t2=8;

implying

jf .p/n .t/ � g.p/m .t/j � .1C 8�6/ .69 s/3s Ls minf1; jtjsg e�t2=8:

Since s > 3, the constant in front of Ls is smaller than 703s.
Case 3b. The region I0

s with jtj � minf1; 1L3 g. Necessarily Ls � 8�3.s�2/, so

maxfLs; 1g � 83.s�2/Ls. Hence, by Corollary 14.4, for all p � Œs�,

jf .p/n .t/ � g.p/m .t/j � 4s2s 83.s�2/Ls jtjs�p
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�
4

86
s2s 83s Lsjtj

s�p � .8s/3s Lsjtj
s�p:

Clearly, this bound is better than what was obtained on the previous step. ut

Finally, let us include an analog of Theorem 18.1 for the case 2 < s < 3.
The following statement can be proved with similar arguments on the basis of
Propositions 9.1 and 16.2.

Theorem 18.2 Let Ls < 1 for 2 < s < 3. In the interval jtj � .6Ls/
� 1

s�2 , we have

ˇ̌
ˇ dp

dtp

�
fn.t/ � e�t2=2

�ˇ̌ˇ � CLs min
˚
1; jtjs�p


e�t2=8; p D 0; 1; 2;

where C is an absolute constant.

Remarks In the literature, inequalities similar to (18.1)–(18.2) can be found
for integer values s D m C 1 � 3, often for identically distributed summands
Xk D �k=

p
n, only, when Ls D ˇs n�.n�2/=2, ˇs D E j�1j

s. In the book by Petrov
[P2], (18.2) is proved without the derivative of the maximal order p D m C 1 and
with an indefinite constant Cs (cf. Lemma 4, p. 140, which is attributed to Osipov
[O]). Bikjalis derived a more precise statement (cf. [Bi3]). In case p D 0, he proved

that, in the interval jtj � 1
10
ˇ

� 1
s�2

s
p

n,

ˇ̌
fn.t/ � gm.t/

ˇ̌
�

2s�1

0:99s
ˇs n� s�2

2 jtjs e�t2=4; (18.3)

while for p D 1; : : : ; s, jtj � 1
16e ˇ

� 1
s�2

s
p

n, we have

ˇ̌
ˇ dp

dtp
.fn.t/ � gm.t//

ˇ̌
ˇ �

pŠ2 64sCp�2

s � 2
ˇs n� s�2

2 jtjs�p e�t2=6: (18.4)

It is interesting that the right-hand side in (18.3) provides a sharper growth of the
constant in s in comparison with (18.1). Similarly, for the critical value p D s, the
right-hand side in (18.4) may be replaced with .Cs/2s Ls minf1; jtjsg e�t2=8 which
also gives some improvement over (18.2). On the other hand, inequalities (18.1)–
(18.2) are applicable in the non-i.i.d. situation and for real values of s.

In the general non-i.i.d. case, some similar versions of (18.1) were studied in
[Bi1, Bi2]. A variant of (18.2) can be found in the book by Bhattacharya and Ranga
Rao [B-RR], who considered multidimensional summands. Their Theorem 9.9

covers the interval jtj � c L
� 1

s�2
s , although it does not specify constants as functions

of s. Note that the interval jtj � 1=L3 as in Theorem 18.1 is longest possible (up to
a universal factor), but we leave open the question on the worst growth rates of the
s-dependent constants in such inequalities.
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[St1] Statulevičius, V. A. On the asymptotic expansion of the characteristic function of a sum
of independent random variables. (Russian) Litovsk. Mat. Sb. 2 (1962), no. 2, 227–232.
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Part II
Convexity and Concentration for Sets

and Functions



Non-standard Constructions in Convex
Geometry: Geometric Means of Convex Bodies

Vitali Milman and Liran Rotem

Abstract In this note we discuss new constructions of convex bodies. By thinking
of the polarity map K 7! Kı as the inversion x 7! x�1 one may construct new
bodies which were not previously considered in convex geometry. We illustrate this
philosophy by describing a recent result of Molchanov, who constructed continued
fractions of convex bodies.

Our main construction is the geometric mean of two convex bodies. We define
it using the above ideology, and discuss its properties and its structure. We also
compare our new definition with the “logarithmic mean” of Böröczky, Lutwak, Yang
and Zhang, and discuss volume inequalities. Finally, we discuss possible extensions
of the theory to p-additions and to the functional case, and present a list of open
problems.

An appendix to this paper, written by Alexander Magazinov, presents a 2-
dimensional counterexample to a natural conjecture involving the geometric mean.

1 Introduction

A convex body in R
n is a compact, convex set K � R

n. We will always make the
additional assumption that 0 is in the interior of K, and denote the class of such
convex bodies in R

n by Kn
.0/

. We also denote the (Lebesgue) volume of K by jKj,
and the unit ball of `n

p by Bn
p.
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The goal of this paper is to discuss constructions of new convex bodies out of
old ones. The most well-known such construction is the Minkowski addition. For
K;T 2 Kn

.0/
we define

K C T D fx C y W x 2 K; y 2 Tg :

If 	 > 0 and K 2 Kn
.0/

, then the homothety 	K is defined in the obvious way as
	K D f	x W x 2 Kg. Once the addition and the homothety are defined, we may of
course define the arithmetic mean of K and T as A.K;T/ D 1

2
.K C T/.

Another standard construction in convex geometry is the polarity transform. The
polar (or dual) of a body K 2 Kn

.0/
is defined by

Kı D fy 2 R
n W hx; yi � 1 for all x 2 Kg ;

where h�; �i denotes the standard Euclidean inner product on R
n.

For an equivalent description of the polar body, remember that to every K 2

Kn
.0/

one may associate two standard functions hK ; rK W Rn ! .0;1/. The support
function hK is defined by

hK.�/ D max
x2K

hx; �i ;

and the radial function rK is defined by

rK.�/ D max f	 > 0 W 	� 2 Kg :

As hK is 1-homogeneous and rK is (-1)-homogeneous, it is usually enough to think
of them as functions on Sn�1, the unit Euclidean sphere in R

n. We will often write
h� .K/ and r� .K/ instead of hK.�/ and rK.�/, especially in situations where � 2 Sn�1

is fixed and K changes. Each of the functions hK and rK determines the body K
uniquely, and the polar body Kı can be defined by the relation r� .Kı/ D h� .K/�1.
Remember also that for every K;T 2 Kn

.0/
and every 	 > 0 we have h� .	K C T/ D

	h� .K/C h� .T/.
The polarity map ı W Kn

.0/
! Kn

.0/
is an abstract duality in the sense of [3] (see

also [22]). This means that it satisfies the following two properties:

• It is an involution: .Kı/ı D K for all K 2 Kn
.0/

.
• It is order reversing: If K � T , then Kı � Tı.

In fact, the polarity map is essentially the only duality on Kn
.0/

:

Theorem 1 Let T W Kn
.0/

! Kn
.0/

be an order reversing involution. Then there exists
a symmetric and invertible linear map u W Rn ! R

n such that T K D u .Kı/.

This theorem essentially appears in the work of Böröczky and Schneider [6]. A
similar theorem on a different class of convex sets was proved by Artstein-Avidan
and Milman [2]. On yet another class of convex sets, the theorem can also be
deduced from the work of Gruber [13].
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There is another famous duality in mathematics: the inverse map. The map x 7!

x�1 defined on RC is a duality in the above sense. The same is true if one replaces
RC with the the class Mn

C of n � n positive-definite matrices. For the constructions
described in this paper, it will be useful to think of Kı as the inverse “K�1”.

Let us give one example of this point of view. Once we have an inverse map and
an addition operation, we can easily construct the harmonic mean: The harmonic
mean of K and T is simply

H.K;T/ D

�
Kı C Tı

2

�ı

:

Naturally, we expect the harmonic mean to be smaller than the arithmetic mean.
This is true, and was proved by Firey in [11]:

Theorem 2 (Firey) For every K;T 2 Kn
.0/

one has

K C T

2
�

�
Kı C Tı

2

�ı

:

Since we will rely heavily on this result, we reproduce its short proof in a more
modern notation:

Proof Fix � 2 Sn�1. Since r� .K/ � � 2 K and r� .T/ � � 2 T we have

r� .K/C r� .T/

2
� � 2

K C T

2
;

and hence by definition

r�

�
K C T

2

�
�

r� .K/C r� .T/

2
:

On the other hand, we have

r�

��
Kı C Tı

2

�ı�
D

�
h�

�
Kı C Tı

2

���1

D

�
h� .Kı/C h� .Tı/

2

��1

D
2

1
r� .K/

C 1
r� .T/

:

The result now follows from the arithmetic mean-harmonic mean inequality for real
numbers. ut

The construction of the harmonic mean is not terribly exciting, but it emerged
naturally from the same philosophy as the rest of this paper. In the next section
we will follow the work of Molchanov, and describe a more interesting construction
– continued fractions of convex bodies. The next several sections are devoted to the
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geometric mean of convex bodies, the main construction of this paper. Section 8
is devoted to a possible extension of the theory to the functional case. Finally, in
Section 9 we list several open problems.

2 Continued Fractions of Convex Bodies

For a sequence of positive real numbers fxmg1
mD1, the continued fraction

Œx1; x2; x3; : : :� is simply

1

x1 C
1

x2 C 1

x3C
1
���

:

More formally, we define Œx1� D 1
x1

and

Œx1; x2; : : : ; xm� D .x1 C Œx2; x3; : : : ; xm�/
�1 ;

and we set

Œx1; x2; x3; : : :� D lim
m!1

Œx1; x2; : : : ; xm� :

It is not hard to see that this sequence indeed converges if xm >  for all m and some
fixed  > 0. In particular, the continued fraction converges whenever the xi’s are all
integers.

In [18], Molchanov generalizes the construction of continued fractions to the
general setting of a partially ordered abelian semigroup equipped with an abstract
duality (i.e. an order reversing involution). We will only state his results for the class
Kn
.0/

, where the duality is of course the polarity transform.
For a sequence of convex bodies fKmg1

mD1 � Kn
.0/

we set ŒK1� D Kı
1 and

ŒK1;K2; : : : ;Km� D .K1 C ŒK2;K3; : : : ;Km�/
ı :

In order to discuss the convergence of limm!1 ŒK1;K2; : : : ;Km� we need a suitable
metric on Kn

.0/
. The obvious choice, and the one used by Molchanov, is the

Hausdorff distance:

d.K;T/ D min fr > 0 W K � T C rBn
2 and T � K C rBn

2g :

We can now state Molchanov’s theorem:

Theorem 3 (Molchanov) Let fKmg1
mD1 � Kn

.0/
be a family of convex bodies.

Assume that one of the following three conditions hold:



Non-standard Constructions in Convex Geometry: Geometric Means of Convex Bodies 365

1. Km � rBn
2 for all m and for some r > 1.

2. Bn
2 � Km � R � Bn

2 for all m and for some R < 1.
3. rBn

2 � Km � R � Bn
2 for all m for some such r < 1 and R � r=.1 � r/.

Then

ŒK1;K2; : : :� D lim
m!1

ŒK1;K2; : : : ;Km�

exists in the Hausdorff sense.

As a corollary of the above theorem, one can deduce the following result:

Proposition 4 (Molchanov) For every convex body K 2 Kn
.0/

such that K � Bn
2

there exists a unique body Z 2 Kn
.0/

such that Zı D Z C K.

Notice that if we think of Zı as the inverse “Z�1”, the equation Zı D Z C K is a
“quadratic equation” of convex bodies. Its solution can be written in a continued
fraction form, Z D ŒK;K;K; : : :�, and the convergence of this fraction follows from
Theorem 3. The uniqueness part of Proposition 4 does not appear in Molchanov’s
paper, but follows easily from his techniques.

We will now give a self-contained proof of Proposition 4. The proof is essentially
Molchanov’s, but since we do not strive for generality we can present the proof in a
more transparent form. We begin with a lemma, also taken from Molchanov’s paper:

Lemma 5 (Molchanov) If K;T � rBn
2, then d.Kı;Tı/ � r�2 � d.K;T/.

Proof Write d D d.K;T/. By definition of the Hausdorff distance we have

K � T C d � Bn
2 � T C

d

r
T D

r C d

r
T;

and since polarity is order reversing it follows that

Kı �

�
r C d

r
T

�ı

D
r

r C d
Tı:

Since K � rBn
2 we also have Bn

2 � rKı, so

Kı C
d

r2
Bn
2 � Kı C

d

r2
rKı D

�
r C d

r

�
Kı �

r C d

r
�

r

r C d
� Tı D Tı:

By exchanging the roles of K and T we also have Tı C d
r2

Bn
2 � Tı , so d.Kı;Lı/ �

d
r2

D r�2d.K;T/. ut

We may now proof Proposition 4:
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Proof Define a sequence of convex bodies by

Z1 D Kı

ZmC1 D .K C Zm/
ı :

Our first goal is to prove that Zm � Bn
2 for all m and some fixed  > 0. Indeed, K is

assumed to be compact so Bn
2 � K � R � Bn

2 for some R > 0 . If we now define two
sequences of real numbers famg1

mD1, fbmg1
mD1 by

a1 D
1

R
b1 D 1

amC1 D
1

R C bm
bmC1 D

1

1C am
;

it is trivial to prove by induction that amBn
2 � Zm � bmBn

2 for all m. Since

lim
m!1

am D ŒR; 1;R; 1;R; 1; : : :� > 0;

it follows that am >  for all m and some fixed  > 0, which proves our claim.
Using the above fact and the lemma, we deduce that for every m > 1 we have

d.ZmC1;Zm/ D d
�
.K C Zm/

ı ; .K C Zm�1/
ı
�

�

�
1

1C 

�2
d .K C Zm;K C Zm�1/

D

�
1

1C 

�2
d.Zm;Zm�1/:

Hence the sequence fZmg is a Cauchy sequence, so the limit Z D limm!1 Zm exists.
In general the limit of bodies in Kn

.0/
does not have to be in Kn

.0/
, as it may have an

empty interior. In our case, however, we have Zm � Bn
2 for all m, so Z � Bn

2

and Z 2 Kn
.0/

. Sending m ! 1 in the relation ZmC1 D .K C Zm/
ı and using the

continuity of the polarity transform we obtain Z D .K C Z/ı, so the existence part
of the proposition is proved.

For the uniqueness, assume Z;W 2 Kn
.0/

satisfy both Zı D Z C K and Wı D

W C K. Fix some  > 0 such that Z;W � Bn
2. Then

d.Z;W/ D d
�
.Z C K/ı; .W C K/ı

�
�

�
1

1C 

�2
d .Z C K;W C K/

D

�
1

1C 

�2
d.Z;W/;

so d.Z;W/ D 0 and Z D W. ut
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Denote the unique solution of Zı D Z C K by Z.K/. Notice that Z.rBn
2/ D

Œr; r; r; : : :� � Bn
2. In particular, for r D 1 we have Z.Bn

2/ D 1
'

Bn
2, where ' D 1C

p
5

2
is

the golden ratio. However, for other choices of K (say the unit cube), the body Z.K/
is completely mysterious, and we know very little about its properties. It appears to
be a genuinely new construction in convexity.

3 The Geometric Mean of Convex Bodies

Over the recent years, there were several attempts to define the geometric mean of
two convex bodies K and T . Let us recall some of these ideas, not in chronological
order:

In [5], Böröczky, Lutwak, Yang and Zhang construct the following “0-mean”, or
“logarithmic mean”, of convex bodies:

L	.K;T/ D
˚
x 2 R

n W hx; �i � hK.�/
1�	hT.�/

	 for all � 2 Sn�1

:

In other words, the support function hL of L D L	.K;T/ is the largest convex
function such that hL.�/ � hK.�/

1�	hT.�/
	 for all � 2 Sn�1.

The authors of [5] conjecture that L	.K;T/ satisfy a Brunn-Minkowski type
inequality. To describe their conjecture, let us denote by Kn

s the class of origin-
symmetric convex bodies, i.e. the sets K 2 Kn

.0/
such that K D �K. The

log-Brunn-Minkowski conjecture then states that for every K;T 2 Kn
s and every

	 2 Œ0; 1� we have jL	.K;T/j � jKj1�	 jTj	. It is still unknown whether this
conjecture is true – it was proven in [5] in dimension n D 2, and in [23] by Saroglou
for unconditional convex bodies in R

n.
To explain its name, notice that the log-Brunn-Minkowski conjecture is a

strengthening of the classic Brunn-Minkowski inequality. Indeed, by the arithmetic
mean-geometric mean inequality we have

hK.�/
1�	hT.�/

	 � .1 � 	/hK.�/C 	hT.�/ D h.1�	/KC	T.�/;

so the log-Brunn-Minkowski inequality implies that

j.1 � 	/K C 	Tj � jL	.K;T/j � jKj1�	 jTj	 ;

which is exactly the Brunn-Minkowski inequality in its dimension free form.
Let us mention that one can also consider the “dual” construction to L	, where

instead of the support functions one take the geometric average of the radial
functions. The body obtained is simply L	 .Kı;Tı/ı, and Saroglou proved in [24]
that jL	.Kı;Tı/ıj � jKj1�	 jTj	 for every K;T 2 Kn

s . By the Blaschke-Santaló
inequality and Bourgain-Milman theorem [7], it follows that
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jL	.K;T/j � cn jKj1�	 jTj	 (3.1)

for some universal constant c > 0.
For complex bodies, the situation is much clearer. Notice that, by our definition,

a convex body K 2 Kn
s is simply the unit ball of a norm on R

n. Similarly, a complex
convex body K � C

n is the unit ball of a norm on C
n. By identifying C

n ' R
2n

we see that every complex body is also a real body, but not vice versa. In fact,
a complex body K � C

n is a real body which is also symmetric with respect to
complex rotations, i.e. z 2 K implies that ei� z 2 K for all � 2 R.

There is a standard method in the literature to interpolate between complex
norms, or equivalently, between complex bodies. This method is known simply
as “complex interpolation” and is described, for example, in chapter 7 of [19]. In
[8], Cordero-Erausquin proves that for every complex bodies K and T and every
	 2 Œ0; 1�, we have the relation jC	.K;T/j � jKj1�	 jTj	 where C	 denotes the
complex interpolation. From here he deduces an extension of the Blaschke-Santaló
inequality: Since

C1=2.K \ T;Kı \ T/ � B2n
2 \ T

we must have jK \ Tj jKı \ Tj �
ˇ̌
B2n
2 \ T

ˇ̌2
. Cordero-Erausquin asks whether this

inequality also holds for real convex bodies, and this question is still open. A partial
answer was given in [14] by Klartag, who proved in the real case a functional version
of the inequality. As a corollary he proved that for every K;T 2 Kn

s we have

jK \ Tj jKı \ Tj � 2n jBn
2 \ Tj2 (3.2)

It is also true that for complex bodies C	.K;T/ � L	.K;T/, so the log-Brunn-
Minkowski conjecture is true for complex bodies (see [20]).

Finally, let us briefly mention a third possible “geometric mean”. The construc-
tion was studied by Cordero-Erausquin and Klartag in [9], following a previous
work of Semmes [25]. Let u0; u1 W R

n ! R be (sufficiently smooth) convex
functions. A p-interpolation between u0 and u1 is a function u W Œ0; 1� � R

n ! R

such that u.0; x/ D u0.x/, u.1; x/ D u1.x/, and u.t; x/ satisfies the PDE

@2ttu D
1

p

D
.Hessxu/�1 r@tu;r@tu

E
:

Here we will care about the case p D 2. Given u0 and u1 it is not clear that this PDE
has a solution, let alone a unique solution. However, it is not hard to check that if
u0 D 1

2
h2K and u1 D 1

2
h2L for some bodies K and L, then ut D 1

2
h2Rt

(assuming it
exists) for some family of convex bodies Rt D Rt .K;L/. Similarly to the previous
two constructions, the authors conjectured that jR	.K;L/j � jKj1�	 jLj	 for K;T 2

Kn
s . However, after the publication of [9], Cordero-Erausquin and Klartag found a

counterexample to this inequality.
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We will now present a new definition for the geometric mean of two convex
bodies in R

n, which seems to satisfy some natural properties. As a first step, let us
consider the geometric mean of positive numbers. Given two numbers x; y > 0, we
build two sequences by the recurrence relations

a0 D x h0 D y

anC1 D
an C hn

2
hnC1 D

�
a�1

n C h�1
n

2

��1

:

It is an easy exercise to see that fang is decreasing, fhng is increasing, and
lim

n!1
an D lim

n!1
hn D

p
xy.

A similar result is known to hold for positive definite matrices. Given two such
matrices u and v, we define

A0 D u H0 D v

AnC1 D
An C Hn

2
HnC1 D

�
A�1

n C H�1
n

2

��1

:

It is known that fAng is decreasing (in the sense of matrices), fHng is increasing,
and the limits lim

n!1
An and lim

n!1
Hn exist and are equal. This joint limit is known as

the geometric mean of u and v, and is often written as u#v. It shares many of the
properties of the geometric mean of numbers - see, e.g., [15] for a survey of such
properties. An explicit formula for u#v is

u#v D u1=2
�
u�1=2vu�1=2

�1=2
u1=2;

but it may be better to think of u#v as the unique solution of the matrix equation
xu�1x D v

Since we already understand the arithmetic mean and harmonic mean of convex
bodies, we may simply repeat the same process. For K;T 2 Kn

.0/
we define

A0 D K H0 D T

AnC1 D
An C Hn

2
HnC1 D

�
Aı

n C Hı
n

2

�ı

:
(3.3)

Theorem 6 Fix K;T 2 Kn
.0/

and define sequences fAng and fHng according to (3.3).
Then fAng is decreasing and fHng is increasing with respect to set inclusion, and the
limits lim

n!1
An and lim

n!1
Hn exist (in the Hausdorff sense) and are equal.

Proof By Theorem 2 we see that An � Hn for every n � 1. If follows that

AnC1 D
An C Hn

2
�

An C An

2
D An;
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and

HnC1 D

�
Aı

n C Hı
n

2

�ı

�

�
Hı

n C Hı
n

2

�ı

D Hn:

Hence fAng is a decreasing sequence of convex bodies. It is also bounded from
below by a “proper” convex body (with non-empty interior), since

An � Hn � H1

for all n � 1. It follows that there exists a body G1 2 Kn
.0/

such that An ! G1 in the
Hausdorff sense. Similarly, fHng is increasing and bounded from above by A1, so it
converges to some G2.

Finally, taking the equation

AnC1 D
An C Hn

2

and sending n ! 1, we see that G1 D 1
2
.G1 C G2/. Hence G1 D G2 and the proof

is complete. ut

Definition 7 The joint limit from the previous theorem is called the geometric mean
of K and T:

G.K;T/ D lim
n!1

An D lim
n!1

Hn:

If we need to refer to the bodies An and Hn from the process defining G.K;T/,
we will write An.K;T/ and Hn.K;T/. It is immediate that Hn.K;T/ � G.K;T/ �

An.K;T/ for all n. In particular, we have the arithmetic mean - geometric mean -
harmonic mean inequality H1.K;T/ � G.K;T/ � A1.K;T/.

Figure 1 depicts one planar example of two convex polygons K and T and their
geometric mean.

Even though our motivation is very different, the above definition was also
inspired by a similar construction for 2-homogeneous functions of Asplund [4]. We
have also recently discovered a paper of Fedotov [10] with a similar construction.

4 Properties of the Geometric Mean

The following proposition summarizes some of the basic properties of the geometric
mean:

Proposition 8 1. G.K;K/ D K.
2. G.K;T/ is monotone in its arguments: If K1 � K2 and T1 � T2, then G.K1;T1/ �

G.K2;T2/.
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Fig. 1 K, T (dashed and dotted lines) and G.K;T/ (solid line)

3. ŒG.K;T/�ı D G .Kı;Tı/.
4. For any linear map u we have G.uK; uT/ D u .G.K;T//.

Proof 1. This is obvious, as An.K;K/ D Hn.K;K/ D K for all n � 0.
2. If K1 � K2 and T1 � T2, then easy induction of n shows that An.K1;T1/ �

An.K2;T2/ and Hn.K1;T1/ � Hn.K2;T2/ for all n � 0. Sending n ! 1 gives
the result.

3. Again, use induction to show that ŒAn.K;T/�
ı D Hn.Kı;Tı/ and ŒHn.K;T/�

ı D

An.Kı;Tı/ for all n � 0. Send n ! 1 for the result.
4. Using yet another induction, An.uK; uT/ D u .An.K;T// and Hn.uK; uT/ D

u .Hn.K;T// for all n � 0. Again, we obtain the required result in the limit.
ut

Let us mention another easy but important property of the geometric mean: All of
our means (the arithmetic mean, the harmonic mean, and the geometric mean) do
not depend on the choice of a scalar product on R

n. This is obvious for the arithmetic
mean, but less so for the harmonic and the geometric mean, since the polarity map
K 7! Kı which appears in the definition does depend on this choice. However,
remember from the proof of Theorem 2 that

r� .H.K;T// D
2

1
r� .K/

C 1
r� .T/
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for all � 2 R
n, so H.K;T/ may be constructed from K and T without mentioning

polarity or any scalar product. It follows that the harmonic mean, and hence also the
geometric mean, may be defined without fixing a scalar product on our space.

Our next goal is to compute the geometric mean in several important cases, which
will give us a better intuition for it.

Proposition 9 Let K be any convex body. Then:

1. G.K;Kı/ D Bn
2.

2. For any positive definite linear map u we have G.K; uKı/ D u1=2Bn
2.

3. For any ˛; ˇ > 0 we have G.˛K; ˇKı/ D
p
˛ˇBn

2.

Proof For (1), notice that

G.K;Kı/ı D G
�

Kı;
�
Kı
�ı	

D G.Kı;K/ D G.K;Kı/:

as the only body Kn
.0/

to satisfy Xı D X is X D Bn
2, the claim follows.

Part (2) follows from (1), as

G.K; uKı/ D u1=2G
�
u�1=2K; u1=2Kı

�
D u1=2G

�
u�1=2K;

�
u�1=2K

�ı	
D u1=2Bn

2:

Finally, for (3) we take u.x/ D ˇ

˛
x in (2) and obtain

G.˛K; ˇKı/ D ˛ � G

�
K;
ˇ

˛
Kı

�
D ˛ �

r
ˇ

˛
Bn
2 D

p
˛ˇBn

2:

ut

This proposition gives us another way to think about the geometric mean, as an
extension of the notion of polarity. We would like to say that T is polar to K with
respect to Z if g.K;T/ D Z. The above proposition says that Kı is indeed polar to K
with respect to the Euclidean ball. Several natural problems regarding the theory of
“polarity with respect to a convex body” will appear in the final section of this paper.

One may also compare this proposition with its obvious counterparts for numbers
and matrices: G.x; x�1/ D 1 for every x > 0 and G.u; u�1/ D Id for every positive
definite matrix u. We see that the ball Bn

2 plays the same role as the number 1 for
positive numbers or the identity matrix for positive definite matrices. Hence it makes
sense to define

p
K D G.K;Bn

2/. For many of the open problems discussed in this
paper one may first concentrate on this special case.

Proposition 10 Let u; v be positive-definite matrices, and let

E1 D fx W hux; xi � 1g

E2 D fx W hvx; xi � 1g
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be the corresponding ellipsoids. Then G.E1; E2/ D fx W hwx; xi � 1g, where w D

u#v is the matrix geometric mean of u and v.

Proof We have E1 D u�1=2Bn
2, so Eı

1 D u1=2Bn
2 D

˚
x W

˝
u�1x; x

˛
� 1


.

Since v D wu�1w, we see that

E2 D
˚
x W

˝
wu�1wx; x

˛
� 1


D
˚
x W

˝
u�1wx;wx

˛
� 1


D fx W wx 2 Eı

1 g D w�1Eı
1 :

Hence by Proposition 9 we have

G.E1; E2/ D G.E1;w�1Eı
1 / D w�1=2Bn

2 D fx W hwx; xi � 1g

like we wanted. ut

The above result is somewhat surprising – For ellipsoids E1; E2 the intermediate
sets An .E1; E2/ and Hn .E1; E2/ are not ellipsoids. Still, in the limit we obtain that
G .E1; E2/ is an ellipsoid. Actually E1 and E2 are dual to each other with respect to
the ellipsoid G.E1; E2/ (i.e., if the scalar product on R

n is chosen in such a way that
G.E1; E2/ is the unit ball, then E2 D Eı

1 ).
Proposition 10 has a nice corollary regarding the Banach-Mazur distance. For

symmetric convex bodies K;T 2 Kn
s the Banach-Mazur distance dBM.K;T/ is

defined by

dBM.K;T/ D min f	 > 0 W There exists a linear map u such that uT � K � 	 � uTg :

We have the following result:

Proposition 11 For every K 2 Kn
s one has dBM.

p
K;Bn

2/ �
p

dBM.K;Bn
2/:

Proof Write d D dBM.K;Bn
2/. By definition, there exists an ellipsoid E such that

E � K � d � E . By the monotonicity of the geometric mean it follows that
p
E �p

K �
p

d � E .
From Proposition 10 it follows that

p
E D G.E ;Bn

2/ is an ellipsoid. Furthermore,
the explicit formula given there immediately implies that

p
d � E D

p
d �

p
E . Hence

we have
p
E �

p
K �

p
d �

p
E so

dBM.
p

K;Bn
2/ �

p
d D

q
dBM.K;Bn

2/:

ut

We know from John’s theorem that dBM.K;Bn
2/ �

p
n for all K 2 Kn

s , so we
always have dBM.

p
K;Bn

2/ � n1=4. In particular, since it is known that dBM.Bn
p;B

n
2/ D

nj1=2�1=pj, it follows that there is no K 2 Kn
s such that

p
K D Bn

p if p > 4 or p < 4=3.
Finally, we conclude this section by computing an example in the plane that will

be useful later:
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Example 12 Fix R > 1 (that we will later send to 1) and define

K D Œ�R;R� �

�
�
1

R
;
1

R

�
� R

2;

T D

�
�
1

R
;
1

R

�
� Œ�R;R� � R

2:

Notice that K � Tı, so G.K;T/ � G.Tı;T/ D Bn
2. For the opposite inclusion, let

us follow one iteration. Define

A D
K C T

2
; B D

�
Kı C Tı

2

�ı

:

Obviously, A D 1
2

�
R C 1

R

�
B21. For B we use the following estimate:

hBı.x; y/ D
hKı.x; y/C hTı.x; y/

2
D
1

2

�
max

�
jxj

R
;R jyj

�
C max

�
R jxj ;

jyj

R

��

�
1

2
..R jyj/C .R jxj// D

R

2
.jxj C jyj/ :

Since jxj C jyj D hB21
.x; y/, we have Bı � R

2
B21, so B � 2

R B21.
Hence

G.K;T/ D G .A;B/ � G

�
1

2

�
R C

1

R

�
B21;

2

R
B21

�
D

r
1C

1

R2
B22;

where the last step follows from Proposition 9. It follows that limR!1

G.K;T/ D B22.

5 Structure of the Geometric Mean

We now turn our attention to finer questions regarding the geometric mean. First we
prove a relation between G.A;B/ and the logarithmic mean L1=2.A;B/ described in
Section 3:

Proposition 13 For K;T 2 Kn
.0/

we have G.K;T/ � L1=2.K;T/.

Proof Define 'n D h .An .K;T//, and  n D h .Hn .K;T//, where h denotes the
support function. We will also define another process by

e'0 D h.K/ e 0 D h.T/

e'nC1 D
1

2

�e'n C e n
� e nC1 D

�
1

2

�e'�1
n C e �1

n

���1

:



Non-standard Constructions in Convex Geometry: Geometric Means of Convex Bodies 375

Notice that the functionse'n;e n are not necessarily convex, unlike 'n and  n. Still,
we claim thate'n � 'n and e n �  n for all n (here and everywhere else in the proof,
inequalities between functions are meant in the pointwise sense). For n D 0 there is
nothing to prove. If we assume the inequalities to be true for n, then for n C 1 we
have

'nC1 D h .AnC1/ D h

�
An C Hn

2

�
D

h .An/C h .Hn/

2
D
'n C  n

2

�
e'n C e n

2
De'nC1:

We also have

 nC1 D h .HnC1/ D r

�
Aı

n C Hı
n

2

��1 .�/

�

 
r
�
Aı

n

�
C r.Hı

n /

2

!�1

D

D
2

h.An/�1 C h.Bn/�1
D

2

'�1
n C  �1

n

�
2

e'�1
n C e �1

n

D e nC1;

where .�/ was explained in the proof of Theorem 2. This completes the inductive
proof.

It is a simple exercise in calculus that

lim
n!1

e'n D lim
n!1

e n D
p

h.K/h.T/:

Therefore, by taking the limit n ! 1 in the inequalitye'n � 'n we see that

h .G.K;T// D lim
n!1

'n � lim
n!1

e'n D
p

h.K/h.T/:

This proves the result. ut

For the “dual” logarithmic sum, we obtain an inclusion in the opposite direction:

Corollary 14 For K;T � Kn
.0/

and we have G.K;T/ � L1=2.Kı;Tı/ı.

Proof Applying Proposition 13 to Kı and Tı we see that

G .K;T/ı D G
�
Kı;Tı

�
� L1=2

�
Kı;Tı

�
:

Taking polarity, we obtain the result. ut

The inclusions in the last two results may be strict. For example, take K D B21 � R
2

and T D B21 � R
2. Then G.K;T/ D B22 since T D Kı. However, a direct (yet

tedious) computation shows that L1=2.K;T/ and L1=2 .Kı;Tı/ı are octagons. Figure 2
depicts the three bodies G.K;T/, L1=2.K;T/ and L1=2 .Kı;Tı/ı .
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Fig. 2 G.K;T/ (solid line), L1=2.K;T/ (dotted line), L1=2 .Kı;Tı/ı (dashed line)

In the figure we see that even though those three bodies are distinct, there are
directions in which their radial functions coincide. This is not a coincidence, as the
next proposition shows:

Proposition 15 Let K and T be convex bodies. Assume that in direction � the bodies
K and T have parallel supporting hyperplanes, with normal vector � . Write G D

G.K;T/. Then hG.�/ D
p

hK.�/hT.�/ and rG.�/ D
p

rK.�/rT.�/.

Proof Write a D rK.�/� 2 @K and b D rT.�/� 2 @T . Since the hyperplane
fx W hx; �i D ha; �ig is a supporting hyperplane for K we know that

hK.�/ D ha; �i D rK.�/ � h�; �i ;

and similarly hT.�/ D rT.�/ � h�; �i.
On the one hand, by Proposition 13 we know that hG.�/ �

p
hK.�/hT.�/. On

the other hand,

hG.�/ D sup
˛2Sn�1

.h˛; �i � rG.˛// � h�; �i � rG.�/
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� h�; �i �
p

rK.�/rT.�/ D
p

hK.�/hT.�/;

where we used Corollary 14. Together we see that indeed hG.�/ D
p

hK.�/hT.�/.
Hence we must also have hG.�/ D h�; �i � rG.�/, so

rG.�/ D
hG.�/

h�; �i
D

s
hK.�/

h�; �i
�

hT.�/

h�; �i
D
p

rK.�/ � rT.�/:

ut

Remember that if K is not smooth at a point, it may have many supporting
hyperplanes at this point. The above proposition only requires that one supporting
hyperplane of K in direction � is parallel to one supporting hyperplane of T in the
same direction. Such directions � always exist, for any pair of convex bodies K and
T . For example, if one defines a functional ˆ W Sn�1 ! R by ˆ.�/ D rK .�/

rT .�/
, then it

is enough to take the points where ˆ attains its extrema.
Let us understand the relation between G.K;T/ and L1=2.K;T/ in different terms.

Formally we have only defined the mean G.K;T/ for compact sets. However, there
is a natural extension of this notion to slabs: we will write S�;c D fx W jhx; �ij � cg,
and set

G
�
S�;c; S�;d

�
D

(
S�;

p
cd if � D �

R
n otherwise.

One way to justify this formula is to think about a slab as a degenerated ellipsoid
and take a suitable limit in Proposition 10.

From this definition it is immediate that

L1=2 .K;T/ D
\˚

G.S�;c; S�;d/ W K � S�;c and T � S�;d

:

However, what happens if we allow arbitrary ellipsoids, and not only slabs?

Definition 16 Given convex bodies K;T � R
n, we define the upper ellipsoidal

envelope of K and T to be

G.K;T/ D
\

fG.E1; E2/ W K � E1 and T � E2g ;

Similarly we define the lower ellipsoidal envelope of K and T as

G.K;T/ D G.Kı;Tı/ı D conv
[

fG.E1; E2/ W K � E1 and T � E2g :

We obviously have G.K;T/ � G.K;T/ � G.K;T/. It will be interesting to know
when is it true that G.K;T/ D G.K;T/ D G.K;T/.
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To see why this may be interesting, remember that in Example 10 we proved an
explicit formula for the geometric mean of ellipsoids. From this formula it is clear
that

G.˛E1; ˇE2/ D
p
˛ˇG.E1; E2/

for all ellipsoids E1; E2 and all ˛; ˇ > 0. Hence we also have

G.˛K; ˇT/ D
p
˛ˇ � G.K;T/;

and similarly for the lower envelope G. It seems intuitive that this scaling property
should hold for G as well, and it is obviously true whenever G coincides with one
of its envelopes. However, recently Alexander Magazinov found a counterexample
to this “scaling conjecture”. In particular, his example shows that in general G does
not have to coincide with its ellipsoidal envelopes. Magazinov’s example appears as
an appendix to this paper.

Another possible application of the equality G.K;T/ D G.K;T/ (whenever it
is true) will be given in Section (7), where we discuss a possible extension of the
iteration process 3.3 to p-sums.

6 Volume Inequalities

Like in the case of the logarithmic mean or the complex interpolation, it is natural
to ask whether we have an inequality of the form

jG.K;T/j �
p

jKj jTj

for K;T 2 Kn
s . Such an inequality will be intimately related to the Brunn-Minkowski

and log-Brunn-Minkowski inequalities (remember the discussion in Section 3 and
Proposition 13), as well as the Blaschke-Santaló inequality (take T D Kı and
remember Proposition 9).

Unfortunately, we have already seen in Example 12 that this inequality is false in
general. In that example we had jKj D jTj D 4 for all values of R, but

lim
R!1

jG.K;T/j D
ˇ̌
B22
ˇ̌

D � < 4:

Still, it seems worthwhile to understand for what classes of bodies this inequality is
true, and how far it is from being true in general. For example, the following is an
immediate computation:
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Proposition 17 If E1 and E2 are ellipsoids, then jG.E1; E2/j D
p

jE1j jE2j:
Proof Using the computations and notation of Example 10 we have

jG.E1; E2/j D
ˇ̌
w�1=2Bn

2

ˇ̌
D .det w/�1=2 jBn

2j D det .u#v/�1=2 jBn
2j

D .det u � det v/�1=4 jBn
2j D

rh
.det u/�1=2

ˇ̌
Bn
2

ˇ̌i h
.det v/�1=2

ˇ̌
Bn
2

ˇ̌i

D

qˇ̌
u�1=2Bn

2

ˇ̌
�
ˇ̌
v�1=2Bn

2

ˇ̌
D
p

jE1j jE2j:

ut

Corollary 18 The log-Brunn-Minkowski conjecture is true for ellipsoids.

Proof Combine the above Proposition with Proposition 13. ut

In general, let us define the constant gn to be the biggest constant such that

jG.K;T/j � gn �
p

jKj jTj:

for all K;T 2 Kn
s . Determining the asymptotics of gn as n ! 1 may have important

consequences. For example, by Proposition 13 we see that

ˇ̌
L1=2.K;T/

ˇ̌
� gn

p
jKj jTj;

so this question is directly related to the log-Brunn-Minkowski conjecture. As
another example, by monotonicity and Proposition 9 we have G .K \ T;Kı \ T/ �

Bn
2 \ T , so jK \ Tj � jKı \ Tj � g�2

n �
ˇ̌
Bn
2 \ T

ˇ̌2
.

From proposition 17 and John’s theorem one obtains the trivial bound gn � n�n=2.
It seems possible that gn � cn for some constant c. Such a result will essentially
recover Klartag’s result (3.2), perhaps with a different constant. It will also give a
new proof of the inequality (3.1) which follows from the work of Saroglou.

7 p-Additions and p-Geometric Means

In the introduction to this paper we took time to explain the role of the polarity map,
but we took for granted the fact that the “addition” of convex bodies is indeed the
Minkowski sum. However, there are other interesting additions on convex sets, such
as the p-additions. This notion was introduced by Firey [12] and studied extensively
by Lutwak [16, 17]. For K;T 2 Kn

.0/
and 1 � p < 1, the p-sum K Cp T is defined

implicitly by the relation

h� .K Cp T/ D .h� .K/
p C h� .T/

p/
1=p :

The case p D 1 is of course the standard Minkowski addition.
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Instead of the process (3.3), one may fix 1 � p < 1 and look at the following
process:

A0 D K H0 D T

AnC1 D
An Cp Hn

21=p
HnC1 D

�
Aı

n Cp Hı
n

21=p

�ı

:
(7.1)

(the factor 21=p is the correct one, since K Cp K D 21=pK ).

Theorem 19 Fix K;T 2 Kn
.0/

and 1 � p < 1, and define processes fAng, fHng

by (7.1). Then fAng is decreasing, fHng is increasing, and the limits lim
n!1

An and

lim
n!1

Hn exist (in the Hausdorff sense) and are equal.

The proof is almost identical to the proof of Theorem 6, so we omit the details. We
call this joint limit the p-geometric mean of K and T and denote it by Gp.K;T/.

As a side note, one may also discuss the 1-sum of convex bodies which is the
limit of p-sums as p ! 1. Explicitly

h� .K C1 T/ D lim
p!1

.h� .K/
p C h� .T/

p/
1=p D max fh� .K/; h� .T/g ;

so KC1T D K_T , the convex hull of the union K[T . For p D 1 the process (7.1)
becomes

A0 D K H0 D T
AnC1 D An _ Hn HnC1 D An \ Hn;

(7.2)

but this process does not converge unless K D T . Indeed, for every n � 1 we have
An D K _ T and Hn D K \ T . Hence we will only discuss 1 � p < 1.

All the results of this paper remain true when G.K;T/ is replaced by Gp.K;T/,
with almost identical proofs. In particular Gp.K;Kı/ D Bn

2 D G.K;Kı/ for all
K 2 Kn

s , and Gp.E1; E2/ D G.E1; E2/. In fact, we have computed a few examples
using a computer and did not find an example where Gp.K;T/ ¤ Gq.K;T/. Is it
possible that Gp.K;T/ does not depend on p, at least on some non-trivial cases?

In this direction it is worth mentioning that since for ellipsoids Gp.E1; E2/ does
not depend on p, the ellipsoidal envelopes G.K;T/ and G.K;T/ from Definition 16
also do not depend on p. In particular, we have G.K;T/ � Gp.K;T/ � G.K;T/
for all 1 � p < 1. From here we see that if for some bodies K;T 2 Kn

s we have
G.K;T/ D G.K;T/, then Gp.K;T/ is indeed independent of p. As discussed in
Section 5, we do not know when this is the case.

8 Functional Constructions

So far we only discussed constructions of new convex bodies out of old ones.
However, similar constructions can be used for convex functions as well. We
denote by Cvx .Rn/ the class of all convex and lower semi-continuous functions
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' W Rn ! .�1;1�. The addition on Cvx .Rn/ is the regular pointwise addition,
and the order is the pointwise order (' �  if '.x/ �  .x/ for all x). Like Kn

.0/
, the

class Cvx .Rn/ also has an essentially unique duality, the Legendre transform

'�.y/ D sup
x2Rn

Œhx; yi � '.x/� :

More formally, we have the following theorem of Artstein-Avidan and Milman
[1, 3]:

Theorem 20 Every order reversing involution T W Cvx .Rn/ ! Cvx .Rn/ is the
Legendre transform up to linear terms.

Explicitly, there exist a constant C 2 R, a vector v 2 R
n, and an invertible

symmetric linear transformation B 2 GL.n/ such that

.T '/ .x/ D '� .Bx C v/C hx; vi C C:

Hence we may think of '� as the inverse “'�1” and attempt to repeat the
constructions of the previous sections. Notice that for functions the harmonic mean
H.';  / D

�
1
2
.'� C  �/

��
is exactly the inf-convolution, used by Asplund in [4]:

.H.';  // .x/ D
1

2
inf

y2Rn
.'.x C y/C  .x � y// :

As a recent example of the benefits of thinking of '� as '�1, Rotem recently proved
the following result [21]:

Theorem 21 For every ' 2 Cvx .Rn/ one has

.' C ı/� C
�
'� C ı

��
D ı;

where ı.x/ D 1
2

jxj2 and j�j is the Euclidean norm on R
n.

Notice that this theorem is the analogue for convex functions of the trivial identity
1

xC1
C 1

1=xC1
D 1 for positive real numbers. The function ı plays the role of

the number 1 as ı is the unique function satisfying ı� D ı. This theorem has
applications for functional Blaschke-Santaló type inequalities and for the theory
of summands.

By fixing a convex body K 2 Kn
.0/

and choosing ' D 1
2
h2K in Theorem 21, it was

shown in [21] that

�
K C2 Bn

2

�ı
C2

�
Kı C2 Bn

2

�ı
D Bn

2

where the 2-sum C2 was defined in the previous section. However, it turns out that
the 2-sum cannot be replaced by the Minkowski sum, as the identity

�
K C Bn

2

�ı
C
�
Kı C Bn

2

�ı
D Bn

2
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is simply false. So in this example not only the theory can be extended to the
functional case, but the functional case is better behaved than the classical case
of convex bodies.

The theory of continued fractions can also be extended to this functional case.
Specifically, Molchanov proves the following theorem in [18]:

Theorem 22 Let ' 2 Cvx .Rn/ be a non-negative function with '.0/ D 0. Assume
that r

2
jxj2 � '.x/ � R

2
jxj2 for all x 2 R

n, for some constants r;R that satisfy
r2 C 4 r

R > 4. Then the continued fraction Œ'; '; '; : : :� converges to a function
� 2 Cvx .Rn/, and � solves the functional equation �� D � C '.

The convergence of Œ'; '; '; : : :� is proved with respect to the metric

d.';  / D min fr > 0 W f � g C rı and g � f C rıg :

We will not give the details of the proof.
Finally, the construction of the geometric mean may also be carried out for

convex functions. Given '; 2 Cvx .Rn/ we define

˛0 D ' �0 D  

˛nC1 D
˛n C �n

2
�nC1 D

�
˛�

n C ��
n

2

��

:

It is then possible to prove the following result:

Theorem 23 Assume '; 2 Cvx .Rn/ are everywhere finite. Then the pointwise
limit

� D lim
n!1

˛n D lim
n!1

ˇn

exists. We call � the geometric mean of ' and  and write � D G.';  /.
Furthermore, the functional geometric mean has the following properties:

1. G.'; '/ D '.
2. G.';  / is monotone in its arguments: If '1 � '2 and  1 �  2, then

G.'1;  1/ � G.'2;  2/.
3. ŒG.';  /�� D G .'�;  �/.
4. G.'; '�/ D ı.
5. For any linear map u we have G.' ı u;  ı u/ D G.';  / ı u.

We omit the details of the proof, as it is very similar to Theorem 6, Proposition 8
and Proposition 9.

Finally, let us note that in some ways the geometric mean of convex functions is
even more well behaved than the geometric mean of convex bodies. For example,
the following theorem is proved in [21]:
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Theorem 24 The geometric mean of convex functions is concave in its arguments.
More explicitly, fix '0; '1;  0;  1 2 Cvx .Rn/ and 0 < 	 < 1. Define '	 D .1 �

	/'0 C 	'1 and  	 D .1 � 	/ 0 C 	 1. Then

G .'	;  	/ � .1 � 	/ � G .'0;  0/C 	G.'1;  1/

whenever all the geometric means in this expression are well defined.

This theorem is the natural extension of the fact that f .x; y/ D
p

xy is a concave
function on .RC/

2. Like in Theorem 21, the functional version immediately
implies a theorem for convex bodies with the 2-sum: For every convex bodies
K0;K1;T0;T1 2 Kn

.0/
one has

G2 .K	;T	/ �
p
1 � 	G2.K0;T0/C2

p
	G2.K1;T1/;

where K	 D
p
1 � 	K0 C2

p
	K1 and T	 D

p
1 � 	T0 C2

p
	T1.

However, it is also proved in [21] that the concavity property does not hold for
the geometric mean of convex bodies with the regular Minkowski addition. So, like
in Theorem 21, the functional theory is better behaved than the classical theory.

9 Open Problems

We conclude this paper by clearly listing the open problems that were mentioned in
the previous sections, together with a few other.

1. As explained in Section 4, we would like to think of the relation G.K;T/ D Z
as “T is polar to K with respect to Z”. This ideology raises the following
questions:

(a) Domain of polarity: Fix Z 2 Kn
.0/

. For which convex bodies K there exists a
T such that G.K;T/ D Z? In other words, what is the natural domain of this
“extended polarity”?
As a particular sub-problem, assume that for every K 2 Kn

.0/
there exists a

T 2 Kn
.0/

such that G.K;T/ D Z. Does it follow that Z is an ellipsoid?
(b) Uniqueness: Is the polar body to K with respect to Z always unique? More

explicitly, if K;T1;T2 2 Kn
.0/

satisfy G.K;T1/ D G.K;T2/, does it follow
that T1 D T2?

(c) Order reversing: Assume that G.K1;T1/ D G.K2;T2/ and K1 � K2. Does
it follow that T1 � T2? In other words, is the “extended polarity” transform
order reversing? Notice that an affirmative answer to this question implies
an affirmative answer to the previous question. It is also worth mentioning
that G.K;T1/ � G.K;T2/ does not imply that T1 � T2, and one can even
construct a counterexample where K;T1;T2 are ellipsoids.
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2. For which bodies K;T 2 Kn
s we have G.K;T/ D G.K;T/?

Remember from the discussion in Sections 5 and 7 that this question is related to
the next two. Also remember that by Magazinov’s example in the appendix, the
answer to this question is not “always”.

3. Fix K;T 2 Kn
.0/

and ˛; ˇ > 0. When is it true that G.˛K; ˇT/ D
p
˛ˇG.K;T/?

Since this equality holds when ˛ D ˇ, it is enough to assume that ˇ D 1 or that
˛ D 1

ˇ
. Again, the answer to this question is not “always”.

4. Fix K;T 2 Kn
.0/

. When is Gp.K;T/ as defined in Section 7 independent on p 2

Œ1;1/?
5. As discussed in Section 6, what is the asymptotic behavior of

gn D inf
K;T2Kn

s

jG.K;T/jp
jKj jTj

as n ! 1?
6. Does there exists an “exponential map” E W Kn

.0/
! Kn

.0/
such that

E

�
K C T

2

�
D G .E.K/;E.T//‹

What should be the image I � Kn
.0/

of E? Since exp .Œ0;1// D Œ1;1/, it may

be possible to take I D
n
K 2 Kn

.0/
W K � Bn

2

o
.

It may be easier to construct the “logarithm” L W I ! Kn
.0/

with the property

G.L.K/;L.T// D
L.K/C L.T/

2
:

7. How to properly define the weighted geometric mean of two convex bodies?
For numbers x; y > 0 and 	 2 Œ0; 1�, the 	-geometric mean of x and y is simply
x1�	y	. For positive-definite matrices, the 	-geometric mean of u and v is usually
defined as

u#	v D u1=2
�
u�1=2vu�1=2

�	
u1=2:

What should the definition be for convex bodies? It is possible to define, for
example, G1=4 .K;T/ D G .G.K;T/;T/ and so on, but is there a more direct
approach?
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Appendix: A Counterexample to the Scaling
Property of the Geometric Mean

Alexander Magazinov�

Theorem A Let K be a square with vertices .˙4; 0/ and .0;˙4/. Let T be a
hexagon with vertices .0;˙4/, .˙2;˙1/ (the signs in the last expression are taken
independently). Then

G.K;T/ ¤ G

�
.1C "/K;

1

1C "
T

�
;

if " ¤ 0 and j"j is small enough.

The following lemma is the key to Theorem A. By a non-reflex angle in R
2 we mean

a closed convex cone C � R
2 with vertex at .0; 0/ which has a non-empty interior,

but that does not contain a full line. The notation Œu1; u2� for u1; u2 2 R
2 denotes the

closed interval with endpoints u1 and u2:

Lemma B Let C � R
2 be a non-relfex angle. Fix K;T 2 K2

.0/
such that

C \ @K D Œu1; u2�; C \ @T D Œ˛u1; ˇu2�

for some u1; u2 2 R
2, where 0 < ˛ < ˇ. Assume that the lines

` D fu1 C t.˛u1 � ˇu2/ W t 2 Rg; `0 D fˇu2 C t.u1 � u2/ W t 2 Rg

are support lines to K and T respectively. Then

1. There exists a unique Euclidean scalar product Q.�; �/ in R
2 such that

Q.˛u1 � ˇu2; u1/ D Q.u1 � u2; u2/ D 0; Q.u1; ˛u1/ D 1: (A.1)

�School of Mathematical Sciences, Tel-Aviv University, magazinov-al@yandex.ru
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2. If Q is as above, then the curvilinear segment @G.K;T/\C is an arc of the ellipse

fv 2 R
2 W Q.v; v/ D 1g:

Outline of the proof. Fix a linear map f W R2 ! R
2 with the following properties:

jf .u1/j D 1=
p
˛; jf .u2/j D 1=

p
ˇ; †.f .u1/; f .u2// D arccos

p
˛=ˇ;

where †.v;w/ denotes the angle between the vectors v and w. For the existence in
assertion 1 it is enough to set

Q.v; v0/ D
˝
f .v/; f .v0/

˛
: (A.2)

Uniqueness is immediate since (A.1) gives three linearly independent linear equa-
tions in the three variables Q.u1; u1/, Q.u1; u2/, Q.u2; u2/.

Now we prove assertion 2, keeping f from above. Note that the segment
Œf .u1/; f .u2/� is orthogonal to the vector f .u2/, and the segment Œf .˛u1/; f .ˇu2/�
is orthogonal to the vector f .u1/.

By construction ˛jf .u1/j2 D 1: Then, since the triangles .0; f .u1/; f .u2// and
.0; ˛f .u1/; ˇf .u2// are both right-angled and have the same angle at .0; 0/ they are
similar, so we have ˇjf .u2/j2 D 1.

We say that a ray R from the origin is an orthogonality ray for a convex body
X 2 K2

.0/
if a line through the point R \ @X in the direction orthogonal to R is a

support line to X. The condition that ` and `0 are support lines to K and T implies
that the two rays

Ri D ftf .ui/ W t > 0g .i D 1; 2/

are orthogonality rays for both f .K/ and f .T/.
Note that

f .K/ı \ f .C/ D f .T/ \ f .C/;

and the rays R1 and R2 are orthogonality rays for the body f .K/ı. Now we claim
that

Ai.f .K/; f .T// \ f .C/ D Ai.f .K/; f .K/
ı/ \ f .C/;

Hi.f .K/; f .T// \ f .C/ D Hi.f .K/; f .K/
ı/ \ f .C/;

and R1 and R2 are orthogonality rays for each of the bodies Ai.f .K/; f .T//,
Hi.f .K/; f .T//, Ai.f .K/; f .K/ı/, Hi.f .K/; f .K/ı/. Indeed, this can be checked
straightforwardly by induction over i.
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Passing to the limit, we have G.f .K/; f .T// \ f .C/ D B22 \ f .C/, so by
Proposition 8 we have

G.K;T/ \ C D f �1.B22/ \ C:

Hence @G.K;T/ \ C is indeed an arc of an ellipse Q.v; v/ D 1, and assertion 2 is
proved. ut

Proof of Theorem A. We will prove the following claim. Let "1 and "2 be arbitrary
real numbers such that max.j"1j; j"2j/ is small enough. Let

C D f.x; y/ W x < 12y < 4xg

be an open angle. We prove that the curve @G ..1C "1/K; .1C "2/T/ \ C contains
exactly one non-smooth point, which lies on the line

x

6C 4"1 C 2"2
D

y

1C "2
;

pointing to the vertex .3C2"1C"2; .1C"2/=2/ of the body 1
2
..1C"1/KC.1C"2/T/.

We will give the proof for "1 D "2 D 0, as one can check that the argument is
applicable in the general case.

Consider the angles

C1 D f.x; y/ W 0 � 6y � xg;

C2 D f.x; y/ W x � 6y � 3xg:

We claim that for i D 1; 2 the curvilinear segments @G.K;T/ \ Ci are elliptic
arcs, and these arcs arise from distinct ellipses.

We have G.K;T/ D G.K1;T1/; where

K1 D
K C T

2
; T1 D

�
Kı C Tı

2

�ı

:

In the positive quadrant the vertices of K1 are

u1 D .3; 0/; u2 D .3; 1=2/; u3 D .2; 2/; u4 D .0; 4/;

and the vertices of T1 in the positive quadrant are

v1 D .8=3; 0/; v2 D .16=7; 8=7/; v3 D .0; 4/:

Clearly, Lemma B applies to K1 , T1 and each Ci. Hence @G.K;T/ \ Ci are indeed
elliptic arcs.
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Assume these arcs belong to the same ellipse Q.v; v/ D 1. Then

Q.v1; u1 � u2/ D Q.v2; u2 � u3/ D Q.u2; v1 � v2/ D 0:

But if

Q..x1; y1/; .x2; y2// D ax1x2 C b.x1y2 C x2y1/C cy1y2;

this would yield a D b D c D 0, a contradiction. Therefore the common point of
the arcs @G.K;T/ \ Ci is a non-smooth point of @G.K;T/.

Consequently, the only non-smooth point of the curve @G..1 C "1/K; .1 C

"2/T/ \ C changes its angular direction from the origin, even under the additional
assumption .1C "1/.1C "2/ D 1. This immediately implies

G.K;T/ ¤ G

�
.1C "1/K;

1

1C "1
T

�
:

ut

Remark Nevertheless, the identity

G.K;T/ D G.aK; a�1T/ (A.3)

holds for some wide class of two-dimensional bodies. For instance, let K0 be a
regular n-gon and T0 D Kı

0 . Consider convex n-gons K and T that are obtained
by arbitrary small enough perturbations of the vertices of K0 and T0, respectively.
Then Lemma B allows one to reconstruct @G.aK; a�1T/ completely and thus verify
that (A.3) holds true for such K and T .



Randomized Isoperimetric Inequalities

Grigoris Paouris and Peter Pivovarov

Abstract We discuss isoperimetric inequalities for convex sets. These include the
classical isoperimetric inequality and that of Brunn-Minkowski, Blaschke-Santaló,
Busemann-Petty and their various extensions. We show that many such inequalities
admit stronger randomized forms in the following sense: for natural families of
associated random convex sets one has stochastic dominance for various functionals
such as volume, surface area, mean width and others. By laws of large numbers,
these randomized versions recover the classical inequalities. We give an overview
of when such stochastic dominance arises and its applications in convex geometry
and probability.

