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Abstract A general method using multipliers for finding the conserved integrals
admitted by any given partial differential equation (PDE) or system of partial
differential equations is reviewed and further developed in several ways. Multipliers
are expressions whose (summed) product with a PDE (system) yields a local
divergence identity which has the physical meaning of a continuity equation
involving a conserved density and a spatial flux for solutions of the PDE (system).
On spatial domains, the integral form of a continuity equation yields a conserved
integral. When a PDE (system) is variational, multipliers are known to correspond
to infinitesimal symmetries of the variational principle, and the local divergence
identity relating a multiplier to a conserved integral is the same as the variational
identity used in Noether’s theorem for connecting conserved integrals to invariance
of a variational principle. From this viewpoint, the general multiplier method is
shown to constitute a modern form of Noether’s theorem in which the variational
principle is not directly used. When a PDE (system) is non-variational, multipliers
are shown to be an adjoint counterpart to infinitesimal symmetries, and the local
divergence identity that relates a multiplier to a conserved integral is shown to be an
adjoint generalization of the variational identity that underlies Noether’s theorem.
Two main results are established for a general class of PDE systems having a
solved-form for leading derivatives, which encompasses all typical PDE systems
of physical interest. First, all non-trivial conserved integrals are shown to arise from
non-trivial multipliers in a one-to-one manner, taking into account certain equiva-
lence freedoms. Second, a simple scaling formula based on dimensional analysis
is derived to obtain the conserved density and the spatial flux in any conserved
integral, just using the corresponding multiplier and the given PDE (system). Also,
a general class of multipliers that captures physically important conserved integrals
such as mass, momentum, energy, angular momentum is identified. The derivations
use a few basic tools from variational calculus, for which a concrete self-contained
formulation is provided.
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1 Introduction and Overview

In the study of partial differential equations (PDEs), conserved integrals and local
continuity equations have many important uses. They yield fundamental conserved
quantities and constants of motion, which along with symmetries are an intrinsic
coordinate-free aspect of the structure of a PDE system. They also yield potentials
and nonlocally-related systems. They provide conserved norms and estimates,
which are central to the analysis of solutions. They detect if a PDE system admits
an invertible transformation into a target class of PDE systems (e.g., nonlinear to
linear, or linear variable coefficient to constant coefficient). They typically indicate
if a PDE system has integrability structure. They allow checking the accuracy
of numerical solution methods and also give rise to good discretizations (e.g.,
conserving energy or momentum).

For a dynamical PDE system in one spatial dimension, a local continuity equation
is a total divergence expression

DtT C DxX D 0 (1)

vanishing on the solution space of the system, where T is a conserved density and X
is a spatial flux. (Here Dt and Dx are total derivatives with respect to time and space
coordinates.) Every local continuity equation physically represents a conservation
law for the quantity T . The conservation law can be formulated by integrating the
local continuity equation over any spatial domain ˝ � R, yielding

d

dt

Z
˝

Tdx D �X
ˇ̌
ˇ
@˝

: (2)

This shows that the rate of change of the integral of the conserved density T on the
domain ˝ is balanced by the net outward flux through the domain endpoints @˝.

In two and three spatial dimensions, local continuity equations have the more
general total divergence form

DtT C Div X D 0: (3)

The corresponding physical conservation law is given by

d

dt

Z
˝

TdV D �
I

@˝

X � �dA (4)

where ˝ is a spatial domain and � is the outward unit normal of the domain
boundary. This conservation law shows that the net outward flux of X integrated
over @˝ balances the rate of change of the integral of the conserved density T on ˝.

Another type of conservation law in two and three spatial dimensions can be
formulated on the boundary of a spatial domain ˝,
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d

dt

I
@˝

T � �dA D 0 (5)

holding on the solution space of a PDE system. This boundary conservation law
corresponds to a local continuity equation (3) in which the conserved density is a
total spatial divergence, T D Div T, and the flux is a total spatial curl, X D Div � ,
where � is an antisymmetric tensor. Its physical meaning is that the net flux of T
over @˝ is a constant of the motion for the PDE system.

When hydrodynamical PDE systems for fluid/gas flow are considered, a more
physically useful formulation of conservation laws is given by considering moving
spatial domains ˝.t/, or moving spatial boundaries @˝.t/, that are transported by
the flow of the fluid/gas.

For a moving domain, a physical conservation law has the form

d

dt

Z
˝.t/

TdV D �
I

@˝.t/
.X � Tu/ � �dA (6)

where u is the fluid/gas velocity, and X � Tu D X is the moving flux. The local
continuity equation (3) is then equivalent to a transport equation

.Dt C u � Dx/T D �.r � u/T � DivX (7)

for the conserved density T , with DtCu�Dx being the material (advective) derivative,
and r�u being the expansion or contraction factor of an infinitesimal moving volume
of the fluid/gas. If the net moving flux over the domain boundary @˝.t/ vanishes,
then the integral of the conserved density T on the moving domain ˝.t/ is a constant
of motion.

For a moving boundary, the physical form of a conservation law is given by

d

dt

I
@˝.t/

T � �dA D 0 (8)

which shows the net flux of T integrated over @˝.t/ is a constant of motion. In
the corresponding transport equation (7), the conserved density is a total spatial
divergence, T D Div T, and the moving flux is a total spatial curl, X D Div � ,
where � is an antisymmetric tensor.

A related type of conservation law in two and three spatial dimensions arises
from the total spatial divergence of a flux vector that is not a total spatial curl,

Div X D 0; X ¤ Div � (9)

holding on the solution space of a PDE system. This yields a physical conservation
law on any spatial domain ˝ enclosed by an inner boundary @�˝ and an outer
boundary @C˝. The conservation law shows that the net outward flux across each
boundary is the same,
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I
@

�

˝

X � ��dA D
I

@
C

˝

X � �CdA (10)

where �� is the outward unit normal of the respective boundaries.
The most well-known method [1–3] for finding conservation laws is Noether’s

theorem, which is applicable only to PDE systems that possess a variational princi-
ple. Noether’s theorem shows that the infinitesimal symmetries of the variational
principle yield conserved integrals (2), (4), (10) of the PDE system, including
conserved boundary integrals (5) when the PDE system satisfies a differential iden-
tity. In the case of PDE systems that possess a generalized Cauchy-Kovalevskaya
form [1, 4], all conserved integrals (2), (4), (10) arise from Noether’s theorem.
This direct connection between conserved integrals and symmetries is especially
useful because, typically, the symmetries of a given PDE system have a direct
physical meaning related to basic properties of the system, while, computationally,
all infinitesimal symmetries of a given PDE system can be found in a systematic
way by solving a linear system of determining equations.

Over the past few decades, a modern formulation of Noether’s theorem has been
developed in which the components of a variational symmetry are expressed as the
components of a multiplier whose summed product with a given variational PDE
system yields a total divergence that reduces on the space of solutions of the PDE
system to a local continuity equation. The main advantage of this reformulation is
that multipliers can be sought for any given PDE system, regardless of whether it
possesses a variational principle or not. In general, multipliers are simply the natural
PDE counterpart of integration factors for ordinary differential equations [2], and for
any given PDE system, a linear system of determining equations can be formulated
[1, 3] to yield all multipliers. As a consequence, local continuity equations can
be derived without any restriction required on the nature of the PDE system.
Moreover, for PDE systems that possess a generalized Cauchy-Kovalevskaya form,
all conserved integrals (2), (4), (10) arise from multipliers [1, 4]. A review of the
history of Noether’s theorem and of the multiplier method for finding conservation
laws can be found in Ref. [5].

In recent years, the multiplier method has been cast into the form of a generaliza-
tion of Noether’s theorem which is applicable to PDE systems without a variational
principle. The generalization [6–9] is based on the structure of the determining
system for multipliers, which turns out to be an augmented, adjoint version of
the determining equations for infinitesimal symmetries. In particular, multipliers
can be viewed as an adjoint generalization of variational symmetries, and most
significantly, the determining system for multipliers can be solved by the use of
the same standard procedure that is used for solving the determining equations
for symmetries [1–3]. Moreover, the physical conservation law determined by a
multiplier can be constructed directly from the multiplier and the given PDE system
by various integration methods [1, 3, 7–10].

In this modern generalization, the problem of finding all conservation laws for a
given PDE system thereby becomes a kind of adjoint of the problem of finding all
infinitesimal symmetries. As a consequence, for any PDE system, there is no need
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to use special methods or ansatzes (e.g., [11–15]) for determining its conservation
laws, just as there is no necessity to use special methods or ansatzes for finding its
symmetries.

The present work is intended to review and extend these recent developments,
with an emphasis on applications to PDE systems arising in physical models. The
most natural mathematical framework for understanding the methods and the results
is variational calculus in jet spaces [1]. This framework will be given a concrete
formulation, which is useful both for formulating general statements and for doing
calculations for specific PDE systems.

As a starting point, in Sect. 2, a wide range of examples of local conservation
laws and conserved integrals are presented, covering dynamical systems that model
convection, diffusion, wave propagation, fluid flow, gas dynamics and plasma
dynamics, as well as non-dynamical (static equilibrium) systems.

In Sect. 3, for general PDE systems, the standard formulations of local conserva-
tion laws, conserved integrals, and symmetries, as well as some other preliminaries,
are stated. Additionally, local versus global aspects of conservation laws are dis-
cussed and are related to the distinction between trivial and non-trivial conservation
laws and their physical meaning. This discussion clears up some confusion in the
existing literature.

In Sect. 4, some basic modern tools from variational calculus are reviewed using
a concrete self-contained approach. These tools are employed in Sect. 5 to derive
the determining equations for multipliers and symmetries, based on a characteristic
form for conservation laws and symmetry generators. An important technical step
in this derivation is the introduction of a coordinatization for the solution space
of PDE systems in jet space, which involves expressing a given PDE system in a
solved form for a set of leading derivatives after the system is closed by appending
all integrability conditions (if any). This coordinatization is applicable to all PDE
systems of physical interest, including systems that possess differential identities.
It is used to show that the characteristic form for trivial conservation laws is given
by trivial multipliers which vanish on the solution space of a PDE system when the
system has no differential identities. This directly leads to an explicit one-to-one
correspondence between non-trivial conservation laws and non-trivial multipliers,
taking into account the natural equivalence freedoms in conservation laws and
multipliers. An explicit generalization of this correspondence is established in the
case when a PDE system possesses a differential identity (or set of identities).
The generalization involves considering gauge multipliers [16] that arise from a
conservation law connected with the differential identity.

These new results significantly extend the explicit correspondence between non-
trivial conservation laws and non-trivial multipliers previously obtained [1, 4, 7, 8]
only by requiring PDE systems to have a generalized Cauchy-Kovalevskaya form
(which restricts a system from possessing any differential identities).

Furthermore, as another result, a large class of multipliers that captures phys-
ically important conserved integrals such as mass, momentum, energy, angular
momentum is identified for general PDE systems by examining the numerous
examples of conservation laws presented earlier.
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In Sect. 6, the variational calculus tools are used to state Noether’s theorem in a
modern form for variational PDE systems, along with the determining equations
for variational symmetries. The generalization of Noether’s theorem in modern
form to non-variational PDE systems is explained in Sect. 7. First, the determining
equations for multipliers are shown to be an augmented, adjoint counterpart of the
determining equations for symmetries. More precisely, the multiplier determining
system has a natural division into two subsystems [6–8]. One subsystem is the
adjoint of the symmetry determining system, whose solutions can be viewed
as adjoint-symmetries (also known as cosymmetries). The remaining subsystem
comprises equations that are necessary and sufficient for an adjoint-symmetry to be
a multiplier, analogously to the conditions required for an infinitesimal symmetry
to be a variational symmetry in the case of a variational PDE system. Next, the
role of a Lagrangian in constructing a conserved integral from a symmetry of a
variational principle is replaced for non-variational PDE systems by several different
constructions: an explicit integral formula, an explicit algebraic scaling formula,
and a system of determining equations, all of which use only a multiplier and
the PDE system itself. The scaling formula is based on dimensional analysis and
generalizes a formula previously derived only for PDE systems that admit a scaling
symmetry [9].

These main results cover both the case of PDE systems without differential
identities and the case of PDE systems with differential identities. It is emphasized
that this general method for explicitly deriving the conservation laws of PDE
systems reproduces the content of Noether’s theorem whenever a PDE system has
a variational principle. (For comparison, an abstract, cohomological approach to
determining conservation laws of PDE systems can be found in Ref. [17–19].)

Some concluding remarks, including discussion of the geometrical meaning of
adjoint-symmetries and multipliers, are provided in Sect. 8.

Several running examples will be used to illustrate the main ideas and the main
results in every section.

2 Examples

The following seven examples illustrate some basic conserved densities and fluxes
(2) arising in physical PDE systems in one spatial dimension.

Ex 1 transport equation

ut D .c.x; u/u/x (11)

T D u is mass density; X D �c.x; u/u is mass flux i:e:; momentum: (12)
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Ex 2 diffusion/heat conduction equation

ut D .k.x; u/ux/x (13)

T D u is heat density .temperature/; X D �k.x; u/ux is heat flux: (14)

Ex 3 telegraph equation

utt C a.t/ut � .c.x/2ux/x D 0 (15)

T D 1
2

exp.2
R

a.t/dt/.ut
2 C c.x/2ux

2/ is energy density;

X D �c.x/2 exp.2
R

a.t/dt/uxut is energy flux:
(16)

Ex 4 nonlinear dispersive wave equation

ut C f .u/ux C uxxx D 0; f .u/ ¤ const: (17)

T D u is mass density; X D R
f .u/du C uxx is mass flux i:e:; momentumI (18a)

T D u2 is elastic energy density;

X D 2
R

uf .u/du C 2uuxx � ux
2 is elastic energy fluxI

(18b)

T D R
g.u/du � 1

2
ux

2 is gradient energy density;

X D 1
2
.g.u/ C uxx/

2 C uxut is gradient energy flux;

g.u/ D R
f .u/du:

(18c)

Ex 5 compressible viscous fluid equations

�t C .u�/x D 0

�.ut C uux/ D �px C �uxx

(19)

T D � is mass density; X D u� is mass fluxI (20a)

T D �u is momentum density; X D p � �ux C Tu is momentum fluxI (20b)

T D �.tu � x/ is Galilean momentum density;

X D t.p � �ux/ C Tu is Galilean momentum flux:
(20c)

The next two examples are integrable PDE systems that possess an infinite
hierarchy of higher-order conservation laws.
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Ex 6 barotropic gas flow/compressible inviscid fluid equations

�t C .u�/x D 0

ut C uux D �px=�

p D p.�/ (barotropic equation of state)

e D R
p=�2d� (thermodynamic energy)

(21)

T D �. 1
2
u2 C e/ is energy density; X D .p C T/u is energy fluxI (22a)

T D �x=.u2
x � p0�2

x=�2/ is higher-derivative quantity;

X D �ux=.u2
x � p0�2

x=�2/ is higher-derivative flux:
(22b)

Ex 7 breaking wave (Camassa-Holm) equation

mt C 2uxm C umx D 0; m D u � uxx (23)

T D m is momentum density;

X D 1
2
.u2 � u2

x/ C um is momentum fluxI
(24a)

T D 1
2
.u2 C u2

x/ is energy density; X D u.um � utx/ is energy fluxI (24b)

T D 1
2
u.u2 C u2

x/; is energy-momentum density;

X D 1
2
.utx � u.um C 1

2
u/ C 1

2
u2

x/2 � ut.uux C 1
2
ut/ is energy-momentum fluxI

(24c)

T D m1=2 is Hamiltonian Casimir; X D 2um1=2 is Casimir fluxI (24d)

T D m�5=2m2
x C 4m�1=2 is higher-derivative energy density;

X D �m�5=2.2mt C umx/mx � 4m�3=2uxmx � 4m�1=2u � 8m1=2

is higher-derivative flux:

(24e)

The following three examples illustrate some intrinsically multi-dimensional
conservation laws (4) that arise in physical PDE systems in two or more dimensions.

Ex 8 porous media equation

ut D r � .k.u/ru/ (25)

T D ˛.x/u is a general mass-density moment;

X D R
k.u/dur˛.x/ � ˛.x/rR k.u/du is flux moment of mass-density;

�˛ D 0 .arbitrary solution of Laplace equation/:

(26)
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Ex 9 non-dispersive wave equation

utt � c2�u D f .u/ (27)

T D ut.a � x/ � ru is angular momentum density;

X D . 1
2
c2jruj2 � 1

2
u2

t � R
f .u/du/.a � x/ � c2..a � x/ � ru/ru

is angular momentum flux;

a � x .arbitrary constant antisymmetric tensor a/:

(28a)

T D b � x. 1
2
u2

t C 1
2
c2jruj2 � R

f .u/du/ C c2tutb � ru is boost momentum density;

X D c2t. 1
2
c2jruj2 � 1

2
u2

t � R
f .u/du/b � c2.b � xut C c2tb � ru/ru

is boost momentum flux;

.arbitrary constant antisymmetric vector b/:

(28b)

Ex 10 inviscid (compressible/incompressible) fluid equation

ut C u � ru D �.1=�/rp

e D R
p=�2d� .thermodynamic energy/

(29)

in three dimensions

(
T D u � .r � u/ is local helicity;

X D X � Tu D 1
2
.juj2 C .p=�/ C e/ is moving helicity fluxI

(30a)

in two dimensions

8̂
<̂
ˆ̂:

T D �f ..curl u/=�/ is local enstrophy;

X D X � Tu D 0 is moving enstrophy flux;

.arbitrary function f /:

(30b)

The last four examples illustrate spatial boundary conservation laws (5) and
spatial flux conservation laws (10) for physical PDE systems in three dimensions.