1 Introduction

The focus of this paper is on stochastic forms of isoperimetric inequalities for
convex sets. To set the stage, we begin with two examples. Among the most
fundamental isoperimetric inequalities is the Brunn-Minkowski inequality for the
volume Vn of convex bodies K;L � R

n,

Vn.K C L/1=n > Vn.K/
1=n C Vn.L/

1=n; (1.1)

where K C L is the Minkowski sum fx C y W x 2 K; y 2 Lg. The Brunn-
Minkowski inequality is the cornerstone of the Brunn-Minkowski theory and its
reach extends well beyond convex geometry; see Schneider’s monograph [71] and
Gardner’s survey [27]. It is well known that (1.1) provides a direct route to the
classical isoperimetric inequality relating surface area S and volume,
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�
S.K/

S.B/

�1=.n�1/

>
�

Vn.K/

Vn.B/

�1=n

; (1.2)

where B is the Euclidean unit ball. As equality holds in (1.1) if K and L are
homothetic, it can be equivalently stated in isoperimetric form as follows:

Vn.K C L/ > Vn.rKB C rLB/; (1.3)

where rK ; rL denote the radii of Euclidean balls with the same volume as K;L,
respectively, i.e., rK D .Vn.K/=Vn.B//1=n; for subsequent reference, with this
notation, (1.2) reads

S.K/ > S.rKB/: (1.4)

Both (1.1) and (1.2) admit stronger empirical versions associated with random
convex sets. Specifically, let x1; : : : ; xN be independent random vectors (on some
probability space .�;F ;P/) distributed according to the uniform density on a
convex body K � R

n, say, fK D 1
Vn.K/

1K , i.e., P.xi 2 A/ D
R

A fK.x/dx for Borel sets
A � R

n. For each such K and N > n, we associate a random polytope

KN D convfx1; : : : ; xNg;

where conv denotes convex hull. Then the following stochastic dominance holds for
the independent random polytopes KN1 , LN2 and .rKB/N1 , .rLB/N2 associated with
the bodies in (1.3): for all ˛ > 0,

P .Vn.KN1 C LN2 / > ˛/ > P .Vn..rKB/N1 C .rLB/N2 / > ˛/ : (1.5)

Integrating in ˛ gives

EVn.KN1 C LN2 / > EVn..rKB/N1 C .rLB/N2 /;

where E denotes expectation. By the law of large numbers, when N1;N2 ! 1,
the latter convex hulls converge to their ambient bodies and this leads to (1.3).
Thus (1.1) is a global inequality which can be proved by a random approximation
procedure in which stochastic dominance holds at each stage; for a different
stochastic form of (1.1), see Vitale’s work [76]. For the classical isoperimetric
inequality, one has the following distributional inequality, for ˛ > 0,

P .S.KN1 / > ˛/ > P .S..rKB/N1 / > ˛/ : (1.6)

The same integration and limiting procedure lead to (1.4). For fixed N1 and N2,
the sets in the extremizing probabilities on the right-hand sides of (1.5) and (1.6)
are not Euclidean balls, but rather sets that one generates using Euclidean balls. In
particular, the stochastic forms are strictly stronger than the global inequalities (1.1)
and (1.2).
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The goal of this paper is to give an overview of related stochastic forms of
isoperimetric inequalities. Both (1.1) and (1.2) hold for non-convex sets but we
focus on stochastic dominance associated with convex sets. The underlying ran-
domness, however, will not be limited to uniform distributions on convex bodies but
will involve continuous distributions on R

n. We will discuss a streamlined approach
that yields stochastic dominance in a variety of inequalities in convex geometry
and their applications. We pay particular attention to high-dimensional probability
distributions and associated structures, e.g., random convex sets and matrices. Many
of the results we discuss are from a series of papers [58, 59], along with D. Cordero-
Erausquin, M. Fradelizi [24], S. Dann [25] and G. Livshyts [46]. We also present a
few new results that fit in this framework and have not appeared previously.

Inequalities for the volume of random convex hulls in stochastic geometry have
a rich history starting with Blaschke’s resolution of Sylvester’s famous four-point
problem in the plane (see, e.g., [63, 18, 20, 28] for background and history). In
particular, for planar convex bodies Blaschke proved that the random triangle K3
(notation as above) satisfies

EV2.�3/ > EV2.K3/ > EV2..rKB2/3/; (1.7)

where � is a triangle in R
2 with the same area as K and B2 is the unit disk.

Blaschke’s proof of the lower bound draws on Steiner symmetrization, which is the
basis for many related extremal inequalities, see, e.g,. [71, 28, 35]. More generally,
shadow systems as put forth by Rogers and Shephard [72, 65] and developed by
Campi and Gronchi, among others, play a fundamental role, e.g., [18, 21, 22], and
will be defined and discussed further below. Finding maximizers in (1.7) for n > 3

has proved more difficult and is connected to the famous slicing problem, which we
will not discuss here (see [13] for background).

A seminal result building on the lower bound in (1.7) is Busemann’s random
simplex inequality [16, 17]: for a convex body K � R

n and p > 1, the set Ko;n D

convfo; x1; : : : ; xng (xi’s as above) satisfies

EVn.Ko;n/
p > EVn..rKB/o;n/

p: (1.8)

This is a key ingredient in Busemann’s intersection inequality,

Z
Sn�1

Vn�1.K \ �?/nd�.�/ �

Z
Sn�1

Vn�1..rKB/ \ �?/nd�.�/; (1.9)

where Sn�1 is the unit sphere equipped with the Haar probability measure � ; (1.8)
is also the basis for extending (1.9) to lower dimensional secitons as proved by
Busemann and Straus [17] and Grinberg [33]; see also Gardner [29] for further
extensions.

Inextricably linked to Busemann’s random simplex inequality is the Busemann-
Petty centroid inequality, proved by Petty [61]. The centroid body of a star body
K � R

n is the convex body Z.K/ with support function given by
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h.Z.K/; y/ D
1

Vn.K/

Z
K

jhx; yij dxI

(star bodies and support functions are defined in §2) and it satisfies

Vn.Z.K// > Vn.Z.rKB//:

The latter occupies a special role in the theory of affine isoperimetric inequalities;
see Lutwak’s survey [47].

One can view (1.8) as a result about convex hulls or about the random
parallelotope

Pn
iD1Œ�xi; xi� (since nŠVn.Ko;n/ D jdetŒx1; : : : ; xn�j). Both viewpoints

generalize: for convex hulls KN with N > n, this was done by Groemer [34] and for
Minkowski sums of N > n random line segments by Bourgain, Meyer, Milman and
Pajor [11]; these are stated in §5, where we discuss various extensions for different
functionals and underlying randomness. These are the starting point for a systematic
study of many related quantities.

In particular, convex hulls and zonotopes are natural endpoint families of sets
in Lp-Brunn-Minkowski theory and its recent extensions. In the last twenty years,
this area has seen significant developments. Lp analogues of centroid bodies are
important for affine isoperimetric inequalities, e.g., [48, 49, 36] and are fundamental
in concentration of volume in convex bodies, e.g, [56, 42, 43]. The Lp-version of the
Busemann-Petty centroid inequality, due to Lutwak, Yang and Zhang [48], concerns
the convex body Zp.K/ defined by its support function

hp.Zp.K/; y/ D
1

Vn.K/

Z
K

jhx; yijp dx (1.10)

and states that

Vn.Zp.K// > Vn.Zp.rKB//: (1.11)

A precursor to (1.11) is due to Lutwak and Zhang [53] who proved that when K is
origin-symmetric,

Vn.Zp.K/
ı/ 6 Vn.Zp.rKB/ı/: (1.12)

When p ! 1, Zp.K/ converges to Z1.K/ D K and (1.12) recovers the classical
Blaschke-Santaló inequality [68],

Vn.K
ı/ 6 Vn..rKB/ı/: (1.13)

The latter holds more generally for non-symmetric bodies with an appropriate
choice of center. The analogue of (1.12) in the non-symmetric case was proved by
Haberl and Schuster [36], to which we refer for further references and background
on Lp-Brunn-Minkowski theory.
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Inequalities (1.11) and (1.12) are fundamental inequalities in the Lp Brunn-
Minkowski theory. Recently, such inequalities have been placed in a general
framework involving Orlicz functions by Lutwak, Yang, and Zhang, e.g., [50, 51]
and a closely related concept, due to Gardner, Hug and Weil [30, 31], termed M-
addition, which we discuss in §5; for further extensions and background, see [10].
We treat stochastic forms of fundamental related inequalities. For example, we show
that in (1.5) one can replace Minkowski addition by M-addition. With the help
of laws of large numbers, this leads to a streamlined approach to all of the above
inequalities and others.

The notion of M-addition fits perfectly with the random linear operator point of
view which we have used in our work on this topic [58, 59, 24]. For random vectors
x1; : : : ; xN , we form the n � N random matrix Œx1; : : : ; xN � and view it as a linear
operator from R

N to R
n. If C � R

N , then

Œx1; : : : ; xN �C D

(
NX

iD1

cixi W c D .ci/ 2 C

)

is a random set in R
n. In particular, if C D convfe1; : : : ; eNg, where e1; : : : ; eN is the

standard unit vector basis for RN , then

Œx1; : : : ; xN �convfe1; : : : ; eNg D convfx1; : : : ; xNg:

Let BN
p denote the closed unit ball in `N

p . If C D BN
1 , then

Œx1; : : : ; xN �B
N
1 D convf˙x1; : : : ;˙xNg:

If C D BN
1, then one obtains Minkowski sums,

Œx1; : : : ; xN �B
N
1 D

NX
iD1

Œ�xi; xi�:

We define the empirical analogue Zp;N.K/ of the Lp-centroid body Zp.K/ by its
(random) support function

hp.Zp;N.K/; y/ D
1

N

NX
iD1

jhxi; yijp ; (1.14)

where x1; : : : ; xN are independent random vectors with density 1
Vn.K/

1K ; this can

be compared with (1.10); in matrix form, Zp;N.K/ D N�1=pŒx1; : : : ; xN �BN
q , where

1=p C 1=q D 1. In this framework, we will explain how uniform measures on
Cartesian products of Euclidean balls arise as extremizers for

P.�.ŒX1; : : : ;XN �C/ > ˛/ (1.15)



396 G. Paouris and P. Pivovarov

and

P.�..ŒX1; : : : ;XN �C/
ı/ > ˛/I (1.16)

over the class of independent random vectors Xi with continuous distributions on
R

n having bounded densities; here C � R
N is a compact convex set (sometimes

with some additional symmetry assumptions) and � an appropriate functional,
e.g., volume, surface area, mean width, diameter, among others. Since the random
sets in the extremizing probabilities are not typically balls but sets one generates
using balls, there is no clear-cut path to reduce distributional inequalities for (1.15)
and (1.16) from one another via duality; for comparison, note that the Lutwak-Yang-
Zhang inequality for Lp centroid bodies (1.11) implies the Lutwak-Zhang result for
their polars (1.12) by the Blaschke-Santaló inequality since the extremizers in each
case are balls (or ellipsoids).

The random operator approach allows one to interpolate between inequalities for
families of convex sets, but such inequalities in turn yield information about random
operators. For example, recall the classical Bieberbach inequality on the diameter
of a convex body K � R

n,

diam.K/ > diam.rKB/: (1.17)

A corresponding empirical form is given by

P.diam.KN/ > ˛/ > P.diam..rKB/N/ > ˛/: (1.18)

The latter identifies the extremizers of the distribution of certain operator
norms. Indeed, if K is an origin-symmetric convex body and we set KN;s D

convf˙x1; : : : ;˙xNg (xi 2 R
n), then (1.18) still holds and we have the following

for the `N
1 ! `n

2 operator norm,

diam.KN;s/ D 2


Œx1; : : : ; xN � W `N

1 ! `n
2



 :
We show in §6 that if X D ŒX1; : : : ;XN �, where the Xi’s are independent random
vectors in R

n and have densities bounded by one, say, then for any N-dimensional
normed space E, the quantity

P
�
kŒX1; : : : ;XN � W E ! `n

2k > ˛
�

is minimized when the columns Xi are distributed uniformly in the Euclidean balleB
of volume one, centered at the origin. This can be viewed as an operator analogue of
the Bieberbach inequality (1.17). When n D 1, X is simply a 1 � N row vector and
the latter extends to semi-norms. Thus if F is a subspace of Rn, we get the following
for random vectors x 2 R

N with independent coordinates with densities bounded by
one: the probability

P.kPFxk2 > ˛/ (1.19)
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is minimized when x is sampled in the unit cube Œ�1=2; 1=2�N - products of
“balls” in one dimension (here k�k2 is the Euclidean norm and PF is the orthogonal
projection onto F). Combining (1.19) with a seminal result by Ball [4] on maximal
volume sections of the cube, we obtain a new proof of a result of Rudelson and
Vershynin [67] on small ball probabilities of marginal densities of product measures
(which differs also from the proof in [46], our joint work G. Livshyts); this is
explained in §6.

As mentioned above, Busemann’s original motivation for proving the random
simplex inequality (1.8) was to bound suitable averages of volumes of central
hyperplane sections of convex bodies (1.9). If Vn.K/ D 1 and � 2 Sn�1, then
Vn�1.K \�?/ is the value of the marginal density of 1K on Œ� � D spanf�g evaluated
at 0, i.e. �Œ��.1K/.0/ D

R
�? 1K.x/dx. Thus it is natural that marginal distributions

of probability measures arise in this setting. One reason for placing Busemann-type
inequalities in a probabilistic framework is that they lead to bounds for marginal
distributions of random vectors not necessarily having independent coordinates, as
in our joint work with S. Dann [25], which we discuss further in §5.

Lastly, we comment on some of the tools used to prove such inequalities.
We make essential use of rearrangement inequalities such as that of Rogers [64],
Brascamp, Lieb and Luttinger [12] and Christ [23]. These interface particularly well
with Steiner symmetrization, shadow systems and other machinery from convex
geometry. Another key ingredient is an inequality of Kanter [39] on stochastic
dominance. In fact, we formulate the Rogers/Brascamp-Lieb-Luttinger inequality
in terms of stochastic dominance using the notion of peaked measures as studied
by Kanter [39] and Barthe [5, 6], among others. One can actually prove the
minimization result for (1.19) directly using the Rogers/Brascamp-Lieb-Luttinger
inequality and Kanter’s theorem but we will show how these ingredients apply
in a general framework for a variety of functionals. Similar techniques are used
in proving analytic inequalities, e.g., for k-plane transform by Christ [23] and
Baernstein and Loss [2]. Our focus is on phenomena in convex geometry and
probability.

The paper is organized as follows. We start with definitions and background
in §2. In §3, we discuss the rearrangement inequality of Rogers/Brascamp-Lieb-
Luttinger and interpret it as a result about stochastic dominance for certain types of
functions with a concavity property, called Steiner concavity, following Christ. In
§4, we present examples of Steiner concave functions. In §5, we present general
randomized inequalities. We conclude with applications to operator norms of
random matrices and small deviations in §6.

2 Preliminaries

We work in Euclidean space Rn with the canonical inner-product h�; �i and Euclidean
norm k�k2. As above, the unit Euclidean ball in R

n is B D Bn
2 and its volume is

!n WD Vn.Bn
2/; Sn�1 is the unit sphere, equipped with the Haar probability measure
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� . Let Gn;k be the Grassmannian manifold of k-dimensional linear subspaces of Rn

equipped with the Haar probability measure �n;k.
A convex body K � R

n is a compact, convex set with non-empty interior. The
set of all compact convex sets in R

n is denoted by Kn. For a convex body K we
write eK for the homothet of K of volume one; in particular, eB D !

�1=n
n B. Let Kn

ı

denote the class of all convex bodies that contain the origin in their interior. For
K;L 2 Kn, the Minkowski sum K C L is the set fx C y W x 2 K; y 2 Lg; for ˛ > 0,
˛K D f˛x W x 2 Kg. We say that K is origin-symmetric (or simply ‘symmetric’), if
�x 2 K whenever x 2 K. For K 2 Kn, the support function of K is given by

hK.x/ D supfhy; xi W y 2 Kg .x 2 R
n/:

The mean width of K is

w.K/ D

Z
Sn�1

hK.�/C hK.��/d�.�/ D 2

Z
Sn�1

hK.�/d�.�/:

Recall that the intrinsic volumes V1; : : : ;Vn are functionals on convex bodies
which can be defined via the Steiner formula: for any convex body K � R

n and
" > 0,

Vn.K C "B/ D

nX
jD0

!n�jVj.K/"
n�jI

here V0 � 1, V1 is a multiple of the mean width, 2Vn�1 is the surface area and Vn is
the volume; see [71].

For compact sets C1;C2 in R
n, we let ıH.C1;C2/ denote the Hausdorff distance:

ıH.C1;C2/ D inff" > 0 W C1 � C2 C "B;C2 � C1 C "Bg

A set K � R
n is star-shaped if it is compact, contains the origin in its interior and

for every x 2 K and 	 2 Œ0; 1� we have 	x 2 K. We call K a star-body if its radial
function

�K.�/ D supft > 0 W t� 2 Kg .� 2 Sn�1/

is positive and continuous. Any positive continuous function f W Sn�1 ! R

determines a star body with radial function f .
Following Borell [8, 9], we say that a non-negative, non-identically zero, function

 is � -concave if: (i) for � > 0, �� is concave on f > 0g, (ii) for � D 0, log is
concave on f > 0g; (iii) for � < 0,  � is convex on f > 0g. Let s 2 Œ�1; 1�. A
Borel measure � on R

n is called s-concave if

� ..1 � 	/A C 	B/ > ..1 � 	/�.A/s C 	�.B/s/
1
s
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for all compact sets A;B � R
n such that �.A/�.B/ > 0. For s D 0, one says that �

is log-concave and the inequality reads as

� ..1 � 	/A C 	B/ > �.A/1�	�.B/	:

Also, for s D �1, the measure is called convex and the inequality is replaced by

� ..1 � 	/A C 	B/ > minf�.A/; �.B/g:

An s-concave measure � is always supported on some convex subset of an affine
subspace E where it has a density. If � is a measure on R

n absolutely continuous
with respect to Lebesgue measure with density  , then it is s-concave if and only if
its density  is � -concave with � D s

1�sn (see [8, 9]).
Let A be a Borel subset of R

n with finite Lebesgue measure. The symmetric
rearrangement A� of A is the open ball with center at the origin, whose volume
is equal to the measure of A. Since we choose A� to be open, 1�

A is lower
semicontinuous. The symmetric decreasing rearrangement of 1A is defined by
1�

A D 1A� . We consider Borel measurable functions f W R
n ! RC which satisfy

the following condition: for every t > 0, the set fx 2 R
n W f .x/ > tg has finite

Lebesgue measure. In this case, we say that f vanishes at infinity. For such f , the
symmetric decreasing rearrangement f � is defined by

f �.x/ D

Z 1

0

1ff>tg�.x/dt D

Z 1

0

1ff>tg�.x/dt:

The latter should be compared with the “layer-cake representation” of f :

f .x/ D

Z 1

0

1ff>tg.x/dt: (2.1)

see [44, Theorem 1.13]. Note that the function f � is radially symmetric, radially
decreasing and equimeasurable with f , i.e., ff > ag and ff � > ag have the same
volume for each a > 0. By equimeasurability one has that kf kp D kf �kp for each
1 6 p 6 1, where k � kp denote the Lp.R

n/-norm.
Let f W Rn ! RC be a measurable function vanishing at infinity. For � 2 Sn�1,

we fix a coordinate system that e1 WD � . The Steiner symmetral f .�j�/ of f with
respect to �? WD fy 2 R

n W hy; �i D 0g is defined as follows: for z WD .x2; : : : ; xn/ 2

�?, we set fz;� .t/ D f .t; x2; : : : ; xn/ and define f �.t; x2; : : : ; xnj�/ WD .fz;� /�.t/: In
other words, we obtain f �.�j�/ by rearranging f along every line parallel to � . We
will use the following fact, proved in [4]: if g W Rn ! RC is an integrable function
with compact support, there exists a sequence of functions gk, where g0 D g and
gkC1 D g�

k .�j�k/, for some �k 2 Sn�1, such that limk!1 kgk � g�k1 D 0. We refer
the reader to the books [44, 74] or the introductory notes [14] for further background
material on rearrangement of functions.
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3 Inequalities for Stochastic Dominance

We start with a seminal inequality now known as the Rogers/Brascamp-Lieb-
Luttinger inequality. It was observed by Madiman and Wang in [77] that Rogers
proved the inequality in [64] but it is widely known as the Brascamp-Lieb-Luttinger
inequality [12]. We will state it only for integrable functions since this is the focus
of our paper.

Theorem 3.1 Let f1; : : : ; fM be non-negative integrable functions on R and
u1; : : : ; uM 2 R

N. Then

Z
RN

MY
iD1

fi.hx; uii/dx 6
Z
RN

MY
iD1

f �
i .hx; uii/dx: (3.1)

We will write the above inequality in an equivalent form using the notion
of peaked measures. The ideas behind this definition can be tracked back to
Anderson [1] and Kanter [39], among others, but here we follow the terminology
and notation of Barthe in [5, 6]. Let �1; �2 be finite Radon measures on R

n with
�1.R

n/ D �2.R
n/. We say that �1 is more peaked than �2 (and we write �1 � �2

or �2 � �1) if

�1.K/ > �2.K/ (3.2)

for all symmetric convex bodies K in R
n. If X1;X2 are random vectors in R

n with
distributions �1 and �2, respectively, we write X1 � X2 if �1 � �2. Let f1; f2 two
non-negative integrable functions on R

n with
R

f1 D
R

f2. We write f1 � f2 if the
measures �i with densities fi satisfy �1 � �2. It follows immediately from the
definition that the relation � is transitive. Moreover if �i � �i and ti > 0, 1 6 i 6 N
then

P
i ti�i �

P
i ti�i. Another consequence of the definition is that if � � � and E

is a k-dimensional subspace then the marginal of � on E, i.e.�ıP�1
E , is more peaked

than the marginal of � on E. To see this, take any symmetric convex body K in E and
consider the infinite cylinder C WD K � E? � R

n. It is enough to check that �.C/ >
�.C/, and this is satisfied since C can be approximated from inside by symmetric
convex bodies in R

n. More generally, if � � � then for every linear map T , we have

� ı T � � ı T; (3.3)

where � ı T is the pushforward measure of � through the map T .
Recall that F W R

n ! R is quasi-concave (quasi-convex) if for all s the set
fx W F.x/ > sg (fx W F.x/ 6 sg) is convex.
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Lemma 3.2 Let �1; �2 be Radon measures on R
n with �1.Rn/ D �2.R

n/. Then
�1 � �2 if and only if

Z
Rn

F.x/d�1.x/ >
Z
Rn

F.x/d�2.x/ (3.4)

for all even non-negative quasi-concave functions F.

Proof Assume first that �1 � �2 and that F is even and quasi-concave. Then by the
layer-cake representation and Fubini’s theorem,

Z
Rn

F.x/d�1.x/ D

Z 1

0

Z
fxWF.x/>sg

d�1.x/ds >

Z 1

0

Z
fxWF.x/>sg

d�2.x/ds D

Z
Rn

F.x/d�2.x/:

Conversely, if K is a symmetric convex body then F WD 1K is even and quasi-
concave and (3.4) becomes �1.K/ > �2.K/ so (3.4) implies that �1 � �2. �

We are now able to state the following equivalent form of the Rogers/Brascamp-
Lieb-Luttinger inequality:

Proposition 3.3 Let f1; : : : ; fN be non-negative integrable functions on R. Then as
products on R

N,

NY
iD1

fi �

NY
iD1

f �
i : (3.5)

Let us explain why Theorem 3.1 implies Proposition 3.3. Note first that without
loss of generality we can replace the assumption “integrable” with “having integral
1”. Let K be a symmetric convex body in R

N . Then it can be approximated by
intersections of symmetric slabs of the form

Km WD

m\
iD1

fx 2 R
N W jhx; uiij 6 1g

for suitable u1; : : : ; um 2 R
N . Note that 1Km D

Qm
iD1 1Œ�1;1�.h�; uii/. Apply (3.1) with

M D m C N and umCi WD ei, i D 1; : : : ;N. Then (since 1Km ! 1K in L1), we get
that

Z
K

NY
iD1

fi.xi/dx 6
Z

K

NY
iD1

f �
i .xi/dx: (3.6)
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Since K is an arbitrary symmetric convex body in R
N , we get (3.5). The latter is an

extension of a theorem of Anderson [1] and it is the basis of Christ’s extension of
the Rogers/Brascamp-Lieb-Luttinger inequality [23]; see also the thesis of Pfiefer
[62] and work of Baernstein and Loss [2].

In the other direction, consider non-negative integrable functions f1; : : : ; fm
and let u1; : : : ; um be vectors in R

N . Write F.x/ WD
Qm

iD1 fi.xi/ and F�.x/ WDQm
iD1 f �

i .xi/. Let T be the m�N matrix with rows u1; : : : ; um. Note that (3.5) implies
that F � F�. By (3.3) we also have that F ı T � F� ı T so that for any symmetric
convex body K � R

N ,
R

K F ı T.x/dx �
R

K F� ı T.x/dx, hence

Z
RN

mY
iD1

fi.hx; uii/dx 6
Z
RN

mY
iD1

f �
i .hx; uii/dx

which is (3.1).
Actually we will use the Rogers/Brascamp-Lieb-Luttinger inequality in the

following form [23].

Corollary 3.4 Let f1; : : : ; fm be non-negative integrable functions on R. Let
u1; : : : ; um be non-zero vectors in R

N and let F1; : : : ;FM be non-negative, even,
quasi-concave functions on R

N. Then

Z
RN

MY
jD1

Fj.x/
mY

iD1

fi.hx; uii/dx 6
Z
RN

MY
jD1

Fj.x/
mY

iD1

f �
i .hx; uii/dx: (3.7)

Also, if F is a non-negative, even, quasi-convex function on R
N, we have

Z
RN

F.x/
NY

iD1

fi.xi/dx >
Z
RN

F.x/
mY

iD1

f �
i .xi/dx: (3.8)

Proof (Sketch) Note that
QM

jD1 Fj.x/ is again quasi-concave and even. So (3.7)
follows from Proposition 3.3 and Lemma 3.2.

For the proof of (3.8) first notice that it is enough to prove in the case thatR
R

fi.t/dt D 1, 1 6 i 6 N. Recall that for every t > 0, fF 6 tg is convex and
symmetric. Thus using Proposition 3.3 and Lemma 3.2, we get

Z
RN

F.x/
NY

iD1

fi.xi/dx

D

Z
RN

�Z 1

0

1fF>tg.x/dt

� NY
iD1

fi.xi/dx
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D

Z 1

0

Z
RN
.1 � 1fF6tg/

NY
iD1

fi.xi/dxdt

D

Z 1

0

 Z
RN

NY
iD1

f �
i .xi/dx �

Z
RN

1fF6tg/

NY
iD1

fi.xi/dx

!
dt

>
Z 1

0

 Z
RN

NY
iD1

f �
i .xi/dx �

Z
RN

1fF6tg/

NY
iD1

f �
i .xi/dx

!
dt

D

Z
RN

F.x/
NY

iD1

f �
i .xi/dx:

�

We say that a function f on R
n is unimodal if it is the increasing limit of a

sequence of functions of the form,

mX
iD1

ti1Ki ;

where ti > 0 and Ki are symmetric convex bodies in R
n. Even quasi-concave

functions are unimodal and every even and non-increasing function on RC is
unimodal. In particular, for every integrable f W R

n ! RC, f � is unimodal. We
will use the following lemma, which is essentially the bathtub principle (e.g., [44]).

Lemma 3.5 Let f W Rn ! RC be an integrable function.

1. If ˇ WD
R1

0
f .t/tn�1dt < 1 and � W RC ! RC is a non-decreasing function,

then
Z 1

0

�.t/f .t/tn�1dt >
Z 1

0

�.t/h.t/tn�1dt; (3.9)

where h WD 1
Œ0;.nˇ/

1
n �

. If � is non-increasing, then the inequality in (3.9) is

reversed.
2. If n D 1, kf k1 D 1, kf k1 6 1 and f is even, then f � � 1Œ� 1

2 ;
1
2 �

.
3. If f is rotationally invariant, kf k1 D 1, and kf k1 6 1, then for every star-shaped

set K � R
n,
R

K f .x/dx 6
R

K 1eB.x/dx.
4. If kf k1 D 1, kf k1 6 1, then f � � 1eB.

Proof The proof of the first claim is standard, see, e.g., [58, Lemma 3.5]. The second
claim follows from the first, by choosing n D 1, ˇ D 1

2
and � WD 1Œ0;a�, a > 0. The

third claim follows by applying (3.9) after writing the desired inequality in polar
coordinates. The last claim follows immediately from the third. �
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A fundamental property of peaked measures is the following result of Kanter
[39].

Theorem 3.6 Let f1; f2 W Rn1 ! RC with f1 � f2 and f a unimodal function on R
n2 .

Then as products on R
n1 � R

n2 ,

ff1 � ff2: (3.10)

In particular, if fi; gi are unimodal functions on R
ni , 1 6 i 6 M and fi � gi for all i,

then

MY
iD1

fi �

MY
i

gi: (3.11)

Proof (Sketch) Without loss of generality, assume
R

f1 D
R

f2 D
R

f D 1. Consider
first the case where f WD 1L for some symmetric convex body L in R

n2 . Let K be a
symmetric convex body in R

n1 � R
n2 . The Prékopa-Leindler inequality implies that

the even function

F.x/ WD

Z
Rn2

1K.x; y/1L.y/dy

is log-concave. So, using Lemma 3.2,

Z
Rn1

Z
Rn2

1K.x; y/f1.x/f .y/dxdy D

Z
Rn1

F.x/f1.x/dx >

Z
Rn1

F.x/f2.x/dx D

Z
Rn1

Z
Rn2

1K.x; y/f2.x/f .y/dxdy;

hence ff1 � ff2. The general case follows easily. �

Theorem 3.6 and Lemma 3.5 immediately imply the following corollary.

Corollary 3.7 Let f1; : : : ; fm W R
n ! RC be probability densities of continuous

distributions such that maxi6M kfik1 6 1. If n D 1, then

mY
iD1

f �
i � 1Qm (3.12)

where Qm is the m-dimensional cube of volume 1 centered at 0. In the general case
we have that

mY
iD1

f �
i �

mY
iD1

1eB: (3.13)
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3.1 Multidimensional Case

Let f be a non-negative function on R
n, � 2 Sn�1 and z 2 �?. We write fz;� .t/ WD

fz.�/ WD f .z C t�/. Let G be a non-negative function on the N-fold product Rn �

: : : � R
n. Let � 2 Sn�1 and let Y WD fy1; : : : ; yNg � �? WD fy 2 R

n W hy; �i D 0g.
We define a function GY;� W RN ! RC as

GY;� .t1; : : : ; tN/ WD G.y1 C t1�; : : : ; yN C tN�/:

We say that G W Rn � : : : � R
n ! RC is Steiner concave if for every � and Y � �?

we have that GY;� is even and quasi-concave; similarly, we say G is Steiner convex
if GY;� is even and quasi-convex. For example, if N D n, then negative powers
of the absolute value of the determinant of an n � n matrix are Steiner concave
since the determinant is a multi-linear function of its columns (or rows). Our results
depend on the following generalization of the Rogers and Brascamp-Lieb-Luttinger
inequality due to Christ [23] (our terminology and presentation is suited for our
needs and differs slightly from [23]).

Theorem 3.8 Let f1; : : : ; fN be non-negative integrable functions on R
n, A an N � `

matrix. Let F.k/ W .Rn/` ! RC be Steiner concave functions 1 6 k 6 M and let �
be a measure with a rotationally invariant quasi-concave density on R

n. Then

Z
Rn
: : :

Z
Rn

MY
kD1

F.k/.x1; : : : ; x`/
NY

iD1

fi

0
@X̀

jD1

aijxj

1
A d�.x`/ : : : d�.x1/ 6

Z
Rn
: : :

Z
Rn

MY
kD1

F.k/.x1; : : : ; x`/
NY

iD1

f �
i

0
@X̀

jD1

aijxj

1
A d�.x`/ : : : d�.x1/: (3.14)

Proof (Sketch) Note that in the case n D 1, (3.14) is just (3.7). We consider the case
n > 1. Let ui 2 R

` be the rows of the matrix A. Fix a direction � 2 Sn�1 and let
y1; : : : ; y` 2 �? the (unique) vectors such that xj D yj C tj� . Consider the function

hi.hui; ti/ WD fi

0
@X̀

jD1

aij.yj C tj�/

1
A ; 1 6 i 6 N:

We defined the Steiner symmetral f �
i .�j�/ D h�

i in the direction � in §2. Then by
Fubini’s theorem we write each integral as an integral on �? and Œ� � D spanf�g,
for each fixed y1; : : : ; y` we apply (3.7) for the functions hi and the quasi-concave
functions F.k/Y;� . (Recall the definition of Steiner concavity). Using Fubini’s theorem
again, we have proved that
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Z
Rn
: : :

Z
Rn

MY
kD1

F.k/.x1; : : : ; x`/
NY

iD1

fi

0
@X̀

jD1

aijxj

1
A d�.x`/ : : : d�.x1/ 6

Z
Rn
: : :

Z
Rn

MY
kD1

F.k/.x1; : : : ; x`/
NY

iD1

f �
i

0
@X̀

jD1

aijxjj�

1
A d�.x`/ : : : d�.x1/: (3.15)

In [12] it has been proved that the function f � can be approximated (in the L1 metric)
by a suitable sequence of Steiner symmetrizations. This leads to (3.14). �

Let F be a Steiner concave function. Notice that the function QF WD 1fF>˛g is also
Steiner concave. Indeed, if � 2 Sn�1 and Y � �?, notice that QFY;� .t/ D 1 if and
only if FY;� .t/ > ˛. Since F is Steiner concave, QFY;� is the indicator function of
a symmetric convex set. So QF is also Steiner concave. Thus we have the following
corollary.

Corollary 3.9 Let F W Rn � : : : � R
n ! RC be a Steiner concave function and let

fi W Rn ! RC be non-negative functions with kfik1 D 1 for 1 6 i 6 N. Let � be the
(product) probability measure defined on R

n � : : :�R
n with density

Q
i fi and let ��

have density
Q

i f �
i . Then for each ˛ > 0,

� .fF.x1; : : : ; xN/ > ˛g/ 6 �� .fF.x1; : : : ; xN/ > ˛g/ : (3.16)

Moreover, if G W Rn � : : : � R
n ! RC is a Steiner convex function, then

� .fG.x1; : : : ; xN/ > ˛g/ > �� .fG.x1; : : : ; xN/ > ˛g/ : (3.17)

Proof We apply (3.14) for � the Lebesgue measure, ` D N, A the identity matrix,
M D 1 and for the function QF (as defined above). This proves (3.16). Working with
the function 1 � QF as in the proof of (3.8) we get (3.17). �

3.2 Cartesian Products of Balls as Extremizers

In the last section, we discussed how in the presence of Steiner concavity, one can
replace densities by their symmetric decreasing rearrangements. Among products
of bounded, radial, decreasing densities, the uniform measure on Cartesian products
of balls arises in extremal inequalities under several conditions and we discuss two
of them in this section.

We will say that a function F W Rn�: : :�R
n ! RC is coordinate-wise decreasing

if for any x1; : : : ; xN 2 R
n, and 0 6 si 6 ti; 1 6 i 6 N,

F.s1x1; : : : ; sNxN/ > F.t1x1; : : : ; tNxN/: (3.18)
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The next proposition can be proved by using Fubini’s theorem iteratively and
Lemma 3.5 (as in [24]).

Proposition 3.10 Let F W .Rn/N ! RC be a function that is coordinate-wise
decreasing. If g1; : : : ; gN W R

n ! RC are rotationally invariant densities with
maxi6N kgik1 6 1, then

Z
Rn
: : :

Z
Rn

F.x1; : : : ; xN/

NY
iD1

gi.xi/dxN : : : dx1 (3.19)

6
Z
Rn
: : :

Z
Rn

F.x1; : : : ; xN/

NY
iD1

1eB.xi/dxN : : : dx1: (3.20)

Using Corollary 3.7, we get the following.

Proposition 3.11 Let F W .Rn/N ! RC be quasi-concave and even. If g1; : : : ; gN W

R
n ! RC are rotationally invariant densities with maxi6N kgik1 6 1, then

Z
Rn

� � �

Z
Rn

F.x1; : : : ; xN/

NY
iD1

gi.xi/dxN : : : dx1 (3.21)

6
Z
Rn
: : :

Z
Rn

F.x1; : : : ; xN/

NY
iD1

1eB.xi/dxN : : : dx1: (3.22)

4 Examples of Steiner Concave and Convex Functions

As discussed in the previous section, the presence of Steiner concavity (or convex-
ity) allows one to prove extremal inequalities when the extremizers are rotationally
invariant. The requisite Steiner concavity is present for many functionals associated
with random structures. As we will see, in many important cases, verifying
the Steiner concavity condition is not a routine matter but rather depends on
fundamental inequalities in convex geometry. In this section we give several non-
trivial examples of Steiner concave (or Steiner convex) functions and we describe
the variety of tools that are involved.

4.1 Shadow Systems and Mixed Volumes

Shadow systems were defined by Shephard [73] and developed by Rogers and
Shephard [65], and Campi and Gronchi, among others; see, e.g., [18, 20, 19, 21, 69]
and the references therein. Let C be a closed convex set in R

nC1. Let .e1; : : : ; enC1/
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be an orthonormal basis of RnC1 and write RnC1 D R
n ˚RenC1 so that Rn D e?

nC1.
Let � 2 Sn�1. For t 2 R let Pt be the projection onto R

n parallel to enC1 � t� : for
x 2 R

n and s 2 R,

Pt.x C senC1/ D x C ts�:

Set Kt D PtC � R
n. Then the family .Kt/ is a shadow system of convex sets, where

t varies in an interval on the real line. Shephard [72] proved that for each 1 6 j 6 n,

Œ0; 1� 3 t 7! Vj.PtC/

is a convex function; see work of Campi and Gronchi, e.g., [22, 19] for further
background and references. Here we consider the following N-parameter variation,
which can be reduced to the one-parameter case.

Proposition 4.1 Let n;N be postive integers and C be a compact convex set in
R

n � R
N. Let � 2 Sn�1 � R

n. For t 2 R
N and .x; y/ 2 R

n � R
N, we define

Pt.x; y/ D x C hy; ti� . Then for all 1 6 j 6 n,

R
N 3 t 7! Vj.PtC/

is a convex function.

Proof (Sketch) Fix s and t in R
N . It is sufficient to show that

Œ0; 1� 3 	 7! Vj.PsC	.t�s/C/

is convex. Note that 	 7! PsC	.s�t/C is a one-parameter shadow system and we can
apply Shephard’s result above; for an alternate argument, following Groemer [34],
see [58]. �

Corollary 4.2 Let C be a compact convex set in R
N. Then for all 1 6 j 6 n,

.Rn/N 3 .x1; : : : ; xN/ 7! Vj.Œx1; : : : ; xN �C/

is Steiner convex on R
N. Moreover, if C is 1-unconditional then the latter function

is coordinate-wise increasing analogous to definition (3.18).

Proof Let � 2 Sn�1 and yi 2 �? for i D 1; : : : ;N. Write xi D yi C ti� . Let
C D Œy1CenC1; : : : ; yN CenCN �C. Then C is a compact convex set in R

n �R
N which

is symmetric with respect to �? in R
nCN since Œy1 C enC1; : : : ; yN C enCN �C � �?.

Let Pt W Rn � R
N ! R

n be defined as in Proposition 4.1. Then

Pt.Œy1 C enC1; : : : ; yN C enCN �C D Œy1 C t1�; : : : ; yN C tN��C:
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We apply the previous proposition to obtain the convexity claim. Now for each
� 2 Sn�1 and y1; : : : ; yN 2 �?, the sets Œy1 C t1�; : : : ; yN C tN��C and Œy1 �

t1�; : : : ; yN � tN��C are reflections of one another and so the evenness condition
(for Steiner convexity) holds as well. The coordinate-wise monotonicity holds since
one has the following inclusion when C is 1-unconditional: for 0 6 si 6 ti,

Œs1x1; : : : ; sNxN �C � Œt1x1; : : : ; tNxN �C:

�

4.2 Dual Setting

Here we discuss the following dual setting involving the polar dual of a shadow
system. Rather than looking at projections of a fixed higher-dimensional convex set
as in the previous section, this involves intersections with subspaces. We will invoke
a fundamental inequality concerning sections of symmetric convex sets, known as
Busemann’s inequality [15]. This leads to a randomized version of an extension of
the Blaschke-Santaló inequality to the class of convex measures (defined in §2).
For this reason we will need the following extension of Busemann’s inequality to
convex measures from our joint work with D. Cordero-Erausquin and M. Fradelizi
[24]; this builds on work by Ball [3], Bobkov [7], Kim, Yaskin and Zvavitch [40].

Theorem 4.3 (Busemann Theorem for convex measures) Let � be a convex mea-
sure with even density  on R

n. Then the function ˆ defined on R
n by ˆ.0/ D 0

and for z ¤ 0,

ˆ.z/ D
kzk2R

z?  .x/dx

is a norm.

The latter result is key to the following theorem from [24] which extends work of
Campi-Gronchi [21] to the setting of convex measures; the approach taken in [21]
was the starting point for our work in this direction.

Proposition 4.4 Let � be a measure on R
n with a density  which is even and � -

concave on R
n for some � > � 1

nC1
. Let .Kt/ WD PtC be an N-parameter shadow

system of origin symmetric convex sets with respect to an origin symmetric body
C � R

n � R
N. Then the function R

N 3 t 7! �.Kı
t /

�1 is convex.

This result and the assumption on the symmetries of C and � leads to the
following corollary. The proof is similar to that given in [24].

Corollary 4.5 Let r > 0, C be an origin-symmetric compact convex set in R
N. Let

� be a radial measure on R
n with a density  which is �1=.n C 1/-concave on R

n.
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Then the function

G.x1; : : : ; xN/ D �..Œx1 : : : xN �C C rBN
2 /

ı/

is Steiner concave. Moreover if C is 1-unconditional then the function G is
coordinate-wise decreasing.

Remark 1 The present setting is limited to origin-symmetric convex bodies. The
argument of Campi and Gronchi [21] leading to the Blaschke-Santaló inequality has
been extended to the non-symmetric case by Meyer and Reisner in [55]. It would
be interesting to see an asymmetric version for random sets as it would give an
empirical form of the Blaschke-Santaló inequality and related inequalities, e.g., [36]
in the asymmetric case.

4.3 Minkowski Addition and Extensions

In this section, we recall several variations of Minkowski addition that are the basis
of Lp-Brunn-Minkowski theory, p > 1, and its extensions. Lp-addition as originally
defined by Firey [26] of convex sets K and L with the origin in their interior is given
by

hp
KCpL.x/ D hp

K.x/C hp
L.x/:

The Lp-Brunn-Minkowski inequality of Firey states that

Vn.K Cp L/p=n > Vn.K/
p=n C Vn.L/

p=n: (4.1)

A more recent pointwise definition that applies to compact sets K and L is due to
Lutwak, Yang and Zhang [52]

K Cp L D f.1 � t/1=q C t1=qy W x 2 K; y 2 L; 0 6 t 6 1g; (4.2)

where 1=p C 1=q D 1; they proved that with the latter definition (4.1) extends to
compact sets.

A general framework incorporating the latter as well as more general notions
in the Orlicz setting initiated by Lutwak, Yang and Zhang [50, 51] was studied by
Gardner, Hug and Weil [30, 31]. Let M be an arbitrary subset of Rm and define the
M-combination ˚M.K1; : : : ;Km/ of arbitrary sets K1; : : : ;Km in R

n by

˚M.K
1; : : : ;Km/ D

(
mX

iD1

aix
.i/ W x.i/ 2 Ki; .a1; : : : ; am/ 2 M

)
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D
[
.ai/2M

.a1K
1 C : : :C amKm/:

Gardner, Hug, and Weil [30] develop a general framework for addition operations
on convex sets which model important features of the Orlicz-Brunn-Minkowski
theory. The notion of M-addition is closely related to linear images of convex sets
in this paper. In particular, if C D M and K1 D fx1g; : : : ;Km D fxmg, where
x1; : : : ; xm 2 R

n, then Œx1; : : : ; xm�C D ˚M.fx1g; : : : ; fxmg/.
As a sample result we mention just the following from [30] (see Theorem 6.1

and Corollary 6.4).

Theorem 4.6 Let M be a convex set in R
m, m > 2.

i. If M is contained in the positive orthant and K1; : : : ;Km are convex sets in R
n,

then ˚M.K1; : : : ;Km/ is a convex set.
ii. If M is 1-unconditional and K1; : : : ;Km are origin-symmetric convex sets, then

˚M.K1; : : : ;Km/ is an origin symmetric convex set.

For several examples we mention the following:

(i) If M D f.1; 1/g and K1 and K2 are convex sets, then K1 ˚M K2 D K1 C K2,
i.e., ˚M is the usual Minkowski addition.

(ii) If M D BN
q with 1=p C 1=q D 1, and K1 and K2 are origin symmetric convex

bodies, then K1 ˚M K2 D K1 Cp K2, i.e., ˚M corresponds to Lp-addition as
in (4.2).

(iii) There is a close connection between Orlicz addition as defined in [50, 51] and
M-addition, as shown in [31]. In fact, we define Orlicz addition in terms of the
latter as it interfaces well with our operator approach. As an example, let  W

Œ0;1/2 ! Œ0;1/ be convex, increasing in each argument, and  .0; 0/ D 0,
 .1; 0/ D  .0; 1/ D 1. Let K and L be origin-symmetric convex bodies and
let M D Bı

 , where B D f.t1; t2/ 2 Œ�1; 1�2 W  .jt1j ; jt2j/ 6 1g. Then we
define K C L to be K ˚M L.

Let N1; : : : ;Nm be positive integers. For each i D 1; : : : ;m, consider collections
of vectors fxi1; : : : ; xiNig � R

n and let C1; : : : ;Cm be compact, convex sets with
Ci � R

Ni . Then for any M � R
N1C:::CNm ,

˚M.Œx11; : : : ; x1N1 �C1; : : : ; Œxm1; : : : ; xmNm �Cm/

D

8<
:

mX
iD1

ai

0
@ NiX

jD1

cijxij

1
A W .ai/i 2 M; .cij/j 2 Ci

9=
;

D

8<
:

mX
iD1

NiX
jD1

aicijxij W .ai/i 2 M; .cij/j 2 Ci

9=
;

D Œx11; : : : ; x1N1 ; : : : ; xm1; : : : ; xmNm �.˚M.C
0
1; : : : ;C

0
m//;
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where C0
i is the natural embedding of Ci into R

N1C:::CNm . Thus the M-combination of
families of sets of the form Œxi1; : : : ; xiNi �Ci fits exactly in the framework considered
in this paper. In particular, if M is compact, convex and satisfies either of the
assumptions of Theorem 4.6, then the j-th intrinsic volume of the latter set is a
Steiner convex function by Corollary 4.2.

For subsequent reference we note one special case of the preceding identities.
Let C1 D convfe1; : : : ; eN1g and C2 D convfe1; : : : ; eN2g. Then we identify C1
with C0

1 D convfe1; : : : ; eN1g in R
N1CN2 , C2 with C0

2 D convfeN1C1; : : : ; eN1CN2g in
R

N1CN2 . If x1; : : : ; xN1 , xN1C1; : : : ; xN1CN2 2 R
n, then

convfx1; : : : ; xN1g ˚M convfxN1C1; : : : ; xN1CN2g

D Œx1; : : : ; xN1 �C1 ˚M ŒxN1C1; : : : ; xN1CN2 �C2

D Œx1; : : : ; xN1 ; xN1C1; : : : ; xN1CN2 �.C
0
1 ˚M C0

2/:

This will be used in §5.

4.4 Unions and Intersections of Euclidean Balls

Here we consider Euclidean balls B.xi;R/ D fx 2 R
n W jx � xij 6 rg of a given

radius r > 0 with centers x1; : : : ; xN 2 R
n.

Theorem 4.7 For each 1 6 j 6 n, the function

.Rn/N 3 .x1; : : : ; xN/ 7! Vj

 
N\

iD1

B.xi; r/

!
(4.3)

is Steiner concave. Moreover, it is quasi-concave and even on .Rn/N.

Proof Let F be the function in (4.3). Let u D .u1; : : : ; uN/ 2 .Rn/N and v D

.v1; : : : ; vN/ 2 .Rn/N belong to the support of F. One checks the following
inclusion,

N\
iD1

B

�
ui C vi

2
; r

�
�
1

2

N\
iD1

B.ui; r/C
1

2

N\
iD1

B.vi; r/;

and then applies the concavity of K 7! Vj.K/1=j, which is a consequence of the
Alexandrov-Fenchel inequalities. The evenness condition in the definition of Steiner
concavity follows by using reflections, analogous to the proof of Corollary 4.2. �

Remark The latter theorem is also true when Vj is replaced by a function which
is monotone with respect to inclusion, rotation-invariant and quasi-concave with
respect to Minkowski addition; see [60].



Randomized Isoperimetric Inequalities 413

The latter can be compared with the following result for the convex hull of unions
of Euclidean balls.

Theorem 4.8 The function

.Rn/N 3 .x1; : : : ; xN/ 7! Vj

 
conv

 
N[

iD1

B.xi; r/

!!

is Steiner convex.

Proof Since

conv

 
N[

iD1

B.xi; r/

!
D convfx1; : : : ; xNg C B.0; r/;

we can apply the same projection argument as in the proof of Corollary 4.2; see also
work of Pfiefer [62] for a direct argument, extending Groemer’s approach [34]. �

4.5 Operator Norms

Steiner convexity is also present for operator norms from an arbitrary normed space
into `n

2.

Proposition 4.9 Let E be an N-dimensional normed space. For x1; : : : ; xN 2 R
n,

let X D Œx1; : : : ; xN �. Then the operator norm

.Rn/N 3 X 7! kX W E ! `n
2k (4.4)

is Steiner convex.

Proof Denote the map in (4.4) by G. Then G is convex and hence the restriction to
any line is convex. In particular, if z 2 Sn�1 and y1; : : : ; yN 2 z?, then the function
GY W RN ! R

C defined by

GY.t1; : : : ; tN/ D G.y1 C t1z1; : : : ; yN C tNzN/

is convex. To show that GY is even, we use the fact that y1; : : : ; yN 2 z? to get for
any 	 2 R

N ,




X	i.yi C tiz/



2
2

D



X	i.yi � tiz/




2
2
;

hence GY.t/ D GY.�t/. �
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5 Stochastic Forms of Isoperimetric Inequalities

We now have all the tools to prove the randomized inequalities mentioned in the
introduction and others. We will first prove two general theorems on stochastic
dominance and then show how these imply a variety of randomized inequalities.
At the end of the section, we discuss some examples of a different flavor.

For the next two theorems, we assume we have the following sequences of
independent random vectors defined on a common probability space .�;F ;P/;
recall thateB D !

�1=n
n B.

1. X1;X2; : : :, sampled according to densities f1; f2; : : : on R
n, respectively (which

will be chosen according to the functional under consideration).
2. X�

1 ;X
�
2 ; : : :, sampled according to f �

1 ; f
�
2 ; : : :, respectively.

3. Z1;Z2 : : : sampled uniformly ineB.

We use X to denote the n � N random matrix X D ŒX1 : : :XN �. Similarly, X� D

ŒX�
1 : : :X

�
N � and Z D ŒZ1 : : : ZN �.

Theorem 5.1 Let C be a compact convex set in R
N and 1 6 j 6 n. Then for each

˛ > 0,

P.Vj.XC/ > ˛/ > P.Vj.X�C/ > ˛/: (5.1)

Moreover, if C is 1-unconditional and kfik1 6 1 for i D 1; : : : ;N, then for each
˛ > 0,

P.Vj.XC/ > ˛/ > P.Vj.ZC/ > ˛/: (5.2)

Proof By Corollary 4.2, we have Steiner convexity. Thus we may apply Corol-
lary 3.9 to obtain (5.1). If C is unconditional, then Proposition 3.10 applies so we
can conclude (5.2). �

Theorem 5.2 Let C be an origin symmetric convex body in R
N. Let � be a radial

measure on R
n with a density  which is �1=.n C 1/-concave on R

n. Then for each
˛ > 0,

P.�..XC/ı/ > ˛/ 6 P.�..X�C/ı/ > ˛/: (5.3)

Moreover, if C is 1-unconditional and kfik1 6 1 for i D 1; : : : ;N, then for each
˛ > 0,

P.�..XC/ı/ > ˛/ 6 P.�..ZC/ı/ > ˛/: (5.4)

Proof By Corollary 4.5, the function is Steiner concave. Thus we may apply
Corollary 3.9 to obtain (5.3). If C is unconditional, then Proposition 3.10 applies
so we can conclude (5.4). �
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We start by explicitly stating some of the results mentioned in the introduction.
We will first derive consequences for points sampled in convex bodies or compact
sets K � R

n. In this case, we have immediate distributional inequalities as
. 1

Vn.K/
1K/

� D 1
Vn.rK B/1rK B, even without the unconditionality assumption on C.

The case of compact sets deserves special mention for comparison to classical
inequalities.

1. Busemann Random Simplex Inequality. As mentioned the Busemann random
simplex inequality says that if K � R

n is a compact set with Vn.K/ > 0 and Ko;n D

convfo;X1; : : : ;Xng; where X1; : : : ;Xn are i.i.d. random vectors with density fi D
1

Vn.K/
1K , then for p > 1,

EVn.Ko;n/
p > EVn..rKB/o;n/

p: (5.5)

In our notation, X�
1 ; : : : ;X

�
n have density 1

Vn.rK B/1rK B. For the set C D

convfo; e1; : : : ; eng, we have Kn;o D convfo;X1; : : : ;Xng. Thus the stochastic
dominance of Theorem 5.1 implies (5.5) for all p > 0.

2. Groemer’s Inequality for Random Polytopes. With the Xi’s as in the previous
example, set KN D convfX1; : : : ;XNg. An inequality of Groemer [34] states that for
p > 1,

EVn.KN/
p > EVn..rKB/N/

pI (5.6)

this was extended by Giannopoulos and Tsolomitis for p 2 .0; 1/ in [32]. Let
C D convfe1; : : : ; eNg so that KN D ŒX1; : : : ;XN �C and .rKB/N D ŒX�

1 ; : : : ;X
�
N �C.

Then (5.6) follows from Theorem 5.1.

3. Bourgain-Meyer-Milman-Pajor Inequality for Random Zonotopes. Let
Z1;N.K/ D

PN
iD1Œ�Xi;Xi�, with Xi as above. Bourgain, Meyer, Milman and Pajor

[11] proved that for p > 0,

EVn.Z1;N.K//
p > EVn.Z1;N.rKB//p: (5.7)

With the notation of the previous examples, Z1;N.K/ D ŒX1; : : : ;XN �BN
1: Thus

Theorem 5.1 implies (5.7).

4. Inequalities for Intrinsic Volumes. For completeness, we record here how one
obtains the stochastic form of the isoperimetric inequality (1.6). In fact, we state a
stochastic form of the following extended isoperimetric inequality for convex bodies
K � R

n: for 1 6 j 6 n,

Vj.K/ > Vj.rKB/: (5.8)

The latter is a particular case of the Alexandrov-Fenchel inequalities, e.g., [71]. With
KN as above, a stochastic form (5.8) is the following: for ˛ > 0,
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P.Vj.KN/ > ˛/ > P.Vj..rKB/N/ > ˛/; (5.9)

which is immediate from Theorem 5.1. For expectations, results of this type for
intrinsic volumes were proved by Pfiefer [62] and Hartzoulaki and the first named
author [37].

For further information on the previous inequalities and others we refer the
reader to the paper of Campi and Gronchi [20] and the references therein. We have
singled out these four as particular examples of M-additions (defined in the previous
section). For example, if C D convfe1; : : : ; eNg, we have

KN D ˚C.fX1g; : : : ; fXNg/:

Similarly, for C D BN
1,

NX
iD1

Œ�Xi;Xi� D ˚C.Œ�X1;X1�; : : : ; Œ�XN ;XN �/:

One can also intertwine the above operations and others. For example, if C D

convfe1; e1 C e2; e1 C e2 � e3g, then

ŒX1;X2;X3�C D convfX1;X1 C X2;X1 C X2 � X3g

and Theorem 5.1 applies to such sets as well. The randomized Brunn-Minkowski
inequality (1.5) is just one example of mixing two operations - convex hull and
Minkowski summation. In the next example, we state a sample stochastic form of
the Brunn-Minkowski inequality for M-addition in which (1.5) is just a special case;
all of the previous examples also fit in this framework for additional summands. For
other Brunn-Minkowski type inequalities for M-addition, see [30, 31].

5. Brunn-Minkowski Type Inequalities. Let K and L be convex bodies in R
n and

let M � R
2 be compact, convex and contained in the positive orthant. Then the

following Brunn-Minkowski type inequality holds for each 1 6 j 6 n,

Vj.K ˚M L/ > Vj.rKB ˚M rLB/: (5.10)

We first state a stochastic form of the latter. Let KN1 D convfX1; : : : ;XN1g;

where X1; : : : ;XN1 have density fi D 1
Vn.K/

1K ; similarly, we define LN2 D

convfXN1C1; : : : ;XN1CN2g; where XN1C1, : : :, XN1CN2 have density fi D 1
Vn.L/

1L.
Then for ˛ > 0,

P
�
Vj.KN1 ˚M LN2 / > ˛

�
> P

�
Vj..rKB/N1 ˚M .rLB/N2 / > ˛

�
: (5.11)

To see that (5.11) holds, set

C1 D convfe1; : : : ; eN1g; C2 D convfe1; : : : ; eN2g:
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Identifying C1 with C0
1 D convfe1; : : : ; eN1g in R

N1CN2 and similarly C2 with C0
2 D

convfeN1C1; : : : ; eN1CN2g in R
N1CN2 as in §4.3, we have

KN1 ˚M LN2 D ŒX1; : : : ;XN1 �C1 ˚M ŒXN1C1; : : : ;XN1CN2 �C2

D ŒX1; : : : ;XN1 ;XN1C1; : : : ;XN1CN2 �.C
0
1 ˚M C0

2/:

Write X1 D ŒX1; : : : ;XN1 � and X2 D ŒXN1C1; : : : ;XN1CN2 �, and X�
1 D ŒX�

1 ; : : : ;X
�
N1
�

and X�
2 D ŒX�

N1C1
; : : : ;X�

N1CN2
�. In block matrix form, we have

KN1 ˚M LN2 D ŒX1; X2�.C
0
1 ˚M C0

2/:

Similarly,

.rKB/N1 ˚M .rLB/N2 D ŒX�
1 ; X�

2 �.C
0
1 ˚M C0

2/;

and so Theorem 5.1 implies (5.11). To prove (1.5), we take M D f.1; 1/g and j D n
in (5.11). Inequality (5.10) follows from (5.11) when N1;N2 ! 1. For simplicity
of notation, we have stated this for only two sets and C1;C2 as above.

For another example involving a law of large numbers, we turn to the following,
stated in the symmetric case for simplicity.

6. Orlicz-Busemann-Petty Centroid Inequality. Let  W Œ0;1/ ! Œ0;1/ be a
Young function, i.e., convex, strictly increasing with  .0/ D 0. Let f be a bounded
probability density of a continuous distribution on R

n. Define the Orlicz-centroid
body Z .f / associated to  by its support function

h.Z .f /; y/ D inf

�
	 > 0 W

Z
Rn
 

�
jhx; yij

	

�
f .x/dx 6 1

�
:

Let rf > 0 be such that kf k1 1rf B is a probability density. Then

Vn.Z .f // > Vn.Z .kf k1 1rf B/: (5.12)

Here we assume that h.Z .f /; y/ is finite for each y 2 Sn�1 and so h.Z .f /; �/ defines
a norm and hence is the support function of the symmetric convex body Z .f /. When
f is the indicator of a convex body, (5.12) was proved by Lutwak, Yang and Zhang
[50] (where it was also studied for more general functions ); it was extended to star
bodies by Zhu [78]; the version for probability densities and the randomized version
below is from [58]; an extension of (5.12) to the asymmetric case was carried out
by Huang and He [38].

The empirical analogue of (5.12) arises by considering the following finite-
dimensional origin-symmetric Orlicz balls

B ;N WD

(
t D .t1; : : : ; tN/ 2 R

N W
1

N

NX
iD1

 .jtij/ 6 1

)
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with associated Orlicz norm ktkB =N
WD inff	 > 0 W t 2 	B ;Ng; which is the

support function for Bı
 ;N . For independent random vectors X1; : : : ;XN distributed

according to f , we let

Z ;N.f / D ŒX1; : : : ;XN �B
ı
 ;N :

Then for y 2 Sn�1,

h.Z ;N.f /; y/ D k.hX1; yi; : : : ; hXN ; yi/kB =N
:

Applying Theorem 5.1 for C D Bı
 ;N , we get that for 1 6 j 6 n and ˛ > 0,

P.Vj.Z ;N.f // > ˛/ > P.Vj.Z ;N.kf k1 1rf B// > ˛/: (5.13)

Using the law of large numbers, one may check that

Z ;N.f / ! Z .f / (5.14)

almost surely in the Hausdorff metric (see [58]); when  .x/ D xp and f D 1
Vn.K/

1K ,
Z ;N.f / D Zp;N.K/ as defined in the introduction; in this case, the convergence
in (5.14) is immediate by the classical strong law of large numbers (compare (1.10)
and (1.14)). By integrating (5.13) and sending N ! 1, we thus obtain (5.12).

We now turn to the dual setting.

7. Blaschke-Santaló Type Inequalities. The Blaschke-Santaló inequality states
that if K is a symmetric convex body in R

n, then

Vn.K
ı/ 6 Vn..rKB/ı/: (5.15)

This was proved by Blaschke for n D 2; 3 and in general by Santaló [68]; see also
Meyer and Pajor’s proof by Steiner symmetrization [54] and [71, 28] for further
background; origin symmetry in (5.15) is not needed but we discuss the randomized
version only in the symmetric case. One can obtain companion results for all of the
inequalities mentioned so far with suitable choices of symmetric convex bodies C.
Let � be a radially decreasing measure as in Theorem 5.2. Let C D BN

1 and set
KN;s D ŒX1; : : : ;XN �BN

1 , where Xi has density fi D 1
Vn.K/

1K . Then for ˛ > 0,

P.�..KN;s/
ı/ > ˛/ 6 P.�...rKB/N;s/

ı/ > ˛/:

Similarly, if K and L are origin-symmetric convex bodies and M � R
2 is

unconditional, then for ˛ > 0,

P.�..KN1;s ˚M LN1;s/
ı/ > ˛/ 6 P.�...rKB/N1;s ˚M .rLB/N1;s/

ı/ > ˛/: (5.16)
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We also single out the polar dual of the last example on Orlicz-Busemann-Petty
centroid bodies. Let  and B ;N be as above. Then

P.�.Zı
 ;N.f // > ˛/ 6 P.�.Zı

 ;N.kf k1 1rf B// > ˛/:

For a particular choice of  we arrive at the following example, which has not
appeared in the literature before and deserves an explicit mention.

8. Level Sets of the Logarithmic Laplace Transform. For a continuous probabil-
ity distribution with an even bounded density f , recall that the logarithmic Laplace
transform is defined by

ƒ.f ; y/ D log
Z
Rn

exp .hx; yi/ f .x/dx:

For such f and p > 0, we define an origin-symmetric convex body ƒp.f / by

ƒp.f / D fy 2 R
n W ƒf .y/ 6 pg:

The empirical analogue is defined as follows: for independent random vectors
X1; : : : ;XN with density f , set

ƒp;N.f / D

(
y 2 R

n W
1

N

NX
iD1

 .jhXi; yij/ 6 ep

)
:

If we set  p.x/ D e�p.ex � 1/ then .ŒX1; : : : ;XN �Bı
 p;N

/ı D ƒp;N.f /. Then we have
the following stochastic dominance

P.�.ƒp;N.f // > ˛/ 6 P.�.ƒp;N.kf k1 1rf B// > ˛/;

where rf satisfies kf k1 1rf B D 1. When N ! 1, we get

�.ƒp.f // 6 �.ƒp.kf k1 1rf B/:

The latter follows from the law of large numbers as in [58, Lemma 5.4] and the
argument given in [24, §5].

For log-concave densities, the level sets of the logarithmic Laplace transform are
known to be isomorphic to the duals to the Lp-centroid bodies; see work of Latała
and Wojtaszczyk [43], or Klartag and E. Milman [42]; these bodies are essential in
establishing concentration properties of log-concave measures, e.g., [56, 41, 13].

9. Ball-Polyhedra. All of the above inequalities are volumetric in nature. For
convex bodies, they all reduce to comparisons of bodies of a given volume. For
an example of a different flavor, we have the following inequality involving random
ball polyhedra: for R > 0,
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P

�
Vj

�\N

iD1
B.Xi;R/

	
> ˛

	
6 P

�
Vj

�\N

iD1
B.Zi;R/

	
> ˛

	
:

When the Xi’s are sampled according to a particular density f associated with a
convex body K, the latter leads to the following generalized Urysohn inequality,

Vj.K/ 6 Vj..w.K//=2/B/;

where w.K/ is the mean width of K, see [60]; the latter is not a volumetric inequality
when j < n. The particular density f is the uniform measure on a star-shaped set
A.K;R/ defined by specifying its radial function �A.K;R/.�/ D R � hK.��/; Steiner
symmetrization of A.K;R/ preserves the mean-width of K (for large R) so the volu-
metric techniques here lead to a stochastic dominance inequality for mean width.

We have focused this discussion on stochastic dominance. It is sometimes useful
to relax the probabilistic formulation and instead consider the quantities above in
terms of bounded integrable functions. We give one such example.

10. Functional Forms. The following functional version of Busemann’s random
simplex inequality (1.8) is useful for marginal distributions of high-dimensional
probability distributions; this is from joint work with S. Dann [25]. Let f1; : : : ; fk
be non-negative, bounded, integrable functions such that kfik1 > 0 for each i D

1; : : : ; k. For p 2 R, set

gp.f1; : : : ; fk/ D

Z
Rn

� � �

Z
Rn

Vk.convf0; x1; : : : ; xkg/
p

kY
iD1

fi.xi/dx1 : : : dxk:

Then for p > 0,

gp.f1; : : : ; fk/ >
 

kY
iD1

kfik
1Cp=n
1

!
1Cp=n
n kfik

p=n
1

!
gp.1Bn

2
; : : : ;1Bn

2
/:

The latter is just a special case of a general functional inequality [25]. Following
Busemann’s argument, we obtain the following. Let 1 6 k 6 n � 1 and let f be a
non-negative, bounded integrable function on R

n. Then

Z
Gn;k

�R
E f .x/dx

�n

kf jEkn�k
1

d�n;k.E/ 6 !n
k

!k
n

�Z
Rn

f .x/dx

�k

I

when f D 1K this recovers the inequality of Busemann and Straus [17] and Grinberg
[33] extending (1.9). Schneider proved an analogue of the latter on the affine
Grassmannian [70], which can also be extended to a sharp isoperimetric inequality
for integrable functions [25]. The functional versions lead to small ball probabilities
for projections of random vectors that need not have independent coordinates.
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6 An Application to Operator Norms of Random Matrices

In the previous section we gave examples of functionals on random convex sets
which are minorized or majorized for the uniform measure on the Cartesian product
of Euclidean balls. In some cases the associated distribution function can be
accurately estimated. For example, passing to complements in (5.2), we get for
˛ > 0,

P.Vn.XC/ 6 ˛/ 6 P.Vn.ZC/ 6 ˛/; (6.1)

where X and Z are as in Theorem 5.1. When C D BN
1 , i.e., for random symmetric

convex hulls, we have estimated the quantity on the right-hand side of (6.1) in [59]
for all ˛ less than an absolute contant (sufficiently small), at least when N 6 en.
(The reason for the restriction is that we compute this for Gaussian matrices and the
comparison to the uniform measure on the Cartesian products of balls is only valid
in this range). This leads to sharp bounds for small deviation probabilities for the
volume of random polytopes that were known before only for certain sub-gaussian
distributions. The method of [59] applies more broadly. In this section we will focus
on the case of the operator norm of a random matrix with independent columns. We
refer readers interested in background on non-asymptotic random matrix theory to
the article of Rudelson and Vershynin [66] and the references therein.

By combining Corollary 3.9, and Propositions 3.11 and 4.9, we get the following
result, which is joint work with G. Livshyts [45].

Theorem 6.1 Let N; n 2 N. Let E be an N-dimensional normed space. Then the
random matrices X;X� and Z (as in §5) satisfy the following for each ˛ > 0,

P
�
kX W E ! `n

2k 6 ˛
�

6 P
�
kX� W E ! `n

2k 6 ˛
�
: (6.2)

Moreover, if kfik1 6 1 for each i D 1; : : : ;N, then

P
�
kX W E ! `n

2k 6 ˛
�

6 P
�
kZ W E ! `n

2k 6 ˛
�
:

As before, the latter result reduces the small deviation problem to computations
for matrices Z with independent columns sampled in the Euclidean ball of volume
one. For the important case of the operator norm k�k2!2, i.e., E WD `N

2 , we get the
following bound.

Lemma 6.2 For " > 0,

P

�
kZk2!2 6 "

p
N
	

6 .c"/nN�1; (6.3)

where c is an absolute constant.
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Proof Let C and K be symmetric convex bodies in R
d, Vd.K/ D 1 and p < d. By

[57, Proposition 4.7]),

�Z
K

kxk
�p
C dx

� 1
p

�

�
d

d � p

� 1
p

Vd.C/
1
d : (6.4)

Let d WD nN, K WDeB�� � ��eB � R
d and C be the unit ball in R

d for the operator norm

� W `N
2 ! `n

2



. Then the Hilbert-Schmidt norm k�kHS satisfies kAkHS �
p

n kAk2!2

or C �
p

nBd
2, which implies that Vd.C/

1
d � c1p

N
; in fact, arguing as in [75,

Lemma 38.5] one can show that Vd.C/
1
d ' 1p

N
. Thus for p D nN � 1, we get

�
E kZk

�.nN�1/
2!2

	 1
nN�1 6 c1.nN/

1
nN�1 N�1=2 6 ec1N

�1=2;

from which the lemma follows by an application of Markov’s inequality. �

For 1� N matrices, Theorem 6.1 reduces to small-ball probabilities for norms of
a random vector x in R

N distributed according to a density of the form
QN

iD1 fi where
each fi is a density on the real line. In particular, if kfik1 � 1 for each i D 1; : : : ;N,
then for any norm k�k on R

N (dual to that of E), we have for " > 0,

P .kxk 6 "/ 6 P .kzk 6 "/ ; (6.5)

where z is a random vector in the cube Œ�1=2; 1=2�N - the uniform measure on
Cartesian products of “balls” in 1-dimension. In fact, by approximation from within,
the same result holds if k�k is a semi-norm. Thus if x and z are as above, for each
" > 0 we have

P.kPExk2 6 "
p

k/ 6 P.kPEzk2 6 "
p

k/ 6 .2
p
�e"/k; (6.6)

where the last inequality uses a result of Ball [4]. In this way we recover the result of
Rudelson and Vershynin from [67], who proved (6.6) with a bound of the form .c"/k

for some absolute constant c. Using the Rogers/Brascamp-Lieb-Luttinger inequality
and Kanter’s theorem, one can also obtain the sharp constant of

p
2 for the `1-norm

of marginal densities, which was first computed in [46] by adapting Ball’s arguments
from [4].
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Forward and Reverse Entropy Power
Inequalities in Convex Geometry

Mokshay Madiman, James Melbourne, and Peng Xu

Abstract The entropy power inequality, which plays a fundamental role in
information theory and probability, may be seen as an analogue of the Brunn-
Minkowski inequality. Motivated by this connection to Convex Geometry, we
survey various recent developments on forward and reverse entropy power
inequalities not just for the Shannon-Boltzmann entropy but also more generally
for Rényi entropy. In the process, we discuss connections between the so-called
functional (or integral) and probabilistic (or entropic) analogues of some classical
inequalities in geometric functional analysis.

1 Introduction

The Brunn-Minkowski inequality plays a fundamental role not just in Convex
Geometry, where it originated over 125 years ago, but also as an indispensable tool
in Functional Analysis, and– via its connections to the concentration of measure
phenomenon– in Probability. The importance of this inequality, and the web of
its tangled relationships with many other interesting and important inequalities, is
beautifully elucidated in the landmark 2002 survey of Gardner [70]. Two of the
parallels that Gardner discusses in his survey are the Prékopa-Leindler inequality
and the Entropy Power Inequality; since the time that the survey was written, these
two inequalities have become the foundation and prototypes for two different but
related analytic “liftings” of Convex Geometry. While the resulting literature is
too vast for us to attempt doing full justice to in this survey, we focus on one
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particular strain of research– namely, the development of reverse entropy power
inequalities– and using that as a narrative thread, chart some of the work that has
been done towards these “liftings”.

Let A;B be any nonempty Borel sets in R
d. Write A C B D

˚
x C y W x 2 A; y 2

B


for the Minkowski sum, and jAj for the d-dimensional volume (or Lebesgue
measure) of A. The Brunn-Minkowski inequality (BMI) says that

ˇ̌
A C B

ˇ̌1=d
� jAj1=d C jBj1=d: (1)

The BMI was proved in the late 19th century by Brunn for convex sets in low
dimension (d � 3), and Minkowski for convex sets in R

d; the reader may consult
Kjeldsen [86, 87] for an interesting historical analysis of how the notion of convex
sets in linear spaces emerged from these efforts (Minkowski’s in particular). The
extension of the BMI to compact– and thence Borel-measurable– subsets of Rd was
done by Lusternik [99]. Equality holds in the inequality (1) for sets A and B with
positive volumes if and only if they are convex and homothetic (i.e., one is a scalar
multiple of the other, up to translation), possibly with sets of measure zero removed
from each one. As of today, there are a number of simple and elegant proofs known
for the BMI.

In the last few decades, the BMI became the starting point of what is sometimes
called the Brunn-Minkowski theory, which encompasses a large and growing range
of geometric inequalities including the Alexandrov-Fenchel inequalities for mixed
volumes, and which has even developed important offshoots such as the Lp-Brunn-
Minkowski theory [100]. Already in the study of the geometry of convex bodies (i.e.,
convex compact sets with nonempty interior), the study of log-concave functions
turns out to be fundamental. One way to see this is to observe that uniform measures
on convex bodies are not closed under taking lower-dimensional marginals, but yield
log-concave densities, which do have such a closure property– while the closure
property of log-concave functions under marginalization goes back to Prékopa [131,
132] and Brascamp-Lieb [38], their consequent fundamental role in the geometry of
convex bodies was first clearly recognized in the doctoral work of K. Ball [10] (see
also [11, 126]). Since then, the realization has grown that it is both possible and
natural to state many questions and theorems in Convex Geometry directly for the
category of log-concave functions or measures rather than for the category of convex
bodies– V. Milman calls this the “Geometrization of Probability” program [125],
although one might equally well call it the “Probabilitization of Convex Geometry”
program. The present survey squarely falls within this program.

For the goal of embedding the geometry of convex sets in a more analytic setting,
two approaches are possible:

1. Functional (integral) lifting: Replace sets by functions, and convex sets by log-
concave or s-concave functions, and the volume functional by the integral. This
is a natural extension because if we identify a convex body K with its indicator
function 1K (defined as being 1 on the set and 0 on its complement), then the
integral of 1K is just the volume of K. The earlier survey of V. Milman [125] is
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entirely focused on this lifting of Convex Geometry; recent developments since
then include the introduction and study of mixed integrals (analogous to mixed
volumes) independently by Milman-Rotem [121, 120] and Bobkov-Colesanti-
Fragala [31] (see also [17]). Colesanti [47] has an up-to-date survey of these
developments in another chapter of this volume.

2. Probabilistic (entropic) lifting: Replace sets by random variables (or strictly
speaking their distributions), and convex sets by random variables with log-
concave or s-concave distributions, and the volume functional by the entropy
functional (actually “entropy power”, which we will discuss shortly). This is
a natural analogue because if we identify a convex body K with the random
variable UK whose distribution is uniform measure on K, then the entropy of UK

is the logarithm of jKj. The parallels were observed early by Costa and Cover
[51] (and perhaps also implicitly by Lieb [96]); subsequently, this analogy has
been studied by many other authors, including by Dembo-Cover-Thomas [56]
and in two series of papers by Lutwak-Yang-Zhang (see, e.g., [102, 101]) and
Bobkov-Madiman (see, e.g., [24, 26]).

While this paper is largely focused on the probabilistic (entropic) lifting, we will
also discuss how it is related to the functional (integral) lifting.

It is instructive at this point to state the integral and entropic liftings of the Brunn-
Minkowski inequality itself, which are known as the Prékopa-Leindler inequality
and the Entropy Power Inequality, respectively.

Prékopa-Leindler inequality (PLI): The Prékopa-Leindler inequality (PLI) [131,
92, 132] states that if f ; g; h W Rd ! Œ0;1/ are integrable functions satisfying, for a
given 	 2 .0; 1/,

h.	x C .1 � 	/y/ � f 	.x/g1�	.y/

for every x; y 2 R
d, then

Z
h �

�Z
f

�	�Z
g

�1�	
: (2)

If one prefers, the PLI can also be written more explicitly as a kind of convolution
inequality, as implictly observed in [38] and explicitly in [88]. Indeed, if one defines
the Asplund product of two nonnegative functions by

.f ? g/.x/ D sup
x1Cx2Dx

f .x1/g.x2/;

and the scaling .	 � f /.x/ D f 	.x=	/, then the left side of (2) can be replaced by the
integral of Œ	 � f � ? Œ.1 � 	/ � g�.

To see the connection with the BMI, one simply has to observe that f D 1A; g D

1B and h D 1	AC.1�	/B satisfy the hypothesis, and in this case, the conclusion is
precisely the BMI in its “geometric mean” form j	A C .1 � 	/Bj � jAj	jBj1�	.
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The equivalence of this inequality to the BMI in the form (1) is just one aspect
of a broader set of equivalences involving the BMI. To be precise, for the class of
Borel-measurable subsets of Rd, the following are equivalent:

jA C Bj
1
d � jAj

1
d C jBj

1
d (3)

j	A C .1 � 	/Bj �
�
	jAj

1
d C .1 � 	/jBj

1
d

	d
(4)

j	A C .1 � 	/Bj � jAj	jBj1�	 (5)

j	A C .1 � 	/Bj � minfjAj; jBjg: (6)

Let us indicate why the inequalities (3)–(6) are equivalent. Making use of the
arithmetic mean-geometric mean inequality, we immediately have (4) ) (5) ) (6).
Applying (3) to QA D 	A, QB D .1 � 	/B we have

j	A C .1 � 	/Bj D j QA C QBj

� .j QAj
1
d C j QBj

1
d /d

D
�
j	Aj

1
d C j.1 � 	/Bj

1
d

	d

D
�
	jAj

1
d C .1 � 	/jBj

1
d

	d
;

where the last equality is by homogeneity of the Lebesgue measure. Thus (3) ) (4).
It remains to prove that (6) ) (3). First notice that (6) is equivalent to

jA C Bj � minfjA=	j; jB=.1 � 	/jg

D minfjAj=	d; jBj=.1 � 	/dg:

It is easy to see that the right-hand side is maximized when jAj=	d D jBj=.1� 	/d,
or

	 D
jAj

1
d

jAj
1
d C jBj

1
d

:

Inserting 	 into the above yields (3).

Entropy Power Inequality (EPI): In order to state the Entropy Power Inequality
(EPI), let us first explain what is meant by entropy power. When random variable
X D .X1; : : : ;Xd/ has density f .x/ on R

d, the entropy of X is

h.X/ D h.f / WD �

Z
Rd

f .x/ log f .x/dx D EŒ� log f .X/�: (7)
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This quantity is sometimes called the Shannon-Boltzmann entropy or the differential
entropy (to distinguish it from the discrete entropy functional that applies to
probability distributions on a countable set). The entropy power of X is N.X/ D

e
2h.X/

d : As is usual, we abuse notation and write h.X/ and N.X/, even though
these are functionals depending only on the density of X and not on its random
realization. The entropy power N.X/ 2 Œ0;1� can be thought of as a “measure of
randomness”. It is an (inexact) analogue of volume: if UA is uniformly distributed
on a bounded Borel set A, then it is easily checked that h.UA/ D log jAj and hence
N.UA/ D jAj2=d. The reason we don’t define entropy power by eh.X/ (which would
yield a value of jAj for the entropy power of UA) is that the “correct” comparison is
not to uniforms but to Gaussians. This is because just as Euclidean balls are special
among subsets of Rd, Gaussians are special among distributions on R

d. Indeed, the
reason for the appearance of the functional jAj

1
d in the BMI is because this functional

is (up to a universal constant) the radius of the ball that has the same volume as A,
i.e., jAj

1
d may be thought of as (up to a universal constant) the “effective radius” of A.

To develop the analogy for random variables, observe that when Z � N.0; �2I/ (i.e.,
Z has the Gaussian distribution with mean 0 and covariance matrix that is a multiple
of the identity), the entropy power of Z is N.Z/ D .2�e/�2. Thus the entropy power
of X is (up to a universal constant) the variance of the isotropic normal that has the
same entropy as X, i.e., if Z � N.0; �2Z I/ and h.Z/ D h.X/, then

N.X/ D N.Z/ D .2�e/�2Z :

Looked at this way, entropy power is the “effective variance” of a random variable,
exactly as volume raised to 1=d is the effective radius of a set.

The EPI states that for any two independent random vectors X and Y in R
d such

that the entropies of X;Y and X C Y exist,

N.X C Y/ � N.X/C N.Y/:

The EPI was stated by Shannon [145] with an incomplete proof; the first complete
proof was provided by Stam [148]. The EPI plays an extremely important role in
the field of Information Theory, where it first arose and was used (first by Shannon,
and later by many others) to prove statements about the fundamental limits of
communication over various models of communication channels. Subsequently it
has also been recognized as an extremely useful inequality in Probability Theory,
with close connections to the logarithmic Sobolev inequality for the Gaussian
distribution as well as to the Central Limit Theorem. We will not further discuss
these other motivations for the study of the EPI in this paper, although we refer the
interested reader to [85, 105] for more on the connections to central limit theorems.

It should be noted that one insightful way to compare the BMI and EPI is to think
of the latter as a “99% analogue in high dimensions” of the former, in the sense
that looking at most of the Minkowski sum of the supports of a large number of
independent copies of the two random vectors effectively yields the EPI via a simple



432 M. Madiman et al.

instance of the asymptotic equipartition property or Shannon-McMillan-Breiman
theorem. A rigorous argument is given by Szarek and Voiculescu [153] (building on
[152]), a short intuitive explanation of which can be found in an answer of Tao to
a MathOverflow question1. The key idea of [153] is to use not the usual BMI but a
“restricted” version of it where it is the exponent 2=d rather than 1=d that shows up2.

Rényi entropies. Unified proofs can be given of the EPI and the BMI in two
different ways, both of which may be thought of as providing extensions of the EPI
to Rényi entropy. We will discuss both of these later; for now, we only introduce the
notion of Rényi entropy. For a Rd-valued random variable X with probability density
function f , define its Rényi entropy of order p (or simply p-Rényi entropy) by

hp.X/ D hp.f / WD
1

1 � p
log

�Z
Rd

f p.x/dx

�
; (8)

if p 2 .0; 1/ [ .1;1/. Observe that, defining h1 “by continuity” and using
l’Hospital’s rule, h1.X/ D h.X/ is the (Shannon-Boltzmann) entropy. Moreover, by
taking limits,

h0.X/ D log jSupp.f /j;

h1.X/ D � log kf k1;

where Supp.f / is the support of f (i.e., the smallest closed set such that f is zero
outside it), and kf k1 is the usual L1-norm of f (i.e., the essential supremum
with respect to Lebesgue measure). We also define the p-Rényi entropy power by

Np.X/ D e
2hp.X/

d , so that the usual entropy power N.X/ D N1.X/ and for a random
variable X whose support is A, N0.X/ D jAj2=d.

Conventions. Throughout this paper, we assume that all random variables consid-
ered have densities with respect to Lebesgue measure. While the entropy of X can
be meaningfully set to �1 when the distribution of X does not possess a density, for
the most part we avoid discussing this case. Also, when X has probability density
function f , we write X � f .

For real-valued functions A;B we will use the notation A . B when A.z/ � CB.z/
for some positive constant C independent of z. For our purposes this will be most
interesting when A and B are in some way determined by dimension.

Organization. This survey is organized as follows. In Section 2, we review various
statements and variants of the EPI, first for the usual Shannon-Boltzmann entropy in
Section 2.2 and then for p-Rényi entropy in Section 2.3, focusing on the 1-Rényi

1See http://mathoverflow.net/questions/167951/entropy-proof-of-brunn-minkowski-inequality.
2We mention in passing that Barthe [16] also proved a restricted version of the PLI. An analogue of
“restriction” for the EPI would involve some kind of weak dependence between summands; some
references to the literature on this topic are given later.

http://mathoverflow.net/questions/167951/entropy-proof-of-brunn-minkowski-inequality
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case in Section 2.4. In Section 3, we explore what can be said about inequalities
that go the other way, under convexity constraints on the probability measures
involved. We start by recalling the notions of �-concave measures and functions
in Section 3.1. In Section 3.2, we discuss reverse EPIs that require invoking
a linear transformation (analogous to the reverse Brunn-Minkowski inequality
of V. Milman), and explicit choices of linear transformations that can be used
are discussed in Section 3.6. The three intermediate subsections focus on three
different approaches to reverse Rényi EPIs that do not require invoking a linear
transformation. Finally we discuss the relationship between integral and entropic
liftings, in the context of the Blashke-Santaló inequality in Section 4, and end with
some concluding remarks on nonlinear and discrete analogs in Section 5.

2 Entropy Power Inequalities

2.1 Some Basic Observations

Before we discuss more sophisticated results, let us recall some basic properties of
Rényi entropy.

Theorem 2.1 For independent Rd-valued random variables X and Y, and any p 2

Œ0;1�,

Np.X C Y/ � maxfNp.X/;Np.Y/g:

Proof Let X � f and Y � g. For p 2 .1;1/, we have the following with the
inequality delivered by Jensen’s inequality:

Z
.f � g/p.x/dx D

Z �Z
f .x � y/g.y/dy

�p

dx

�

Z Z
f p.x � y/g.y/dydx

D

Z �Z
f p.x � y/dx

�
g.y/dy

D

Z
f p.x/dx:

Inserting the inequality into the order reversing function '.z/ D z
2

d.1�p/ we have our
result.

The case that p 2 .0; 1/ is similar, making note that now zp is concave while

z
2

d.1�p/ is order preserving. For p D 1, we can give a probabilistic proof: applying the
nonnegativity of mutual information, which in particular implies that conditioning
reduces entropy (see, e.g., [54]),
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h.X C Y/ � h.X C YjY/ D h.XjY/ D h.X/;

where we used translation-invariance of entropy for the first equality and indepen-
dence of X and Y for the second. For p D 0, the conclusion simply follows by the
fact that jA C Bj � maxfjAj; jBjg for any nonempty Borel sets A and B; this may be
seen by translating B so that it contains 0, which does not affect any of the volumes
and in which case A C B � A. For p D 1, the conclusion follows from Hölder’s
inequality:

Z
f .x � y/g.y/dy � kgk1kf k1 D kgk1:

Thus we have the theorem for all values of p 2 Œ0;1�. �

We now observe that for any fixed random vector, the Rényi entropy of order p
is non-increasing in p.

Lemma 2.2 For a R
d-valued random variable X, and 0 � q < p � 1, we have

Nq.X/ � Np.X/:

Proof The result follows by expressing, for X � f ,

hp.X/ D
log.

R
f p/

1 � p
D � logEkf .X/kp�1

and using the “increasingness” of p-norms on probability spaces, which is nothing
but an instance of Hölder’s inequality. �

Definition 2.3 A function f W Rd ! Œ0;1/ is said to be log-concave if

f .˛x C .1 � ˛/y/ � f .x/˛f .y/1�˛; (9)

for each x; y 2 R
d and each 0 � ˛ � 1.

If a probability density function f is log-concave, we will also use the adjective
“log-concave” for a random variable X distributed according to f , and for the
probability measure induced by it. Log-concavity has been deeply studied in
probability, statistics, optimization and geometry, and is perhaps the most natural
notion of convexity for probability density functions.

In general, the monotonicity of Lemma 2.2 relates two different Rényi entropies
of the same distribution in one direction, but there is no reason for a bound to
exist in the other direction. Remarkably, for log-concave random vectors, all Rényi
entropies are comparable in both directions.

Lemma 2.4 ([115]) If a random variable X in R
d has log-concave density f , then

for p � q > 0,
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hq.f / � hp.f / � d
log q

q � 1
� d

log p

p � 1
;

with equality if f .x/ D e�
Pd

iD1 xi on the positive orthant and 0 elsewhere.

This lemma generalizes the following sharp inequality for log-concave distribu-
tions obtained in [25]:

h.X/ � d C h1.X/: (10)

In fact, Lemma 2.4 has an extension to the larger class (discussed later) of s-
concave measures with s < 0; preliminary results in this direction are available in
[25] and sharp results obtained in [22].

2.2 The Shannon-Stam EPI and Its Variants

2.2.1 The Basic EPI

The EPI has several equivalent formulations; we collect these together with minimal
conditions below.

Theorem 2.5 Suppose X and Y are independent Rd-valued random variables such
that h.X/; h.Y/ and h.X C Y/ exist. Then the following statements, which are
equivalent to each other, are true:

1. We have

N.X C Y/ � N.X/C N.Y/: (11)

2. For any 	 2 Œ0; 1�,

h.
p
	X C

p
1 � 	Y/ � 	h.X/C .1 � 	/h.Y/: (12)

3. Denoting by XG and YG independent, isotropic3, Gaussian random variables with
h.XG/ D h.X/ and h.YG/ D h.Y/, one has

h.X C Y/ � h.XG C YG/: (13)

In (11) and (13), equality holds if and only if X and Y are Gaussian random
variables with proportional covariance matrices; in (12), equality holds if and only
if X and Y are Gaussian random variables with the same covariance matrix.

3By isotropic here, we mean spherical symmetry, or equivalently, that the covariance matrix is
taken to be a scalar multiple of the identity matrix.
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Proof First let us show that we can assume h.X/; h.Y/ 2 .�1;1/. By Theorem 2.1
we can immediately obtain h.X C Y/ � maxfh.X/; h.Y/g. It follows that all three
inequalities hold immediately in the case that maxfh.X/; h.Y/g D 1. Now assume
that neither h.X/ nor h.Y/ take the value C1 and consider minfh.X/; h.Y/g D �1.
In this situation, the inequalities (11) and (12) are immediate. For (13), in the case
that h.X/ D �1 we interpret XG as a Dirac point mass, and hence h.XG C YG/ D

h.YG/ D h.Y/ � h.X C Y/.
We now proceed to prove the equivalences.
(11) ) (12): Apply (11), substituting X by

p
	X and Y by

p
1 � 	Y and use the

homogeneity of entropy power to obtain

N.
p
	X C

p
1 � 	Y/ � 	N.X/C .1 � 	/N.Y/:

Apply the AM-GM inequality to the right-hand side and conclude by taking
logarithms.

(12) ) (13): Applying (12) in its exponentiated form N.
p
	X C

p
1 � 	Y/ �

N	.X/N1�	.Y/ after writing X CY D
p
	.X=

p
	/C

p
1 � 	.Y=

p
1 � 	/we obtain

N.X C Y/ �

�
N

�
X

p
	

��	 �
N

�
Y

p
1 � 	

��1�	
:

Making use of the identity N.XG C YG/ D N.XG/C N.YG/ and homogeneity again,
we can evaluate the right-hand side at 	 D N.XG/=N.XG C YG/ to obtain exactly
N.XG C YG/, recovering the exponentiated version of (13).

(13) ) (11): Using the exponentiated version of (13),

N.X C Y/ � N.XG C YG/ D N.XG/C N.YG/ D N.X/C N.Y/:

Observe from the proof that a strict inequality in one statement implies a strict
inequality in the rest.

What is left is to prove any of the 3 statements of the EPI when the entropies
involved are finite. There are many proofs of this available in the literature (see,
e.g., [148, 20, 96, 56, 153, 134]), and we will not detail any here, although we later
sketch a proof via the sharp form of Young’s convolution inequality. �

The conditions stated above cannot be relaxed, as observed by Bobkov and
Chistyakov [30], who construct a distribution whose entropy exists but such that
the entropy of the self-convolution does not exist. This, in particular, shows that
the assumption for validity of the EPI stated, for example, in [56] is incomplete–
existence of just h.X/ and h.Y/ is not sufficient. It is also shown in [30], however,
that for any example where h.X/ exists but h.X C X0/ does not (with X0 an i.i.d.
copy of X), necessarily h.X/ D �1, so that it remains true that if the entropy
exists and is a real number, then the entropy of the self-convolution also exists. They
also have other interesting examples of the behavior of entropy on convolution: [30,
Example 1 ] constructs a distribution with entropy �1 such that the entropy of the
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self-convolution is a real number, and [30, Proposition 5] constructs a distribution
with finite entropy such that its convolution with any distribution of finite entropy
has infinite entropy.

2.2.2 Fancier Versions of the EPI

Many generalizations and improvements of the EPI exist. For three or more
independent random vectors Xi, the EPI trivially implies that

N.X1 C � � � C Xn/ �

nX
iD1

N.Xi/; (14)

with equality if and only if the random vectors are Gaussian and their covariance
matrices are proportional to each other. In fact, it turns out that this can be refined,
as shown by S. Artstein, K. Ball, Barthe and Naor [4]:

N

 
nX

iD1

Xi

!
�

1

n � 1

nX
jD1

N

�X
i¤j

Xi

�
: (15)

This implies the monotonicity of entropy in the Central Limit Theorem, which sug-
gests that quantifying the Central Limit Theorem using entropy or relative entropy
is a particularly natural approach. More precisely, if X1; : : : ;Xn are independent and
identically distributed (i.i.d.) square-integrable random vectors, then

h

�
X1 C � � � C Xn

p
n

�
� h

�
X1 C � � � C Xn�1

p
n � 1

�
: (16)

Simpler proofs of (15) were given independently by [106, 146, 160]. Generalizations
of (15) to arbitrary collections of subsets on the right side were given by [107, 108],
and some further fine properties of the kinds of inequalities that hold for the entropy
power of a sum of independent random variables were revealed in [109]. Let us
mention a key result of this type due to [108]. For a collection C of nonempty subsets
of Œn� WD f1; 2; � � � ; ng, a function ˇ W C ! RC is called a fractional partition4 if
for each i 2 Œn�, we have

P
s2CWi2s ˇs D 1. Then the entropy power of convolutions

is fractionally superadditive, i.e., if X1; : : : ;Xn are independent Rd-valued random
variables, one has

N

� nX
iD1

Xi

�
�
X
s2C

ˇsN

�X
i2s

Xi

�
:

4If there exists a fractional partition ˇ for C that is f0; 1g-valued, then ˇ is the indicator function
for a partition of the set Œn� using a subset of C; hence the terminology.
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This yields the usual EPI by taking C to be the collection of all singletons and
ˇs � 1, and the inequality (15) by taking C to be the collection of all sets of size
n � 1 and ˇs � 1

n�1
.

For i.i.d. summands in dimension 1, [3] and [82] prove an upper bound of
the relative entropy between the distribution of the normalized sum and that
of a standard Gaussian random variable. To be precise, suppose X1; : : : ;Xn are
independent copies of a random variable X with Var.X/ D 1, and the density of
X satisfies a Poincaré inequality with constant c, i.e., for every smooth function s,

cVar.s.X// � EŒfs0.X/g2�:

Then, for every a 2 R
n with

Pn
iD1 a2i D 1 and ˛.a/ WD

Pn
iD1 a4i ,

h.G/ � h

 
nX

iD1

aiXi

!
�

˛.a/
c
2

C .1 � c
2
/˛.a/

.h.G/ � h.X// ; (17)

where G is a standard Gaussian random variable. Observe that this refines the EPI
since taking c D 0 in the inequality (17) gives the EPI in the second form of
Theorem 2.5. On the other hand, specializing (17) to n D 2 with a1 D a2 D 1p

2
,

one obtains a lower bound for h
�X1CX2p

2

�
� h.X/ in terms of the relative entropy

h.G/ � h.X/ of X from Gaussianity. Ball and Nguyen [13] develop an extension
of this latter inequality to general dimension under the additional assumption of
log-concavity.

It is natural to ask if the EPI can be refined by introducing an error term
that quantifies the gap between the two sides in terms of how non-Gaussian the
summands are. Such estimates are referred to as “stability estimates” since they
capture how stable the equality condition for the inequality is, i.e., whether closeness
to Gaussianity is guaranteed for the summands if the two sides in the inequality are
not exactly equal but close to each other. For the EPI, the first stability estimates
were given by Carlen and Soffer [42], but these are qualitative and not quantitative
(i.e., they do not give numerical bounds on distance from Gaussianity of the
summands when there is near-equality in the EPI, but they do assert that this distance
must go to zero as the deficit in the inequality goes to zero). Recently Toscani [159]
gave a quantitative stability estimate when the summands are restricted to have
log-concave densities: For independent random vectors X and Y with log-concave
densities,

N.X C Y/ � .N.X/C N.Y//R.X;Y/; (18)

where the quantity R.X;Y/ � 1 is a somewhat complicated quantity that we do
not define here and can be interpreted as a measure of non-Gaussianity of X and Y .
Indeed, [159] shows that R.X;Y/ D 1 if and only if X and Y are Gaussian random
vectors, but leaves open the question of whether R.X;Y/ can be related to some
more familiar distance from Gaussianity. Even more recently, Courtade, Fathi and
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Pananjady [53] showed that if X and Y are uniformly log-concave (in the sense that
the densities of both are of the form e�V with the Hessian of V bounded from below
by a positive multiple of the identity matrix), then the deficit in the EPI is controlled
in terms of the quadratic Wasserstein distances between the distributions of X and Y
and Gaussianity.

There are also strengthenings of the EPI when one of the summands is Gaussian.
Set X.t/ D X C

p
tZ, with Z a standard Gaussian random variable independent of X.

Costa [50] showed that for any t 2 Œ0; 1�,

N.X.t// � .1 � t/N.X/C tN.X C Z/: (19)

This may be rewritten as N.X.t//�N.X/ � tŒN.X CZ/�N.X/� D N.
p

tX C
p

tZ/�
N.

p
tX/. Setting ˇ D

p
t, we have for any ˇ 2 Œ0; 1� that N.X C ˇZ/ � N.X/ �

N.ˇX C ˇZ/ � N.ˇX/; substituting X by ˇX, we get

N.X C Z/ � N.X/ � N.ˇX C Z/ � N.ˇX/: (20)

for any ˇ 2 Œ0; 1�. Therefore, for any ˇ, ˇ0 2 Œ0; 1� with ˇ > ˇ0, substitute X by ˇX
and ˇ by ˇ0=ˇ in (20), we have

N.ˇX C Z/ � N.ˇX/ � N.ˇ0X C Z/ � N.ˇ0X/:

In other words, Costa’s result states that if A.ˇ/ D N.ˇXCZ/�N.ˇX/, then A.ˇ/ is
a monotonically increasing function for ˇ 2 Œ0; 1�. To see that this is a refinement of
the EPI in the special case when one summand is Gaussian, note that the EPI in this
case is the statement that A.1/ � A.0/. An alternative proof of Costa’s inequality
was given by Villani [161]; for a generalization, see [128].

Very recently, a powerful extension of Costa’s inequality was developed by
Courtade [52], applying to a system in which X;X C Z;V form a Markov chain
(i.e., X and V are conditionally independent given X C Z) and Z is a Gaussian
random vector independent of X. Courtade’s result specializes in the case where
V D X C Z C Y to the following: If X;Y;Z be independent random vectors in R

d

with Z being Gaussian, then

N.X C Z/N.Y C Z/ � N.X/N.Y/C N.X C Y C Z/N.Z/: (21)

Applying the inequality (21) to X,
p
1 � tZ0 and

p
tZ where Z0 is the independent

copy of the standard normal distribution Z, we have

N.X.t//N.
p
1 � tZ0 C

p
tZ/ � N.X/N.

p
1 � tZ0/C N.X C

p
1 � tZ0 C

p
tZ/N.

p
tZ/:

By the fact that
p
1 � tZ0 C

p
tZ has the same distribution as Z, and by the fact

that N.Z/ D 1, we have N.X.t// � .1 � t/N.X/ C tN.X C Z/, which is Costa’s
inequality (19).
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Motivated by the desire to prove entropic central limit theorems for statistical
physics models, some extensions of the EPI to dependent summands have also been
considered (see, e.g., [42, 154, 155, 79, 80]), although the assumptions tend to be
quite restrictive for such results.

Finally there is an extension of the EPI that applies not just to sums but also to
more general linear transformations applied to independent random variables. The
main result of Zamir and Feder [171] asserts that if X1; : : : ;Xn are independent real-
valued random variables, Z1; : : : ;Zn are independent Gaussian random variables
satisfying h.Zi/ D h.Xi/, and A is any matrix, then h.AX/ � h.AZ/ where AX
represents the left-multiplication of the vector X by the matrix A. As explained in
[171], for this result to be nontrivial, the m � n matrix A must have m < n and be
of full rank. To see this, notice that if m > n or if A is not of full rank, the vector
AX does not have full support on R

m and h.AX/ D h.AZ/ D �1, while if m D n
and A is invertible, h.AX/ D h.AZ/ holds with equality because of the conditions
determining Z and the way entropy behaves under linear transformations.

2.3 Rényi Entropy Power Inequalities

2.3.1 First Rényi Interpolation of the EPI and BMI

Unified proofs can be given of the EPI and the BMI in different ways, each of which
may be thought of as providing extensions of the EPI to Rényi entropy.

The first unified approach is via Young’s inequality. Denote by Lp the Banach
space Lp.Rd; dx/ of measurable functions defined on R

d whose p-th power is
integrable with respect to Lebesgue measure dx. In 1912, Young [167] introduced
the fundamental inequality

kf ? gkr � kf kpkgkq ;
1

p
C
1

q
D
1

r
C 1; 1 < p; q; r < C1; (22)

for functions f 2 Lp and g 2 Lq, which implies that if two functions are in (possibly
different) Lp-spaces, then their convolution is contained in a third Lp-space. In 1972,
Leindler [91] showed the so-called reverse Young inequality, referring to the fact
that the inequality (22) is reversed when 0 < p; q; r < 1. The best constant that can
be put on the right side of (22) or its reverse was found by Beckner [18]: the best
constant is .CpCq=Cr/

d, where

C2
p D

p
1
p

jp0j
1
p0

; (23)

and for any p 2 .0;1�, p0 is defined by

1

p
C
1

p0
D 1: (24)
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Note that p0 is positive for p 2 .1;1/, and negative for p 2 .0; 1/. Alternative proofs
of both Young’s inequality and the reverse Young inequality with this sharp constant
were given by Brascamp and Lieb [37], Barthe [15], and Cordero-Erausquin and
Ledoux [48].

We state the sharp Young and reverse Young inequalities now for later reference.

Theorem 2.6 ([18]) Suppose r 2 .0; 1/ and pi 2 .0; 1/ satisfy

nX
iD1

1

pi
D n �

1

r0
: (25)

Then, for any functions fj 2 Lpj (j D 1; : : : ; n),





 ?j2Œn� fj






r

�
1

Cd
r

Y
j2Œn�

�
Cd

pj
kfjkpj

�
: (26)

The inequality is reversed if r 2 .1;1/ and pi 2 .1;1/.

Dembo, Cover and Thomas [56] interpret the Young and reverse Young inequal-
ities with sharp constant as EPIs for the Rényi entropy. If Xi are random vectors
in R

d with densities fi respectively, taking the logarithm of (26) and rewriting the
definition of the Rényi entropy power as Np.X/ D kf k

�2p0=d
p , we have

d

2r0
log Nr

�X
i2Œn�

Xi

�
� d log Cr � d

X
i2Œn�

log Cpi C
X
i2Œn�

d

2p0
i

log Npi.Xi/: (27)

Introduce two discrete probability measures 	 and � on Œn�, with probabilities
proportional to 1=p0

i and 1=pi, respectively. Setting Lr D rn � r C 1 D r.n � 1=r0/,
the condition (25), allows us to write explicitly

�i D

�
r

Lr

�
1

pi
;

	i D
r0

p0
i

;

for each i 2 Œn�, also using 1=pi C 1=p0
i D 1 for the latter. Then (27) reduces to

hr.YŒn�/ �
dr0

2
log C2

r �
dr0

2

X
i2Œn�

log C2
pi

C
X
i2Œn�

	ihpi.Xi/:

Now, some straightforward calculations show that if we take the limit as pi; r ! 0

from above, we get the BMI, while if we take the limit as pi; r ! 1, we get the EPI
(this was originally observed by Lieb [96]).
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2.3.2 Second Rényi Interpolation of the EPI and BMI

Wang and Madiman [162] found a rearrangement-based refinement of the EPI that
also applies to Rényi entropies. For a Borel set A, define its spherically decreasing
symmetric rearrangement A� by

A� WD B.0; r/;

where B.0; r/ stands for the open ball with radius r centered at the origin and r is
determined by the condition that B.0; r/ has volume jAj. Here we use the convention
that if jAj D 0 then A� D ; and that if jAj D 1 then A� D R

d. Now for
a measurable non-negative function f , define its spherically decreasing symmetric
rearrangement f � by

f �.y/ WD

Z 1

0

1fy2B�

t gdt;

where Bt WD fx W f .x/ > tg. It is a classical fact (see, e.g., [39]) that rearrangement
preserves Lp-norms, i.e., kf �kp D kf kp. In particular, if f is a probability density
function, so is f �. If X � f , denote by X� a random variable with density f �, then the
rearrangement-invariance of Lp-norms immediately implies that hp.X�/ D hp.X/ for
each p 2 Œ0;1� (for p D 1, this is not done directly but via a limiting argument).

Theorem 2.7 ([162]) Let X1; : : : ;Xn be independent Rd-valued random vectors.
Then

hp.X1 C : : :C Xn/ � hp.X
�
1 C : : :C X�

n / (28)

for any p 2 Œ0;1�, provided the entropies exist.

In particular,

N.X C Y/ � N.X� C Y�/; (29)

where X and Y are independent random vectors with density functions f and g,
respectively, and X� and Y� are independent random vectors with density function
f � and g�, respectively. Thanks to (29), we have effectively inserted an intermediate
term in between the two sides of the formulation (13) of the EPI:

N.X C Y/ � N.X� C Y�/ � N.XG C YG/;

where the second inequality is by the fact that h.XG/ D h.X�/ D h.X/, combined
with the third equivalent form of the EPI in Theorem 2.5. In fact, it is also shown in
[162] that the EPI itself can be deduced from (29).
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2.3.3 A Conjectured Rényi EPI

Let us note that neither of the above unifications of BMI and EPI via Rényi entropy
directly gives a sharp bound on Np.X CY/ in terms of Np.X/ and Np.Y/. The former
approach relates Rényi entropy powers of different indices, while the latter refines
the third formulation in Theorem 2.1 (but not the first, because the equivalence that
held for Shannon-Boltzmann entropy does not work in the Rényi case). The question
of finding a sharp direct relationship between Np.X C Y/ with Np.X/ and Np.Y/
remains open, with some non-sharp results for the p > 1 case obtained by Bobkov
and Chistyakov [30], whose argument and results were recently tightened by Ram
and Sason [133].

Theorem 2.8 ([133]) For p 2 .1;1/ and independent random vectors Xi with
densities in R

d,

Np.X1 C � � � C Xn/ � c.n/p

nX
iD1

Np.Xi/;

where p0 D p=.p � 1/ and

c.n/p D p
1

p�1

�
1 �

1

np0

�np0�1

�
1

e
:

We now discuss a conjecture of Wang and Madiman [162] about extremal
distributions for Rényi EPIs of this sort. Consider the one-parameter family of
distributions, indexed by a parameter �1 < ˇ � 2

dC2
, of the following form:

g0 is the standard Gaussian density in R
d, and for ˇ ¤ 0,

gˇ.x/ D Aˇ

�
1 �

ˇ

2
kxk2

� 1
ˇ� d

2�1

C

;

where Aˇ is a normalizing constant (which can be written explicitly in terms of
gamma functions). We call gˇ the standard generalized Gaussian of order ˇ; any
affine function of a standard generalized Gaussian yields a “generalized Gaussian”.
The densities gˇ (apart from the obviously special value ˇ D 0) are easily classified
into two distinct ranges where they behave differently. First, for ˇ < 0, the density
is proportional to a negative power of .1 C bkxk2/ for a positive constant b, and
therefore corresponds to measures with full support on R

d that are heavy-tailed. For

ˇ > 0, note that .1 � bkxk2/C with positive b is non-zero only for kxk < b�
1
2 ,

and is concave in this region. Thus any density in the second class, corresponding
to 0 < ˇ � 2

dC2
, is a positive power of .1� bkxk2/C, and is thus a concave function

supported on a centered Euclidean ball of finite radius. It is pertinent to note that
although the first class includes many distributions from what one might call the
“Cauchy family”, it excludes the standard Cauchy distribution; indeed, not only do
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all the generalized Gaussians defined above have finite variance, but in fact the form
has been chosen so that, for Z � gˇ ,

EŒkZk2� D d

for any ˇ. The generalized Gaussians have been called by different names in the
literature, including Barenblatt profiles, or the Student-r distributions (ˇ < 0) and
Student-t distributions (0 < ˇ � 2

dC2
).

For p > d
dC2

, define ˇp by

1

ˇp
D

1

p � 1
C

d C 2

2
;

and write Z.p/ for a random vector drawn from gˇp . Note that ˇp ranges from
�1 to 2

dC2
as p ranges from d

dC2
to 1. The generalized Gaussians Z.p/ arise

naturally as the maximizers of the Rényi entropy power of order p under a variance
constraint, as independently observed by Costa, Hero and Vignat [49] and Lutwak,
Yang and Zhang [103]. They play the starring role in the conjecture of Wang and
Madiman [162].

Conjecture 2.9 ([162]) Let X1; : : : ;Xn be independent random vectors taking
values in R

d, and p > d
dC2

. Suppose Zi are independent random vectors, each a
scaled version of Z.p/. such that hp.Xi/ D hp.Zi/. Then

Np.X1 C : : :C Xn/ � Np.Z1 C : : :C Zn/:

Until very recently, this conjecture was only known to be true in the case where
p D 1 (when it is the classical EPI) and the case where p D 1 and d D 1

(which is due to Rogozin [137] and discussed in Section 2.4). In [114], we have
very recently been able to prove Conjecture 2.9 for p D 1 and any finite dimension
d, generalizing Rogozin’s inequality. All other cases remain open.

2.3.4 Other Work on Rényi Entropy Power Inequalities

Johnson and Vignat [84] also demonstrated what they call an “entropy power
inequality for Rényi entropy”, for any order p � 1. However, their inequality
does not pertain to the usual convolution, but a new and somewhat complicated
convolution operation (depending on p). This new operation reduces to the usual
convolution for p D 1, and has the nice property that the convolution of affine
transforms of independent copies of Z.p/ is an affine transform of Z.p/ (which fails
for the usual convolution when p > 1).

As discussed earlier, Costa [50] proved a strengthening of the classical EPI when
one of the summands is Gaussian. Savaré and Toscani [143] recently proposed a
generalization of Costa’s result to Rényi entropy power, but the notion of concavity
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they use based on solutions of a nonlinear heat equation does not have obvious
probabilistic meaning. Curiously, it turns out that the definition of Rényi entropy
power appropriate for the framework of [143] has a different constant in the
exponent ( 2d C p � 1 as opposed to 2

d ). Motivated by [143], Bobkov and Marsiglietti
[27] very recently proved Rényi entropy power inequalities with non-standard
exponents. Their main result may be stated as follows.

Theorem 2.10 ([27]) For p 2 .1;1/ and independent random vectors Xi with
densities in R

d,

QNp.X1 C � � � C Xn/ �

nX
iD1

QNp.Xi/;

where

QNp.X/ D e
pC1

d hp.X/:

It would be interesting to know if Theorem 2.10 is true for p 2 Œ0; 1/ (and hence
all p � 0), since this would be a particularly nice interpolation between the BMI
and EPI.

It is natural to look for Rényi entropy analogues of the refinements and
generalizations of the EPI discussed in Section 2.2.2. While little has been done
in this direction for general Rényi entropies (apart from the afore-mentioned work
of [143]), the case of the Rényi entropy of order 0 (i.e., inequalities for volumes of
sets)– which is, of course, of special interest– has attracted some study. For example,
Zamir and Feder [172] demonstrated a nontrivial version of the BMI for sums of the
form v1A1 C : : : vkAk, where Ai are unit length subsets of R and vi are vectors in
R

d, showing that the volume of the Minkowski sum is minimized when each Ai is
an interval (i.e., the sum is a zonotope). This result was motivated by analogy with
the “matrix version” of the EPI discussed earlier.

Indeed, the strong parallels between the BMI and the EPI might lead to the belief
that every volume inequality for Minkowski sums has an analogue for entropy of
convolutions, and vice versa. However, this turns out not to be the case. It was
shown by Fradelizi and Marsiglietti [68] that the analogue of Costa’s result (19)
on concavity of entropy power, namely the assertion that t 7! jA C tBd

2j
1
d is

concave for positive t and any given Borel set A, fails to hold5 even in dimension 2.
Another conjecture in this spirit that was made independently by V. Milman (as a
generalization of Bergstrom’s determinant inequality) and by Dembo, Cover and
Thomas [56] (as an analogue of Stam’s Fisher information inequality, which is
closely related to the EPI) was disproved by Fradelizi, Giannopoulos and Meyer
[63]. In [32], it was conjectured that analogues of fractional EPIs such as (15) hold

5They also showed some partial positive results– concavity holds in dimension 2 for connected
sets, and in general dimension on a subinterval Œt0;1/ under some regularity conditions.
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for volumes, and it was observed that this is indeed the case for convex sets. If this
conjecture were true for general compact sets, it would imply that for any compact
set, the volumes of the Minkowski self-averages (obtained by taking the Minkowski
sum of k copies of the set, and scaling by 1=k) are monotonically increasing6 in
k. However, [65] showed that this conjecture does not hold7 in general– in fact,
they showed that there exist many compact sets A in R

d for any d � 12 such that
jA C A C Aj < .3

2
/djA C Aj. Finally while volumes of Minkowski sums of convex

sets in R
d are supermodular (as shown in [66]), entropy powers of convolutions

of log-concave densities fail to be supermodular even in dimension 1 (as shown in
[109]). Thus the parallels between volume inequalities and entropy inequalities are
not exact.

Another direction that has seen considerable exploration in recent years is
stability of the BMI. This direction began with stability estimates for the BMI in
the case where the two summands are convex sets [57, 73, 61, 62, 144]8, asserting
that near-equality in the BMI implies that the summands are nearly homothetic.
For general Borel sets, qualitative stability (i.e., that closeness to equality entails
closeness to extremizers) was shown by Christ [45, 44], with the first quantitative
estimates recently developed by Figalli and Jerison [60]. Qualitative stability for
the more general Young’s inequality has also been recently considered [43], but
quantitative estimates are unknown to the extent of our knowledge.

2.4 An EPI for Rényi Entropy of Order 1

In discussing Rényi entropy power inequalities, it is of particular interest to consider
the case of p D 1, because of close connections with the literature in probability
theory on small ball estimates and the so-called Lévy concentration functions
[127, 58], which in turn have applications to a number of areas including stochastic
process theory [95] and random matrix theory [138, 158, 139].

Observe that by Theorem 2.1 we trivially have

N1.X C Y/ � maxfN1.X/;N1.Y/g �
1

2
.N1.X/C N1.Y//: (30)

6The significance of this arises from the fact that the Minkowski self-averages of any compact
set converge in Hausdorff distance to the convex hull of the set, and furthermore, one also has
convergence of the volumes if the original compact set had nonempty interior. Various versions of
this fact were proved independently by Emerson and Greenleaf [59], and by Shapley, Folkmann
and Starr [150]; a survey of such results including detailed historical remarks can be found in [66].
7On the other hand, partial positive results quantifying the convexifying effect of Minkowski
summation were obtained in [65, 66].
8There is also a stream of work on stability estimates for other geometric inequalities related to the
BMI, such as the isoperimetric inequality, but this would take us far afield.
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In fact, the constant 1
2

here is sharp, as uniform distributions on any symmetric
convex set K (i.e., K is convex, and x 2 K if and only if �x 2 K) of volume 1
are extremal: if X and X0 are independently distributed according to f D 1K , then
denoting the density of X � X0 by u, we have

kuk1 D u.0/ D

Z
f 2.x/dx D 1 D kf k1;

so that N1.X C X0/ D N1.X � X0/ D N1.X/ D 1
2
ŒN1.X/C N1.X0/�.

What is more, it is observed in [30] that when each Xi is real-valued, 1=2 is the
optimal constant for any number of summands.

Theorem 2.11 ([30]) For independent, real-valued random variables X1; : : : ;Xn,

N1

 
nX

iD1

Xi

!
�
1

2

nX
iD1

N1.Xi/:

The constant 1=2 clearly cannot be improved upon (one can take X3; : : : ;Xn to
be deterministic and the result follows from the n D 2 case). That one should have
this sort of scaling in n for the lower bound (namely, linear in n when the summands
are identically distributed with bounded densities) is not so obvious from the trivial
maximum bound above. The proof of Theorem 2.11 draws on two theorems, the first
due to Rogozin [137], which reduces the general case to the cube, and the second a
geometric result on cube slicing due to K. Ball [9].

Theorem 2.12 ([137]) Let X1; : : : ;Xn be independent R-valued random variables
with bounded densities. Then

N1.X1 C � � � C Xn/ � N1.Y1 C � � � C Yn/; (31)

where Y1; : : : ;Yn are a collection of independent random variables, with Yi chosen
to be uniformly distributed on a symmetric interval such that N1.Yi/ D N1.Xi/.

Theorem 2.13 ([9]) Every section of the unit cube Œ� 1
2
; 1
2
�d, denoted Qd, by a

.d � 1/-dimensional subspace has volume bounded above by
p
2. This upper bound

is attained iff the subspace contains a .d � 2/-dimensional face of Qd.

Proof of Theorem 2.11. For Xi independent and R-valued, with Yi chosen as in
Theorem 2.12,

N1.X1 C � � � C Xn/ � N1.Y1 C � � � C Yn/:

Applying a sort of change of variables, and utilizing the degree 2 homogeneity of
entropy powers, one can write

N1.Y1 C � � � C Yn/ D

 
nX

iD1

N1.Yi/

!
N1.�1U1 C � � � C �nUn/;
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where the Ui are independent uniform on Œ� 1
2
; 1
2
� and � is a unit vector (to be

explicit, take �i D
q

N1.Yi/=
P

j N1.Yj/ and the above can be verified). Then

utilizing the symmetry of �1U1C� � �C�nUn and the BMI, we see that the maximum
of its density must occur at 0, yielding

N1.�1U1 C � � � C �nUn/ D
ˇ̌
Qd \ �?

ˇ̌�2
d�1

�
1

2
:

The result follows. �

Theorem 2.11 admits two natural generalizations. The first, also handled in [30]
(and later recovered in [133] by taking the limit as p ! 1 in Theorem 2.8), is the
following.

Theorem 2.14 ([30]) For independent random vectors X1; : : : ;Xn in R
d.

N1.X1 C � � � C Xn/ �

�
1 �

1

n

�n�1

ŒN1.X1/C � � � C N1.Xn/� (32)

�
1

e
ŒN1.X1/C � � � C N1.Xn/�: (33)

A second direction was pursued by Livshyts, Paouris and Pivovarov [97] in
which the authors derive sharp bounds for the maxima of densities obtained as the
projections of product measures. Specifically, [97, Theorem 1.1] shows that given
probability density functions fi on R with kfik1 � 1, with joint product density f
defined by f .x1; : : : ; xn/ D

Qn
iD1 fi.xi/, then

k�E.f /k1 � min

�� n

n � k

	.n�k/=2
; 2k=2

�
; (34)

where �E.f / denotes the pushforward of the probability measure induced by f under
orthogonal projection to a k-dimensional subspace E, i.e., �E.f /.x/ D

R
xCE? f .y/dy.