Ex 11 electric (displacement) field equation inside matter

Dt D cr � H

r � D D 4��

J D 0 (no currents)

�t D 0 .static charges/

(31)
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T D D is flux density of electric field lines: (32)

Ex 12 magnetohydrodynamics (infinite conductivity) equations

ut C u � ru D .1=�/.J � B � rp/

Bt D r � .u � B/

r � B D 4�J

r � B D 0

(33)

T D X D B is flux density of magnetic field lines: (34)

Ex 13 fluid incompressibility equation

r � u D 0 (35)

X D u is flux density of streamlines: (36)

Ex 14 charge source equation (in empty space)

r � E D 0 (37)

X D E is flux density of electric field lines: (38)

3 Conserved Integrals, Conservation Laws, and Symmetries

Throughout, the following notation will be used. Let t, x D .x1; : : : ; xn/ be
independent variables, n � 1, and let u D .u1; : : : ; um/ be dependent variables,
m � 1. Partial derivatives of u with respect to t; x are denoted @u D .ut; ux1 ; : : : ; uxn/,
and kth-order partial derivatives are denoted @ku, k � 2. The coordinate space
J D .t; x; u; @u; @2u; : : :/ is called the jet space associated with the variables
t; x; u. Partial derivatives with respect to these variables are given by @=@t, @=@x D
.@=@x1; : : : ; @=@xn/t, @=@u D .@=@u1; : : : ; @=@um/t, with a superscript “t” denoting
the transpose, and similarly for partial derivatives with respect to the derivative
variables in J. Total derivatives with respect to t; x, acting by the chain rule, are
denoted D D .Dt; Dx1 ; : : : ; Dxn/. In particular, Du D @u, D@u D @2u, and so on. Dk

denotes all of the kth order total derivatives with respect to t; x. Spatial divergences
are denoted Div D Dx�, with a dot denoting the vector dot product.

Consider an Nth-order system of M � 1 PDEs

G D .G1.t; x; u; @u; : : : ; @Nu/; : : : ; GM.t; x; u; @u; : : : ; @Nu// D 0: (39)
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The space of all locally smooth solutions u.t; x/ of the system will be denoted E .
This space has an embedding as a subspace in J, since u.t; x/ 2 E determines
.t; x; u.t; x/; @u.t; x/; @2u.t; x/; : : :/ 2 J. (In the applied mathematics and physics
literature, E is commonly identified with the set of equations G D 0; DG D
0; D2G D 0; : : : in J, which assumes these equations are locally solvable [1].)

A local conservation law of a given PDE system (39) is a local continuity
equation

.DtT C Dx � X/jE D 0 (40)

which holds on the whole solution space E of the system, where T.t; x; u; @u;

: : : ; @ru/ is the conserved density and X D .X1.t; x; u; @u; : : : ; @ru/; : : : ; Xn.t; x; u;

@u; : : : ; @ru// is the spatial flux. The pair

.T; X/ D ˚ (41)

is called a conserved current.
Every conservation law (40) can be integrated over any given spatial domain

˝ � R
n to get

d

dt

Z
˝

TjE dV D �
I

@˝

XjE � �dA (42)

by the divergence theorem, where @˝ is the boundary of the domain and � denotes
the outward pointing unit normal vector. This shows that the rate of change of the
quantity

C Œu� D
Z

˝

TjE dV (43)

in the domain is balanced by the net flux escaping through the domain boundary.
The quantity (43) is called a conserved integral, and the relation (42) is called a
global conservation law or global balance equation.

Two conservation laws are locally equivalent if they give the same global balance
equation (42) up to boundary terms. This occurs iff their conserved densities differ
by a total spatial divergence Dx � � on the solution space E , and correspondingly,
their fluxes differ by a total time derivative �Dt� modulo a divergence-free vector.
A conservation law is thereby called locally trivial if

TtrivjE D Dx � �jE ; XtrivjE D �Dt�jE C Dx � 	 jE (44)

holds for some vector function �.t; x; u; @u; : : : ; @r�1u/ and some antisymmetric
tensor function 	 .t; x; u; @u; : : : ; @r�1u/. The differential order of a conservation
law is defined to be the smallest differential order among all locally equivalent
conserved currents. (It is common in the mathematics literature to define a local
conservation law itself as the equivalence class of locally equivalent conserved
currents.)
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The global form of a locally trivial conservation law is given by

d

dt

I
@˝

�jE � �dA D
I

@˝

Dt�jE � �dA (45)

since
H

@˝
.Dx � M/jE � �dA D 0 by Stokes’ theorem. This integral equation (45) is

just an identity, with no physical content, unless the spartial flux of Dt�jE vanishes.
From the divergence theorem, this integral will vanish for all domains ˝ iff Dx �
Dt�jE D 0 holds. In such cases, the boundary integral

Z
˝

TjE dV D
I

@˝

�jE � �dA (46)

will be a constant of motion for solutions of the given PDE system. This type of
boundary conservation law arises for PDE systems typically when the PDEs in the
system are related by obeying a differential identity, as will be discussed further in
Sect. 5. In all cases when both Dx � �jE and Dx � Dt�jE do not vanish identically, a
locally trivial conservation law has no physical content.

For a given PDE system (39), the set of all non-trivial conservation laws (up to
local equivalence) forms a vector space on which the symmetries of the system have
a natural action [1, 3].

An infinitesimal symmetry [1–3] of a given PDE system (39) is a generator

X D 
@=@t C �@=@x C �@=@u (47)

whose prolongation leaves invariant the PDE system,

prX.G/jE D 0 (48)

which holds on the whole solution space E of the system. Here 
.t; x; u; @u; : : : ; @ru/,
� D .�1.t; x; u; @u; : : : ; @ru/; : : : ; �n.t; x; u; @u; : : : ; @ru//, and � D .�1.t; x; u; @u; : : : ;

@ru/; : : : ; �m.t; x; u; @u; : : : ; @ru// are called the characteristic functions in the
symmetry generator. When acting on the solution space E , an infinitesimal
symmetry generator can be formally exponentiated to produce a one-parameter
group of transformations exp.prX/, with parameter , where the infinitesimal
transformation is given by

u.t; x/ ! u.t; x/C
�
�.t; x; u.t; x/; @u.t; x/; : : : ; @ru.t; x//

� ut.t; x/
.t; x; u.t; x/; @u.t; x/; : : : ; @ru.t; x//

� ux.t; x/ � �.t; x; u.t; x/; @u.t; x/; : : : ; @ru.t; x//
�C O

�
2
�

(49)

for all solutions u.t; x/ of the PDE system.
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Two infinitesimal symmetries are equivalent if they have the same action on
the solution space E of a given PDE system. An infinitesimal symmetry is
thereby called trivial if it leaves all solutions u.t; x/ unchanged. This occurs iff its
characteristic functions satisfy the relation

�jE D .ut
 C ux � �/jE : (50)

The corresponding generator (47) of a trivial symmetry on the solution space E is
thus given by

Xtriv D 
@=@t C � � @=@x C .ut
 C ux � �/@=@u (51)

which has the prolongation prXtriv D 
Dt C � � Dx. Conversely, any generator of this
form (51) represents a trivial symmetry. The differential order of an infinitesimal
symmetry is defined to be the smallest differential order among all equivalent
generators.

In jet space J, a group of transformations exp.prX/ in general will not act
in a closed form on t; x; u, and derivatives @ku up to a finite order, except [1, 3]
for point transformations acting on .t; x; u/, and contact transformations acting on
.t; x; u; ut; ux/. Moreover, a contact transformation is a prolonged point transforma-
tion when the number of dependent variables is m D 1 [1, 3]. A point symmetry is
defined as a symmetry transformation group on .t; x; u/, whose generator is given
by characteristic functions of the form

X D 
.t; x; u/@=@t C �.t; x; u/@=@x C �.t; x; u/@=@u (52)

corresponding to the infinitesimal point transformation

t ! t C 
.t; x; u/ C O.2/;

x ! x C �.t; x; u/ C O.2/;

u ! u C �.t; x; u/ C O.2/:

(53)

Likewise, a contact symmetry is defined as a symmetry transformation group on
.t; x; u; ut; ux/ whose generator corresponds to an infinitesimal transformation that
preserves the contact relations ut D @tu, ux D @xu. The set of all admitted point
symmetries and contact symmetries for a given PDE system comprises its group of
Lie symmetries.

Common examples of point symmetries admitted by PDE systems arising in
physical applications are time translations, space translations, and scalings. Higher-
order symmetries are typically admitted only by integrable PDE systems. However,
it is worth emphasizing that any admitted symmetry can be used to obtain a mapping
of a given solution u D f .t; x/ of a PDE system into a one-parameter family of
solutions u D Qf .t; x; / D �

exp.pr OX/u
�juDf .t;x/ D �

uC O�C 1
2
2pr OX O�C� � � �juDf .t;x/,
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where OX D X � Xtriv D O�@=@u; and also to find symmetry-invariant solutions
u D f .t; x/ of a PDE system by considering the invariance condition . OXu/juDf .t;x/ D
O�juDf .t;x/ D 0. Thus, for these two main purposes, symmetries of any differential
order are equally useful.

Similar remarks can be made for conservation laws. In physical applications,
the most common examples of conserved densities admitted by PDE systems
are mass, momentum, and energy. These densities are always of low differential
order, whereas higher-order densities are typically admitted only by integrable PDE
systems. Nevertheless, for the many purposes outlined in Sect. 1, any admitted
conservation law of a given PDE system can be useful.

3.1 Regular PDE Systems and Computation of Symmetry
Generators, Conserved Densities and Fluxes

To determine if a current (41) is conserved for a given PDE system, and if a
generator (47) is an infinitesimal symmetry of a given PDE system, it is necessary
to coordinatize the solution space E of the system in jet space J. This can
be accomplished in a general way by the following steps. First, for any PDE
system (39), introduce an index notation for the components of x and u: xi, i D
1; : : : ; n; and u˛ , ˛ D 1; : : : ; m. Next, suppose each PDE Ga D 0, a D 1; : : : ; M, in
the given system can be expressed in a solved form

Ga D @.`a/u
˛a � ga (54)

for some derivative of a single dependent variable u˛a , after a point transformation
(change of variables) if necessary, such that all other terms in the system contain
neither this derivative nor its differential consequences, namely

@.`a/u
˛a ¤ @k@.`b/u

˛b ; a; b D 1; : : : ; M; k � 1;

@ga

@.@k@.`b/u˛b/
D 0; a; b D 1; : : : ; M; k � 0: (55)

Such derivatives f@.`a/u˛agaD1;:::;M are called a set of leading derivatives for the PDE
system. Last, suppose the given PDE system is closed in the sense that it has no
integrability conditions and all of its differential consequences produce PDEs that
have a solved form in terms of differential consequences of the leading derivatives.
Note that if a PDE system is not closed then it can always be enlarged to get a closed
system by appending any integrability conditions and differential consequences
that involve the introduction of more leading derivatives. Then, coordinates for the
solution space E of the closed PDE system in J are provided by the independent
variables t; xi, the dependent variables u˛ , and all of the non-leading derivatives of
u˛ . A closed PDE system (39) admitting such a solved form (54)–(55) will be called
regular.
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A more restrictive class of PDE systems is given by Cauchy-Kovalevskaya
systems and their generalizations. Recall, a PDE system (39) is of Cauchy-
Kovalevskaya form [1, 20] if the leading derivatives in the solved form of the system
consist of pure derivatives of u with respect to a single independent variable, namely
@.`a/u˛a D @ka

z u˛a , a D 1; : : : ; M, z 2 ft; xig, and if their differential order ka is equal
to the differential order N of the system, namely ka D N, a D 1; : : : ; M. Cauchy-
Kovalevskaya systems, and their generalizations [4] in which ka differs from N,
have the feature that they do not possess any differential identities and that none of
their differential consequences possess differential identities. Such PDE systems
are usually called normal. Note that, in contrast to normal systems, the leading
derivatives in a regular PDE system can be, for instance, a mixed derivative of all the
dependent variables u˛ or a different derivative of each of the dependent variables
u˛ .

Running Ex. (1) Generalized Korteweg-de Vries (gKdV) equation

ut C upux C uxxx D 0; p > 0: (56)

This is a regular PDE since it has the leading derivative ut D �upux � uxxx. It also
has a third-order leading derivative uxxx D �ut � upux. Both of these solved forms
are of generalized Cauchy-Kovalevskaya type.

Running Ex. (2) Breaking wave equation [21]

mt C buxm C umx D 0; m D u � uxx; b ¤ �1: (57)

This is a regular PDE system since it has the leading derivatives mt D �buxm�umx,
uxx D u � m. Equivalently, if m is eliminated through the second PDE, this yields a
scalar equation ut � utxx C .b C 1/uux D buxuxx C uuxxx which is a regular PDE with
respect to the leading derivative

utxx D ut C .b C 1/uux � buxuxx � uuxxx: (58)

Neither of these solved forms are of generalized Cauchy-Kovalevskaya type.
However, the alternative solved forms uxxx D ux C u�1.bux.u � uxx/ � ut C utxx/

and mx D �u�1.mt C buxm/, uxx D u � m are of generalized Cauchy-Kovalevskaya
type.

Running Ex. (3) Euler equations for constant density, inviscid fluids in two
dimensions

r � u D 0; � D const:;

ut C u � ru D �.1=�/rp;

�p D ��.ru/ � .ru/t: (59)
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In this system, the independent variables are t and .x; y/, and the dependent variables
consist of p and u D .u1; u2/, in Cartesian components. Leading derivatives are
given by writing the PDEs in the solved form

u1
x D �u2

y ;

u1
t D �.u1u1

x C u2u1
y C .1=�/px/

ˇ̌
u1

xD�u2
y

D �.u2u1
y � u1u2

y C C.1=�/px/;

u2
t D �.u1u2

x C u2u2
y C .1=�/py/;

pxx D �pyy � �..u1
x/2 C .u2

y/2 C 2u1
yu2

x/
ˇ̌
u1

xD�u2
y

D �pyy � 2�..u2
y/2 C u1

yu2
x/:

Thus, this system is a regular PDE system, but it does not have a generalized
Cauchy-Kovalevskaya form. A related feature is that the PDEs in the system obey a
differential identity

Div .ut Cu �ruC .1=�/rp/� .Dt Cu �r/.r �u/ D .1=�/�pC .ru/ � .ru/t: (60)

Note that the pressure equation is often not explicitly considered in writing down
the Euler equations. However, without including the pressure equation, the system
would not be closed, since the differential identity (60) shows that the pressure
equation arises as an integrability condition of the other equations. Correspondingly,
the pressure equation does not have a solved form in terms of the set of derivatives
fu1

x ; u1
t ; u2

t g.

Running Ex. (4) Magnetohydrodynamics equations for a compressible, infinite
conductivity plasma in three dimensions

p D P.�/; r � B D 4�J; r � B D 0;

�t C r � .�u/ D 0;

ut C u � ru D .1=�/.J � B � rp/;

Bt D r � .u � B/: (61)

The independent variables in this system are t and .x; y; z/, and the dependent
variables consist of �, u D .u1; u2; u3/ and B D .B1; B2; B3/, in Cartesian
components. This is a regular PDE system, where a set of leading derivatives is
given by writing the PDEs in the solved form

B1
x D �B2

y � B3
z ;

�t D �.u1
x C u2

y C u3
z / C �xu1 C �yu2 C �zu

3;

u1
t D �.u1u1

x C u2u1
y C u3u1

z C .1=�/.P0.�/�x C B2J3 � B3J2//;

u2
t D �.u1u2

x C u2u2
y C u3u2

z C .1=�/.P0.�/�y C B3J1 � B1J3//;

u3
t D �.u1u3

x C u2u3
y C u3u3

z C .1=�/.P0.�/�z C B1J2 � B2J1//;
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B1
t D u1B2

y � u2B1
y C u1B3

z � u3B1
z C u1

yB2 � u2
yB1 C u1

z B3 � u3
z B1;

B2
t D .u2B3

z � u3B2
z C u2B1

x � u1B2
x C u2

z B3 � u3
z xB2 C u2

xB1 � u1
xB2/

ˇ̌
B1

xD�B2
y�B3

z

D �u2B2
y � u3B2

z � u1B2
x C u2

z B3 � u3
z B2 C u2

xB1 � u1
xB2;

B3
t D .u3B1

x � u1B3
x C u3B2

y � u2B3
y C u3

xB1 � u1
xB3 C u3

yB2 � u2
yB3/

ˇ̌
B1

xD�B2
y�B3

z

D �u3B3
z � u1B3

x � u2B3
y C u3

xB1 � u1
xB3 C u3

yB2 � u2
yB3;

with

4�J1 D B3
y � B2

z ; 4�J2 D B1
z � B3

x ; 4�J3 D B2
x � B1

y :

These PDEs lack a generalized Cauchy-Kovalevskaya form, which is related to the
feature that they obey a differential identity

Div .Bt � r � .u � B// D Dt.r � B/: (62)

As seen from the examples here and in Sect. 2, all typical PDE systems arising
in physical applications belong to the class of regular systems.

For any given regular PDE system, the standard approach [22–25] to look for
symmetries consists of solving the invariance condition prX.G/jE D 0 to find the
characteristic functions �, 
 , � in the generator X. The computations in this approach
are reasonable for finding point symmetries, but become much more complicated for
finding contact symmetries and higher-order symmetries.