In addition, cubes are shown to be extremizers of the above inequality. In the
language of information theory, this can be rewritten as follows.

Theorem 2.15 ([97]) Let X D .X1; : : : ;Xn/ where Xi are independent R-valued
random variables, and N1.Xi/ � 1. Then

N1.PEX/ � max

(
1

2
;

�
1 �

k

n

� n
k �1
)
; (35)

where PE denotes the orthogonal projection to a k-dimensional subspace E, and
equality can be achieved for Xi uniform on intervals.

In the k D 1 case, this implies Theorem 2.11 by applying the inequality (35) to

Yi D Xi=
p

N1.Xi/;
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and taking E to be the space spanned by the unit vector �i D
q

N1.Xi/=
P

j N1.Xj/.

The Yi defined satisfy the hypothesis so we have N1.PEY/ � 1=2, but

N1.PEY/ D N1.h�;Yi/

D N1

0
B@ X1 C � � � C XnqPn

jD1 N1.Xj/

1
CA

D
N1.X1 C � � � C Xn/Pn

jD1 N1.Xj/
;

and the implication follows.
Conversely, for the one-dimensional subspace E spanned by the unit vector � ,

and Xi satisfying N1.Xi/ � 1, if one applies Theorem 2.11 to Yi D �iXi, we recover
the one-dimensional case of the projection theorem as

N1.PEX/ D N1.Y1 C � � � C Yn/

�
1

2
.N1.Y1/C � � � C N1.Yn//

D
1

2
.�21N1.X1/C � � � C �2n N1.Xn//

�
1

2
:

Thus Theorem 2.15 can be seen as a k-dimensional generalization of the 1-EPI
for real random variables.

In recent work [114], we have obtained a generalization of Rogozin’s inequality
that allows us to prove multidimensional versions of both Theorems 2.14 and 2.15.
Indeed, our extension of Rogozin’s inequality reduces both the latter theorems to
geometric inequalities about Cartesian products of Euclidean balls, allowing us
to obtain sharp constants in Theorem 2.11 for any fixed dimension as well as to
generalize Theorem 2.15 to the case where each Xi is a random vector.

3 Reverse Entropy Power Inequalities

3.1 �-Concave Measures and Functions

�-concave measures are measures that satisfy a generalized Brunn-Minkowski
inequality, and were studied systematically by Borell [34, 35].
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As a prerequisite, we define the t-weighted �-mean of two numbers. For a; b 2

.0;1/, t 2 .0; 1/ and � 2 .�1; 0/ [ .0;1/, define

Mt
�.a; b/ D ..1 � t/a� C tb�/

1
� : (36)

For � 2 f�1; 0;1g define Mt
�.a; b/ D lim�0!� Mt

�0.a; b/ corresponding to

fmin.a; b/; a1�tbt;max.a; b/g

respectively. M� can be extended to a; b 2 Œ0;1/ via direct evaluation when � � 0

and again by limits when � < 0 so that M�.a; b/ D 0 whenever ab D 0.

Definition 3.1 Fix � 2 Œ�1; 1d �. We say that a probability measure � on R
d is

�-concave if the support of � has non-empty interior9, and

�..1 � t/A C tB/ � Mt
�.�.A/; �.B//

for any Borel sets A;B, and any t 2 .0; 1/.
We say that � is a convex measure if it is �-concave for some � 2 Œ�1; 1d �.
When the law of a random vector X is a �-concave measure, we will refer to X

as a �-concave random vector.

Thus, the �-concave measures are those that distribute volume in such a way that
the vector space average of two sets is larger than the �-mean of their respective
volumes. Let us state some preliminaries. First notice that by Jensen’s inequality
� being �-concave implies � is �0-concave for �0 � �. The support of a �-concave
measure is necessarily convex, and since we assumed that the support has nonempty
interior, the dimension of the smallest affine subspace of Rd containing the support
of � is automatically d.

It is a nontrivial fact that concavity properties of a measure can equivalently be
described pointwise in terms of its density.

Theorem 3.2 ([34]) A measure � on R
d is �-concave if and only if it has a density

(with respect to the Lebesgue measure on its support) that is a s�;d-concave function,
in the sense that

f ..1 � t/x C ty/ � Mt
s�;d .f .x/; f .y//

9We only assume this for simplicity of exposition– a more general theory not requiring absolute
continuity of the measure � with respect to Lebesgue measure on R

d is available in Borell’s
papers. Note that while the support of � having nonempty interior in general is a weaker condition
than absolute continuity, the two conditions turn out to coincide in the presence of a �-concavity
assumption.
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whenever f .x/f .y/ > 0 and t 2 .0; 1/, and where

s�;d WD
�

1 � �d
:

Examples

1. If X is the uniform distribution on a convex body K, it has an 1-concave density
function f D jKj�11K and thus the probability measure is 1=d-concave. Let us
note that by our requirement that � is “full-dimensional” (i.e., has support with
nonempty interior), the only 1=d-concave probability measures on R

d are of this
type.

2. A measure that is 0-concave is also called a log-concave measure. Since s0;d D 0

for any positive integer d, Theorem 3.2 implies that an absolutely continuous
measure � is log-concave if and only if its density is a log-concave function (as
defined in Definition 2.3). In other words, X has a log-concave distribution if and
only if its density function can be expressed on its support as e�V.x/ for V convex.
When V.x/ D 1

2
jxj2 � d

2
log.2�/, one has the standard Gaussian distribution;

when V.x/ D x for x � 0 and V.x/ D 1 for x < 0, one has the standard
exponential distribution; and so on.

3. If X is log-normal distribution with density function

f .x/ WD
1

x�
p
2�

e�
.ln x��/2

2�2

then the density function of X is � �
4

-concave, and for � < 4, the probability
measure is ��

4��
-concave.

4. If X is a Beta distribution with density function

x˛.1 � x/ˇ

B.˛; ˇ/

with shape parameters ˛ � 1 and ˇ � 1, then the density function of X is
min. 1

˛�1
; 1
ˇ�1

/-concave, and the probability measure is 1
max.˛;ˇ/ -concave.

5. If X is a d-dimensional Student’s t-distribution with density function

f .x/ WD

.�Cd

2
/

�
d
2 �

d
2 
. �

2
/

�
1C

jxj2

�

�� �Cd
2

with � > 0, then the density function of X is � 1
�Cd -concave, and the probability

measure is � 1
�

-concave.
6. If X is a d-dimensional Pareto distribution of the first kind with density function

f .x/ WD a.a C 1/ � � � .a C d � 1/

 
dY

iD1

�i

!�1  dX
iD1

xi

�i
� d C 1

!�.aCd/
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for xi > �i > 0 with a > 0, then the density function of X is � 1
aCd -concave, and

the probability measure is � 1
a -concave.

The optimal � for the distributions above can be found through direct computa-
tion on densities, let us also remind the reader that �-concavity is an affine invariant.
In other words, if X is �-concave and T is affine, then TX is �-concave as well, which
supplies further examples through modification of the examples above.

We will also find useful an extension of Lemma 2.4 to convex measures (this was
obtained in [25] under an additional condition, which was removed in [22]).

Lemma 3.3 Let � 2 .�1; 0�. If X is a �-concave random vector in R
d, then

h.X/ � h1.X/ �

d�1X
iD0

1 � �d

1 � �i
; (37)

with equality for the n-dimensional Pareto distribution.

To match notation with [25] notice that X being �-concave is equivalent to X having
a density function that can be expressed as '�ˇ , for ˇ D d � 1

�
and ' convex.

We now develop reverse Rényi entropy power inequalities for �-concave mea-
sures, inspired by work on special cases (such as the log-concave case corresponding
to � D 0 in the terminology above, or the case of Shannon-Boltzmann entropy) in
[26, 168, 33, 12].

3.2 Positional Reverse EPI’s for Rényi Entropies

The reverse Brunn-Minkowski inequality (Reverse BMI) is a celebrated result in
convex geometry discovered by V. Milman [122] (see also [123, 124, 130]). It states
that given two convex bodies A and B in R

d, one can find a linear volume-preserving
map u W Rd ! R

d such that with some absolute constant C,

ju.A/C Bj1=d � C.jAj1=d C jBj1=d/: (38)

The EPI may be formally strengthened by using the invariance of entropy
under affine transformations of determinant ˙1, i.e., N.u.X// D N.X/ whenever
jdet.u/j D 1. Specifically,

inf
u1;u2

N.u1.X/C u2.Y// � N.X/C N.Y/; (39)

where the maps ui W R
d ! R

d range over all affine entropy-preserving trans-
formations. It was shown in [24] that in exact analogy to the Reverse BMI, the
inequality (39) can be reversed with a constant not depending on dimension if we
restrict to log-concave distributions. To state such results compactly, we adopt the
following terminology.
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Definition 3.4 For each d 2 N, let Md be a class of probability measures on R
d,

and write M D .Md W d 2 N/. Suppose that for every pair of independent random
variables X and Y whose distributions lie in Md, there exist linear maps u1; u2 W

R
d ! R

d of determinant 1 such that

Np
�
u1.X/C u2.Y/

�
� Cp .Np.X/C Np.Y//; (40)

where Cp is a constant that depends only on p (and not on d or the distributions of
X and Y). Then we say that a Positional Reverse p-EPI holds for M.

Theorem 3.5 ([24]) Let MLC
d be the class of log-concave probability measures on

R
d, and MLC D .MLC

d W d 2 N/. A Positional Reverse 1-EPI holds for MLC.

Specializing to uniform distributions on convex bodies, it is shown in [26] that
Theorem 3.5 recovers the Reverse BMI. Thus one may think of Theorem 3.5 as
completing in a reverse direction the already extensively discussed analogy between
the BMI and EPI.

Furthermore, [26] found10 that Theorem 3.5 can be extended to larger subclasses
of the class of convex measures.

Theorem 3.6 ([26]) For ˇ0 > 2, let Md;ˇ0 be the class of probability measures
whose densities of the form f .x/ D V.x/�ˇ for x 2 R

d, where V W Rd ! .0;1� is
a positive convex function and ˇ � ˇ0d. Then a Positional Reverse 1-EPI holds for
Mˇ0 D .Md;ˇ0 W d 2 N/.

In [33], it is shown that a Reverse EPI is not possible over all convex measures.

Theorem 3.7 ([33]) For any constant C, there is a convex probability distribution
� on the real line with a finite entropy, such that

minfN.X C Y/;N.X � Y/g � C N.X/;

where X and Y are independent random variables distributed according to �.

We have the following positional reverse p-Rényi EPI for log-concave random
vectors; this does not seem to have explicitly observed before.

Theorem 3.8 For any p 2 .0;1�, a Positional Reverse p-Rényi EPI holds for
MLC. Moreover, for p � 1, the constant CM;p in the corresponding inequality does
not depend on p.

Proof For any pair of independent log-concave random vectors X and Y , there
exist linear maps u1, u2: Rd ! R

d of determinant 1, such that for all p > 1, by
Lemma 2.2, Theorem 3.5 and Lemma 2.4, one has

10Actually [26] only proved this under the additional condition that ˇ � 2d C 1, but it turns out
that this condition can be dispensed with, as explained in [115].
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Np.u1.X/C u2.Y// � N.u1.X/C u2.Y// . N.X/C N.Y/

. N1.X/C N1.Y/ � Np.X/C Np.Y/:

For p < 1, by Lemma 2.4 and Lemma 2.2, there exists a constant C.p/ depending
solely on p such that

Np.u1.X/C u2.Y// � C.p/N.u1.X/C u2.Y// � C.p/ .N.X/C N.Y//

� C.p/
�
Np.X/C Np.Y/

�
;

which provides the theorem. �

Later we will show that Theorem 3.8 can be used to recover the functional version
of the reverse Brunn-Minkowski inequality proposed by Klartag and V. Milman
[88].

3.3 Reverse 1-EPI via a Generalization of K. Ball’s Bodies

3.3.1 Busemann’s Theorem for Convex Bodies

We first consider Bobkov’s extension of K. Ball’s convex bodies associated to log-
concave measures. In this direction we associate a star shaped body to a density
function via a generalization of the Minkowski functional of a convex body.

Definition 3.9 For a probability density function f on R
d with the origin in the

interior of the support of f , and p 2 .0;1/, define ƒp
f W Rd ! Œ0;1� by

ƒ
p
f .v/ D

�Z 1

0

f .rv/drp

��1=p

We will consider the class of densities Fp where ƒp
f .v/ 2 Œ0;1/ for all v 2 R

d. For
such densities, we can associate a body defined by

Kp
f D fv 2 R

d W ƒ
p
f .v/ � 1g:

We can now state Bobkov’s generalization [28] of the Ball-Busemann theorem.

Theorem 3.10 If f is a s-concave density on R
d, with � 1

d � s � 0, then

ƒ
p
f ..1 � t/x C ty/ � .1 � t/ƒp

f .x/C tƒp
f .y/; (41)

for every x; y 2 R
d and t 2 .0; 1/, provided 0 < p � �1 � 1=s.
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Remark 3.11 Notice that, since ƒ
p
f is positive homogeneous and (by Theo-

rem 3.10) convex, it necessarily satisfies the triangle inequality. If we add the
assumption that f is even, then ƒp

f defines a norm.

There is remarkable utility in this type of association. In [11], Ball used the
fact that one can directly pass from log-concave probability measures to convex
bodies using this method to derive an analog of Hensley’s theorem [76] for certain
log-concave measures, demonstrating comparability of their slices by different
hyperplanes. By generalizing this association to convex measures in [28], Bobkov
derived analogs of Blaschke-Santalo inequalities, the Meyer-Reisner theorem [117]
(this was proved independently in unpublished work, by Keith Ball, as discussed
in [116]) for floating surfaces, and Hensley’s theorem for convex measures. Thus
this association of convex bodies with convex measures may be seen as a way to
“geometrize” said measures.

Another application of this association of bodies to measures is to the study of
the so-called intersection bodies.

Definition 3.12 For any compact set K in R
d whose interior contains the origin,

define r W Sd�1 ! .0;1/ by r.�/ D jK \ �?jd�1 (i.e., the volume of the .d � 1/-
dimensional slice of K by the subspace orthogonal to � ). The star-shaped body
whose boundary is defined by the points �r.�/ is called the intersection body of K,
and denoted I.K/.

The most important fact about intersection bodies is the classical theorem of
Busemann [40].

Theorem 3.13 ([40]) If K be a symmetric convex body in R
d, then I.K/ is a

symmetric convex body as well.

The symmetry is essential here; the intersection body of a non-symmetric convex
body need not be convex11. Busemann’s theorem is a fundamental result in convex
geometry since it expresses a convexity property of volumes of central slices of a
symmetric convex body, whereas Brunn’s theorem (an easy implication of the BMI)
asserts a concavity property of volumes of slices that are perpendicular to a given
direction.

Busemann’s theorem may be recast in terms of Rényi entropy, as implicitly
recognized by K. Ball and explicitly described below.

Theorem 3.14 If X is uniformly distributed on a symmetric convex body K 	 R
d,

then the mapping MX
1 W Rd ! R defined by

MX
1.v/ D

(
N1=2

1 .hv;Xi/ v ¤ 0

0 v D 0

defines a norm on R
d.

11There is a nontrivial way to extend the definition of intersection body to non-symmetric convex
bodies so that the new definition results in a convex body; see [118] for details.
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Before showing that Theorems 3.13 and 3.14 are equivalent, we need to recall
the definition of the Minkowski functional.

Definition 3.15 For a convex body L in R
d containing the origin, define �L W Rd !

Œ0;1/ by

�L.x/ D infft 2 .0;1/ W x 2 tLg:

It is straightforward that �L is positively homogeneous (i.e., �L.ax/ D a�L.x/ for
a > 0) and convex. When L is assumed to be symmetric, �L defines a norm.

Proof of Theorem 3.13 , Theorem 3.14. Let K be a symmetric convex body and
without loss of generality take jKj D 1. Let X D XK denote a random variable
distributed uniformly on K.

For a unit vector � 2 S
d�1, as the pushforward of a symmetric log-concave

measure under the linear map x 7! h�; xi, the distribution of the real-valued random
variable h�;Xi is symmetric and log-concave. Denoting the symmetric, log-concave
density of h�;Xi by f� , we see that the mode of f� is 0, and consequently,

N1=2
1 .h�;Xi/ D

1

f� .0/
D

1

jK \ �?jd�1

D
1

r.�/
:

By the definition of I.K/, we have �I.K/.r.�/�/ D 1. Thus, for any � 2 S
d�1,

�I.K/.�/ D �I.K/

�
r.�/�

r.�/

�
D

1

r.�/
D MX

1.�/:

By homogeneity, this immediately extends to R
d, establishing our result and also

a pleasant duality; up to a constant factor, the Minkowski functional associated to
I.K/ is a Rényi entropy power of the projections of XK . �

3.3.2 A Busemann-Type Theorem for Measures

Theorem 3.14 is a statement about 1-Rényi entropies associated to a 1=d-concave
random vector X (see Example 1 after Theorem 3.2). It is natural to wonder if
Busemann’s theorem can be extended to other p-Rényi entropies and more general
classes of measures.

In [12], Ball-Nayar-Tkocz also give a simple argument, essentially going back
to [11], that the information-theoretic statement of Busemann’s theorem (namely
Theorem 3.14) extends to log-concave measures. Interpreting in the language of
Borell’s �-concave measures, [12] extends Theorem 3.14 to measures that are �-
concave with � � 0. In what follows, we use the same argument as [12] to prove
that Busemann’s theorem can in fact be extended to all convex measures by invoking
Theorem 3.10.
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Theorem 3.16 Let � 2 Œ�1; 1=2�. If .U;V/ is a symmetric �-concave random
vector in R

2, then

eh1.UCV/ � eh1.U/ C eh1.V/:

Proof It is enough to prove the result for the weakest hypothesis � D �1. We let
' denote the density function of .U;V/ so that

U C V � w.x/ D

Z
R

'.x � t; t/dt

U � u.x/ D

Z
R

'.x; t/dt

V � v.x/ D

Z
R

'.t; x/dt:

Since symmetry and the appropriate concavity properties of the densities force the
maxima of u; v;w to occur at 0,

1

kwk1

D
1

w.0/

D

�Z
R

'.�t; t/dt

��1

D

�
2

Z 1

0

'.t.e2 � e1//dt

��1

D
1

2
ƒ1
'.e2 � e1/

�
1

2

�
ƒ1
'.e2/Cƒ1

'.e1/
	

D

�
2

Z 1

0

'.0; t/dt

��1

C

�
2

Z 1

0

'.t; 0/dt

��1

D
1

u.0/
C

1

v.0/

D
1

kuk1

C
1

kvk1

;

where the only inequality follows from Theorem 3.10 with a D 1 and p D 1 D

n � 1 � 1=�. By definition of h1, we have proved the desired inequality. �

As a nearly immediate consequence we have Busemann’s theorem for convex
measures.
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Corollary 3.17 For � 2 Œ�1; 1d �, if X is symmetric and �-concave the function

MX
1.v/ D

(
N1=2

1 .hv;Xi/ v ¤ 0

0 v D 0

defines a norm.

Proof As we have observed M D MX
1 is homogeneous. To prove the triangle

inequality take vectors u; v 2 R
d and define .U;V/ D .hX; ui; hX; vi/, so

that U C V D hX; u C vi. Notice that .U;V/ is clearly symmetric and as the
affine pushforward of a �-concave measure, is thus �-concave as well. Thus by
Theorem 3.16 we have

eh1.UCV/ � eh1.U/ C eh1.V/:

But this is exactly

N1=2
1 .hX; u C vi/ � N1=2

1 .hX; ui/C N1=2
1 .hX; vi/;

which is what we sought to prove. �

3.3.3 Busemann-Type Theorems for Other Rényi Entropies

While the above extension deals with general measures, a further natural question
relates to more general entropies. Ball-Nayar-Tkocz [12] conjecture that the Shan-
non entropy version holds for log-concave measures.

Conjecture 3.18 ([12]) When X is a symmetric log-concave vector in R
d then the

function

MX
1 .v/ D

(
N1=2
1 .hv;Xi/ v ¤ 0

0 v D 0

defines a norm on R
d.

As the homogeneity of M is immediate, the veracity of the conjecture depends
on proving the triangle inequality

eh1.huCv;Xi/ � eh1.hv;Xi/ C eh1.hu;Xi/;

which is easily seen to be equivalent to the following modified Reverse EPI for
symmetric log-concave measures on R

2.
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Conjecture 3.19 ([12]) For a symmetric log-concave random vector in R
2, with

coordinates .U;V/,

N1=2
1 .U C V/ � N1=2

1 .U/C N1=2
1 .V/:

Towards this conjecture, it is proved in [12] that e˛h1.UCV/ � e˛h1.U/ C e˛h1.V/

when ˛ D 1=5. By extending the approach used by [12], we can obtain a family of
Busemann-type results for p-Rényi entropies.

Theorem 3.20 Fix p 2 Œ1;1�. There exists a constant ˛p > 0 which depends only
on the parameter p, such that for a symmetric log-concave random vector X in R

d

and two vectors u; v 2 R
d, we have

e˛php.huCv;Xi/ � e˛php.hu;Xi/ C e˛php.hv;Xi/:

Equivalently, for a symmetric log-concave random vector .X;Y/ in R
2 we have

e˛php.XCY/ � e˛php.X/ C e˛php.Y/:

In fact, if p 2 Œ1;1/, one can take ˛p above to be the unique positive solution ˛ of

p
˛

p�1 D �˛p C .1 � �p/
˛; (42)

where

�p WD

�
log p

p � 1

�
�

1

2.e C 1/Œ2pe2 C .4p C 1/e C 1�
;

with the understanding that the p D 1 case is understood by continuity (i.e., the left
side of equation (42) is e˛ in this case, and the pre-factor log p

p�1
in �p is replaced by

1).

Remark 3.21 If p < 1, then �p > 0, and on the other hand, trivially �p <
1

2.1Ce/ < 1. Denote the left and right sides of the equation (42) by Lp.˛/ and

Rp.˛/ respectively. Then 1 D Lp.0/ < Rp.0/ D 2, and since p1=.p�1/ > 1 for
p 2 Œ1;1/, we also have 1 D lim˛!1 Lp.˛/ > lim˛!1 Rp.˛/ D 0. Since Lp

and Rp are continuous functions of ˛, equation (42) must have a positive solution
˛p. Moreover, since Lp is an increasing function and Rp is a decreasing function,
there must be a unique positive solution ˛p. In particular, easy simulation gives
˛1 � 0:240789 > 1=5, and simulation also shows that the unique solution ˛p is
non-decreasing in p. Consequently it appears that for any p, one can replace ˛p in
the above theorem by 1=5.

Since Theorem 3.20 is not sharp, and the proof involves some tedious and
unenlightening calculations, we do not include its details. We merely mention some
analogues of the steps used by [12] to prove the case p D 1. As done there, one
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can “linearize” the desired inequality to obtain the following equivalent form: if
.X;Y/ is a symmetric log-concave vector in R

2 with hp.X/ D hp.Y/, then for every
� 2 Œ0; 1�,

hp.�X C .1 � �/Y/ � hp.X/C
1

˛p
log .�˛p C .1 � �/˛p/ :

To prove this form of the theorem, it is convenient as in [12] to divide into cases
where � is “small” and “large”. For the latter case, the bound

ehp.XCY/ � eh1.XCY/C log p
p�1 D p1=.p�1/

�
eh1.X/ C eh1.Y/

�
� p1=.p�1/

�
ehp.X/ C ehp.Y/

�
;

easily obtained by combining Lemmata 2.2 and 2.4, suffices. The former case is
more involved and relies on proving the following extension of [12, Lemma 1]: If w W

R
2 ! RC is a symmetric log-concave density, and we define f .x/ WD

R
w.x; y/dy

and � D
R

w.0; y/dy=
R

w.x; 0/dx, then

R R
�f .x/p�2f 0.x/yw.x; y/dxdyR

f .x/pdx
�

�
2e.e C 2/C

e C 1

p

�
�:

Staring at Theorem 3.16 and Conjecture 3.19, and given that one would expect to
be able to interpolate between the p D 1 and p D 1 cases, it is natural to pose the
following conjecture that would subsume all of the results and conjectures discussed
in this section.

Conjecture 3.22 Fix � 2 Œ�1; 1d �. For a symmetric �-concave random vector in
R
2, with coordinates .U;V/, it holds for any p 2 Œ1;1� that

N1=2
p .U C V/ � N1=2

p .U/C N1=2
p .V/;

whenever all these quantities are finite. Equivalently, when X is a symmetric �-
concave random vector in R

d, then for any given p 2 Œ1;1�, the function

MX
p .v/ D

(
N1=2

p .hv;Xi/ v ¤ 0

0 v D 0

defines a norm on R
d when it is finite everywhere.

Given the close connection of the p D 1 case with intersection bodies and
Busemann’s theorem, one wonders if there is a connection between the unit balls
of the conjectured norms MX

p in Conjecture 3.22 on the one hand, and the so-called
Lp-intersection bodies that arise in the dual Lp Brunn-Minkowski theory (see, e.g.,
Haberl [74]) on the other.
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After the first version of this survey was released, Jiange Li (personal communi-
cation) has verified that Conjecture 3.22 is true when p D 0 (with arbitrary �) and
when p D 2 (with � D 0, i.e., in the log-concave case).

3.4 Reverse EPI via Rényi Entropy Comparisons

The Rogers-Shephard inequality [136] is a classical and influential inequality in
Convex Geometry. It states that for any convex body K in R

d,

jK � Kj �

 
2d

d

!
Vol.K/ (43)

where K � K WD fx � y W x; y 2 Kg. Since
�
2d
d

�
< 4d, this implies that jK � Kj1=d <

4jKj1=d, complementing the fact that jK �Kj1=d � 2jKj1=d by the BMI. In particular,
the Rogers-Shephard inequality may be thought of as a Reverse BMI. In this section,
we discuss integral and entropic liftings of the Rogers-Shephard inequality.

An integral lifting of the Rogers-Shephard inequality was developed by Colesanti
[46] (see also [2, 5]). For a real non-negative function f defined in R

d, define the
difference function �f of f ,

�f .z/ WD supf
p

f .x/f .�y/ W x; y 2 R
d;
1

2
.x C y/ D zg (44)

It is proved in [46] that if f W Rd ! Œ0;1/ is a log-concave function, then

Z
Rd
�f .z/dz � 2d

Z
Rd

f .x/dx; (45)

where the equality is attained by multi-dimensional exponential distribution.
On the other hand, an entropic lifting of the Rogers-Shephard inequality was

developed by [33]. We develop an extension of their argument and result here.
In order to state it, we need to recall the notion of relative entropy between two
distributions: if X;Y have densities f ; g respectively, then

D.XkY/ D D.f kg/ WD

Z
Rd

f .x/ log
f .x/

g.x/
dx

is the relative entropy between X and Y . By Jensen’s inequality, D.XkY/ � 0, with
equality if and only if the two distributions are identical.

Lemma 3.23 Suppose .X;Y/ 2 R
d � R

d has a �-concave distribution, with � < 0.
If X and Y are independent, then
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h.X � Y/ � minfh.X/C D.XkY/; h.Y/C D.YkX/g C

d�1X
iD0

1 � �d

1 � �i
:

Proof By affine invariance, the distribution of X � Y is �-concave, so that one can
apply Lemma 3.3 to obtain

h.X � Y/ � log kf k�1
1 C

d�1X
iD0

1 � �d

1 � �i

� log f .0/�1 C

d�1X
iD0

1 � �d

1 � �i
:

Denoting the marginal densities of X and Y by f1 and f2, respectively, we have f .0/ DR
Rd f1.x/f2.x/dx, and hence

h.X � Y/ � � log
Z
Rd

f1.x/f2.x/dx C

d�1X
iD0

1 � �d

1 � �i

�

Z
Rd

f1.x/Œ� log f2.x/�dx C

d�1X
iD0

1 � �d

1 � �i

D h.X/C D.XkY/C

d�1X
iD0

1 � �d

1 � �i
:

Clearly the roles of X and Y here are interchangeable, yielding the desired bound.�

In the case where the marginal distributions are the same, Lemma 3.23 reduces
as follows.

Theorem 3.24 Suppose .X;Y/ 2 R
d �R

d has a �-concave distribution, with � < 0.
If X and Y are independent and identically distributed, then

N.X � Y/ � C�N.X/;

where

C� D exp

�
2

d
.1 � d�/

d�1X
jD0

1

1 � j�

�
:

As � ! 0, we recover the fact, obtained in [33], that N.X�Y/ � e2N.X/ for X;Y
i.i.d. with log-concave marginals. We believe that this statement can be tightened,
even in dimension 1. Indeed, it is conjectured in [111] that for X;Y i.i.d. with log-
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concave marginals,

N.X � Y/ � 4N.X/

is the tight entropic version of Rogers-Shepard in one dimension, with equality for
the one-sided exponential distribution.

3.5 Reverse Rényi EPI via Convex Ordering

3.5.1 Convex Ordering and Entropy Maximization

In this section, we build on an elegant approach of Y. Yu [168], who obtained
inequalities for Rényi entropy of order p 2 .0; 1� for i.i.d. log-concave measures
under stochastic ordering assumptions. In particular, we achieve extensions to
�-concave measures with � < 0 and impose weaker distributional symmetry
assumptions, and observe that the resulting inequalities may be interpreted as
Reverse EPIs.

Lemma 3.25 Let X � f , Y � g be random vectors on R
d. In order to prove

hp.X/ � hp.Y/;

it suffices to prove

Ef p�1.X/ � Ef p�1.Y/; if p 2 .0; 1/; (46)

Ef p�1.X/ � Ef p�1.Y/; if p 2 .1;1/; (47)

�E log f .X/ � �E log f .Y/; if p D 1: (48)

Proof Notice that the expressions in the hypothesis for p ¤ 1 can be re-written as
Ef p�1.X/ D

R
Rd f p�1.x/f .x/dx and Ef p�1.Y/ D

R
Rd f p�1.x/g.x/dx. For p 2 .0; 1/,

Z
f pdx D

�Z
f p�1f

�p �Z
f p

�1�p

.a/
�

�Z
f p�1g

�p �Z
f p

�1�p

.b/
�

Z
gpdx;

where (a) is from applying the hypothesis and (b) is by Hölder’s inequality (applied
in the probability space .Rd; g dx/). Inequality (46) follows from the fact that
.1 � p/�1 log x is order-preserving for p 2 .0; 1/.
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When p 2 .1;1/,

Z
f pdx D

�Z
f p�1f

�p �Z
f p

�1�p

�

�Z
f p�1g

�p �Z
f p

�1�p

.c/
�

Z
gpdx;

where Hölder’s inequality is reversed for p 2 .1;1/ accounting for (c). Inequal-
ity (47) follows since .1 � p/�1 log x is order-reversing for such p.

In the case p D 1, we use the hypothesis and then Jensen’s inequality to obtain

h.X/ D �E log f .X/

� �E log f .Y/

� �E log g.Y/

D h.Y/;

which yields inequality (48) and completes the proof of the lemma. �

Of the observations in Lemma 3.25, (46) and (48) were used in [168]; we
add (47), which is relevant to Reverse EPIs for �-concave measures with � > 0.

We recall the notion of convex ordering for random vectors.

Definition 3.26 For random variables X;Y taking values in a linear space V, we
say that X dominates Y in the convex order, written X �cx Y, if E'.X/ � E'.Y/ for
every convex and continuous function ' W V ! R.

We need a basic lemma relating supports of distributions comparable in the
convex ordering.

Lemma 3.27 Given random vectors X � f and Y � g such that Y �cx X, if supp.f /
is a convex set, then supp.g/ 	 supp.f /.

Proof Take � to be the Minkowski functional (Definition 3.15) associated to supp.f /
and then define

'.x/ D maxf�.x/ � 1; 0g:

As the maximum of two convex functions, ' is convex. Also observe that '
is identically zero on supp.f / while strictly positive on the complement. By the
ordering assumption

0 � E.'.Y// � E.'.X// D 0:
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Thus E.'.Y// D 0, which implies the claim. �

We can now use convex ordering as a criterion to obtain a maximum entropy
property of convex measures under certain conditions.

Theorem 3.28 Let X and Y be random vectors in R
d, with X being �-concave for

some � 2 .�1; 1d �. If X �cx Y, then

hp.X/ � hp.Y/

for 0 � p � �=.1 � d�/C 1.

Proof Recall that X is �-concave if and only if it admits a s�;d-concave density f on
its support, with s�;d D �=.1 � d�/. Thus it follows that for a � s�;d, f a is a convex
function, (resp. concave) for a < 0 (resp. a > 0). Our hypothesis is simply that that
p � 1 � s�;d.

For p < 1 we can apply the convex ordering to necessarily convex function f p�1,
as Ef p�1.X/ � Ef p�1.Y/ and apply Lemma 3.25 under the hypothesis (46).

When p > 1 the proof is the same as the application of convex ordering to the
concave function f p�1 will reverse the inequality to attain Ef p�1.X/ � Ef p�1.Y/
and then invoking Lemma 3.25 under hypothesis (47) will yield the result.

To consider p D 1, X must be at least log-concave, in which case we can follow
[168] exactly. This amounts to applying convex ordering to � log f and Lemma 3.25
a final time.

After recalling that the support of a �-concave measure is a convex set, the p D 0

case follows from Lemma 3.27. �

Theorem 3.28 extends a result of Yu [168], who shows that for X log-concave,
hp.X/ � hp.Y/ for 0 < p � 1 when X �cx Y . Observe that as � approaches 1=d, the
upper limit of the range of p for which Theorem 3.28 applies approaches 1.

Some care should be taken to interpret Theorem 3.28 and the entropy inequalities
to come. For example, the t-distribution (see Example 4 after Theorem 3.2) does not
have finite p-Rényi entropy when p � d

�Cd and hence the theorem only yields non-
trivial results on the interval . d

�Cd ; 1 � 1
�Cd �. Notice that in the important special

case where X is Cauchy, corresponding to � D 1, this interval is empty; thus
Theorem 3.28 fails to give a maximum entropy characterization of the Cauchy
distribution (which is of interest from the point of view of entropic limit theorems).

Definition 3.29 We say that a family of random vectors fX1; : : : ;Xng is exchange-
able when .X�.1/; : : : ;X�.n// and .X1; : : : ;Xn/ are identically distributed for any
permutation � of f1; : : : ; ng.

3.5.2 Results Under an Exchangeability Condition

Let us also remind the reader of the notion of majorization for a; b 2 R
n. First we

recall that a square matrix is doubly stochastic if its row sums and column sums are
all equal to 1.



466 M. Madiman et al.

Definition 3.30 For vectors a; b 2 R
n, we will write b � a (and say that b is

majorized by a) if there exists a doubly stochastic matrix M such that Ma D b.

There are several equivalent formulations of this notion that are well studied (see,
e.g., [147]), but we will not have use for them. Note that if 1 is the vector with all
coordinates equal to 1, then 1T.Ma/ D .1TM/a D 1Ta, implying that b � a can
only hold if the sum of coordinates of a equals the sum of coordinates of b.

Lemma 3.31 Let X1; : : : ;Xn be exchangeable random variables taking values in a
real vector space V, and let ' W Vn ! R be a convex function symmetric in its
coordinates. If b � a,

E'.a1X1; : : : ; anXn/ � E'.b1X1; : : : ; bnXn/:

Proof Since every doubly stochastic matrix can be written as the convex combi-
nation of permutation matrices by the Birkhoff von-Neumann theorem (see, e.g.,
[147]), we can write b � a as b D .

P
� 	�P� /a where 	i 2 Œ0; 1� with

P
� 	� D 1

and P� is a permutation matrix. We compute

E'.b1X1; : : : ; bnXn/ D E'

 
.
X
�

	�P�a/1X1; : : : ; .
X
�

	�P�a/nXn

!

�
X
�

	�E'.a�.1/X1; : : : ; a�.n/Xn/

D
X
�

	�E'.a�.1/X�.1/; : : : ; a�.n/X�.n//

D
X
�

	�E'.a1X1; : : : ; anXn/

D E'.a1X1; : : : ; anXn/;

where the steps are justified– in order– by definition, convexity, exchangeability,
coordinate symmetry, and then algebra. �

Theorem 3.32 Let X D .X1; : : : ;Xn/ be an exchangeable collection of d-
dimensional random vectors. Suppose b � a and that a1X1 C � � � C anXn has a
s-concave density. Then for any p 2 Œ0; s C 1�,

hp.b1X1 C � � � C bnXn/ � hp.a1X1 C � � � C anXn/:

Proof Let f denote the s-concave density function of a1X1 C � � � C anXn. Thus for
p < 1 (resp. p > 1) the function

'.x1; : : : ; xn/ D f p�1.x1 C � � � C xn/

is convex (resp. concave) and clearly symmetric in its coordinates, hence by
Lemma 3.31
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E'.b1X1; : : : ; bnXn/ � E'.a1X1; : : : ; anXn/;

. resp. E'.b1X1; : : : ; bnXn/ � E'.a1Xn; : : : ; anXn// :

But this is exactly,

Ef p�1.b1X1; : : : ; bnXn/ � Ef p�1.a1Xn; : : : ; anXn/;�
resp. Ef p�1.b1X1; : : : ; bnXn/ � Ef p�1.a1Xn; : : : ; anXn/

�
;

and thus by Lemma 3.25,

hp.b1X1 C � � � C bnXn/ � hp.a1Xn C � � � C anXn/:

The case p D 1 is similar by setting

'.x1; : : : ; xn/ D � log f .x1 C � � � C xn/;

and applying Lemma 3.31 and Lemma 3.25. �

Definition 3.33 For � � R
d, we define a function ' W � ! R to be Schur-convex

in the case that for any x; y 2 � with x � y we have '.x/ � '.y/.

Corollary 3.34 Suppose X D .X1; : : :Xn/ is an exchangeable collection of random
vectors in R

d, with X being �-concave. Let�n D f� 2 Œ0; 1�n W
Pn

iD1 �i D 1g be the
standard simplex, and define the function ˆX;p W �n ! R by

ˆX;p.�/ D hp.�1X1 C � � � C �nXn/:

For p 2 Œ0; s�;d C 1�, ˆX;p is a Schur-convex function. In particular, ˆX;p is
maximized by the standard basis elements ei, and minimized by . 1n ; : : : ;

1
n /.

Proof If X is �-concave, then by affine invariance �1X1 C � � � C �nXn is �-concave,
and hence Theorem 3.32 applies. The extremizers are identified by observing that
for any � in the simplex

.1=n; ; � � � ; 1=n/ � � � ei;

and the corollary follows. �

Of course, using the standard simplex is only a matter of normalization;
analogous results are easily obtained by setting

P
i �i to be any positive constant.

When the coordinates of Xi are assumed to be independent, then X is log-concave
if and only if each Xi each log-concave. As a consequence we recover in the � D 0

and p � 1 case, the theorem of Yu in [168].
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Theorem 3.35 ([168]) Let X1; � � � ;Xn be i.i.d. log-concave random vectors in R
d.

Then the function a 7! hp.a1X1 C � � � C anXn/ is Schur-convex on the simplex for
p 2 .0; 1�.

3.5.3 Results Under an Assumption of Identical Marginals

We now show that the exchangeability hypothesis can be loosened in Corollary 3.34.

Theorem 3.36 Let X D .X1; : : : ;Xn/ be a collection of d�dimensional random
vectors with Xi identically distributed and �-concave. For p 2 Œ0; s�;d C 1�, the
function ˆX;p defined in Corollary 3.34 satisfies

ˆX;p.a/ � ˆX;p.ei/:

Stated explicitly, for a 2 �n, we have

hp.a1X1 C � � � C anXn/ � hp.X1/:

Proof Let f be the density function of X1 and a 2 �n. If p < 1, by Lemma 3.25, it
suffices to prove that

Ef p�1.a1X1 C � � � C anXn/ � Ef p�1.X1/:

Since f is a s�;d-concave function and p � 1 � s�;d, f is also .p � 1/-concave, which
means that f p�1 is convex. Consequently, we have

Ef p�1.a1X1 C � � � C anXn/ � a1Ef p�1.X1/C � � � C anEf p�1.Xn/

D Ef p�1.X1/;

where the equality is by the fact that Xi are identically distributed. The cases of
p > 1 and p D 1 follow similarly. �

Corollary 3.37 Suppose X1, X2, � � � , Xn are identically distributed and �-concave.
If p 2 Œ0; s�;d C 1�, we have the triangle inequality

N1=2
p

 
nX

iD1

Xi

!
�

nX
iD1

N1=2
p .Xi/ :

Moreover, for any p > s�;d C 1,

N1=2
p

 
nX

iD1

Xi

!
�
.s�;d C 1/1=s�;d

p1=.p�1/

nX
iD1

N1=2
p .Xi/ :
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Proof We have, by Theorem 3.36, for p 2 Œ0; s�;d C 1�,

N1=2
p

 
nX

iD1

Xi

!
� N1=2

p .nX1/ D

nX
iD1

N1=2
p .Xi/ :

The second inequality can be derived from Lemma 3.3, combined with Theo-
rem 3.36 and the monotonicity of Rényi entropies:

N1=2
p

 
nX

iD1

Xi

!
� N1=2

s�;dC1

 
nX

iD1

Xi

!

� N1=2
s�;dC1 .nXi/

D exp
�
hs�;dC1.Xi/=d C log n

�

� exp

�
hp.Xi/=d C

�
log n C

log.s�;d C 1/

s�;d
�

log p

p � 1

��

D
.s�;d C 1/1=s�;d

p1=.p�1/

nX
iD1

N1=2
p .Xi/:

�

Observe that Corollary 3.37 is very reminiscent of Conjectures 3.18 and 3.22;
the main difference is that here we have the assumption of identical marginals as
opposed to central symmetry of the joint distribution.

We state the next corollary as a direct application of Corollary 3.37 for the log-
concave case.

Corollary 3.38 Suppose X1, X2, � � � , Xn are identically distributed log-concave
random vectors in R

d. Then

Np

 
nX

iD1

Xi

!
� n2Np.X1/ for p 2 Œ0; 1�; (49)

Np

 
nX

iD1

Xi

!
� e2p2=.1�p/n2Np.X1/ � e2n2Np.X1/ for p 2 .1;1�: (50)

In particular, if X and X0 are identically distributed log-concave random vectors,
then

Np.X C X0/ � 4Np.X/ for p 2 Œ0; 1�;

Np.X C X0/ � 4e2p2=.1�p/Np.X/ � 4e2Np.X/ for p 2 .1;1�:
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Cover and Zhang [55] proved the remarkable fact that if X and X0 (possibly
dependent) have the same log-concave distribution on R, then h.XCX0/ � h.2X/ (in
fact, they also showed a converse of this fact). As observed by [111], their method
also works in the multivariate setting, where it implies that N.X C X0/ � 4N.X/ for
i.i.d. log-concave X;X0. This fact is recovered by the previous corollary.

Let us finally remark that if we are not interested in an explicit constant, then a
version of this inequality already follows from the Reverse EPI of [26]. Indeed,

N.X C X0/ � CN.X/;

since the same unit-determinant affine transformation must put both X and X0 in M-
position. However, the advantage of the methods we have explored is that we can
obtain explicit constants.

3.6 Remarks on Special Positions that Yield Reverse EPI’s

Let us recall the definition of isotropic bodies and measures in the convex geometric
sense.

Definition 3.39 A convex body K in R
d is called isotropic if there exists a constant

LK such that

1

jKj1C
2
d

Z
K
hx; �i2dx D L2K ;

for all unit vectors � 2 S
d�1. More generally, a probability measure � on R

d is
called isotropic if there exists a constant LK such that

Z
Rd

hx; �i2�.dx/ D L2K ;

for all unit vectors � 2 S
d�1.

The notion of M-position (i.e., a position or choice of affine transformation
applied to convex bodies for which a reverse Brunn-Minkowski inequality holds)
was first introduced by V. Milman [122]. Alternative approaches to proving the
existence of such a position were developed in [124, 130, 72]. It was shown by
Bobkov [29] that if the standard Gaussian measure conditioned to lie in a convex
body K is isotropic, then the body is in M-position and the reverse BMI applies. The
notion of M-position was extended from convex bodies to log-concave measures in
[24], and further to convex measures in [26]. Using this extension, together with
the sufficient condition obtained in [29], one can give an explicit description of a
position for which a reverse EPI applies with a universal– but not explicit– constant.
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Nonetheless there are other explicit positions for which one can get reverse
EPIs with explicit (but not dimension-independent) constants. One instance of
such is obtained from an extension to convex measures obtained by Bobkov [28]
for Hensley’s theorem (which had earlier been extended from convex sets to log-
concave functions by Ball [9]).

Theorem 3.40 ([28]) For a symmetric, convex probability measure � on R
d with

density f such that the bodyƒd�k
f is isotropic, we have for any linear two subspaces

H1, H2 of codimension k,

Z
H1

fdx � Ck

Z
H2

fdx:

What is more, Ck <
�
1
2
e2�k

� k
2 .

As a consequence we have the following reverse 1-Rényi EPI in the isotropic
context.

Corollary 3.41 Suppose the joint distribution of the random vector .X;Y/ 2 R
d �

R
d is symmetric and convex, with density f D f .x; y/. If the body ƒd

f is isotropic,
then

N1.X C Y/ � �e2d minfN1.X/;N1.Y/g:

Proof Define two d-dimensional subspaces of Rd: H1 WD fx D 0g, H2 WD fx C y D

0g. Computing directly and applying Theorem 3.40 we have our result as follows.

N1.X C Y/

N1.X/
D

�
kfXk1

kfXCYk1

� 2
d

D

� R
Rd f .0; z/dzR
Rd f .z;�z/dz

� 2
d

D

 
2

d
2

R
H1

fR
H2

f

! 2
d

� �e2d:

�

4 The Relationship Between Functional and Entropic
Liftings

In this section, we observe that the integral lifting of an inequality in Convex
Geometry may sometimes be seen as a Rényi entropic lifting.
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We start by considering integral and entropic liftings of a classical inequality
in Convex Geometry, namely the Blaschke-Santaló inequality. For a convex body
K 	 R

d with 0 2 int.K/, the polar Kı of K is defined as

Kı D fy 2 R
d W hx; yi � 1 for all x 2 Kg;

and, more generally, the polar Kz with respect to z 2 int.K/ by .K � z/ı. There is a
unique point s 2 int.K/, called the Santaló point of K, such that the volume product
jKjjKsj is minimal– it turns out that this point is such that the barycenter of Ks is 0.
The Blaschke-Santaló inequality states that

jKjjKsj � jBd
2j
2;

with equality if and only if K is an ellipsoid. In particular, the volume product
jKjjKıj of a centrally symmetric convex body K is maximized by the Euclidean ball.
This inequality was proved by Blaschke [21] in dimensions 2 and 3, and by Santaló
[142] in general dimension; the equality conditions were settled by Petty [129].
There have been many subsequent proofs; see [19] for a recent Fourier analytic
proof as well as a discussion of the earlier literature.

More generally, if K;L are compact sets in R
d, then

jKj � jLj � !2d max
x2K;y2L

jhx; yijd: (51)

The inequality (51) implies the Blaschke-Santaló inequality by taking K to be a
symmetric convex body, and L to be the polar of K.

Let us now describe an integral lifting of the inequality (51), which was proved
by Lehec [89, 90] building on earlier work of Ball [11], Artstein-Klartag-Milman
[6], and Fradelizi-Meyer [69].

Let f and g be non-negative Borel functions on R
d satisfying the duality relation

8x; y 2 R
d; f .x/g.y/ � e�hx;yi:

If f (or g) has its barycenter (defined as .
R

f /�1
R

xf .x/dx) at 0, then

Z
Rd

f .x/dx
Z
Rd

g.y/dy � .2�/d:

The inequality (51) also has an entropic lifting. For any two independent random
vectors X and Y in R

d, Lutwak-Yang-Zhang [102] showed that

N.X/ � N.Y/ �
4�2e2

d
E
�
jhX;Yij2

�
; (52)

with equality achieved for Gaussians. They also have an even more general (and
still sharp) statement that bounds ŒNp.X/Np.Y/�p=2 in terms of EŒjhX;Yijp�, with
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extremizers being certain generalized Gaussian distributions. As p ! 1, the
expression .EŒjhX;Yijp�/1=p approaches the essential supremum of jhX;Yij, which
in the case that X and Y are uniformly distributed on convex bodies is just the
maximum that appears in the right side of inequality (51). Thus the Blaschke-
Santaló inequality appears as the L1 instance of the family of inequalities proved
by Lutwak-Yang-Zhang [102], whereas the entropic lifting (52) is the L2 instance
of the same family. This perspective of entropy inequalities as being tied to an L2-
analogue of the Brunn-Minkowski theory is greatly developed in a series of papers
by Lutwak, Yang, Zhang, sometimes with additional coauthors (see, e.g., [101] and
the references therein), but this is beyond the scope of this survey.

For a function V W Rd ! R, its Legendre transform LV is defined by

LV.x/ D sup
y
Œhx; yi � V.y/� :

For f D e�V log-concave, following Klartag and V. Milman [88], we define its polar
by

f ı D e�LV :

Some basic properties of the polar are collected below.

Lemma 4.1 Let f be a non-negative function on R
d.

1. If f is log-concave, then

.f ı/ı D f : (53)

2. If g is also a non-negative function on R
d, and the “Asplund product” of f and g

is defined by f ? g.x/ D supx1Cx2Dx f .x1/g.x2/, then

.f ? g/ı D f ıgı: (54)

3. For any linear map u: Rd ! R
d with full rank, we have the composition identity

f ı ı u D
�
f ı u�T

�ı
; (55)

where u�T is the inverse of the adjoint of u.
4. If f .x/ takes its maximum value at x D 0, one has

sup f ı D
1

sup f
: (56)

5. For any p > 0,

.f ı/p.x/ D .f p/ı.px/: (57)
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Proof Write f WD e�V for a function V W R
d ! R. The first two properties are

left as an exercise for the reader– these are also standard facts about the Legendre
transform and its relation to the infimal convolution of convex functions (see, e.g.,
[135]). For the third, we have

�
f ı ı u

�
.x/ D e� supyŒhux;yi�V.y/� D e� supyŒhx;uT yi�V.y/�

D e� supyŒhx;yi�V.u�T y/� D
�
f ı u�T

�ı
.x/;

which proves the property.
For the fourth, observe that we have, for any x 2 R

d,

LV.x/ D sup
y
Œhx; yi � V.y/� � �V.0/:

On the other hand,

LV.0/ D sup
y
Œ�V.y/� D �V.0/:

Thus we have proved that infLV D �V.0/, which is equivalent to the desired
property.

The last property is checked by writing .f ı/p.x/ D e� supyŒhpx;yi�pV.y/�. �

Bourgain and V. Milman [36] proved a reverse form of the Blaschke-Santaló
inequality, which asserts that there is a universal positive constant c such that

jKj � jKıj � cd;

for any symmetric convex body K in R
d, for any dimension d. Klartag and

V. Milman [88] obtained a functional lifting of this reverse inequality.

Theorem 4.2 ([88]) There exists a universal constant c > 0 such that for any
dimension d and for any log-concave function f W R

d ! Œ0;1/ centered at the
origin (in the sense that f .0/ is the maximum value of f ) with 0 <

R
Rd f < 1,

cd <

�Z
Rd

f

��Z
Rd

f ı

�
< .2�/d:

Note that the upper bound here is just a special case of the integral lifting of the
Blaschke-Santaló inequality discussed earlier.

We observe that Theorem 4.2 can be thought of in information-theoretic terms,
namely as a type of certainty/uncertainty principle.

Theorem 4.3 Let X � f be a log-concave random vector in R
d, which is centered

at the origin in the sense that f is maximized there. Let Xı be a random vector in R
d

drawn from the density f ı=
R
Rd f ı. Define the constants
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Ap;d WD
d.log 2� � log p � p log c/

1 � p
;

Bp;d WD
d.log c � log p � p log 2�/

1 � p
;

where the constant c is the same as in Theorem 4.2. Then, for p > 1, we have

maxfd log c;Ap;dg � hp.X/C hp.X
ı/ � minfd.log 2� C 2/;Bp;dg; (58)

and for p < 1, we have

maxfd log c;Bp;dg � hp.X/C hp.X
ı/ � min

�
d

�
2 log p

p � 1
C log 2�

�
;Ap;d

�
:(59)

In particular, if p D 1,

d log c � h1.X/C h1.X
ı/ � d log 2�; (60)

and for p D 1,

d log c � h.X/C h.Xı/ � d.log 2� C 2/: (61)

Proof We have

hp.X/C hp.X
ı/ D

log
�R

f p
R
.f ı/p

�
� p log

R
f ı

1 � p
: (62)

By property (57), we have
R
.f ı/p D 1

pd

R
.f p/ı. So by (62):

hp.X/C hp.X
ı/ D

log
�R

f p
R
.f p/ı

�
� d log p � p log

R
f ı

1 � p
:

Thus, by applying Theorem 4.2 twice, if p > 1:

hp.X/C hp.X
ı/ �

d log 2� � d log p � p log
R

f ı

1 � p
� Ap;d:

On the other hand,

hp.X/C hp.X
ı/ �

d log c � d log p � p log
R

f ı

1 � p
� Bp;d:

Therefore we have

Ap;d � hp.X/C hp.X
ı/ � Bp;d: (63)
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A similar argument for p < 1 gives

Bp;d � hp.X/C hp.X
ı/ � Ap;d: (64)

Letting p ! 1, we have (60). For p D 1, by Lemma 2.4 and (60),

n log c � h1.X/C h1.X
ı/ � h.X/C h.Xı/ � h1.X/C h1.X

ı/C 2n

� n.log 2� C 2/;

which provides (61). Thus for p > 1, by (60), (61) and Lemma 2.2, we also have

n log c � h1.X/C h1.X
ı/ � hp.X/C hp.X

ı/ � h.X/C h.Xı/ � n.log 2� C 2/:

Combining with (63) provides (58), which provides the theorem. For p < 1, we
have, by (61) and Lemma 2.2, we have

d log c � h.X/C h.Xı/ � hp.X/C hp.X
ı/:

Combining this with (64) provides the left most inequality of (59). And by applying
Lemma 2.4 on hp.f / � h1.f / and by (60), we have

hp.X/C hp.X
ı/ �

2d log p

p � 1
C h1.X/C h1.X

ı/ �
2d log p

p � 1
C d log 2�:

Combining this with (64) gives (59). �

Klartag and Milman [88] prove a reverse Prékopa-Leindler inequality (Reverse
PLI).

Theorem 4.4 ([88]) Given f ; g: Rd ! Œ0;1/ be even log-concave functions with
f .0/ D g.0/ D 1, then there exist uf , ug in SL.d/ such that Nf D f ı uf , Ng D g ı ug

satisfy

�Z
Nf ? Ng

� 1
d

� C

 �Z
Nf

� 1
d

C

�Z
Ng

� 1
d

!
;

where C > 0 is a universal constant, uf depends solely on f , and ug depends solely
on g.

We observe that the Reverse PLI can be proved from the Positional Reverse Rényi
EPI we proved earlier, modulo the reverse functional Blaschke-Santaló inequality of
Klartag-Milman.
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Proposition 4.5 Theorems 3.8 and 4.2 together imply Theorem 4.4.

Proof Let f , g: Rd ! Œ0;1/ be even log-concave functions with f .0/ D g.0/ D 1.
Now by property (56), kf ık1 D 1 as well. Now apply reversed 1-EPI on a pair of
independent random vectors X and Y with density functions f ı=

R
f ı and gı=

R
gı,

respectively, there exist linear maps u1, u2 2 SL.d/ depending solely on f and g,
respectively, such that

�Z
.f ı ı u1.x// � .gı ı u2.x//R

f ı �
R

gı
dx

�� 2
d

D N1.u1.X/C u2.Y//

.N1.X/C N1.Y/ D





 f ıR
f ı






� 2

d

1

C





 gıR
gı






� 2

d

1

D

�Z
f ı

� 2
d

C

�Z
gı

� 2
d

:

Therefore we have

�Z �
f ı ı u1.x/

�
�
�
gı ı u2.x/

�
dx

�� 2
d

.
�Z

f ı

�� 2
d

C

�Z
gı

�� 2
d

: (65)

Thus by Theorem 4.2, we have the right-hand side of (65):

�Z
f ı

�� 2
d

C

�Z
gı

�� 2
d

.
�Z

f

� 2
d

C

�Z
g

� 2
d

: (66)

On the other hand, by properties (53), (54) and (55), we have the right hand side
of (65):

�Z �
f ı ı u1.x/

�
�
�
gı ı u2.x/

�
dx

�� 2
d

&
�Z �

f ı u�t
1

�
?
�
g ı u�t

2

�� 2
d

: (67)

Denote uf WD u�t
1 , ug WD u�t

2 ; Nf WD f ı uf , Ng WD g ı ug, and combining (65) (66)
and (67) provides Theorem 4.4. �

5 Concluding Remarks

One productive point of view put forward by Lutwak, Yang and Zhang is that the
correct analogy is between entropy inequalities and the inequalities of the L2-Brunn-
Minkowski theory rather than the standard Brunn-Minkowski theory. While we did
not have space to pursue this direction in our survey apart from a brief discussion in
Section 4, we refer to [101] and the references therein for details.

A central question when considering integral or entropic liftings of Convex
Geometry is whether there exist integral and entropic analogues of mixed volumes.
Recent work of Bobkov-Colesanti-Fragala [31] has shown that an integral lifting of
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intrinsic volumes does exist, and Milman-Rotem [121, 120] independently showed
this as well as an integral lifting of mixed volumes more generally. A fully
satisfactory theory of “intrinsic entropies” or “mixed entropies” is yet to emerge,
although some promising preliminary results in this vein can be found in [78].

It is also natural to explore nonlinear generalizations, to ambient spaces that
are manifolds or groups. Log-concave (and convex) measures can be put into an
even broader context by viewing them as instances of curvature in metric measure
spaces. Indeed, thanks to path-breaking work of [151, 98], it was realized that one
can give meaning (synthetically) to the notion of a lower bound on Ricci curvature
for a metric space .X ; d/ equipped with a measure � (thus allowing for geometry
beyond the traditional setting of Riemannian manifolds). In particular, they extended
the celebrated Curvature-Dimension condition CD.K;N/ of Bakry and Émery [8]
to metric measure spaces .X ; d; �/; the simplest case CD.K;1/ is defined by a
“displacement convexity” (or convexity along optimal transport paths) property of
the relative entropy functional D.�k�/. For Riemannian manifolds, the CD.K;N/
condition is satisfied if and only if the manifold has dimension at most N and Ricci
curvature at least K, while Euclidean space Rd equipped with a log-concave measure
may be thought of as having non-negative Ricci curvature in the sense that it satisfies
CD.0; d/. Moreover, Rd equipped with a convex measure may be interpreted as a
CD.K;N/ space with effective dimension N being negative (other examples can be
found in [119]). In these more general settings (where there may not be a group
structure), it is not entirely clear whether there are natural formulations of entropy
power inequalities. Even for the case of Lie groups, almost nothing seems to be
known.

One may also seek discrete analogs of the phenomena studied in this survey,
which are closely related to investigations in additive combinatorics. In discrete
settings, additive structure plays a role as or more important than that of convexity.
The Cauchy-Davenport inequality is an analog of the Brunn-Minkowski inequality
in cyclic groups of prime or infinite order, with arithmetic progressions being
the extremal objects (see, e.g., [157]); extensions to the integer lattice are also
known [140, 71, 149]. A probabilistic lifting of the Cauchy-Davenport inequality
for the integers is presented in [163]. Sharp lower bounds on entropies of sums in
terms of those of summands are still not known for most countable groups; partial
results in this direction may be found in [156, 75, 77, 165]. Such bounds are also
relevant to the study of information-theoretic approaches to discrete limit theorems,
such as those that involve distributional convergence to the Poisson or compound
Poisson distributions of sums of random variables taking values in the nonnegative
integers; we refer the interested reader to [81, 83, 169, 170, 14] for further details.
Probabilistic liftings of other “sumset inequalities” from additive combinatorics can
be found in [104, 141, 112, 113, 156, 110, 1, 111, 94].

There are other connections between notions of entropy and convex geometry
that we have not discussed in this paper (see, e.g., [23, 7, 164, 41, 67, 64, 93]).
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Log-Concave Functions

Andrea Colesanti

Abstract We attempt to provide a description of the geometric theory of log-
concave functions. We present the main aspects of this theory: operations between
log-concave functions; duality; inequalities including the Prékopa-Leindler inequal-
ity and the functional form of Blaschke-Santaló inequality and its converse;
functional versions of area measure and mixed volumes; valuations on log-concave
functions.
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1 Introduction

A function f is log-concave if it is of the form

f D e�u

where u is convex. This simple structure might suggest that there cannot be anything
too deep or interesting behind. Moreover, it is clear that log-concave functions
are in one-to-one correspondence with convex functions, for which there exists a
satisfactory and consolidated theory. Why to develop yet another theory?

Despite these considerations, which may occur to those who meet these functions
for the first time, the theory of log-concave functions is rich, young, and promising.
There are two main reasons for that. The first comes from probability theory:
many important examples of probability measures on R

n, starting with the Gaussian
measure, have a log-concave density. These measures are referred to as log-concave
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probability measures (and thanks to a celebrated results of Borell they admit an
equivalent and more direct characterization, see [14, 15]). They have been attracting
more and more interest over the last years. Typical results that have been proved
for these measures are: Poincaré (or spectral gap) and log-Sobolev inequalities,
concentration phenomena, isoperimetric type inequalities, central limit theorems,
and so on (see [45] for a survey).

The second motivation comes from convex geometry and gives rise to the
geometric theory of log-concave functions, which is the theme of this paper. There
is a natural way to embed the set of convex bodies in that of log-concave functions,
and there are surprisingly many analogies between the theory of convex bodies and
that of log-concave functions. The extension of notions and propositions from the
context of convex bodies to the more recent theory of log-concave functions is
sometimes called geometrization of analysis. The seeds of this process were the
Prékopa-Leindler inequality (see [42, 48]), recognized as the functional version
of the Brunn-Minkowski inequality, and the discovery of a functional form of
the Blaschke-Santaló inequality due to Ball (see [8]). A strong impulse to the
development of geometrization of analysis was then given by the innovative ideas of
Artstein-Avidan, Klartag and Milman who, through a series of papers (see [3, 5, 6],
and [45]), widened the perspectives of the study of log-concave functions and
transformed this subject into a more structured theory. In the course of this paper,
we will see how many authors have then contributed in recent years to enrich this
theory with new results, concepts, and directions for future developments.

Here we try to provide a picture of the current state of the art in this area. We
will start from the beginning. In Section 3, we give a precise definition of the
space of log-concave functions we work with, denoted by Ln, and we describe
basic properties of these functions. Moreover, we define the operations that are
commonly used to add such functions and to multiply them by non-negative reals.
Once equipped with these operations Ln is a convex cone of functions, just like
the family of convex bodies Kn with respect to the Minkowski addition and the
corresponding multiplication by positive scalars.

Section 4 is entirely devoted to the notion of duality. The most natural way to
define the dual of a log-concave function f D e�u is to set

f ı WD e�u�

where u� is the Fenchel (or Legendre) transform of the convex function u. The
effectiveness of this definition will be confirmed by the inequalities reported in the
subsequent Section 5. In Section 4, we recall the basic properties of this duality
relation and the characterization result due to Artstein-Avidan and Milman, which
ensures that the duality mapping which takes f in f ı is characterized by two
elementary properties only: monotonicity, and idempotence. In the same section,
we will also see a different duality relation, due to Artstein-Avidan and Milman as
well, which can be applied to the subclass of Ln formed by geometric log-concave
functions.
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Inequalities are the salt of the earth, as every analyst knows, and log-concave
functions are a very fertile ground by this point of view. In Section 5, we review the
two main examples of inequalities in this area: the Prékopa-Leindler inequality and
the functional versions of the Blaschke-Santaló inequality together with its converse.
Concerning the Prékopa-Leindler inequality, we also explain its connection with
the Brunn-Minkowski inequality, and we show how its infinitesimal form leads to a
Poincaré inequality due to Brascamp and Lieb. In the same section we also introduce
the notion of the difference function of a log-concave function and an inequality
which can be interpreted as the functional version of the Rogers-Shephard inequality
for the volume of the difference body of a convex body.

The analogy between convex bodies and log-concave functions has its imperfec-
tions. Here is a first discrepancy: in convex geometry the important notions of mixed
volumes and mixed area measures are originated by the polynomiality of the volume
of Minkowski linear combinations of convex bodies. This property fails to be true in
the case of log-concave functions, at least if the usual addition (the one introduced
in Section 3) is in use. Nevertheless, there have been some attempts to overcome this
difficulty. In Section 6, we describe two constructions that lead to the definition of
functional versions of area measure and mixed volumes for log-concave functions.

A second aspect in which the geometric theory of log-concave functions, at
present, differs from that of convex bodies is given by valuations. The theory
of valuations on convex bodies is one of the most active and prolific parts of
convex geometry (see, for instance, Chapter 6 of [55] for an updated survey on this
subject). Two milestones in this area are the Hadwiger theorem which characterizes
continuous and rigid motion invariant valuations, and McMullen’s decomposition
theorem for continuous and translation invariant valuations. On the other hand, the
corresponding theory of valuations on the space of log-concave functions is still
moving the first steps, and it is not clear whether neat characterization results will
be achieved in the functional setting as well. The situation is depicted in Section 7.

In the appendix of the paper we collected some of the main notions and
results from convex geometry, described in a very synthetic way, for the reader’s
convenience.

2 Notations

We work in the n-dimensional Euclidean space R
n, n � 1, endowed with the usual

scalar product .x; y/ and norm kxk. Bn denotes the unit ball of Rn.
If A is a subset of Rn, we denote by IA its indicatrix function, defined in R

n as
follows:

IA.x/ D

�
0 if x 2 A;
1 if x … A:

The characteristic function of A will be denoted by �A:
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�A.x/ D

�
1 if x 2 A;
0 if x … A:

The Lebesgue measure of a (measurable) set A 	 R
n will be denoted by Vn.A/

(and sometimes called the volume of A) and

Z
A

fdx

stands for the integral of a function f over A, with respect to the Lebesgue measure.
A convex body is a compact, convex subset of R

n; the family of convex
bodies will be denoted by Kn. Some notions and constructions regarding convex
bodies, directly used in this paper, are recalled in the appendix. For an exhaustive
presentation of the theory of convex bodies the reader is referred to [55].

3 The Space Ln

3.1 The Spaces Cn and Ln

In order to define the space of log-concave functions, which we will be working
with, in a precise way, we start by the definition of a specific space of convex
functions. The typical convex function u that we will consider, is defined on the
whole space R

n and attains, possibly, the value 1. The domain of u is the set

dom.u/ D fx 2 R
n W u.x/ < 1g:

By the convexity of u, dom.u/ is a convex set. The function u is proper if its domain
is not empty.

Definition 3.1 We set

Cn D

�
u W R ! R

n [ f1g W u convex and s.t. lim
kxk!1

u.x/ D 1

�

and

Ln D e�Cn
D ff D e�u W u 2 Cng :

Clearly in the previous definition we adopt the convention e�1 D 0. Ln is the
space of log-concave functions which we will be working with. Note that the support
of a function f D e�u 2 Ln, i.e. the set

sprt.f / D fx 2 R
n W f .x/ > 0g

coincides with dom.u/.
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Remark 3.2 As an alternative to the previous definition (to avoid the use of convex
functions), one could proceed as follows. A function f W R

n ! Œ0;1/ is said
log-concave if

f ..1 � t/x0 C tx1/ � f .x0/
1�t f .x1/

t; 8 x0; x1 2 R
n; 8 t 2 Œ0; 1�

(with the convention: 0˛ D 0 for every ˛ � 0). Then Ln is the set of all log-concave
functions f such that

lim
kxk!1

f .x/ D 0:

There are clearly many examples of functions belonging to Ln. We choose two
of them which are particularly meaningful for our purposes.

Example 3.3 Let K be a convex body; then IK 2 Cn. As a consequence the function
e�IK , which is nothing but the characteristic function of K, belongs to Ln.

This simple fact provides a one-to-one correspondence between the family of
convex bodies and a subset of log-concave functions. In other words, Kn can be
seen as a subset of Ln. We will see that this embedding is in perfect harmony with
the natural algebraic structure of Ln and Kn.

Example 3.4 Another prototype of log-concave function is the Gaussian function

f .x/ D e� kxk
2

2

which clearly belongs to Ln.

Remark 3.5 By convexity and the behavior at infinity, any function u 2 Cn is
bounded from below. As a consequence

f 2 Ln ) sup
Rn

f < 1:

3.2 Operations on Ln

We will now define an addition and a multiplication by non-negative reals on Ln.
With these operations Ln becomes a cone (but not a vector space) of functions, just
like the family of convex bodies Kn with respect to the Minkowski addition and
dilations, is a cone of sets. The operations that we are going to introduce are widely
accepted to be the natural ones for Ln. Their construction is not straightforward; the
following stepwise procedure might be of some help for the reader.

Let u and v be in Cn; their infimal convolution, denoted by u�v, is defined as
follows:
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.u�v/.x/ D inf
y2Rn

fu.y/C v.x � y/g:

This operation is thoroughly studied in convex analysis (see, for instance, the
monograph [51] by Rockafellar, to which we will refer for its properties). As a
first fact, we have that u�v 2 Cn, i.e. this is an internal operation of Cn (see, for
instance, [25, Prop. 2.6]). The infimal convolution has the following nice geometric
interpretation (which can be easily verified): u�v is the function whose epigraph is
the vector sum of the epigraphs of u and v:

epi.u�v/ D fx C y W x 2 epi.u/; y 2 epi.v/g D epi.u/C epi.v/;

where, for w 2 Cn

epi.w/ D f.x; y/ 2 R
n � R W y � w.x/g:

Naturally associated to � there is a multiplication by positive reals: for u 2 Cn and
˛ > 0 we set

.˛ � u/.x/ D ˛ u
� x

˛

	
:

This definition can be extended to the case ˛ D 0 by setting

0 � u D If0gI

the reason being that If0g acts as the identity element: If0g�u D u for every u 2 Cn.
Note that

u�u D 2 � u 8 u 2 Cn;

as it follows easily from the convexity of u.
We are now ready to define the corresponding operations on Ln.

Definition 3.6 Let f D e�u; g D e�v 2 Ln and let ˛; ˇ � 0. We define the function
˛ � f ˚ ˇ � g as follows:

.˛ � f ˚ ˇ � g/ D e�.˛�u�ˇ�v/:

According to the previous definitions, when ˛; ˇ > 0 we have that1

.˛ � f ˚ ˇ � g/.x/ D sup
y2Rn

f
�x � y

˛

	˛
g

�
y

ˇ

�ˇ
: (1)

1For this reason the sum defined here is sometimes referred to as the Asplund product, see, for
instance, [3].
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Example 3.7 As an instructive and remarkable example, let us see how these
operations act on characteristic functions of convex bodies. Let K;L 2 Kn, and
˛; ˇ � 0. The Minkowski linear combination of K and L with coefficients ˛ and ˇ
is

˛K C ˇL D f˛x C ˇy W x 2 K; y 2 Lg:

The reader may check, as a simple exercise, the following identity

˛ � �K ˚ ˇ � �L D �˛KCˇL:

As Cn is closed with respect to � and � (see [25, Prop. 2.6]), we have the
following result.

Proposition 3.8 Let f ; g 2 Ln and ˛; ˇ � 0. Then ˛ � f ˚ ˇ � g 2 Ln.

3.3 The Volume Functional

In the parallelism between convex geometry and the theory of log-concave functions
it is important to find the corresponding notion of the volume of a convex body, in
the functional setting. The natural candidate is the L1.Rn/-norm. Given f 2 Ln we
set

I.f / WD

Z
Rn

f .x/dx:

To prove that this integral is always finite we exploit the following lemma (see
Lemma 2.5 in [25]).

Lemma 3.9 Let u 2 Cn; then there exists a > 0 and b 2 R such that

u.x/ � akxk C b 8 x 2 R
n:

As a consequence, if f D e�u 2 Ln, we have that

f .x/ � Ce�akxk 8 x 2 R
n

for some a > 0 and C > 0. This implies that

I.f / < 1 8 f 2 Ln;

i.e.

Ln 	 L1.Rn/:
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We will refer to the quantity I.f / as the integral or the volume functional, evaluated
at f . Note that if K is a convex body and f D �K , then

I.f / D I.�K/ D

Z
K

dx D Vn.K/:

3.4 p-Concave and Quasi-Concave Functions

A one parameter family of sets of functions which includes log-concave functions
is that of p-concave functions, as the parameter p ranges in R [ f˙1g. Roughly
speaking a function is p-concave if its p-th power is concave in the usual sense, but
the precise definition requires some preparation.

Given p 2 R [ f˙1g, a; b � 0 and t 2 Œ0; 1�, the p-th mean of a and b, with
weights t and .1 � t/ is

Mp.a; bI t/ WD ..1 � t/ap C tbp/1=p

if p > 0. For p < 0, we adopt the same definition if a > 0 and b > 0, while if
ab D 0 we simply set Mp.a; bI t/ D 0. For p D 0:

M0.a; bI t/ WD a1�tbt:

Finally, we set

M1.a; bI t/ WD maxfa; bg; M�1.a; bI t/ WD minfa; bg:

A non-negative function f defined on R
n is said to be p-concave if

f ..1 � t/x C ty/ � Mp.f .x/; f .y/I t/ 8 x; y 2 R
n; 8 t 2 Œ0; 1�:

For p D 0, we have the condition of log-concavity; for p D 1, this clearly gives
back the notion of concave functions; for p D �1, the above conditions identifies
the so-called quasi-concave functions, which can be characterized by the convexity
of their super-level sets.

In the course of this paper we will see that some of the results that we present for
log-concave functions admit a corresponding form for p-concave functions.

4 Duality

The notion of conjugate, or dual, function of a log-concave function that we
introduce here (following, for instance, [3]) is based on the well-known relation
of duality in the realm of convex functions, provided by the Fenchel, or Legendre,
transform, that we briefly recall. Let u be a convex function in R

n; we set
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u�.y/ D sup
x2Rn

.x; y/ � u.x/; 8 y 2 R
n:

Remark 4.1 Being the supremum of linear functions, u� is convex. Moreover,
unless u � 1, u�.y/ > �1 for every y. If we require additionally that u 2 Cn

(and u 6� 1), then u� is proper (see [25, Lemma 2.5]). On the other hand, u 2 Cn

does not imply, in general, u� 2 Cn. Indeed, for u D If0g we have u� � 0.

Definition 4.2 For f D e�u 2 Ln, we set

f ı D e�u�

:

A more direct characterization of f ı is

f ı.y/ D inf
x2Rn

�
e�.x;y/

f .x/

�

(where the involved quotient has to be intended as 1 when the denominator
vanishes). Hence f ı is a log-concave function (which does not necessarily belong
to Ln).

The idempotence relation (that one would expect)

.u�/� D u (2)

has to be handled with care, as it is not always true in Cn. This depends on the fact
that the Fenchel conjugate of a function is always lower semi-continuous (l.s.c., for
brevity), while u need not to have this property. On the other hand, this is the only
possible obstacle for (2).

Proposition 4.3 Let u 2 Cn be l.s.c., then (2) holds.

Corollary 4.4 Let f 2 Ln be upper semi-continuous (u.s.c.). Then

.f ı/ı D f : (3)

Examples 1. Let K be a convex body and IK be its indicatrix function. Then we
have

.IK/
�.y/ D sup

x2K
.x; y/ DW hK.y/ 8 y 2 R

n:

Here, following the standard notations, we denoted by hK the support function of
the convex body K (see the appendix).

2. The Gaussian function is the unique element of Ln which is self-dual:

f D e� kxk
2

2 , f ı � f :
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Remark 4.5 The Fenchel transform gives another interpretation of the inf-
convolution operation and, consequently, of the addition that we have defined
on Ln. Indeed, if u and v are in Cn and ˛; ˇ � 0, then:

.˛ � u �ˇ � v/� D ˛u� C ˇv� ) ˛ � u �ˇ � v D .˛u� C ˇv�/�;

if the function on the left-hand side of the last equality is l.s.c. (see [25, Prop. 2.1]).
Hence, given f D e�u; g D e�v 2 Ln (such that ˛ � f ˚ ˇ � g is u.s.c.) we have

˛ � f ˚ ˇ � g D e�.˛u�Cˇv�/� : (4)

In other words, the algebraic structure that we have set on Ln coincides with the
usual addition of functions and multiplication by non-negative reals, applied to the
conjugates of the exponents (with sign changed).

4.1 Characterization of Duality

In the papers [5] and [6], Arstein-Avidan and Milman established several powerful
characterizations of duality relations in the class of convex and log-concave
functions (as well as in other classes of functions). The space of convex functions in
which they work is slightly different from ours. They denote by Cvx.Rn/ the space
of functions u W R

n ! R [ f˙1g, which are convex and l.s.c. One of their results
is the following characterizations of the Fenchel conjugate, proved in [6].

Theorem 4.6 (Artstein-Avidan, Milman) Let T W Cvx.Rn/ ! Cvx.Rn/ be such
that:

(1) T T u D u for every u 2 Cvx.Rn/;
(2) u � v in R

n implies T .u/ � T .v/ in R
n.

Then T coincides essentially with the Fenchel conjugate: there exist C0 2 R, v0 2

R
n and an invertible symmetric linear transformation B of Rn such that for every

u 2 Cvx.Rn/,

T .u/.y/ D u�.By C v0/C .x; v0/C C0; 8y 2 R
n:

A direct consequence of the previous result, is a characterization of the conjugate
that we have introduced before for log-concave functions. Following the notation of
[5] and [6] we set

LC.Rn/ D ff D e�u W u 2 Cvx.Rn/g:

Theorem 4.7 (Artstein-Avidan, Milman) Let T W LC.Rn/ ! LC.Rn/ be such
that:

(1) T T f D f for every f 2 LC.Rn/;
(2) f � g in R

n implies T .f / � T .g/ in R
n.
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Then there exist C0 2 R, v0 2 R
n and an invertible symmetric linear transformation

B of Rn such that for every f 2 LC.Rn/,

T .f /.y/ D C0e
�.v0;x/ f ı.Bx C v0/ 8y 2 R

n:

4.2 Geometric Log-Concave Functions and a Related Duality
Transform

In the paper [7] the authors introduce a special subclass of Cvx.Rn/, called the class
of geometric convex functions, and denoted by Cvx0.Rn/. A function u 2 Cvx.Rn/

belongs to Cvx0.Rn/ if

inf
Rn

u D min
Rn

u D u.0/ D 0:

Correspondingly, they define the class of geometric log-concave functions as
follows:

LCg.R
n/ D ff D e�u W u 2 Cvx0.R

n/g:

Note in particular that if f 2 LCg.R
n/, then

0 � f .x/ � 1 D f .0/ D max
Rn

f 8 x 2 R
n:

For u 2 Cvx0.Rn/ the set

u�1.0/ D fx W u.x/ D 0g

is closed (by semicontinuity), convex and it contains the origin, even if not
necessarily as an interior point. As an extension of the notion of polar set of a convex
body having the origin in its interior (see the appendix), we set

.u�1.0//ı D fx 2 R
n W .x; y/ � 1 8 y 2 u�1.0/g:

The new duality transform introduced in [7], denoted by A, is defined, for u 2

Cvx0.Rn/, by

.Au/.x/ D

8̂
<̂
ˆ̂:

sup
fy W u.y/>0g

.x; y/ � 1

u.y/
if x 2 .u�1.0//ı;

1 otherwise.
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Many interesting properties of this transform are proved in [7]; among them, we
mention that A is order reversing and it is an involution, i.e.

A.Au/ D u 8 u 2 Cvx0.R
n/: (5)

As in the case of Fenchel transform, these features can be used to characterize this
operator, together with the Fenchel transform itself.

Theorem 4.8 (Artstein-Avidan, Milman) Let n � 2 and T W Cvx0.Rn/ !

Cvx0.Rn/ be a transform which is order reversing and is an involution. Then either

T u D .u�/ ı B 8 u 2 Cvx0.R
n/;

or

T u D C0.Au/ ı B 8 u 2 Cvx0.R
n/;

where B is an invertible linear transformation of Rn, C0 2 R.

As an application, a corresponding characterization result can be derived for the
case of geometric log-concave functions.

5 Inequalities

5.1 The Prékopa-Leindler Inequality

Let f ; g; h be non-negative measurable functions defined in R
n, and let t be a

parameter which ranges in Œ0; 1�. Assume that the following condition holds:

f ..1 � t/x0 C tx1/ � g.x0/
1�th.x1/

t 8 x0; x1 2 R
n: (6)

In other words, f which is evaluated at the convex linear combination of any two
points is greater than the geometric mean of g and h at those points. Then the integral
of f is greater than the geometric mean of the integrals of g and h:

Z
Rn

fdx �

�Z
Rn

gdx

�1�t �Z
Rn

hdx

�t

: (7)

Inequality (7) is the general form of the Prékopa-Leindler inequality; it was proved
in [42, 48], and [49].

Though the inequality (7) in itself is rather simple, the condition behind it, i.e. (6),
is unusual as it is not a point-wise condition but involves the values of f , g, and h
at different points. It will become clearer once it is written using the operations that
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we have introduced for log-concave functions. In fact, our next aim is to discover
how Prékopa-Leindler is naturally connected to log-concavity. As a first step in this
direction, we observe that, given g and h, one could rewrite inequality (7) replacing
f by the smallest function which verifies (6). Namely, let

Nf .z/ D sup
.1�t/xCtyDz

g1�t.x/ht.y/: (8)

Then, if Nf is measurable2, (7) holds for the triple Nf ; g; h. In view of (1), if g; h 2 Ln

then

Nf D .1 � t/ � g ˚ t � g 2 Ln:

The second observation concerns equality conditions in (7), in which log-concave
functions intervene directly. Note first that if f D g D h (for which we trivially have
equality in (7)), then (6) is equivalent to say that these functions are log-concave.
Moreover, the converse of this claim is basically true, due to the following result
proved by Dubuc (see [28, Theorem 12]). Assume that f , g, and h are such that (6)
is verified and equality holds in (7); then there exist a log-concave function F, a
vector x0, and constants c1; c2; ˛; ˇ � 0 such that:

f .x/ D F.x/ a.e. in R
n;

g.x/ D c1F.˛x C x0/ a.e. in R
n;

h.x/ D c2F.ˇx C x0/ a.e. in R
n:

In view of what we have seen so far, we may rephrase (7) in the realm of log-
concave functions in the following way.

Theorem 5.1 Let g; h 2 Ln and let t 2 Œ0; 1�. Then

Z
Rn
Œ.1 � t/ � g ˚ t � h�dx �

�Z
Rn

gdx

�1�t �Z
Rn

hdx

�t

; (9)

i.e.

I..1 � t/ � g ˚ t � h/ � I.g/t�1 I.h/t:

Moreover, equality holds if and only if g coincide with a multiple of h up to a
translation and a dilation of the coordinates.

2In general the measurability of g and h does not imply that of f . See [34] for more information on
this point.
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Written in this form, the Pŕekopa-Leindler inequality is clearly equivalent to the
following statement: the volume functional I is log-concave in the space Ln. This
point of view will be important to derive the infinitesimal form of this inequality. In
the sequel we will refer to the Prékopa-Leindler inequality in the form (9) as to (PL).

We note here an important consequence of (PL), which was emphasized and
exploited in various ways in [17].

Theorem 5.2 Let F D F.x; y/ be defined in R
n � R

m, and assume that F is log-
concave. Then the function f W R

n ! R defined by

f .x/ D

Z
Rm

F.x; y/dy

is log-concave.

The proof is a simple application of (PL).
We conclude this part with some further remarks on the Prékopa-Leindler

inequality.

Remark 5.3 One way to look at (PL) is as a reverse form of the Hölder inequality.
Indeed, an equivalent formulation of Hölder inequality is the following: if g and h
are non-negative measurable functions defined on R

n, and t 2 Œ0; 1�,

Z
Rn

g1�thtdx �

�Z
Rn

gdx

�1�t �Z
Rn

hdx

�t

:

Prékopa-Leindler inequality asserts that the previous inequality is reversed if the
geometric mean of g and h is replaced by the supremum of their geometric means,
in the sense of (8).

Remark 5.4 A more general form of (PL) is the Borell-Brascamp-Lieb inequality
(see, for instance, Section 10 of [34]). This inequality asserts that if f ; g; h are non-
negative measurable functions defined on R

n such that for some p > � 1
n and t 2

Œ0; 1�

f ..1 � t/x C ty/ � Mp.g.x/; h.y/I t/ 8 x; y 2 R
n;

then
Z
Rn

fdx � M p
mpC1

�Z
Rn

gdx;
Z
Rn

hdxI t

�
:

Here we have used the definition of p-mean introduced in subsection 3.4.
In the same way as (PL) has a special meaning for log-concave functions, Borell-

Brascamp-Lieb inequality is suited to p-concave functions.

Remark 5.5 Prékopa-Leindler inequality can also be seen as a special case of
a very general class of inequalities proved by Barthe in [9]. One way (even if
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limiting) of looking at Barthe’s inequalities is as a multifunctional version of (PL).
Barthe’s inequalities are in turn the reverse form of Brascamp-Lieb inequalities,
which have as a simple special case the Hölder inequality. A neat presentation of
these inequalities can be found in [34], Section 15.

5.2 Proof of the Prékopa-Leindler Inequality

For completeness we supply a proof of the Prékopa-Leindler inequality in its for-
mulation (9), i.e. restricted to log-concave functions (omitting the characterization
of equality conditions).

As preliminary steps, note that if one of the functions g and h is identically zero
then the inequality is trivial. Hence we assume that g 6� 0 and h 6� 0. Moreover, as
it is easy to check, it is not restrictive to assume

sup
Rn

g D sup
Rn

h D 1 (10)

(see also Remark 3.5).
The rest of the proof proceeds by induction on the dimension n. For simplicity

we will set

f D .1 � t/ � g ˚ t � h

throughout. For convenience of notations we will in general denote by x, y, and z
the variable of f , g, and h, respectively.

The case n D 1. Fix s 2 Œ0; 1�; by the definition of the operations � and ˚, we
have the following set inclusion

fx W f .x/ � sg � .1 � t/fy W g.y/ � sg C tfz W h.z/ � sg:

As f , g, and h are log-concave, their super-level sets are intervals, and, by the
behavior of these functions at infinity, they are bounded. Note that if if I and J
are bounded interval of the real line we have

V1.I C J/ D V1.I/C V1.J/

(which is the one-dimensional version of the Brunn-Minkowski inequality, in the
case of “convex sets”). Hence

V1.fx W f .x/ � sg/ � .1 � t/V1.fy W g.y/ � sg/C tV1.fz W h.z/ � sg/:

Now we integrate between 0 and 1 and use the layer cake principle

Z
R

f dx � .1 � t/
Z
R

g dy C t
Z
R

h dz �

�Z
R

g dy

�1�t �Z
R

h dz/

�t
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where we have used the arithmetic-geometric mean inequality. This concludes
the proof in dimensional one. Note that in this case one obtains (under the
assumption (10)) a stronger inequality, namely the integral of f is greater than the
arithmetic mean of those of g and h.

The case n � 1. Assume that the inequality is true up to dimension .n � 1/. Fix
Nyn and Nzn in R, and let Nxn D .1 � t/Nyn C tNzn. Moreover let Nf ; Ng; Nh W R

n�1 ! R be
defined by

Nf .x1; : : : ; xn�1/ D f .x1; : : : ; xn�1; Nxn/; Ng.y1; : : : ; yn�1/ D g.y1; : : : ; yn�1; Nyn/;

Nh.z1; : : : ; zn�1/ D h.z1; : : : ; zn�1; Nzn/:

As xn is the convex linear combination of yn and zn, and as f D .1� t/ � g ˚ t � h, we
have that Nf , Ng, and Nh verify the assumption of (PL), so that, by induction,

Z
Rn�1

Nf dx �

�Z
Rn�1

Ngdy

�1�t �Z
Rn�1

Nhdz

�t

: (11)

Next define F;G;H W R ! R as

F.x/ D

Z
Rn�1

f .x1; : : : ; xn�1; x/dx1 : : : dxn�1;

G.y/ D

Z
Rn�1

g.y1; : : : ; yn�1; y/dy1 : : : dyn�1;

H.z/ D

Z
Rn�1

h.z1; : : : ; zn�1; z/dz1 : : : dzn�1:

By Theorem 5.2 these are log-concave functions; moreover, (11) is exactly condi-
tion (6) for them. Hence, by induction,

Z
R

Fdx �

�Z
R

Gdy

�1�t �Z
R

Hdz

�t

;

and this is nothing but the required inequality for f ; g; h. �

5.3 Prékopa-Leindler and Brunn-Minkowski Inequality

One way to understand the importance of Prékopa-Leindler inequality is to set it
in relation to the Brunn-Minkowski inequality, one of the most important results in
convex geometry.
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Theorem 5.6 (Brunn-Minkowski inequality) Let K and L be convex bodies and
t 2 Œ0; 1�. Then

ŒVn..1 � t/K C tL/�1=n � .1 � t/ŒVn.K/�
1=n C tŒVn.L/�

1=n: (12)

In case both K and L have non-empty interior, equality holds if and only if they are
homothetic, i.e. they coincide up to a translation and a rotation.

The article [34] by Gardner contains an exhaustive survey on this result. Here
we only mention that Brunn-Minkowski inequality ((BM) for brevity) is a special
case of the family of Aleksandrov-Fenchel inequalities (see [55]), and that a simple
argument leads in few lines from this inequality to the isoperimetric inequalitiy
(restricted to convex bodies):

Vn.K/ � c
�
Hn�1.@K/

�n=.n�1/
8 K 2 Kn W int.K/ ¤ ;: (13)

Here c is a dimensional constant and Hn�1 is the .n � 1/-dimensional Hausdorff
measure. Moreover equality holds if and only if K is a ball. The argument to
deduce (13) from (12) is rather known and can be found, for instance, in [34].

In what follows we show that (BM) can be easily proved through (PL).

Proof of the Brunn-Minkowsi inequality. Let K, L, and t be as in Theorem 5.6. Let

g D �K ; h D �L; f D .1 � t/ � g ˚ t � h:

As we saw in example 3.7,

f D �.1�t/KCtL:

By (PL) we get

Vn..1 � t/K C tL/ � Vn.K/
1�t Vn.L/

t: (14)

This is usually referred to as the multplicative form of the Brunn-Minkowski
inequality. From that, by exploiting the homogeneity of volume, (BM) in its standard
form can be deduced as follows. Given K, L, and t as above, assume that the volumes
of K and L are strictly positive (the general case can be obtained by approximation).
Let

NK D
1

Vn.K/1=n
K; NL D

1

Vn.L/1=n
L;

so that

Vn. NK/ D Vm. NL/ D 1:
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We set also

Nt D
Vn.L/1=n

.1 � t/Vn.K/1=n C tVn.L/1=n
t:

Applying (14) to NK, NL, and Nt leads to

1 � Vn..1 � Nt/ NK C Nt NL/ D Vn

�
1

.1 � t/Vn.K/1=n C tVn.L/1=n
.1 � t/K C tL

�
:

�

5.4 The Infinitesimal Form of (PL)

Both Prékopa-Leindler and Brunn-Minkowski inequalities are concavity inequali-
ties. More precisely, (BM) asserts that the volume functional to the power 1=n is
concave on the family of convex bodies Kn, while, according to (PL), the logarithm
of the integral functional I is concave on Ln. The concavity of a functional F can be
expressed by the usual inequality:

F..1 � t/x0 C tx1/ � .1 � t/F.x0/C tF.x1/ 8 x0; x1I 8 t 2 Œ0; 1�;

or by its infinitesimal version

D2F.x/ � 0 8 x; (15)

where D2F.x/ denotes the second variation of F at x (if it exists, and whatever its
meaning can be). The infinitesimal form of the Brunn-Minkowski inequality has
been investigated in [24], where it is shown that (15) provides a class of Poincaré
type inequalities on the unit sphere of Rn. Here we will show that correspondingly,
the infinitesimal form of (PL) is equivalent to a class of (known) inequalities, also
of Poincaré type, on R

n, with respect to log-concave probability measures. These
inequalities have been proved by Brascamp and Lieb in [17].

Theorem 5.7 (Brascamp-Lieb) Let f D e�u 2 Ln and assume that u 2 C2.Rn/

and D2u.x/ > 0 for every x 2 R
n. Then for every � 2 C1.Rn/ such that

Z
Rn
�fdx D 0;

the following inequality holds:

Z
Rn
�2fdx �

Z
Rn
..D2u/�1r�;r�/fdx: (16)
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Remark 5.8 When

u.x/ D
kxk2

2
;

i.e. f is the Gaussian function, (16) becomes the usual Poincaré inequality in Gauss
space:

Z
Rn
�2d�n.x/ �

Z
Rn

kr�k2d�n.x/ (17)

for every � 2 C1.Rn/ such that

Z
Rn
�d�n.x/ D 0; (18)

where �n is the standard Gaussian probability measure. Note that (17) is sharp,
indeed it becomes an equality when � is a linear function. In general, the left-hand
side of (16) is a weighted L2.Rn; �/-norm of r� (squared), where � is the measure
with density f . Note, however, that (16) admits extremal functions (i.e., for which
equality holds) for every choice of f ; this will be clear from the proof that we present
in the sequel.

Proof of Theorem 5.7. We will consider a special type of log-concave functions.
Let u 2 C2.Rn/ \ Cn be such that

cIn � D2u.x/ 8 x 2 R
n; (19)

where In is the n � n identity matrix and c > 0. We denote by Cn
s the space formed

by these functions and set

Ln
s WD e�Cn

s 	 Ln:

We set

.Cn
s /

� D fu� W u 2 Cn
s g:

By standard facts from convex analysis (see, for instance, [51]), if u 2 Cn
s then

u� 2 C2.Rn/; moreover ru is a diffeomorphism between R
n and itself and

ru� D .ru/�1I (20)

u�.y/ D ..ru/�1.y/; y/ � u..ru/�1y/ 8 y 2 R
nI (21)
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D2u�.y/ D .D2u..ru/�1.y///�1 8 y 2 R
n: (22)

Let f D e�u 2 Ln
s ; the functional I is defined by

I.f / D

Z
Rn

f .x/dx:

By the change of variable y D ru.x/ and by the previous relations we get

I.f / D

Z
Rn

eu�.y/�.y;ru�.y//det.D2u�.y//dy:

In other words, I.e�u/ can be expressed as an integral functional depending on u�.
Given v 2 .Cn

s /
� set

J.v/ D

Z
Rn

ev.y/�.y;rv.y//det.D2v.y//dy:

By Remark 4.5, Prékopa-Leindler inequality in its form (9), restricted to Ln
s , is

equivalent to say that

J W .Cn
s /

� ! R is log � concave (23)

where now log-concavity is with respect to the usual addition of functions in .Cn
s /

�.
The previous relation is the key step of the proof. We will now determine the second
variation of ln.J/ at v 2 .Cn/�. Let  2 C1

c .R
n/ (i.e.  2 C1.Rn/ and it has

compact support). There exists  > 0 such that

vs D v C s is convex for every s 2 Œ�; �:

Set

g.s/ D J.vs/:

Then ln.g.s// is concave in Œ�; �, so that

g.0/g00.0/ � g02.0/ � 0: (24)

After computing g0.0/ and g00.0/ and returning to the variable x, inequality (24) will
turn out to be nothing but the Poincaré inequality of Brascamp and Lieb.

For simplicity, from now on we will restrict ourselves to the one-dimensional
case, but the same computation can be done for general dimension (at the price
of some additional technical difficulties, consisting in suitable integration by parts
formulas), as shown in [24] for the case of the Brunn-Minkowski inequality.
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So now v and  are functions of one real variable; we denote by v0; v00;  0;  00

their first and second derivatives, respectively. The function g.s/ takes the form

g.s/ D

Z
R

evs.y/�yv0

s.y/v00
s .y/dy:

Then

g0.s/ D

Z
R

evs.y/�yv0

s.y/Œ. .y/ � y 0.y//v00
s .y/C  00.y/�dy:

Note that
Z
R

evs.y/�yv0

s.y/ 00.y/dy D

Z
R

y 0.y/v00
s .y/dy

after an integration by parts (no boundary term appears as  has bounded support).
Then

g0.s/ D

Z
R

evs.y/�yv0

s.y/ .y/v00
s .y/dy:

Differentiating again (this time at s D 0) we get

g00.0/ D

Z
R

ev.y/�yv0.y/ .y/Œ. .y/ � y 0.y//v00.y/C  00.y/�dy

D

Z
R

ev.y/�yv0.y/Œ .y/v00.y/ � . 0.y//2�dy;

where we have integrated by parts again in the second equality. Now set

�.x/ D  .u0.x//:

Note that � 2 C1
c .R/; moreover, any � 2 C1

c .R/ can be written in the previous
form for a suitable  . We have:

g0.0/ D

Z
R

�.x/f .x/dx;

and

g00.0/ D

Z
R

�2.x/f .x/ �

Z
R

.�0.x//2

u00.x/
dx: (25)

Hence (18) is equivalent to g0.0/ D 0. If we now replace (25) in (24) we obtain the
desired inequality. �
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Remark 5.9 There are several other examples of the argument used to derive
“differential” inequalities (i.e., involving the gradient, or derivatives in general) like
Poincaré, Sobolev, and log-Sobolev inequalities, starting from Prékopa-Leindler
or Brunn-Minkowski inequality; see, for instance, [11, 12], and the more recent
paper [13].

5.5 Functional Blaschke-Santaló Inequality and Its Converse

One of the most fascinating open problems in convex geometry is the Mahler
conjecture, concerning the optimal lower bound for the so-called volume product
of a convex body. If K 2 Kn and the origin is an interior point of K, the polar body
(with respect to 0) of K is the set

Kı D fx 2 R
n W .x; y/ � 1 8 y 2 Kg:

Kı is also a convex body. More generally, if K has non-empty interior and z is an
interior point of K, the polar body of K with respect to z is

Kz WD .K � z/ı:

It can be proved that there exists an interior point of K, the Santaló point, for which
Vn.Kz/ is minimum (see [55]).

Roughly speaking, the polar body of a large set is small and vice versa; this
suggests to consider the following quantity:

P.K/ D Vn.K/Vn.K
z/;

where z is the Santaló point of K, called the volume product of K. P is invariant
under affine transformations of Rn and in particular it does not change if K is dilated
(or shrunk). It is relatively easy to see that it admits a maximum and a minimum as
K ranges in Kn. Then it becomes interesting to find such extremal values and the
corresponding extremizers.

The Blashcke-Santaló inequality asserts that

P.K/ � P.Bn/ 8K 2 Kn;

(we recall that Bn is the unit ball) and equality holds if and only if K is an ellipsoid
(see, for instance, [55]). On the other hand, the problem of finding the minimum of
P is still open, in dimension n � 3. The Mahler conjecture asserts that

P.K/ � P.�/ 8 K 2 Kn
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where � is a simplex. Correspondingly, in the case of symmetric convex bodies it
is conjectured that

P.K/ � P.Q/ 8K 2 Kn; symmetric

where Q is a cube. The validity of these conjectures has been established in the plane
by Mahler himself, and, in higher dimension, for some special classes of convex
bodies; among them we mention zonoids and unconditional convex bodies. Anyway
it would be impossible to give even a synthetic account of all the contributions
and results that appeared in the last decades in this area. A recent and updated
account can be found in [54]. We mention, as this result has a specific counterpart
for log-concave functions, that the best known lower bound for the volume product
of symmetric convex bodies (asymptotically optimal with respect n as n tends to 1)
has been established by Bourgain and Milman (see [16]):

P.K/ � cn P.Q/; 8 K 2 Kn; symmetric, (26)

where c is a constant independent of n. For a recent improvement of the constant
c as well as for different proofs of (26), we again refer the reader to [54] (see in
particular Section 8).

Within the framework that we have been describing so far, where results
from convex geometry are systematically transferred to the space of log-concave
functions, it is natural to expect a functional counterpart of the volume product of
convex bodies, and related upper and lower bounds. Given a log-concave function
f D e�u 2 Ln, we have seen that we can define

f ı D e�u�

where u� is the Fenchel conjugate of u (see Section 4). Hence we are led to introduce
the following quantity

P.f / WD

Z
Rn

fdx
Z
Rn

f ıdx D I.f / I.f ı/

as a counterpart of the volume product of a convex body. On the other hand, as
suggested by the case of convex bodies, it could be important to introduce also a
parameter z 2 R

n, as the center of polarity. Hence, given f 2 Ln and z 2 R
n, we set

fz.x/ D f .x � z/ 8 x 2 R
n;

and more generally we consider

P.fz/ WD

Z
Rn

fzdx
Z
Rn
.fz/

ıdx:
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The functional Blaschke-Santaló inequality, i.e. an optimal upper bound for P.fz/,
was established in [3] where the authors prove that for every f 2 Ln (with positive
integral), if we set

z0 D
1

I.f /

Z
Rn

xf .x/dx

then

P.fz0 / � .2�/n (27)

and equality holds if and only if f is (up to a translation of the coordinate system) a
Gaussian function, i.e. is of the form

f .x/ D e�.Ax;x/

where A is a positive definite matrix. In the special case of even functions, for which
we have z0 D 0, this result was achieved by Ball in [8]. A different proof (which
in particular does not exploit its geometric counterpart) of the result by Artstein,
Klartag, and Milman was given by Lehec in [40]. We also mention that an interesting
extension of (27) was given in [30] (see also [41]).

In a similar way, the reverse Blaschke-Santaló inequality (26) has been extended
to the functional case. In [38] the authors proved that there exists an absolute
constant c > 0 (i.e., c does not depend on the dimension n) such that

P.f0/ � cn

for every f 2 Ln even. This result has been improved in various ways in the papers
[32] and [33] (see also [29]). We also mention that in [31] a sharp lower bound for
the functional P.f / has been given for unconditional log-concave functions f (i.e.,
even with respect to each coordinate). This corresponds to the solution of the Mahler
conjecture in the case of unconditional convex bodies.

5.6 Functional Rogers-Shephard Inequality

Given a convex body K in R
n, its difference body DK is defined by

DK D K C .�K/ D fx C y W x 2 K; �y 2 Kg:

DK is a centrally symmetric convex body, and, in a sense, any measurement of how
far is K from DK could serve as a measure of asymmetry of K. The discrepancy
between K and DK can be identified via the volume ratio:

Vn.K/

Vn.DK/
:
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If we apply the Brunn-Minkowski inequality to K and �K, we immediately get

V.DK/ � 2nVn.K/:

The celebrated Rogers-Shephard inequality (see [50]) provides a corresponding
upper bound:

Vn.DK/ �

 
2n

n

!
Vn.K/: (28)

Equality holds in the previous inequality if and only if K is a simplex.
It is natural to wonder whether these facts may find any correspondence for log-

concave functions. This question was studied in [23]. The first step is to define a
notion of difference function of a log-concave function. Let f 2 Ln; we first set

Nf .x/ D f .�x/ 8 x 2 R
n

(clearly Nf 2 Ln). Then we define

�f D
1

2
� f ˚

1

2
� Nf :

In more explicit terms:

�f .x/ D sup

�p
f .y/f .�z/ W x D

y C z

2

�

(in fact �f corresponds to the difference body rescaled by the factor 1
2
).

To get a lower bound for the integral of the difference function we may use the
Prékopa-Leindler inequality and obtain:

I.�f / D

Z
Rn
�fdx �

Z
Rn

fdx D I.f /:

In [23] the following inequality was proved:

Z
Rn
�fdx � 2n

Z
Rn

fdx 8 f 2 Ln: (29)

The previous inequality is sharp. One extremizer is the function f defined by

f .x/ D f .x1; : : : ; xn/ D

8<
:

e�
Pn

iD1 xi if xi � 0 for every i D 1 : : : ; n;

0 otherwise.
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All other extremizers can be obtained by the previous function by an affine change
of variable and the multiplication by a positive constant (see [23]).

The results of [23] have been recently extended and complemented in the papers
[1] and [2], where the authors obtain considerable new developments. To describe
an example of their results, given f and g in Ln one may consider

�.f ; g/ D
1

2
� f ˚

1

2
� Ng:

In the above-mentioned papers, among other results the authors establish optimal
upper bounds for the integral of �.f ; g/, which in the case f D g returns the
inequality (29).

5.7 The Functional Affine Isoperimetric Inequality

We conclude this section by mentioning yet another inequality for log-concave
functions. As we recalled in the introduction, among the main results that can be
proved for log-concave probability measures there are log-Sobolev type inequalities
(we refer the reader to [39] for this type of inequalities). In the paper [4] the authors
prove a reverse form of the standard log-Sobolev inequality (in the case of the
Lebesgue measure). The proof of this inequality is based on an important geometric
inequality in convex geometry; the affine isoperimetric inequality, involving the
affine surface area. We refer the reader to [55] for this notion.

The research started in [4] is continued in the papers [19, 20, 21], and [22].
In particular, in these papers several possible functional extensions of the notion
of affine surface area are proposed, along with functional versions of the affine
isoperimetric inequality.

6 Area Measures and Mixed Volumes

6.1 The First Variation of the Total Mass Functional

Given two convex bodies K and L, for  > 0 consider the following perturbation of
K: K WD K C L. The volume of K , as a function of , is a polynomial and hence
admits right derivative at  D 0:

lim
!0C

Vn.K C L/ � Vn.K/


DW V.K; : : : ;K„ ƒ‚ …

(n � 1)-times

;L/ D V.K; : : : ;K;L/: (30)
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Here we used the standard notations for mixed volumes of convex bodies (see the
appendix). The mixed volumes V.K; : : : ;K;L/, when K is fixed and L ranges in
Kn, can be computed using the area measure of K. Indeed, there exists a unique
non-negative Radon measure on S

n�1, called the area measure of K and denoted by
Sn�1.K; �/, such that

V.K; : : : ;K;L/ D
1

n

Z
Sn�1

hL.x/dSn�1.K; x/ 8 L 2 Kn: (31)

According to (30) we may say that V.K; : : : ;K;L/ is the directional derivative
of the volume functional at K along the direction L. Moreover, as support function
behaves linearly with respect to Minkowski addition (see the appendix), (31) tells
us that the first variation of the volume at K is precisely the area measure of K.
Note also that if we choose L to be the unit ball Bn of Rn, then we have (under the
assumption that K has non-empty interior) that the derivative in (30) is the perimeter
of K:

V.K; : : : ;K;Bn/ D lim
!0C

Vn.K C L/ � Vn.K/


D Hn�1.@K/

where Hn�1 stands for the .n � 1/-dimensional Hausdorff measure.
One could try to follow a similar path to define a notion of area measure of a

log-concave function f , replacing the volume functional by the integral of f 2 Ln

I.f / D

Z
Rn

f .x/dx:

Then the idea is to compute the first variation of I and deduce as a consequence a
surrogate of the area measure. More precisely, in view of (30) and (31), the problem
of computing the following limit arises:

ıI.f ; g/ WD lim
!0C

I.f ˚  � g/ � I.f /


(32)

where f , g 2 Ln. Here a first striking difference between the geometric and the
functional setting appears. While the volume of the linear combination of convex
bodies is always polynomial in the coefficients, this is not the case for functions.
Indeed (see, for instance, [25]) there are examples in which ıI.f ; g/ D 1.

The idea to compute the limit (32) appeared for the first time in the papers [38,
52] and [53], for a specific choice of the function f (the density of the Gaussian
measure), in order to define a notion of mean width (one of the intrinsic volumes) of
log-concave functions. The computation of the same limit for general f and g was
then considered in [25].

Even if the limit (32) exists (finite of infinite) under the sole assumption I.f / > 0
(see [25] and [38]), explicit formulas for it (e.g., similar to (31)) have been found
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only under quite restrictive assumptions. To give an example of such formulas we
rephrase Theorem 4.5 in [25]. This result needs some preparation. First of all we
denote by C2

C.R
n/ the set of functions u from C2.Rn/ such that D2u > 0 in R

n.
Next we define

Cn
s D

�
u 2 Cn W u < 1 in R

n; u 2 C2
C.R

n/; lim
jxj!1

u.x/

jxj
D C1

�

and

Ln
s D e�Cn

s D fe�u W u 2 Cn
s g 	 Ln:

Given f D e�u and g D e�v 2 Ln
s , we say that g is an admissible perturbation of f

if there exists a constant c > 0 such that

u� � cv� is convex in R
n:

This condition can be viewed as the fact the convexity of u� controls that of v�.

Theorem 6.1 Let f D e�u, g D e�v 2 Ln
s and assume that g is an admissible

perturbation of f . Then ıI.f ; g/ exists, is finite, and is given by

ıI.f ; g/ D

Z
Rn
v�.ru.x// f .x/ dx: (33)

Using a different point of view, we may consider the measure Q�f on R
n, with

density f with respect to the Lebesgue measure. Then we define �f as the push-
forward of Q� through the gradient map ru. At this regard note that, as f D e�u 2 Ln

s ,
ru is a diffeomorphism between R

n and itself. Then (33) is equivalent to

ıI.f ; g/ D

Z
Rn
v�.y/ d�f .y/ D

Z
Rn
.� ln.g//�.y/ d�f .y/: (34)

Roughly speaking, as the linear structure on Ln is the usual addition and multiplica-
tion by scalars, transferred to the conjugates of the exponents (with minus sign), (34)
says that the measure �f is the first variation of the functional I at the function f ; for
this reason this measure could be interpreted as the area measure of f . Note that this
fact cannot be considered to be too general: if we change the assumptions on f (i.e.,
the fact that f 2 Ln

s ) then the expression of ıI.f ; g/ may change significantly (see,
for instance, Theorem 4.6 in [25]) .

It is interesting to note that the measure �f was studied also by Cordero-
Erausquin and Klartag in [27], with a different perspective.
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6.2 Mixed Volumes of Log-Concave Functions

As we saw in the previous section, if we endow Ln with the addition defined
in Section 3.2, the total mass functional of linear combinations of log-concave
functions is in general not a polynomial in the coefficients. This is a clear indication
that, within the frame of this linear structure, it is not possible to define mixed
volumes of generic log-concave functions. On the other hand, there exists a choice
of the operations on Ln which permits to define mixed volumes. These facts were
established mainly in the papers [46] and [47] (see also [10] for related results), and
here we briefly describe the main points of this construction.

As we said, we have to abandon for a moment the addition previously defined on
Ln and introduce a new one. Given f , g 2 Ln we set

.f QCg/.z/ D supfminff .x/; g.y/g W x C y D zg: (35)

This apparently intricate definition has in fact a simple geometric interpretation:

fz 2 R
n W .f QCg/.z/ � tg D fx 2 R

n W f .x/ � tg C fy 2 R
n W g.y/ � tg

for every t > 0 such that each of the two sets on the right-hand side is non-
empty. In other words, the super-level sets of f QCg are the Minkowski addition of
the corresponding super-level sets of f and g.

The addition (35) preserves log-concavity (see, for instance, [46]), and then it is
an internal operation of Ln (but it is in fact also natural for quasi-concave functions;
see [10, 46]).

A notion of multiplication by non-negative scalars is naturally associated to the
previous addition: for f 2 Ln and 	 > 0 we define 	Q�f by

.	Q�f /.x/ D f
� x

	

	
:

In this new frame, the functional I evaluated at linear combinations of log-
concave functions admits a polynomial expansion. More precisely, the following
theorem, proved in [46], provides the definition of mixed volumes of log-concave
functions.

Theorem 6.2 There exists a function V W .Ln/n ! R such that, for every m 2 N,
f1; : : : ; fm 2 Ln and 	1; : : : ; 	m > 0,

I.	1Q�f1 QC : : : QC	mQ�fm/ D

mX
i1;:::;inD1

	i1 � � �	in V.fi1 ; : : : ; fin/:

In [46] the authors prove several inequalities for mixed volumes of log-concave
(and, more generally, quasi-concave) functions, including versions of the Bunn-
Minkowski and Alexandrov-Fenchel inequalities.
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As in the case of convex bodies, several interesting special cases of mixed
volumes can be enucleated. For instance, if we fix f 2 Ln and consider, for
i 2 f0; : : : ; ng,

Vi.f / WD V.f ; : : : ; f„ ƒ‚ …
i-times

; IBn ; : : : ; IBn„ ƒ‚ …
.n�i/-times

/;

we have a notion which can be regarded as the i-intrinsic volume of f . These
quantities have been studied in [10] and [46].

7 Valuations on Ln

We start by valuations on convex bodies. A (real-valued) valuation on Kn is a
mapping � W Kn ! R such that

�.K [ L/C �.K \ L/ D �.K/C �.L/ 8 K; L 2 Kn s.t. K [ L 2 Kn: (36)

The previous relation establishes a finite additivity property of � . A typical example
of valuation is the volume (i.e., the Lebesgue measure), which, as a measure, is
countably additive and then fulfills (36). Another, simple, example is provided
by the Euler characteristic, which is constantly 1 on Kn and then it obviously
verifies (36). Note that both volume and Euler characteristic are also continuous with
respect to Hausdorff metric, and invariant under rigid motions of Rn. Surprisingly,
there are other examples of this type; namely each intrinsic volume Vi, i D 0; : : : ; n,
(see the appendix for a brief presentation) is a rigid motion invariant and continuous
valuation on Kn.

The celebrated Hadwiger theorem (see [35, 36, 37]), asserts that, conversely,
every rigid motion invariant and continuous valuation can be written as the linear
combination of intrinsic volumes; in particular the vector space of such valuations
has finite dimension n and fV0; : : : ;Vng is a basis of this space. If rigid motion
invariance is replaced by the weaker assumption of translation invariance, still
the relevant space of valuations preserves a rather strong algebraic structure. It
was proved by McMullen (see [44]) that any translation invariant and continuous
valuation � on Kn can be written as

� D

nX
iD0

�i

where �i has the same property of � and it is i-homogeneous with respect to
dilations.

The results that we have mentioned are two of the milestones in this area and
stimulated a great development of the theory of valuations on convex bodies, which
now counts many ramifications. The reader may find an updated survey on this
subject in [55, chapter 6].
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The richness of this part of convex geometry recently motivated the start of a
parallel theory of valuations on spaces of functions. Coherently with the theme of
this article, we restrict ourselves to valuations on Ln; the reader may find a survey
of the existing literature on this field of research in [18, 26] and [43].

A mapping � W Ln ! R is called a (real-valued) valuation if

�.f _ g/C �.f ^ g/ D �.f /C �.g/; 8 f ; g 2 Ln s.t. u _ g 2 Ln;

where “_” and “^” denote the point-wise maximum and minimum, respectively
(note that the minimum of two functions in Ln is still in Ln). In other words, sets
are replaced by functions and union and intersection are replaced by maximum and
minimum. One reason for this definition is that, when restricted to characteristic
functions, it gives back the ordinary notion of valuation on relevant sets.

Having the picture of valuations on Kn in mind, it becomes interesting to consider
valuations � on Ln which are:

• invariant with respect to some group G of transformations of Rn:

�.f ı T/ D �.f / 8 f 2 Ln; 8 T 2 GI

• continuous with respect to some topology � in Ln:

fi ! f as i ! 1 w.r.t. � ) �.fi/ ! �.f /:

The investigation in this area is still at the beginning, and satisfactory character-
izations of valuations with the previous properties are not known. At this regard
we report a result which can be deduced from [18], preceded by some preparatory
material.

Let � be a valuation defined on Ln. For G we chose the group of rigid motions
of Rn; hence we assume that � is rigid motion invariant.

Next we want to define a continuity property for �. Note that, while in Kn the
choice of the topology induced by the Hausdforff metric is natural and effective, the
situation in Ln is rather different. For a discussion on this topic we refer the reader
to [26, section 4.1]. Here we consider the following notion of continuous valuation
on Ln. A sequence fi, i 2 N, contained in Ln, is said to converge to f 2 Ln if:

• fi is increasing with respect to i;
• fi � f in R

n for every i;
• fi converges to f point-wise in the relative interior of the support of f (see the

definition in the appendix).

Given this definition, we say that � is continuous if

lim
i!1

�.fi/ D �.f /;



518 A. Colesanti

whenever a sequence fi converges to f in the way specified above. To be able to
characterize � we need two additional properties: � is increasing, i.e.

f1 � f2 in R
n ) �.f1/ � �.f2/I

and � is simple, i.e.

f � 0 a.e. in R
n ) �.f / D 0:

Theorem 7.1 � is a rigid motion invariant, continuous, increasing and simple
valuation on Ln if and only if there exists a function F W RC ! RC such that

�.f / D

Z
Rn

F.f .x//dx; (37)

and, moreover, F is continuous, increasing, vanishes at 0 and verifies the following
integrability condition:

Z 1

0

.� ln.t//n�1

t
F.t/dt < C1: (38)

The proof is a direct application of the results proved in [18] for valuations on
the space of convex functions Cn. Indeed, we set N� W Cn ! R defined by

N�.u/ D �.e�u/ 8 u 2 Cn

N� inherits the features of �. The valuation property follows immediately from the
monotonicity of the exponential function. Rigid motion invariance and monotonicity
are straightforward (note that N� is decreasing). As for continuity, the reader may
check that the convergence that we have introduced in Ln induces precisely the one
defined in [18]. The property of being simple for � implies that N�.u/ D 0 for every
u 2 Cn such that u � 1 a.e. in R

n. Hence we may apply Theorem 1.3 in [18],
and deduce the integral representation (37). The integrability condition (38) follows
from (1.5) in [18].

Other type of valuations on Ln can be generated by taking weighed means of
intrinsic volumes of super-level sets. More precisely, let f 2 Ln. For every t > 0 the
set

Lf .t/ D cl.fx 2 R
n W f .x/ � tg/

(where “cl” denotes the closure) is (either empty or) a compact convex set, i.e. a
convex body, by the properties of f . Note that, for every f ; g 2 Ln,

Lf _g D Lf .t/ \ Lg.t/; Lf ^g D Lf .t/ [ Lg.t/:
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Using these relations and the valuation property of intrinsic volumes (see (41)) we
easily get, for an arbitrary i 2 f0; : : : ; ng,

Vi.Lf _g.t//C Vi.Lf ^g.t// D Vi.Lf .t//C Vi.Lg.t//:

In other words, the map Ln ! R:

f �! Vi.Lf .t//

is a valuation on Ln. More generally we may multiply this function by a non-
negative number depending on t and sum over different values of t (keeping i fixed).
The result will be again a valuation. The most general way to do it is to consider a
continuous sum, that is an integral. In other words, we may take the application:

�.f / D

Z 1

0

Vi.Lf .t//d�.t/ (39)

where � is a Radon measure. These type of valuations have been considered in [18]
for convex functions. In particular, it follows from condition (1.11) in [18] that �.f /
is finite for every f 2 Ln if and only if � verifies the integrability condition

Z 1

0

.� ln.t//i

t
d�.t/ < C1: (40)

Moreover, � is homogeneous with respect to dilations of Rn. More precisely, given
f 2 Ln and 	 > 0, define the function f	 as

f	.x/ D f
� x

	

	
8 x 2 R

n:

Then

�.f	/ D 	i�.f / 8 f 2 Ln:

By theorem 1.4 in [18] and an argument similar to that used in the proof of
theorem 7.1, we obtain the following result.