Running Ex. (1) Consider the gKdV equation (56). Since this is a scalar
PDE, its Lie symmetries are generated by point transformations and contact
transformations, with the general infinitesimal form

X D 
.t; x; u; ut; ux/@=@t C �.t; x; u; ut; ux/@=@x C �.t; x; u; ut; ux/@=@u:

Substitution of this generator into the determining condition prX.ut C upux C
uxxx/jE D 0 requires prolonging X to first-order with respect to t and third-order
with respect to x:

prX D X C �.t/@=@ut C �.x/@=@ux C D2
x�.xx/@=@uxx C D3

x�.xxx/@=@uxxx

where

�.t/ D Dt� � utDt
 � uxDt�;

�.x/ D Dx� � utDx
 � uxDx�;

�.xx/ D Dx�
.x/ � utxDx
 � uxxDx�;

�.xxx/ D Dx�
.xx/ � utxxDx
 � uxxxDx�:
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This yields

�
ux� C Dt� � utDt
 � uxDt� C uDx� � .uut C 3utxx/Dx
 � .uux C 3uxxx/Dx�

� 3utxD2
x
 � 3uxxD2

x� C D3
x� � utD

3
x
 � uxD3

x�
�jE D 0:

There are two steps in solving this determining condition. First, since the condition
is formulated on the gKdV solution space E , a leading derivative of u (and all of
its differential consequences) needs to be eliminated. The most convenient choice
is uxxx D �ut � upux rather than ut D �upux � uxxx, since 
 , � , � depend on ut.
Next, after the total derivatives of 
 , � , � are expanded out, the resulting equation
needs to be split with respect to the jet variables utt; utx; uxx; utxx; uxxx; utxxx; uxxxx

which do not appear in 
 , � , �. Finally, the split equations need to be simplified, as
some are differential consequences of others. After these lengthy computations and
simplifications, a linear system of 6 determining equations is obtained for 
 , � , �:

2
ut C ut
utut C ux�utut � �utut D 0;

2�ux C ut
uxux C ux�uxux � �uxux D 0;


ux C �ut C ut
utux C ux�utux � �utux D 0;

3put� C 2u.ut
t C ux�t � �t/ C 3p
�
u2

t .ut
ut C ux
ux/

C utux.ut�ut C ux�ux/ � ut.ut�ut C ux�ux/
� D 0;

pux� C 2u.ut
x C ux�x � �x/ C p
�
utux.ut
ut C ux
ux/

C u2
x.ut�ut C ux�ux/ � ux.ut�ut C ux�ux/

� D 0;

� C u.ut
u C ux�u � �u/ C ut.ut
ut C ux
ux/

C ux.ut�ut C ux�ux/ � .ut�ut C ux�ux/ D 0:

This system can be solved, with p treated as an unknown, to get


 D Q
.t; x; u; ut; ux/; � D Q�.t; x; u; ut; ux/;

� D ut. Q
 � c1 � 3c3/ C ux. Q� � c2 � c3x � c4t/ � 2
p c3u C c4; c4 D 0 if p ¤ 1;

which is a linear combination of a time translation (c1), a space translation (c2),
a scaling (c3), and a Galilean boost (c4), plus a trivial symmetry involving two
arbitrary functions Q
.t; x; u; ut; ux/, Q�.t; x; u; ut; ux/.

Clearly, for finding higher-order symmetries, or for dealing with PDE systems
that have a high differential order or that involve more spatial dimensions, the
previous standard approach becomes increasingly complicated, as the general
solution of the symmetry determining condition will always contain a trivial
symmetry involving arbitrary differential functions. In particular, the resulting linear
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system of determining equations for finding 
 , � , � becomes less over-determined
and hence more computationally difficult to solve when going to higher orders.

The situation for finding conservation laws is quite similar. For any given regular
PDE system, it is possible to look for conservation laws by solving the local
continuity equation .DtT CDx �X/jE D 0 to find T and X. This approach is workable
when the conserved densities T and fluxes X being sought have a low differential
order and when the number of spatial dimensions is low.

Running Ex. (1) Consider again the gKdV equation (56). This is a time
evolution PDE of third order in spatial derivatives, while the conserved currents
in lowest order form for mass, energy, and L2 norm are of first order in derivatives
for the densities and of second order in derivatives for the fluxes. Substitution of
functions

T.t; x; u; ut; ux/; X.t; x; u; ut; ux; utt; utx; uxx/

into the determining condition .DtT C DxX/jE D 0 yields

�
Tt C utTu C utx.Tux C Xut / C uttTut C Xx C uxXu C uxxXux

C utxxXutx C uttxXutt C uxxxXuxx

�jE D 0:

The steps in solving this determining condition are similar to those used in solving
the symmetry determining equation. First, a leading derivative of u (and all of its
differential consequences) needs to be eliminated. The most convenient choice is
uxxx D �ut � upux rather than ut D �upux � uxxx, since T and X depend on ut. Next,
the resulting equation needs to be split with respect to the jet variables uttx; utxx,
which do not appear in T , X. This splitting immediately leads to a further splitting
with respect to utx; utt, giving a linear system of 5 PDEs for T , X:

Tut D 0; Xutt D 0; Xutx D 0; Tux C Xut D 0;

Tt C utTu C Xx C uxXu C uxxXux � .ut C upux/Xuxx D 0:

This system can be solved, treating p as an unknown, to obtain

T D c1u2 C c2u C c3. 1
.pC1/.pC2/

upC2 � 1
2
ux

2/ C c4.xu � 1
2
tu2/

C c5.t. 1
2
u2 � 3ux

2/ � xu2/ C Dx�.t; x; u/;

X D c1. 2
pC2

upC2 C 2uuxx � ux
2/ C c2. 1

pC1
upC1 C uxx/

Cc3. 1
2
. 1

pC1
upC1Cuxx/

2Cuxut/Cc4.x. 1
2
u2 C uxx/�t. 1

3
u3 C uuxx� 1

2
ux

2/ � ux/

C c5.t.3. 1
3
u3 C uxx/

2 C 6utux/ C x.ux
2 � 2uuxx � 1

2
u3/ C 2uux/

� Dt�.t; x; u/;

c4 D 0 if p ¤ 1; c5 D 0 if p ¤ 2
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which yields a linear combination of the densities and the fluxes representing
conserved currents for the L2-norm (c1), mass (c2), energy (c3), Galilean momentum
(c4), and Galilean energy (c5), plus a term involving an arbitrary function �.t; x; u/

which represents a locally trivial conserved current.
However, when going to higher orders or to higher spatial dimensions, it becomes

increasingly more difficult to solve the local continuity equation .DtT CDx �X/jE D
0, as the general solution will contain a trivial density term Dx � � in T and a trivial
flux term �Dt� C Dx � 	 in X involving a differential vector function � and a
differential antisymmetric tensor function 	 , which are arbitrary. In particular, the
resulting linear system of determining equations for finding T and X will be less
over-determined and hence more computationally difficult to solve, compared to
the low order case or the one dimensional case.

These difficulties motivate introducing a characteristic form (or canonical rep-
resentation) for conserved currents so that all locally equivalent conserved currents
have the same characteristic form, and likewise for symmetry generators. To derive
this formulation, some tools from variational calculus will be needed.

4 Tools in Variational Calculus

For working with symmetries and conservation laws of PDE systems, the natural
setting in which to apply variational calculus is the space of differential functions
defined by locally smooth functions of finitely many variables in jet space J D
.t; x; u; @u; @2u; : : :/.

As examples, in the nonlinear dispersive wave equation Ex. 4, if the constitutive
nonlinearity function f .u/ is smooth, then the conserved density and flux for mass
and energy are smooth functions of u; ux; uxx in J, but if f .u/ blows up when u D 0

then these functions are singular at points in J such that u D 0; in the barotropic gas
flow Ex. 6, the higher-derivative density and flux are singular functions of �; u; �x; ux

at points in J where u2
x D p.�/0=�, but at all other points these functions are smooth.

The basic tools that will be needed from variational calculus are the
Fréchet derivative and adjoint derivative, the Euler operator, a homotopy
integral, a total null-divergence identity, and a scaling identity. Throughout,
f .t; x; u; @u; : : : ; @ku/ denotes a differential function of order k � 0, and
v D .v1.t; x; u; @u; @2u; : : :/; : : : ; vm.t; x; u; @u; @2u; : : ://, w.t; x; u; @u; @2u; : : :/

denote differential functions of arbitrary finite order.
The Fréchet derivative of a differential function is the linearization of the

function as defined by

ıvf D @

@
f .t; x; u C v; @.u C v/; : : : ; @k.u C v//

ˇ̌
D0

D v
@f

@u
C Dv � @f

@.@u/
C � � � C Dkv � @f

@.@ku/

(63)



Generalization of Noether’s Theorem in Modern Form 139

which can be viewed as a local directional derivative in jet space, corresponding to
the action of a generator OX D v@u in characteristic form, OX.f / D ıvf . It is useful
also to view the Fréchet derivative as a linear differential operator acting on v. Then
the relation

wıvf � vı�
wf D D � �.v; wI f / (64)

as obtained using integration by parts defines the Fréchet adjoint derivative

ı�
wf D w

@f

@u
� D �

�
w

@f

@.@u/

�
C � � � C .�D/k �

�
w

@f

@.@ku/

�
(65)

which is a linear differential operator acting on w. The associated current
�.v; wI f / D .� t; � x/ is given by

�.v; wI f / D vw
@f

@.@u/
C .Dv/ �

�
w

@f

@.@2u/

�
� vD �

�
w

@f

@.@2u/

�
C � � �

C
kX

lD1

.Dk�lv/ �
�
.�D/l�1 �

�
w

@f

@.@ku/

��
:

(66)

An alternative notation for the Fréchet derivative and its adjoint is ıvf D f 0.v/ and
ı�

wf D f 0�.w/, or sometimes ıvf D Dvf and ı�
wf D D�

wf .
The Fréchet derivative of a differential function f can be inverted to recover

f by using a line integral along any curve C in J, where the endpoints @C
are given by a general point .t; x; u; @u; : : : ; @ku/ 2 J and any chosen point
.t; x; u0; @u0; : : : ; @ku0/ 2 J at which f is non-singular. This yields

f
ˇ̌
@C D

Z
C

@f

@ut
dut C @f

@.@ut/
� d@ut C � � � C @f

@.@kut/
� d@kut: (67)

If the curve C is chosen so that the contact relations hold, d@ujC D @dujC;

: : : ; d@kujC D @kdujC, then the line integral becomes a general homotopy integral

f D f
ˇ̌
uDu0

C
Z 1

0

.ıvf /
ˇ̌
ˇ
vD@�u.�/;uDu.�/

d�; u.1/ D u; u.0/ D u0 (68)

where u.�/.t; x/ is a homotopy curve, given by a parametric family of functions. If f
is non-singular when u D 0, then the homotopy curve can be chosen simply to be a
homogeneous line, which yields a standard linear-homotopy integral [1]

f D f
ˇ̌
uD0

C
Z 1

0

.ıuf /
ˇ̌
uDu.�/

d�

�
; u.�/ D �u: (69)
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The Euler operator Eu is defined in terms of the Fréchet derivative through the
relation

ıvf D vEu.f / C D � �f .v/ (70)

obtained from integration by parts, which gives

Eu.f / D @f

@u
� D �

� @f

@.@u/

�
C � � � C .�D/k �

� @f

@.@ku/

�
(71)

where

�f .v/ D �.v; 1I f / D v
@f

@.@u/
C Dv � @f

@.@2u/
� vD � @f

@.@2u/
C � � �

C
kX

lD1

.Dk�lv/ �
�
.�D/l�1 � @f

@.@ku/

�
D

k�1X
lD0

.Dlv/ � E
@

lC1
u

.f /:

(72)

The Euler-Lagrange relation (70) can be combined with the general homotopy
integral (68) to obtain the following useful formula.

Lemma 4.1

f D
Z 1

0

@�u.�/Eu.f /
ˇ̌
uDu.�/

d� C D � F (73)

is an identity, where

F D
Z 1

0

�f .@�u.�//
ˇ̌
uDu.�/

d� C F0 (74)

with F0 D .Ft
0.t; x/; Fx

0.t; x// being any current such that D � F0 D f juDu0 .

A useful relation is

�f .v/ D vE.1/
u .f / C D � .vE.2/

u .f // C � � � C Dk�1 � .vE.k/
u .f // (75)

which arises through repeated integration by parts on the expression (72), where

E.l/
u .f / D @f

@.@lu/
�
 

l C 1

l

!
D �

� @f

@.@lC1u/

�
C � � �

C
 

k

l

!
.�D/k�l �

� @f

@.@ku/

�
; l D 1; : : : ; k (76)
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define the higher Euler operators. Equations (70) and (75) then provide an
alternative formula for the Fréchet derivative

ıvf D vEu.f / C D � .vE.1/
u .f // C � � � C Dk � .vE.k/

u .f // (77)

which leads to a similar formula for the Fréchet adjoint derivative

ı�
wf D wEu.f / � .Dw/ � E.1/

u .f / C � � � C .�D/kw � E.k/
u .f / (78)

after integration by parts. Explicit coordinate formulas for all of the Euler operators
are stated in Ref.[1]; coordinate formulas for the Fréchet derivative and its adjoint,
as well as the associated divergence, are shown in Ref.[27].

The Euler operators (71) and (76) have the following important properties.

Lemma 4.2 (i) Eu.fg/ D ı�
g f C ı�

f g is a product rule. (ii) Eu.f / D 0 holds
identically iff f D D � F for some differential current function F D .Ft; Fx). (iii)
E.1/

u .D � F/ D Eu.Ft; Fx/ D .Eu.Ft/; Eu.Fx// and E.lC1/
u .D � F/ D .E.l/

u ; E.l/
u / ˇ

.Ft; Fx/; l � 1, are descent rules, where ˇ denotes the symmetric tensor product.

The proof of (i) is an immediate consequence of the ordinary product rule applied
to each partial derivative term in Eu.fg/. To prove the first part of (ii), if f D D � F
then ıvf D D �ıvF combined with the Euler-Lagrange relation (70) yields vEu.f / D
D �.ıvF��f .v//. Since v is an arbitrary differential function, this implies Eu.f / D 0

(and �f .v/ D ıvF modulo a divergence-free term). Conversely, for the second part
of (ii), if Eu.f / D 0 then the general homotopy integral (73) shows f D D � F
holds, with F given by the formula (74). The proof of (iii) starts from the property
ıv.D �F/ D D �ıvF. Next, the Fréchet derivative relation (77) is applied separately to
f D D�F and f D F. This yields D�.vE.1/

u .D�F// D D�.vEu.F//, D2 �.vE.2/
u .D�F// D

D � .vD � E.1/
u .F//, and so on. The expressions for E.1/

u .D � F/, E.2/
u .D � F/, and so on

are then obtained by recursively expanding out each Euler operator in components
E.1/

u D E.t;x/
u D .E.t/

u ; E.x/
u / and E.lC1/

u D E.l;t;x/
u D .E.l;t/; E.t;x/

u /; l � 1), followed by
symmetrizing over these components together with the components of F D .Ft; Fx/.
This completes the proof of Lemma 4.2. ut

A null-divergence is a total divergence D � ˚ D 0 vanishing identically in jet
space, where ˚ D .˚ t; ˚ x/ is a differential current function. Similarly to Poincaré’s
lemma, which shows that ordinary divergence-free vectors in R

n can be expressed
as curls, null-divergences are total curls in jet space.

Lemma 4.3 If a differential current function ˚ D .˚ t.t; x; u; @u; : : : ; @ku/;

˚ x.t; x; u; @u; : : : ; @ku// has a null-divergence,

D � ˚ D Dt˚
t C Dx � ˚ x D 0 in J; (79)

then it is equal to a total curl

˚ D D � � D .Dx � �; �Dt� C Dx � 	 / in J (80)
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with

� D
�

0 �

�� 	

�
(81)

holding for some differential vector function �.t; x; u; @u; : : : ; @k�1u/ and some
differential antisymmetric tensor function 	 .t; x; u; @u; : : : ; @k�1u/, both of which
can be expressed in terms of ˚ t; ˚ x.

The proof begins by taking the Fréchet derivative of the null-divergence to
get D � ıv˚ D 0. A descent argument will be used to solve this equation. Let
the terms in ıv˚ D .ıv˚ t; ıv˚ x/ containing highest derivatives @kv be denoted
.T.k/@kv; X.k/@kv/, where the coefficients T.k/ and X.k/ of each term are given by a
differential scalar function and a differential vector function in J. Then the highest
derivative terms @kC1v in the equation D �ıv˚ D 0 consist of T.k/@t@

kvCX.k/ �@x@
kv.

The coefficients of @kC1v in this expression must vanish, which can be shown to
give T.k/@kv D �.k�1/ � @x@

k�1v and X.k/@kv D ��.k�1/@t@
k�1v C �.k�1/ � @x@

k�1v,
where �.k�1/ is some differential vector function, and �.k�1/ is some differential
antisymmetric tensor function. Integration by parts on these expressions yields

T.k/@kv D Dx � .�.k�1/@k�1v/ C lower order terms;

X.k/@kv D �Dt.�
.k�1/@k�1v/ C Dx � .�.k�1/@k�1v/ C lower order terms;

and hence

.T.k/@kv; X.k/@kv/ D D � � .k�1/.v/ C lower order terms

where

� .k�1/.v/ D
�

0 �.k�1/.v/

��.k�1/.v/ 	 .k�1/.v/

�

with �.k�1/.v/ D �.k�1/@k�1v and 	 .k�1/.v/ D �.k�1/@k�1. This shows that the
highest derivative terms in ıv˚ have the form of a total curl, modulo lower order
terms. Subtraction of this curl D � � .k�1/.v/ from ıv˚ will now eliminate all terms
containing @kv, so that

ıv˚ � D � � .k/.v/ D .T.k�1/@k�1v; X.k/@k�1v/ C lower order terms

where the coefficients T.k�1/ and X.k�1/ of the @k�1v terms are again a differential
scalar function and a differential vector function in J. Since total curls have a
vanishing total divergence, the highest derivative terms remaining in the null-
divergence equation 0 D D�ıv˚ are given by T.k�1/@t@

k�1vCX.k�1/ �@x@
k�1v, which

has the same form as the expression obtained at highest order. This completes the
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first step in the descent argument. Continuing to lower orders, the descent argument
will terminate at the equation T.0/@tv C X.0/ � @xv D 0, which yields T.0/ D 0 and
X.0/ D 0. As a result, the solution of the null-divergence equation D � ıv˚ D 0 is
given by ıv˚ D Pk

lD1 D � � .l�1/.v/.
The final step in the proof is simply to apply the general homotopy integral (68)

to the Fréchet derivative ıv˚ D Pk
lD1 D � � .l�1/.v/, which gives

˚ � ˚
ˇ̌
uDu0

D
Z 1

0

� kX
lD1

D � � .l�1/.@�u.�//
�ˇ̌

uDu.�/
d�:

This shows ˚ D D � � is a total curl, where

� D �0 C
Z 1

0

� kX
lD1

� .l�1/.@�u.�//
�ˇ̌

uDu.�/
d�

has the form (81), with D � �0 being an ordinary curl determined by Poincare’s
lemma applied to the vanishing divergence D � .˚ juDu0 / D 0. This completes the
proof of Lemma 4.3. ut

Scaling transformations are a one-parameter Lie group whose action is given by

t ! �at; xi ! �b.i/ xi; u˛ ! �c.˛/u˛; � ¤ 0 (82)

prolonged to jet space, where the constants a; b.i/; c.˛/ are the scaling weights of
t; xi; u˛ . Note the generator of these transformations is Xscal D 
@t C �@x C �@u

where


 D at; � D .b.1/x
1; : : : ; b.n/x

n/; � D .c.1/u
1; : : : ; c.m/u

m/: (83)

In characteristic form, the scaling generator is OXscal D Pscal@u with Pscal D � �
ut
 � ux � � . Now consider a differential function f that is homogeneous under the
action of the scaling transformation (82), such that f ! �sf . Then the infinitesimal
action is given by OXscal.f / D ıPscal f D sf � 
Dtf � � � Dxf . A useful identity comes
from integrating this expression by parts and combining it with the Euler-Lagrange
relation (70), yielding

!f D PscalEu.f / C DtF
t C Dx � Fx; ! D s C Dt
 C Dx � � D s C a C

nX
iD1

b.i/ (84)

where

Ft D f 
 C � t
f .Pscal/; Fx D f � C � x

f .Pscal/ (85)
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with �f D .� t
f ; � x

f / given by expression (72). Note here ! is equal to the scaling

weight of the integral quantity
R t1

t0

R
˝

f dV dt, as defined on any given spatial domain
˝ � R

n and any time interval Œt0; t1� � R.
Finally, for subsequent developments, the following technical result (which is a

straightforward application of Hadamard’s lemma [28] to the setting of jet space)
will be useful.

Lemma 4.4 If a differential function f .t; x; u; @u; : : : ; @ku/ vanishes on the solution
space E of a given regular PDE system (39), then

f D Rf .G/ (86)

holds identically, where

Rf D R.0/
f C R.1/

f � D C � � � C R.k�N/
f � Dk�N (87)

is a linear differential operator, depending on f , with coefficients given by differ-
ential functions R.0/

f , R.1/
f , : : :, R.k�N/

f that are non-singular when evaluated on E .
The operator Rf jE is uniquely determined by the function f if the PDE system has no
differential identities. Otherwise, if the PDE system satisfies a differential identity

D.G/ D D1G1 C � � � C DMGM D 0 (88)

with D1; : : : ;DM being linear differential operators whose coefficients are non-
singular differential functions when evaluated on E , then the operator Rf jE is
determined by the function f only modulo �D , where � is an arbitrary differential
function.

The proof relies heavily on the coordinatization property (54) that characterizes
a PDE system being regular. For a regular PDE system G D 0 of order N � 1,
consider its prolongation to order k � 1, prG D .G; DG; : : : ; DkG/ D 0, which has
differential order kCN. Let .�1�g1.Z/; �2�g2.Z/; : : :/ be the solved-form derivative
expressions for the PDEs in prG, where � D .�1; �2; : : :/ 2 J denotes the leading
derivatives with respect to u˛ chosen for the prolonged system, and Z D .Z1; Z2; : : :/

2 J denotes the coordinates for the prolonged solution space E � J of the system.
Note that prG D 0 represents E as a set of surfaces �1 D g1.Z/, �2 D g2.Z/ ,: : : in
J. Then we have f .�; Z/jE D f .g.Z/; Z/ D 0. We now use the standard line integral
identity

f .�; Z/ D
Z �

g.Z/

@yf .y; Z/ � dy D
Z 1

0

.� � g.Z// � @� f .s� C .1 � s/g.Z/; Z/ ds:

This shows that f .�; Z/ D F.�; Z/ � .� � g.Z//, with F.�; Z/ D R 1

0
@� f .s� C .1 �

s/g.Z/; Z/ ds being a vector function. Note F.�; Z/jE D F.g.Z/; Z/ D @� f .g.Z/; Z/

is non-singular since f is a differential function. Hence we obtain F.�; Z/ � .� �
g.Z// D Rf .G/ where Rf is a linear differential operator whose coefficients F1.�; Z/,
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F2.�; Z/, : : : are non-singular when evaluated on E . Furthermore, the expression
for F.�; Z/ shows that it is canonically determined by f , unless the PDE system
satisfies a differential identity, whereby 0 D D.G/ D h.Z/ � .� � g.Z// holds
identically for some vector function h.Z/. In this case, Rf .G/ is well-defined only
modulo �D.G/ D 0, where � is any differential function. This completes the proof
of Lemma 4.4. ut

5 Characteristic Forms and Determining Equations
for Conservation Laws and Symmetries

Consider an infinitesimal symmetry (47) of a regular PDE system (39). When acting
on the solution space E of the PDE system in jet space J, the symmetry generator is
equivalent to a generator given by

OX D X � Xtriv D P@=@u; P D � � ut
 � ux � � (89)

under which u is infinitesimally transformed while t; x are invariant. This gen-
erator (89) defines the characteristic form (or canonical representation) for the
infinitesimal symmetry. The symmetry invariance (48) of the PDE system can then
be expressed by

pr OX.G/jE D 0 (90)

holding on the whole solution space E of the given system. Note that the action
of pr OX is the same as a Fréchet derivative (63), and hence an equivalent, modern
formulation [1, 3] of this invariance (90) is given by the symmetry determining
equation

.ıPG/jE D 0: (91)

This formulation of infinitesimal symmetries has several advantages compared
to the standard formulation shown in Sect. 3. Firstly, a symmetry is trivial iff its
characteristic function P vanishes on E . Also, the differential order of a symmetry
is simply given by the differential order of PjE . Secondly, the symmetry determining
equation (91) can be set up without doing any prolongations of the generator (89),
as only total differentiation is needed. Thirdly, when contact symmetries or higher-
order symmetries are sought, the generator can be formulated simply as

OX D P.t; x; u; @u; : : : ; @ru/@u (92)
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with the symmetry determining equation then being a linear PDE for the character-
istic function P. This formulation (92) eliminates arbitrary functions depending on
all of the variables t; x; u; @u; : : : ; @ru in the solution for P.

Now consider a conservation law (40) of a regular PDE system (39). The
starting point to obtain an equivalent characteristic form of the conservation law
is provided by equations (86) and (87) in Lemma 4.4. These equations show that the
conservation law can be expressed as a divergence identity

DtT C Dx � X D R˚ .G/ D R.0/
˚ Gt C R.1/

˚ � DGt C � � � C R.rC1�N/
˚ � DrC1�NGt (93)

which is obtained by moving off solutions of the PDE system, where u.t; x/ is
an arbitrary (sufficiently smooth) function. Here r is the differential order of the
conserved current ˚ D .T; X/, and N is the differential order of the PDE system.
The next step is to integrate by parts on the righthand side in the divergence
identity (93), yielding

Dt QT C Dx � QX D GQ (94)

with

. QT; QX/ D .T; X/ C R.1/
˚ Gt C R.2/

˚ � DGt � .D � R.2/
˚ /Gt

C � � � C
r�NX
lD0

�
.�D/l � R.rC1�N/

˚

� � Dr�N�lGt
(95)

and

Qt D .Q1; : : : ; QM/ D R.0/
˚ � D � R.1/

˚ C � � � C .�D/rC1�N � R.rC1�N/
˚ : (96)

On the solution space E , note that . QT; QX/jE D .T; X/jE reduces to the conserved
density and the flux in the given conservation law .DtT C Dx � X/jE D 0, and hence

.Dt QT C Dx � QX/jE D 0 (97)

is a locally equivalent conservation law. The identity (94) is called the characteristic
equation for the conservation law, and the set of functions (96) is called the
multiplier. Explicit coordinate formulas for the density QT and the flux QX in terms
of T and X are shown in Ref.[27].

When a regular PDE system is expressed in a solved form (54)–(55) for a set
of leading derivatives, note that these leading derivatives (and their differential
consequences) can be eliminated from the expression for a conserved current
˚ D .T; X/ without loss of generality, since this only changes the conserved current
by the addition of a locally trivial current. Then it is straightforward to derive explicit
expressions for the coefficient functions in the operator R˚ by applying the chain
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rule to DtT and Dxi Xi with the use of subleading derivatives defined by the relations
@t@.`a=t/u˛a D @xi@.`a=xi/u

˛a D @.`a/u˛a . This leads to an explicit Euler-Lagrange
expression

Qt D �
E@.`1=t/u˛1 .T/ C

nX
iD1

E@.`1=xi/u
˛1 .Xi/; : : : ; E@.`M =t/u˛M .T/ C

nX
iD1

E@.`M=xi/u
˛M .Xi/

�

(98)

for the components of the multiplier (96), where @.`a=t/u˛a and @.`a=xi/u
˛a denote the

subleading derivatives. As a result, the multiplier components (98) can contain lead-
ing derivatives @.`a/u˛a (and their differential consequences) at most polynomially.

Also note that, as asserted by Lemma 4.4, if a regular PDE system has no
differential identities (88), then the operator R˚ jE will be canonically determined
by the expression for ˚ D .T; X/. This implies the relation

QtjE D .Q1; : : : ; QM/jE D EG.Dt QT C Dx � QX/jE
D .EG1 .DtT C Dx � X/; : : : ; EGM .DtT C Dx � X//jE

(99)

for the multiplier (96).
In general, for a given regular PDE system (39), a set of functions

Q D .Q1.t; x; u; @u; @2u; : : : @ru/; : : : ; QM.t; x; u; @u; @2u; : : : @ru//t (100)

will be a multiplier iff each function is non-singular on the PDE solution space E
and their summed product with the expressions G D .G1; : : : ; GM/ for the PDEs
has the form of a total space-time divergence.

The characteristic equation (94) establishes that, up to local equivalence, all
non-trivial conservation laws for any regular PDE system arise from multipliers.
A determining condition to find all multipliers comes from Lemma 4.2 applied to
the characteristic equation (94), yielding

0 D Eu.GQ/ D ı�
QG C ı�

GQ: (101)

This condition, which is required to hold identically in jet space, is necessary and
sufficient for Q to be a multiplier. For each solution Q, a corresponding conserved
current that satisfies the characteristic equation (94) can be obtained from the
expression f D GQ by using Lemma 4.1. This yields

Q̊ D
Z 1

0

�GQ.@�u.�//
ˇ̌
uDu.�/

d� (102)

whose multiplier (96) is Q. An explicit formula for this conserved current is stated
next.
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Lemma 5.5 For a regular PDE system (39), each multiplier (100) yields a con-
served current (94) which is explicitly given by a homotopy integral

QT D
Z 1

0

� k�1X
lD0

@�@lu.�/ �
�

E@l@tu
.GQ/

�ˇ̌
ˇ
uDu.�/

�
d� C Dx � �; (103)

QX D
Z 1

0

� k�1X
lD0

@�@lu.�/ � .E@l@xu .GQ//
ˇ̌
ˇ
uDu.�/

�
d� � Dt � � C Dx � 	 (104)

along a homoptopy curve u.�/.t; x/, with u.1/ D u and u.0/ D u0 such that .GQ/juDu0

is non-singular. Here k D max.r; N/.

Note the conserved current formula (103)–(104) can be simplified by evaluating
it on the solution space E of the given regular PDE system. Modulo a locally trivial
current, this yields

Q̊ jE D
Z 1

0

kX
jD1

�
@�@j�1u.�/

kX
lDj

.�D/l�j �
� @G

@.@lu/
Q
�ˇ̌
ˇ
uDu.�/

�
d� (105)

where the curve u.�/.t; x/ is now in the solution space E .

5.1 Correspondence Between Conservation Laws
and Multipliers

As shown by the following key result, multipliers provide a unique characteristic
form (or canonical representation) for locally equivalent conservation laws, in
analogy to the characteristic form (89) for symmetries, if a regular PDE system has
no differential identities. A generalization holding for regular PDE systems with
differential identities will be stated later.

Proposition 1 For any regular PDE system (39) that has no differential identities, a
conserved current is locally trivial (44) iff its corresponding multiplier (96) vanishes
when evaluated on the solution space of the system.

The proof has two parts. For the “only if part”, suppose a conserved current is
locally trivial (44). By Lemma 4.4, the conserved density and the flux will have the
respective forms T D Dx � � C OT.G/ and X D �Dt� C Dx � 	 C OX.G/ for some
linear differential operators OT and OX whose coefficients are differential functions
that are non-singular when evaluated on E . For this conserved current ˚ D .T; X/,
consider the divergence identity (93), where R˚ .G/ D Dt OT.G/ C Dx � OX.G/. As the
PDE system is assumed to have no differential identities, then the homotopy integral
formula for the operator R˚ from the proof of Lemma 4.4 shows that integration by
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parts applied to R˚ .G/ yields QT D T � OT.G/, QX D X � OX.G/, in the characteristic
equation (94)–(95), and hence GQ D Dt QT C Dx � QX D 0.

It is now straightforward to determine Q from the equation GQ D 0. In the case
when G comprises a single PDE (i.e., M D 1), then Q D 0 is immediate. In the case
when G contains more than one PDE (i.e., M > 1), the equation GQ D 0 can be
solved by linear algebra as follows.

First express each PDE Ga D 0, a D 1; : : : ; M, in the solved form (54)–(55) in
terms of a leading derivative @.`a/u˛a . Then take the Fréchet derivative of GQ D 0,
which yields

.ıvG/Q C G.ıvQ/ D 0:

To solve this Fréchet derivative equation, consider the terms involving @k@.`a/v
˛a and

let w D .@.`1/v
˛1 ; : : : ; @.`M/v

˛M / for ease of notation. It is easy to see the expression
ıvG contains only one term of this form, which is simply given by w itself, as a
consequence of the solved form of the PDEs G D .G1; : : : ; GM/. The expression
ıvQ contains a sum of terms involving derivatives of w, which will have the formPr

kD0 Q.k/@kwt, where r is the differential order of the highest derivatives of the
variables @.`a/u˛a in Q, and where the coefficients Q.k/ are differential M �M matrix
functions in J. Hence, all of the terms involving @k@.`a/v

˛a in the Fréchet derivative
equation consist of wQ C Pr

kD0 GQ.k/@kwt D 0. Then the coefficients of each
jet variable @kw, k D 0; 1; : : : ; r, must vanish separately. This immediately yields
Q.k/ D 0 for k D 1; : : : ; r. The remaining terms are given by wQ C GQ.0/wt D 0.
This is a linear homogeneous equation in wt, after the transpose relation wQ D
.wQ/t D Qtwt is used, which gives .Qt C GQ.0//wt D 0. The vanishing of the
coefficient of wt yields Qt D �GQ.0/, and hence QjE D 0.

For the “if part”, suppose a multiplier satisfies QjE D 0. Then, Lemma 4.4 can
be applied to get Q D OQ.G/, where OQ is some linear differential operator whose
coefficients are differential functions that are non-singular when evaluated on E .
The characteristic equation (94) must now be solved to determine the corresponding
conserved density QT and flux QX. This will be done in two main steps.