Theorem 7.2 A mapping � W Ln ! R is a rigid motion invariant, continuous,
monotone valuation, which is in addition homogeneous of some order ˛, if and only
if ˛ D i 2 f0; : : : ; ng, and � can be written in the form (39), for some measure �
verifying condition (40).

Remark 7.3 In the case i D n formulas (37) and (39) are the same via the layer
cake principle.

It would be very interesting to remove part of the assumptions (e.g., monotonicity
or homogeneity) in theorems 7.1 and 7.2 and deduce corresponding characterization
results.
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Appendix A. Basic Notions of Convex Geometry

This part of the paper contains some notions and constructions of convex geometry
that are directly invoked throughout this paper. Our main reference text on the theory
of convex bodies is the monograph [55].

A.1 Convex Bodies and Their Dimension

We denote by Kn the class of convex bodies, i.e. compact convex subsets of Rn.
Given a convex body K its dimension is the largest integer k 2 f0; : : : ; ng such

that there exists a k-dimensional hyperplane of Rn containing K. In particular, if K
has non-empty interior, then its dimension is n. The relative interior of K is the set
of points x 2 K such that there exists a k-dimensional ball centered at x included
in K, where k is the dimension of K. If the dimension of K is n, then the relative
interior coincides with usual interior.

A.2 Minkowski Addition

The Minkowski linear combination of K;L 2 Kn with coefficients ˛; ˇ � 0 is

˛K C ˇL D f˛x C ˇy W x 2 K; y 2 Lg:

It is easy to check that this is still a convex body.

A.3 Support Function

The support function of a convex body K is defined as:

hK W R
n ! R; hK.x/ D sup

y2K
.x; y/:

This is a 1-homogeneous convex function in R
n. Vice versa, to each 1-homogeneous

convex function h we may assign a unique convex body K such that h D hK . Support
functions and Minkowski additions interact in a very simple way; indeed, for every
K and L in Kn and ˛; ˇ � 0 we have

h˛KCˇL D ˛hK C ˇhL:
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A.4 Hausdorff Metric

Kn can be naturally equipped with a metric: the Hausdorff metric dH . One way to
define dH is as the L1.Sn�1/ distance of support functions, restricted to the unit
sphere:

dH.K;L/ D khK � hLkL1.Sn�1/ D maxfjhK.x/ � hL.x/j W x 2 S
n�1g:

Hausdorff metric has many useful properties; in particular, we note that Kn is a
locally compact space with respect to dH .

A.5 Intrinsic Volumes

An easy way to define intrinsic volumes of convex bodies is through the Steiner
formula. Let K be a convex body and let Bn denote the closed unit ball of Rn. For
 > 0 the set

K C Bn D fx C y W x 2 K; y 2 Bg D fy 2 R
n W dist.x;K/ � g

is called the parallel set of K and denoted by K . The Steiner formula asserts that
the volume of K is a polynomial in . The coefficients of this polynomial are, up to
dimensional constants, the intrinsic volumes V0.K/; : : : ;Vn.K/ of K:

Vn.K/ D

nX
iD0

Vi.K/
n�i�n�i:

Here �j denotes the j-dimensional volume of the unit ball in R
j, for every j 2

N. Among the very basic properties of intrinsic volumes, we mention that: V0
is constantly 1 for every K; Vn is the volume; Vn�1 is .n � 1/-dimensional
Hausdorff measure of the boundary (only for those bodies with non-empty interior).
Moreover, intrinsic volumes are continuous with respect to Hausdorff metric, rigid
motion invariant, monotone, and homogeneous with respect to dilations (Vi is i-
homogeneous). Finally, each intrinsic volume is a valuation

Vi.K [ L/C Vi.K \ L/ D Vi.K/C Vi.L/ (41)

for every K and L in Kn, such that K [ L 2 Kn. Hadwiger’s theorem claims that
every rigid motion invariant and continuous valuation can be written as the linear
combination of intrinsic volumes.
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A.6 Mixed Volumes

The Steiner formula is just an example of the polynomiality of the volume of linear
combinations of convex bodies. A more general version of it leads to the notions of
mixed volumes. Let m 2 N and K1; : : : ;Km be convex bodies; given 	1; : : : ; 	m � 0,
the volume of the convex body 	1K1 C � � � C 	mKm is a homogeneous polynomial
of degree n in the variables 	i’s, and its coefficients are the mixed volumes of the
involved bodies. The following more precise statement is a part of Theorem 5.16 in
[55]. There exists a function V W .Kn/n ! RC, the mixed volume, such that

Vn.	1K1 C � � � C 	mKm/ D

mX
i1;:::;inD1

	i1 � � �	in V.Ki1 ; : : : ;Kin/

for every K1; : : : ;Km 2 Kn and 	1; : : : ; 	m � 0. Hence a mixed volume is a function
of n convex bodies. Mixed volumes have a number of interesting properties. In
particular they are non-negative, symmetric, and continuous; moreover, they are
linear and monotone with respect to each entry.

A.7 The Polar Body

The polar of a convex body K, having the origin as an interior point, is the set

Kı D fy W .x; y/ � 1 8x 2 Kg:

This is again a convex body, with the origin in its interior, and .Kı/ı D K.
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On Some Problems Concerning Log-Concave
Random Vectors

Rafał Latała

1 Introduction

A Radon measure � on a locally convex linear space F is called logarithmically
concave (log-concave in short) if for any compact nonempty sets K;L 	 F and
	 2 Œ0; 1�, �.	K C .1 � 	/L/ � �.K/	�.L/1�	. A random vector with values in F
is called log-concave if its distribution is logarithmically concave.

The class of log-concave measures is closed under affine transformations,
convolutions, and weak limits. By the result of Borell [4] an n-dimensional vector
with a full dimensional support is log-concave iff it has a log-concave density, i.e.
a density of the form e�h, where h is a convex function with values in .�1;1�.
A typical example of a log-concave vector is a vector uniformly distributed over a
convex body. It may be shown that the class of log-concave distributions on R

n is
the smallest class that contains uniform distributions on convex bodies and is closed
under affine transformations and weak limits.

Every full-dimensional logarithmically concave probability measure on R
n may

be affinely transformed into an isotropic distribution, i.e. a distribution with mean
zero and identity covariance matrix.

In recent years the study of log-concave vectors attracted attention of many
researchers, cf. monographs [2] and [5]. There are reasons to believe that logarithmi-
cally concave isotropic distributions have similar properties as product distributions.
The most important results confirming this belief are the central limit theorem of
Klartag [9] and Paouris’ large deviation for Euclidean norms [21]. However, many
important questions concerning log-concave measures are still open – in this note
we present and discuss some of them.
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Notation. By h�; �i we denote the standard scalar product on R
n. For x 2 R

n we
put kxkp D .

Pn
iD1 jxij

p/1=p for 1 � p < 1 and kxk1 D maxi jxij, we also use jxj

for kxk2. We set Bn
p for a unit ball in lnp, i.e.. Bn

p D fx 2 R
nW kxkp � 1g. B.Rn/ stands

for the family of Borel sets on R
n.

By a letter C we denote absolute constants, value of C may differ at each
occurence. Whenever we want to fix a value of an absolute constant we use letters
C1;C2; : : :.

2 Optimal Concentration

Let � be a symmetric exponential measure with parameter 1, i.e. the measure on the
real line with the density 1

2
e�jxj. Talagrand [23] (see also [17] for a simpler proof

based on a functional inequality) showed that the product measure �n satisfies the
following two-sided concentration inequality

8A2B.Rn/ 8t>0 �
n.A/ �

1

2
) 1 � �n.A C C

p
tBd
2 C CtBd

1/ � e�t.1 � �n.A//:

This is a very strong result – a simple transportation of measure argument shows
that it yields the Gaussian concentration inequality

8A2B.Rn/ 8t>0 �n.A/ �
1

2
) 1 � �n.A C C

p
tBn
2/ � e�t.1 � �n.A//;

where �n is the canonical Gaussian measure on R
n, i.e. the measure with the density

.2�/�d=2 exp.�jxj2=2/.
It is natural to ask if similar inequalities may be derived for other measures. To

answer this question we should first find a right way to enlarge sets.

Definition 1 Let � be a probability measure on R
n, for p � 1 we define the

following sets

Mp.�/ WD
n
v 2 R

nW

Z
jhv; xijpd�.x/ � 1

o
;

and

Zp.�/ WD .Mp.�//
ı D

n
x 2 R

nW jhv; xijp �

Z
jhv; yijpd�.y/ for all v 2 R

n
o
:

Sets Zp.�K/ for p � 1, when �K is the uniform distribution on the convex
body K are called Lp-centroid bodies of K. They were introduced (under a different
normalization) in [16], their properties were also investigated in [21]. Observe that
for isotropic measures M2.�/ D Z2.�/ D Bn

2.
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Obviously Mp.�/ 	 Mq.�/ and Zp.�/ � Zq.�/ for p � q. Next definition
allows to reverse these inclusions.

Definition 2 We say that moments of a probability measure � on R
n grow

˛-regularly for some ˛ 2 Œ1;1/ if for any p � q � 2 and v 2 R
n,

�Z
jhv; xijpd�.x/

�1=p

� ˛
p

q

�Z
jhv; xijqd�.x/

�1=q

:

It is easy to see that for measures with ˛-regular growth of moments and p �

q � 2 we have ˛ p
qMp.�/ � Mq.�/ and Zp.�/ 	 ˛ p

qZq.�/.
Moments of log-concave measures grow 3-regularly (1-regularly for symmetric

measures and 2-regularly for centered measures). The following easy observation
was noted in [15].

Proposition 3 Suppose that � is a symmetric probability measure on R
n with ˛-

regular growth of moments. Let K be a convex set such that for any halfspace A,

�.A/ �
1

2
) 1 � �.A C K/ �

1

2
e�p:

Then K � c.˛/Zp if p � p.˛/, where c.˛/ and p.˛/ depend only on ˛.

The above motivates the following definition.

Definition 4 We say that a measure � satisfies the optimal concentration inequality
with constant ˇ (CI.ˇ/ in short) if

8p�2 8A2B.Rn/ �.A/ �
1

2
) 1 � �.A C ˇZp.�// � e�p.1 � �.A//:

By the result of Gluskin and Kwapien [6], Mp.�
n/ � p�1Bn

1 \ p�1=2Bn
2, so

Zp.�
n/ � pBn

1 C p1=2Bn
2. Therefore Talagrand’s two-sided concentration inequality

states that �n satisfy CI.ˇ/ with ˇ � C.

Remark 5 By Proposition 2.7 in [15] CI.ˇ/ may be equivalently stated as

8p�2 8A2B.Rn/ �.A C ˇZp.�// � min

�
1

2
; ep�.A/

�
: (1)

In [15] a very strong conjecture was posed that every symmetric log-concave
measure on R

n satisfy CI.ˇ/ with a uniform constant ˇ. Unfortunately there are
very few examples supporting this conjecture.

Theorem 6 The following probability measures satisfy the optimal concentration
inequality with an absolute constant ˇ:

i) symmetric product log-concave measures;
ii) uniform distributions on Bn

p-balls, 1 � p � 1;
iii) rotationally invariant logconcave measures.
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Parts i) ii) were showed in [15], iii) may be showed using a radial transportation
and the Gaussian concentration inequality.

Property CI.ˇ/ is invariant under linear transformations, so it is enough to study
it for isotropic measures. For isotropic log-concave measures and p � 2 we have
Zp.�/ 	 pZ2.�/ D pBn

2, so CI.ˇ/ implies the exponential concentration:

8A2B.Rn/ �.A/ �
1

2
) 1 � �.A C ˇpBn

2/ � e�p for p � 2:

By the result of E. Milman [20] the exponential concentration for log-concave
measures is equivalent to Cheeger’s inequality:

8A2B.Rn/ �
C.A/ WD lim

t!0C

�.A C tBn
2/ � �.A/

t
�
1

ˇ0
minf�.A/; 1 � �.A/g;

and constants ˇ; ˇ0 are comparable up to universal multiplicative factors. The
long-standing open conjecture of Kannan, Lovasz, and Simonovits [8] states that
isotropic log-concave probability measures satisfy Cheeger’s inequality with a
uniform constant.

The best known bound for the exponential concentration constant for isotropic
log-concave measures ˇ � Cn1=3

p
log n is due to Eldan [7]. We will show a weaker

estimate for the CI constant.

Proposition 7 Every centered log-concave probability measure on R
n satisfies the

optimal concentration inequality with constant ˇ � C
p

n.

Our proof is based on the following two simple lemmas.

Lemma 8 Let � be a probabilistic measure on R
n. Then

�.10	Zp.�// � 1 � 	�p for p � n; 	 � 1:

Proof Let T D fu1; : : : ; uNg be a 1=2-net in Mp.�/ of cardinality N � 5n, i.e.
such set T 	 Mp.�/ that Mp.�/ 	 T C 1

2
Mp.�/. Then the condition x … Zp.�/

implies huj; xi > 1=2 for some j � N. Hence

1 � �.10	Zp.�// D �.Rn n 10	Zp.�// �

NX
jD1

�fx 2 R
nW huj; xi > 5	g

� N.5	/�p � 	�p;

where the second inequality follows by Chebyshev’s inequality. �

Lemma 9 Let � be a log-concave probability measure on R
n and K be a symmetric

convex set such that �.K/ � 1�e�p for some p � 2. Then for any Borel set A in R
n,

�.A C 9K/ � min

�
1

2
; ep�.A/

�
:
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Proof By Borell’s lemma [4] we have for t � 1,

1 � �.tK/ � �.K/

�
1 � �.K/

�.K/

� tC1
2

� e� tC1
3 p:

Let �.A/ D e�u for some u � 0. Set

Qu WD maxfu; 2pg and QA WD A \ 4
Qu

p
K:

We have

�. QA/ � �.A/ �

�
1 � �

�
4

Qu

p
K

��
� e�u � e�

p
3 e� 4Qu

3 �
1

2
e�Qu:

Observe that if x 2 QA then 2p
Qu x 2 8K, therefore .1 � 2p

Qu /
QA 	 QA C 8K and

�.A C 9K/ � �. QA C 8K C K/ � �

��
1 �

2p

Qu

�
QA C

2p

Qu
K

�
� �. QA/1�

2p
Qu �.K/

2p
Qu

�

�
1

2
e�Qu

�1� 2p
Qu
�
1

2

� 2p
Qu

D
1

2
e2p�Qu � min

�
1

2
; ep�.A/

�
:

�

Proof of Proposition 7. By the linear invariance we may and will assume that � is
isotropic.

Applying Lemma 8 with 	 D e and Lemma 9 with K D 10eZp.�/ we see
that (1) holds with ˇ D 90e for p � n. For p �

p
n we have 2

p
nZp.�/ � Zp

p
n.�/

and we get (1) with ˇ D 180e
p

n in this case.
The Paouris inequality (4) gives

1 � �.C1t
p

nBn
2/ � e�t

p
n for t � 1:

Together with Lemma 9 this yields for any Borel set A and t � 1,

�.A C 9C1t
p

nBn
2/ � min

�
1

2
; et

p
n�.A/

�
:

Using the above bound for t D 1 and the inclusion Zp.�/ � Z2.�/ D Bn
2 we

obtain (1) with ˇ D 9C1
p

n for 2 � p �
p

n. �

It would be of interest to improve the estimate from Proposition 7 to ˇ � Cn1=2�"

for some " > 0. Suppose that we are able to show that

�

�
C2

r
n

p
Zp.�/

�
� 1 � e�p for 2 � p � n: (2)
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Then (assuming again that � is isotropic)
i) if p � p0 WD n1=9.log n/�1=3, we obtain by the Eldan’s bound on Cheeger’s
constant

�.A C Cn4=9.log n/1=6Zp.�// � �.A C Cp0n
1=3
p

log nBn
2/ � min

�
1

2
; ep0�.A/

�

� min

�
1

2
; ep�.A/

�
:

ii) if p0 � p � n, then by (2) and Lemma 9,

�.A C 9C2n
4=9.log n/1=6Zp.�// � �

�
A C 9C2

r
n

p
Zp.�/

�
� min

�
1

2
; ep�.A/

�
:

So (2) would yield CI.ˇ/ for � with ˇ � Cn4=9.log n/1=3. Unfortunately we do
not know whether (2) holds for symmetric log-concave measures (we are able to
show it in the unconditional case).

A measure � on R
n is called unconditional if it is invariant under symmetries

with respect to coordinate axes. If � is a log-concave, isotropic, and unconditional
measure on R

n, then the result of Bobkov and Nazarov [3] yields Zp.�/ 	

CZp.�
n/. Therefore property CI.ˇ/ yields two-level concentration inequality for

such measures

8A2B.Rn/ 8t>0 �.A/ �
1

2
) 1��.ACCˇ.

p
tBd
2C tBd

1// � e�t.1��.A//: (3)

Klartag [10] showed that unconditional isotropic log-concave measures satisfy
exponential concentration inequality with a constant ˇ � C log n. We do not know
if similar bound for ˇ holds for the optimal concentration inequality or its weaker
form (3).

3 Weak and Strong Moments

One of the fundamental properties of log-concave vectors is the Paouris inequality
[21] (see also [1] for a shorter proof).

Theorem 10 For any log-concave vector X in R
n,

.EjXjp/1=p � C.EjXj C �X.p// for p � 1;

where

�X.p/ WD sup
jvj�1

.Ejhv;Xijp/1=p :
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Equivalently, in terms of tails we have

P.jXj � CtEjXj/ � exp
�
���1

X .tEjXj/
�

for t � 1:

Observe that if X is additionally isotropic then �X.p/ � p�X.2/ D p for p � 2 and
EjXj � .EjXj2/1=2 D

p
n, so we get

P.jXj � Ct
p

n/ � e�t
p

n for t > 1 and isotropic log-concave vector X: (4)

It would be very valuable to have a reasonable characterization of random vectors
which satisfy the Paouris inequality. The following example shows that the regular
growth of moments is not enough.

Example 11 Let Y D
p

ngU, where U has a uniform distribution on Sn�1 and g is
the standard normal N .0; 1/ r.v., independent of U. Then it is easy to see that Y is
isotropic, rotationally invariant and for any seminorm on R

n

.EkYkp/1=p D
p

n.Ejgjp/1=p.EkUkp/1=p �
p

pn.EkUkp/1=p for p � 1:

In particular this implies that for any v 2 R
n,

.Ejhv;Yijp/1=p � C
p

q
.Ejhv;Yijq/1=q for p � q � 2:

So moments of Y grow C-regularly. Moreover

.EjYjp/1=p �
p

pn; .EjYj2/1=2 D
p

n; �Y.p/ � Cp;

thus for 1  p  n, .EjYjp/1=p � .EjYj2/1=2 C �Y.p/.

It is natural to ask whether Theorem 10 may be generalized to non-Euclidean
norms. In [11] the following conjecture was formulated and discussed.

Conjecture 12 There exists a universal constant C such that for any n-dimensional
log-concave vector X and any norm k k on R

n,

.EkXkp/1=p � C

 
EkXk C sup

kvk��1

.Ejhv;Xijp/1=p

!
for p � 1;

where kvk� D supfjhv; xijW kxk � 1g denotes the dual norm on R
n.

Note that obviously for any random vector X and p � 1,

.EkXkp/1=p � max

(
EkXk; sup

kvk��1

.Ejhv;Xijp/1=p

)
:
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The following simple observation from [15] shows that the optimal concentration
yields comparison of weak and strong moments.

Proposition 13 Suppose that the law of an n-dimensional random vector X is ˛-
regular and satisfies the optimal concentration inequality with constant ˇ. Then for
any norm k k on R

n,

.EjkXk � EkXkjp/1=p � C˛ˇ sup
kvk��1

.Ejhv;Xijp/1=p for p � 1:

Recall that log-concave measures are 3-regular. Therefore if the law of X is of
one of three types listed in Theorem 6 then for any norm k k,

.EkXkp/1=p � EkXk C C sup
kvk��1

.Ejhv;Xijp/1=p for p � 1:

We do not know if such inequality is satisfied for Euclidean norms and arbitrary
log-concave vectors, i.e. whether Paouris inequality holds with the constant 1 in
front of EjXj. This question is related to the so-called variance conjecture, discussed
in [2].

The following extension of the Paouris inequality was shown in [13].

Theorem 14 Let X be a log-concave vector with values in a normed space .F; k k/

which may be isometrically embedded in `r for some r 2 Œ1;1/. Then for p � 1,

.EkXkp/1=p � Cr

 
EkXk C sup

'2F�;k'k��1

.Ej'.X/jp/1=p

!
:

Remark 15 Let X and F be as above. Then by Chebyshev’s inequality we obtain
large deviation estimate for kXk:

P.kXk � CrtEkXk/ � exp
�
���1

X;F.tEkXk/
�

for t � 1;

where

�X;F.p/ WD sup
'2F�;k'k��1

.E'.X/p/1=p for p � 1

denotes the weak p-th moment of kXk.

Remark 16 If iW F ! `r is a nonisometric embedding and 	 D kikF!`r ki�1ki.F/!F ,
then we may define another norm on F by kxk0 WD ki.x/k=kikF!`r . Obviously
.F; k k0/ isometrically embeds in `r, moreover kxk0 � kxk � 	kxk0 for x 2 F.
Hence Theorem 14 gives
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.EkXkp/1=p � 	.E.kXk0/p/1=p � C2r	

 
EkXk0 C sup

'2F�;k'k
0

�
�1

.Ej'.X/jp/1=p

!

� C2r	

 
EkXk C sup

'2F�;k'k��1

.Ej'.X/jp/1=p

!
:

Since log-concavity is preserved under linear transformations and, by the Hahn-
Banach theorem, any linear functional on a subspace of lr is a restriction of
a functional on the whole lr with the same norm, it is enough to prove Theorem 14
for F D lr. An easy approximation argument shows that we may consider finite
dimensional spaces lnr . This way Theorem 14 reduces to the following finite
dimensional statement.

Theorem 17 Let X be a log-concave vector in R
n and r 2 Œ1;1/. Then

.EkXkp
r /
1=p � Cr .EkXkr C �r;X.p// for p � 1;

where

�r;X.p/ WD �X;lnr .p/ D sup
kvkr0 �1

.Ejhv;Xijp/1=p

and r0 denotes the Hölder’s dual of r, i.e. r0 D r
r�1 for r > 1 and r0 D 1 for r D 1.

Any finite dimensional space embeds isometrically in `1, so to show Conjec-
ture 12 it is enough to establish Theorem 17 (with a universal constant in place of
Cr) for r D 1. Such a result was shown for isotropic log-concave vectors.

Theorem 18 ([12]) Let X be an isotropic log-concave vector in R
n. Then for any

a1; : : : ; an and p � 1,

.Emax
i

jaiXij
p/1=p � C

�
Emax

i
jaiXij C max

i
.EjaiXij

p/1=p

�
for p � 1:

However a linear image of an isotropic vector does not have to be isotropic, so to
establish the conjecture we need to consider either isotropic vectors and an arbitrary
norm or vectors with a general covariance structure and the standard `1-norm.

In the case of unconditional vectors slightly more is known.

Theorem 19 ([11]) Let X be an n-dimensional isotropic, unconditional, log-
concave vector and Y D .Y1; : : : ;Yn/, where Yi are independent symmetric
exponential r.v’s with variance 1 (i.e., with the density 2�1=2 exp.�

p
2jxj/). Then

for any norm k k on R
n and p � 1,

.EkXkp/1=p � C

 
EkYk C sup

kvk��1

.Ejhv;Xijp/1=p

!
:
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Proof is based on the Talagrand generic-chaining type two-sided estimate of
EkYk [24] and the Bobkov-Nazarov [3] bound for the joint d.f. of X, which implies
.Ejhv;Xijp/1=p � C.Ejhv;Yijp/1=p for p � 1 and v 2 R

n.
Using the easy estimate EkYk � C log n EkXk we get the following.

Corollary 20 For any n-dimensional unconditional, log-concave vector X, any
norm k k on R

n and p � 1 one has

.EkXkp/1=p � C

 
log n EkXk C sup

kvk��1

.Ejhv;Xijp/1=p

!
:

The Maurey-Pisier result [18] implies EkYk � CEkXk in spaces with nontrivial
cotype.

Corollary 21 Let 2 � q < 1 and F D .Rn; k k/ has a q-cotype constant bounded
by ˇ < 1. Then for any n-dimensional unconditional, log-concave vector X and
p � 1,

.EkXkp/1=p � C.q; ˇ/

 
EkXk C sup

kvk��1

.Ejhv;Xijp/1=p

!
:

where C.q; ˇ/ is a constant that depends only on q and ˇ.

For a class of invariant measures Conjecture 12 was established in [12].

Proposition 22 Let X be an n-dimensional random vector with the density of the
form e�'.kxkr/, where 1 � r � 1 and 'W Œ0;1/ ! .�1;1� is nondecreasing and
convex. Then for any norm k k on R

n and any p � 1,

.EkXkp/1=p � C.r/EkXk C C sup
kvk��1

.Ejhv;Xijp/1=p :

4 Sudakov Minoration

For any norm k k on R
n we have

kxk D sup
kvk��1

hv; xi D
1

2
sup

kvk�;kwk��1

hv � w; xi for x 2 R
n:

Thus to estimate the mean of a norm of a random vector X one needs to investigate
E supv;w2Vhv � w;Xi for bounded subsets V in R

n.
There are numerous powerful methods to estimate suprema of stochastic pro-

cesses (cf. the monograph [25]), let us however present only a very easy upper
bound. Namely for any p � 1,
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E sup
v;w2V

hv � w;Xi �

 
E sup
v;w2V

jhv � w;Xijp

!1=p

�

 
E

X
v;w2V

jhv � w;Xijp

!1=p

� jVj2=p sup
v;w2V

.Ejhv � w;Xijp/1=p :

In particular,

E sup
v;w2V

hv � w;Xi � e2 sup
v;w2V

.Ejhv � w;Xijp/1=p if jVj � ep:

It is natural to ask when the above estimate may be reversed. Namely, when
is it true that if the set V 	 R

n has large cardinality (say at least ep) and variables
.hv;Xi/v2V are A-separated with respect to the Lp-distance then E supv;w2Vhv�w;Xi

is at least of the order of A? The following definition gives a more precise
formulation of such property.

Definition 23 Let X be a random n-dimensional vector. We say that X satisfies the
Lp-Sudakov minoration principle with a constant � > 0 (SMPp.�/ in short) if for
any nonempty set V 	 R

n with jVj � ep such that

dX;p.v;w/ WD .Ejhv � w;Xijp/1=p � A for all v;w 2 V; v ¤ w; (6)

we have

E sup
v;w2V

hv � w;Xi � �A: (7)

A random vector X satisfies the Sudakov minoration principle with a constant �
(SMP.�/ in short) if it satisfies SMPp.�/ for any p � 1.

Example 24 If X has the canonical n-dimensional Gaussian distribution N .0; In/

then .Ejhv;Xijp/1=p D �pjvj, where �p D .EjN .0; 1/jp/1=p �
p

p for p � 1. Hence
condition (6) is equivalent to jv � wj � A=�p for distinct vectors v;w 2 V and the
classical Sudakov minoration principle for Gaussian processes [22] then yields

E sup
v;w2V

hv � w;Xi D 2E sup
v2V

hv;Xi �
A

C�p

p
log jVj �

A

C

provided that jVj � ep. Therefore X satisfies the Sudakov minoration principle with
a universal constant. In fact it is not hard to see that for centered Gaussian vectors the
Sudakov minoration principle in the sense of Definition 23 is formally equivalent to
the minoration property established by Sudakov.

The Sudakov minoration principle for vectors X with independent coordinates
was investigated in detail in [14]. It was shown there that for SMP in such a case the
sufficient (and necessary if coordinates of X have identical distribution) condition is
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the regular growth of moments of coordinates of X, i.e. the existence of ˛ < 1 such
that .EjXij

p/1=p � ˛ p
q .EjXij

q/1=q for all i and p � q � 1. In particular log-concave
vectors X with independent coordinates satisfy SMP with a universal constant �.

In the sequel we will discuss the following conjecture.

Conjecture 25 Every n-dimensional log-concave random vector satisfies the
Sudakov-minoration principle with a universal constant.

Remark 26 Suppose that X is log-concave and (6) is satisfied, but jVj D eq with
1 � q � p. Since dX;q.v;w/ � q

3p dX;p.v;w/, the Sudakov minoration principle for
a log-concave vector X implies the following formally stronger statement – for any
nonempty V 	 R

n and A > 0,

E sup
v;w2V

hv � w;Xi �
�

C
sup
p�1

min

�
A

p
log N.V; dX;p;A/;A

�
;

where N.V; d; "/ denotes the minimal number of balls in metric d of radius " that
cover V .

The Sudakov minoration principle and Conjecture 25 were posed independently
by Shahar Mendelson, Emanuel Milman, and Grigoris Paouris (unpublished) and by
the author in [12]. In [19] there is discussed approach to the Sudakov minoration and
its dual version based on variants of the Johnson-Lindenstrauss dimension reduction
lemma. The results presented below were proven in [12].

It is easy to see that the Sudakov minoration property is affinely invariant, so
it is enough to investigate it only for isotropic random vectors. Using the fact that
isotropic log-concave vectors satisfy exponential concentration with constant Cn�

with � < 1=2 one may show that the lower bound (6) holds for special classes of
sets.

Proposition 27 Suppose that X is an n-dimensional log-concave random vector,
p � 2, V 	 R

n satisfies (6) and Cov.hv;Xi; hw;Xi/ D 0 for v;w 2 V with v ¤ w.
Then (7) holds with a universal constant � provided that jVj � ep.

In the case of general sets we know at the moment only the following much
weaker form of the Sudakov minoration principle.

Theorem 28 Let X be a log-concave vector, p � 1 and V 	 R
n be such that

jVj � eep
and (6) holds. Then

E sup
v;w2V

hv � w;Xi �
1

C
A:

Stronger bounds may be derived in the unconditional case. Comparing uncon-
ditional log-concave vectors with vectors with independent symmetric exponential
coordinates one gets the following bound on �.
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Proposition 29 Suppose that X is an n-dimensional log-concave unconditional
vector. Then X satisfies SMP.1=C log.n C 1//.

The next result presents a bound on � independent of dimension but under a
stronger assumptions on the cardinality of V than in the definition of SMP.

Theorem 30 Let X be a log-concave unconditional vector in R
n, p � 1 and V 	 R

n

be such that jVj � ep2 and (6) holds. Then

E sup
v;w2V

hv � w;Xi D 2E sup
v2V

hv;Xi �
1

C
A:

Remark 31 Theorems 28 and 30 may be rephrased in terms of entropy numbers as
in Remark 26. Namely, for any nonempty set V 	 R

n and log-concave vector X,

E sup
v;w2V

hv � w;Xi �
1

C
sup

p�1;A>0
min

�
A

p
log log N.V; dX;p;A/;A

�
:

If X is unconditional and log-concave, then

E sup
v;w2V

hv � w;Xi �
1

C
sup

p�1;A>0
min

�
A

p

q
log N.V; dX;p;A/;A

�
:

We know that a class of invariant log-concave vectors satisfy SMP.�/ with
uniform �.

Theorem 32 All n-dimensional random vectors with densities of the form
exp.�'.kxkp//, where 1 � p � 1 and 'W Œ0;1/ ! .�1;1� is nondecreasing
and convex satisfy the Sudakov minoration principle with a universal constant. In
particular all rotationally invariant log-concave random vectors satisfy the Sudakov
minoration principle with a universal constant.

One of the important consequences of the SMP-property is the following
comparison-type result for random vectors.

Proposition 33 Suppose that a random vector X in R
n satisfies SMP.�/. Let Y be

a random n-dimensional vector such that Ejhv;Yijp � Ejhv;Xijp for all p � 1,
v 2 R

n. Then for any norm k k on R
n and p � 1,

.EkYkp/1=p � C
�1
�

logC

�en

p

	
EkXk C sup

kvk��1

.Ejhv;Yijp/1=p
	

� C
�1
�

logC

�en

p

	
C 1

	
.EkXkp/1=p: (8)

As a consequence we know that for random vectors which satisfy Sudakov
minoration principle weak and strong moments are comparable up to a logarithmic
factor.
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Corollary 34 Suppose that X is an n-dimensional random vector, which satisfies
SMP.�/. Then for any norm k k on R

n and any p � 1,

�
EkXkp

�1=p
� C

�1
�

logC

�en

p

	
EkXk C sup

kvk��1

�
Ejhv;Xijp

�1=p
	
:
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Stability Results for Some Geometric
Inequalities and Their Functional Versions

Umut Caglar and Elisabeth M. Werner

Abstract The Blaschke Santaló inequality and the Lp affine isoperimetric inequal-
ities are major inequalities in convex geometry and they have a wide range of
applications. Functional versions of the Blaschke Santaló inequality have been
established over the years through many contributions. More recently and ongoing,
such functional versions have been established for the Lp affine isoperimetric
inequalities as well. These functional versions involve notions from information
theory, like entropy and divergence.

We list stability versions for the geometric inequalities as well as for their
functional counterparts. Both are known for the Blaschke Santaló inequality.
Stability versions for the Lp affine isoperimetric inequalities in the case of convex
bodies have only been known in all dimensions for p D 1 and for p > 1 only for
convex bodies in the plane. Here, we prove almost optimal stability results for the Lp

affine isoperimetric inequalities, for all p, for all convex bodies, for all dimensions.
Moreover, we give stability versions for the corresponding functional versions of the
Lp affine isoperimetric inequalities, namely the reverse log Sobolev inequality, the
Lp affine isoperimetric inequalities for log concave functions, and certain divergence
inequalities.

Keywords Entropy • Divergence • Affine isoperimetric inequalities • Log
Sobolev inequalities
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1 Introduction and Background

We present stability results for several geometric and functional inequalities.
Our main focus will be on geometric inequalities coming from affine convex
geometry, namely the Blaschke Santaló inequality, e.g., [24, 55], and the Lp affine-
isoperimetric and related inequalities [12, 21, 45, 51, 66] and also their functional
counterparts, which includes the functional Blaschke Santaló inequality [5, 7, 22, 35]
and the recently established divergence and entropy inequalities [6, 17, 20]. These
inequalities are fundamental in convex geometry and geometric analysis, e.g.,
[10, 29, 30, 45, 46, 48, 49, 60, 64, 66, 67], and they have applications throughout
mathematics. We only quote: approximation theory of convex bodies by polytopes
[11, 27, 37, 54, 57, 61], affine curvature flows [3, 4, 62, 63], information theory
[6, 17, 18, 20, 51, 65], valuation theory [2, 28, 29, 38, 40, 41, 42, 52, 56], and partial
differential equations [43]. Therefore, it is important to know stability results of
those inequalities.

Stability results answer the following question: Is the inequality that we consider
sensitive to small perturbations? In other words, if a function almost attains the
equality in a given inequality, is it possible to say that then this function is close
to the minimizers of the inequality? For the Blaschke Santaló inequality and the
functional Blaschke Santaló inequality such stability results have been established in
[8] and [9], respectively. Stability results for the Lp-affine isoperimetric inequalities
for convex bodies were proved in [13] for p D 1 and dimension n � 3. In [32, 33],
stability results for the Lp-affine isoperimetric inequality were proved in dimension
2 and for p � 1.

We present here stability results for the Lp-affine isoperimetric inequalities for all
p and in all dimensions. Stability results for the corresponding functional versions
of these inequalities are also given.

Throughout, we will assume that K is a convex body in R
n, i.e., a convex compact

subset of R
n with non-empty interior int.K/. We denote by @K the boundary of

K and by vol.K/ or jKj its n-dimensional volume. Bn
2 is the Euclidean unit ball

centered at 0 and Sn�1 D @Bn
2 its boundary. The standard inner product on R

n is h; i.
It induces the Euclidean norm, denoted by k � k2. We will use the Banach-Mazur
distance dBM.K;L/ to measure the distance between the convex bodies K and L,

dBM.K;L/ D minf˛ � 1 W K � x 	 T.L � y/ 	 ˛.K � x/;

for T 2 GL.n/; x; y 2 R
ng:

In the case when K and L are 0-symmetric, x and y can be taken to be 0,

dBM.K;L/ D minf˛ � 1 W K 	 T.L/ 	 ˛ K; for T 2 GL.n/g:
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2 Stability in Inequalities for Convex Bodies

2.1 The Blaschke Santaló Inequality

Let K be a convex body in R
n such that 0 2 int.K/. The polar Kı of K is defined as

Kı D fy 2 R
n W hx; yi � 1 for all x 2 Kg

and, more generally, the polar Kz with respect to z 2 int.K/ by .K � z/ı. The
classical Blaschke Santaló inequality (see, e.g., [55]) states that there is a unique
point s 2 int.K/, the Santaló point of K, such that the volume product jKjjKsj is
minimal and that

jKj jKsj � jBn
2j
2

with equality if and only if K is an ellipsoid.
Ball and Böröczky [8] proved the following stability version of the Blaschke

Santaló inequality. It will be one of the tools to prove stability versions for the Lp-
affine isoperimetric inequalities.

Theorem 1 ([8]) Let K be a convex body in R
n, n � 3, with Santaló point at 0. If

jKjjKıj > .1 � "/jBn
2j
2, for " 2 .0; 1

2
/, then for some � > 0, depending only on n,

we have

dBM.K;B
n
2/ < 1C �"

1
3.nC1/ j log "j

4
3.nC1/ :

Remark It was noted in [8] that if K is 0-symmetric, then the exponent 1
3.nC1/

occurring in Theorem 1 can be replaced by 2
3.nC1/

. Moreover, it was also noted in
[8] that taking K to be the convex body resulting from Bn

2 by cutting off two opposite
caps of volume ", shows that the exponent 1

.3.nC1/
cannot be replaced by anything

larger than 2
nC1

, even for 0-symmetric convex bodies with axial rotational symmetry.
Therefore the exponent of " is of the correct order.

2.2 Lp-Affine Isoperimetric Inequalities

Now we turn to stability results for the Lp-affine isoperimetric inequalities for
convex bodies. These inequalities involve the Lp-affine surface areas which are a
central part of the rapidly developing Lp and Orlicz Brunn Minkowski theory and
are the focus of intensive investigations (see, e.g., [19, 23, 25, 26, 30, 39, 40, 41, 42,
43, 44, 45, 46, 47, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66]).

The Lp-affine surface area asp.K/ of a convex body K in R
n was introduced

by Lutwak for all p > 1 in his seminal paper [45] and for all other p by Schütt
and Werner [60](see also [31]). The case p D 1 is the classical affine surface area
introduced by Blaschke in dimensions 2 and 3 [12] (see also [36, 59]).
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Let p 2 R, p ¤ �n and assume that K is a convex body with centroid or Santaló
point at the origin. Then

asp.K/ D

Z
@K

�.x/
p

nCp

hx;N.x/i
n.p�1/

nCp

d�K.x/; (1)

where N.x/ is the unit outer normal in x 2 @K, the boundary of K, �.x/ is the
(generalized) Gaussian curvature in x and �K is the surface area measure on @K. In
particular, for p D 0

as0.K/ D

Z
@K

hx;NK.x/i d�K.x/ D njKj:

For p D 1,

as1.K/ D

Z
@K
�K.x/

1
nC1 d�K.x/

is the classical affine surface area which is independent of the position of K in space.
Note also that asp.Bn

2/ D voln�1.@Bn
2/ D njBn

2j for all p ¤ �n. If the boundary of
K is sufficiently smooth, (1) can be written as an integral over the boundary Sn�1 of
the Euclidean unit ball Bn

2,

asp.K/ D

Z
Sn�1

fK.u/
n

nCp

hK.u/
n.p�1/

nCp

d�.u/:

Here, � is the usual surface area measure on Sn�1, hK.u/ D maxx2Khx; ui is the
support function of K in direction u 2 Sn�1, and fK.u/ is the curvature function, i.e.
the reciprocal of the Gaussian curvature �K.x/ at this point x 2 @K that has u as
outer normal. In particular, for p D ˙1,

as˙1.K/ D

Z
Sn�1

1

hK.u/n
d�.u/ D njKıj: (2)

The Lp-affine surface area is invariant under linear transformations T with
determinant 1. More precisely (see, e.g., [60]), if T W Rn ! R

n is a linear, invertible
map, then

asp.T.K// D jdetTj
n�p
nCp asp.K/: (3)

The Lp-affine surface area is a valuation [40, 42, 58], i.e., for convex bodies K and
L such that K [ L is convex,

asp.K [ L/C asp.K \ L/ D asp.K/C asp.L/:
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Valuations have become a major topic in convex geometry in recent years. We refer
to, e.g., [2, 28, 29, 38, 40, 41, 42, 52, 56].

We now state the Lp-affine isoperimetric inequalities for the quantities asp.K/.
They were proved by Lutwak for p > 1 [45] and for all other p by Werner and Ye
[66]. The case p D 1 is the classical affine isoperimetric inequality [12, 21].

Theorem 2 (p D 1 [12, 21], p > 1 [45], all other p [66]) Let K be a convex body
with centroid at the origin.

(i) If p > 0, then

asp.K/

asp.Bn
2/

�

�
jKj

jBn
2j

� n�p
nCp

;

with equality if and only if K is an ellipsoid. For p D 0, equality holds trivially
for all K.

(ii) If �n < p < 0, then

asp.K/

asp.Bn
2/

�

�
jKj

jBn
2j

� n�p
nCp

;

with equality if and only if K is an ellipsoid.
(iii) If K is in addition in C2

C and if p < �n, then

c
np

nCp

�
jKj

jBn
2j

� n�p
nCp

�
asp.K/

asp.Bn
2/
:

The constant c in (iii) is the constant from the inverse Blaschke Santaló inequality
due to Bourgain and Milman [15]. This constant has recently been improved by
Kuperberg [34] (see also [50] for a different proof).

2.3 Stability for the Lp-Affine Isoperimetric Inequality for
Convex Bodies

Stability results for the Lp-affine isoperimetric inequalities for convex bodies were
proved by Böröczky [13] for p D 1 and dimension n � 3. Ivaki [32, 33] gave
stability results for the Lp-affine isoperimetric inequality in dimension 2 and p � 1.
We present here stability results for the Lp-affine isoperimetric inequalities for all p
and in all dimensions. Before we do so, we first quote the results by Böröczky [13]
and Ivaki [33].

Theorem 3 ([13]) If K is a convex body in R
n, n � 3, and

�
as1.K/

as1.Bn
2/

�nC1

> .1 � /

�
jKj

jBn
2j

�n�1

for  2

�
0;
1

2

�
; (4)
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then for some � > 0, depending only on n, we have

dBM.K;B
n
2/ < 1C �"

1
6n j log "j

1
6 :

Later, in [8], the above approximation was improved to

dBM.K;B
n
2/ < 1C �"

1
3.nC1/ j log "j

4
3.nC1/ :

Ivaki [33] gave a stability version for the Blaschke Santaló inequality from which
the following stability result for the Lp-affine isoperimetric inequality in dimension
2 and p � 1 follows easily.

Theorem 4 ([33]) Let K be an origin symmetric convex body in R
2, and p � 1.

There exists an p > 0, depending on p, such that the following holds. If for an ,
0 <  < p,

�
asp.K/

2�

�pC2

> .1 � /p
�

area.K/

�

�2�p

then for some � > 0, we have

dBM.K;B
2
2/ < 1C �"

1
2 : (5)

The same author also considered the case when K is a not necessarily origin
symmetric convex body in R

2 [33]. Then the order of approximation becomes 1
4

instead of 1
2
. Note also that there are results in dimension n D 2 by Böröczky and

Makai [14] on stability of the Blaschke Santaló inequality, from which a stability
result of the form (5) for the Lp-affine isoperimetric inequality in dimension 2
follows easily. But the order of approximation in the origin-symmetric case is 1=3
and in the general case 1=6.

We now present almost optimal stability results for the Lp-affine isoperimetric
inequalities, for all p, for all convex bodies, for all dimensions. To do so, we use the
above stability version of the Blaschke Santaló inequality by Ball and Böröczky [8],
together with inequalities proved in [66].

Theorem 5 Let K be a convex body in R
n, n � 3, with Santaló point or centroid at

0.

(i) Let p > 0. If
�

asp.K/
asp.B

n
2/

	nCp
> .1�"/p

�
jKj
jBn
2j

	n�p
, then for some � > 0, depending

only on n, we have

dBM.K;B
n
2/ < 1C �"

1
3.nC1/ j log "j

4
3.nC1/ :
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(ii) Let �n < p < 0. If
�

asp.K/
asp.B

n
2/

	nCp
< .1 � "/p

�
jKj
jBn
2j

	n�p
, then for some � > 0,

depending only on n, we have

dBM.K;B
n
2/ < 1C �"

1
3.nC1/ j log "j

4
3.nC1/ :

Remarks (i) If K is 0-symmetric, then "
1

3.nC1/ can be replaced by "
2

3.nC1/ . This
follows from [8]. See also the Remark after Theorem 1.

(ii) The example in [8] already quoted in the Remark after Theorem 1 shows that

"
1

3.nC1/ cannot be replaced by anything smaller than "
2

n�1 , even for 0-symmetric
convex bodies with axial rotational symmetry. Indeed, let K be the convex body
obtained from Bn

2 by removing two opposite caps of volume " each. Then

�
asp.K/

asp.Bn
2/

�nCp

> .1 � k"
n�1
nC1 /p

�
jKj

jBn
2j

�n�p

D .1 � ı/p
�

jKj

jBn
2j

�n�p

;

where we have put ı D k"
n�1
nC1 and where k is a constant that depends on n only,

except for 0 < p < n, where it also depends on p. And dBM.K;Bn
2/ D 1C�ı

2
n�1 .

Proof of Theorem 5. (i) As asp.Bn
2/ D njBn

2j, we observe that the inequality

�
asp.K/

asp.Bn
2/

�nCp

> .1 � "/p
�

jKj

jBn
2j

�n�p

is equivalent to the inequality

asp.K/
nCp > .1 � "/pnnCpjKjn�pjBn

2j
2p: (6)

It was proved in [66] that for all p > 0,

asp.K/
nCp � nnCpjKjnjKıjp:

Hence we get from the assumption that

nnCpjKjnjKıjp > .1 � "/pnnCpjKjn�pjBn
2j
2p;

or equivalently, that

jKjjKıj > .1 � "/ jBn
2j
2;

and we conclude with the Ball and Böröczky stability result in Theorem 1.
(ii) The proof of (ii) is done similarly. We use the inequality

asp.K/
nCp � nnCpjKjnjKıjp;

which holds for �n < p < 0 and which was also proved in [66]. �
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Another stability result for the Lp-affine isoperimetric inequalities for convex
bodies is obtained as a corollary to Proposition 17 below. We list it now, as we want
to compare the two. Let K be a convex body in R

n with 0 in its interior and let the
function  of Proposition 17 be  .x/ D kxk2K=2, where k � kK is the gauge function
of the convex body K,

kxkK D minf˛ � 0 W x 2 ˛Kg D max
y2Kı

hx; yi:

Let

as	. / D

Z
Rn

e.2	�1/ .x/�	hr ;xi
�
det

�
r2 .x/

��	
dx (7)

be the L	-affine surface area of the function  . This quantity is discussed in detail
in Section 3.3. Differentiating  .x/ D kxk2K=2, we get hx;r .x/i D 2 .x/. Thus,
for  .x/ D kxk2K=2, the expression (7) simplifies to

as	. / D

Z
Rn

�
det r2 .x/

�	
e� .x/dx: (8)

Note that for the Euclidean norm k:k2, as	
�

k�k22
2

	
D .2�/

n
2 and it was proved in

[20] that

as	
�

k�k2K
2

	

as	
�

k�k22
2

	 D
asp.K/

asp.Bn
2/
; (9)

where 	 and p are related by 	 D p
nCp . Together with Proposition 17, this immedi-

ately implies another stability result for the Lp-affine isoperimetric inequalities for
convex bodies.

Corollary 6 Let K be a convex body in R
n with the centroid or the Santaló point at

the origin.
(i) Let 0 < p � 1 and suppose that for some " 2 .0; "0/,

asp.K/

asp.Bn
2/
> .1 � "/

p
nCp

�
jKj

jBn
2j

� n�p
nCp

:

(i) Let �n < p < 0 and suppose that for some " 2 .0; "0/,

asp.K/

asp.Bn
2/
< .1 � "/

p
nCp

�
jKj

jBn
2j

� n�p
nCp

:
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Then, in both cases (i) and (ii), there exist c > 0 and a positive definite matrix A
such that

Z
R."/Bn

2

ˇ̌
kAxk2K � kxk22 � c

ˇ̌
dx < �"

1

129n2 ;

where R."/ D j log "j
1
2

8n and "0; � depend on n.

Proof It is easy to see (e.g., [20]) that

jKj D
1

2
n
2 

�
1C n

2

�
Z

e�
kxk

2
K
2 dx:

As jBn
2j D �

n
2


.1C n
2 /

, we get, with  .x/ D
kxk2K
2

, by (9) and the assumptions of the

theorem, that for 0 < p � 1,

as	. / > .1 � "/	 .2�/n	
�Z

e� .x/dx

�1�2	
:

We have also used that 	 D p
nCp . The result for 0 < p � 1 then follows

immediately from Proposition 17. The case �n < p < 0 is treated similarly. �

Remarks In general, one cannot deduce Theorem 5 from Corollary 6. However, it
follows from Theorem 5 that there exists T 2 GL.n/ and x0; y0 2 R

n such that

K � x0 	 T.Bn
2 � y0/ 	

�
1C �"

1
3.nC1/ j log "j

4
3.nC1/

	
.K � x0/:

For simplicity, assume that x0 D y0 D 0, which corresponds to the case that K is
0-symmetric. Then this means that for all x 2 R

n,

j kxkK � kT.x/k2 j � kTk
�
�"

1
3.nC1/ j log "j

4
3.nC1/

	
kxk2

and thus
Z

R."/Bn
2

ˇ̌
kxk2K � kT.x/k22

ˇ̌
dx

�
�
1C �"

1
3.nC1/ j log "j

4
3.nC1/

	
jBn
2j kTk2RnC2."/

�
�"

1
3.nC1/ j log "j

4
3.nC1/

	

D
�
1C �"

1
3.nC1/ j log "j

4
3.nC1/

	 jBn
2j

.8n/nC2
kTk2

�
�"

1
3.nC1/ j log "j

4
3.nC1/C

nC2
2

	
:

Hence, allowing general T , the exponent of " can be improved.
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2.4 Stability Result for the Entropy Power �K

An affine invariant quantity that is closely related to the Lp-affine surface areas is the
entropy power �K . It was introduced in [51] as the limit of Lp-affine surface areas,

�K D lim
p!1

�
asp.K/

njKıj

�nCp

: (10)

The quantity�K is related to the relative entropy of the cone measures of K and Kı.
We refer to [51] for the details and only mention an affine isoperimetric inequality
for �K proved in [51].

Theorem 7 ([51]) If K is a convex body of volume 1, then

�Kı � � 
Bn
2

jBn
2j

1
n

!
ı : (11)

Equality holds if and only if K is a normalized ellipsoid.

We now use the previous theorems to prove stability results for inequality (11).
Using the invariant property (3) and the fact that asp.Bn

2/ D njBn
2j, this inequality

can be written as

�Kı � jBn
2j
2n:

Theorem 8 Let K be a convex body in R
n, n � 3, of volume 1 and such that the

Santaló point or the centroid is at 0. Suppose that for some " 2 .0; 1
2
/,

�Kı > .1 � "/jBn
2j
2n: (12)

Then for some � > 0, depending only on n, we have

dBM.K
ı;Bn

2/ < 1C �

�
2"

n

� 1
3.nC1/

ˇ̌
ˇ̌log

2"

n

ˇ̌
ˇ̌

4
3.nC1/

:

Remarks similar to the ones after Theorem 5 hold.

Proof It was shown in [66] that
�

asp.Kı/

njKj

	nCp
is decreasing in p 2 .0;1/. By

definition (7), limp!1

�
asp.Kı/

njKj

	nCp
D �Kı . Therefore we get with assumption (12)

that for all p > 0

�
asp.Kı/

njKj

�nCp

> .1 � "/jBn
2j
2n:
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Or, equivalently, as jKj D 1,

asp.K
ı/nCp > .1 � "/nnCpjKjnCpjBn

2j
2n D .1 � "/nnCpjBn

2j
2p jBn

2j
2.n�p/

� .1 � "/nnCpjKıjn�pjBn
2j
2p:

In the last inequality we have used the Blaschke Santaló inequality jKj jKıj � jBn
2j
2,

which we can apply as long as n � p � 0. Note that for all " 2 .0; 1
2
/ and p > 0

1 � " >

�
1 �

2"

p

�p

:

Hence, using the elementary inequality above, we get for all 0 < p � n that

asp.K
ı/nCp >

�
1 �

2"

p

�p

nnCpjKıjn�pjBn
2j
2p:

Inequality (6) and the arguments used after it imply that for all 0 < p � n,

dBM.K
ı;Bn

2/ < 1C �

�
2"

p

� 1
3.nC1/

ˇ̌
ˇ̌log

2"

p

ˇ̌
ˇ̌

4
3.nC1/

:

Since the right-hand side of above equation is decreasing in p; minimizing over p in
the interval .0; n� gives the result. �

The second stability result and the corresponding comparisons (see the Remark
after Corollary 6) are obtained accordingly. We skip the proof.

Theorem 9 Let K be a convex body in R
n, n � 3, of volume 1 and with Santaló

point or centroid at 0, such that �Kı > .1� "/jBn
2j
2n. Then there exists c > 0 and a

positive definite matrix A such that

Z
R."/Bn

2

ˇ̌
kAxk2K � jxj22 � c

ˇ̌
dx < �"

1

129n2 ;

R."/ D j log "j
1
2

8n and "0; � depend on n.

3 Stability Results for Functional Inequalities

3.1 Stability for the Functional Blaschke Santaló Inequality

We will first state a functional version of the Blaschke Santaló inequality. To do so,
we recall that the Legendre transform of a function  W Rn ! R[ fC1g at z 2 R

n

is defined by
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Lz .y/ D sup
x2Rn

.hx � z; yi �  .x// ; for y 2 R
n: (13)

The function Lz W Rn ! R [ fC1g is always convex and lower semicontinuous.
If is convex, lower semicontinuous and < C1, then LzLz D  . When z D 0,
we write

 �.y/ D L0 .y/ D sup
x
.hx; yi �  .x// : (14)

Work by K.M. Ball [7], S. Artstein-Avidan, B. Klartag, V.D.Milman [5], M.
Fradelizi, M. Meyer [22], and J. Lehec [35] led to the functional version of the
Blaschke Santaló inequality which we now state.

Theorem 10 ([5, 7, 22, 35]) Let � W R ! RC be a log-concave non-increasing
function and  W Rn ! R [ fC1g be measurable. Then

inf
z2Rn

Z
Rn
�. .x//dx

Z
Rn
�.Lz .x//dx �

�Z
Rn
�

�
kxk22
2

�
dx

�2
:

If � is decreasing, there is equality if and only if there exist a, b, c in R, a < 0,
z 2 R

n and a positive definite matrix A W Rn ! R
n such that

 .x/ D
kA.x C z/k22

2
C c; for x 2 R

n

and moreover either c D 0, or �.t/ D eatCb, for t > �jcj.

Remark If �.t/ D e�t and if ' D e� has centroid at 0, i.e.,
R
Rn xe� dx D 0, then

the inequality of the above theorem simplifies to

Z
Rn
�. .x//dx

Z
Rn
�.Lz .x//dx D

�Z
Rn

e� .x//dx

� �Z
Rn

e� �.x//dx

�

�

�Z
Rn

e�
kxk

2
2

2 dx

�2
: (15)

Barthe, Böröczky, and Fradelizi [9] established the following stability theorem
for the functional Blaschke Santaló inequality.

Theorem 11 ([9]) Let � W R ! RC be a log-concave and decreasing function withR
RC

� < 1. Let  W Rn ! R be a convex, measurable function. Assume that for
some " 2 .0; "0/ and all z 2 R

n the following inequality holds

Z
Rn
�. .x//dx

Z
Rn
�.Lz .x//dx > .1 � "/

�Z
Rn
�

�
kxk22
2

�
dx

�2
:
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Then there exists some z 2 R
n, c 2 R and a positive definite n � n matrix A such

that

Z
R."/Bn

2

ˇ̌
ˇ̌kxk22
2

C c �  .Ax C z/

ˇ̌
ˇ̌ dx < �"

1

129n2 ;

where lim"!0 R."/ D 1 and "0; �;R."/ depend on n and �.

3.2 Stability for Divergence Inequalities

A function ' W Rn ! Œ0;1/ is log concave, if it is of the form '.x/ D e� .x/, where
 W Rn ! R is a convex function. Recall that we say that ' D e� has centroid at
0, respectively, the Santaló point, at 0 if,

Z
x'.x/dx D

Z
xe� .x/dx D 0; respectively

Z
xe� �.x/dx D 0:

The following entropy inequality for log concave functions was established in [17],
Corollary 13.

Theorem 12 ([17]) Let ' W R
n ! Œ0;1/ be a log-concave function that has

centroid or Santaló point at 0. Let f W .0;1/ ! R be a convex, decreasing function.
Then

Z
supp.'/

' f

�
eh

r'
' ;xi

'�2
�
det

�
r2 .� log'/

���
� f

 
.2�/n�R
'dx

�2
!  Z

supp.'/
'dx

!
: (16)

If f is a concave, increasing function, the inequality is reversed.
Equality holds in both cases if and only if '.x/ D ce�hAx;xi, where c is a positive
constant and A is an n � n positive definite matrix.

Theorem 12 was proved under the assumptions that the convex or concave functions
f and the log concave functions ' have enough smoothness and integrability
properties so that the expressions considered in the above statement make sense.
Thus, in this section, we will make the same assumptions on f and ', i.e., we will
assume that 'ı 2 L1.supp.'/; dx/, the Lebesgue integrable functions on the support
of ', that

' 2 C2.supp.'// \ L1.Rn; dx/; (17)

where C2.supp.'// denotes the twice continuously differentiable functions on their
support, and that

'f

0
@e

hr';xi

'

'2
det

�
r2 .� log'/

�
1
A 2 L1.supp.'/; dx/: (18)
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Recall that '.x/ D e� .x/ and put d� D e� dx. Then the left-hand side of
inequality (16) can be written as

Z
Rn

f
�

e2 �hr ;xi det
�
r2 

�	
d�:

It was shown in [17] that the left-hand side of the inequality (16) is the natural
definition of f -divergence Df .'/ for a log concave function ', so that (16) can be
rewritten as

Df .'/ � f

 
.2�/n�R
'dx

�2
!  Z

supp.'/
'dx

!
: (19)

In information theory, probability theory, and statistics, an f -divergence is a function
that measures the difference between two (probability) distributions. We refer to,
e.g., [17] for details and references about f -divergence.

Theorem 13 Let f W .0;1/ ! R be a concave, strictly increasing function.
Let  W R

n ! R be a convex function such that e� 2 C2.Rn/ and such thatR
Rn xe� .x/dx D 0 or

R
Rn xe� �.x/dx D 0. Suppose that for some " 2 .0; "0/,

Z
Rn

f
�

e2 �hr ;xi det
�
r2 

�	
d� >

f

 
.2�/n�R
Rn d�

�2
!�Z

Rn
d�

�
� "f 0

 
.2�/n�R
Rn d�

�2
!�Z

Rn
d�

��1

:

Then there exist c > 0 and a positive definite matrix A such that

Z
R."/Bn

2

ˇ̌
ˇ̌kxk22
2

C c �  .Ax/

ˇ̌
ˇ̌ dx < �"

1

129n2 ;

where lim"!0 R."/ D 1 and "0; �;R."/ depend on n.
The analogue stability result holds, if f is convex and strictly decreasing.

Proof We treat the case when f is concave and strictly increasing. The case when
f is convex and strictly decreasing is done similarly. We set d� D e� dxR

e� dx
D �R

d�
.