For the first step, a descent argument will be given to solve the Fréchet derivative
equation

D � .ıv
Q̊ / D .ıvG/Q C G.ıvQ/

for ıv
Q̊ D .ıv

QT; ıv
QX/, similarly to the proof of Lemma 4.3. Let F.v/ D .ıvG/Q C

G.ıvQ/, with Q D OQ.G/. The terms in F.v/ containing highest derivatives of v

will be denoted F.k/@kv, where k is the larger of the differential orders of Q and G,
and where the coefficients F.k/ are differential functions in J such that F.k/jE D 0

since F.v/jE D ..@vG/ OQ.G//jE D .@vG/jE OQ.0/ D 0. Note the differential order of
ıv

Q̊ then can be assumed to be k � 1. Next, let � .v/ D .ıv
QT; ıv

QX/, and denote the
terms containing highest derivatives of v in � .v/ as QT.k�1/@k�1v and QX.k�1/@k�1v,
respectively, where the coefficients QT.k�1/ and QX.k�1/ are given by a set of differential
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scalar functions and a set of differential vector functions in J. In this notation, the
Fréchet derivative equation becomes

D � � .v/ D F.v/:

Now the highest derivative terms @kv in this equation are given by

QT.k�1/@t@
k�1v C QX.k�1/ � @x@

k�1v D F.k/@kv:

Expand out F.k/@kv D F.k�1;t/@t@
k�1v C F.k�1;x/ � @x@

k�1v, and collect the terms
@t@

k�1v and @x@
k�1v in the equation, giving

. QT.k�1/ � F.k�1;t//@t@
k�1v C . QX.k�1/ � F.k�1;x// � @x@

k�1v D 0:

The same analysis used in the proof of Lemma 4.3 then yields

. QT.k�1/@k�1v; QX.k�1/@k�1v/ D .F.k�1;t/@k�1v; F.k�1;x/@k�1v/

C D � � .k�2/.v/ C lower order terms

where

� .k�2/.v/ D
�

0 �.k�2/.v/

��.k�2/.v/ 	 .k�2/.v/

�

with �.k�2/.v/ D �.k�2/@k�2v and 	 .k�2/.v/ D �.k�2/@k�2 being given by
some differential vector function �.k�2/ and some differential antisymmetric tensor
function �.k�2/. Hence the highest derivative terms in � .v/ involving v have the
form

� .v/ D .F.k�1;t/@k�1v; F.k�1;x/@k�1v/ C D � � .k�2/.v/ C Q� .v/

where Q� .v/ comprises all remaining terms, which contain derivatives of v up to
order @k�2v, and where D � � .k�2/.v/ is a total curl, which has a vanishing total
divergence. Substitution of this expression � .v/ into the Fréchet derivative equation
gives

. QT.k�2/ C D � F.k�1;t//@t@
k�2v C . QX.k�2/ C D � F.k�1;x// � @x@

k�2v

D F.k�1/@k�1v C lower order terms

where QT.k�2/ and QX.k�2/ are a set of differential scalar functions and a set of
differential vector functions given by the coefficients of the terms @k�2v in Q� .v/.
After F.k�1/@k�1v D F.k�2;t/@t@

k�2v C F.k�2;x/ � @x@
k�2v is expanded out, the terms

containing highest derivatives of v in this equation are given by
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. QT.k�2/ � F.k�2;t/ C D � F.k�1;t//@t@
k�2v

C . QX.k�2/ � F.k�2;x/ C D � F.k�1;x// � @x@
k�2v D 0

which has the same form as the equation solved previously. This completes the first
step in the descent argument.

Next, continuing to all lower orders, the descent argument yields

� .v/ D
k�1X
lD1

D � � .l�1/.v/ C
k�1X
lD0

k�1X
jDl

..�D/j�l � F.j;t/; .�D/j�l � F.j;x//@lv:

Note the terms in the first sum are a total curl, and the terms in the second sum
vanish on E since F.l/jE D 0.

The final step is to apply the general line integral (67) to the Fréchet derivative
ıv

Q̊ D � .v/ evaluated on E . Since � .v/jE D Pk�1
lD1 D � � .l�1/.v/jE , this gives

Q̊ jE � Q̊ juD0 D
Z 1

0

k�1X
lD1

D � � .l�1/.v/
ˇ̌
ˇ
uDu.�/;vD@�u.�/

d�

where u.�/.t; x/ is a homotopy curve in the solution space E of the regular PDE
system, with u.1/ D u.t; x/ being an arbitrary solution and u.0/ D u0.t; x/ being any
particular solution. Thus Q̊ jE � Q̊

0 D D � � is a total curl, where

� D
Z 1

0

k�1X
lD1

� .l�1/.v/
ˇ̌
ˇ
uDu.�/;vD@�u.�/

d�

has the form (81). Now, substitution of Q̊ jE D Q̊ juDu0 C D � � into D � Q̊ D GQ
yields 0 D .D � Q̊ � GQ/jE D D � . Q̊ juDu0 /. This immediately establishes that
Q̊ juDu0 D D � �0 is an ordinary curl, by Poincare’s lemma. Thus,

Q̊ jE D D � .� C �0/

is a locally trivial conserved current, which completes the proof of Proposition 1.
ut

The correspondence stated in Proposition 1 no longer holds when a PDE system
possesses a differential identity (88). In particular, for a given differential identity,
multiplication by an arbitrary differential function �, followed by integration by
parts, yields

0 D �D.G/ D GD�.�/ C D � ˚.�; G/ (106)

where ˚.�; G/ is a conserved current that vanishes on the solution space of the PDE
system,
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˚.�; G/jE D ˚.�; 0/ D 0: (107)

Hence

Q D D�.�/ (108)

is a multiplier which determines a locally trivial conserved current. This derivation
can be reversed, showing that the existence of a multiplier (108) is necessary and
sufficient for a PDE system to possess a differential identity (88).

Multipliers of the form (108), given by a linear differential operator acting
on an arbitrary differential function �, will be called gauge multipliers [16], in
analogy with gauge symmetries. Note that a gauge multiplier is non-vanishing on
the solution space E of the PDE system whenever the differential identity is non-
trivial, since D jE ¤ 0 implies QjE ¤ 0 for � ¤ 0. Two multipliers that differ by a
gauge multiplier will be called gauge equivalent.

Running Ex. (3) The Euler equations for constant density, inviscid fluids in two
dimensions comprise an evolution equation for u D .u1; u2/,

G D ut C u � ru C .1=�/rp D 0;

a spatial equation relating u to p,

Gp D .1=�/�p C .ru/ � .ru/t D 0;

and a spatial constraint equation on u,

Gdiv D r � u D 0:

This PDE system obeys a differential identity

Div G � DtG
div � Gp D 0

which has the form (88) where D D diag.Div ; �1; �Dt/ and G D .G; Gp; Gdiv/.
The corresponding gauge multiplier is given by

Q D .Q; Qp; Qdiv/t; Q D �Grad �; Qp D ��; Qdiv D Dt�

where � is an arbitrary differential scalar function. The characteristic equation yields

GQ D �.Grad �/ � G � �Gp C .Dt�/Gdiv D Dt.�Gdiv/ C Dx � .��G/

which is a locally trivial conservation law, where T D �Gdiv is the conserved density
and X D ��G is the spatial flux. If � is chosen to be a constant, � D 1, then the
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conserved density becomes a total spatial divergence T D Dx � u which produces a
boundary conservation law

d

dt

Z
˝

TdVjE D d

dt

I
@˝

u � �dAjE D 0

on any closed spatial domain ˝ 2 R
2, since the flux vanishes on the solution space

of the system, XjE D 0. This boundary conservation law represents conservation of
streamlines in the fluid.

Running Ex. (4) The magnetohydrodynamics equations for a compressible,
infinite conductivity plasma in three dimensions comprise evolution equations for
�, u D .u1; u2; u3/ and B D .B1; B2; B3/,

G� D �t C r � .�u/ D 0;

Gu D ut C u � ru C .1=�/.P0.�/r� � J � B/ D 0; 4�J D r � B;

GB D Bt � r � .u � B/ D 0;

and a spatial constraint equation on B,

Gdiv D r � B D 0:

This PDE system obeys a differential identity

Div .GB/ � DtG
div D 0

which has the form (88) where D D diag.0; 0; Div ; �Dt/ and G D .G�; Gu;

GB; Gdiv/. The corresponding gauge multiplier is given by

Q D .Q�; Qu; QB; Qdiv/t; Q� D 0; Qu D 0; QB D �Grad �; Qdiv D Dt�

where � is an arbitrary differential scalar function. The characteristic equation yields

GQ D �.Grad �/ � GB C .Dt�/Gdiv D Dt.�Gdiv/ C Dx � .��GB/

which is a locally trivial conservation law, where T D �Gdiv is the conserved density
and X D ��GB is the spatial flux. If � is chosen to be a constant, � D 1, then the
conserved density becomes a total spatial divergence T D Dx � B which produces a
boundary conservation law

d

dt

Z
˝

TdVjE D d

dt

I
@˝

B � �dAjE D 0
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on any closed spatial domain ˝ 2 R
3, since the flux vanishes on the solution space

of the system, XjE D 0. This boundary conservation law represents conservation of
magnetic flux in the plasma.

The following natural generalization of Proposition 1 will now be established.

Proposition 2 For any regular PDE system (39) that possesses a differential
identity (88), a conserved current is locally trivial (44) iff its corresponding
multiplier (96) evaluated on the solution space of the system is equal to a gauge
multiplier (108) for some differential function �.

The same steps used in the proof for Proposition 1 go through with only two
changes. For the “if part”, suppose a multiplier satisfies QjE D D�.�/, which
implies Q D OQ.G/ C D�.�/ by Lemma 4.4, where OQ is some linear differential
operator whose coefficients are differential functions that are non-singular when
evaluated on E . Then the conservation law identity (106) combined with the
characteristic equation (94) yields

G OQ.G/ D G.Q � D�.�// D Dt. QT C ˚ t.�; G// C Dx � . QX C ˚ x.�; G//:

This equation can be solved by the same steps used in proving the “if part” of
Proposition 1, thus showing that Q̊ C ˚.�; G/ is a locally trivial current. Since
˚.�; G/ itself is a locally trivial current, the conservation law given by Q̊ is therefore
locally trivial (44). For the “only if” part, suppose a conserved current is locally
trivial (44), so then, by Lemma 4.4, the conserved density and the spatial flux will
have the respective forms T D Dx � � C OT.G/ and X D �Dt� C Dx � 	 C OX.G/

for some linear differential operators OT and OX whose coefficients are differential
functions that are non-singular when evaluated on E . As the PDE system is assumed
to satisfy a differential identity (88), the divergence identity (93) will be unique only
up to the addition of a multiple of this differential identity, �D.G/ D 0. This implies
from the homotopy integral formula for the operator R˚ that the characteristic
equation (94)–(95) holds with QT D T � OT.G/�˚ t.�; G/, QX D X� OX.G/�˚ x.�; G/,
and GQ D GD�.�/. The equation G.Q � D�.�// D 0 can be solved by the
same steps used in proving the “only if part” of Proposition 1, thereby showing
.Q � D�.�//jE D 0, so QjE is equal to D�.�/jE . This completes the proof of
Proposition 2. ut

The characterization of locally trivial conservation laws in Proposition 1 and
Proposition 2 establishes an important general correspondence result which under-
lies the usefulness of multipliers.

For a given regular PDE system, the set of multipliers forms a vector space on
which the symmetries of the system have a natural action [27, 28]. A multiplier
is called trivial if yields a locally trivial conservation law, and two multipliers are
said to be equivalent if they differ by a trivial multiplier. When the PDE system
has no differential identities, then a multiplier Q is trivial iff it vanishes on the
solution space, QjE D 0, whereas when the PDE system possesses a differential
identity (88), a multiplier Q is trivial iff it equals a gauge multiplier (108) on the
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solution space, QjE D D�.�/. A set of multipliers is linearly independent if no
linear combination of the multipliers is trivial. Likewise, a set of conservation laws
is linearly independent if no linear combination of the conserved currents is locally
trivial.

Theorem 5.1 (i) For any regular PDE system (39), whether or not it possesses
a differential identity, there is a one-to-one correspondence between its admitted
equivalence classes of linearly-independent local conservation laws and its admit-
ted equivalence classes of linearly-independent multipliers. (ii) An explicit formula-
tion of this correspondence is given by the homotopy integral formula (103)—(104)
for conserved currents in terms of multipliers.

Infinitesimal symmetries have a well-known action on conserved currents [1, 3].
This action induces a corresponding action of infinitesimal symmetries on multi-
pliers [27, 28], and there are several equivalent formulas [6, 13, 14, 28–32] for
the conserved current obtained from the action of a given infinitesimal symmetry
applied to a given multiplier. It is worth noting that this action does not preserve
linear independence of equivalence classes. For example [28, 29], any non-trivial
conserved current that does not explicitly contain at least one of the independent
variables in a PDE system is mapped into a locally trivial current under any
translation symmetry.

5.2 Low-Order Conservation Laws

For any given regular PDE system, the correspondence between local conservation
laws and multipliers stated in Theorem 5.1 gives a straightforward way using
the following three steps to find all of the non-trivial local conservation laws
(up to equivalence) admitted by the PDE system. Step 1: solve the determining
condition (101) to obtain all multipliers. Step 2: find all linearly independent
equivalence classes of non-trivial multipliers. Step 3: apply the homotopy integral
formula (105) to a representative multiplier in each equivalence class to obtain a
corresponding conserved current.

In practice, for solving the determining condition (101), it is very useful to know
at which differential orders the non-trivial multipliers will be found. As seen in
the examples in Sect. 2, physically important conservation laws, such as energy
and momentum, always have a low differential order for the conserved density T
and the spatial flux X, whereas conservation laws having a high differential order
are typically connected with integrability. A general pattern emerges from these
conservation law examples when their multipliers are examined.

In Ex 1 and Ex 2, mass conservation for the transport equation (11) and net heat
conservation for the diffusion/heat conduction equation (13) both have Q D 1 which
does not involve u or its derivatives.

In Ex 3, energy conservation for the telegraph equation (15) has Q D
exp.2

R
a.t/dt/ut, while the leading derivative in this equation is utt or uxx.
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In Ex 4, for the nonlinear dispersive wave equation (17), mass conservation, L2-
norm conservation, and energy conservation respectively have Q D 1, Q D 2u, and
Q D g.u/ C uxx. The leading derivative in this equation is ut or uxxx.

In Ex 5, for the viscous fluid equations (19), mass conservation has Qt D .1; 0/,
momentum conservation has Qt D .u; 1/, and Galilean momentum conservation has
Qt D .tu; t/, while f�t; utg is a set of leading derivatives in this system.

In Ex 6, energy conservation for the barotropic gas flow/compressible inviscid
fluid equations (21), has Qt D . 1

2
u2; �u/, and again f�t; utg is a set of leading

derivatives in this system.
In Ex 7, momentum conservation, energy conservation, and energy-momentum

conservation for the breaking wave equation (23) respectively have Q D 1, Q D u,
Q D �.utx � u.um C 1

2
u/ C 1

2
u2

x/, while the Hamiltonian Casimir has Q D 1
2
.u �

uxx/
1=2. The leading derivative in this equation is utxx or uxxx.

In Ex 8, mass conservation for the porous media equation (25) has Q D ˛.x/.
In Ex 9, angular momentum conservation and boost momentum conservation for

the non-dispersive wave equation (27) respectively have Q D .a � x/ � ru, Q D
b � xut C c2tb � ru, while the leading derivative in this equation is utt or �u.

In all of these examples, each variable @ku that appears in the conservation
law multiplier is related to some leading derivative of u in the PDE system by
differentiation of this variable @ku with respect to t; x.

In contrast, the conservation laws for the higher-derivative quantities (22b) in
Ex 6 and (24e) in Ex 7 have, respectively, Qt D ..2ux�x=u2

x � p0�2
x=.�2/2/ .u2

x=.u2
x �

p0�x2=�2/2/ C p0=�2.�2
x=.u2

x � p0�x2=�2/2/x/ and Q D 5
2
m�7=2m2

x � 2m�5=2mxx �
2m�3=2, which involve variables of higher differential order than the leading
derivatives.

An exceptional case is the conservation laws for local helicity and local enstrophy
in Ex 10. These conservation laws for the inviscid (compressible/incompressible)
fluid equation (29) have, respectively, Q D 2r � u which involves a variable with
the same differential order as the leading derivative ut, and Q D f 00..curl u/=�/r �
..r ^ u/=�/ which involves a higher-derivative variable. Note, however, if the fluid
equation is expressed as a system for the velocity u and the vorticity vector ! D
r � u in three dimensions or the vorticity scalar ! D curl u in two dimensions, then
the multipliers for helicity and enstrophy conservation are given by, respectively,
Qt D .!; u/ and Qt D .0; f 0.!=�// in which the variables are related to the leading
derivatives ut and !t by differentiation with respect to t.

This pattern motivates introducing the following general class of multipliers.
A multiplier Q for a regular PDE system (39) will be called low-order if each
jet variable @ku˛ that appears in QjE is related to some leading derivative of u˛

by differentiations with respect to t; xi. (Note that, therefore, the differential order
r of QjE must be strictly less than the differential order N of the PDE system.)
Correspondingly, a conservation law is said to be of low-order if its multiplier is
low-order when evaluated on the solution space of the PDE system.
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For a given regular PDE system, the explicit form for low-order conservation
laws can be determined from the form for low-order multipliers by inverting the
relation (96) which defines a multiplier in terms of a conserved current.

Running Ex. (1) The gKdV equation (56) is a time evolution PDE whose
leading derivative is ut or uxxx. Its low-order conservation laws .DtT C DxX/jE D 0

are given by multipliers that have the form

Q.t; x; u; ux; uxx/

since, in the jet space J D .t; x; u; ut; ux; utt; utx; uxx; : : :/, the only variables that can
be differentiated with respect to t or x to obtain a leading derivative are u; ux; uxx.
To derive the corresponding form for low-order conserved currents ˚ D .T; X/,
the first step is to expand out DtT and DxX starting from general expressions for T
and X in which a leading derivative ut or uxxx has been eliminated along with all of
its differential consequences. If ut is chosen, then the starting expressions will be
T.t; x; u; ux; uxx; : : :/ and X.t; x; u; ux; uxx; : : :/, which gives

DtT D Tt C utTu C utxTux C utxxTuxx C � � � ;

DxX D Xx C uxXu C uxxXux C uxxxXuxx C � � � :

The second step is to obtain the operator R˚ from the terms in the divergence
expression DtT C DxX containing ut (and its differential consequences). This yields

DtT CDxX D .Tu CTux Dx CTuxx D2
x C� � � /ut CTt CXx CuxXu CuxxXux CuxxxXuxx C� � �

and hence

R˚ D Tu C Tux Dx C Tuxx D2
x C � � �

since ut D G � upux � uxxx is the solved form for the PDE expression. Then the
main steps are, first, to equate Q with the expression EG.R˚ .G// and, next, to use
the resulting equation together with the characteristic equation Dt QT C Dx QX D GQ
to determine the dependence of T and X on all jet variables that do not appear in Q.
This gives, first,

R˚ .G/ D TuG C Tux DxG C Tuxx D2
xG C � � � D ıGT D GEu.T/ C Dx�

x.G/

by using the Euler-Lagrange relation (70), which yields the equation

Q.t; x; u; ux; uxx/ D EG.R˚ .G// D EG.ıGT/ D Eu.T/:

Comparison of the differential order of both sides of this equation directly deter-
mines
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T D QT.t; x; u; ux/ C Dx�.t; x; u; ux; : : :/:

This implies � x.G/ D QTux G. Next, the characteristic equation then yields

GQ D DtT C Dx.X � G QTux/ D Dt QT C Dx QX

which gives

Dx.X C Dt�/ D Dx. QX C G QTux/ D � QTt C .upux C uxxx/ QTu C .upux C uxxx/x QTux :

Comparison of both sides of this equation now determines

X D QX.t; x; u; ut; ux; uxx/ � Dt�.t; x; u; ux; : : :/ � G QTux.t; x; u; ux/:

The same result can be shown to hold if uxxx is chosen as the leading derivative
instead of ut. Hence, all low-order conserved currents have the general form

˚ jE D . QT.t; x; u; ux/; QX.t; x; u; ut; ux; uxx//

modulo locally trivial conserved currents.

Running Ex. (2) The breaking wave equation (58) is a regular PDE whose
leading derivative is utxx or uxxx. All low-order conservation laws of this PDE are
given by multipliers that have the second-order form

Q.t; x; u; ut; ux; utx; uxx/ (109)

where utt is excluded because it cannot be differentiated to obtain a leading
derivative utxx or uxxx. The corresponding form for low-order conserved currents
˚ D .T; X/ is derived by starting from general expressions for T and X in which
a leading derivative utxx or uxxx has been eliminated along with all of its differential
consequences. It is simplest to use the pure derivative uxxx, which implies T and X
are functions only of t, x, u, ux, uxx, and their t-derivatives. Then the terms in the
divergence expression DtT C DxX containing the leading derivative uxxx (and its
differential consequences) are given by

DtT C DxX D .Xuxx C Xutxx Dt C Xuttxx Dt
2 C � � � /uxxx

C Tt C Xx C utTu C uxXu C uttTut C utx.Tux C Xut / C uxxXux

C utttTutt C uttx.Tutx C Xutt / C utxx.Tuxx C Xutx/ C � � � :

This expression yields the operator

R˚ D .Xuxx C Xutxx Dt C Xuttxx Dt
2 C � � � /u�1
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since uxxx D �u�1.G C bux.uxx � u/ � utxx C ut/ C ux is the solved form for the PDE
expression. Now, the main steps consist of first, equating Q with the expression
EG.R˚ .G// and, next, using the characteristic equation Dt QT C Dx QX D GQ to
determine the dependence of T and X on all jet variables that do not appear in Q.
The first step gives

R˚ .G/ D .Xuxx CXutxx Dt CXuttxx Dt
2 C� � � /.�u�1G/ D �u�1GEuxx.X/�Dt�

t.u�1G/

after using the relation (70), which yields the equation

Q.t; x; u; ut; ux; utx; uxx/ D EG.R˚ .G// D EG.�u�1GEuxx.X// D �u�1Euxx.X/:

Comparison of the differential order of both sides of this equation directly deter-
mines

X D QX.t; x; u; ut; ux; utx; uxx/ � Dt�.t; x; u; ut; ux; utt; utx; uxx; : : :/

which implies � t.u�1G/ D 0. Then, for the next step, the characteristic equation
yields

GQ D DtT C DxX D Dt QT C Dx QX

giving

Dt.T � Dx�/ D Dt QT D � QXx � ux QXu � utx QXut � uxx QXux � utxx QXutx :

Comparison of both sides of this equation now determines

T D QT.t; x; u; ux; uxx/ C Dx�.t; x; u; ut; ux; utt; utx; uxx; : : :/:

Hence, all low-order conserved currents have the general form

˚ jE D . QT.t; x; u; ux; uxx/; QX.t; x; u; ut; ux; utx; uxx//

modulo locally trivial conserved currents.

6 Variational Symmetries and Noether’s Theorem
in Modern Form

A PDE system (39) is globally variational if it is given by the critical points of
a variational principle defined on some spatial domain ˝ � R

n and some time
interval Œt0; t1� � R. In typical applications, this will involve specifying a function
space for u.t; x/ with x 2 ˝ and also posing boundary conditions on u.t; x/ for
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x 2 @˝. Noether’s theorem is usually formulated in this context, where it shows
that every transformation group leaving invariant the variational principle yields a
corresponding conserved integral (42) for solutions of the PDE system with u.t; x/

belonging to the specified function space.
However, for the purpose of obtaining local conservation laws (40), a global

variational principle is not necessary, and a PDE system instead needs to have just
a local variational principle.

A PDE system (39) is locally variational if it is given by the Euler-Lagrange
equations

0 D G D Eu.L/t (110)

for some differential function L.t; x; u; @u; : : : ; @ku/, called a Lagrangian. Note that,
as shown by Lemma 4.2, a Lagrangian is unique up to addition of an arbitrary total
divergence. In particular, L and QL D L C Dt�

t C Dx � � x have the same Euler-
Lagrange equations, for any differential scalar function � t and differential vector
function � x.

There is a well-known condition for a given PDE system to be locally variational
[1, 3].

Lemma 6.6 G D Eu.L/t holds for some Lagrangian L.t; x; u; @u; : : : ; @ku/ iff

ıvGt D ı�
v Gt (111)

holds for all differential functions v.t; x/.

The “only if” part of the proof has two steps. First, ıvEu.L/ D Eu.ıvL/ can be
directly verified to hold, due to v having no dependence on u and derivatives of u.
Next, the Euler-Lagrange relation (70) combined with Lemma 4.2 yields Eu.ıvL/ D
Eu.vEu.L// D ı�

v Eu.L/, after again using the fact that v has no dependence on u and
derivatives of u. Hence, ıvEu.L/ D ı�

v Eu.L/, which completes this part of the proof.
The “if” part of the proof proceeds by first inverting the relation Gt D Eu.L/

through applying Lemma 4.1 to f D L. This yields L D QL C D � F, with
QL D R 1

0
@�u.�/Gt

ˇ̌
uDu.�/

d�. Then the remaining steps consist of showing that

Eu.L/ D Eu. QL/ D Gt holds for this Lagrangian when ıvGt D ı�
v Gt. First, the

Fréchet derivative of QL gives ıv
QL D R 1

0

�
@�v.�/Gt

ˇ̌
uDu.�/

C @�u.�/ıv.�/
Gt
ˇ̌
uDu.�/

�
d�

where v.�/ D ıvu.�/. Next, substitute ıv.�/
Gt D ı�

v.�/
Gt and use the Fréchet derivative

relation (64), which yields

ıv
QL D

Z 1

0

�
@�v.�/G

t
ˇ̌
uDu.�/

C v.�/@�Gt
ˇ̌
uDu.�/

� D � �.@�u.�/; v.�/I Gt/
ˇ̌
uDu.�/

�
d�

D vGt � v0Gt
ˇ̌
uDu0

� D �
Z 1

0

�.@�u.�/; v.�/I Gt/
ˇ̌
uDu.�/

d�
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where � is given by expression (66). Finally, apply Ev to ıv
QL to get Ev.ıv

QL/ D Gt,
and use the identity Ev.ıv

QL/ D Ev.vEu. QL// D Eu. QL/ which follows from the Euler-
Lagrange relation (70). This yields Eu. QL/ D Gt, which completes the proof. ut

The condition (111) for a PDE system G D 0 to be locally variational states
that the linearization of Gt must be self-adjoint. From the relations (63) and (78), or
equivalently (65) and (77), this condition splits with respect to v; @v; : : : ; @kv into a
linear overdetermined system of equations on G:

@G

@.@ku/
D .�1/k

�
E.k/

u .G/
�t

; k D 0; 1; : : : ; N (112)

where N is the differential order of the PDE system G D 0. These equations
are called the Helmholtz conditions. Note the appearance of the transpose implies
that the Helmholtz conditions cannot hold if u and G have a different number of
components. Also, the expression (76) for the higher Euler operators E.k/

u shows
that the Helmholtz condition for k D N reduces to the equation

.1 � .�1/N/
� @G

@.@Nu/
C
� @G

@.@Nu/

�t� D 0 (113)

which cannot hold if N is odd. Consequently, a necessary condition for a PDE
system to be locally variational is that its differential order N must be even and
the number M of PDEs must be the same as the number m of dependent variables.

When a PDE system satisfies the Helmholtz conditions (112), a Lagrangian L for
the system can be recovered from the expressions G D .G1; : : : ; GM/ by the general
homotopy integral formula

L D
Z 1

0

@�u.�/G
t
ˇ̌
uDu.�/

d� (114)

(as shown in the proof of Lemma 6.6). A total divergence can be added to
this Lagrangian to obtain an equivalent Lagrangian that has the lowest possible
differential order, which is N=2.

Running Ex. (1) The gKdV equation (56) is an odd-order PDE. Hence, it cannot
be locally variational as it stands. To verify there is no local variational principle,
note G D Gt D ut C upux C uxxx gives

ıvGt D vt C upvx C pup�1uxv C vxxx; ı�
v Gt D �vt � upvx � vxxx

and hence ıvGt � ı�
v Gt D 2vt C 2upvx C pup�1uxv C 2vxxx ¤ 0 whereby Gt fails

to have a self-adjoint linearization. Equivalently, the Helmholtz conditions are not
satisfied:
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.k D 0/
@G

@u
D �up�1ux ¤ Eu.G/ D 0;

.k D 1/
@G

@ut
D 1 ¤ �E.t/

u .G/ D �1;
@G

@ux
D up ¤ �E.x/

u .G/ D �up;

.k D 2/
@G

@uxx
D 0 D E.x;x/

u .G/ D �Dx.1/;

.k D 3/
@G

@uxxx
D 1 ¤ �E.x;x;x/

u .G/ D �1:

However, if a potential variable w is introduced by putting u D wx, then the PDE
becomes wtx C wp

xwxx C wxxxx D 0 which has even order. Repetition of the previous
steps, with G D Gt D wtx C wp

xwxx C wxxxx, now gives

ıvGt D vtx C wp
xvxx C pwp�1

x wxxvx C vxxxx D ı�
v Gt

and

.k D 0/
@G

@w
D 0 D Ew.G/;

.k D 1/
@G

@wt
D 0 D �E.t/

w .G/ D �Dx.1/;

@G

@wx
D pwp�1

x wxx D �E.x/
w .G/

D �pwp�1
x wxx C 2Dx.w

p
x/ C Dt.1/ C D3

x.1/;

.k D 2/
@G

@wtx
D 1 D E.t;x/

w .G/;

.k D 3/
@G

@wxxx
D 0 D �E.x;x;;x/

w .G/ D Dx.1/;

.k D 4/
@G

@wxxxx
D 1 D E.x;x;x;x/

w .G/:

Hence, the potential gKdV equation is locally variational. A Lagrangian is given by
the homotopy integral

L D
Z 1

0

w.�wtx C �pC1wp
xwxx C �wxxxx/ d� D 1

2
wwtx C 1

pC2
wwp

xwxx C 1
2
wwxxxx

using w.�/ D �w. The addition of a total divergence Dt�
t C Dx�

x given by

� t D � 1
2
wwx; � x D � 1

2
.wwxxx � wxwxx/ � 1

.pC1/.pC2/
wwpC1

x
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yields an equivalent Lagrangian that has minimal differential order,

QL D � 1
2
wxwt � 1

.pC1/.pC2/
wpC2

x C 1
2
w2

xx:

For a locally variational PDE system, a global variational principle on a spatial
domain ˝ and a time interval Œt0; t1� can be defined in terms of a Lagrangian by

SŒu� D
Z t1

t0

Z
˝

.L.t; x; u; @u; : : : ; @ku/ C Dx � �.t; x; u; @u; : : :// dV dt (115)

where the spatial divergence term is chosen to let spatial boundary conditions be
posed on u.t; x/ for x 2 @˝. The critical points of the variational principle (115) are
given by the vanishing of the variational derivative of SŒu�,

0 D S0Œu� D @

@
SŒu C v�

ˇ̌
D0

D
Z t1

t0

Z
˝

vEu.L/ dV dt C
Z t1

t0

I
@˝

.ıv� C �L.v// � � dA

(116)

where v.t; x/ is an arbitrary differential function that satisfies the same spatial
boundary conditions as u.t; x/. Here � denotes the outward unit normal vector on
@˝, and �L is given by the Euler-Lagrange relation (70). Provided � is chosen
so that the boundary integral vanishes, then S0Œu� D 0 yields the PDE system
G D Eu.L/t D 0 on the spatial domain ˝.

6.1 Variational Symmetries

A variational symmetry [1, 2] of a given variational principle (115) is a gen-
erator (47) whose prolongation leaves invariant the variational principle. This
invariance condition has both a global aspect, which involves the spatial domain
and the spatial boundary conditions, and a local aspect, which involves only the
Lagrangian.

For a local variational principle (110), a variational (divergence) symmetry [1, 2]
is a generator (47) whose prolongation satisfies the invariance condition

prX.L/ D 
DtL C � � DxL C Dt�
t C Dx � � x (117)

for some for differential scalar function � t and differential vector function � x. This
condition can be expressed alternatively as

prX.L/ D Dt Q� t C Dx � Q� x � .Dt
 C Dx � �/L (118)
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with Q� t D � t C L
 and Q� x D � x C L� , where Dt
 C Dx � � represents the
infinitesimal conformal change in the space-time volume element dVdt under the
symmetry generator X.

A simpler formulation of a variational symmetry is given by using the character-
istic form (89) for the symmetry generator. Then an infinitesimal symmetry (89) is
a variational symmetry iff its prolongation leaves invariant the Lagrangian modulo
total a divergence,

pr OX.L/ D Dt�
t
P C Dx � � x

P (119)

for some for differential scalar function � t
P and differential vector function � x

P
depending on the characteristic function P of the symmetry. Note that, since any
total divergence is annihilated by the Euler operator Eu, a variational symmetry
preserves the critical points of the Lagrangian L. As a consequence, every variational
symmetry is an infinitesimal symmetry of the PDE system G D Eu.L/ D 0. The
converse is not true in general, since (for example) scaling symmetries of Euler-
Lagrange equations need not always preserve the Lagrangian.

There is an equivalent, modern formulation of the variational symmetry condi-
tion (119) which uses only the Euler-Lagrange equations and not the Lagrangian
itself.

Proposition 3 For any locally variational PDE system (110), an infinitesimal
symmetry in characteristic form OX D P.t; x; u; @u; : : : ; @ru/@u is a variational
symmetry iff

ıPGt D �ı�
GPt (120)

holds identically.

To prove this result, first note that Eu.pr OX.L// vanishes identically iff pr OX.L/ is
a total divergence, by Lemma 4.2. Next, Eu.pr OX.L// D Eu.ıPL/ D Eu.PEu.L// D
ı�

P Gt C ı�
Gt P directly follows from the Euler-Lagrange relation (70) combined with

the product rule shown in Lemma 4.2 for the Euler operator. Finally, ı�
P Gt D ıPGt

holds by Lemma 6.6, and ı�
Gt P D ı�

GPt holds as an identity. Hence Eu.pr OX.L// D
ıPGt C ı�

GPt is an identity. This completes the proof. ut
An importance consequence of equation (120) is that it provides a determining

condition to find all variational symmetries for a given locally variational PDE
system, without the explicit use of a Lagrangian. In particular, this formulation
avoids the need to consider the “gauge terms” Dt�

t C Dx � � x which arise in the
Lagrangian formulation (119).

Running Ex. (1) The Lie symmetries of the gKdV equation (56) consist of
a time translation OX D �ut@u, a space translation OX D �ux@u, a scaling OX D
�. 2

p u C 3tut C xux/@u, and a Galilean boost OX D .1 � tux/@u if p ¤ 1. These
symmetries project to corresponding Lie symmetries of the potential gKdV equation
wtx C wp

xwxx C wxxxx D 0 through the relation u D wx. This yields the generator
OX D P@w with
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P D Pt D .1 � 2
p /c3w C c4 � .c1 C 3c3t/wt � .c2 C c3x C c4t/wx: (121)

The variational Lie symmetries can be easily found by checking the condition (120).
Using G D Gt D wtx C wp

xwxx C wxxxx, a simple computation yields

ıPGt D DtDxP C pwp�1
x wxxDxP C wp

xD2
xP C D4

xP

D �.c1 C 3c3t/DtG � .c2 C c3x C c4t/DxG � .3 C 2
p /c3G (122)

and also

ı�
GPt D G

@P

@w
� Dt

�
G

@P

@wt

�
� Dx

�
G

@P

@wx

�

D .5 � 2
p /c3G C .c1 C 3c3t/DtG C .c2 C c3x C c4t/DxG: (123)

Hence, 0 D ıPGt Cı�
GPt D .2� 4

p /c3G determines .p�2/c3 D 0. This shows that all
of the Lie symmetries except the scaling symmetry are variational symmetries for
an arbitrary nonlinearity power p ¤ 0, and that the scaling symmetry is a variational
symmetry only for the special power p D 2.

6.2 Noether’s Theorem in Modern Form

Variational symmetries have a direct relationship to local conservation laws through
the variational identity

pr OX.L/ D Dt�
t
P C Dx � � x

P

D ıPL D PEu.L/ C D � �L.P/ (124)

holding due to the Euler-Lagrange relation (70). The identity (124) yields

PEu.L/ D D � ˚; ˚ D .� t
P � � t

L.P/; � x
P � � x

L .P// (125)

which is a conservation law in characteristic form for the PDE system given by
Eu.L/ D 0. When combined with the formula (105) for conserved currents, this
provides a modern, local form of Noether’s theorem, which does not explicitly use
the Lagrangian.