Then � is a probability measure and by Jensen’s inequality and a change of variable,

�Z
d�

�Z
Rn

f
�

e.2 .x/�hr ;xi/
�
det

�
r2 .x/

��	
d� �

�Z
d�

�
f

�Z
Rn

e.2 .x/�hr ;xi/
�
det

�
r2 .x/

��
d�

�
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D f

�
1R
d�

Z
Rn

e� �.x/dx

� �Z
d�

�
:

Thus, by the assumption of the theorem, we get

f

�
1R
d�

Z
Rn

e� �.x/dx

� �Z
d�

�

>

�Z
d�

�
f

 
.2�/n�R

d�
�2
!

�
"R
d�

f 0

 
.2�/n�R

d�
�2
!

�

�Z
d�

�
f

 
.2�/n � "�R

d�
�2
!
:

The last inequality holds as by Taylor’s theorem and the assumptions on f (i.e.,
f 00 � 0), for " small enough, there is a real number � such that

f

 
.2�/n � "�R

d�
�2
!

D f

 
.2�/n�R

d�
�2
!

�
"�R
d�
�2 f 0

 
.2�/n�R

d�
�2
!

C
"2

2
�R

d�
�4 f 00 .�/

� f

 
.2�/n�R

d�
�2
!

�
"�R
d�
�2 f 0

 
.2�/n�R

d�
�2
!
:

Therefore we arrive at

f

�
1R
d�

Z
Rn

e� �.x/dx

�
> f

 
.2�/n � "�R

d�
�2
!
:

Since f is strictly increasing we conclude that

1R
d�

Z
Rn

e� �.x/dx >
.2�/n � "�R

d�
�2 ;

which is equivalent to

�Z
Rn

e� .x/dx

��Z
Rn

e� �.x/dx

�
> .2�/n � ":

From that we get

�Z
Rn

e� .x/dx

��Z
Rn

e� �.x/dx

�
> .1 � "/ .2�/n :
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As � has its centroid at 0, we have by (15) that

inf
z2Rn

�Z
Rn

e� .x/dx

��Z
Rn

e�Lz .y/ dy

�
D

�Z
Rn

e� dx

��Z
Rn

e� �.y/ dy

�

and the theorem follows from the result by Barthe, Böröczky and Fradelizi [9],
Theorem 11, with �.t/ D e�t. �

3.3 Stability for the Reverse Log Sobolev Inequality

We now prove a stability result for the reverse log Sobolev inequality. This
inequality was first proved by Artstein-Avidan, Klartag, Schütt, and Werner [6]
under strong smoothness assumptions. Those were subsequently removed in [20]
and there, also equality characterization was achieved.

We first recall the reverse log Sobolev inequality. Let �n be the standard Gaussian
measure on R

n. For a log-concave probability measure � on R
n with density e� ,

i.e.,  D � log.d�=dx/, let

S.�/ D

Z
Rn
 d�

be the Shannon entropy of �.

Theorem 14 ([6, 20]) Let � be a log-concave probability measure on R
n with

density e� with respect to the Lebesgue measure. Then

Z
Rn

log
�
det.r2 /

�
d� � 2 .S.�n/ � S.�// : (20)

Equality holds if and only if� is Gaussian (with arbitrary mean and positive definite
covariance matrix).

Inequality (20) is a reverse log Sobolev inequality as it can be shown that the log
Sobolev inequality is equivalent to

2
�

S.�n/ � S.�/
	

� n log

�R
Rn � d�

n

�
;

where � is the Laplacian. We refer to, e.g., [6, 20] for the details.
Note that inequality (20) follows from inequality (16) with f .t/ D log t. However,

because of the assumptions on ' in Theorem 13, the result would only hold under
those assumptions and not in the full generality stated in Theorem 14. Similarly,
a stability result for Theorem 14 follows from Theorem 13 with f .t/ D log t. But
again, because of the assumptions of Theorem 13, the result would only hold for
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those  such that e� is in C2.Rn/ and has centroid at 0. We can prove a stability
result for Theorem 14 without these assumptions. The proof is similar to the one
of Theorem 13. We include it for completeness. But first we need to recall various
items.

For a convex function  W Rn ! R [ fC1g, we define D to be the convex
domain of  , D D fx 2 R

n;  .x/ < C1g. We always consider convex functions
 such that int

�
D 

�
¤ ;. In the general case, when  is neither smooth nor

strictly convex, the gradient of  , denoted by r , exists almost everywhere by
Rademacher’s theorem (e.g., [53]), and a theorem of Alexandrov [1], Busemann
and Feller [16], guarantees the existence of its Hessian r2 almost everywhere in
int

�
D 

�
. We let X be the set of points of int

�
D 

�
at which its Hessian r2 in

the sense of Alexandrov, Busemann, and Feller exists and is invertible. Then, by
definition of the Legendre transform, for a convex function  W Rn ! R [ fC1g

we have

 .x/C  �.y/ � hx; yi

for every x; y 2 R
n, and with equality if and only if x 2 D and y D r .x/, i.e.,

 �.r .x// D hx;r .x/i �  .x/; a:e: in D : (21)

Theorem 15 Let  W R
n ! R [ fC1g be a convex function and let � be a

log-concave probability measure on R
n with density e� with respect to Lebesgue

measure. Suppose that for some " 2 .0; "0/,

Z
Rn

log
�
det.r2 /

�
d� > 2

�
S.�n/ � S.�/

	
� ":

Then there exist c > 0 and a positive definite matrix A such that

Z
R."/Bn

2

ˇ̌
ˇ̌kxk22
2

C c �  .Ax/

ˇ̌
ˇ̌ dx < �"

1

129n2 ;

where lim"!0 R."/ D 1 and "0; �;R."/ depend on n.

Proof Both terms of the inequality are invariant under translations of the measure
�, so we can assume that � has its centroid at 0.

Put " D logˇ > 0. Since S.�n/ D n
2

log.2�e/, the inequality of the theorem
turns into

Z
D 

log
�
ˇ det.r2 /

�
d�C 2

Z
D 

 d� > log.2�e/n;
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which in turn is equivalent to

Z
D 

log
�
ˇ det.r2 /

�
d�C

Z
D 

log
�
e2 

�
d� � n > log.2�/n: (22)

We now use the divergence theorem and get

Z
D 

hx;r .x/i d� D

Z
int.D /

div.x/ d� �

Z
@D 

hx;ND .x/ie
� .x/d�D ;

where ND .x/ is an exterior normal to the convex set D at the point x and �D is
the surface area measure on @D . Since D is convex, the centroid 0 of � is in D .
Thus hx;ND .x/i � 0 for every x 2 @D and div.x/ D n hence

�n � �

Z
D 

hx;r .x/i d� D

Z
D 

log
�

e�hx;r .x/i
	

d�

Thus we get from inequality (22),

Z
D 

log
�
ˇ det.r2 / e2 .x/�hx;r .x/i

�
d� > log.2�/n:

With Jensen’s inequality, and as d� D e� dx,

ˇ

Z
D 

det.r2 / e .x/�hx;r .x/idx > .2�/n: (23)

By (21),

Z
D 

det.r2 / e .x/�hx;r .x/idx D

Z
D 

det.r2 / e� �.r .x//dx:

The change of variable y D r .x/ gives

Z
D 

e� �.r .x//det.r2 .x// dx D

Z
D �

e� �.y/ dy; (24)

and inequality (23) becomes

Z
D �

e� �.y/ dy >
1

ˇ
.2�/n:
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As
R

D 
e� dx D 1 and ˇ�1 D e�" � 1 � ", we therefore get that

�Z
Rn

e� dx

��Z
Rn

e� �.y/ dy

�
�

 Z
D 

e� dx

! Z
D �

e� �.y/ dy

!

> .1 � "/.2�/n:

As � has its centroid at 0, we have by (15) that

inf
z2Rn

�Z
Rn

e� .x/dx

��Z
Rn

e�Lz .y/ dy

�
D

�Z
Rn

e� dx

��Z
Rn

e� �.y/ dy

�
:

The theorem now follows from Theorem 11, the stability result for the functional
Blaschke Santaló inequality, due to Barthe, Böröczky, and Fradelizi [9]. �

3.4 Stability for the L�-Affine Isoperimetric Inequality for Log
Concave Functions

The following divergence inequalities were proved in [17]. In fact, inequali-
ties (25), (26) and consequently (16) are special cases of a more general divergence
inequality proved in [17].

For 0 � 	 � 1, it says

Z �
e2 �hr ;xi det

�
r2 

�		
d� �

 R
Rn e� �

dxR
Rn d�

!	 �Z
Rn

d�

�
(25)

and for 	 … Œ0; 1�,

Z �
e2 �hr ;xi det

�
r2 

�		
d� �

 R
Rn e� �

dxR
Rn d�

!	 �Z
Rn

d�

�
: (26)

The left-hand sides of the above inequalities are the L	-affine surface areas as	. /.
For a general log concave function ' D e� (and not just a log concave function in
C2.Rn/) they were introduced in [20],

as	. / D

Z
X 

e.2	�1/ .x/�	hr ;xi
�
det

�
r2 .x/

��	
dx: (27)

Since det
�
r2 .x/

�
D 0 outside X , the integral may be taken on D for 	 > 0. In

particular,

as0. / D

Z
X 

e� .x/dx and as1. / D

Z
X �

e� �.x/dx:
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Assume now that
R

xe� .x/dx D 0 or
R

xe� �.x/dx D 0. Then we can apply the
functional Blaschke Santaló inequality (15) and get from (25) that for 	 2 Œ0; 1�,

as	. / � .2�/n	
�Z

Rn
e� .x/dx

�1�2	
:

Similarly, for 	 � 0, we get from (26)

as	. / � .2�/n	
�Z

Rn
e� .x/dx

�1�2	
;

provided that ' 2 C2.Rn/, which is the assumption on ' in inequality (16).
However, these inequalities hold without such a strong smoothness assumption.
This, together with characterization of equality, was proved in [20].

Theorem 16 ([20]) Let  W Rn ! R [ f1g be a convex function. For 	 2 Œ0; 1�,

as	. / � .2�/n	

 Z
X 

e� .x/dx

!1�2	
(28)

and for 	 � 0,

as	. / � .2�/n	

 Z
X 

e� .x/dx

!1�2	
: (29)

For 	 D 0 equality holds trivially in these inequalities. Moreover, for 0 < 	 � 1,
or 	 < 0, equality holds in above inequalities if and only if  .x/ D 1

2
hAx; xi C c,

where A is a positive definite n � n matrix and c is a constant.

A stability result for these inequalities is again an immediate consequence of
Theorem 13. But again, we would then get the stability result for log concave
functions ' 2 C2.Rn/ only, so we include the proof for general functions.

Proposition 17 Let  W R
n ! R [ fC1g be a convex function such thatR

xe� .x/dx D 0 or
R

xe� �.x/dx D 0.

(i) Let 0 < 	 � 1 and suppose that for some " 2 .0; "0/,

as	. / > .1 � "/	 .2�/n	

 Z
X 

e� .x/dx

!1�2	
:

(ii) Let 	 < 0 and suppose that for some " 2 .0; "0/,

as	. / < .1 � "/	 .2�/n	

 Z
X 

e� .x/dx

!1�2	
:
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Then, in both cases (i) and (ii), there exists c > 0 and a positive definite matrix
A such that

Z
R."/Bn

2

ˇ̌
ˇ̌kxk22
2

C c �  .Ax/

ˇ̌
ˇ̌ dx < �"

1

129n2 ;

where lim"!0 R."/ D 1 and "0; �;R."/ depend on n.

Proof (i) The case 	 D 1 is the stability case for the functional Blaschke Santaló
inequality of Theorem 11. Therefore we can assume that 0 < 	 < 1. We put d� D

e� dx. By Hölder’s inequality with p D 1=	 and q D 1=.1 � 	/,

as	. / D

Z
X 

e	.2 .x/�hr ;xi/
�
det

�
r2 .x/

��	
d�

�

 Z
X 

e2 .x/�hr ;xidet
�
r2 .x/

�
d�

!	  Z
X 

d�

!1�	

D

 Z
D 

e .x/�hr ;xidet
�
r2 .x/

�
dx

!	  Z
X 

e� .x/dx

!1�	

�

�Z
Rn

e� �.x/dx

�	  Z
X 

e� .x/dx

!1�	
;

where, in the last equality, we have used (21) and (24). Therefore, by the assumption
(i) of the proposition

�Z
Rn

e� �.x/dx

�	  Z
X 

e� .x/dx

!1�	
> .1 � "/	 .2�/n	

 Z
X 

e� .x/dx

!1�2	
;

which is equivalent to

�Z
Rn

e� �.x/dx

��Z
Rn

e� .x/dx

�
>

�Z
Rn

e� �.x/dx

� Z
X 

e� .x/dx

!

> .1 � "/ .2�/n ;

and the result is again a consequence of Theorem 11 by Barthe, Böröczky, and
Fradelizi [9].

Similarly, in the case (ii) the proposition follows by applying the reverse Hölder
inequality. �

The following Blaschke Santaló type inequality follows directly from inequal-
ity (28). It was also proved, together with its equality characterization in [20].
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Corollary 18 ([20]) Let 	 2 Œ0; 1
2
� and let  W R

n ! R [ fC1g be a convex

function such that
R

xe� .x/dx D 0 or
R

xe� �.x/dx D 0. Then

as	. / as	.. 
�// � .2�/n:

Equality holds if and only if there exist a 2 R and a positive definite matrix A such
that  .x/ D 1

2
hAx; xi C a, for every x 2 R

n.

We have the following stability result as a direct consequence of Theorem 11.

Proposition 19 Let  W R
n ! R [ fC1g be a convex function such thatR

xe� .x/dx D 0 or
R

xe� �.x/dx D 0. Let 0 � 	 � 1
2

and suppose that for some
" 2 .0; "0/,

as	. / as	.. 
�// � .1 � /.2�/n:

Then, there exist c > 0 and a positive definite matrix A such that

Z
R."/Bn

2

ˇ̌
ˇ̌kxk22
2

C c �  .Ax/

ˇ̌
ˇ̌ dx < �"

1

129n2 ;

where lim"!0 R."/ D 1 and "0; �;R."/ depend on n.
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Measures of Sections of Convex Bodies

Alexander Koldobsky

Abstract This article is a survey of recent results on slicing inequalities for convex
bodies. The focus is on the setting of arbitrary measures in place of volume.

1 Introduction

The study of volume of sections of convex bodies is a classical direction in convex
geometry. It is well developed and has numerous applications; see [G3, K4]. The
question of what happens if volume is replaced by an arbitrary measure on a
convex body has not been considered until very recently, mostly because it is hard
to believe that difficult geometric results can hold in such generality. However,
in 2005 Zvavitch [Zv] proved that the solution to the Busemann-Petty problem,
one of the signature problems in convex geometry, remains exactly the same if
volume is replaced by an arbitrary measure with continuous density. It has recently
been shown [K6, KM, K8, K9, K10, K11, KP] that several partial results on the
slicing problem, a major open question in the area, can also be extended to arbitrary
measures. For example, it was proved in [K11] that the slicing problem for sections
of proportional dimensions has an affirmative answer which can be extended to
the setting of arbitrary measures. It is not clear yet whether these results are
representative of something bigger, or it is just an isolated event. We let the reader
make the judgement.

2 The Slicing Problem for Measures

The slicing problem [Bo1, Bo2, Ba5, MP] asks whether there exists an absolute
constant C so that for every origin-symmetric convex body K in R

n of volume 1
there is a hyperplane section of K whose .n � 1/-dimensional volume is greater
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than 1=C: In other words, does there exist a constant C so that for any n 2 N and
any origin-symmetric convex body K in R

n

jKj
n�1

n � C max
�2Sn�1

jK \ �?j; (1)

where �? is the central hyperplane in R
n perpendicular to �; and jKj stands for

volume of proper dimension? The best current result C � O.n1=4/ is due to
Klartag [Kla2], who slightly improved an earlier estimate of Bourgain [Bo3]. The
answer is known to be affirmative for some special classes of convex bodies,
including unconditional convex bodies (as initially observed by Bourgain; see also
[MP, J2, BN]), unit balls of subspaces of Lp [Ba4, J1, M1], intersection bodies
[G3, Th.9.4.11], zonoids, duals of bodies with bounded volume ratio [MP], the
Schatten classes [KMP], k-intersection bodies [KPY, K10]. Other partial results on
the problem include [Ba3, BKM, DP, Da, GPV, Kla1, KlaK, Pa, EK, BaN]; see the
book [BGVV] for details.

Iterating (1) one gets the lower dimensional slicing problem asking whether the
inequality

jKj
n�k

n � Ck max
H2Grn�k

jK \ Hj (2)

holds with an absolute constant C; where 1 � k � n � 1 and Grn�k is the
Grassmanian of .n � k/-dimensional subspaces of Rn:

Inequality (2) was proved in [K11] in the case where k � 	n; 0 < 	 < 1; with
the constant C D C.	/ dependent only on 	:Moreover, this was proved in [K11] for
arbitrary measures in place of volume. We consider the following generalization of
the slicing problem to arbitrary measures and to sections of arbitrary codimension.

Problem 1 Does there exist an absolute constant C so that for every n 2 N; every
integer 1 � k < n; every origin-symmetric convex body K in R

n; and every measure
� with non-negative even continuous density f in R

n;

�.K/ � Ck max
H2Grn�k

�.K \ H/ jKjk=n: (3)

Here �.B/ D
R

B f for every compact set B in R
n; and �.B \ H/ D

R
B\H f is the

result of integration of the restriction of f to H with respect to Lebesgue measure in
H: The case of volume corresponds to f � 1:

In some cases we will write (3) in an equivalent form

�.K/ � Ck n

n � k
cn;k max

H2Grn�k

�.K \ H/ jKjk=n; (4)
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where cn;k D jBn
2j

n�k
n =jBn�k

2 j; and Bn
2 is the unit Euclidean ball in R

n: It is easy to
see that cn;k 2 .e�k=2; 1/, and n

n�k 2 .1; ek/; so these constants can be incorporated
in the constant C:

Surprisingly, many partial results on the original slicing problem can be extended
to the setting of arbitrary measures. Inequality (3) holds true in the following
cases:

• for arbitrary n;K; � and k � 	n;where 	 2 .0; 1/;with the constant C dependent
only on 	, [K11];

• for all n;K; �; k; with C � O.
p

n/, [K8, K9]. The symmetry condition was later
removed in [CGL];

• for intersection bodies K (see definition below), with an absolute constant C,
[K6] for k D 1, [KM] for all kI

• for the unit balls of finite dimensional subspaces of Lp; p > 2; with C depending
only on p; and C � O.

p
p/; [KP];

• for the unit balls of n-dimensional normed spaces that embed in Lp; p 2 .�n; 2�,
with C depending only on p; [K10];

• for unconditional convex bodies, with an absolute constant C; [K11];
• for duals of convex bodies with bounded volume ratio, with an absolute constant

C; [K11];
• for k D 1 and log-concave measures �, with C � O.n1=4/; [KZ];
• a discrete version of inequality (3) was established in [AHZ] with the constant

depending only on the dimension.

The proofs of these results are based on stability in volume comparison problems
introduced in [K5] and developed in [K6, KM, K7, K8, K9, K10, K13]. Stability
reduces Problem 1 to estimating the outer volume ratio distance from a convex body
to the classes of generalized intersection bodies. The concept of an intersection body
was introduced by Lutwak [Lu] in connection with the Busemann-Petty problem.

A closed bounded set K in R
n is called a star body if every straight line passing

through the origin crosses the boundary of K at exactly two points different from
the origin, the origin is an interior point of K; and the boundary of K is continuous.

For 1 � k � n � 1; the classes BPn
k of generalized k-intersection bodies in R

n

were introduced by Zhang [Z3]. The case k D 1 represents the original class of
intersection bodies In D BPn

1 of Lutwak [Lu]. We define BPn
k as the closure in

the radial metric of radial k-sums of finite collections of origin-symmetric ellipsoids
(the equivalence of this definition to the original definitions of Lutwak and Zhang
was established by Goodey and Weil [GW] for k D 1 and by Grinberg and Zhang
[GrZ] for arbitrary k:/ Recall that the radial k-sum of star bodies K and L in R

n is a
new star body K Ck L whose radius in every direction � 2 Sn�1 is given by

rk
KCkL.�/ D rk

K.�/C rk
L.�/:
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The radial metric in the class of origin-symmetric star bodies is defined by

�.K;L/ D sup
�2Sn�1

jrK.�/ � rL.�/j:

The following stability theorem was proved in [K11] (see [K6, KM] for slightly
different versions).

Theorem 1 ([K11]) Suppose that 1 � k � n�1; K is a generalized k-intersection
body in R

n; f is an even continuous non-negative function on K; and " > 0: If

Z
K\H

f � "; 8H 2 Grn�k;

then
Z

K
f �

n

n � k
cn;k jKjk=n":

The constant is the best possible. Recall that cn;k 2 .e�k=2; 1/:

Define the outer volume ratio distance from an origin-symmetric star body K in
R

n to the class BPn
k of generalized k-intersection bodies by

o:v:r:.K;BPn
k/ D inf

(�
jDj

jKj

�1=n

W K 	 D; D 2 BPn
k

)
:

Theorem 1 immediately implies a slicing inequality for arbitrary measures and
origin-symmetric star bodies.

Corollary 1 Let K be an origin-symmetric star body in R
n: Then for any measure

� with even continuous density on K we have

�.K/ �
�
o:v:r:.K;BPn

k/
�k n

n � k
cn;k max

H2Grn�k

�.K \ H/ jKjk=n:

Thus, stability reduces Problem 1 to estimating the outer volume ratio distance
from K to the class of generalized k-intersection bodies. The results on Problem 1
mentioned above were all obtained by estimating this distance by means of various
techniques from the local theory of Banach spaces. For example, the solution to the
slicing problem for sections of proportional dimensions follows from an estimate
obtained in [KPZ]: for any origin-symmetric convex body K in R

n and any 1 � k �

n � 1;

o:v:r:.K;BPn
k/ � C0

r
n

k

�
log

�en

k

		3=2
; (5)
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where C0 is an absolute constant. The proof of this estimate in [KPZ] is quite
involved. It uses covering numbers, Pisier’s generalization of Milman’s reverse
Brunn-Minkowski inequality, properties of intersection bodies. Combining this with
Corollary 1, one gets

Theorem 2 ([K11]) If the codimension of sections k satisfies 	n � k for some
	 2 .0; 1/; then for every origin-symmetric convex body K in R

n and every measure
� with continuous non-negative density in R

n;

�.K/ � Ck

 r
.1 � log	/3

	

!k

max
H2Grn�k

�.K \ H/ jKjk=n;

where C is an absolute constant.

For arbitrary K; � and k the best result so far is the following
p

n estimate; see
[K8, K9]. By John’s theorem, for any origin-symmetric convex body K there exists
an ellipsoid E so that 1p

n
E 	 K 	 E : Since every ellipsoid is a generalized k-

intersection body for every k; we get that

o:v:r:.K;BPn
k/ �

p
n:

By Corollary 1,

�.K/ � nk=2 n

n � k
cn;k max

H2Grn�k

�.K \ H/ jKjk=n:

3 The Isomorphic Busemann-Petty Problem

In 1956, Busemann and Petty [BP] asked the following question. Let K;L be origin-
symmetric convex bodies in R

n such that

ˇ̌
K \ �?

ˇ̌
�
ˇ̌
L \ �?

ˇ̌
; 8� 2 Sn�1: (6)

Does it necessarily follow that jKj � jLj‹ The problem was solved at the end of the
1990s in a sequence of papers [LR, Ba1, Gi, Bo4, Lu, P, G1, G2, Z1, K1, K2, Z2,
GKS]; see [K4, p.3] or [G3, p.343] for the solution and its history. The answer is
affirmative if n � 4, and it is negative if n � 5:

The lower dimensional Busemann-Petty problem asks the same question for
sections of lower dimensions. Suppose that 1 � k � n � 1; and K;L are origin-
symmetric convex bodies in R

n such that

jK \ Hj � jL \ Hj; 8H 2 Grn�k: (7)
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Does it follow that jKj � jLj‹ It was proved in [BZ] (see also [K3, K4, RZ, M2]
for different proofs) that the answer is negative if the dimension of sections
n � k > 3: The problem is still open for two- and three-dimensional sections
(n � k D 2; 3; n � 5/:

Since the answer to the Busemann-Petty problem is negative in most dimensions,
it makes sense to ask whether the inequality for volumes holds up to an absolute
constant, namely, does there exist an absolute constant C such that inequalities (6)
imply jKj � C jLj ‹ This question is known as the isomorphic Busemann-Petty
problem, and in the hyperplane case it is equivalent to the slicing problem; see [MP].
A version of this problem for sections of proportional dimensions was proved in
[K12]. For an alternative proof, see [CGL].

Theorem 3 ([K12]) Suppose that 0 < 	 < 1; k > 	n; and K;L are origin-
symmetric convex bodies in R

n satisfying the inequalities

jK \ Hj � jL \ Hj; 8H 2 Grn�k:

Then

jKj
n�k

n � .C.	//k jLj
n�k

n ;

where C.	/ depends only on 	:

This result implies Theorem 2 in the case of volume. It is not clear, however,
whether Theorem 2 can be directly used to prove Theorem 3.

Zvavitch [Zv] has found a remarkable generalization of the Busemann-Petty
problem to arbitrary measures in place of volume. Suppose that 1 � k < n; � is
a measure with even continuous density f in R

n; and K and L are origin-symmetric
convex bodies in R

n so that

�.K \ �?/ � �.L \ �?/; 8� 2 Sn�1: (8)

Does it necessarily follow that �.K/ � �.L/‹ The answer is the same as for
volume—affirmative if n � 4 and negative if n � 5: An isomorphic version
was recently proved in [KZ], namely, for every dimension n inequalities (8) imply
�.K/ �

p
n �.L/: It is not known whether the constant

p
n is optimal for arbitrary

measures.
The proof of the

p
n estimate in the isomorphic Busemann-Petty problem for

arbitrary measures in [KZ] is based on the following argument. Denote by

dBM.K;L/ D inffd > 0 W 9T 2 GL.n/ W K 	 TL 	 dKg

the Banach-Mazur distance between two origin-symmetric star bodies L and K in
R

n; and let

dI.K/ D minfdBM.K;D/ W D 2 Ing
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denote the Banach-Mazur distance from K to the class In D BPn
1 of intersection

bodies.

Theorem 4 For any measure � with continuous, non-negative even density f on R
n

and any two origin-symmetric star bodies K;L 	 R
n such that

�.K \ �?/ � �.L \ �?/; 8� 2 Sn�1; (9)

we have

�.K/ � dI.K/�.L/:

If K is convex, John’s theorem implies that dI.K/ �
p

n; so the
p

n estimate
follows. It is not clear whether the Banach-Mazur distance in Theorem 4 can
be replaced by the outer volume ratio distance from K to the class of intersec-
tion bodies. Also there is no known direct connection between the isomorphic
Busemann-Petty problem for arbitrary measures and Problem 1.

In the case where the measure� is log concave, the constant
p

n can be improved
to cn1=4I see [KZ, Th. 4] or [CGL, Th.1.2].

4 Projections of Convex Bodies

The projection analog of the Busemann-Petty problem is known as Shephard’s
problem, posed in 1964 in [Sh]. Denote by Kj�? the orthogonal projection of K
to �?: Suppose that K and L are origin-symmetric convex bodies in R

n so that
jKj�?j � jLj�?j for every � 2 Sn�1: Does it follow that jKj � jLj‹ The problem
was solved by Petty [Pe] and Schneider [Sch], independently, and the answer is
affirmative only in dimension 2.

Both solutions use the fact that the answer to Shephard’s problem is affirmative
in every dimension under the additional assumption that L is a projection body. An
origin symmetric convex body L in R

n is called a projection body if there exists
another convex body K so that the support function of L in every direction is equal
to the volume of the hyperplane projection of K to this direction: for every � 2 Sn�1;

hL.�/ D jKj�?j:

The support function hL.�/ D maxx2L j.�; x/j is equal to the dual norm k�kL� ;where
L� denotes the polar body of L:

Separation in Shephard’s problem was proved in [K5].

Theorem 5 ([K5]) Suppose that " > 0, K and L are origin-symmetric convex
bodies in R

n; and L is a projection body. If jKj�?j � jLj�?j � " for every � 2 Sn�1;

then jKj
n�1

n � jLj
n�1

n �cn;1"; where cn;1 is the same constant as in Theorem 1; recall
that cn;1 > 1=

p
e:
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Stability in Shephard’s problem turned out to be more difficult, and it was proved
in [K13] only up to a logarithmic term and under an additional assumption that the
body L is isotropic. Recall that a convex body D in R

n is isotropic if jDj D 1 andR
D.x; �/

2dx is a constant function of � 2 Sn�1: Every convex body has a linear image
that is isotropic; see [BGVV].

Theorem 6 ([K13]) Suppose that " > 0, K and L are origin-symmetric convex
bodies in R

n; and L is a projection body which is a dilate of an isotropic body. If
jKj�?j � jLj�?j C " for every � 2 Sn�1; then jKj

n�1
n � jLj

n�1
n C C" log2 n; where

C is an absolute constant.

The proof is based on an estimate for the mean width of a convex body obtained by
E.Milman [M3].

The projection analog of the slicing problem reads as

jKj
n�1

n � c min
�2Sn�1

jKj�?j;

and it was solved by Ball [Ba2], who proved that c may and has to be of the order
1=

p
n:

The possibility of extension of Shephard’s problem and related stability and
separation results to arbitrary measures is an open question. Also, the lower
dimensional Shephard problem was solved by Goodey and Zhang [GZ], but stability
and separation for the lower dimensional case have not been established.

Stability and separation for projections have an interesting application to surface
area. If L is a projection body, so is L C "Bn

2 for every " > 0: Applying separation in
Shephard’s problem to this pair of bodies, dividing by " and sending " to zero, one
gets a hyperplane inequality for surface area (see [K7]): if L is a projection body,
then

S.L/ � c min
�2Sn�1

S.Lj�?/ jLj
1
n : (10)

On the other hand, applying stability to any projection body L which is a dilate of a
body in isotropic position (see [K13])

S.L/ � C log2 n max
�2Sn�1

S.Lj�?/ jLj
1
n : (11)

Here c and C are absolute constants, and S.L/ is surface area. Versions of these
inequalities for arbitrary convex bodies were recently established in [GKV].
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On Isoperimetric Functions of Probability
Measures Having Log-Concave Densities with
Respect to the Standard Normal Law

Sergey G. Bobkov

Abstract Isoperimetric inequalities are discussed for one-dimensional probability
distributions having log-concave densities with respect to the standard Gaussian
measure.

Suppose that a probability measure� on Rn has a log-concave density f with respect
to the standard n-dimensional Gaussian measure �n, that is,

f .x/ D e� 1
2 jxj2�V.x/; x 2 Rn;

for some convex function V W Rn ! .�1;1�. One may also say that � is log-
concave with respect to �n. In this case, an important theorem due to D. Bakry and
M. Ledoux [B-L] asserts that � satisfies a Gaussian-type isoperimetric inequality

�C.A/ � '
�
ˆ�1.�.A//

	
; (1)

relating the “size" �.A/ of an arbitrary Borel subset A 	 Rn to its �-perimeter

�C.A/ D lim inf
"#0

�.A"/ � �.A/

"

(where A" stands for the Euclidean "-neighborhood of A). Here, ˆ�1 denotes the
inverse to the normal distribution functionˆ.x/ D �1..�1; x�/with density '.x/ D
1p
2�

e� 1
2 x2 (x 2 R). In other words, the isoperimetric function of �,

I�.p/ D inf
�.A/Dp

�C.A/; 0 < p < 1

(called also an isoperimetric profile) dominates the isoperimetric function I.p/ D

'.ˆ�1.p// of the measure �n, i.e., one has

I�.p/ � I.p/ (2)
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for all p. The original proof of (1)–(2) given in [B-L] is based on semi-group
arguments and a functional form proposed in [B2]. As was shown by L. A. Caffarelli
[C], all �’s under consideration represent contractions of �n, so the proof of (1)–(2)
may be reduced to the purely Gaussian case. An alternative localization approach
to the Bakry-Ledoux theorem was later proposed in [B3]; cf. also [B4] for an
extension of (1) to a larger class of probability measures. Another approach unifying
a number of analytic and isoperimetric inequalities of Gaussian type has been
recently developed by P. Ivanisvili and A. Volberg [I-V].

Recently, Raphaël Bouyrie raised the question of whether or not the inequality (2)
is strict, even in dimension one, assuming that � is symmetric and non-Gaussian.
Although we do not know the original motivation, this question seems to be rather
interesting in itself and not so elementary. Here we give an affirmative answer,
involving some arguments from [B3] which were used to prove (1)–(2) in dimension
one. Thus, we have:

Theorem 3 Let � be a symmetric probability measure on R which is log-concave
with respect to the standard Gaussian measure �1. If � is not Gaussian, then its
isoperimetric function satisfies

I�.p/ > I.p/ for all p 2 .0; 1/:

Equivalently, the coincidence I�.p0/ D I.p0/ for some p0 causes � to be
Gaussian. Of course, this is not true at all without the log-concavity hypothesis (with
respect to �1). For example, consider the class of symmetric probability measures
� on R having log-concave densities f with respect to the linear Lebesgue measure
(the class of log-concave measures). In this case, the isoperimetric functions have
the form

J.p/ D I�.p/ D f .F�1.p//; (3)

where F�1 is the inverse to the distribution function

F.x/ D �..�1; x�/ D

Z x

�1

f .y/ dy

restricted to the support interval (cf. [B1]). Here, J may be an arbitrary positive
concave function on .0; 1/, symmetric about the point 1=2. Hence, in this class it
may easily happen that J.p/ � I.p/ on .0; 1/ with equality only at two points p0 and
1� p0 (or even for one point p0 D 1=2, only). Let us also mention that the property
J � I is another way to say that � represents a Lipschitz transform of �1.

Assuming that V is of class C2 in the representation (1), we find from (3) that

V 00.x/ D �1 �

�
f 0.x/

f .x/

�0

D �1 � .J0.F.x//0

D �1 � J00.F.x//f .x/ D �1 � J00.p/J.p/; p D F.x/:
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Hence, in terms of the isoperimetric function, the log-concavity with respect to �1
is equivalent to the relation

J00.p/J.p/ � �1:

For such functions (that are also symmetric about 1=2), Theorem 3 may be stated as
follows: If J00.p/J.p/ D �1 for some p 2 .0; 1/, then this equality holds true for all
p (in which case, necessarily J D I). It might be natural to try to prove Theorem 3
using this formulation. However, we prefer to choose a different route, which allows
one to avoid the C2-assumption on the density f , and which also suggests a possible
way to quantify the assertion of this theorem. To be more precise, we have:

Theorem 4 Let � be a probability measure supported on the interval .�a; a/ 	 R
with density e�V.x/ '.x/, where V is an even, convex function, which is differentiable
and increasing on .0; a/. Then the isoperimetric function of � satisfies

I�.p/ �
1

2ˆ.V 0.x//
e� 1

2 V0.x/2�V0.x/ y '.y/; (4)

where p D �..�1; x�/, x 2 .�a; 0/, and

y D �V 0.x/Cˆ�1
�
2pˆ.V 0.x//

�
:

A similar bound also holds for p > 1=2, by using I�.1 � p/ D I�.p/.
One can check that equality in (4) is attained for the family of probability

measures � D �	 with densities

'	.x/ D
1

Z
e�	jxj '.x/; x 2 R; (5)

where 	 is an arbitrary positive parameter and Z D Z.	/ is a normalizing constant.
We now turn to the proofs. As a first step, let us verify Theorem 3 in the particular

case of measures �	 described in (5).

Lemma 3 Given 	 > 0, we have I�	.p/ > I.p/ for all p 2 .0; 1/.

Proof According to (3), the isoperimetric function of �	 is given by

I�	.p/ D '	

�
ˆ�1
	 .p/

	
;

where ˆ	 denotes the distribution function of �	. Therefore, we need to show that
ˆ	.y/ D ˆ.x/ ) '	.y/ > '.x/ for all x; y 2 R, where one may additionally
assume that x � 0 (using the symmetry).

The increasing map T.x/ D ˆ�1
	 .ˆ.x// pushes forward �1 to �	, so that

ˆ	.T.x// D ˆ.x/. After differentiation we have

'	.T.x//T
0.x/ D '.x/:
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Hence, it is sufficient to see that T 0.x/ < 1 for all x < 0. To this aim, first note that

Z x

�1

e	y '.y/ dy D e	
2=2 ˆ.x � 	/; Z D 2

Z 0

�1

e	y '.y/ dy D 2e	
2=2 ˆ.�	/:

Hence, the distribution function of �	 is described as

ˆ	.x/ D �	..�1; x�/ D
ˆ.x � 	/

2ˆ.�	/
; x � 0;

and, by the symmetry, ˆ	.x/ D 1 �ˆ	.�x/ for x � 0. It follows that

T.x/ D ˆ�1.˛ˆ.x//C 	 .˛ D 2ˆ.�	/; x � 0/;

so, putting x D ˆ�1.p/, we get

T 0.x/ D
˛'.x/

I.˛ˆ.x//
D
˛I.p/

I.˛p/
:

But the last ratio is smaller than 1, since ˛ < 1 and since I.p/=p is a decreasing
function. The latter property is true for any positive, strictly concave function I on
.0; 1/, which follows from the representation

I.p/

p
D

I.0C/

p
C

Z 1

0

I0.ps/ ds: (6)

This proves the lemma.

Lemma 4 Let � be a symmetric probability measure, which is log-concave with
respect to �1 with density f D e�V'. Suppose that V is monotone in some
neighborhood of a point x 2 R, and let p D �..�1; x�/. Then

I�.p/ � I�	.p/ for some 	 > 0:

Proof We prove a stronger statement: Let a positive finite measure � have
density f .y/ D e�V.y/'.y/ for some convex even function V W R ! .�1;1�,
finite on the interval .�a; a/. If a point x 2 .�a; 0/ is such that

�..�a; x�/ � p; �..x; 0�/ �
1

2
� p

�
0 < p <

1

2

	
; (7)

and if V is monotone in some neighborhood of x, then f .x/ � I�	.p/ for some 	 > 0.
To simplify this assertion, let l.y/ D c�	y be an affine function which is tangent

to V.y/ at x, with necessarily 	 > 0 in view of the monotonicity assumption on V .
We extend l from the negative half-axis .�1; 0/ to .0;1/ to get an even function,
and as a result we obtain a new positive measure �0 with density
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f0.y/ D Ce�	jyj'.y/:

Since l.x/ D V.x/ and l � V everywhere on .�a; a/, we have f � f0, so that
�0..�a; x�/ � p and �0..x; 0�/ � 1

2
� p. Therefore, in our stronger statement we are

reduced to the class of densities of type f D C'	, where C is an arbitrary positive
parameter.

For such densities, we have

�..�1; x�/ D Cˆ	.x/; �..x; 0�/ D C

�
1

2
�ˆ	.x/

�
; f .x/ D C'	.x/;

and involving the assumption (7), we get a constraint on C, namely,

C � C0 D max

�
p

ˆ	.x/
;

1
2

� p
1
2

�ˆ	.x/

�
: (8)

Since C D C0 is the worst situation in our conclusion, it remains to show that

C0 '	.x/ � '	.ˆ
�1
	 .p// � I�	.p/

with C0 defined in (8). Putting q D ˆ	.x/, this is the same as

max

�
p

q
;

1
2

� p
1
2

� q

�
I�	.q/ � I�	.p/:

If p � q, it holds true, since p
q I�	.q/ � I�	.p/, which in turn follows from the fact

that the function I�	 is strictly concave (so that I�	.p/=p is strictly decreasing). In
case p � q, we use

1
2

� p
1
2

� q
I�	.q/ � I�	.p/;

or equivalently, after the change p0 D 1
2

� p, q0 D 1
2

� q,

p0

q0
I�	

�
1

2
� q0

�
� I�	

�
1

2
� p0

�
:

Here again p0 � q0 and we deal with the concave function QI.p0/ D I�	.
1
2

� p0/ on
the interval .0; 1=2/. Hence, QI.p0/=p0 is strictly decreasing, which is seen from the
general identity (6).

Lemma 4 is proved.

Proof of Theorem 3 If a probability measure � on the line is log-concave with
respect to �1, it has a density

f .x/ D e�V.x/'.x/;
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for some convex even function V on the interval .�a; a/, finite or not, and one may
put V D 1 outside that interval. Since V attains its minimum at zero, necessarily
V.0/ < 0, as long as � is non-Gaussian. In particular, in this case

I�.1=2/ D f .0/ > '.0/ D I.1=2/:

Moreover, let Œ�x0; x0� be the longest interval, where V is constant, so that V.x0�/ D

V.0/. Then similarly

I�.p/ D I�.1=2/ > I.1=2/

for all p 2 Œp0; 1 � p0�, where p0 D �..�a; x0�/.
In case 0 < p < p0, p D �..�a; x�/, the point x necessarily belongs to the

interval .�a; x0/, where V is strictly decreasing. Therefore, one may apply Lemma 4
and combine it with Lemma 3, which then leads to the required assertion I�.p/ �

I�	.p/ > I.p/.
Theorem 3 is thus proved.

Proof of Theorem 4 If an even, convex function V in the representation f D

e�V' for the density of� is differentiable and is increasing on .0; a/, the assumption
of Lemma 4 is fulfilled for all points x ¤ 0 from the supporting interval of the
measure �. In this case, since the tangent affine function in the proof of Lemma 4 is
given by l.y/ D V.x/CV 0.x/.y�x/; necessarily 	 D 	.x/ D �V 0.x/ .�a < x < 0/.
Hence, we obtain that

I�.p/ � I�	.x/ .p/; p D �..�a; x�/: (9)

The expression I�	.x/ .p/ may be written in a more explicit form. Recall that, for
0 < p < 1=2,

y � ˆ�1
	 .p/ D ˆ�1.˛p/C 	; Z D 2e	

2=2 ˆ.�	/;

where ˛ D 2ˆ.�	/, so that

I�	.p/ D
1

Z
e�	 jyj '.y/ D

1

2ˆ.�	/
e�	2=2C	y '.y/:

Hence, (9) turns into (4), thus proving Theorem 4.
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Counting Integer Points in Higher-Dimensional
Polytopes

Alexander Barvinok

Abstract We survey some computationally efficient formulas to estimate the
number of integer or 0-1 points in polytopes. In many interesting cases, the formulas
are asymptotically exact when the dimension of the polytopes grows. The polytopes
are defined as the intersection of the non-negative orthant or the unit cube with an
affine subspace, while the main ingredient of the formulas comes from solving a
convex optimization problem on the polytope.

1 Introduction

Computationally efficient counting of integer points in polyhedra is a much-
studied topic with applications in combinatorics, algebra, representation theory,
mathematical programming, statistics, compiler optimization, and social choice
theory, see, for example, survey [13] and [28], [12], [32], [26] for more recent
developments.

Here we are given a convex polytope P 	 Rd, the standard integer lattice Zd 	

Rd and we want to compute exactly or approximately the number jP\Zdj of integer
points in P. The polytope P can be given as the convex hull of the set of its vertices
(which we assume to be points with rational coordinates) or as the set of solutions to
a finite system of linear inequalities (which we assume to have integer coefficients),
or somehow indirectly, for example, by an oracle, which, given a point x 2 Rd,
reports whether x lies in P.

If the dimension d of the ambient space is fixed in advance and not a part of
the input, then all the above ways to define P are more or less computationally
equivalent and there is a polynomial time algorithm, which, given such a P 	 Rd,
computes jP \ Zdj exactly, see [1] for the underlying theory and [15] and [37] for
implementations, respectively, Latte and barvinok.

The situation changes dramatically if the ambient dimension d is not fixed in
advance and can be a part of the input. To start with, it begins to matter how the
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polytope P is defined, as there are polytopes with many vertices and relatively few
facets and vice versa. More importantly, even testing whether the polytope contains
at least one integer point becomes a hard (NP-complete) problem. For some classes
of polytopes, however, the problem is still manageable.

As is well known, even when P is a simplex defined in Rd by a system

a1x1 C : : :C adxd D b and x1; : : : ; xd � 0;

where a1; : : : ; ad and b are positive integers, testing whether P \ Zd D ; is an NP-
complete problem, known as the knapsack problem. However, one can count integer
points approximately (there is a fully polynomial time approximation scheme) in
the polytope defined by the system

dX
jD1

aijxj � bi for i D 1; : : : ;m and x1; : : : ; xd � 0;

where aij and bi are positive integers, provided the number m of inequalities is fixed
in advance [18] (note that x1 D : : : D xd D 0 is always a solution). The algorithm
is based on dynamic programming.

One can try to approximate the number of integer points in P by the volume of
P, which is a much easier problem computationally, see [36]. In general, vol.P/ is a
poor approximation for jP \ Zdj, as the example of the unit cube shows: the volume
of the cube defined by the inequalities 0 � xk � 1 for k D 1; : : : ; d is 1 while
the number of integer points is 2d. However, it is shown in [24] that if a polytope
P 	 Rd with m facets contains a ball of radius d

p
log m, then the volume of P

provides a close approximation to the number of integer points in P.
In this paper, we discuss the method introduced in [5] and its ramifications. The

main goal of the method is to provide a quick way to get an estimate of the number
of integer points, which, in particular, will be computationally feasible even in very
high dimensions where other approaches may fail. The centerpiece of the approach
is the following family of heuristic formulas.

1.1 The Gaussian Formulas

In what follows, the following function plays an important role:

g.x/ D .x C 1/ ln.x C 1/ � x ln x for x � 0: (1)

As is easy to see, g.x/ is strictly increasing and concave. We extend it to a function
on the non-negative orthant Rn

C by

g.x/ D

nX
iD1

g.xi/ where x D .x1; : : : ; xn/ : (2)



Counting Integer Points in Higher-Dimensional Polytopes 587

We suppose that the polytope P 	 Rn is defined as the intersection of an affine
subspace with the non-negative orhant Rn

C. More precisely, P is defined by the
system

P D
n
x D .x1; : : : ; xn/ W Ax D b; x1; : : : ; xn � 0

o
; (3)

where A is an r � n integer matrix of rank.A/ D r < n and b is an integer r-vector.
We also assume that P is bounded (and hence is a polytope) and has a non-empty
interior, that is, contains a point x D .x1; : : : ; xn/ where xk > 0 for k D 1; : : : ; n, in
which case

d D dim P D n � r:

For the purpose of counting integer points, any d-dimensional polytope P with n
facets can be represented in this form by a change of variables.

We consider the following optimization problem

Find max g.x/ (4)

Subject to x 2 P (5)

Since the function g of (1)–(2) is strictly concave and the polytope P of (3) is
bounded, the maximum in (4)–(5) is attained at a unique point

z D .z1; : : : ; zn/ ;

and computing this point z is computationally easy, both in theory and in practice,
cf. [31]. Moreover, it is not hard to show that since P has a non-empty interior and
the right derivative @g=@xk at x D 0 is C1, we have zk > 0 for k D 1; : : : ; n. We
define an r � r matrix B D

�
bij
�

by

bij D

nX
kD1

aikajk
�
zk C z2k

�
:

Let � 	 Zr be the lattice generated by the columns of A. Since rank.A/ D r, we
have rank.�/ D r and we define det� as the volume of the fundamental domain of
�. Computing det� is also computationally easy, see, for example, [22]. Now we
are ready to state our first main formula:

jP \ Znj �
eg.z/ det�

.2�/r=2
p

det B
: (6)

We also consider the following modification of the problem. Suppose that a polytope
P is defined as the intersection of an affine subspace with the unit cube

Œ0; 1�n D
n
.x1; : : : ; xn/ W 0 � xi � 1 for i D 1; : : : ; n

o
;
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that is,

P D
n
x D .x1; : : : ; xn/ W Ax D b; 0 � x1; : : : ; xn � 1

o
;

where A is an r � n integer matrix of rank.A/ D r < n and b is an integer r-
vector. We also assume that the P has a non-empty interior, that is, contains a point
x D .x1; : : : ; xn/ such that 0 < xk < 1 for k D 1; : : : ; n, in which case

d D dim P D n � r:

We want to estimate the number jP \ f0; 1gnj of 0-1 vectors in P. We define

h.x/ D x ln
1

x
C .1 � x/ ln

1

1 � x
for 0 � x � 1; (7)

extend it to the unit cube Œ0; 1�n by

h.x/ D

nX
kD1

h.xk/ where x D .x1; : : : ; xn/ (8)

and solve the optimization problem

Find max h.x/ (9)

Subject to x 2 P: (10)

As before, since the function h strictly concave, the maximum of h is attained
at a unique point z D .z1; : : : ; zn/, which can be computed efficiently. Similarly,
since the polytope P has a non-empty interior and since the right, respectively left,
derivative @h=@xk at xk D 0, respectively at xk D 1, is equal to C1, respectively to
�1, it is not hard to show that 0 < zk < 1 for k D 1; : : : ; n. We define an r � r
matrix b D

�
bij
�

by

bij D

nX
kD1

aikajk
�
zk � z2k

�

and state that

jP \ f0; 1gnj �
eh.z/ det�

.2�/r=2
p

det B
(11)

One legitimate question is what do signs “�” in the formulas (6) and (11) mean
exactly? For example, if P has no integer points at all, in what sense 0 in the left-hand
side is approximately equal to a positive number in the right-hand side? Another
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legitimate concern is that while the left-hand sides of (6) and (11) depend on the
polytope P, the right-hand sides depend also on the matrix A, which, given P, can
be chosen in a variety of different ways. We will address these concerns in due
time; at this point, we consider (6) and (11) as heuristic formulas. Before we give
any justification for them, we demonstrate that at least in some cases, they compute
reasonable approximations. The following three examples are taken from [14].

1.2 Example: 2-Way Transportation Polytopes and 2-Way
Contingency Tables

Here we want to compute the number of m � n matrices with non-negative integer
entries xij and with prescribed row and column sums

nX
jD1

xij D ri for i D 1; : : : ;m and
mX

iD1

xij D cj for j D 1; : : : ; n: (12)

We assume that ri; cj > 0 for all i and j. The corresponding polytope P of m � n
non-negative matrices with row sums R D .r1; : : : ; rm/ and column sums C D

.c1; : : : ; cn/ is known as a 2-way transportation polytope, see [16]. The polytope P
is non-empty if and only if the balance condition

r1 C : : :C rm D c1 C : : :C cn

is satisfied, in which case P is the intersection of the non-negative orthant Rm�n
C with

an affine subspace of codimension m C n � 1. In statistics, integer points in P are
known as 2-way contingency tables whereas row and column sums are referred to
as margins. For example, the exact number of 4 � 4 non-negative integer matrices
with row sums R D .220; 215; 93; 64/ and column sums C D .108; 286; 71; 127/

is 1; 225; 914; 276; 768; 514 � 1:2 � 1015. Contingency tables with those margins
were considered, in particular, in [17] in connection with a study of the correlation
between the eye color and hair color. It turns out that the formula (6) approximates
the true number of contingency tables within a relative error of 0:06. We note that in
this case, the polytope is defined by 4C 4� 1 D 7 independent linear equations and
16 non-negativity constraints, so to obtain the matrix A of rank.A/ D 7 in (3) we
remove one of the row/column sum constraints (12) (it does not matter which one).

1.3 Example: 3-Way Transportation Polytopes and 3-Way
Contingency Tables

Here we want to compute the number of m � n � s arrays with non-negative integer
entries xijk and prescribed sums over coordinate affine hyperplanes,
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ai D
X

j;k

xijk; bj D
X

i;k

xijk and ck D
X

i;j

xijk: (13)

The sums A D .a1; : : : ; am/, B D .b1; : : : ; bn/ and C D .c1; : : : ; cs/ are called
margins, or, sometimes, 1-margins. We assume that ai; bj; ck > 0 for all i; j and k.
The corresponding polytope P of m � n � s non-negative arrays with margins A, B,
and C is known as a 3-way axial transportation polytope, see [16]. The polytope is
non-empty if and only if the following balance conditions

a1 C : : :C am D b1 C : : :C bn D c1 C : : :C cs

are satisfied, in which case P is the intersection of the non-negative orthant Rm�n�s
C

with an affine subspace of codimension m C n C s � 2. In statistics, integer points
in P are referred to as 3-way contingency tables whereas sums A, B, and C are
called margins or 1-margins. For example, the exact number of 3 � 3 � 3 non-
negative integer arrays with margins A D .31; 22; 87/, B D .50; 13; 77/ and
C D .42; 87; 11/ is 8; 846; 838; 772; 161; 591 � 8:8 � 1015 (computed in [14]
using LattE). It turns out that the formula (6) approximates the true number
within a relative error of 0:002. We note that in this case, the polytope is defined by
3C 3C 3 � 2 D 7 independent linear equations and 27 non-negativity constraints.
To apply the formula, we remove one constraint from two of the three A, B, or C
balance conditions in (13) (again, it does not matter which).

1.4 Example: Graphs with a Given Degree Sequence

Given a vector D D .d1; : : : ; dn/ of positive integers, we are interested in the number
of graphs (undirected, without loops or multiple edges) on the set f1; : : : ; ng such
that the degree of vertex k is dk. Geometrically, we want to count 0-1 points in the
polytope P.D/ 	 Rn.n�1/=2 of n � n symmetric matrices with entries 0 � xij � 1

satisfying

xii D 0 and
nX

jD1

xij D di for i D 1; : : : ; n:

Without loss of generality, we assume that

d1 � d2 � : : : � dn:

The Erdős-Gallai Theorem, see, for example, Theorem 6.3.6 of [10], states that the
necessary and sufficient condition for the polytope P.D/ to be non-empty are the
inequalities

kX
iD1

di � k.k � 1/C

nX
iDkC1

minfk; dig for k D 1; : : : ; n: (14)
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and for 0-1 point to exist in this polytope is the congruence

d1 C : : :C dn � 0 mod 2: (15)

The polytope has a non-empty interior if the inequalities in (14) are strict. This
is the case, for example, when the graph is regular, that is, d1 D : : : D dn. For
example, if n D 17 and d1 D : : : D d17 D 4 (so that (15) is also satisfied) the exact
number of graphs is 28; 797; 220; 460; 586; 826; 422; 720 � 2:9�1022, whereas the
formula (11) approximates the true number within a relative error of 0:028.

Examples 1.2–1.4 indicate that the formulas (6) and (11) must be doing
something right, at least in some cases. In the following section, we discuss the
intuition underlying (6) and (11).

2 Two Lemmas and a Rationale for the Gaussian Formulas

First, we recall some probability.
Let us fix p; q > 0 such that pCq D 1. A random variable X taking non-negative

integer values k is called geometric if

P.X D k/ D pqk for k D 0; 1; : : : ; :

Then we have

E.X/ D
q

p
and var.X/ D

q

p2
:

If we denote

E.X/ D z

for some z > 0, then p D 1=.1C z/, q D z=.1C z/ and

var.X/ D z C z2:

A random variable X is called Bernoulli if it takes values 0 and 1 and

P.X D 0/ D q and P.X D 1/ D p:

Hence we have

E.X/ D p and var.X/ D pq:

If we denote

E.X/ D z
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for some 0 < z < 1, then p D z, q D 1 � z and

var.X/ D z � z2:

Formulas (6) and (11) are built on the following simple Lemma 1 and Lemma 2,
respectively.

Lemma 1 Let A 	 Rn be an affine subspace such that the intersection

P D A \ Rn
C

is bounded and contains a point x D .x1; : : : ; xn/ where xk > 0 for k D 1; : : : ; n.
Then the function

g.x/ D

nX
kD1

�
.xk C 1/ ln .xk C 1/ � xk ln xk

	
for x 2 Rn

C; x D .x1; : : : ; xn/ ;

attains its maximum on P at a unique point z D .z1; : : : ; zn/ where zk > 0 for
k D 1; : : : ; n.

If X D .X1; : : : ;Xn/ is a vector of independent geometric random variables Xk

such that

E .Xk/ D zk for k D 1; : : : ; n;

then

P.X D m/ D e�g.z/ for all m 2 P \ Zn:

In other words, Lemma 1 asserts that the vector of independent geometric
random variables X D .X1; : : : ;Xn/ whose expectations are found from solving
the optimization problem (4)–(5) hits every integer point m 2 P with the same
probability equal to e�g.z/.

Lemma 2 Let A 	 Rn be an affine subspace such that the intersection

P D A \ Œ0; 1�n

contains a point x D .x1; : : : ; xn/ where 0 < xk < 1 for k D 1; : : : ; n.
Then the function

h.x/ D

nX
kD1

�
xk ln

1

xk
C .1 � xk/ ln

1

1 � xk

�
for x 2 Œ0; 1�n; x D .x1; : : : ; xn/ ;

attains its maximum on P at a unique point z D .z1; : : : ; zn/ where 0 < zk < 1 for
k D 1; : : : ; n.
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If X D .X1; : : : ;Xn/ is a vector of independent Bernoulli random variables Xk

such that

E .Xk/ D zk for k D 1; : : : ; n;

then

P.X D m/ D e�h.z/ for all m 2 P \ f0; 1gn:

In other words, Lemma 2 asserts that the vector of independent Bernoulli
random variables X D .X1; : : : ;Xn/ whose expectations are found from solving the
optimization problem (9)–(10) hits every 0-1 point m 2 P with the same probability
equal to e�h.z/.

The proof of Lemma 1 and Lemma 2 is a simple exercise in Lagrange multipliers
[5]. We discuss below the general context of the results explaining where the
functions g.x/ and h.x/ come from.

2.1 The Maximum Entropy Principle

Let X be a discrete random variable taking values in Rn. Assuming that X takes
values from a discrete set S 	 Rn, the entropy of X is defined as

ent.X/ D
X
s2S

P.X D s/ ln
1

P.X D s/
;

see, for example, [25]. In our case, we have S D Zn
C, the set of non-negative integer

n-vectors or S D f0; 1gn, the set of n-vectors with 0-1 coordinates.
Let us fix a set S 	 Rn of values of X. Then ent.X/ is a non-negative strictly

concave function of the probabilities P.X D s/. If S is finite, then ent.X/ attains
its maximum value ln jSj if X is uniform on S so that P.X D s/ D 1=jSj for all
s 2 S. If S is infinite, then the entropy of a random variable X with values in S can
be arbitrarily large.

Let A 	 Rn be an affine subspace such that the intersection A \ S is non-empty
and finite and assume that there exists a random variable X that has the maximum
entropy among all random variables with values in S and expectation in A . The
restriction of such an X onto A \ S is necessarily uniform, since otherwise by
reapportioning the probabilities P.X D s/ for s 2 A \ S we can increase the
entropy of X while keeping E.X/ 2 A (here we use that A is an affine subspace,
so that ˛1s1 C : : : C ˛ksk lies in A if s1; : : : ; sk lie in A and ˛1 C : : : C ˛k D 1).
Assuming that A is defined in Rn by a finite system of linear equations

hai; xi D ˇi; i 2 I;
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where ai 2 Rn, ˇi 2 R and h�; �i is the standard inner product in Rn, from the
Lagrange optimality condition we conclude that

P.X D s/ D exp

(
�	 �

X
i2I

	ihai; si

)
for all s 2 S

and some real 	 and 	i, i 2 I. Then

P.X D s/ D exp

(
�	 �

X
i2I

	iˇi

)
for all s 2 A \ S

and

ent.X/ D 	
X
s2S

P.X D s/C
X
i2I

	ihai;E.X/i D 	C
X
i2I

	iˇi;

so we conclude that

P.X D s/ D e�ent.X/ for all s 2 A \ S:

Suppose that, in addition, S is the direct product S D S1 � : : :� Sn where Sk 	 R
for k D 1; : : : ; n and A 	 Rn is an affine subspace as above. Let X D .X1; : : : ;Xn/

be a random variable of the maximum entropy (if exists) in the class of random
variables with values in S and expectation in A . Then we must have X1; : : : ;Xn

independent since otherwise by choosing X0 D
�
X0
1; : : : ;X

0
n

�
where X0

1; : : : ;X
0
n are

independent copies of X1; : : : ;Xn we obtain a random variable X0 from the same
class with ent.X0/ > ent.X/, cf. [25]. This is generally true if A 	 Rn is a
subset that can be defined by equations of the type f1.x1/ C : : : C fn.xn/ D 0 for
some univariate functions f1; : : : ; fn, in particular if A is an affine subspace. Since
X1; : : : ;Xn are independent, we have ent.X/ D ent.X1/C : : :C ent.Xn/.