Theorem 6.2 For any locally variational PDE system G D Eu.L/t D 0, varia-
tional symmetries OX D P@u and local conservation laws in characteristic form
Dt QT C Dx � QX D GQ have a one-to-one correspondence given by the relation

P D Qt: (126)
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Equivalently, this correspondence is given by the homotopy integral

Q̊ D . QT; QX/ D
Z 1

0

kX
jD1

0
@@�@j�1u.�/

0
@ kX

lDj

.�D/l�j �
�

@.PGt/

@.@lu/

� ˇ̌
ˇ
uDu.�/

1
A
1
A d�

(127)
modulo a total curl, along a homotopy curve u.�/.t; x/, with u.1/ D u and u.0/ D u0

such that .GQ/juDu0 is non-singular. Here k D max.r; N/.

The Noether correspondence stated in Theorem 6.2 has a sharper formulation
using the additional correspondence between multipliers and local conservation
laws provided by Theorem 5.1. This formulation depends on whether a given
variational PDE system possesses differential identities or not.

In particular, when a PDE system satisfies a differential identity (88), there will
exist gauge symmetries

OX D .D�.�//t@u (128)

corresponding to gauge multipliers (108), where D is the linear differential operator
defining the given differential identity (88), and � is an arbitrary differential
function. Two symmetries that differ by a gauge symmetry will be called gauge
equivalent.

Recall, for any regular PDE system, a symmetry is trivial iff its characteristic
function vanishes on the solution space of the PDE system, and two symmetries are
equivalent iff they differ by a trivial symmetry.

Corollary 1 (i) If a locally variational, regular PDE system (110) has no differ-
ential identities, then there is a one-to-one correspondence between its admitted
equivalence classes of linearly-independent local conservation laws and its admit-
ted equivalence classes of linearly-independent variational symmetries. (ii) If a
locally variational, regular PDE system (110) satisfies a differential identity, then
its admitted equivalence classes of linearly-independent local conservation laws
are in one-to-one correspondence with its admitted equivalence classes of linearly-
independent variational symmetries modulo gauge symmetries.

6.3 Computation of Variational Symmetries and Noether
Conservation Laws

Whenever a locally variational PDE system (110) is regular, the determining
condition (120) for finding variational symmetries OX D P.t; x; u; @u; : : : ; @ru/@u

can be converted into a linear system of equations for P.t; x; u; @u; : : : ; @ru/ by the
following steps.
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On the solution space E of the PDE system, the Fréchet derivative adjoint
operator ı�

GjE vanishes. Thus, the determining condition (120) implies .ıPGt/jE D 0

which coincides with the determining equation (91) for an infinitesimal symmetry of
the PDE system. This shows that P is the characteristic function of an infinitesimal
symmetry. From Lemma 4.4, it then follows that P satisfies the relation

ıPGt D RP.Gt/ (129)

for some linear differential operator

RP D R.0/
P C R.1/

P � D C R.2/
P � D2 C � � � C R.r/

P � Dr (130)

whose coefficients are non-singular on E , as the PDE system is assumed to be
regular, where r is the differential order of P. Note that if the PDE system satisfies
a differential identity (88) then RP is determined by P only up to �D t where � is
an arbitrary differential function and D is the linear differential operator defining
the identity. Substitution of the relation (129) into the determining condition (120)
yields

0 D RP.Gt/ C ı�
GPt: (131)

Note that ı�
GPt can be expressed in an operator form

ı�
GPt D Eu.P/Gt � E.1/

u .P/ � .DGt/ C � � � C E.r/
u .P/ � .�D/rGt (132)

using the relation (78). Consequently, when the PDEs G D .G1; : : : ; GM/ are
expressed in a solved form (54)–(55) for a set of leading derivatives, equation (131)
can be split with respect to these leading derivatives and their differential conse-
quences. This yields a linear system of equations

0 D R.k/
P C .�1/kE.k/

u .P/; k D 0; 1; : : : ; r: (133)

Note that these equations are similar in structure to the Helmholtz conditions (112).

Hence, the following result has been established.

Theorem 6.3 The determining equation (120) for variational symmetries OX D
P.t; x; u; @u; : : : ; @ru/@u of any locally variational, regular PDE system (110) is
equivalent to a linear system of equations consisting of the determining condi-
tion (91) for OX to be an infinitesimal symmetry of the PDE system, and Helmholtz-
type conditions (133) for OX to leave any Lagrangian of the PDE system invariant
modulo a total divergence. This linear determining system (91), (133) is formulated
entirely in terms of the symmetry characteristic function P and the PDE expressions
G D .G1; : : : ; GM/, without explicit use of a Lagrangian.
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It is important to emphasize that the determining system (91), (133) can be solved
computationally by the same standard procedure [1–3] that is used to solve the
standard determining equation (90) for symmetries.

7 Main Results

For any regular PDE system (39), whether or not it has a variational principle, all
local conservation laws have a characteristic form given by multipliers, as shown
by the general correspondence stated in Theorem 5.1. In the case of regular PDE
systems that are locally variational, the modern form of Noether’s theorem given
by Theorem 6.2 shows that multipliers for local conservation laws are the same
as characteristic functions for variational symmetries. These symmetries satisfy a
determining equation (120) which can be split into an equivalent determining system
for the symmetry characteristic functions, without explicit use of a Lagrangian, as
shown in Theorem 6.3. A similar determining system can be derived for multipliers,
by splitting the multiplier determining equation (101) in the same way.

On the solution space E of a given regular PDE system (39), the Fréchet deriva-
tive adjoint operator ı�

GjE vanishes. Thus, the multiplier determining equation (101)
implies

.ı�
QG/jE D 0 (134)

which is the adjoint of the symmetry determining equation (91), and its solutions
Q.t; x; u; @u; : : : ; @ru/ are called adjoint-symmetries [6–8] (or sometimes cosymme-
tries). Then Q satisfies the identity

ı�
QG D ı�

Qt Gt D RQt.Gt/ (135)

from Lemma 4.4, where

RQt D R.0/

Qt C R.1/

Qt � D C R.2/

Qt � D2 C � � � C R.r/
Qt � Dr (136)

is some linear differential operator whose coefficients are non-singular on E , and
r is the differential order of Q. Note that if the PDE system satisfies a differential
identity (88) then RQt is determined by Q only up to �D t where � is an arbitrary
differential function and D is the linear differential operator defining the identity.
The determining equation (101) now becomes

0 D RQt.Gt/ C ı�
GQ: (137)

From the relation (78), note that ı�
GQ can be expressed in an operator form
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ı�
GQ D Eu.Qt/Gt � E.1/

u .Qt/ � .DGt/ C � � � C E.r/
u .Qt/ � .�D/rGt: (138)

Consequently, when the PDEs G D .G1; : : : ; GM/ are expressed in a solved form
(54)–(55) in terms of a set of leading derivatives, equation (137) can be split with
respect to these leading derivatives and their differential consequences. This yields
a linear system of equations

0 D R.k/

Qt C .�1/kE.k/
u .Qt/; k D 0; 1; : : : ; r (139)

which is similar in form to the Helmholtz conditions (112).
Thus, the following result has been established.

Theorem 7.4 The determining equation (101) for conservation law multipliers
of any regular PDE system (39) is equivalent to the linear system of equa-
tions (134), (139). In particular, multipliers are adjoint-symmetries (134) satis-
fying Helmholtz-type conditions (139), where these conditions are necessary and
sufficient for an adjoint-symmetry Q.t; x; u; @u; : : : ; @ru/ to have the variational
form (98) derived from a conserved current ˚ D .T; Xi/.

A comparison of the determining systems formulated in Theorem 7.4 and
Theorem 6.3 shows how the correspondence between the local conservation laws
and the multipliers for regular PDE systems is related to the Noether correspondence
between the local conservation laws and the variational symmetries for locally
variational, regular PDE systems.

Corollary 2 When a regular PDE system is locally variational (110), the adjoint-
symmetry determining equation (134) is the same as the symmetry determining
equation (91), and the Helmholtz-type conditions (139) under which an adjoint-
symmetry is a multiplier are equivalent to the variational conditions (133) under
which a symmetry is a variational symmetry.

Thus, Theorems 5.1 and 7.4 provide a direct generalization of the modern
form of Noether’s theorem given by Theorems 6.2 and 6.3, in which the role of
symmetries in the derivation of local conservation laws for variational PDE systems
is replaced by adjoint-symmetries in the derivation of local conservation laws for
non-variational PDE systems.

7.1 Computation of Multipliers and Conserved Currents

For any given regular PDE system, all of its non-trivial local conservation laws (up
to equivalence) can be obtained by the following three steps.

Step 1: Solve the determining system (134), (139) to obtain all multipliers.
Step 2: Find all linearly independent equivalence classes of non-trivial multipliers.
Step 3: Construct the conserved current determined by a representative multiplier

in each equivalence class.
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The multiplier determining system (134), (139) can be solved computationally
by the same standard procedure [1–3] that is used to solve the determining
equation (91) for symmetries. Moreover, for multipliers of a given differential
order r, the multiplier determining system is, in general, more overdetermined than
is the symmetry determining equation for infinitesimal symmetries of the same
differential order r. Consequently, the computation of multipliers is typically easier
than the computation of symmetries.

As an alternative to solving the whole multiplier determining system together,
only the adjoint-symmetry determining equation can be solved first, and the
Helmholtz-type conditions (139) then can be checked for each adjoint-symmetry
to obtain all multipliers.

In practice, it can be computationally hard to obtain the complete solution to
the multiplier determining system (or the adjoint-symmetry determining equation)
because this will involve going to an arbitrarily high differential order for the
dependence of the multiplier (or the adjoint-symmetry) on the derivatives of the
dependent variables in the PDE system. Moreover, for computations using computer
algebra, this differential order must be specified in advance. The same issue arises
when symmetries are being sought, but often these obstacles are set aside by looking
for just Lie symmetries, or higher symmetries of a special form.

A similar approach can be used for multipliers, by looking just for all low-order
conservation laws or by looking just for higher order conservation laws with a
special form or with a particular differential order. In physical applications, there
is often a specific class of conserved densities that is of interest. The form for
multipliers corresponding to a given class of conserved densities can be derived
directly by balancing derivatives on both sides of the characteristic equation, as
shown in the running examples in Sect. 5.2.

For each non-trivial multiplier, the construction of a corresponding non-trivial
conserved current can be carried out by several different methods.

First, the homotopy integral formula (103)–(104) can be applied. An advantage
of this formula compared to the standard linear-homotopy formula in the literature
[1, 7, 8] is that the homotopy curve can be adapted to the structure of the expressions
for the multiplier Q and the PDE system G, which allows avoiding integration
singularities.

Second, the characteristic equation (94) can be converted into a linear system of
determining equations for the conserved density QT and the flux QX. The determining
equations are derived in a straightforward way starting from the expression for the
multiplier Q, similarly to the derivation of the form for low-order conservation laws
explained in Sect. 5.2. This method is computationally advantageous as it can be
implemented in the same way as setting up and solving the determining system for
multipliers [3, 10].

Third, if a given PDE system possesses a scaling symmetry then an algebraic
formula that yields a scaling multiple of the conserved current ˚ D Q̊ jE D . QT; QX/jE
is available [9], where the scaling multiple is simply the scaling weight of the
corresponding conserved integral. The formula can be derived by applying the
scaling relation (84)–(85) directly to the function f D GQ. This gives
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T D ! QTjE D
�

P
kX

lD1

.�D/l�1 �
� @G

@.@l�1@tu/
Q
�

C .DP/ �
� kX

lD2

.�D/l�2 �
� @G

@.@l�1@tu/
Q
��

C � � � C .Dk�1P/ �
� @G

@.@k�1@tu/
Q
��ˇ̌
ˇ
E

; (140)

X D ! QXjE D
�

P
kX

lD1

.�D/l�1 �
� @G

@.@l�1@xu/
Q
�

C .DP/ �
� kX

lD2

.�D/l�2 �
� @G

@.@l�1@xu/
Q
��

C � � � C .Dk�1P/ �
� @G

@.@k�1@xu/
Q
��ˇ̌
ˇ
E

; (141)

modulo a locally trivial current ˚triv D .Dx�; �Dt� C Dx � �/, where

P D ��ut
 �ux ��; 
 D at; � D .b.1/x
1; : : : ; b.n/x

n/; � D .c.1/u
1; : : : ; c.m/u

m/

(142)

are the characteristic functions in the generator of the scaling symmetry (82). Here

! D s C Dt
 C Dx � � D s C a C
nX

iD1

b.i/ (143)

is a scaling factor, with s being the scaling weight of the function GQ. Note, as
seen from the characteristic equation (94), ! is equal to the scaling weight of the
conserved integral

R
˝

QTjE dV , as defined on any given spatial domain ˝ � R
n.

This algebraic formula (140)–(142) has the advantage that it does not require
any integrations. However, it assumes that the scaling multiple ! is non-zero,
which means that it can be used only for constructing conserved currents whose
corresponding conserved integral has a non-zero scaling weight, ! ¤ 0.

A more general algebraic construction formula can be derived by utilizing dimen-
sional analysis, which is applicable to PDE systems without a scaling symmetry.
Any given PDE system arising in physical applications will be scaling homogeneous
under dimensional scaling transformations that act by rescaling the fundamental
physical units of all variables and all parametric constants [1, 2] (whether or not the
PDE system admits a scaling symmetry). In particular, these dimensional scaling
transformations will comprise independent rescalings of length, time, mass, charge,
and so on. For each dimensional scaling transformation, a scaling formula will
arise for T and X, generalizing the algebraic formula (140)–(142) in a way that
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involves the dependence of Q and G on all of the dimensionful parametric constants
appearing in their expressions. If a conserved integral represents a dimensionful
physical quantity, then the scaling multiple in the resulting formula will be non-
zero.

A derivation of this general construction formula will be given elsewhere [33].
Here, it will be illustrated in a running example.

Running Ex. (1) All low-order conservation laws will now be derived for
the gKdV equation (56). As shown previously, low-order conserved currents
correspond to low-order multipliers, which have the general form Q.t; x; u; ux; uxx/.
Multipliers are adjoint-symmetries that satisfy Helmholtz-type conditions. To set up
the determining system for multipliers, first note ı�

QG D �.DtQ C D3
xQ C upDxQ/,

where G D ut C upux C uxxx. Hence the adjoint-symmetry determining equation for
Q is given by

.DtQ C D3
xQ C upDxQ/jE D 0:

Next look at the terms that contain the leading derivative ut and its x-derivatives in
this equation. This yields

�DtQ C D3
xQ C upDxQ D �@Q

@u
� @Q

@ux
DxG � @Q

@uxx
D2

xG D RQ.G/

holding off of the gKdV solution space, where the components of the operator RQ

are given by

R.0/
Q D �@Q

@u
; R.x/

Q D � @Q

@ux
; R.x;x/

Q D � @Q

@uxx
:

Then the Helmholtz-type equations on Q consist of

0 DR.0/
Q C Eu.Q/ D �Dx

@Q

@ux
C D2

x

@Q

@uxx
;

0 DR.x/
Q � E.x/

u .Q/ D �2
@Q

@ux
C 2Dx

@Q

@uxx
;

0 DR.x;x/
Q C E.x;x/

u .Qt/ D 0;

which reduce to a single equation

Dx
@Q

@uxx
� @Q

@ux
D 0:

This Helmholtz-type equation and the adjoint-symmetry equation can be split with
respect to all derivatives of u which do not appear in Q, with ut eliminated through
the gKdV equation. This gives, after some simplifications, a linear overdetermined
system of 8 equations:
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@Q

@ux
D 0;

@2Q

@u2
xx

D 0;
@2Q

@x@uxx
D 0;

@2Q

@u@uxx
D 0;

@3Q

@x@u2
D 0;

@3Q

@u3
� p.p � 1/up�2 @Q

@uxx
D 0;

@3Q

@x2@u
C uxx

@2Q

@u2
� pup�1uxx

@Q

@uxx
D 0;

@Q

@t
C up @Q

@x
C @3Q

@x3
C 3uxx

@2Q

@x@u
D 0:

These equations can be solved for Q, with p treated as an unknown, to get

Q D c1 C c2u C c3.uxx C 1
pC1

upC1/ C c4.x � tu/ C c5.t.3uxx C u3/ � xu/

with c4 D 0 if p ¤ 1, and c5 D 0 if p ¤ 2. Hence, 5 low-order multipliers are
obtained,

Q1 D 1; Q2 D u; Q3 D uxx C 1
pC1

upC1; p > 0;

Q4 D x � tu; p D 1;

Q5 D t.3uxx C u3/ � xu; p D 2:

The corresponding low-order conserved currents will now be derived using the
three different construction methods. First is the homotopy integral method. The
simplest choice for the homotopy is u.�/ D �u since the gKdV equation is a
homogeneous PDE, GjuD0 D 0. Hence the homotopy integral is simply given by

QT D
Z 1

0

u
@.GQ/

@ut

ˇ̌
ˇ
uDu.�/

d�

D
Z 1

0

u
�
c1 C c4x C .c2 � c4t � c5x/u� C .c3 C c53t/uxx�

C c5tu3�3 C c3
1

pC1
upC1�pC1

�
d�

D .c1 C c4x/u C 1
2
.c2 � c4t � c5x/u2 C 1

2
.c3 C c53t/uuxx

C c5
1
4
tu4 C c3

1
.pC1/.pC2/

upC2

and

QX D
Z 1

0

�
u
�@.GQ/

@ux

ˇ̌
ˇ
uDu.�/

� Dx
@.GQ/

@uxx

ˇ̌
ˇ
uDu.�/

C D2
x

@.GQ/

@uxxx

ˇ̌
ˇ
uDu.�/

�

C ux

�@.GQ/

@uxx

ˇ̌
ˇ
uDu.�/

� Dx
@.GQ/

@uxxx

ˇ̌
ˇ
uDu.�/

�
C uxx

@.GQ/

@uxxx

ˇ̌
ˇ
uDu.�/

�
d�
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D
Z 1

0

�
u
�
.c4xu � 2c5ux�.c3Cc5t/utx�.c4tCc5x � c2/uxx/� � c4tu2�2

C c5.3u2uxx � xu3/�3 C c5tu5�5 C c1

C up�p � .c53ptup�1u2
x C .c2upC1 C c3upuxx/�

pC1

C c3
1

pC1
u2pC1�2pC1

�C ux
� � c4 C .c5u C .c3 C c53t/ut

C .c4t C c5x � c2/ux/�
�C uxx

�
c1 C c4x C .c2 � c4t � c5x/u

C .c3 C c53t/uxx/� C c5tu3�3 C c3
1

pC1
upC1�pC1

��
d�

which is easiest to evaluate when separated into the non-overlapping cases p D 1

with c5 D c1 D c2 D c3 D 0, p D 2 with c4 D c1 D c2 D c3 D 0, and p > 0 with
c4 D c5 D 0. This yields the 5 low-order conserved currents

QT1 D u; QX1 D 1
pC1

upC1 C uxx

QT2 D 1
2
u2; QX2 D 1

pC2
upC2 C uuxx � 1

2
u2

x

QT3 D 1
2
uuxx C 1

.pC1/.pC2/
upC2; QX3 D 1

2.pC1/2 u2pC2 C 1
pC1

upC1uxx

C 1
2
.u2

xx C utux/ � uutx

QT4 D xu � 1
2
tu2; QX4 D t. 1

2
u2

x � uuxx � 1
3
u3/ C x.uxx C 1

2
u2/ � ux; p D 1

QT5 D 1
2
.3tuuxx � xu2/ C 1

4
tu4; QX5 D t. 3

2
.u2

xx C utux/ C u3uxx � 3
2
uutx C 1

6
u6/

Cx. 1
2
u2

x � uuxx � 1
4
u4/ � 1

2
uux; p D 2

whose respective multipliers are Q1; : : : ; Q5. Each of these conserved currents is in
characteristic form, namely Dt QTi C Dx QXi D QiG.

Second is the integration method using the characteristic equation Dt QT C Dx QX D
GQ, where

GQ D�c1 C c2u C c3.uxx C 1
pC1

upC1/ C c4.x � tu/

C c5.t.3uxx C u3/ � xu/
�
.ut C upux C uxxx/

with c4 D 0 if p ¤ 1, and c5 D 0 if p ¤ 2. There are three steps in this method. First,
as shown previously from balancing derivatives on both sides of the characteristic
equation, the general form for all low-order conserved currents Q̊ D . QT; QX/ is found
to be given by

Q̊ jE D . QT.t; x; u; ux/; QX.t; x; u; ut; ux; uxx//:
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Second, the characteristic equation can then be split with respect to utx and
uxxx, which yields (after simplifications) a linear overdetermined system of three
equations:

@ QT
@ux

C @ QX
@ut

D 0;

@ QX
@uxx

D c3
1

pC1
upC1 C c1 C c4x C .c2 � c4t � c5x/u C .c3 C c53t/uxx C c5tu3;

@ QT
@t

C @ QX
@x

C ut
@ QT
du

C ux
@ QX
@u

C uxx
@ QX
@ux

D .ut Cu Pux /

.c3
1

pC1
upC1 C c1 C c4x C .c2 � c4t � c5x/u

C .c3 C c53t/uxx C c5tu3/:

These equations can be integrated directly. It is simplest to consider separately the
non-overlapping cases p D 1 with c5 D c1 D c2 D c3 D 0, p D 2 with c4 D c1 D
c2 D c3 D 0, and p > 0 with c4 D c5 D 0. The first case is found to reproduce
QT4 and QX4; the second case yields QT5 � Dx Q�5 and QX5 C Dt Q�5 where Q�5 D 3

2
tuux.

Similarly, the third case with c3 D 0 is found to reproduce QT1, QT2, QX1, QX2, and with
c3 ¤ 0 it yields QT3 � Dx Q�3 and QX3 C Dt Q�3 where Q�3 D 1

2
uux. Thus, the resulting

conserved currents agree with those obtained from the homotopy integral, up to
locally trivial currents. In particular, path of these currents is in characteristic form.

Third is the scaling symmetry method. The gKdV equation possesses a scaling
symmetry

t ! �3t; x ! �x; u ! ��2=pu; � ¤ 0

with the characteristic function P D �.2=p/u � 3tut � xux. Note the multipliers
Q1; : : : ; Q5 are each homogeneous under the scaling symmetry, with respective
scaling weights q1 D 0, q2 D �2=p, q3 D �2 � 2=p, q4 D 1, q5 D 0. Hence
the corresponding scaling factors (143) are given by !1 D 1 � 2=p, !2 D 1 � 4=p,
!3 D �1 � 4=p, !4 D 0, !5 D 0, where si D qi C c � a; a D 3; b D 1; c D �2=p.
Then the scaling symmetry formula is given by

Ti D !i QTijE D
�

P
@G

@ut
Qi

�ˇ̌
ˇ
E

;

Xi D !i QXijE D
�

P
� @G

@ux
Qi � Dx

� @G

@uxx
Qi

�
C D2

x

� @G

@uxxx
Qi

��

C DxP
� @G

@uxx
Qi � Dx

� @G

@uxxx
Qi

��
C D2

xP
� @G

@uxxx
Qi

��ˇ̌
ˇ
E

;

modulo a locally trivial current. For i D 1; 2; 3, this yields the conserved density
expressions
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T1 D �. 2
p u C 3tut C xux/jE D .1 � 2=p/ QT1jE C Dx�1; �1 D 3t QX1 � x QT1;

T2 D �.. 2
p u C 3tut C xux/u/jE D .1 � 4=p/T2jE C Dx�2; �2 D 3t QX2 � x QT2;

T3 D �. 2
p u C 3tut C xux/.uxx C 1

pC1
upC1/jE D .�1 � 4=p/T3jE C Dx�3;

�3 D 1
2
.1 C 4=p/uux C 3t. QX3 C Dt Q�3/ � QX. QT3 � Dx Q�3/:

Note their scaling factors are non-zero when p ¤ 2, p ¤ 4, and p ¤ �4,
respectively. When p D 2, T1 reduces to a locally trivial conserved density Dx�1

and when p D 4, T2 reduces to a locally trivial conserved density Dx�2. Likewise,
when p D �4; T3 reduces to a locally trivial conserved density Dx�3.

The expressions given by the scaling symmetry formula for i D 4; 5 yield

T4 D �.2u C 3tut C xux/.x � tu/jE D Dx�4;

�4 D .x � tu/.t.3uxx C u2/ � xu/ C 3
2
.tux � 1/2

and

T5 D �.u C 3tut C xux/.3t.uxx C u3/ � xu/jE D Dx�5;

�5 D 1
2
.t.3uxx C 43/ � xu/2:

These cases for p > 0 in which the scaling symmetry formula yields locally trivial
currents are called the critical powers for the corresponding conserved currents. To
obtain the conserved currents for a critical power, it is necessary to use the more
general dimensional scaling formula.

Several steps are needed to set up the dimensional scaling formula.
The first step is to introduce dimensionful constants into the gKdV equation so

that it is homogeneous under separate dimensional scalings of t Œtime�, x Œlength�,
and u Œmass�. Thus, let

QG D ut C �upux C �uxxx; �; � D const:

where � has dimensions of Œtime��1Œlength�Œmass��p, and � has dimensions of
Œtime��1Œlength�3. Note QG D G will be the gKdV equation when these constants
have the numerical values � D 1 and � D 1.

The next step is to insert factors of � and � into the expressions for the low-order
multipliers so that Q1; : : : ; Q5 are each dimensionally homogeneous:

Q1 D 1; Q2 D u; Q3 D �uxx C 1
pC1

�upC1; p > 0;

Q4 D x � �tu; p D 1;

Q5 D t.3�uxx C �u3/ � xu; p D 2:
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The main step consists of generalizing the scaling relation (84)–(85) so that it
applies to dimensional scaling transformations. These transformations are given by

t ! �t; � ! ��1�; � ! ��1�I
x ! �x; � ! ��; � ! �3�I
u ! �u; � ! ��p�; � ! �I

as determined by the dimensions of � and �. Since the scaling relation (84)–(85)
only holds for variables in jet space, the constants � and � now must be treated as
variables by introducing the equations

QG.�/ D .�t; �x/ D 0; QG.�/ D .�t; �x/ D 0:

Then the augmented PDE system

QG D 0; QG.�/ D 0; QG.�/ D 0

will admit each of the three scaling transformations as symmetries formulated in
the augmented jet space QJ D .t; x; u; �; �; ut; ux; �t; �x; �t; �x; : : :/. Note that the
characteristic equation for conserved currents will have additional multiplier terms

Dt QT C Dx QX D QGQ C QG.�/ QQ.�/ C QG.�/ QQ.�/

for some expressions QQ.�/ D . QQt
.�/;

QQx
.�//

t and QQ.�/ D . QQt
.�/;

QQx
.�//

t, where Q is
unchanged. These expressions can be found in a straightforward way by setting up
and solving the multiplier determining system, with Q D Qi being the previously
derived low-order multipliers for the gKdV equation. Since � and � appear linearly
in each Qi as well as in the PDE expression QG, note QQ.�/ and QQ.�/ can have at most
linear dependence on these variables and cannot contain any derivatives of these
variables. Also, since Qi depends on u; ux; uxx; uxxx, and QG depends on u; ut; ux; uxxx,
note QQ.�/ and QQ.�/ can depend on only u; ut; ux; utx; uxx in addition to t; x and �; �:

QQ.�/.t; x; u; �; �; ut; ux; utx; uxx/; QQ.�/.t; x; u; �; �; ut; ux; utx; uxx/:

The multiplier determining system is then given by

Eu. QGQi C QG.�/ QQ.�/ C QG.�/ QQ.�// D 0;

E.�/. QGQi C QG.�/ QQ.�/ C QG.�/ QQ.�// D 0; E.�/. QGQi C QG.�/ QQ.�/ C QG.�/ QQ.�// D 0

for i D 1; : : : ; 5. This system splits with respect to all derivatives of u; �; � which
do not appear in QQ.�/ and QQ.�/. Integration of the resulting equations yields



178 S.C. Anco

QQt
1.�/ D 0; QQx

1.�/ D 1
pC1

upC1; QQt
1.�/ D 0; QQx

1.�/ D uxx;

QQt
2.�/ D 0; QQx

2.�/ D 1
pC2

upC2; QQt
2.�/ D 0; QQx

2.�/ D uuxx � 1
2
u2

x ;

QQt
3.�/ D 1

.pC1/.pC2/
upC2; QQx

3.�/ D 1
pC1

�upC1 C 1
.pC1/.pC2/

�u2pC2;

QQt
3.�/ D � 1

2
u2

x ; QQx
3.�/ D �u2

xx C utux C �upC1uxx;

QQt
4.�/ D � 1

2
tu2; QQx

4.�/ D t�. 1
2
u2

x � uuxx/ C 1
2
xu2 � 2

3
�u3;

QQt
4.�/ D 0; QQx

4.�/ D t�. 1
2
u2

x � uuxx/ C xuxx � ux;

QQt
5.�/ D 1

4
tu2; QQx

5.�/ D t.�u3uxx C 1
3
�u6/ � 1

4
xu4;

QQt
5.�/ D � 3

2
tu2

x ; QQx
5.�/ D t.�u3uxx C 3�u2

xx C 3utux/ C x. 1
2
u2

x � uuxx/ C uux:

The scaling relation (84)–(85) can now be applied to the function fi D QGQi

C QG.�/ QQi.�/ C QG.�/ QQi.�/ in the augmented jet space QJ D .t; x; u; �; �; ut; ux;

�t; �x; �t; �x; : : :/ by using an infinitesimal scaling symmetry given by one of the
scaling transformation generators

OXtime D �.� C t�t/@� � .� C t�t/@� � tut@u;

OXlength D .� � x�x/@� C .3� � x�x/@� � xux@u;

OXmass D �p�@� C u@u:

Let P, P.�/, P.�/ denote the characteristic functions in the selected scaling transfor-
mation generator OX. Then this yields the dimensional scaling formula

Ti D !i QTijE D
�

P
@ QG
@ut

Qi C P.�/ QQt
i.�/ C P.�/ QQt

i.�/

�
;

Xi D !i QXijE D
�

P
� @ QG

@ux
Qi � Dx

� @ QG
@uxx

Qi

�
C D2

x

� @ QG
@uxxx

Qi

��

C DxP
� @ QG

@uxx
Qi � Dx

� @ QG
@uxxx

Qi

��
C D2

xP
� @ QG

@uxxx
Qi

�

C P.�/ QQx
i.�/ C P.�/ QQx

i.�/

�
;

modulo a locally trivial current, where

!i D qi C s C Dt
 C Dx� (144)

is a scaling factor defined in terms of the scaling weights qi; s of Qi; QG and
the divergence factor Dt
 C Dx� arising from the selected dimensional scaling
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Table 1 Properties of dimensional scaling transformations for the gKdV equation and its
low-order multipliers

P P.�/ P.�/ Dt
 C Dx� s q1 q2 q3 q4 q5

Time �tut �.� C t�t/ �.� C t�t/ 1 �1 0 0 �1 0 0

Length �xux � � x�x 3� � x�x 1 0 0 0 1 1 1

Mass u �p� 0 0 1 0 1 1 0 1

Table 2 Dimensional
scaling weights for low-order
conserved currents of the
gKdV equation

!1 !2 !3 !4 !5

Time 0 0 �1 0 0

Length 1 1 2 2 2

Mass 1 2 2 1 2

transformation. In particular, for each i D 1; : : : ; 5, there will be some (possibly
combined) transformation such that the scaling factor wi is non-zero, as seen from
Tables 1 and 2.

The dimensional scaling formula will now be used to obtain the conserved
currents ˚i D .Ti; Xi/jE that were missed previously by the scaling symmetry
formula. These cases are: i D 4; 5; and, i D 1; 2 when p is a critical power. From
the form of the dimensional scaling generators, the mass scaling transformation is
simplest choice to use. Then the formula becomes

Ti D !iTi D .uQi � p QQt
i.�//j�D�D1;

Xi D !iXi D .upC1Qi C uD2
xQi � uxDxQi C uxxQi � p QQx

i.�//j�D�D1;

modulo a locally trivial current. This mass scaling formula yields the conserved
density and flux expressions

T1 D QT1; X1 D QX1;

T2 D 2 QT2; X2 D QX2;

which hold for all powers p > 0 (including the critical powers p D 2 and p D 4,
respectively), and also

T4 D QT4 X4 D QX4;

�ux � Dt�4

T5 D 2 QT5; X5 D 2 QX5;
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8 Concluding Remarks

The main results presented in Sect. 7 provide a broad generalization of Noether’s
theorem in modern form using multipliers, yielding a general method which is
applicable to all typical PDE systems arising in physical applications. In this
generalization, the problem of finding all conservation laws for a given PDE system
becomes an adjoint version of the problem of finding all infinitesimal symmetries
of the PDE system.

For any given variational PDE system, conservation laws arise from variational
symmetries, which are infinitesimal symmetries that satisfy variational conditions
corresponding to invariance of any variational principle for the PDE system.
Noether’s theorem shows that the characteristic functions in a variational symmetry
are precisely the component functions in a multiplier. For any given non-variational
PDE system, the role of symmetries in the derivation of conservation laws is
replaced by adjoint-symmetries, and the variational conditions under which an
infinitesimal symmetry is a variational symmetry are replaced by Helmholtz-type
conditions under which an adjoint-symmetry is a multiplier. Also, the role of a
Lagrangian in constructing a conserved integral from a variational symmetry is
replaced by several different constructions: an explicit integral formula, an explicit
algebraic scaling formula, and a system of determining equations, all of which use
only a multiplier and the given PDE system itself.

Most importantly, the completeness of this general method in finding all con-
servation laws for a given PDE system is established by working with the system
expressed in a solved-form for a set of leading derivatives without restricting it to
have a generalized Cauchy-Kovalevskaya form. This means that the method applies
equally well to PDE systems that possess differential identities.

As a consequence, there is no need to use special methods or ansatzes for
determining the conservation laws of any given PDE system, just as there is no
necessity to use special methods or ansatzes for finding its symmetries.

The formulation of the general method as a generalization of Noether’s theorem
rests on the adjoint relationship between variational symmetries and multipliers,
which originates from the algebraic relationship between symmetries and adjoint-
symmetries. An interesting question is whether this algebraic relationship has a
geometrical interpretation.

As will be shown in more detail elsewhere [34], adjoint-symmetries indeed can
be given a simple geometrical meaning. In the case of PDE systems comprised
of dynamical evolution equations, G D @tu � g.t; x; u; @xu; @2

xu; : : : ; @N
x u/ D 0,

an adjoint-symmetry defines a 1-form (or covector field) Qdu that is invariant
under the dynamical flow on u.t; x/, similarly to how a symmetry P@u defines an
invariant vector field. This geometrical statement essentially relies on the number
of dependent variables being the same as the number of equations in the PDE
system. For general PDE systems G D 0, it seems necessary to use the well-known
procedure [1] of embedding the PDE system into a larger, variational system defined
by a Lagrangian L D Gvt where v denotes additional dependent variables which are
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paired with the equations G D 0 in the given PDE system. In this setting, an adjoint-
symmetry defines a symmetry vector field Q@v of the enlarged system, G D 0 and
G0�.v/ D 0, where G0 is the Fréchet derivative of G, and G0	 is its adjoint. Then, it
is straightforward to show that an adjoint-symmetry is a multiplier precisely when
Q@v is a variational symmetry.
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