In Lemma 1, we have S D Zn
C, so that the random variable X D .X1; : : : ;Xn/

of the largest entropy is necessarily a vector of independent random variables Xk

with values in ZC. It turns out that in the class of all random variables with values
in ZC and a given expectation x, the geometric random variable has the largest
entropy equal to the function g.x/ of (1). Hence the random vector X in Lemma 1
is the random vector of the largest entropy among all random vectors with values in
Zn

C and expectation in A (it is also not hard to deduce from the above that such a
maximum entropy vector indeed exists). The meaning of the function g W Rn

C �!

RC in (2) and Lemma 1 is that g.x/ is the maximum entropy of a random vector X
with values in Zn

C and expectation x 2 Rn
C.

In Lemma 2, we have S D f0; 1gn, so that the random variable X D .X1; : : : ;Xn/

of the largest entropy (which exists by a compactness argument) is necessarily a
vector of independent Bernoulli random variables Xk. In this case, the function h.x/
of (7) is the entropy of the Bernoulli random variable with expectation x. Hence the



Counting Integer Points in Higher-Dimensional Polytopes 595

random vector X in Lemma 2 is the random vector of the largest entropy among all
random vectors with values in f0; 1gn and expectation in A . The meaning of the
function h W Œ0; 1�n �! RC in (8) and Lemma 2 is that h.x/ is the maximum entropy
of a random vector with values in f0; 1gn and expectation x 2 Œ0; 1�n.

This approach fits a more general framework of statistics [19] and physics [23].
Suppose we know that a random variable X satisfies certain constraints but don’t
know anything else. We want to know what distribution X is likely to have. From
the perspective of a mathematician, the question does not make much sense as X
may have any distribution satisfying given constraints. A statistician, however, may
rephrase the wording asking instead what should the “null hypothesis" regarding
the distribution of X be. The “maximum entropy principle" states that the null
hypothesis should be that X has the maximum entropy distribution in the class
of all distributions satisfying given constraints [19]. From the point of view of a
physicist, the maximum entropy principle may sound attractive since if we don’t
know any other information about X then maybe we are not supposed to know and
then it looks natural to choose the distribution in the given class of the maximum
uncertainty, that is, of the largest entropy. For example, if X is the velocity of a
random molecule of oxygen in the room, the temperature of the air in the room
tells us the average squared speed EkXk2. As we don’t know anything else, the
maximum entropy principle tells us to assume that X is Gaussian, as among all
random variables with given variance, the Gaussian random variable has the largest
entropy. Thus we have arrived to the Maxwell-Boltzmann law, see [23] for more
examples.

Given a polytope P that is the intersection of the non-negative orthant with an
affine subspace A , let X be a random integer, respectively, 0-1 point in P, sampled
from the uniform distribution. Tautologically, X has the largest entropy among all
random vectors with values in Zn

C, respectively f0; 1gn, which, additionally, land in
A . We approximate X by a more manageable random vector that has the largest
entropy among all random vectors with values in Zn

C, respectively f0; 1gn, and with
expectation in A . In the next several sections, we present some evidence that this
approximation is often accurate.

2.2 A Rationale for the Gaussian Formula

Now we can provide a rationale for formulas (6) and (11). Suppose that P D A \

Rn
C, where the affine subspaces A is defined by a system of linear equations Ax D b,

where A is an r � n integer matrix of rank.A/ D r < n and b is an integer r-
vector as in (3). We assume that P is bounded and has a non-empty interior. Let
X D .X1; : : : ;Xn/

T be the random vector of Lemma 1, which we interpret as a
column n-vector. From Lemma 1, we can write

jP \ Znj D eg.z/P.AX D b/: (16)
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Let a1; : : : ; an be the columns of A so that A D Œa1; : : : ; an�. From Lemma 1 we have

E.AX/ D

nX
kD1

E.Xk/ak D

nX
kD1

zkak D Az D b;

while the covariance matrix B D
�
bij
�

of AX is computed as

bij D cov

 
nX

kD1

aikXk;

nX
kD1

ajkXk

!
D

X
1�k1;k2�n

aik1ajk2cov .Xk1 ;Xk2 /

D

nX
kD1

aikajkvar.Xk/ D

nX
kD1

aikajk
�
zk C z2k

�
:

The random variable AX D X1a1 C : : : C Xnan is a linear combination of
vectors a1; : : : ; an with independent random coefficients X1; : : : ;Xn, so it is not
unreasonable to suspect that if n � r then the distribution of AX in the vicinity
of its expectation b can be close to Gaussian with covariance matrix B. Then in the
spirit of the Local Central Limit Theorem we approximate in (16)

P.AX D b/ �
det�

.2�/r=2
p

det B
; (17)

where d D n � r and � is the lattice in Rr generated by the columns of A. The
right hand side of (17) is an estimate of the probability that a Gaussian random
vector with expectation b and covariance matrix B lands in the Voronoi region of b
consisting of the points in Rr that are closer to b than to any other point of �. The
volume of the Voronoi region of b is exactly det�, and we assume that the Gaussian
density does not change much across the Voronoi region from its maximum value at
b. Hence we obtain (6) from (17).

We note that in Example 1.2 we approximate a sum of 16 independent random
7-vectors by a Gaussian random vector while in Example 1.3 we approximate a sum
of 27 independent random 7-vectors by a Gaussian random vector. Not surprisingly,
in the latter case we get a better precision. In Example 1.4, we approximate a sum
of 136 independent random 17-vectors by a Gaussian random vector.

Similarly, let X D .X1; : : : ;Xn/
T be the random vector of Lemma 2, which we

interpret as a column n-vector. From Lemma 2, we can write

jP \ f0; 1gnj D eh.z/P.AX D b/: (18)

As above, we have AX D b while the covariance matrix B D
�
bij
�

of AX is defined
by

bij D

nX
kD1

aikajkvar.Xk/ D

nX
kD1

aikajk
�
zk � z2k

�

and we obtain (11) as above.
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Before we discuss the validity of the Gaussian formulas (6) and (11), we discuss
some bounds on the number of integer and 0-1 points that follow from (16) and (18).

3 Concentration and Anti-Concentration Bounds
for the Number of Integer Points

One immediate corollary of formulas (16) and (18) are the bounds

jP \ Znj � eg.z/ and jP \ f0; 1gnj � eh.z/; (19)

where z is the solution of the optimization problems (4)–(5) and (9)–(10), respec-
tively. One can show that the bounds (19) capture the logarithmic order of jP \ Znj,
respectively jP \ f0; 1gnj asymptotically, as the dimension grows, for the polytopes
of non-negative integer [2], respectively, 0-1 matrices [3] with prescribed row and
column sums, except in sparse cases, see also Section 5.4.

It was noticed in [34] that the bounds (19) can be improved if one uses anti-
concentration inequalities. The following result is obtained in [34].

Theorem 1 Let P 	 Rn be a polytope that is the intersection of the non-negative
orthant Rn

C and an affine subspace defined by a system of linear equations Ax D b,
where A is an r � n matrix of rank r and b is an r-vector. Suppose that P contains a
point x D .x1; : : : ; xn/ where xk > 0 for k D 1; : : : ; n and let z D .z1; : : : ; zn/ be the
unique point at which the strictly concave function

g.x/ D

nX
kD1

�
.xk C 1/ ln .xk C 1/ � xk ln xk

	
for x 2 Rn

C; x D .x1; : : : ; xn/ ;

attains its maximum on P. Then

jP \ Znj � eg.z/ min
k1;:::;kr

1

.1C zk1 / � � � .1C zkr /
;

where the minimum is taken over all collections 1 � k1; : : : ; kr � n of indices of
linearly independent sets of columns of the matrix A.

For example, for the polytope P in Example 1.2, the bound of Theorem 1 is off
by a factor of about 5; 800 from the true value. The proof of Theorem 1 follows
from Lemma 1 and some simple anti-concentration bounds.

Definition 1 Let X be a discrete random vector taking values in Rn. We define the
concentration constant of X as

�.X/ D max
u2Rn

P.X D u/:

In words, �.X/ is the largest probability of a value of X.
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Lemma 3 Let X and Y be independent discrete random variables with values in
Rn. Then

�.X C Y/ � min
˚
�.X/; �.Y/


:

Proof Let w be a value of X C Y . Then

P.X C Y D w/ D
X

u;vW uCvDw

P.X D u/P.Y D v/ � �.X/
X
v

P.Y D v/ D �.X/

and hence �.X CY/ � �.X/. Similarly, �.X CY/ � �.Y/ and the proof follows. ut

Now we are ready to prove Theorem 1.

Proof (of Theorem 1) We use Lemma 1. From (16), we have

jP \ Znj D eg.z/P.AX D b/ � eg.z/�.AX/:

Here AX D X1a1C: : :CXnan, where a1; : : : ; an are the columns of A and X1; : : : ;Xn

are independent geometric random variables with E.Xk/ D zk for k D 1; : : : ; n. In
particular,

�.Xk/ D P.Xk D 0/ D
1

1C zk
:

Suppose that columns ak1 ; : : : ; akr are linearly independent. Then

� .Xk1ak1 C : : :C Xkr akr / � � .Xk1 / � � � � .Xkr / D
1

.1C zk1 / � � � .1C zkr /

and the proof follows by Lemma 3. ut

Similarly, one obtains an upper bound for the number of 0-1 points in a polytope.

Theorem 2 Let P 	 Rn be a polytope that is the intersection of the unit cube Œ0; 1�n

and the affine subspace defined by a system of linear equations Ax D b, where A
is an r � n matrix of rank r and b is an r-vector. Suppose that P contains a point
x D .x1; : : : ; xn/ where xk > 0 for k D 1; : : : ; n and let z D .z1; : : : ; zn/ be the
unique point at which the strictly concave function

h.x/ D

nX
kD1

�
xk ln

1

xk
C .1 � xk/ ln

1

1 � xk

	
for x 2 Œ0; 1�n; x D .x1; : : : ; xn/ ;

attains its maximum on P. Then

jP \ f0; 1gnj � eh.z/ min
k1;:::;kr

max fzk1 ; 1 � zk1g � � � max fzkr ; 1 � zkr g ;
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where the outer minimum is taken over all collections 1 � k1; : : : ; kr � n of indices
of linearly independent sets of columns of the matrix A.

We note that having z D .z1; : : : ; zn/ computed, the minima in Theorem 1 and
Theorem 2 can be found efficiently in O.rn/ time by a greedy algorithm of finding
a minimum weight basis of the matroid represented by the matrix A. Namely, first
we find a non-zero column ak1 of the minimum weight 1=.1 C zk1 / in Theorem 1,
respectively, weight maxfzk1 ; 1 � zk1g in Theorem 2, and at each step we select a
column aks of the minimum weight among all columns that are linearly independent
of the previously selected columns, cf., for example, Section 12.4 of [33].

The bounds of Theorem 1 and Theorem 2 are related to the Littlewood-Offord
problem, see, for example, Chapter 7 of [35].

In general, one cannot hope to obtain non-trivial lower bounds for the number of
integer or 0-1 points in P that would depend smoothly on the matrix A and vector b
defining the affine span of P, since P may fail to contain any integer point because
of some arithmetic issues (for example, if the integer points in P enumerate 17-
regular graphs with 1001 vertex, cf. (15)). However, if we are willing to “fatten" the
polytope a bit, we can obtain some lower bounds via concentration inequalities. The
case of 0-1 points is particularly simple.

In what follows, k � k1 is the usual `1 norm in Rr.

Theorem 3 Let the polytope P, matrix A D
�
aij
�

of size r � n, vector b and point
z D .z1; : : : ; zn/ be as in Theorem 2. Let

˛.A/ D max
iD1;:::;r

vuut nX
jD1

a2ij and !.z/ D

vuut nX
kD1

ln2
�

zk

1 � zk

�
:

Let

bP D
n
x 2 Œ0; 1�n W kAx � bk1 � ˛.A/

p
1C ln r

o
:

Then

ˇ̌
ˇbP \ f0; 1gn

ˇ̌
ˇ �

1

3
eh.z/�!.z/:

Proof Let b D .ˇ1; : : : ; ˇr/ and let X1; : : : ;Xn be the random variables of Lemma 2.
Applying the Hoeffding inequality, see, for example, Theorem 5.2 of [29], we obtain

P

 ˇ̌
ˇ̌
ˇ

nX
kD1

aikXk � ˇi

ˇ̌
ˇ̌
ˇ � ˛.A/

p
1C ln r

!
�

1

3r2
for all i D 1; : : : ; r: (20)
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Similarly, from the Hoeffding inequality it follows that

P

 
nX

kD1

�
Xk ln zk C .1 � Xk/ ln.1 � zk/

	
� �h.z/C !.z/

!
�
1

3
: (21)

Combining (20)–(21) we conclude that

P

 
max

iD1;:::;r

ˇ̌
ˇ̌
ˇ

nX
kD1

aikXk � ˇi

ˇ̌
ˇ̌
ˇ � ˛.A/

p
1C ln r and

nX
kD1

�
Xk ln zk C .1 � Xk/ ln.1 � zk/

	
� �h.z/C !.z/

!
�
1

3
:

Since

P .X1 D x1; : : : ;Xn D xn/ D

nY
kD1

zxk
k .1 � zk/

1�xk for all .x1; : : : ; xn/ 2 f0; 1gn;

the proof follows. ut

If the coordinates zk remain separated from 0 and 1 and are of about the same
order, the asymptotic of ln jbP \ f0; 1gnj as n grows is captured by h.z/ and the error
˛.A/

p
1C ln r is of a smaller order than the entries of the vector b.

A similar to Theorem 3 result can be obtained for integer points, but since we are
dealing with unbounded random variables the bounds are not so good as in the 0-1
case.

Theorem 4 Let the polytope P, matrix A D
�
aij
�

of size r � n, vector b and point
z D .z1; : : : ; zn/ be as in Theorem 1. Suppose that jaijj � 1 for all i; j and that every
row of A contains not more than m � 1 non-zero entries. Suppose further that

ı � zk � � for k D 1; : : : ; n

for some ı � 1 and � � 1. Let

�.A; z/ D � ln .3C ln r/
p

m and !.z/ D
3�

ı

p
n

and let

bP D
n
x 2 Rn

C W kAx � bk1 � �.A; z/
o
:

Then

ˇ̌
ˇbP \ Zn

ˇ̌
ˇ �

1

3
eg.z/�!.z/:
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Proof Let b D .ˇ1; : : : ; ˇr/ and let X1; : : : ;Xn be the random variables of Lemma 1.
We need some concentration inequalities for geometric random variables, see for

example, [4]. If X is geometric random variable with E.X/ D z, then

E
�
e�	X

�
� exp

�
�	z C

	2

2

�
z C z2

��
for 0 � 	 � 2 and

E
�
e	X
�

� exp
˚
	z C 2	2

�
z C z2

�
for 0 � 	 � minf1=3; 1=2zg:

It follows that

P

0
@
ˇ̌
ˇ̌
ˇ̌

nX
jD1

aijXj � ˇi

ˇ̌
ˇ̌
ˇ̌ � �

1
A � 2 exp

˚
�	� C 2	2

�
z C z2

�
m


for any 0 � 	 � minf1=3; 1=2�g, any � � 0 and all i D 1; : : : ; r. Choosing

	 D
1

3�
p

m
;

we conclude that

P

0
@
ˇ̌
ˇ̌
ˇ̌

nX
jD1

aijXj

ˇ̌
ˇ̌
ˇ̌ � �.A; z/

1
A �

1

5r
for i D 1; : : : ; r: (22)

Similarly we obtain

P

 
nX

kD1

�
ln

1

1C zk
C Xk ln

zk

zk C 1

�
� �g.z/C !.z/

!
�
1

3
: (23)

Combining (22)–(23), we conclude that

P

 
max

iD1;:::;r

ˇ̌
ˇ̌
ˇ̌

nX
jD1

aijXj

ˇ̌
ˇ̌
ˇ̌ � �.A; z/ and

nX
kD1

�
ln

1

1C zk
C Xk ln

zk

zk C 1

�
� �g.z/C !.z/

!
�
1

3
:

Since

P .X1 D x1; : : : ;Xn D xn/ D

nY
kD1

 
1

zk C 1

�
zk

zk C 1

�Xk
!

for all .x1; : : : ; xn/ 2 Zn
C;

the proof follows. ut
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Again, as long as zk remain separated from 0 and are of about the same order, the
asymptotic of ln jbP \ Znj as n grows is captured by g.z/ while the error �.A; z/ is of
a smaller order than the coordinates of b.

4 The Fourier analysis for the Gaussian Formulas

To establish the validity of the Gaussian formulas (6) and (11), we take a closer
look at the probabilities P.AX D b/ in the formulas (16) and (18). Lemma 4 and
Lemma 5 below provide some identities that express the probabilities as integrals of
the characteristic function of X [5].

Lemma 4 Let the polytope P 	 Rn, point z D .z1; : : : ; zn/ and vector X D

.X1; : : : ;Xn/ of independent geometric random variables be as in Lemma 1.
Suppose that P D A \ Rn

C, where A is the affine subspace defined by a system
of linear equations Ax D b, where A is an r � n integer matrix of rank.A/ D r and
b is an integer r-vector. Let a1; : : : ; an be the columns of A, interpreted as integer
r-vectors.

Let ˘ 	 Rr be the parallelepiped of the points t D .t1; : : : ; tr/ such that

�� � tk � � for k D 1; : : : ; r:

Then

P.AX D b/ D
1

.2�/r

Z
˘

e�iht;bi

nY
jD1

1

1C zj � zjeihaj;ti
dt; (24)

where h�; �i is the inner product in Rr, dt is the Lebesgue measure on˘ and i2 D �1.

Proof We have P
�
Xj D k

�
D pjqk

j for k D 0; 1; : : :, and some pj; qj > 0 such that
pj C qj D 1 and zj D qj=pj. Hence

nY
jD1

1

1C zj � zjeihaj;ti
D

nY
jD1

pj

1 � qjeihaj;ti

D p1 � � � pn

X
k1;:::;kn�0

qk1
1 � � � qkn

n exp

8<
:i

nX
jD1

kjhaj; ti

9=
; :

Since for an integer c, we have

1

2�

Z �

��

eict dt D

�
1 if c D 0;

0 if c ¤ 0;
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we have

1

.2�/r

Z
˘

e�iht;bi exp

8<
:i

nX
jD1

kjhaj; ti

9=
; dt D

(
1 if

Pn
jD1 kjaj D b;

0 if
Pn

jD1 kjaj ¤ b;

and

1

.2�/r

Z
˘

e�iht;bi

nY
jD1

1

1C zj � zjeihaj;ti
dt

D p1 � � � pn

X
k1; : : : ; kn � 0

k1a1 C : : :C knan D b

qk1
1 � � � qkn

n D P.AX D b/:

ut

Similarly, in the case of 0-1 points, we obtain the following result.

Lemma 5 Let the polytope P 	 Rn, point z D .z1; : : : ; zn/ and vector X D

.X1; : : : ;Xn/ of independent Bernoulli random variables be as in Lemma 2.
Suppose that P D A \ Œ0; 1�n, where A is an affine subspace in Rn defined as in

Lemma 4 and let ˘ 	 Rr be the parallelepiped as in Lemma 4.
Then

P.AX D b/ D
1

.2�/r

Z
˘

e�iht;bi

nY
jD1

�
1 � zj C zje

ihaj;ti
	

dt: (25)

We obtain the Gaussian formulas (6) and (11) if we show that the bulk of the
contribution of the integrals (24), respectively (25) come from an approximation of
the integrand in a small neighborhood of t D 0 in ˘ .

4.1 Integrals in a Neighborhood of t D 0

For t � 0, using that
Pn

jD1 zjaj D b, we obtain from the Taylor series expansion

e�iht;bi

nY
jD1

1

1C zj � zjeihaj;ti
D exp

˚
�q.t/ � if .t/C h.t/C O.t5/


;

where

q.t/ D
1

2

nX
jD1

�
zj C z2j

�
haj; ti

2; (26)
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f .t/ D
1

6

nX
jD1

zj.zj C 1/.2zj C 1/haj; ti
3 and (27)

h.t/ D
1

24

nX
jD1

zj.zj C 1/.6z2j C 6zj C 1/haj; ti
4: (28)

Similarly,

e�iht;bi

nY
jD1

�
1 � zj C zje

ihaj;ti
	

D exp
˚
�q.t/ � if .t/C h.t/C O.t5/



where

q.t/ D
1

2

nX
jD1

�
zj � z2j

�
haj; ti

2; (29)

f .t/ D
1

6

nX
jD1

zj.1 � zj/.1 � 2zj/haj; ti
3 and (30)

h.t/ D
1

24

nX
jD1

zj.1 � zj/.6z2j � 6zj C 1/haj; ti
4: (31)

When det� D 1, the Gaussian formulas (6) and (11) state that

P.AX D b/ �
1

.2�/r

Z
Rr

e�q.t/ dt

for the quadratic forms (26), respectively (29). To prove that q.t/ dominates higher
order terms in a neighborhood of t D 0, it usually suffices to show that the
eigenvalues of q.t/ are sufficiently large, and that, in turn, depends on the metric
properties of the polytope P.

To prove that the integrals (24) and (25) are negligible outside of a neighborhood
of t D 0, we need to use arithmetic properties of P. The following result from [5]
comes in handy.

Lemma 6 Let A be an r�n integer matrix with columns a1; : : : ; an and let u1; : : : ; ur

be the standard basis of Rr. For k D 1; : : : ; r, let Yk 	 Zr be a non-empty finite set
such that Ay D uk for all y 2 Yk. Let �k be the largest eigenvalue of the quadratic
form  k W Rn �! R,

 k.x/ D
1

jYkj

X
y2Yk

hy; xi2:
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Let t D .t1; : : : ; tk/ where �� � tk � � for k D 1; : : : ; r.

• Suppose that zj � z2j � ˛ for some ˛ > 0 and j D 1; : : : ; n. Then

ˇ̌
ˇ̌
ˇ̌

nY
jD1

�
1 � zj C zje

ihaj;ti
	ˇ̌ˇ̌
ˇ̌ � exp

�
�
˛t2k
5�k

�
:

• Suppose that zj C z2j � ˛ for some ˛ > 0 and j D 1; : : : ; n. Then

ˇ̌
ˇ̌
ˇ̌

nY
jD1

1

1C zj � zjeihaj;ti

ˇ̌
ˇ̌
ˇ̌ �

�
1C

2

5
˛�2

��bt2k=�k�
2c
:

Proof We reproduce the proof of the first bound only, since the second bound is
proven similarly. Let us denote

F.t/ D

nY
jD1

�
1 � zj C zje

ihaj;ti
	
;

so that

jF.t/j2 D

nY
jD1

�
.1 � zj/

2 C 2zj.1 � zj/ coshaj; ti C z2j
�
:

For real numbers � and � we write � � � mod 2� if � � � is an integer multiple of
2� . Let

�� � �j � � for j D 1; : : : ; n

be reals such that

haj; ti � �j mod 2� for j D 1; : : : ; n:

Using that

cos � � 1 �
�2

5
for � � � � � �;

we obtain

jF.t/j2 D

nY
jD1

�
.1 � zj/

2 C 2zj.1 � zj/ cos �j C z2j
�

D

nY
jD1

�
1 �

2zj.1 � zj/

5
�2j

�

� exp

8<
:�

2˛

5

nX
jD1

�2j

9=
; :
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Let

c D .�1; : : : ; �n/ :

Then, for every y 2 Yk we have

tk D huk; ti D hAy; ti D hy;ATti � hy; ci mod 2�:

Since jtkj � � , we must have jhy; cij � jtkj and, therefore,

nX
jD1

�2j D kck2 �
1

�k
 k.c/ D

1

�kjYkj

X
y2Yk

hy; ci2 �
t2k
�k

and the proof follows. ut

Lemma 6 is applicable only if the columns of A generate the whole lattice Zr, so
det� D 1 in (6) and (11). Moreover, to get �k sufficiently small, �k  1, we have
to present sufficiently short vectors y distributed sufficiently uniformly in Zn such
that Ay D uk.

As is shown in [5], Lemma 6 and simple eigenvalue estimates of the quadratic
forms (26) and (29) suffice to show that the Gaussian formulas (6) and (11) for the
number of multi-way contingency tables, cf. Example 1.3, are asymptotically exact,
provided the number of “ways" is at least 5 (hence 3-way tables of Example 1.3 are
not covered). It took a substantially more refined analysis of what happens in the
neighborhood of 0, to show that the Gaussian formula is asymptotically exact also
for 3- and 4- way contingency tables [8]. We state the result of [8] in the case of
3-way tables of Example 1.3, omitting technical bounds on the rate of convergence.

To make the formula (6) applicable, we drop two of the constraints as described
in Example 1.3.

Theorem 5 Let us fix a 0 < ı < 1 and let P be a 3-axial transportation polytope of
m � n � s arrays with positive integer margins A D .a1; : : : ; am/, B D .b1; : : : ; bn/

and C D .c1; : : : ; cs/ such that

a1 C : : :C am D b1 C : : :C bn D c1 C : : :C cs:

Suppose that

ıw � m; n; s � w

for some positive integer w. Suppose further that the solution z D
�
zijk
�

of the
optimization problem (4)–(5) satisfies

ı � zijk �
1

ı
for all i; j; k:
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Then the Gaussian formula (6) approximates the number jP \ Zm�n�sj of integer
points in P within a relative error of �.ı/w�0:5 for some constant �.ı/ > 0.

Similarly, it is shown in [8] that the Gaussian formula (11) is asymptotically exact
for 0-1 points in multi-way transportation polytopes of 3- and more “ways."

4.2 Corrections to the Gaussian Formulas

Curiously, the Gaussian formula (6) is not asymptotically exact in the case of
2-way contingency tables of Example 1.2 and the Gaussian formula (11) is not
asymptotically exact in the case of polytopes of graphs of a given degree sequence
of Example 1.4. The formulas need a correction based on the 3rd and 4th moments,
also known as the Edgeworth correction, see, for example, [27].

We calculate the correction term as follows. Let q be the quadratic form of (26),
respectively (29). Let us consider the Gaussian probability measure on Rr with
density proportional to e�q. We define

� D E f 2 and � D E h;

for functions f ; h W Rr �! R defined by (27)–(28), respectively, (30)–(31). We
define the corrected Gaussian formula by

jP \ Zjn �
eg.z/ det�

.2�/r=2
p

det B
exp

n
�
�

2
C �

o
(32)

respectively by

jP \ f0; 1gjn �
eh.z/ det�

.2�/r=2
p

det B
exp

n
�
�

2
C �

o
: (33)

We note that it is easy to compute � and �, as it is easy to integrate polynomials
of a low degree over the Gaussian measure. The following result for the number of
2-way contingency tables was obtained in [6]. Again, to make the formula (6) appli-
cable, we drop one row or column sum constraint, as is described in Example 1.2.

Theorem 6 Let us fix 0 < ı < 1 and let P be the polytope of m � n non-negative
integer matrices with positive integer row sums R D .r1; : : : ; rm/ and column sums
C D .c1; : : : ; cn/ such that

r1 C : : :C rm D c1 C : : :C cn:

Suppose that ım � n and ın � m and that the solution z D
�
zij
�

to the optimization
problem (4)–(5) satisfies

ıs � zij � s for all i; j
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and some s � 1. Then the corrected Gaussian formula (32) approximates the
number jP \ Zm�nj of integer points in P within a relative error of .m C n/��.ı/

for some �.ı/ > 0.

The proof of Theorem 6 requires a more careful analysis of the integral (24)
outside of t D 0 than that provided by Lemma 6 although the main action is in the
analysis of the integral in a neighborhood of t D 0. It turns out that the function f .t/
defined by (27) behaves roughly as a Gaussian random variable on the probability
space of Rr endowed with probability density proportional to e�q for the quadratic
form (26). This happens because many of the linear functions haj; ti entering (27)
are weakly correlated. Hence we have

E e�if � exp

�
�
1

2
E f 2

�
D e��=2:

Similarly, the function h.t/ defined by (28) is almost constant on that probability
space, so we have

E eh � exp fE hg D e�:

Earlier a similar to the Theorem 6 result was obtained, in a different language but by
using the asymptotic analysis of a similar kind, in [11] in the particular case when all
row sums are (almost) equal and all column sums are (almost) equal: r1 D : : : D rm

and c1 D : : : D cn.
The following result for the number of graphs with a given degree sequence, see

Example 1.4, is obtained in [7].

Theorem 7 Let us fix 0 < ı < 1=2 and let P be the polytope of n � n symmetric
matrices with zero diagonal and positive integer row (column) sums d1; : : : ; dn

satisfying d1 C : : : C dn � 0 mod 2. Suppose that the solution z D
�
zij
�

to the
optimization problem (9)–(10) satisfies

ı � zij � 1 � ı for all 1 � i ¤ j � n:

Then the corrected Gaussian formula (33) approximates the number jP \ f0; 1gm�nj

of 0-1 points in P within a relative error of .m C n/��.ı/ for some �.ı/ > 0.

Curiously, in this case points the outside of a neighborhood the origin (more
precisely, the corners of the parallelepiped ˘ ) contribute to the integral (25), see
Section 4.1. If d1 C : : :C dn � 0 mod 2, the contribution from the outside doubles
the contribution of the origin while if d1 C : : : C dn � 1 mod 2, the contribution
from the outside cancels the contribution from the origin, making, predictably, the
integral 0.

A similar to the Theorem 7 result in a different language but by using the
asymptotic analysis of a similar kind was obtained earlier in [30] in the particular
case when degrees d1; : : : ; dn are (almost) equal.
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5 Concluding Remarks and Open Questions

5.1 Why Are the Formulas (Sometimes) So Precise?

The Gaussian formulas (6) and (11) provide amazingly close estimates in Exam-
ples 1.2–1.4 and in many other cases, see [14]. Although we can prove that in
Example 1.3 the Gaussian formula is asymptotically exact while in Examples 1.2
and 1.4 the corrected Gaussian formulas are asymptotically exact, the error bounds
we are able to prove are nowhere close to the actual errors. It would be nice to
develop new methods that would allow us to bound errors more accurately.

5.2 Is the Uniformity Condition for zk Really Necessary?

To obtain asymptotic estimates in Theorems 4, 5, 6 and 7, we require the coordinates
zk in the optimal solution of the optimization problems (4)–(5) and (9)–(10) to be
within a constant factor of each other, and only in Theorem 3 we allow ourselves
more flexibility. It is not clear to what extent that uniformity condition is really
necessary. In the case of graphs with a given degree sequence, see Example 1.4 and
Theorem 7, the conditions are satisfied if the degree sequence D D .d1; : : : ; dn/ lies
sufficiently deep inside the polytope defined by the Erdős–Gallai conditions (14).
This can be related to the fact that the number of graphs with degree sequence D
begins to oscillate rapidly when D approaches the boundary of the conditions (14)
and hence there is no chance to approximate that number by an analytic formula
such as the Gaussian formula (11), see [7] for a discussion.

The case of 2-way contingency tables of Example 1.2 and Theorem 6 is more
mysterious. It is shown in [4] that for the margins R D .3n; n; : : : ; n/ and C D

.3n; n; : : : ; n/ of an n � n contingency table, in the solution Z D
�
zij
�

of the
optimization problem (4)–(5), which is naturally arranged into an n � n matrix,
the entries zij are not uniform: z11 grows linearly with n while all other entries
remain bounded by a constant. Curiously, for the margins R0 D .2n; n; : : : ; n/ and
C0 D .2n; n; : : : ; n/ of an n � n table, all entries zij stay bounded by a constant as n
grows. It is not clear whether there is indeed a sharp phase transition in the number
of contingency tables as the margins evolve from .R0;C0/ to .R;C/ which would
preclude the existence of an analytic formula approximating the number of tables
across the transition.

5.3 What a Random Integer or 0-1 Point of a Polytope Looks
Like?

Reasoning along similar lines as in the proofs of Theorem 3 and Theorem 4, one
can show that if ln jP \ Znj � g.z/ then a random integer point sampled from the
uniform distribution on P \ Zn looks roughly like a vector of geometric random
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variables in Lemma 1 as far as various statistics averaging over several coordinates
are concerned. In [4] it is shown that a random 2-way contingency table with
given margins indeed behaves like that under some technical conditions. Similarly,
if ln jP \ f0; 1gnj � h.z/ then a random 0-1 point sampled from the uniform
distribution in P \ f0; 1gn looks roughly like a vector of independent Bernoulli
random variables of Lemma 2 with respect to averaging statistics. In [7] it is shown
that a random graph with a given degree sequence behaves like that under some
technical conditions (for bipartite graphs, one obtains similar, but much more robust
results [3]).

What is not clear is the true extent at which the distributions match. For example,
is it true that an individual coordinates of a random point in P \ Zn behaves roughly
as a geometric random variable? In relation to the example of Section 5.2, is it true
that the expectation of the .1; 1/ entry of a random non-negative integer n�n matrix
with row sums .3n; n; : : : ; n/ and column sums .3n; n; : : : ; n/ grows linearly in n?
By definition, the k-th coordinate of a random point in P \ f0; 1gn is a Bernoulli
random variable, but one can ask whether its expectation is close to zk, where z D

.z1; : : : ; zn/ is the solution in the optimization problem (9)–(10).
Finally, it would be interesting to find out whether knowing optimal solutions z

in problems (4)–(5) and (9)–(10) can help in solving problems of discrete (integer,
respectively Boolean) optimization. If a random point in P \ Zn (a random point
in P \ f0; 1gn) behaves as a vector of independent geometric random variables (as
a vector of independent Bernoulli random variables) with expectation z, then z is
roughly the average of integer points in P ( 0-1 points in P) and if we are interested
in finding at least one integer (0-1) point in P, it may make sense to look for such
a point near z. Recall that z is the solution of a convex optimization problem and
hence can be found easily.

5.4 What If the Gaussian Model is Not Applicable?

As follows from Section 2.2, the Gaussian model may work only for reasonably
“dense" instances, where the optimal solution z D .z1; : : : ; zn/ in problems (4)–(5)
and (9)–(10) has entries bounded below away from 0. For example, if we try to
apply the Gaussian formula (11) to estimate the number of n � n matrices with 0-
1 entries and row and column sums equal 1, we get a rather poor approximation
(there are nŠ such matrices). In this case, for the Bernoulli random variables Xij of
Lemma 2 we have E

�
Xij
�

D 1=n and hence the random vector AX in Lemma 2 is
much closer to the vector of independent Poisson random variables than to a vector
of Gaussian random variables. It would be interesting to develop the Poisson model
in the general sparse case.

We note that there are many results on the enumeration of 0-1 and integer
matrices with prescribed margins and graphs with a given degree sequence in the
sparse case, that is, where the margins and degrees are relatively small, see [21],
[20], [9] and the references therein.
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The Chain Rule Operator Equation
for Polynomials and Entire Functions

Hermann König and Vitali Milman

Abstract After a short survey on operator functional equations we study the
solutions of the chain rule operator equation

T.f ı g/ D .Tf / ı g � Tg

for maps T on spaces of polynomials and entire functions. In comparison with
operators on Ck-spaces with k 2 N [ f1g, which were studied before, there are
entirely different solutions. However, these yield discontinuous maps T . Under
a mild continuity assumption on T we determine all solutions of the chain rule
equation on spaces of real or complex polynomials or analytic functions. The
normalization condition T.�2 Id/ D �2 yields Tf D f 0 as the only solution.

1 Introduction and Results

Various fundamental operations in analysis and geometry such as derivatives, mul-
tiplicative maps, the Fourier transform or the duality of convex bodies essentially
may be characterized by very simple properties or by operator equations on classical
function spaces. We concentrate in this paper on characterizations of the derivative
by the chain rule. To put things into perspective, we first mention a few recent results
characterizing other classical operations in analysis. Let us start with multiplicative
maps. On the real line, we have the standard

Lemma 1 Assume that K W R ! R is measurable, not identically zero and
multiplicative in the sense that K.uv/ D K.u/K.v/ for all u; v 2 R. Then there
exists some p 2 R such that either K.u/ D jujp or K.u/ D jujpsgn .u/ for all u 2 R.
If K is continuous at 0, in the first case p � 0, in the second one p > 0.
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The additive version of this lemma, i.e. that measurable additive functions L W

R ! R; L.u C v/ D L.u/ C L.v/ are linear, is due to Banach [B] and Sierpinski
[S]; the reduction to this case using logarithms is straightforward, cf. Aczél [A] . A
beautiful proof of the result of [B] and [S] was given by Alexiewicz and Orlicz [AO].
A classical result of Milgram [M] extends Lemma 1 to bijective transformations on
spaces of continuous functions:

Theorem 2 Let M be a real topological manifold and C.M/ denote the space of
real valued continuous functions on M . Assume that T W C.M/ ! C.M/ is bijective
and multiplicative, i.e.

T.f � g/ D Tf � Tg I f ; g 2 C.M/ :

Then there is a continuous function p W M ! RC and a homeomorphism v W M !

M such that

.Tf /.x/ D jf .v.x//jp.x/ sgn .f .v.x/// I f 2 C.M/; x 2 M :

Hence, up to homeomorphic change of variables in M, T is of power type. The
analogue of Theorem 2 for Ck-functions when k 2 N is much more recent and due
to Mrčun and Šemrl [MS]. An alternative proof which works also for k D 1 was
given by Artstein-Avidan, Faifman and Milman [AFM] who also extended the result
to complex-valued functions. They used ideas of Mrčun [Mr]. In this case p D 1

and T turns out to be linear and continuous:

Theorem 3 Let k 2 N [ f1g and M be a Ck-manifold. Assume that T W Ck.M/ !

Ck.M/ is a bijective and multiplicative operator,

T.f � g/ D Tf � Tg I f ; g 2 Ck.M/ :

Then there is a Ck-diffeomorphism v W M ! M such that

.Tf /.x/ D f .v.x// I f 2 Ck.M/ ; x 2 M :

On the Schwartz space S.Rn/ of rapidly decreasing functions f W Rn ! C, there
are two natural multiplications: the pointwise multiplication and the convolution.
The Fourier transform F is bijective on S.Rn/ and exchanges these multiplications
with one another. It was shown in [AFM], following work by Alesker, Artstein-
Avidan, Faifman and Milman [AAFM], that it is the only operator with these
properties, up to linear maps:

Theorem 4 Assume that T W S.Rn/ ! S.Rn/ is bijective and exchanges the usual
multiplication with the convolution, in the sense that

T.f � g/ D Tf � Tg I f ; g 2 S.Rn/
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and

T.f � g/ D Tf � Tg I f ; g 2 S.Rn/ :

Then there is a linear map v W Rn ! R
n with j det vj D 1 such that either Tf D

F.f ı v/ or Tf D F.f ı v/, where F denotes the Fourier transform.

Theorem 4 is a direct consequence of the analogue of Theorem 3 for S.Rn/

instead of C1.Rn/: Both F ı T and T ı F will be multiplicative with respect to
pointwise multiplication so that by Theorem 3 for a suitable C1-homeomorphism
v which in this case turns out to be a linear map v W Rn ! R

n with j det vj D 1,
.FıT/.f /.x/ D f .v.x// or f .v.x//, the latter being a second possibility for complex-
valued functions.

We now turn to characterizations of the derivative. Its action on products of real-
valued C1-functions obviously is given by the Leibniz rule. We have the following
characterization of the solutions of the Leibniz rule:

Theorem 5 Let k 2 N [ f0g. Assume that T W Ck.R/ ! C.R/ is a map satisfying
the Leibniz rule

T.f � g/ D Tf � g C f � Tg I f ; g 2 Ck.R/ :

Then there are continuous functions a; b 2 C.R/ such that, if k 2 N,

Tf D a � f 0 C b � f ln jf j I f 2 Ck.R/ :

If k D 0, the only possibility is Tf D b � f ln jf j.

The case k D 0 is due to Goldmann-Šemrl [GS], the case k 2 N was shown
in König-Milman [KM]. Suitable initial conditions like T.c/ D 0 for a suitable
constant function with value c 62 f0; 1g imply that b D 0, and hence that Tf D a � f 0

is essentially the derivative, up to multiplication by a continuous function.
The main topic of the present paper is to what extent the chain rule characterizes

the derivative on various classical spaces of analysis. To formulate the results
precisely, we introduce some notations. Let X D Ck.R/, Y D C.R/, k 2 N [ f1g

and T W X ! Y satisfy the chain rule operator equation

T.f ı g/ D .Tf / ı g � Tg I f ; g 2 X : (1)

In [AKM] we found all solutions of (1) under a mild condition of non-degeneration
of T . They are of the form

Tf D
H ı f

H
jf 0jp fsgn f 0g ; (2)
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where p � 0, H 2 C.R/, H > 0 and the term fsgn f 0g might appear or might
not appear. No continuity was assumed in [AKM]; however, it is a consequence of
formula (2). The normalization T.�2 Id/ D �2 leads to Tf D f 0 being the only
solution of (1).

The method of proof in [AKM] does not work for maps T on polynomial spaces.
Also, we could not determine the solutions in the complex case for maps T on spaces
of entire functions. We now consider equation (1) in these cases: For K 2 fR;Cg,
denote by P D P.K/ the space of polynomials with coefficients in K, by Pn D

Pn.K/ the subspace of polynomials of degree at most n, n 2 N, by C D C.K/ the
space of continuous functions from K to K and by E D E.K/ the space of real-
analytic functions (K D R) or entire functions (K D C). Let X 2 fP;Pn; Eg and
Y 2 fC;P; Eg and T W X ! Y be an operator satisfying the chain rule operator
equation (1). For X D P and Y D C there are solutions of (1) which are very
different from the solutions (2) for X D Ck.R/:

Example For each prime number p 2 N, choose an arbitrary value cp � 0 with
cq > 0 for at least one prime number q and define T W P ! C by

Tf D

rY
jD1

cpj

(constant function) if f 2 P is a polynomial of degree deg f D
Qr

jD1 pj (possible
repetition of primes). Since deg.f ı g/ D deg f � deg g for f ; g 2 P , T satisfies (1).
This solution clearly is not continuous in any reasonable sense since polynomials
of degree n may converge, e.g., uniformly on compact sets to lower degree
polynomials. We may multiply these solutions by those of (2)

Tf D

rY
jD1

cpj

H ı f

H
jf 0jp .sgn f 0/m

to get further solutions of the chain rule equation (1). We have not been able to
determine whether this yields the general solution of (1) for maps T W P ! C. This
leads to number theoretic questions.

However, we found the general solution of (1) under a mild continuity assump-
tion on T W X ! Y for X 2 fP;Pn; Eg and Y 2 fC;P; Eg. We call the operator T
pointwise continuous if for any sequence of functions fn 2 X converging uniformly
on compact subsets of K to a function f 2 X, we have pointwise convergence at
0 2 K, i.e. limn!1.Tfn/.0/ D .Tf /.0/ in K. Under this assumption, the non-zero
solutions of (1) are essentially of the same form as (2), where -depending on Y-
possibly p 2 N0 or restrictions on H apply. In this and the following we use the
notation sgn � D �

j�j
for � 2 K n f0g.
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Theorem 6 Let K 2 fR;Cg, X 2 fP;Png and Y 2 fC;Pg and suppose that T W

X ! Y, T ¤ 0 satisfies the chain rule operator equation

T.f ı g/ D .Tf / ı g � Tg I f ; g; f ı g 2 X (1)

and is pointwise continuous. Then there is a continuous nowhere vanishing function
H 2 C.K/ and there are p 2 K with Re.p/ � 0 and m 2 Z such that

Tf D
H ı f

H
jf 0jp .sgn f 0/m : (3)

For K D R, m 2 f0; 1g suffices and H > 0. For p D 0, only m D 0 yields a solution
T with range in C.K/. If Y D P , H is constant and p D m 2 N0 is a non-negative
integer, with T being of the form Tf D f 0m.

Theorem 7 K 2 fR;Cg and X D Y D E.K/. Suppose that T W X ! Y, T ¤ 0

satisfies the chain rule operator equation

T.f ı g/ D .Tf / ı g � Tg I f ; g 2 X (1)

and is pointwise continuous. Then there is a real-analytic .K D R/ or entire
function .K D C/ h 2 E.K/ and there is m 2 N0 such that

Tf D exp.h ı f � h/ f 0m : (4)

The functions H and h of Theorems 6 and 7 are related by H D exp.h/. In
both theorems, Tf D f 0 is the only solution of (1) satisfying the additional condition
T.�2 Id/ D �2. It is not clear to us whether Theorem 7 holds without the continuity
assumption on T .

2 Proof of Theorems 6 and 7

In the proofs of Theorem 6 and 7 we need

Lemma 8 Let K 2 fR;Cg and � W K ! K be a non-zero continuous multiplicative
function

�.��/ D �.�/�.�/ I �; � 2 K :

Then �.0/ D 0 and there are p 2 K with Re.p/ � 0 and m 2 Z such that

�.�/ D j�jp .sgn �/m I sgn � D
�

j�j
.� ¤ 0/ :

For Re.p/ D 0, only m D 0 is allowed to guarantee the continuity of �. In the real
case m 2 f0; 1g.
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Remark Re.p/ � 0 is needed since � is bounded near zero.

Proof In the real case this is well known, cf. Aczél [A], Theorem 3 of 2.1.2 or
[AKM], Lemma 13. Consider K D C and define a continuous function f W C ! C

by f .z/ WD �.ez/, z 2 C. Then f .z C w/ D f .z/f .w/ for all z;w 2 C. By Theorem 3
of Section 5.1.1 of Aczél [A] there are ˛; ˇ 2 C such that f .z/ D e˛zCˇNz which
implies �.�/ D �˛ N�ˇ . Writing � D j�j sgn � , we get

�.�/ D j�j˛Cˇ .sgn �/˛�ˇ D j�jp .sgn �/q

with p D ˛ C ˇ; q D ˛ � ˇ 2 C. Writing sgn � D ei� with � 2 Œ0; 2��, the
continuity of � requires e0 D ei2�q, i.e. q D m 2 Z. The boundedness of � near 0
implies Re.p/ � 0. Clearly, for K D R only m 2 f0; 1g are needed, giving the two
solutions j�jp and j�jp .sgn �/ for p > 0 (and 1 for p D 0). �

Proof of Theorem 6. (a) For n 2 N, let T W Pn ! C be a non-zero map satisfying
the chain rule operator equation (1). Since T ¤ 0, there is g 2 Pn and x1 2 K such
that Tg.x1/ ¤ 0. Given any x0 2 K, consider the shift map S.x/ WD x C x1 � x0,
S 2 P1 	 Pn and let f WD g ı S. Then by (1), 0 ¤ Tg.x1/ D T.f ı S�1/.x1/ D

Tf .x0/T.S�1/.x1/. Hence Tf .x0/ ¤ 0. Again by (1), Tf D T.f ı Id/ D .Tf / ı Id �

T.Id/ D Tf � T.Id/, f 2 Pn. Therefore T.Id/.x0/ D 1 and T.Id/ D 1 is the function
identically equal to 1. For x 2 K consider again a shift map Sx 2 P1 	 Pn given by
Sx.y/ D x C y, y 2 K. Then by (1)

1 D T.Id/ D T.S�x ı Sx/ D T.S�x/ ı Sx � T.Sx/ :

Hence for any y 2 K, T.Sx/.y/ ¤ 0. In particular, T.Sx/.0/ ¤ 0 for all x 2 K. For
any f 2 Pn, again by (1),

T.f ı Sx/ D .Tf / ı Sx � T.Sx/ ; T.f ı Sx/.0/ D .Tf /.x/ � T.Sx/.0/ :

We conclude that for any x 2 K

Tf .x/ D
T.f ı Sx/.0/

T.Sx/.0/
: (5)

Equation (5) and the pointwise continuity of T imply for a sequence fn 2 X
converging uniformly on compacta to f 2 X, we have limn!1.Tfn/.x/ D .Tf /.x/
for any x 2 K, and not only for x D 0. By (5) it suffices to determine the values of

Tf at 0 for any f 2 Pn. Since for any f 2 Pn, f .x/ D
Pn

jD0
f .j/.0/

jŠ xj is determined

by the function and derivative values .f .j/.0//0�j�n, .Tf /.0/ is a function of these
values. Hence there is Fn W KnC1 ! K such that

.Tf /.0/ D Fn.f .0/; f
0.0/; � � � ; f .n/.0// : (6)
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Since .f ı Sx/
.j/ D f .j/ ı Sx in view of S0

x D 1, (5) and (6) imply that

.Tf /.x/ D
Fn.f .x/; f 0.x/; � � � ; f .n/.x//

Fn.x; 1; 0; � � � ; 0/
(7)

with Fn.x; 1; 0; � � � ; 0/ D T.Sx/.0/ ¤ 0 for any x 2 K.
(b) Fix x 2 K and define QFn;x W Kn ! K by

QFn;x.�1; � � � ; �n/ WD
Fn.x; �1; � � � ; �n/

Fn.x; 1; � � � ; 0/
: (8)

For any .�1; � � � ; �n/ 2 K
n there is a polynomial g 2 Pn with g.x/ D x and g.j/.x/ D

�j for all j 2 f1; � � � ; ng. For any �1 2 K, define f 2 P1 	 Pn by f .y/ WD �1.y�x/Cx.
Then .f ı g/.n/.x/ D �1�n and .g ı f /.n/.x/ D �n

1�n. Thus by (7) and (8)

QFn;x.�1�1; �1�2; � � � ; �1�n/ D QFn;x..f ı g/0.x/; � � � ; .f ı g/.n/.x//

D T.f ı g/.x/ D .Tf /.x/ � .Tg/.x/ D .Tg/.x/ � .Tf /.x/

D T.g ı f /.x/ D QFn;x.�1�1; �
2
1�2; � � � ; �

n
1�n/ : (9)

For any .t1; � � � ; tn/ 2 K
n and ˛ 2 K, ˛ ¤ 0, we may choose .�1; � � � ; �n/ 2 K

n

with �i D ti=˛, i 2 f1; � � � ; ng. Then by (9) with �1 D ˛

QFn;x.t1; � � � ; tn/ D QFn;x.t1; ˛t2; ˛
2t3; � � � ; ˛

n�1tn/ : (10)

Fixing t1 2 K we show that G W K
n�1 ! K defined by G.t2; � � � ; tn/ WD

QFn;x.t1; t2; t3; � � � ; tn/ is continuous at zero: If t.m/ D .t.m/2 ; � � � ; t.m/n / 2 K
n�1,

.m 2 N/, is a sequence converging to 0 2 K
n�1, choose polynomials fm 2 Pn

with fm.x/ D x, f 0
m.x/ D t1 and f .j/m .x/ D t.m/j for j 2 f2; � � � ; ng, m 2 N. Clearly

fm converges uniformly on compact sets to f where f .y/ D t1.y � x/ C x. By the
assumption of pointwise continuity of T , (7) and (8)

G.t.m/2 ; � � � ; t.m/n / D QFn;x.t1; t
.m/
2 ; � � � ; t.m/n / D .Tfm/.x/

! .Tf /.x/ D QFn;x.t1; 0; � � � ; 0/ D G.0; � � � ; 0/ ;

i.e., G is continuous at 0 2 K
n�1. Thus, letting ˛ ! 0 in (10), we find

QFn;x.t1; t2; � � � ; tn/ D lim
˛!0

QFn;x.t1; ˛t2; � � � ; ˛
n�1tn/ D QFn;x.t1; 0; � � � ; 0/

This shows for arbitrary .t1; � � � ; tn/ 2 K
n that

QFn;x.t1; t2; � � � ; tn/ D QFn;x.t1; 0; � � � ; 0/ ; (11)

i.e., QFn;x does not depend on the variables .t2; � � � ; tn/ 2 K
n�1.
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(c) For any f 2 Pn with f .x/ D x, f 0.x/ D �1 we have by (7), (8), and (11)

Tf .x/ D QFn;x.�1; 0; � � � ; 0/ D
Fn.x; �1; 0; � � � ; 0/

Fn.x; 1; 0; � � � ; 0/
DW �.x; �1/ : (12)

If g 2 Pn satisfies g.x/ D x, g0.x/ D �1, we have by (1)

�.x; �1�1/ D T.f ı g/.x/ D .Tf /.x/ � .Tg/.x/ D �.x; �1/�.x; �1/ :

Therefore �.x; �/ is multiplicative on K for every fixed x. It is also continuous: for
�
.m/
1 ! �1 in K put fm.y/ WD �

.m/
1 .y � x/C x, f .y/ WD �1.y � x/C x. Then fm ! f

converges uniformly on compact sets and

�.x; �.m/1 / D .Tfm/.x/ ! .Tf /.x/ D �.x; �1/

by the pointwise continuity of T . By Lemma 8, �.x; 0/ D 0 and there are m.x/ 2 Z

and p.x/ 2 K with Re.p.x// � 0 such that

�.x; �1/ D j�1j
p.x/ .sgn �1/

m.x/ ; sgn �1 D
�1

j�1j
; �1 ¤ 0 (13)

with m.x/ D 0 if Re.p.x// D 0 and m.x/ 2 f0; 1g if K D R.
Let H.x/ WD T.Sx/.0/ D Fn.x; 1; 0; � � � ; 0/. H never vanishes and is continuous

since T is pointwise continuous. For any f 2 Pn, by (7), (11), (12) and (13)

Tf .x/ D
Fn.f .x/; f 0.x/; 0; � � � ; 0/

Fn.x; 1; 0; � � � ; 0/
D
�.f .x/; f 0.x//H.f .x//

H.x/

D
H ı f .x/

H.x/
jf 0.x/jp.f .x// .sgn f 0.x//m.f .x// : (14)

Choosing f .x/ D 2x, we find that p is a continuous function since Tf and H
are continuous. Actually, we show that p is a constant function: Choose arbitrary
x; y; z 2 K and any functions f ; g 2 Pn with g.x/ D y, f .y/ D z. Then by (14)
and (1)

jf 0.y/g0.x/jp.yz/.sgn f 0.y/g0.x//m.yz/ D jf 0.y/jp.z/.sgn f 0.y//m.z/jg0.x/jp.y/.sgn g0.x//m.y/ :

Applying this first to polynomials with f 0.y/ > 0, g0.x/ > 0 but otherwise arbitrary,
we find that p.yz/ D p.z/ D p.y/ DW p for all y; z 2 K, i.e. p is constant. Using
.sgn f 0.y//m.yz/ D .sgn f 0.y//m.z/ for f 2 Pn with arbitrary y; z and sgn f 0.y/, we also
find that m.yz/ D m.z/ D m.y/ DW m 2 Z is constant. With p D p.f .x// and
m D m.f .x//, (14) gives the general solution for X D Pn, Y D C, both for K D R

and K D C.
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(d) Since (14) is independent of n 2 N, this is also the general solution for X D P
and Y D C. In the case that all functions in the range of T are polynomials, Y D P ,
all functions

Tf D
H ı f

H
jf 0jp .sgn f 0/m I m 2 Z; p 2 K;Re.p/ � 0; f 2 P

have to be polynomials. For f .x/ D 1
2
x2 with f 0.x/ D x this means that

Tf .x/ D
H. 12 x2/

H.x/ jxjp .sgn x/m, Tf 2 P . For p D 0 also m D 0 and Tf D Hıf
H . For

p > 0, Tf has a zero of order p in x0 D 0. Since Tf is a polynomial, it follows that
p 2 N is a positive integer and Tf .x/ D xpg.x/ with g 2 P , g.0/ ¤ 0. This implies
that m 2 Z has to be such that xp D jxjp .sgn x/m, i.e. that Tf D Hıf

H f 0p 2 P for all
f 2 P with p 2 N0.

Applying this to linear functions f .x/ D ax C b, f .y/ D 1
a y � b

a D x, we find that

p.x/ WD H.axCb/
H.x/ and H.x/

H.axCb/ D 1
p.x/ are polynomials in x. Therefore H.axCb/

H.x/ DW ca;b

is constant in x for any fixed values a; b 2 K. In particular, H.2x/
H.x/ D H.2�0/

H.0/ D c2;0 D

1 and H.xCb/
H.x/ D c1;b for any fixed b 2 K and all x 2 K. We find

H.2x C 2b/ D H.x C b/ D c1;bH.x/ D c1;bH.2x/ D H.2x C b/ I x; b 2 K :

Therefore H.y C d/ D H.y/ for all y; b 2 K. Hence H is constant and Hıf
H D 1 for

all f 2 P . We conclude that Tf D .f 0/p; p 2 N0. �

Proof of Theorem 7. Since P.K/ 	 X D Y D E.K/ 	 C.K/, Theorem 6 yields
that T , restricted to P.K/, has the form

Tf D
H ı f

H
jf 0jp .sgn f 0/m I f 2 P.K/ ; (15)

with m 2 Z, p 2 K, Re.p/ � 0. We also know that x ! H.x/ D T.Sx/.0/

is continuous by the pointwise continuity of T . Let c 2 K, c ¤ 0 be arbitrary.
Applying (15) to f .z/ D cz and using that Tf 2 E.K/, we get that z ! H.cz/

H.z/ is in
E.K/, i.e. analytic on K. Since H is nowhere zero, there exists an analytic function
k.c; �/ 2 E.K/ such that H.cz/

H.z/ D exp.k.c; z//, with k.c; 0/ D 0. For c; d 2 K we find

exp.k.cd; z// D
H.cdz/

H.z/
D

H.cdz/

H.dz/

H.dz/

H.z/
D exp.k.c; dz/C k.d; z// ;

hence k.cd; z/ D k.c; dz/ C k.d; z/. In particular, for z D 1, k.c; d/ D k.cd; 1/ �

k.d; 1/. Let h.d/ WD k.d; 1/ for d ¤ 0. Then k.c; d/ D h.cd/ � h.d/, and with
d replaced by z, k.c; z/ D h.cz/ � h.z/. Since H is continuous, k is continuous as
a function of both variables. Therefore, limc!0 k.c; z/ D limc!0 h.cz/ � h.z/ DW

h.0/ � h.z/ exists z-uniformly on compact sets. Thus k.c; �/ 2 E.K/ for all c 2 K

implies that h 2 E.K/. For w; z 2 K n f0g, define c 2 K by w D cz. Then
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H.w/

H.z/
D exp.k.c; z// D exp.h.w/ � h.z// :

This extends by continuity to w D 0 or z D 0. Hence we have for all f 2 P.K/
that Hıf

H D exp.h ı f � h/. Since Tf ; H
Hıf are in E.K/, also jf 0jp .sgn f 0/m has to be

real-analytic .K D R/ or analytic .K D C/ for all polynomials f , requiring that
p D m 2 N0, taking into account also that Re.p/ � 0 and m 2 Z. Therefore

Tf D exp.h ı f � h/ f 0m ; f 2 P.K/ (16)

with m 2 N0. Given any function f 2 E.K/, its n-th order Taylor polynomials
pn.f / 2 P.K/ converge uniformly on compacta to f . By the assumption of pointwise
continuity of T , we have limn!1 T.pn.f //.z/ D Tf .z/ for any z 2 K. Further
limn!1 h ı pn.f /.z/ D h ı f .z/ and limn!1 pn.f /0.z/ D f 0.z/ . Therefore (16)
holds for all f 2 E.K/.

It is clear in both Theorem 6 and Theorem 7 that the condition T.�2 Id/ D �2

implies p D m D 1 and that H and h are constant, i.e. Tf D f 0. �
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